xref: /linux/arch/x86/kvm/x86.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73 
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76 
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81 
82 #define emul_to_vcpu(ctxt) \
83 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84 
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95 
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98 
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101 
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108 
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111 
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114 
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117 
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120 
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123 
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32  __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64  __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134 
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138 
139 /*
140  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
141  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
142  * advancement entirely.  Any other value is used as-is and disables adaptive
143  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
144  */
145 static int __read_mostly lapic_timer_advance_ns = -1;
146 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
147 
148 static bool __read_mostly vector_hashing = true;
149 module_param(vector_hashing, bool, S_IRUGO);
150 
151 bool __read_mostly enable_vmware_backdoor = false;
152 module_param(enable_vmware_backdoor, bool, S_IRUGO);
153 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
154 
155 static bool __read_mostly force_emulation_prefix = false;
156 module_param(force_emulation_prefix, bool, S_IRUGO);
157 
158 #define KVM_NR_SHARED_MSRS 16
159 
160 struct kvm_shared_msrs_global {
161 	int nr;
162 	u32 msrs[KVM_NR_SHARED_MSRS];
163 };
164 
165 struct kvm_shared_msrs {
166 	struct user_return_notifier urn;
167 	bool registered;
168 	struct kvm_shared_msr_values {
169 		u64 host;
170 		u64 curr;
171 	} values[KVM_NR_SHARED_MSRS];
172 };
173 
174 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
175 static struct kvm_shared_msrs __percpu *shared_msrs;
176 
177 struct kvm_stats_debugfs_item debugfs_entries[] = {
178 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
179 	{ "pf_guest", VCPU_STAT(pf_guest) },
180 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
181 	{ "invlpg", VCPU_STAT(invlpg) },
182 	{ "exits", VCPU_STAT(exits) },
183 	{ "io_exits", VCPU_STAT(io_exits) },
184 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
185 	{ "signal_exits", VCPU_STAT(signal_exits) },
186 	{ "irq_window", VCPU_STAT(irq_window_exits) },
187 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
188 	{ "halt_exits", VCPU_STAT(halt_exits) },
189 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
190 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
191 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
192 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
193 	{ "hypercalls", VCPU_STAT(hypercalls) },
194 	{ "request_irq", VCPU_STAT(request_irq_exits) },
195 	{ "irq_exits", VCPU_STAT(irq_exits) },
196 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
197 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
198 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
199 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
200 	{ "irq_injections", VCPU_STAT(irq_injections) },
201 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
202 	{ "req_event", VCPU_STAT(req_event) },
203 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
204 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
205 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
206 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
207 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
208 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
209 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
210 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
211 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
212 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
213 	{ "largepages", VM_STAT(lpages) },
214 	{ "max_mmu_page_hash_collisions",
215 		VM_STAT(max_mmu_page_hash_collisions) },
216 	{ NULL }
217 };
218 
219 u64 __read_mostly host_xcr0;
220 
221 struct kmem_cache *x86_fpu_cache;
222 EXPORT_SYMBOL_GPL(x86_fpu_cache);
223 
224 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
225 
226 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
227 {
228 	int i;
229 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
230 		vcpu->arch.apf.gfns[i] = ~0;
231 }
232 
233 static void kvm_on_user_return(struct user_return_notifier *urn)
234 {
235 	unsigned slot;
236 	struct kvm_shared_msrs *locals
237 		= container_of(urn, struct kvm_shared_msrs, urn);
238 	struct kvm_shared_msr_values *values;
239 	unsigned long flags;
240 
241 	/*
242 	 * Disabling irqs at this point since the following code could be
243 	 * interrupted and executed through kvm_arch_hardware_disable()
244 	 */
245 	local_irq_save(flags);
246 	if (locals->registered) {
247 		locals->registered = false;
248 		user_return_notifier_unregister(urn);
249 	}
250 	local_irq_restore(flags);
251 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
252 		values = &locals->values[slot];
253 		if (values->host != values->curr) {
254 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
255 			values->curr = values->host;
256 		}
257 	}
258 }
259 
260 static void shared_msr_update(unsigned slot, u32 msr)
261 {
262 	u64 value;
263 	unsigned int cpu = smp_processor_id();
264 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
265 
266 	/* only read, and nobody should modify it at this time,
267 	 * so don't need lock */
268 	if (slot >= shared_msrs_global.nr) {
269 		printk(KERN_ERR "kvm: invalid MSR slot!");
270 		return;
271 	}
272 	rdmsrl_safe(msr, &value);
273 	smsr->values[slot].host = value;
274 	smsr->values[slot].curr = value;
275 }
276 
277 void kvm_define_shared_msr(unsigned slot, u32 msr)
278 {
279 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
280 	shared_msrs_global.msrs[slot] = msr;
281 	if (slot >= shared_msrs_global.nr)
282 		shared_msrs_global.nr = slot + 1;
283 }
284 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
285 
286 static void kvm_shared_msr_cpu_online(void)
287 {
288 	unsigned i;
289 
290 	for (i = 0; i < shared_msrs_global.nr; ++i)
291 		shared_msr_update(i, shared_msrs_global.msrs[i]);
292 }
293 
294 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
295 {
296 	unsigned int cpu = smp_processor_id();
297 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298 	int err;
299 
300 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
301 		return 0;
302 	smsr->values[slot].curr = value;
303 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
304 	if (err)
305 		return 1;
306 
307 	if (!smsr->registered) {
308 		smsr->urn.on_user_return = kvm_on_user_return;
309 		user_return_notifier_register(&smsr->urn);
310 		smsr->registered = true;
311 	}
312 	return 0;
313 }
314 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
315 
316 static void drop_user_return_notifiers(void)
317 {
318 	unsigned int cpu = smp_processor_id();
319 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
320 
321 	if (smsr->registered)
322 		kvm_on_user_return(&smsr->urn);
323 }
324 
325 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
326 {
327 	return vcpu->arch.apic_base;
328 }
329 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
330 
331 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
332 {
333 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
334 }
335 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
336 
337 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
338 {
339 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
340 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
341 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
342 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
343 
344 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
345 		return 1;
346 	if (!msr_info->host_initiated) {
347 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
348 			return 1;
349 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
350 			return 1;
351 	}
352 
353 	kvm_lapic_set_base(vcpu, msr_info->data);
354 	return 0;
355 }
356 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
357 
358 asmlinkage __visible void kvm_spurious_fault(void)
359 {
360 	/* Fault while not rebooting.  We want the trace. */
361 	BUG();
362 }
363 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
364 
365 #define EXCPT_BENIGN		0
366 #define EXCPT_CONTRIBUTORY	1
367 #define EXCPT_PF		2
368 
369 static int exception_class(int vector)
370 {
371 	switch (vector) {
372 	case PF_VECTOR:
373 		return EXCPT_PF;
374 	case DE_VECTOR:
375 	case TS_VECTOR:
376 	case NP_VECTOR:
377 	case SS_VECTOR:
378 	case GP_VECTOR:
379 		return EXCPT_CONTRIBUTORY;
380 	default:
381 		break;
382 	}
383 	return EXCPT_BENIGN;
384 }
385 
386 #define EXCPT_FAULT		0
387 #define EXCPT_TRAP		1
388 #define EXCPT_ABORT		2
389 #define EXCPT_INTERRUPT		3
390 
391 static int exception_type(int vector)
392 {
393 	unsigned int mask;
394 
395 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
396 		return EXCPT_INTERRUPT;
397 
398 	mask = 1 << vector;
399 
400 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
401 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
402 		return EXCPT_TRAP;
403 
404 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
405 		return EXCPT_ABORT;
406 
407 	/* Reserved exceptions will result in fault */
408 	return EXCPT_FAULT;
409 }
410 
411 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
412 {
413 	unsigned nr = vcpu->arch.exception.nr;
414 	bool has_payload = vcpu->arch.exception.has_payload;
415 	unsigned long payload = vcpu->arch.exception.payload;
416 
417 	if (!has_payload)
418 		return;
419 
420 	switch (nr) {
421 	case DB_VECTOR:
422 		/*
423 		 * "Certain debug exceptions may clear bit 0-3.  The
424 		 * remaining contents of the DR6 register are never
425 		 * cleared by the processor".
426 		 */
427 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
428 		/*
429 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
430 		 */
431 		vcpu->arch.dr6 |= DR6_RTM;
432 		vcpu->arch.dr6 |= payload;
433 		/*
434 		 * Bit 16 should be set in the payload whenever the #DB
435 		 * exception should clear DR6.RTM. This makes the payload
436 		 * compatible with the pending debug exceptions under VMX.
437 		 * Though not currently documented in the SDM, this also
438 		 * makes the payload compatible with the exit qualification
439 		 * for #DB exceptions under VMX.
440 		 */
441 		vcpu->arch.dr6 ^= payload & DR6_RTM;
442 		break;
443 	case PF_VECTOR:
444 		vcpu->arch.cr2 = payload;
445 		break;
446 	}
447 
448 	vcpu->arch.exception.has_payload = false;
449 	vcpu->arch.exception.payload = 0;
450 }
451 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
452 
453 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
454 		unsigned nr, bool has_error, u32 error_code,
455 	        bool has_payload, unsigned long payload, bool reinject)
456 {
457 	u32 prev_nr;
458 	int class1, class2;
459 
460 	kvm_make_request(KVM_REQ_EVENT, vcpu);
461 
462 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
463 	queue:
464 		if (has_error && !is_protmode(vcpu))
465 			has_error = false;
466 		if (reinject) {
467 			/*
468 			 * On vmentry, vcpu->arch.exception.pending is only
469 			 * true if an event injection was blocked by
470 			 * nested_run_pending.  In that case, however,
471 			 * vcpu_enter_guest requests an immediate exit,
472 			 * and the guest shouldn't proceed far enough to
473 			 * need reinjection.
474 			 */
475 			WARN_ON_ONCE(vcpu->arch.exception.pending);
476 			vcpu->arch.exception.injected = true;
477 			if (WARN_ON_ONCE(has_payload)) {
478 				/*
479 				 * A reinjected event has already
480 				 * delivered its payload.
481 				 */
482 				has_payload = false;
483 				payload = 0;
484 			}
485 		} else {
486 			vcpu->arch.exception.pending = true;
487 			vcpu->arch.exception.injected = false;
488 		}
489 		vcpu->arch.exception.has_error_code = has_error;
490 		vcpu->arch.exception.nr = nr;
491 		vcpu->arch.exception.error_code = error_code;
492 		vcpu->arch.exception.has_payload = has_payload;
493 		vcpu->arch.exception.payload = payload;
494 		/*
495 		 * In guest mode, payload delivery should be deferred,
496 		 * so that the L1 hypervisor can intercept #PF before
497 		 * CR2 is modified (or intercept #DB before DR6 is
498 		 * modified under nVMX).  However, for ABI
499 		 * compatibility with KVM_GET_VCPU_EVENTS and
500 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
501 		 * delivery unless userspace has enabled this
502 		 * functionality via the per-VM capability,
503 		 * KVM_CAP_EXCEPTION_PAYLOAD.
504 		 */
505 		if (!vcpu->kvm->arch.exception_payload_enabled ||
506 		    !is_guest_mode(vcpu))
507 			kvm_deliver_exception_payload(vcpu);
508 		return;
509 	}
510 
511 	/* to check exception */
512 	prev_nr = vcpu->arch.exception.nr;
513 	if (prev_nr == DF_VECTOR) {
514 		/* triple fault -> shutdown */
515 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
516 		return;
517 	}
518 	class1 = exception_class(prev_nr);
519 	class2 = exception_class(nr);
520 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
521 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
522 		/*
523 		 * Generate double fault per SDM Table 5-5.  Set
524 		 * exception.pending = true so that the double fault
525 		 * can trigger a nested vmexit.
526 		 */
527 		vcpu->arch.exception.pending = true;
528 		vcpu->arch.exception.injected = false;
529 		vcpu->arch.exception.has_error_code = true;
530 		vcpu->arch.exception.nr = DF_VECTOR;
531 		vcpu->arch.exception.error_code = 0;
532 		vcpu->arch.exception.has_payload = false;
533 		vcpu->arch.exception.payload = 0;
534 	} else
535 		/* replace previous exception with a new one in a hope
536 		   that instruction re-execution will regenerate lost
537 		   exception */
538 		goto queue;
539 }
540 
541 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
542 {
543 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
544 }
545 EXPORT_SYMBOL_GPL(kvm_queue_exception);
546 
547 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
548 {
549 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
550 }
551 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
552 
553 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
554 				  unsigned long payload)
555 {
556 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
557 }
558 
559 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
560 				    u32 error_code, unsigned long payload)
561 {
562 	kvm_multiple_exception(vcpu, nr, true, error_code,
563 			       true, payload, false);
564 }
565 
566 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
567 {
568 	if (err)
569 		kvm_inject_gp(vcpu, 0);
570 	else
571 		return kvm_skip_emulated_instruction(vcpu);
572 
573 	return 1;
574 }
575 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
576 
577 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
578 {
579 	++vcpu->stat.pf_guest;
580 	vcpu->arch.exception.nested_apf =
581 		is_guest_mode(vcpu) && fault->async_page_fault;
582 	if (vcpu->arch.exception.nested_apf) {
583 		vcpu->arch.apf.nested_apf_token = fault->address;
584 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
585 	} else {
586 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
587 					fault->address);
588 	}
589 }
590 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
591 
592 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
593 {
594 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
595 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
596 	else
597 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
598 
599 	return fault->nested_page_fault;
600 }
601 
602 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
603 {
604 	atomic_inc(&vcpu->arch.nmi_queued);
605 	kvm_make_request(KVM_REQ_NMI, vcpu);
606 }
607 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
608 
609 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
610 {
611 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
612 }
613 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
614 
615 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
616 {
617 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
618 }
619 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
620 
621 /*
622  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
623  * a #GP and return false.
624  */
625 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
626 {
627 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
628 		return true;
629 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
630 	return false;
631 }
632 EXPORT_SYMBOL_GPL(kvm_require_cpl);
633 
634 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
635 {
636 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
637 		return true;
638 
639 	kvm_queue_exception(vcpu, UD_VECTOR);
640 	return false;
641 }
642 EXPORT_SYMBOL_GPL(kvm_require_dr);
643 
644 /*
645  * This function will be used to read from the physical memory of the currently
646  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
647  * can read from guest physical or from the guest's guest physical memory.
648  */
649 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
650 			    gfn_t ngfn, void *data, int offset, int len,
651 			    u32 access)
652 {
653 	struct x86_exception exception;
654 	gfn_t real_gfn;
655 	gpa_t ngpa;
656 
657 	ngpa     = gfn_to_gpa(ngfn);
658 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
659 	if (real_gfn == UNMAPPED_GVA)
660 		return -EFAULT;
661 
662 	real_gfn = gpa_to_gfn(real_gfn);
663 
664 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
665 }
666 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
667 
668 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
669 			       void *data, int offset, int len, u32 access)
670 {
671 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
672 				       data, offset, len, access);
673 }
674 
675 /*
676  * Load the pae pdptrs.  Return true is they are all valid.
677  */
678 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
679 {
680 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
681 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
682 	int i;
683 	int ret;
684 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
685 
686 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
687 				      offset * sizeof(u64), sizeof(pdpte),
688 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
689 	if (ret < 0) {
690 		ret = 0;
691 		goto out;
692 	}
693 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
694 		if ((pdpte[i] & PT_PRESENT_MASK) &&
695 		    (pdpte[i] &
696 		     vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
697 			ret = 0;
698 			goto out;
699 		}
700 	}
701 	ret = 1;
702 
703 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
704 	__set_bit(VCPU_EXREG_PDPTR,
705 		  (unsigned long *)&vcpu->arch.regs_avail);
706 	__set_bit(VCPU_EXREG_PDPTR,
707 		  (unsigned long *)&vcpu->arch.regs_dirty);
708 out:
709 
710 	return ret;
711 }
712 EXPORT_SYMBOL_GPL(load_pdptrs);
713 
714 bool pdptrs_changed(struct kvm_vcpu *vcpu)
715 {
716 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
717 	bool changed = true;
718 	int offset;
719 	gfn_t gfn;
720 	int r;
721 
722 	if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
723 		return false;
724 
725 	if (!test_bit(VCPU_EXREG_PDPTR,
726 		      (unsigned long *)&vcpu->arch.regs_avail))
727 		return true;
728 
729 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
730 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
731 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
732 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
733 	if (r < 0)
734 		goto out;
735 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
736 out:
737 
738 	return changed;
739 }
740 EXPORT_SYMBOL_GPL(pdptrs_changed);
741 
742 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
743 {
744 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
745 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
746 
747 	cr0 |= X86_CR0_ET;
748 
749 #ifdef CONFIG_X86_64
750 	if (cr0 & 0xffffffff00000000UL)
751 		return 1;
752 #endif
753 
754 	cr0 &= ~CR0_RESERVED_BITS;
755 
756 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
757 		return 1;
758 
759 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
760 		return 1;
761 
762 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
763 #ifdef CONFIG_X86_64
764 		if ((vcpu->arch.efer & EFER_LME)) {
765 			int cs_db, cs_l;
766 
767 			if (!is_pae(vcpu))
768 				return 1;
769 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
770 			if (cs_l)
771 				return 1;
772 		} else
773 #endif
774 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775 						 kvm_read_cr3(vcpu)))
776 			return 1;
777 	}
778 
779 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
780 		return 1;
781 
782 	kvm_x86_ops->set_cr0(vcpu, cr0);
783 
784 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
785 		kvm_clear_async_pf_completion_queue(vcpu);
786 		kvm_async_pf_hash_reset(vcpu);
787 	}
788 
789 	if ((cr0 ^ old_cr0) & update_bits)
790 		kvm_mmu_reset_context(vcpu);
791 
792 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
793 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
794 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
795 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
796 
797 	return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr0);
800 
801 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
802 {
803 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
804 }
805 EXPORT_SYMBOL_GPL(kvm_lmsw);
806 
807 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
808 {
809 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
810 			!vcpu->guest_xcr0_loaded) {
811 		/* kvm_set_xcr() also depends on this */
812 		if (vcpu->arch.xcr0 != host_xcr0)
813 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
814 		vcpu->guest_xcr0_loaded = 1;
815 	}
816 }
817 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
818 
819 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
820 {
821 	if (vcpu->guest_xcr0_loaded) {
822 		if (vcpu->arch.xcr0 != host_xcr0)
823 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
824 		vcpu->guest_xcr0_loaded = 0;
825 	}
826 }
827 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
828 
829 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
830 {
831 	u64 xcr0 = xcr;
832 	u64 old_xcr0 = vcpu->arch.xcr0;
833 	u64 valid_bits;
834 
835 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
836 	if (index != XCR_XFEATURE_ENABLED_MASK)
837 		return 1;
838 	if (!(xcr0 & XFEATURE_MASK_FP))
839 		return 1;
840 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
841 		return 1;
842 
843 	/*
844 	 * Do not allow the guest to set bits that we do not support
845 	 * saving.  However, xcr0 bit 0 is always set, even if the
846 	 * emulated CPU does not support XSAVE (see fx_init).
847 	 */
848 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
849 	if (xcr0 & ~valid_bits)
850 		return 1;
851 
852 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
853 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
854 		return 1;
855 
856 	if (xcr0 & XFEATURE_MASK_AVX512) {
857 		if (!(xcr0 & XFEATURE_MASK_YMM))
858 			return 1;
859 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
860 			return 1;
861 	}
862 	vcpu->arch.xcr0 = xcr0;
863 
864 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
865 		kvm_update_cpuid(vcpu);
866 	return 0;
867 }
868 
869 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
870 {
871 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
872 	    __kvm_set_xcr(vcpu, index, xcr)) {
873 		kvm_inject_gp(vcpu, 0);
874 		return 1;
875 	}
876 	return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_xcr);
879 
880 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
881 {
882 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
883 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
884 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
885 
886 	if (cr4 & CR4_RESERVED_BITS)
887 		return 1;
888 
889 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
890 		return 1;
891 
892 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
893 		return 1;
894 
895 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
896 		return 1;
897 
898 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
899 		return 1;
900 
901 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
902 		return 1;
903 
904 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
905 		return 1;
906 
907 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
908 		return 1;
909 
910 	if (is_long_mode(vcpu)) {
911 		if (!(cr4 & X86_CR4_PAE))
912 			return 1;
913 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
914 		   && ((cr4 ^ old_cr4) & pdptr_bits)
915 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
916 				   kvm_read_cr3(vcpu)))
917 		return 1;
918 
919 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
920 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
921 			return 1;
922 
923 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
924 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
925 			return 1;
926 	}
927 
928 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
929 		return 1;
930 
931 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
932 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
933 		kvm_mmu_reset_context(vcpu);
934 
935 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
936 		kvm_update_cpuid(vcpu);
937 
938 	return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_set_cr4);
941 
942 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
943 {
944 	bool skip_tlb_flush = false;
945 #ifdef CONFIG_X86_64
946 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
947 
948 	if (pcid_enabled) {
949 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
950 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
951 	}
952 #endif
953 
954 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
955 		if (!skip_tlb_flush) {
956 			kvm_mmu_sync_roots(vcpu);
957 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
958 		}
959 		return 0;
960 	}
961 
962 	if (is_long_mode(vcpu) &&
963 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
964 		return 1;
965 	else if (is_pae(vcpu) && is_paging(vcpu) &&
966 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
967 		return 1;
968 
969 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
970 	vcpu->arch.cr3 = cr3;
971 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
972 
973 	return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_cr3);
976 
977 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
978 {
979 	if (cr8 & CR8_RESERVED_BITS)
980 		return 1;
981 	if (lapic_in_kernel(vcpu))
982 		kvm_lapic_set_tpr(vcpu, cr8);
983 	else
984 		vcpu->arch.cr8 = cr8;
985 	return 0;
986 }
987 EXPORT_SYMBOL_GPL(kvm_set_cr8);
988 
989 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
990 {
991 	if (lapic_in_kernel(vcpu))
992 		return kvm_lapic_get_cr8(vcpu);
993 	else
994 		return vcpu->arch.cr8;
995 }
996 EXPORT_SYMBOL_GPL(kvm_get_cr8);
997 
998 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
999 {
1000 	int i;
1001 
1002 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1003 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1004 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1005 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1006 	}
1007 }
1008 
1009 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1010 {
1011 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1012 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1013 }
1014 
1015 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1016 {
1017 	unsigned long dr7;
1018 
1019 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1020 		dr7 = vcpu->arch.guest_debug_dr7;
1021 	else
1022 		dr7 = vcpu->arch.dr7;
1023 	kvm_x86_ops->set_dr7(vcpu, dr7);
1024 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1025 	if (dr7 & DR7_BP_EN_MASK)
1026 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1027 }
1028 
1029 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1030 {
1031 	u64 fixed = DR6_FIXED_1;
1032 
1033 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1034 		fixed |= DR6_RTM;
1035 	return fixed;
1036 }
1037 
1038 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1039 {
1040 	switch (dr) {
1041 	case 0 ... 3:
1042 		vcpu->arch.db[dr] = val;
1043 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1044 			vcpu->arch.eff_db[dr] = val;
1045 		break;
1046 	case 4:
1047 		/* fall through */
1048 	case 6:
1049 		if (val & 0xffffffff00000000ULL)
1050 			return -1; /* #GP */
1051 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1052 		kvm_update_dr6(vcpu);
1053 		break;
1054 	case 5:
1055 		/* fall through */
1056 	default: /* 7 */
1057 		if (val & 0xffffffff00000000ULL)
1058 			return -1; /* #GP */
1059 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1060 		kvm_update_dr7(vcpu);
1061 		break;
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1068 {
1069 	if (__kvm_set_dr(vcpu, dr, val)) {
1070 		kvm_inject_gp(vcpu, 0);
1071 		return 1;
1072 	}
1073 	return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_dr);
1076 
1077 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1078 {
1079 	switch (dr) {
1080 	case 0 ... 3:
1081 		*val = vcpu->arch.db[dr];
1082 		break;
1083 	case 4:
1084 		/* fall through */
1085 	case 6:
1086 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1087 			*val = vcpu->arch.dr6;
1088 		else
1089 			*val = kvm_x86_ops->get_dr6(vcpu);
1090 		break;
1091 	case 5:
1092 		/* fall through */
1093 	default: /* 7 */
1094 		*val = vcpu->arch.dr7;
1095 		break;
1096 	}
1097 	return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_get_dr);
1100 
1101 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1102 {
1103 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1104 	u64 data;
1105 	int err;
1106 
1107 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1108 	if (err)
1109 		return err;
1110 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1111 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1112 	return err;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1115 
1116 /*
1117  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1118  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1119  *
1120  * This list is modified at module load time to reflect the
1121  * capabilities of the host cpu. This capabilities test skips MSRs that are
1122  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1123  * may depend on host virtualization features rather than host cpu features.
1124  */
1125 
1126 static u32 msrs_to_save[] = {
1127 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1128 	MSR_STAR,
1129 #ifdef CONFIG_X86_64
1130 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1131 #endif
1132 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1133 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1134 	MSR_IA32_SPEC_CTRL,
1135 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1136 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1137 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1138 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1139 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1140 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1141 };
1142 
1143 static unsigned num_msrs_to_save;
1144 
1145 static u32 emulated_msrs[] = {
1146 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1147 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1148 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1149 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1150 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1151 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1152 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1153 	HV_X64_MSR_RESET,
1154 	HV_X64_MSR_VP_INDEX,
1155 	HV_X64_MSR_VP_RUNTIME,
1156 	HV_X64_MSR_SCONTROL,
1157 	HV_X64_MSR_STIMER0_CONFIG,
1158 	HV_X64_MSR_VP_ASSIST_PAGE,
1159 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1160 	HV_X64_MSR_TSC_EMULATION_STATUS,
1161 
1162 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1163 	MSR_KVM_PV_EOI_EN,
1164 
1165 	MSR_IA32_TSC_ADJUST,
1166 	MSR_IA32_TSCDEADLINE,
1167 	MSR_IA32_ARCH_CAPABILITIES,
1168 	MSR_IA32_MISC_ENABLE,
1169 	MSR_IA32_MCG_STATUS,
1170 	MSR_IA32_MCG_CTL,
1171 	MSR_IA32_MCG_EXT_CTL,
1172 	MSR_IA32_SMBASE,
1173 	MSR_SMI_COUNT,
1174 	MSR_PLATFORM_INFO,
1175 	MSR_MISC_FEATURES_ENABLES,
1176 	MSR_AMD64_VIRT_SPEC_CTRL,
1177 };
1178 
1179 static unsigned num_emulated_msrs;
1180 
1181 /*
1182  * List of msr numbers which are used to expose MSR-based features that
1183  * can be used by a hypervisor to validate requested CPU features.
1184  */
1185 static u32 msr_based_features[] = {
1186 	MSR_IA32_VMX_BASIC,
1187 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1188 	MSR_IA32_VMX_PINBASED_CTLS,
1189 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1190 	MSR_IA32_VMX_PROCBASED_CTLS,
1191 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1192 	MSR_IA32_VMX_EXIT_CTLS,
1193 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1194 	MSR_IA32_VMX_ENTRY_CTLS,
1195 	MSR_IA32_VMX_MISC,
1196 	MSR_IA32_VMX_CR0_FIXED0,
1197 	MSR_IA32_VMX_CR0_FIXED1,
1198 	MSR_IA32_VMX_CR4_FIXED0,
1199 	MSR_IA32_VMX_CR4_FIXED1,
1200 	MSR_IA32_VMX_VMCS_ENUM,
1201 	MSR_IA32_VMX_PROCBASED_CTLS2,
1202 	MSR_IA32_VMX_EPT_VPID_CAP,
1203 	MSR_IA32_VMX_VMFUNC,
1204 
1205 	MSR_F10H_DECFG,
1206 	MSR_IA32_UCODE_REV,
1207 	MSR_IA32_ARCH_CAPABILITIES,
1208 };
1209 
1210 static unsigned int num_msr_based_features;
1211 
1212 u64 kvm_get_arch_capabilities(void)
1213 {
1214 	u64 data;
1215 
1216 	rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1217 
1218 	/*
1219 	 * If we're doing cache flushes (either "always" or "cond")
1220 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1221 	 * If an outer hypervisor is doing the cache flush for us
1222 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1223 	 * capability to the guest too, and if EPT is disabled we're not
1224 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1225 	 * require a nested hypervisor to do a flush of its own.
1226 	 */
1227 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1228 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1229 
1230 	return data;
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1233 
1234 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1235 {
1236 	switch (msr->index) {
1237 	case MSR_IA32_ARCH_CAPABILITIES:
1238 		msr->data = kvm_get_arch_capabilities();
1239 		break;
1240 	case MSR_IA32_UCODE_REV:
1241 		rdmsrl_safe(msr->index, &msr->data);
1242 		break;
1243 	default:
1244 		if (kvm_x86_ops->get_msr_feature(msr))
1245 			return 1;
1246 	}
1247 	return 0;
1248 }
1249 
1250 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1251 {
1252 	struct kvm_msr_entry msr;
1253 	int r;
1254 
1255 	msr.index = index;
1256 	r = kvm_get_msr_feature(&msr);
1257 	if (r)
1258 		return r;
1259 
1260 	*data = msr.data;
1261 
1262 	return 0;
1263 }
1264 
1265 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1266 {
1267 	if (efer & efer_reserved_bits)
1268 		return false;
1269 
1270 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1271 			return false;
1272 
1273 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1274 			return false;
1275 
1276 	return true;
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1279 
1280 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1281 {
1282 	u64 old_efer = vcpu->arch.efer;
1283 
1284 	if (!kvm_valid_efer(vcpu, efer))
1285 		return 1;
1286 
1287 	if (is_paging(vcpu)
1288 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1289 		return 1;
1290 
1291 	efer &= ~EFER_LMA;
1292 	efer |= vcpu->arch.efer & EFER_LMA;
1293 
1294 	kvm_x86_ops->set_efer(vcpu, efer);
1295 
1296 	/* Update reserved bits */
1297 	if ((efer ^ old_efer) & EFER_NX)
1298 		kvm_mmu_reset_context(vcpu);
1299 
1300 	return 0;
1301 }
1302 
1303 void kvm_enable_efer_bits(u64 mask)
1304 {
1305        efer_reserved_bits &= ~mask;
1306 }
1307 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1308 
1309 /*
1310  * Writes msr value into into the appropriate "register".
1311  * Returns 0 on success, non-0 otherwise.
1312  * Assumes vcpu_load() was already called.
1313  */
1314 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1315 {
1316 	switch (msr->index) {
1317 	case MSR_FS_BASE:
1318 	case MSR_GS_BASE:
1319 	case MSR_KERNEL_GS_BASE:
1320 	case MSR_CSTAR:
1321 	case MSR_LSTAR:
1322 		if (is_noncanonical_address(msr->data, vcpu))
1323 			return 1;
1324 		break;
1325 	case MSR_IA32_SYSENTER_EIP:
1326 	case MSR_IA32_SYSENTER_ESP:
1327 		/*
1328 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1329 		 * non-canonical address is written on Intel but not on
1330 		 * AMD (which ignores the top 32-bits, because it does
1331 		 * not implement 64-bit SYSENTER).
1332 		 *
1333 		 * 64-bit code should hence be able to write a non-canonical
1334 		 * value on AMD.  Making the address canonical ensures that
1335 		 * vmentry does not fail on Intel after writing a non-canonical
1336 		 * value, and that something deterministic happens if the guest
1337 		 * invokes 64-bit SYSENTER.
1338 		 */
1339 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1340 	}
1341 	return kvm_x86_ops->set_msr(vcpu, msr);
1342 }
1343 EXPORT_SYMBOL_GPL(kvm_set_msr);
1344 
1345 /*
1346  * Adapt set_msr() to msr_io()'s calling convention
1347  */
1348 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1349 {
1350 	struct msr_data msr;
1351 	int r;
1352 
1353 	msr.index = index;
1354 	msr.host_initiated = true;
1355 	r = kvm_get_msr(vcpu, &msr);
1356 	if (r)
1357 		return r;
1358 
1359 	*data = msr.data;
1360 	return 0;
1361 }
1362 
1363 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1364 {
1365 	struct msr_data msr;
1366 
1367 	msr.data = *data;
1368 	msr.index = index;
1369 	msr.host_initiated = true;
1370 	return kvm_set_msr(vcpu, &msr);
1371 }
1372 
1373 #ifdef CONFIG_X86_64
1374 struct pvclock_gtod_data {
1375 	seqcount_t	seq;
1376 
1377 	struct { /* extract of a clocksource struct */
1378 		int vclock_mode;
1379 		u64	cycle_last;
1380 		u64	mask;
1381 		u32	mult;
1382 		u32	shift;
1383 	} clock;
1384 
1385 	u64		boot_ns;
1386 	u64		nsec_base;
1387 	u64		wall_time_sec;
1388 };
1389 
1390 static struct pvclock_gtod_data pvclock_gtod_data;
1391 
1392 static void update_pvclock_gtod(struct timekeeper *tk)
1393 {
1394 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1395 	u64 boot_ns;
1396 
1397 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1398 
1399 	write_seqcount_begin(&vdata->seq);
1400 
1401 	/* copy pvclock gtod data */
1402 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1403 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1404 	vdata->clock.mask		= tk->tkr_mono.mask;
1405 	vdata->clock.mult		= tk->tkr_mono.mult;
1406 	vdata->clock.shift		= tk->tkr_mono.shift;
1407 
1408 	vdata->boot_ns			= boot_ns;
1409 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1410 
1411 	vdata->wall_time_sec            = tk->xtime_sec;
1412 
1413 	write_seqcount_end(&vdata->seq);
1414 }
1415 #endif
1416 
1417 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1418 {
1419 	/*
1420 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1421 	 * vcpu_enter_guest.  This function is only called from
1422 	 * the physical CPU that is running vcpu.
1423 	 */
1424 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1425 }
1426 
1427 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1428 {
1429 	int version;
1430 	int r;
1431 	struct pvclock_wall_clock wc;
1432 	struct timespec64 boot;
1433 
1434 	if (!wall_clock)
1435 		return;
1436 
1437 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1438 	if (r)
1439 		return;
1440 
1441 	if (version & 1)
1442 		++version;  /* first time write, random junk */
1443 
1444 	++version;
1445 
1446 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1447 		return;
1448 
1449 	/*
1450 	 * The guest calculates current wall clock time by adding
1451 	 * system time (updated by kvm_guest_time_update below) to the
1452 	 * wall clock specified here.  guest system time equals host
1453 	 * system time for us, thus we must fill in host boot time here.
1454 	 */
1455 	getboottime64(&boot);
1456 
1457 	if (kvm->arch.kvmclock_offset) {
1458 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1459 		boot = timespec64_sub(boot, ts);
1460 	}
1461 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1462 	wc.nsec = boot.tv_nsec;
1463 	wc.version = version;
1464 
1465 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1466 
1467 	version++;
1468 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1469 }
1470 
1471 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1472 {
1473 	do_shl32_div32(dividend, divisor);
1474 	return dividend;
1475 }
1476 
1477 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1478 			       s8 *pshift, u32 *pmultiplier)
1479 {
1480 	uint64_t scaled64;
1481 	int32_t  shift = 0;
1482 	uint64_t tps64;
1483 	uint32_t tps32;
1484 
1485 	tps64 = base_hz;
1486 	scaled64 = scaled_hz;
1487 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1488 		tps64 >>= 1;
1489 		shift--;
1490 	}
1491 
1492 	tps32 = (uint32_t)tps64;
1493 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1494 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1495 			scaled64 >>= 1;
1496 		else
1497 			tps32 <<= 1;
1498 		shift++;
1499 	}
1500 
1501 	*pshift = shift;
1502 	*pmultiplier = div_frac(scaled64, tps32);
1503 
1504 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1505 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1506 }
1507 
1508 #ifdef CONFIG_X86_64
1509 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1510 #endif
1511 
1512 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1513 static unsigned long max_tsc_khz;
1514 
1515 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1516 {
1517 	u64 v = (u64)khz * (1000000 + ppm);
1518 	do_div(v, 1000000);
1519 	return v;
1520 }
1521 
1522 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1523 {
1524 	u64 ratio;
1525 
1526 	/* Guest TSC same frequency as host TSC? */
1527 	if (!scale) {
1528 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1529 		return 0;
1530 	}
1531 
1532 	/* TSC scaling supported? */
1533 	if (!kvm_has_tsc_control) {
1534 		if (user_tsc_khz > tsc_khz) {
1535 			vcpu->arch.tsc_catchup = 1;
1536 			vcpu->arch.tsc_always_catchup = 1;
1537 			return 0;
1538 		} else {
1539 			WARN(1, "user requested TSC rate below hardware speed\n");
1540 			return -1;
1541 		}
1542 	}
1543 
1544 	/* TSC scaling required  - calculate ratio */
1545 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1546 				user_tsc_khz, tsc_khz);
1547 
1548 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1549 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1550 			  user_tsc_khz);
1551 		return -1;
1552 	}
1553 
1554 	vcpu->arch.tsc_scaling_ratio = ratio;
1555 	return 0;
1556 }
1557 
1558 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1559 {
1560 	u32 thresh_lo, thresh_hi;
1561 	int use_scaling = 0;
1562 
1563 	/* tsc_khz can be zero if TSC calibration fails */
1564 	if (user_tsc_khz == 0) {
1565 		/* set tsc_scaling_ratio to a safe value */
1566 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1567 		return -1;
1568 	}
1569 
1570 	/* Compute a scale to convert nanoseconds in TSC cycles */
1571 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1572 			   &vcpu->arch.virtual_tsc_shift,
1573 			   &vcpu->arch.virtual_tsc_mult);
1574 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1575 
1576 	/*
1577 	 * Compute the variation in TSC rate which is acceptable
1578 	 * within the range of tolerance and decide if the
1579 	 * rate being applied is within that bounds of the hardware
1580 	 * rate.  If so, no scaling or compensation need be done.
1581 	 */
1582 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1583 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1584 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1585 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1586 		use_scaling = 1;
1587 	}
1588 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1589 }
1590 
1591 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1592 {
1593 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1594 				      vcpu->arch.virtual_tsc_mult,
1595 				      vcpu->arch.virtual_tsc_shift);
1596 	tsc += vcpu->arch.this_tsc_write;
1597 	return tsc;
1598 }
1599 
1600 static inline int gtod_is_based_on_tsc(int mode)
1601 {
1602 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1603 }
1604 
1605 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1606 {
1607 #ifdef CONFIG_X86_64
1608 	bool vcpus_matched;
1609 	struct kvm_arch *ka = &vcpu->kvm->arch;
1610 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1611 
1612 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1613 			 atomic_read(&vcpu->kvm->online_vcpus));
1614 
1615 	/*
1616 	 * Once the masterclock is enabled, always perform request in
1617 	 * order to update it.
1618 	 *
1619 	 * In order to enable masterclock, the host clocksource must be TSC
1620 	 * and the vcpus need to have matched TSCs.  When that happens,
1621 	 * perform request to enable masterclock.
1622 	 */
1623 	if (ka->use_master_clock ||
1624 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1625 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1626 
1627 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1628 			    atomic_read(&vcpu->kvm->online_vcpus),
1629 		            ka->use_master_clock, gtod->clock.vclock_mode);
1630 #endif
1631 }
1632 
1633 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1634 {
1635 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1636 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1637 }
1638 
1639 /*
1640  * Multiply tsc by a fixed point number represented by ratio.
1641  *
1642  * The most significant 64-N bits (mult) of ratio represent the
1643  * integral part of the fixed point number; the remaining N bits
1644  * (frac) represent the fractional part, ie. ratio represents a fixed
1645  * point number (mult + frac * 2^(-N)).
1646  *
1647  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1648  */
1649 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1650 {
1651 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1652 }
1653 
1654 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1655 {
1656 	u64 _tsc = tsc;
1657 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1658 
1659 	if (ratio != kvm_default_tsc_scaling_ratio)
1660 		_tsc = __scale_tsc(ratio, tsc);
1661 
1662 	return _tsc;
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1665 
1666 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1667 {
1668 	u64 tsc;
1669 
1670 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1671 
1672 	return target_tsc - tsc;
1673 }
1674 
1675 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1676 {
1677 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1678 
1679 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1682 
1683 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1684 {
1685 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1686 }
1687 
1688 static inline bool kvm_check_tsc_unstable(void)
1689 {
1690 #ifdef CONFIG_X86_64
1691 	/*
1692 	 * TSC is marked unstable when we're running on Hyper-V,
1693 	 * 'TSC page' clocksource is good.
1694 	 */
1695 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1696 		return false;
1697 #endif
1698 	return check_tsc_unstable();
1699 }
1700 
1701 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1702 {
1703 	struct kvm *kvm = vcpu->kvm;
1704 	u64 offset, ns, elapsed;
1705 	unsigned long flags;
1706 	bool matched;
1707 	bool already_matched;
1708 	u64 data = msr->data;
1709 	bool synchronizing = false;
1710 
1711 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1712 	offset = kvm_compute_tsc_offset(vcpu, data);
1713 	ns = ktime_get_boot_ns();
1714 	elapsed = ns - kvm->arch.last_tsc_nsec;
1715 
1716 	if (vcpu->arch.virtual_tsc_khz) {
1717 		if (data == 0 && msr->host_initiated) {
1718 			/*
1719 			 * detection of vcpu initialization -- need to sync
1720 			 * with other vCPUs. This particularly helps to keep
1721 			 * kvm_clock stable after CPU hotplug
1722 			 */
1723 			synchronizing = true;
1724 		} else {
1725 			u64 tsc_exp = kvm->arch.last_tsc_write +
1726 						nsec_to_cycles(vcpu, elapsed);
1727 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1728 			/*
1729 			 * Special case: TSC write with a small delta (1 second)
1730 			 * of virtual cycle time against real time is
1731 			 * interpreted as an attempt to synchronize the CPU.
1732 			 */
1733 			synchronizing = data < tsc_exp + tsc_hz &&
1734 					data + tsc_hz > tsc_exp;
1735 		}
1736 	}
1737 
1738 	/*
1739 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1740 	 * TSC, we add elapsed time in this computation.  We could let the
1741 	 * compensation code attempt to catch up if we fall behind, but
1742 	 * it's better to try to match offsets from the beginning.
1743          */
1744 	if (synchronizing &&
1745 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1746 		if (!kvm_check_tsc_unstable()) {
1747 			offset = kvm->arch.cur_tsc_offset;
1748 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1749 		} else {
1750 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1751 			data += delta;
1752 			offset = kvm_compute_tsc_offset(vcpu, data);
1753 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1754 		}
1755 		matched = true;
1756 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1757 	} else {
1758 		/*
1759 		 * We split periods of matched TSC writes into generations.
1760 		 * For each generation, we track the original measured
1761 		 * nanosecond time, offset, and write, so if TSCs are in
1762 		 * sync, we can match exact offset, and if not, we can match
1763 		 * exact software computation in compute_guest_tsc()
1764 		 *
1765 		 * These values are tracked in kvm->arch.cur_xxx variables.
1766 		 */
1767 		kvm->arch.cur_tsc_generation++;
1768 		kvm->arch.cur_tsc_nsec = ns;
1769 		kvm->arch.cur_tsc_write = data;
1770 		kvm->arch.cur_tsc_offset = offset;
1771 		matched = false;
1772 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1773 			 kvm->arch.cur_tsc_generation, data);
1774 	}
1775 
1776 	/*
1777 	 * We also track th most recent recorded KHZ, write and time to
1778 	 * allow the matching interval to be extended at each write.
1779 	 */
1780 	kvm->arch.last_tsc_nsec = ns;
1781 	kvm->arch.last_tsc_write = data;
1782 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1783 
1784 	vcpu->arch.last_guest_tsc = data;
1785 
1786 	/* Keep track of which generation this VCPU has synchronized to */
1787 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1788 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1789 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1790 
1791 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1792 		update_ia32_tsc_adjust_msr(vcpu, offset);
1793 
1794 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1795 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1796 
1797 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1798 	if (!matched) {
1799 		kvm->arch.nr_vcpus_matched_tsc = 0;
1800 	} else if (!already_matched) {
1801 		kvm->arch.nr_vcpus_matched_tsc++;
1802 	}
1803 
1804 	kvm_track_tsc_matching(vcpu);
1805 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1806 }
1807 
1808 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1809 
1810 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1811 					   s64 adjustment)
1812 {
1813 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1814 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1815 }
1816 
1817 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1818 {
1819 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1820 		WARN_ON(adjustment < 0);
1821 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1822 	adjust_tsc_offset_guest(vcpu, adjustment);
1823 }
1824 
1825 #ifdef CONFIG_X86_64
1826 
1827 static u64 read_tsc(void)
1828 {
1829 	u64 ret = (u64)rdtsc_ordered();
1830 	u64 last = pvclock_gtod_data.clock.cycle_last;
1831 
1832 	if (likely(ret >= last))
1833 		return ret;
1834 
1835 	/*
1836 	 * GCC likes to generate cmov here, but this branch is extremely
1837 	 * predictable (it's just a function of time and the likely is
1838 	 * very likely) and there's a data dependence, so force GCC
1839 	 * to generate a branch instead.  I don't barrier() because
1840 	 * we don't actually need a barrier, and if this function
1841 	 * ever gets inlined it will generate worse code.
1842 	 */
1843 	asm volatile ("");
1844 	return last;
1845 }
1846 
1847 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1848 {
1849 	long v;
1850 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1851 	u64 tsc_pg_val;
1852 
1853 	switch (gtod->clock.vclock_mode) {
1854 	case VCLOCK_HVCLOCK:
1855 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1856 						  tsc_timestamp);
1857 		if (tsc_pg_val != U64_MAX) {
1858 			/* TSC page valid */
1859 			*mode = VCLOCK_HVCLOCK;
1860 			v = (tsc_pg_val - gtod->clock.cycle_last) &
1861 				gtod->clock.mask;
1862 		} else {
1863 			/* TSC page invalid */
1864 			*mode = VCLOCK_NONE;
1865 		}
1866 		break;
1867 	case VCLOCK_TSC:
1868 		*mode = VCLOCK_TSC;
1869 		*tsc_timestamp = read_tsc();
1870 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
1871 			gtod->clock.mask;
1872 		break;
1873 	default:
1874 		*mode = VCLOCK_NONE;
1875 	}
1876 
1877 	if (*mode == VCLOCK_NONE)
1878 		*tsc_timestamp = v = 0;
1879 
1880 	return v * gtod->clock.mult;
1881 }
1882 
1883 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1884 {
1885 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1886 	unsigned long seq;
1887 	int mode;
1888 	u64 ns;
1889 
1890 	do {
1891 		seq = read_seqcount_begin(&gtod->seq);
1892 		ns = gtod->nsec_base;
1893 		ns += vgettsc(tsc_timestamp, &mode);
1894 		ns >>= gtod->clock.shift;
1895 		ns += gtod->boot_ns;
1896 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1897 	*t = ns;
1898 
1899 	return mode;
1900 }
1901 
1902 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1903 {
1904 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1905 	unsigned long seq;
1906 	int mode;
1907 	u64 ns;
1908 
1909 	do {
1910 		seq = read_seqcount_begin(&gtod->seq);
1911 		ts->tv_sec = gtod->wall_time_sec;
1912 		ns = gtod->nsec_base;
1913 		ns += vgettsc(tsc_timestamp, &mode);
1914 		ns >>= gtod->clock.shift;
1915 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1916 
1917 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1918 	ts->tv_nsec = ns;
1919 
1920 	return mode;
1921 }
1922 
1923 /* returns true if host is using TSC based clocksource */
1924 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1925 {
1926 	/* checked again under seqlock below */
1927 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1928 		return false;
1929 
1930 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1931 						      tsc_timestamp));
1932 }
1933 
1934 /* returns true if host is using TSC based clocksource */
1935 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1936 					   u64 *tsc_timestamp)
1937 {
1938 	/* checked again under seqlock below */
1939 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1940 		return false;
1941 
1942 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1943 }
1944 #endif
1945 
1946 /*
1947  *
1948  * Assuming a stable TSC across physical CPUS, and a stable TSC
1949  * across virtual CPUs, the following condition is possible.
1950  * Each numbered line represents an event visible to both
1951  * CPUs at the next numbered event.
1952  *
1953  * "timespecX" represents host monotonic time. "tscX" represents
1954  * RDTSC value.
1955  *
1956  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1957  *
1958  * 1.  read timespec0,tsc0
1959  * 2.					| timespec1 = timespec0 + N
1960  * 					| tsc1 = tsc0 + M
1961  * 3. transition to guest		| transition to guest
1962  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1963  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1964  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1965  *
1966  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1967  *
1968  * 	- ret0 < ret1
1969  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1970  *		...
1971  *	- 0 < N - M => M < N
1972  *
1973  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1974  * always the case (the difference between two distinct xtime instances
1975  * might be smaller then the difference between corresponding TSC reads,
1976  * when updating guest vcpus pvclock areas).
1977  *
1978  * To avoid that problem, do not allow visibility of distinct
1979  * system_timestamp/tsc_timestamp values simultaneously: use a master
1980  * copy of host monotonic time values. Update that master copy
1981  * in lockstep.
1982  *
1983  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1984  *
1985  */
1986 
1987 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1988 {
1989 #ifdef CONFIG_X86_64
1990 	struct kvm_arch *ka = &kvm->arch;
1991 	int vclock_mode;
1992 	bool host_tsc_clocksource, vcpus_matched;
1993 
1994 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1995 			atomic_read(&kvm->online_vcpus));
1996 
1997 	/*
1998 	 * If the host uses TSC clock, then passthrough TSC as stable
1999 	 * to the guest.
2000 	 */
2001 	host_tsc_clocksource = kvm_get_time_and_clockread(
2002 					&ka->master_kernel_ns,
2003 					&ka->master_cycle_now);
2004 
2005 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2006 				&& !ka->backwards_tsc_observed
2007 				&& !ka->boot_vcpu_runs_old_kvmclock;
2008 
2009 	if (ka->use_master_clock)
2010 		atomic_set(&kvm_guest_has_master_clock, 1);
2011 
2012 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2013 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2014 					vcpus_matched);
2015 #endif
2016 }
2017 
2018 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2019 {
2020 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2021 }
2022 
2023 static void kvm_gen_update_masterclock(struct kvm *kvm)
2024 {
2025 #ifdef CONFIG_X86_64
2026 	int i;
2027 	struct kvm_vcpu *vcpu;
2028 	struct kvm_arch *ka = &kvm->arch;
2029 
2030 	spin_lock(&ka->pvclock_gtod_sync_lock);
2031 	kvm_make_mclock_inprogress_request(kvm);
2032 	/* no guest entries from this point */
2033 	pvclock_update_vm_gtod_copy(kvm);
2034 
2035 	kvm_for_each_vcpu(i, vcpu, kvm)
2036 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2037 
2038 	/* guest entries allowed */
2039 	kvm_for_each_vcpu(i, vcpu, kvm)
2040 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2041 
2042 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2043 #endif
2044 }
2045 
2046 u64 get_kvmclock_ns(struct kvm *kvm)
2047 {
2048 	struct kvm_arch *ka = &kvm->arch;
2049 	struct pvclock_vcpu_time_info hv_clock;
2050 	u64 ret;
2051 
2052 	spin_lock(&ka->pvclock_gtod_sync_lock);
2053 	if (!ka->use_master_clock) {
2054 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2055 		return ktime_get_boot_ns() + ka->kvmclock_offset;
2056 	}
2057 
2058 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2059 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2060 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2061 
2062 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2063 	get_cpu();
2064 
2065 	if (__this_cpu_read(cpu_tsc_khz)) {
2066 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2067 				   &hv_clock.tsc_shift,
2068 				   &hv_clock.tsc_to_system_mul);
2069 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2070 	} else
2071 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2072 
2073 	put_cpu();
2074 
2075 	return ret;
2076 }
2077 
2078 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2079 {
2080 	struct kvm_vcpu_arch *vcpu = &v->arch;
2081 	struct pvclock_vcpu_time_info guest_hv_clock;
2082 
2083 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2084 		&guest_hv_clock, sizeof(guest_hv_clock))))
2085 		return;
2086 
2087 	/* This VCPU is paused, but it's legal for a guest to read another
2088 	 * VCPU's kvmclock, so we really have to follow the specification where
2089 	 * it says that version is odd if data is being modified, and even after
2090 	 * it is consistent.
2091 	 *
2092 	 * Version field updates must be kept separate.  This is because
2093 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2094 	 * writes within a string instruction are weakly ordered.  So there
2095 	 * are three writes overall.
2096 	 *
2097 	 * As a small optimization, only write the version field in the first
2098 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2099 	 * version field is the first in the struct.
2100 	 */
2101 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2102 
2103 	if (guest_hv_clock.version & 1)
2104 		++guest_hv_clock.version;  /* first time write, random junk */
2105 
2106 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2107 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2108 				&vcpu->hv_clock,
2109 				sizeof(vcpu->hv_clock.version));
2110 
2111 	smp_wmb();
2112 
2113 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2114 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2115 
2116 	if (vcpu->pvclock_set_guest_stopped_request) {
2117 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2118 		vcpu->pvclock_set_guest_stopped_request = false;
2119 	}
2120 
2121 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2122 
2123 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2124 				&vcpu->hv_clock,
2125 				sizeof(vcpu->hv_clock));
2126 
2127 	smp_wmb();
2128 
2129 	vcpu->hv_clock.version++;
2130 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2131 				&vcpu->hv_clock,
2132 				sizeof(vcpu->hv_clock.version));
2133 }
2134 
2135 static int kvm_guest_time_update(struct kvm_vcpu *v)
2136 {
2137 	unsigned long flags, tgt_tsc_khz;
2138 	struct kvm_vcpu_arch *vcpu = &v->arch;
2139 	struct kvm_arch *ka = &v->kvm->arch;
2140 	s64 kernel_ns;
2141 	u64 tsc_timestamp, host_tsc;
2142 	u8 pvclock_flags;
2143 	bool use_master_clock;
2144 
2145 	kernel_ns = 0;
2146 	host_tsc = 0;
2147 
2148 	/*
2149 	 * If the host uses TSC clock, then passthrough TSC as stable
2150 	 * to the guest.
2151 	 */
2152 	spin_lock(&ka->pvclock_gtod_sync_lock);
2153 	use_master_clock = ka->use_master_clock;
2154 	if (use_master_clock) {
2155 		host_tsc = ka->master_cycle_now;
2156 		kernel_ns = ka->master_kernel_ns;
2157 	}
2158 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2159 
2160 	/* Keep irq disabled to prevent changes to the clock */
2161 	local_irq_save(flags);
2162 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2163 	if (unlikely(tgt_tsc_khz == 0)) {
2164 		local_irq_restore(flags);
2165 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2166 		return 1;
2167 	}
2168 	if (!use_master_clock) {
2169 		host_tsc = rdtsc();
2170 		kernel_ns = ktime_get_boot_ns();
2171 	}
2172 
2173 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2174 
2175 	/*
2176 	 * We may have to catch up the TSC to match elapsed wall clock
2177 	 * time for two reasons, even if kvmclock is used.
2178 	 *   1) CPU could have been running below the maximum TSC rate
2179 	 *   2) Broken TSC compensation resets the base at each VCPU
2180 	 *      entry to avoid unknown leaps of TSC even when running
2181 	 *      again on the same CPU.  This may cause apparent elapsed
2182 	 *      time to disappear, and the guest to stand still or run
2183 	 *	very slowly.
2184 	 */
2185 	if (vcpu->tsc_catchup) {
2186 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2187 		if (tsc > tsc_timestamp) {
2188 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2189 			tsc_timestamp = tsc;
2190 		}
2191 	}
2192 
2193 	local_irq_restore(flags);
2194 
2195 	/* With all the info we got, fill in the values */
2196 
2197 	if (kvm_has_tsc_control)
2198 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2199 
2200 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2201 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2202 				   &vcpu->hv_clock.tsc_shift,
2203 				   &vcpu->hv_clock.tsc_to_system_mul);
2204 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2205 	}
2206 
2207 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2208 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2209 	vcpu->last_guest_tsc = tsc_timestamp;
2210 
2211 	/* If the host uses TSC clocksource, then it is stable */
2212 	pvclock_flags = 0;
2213 	if (use_master_clock)
2214 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2215 
2216 	vcpu->hv_clock.flags = pvclock_flags;
2217 
2218 	if (vcpu->pv_time_enabled)
2219 		kvm_setup_pvclock_page(v);
2220 	if (v == kvm_get_vcpu(v->kvm, 0))
2221 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2222 	return 0;
2223 }
2224 
2225 /*
2226  * kvmclock updates which are isolated to a given vcpu, such as
2227  * vcpu->cpu migration, should not allow system_timestamp from
2228  * the rest of the vcpus to remain static. Otherwise ntp frequency
2229  * correction applies to one vcpu's system_timestamp but not
2230  * the others.
2231  *
2232  * So in those cases, request a kvmclock update for all vcpus.
2233  * We need to rate-limit these requests though, as they can
2234  * considerably slow guests that have a large number of vcpus.
2235  * The time for a remote vcpu to update its kvmclock is bound
2236  * by the delay we use to rate-limit the updates.
2237  */
2238 
2239 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2240 
2241 static void kvmclock_update_fn(struct work_struct *work)
2242 {
2243 	int i;
2244 	struct delayed_work *dwork = to_delayed_work(work);
2245 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2246 					   kvmclock_update_work);
2247 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2248 	struct kvm_vcpu *vcpu;
2249 
2250 	kvm_for_each_vcpu(i, vcpu, kvm) {
2251 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2252 		kvm_vcpu_kick(vcpu);
2253 	}
2254 }
2255 
2256 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2257 {
2258 	struct kvm *kvm = v->kvm;
2259 
2260 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2261 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2262 					KVMCLOCK_UPDATE_DELAY);
2263 }
2264 
2265 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2266 
2267 static void kvmclock_sync_fn(struct work_struct *work)
2268 {
2269 	struct delayed_work *dwork = to_delayed_work(work);
2270 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2271 					   kvmclock_sync_work);
2272 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2273 
2274 	if (!kvmclock_periodic_sync)
2275 		return;
2276 
2277 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2278 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2279 					KVMCLOCK_SYNC_PERIOD);
2280 }
2281 
2282 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2283 {
2284 	u64 mcg_cap = vcpu->arch.mcg_cap;
2285 	unsigned bank_num = mcg_cap & 0xff;
2286 	u32 msr = msr_info->index;
2287 	u64 data = msr_info->data;
2288 
2289 	switch (msr) {
2290 	case MSR_IA32_MCG_STATUS:
2291 		vcpu->arch.mcg_status = data;
2292 		break;
2293 	case MSR_IA32_MCG_CTL:
2294 		if (!(mcg_cap & MCG_CTL_P) &&
2295 		    (data || !msr_info->host_initiated))
2296 			return 1;
2297 		if (data != 0 && data != ~(u64)0)
2298 			return 1;
2299 		vcpu->arch.mcg_ctl = data;
2300 		break;
2301 	default:
2302 		if (msr >= MSR_IA32_MC0_CTL &&
2303 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2304 			u32 offset = msr - MSR_IA32_MC0_CTL;
2305 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2306 			 * some Linux kernels though clear bit 10 in bank 4 to
2307 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2308 			 * this to avoid an uncatched #GP in the guest
2309 			 */
2310 			if ((offset & 0x3) == 0 &&
2311 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2312 				return -1;
2313 			if (!msr_info->host_initiated &&
2314 				(offset & 0x3) == 1 && data != 0)
2315 				return -1;
2316 			vcpu->arch.mce_banks[offset] = data;
2317 			break;
2318 		}
2319 		return 1;
2320 	}
2321 	return 0;
2322 }
2323 
2324 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2325 {
2326 	struct kvm *kvm = vcpu->kvm;
2327 	int lm = is_long_mode(vcpu);
2328 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2329 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2330 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2331 		: kvm->arch.xen_hvm_config.blob_size_32;
2332 	u32 page_num = data & ~PAGE_MASK;
2333 	u64 page_addr = data & PAGE_MASK;
2334 	u8 *page;
2335 	int r;
2336 
2337 	r = -E2BIG;
2338 	if (page_num >= blob_size)
2339 		goto out;
2340 	r = -ENOMEM;
2341 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2342 	if (IS_ERR(page)) {
2343 		r = PTR_ERR(page);
2344 		goto out;
2345 	}
2346 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2347 		goto out_free;
2348 	r = 0;
2349 out_free:
2350 	kfree(page);
2351 out:
2352 	return r;
2353 }
2354 
2355 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2356 {
2357 	gpa_t gpa = data & ~0x3f;
2358 
2359 	/* Bits 3:5 are reserved, Should be zero */
2360 	if (data & 0x38)
2361 		return 1;
2362 
2363 	vcpu->arch.apf.msr_val = data;
2364 
2365 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2366 		kvm_clear_async_pf_completion_queue(vcpu);
2367 		kvm_async_pf_hash_reset(vcpu);
2368 		return 0;
2369 	}
2370 
2371 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2372 					sizeof(u32)))
2373 		return 1;
2374 
2375 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2376 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2377 	kvm_async_pf_wakeup_all(vcpu);
2378 	return 0;
2379 }
2380 
2381 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2382 {
2383 	vcpu->arch.pv_time_enabled = false;
2384 }
2385 
2386 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2387 {
2388 	++vcpu->stat.tlb_flush;
2389 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2390 }
2391 
2392 static void record_steal_time(struct kvm_vcpu *vcpu)
2393 {
2394 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2395 		return;
2396 
2397 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2398 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2399 		return;
2400 
2401 	/*
2402 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2403 	 * expensive IPIs.
2404 	 */
2405 	if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2406 		kvm_vcpu_flush_tlb(vcpu, false);
2407 
2408 	if (vcpu->arch.st.steal.version & 1)
2409 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2410 
2411 	vcpu->arch.st.steal.version += 1;
2412 
2413 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2414 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2415 
2416 	smp_wmb();
2417 
2418 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2419 		vcpu->arch.st.last_steal;
2420 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2421 
2422 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2423 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2424 
2425 	smp_wmb();
2426 
2427 	vcpu->arch.st.steal.version += 1;
2428 
2429 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2430 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2431 }
2432 
2433 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2434 {
2435 	bool pr = false;
2436 	u32 msr = msr_info->index;
2437 	u64 data = msr_info->data;
2438 
2439 	switch (msr) {
2440 	case MSR_AMD64_NB_CFG:
2441 	case MSR_IA32_UCODE_WRITE:
2442 	case MSR_VM_HSAVE_PA:
2443 	case MSR_AMD64_PATCH_LOADER:
2444 	case MSR_AMD64_BU_CFG2:
2445 	case MSR_AMD64_DC_CFG:
2446 	case MSR_F15H_EX_CFG:
2447 		break;
2448 
2449 	case MSR_IA32_UCODE_REV:
2450 		if (msr_info->host_initiated)
2451 			vcpu->arch.microcode_version = data;
2452 		break;
2453 	case MSR_IA32_ARCH_CAPABILITIES:
2454 		if (!msr_info->host_initiated)
2455 			return 1;
2456 		vcpu->arch.arch_capabilities = data;
2457 		break;
2458 	case MSR_EFER:
2459 		return set_efer(vcpu, data);
2460 	case MSR_K7_HWCR:
2461 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2462 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2463 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2464 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2465 		if (data != 0) {
2466 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2467 				    data);
2468 			return 1;
2469 		}
2470 		break;
2471 	case MSR_FAM10H_MMIO_CONF_BASE:
2472 		if (data != 0) {
2473 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2474 				    "0x%llx\n", data);
2475 			return 1;
2476 		}
2477 		break;
2478 	case MSR_IA32_DEBUGCTLMSR:
2479 		if (!data) {
2480 			/* We support the non-activated case already */
2481 			break;
2482 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2483 			/* Values other than LBR and BTF are vendor-specific,
2484 			   thus reserved and should throw a #GP */
2485 			return 1;
2486 		}
2487 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2488 			    __func__, data);
2489 		break;
2490 	case 0x200 ... 0x2ff:
2491 		return kvm_mtrr_set_msr(vcpu, msr, data);
2492 	case MSR_IA32_APICBASE:
2493 		return kvm_set_apic_base(vcpu, msr_info);
2494 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2495 		return kvm_x2apic_msr_write(vcpu, msr, data);
2496 	case MSR_IA32_TSCDEADLINE:
2497 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2498 		break;
2499 	case MSR_IA32_TSC_ADJUST:
2500 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2501 			if (!msr_info->host_initiated) {
2502 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2503 				adjust_tsc_offset_guest(vcpu, adj);
2504 			}
2505 			vcpu->arch.ia32_tsc_adjust_msr = data;
2506 		}
2507 		break;
2508 	case MSR_IA32_MISC_ENABLE:
2509 		vcpu->arch.ia32_misc_enable_msr = data;
2510 		break;
2511 	case MSR_IA32_SMBASE:
2512 		if (!msr_info->host_initiated)
2513 			return 1;
2514 		vcpu->arch.smbase = data;
2515 		break;
2516 	case MSR_IA32_TSC:
2517 		kvm_write_tsc(vcpu, msr_info);
2518 		break;
2519 	case MSR_SMI_COUNT:
2520 		if (!msr_info->host_initiated)
2521 			return 1;
2522 		vcpu->arch.smi_count = data;
2523 		break;
2524 	case MSR_KVM_WALL_CLOCK_NEW:
2525 	case MSR_KVM_WALL_CLOCK:
2526 		vcpu->kvm->arch.wall_clock = data;
2527 		kvm_write_wall_clock(vcpu->kvm, data);
2528 		break;
2529 	case MSR_KVM_SYSTEM_TIME_NEW:
2530 	case MSR_KVM_SYSTEM_TIME: {
2531 		struct kvm_arch *ka = &vcpu->kvm->arch;
2532 
2533 		kvmclock_reset(vcpu);
2534 
2535 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2536 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2537 
2538 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2539 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2540 
2541 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2542 		}
2543 
2544 		vcpu->arch.time = data;
2545 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2546 
2547 		/* we verify if the enable bit is set... */
2548 		if (!(data & 1))
2549 			break;
2550 
2551 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2552 		     &vcpu->arch.pv_time, data & ~1ULL,
2553 		     sizeof(struct pvclock_vcpu_time_info)))
2554 			vcpu->arch.pv_time_enabled = false;
2555 		else
2556 			vcpu->arch.pv_time_enabled = true;
2557 
2558 		break;
2559 	}
2560 	case MSR_KVM_ASYNC_PF_EN:
2561 		if (kvm_pv_enable_async_pf(vcpu, data))
2562 			return 1;
2563 		break;
2564 	case MSR_KVM_STEAL_TIME:
2565 
2566 		if (unlikely(!sched_info_on()))
2567 			return 1;
2568 
2569 		if (data & KVM_STEAL_RESERVED_MASK)
2570 			return 1;
2571 
2572 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2573 						data & KVM_STEAL_VALID_BITS,
2574 						sizeof(struct kvm_steal_time)))
2575 			return 1;
2576 
2577 		vcpu->arch.st.msr_val = data;
2578 
2579 		if (!(data & KVM_MSR_ENABLED))
2580 			break;
2581 
2582 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2583 
2584 		break;
2585 	case MSR_KVM_PV_EOI_EN:
2586 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2587 			return 1;
2588 		break;
2589 
2590 	case MSR_IA32_MCG_CTL:
2591 	case MSR_IA32_MCG_STATUS:
2592 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2593 		return set_msr_mce(vcpu, msr_info);
2594 
2595 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2596 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2597 		pr = true; /* fall through */
2598 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2599 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2600 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2601 			return kvm_pmu_set_msr(vcpu, msr_info);
2602 
2603 		if (pr || data != 0)
2604 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2605 				    "0x%x data 0x%llx\n", msr, data);
2606 		break;
2607 	case MSR_K7_CLK_CTL:
2608 		/*
2609 		 * Ignore all writes to this no longer documented MSR.
2610 		 * Writes are only relevant for old K7 processors,
2611 		 * all pre-dating SVM, but a recommended workaround from
2612 		 * AMD for these chips. It is possible to specify the
2613 		 * affected processor models on the command line, hence
2614 		 * the need to ignore the workaround.
2615 		 */
2616 		break;
2617 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2618 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2619 	case HV_X64_MSR_CRASH_CTL:
2620 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2621 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2622 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2623 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2624 		return kvm_hv_set_msr_common(vcpu, msr, data,
2625 					     msr_info->host_initiated);
2626 	case MSR_IA32_BBL_CR_CTL3:
2627 		/* Drop writes to this legacy MSR -- see rdmsr
2628 		 * counterpart for further detail.
2629 		 */
2630 		if (report_ignored_msrs)
2631 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2632 				msr, data);
2633 		break;
2634 	case MSR_AMD64_OSVW_ID_LENGTH:
2635 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2636 			return 1;
2637 		vcpu->arch.osvw.length = data;
2638 		break;
2639 	case MSR_AMD64_OSVW_STATUS:
2640 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2641 			return 1;
2642 		vcpu->arch.osvw.status = data;
2643 		break;
2644 	case MSR_PLATFORM_INFO:
2645 		if (!msr_info->host_initiated ||
2646 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2647 		     cpuid_fault_enabled(vcpu)))
2648 			return 1;
2649 		vcpu->arch.msr_platform_info = data;
2650 		break;
2651 	case MSR_MISC_FEATURES_ENABLES:
2652 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2653 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2654 		     !supports_cpuid_fault(vcpu)))
2655 			return 1;
2656 		vcpu->arch.msr_misc_features_enables = data;
2657 		break;
2658 	default:
2659 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2660 			return xen_hvm_config(vcpu, data);
2661 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2662 			return kvm_pmu_set_msr(vcpu, msr_info);
2663 		if (!ignore_msrs) {
2664 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2665 				    msr, data);
2666 			return 1;
2667 		} else {
2668 			if (report_ignored_msrs)
2669 				vcpu_unimpl(vcpu,
2670 					"ignored wrmsr: 0x%x data 0x%llx\n",
2671 					msr, data);
2672 			break;
2673 		}
2674 	}
2675 	return 0;
2676 }
2677 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2678 
2679 
2680 /*
2681  * Reads an msr value (of 'msr_index') into 'pdata'.
2682  * Returns 0 on success, non-0 otherwise.
2683  * Assumes vcpu_load() was already called.
2684  */
2685 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2686 {
2687 	return kvm_x86_ops->get_msr(vcpu, msr);
2688 }
2689 EXPORT_SYMBOL_GPL(kvm_get_msr);
2690 
2691 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2692 {
2693 	u64 data;
2694 	u64 mcg_cap = vcpu->arch.mcg_cap;
2695 	unsigned bank_num = mcg_cap & 0xff;
2696 
2697 	switch (msr) {
2698 	case MSR_IA32_P5_MC_ADDR:
2699 	case MSR_IA32_P5_MC_TYPE:
2700 		data = 0;
2701 		break;
2702 	case MSR_IA32_MCG_CAP:
2703 		data = vcpu->arch.mcg_cap;
2704 		break;
2705 	case MSR_IA32_MCG_CTL:
2706 		if (!(mcg_cap & MCG_CTL_P) && !host)
2707 			return 1;
2708 		data = vcpu->arch.mcg_ctl;
2709 		break;
2710 	case MSR_IA32_MCG_STATUS:
2711 		data = vcpu->arch.mcg_status;
2712 		break;
2713 	default:
2714 		if (msr >= MSR_IA32_MC0_CTL &&
2715 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2716 			u32 offset = msr - MSR_IA32_MC0_CTL;
2717 			data = vcpu->arch.mce_banks[offset];
2718 			break;
2719 		}
2720 		return 1;
2721 	}
2722 	*pdata = data;
2723 	return 0;
2724 }
2725 
2726 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2727 {
2728 	switch (msr_info->index) {
2729 	case MSR_IA32_PLATFORM_ID:
2730 	case MSR_IA32_EBL_CR_POWERON:
2731 	case MSR_IA32_DEBUGCTLMSR:
2732 	case MSR_IA32_LASTBRANCHFROMIP:
2733 	case MSR_IA32_LASTBRANCHTOIP:
2734 	case MSR_IA32_LASTINTFROMIP:
2735 	case MSR_IA32_LASTINTTOIP:
2736 	case MSR_K8_SYSCFG:
2737 	case MSR_K8_TSEG_ADDR:
2738 	case MSR_K8_TSEG_MASK:
2739 	case MSR_K7_HWCR:
2740 	case MSR_VM_HSAVE_PA:
2741 	case MSR_K8_INT_PENDING_MSG:
2742 	case MSR_AMD64_NB_CFG:
2743 	case MSR_FAM10H_MMIO_CONF_BASE:
2744 	case MSR_AMD64_BU_CFG2:
2745 	case MSR_IA32_PERF_CTL:
2746 	case MSR_AMD64_DC_CFG:
2747 	case MSR_F15H_EX_CFG:
2748 		msr_info->data = 0;
2749 		break;
2750 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2751 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2752 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2753 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2754 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2755 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2756 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2757 		msr_info->data = 0;
2758 		break;
2759 	case MSR_IA32_UCODE_REV:
2760 		msr_info->data = vcpu->arch.microcode_version;
2761 		break;
2762 	case MSR_IA32_ARCH_CAPABILITIES:
2763 		if (!msr_info->host_initiated &&
2764 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2765 			return 1;
2766 		msr_info->data = vcpu->arch.arch_capabilities;
2767 		break;
2768 	case MSR_IA32_TSC:
2769 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2770 		break;
2771 	case MSR_MTRRcap:
2772 	case 0x200 ... 0x2ff:
2773 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2774 	case 0xcd: /* fsb frequency */
2775 		msr_info->data = 3;
2776 		break;
2777 		/*
2778 		 * MSR_EBC_FREQUENCY_ID
2779 		 * Conservative value valid for even the basic CPU models.
2780 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2781 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2782 		 * and 266MHz for model 3, or 4. Set Core Clock
2783 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2784 		 * 31:24) even though these are only valid for CPU
2785 		 * models > 2, however guests may end up dividing or
2786 		 * multiplying by zero otherwise.
2787 		 */
2788 	case MSR_EBC_FREQUENCY_ID:
2789 		msr_info->data = 1 << 24;
2790 		break;
2791 	case MSR_IA32_APICBASE:
2792 		msr_info->data = kvm_get_apic_base(vcpu);
2793 		break;
2794 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2795 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2796 		break;
2797 	case MSR_IA32_TSCDEADLINE:
2798 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2799 		break;
2800 	case MSR_IA32_TSC_ADJUST:
2801 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2802 		break;
2803 	case MSR_IA32_MISC_ENABLE:
2804 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2805 		break;
2806 	case MSR_IA32_SMBASE:
2807 		if (!msr_info->host_initiated)
2808 			return 1;
2809 		msr_info->data = vcpu->arch.smbase;
2810 		break;
2811 	case MSR_SMI_COUNT:
2812 		msr_info->data = vcpu->arch.smi_count;
2813 		break;
2814 	case MSR_IA32_PERF_STATUS:
2815 		/* TSC increment by tick */
2816 		msr_info->data = 1000ULL;
2817 		/* CPU multiplier */
2818 		msr_info->data |= (((uint64_t)4ULL) << 40);
2819 		break;
2820 	case MSR_EFER:
2821 		msr_info->data = vcpu->arch.efer;
2822 		break;
2823 	case MSR_KVM_WALL_CLOCK:
2824 	case MSR_KVM_WALL_CLOCK_NEW:
2825 		msr_info->data = vcpu->kvm->arch.wall_clock;
2826 		break;
2827 	case MSR_KVM_SYSTEM_TIME:
2828 	case MSR_KVM_SYSTEM_TIME_NEW:
2829 		msr_info->data = vcpu->arch.time;
2830 		break;
2831 	case MSR_KVM_ASYNC_PF_EN:
2832 		msr_info->data = vcpu->arch.apf.msr_val;
2833 		break;
2834 	case MSR_KVM_STEAL_TIME:
2835 		msr_info->data = vcpu->arch.st.msr_val;
2836 		break;
2837 	case MSR_KVM_PV_EOI_EN:
2838 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2839 		break;
2840 	case MSR_IA32_P5_MC_ADDR:
2841 	case MSR_IA32_P5_MC_TYPE:
2842 	case MSR_IA32_MCG_CAP:
2843 	case MSR_IA32_MCG_CTL:
2844 	case MSR_IA32_MCG_STATUS:
2845 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2846 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2847 				   msr_info->host_initiated);
2848 	case MSR_K7_CLK_CTL:
2849 		/*
2850 		 * Provide expected ramp-up count for K7. All other
2851 		 * are set to zero, indicating minimum divisors for
2852 		 * every field.
2853 		 *
2854 		 * This prevents guest kernels on AMD host with CPU
2855 		 * type 6, model 8 and higher from exploding due to
2856 		 * the rdmsr failing.
2857 		 */
2858 		msr_info->data = 0x20000000;
2859 		break;
2860 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2861 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2862 	case HV_X64_MSR_CRASH_CTL:
2863 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2864 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2865 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2866 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2867 		return kvm_hv_get_msr_common(vcpu,
2868 					     msr_info->index, &msr_info->data,
2869 					     msr_info->host_initiated);
2870 		break;
2871 	case MSR_IA32_BBL_CR_CTL3:
2872 		/* This legacy MSR exists but isn't fully documented in current
2873 		 * silicon.  It is however accessed by winxp in very narrow
2874 		 * scenarios where it sets bit #19, itself documented as
2875 		 * a "reserved" bit.  Best effort attempt to source coherent
2876 		 * read data here should the balance of the register be
2877 		 * interpreted by the guest:
2878 		 *
2879 		 * L2 cache control register 3: 64GB range, 256KB size,
2880 		 * enabled, latency 0x1, configured
2881 		 */
2882 		msr_info->data = 0xbe702111;
2883 		break;
2884 	case MSR_AMD64_OSVW_ID_LENGTH:
2885 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2886 			return 1;
2887 		msr_info->data = vcpu->arch.osvw.length;
2888 		break;
2889 	case MSR_AMD64_OSVW_STATUS:
2890 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2891 			return 1;
2892 		msr_info->data = vcpu->arch.osvw.status;
2893 		break;
2894 	case MSR_PLATFORM_INFO:
2895 		if (!msr_info->host_initiated &&
2896 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2897 			return 1;
2898 		msr_info->data = vcpu->arch.msr_platform_info;
2899 		break;
2900 	case MSR_MISC_FEATURES_ENABLES:
2901 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2902 		break;
2903 	default:
2904 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2905 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2906 		if (!ignore_msrs) {
2907 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2908 					       msr_info->index);
2909 			return 1;
2910 		} else {
2911 			if (report_ignored_msrs)
2912 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2913 					msr_info->index);
2914 			msr_info->data = 0;
2915 		}
2916 		break;
2917 	}
2918 	return 0;
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2921 
2922 /*
2923  * Read or write a bunch of msrs. All parameters are kernel addresses.
2924  *
2925  * @return number of msrs set successfully.
2926  */
2927 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2928 		    struct kvm_msr_entry *entries,
2929 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2930 				  unsigned index, u64 *data))
2931 {
2932 	int i;
2933 
2934 	for (i = 0; i < msrs->nmsrs; ++i)
2935 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2936 			break;
2937 
2938 	return i;
2939 }
2940 
2941 /*
2942  * Read or write a bunch of msrs. Parameters are user addresses.
2943  *
2944  * @return number of msrs set successfully.
2945  */
2946 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2947 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2948 				unsigned index, u64 *data),
2949 		  int writeback)
2950 {
2951 	struct kvm_msrs msrs;
2952 	struct kvm_msr_entry *entries;
2953 	int r, n;
2954 	unsigned size;
2955 
2956 	r = -EFAULT;
2957 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2958 		goto out;
2959 
2960 	r = -E2BIG;
2961 	if (msrs.nmsrs >= MAX_IO_MSRS)
2962 		goto out;
2963 
2964 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2965 	entries = memdup_user(user_msrs->entries, size);
2966 	if (IS_ERR(entries)) {
2967 		r = PTR_ERR(entries);
2968 		goto out;
2969 	}
2970 
2971 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2972 	if (r < 0)
2973 		goto out_free;
2974 
2975 	r = -EFAULT;
2976 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2977 		goto out_free;
2978 
2979 	r = n;
2980 
2981 out_free:
2982 	kfree(entries);
2983 out:
2984 	return r;
2985 }
2986 
2987 static inline bool kvm_can_mwait_in_guest(void)
2988 {
2989 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
2990 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
2991 		boot_cpu_has(X86_FEATURE_ARAT);
2992 }
2993 
2994 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2995 {
2996 	int r = 0;
2997 
2998 	switch (ext) {
2999 	case KVM_CAP_IRQCHIP:
3000 	case KVM_CAP_HLT:
3001 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3002 	case KVM_CAP_SET_TSS_ADDR:
3003 	case KVM_CAP_EXT_CPUID:
3004 	case KVM_CAP_EXT_EMUL_CPUID:
3005 	case KVM_CAP_CLOCKSOURCE:
3006 	case KVM_CAP_PIT:
3007 	case KVM_CAP_NOP_IO_DELAY:
3008 	case KVM_CAP_MP_STATE:
3009 	case KVM_CAP_SYNC_MMU:
3010 	case KVM_CAP_USER_NMI:
3011 	case KVM_CAP_REINJECT_CONTROL:
3012 	case KVM_CAP_IRQ_INJECT_STATUS:
3013 	case KVM_CAP_IOEVENTFD:
3014 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3015 	case KVM_CAP_PIT2:
3016 	case KVM_CAP_PIT_STATE2:
3017 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3018 	case KVM_CAP_XEN_HVM:
3019 	case KVM_CAP_VCPU_EVENTS:
3020 	case KVM_CAP_HYPERV:
3021 	case KVM_CAP_HYPERV_VAPIC:
3022 	case KVM_CAP_HYPERV_SPIN:
3023 	case KVM_CAP_HYPERV_SYNIC:
3024 	case KVM_CAP_HYPERV_SYNIC2:
3025 	case KVM_CAP_HYPERV_VP_INDEX:
3026 	case KVM_CAP_HYPERV_EVENTFD:
3027 	case KVM_CAP_HYPERV_TLBFLUSH:
3028 	case KVM_CAP_HYPERV_SEND_IPI:
3029 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3030 	case KVM_CAP_HYPERV_CPUID:
3031 	case KVM_CAP_PCI_SEGMENT:
3032 	case KVM_CAP_DEBUGREGS:
3033 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3034 	case KVM_CAP_XSAVE:
3035 	case KVM_CAP_ASYNC_PF:
3036 	case KVM_CAP_GET_TSC_KHZ:
3037 	case KVM_CAP_KVMCLOCK_CTRL:
3038 	case KVM_CAP_READONLY_MEM:
3039 	case KVM_CAP_HYPERV_TIME:
3040 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3041 	case KVM_CAP_TSC_DEADLINE_TIMER:
3042 	case KVM_CAP_DISABLE_QUIRKS:
3043 	case KVM_CAP_SET_BOOT_CPU_ID:
3044  	case KVM_CAP_SPLIT_IRQCHIP:
3045 	case KVM_CAP_IMMEDIATE_EXIT:
3046 	case KVM_CAP_GET_MSR_FEATURES:
3047 	case KVM_CAP_MSR_PLATFORM_INFO:
3048 	case KVM_CAP_EXCEPTION_PAYLOAD:
3049 		r = 1;
3050 		break;
3051 	case KVM_CAP_SYNC_REGS:
3052 		r = KVM_SYNC_X86_VALID_FIELDS;
3053 		break;
3054 	case KVM_CAP_ADJUST_CLOCK:
3055 		r = KVM_CLOCK_TSC_STABLE;
3056 		break;
3057 	case KVM_CAP_X86_DISABLE_EXITS:
3058 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3059 		if(kvm_can_mwait_in_guest())
3060 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3061 		break;
3062 	case KVM_CAP_X86_SMM:
3063 		/* SMBASE is usually relocated above 1M on modern chipsets,
3064 		 * and SMM handlers might indeed rely on 4G segment limits,
3065 		 * so do not report SMM to be available if real mode is
3066 		 * emulated via vm86 mode.  Still, do not go to great lengths
3067 		 * to avoid userspace's usage of the feature, because it is a
3068 		 * fringe case that is not enabled except via specific settings
3069 		 * of the module parameters.
3070 		 */
3071 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3072 		break;
3073 	case KVM_CAP_VAPIC:
3074 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3075 		break;
3076 	case KVM_CAP_NR_VCPUS:
3077 		r = KVM_SOFT_MAX_VCPUS;
3078 		break;
3079 	case KVM_CAP_MAX_VCPUS:
3080 		r = KVM_MAX_VCPUS;
3081 		break;
3082 	case KVM_CAP_NR_MEMSLOTS:
3083 		r = KVM_USER_MEM_SLOTS;
3084 		break;
3085 	case KVM_CAP_PV_MMU:	/* obsolete */
3086 		r = 0;
3087 		break;
3088 	case KVM_CAP_MCE:
3089 		r = KVM_MAX_MCE_BANKS;
3090 		break;
3091 	case KVM_CAP_XCRS:
3092 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3093 		break;
3094 	case KVM_CAP_TSC_CONTROL:
3095 		r = kvm_has_tsc_control;
3096 		break;
3097 	case KVM_CAP_X2APIC_API:
3098 		r = KVM_X2APIC_API_VALID_FLAGS;
3099 		break;
3100 	case KVM_CAP_NESTED_STATE:
3101 		r = kvm_x86_ops->get_nested_state ?
3102 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3103 		break;
3104 	default:
3105 		break;
3106 	}
3107 	return r;
3108 
3109 }
3110 
3111 long kvm_arch_dev_ioctl(struct file *filp,
3112 			unsigned int ioctl, unsigned long arg)
3113 {
3114 	void __user *argp = (void __user *)arg;
3115 	long r;
3116 
3117 	switch (ioctl) {
3118 	case KVM_GET_MSR_INDEX_LIST: {
3119 		struct kvm_msr_list __user *user_msr_list = argp;
3120 		struct kvm_msr_list msr_list;
3121 		unsigned n;
3122 
3123 		r = -EFAULT;
3124 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3125 			goto out;
3126 		n = msr_list.nmsrs;
3127 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3128 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3129 			goto out;
3130 		r = -E2BIG;
3131 		if (n < msr_list.nmsrs)
3132 			goto out;
3133 		r = -EFAULT;
3134 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3135 				 num_msrs_to_save * sizeof(u32)))
3136 			goto out;
3137 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3138 				 &emulated_msrs,
3139 				 num_emulated_msrs * sizeof(u32)))
3140 			goto out;
3141 		r = 0;
3142 		break;
3143 	}
3144 	case KVM_GET_SUPPORTED_CPUID:
3145 	case KVM_GET_EMULATED_CPUID: {
3146 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3147 		struct kvm_cpuid2 cpuid;
3148 
3149 		r = -EFAULT;
3150 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3151 			goto out;
3152 
3153 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3154 					    ioctl);
3155 		if (r)
3156 			goto out;
3157 
3158 		r = -EFAULT;
3159 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3160 			goto out;
3161 		r = 0;
3162 		break;
3163 	}
3164 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3165 		r = -EFAULT;
3166 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3167 				 sizeof(kvm_mce_cap_supported)))
3168 			goto out;
3169 		r = 0;
3170 		break;
3171 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3172 		struct kvm_msr_list __user *user_msr_list = argp;
3173 		struct kvm_msr_list msr_list;
3174 		unsigned int n;
3175 
3176 		r = -EFAULT;
3177 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3178 			goto out;
3179 		n = msr_list.nmsrs;
3180 		msr_list.nmsrs = num_msr_based_features;
3181 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3182 			goto out;
3183 		r = -E2BIG;
3184 		if (n < msr_list.nmsrs)
3185 			goto out;
3186 		r = -EFAULT;
3187 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3188 				 num_msr_based_features * sizeof(u32)))
3189 			goto out;
3190 		r = 0;
3191 		break;
3192 	}
3193 	case KVM_GET_MSRS:
3194 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3195 		break;
3196 	}
3197 	default:
3198 		r = -EINVAL;
3199 	}
3200 out:
3201 	return r;
3202 }
3203 
3204 static void wbinvd_ipi(void *garbage)
3205 {
3206 	wbinvd();
3207 }
3208 
3209 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3210 {
3211 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3212 }
3213 
3214 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3215 {
3216 	/* Address WBINVD may be executed by guest */
3217 	if (need_emulate_wbinvd(vcpu)) {
3218 		if (kvm_x86_ops->has_wbinvd_exit())
3219 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3220 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3221 			smp_call_function_single(vcpu->cpu,
3222 					wbinvd_ipi, NULL, 1);
3223 	}
3224 
3225 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3226 
3227 	/* Apply any externally detected TSC adjustments (due to suspend) */
3228 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3229 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3230 		vcpu->arch.tsc_offset_adjustment = 0;
3231 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3232 	}
3233 
3234 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3235 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3236 				rdtsc() - vcpu->arch.last_host_tsc;
3237 		if (tsc_delta < 0)
3238 			mark_tsc_unstable("KVM discovered backwards TSC");
3239 
3240 		if (kvm_check_tsc_unstable()) {
3241 			u64 offset = kvm_compute_tsc_offset(vcpu,
3242 						vcpu->arch.last_guest_tsc);
3243 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3244 			vcpu->arch.tsc_catchup = 1;
3245 		}
3246 
3247 		if (kvm_lapic_hv_timer_in_use(vcpu))
3248 			kvm_lapic_restart_hv_timer(vcpu);
3249 
3250 		/*
3251 		 * On a host with synchronized TSC, there is no need to update
3252 		 * kvmclock on vcpu->cpu migration
3253 		 */
3254 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3255 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3256 		if (vcpu->cpu != cpu)
3257 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3258 		vcpu->cpu = cpu;
3259 	}
3260 
3261 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3262 }
3263 
3264 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3265 {
3266 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3267 		return;
3268 
3269 	vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3270 
3271 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3272 			&vcpu->arch.st.steal.preempted,
3273 			offsetof(struct kvm_steal_time, preempted),
3274 			sizeof(vcpu->arch.st.steal.preempted));
3275 }
3276 
3277 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3278 {
3279 	int idx;
3280 
3281 	if (vcpu->preempted)
3282 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3283 
3284 	/*
3285 	 * Disable page faults because we're in atomic context here.
3286 	 * kvm_write_guest_offset_cached() would call might_fault()
3287 	 * that relies on pagefault_disable() to tell if there's a
3288 	 * bug. NOTE: the write to guest memory may not go through if
3289 	 * during postcopy live migration or if there's heavy guest
3290 	 * paging.
3291 	 */
3292 	pagefault_disable();
3293 	/*
3294 	 * kvm_memslots() will be called by
3295 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3296 	 */
3297 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3298 	kvm_steal_time_set_preempted(vcpu);
3299 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3300 	pagefault_enable();
3301 	kvm_x86_ops->vcpu_put(vcpu);
3302 	vcpu->arch.last_host_tsc = rdtsc();
3303 	/*
3304 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3305 	 * on every vmexit, but if not, we might have a stale dr6 from the
3306 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3307 	 */
3308 	set_debugreg(0, 6);
3309 }
3310 
3311 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3312 				    struct kvm_lapic_state *s)
3313 {
3314 	if (vcpu->arch.apicv_active)
3315 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3316 
3317 	return kvm_apic_get_state(vcpu, s);
3318 }
3319 
3320 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3321 				    struct kvm_lapic_state *s)
3322 {
3323 	int r;
3324 
3325 	r = kvm_apic_set_state(vcpu, s);
3326 	if (r)
3327 		return r;
3328 	update_cr8_intercept(vcpu);
3329 
3330 	return 0;
3331 }
3332 
3333 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3334 {
3335 	return (!lapic_in_kernel(vcpu) ||
3336 		kvm_apic_accept_pic_intr(vcpu));
3337 }
3338 
3339 /*
3340  * if userspace requested an interrupt window, check that the
3341  * interrupt window is open.
3342  *
3343  * No need to exit to userspace if we already have an interrupt queued.
3344  */
3345 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3346 {
3347 	return kvm_arch_interrupt_allowed(vcpu) &&
3348 		!kvm_cpu_has_interrupt(vcpu) &&
3349 		!kvm_event_needs_reinjection(vcpu) &&
3350 		kvm_cpu_accept_dm_intr(vcpu);
3351 }
3352 
3353 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3354 				    struct kvm_interrupt *irq)
3355 {
3356 	if (irq->irq >= KVM_NR_INTERRUPTS)
3357 		return -EINVAL;
3358 
3359 	if (!irqchip_in_kernel(vcpu->kvm)) {
3360 		kvm_queue_interrupt(vcpu, irq->irq, false);
3361 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3362 		return 0;
3363 	}
3364 
3365 	/*
3366 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3367 	 * fail for in-kernel 8259.
3368 	 */
3369 	if (pic_in_kernel(vcpu->kvm))
3370 		return -ENXIO;
3371 
3372 	if (vcpu->arch.pending_external_vector != -1)
3373 		return -EEXIST;
3374 
3375 	vcpu->arch.pending_external_vector = irq->irq;
3376 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3377 	return 0;
3378 }
3379 
3380 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3381 {
3382 	kvm_inject_nmi(vcpu);
3383 
3384 	return 0;
3385 }
3386 
3387 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3388 {
3389 	kvm_make_request(KVM_REQ_SMI, vcpu);
3390 
3391 	return 0;
3392 }
3393 
3394 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3395 					   struct kvm_tpr_access_ctl *tac)
3396 {
3397 	if (tac->flags)
3398 		return -EINVAL;
3399 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3400 	return 0;
3401 }
3402 
3403 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3404 					u64 mcg_cap)
3405 {
3406 	int r;
3407 	unsigned bank_num = mcg_cap & 0xff, bank;
3408 
3409 	r = -EINVAL;
3410 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3411 		goto out;
3412 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3413 		goto out;
3414 	r = 0;
3415 	vcpu->arch.mcg_cap = mcg_cap;
3416 	/* Init IA32_MCG_CTL to all 1s */
3417 	if (mcg_cap & MCG_CTL_P)
3418 		vcpu->arch.mcg_ctl = ~(u64)0;
3419 	/* Init IA32_MCi_CTL to all 1s */
3420 	for (bank = 0; bank < bank_num; bank++)
3421 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3422 
3423 	if (kvm_x86_ops->setup_mce)
3424 		kvm_x86_ops->setup_mce(vcpu);
3425 out:
3426 	return r;
3427 }
3428 
3429 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3430 				      struct kvm_x86_mce *mce)
3431 {
3432 	u64 mcg_cap = vcpu->arch.mcg_cap;
3433 	unsigned bank_num = mcg_cap & 0xff;
3434 	u64 *banks = vcpu->arch.mce_banks;
3435 
3436 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3437 		return -EINVAL;
3438 	/*
3439 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3440 	 * reporting is disabled
3441 	 */
3442 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3443 	    vcpu->arch.mcg_ctl != ~(u64)0)
3444 		return 0;
3445 	banks += 4 * mce->bank;
3446 	/*
3447 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3448 	 * reporting is disabled for the bank
3449 	 */
3450 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3451 		return 0;
3452 	if (mce->status & MCI_STATUS_UC) {
3453 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3454 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3455 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3456 			return 0;
3457 		}
3458 		if (banks[1] & MCI_STATUS_VAL)
3459 			mce->status |= MCI_STATUS_OVER;
3460 		banks[2] = mce->addr;
3461 		banks[3] = mce->misc;
3462 		vcpu->arch.mcg_status = mce->mcg_status;
3463 		banks[1] = mce->status;
3464 		kvm_queue_exception(vcpu, MC_VECTOR);
3465 	} else if (!(banks[1] & MCI_STATUS_VAL)
3466 		   || !(banks[1] & MCI_STATUS_UC)) {
3467 		if (banks[1] & MCI_STATUS_VAL)
3468 			mce->status |= MCI_STATUS_OVER;
3469 		banks[2] = mce->addr;
3470 		banks[3] = mce->misc;
3471 		banks[1] = mce->status;
3472 	} else
3473 		banks[1] |= MCI_STATUS_OVER;
3474 	return 0;
3475 }
3476 
3477 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3478 					       struct kvm_vcpu_events *events)
3479 {
3480 	process_nmi(vcpu);
3481 
3482 	/*
3483 	 * The API doesn't provide the instruction length for software
3484 	 * exceptions, so don't report them. As long as the guest RIP
3485 	 * isn't advanced, we should expect to encounter the exception
3486 	 * again.
3487 	 */
3488 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3489 		events->exception.injected = 0;
3490 		events->exception.pending = 0;
3491 	} else {
3492 		events->exception.injected = vcpu->arch.exception.injected;
3493 		events->exception.pending = vcpu->arch.exception.pending;
3494 		/*
3495 		 * For ABI compatibility, deliberately conflate
3496 		 * pending and injected exceptions when
3497 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3498 		 */
3499 		if (!vcpu->kvm->arch.exception_payload_enabled)
3500 			events->exception.injected |=
3501 				vcpu->arch.exception.pending;
3502 	}
3503 	events->exception.nr = vcpu->arch.exception.nr;
3504 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3505 	events->exception.error_code = vcpu->arch.exception.error_code;
3506 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3507 	events->exception_payload = vcpu->arch.exception.payload;
3508 
3509 	events->interrupt.injected =
3510 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3511 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3512 	events->interrupt.soft = 0;
3513 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3514 
3515 	events->nmi.injected = vcpu->arch.nmi_injected;
3516 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3517 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3518 	events->nmi.pad = 0;
3519 
3520 	events->sipi_vector = 0; /* never valid when reporting to user space */
3521 
3522 	events->smi.smm = is_smm(vcpu);
3523 	events->smi.pending = vcpu->arch.smi_pending;
3524 	events->smi.smm_inside_nmi =
3525 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3526 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3527 
3528 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3529 			 | KVM_VCPUEVENT_VALID_SHADOW
3530 			 | KVM_VCPUEVENT_VALID_SMM);
3531 	if (vcpu->kvm->arch.exception_payload_enabled)
3532 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3533 
3534 	memset(&events->reserved, 0, sizeof(events->reserved));
3535 }
3536 
3537 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3538 
3539 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3540 					      struct kvm_vcpu_events *events)
3541 {
3542 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3543 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3544 			      | KVM_VCPUEVENT_VALID_SHADOW
3545 			      | KVM_VCPUEVENT_VALID_SMM
3546 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3547 		return -EINVAL;
3548 
3549 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3550 		if (!vcpu->kvm->arch.exception_payload_enabled)
3551 			return -EINVAL;
3552 		if (events->exception.pending)
3553 			events->exception.injected = 0;
3554 		else
3555 			events->exception_has_payload = 0;
3556 	} else {
3557 		events->exception.pending = 0;
3558 		events->exception_has_payload = 0;
3559 	}
3560 
3561 	if ((events->exception.injected || events->exception.pending) &&
3562 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3563 		return -EINVAL;
3564 
3565 	/* INITs are latched while in SMM */
3566 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3567 	    (events->smi.smm || events->smi.pending) &&
3568 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3569 		return -EINVAL;
3570 
3571 	process_nmi(vcpu);
3572 	vcpu->arch.exception.injected = events->exception.injected;
3573 	vcpu->arch.exception.pending = events->exception.pending;
3574 	vcpu->arch.exception.nr = events->exception.nr;
3575 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3576 	vcpu->arch.exception.error_code = events->exception.error_code;
3577 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3578 	vcpu->arch.exception.payload = events->exception_payload;
3579 
3580 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3581 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3582 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3583 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3584 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3585 						  events->interrupt.shadow);
3586 
3587 	vcpu->arch.nmi_injected = events->nmi.injected;
3588 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3589 		vcpu->arch.nmi_pending = events->nmi.pending;
3590 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3591 
3592 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3593 	    lapic_in_kernel(vcpu))
3594 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3595 
3596 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3597 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3598 			if (events->smi.smm)
3599 				vcpu->arch.hflags |= HF_SMM_MASK;
3600 			else
3601 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3602 			kvm_smm_changed(vcpu);
3603 		}
3604 
3605 		vcpu->arch.smi_pending = events->smi.pending;
3606 
3607 		if (events->smi.smm) {
3608 			if (events->smi.smm_inside_nmi)
3609 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3610 			else
3611 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3612 			if (lapic_in_kernel(vcpu)) {
3613 				if (events->smi.latched_init)
3614 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3615 				else
3616 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3617 			}
3618 		}
3619 	}
3620 
3621 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3622 
3623 	return 0;
3624 }
3625 
3626 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3627 					     struct kvm_debugregs *dbgregs)
3628 {
3629 	unsigned long val;
3630 
3631 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3632 	kvm_get_dr(vcpu, 6, &val);
3633 	dbgregs->dr6 = val;
3634 	dbgregs->dr7 = vcpu->arch.dr7;
3635 	dbgregs->flags = 0;
3636 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3637 }
3638 
3639 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3640 					    struct kvm_debugregs *dbgregs)
3641 {
3642 	if (dbgregs->flags)
3643 		return -EINVAL;
3644 
3645 	if (dbgregs->dr6 & ~0xffffffffull)
3646 		return -EINVAL;
3647 	if (dbgregs->dr7 & ~0xffffffffull)
3648 		return -EINVAL;
3649 
3650 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3651 	kvm_update_dr0123(vcpu);
3652 	vcpu->arch.dr6 = dbgregs->dr6;
3653 	kvm_update_dr6(vcpu);
3654 	vcpu->arch.dr7 = dbgregs->dr7;
3655 	kvm_update_dr7(vcpu);
3656 
3657 	return 0;
3658 }
3659 
3660 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3661 
3662 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3663 {
3664 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3665 	u64 xstate_bv = xsave->header.xfeatures;
3666 	u64 valid;
3667 
3668 	/*
3669 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3670 	 * leaves 0 and 1 in the loop below.
3671 	 */
3672 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3673 
3674 	/* Set XSTATE_BV */
3675 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3676 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3677 
3678 	/*
3679 	 * Copy each region from the possibly compacted offset to the
3680 	 * non-compacted offset.
3681 	 */
3682 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3683 	while (valid) {
3684 		u64 feature = valid & -valid;
3685 		int index = fls64(feature) - 1;
3686 		void *src = get_xsave_addr(xsave, feature);
3687 
3688 		if (src) {
3689 			u32 size, offset, ecx, edx;
3690 			cpuid_count(XSTATE_CPUID, index,
3691 				    &size, &offset, &ecx, &edx);
3692 			if (feature == XFEATURE_MASK_PKRU)
3693 				memcpy(dest + offset, &vcpu->arch.pkru,
3694 				       sizeof(vcpu->arch.pkru));
3695 			else
3696 				memcpy(dest + offset, src, size);
3697 
3698 		}
3699 
3700 		valid -= feature;
3701 	}
3702 }
3703 
3704 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3705 {
3706 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3707 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3708 	u64 valid;
3709 
3710 	/*
3711 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3712 	 * leaves 0 and 1 in the loop below.
3713 	 */
3714 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3715 
3716 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3717 	xsave->header.xfeatures = xstate_bv;
3718 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3719 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3720 
3721 	/*
3722 	 * Copy each region from the non-compacted offset to the
3723 	 * possibly compacted offset.
3724 	 */
3725 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3726 	while (valid) {
3727 		u64 feature = valid & -valid;
3728 		int index = fls64(feature) - 1;
3729 		void *dest = get_xsave_addr(xsave, feature);
3730 
3731 		if (dest) {
3732 			u32 size, offset, ecx, edx;
3733 			cpuid_count(XSTATE_CPUID, index,
3734 				    &size, &offset, &ecx, &edx);
3735 			if (feature == XFEATURE_MASK_PKRU)
3736 				memcpy(&vcpu->arch.pkru, src + offset,
3737 				       sizeof(vcpu->arch.pkru));
3738 			else
3739 				memcpy(dest, src + offset, size);
3740 		}
3741 
3742 		valid -= feature;
3743 	}
3744 }
3745 
3746 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3747 					 struct kvm_xsave *guest_xsave)
3748 {
3749 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3750 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3751 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3752 	} else {
3753 		memcpy(guest_xsave->region,
3754 			&vcpu->arch.guest_fpu->state.fxsave,
3755 			sizeof(struct fxregs_state));
3756 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3757 			XFEATURE_MASK_FPSSE;
3758 	}
3759 }
3760 
3761 #define XSAVE_MXCSR_OFFSET 24
3762 
3763 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3764 					struct kvm_xsave *guest_xsave)
3765 {
3766 	u64 xstate_bv =
3767 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3768 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3769 
3770 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3771 		/*
3772 		 * Here we allow setting states that are not present in
3773 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3774 		 * with old userspace.
3775 		 */
3776 		if (xstate_bv & ~kvm_supported_xcr0() ||
3777 			mxcsr & ~mxcsr_feature_mask)
3778 			return -EINVAL;
3779 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3780 	} else {
3781 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3782 			mxcsr & ~mxcsr_feature_mask)
3783 			return -EINVAL;
3784 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3785 			guest_xsave->region, sizeof(struct fxregs_state));
3786 	}
3787 	return 0;
3788 }
3789 
3790 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3791 					struct kvm_xcrs *guest_xcrs)
3792 {
3793 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3794 		guest_xcrs->nr_xcrs = 0;
3795 		return;
3796 	}
3797 
3798 	guest_xcrs->nr_xcrs = 1;
3799 	guest_xcrs->flags = 0;
3800 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3801 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3802 }
3803 
3804 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3805 				       struct kvm_xcrs *guest_xcrs)
3806 {
3807 	int i, r = 0;
3808 
3809 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3810 		return -EINVAL;
3811 
3812 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3813 		return -EINVAL;
3814 
3815 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3816 		/* Only support XCR0 currently */
3817 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3818 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3819 				guest_xcrs->xcrs[i].value);
3820 			break;
3821 		}
3822 	if (r)
3823 		r = -EINVAL;
3824 	return r;
3825 }
3826 
3827 /*
3828  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3829  * stopped by the hypervisor.  This function will be called from the host only.
3830  * EINVAL is returned when the host attempts to set the flag for a guest that
3831  * does not support pv clocks.
3832  */
3833 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3834 {
3835 	if (!vcpu->arch.pv_time_enabled)
3836 		return -EINVAL;
3837 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3838 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3839 	return 0;
3840 }
3841 
3842 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3843 				     struct kvm_enable_cap *cap)
3844 {
3845 	int r;
3846 	uint16_t vmcs_version;
3847 	void __user *user_ptr;
3848 
3849 	if (cap->flags)
3850 		return -EINVAL;
3851 
3852 	switch (cap->cap) {
3853 	case KVM_CAP_HYPERV_SYNIC2:
3854 		if (cap->args[0])
3855 			return -EINVAL;
3856 		/* fall through */
3857 
3858 	case KVM_CAP_HYPERV_SYNIC:
3859 		if (!irqchip_in_kernel(vcpu->kvm))
3860 			return -EINVAL;
3861 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3862 					     KVM_CAP_HYPERV_SYNIC2);
3863 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3864 		if (!kvm_x86_ops->nested_enable_evmcs)
3865 			return -ENOTTY;
3866 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3867 		if (!r) {
3868 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
3869 			if (copy_to_user(user_ptr, &vmcs_version,
3870 					 sizeof(vmcs_version)))
3871 				r = -EFAULT;
3872 		}
3873 		return r;
3874 
3875 	default:
3876 		return -EINVAL;
3877 	}
3878 }
3879 
3880 long kvm_arch_vcpu_ioctl(struct file *filp,
3881 			 unsigned int ioctl, unsigned long arg)
3882 {
3883 	struct kvm_vcpu *vcpu = filp->private_data;
3884 	void __user *argp = (void __user *)arg;
3885 	int r;
3886 	union {
3887 		struct kvm_lapic_state *lapic;
3888 		struct kvm_xsave *xsave;
3889 		struct kvm_xcrs *xcrs;
3890 		void *buffer;
3891 	} u;
3892 
3893 	vcpu_load(vcpu);
3894 
3895 	u.buffer = NULL;
3896 	switch (ioctl) {
3897 	case KVM_GET_LAPIC: {
3898 		r = -EINVAL;
3899 		if (!lapic_in_kernel(vcpu))
3900 			goto out;
3901 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3902 				GFP_KERNEL_ACCOUNT);
3903 
3904 		r = -ENOMEM;
3905 		if (!u.lapic)
3906 			goto out;
3907 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3908 		if (r)
3909 			goto out;
3910 		r = -EFAULT;
3911 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3912 			goto out;
3913 		r = 0;
3914 		break;
3915 	}
3916 	case KVM_SET_LAPIC: {
3917 		r = -EINVAL;
3918 		if (!lapic_in_kernel(vcpu))
3919 			goto out;
3920 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3921 		if (IS_ERR(u.lapic)) {
3922 			r = PTR_ERR(u.lapic);
3923 			goto out_nofree;
3924 		}
3925 
3926 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3927 		break;
3928 	}
3929 	case KVM_INTERRUPT: {
3930 		struct kvm_interrupt irq;
3931 
3932 		r = -EFAULT;
3933 		if (copy_from_user(&irq, argp, sizeof(irq)))
3934 			goto out;
3935 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3936 		break;
3937 	}
3938 	case KVM_NMI: {
3939 		r = kvm_vcpu_ioctl_nmi(vcpu);
3940 		break;
3941 	}
3942 	case KVM_SMI: {
3943 		r = kvm_vcpu_ioctl_smi(vcpu);
3944 		break;
3945 	}
3946 	case KVM_SET_CPUID: {
3947 		struct kvm_cpuid __user *cpuid_arg = argp;
3948 		struct kvm_cpuid cpuid;
3949 
3950 		r = -EFAULT;
3951 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3952 			goto out;
3953 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3954 		break;
3955 	}
3956 	case KVM_SET_CPUID2: {
3957 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3958 		struct kvm_cpuid2 cpuid;
3959 
3960 		r = -EFAULT;
3961 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3962 			goto out;
3963 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3964 					      cpuid_arg->entries);
3965 		break;
3966 	}
3967 	case KVM_GET_CPUID2: {
3968 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3969 		struct kvm_cpuid2 cpuid;
3970 
3971 		r = -EFAULT;
3972 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3973 			goto out;
3974 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3975 					      cpuid_arg->entries);
3976 		if (r)
3977 			goto out;
3978 		r = -EFAULT;
3979 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3980 			goto out;
3981 		r = 0;
3982 		break;
3983 	}
3984 	case KVM_GET_MSRS: {
3985 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3986 		r = msr_io(vcpu, argp, do_get_msr, 1);
3987 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3988 		break;
3989 	}
3990 	case KVM_SET_MSRS: {
3991 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
3992 		r = msr_io(vcpu, argp, do_set_msr, 0);
3993 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3994 		break;
3995 	}
3996 	case KVM_TPR_ACCESS_REPORTING: {
3997 		struct kvm_tpr_access_ctl tac;
3998 
3999 		r = -EFAULT;
4000 		if (copy_from_user(&tac, argp, sizeof(tac)))
4001 			goto out;
4002 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4003 		if (r)
4004 			goto out;
4005 		r = -EFAULT;
4006 		if (copy_to_user(argp, &tac, sizeof(tac)))
4007 			goto out;
4008 		r = 0;
4009 		break;
4010 	};
4011 	case KVM_SET_VAPIC_ADDR: {
4012 		struct kvm_vapic_addr va;
4013 		int idx;
4014 
4015 		r = -EINVAL;
4016 		if (!lapic_in_kernel(vcpu))
4017 			goto out;
4018 		r = -EFAULT;
4019 		if (copy_from_user(&va, argp, sizeof(va)))
4020 			goto out;
4021 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4022 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4023 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4024 		break;
4025 	}
4026 	case KVM_X86_SETUP_MCE: {
4027 		u64 mcg_cap;
4028 
4029 		r = -EFAULT;
4030 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4031 			goto out;
4032 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4033 		break;
4034 	}
4035 	case KVM_X86_SET_MCE: {
4036 		struct kvm_x86_mce mce;
4037 
4038 		r = -EFAULT;
4039 		if (copy_from_user(&mce, argp, sizeof(mce)))
4040 			goto out;
4041 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4042 		break;
4043 	}
4044 	case KVM_GET_VCPU_EVENTS: {
4045 		struct kvm_vcpu_events events;
4046 
4047 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4048 
4049 		r = -EFAULT;
4050 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4051 			break;
4052 		r = 0;
4053 		break;
4054 	}
4055 	case KVM_SET_VCPU_EVENTS: {
4056 		struct kvm_vcpu_events events;
4057 
4058 		r = -EFAULT;
4059 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4060 			break;
4061 
4062 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4063 		break;
4064 	}
4065 	case KVM_GET_DEBUGREGS: {
4066 		struct kvm_debugregs dbgregs;
4067 
4068 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4069 
4070 		r = -EFAULT;
4071 		if (copy_to_user(argp, &dbgregs,
4072 				 sizeof(struct kvm_debugregs)))
4073 			break;
4074 		r = 0;
4075 		break;
4076 	}
4077 	case KVM_SET_DEBUGREGS: {
4078 		struct kvm_debugregs dbgregs;
4079 
4080 		r = -EFAULT;
4081 		if (copy_from_user(&dbgregs, argp,
4082 				   sizeof(struct kvm_debugregs)))
4083 			break;
4084 
4085 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4086 		break;
4087 	}
4088 	case KVM_GET_XSAVE: {
4089 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4090 		r = -ENOMEM;
4091 		if (!u.xsave)
4092 			break;
4093 
4094 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4095 
4096 		r = -EFAULT;
4097 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4098 			break;
4099 		r = 0;
4100 		break;
4101 	}
4102 	case KVM_SET_XSAVE: {
4103 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4104 		if (IS_ERR(u.xsave)) {
4105 			r = PTR_ERR(u.xsave);
4106 			goto out_nofree;
4107 		}
4108 
4109 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4110 		break;
4111 	}
4112 	case KVM_GET_XCRS: {
4113 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4114 		r = -ENOMEM;
4115 		if (!u.xcrs)
4116 			break;
4117 
4118 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4119 
4120 		r = -EFAULT;
4121 		if (copy_to_user(argp, u.xcrs,
4122 				 sizeof(struct kvm_xcrs)))
4123 			break;
4124 		r = 0;
4125 		break;
4126 	}
4127 	case KVM_SET_XCRS: {
4128 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4129 		if (IS_ERR(u.xcrs)) {
4130 			r = PTR_ERR(u.xcrs);
4131 			goto out_nofree;
4132 		}
4133 
4134 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4135 		break;
4136 	}
4137 	case KVM_SET_TSC_KHZ: {
4138 		u32 user_tsc_khz;
4139 
4140 		r = -EINVAL;
4141 		user_tsc_khz = (u32)arg;
4142 
4143 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4144 			goto out;
4145 
4146 		if (user_tsc_khz == 0)
4147 			user_tsc_khz = tsc_khz;
4148 
4149 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4150 			r = 0;
4151 
4152 		goto out;
4153 	}
4154 	case KVM_GET_TSC_KHZ: {
4155 		r = vcpu->arch.virtual_tsc_khz;
4156 		goto out;
4157 	}
4158 	case KVM_KVMCLOCK_CTRL: {
4159 		r = kvm_set_guest_paused(vcpu);
4160 		goto out;
4161 	}
4162 	case KVM_ENABLE_CAP: {
4163 		struct kvm_enable_cap cap;
4164 
4165 		r = -EFAULT;
4166 		if (copy_from_user(&cap, argp, sizeof(cap)))
4167 			goto out;
4168 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4169 		break;
4170 	}
4171 	case KVM_GET_NESTED_STATE: {
4172 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4173 		u32 user_data_size;
4174 
4175 		r = -EINVAL;
4176 		if (!kvm_x86_ops->get_nested_state)
4177 			break;
4178 
4179 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4180 		r = -EFAULT;
4181 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4182 			break;
4183 
4184 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4185 						  user_data_size);
4186 		if (r < 0)
4187 			break;
4188 
4189 		if (r > user_data_size) {
4190 			if (put_user(r, &user_kvm_nested_state->size))
4191 				r = -EFAULT;
4192 			else
4193 				r = -E2BIG;
4194 			break;
4195 		}
4196 
4197 		r = 0;
4198 		break;
4199 	}
4200 	case KVM_SET_NESTED_STATE: {
4201 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4202 		struct kvm_nested_state kvm_state;
4203 
4204 		r = -EINVAL;
4205 		if (!kvm_x86_ops->set_nested_state)
4206 			break;
4207 
4208 		r = -EFAULT;
4209 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4210 			break;
4211 
4212 		r = -EINVAL;
4213 		if (kvm_state.size < sizeof(kvm_state))
4214 			break;
4215 
4216 		if (kvm_state.flags &
4217 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4218 		      | KVM_STATE_NESTED_EVMCS))
4219 			break;
4220 
4221 		/* nested_run_pending implies guest_mode.  */
4222 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4223 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4224 			break;
4225 
4226 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4227 		break;
4228 	}
4229 	case KVM_GET_SUPPORTED_HV_CPUID: {
4230 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4231 		struct kvm_cpuid2 cpuid;
4232 
4233 		r = -EFAULT;
4234 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4235 			goto out;
4236 
4237 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4238 						cpuid_arg->entries);
4239 		if (r)
4240 			goto out;
4241 
4242 		r = -EFAULT;
4243 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4244 			goto out;
4245 		r = 0;
4246 		break;
4247 	}
4248 	default:
4249 		r = -EINVAL;
4250 	}
4251 out:
4252 	kfree(u.buffer);
4253 out_nofree:
4254 	vcpu_put(vcpu);
4255 	return r;
4256 }
4257 
4258 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4259 {
4260 	return VM_FAULT_SIGBUS;
4261 }
4262 
4263 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4264 {
4265 	int ret;
4266 
4267 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4268 		return -EINVAL;
4269 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4270 	return ret;
4271 }
4272 
4273 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4274 					      u64 ident_addr)
4275 {
4276 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4277 }
4278 
4279 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4280 					 unsigned long kvm_nr_mmu_pages)
4281 {
4282 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4283 		return -EINVAL;
4284 
4285 	mutex_lock(&kvm->slots_lock);
4286 
4287 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4288 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4289 
4290 	mutex_unlock(&kvm->slots_lock);
4291 	return 0;
4292 }
4293 
4294 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4295 {
4296 	return kvm->arch.n_max_mmu_pages;
4297 }
4298 
4299 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4300 {
4301 	struct kvm_pic *pic = kvm->arch.vpic;
4302 	int r;
4303 
4304 	r = 0;
4305 	switch (chip->chip_id) {
4306 	case KVM_IRQCHIP_PIC_MASTER:
4307 		memcpy(&chip->chip.pic, &pic->pics[0],
4308 			sizeof(struct kvm_pic_state));
4309 		break;
4310 	case KVM_IRQCHIP_PIC_SLAVE:
4311 		memcpy(&chip->chip.pic, &pic->pics[1],
4312 			sizeof(struct kvm_pic_state));
4313 		break;
4314 	case KVM_IRQCHIP_IOAPIC:
4315 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4316 		break;
4317 	default:
4318 		r = -EINVAL;
4319 		break;
4320 	}
4321 	return r;
4322 }
4323 
4324 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4325 {
4326 	struct kvm_pic *pic = kvm->arch.vpic;
4327 	int r;
4328 
4329 	r = 0;
4330 	switch (chip->chip_id) {
4331 	case KVM_IRQCHIP_PIC_MASTER:
4332 		spin_lock(&pic->lock);
4333 		memcpy(&pic->pics[0], &chip->chip.pic,
4334 			sizeof(struct kvm_pic_state));
4335 		spin_unlock(&pic->lock);
4336 		break;
4337 	case KVM_IRQCHIP_PIC_SLAVE:
4338 		spin_lock(&pic->lock);
4339 		memcpy(&pic->pics[1], &chip->chip.pic,
4340 			sizeof(struct kvm_pic_state));
4341 		spin_unlock(&pic->lock);
4342 		break;
4343 	case KVM_IRQCHIP_IOAPIC:
4344 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4345 		break;
4346 	default:
4347 		r = -EINVAL;
4348 		break;
4349 	}
4350 	kvm_pic_update_irq(pic);
4351 	return r;
4352 }
4353 
4354 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4355 {
4356 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4357 
4358 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4359 
4360 	mutex_lock(&kps->lock);
4361 	memcpy(ps, &kps->channels, sizeof(*ps));
4362 	mutex_unlock(&kps->lock);
4363 	return 0;
4364 }
4365 
4366 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4367 {
4368 	int i;
4369 	struct kvm_pit *pit = kvm->arch.vpit;
4370 
4371 	mutex_lock(&pit->pit_state.lock);
4372 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4373 	for (i = 0; i < 3; i++)
4374 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4375 	mutex_unlock(&pit->pit_state.lock);
4376 	return 0;
4377 }
4378 
4379 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4380 {
4381 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4382 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4383 		sizeof(ps->channels));
4384 	ps->flags = kvm->arch.vpit->pit_state.flags;
4385 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4386 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4387 	return 0;
4388 }
4389 
4390 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4391 {
4392 	int start = 0;
4393 	int i;
4394 	u32 prev_legacy, cur_legacy;
4395 	struct kvm_pit *pit = kvm->arch.vpit;
4396 
4397 	mutex_lock(&pit->pit_state.lock);
4398 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4399 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4400 	if (!prev_legacy && cur_legacy)
4401 		start = 1;
4402 	memcpy(&pit->pit_state.channels, &ps->channels,
4403 	       sizeof(pit->pit_state.channels));
4404 	pit->pit_state.flags = ps->flags;
4405 	for (i = 0; i < 3; i++)
4406 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4407 				   start && i == 0);
4408 	mutex_unlock(&pit->pit_state.lock);
4409 	return 0;
4410 }
4411 
4412 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4413 				 struct kvm_reinject_control *control)
4414 {
4415 	struct kvm_pit *pit = kvm->arch.vpit;
4416 
4417 	if (!pit)
4418 		return -ENXIO;
4419 
4420 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4421 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4422 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4423 	 */
4424 	mutex_lock(&pit->pit_state.lock);
4425 	kvm_pit_set_reinject(pit, control->pit_reinject);
4426 	mutex_unlock(&pit->pit_state.lock);
4427 
4428 	return 0;
4429 }
4430 
4431 /**
4432  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4433  * @kvm: kvm instance
4434  * @log: slot id and address to which we copy the log
4435  *
4436  * Steps 1-4 below provide general overview of dirty page logging. See
4437  * kvm_get_dirty_log_protect() function description for additional details.
4438  *
4439  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4440  * always flush the TLB (step 4) even if previous step failed  and the dirty
4441  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4442  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4443  * writes will be marked dirty for next log read.
4444  *
4445  *   1. Take a snapshot of the bit and clear it if needed.
4446  *   2. Write protect the corresponding page.
4447  *   3. Copy the snapshot to the userspace.
4448  *   4. Flush TLB's if needed.
4449  */
4450 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4451 {
4452 	bool flush = false;
4453 	int r;
4454 
4455 	mutex_lock(&kvm->slots_lock);
4456 
4457 	/*
4458 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4459 	 */
4460 	if (kvm_x86_ops->flush_log_dirty)
4461 		kvm_x86_ops->flush_log_dirty(kvm);
4462 
4463 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4464 
4465 	/*
4466 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4467 	 * kvm_mmu_slot_remove_write_access().
4468 	 */
4469 	lockdep_assert_held(&kvm->slots_lock);
4470 	if (flush)
4471 		kvm_flush_remote_tlbs(kvm);
4472 
4473 	mutex_unlock(&kvm->slots_lock);
4474 	return r;
4475 }
4476 
4477 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4478 {
4479 	bool flush = false;
4480 	int r;
4481 
4482 	mutex_lock(&kvm->slots_lock);
4483 
4484 	/*
4485 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4486 	 */
4487 	if (kvm_x86_ops->flush_log_dirty)
4488 		kvm_x86_ops->flush_log_dirty(kvm);
4489 
4490 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4491 
4492 	/*
4493 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4494 	 * kvm_mmu_slot_remove_write_access().
4495 	 */
4496 	lockdep_assert_held(&kvm->slots_lock);
4497 	if (flush)
4498 		kvm_flush_remote_tlbs(kvm);
4499 
4500 	mutex_unlock(&kvm->slots_lock);
4501 	return r;
4502 }
4503 
4504 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4505 			bool line_status)
4506 {
4507 	if (!irqchip_in_kernel(kvm))
4508 		return -ENXIO;
4509 
4510 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4511 					irq_event->irq, irq_event->level,
4512 					line_status);
4513 	return 0;
4514 }
4515 
4516 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4517 			    struct kvm_enable_cap *cap)
4518 {
4519 	int r;
4520 
4521 	if (cap->flags)
4522 		return -EINVAL;
4523 
4524 	switch (cap->cap) {
4525 	case KVM_CAP_DISABLE_QUIRKS:
4526 		kvm->arch.disabled_quirks = cap->args[0];
4527 		r = 0;
4528 		break;
4529 	case KVM_CAP_SPLIT_IRQCHIP: {
4530 		mutex_lock(&kvm->lock);
4531 		r = -EINVAL;
4532 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4533 			goto split_irqchip_unlock;
4534 		r = -EEXIST;
4535 		if (irqchip_in_kernel(kvm))
4536 			goto split_irqchip_unlock;
4537 		if (kvm->created_vcpus)
4538 			goto split_irqchip_unlock;
4539 		r = kvm_setup_empty_irq_routing(kvm);
4540 		if (r)
4541 			goto split_irqchip_unlock;
4542 		/* Pairs with irqchip_in_kernel. */
4543 		smp_wmb();
4544 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4545 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4546 		r = 0;
4547 split_irqchip_unlock:
4548 		mutex_unlock(&kvm->lock);
4549 		break;
4550 	}
4551 	case KVM_CAP_X2APIC_API:
4552 		r = -EINVAL;
4553 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4554 			break;
4555 
4556 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4557 			kvm->arch.x2apic_format = true;
4558 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4559 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4560 
4561 		r = 0;
4562 		break;
4563 	case KVM_CAP_X86_DISABLE_EXITS:
4564 		r = -EINVAL;
4565 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4566 			break;
4567 
4568 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4569 			kvm_can_mwait_in_guest())
4570 			kvm->arch.mwait_in_guest = true;
4571 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4572 			kvm->arch.hlt_in_guest = true;
4573 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4574 			kvm->arch.pause_in_guest = true;
4575 		r = 0;
4576 		break;
4577 	case KVM_CAP_MSR_PLATFORM_INFO:
4578 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4579 		r = 0;
4580 		break;
4581 	case KVM_CAP_EXCEPTION_PAYLOAD:
4582 		kvm->arch.exception_payload_enabled = cap->args[0];
4583 		r = 0;
4584 		break;
4585 	default:
4586 		r = -EINVAL;
4587 		break;
4588 	}
4589 	return r;
4590 }
4591 
4592 long kvm_arch_vm_ioctl(struct file *filp,
4593 		       unsigned int ioctl, unsigned long arg)
4594 {
4595 	struct kvm *kvm = filp->private_data;
4596 	void __user *argp = (void __user *)arg;
4597 	int r = -ENOTTY;
4598 	/*
4599 	 * This union makes it completely explicit to gcc-3.x
4600 	 * that these two variables' stack usage should be
4601 	 * combined, not added together.
4602 	 */
4603 	union {
4604 		struct kvm_pit_state ps;
4605 		struct kvm_pit_state2 ps2;
4606 		struct kvm_pit_config pit_config;
4607 	} u;
4608 
4609 	switch (ioctl) {
4610 	case KVM_SET_TSS_ADDR:
4611 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4612 		break;
4613 	case KVM_SET_IDENTITY_MAP_ADDR: {
4614 		u64 ident_addr;
4615 
4616 		mutex_lock(&kvm->lock);
4617 		r = -EINVAL;
4618 		if (kvm->created_vcpus)
4619 			goto set_identity_unlock;
4620 		r = -EFAULT;
4621 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4622 			goto set_identity_unlock;
4623 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4624 set_identity_unlock:
4625 		mutex_unlock(&kvm->lock);
4626 		break;
4627 	}
4628 	case KVM_SET_NR_MMU_PAGES:
4629 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4630 		break;
4631 	case KVM_GET_NR_MMU_PAGES:
4632 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4633 		break;
4634 	case KVM_CREATE_IRQCHIP: {
4635 		mutex_lock(&kvm->lock);
4636 
4637 		r = -EEXIST;
4638 		if (irqchip_in_kernel(kvm))
4639 			goto create_irqchip_unlock;
4640 
4641 		r = -EINVAL;
4642 		if (kvm->created_vcpus)
4643 			goto create_irqchip_unlock;
4644 
4645 		r = kvm_pic_init(kvm);
4646 		if (r)
4647 			goto create_irqchip_unlock;
4648 
4649 		r = kvm_ioapic_init(kvm);
4650 		if (r) {
4651 			kvm_pic_destroy(kvm);
4652 			goto create_irqchip_unlock;
4653 		}
4654 
4655 		r = kvm_setup_default_irq_routing(kvm);
4656 		if (r) {
4657 			kvm_ioapic_destroy(kvm);
4658 			kvm_pic_destroy(kvm);
4659 			goto create_irqchip_unlock;
4660 		}
4661 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4662 		smp_wmb();
4663 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4664 	create_irqchip_unlock:
4665 		mutex_unlock(&kvm->lock);
4666 		break;
4667 	}
4668 	case KVM_CREATE_PIT:
4669 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4670 		goto create_pit;
4671 	case KVM_CREATE_PIT2:
4672 		r = -EFAULT;
4673 		if (copy_from_user(&u.pit_config, argp,
4674 				   sizeof(struct kvm_pit_config)))
4675 			goto out;
4676 	create_pit:
4677 		mutex_lock(&kvm->lock);
4678 		r = -EEXIST;
4679 		if (kvm->arch.vpit)
4680 			goto create_pit_unlock;
4681 		r = -ENOMEM;
4682 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4683 		if (kvm->arch.vpit)
4684 			r = 0;
4685 	create_pit_unlock:
4686 		mutex_unlock(&kvm->lock);
4687 		break;
4688 	case KVM_GET_IRQCHIP: {
4689 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4690 		struct kvm_irqchip *chip;
4691 
4692 		chip = memdup_user(argp, sizeof(*chip));
4693 		if (IS_ERR(chip)) {
4694 			r = PTR_ERR(chip);
4695 			goto out;
4696 		}
4697 
4698 		r = -ENXIO;
4699 		if (!irqchip_kernel(kvm))
4700 			goto get_irqchip_out;
4701 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4702 		if (r)
4703 			goto get_irqchip_out;
4704 		r = -EFAULT;
4705 		if (copy_to_user(argp, chip, sizeof(*chip)))
4706 			goto get_irqchip_out;
4707 		r = 0;
4708 	get_irqchip_out:
4709 		kfree(chip);
4710 		break;
4711 	}
4712 	case KVM_SET_IRQCHIP: {
4713 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4714 		struct kvm_irqchip *chip;
4715 
4716 		chip = memdup_user(argp, sizeof(*chip));
4717 		if (IS_ERR(chip)) {
4718 			r = PTR_ERR(chip);
4719 			goto out;
4720 		}
4721 
4722 		r = -ENXIO;
4723 		if (!irqchip_kernel(kvm))
4724 			goto set_irqchip_out;
4725 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4726 		if (r)
4727 			goto set_irqchip_out;
4728 		r = 0;
4729 	set_irqchip_out:
4730 		kfree(chip);
4731 		break;
4732 	}
4733 	case KVM_GET_PIT: {
4734 		r = -EFAULT;
4735 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4736 			goto out;
4737 		r = -ENXIO;
4738 		if (!kvm->arch.vpit)
4739 			goto out;
4740 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4741 		if (r)
4742 			goto out;
4743 		r = -EFAULT;
4744 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4745 			goto out;
4746 		r = 0;
4747 		break;
4748 	}
4749 	case KVM_SET_PIT: {
4750 		r = -EFAULT;
4751 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4752 			goto out;
4753 		r = -ENXIO;
4754 		if (!kvm->arch.vpit)
4755 			goto out;
4756 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4757 		break;
4758 	}
4759 	case KVM_GET_PIT2: {
4760 		r = -ENXIO;
4761 		if (!kvm->arch.vpit)
4762 			goto out;
4763 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4764 		if (r)
4765 			goto out;
4766 		r = -EFAULT;
4767 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4768 			goto out;
4769 		r = 0;
4770 		break;
4771 	}
4772 	case KVM_SET_PIT2: {
4773 		r = -EFAULT;
4774 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4775 			goto out;
4776 		r = -ENXIO;
4777 		if (!kvm->arch.vpit)
4778 			goto out;
4779 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4780 		break;
4781 	}
4782 	case KVM_REINJECT_CONTROL: {
4783 		struct kvm_reinject_control control;
4784 		r =  -EFAULT;
4785 		if (copy_from_user(&control, argp, sizeof(control)))
4786 			goto out;
4787 		r = kvm_vm_ioctl_reinject(kvm, &control);
4788 		break;
4789 	}
4790 	case KVM_SET_BOOT_CPU_ID:
4791 		r = 0;
4792 		mutex_lock(&kvm->lock);
4793 		if (kvm->created_vcpus)
4794 			r = -EBUSY;
4795 		else
4796 			kvm->arch.bsp_vcpu_id = arg;
4797 		mutex_unlock(&kvm->lock);
4798 		break;
4799 	case KVM_XEN_HVM_CONFIG: {
4800 		struct kvm_xen_hvm_config xhc;
4801 		r = -EFAULT;
4802 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4803 			goto out;
4804 		r = -EINVAL;
4805 		if (xhc.flags)
4806 			goto out;
4807 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4808 		r = 0;
4809 		break;
4810 	}
4811 	case KVM_SET_CLOCK: {
4812 		struct kvm_clock_data user_ns;
4813 		u64 now_ns;
4814 
4815 		r = -EFAULT;
4816 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4817 			goto out;
4818 
4819 		r = -EINVAL;
4820 		if (user_ns.flags)
4821 			goto out;
4822 
4823 		r = 0;
4824 		/*
4825 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4826 		 * kvm_gen_update_masterclock() can be cut down to locked
4827 		 * pvclock_update_vm_gtod_copy().
4828 		 */
4829 		kvm_gen_update_masterclock(kvm);
4830 		now_ns = get_kvmclock_ns(kvm);
4831 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4832 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4833 		break;
4834 	}
4835 	case KVM_GET_CLOCK: {
4836 		struct kvm_clock_data user_ns;
4837 		u64 now_ns;
4838 
4839 		now_ns = get_kvmclock_ns(kvm);
4840 		user_ns.clock = now_ns;
4841 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4842 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4843 
4844 		r = -EFAULT;
4845 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4846 			goto out;
4847 		r = 0;
4848 		break;
4849 	}
4850 	case KVM_MEMORY_ENCRYPT_OP: {
4851 		r = -ENOTTY;
4852 		if (kvm_x86_ops->mem_enc_op)
4853 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
4854 		break;
4855 	}
4856 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
4857 		struct kvm_enc_region region;
4858 
4859 		r = -EFAULT;
4860 		if (copy_from_user(&region, argp, sizeof(region)))
4861 			goto out;
4862 
4863 		r = -ENOTTY;
4864 		if (kvm_x86_ops->mem_enc_reg_region)
4865 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4866 		break;
4867 	}
4868 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4869 		struct kvm_enc_region region;
4870 
4871 		r = -EFAULT;
4872 		if (copy_from_user(&region, argp, sizeof(region)))
4873 			goto out;
4874 
4875 		r = -ENOTTY;
4876 		if (kvm_x86_ops->mem_enc_unreg_region)
4877 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4878 		break;
4879 	}
4880 	case KVM_HYPERV_EVENTFD: {
4881 		struct kvm_hyperv_eventfd hvevfd;
4882 
4883 		r = -EFAULT;
4884 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4885 			goto out;
4886 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4887 		break;
4888 	}
4889 	default:
4890 		r = -ENOTTY;
4891 	}
4892 out:
4893 	return r;
4894 }
4895 
4896 static void kvm_init_msr_list(void)
4897 {
4898 	u32 dummy[2];
4899 	unsigned i, j;
4900 
4901 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4902 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4903 			continue;
4904 
4905 		/*
4906 		 * Even MSRs that are valid in the host may not be exposed
4907 		 * to the guests in some cases.
4908 		 */
4909 		switch (msrs_to_save[i]) {
4910 		case MSR_IA32_BNDCFGS:
4911 			if (!kvm_mpx_supported())
4912 				continue;
4913 			break;
4914 		case MSR_TSC_AUX:
4915 			if (!kvm_x86_ops->rdtscp_supported())
4916 				continue;
4917 			break;
4918 		case MSR_IA32_RTIT_CTL:
4919 		case MSR_IA32_RTIT_STATUS:
4920 			if (!kvm_x86_ops->pt_supported())
4921 				continue;
4922 			break;
4923 		case MSR_IA32_RTIT_CR3_MATCH:
4924 			if (!kvm_x86_ops->pt_supported() ||
4925 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4926 				continue;
4927 			break;
4928 		case MSR_IA32_RTIT_OUTPUT_BASE:
4929 		case MSR_IA32_RTIT_OUTPUT_MASK:
4930 			if (!kvm_x86_ops->pt_supported() ||
4931 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4932 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4933 				continue;
4934 			break;
4935 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4936 			if (!kvm_x86_ops->pt_supported() ||
4937 				msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4938 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4939 				continue;
4940 			break;
4941 		}
4942 		default:
4943 			break;
4944 		}
4945 
4946 		if (j < i)
4947 			msrs_to_save[j] = msrs_to_save[i];
4948 		j++;
4949 	}
4950 	num_msrs_to_save = j;
4951 
4952 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4953 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4954 			continue;
4955 
4956 		if (j < i)
4957 			emulated_msrs[j] = emulated_msrs[i];
4958 		j++;
4959 	}
4960 	num_emulated_msrs = j;
4961 
4962 	for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4963 		struct kvm_msr_entry msr;
4964 
4965 		msr.index = msr_based_features[i];
4966 		if (kvm_get_msr_feature(&msr))
4967 			continue;
4968 
4969 		if (j < i)
4970 			msr_based_features[j] = msr_based_features[i];
4971 		j++;
4972 	}
4973 	num_msr_based_features = j;
4974 }
4975 
4976 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4977 			   const void *v)
4978 {
4979 	int handled = 0;
4980 	int n;
4981 
4982 	do {
4983 		n = min(len, 8);
4984 		if (!(lapic_in_kernel(vcpu) &&
4985 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4986 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4987 			break;
4988 		handled += n;
4989 		addr += n;
4990 		len -= n;
4991 		v += n;
4992 	} while (len);
4993 
4994 	return handled;
4995 }
4996 
4997 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4998 {
4999 	int handled = 0;
5000 	int n;
5001 
5002 	do {
5003 		n = min(len, 8);
5004 		if (!(lapic_in_kernel(vcpu) &&
5005 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5006 					 addr, n, v))
5007 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5008 			break;
5009 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5010 		handled += n;
5011 		addr += n;
5012 		len -= n;
5013 		v += n;
5014 	} while (len);
5015 
5016 	return handled;
5017 }
5018 
5019 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5020 			struct kvm_segment *var, int seg)
5021 {
5022 	kvm_x86_ops->set_segment(vcpu, var, seg);
5023 }
5024 
5025 void kvm_get_segment(struct kvm_vcpu *vcpu,
5026 		     struct kvm_segment *var, int seg)
5027 {
5028 	kvm_x86_ops->get_segment(vcpu, var, seg);
5029 }
5030 
5031 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5032 			   struct x86_exception *exception)
5033 {
5034 	gpa_t t_gpa;
5035 
5036 	BUG_ON(!mmu_is_nested(vcpu));
5037 
5038 	/* NPT walks are always user-walks */
5039 	access |= PFERR_USER_MASK;
5040 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5041 
5042 	return t_gpa;
5043 }
5044 
5045 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5046 			      struct x86_exception *exception)
5047 {
5048 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5049 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5050 }
5051 
5052  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5053 				struct x86_exception *exception)
5054 {
5055 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5056 	access |= PFERR_FETCH_MASK;
5057 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5058 }
5059 
5060 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5061 			       struct x86_exception *exception)
5062 {
5063 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5064 	access |= PFERR_WRITE_MASK;
5065 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5066 }
5067 
5068 /* uses this to access any guest's mapped memory without checking CPL */
5069 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5070 				struct x86_exception *exception)
5071 {
5072 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5073 }
5074 
5075 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5076 				      struct kvm_vcpu *vcpu, u32 access,
5077 				      struct x86_exception *exception)
5078 {
5079 	void *data = val;
5080 	int r = X86EMUL_CONTINUE;
5081 
5082 	while (bytes) {
5083 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5084 							    exception);
5085 		unsigned offset = addr & (PAGE_SIZE-1);
5086 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5087 		int ret;
5088 
5089 		if (gpa == UNMAPPED_GVA)
5090 			return X86EMUL_PROPAGATE_FAULT;
5091 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5092 					       offset, toread);
5093 		if (ret < 0) {
5094 			r = X86EMUL_IO_NEEDED;
5095 			goto out;
5096 		}
5097 
5098 		bytes -= toread;
5099 		data += toread;
5100 		addr += toread;
5101 	}
5102 out:
5103 	return r;
5104 }
5105 
5106 /* used for instruction fetching */
5107 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5108 				gva_t addr, void *val, unsigned int bytes,
5109 				struct x86_exception *exception)
5110 {
5111 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5112 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5113 	unsigned offset;
5114 	int ret;
5115 
5116 	/* Inline kvm_read_guest_virt_helper for speed.  */
5117 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5118 						    exception);
5119 	if (unlikely(gpa == UNMAPPED_GVA))
5120 		return X86EMUL_PROPAGATE_FAULT;
5121 
5122 	offset = addr & (PAGE_SIZE-1);
5123 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5124 		bytes = (unsigned)PAGE_SIZE - offset;
5125 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5126 				       offset, bytes);
5127 	if (unlikely(ret < 0))
5128 		return X86EMUL_IO_NEEDED;
5129 
5130 	return X86EMUL_CONTINUE;
5131 }
5132 
5133 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5134 			       gva_t addr, void *val, unsigned int bytes,
5135 			       struct x86_exception *exception)
5136 {
5137 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5138 
5139 	/*
5140 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5141 	 * is returned, but our callers are not ready for that and they blindly
5142 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5143 	 * uninitialized kernel stack memory into cr2 and error code.
5144 	 */
5145 	memset(exception, 0, sizeof(*exception));
5146 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5147 					  exception);
5148 }
5149 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5150 
5151 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5152 			     gva_t addr, void *val, unsigned int bytes,
5153 			     struct x86_exception *exception, bool system)
5154 {
5155 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5156 	u32 access = 0;
5157 
5158 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5159 		access |= PFERR_USER_MASK;
5160 
5161 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5162 }
5163 
5164 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5165 		unsigned long addr, void *val, unsigned int bytes)
5166 {
5167 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5168 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5169 
5170 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5171 }
5172 
5173 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5174 				      struct kvm_vcpu *vcpu, u32 access,
5175 				      struct x86_exception *exception)
5176 {
5177 	void *data = val;
5178 	int r = X86EMUL_CONTINUE;
5179 
5180 	while (bytes) {
5181 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5182 							     access,
5183 							     exception);
5184 		unsigned offset = addr & (PAGE_SIZE-1);
5185 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5186 		int ret;
5187 
5188 		if (gpa == UNMAPPED_GVA)
5189 			return X86EMUL_PROPAGATE_FAULT;
5190 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5191 		if (ret < 0) {
5192 			r = X86EMUL_IO_NEEDED;
5193 			goto out;
5194 		}
5195 
5196 		bytes -= towrite;
5197 		data += towrite;
5198 		addr += towrite;
5199 	}
5200 out:
5201 	return r;
5202 }
5203 
5204 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5205 			      unsigned int bytes, struct x86_exception *exception,
5206 			      bool system)
5207 {
5208 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5209 	u32 access = PFERR_WRITE_MASK;
5210 
5211 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5212 		access |= PFERR_USER_MASK;
5213 
5214 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5215 					   access, exception);
5216 }
5217 
5218 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5219 				unsigned int bytes, struct x86_exception *exception)
5220 {
5221 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5222 	vcpu->arch.l1tf_flush_l1d = true;
5223 
5224 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5225 					   PFERR_WRITE_MASK, exception);
5226 }
5227 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5228 
5229 int handle_ud(struct kvm_vcpu *vcpu)
5230 {
5231 	int emul_type = EMULTYPE_TRAP_UD;
5232 	enum emulation_result er;
5233 	char sig[5]; /* ud2; .ascii "kvm" */
5234 	struct x86_exception e;
5235 
5236 	if (force_emulation_prefix &&
5237 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5238 				sig, sizeof(sig), &e) == 0 &&
5239 	    memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5240 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5241 		emul_type = 0;
5242 	}
5243 
5244 	er = kvm_emulate_instruction(vcpu, emul_type);
5245 	if (er == EMULATE_USER_EXIT)
5246 		return 0;
5247 	if (er != EMULATE_DONE)
5248 		kvm_queue_exception(vcpu, UD_VECTOR);
5249 	return 1;
5250 }
5251 EXPORT_SYMBOL_GPL(handle_ud);
5252 
5253 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5254 			    gpa_t gpa, bool write)
5255 {
5256 	/* For APIC access vmexit */
5257 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5258 		return 1;
5259 
5260 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5261 		trace_vcpu_match_mmio(gva, gpa, write, true);
5262 		return 1;
5263 	}
5264 
5265 	return 0;
5266 }
5267 
5268 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5269 				gpa_t *gpa, struct x86_exception *exception,
5270 				bool write)
5271 {
5272 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5273 		| (write ? PFERR_WRITE_MASK : 0);
5274 
5275 	/*
5276 	 * currently PKRU is only applied to ept enabled guest so
5277 	 * there is no pkey in EPT page table for L1 guest or EPT
5278 	 * shadow page table for L2 guest.
5279 	 */
5280 	if (vcpu_match_mmio_gva(vcpu, gva)
5281 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5282 				 vcpu->arch.access, 0, access)) {
5283 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5284 					(gva & (PAGE_SIZE - 1));
5285 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5286 		return 1;
5287 	}
5288 
5289 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5290 
5291 	if (*gpa == UNMAPPED_GVA)
5292 		return -1;
5293 
5294 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5295 }
5296 
5297 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5298 			const void *val, int bytes)
5299 {
5300 	int ret;
5301 
5302 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5303 	if (ret < 0)
5304 		return 0;
5305 	kvm_page_track_write(vcpu, gpa, val, bytes);
5306 	return 1;
5307 }
5308 
5309 struct read_write_emulator_ops {
5310 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5311 				  int bytes);
5312 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5313 				  void *val, int bytes);
5314 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5315 			       int bytes, void *val);
5316 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5317 				    void *val, int bytes);
5318 	bool write;
5319 };
5320 
5321 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5322 {
5323 	if (vcpu->mmio_read_completed) {
5324 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5325 			       vcpu->mmio_fragments[0].gpa, val);
5326 		vcpu->mmio_read_completed = 0;
5327 		return 1;
5328 	}
5329 
5330 	return 0;
5331 }
5332 
5333 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5334 			void *val, int bytes)
5335 {
5336 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5337 }
5338 
5339 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5340 			 void *val, int bytes)
5341 {
5342 	return emulator_write_phys(vcpu, gpa, val, bytes);
5343 }
5344 
5345 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5346 {
5347 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5348 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5349 }
5350 
5351 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5352 			  void *val, int bytes)
5353 {
5354 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5355 	return X86EMUL_IO_NEEDED;
5356 }
5357 
5358 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5359 			   void *val, int bytes)
5360 {
5361 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5362 
5363 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5364 	return X86EMUL_CONTINUE;
5365 }
5366 
5367 static const struct read_write_emulator_ops read_emultor = {
5368 	.read_write_prepare = read_prepare,
5369 	.read_write_emulate = read_emulate,
5370 	.read_write_mmio = vcpu_mmio_read,
5371 	.read_write_exit_mmio = read_exit_mmio,
5372 };
5373 
5374 static const struct read_write_emulator_ops write_emultor = {
5375 	.read_write_emulate = write_emulate,
5376 	.read_write_mmio = write_mmio,
5377 	.read_write_exit_mmio = write_exit_mmio,
5378 	.write = true,
5379 };
5380 
5381 static int emulator_read_write_onepage(unsigned long addr, void *val,
5382 				       unsigned int bytes,
5383 				       struct x86_exception *exception,
5384 				       struct kvm_vcpu *vcpu,
5385 				       const struct read_write_emulator_ops *ops)
5386 {
5387 	gpa_t gpa;
5388 	int handled, ret;
5389 	bool write = ops->write;
5390 	struct kvm_mmio_fragment *frag;
5391 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5392 
5393 	/*
5394 	 * If the exit was due to a NPF we may already have a GPA.
5395 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5396 	 * Note, this cannot be used on string operations since string
5397 	 * operation using rep will only have the initial GPA from the NPF
5398 	 * occurred.
5399 	 */
5400 	if (vcpu->arch.gpa_available &&
5401 	    emulator_can_use_gpa(ctxt) &&
5402 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5403 		gpa = vcpu->arch.gpa_val;
5404 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5405 	} else {
5406 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5407 		if (ret < 0)
5408 			return X86EMUL_PROPAGATE_FAULT;
5409 	}
5410 
5411 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5412 		return X86EMUL_CONTINUE;
5413 
5414 	/*
5415 	 * Is this MMIO handled locally?
5416 	 */
5417 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5418 	if (handled == bytes)
5419 		return X86EMUL_CONTINUE;
5420 
5421 	gpa += handled;
5422 	bytes -= handled;
5423 	val += handled;
5424 
5425 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5426 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5427 	frag->gpa = gpa;
5428 	frag->data = val;
5429 	frag->len = bytes;
5430 	return X86EMUL_CONTINUE;
5431 }
5432 
5433 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5434 			unsigned long addr,
5435 			void *val, unsigned int bytes,
5436 			struct x86_exception *exception,
5437 			const struct read_write_emulator_ops *ops)
5438 {
5439 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5440 	gpa_t gpa;
5441 	int rc;
5442 
5443 	if (ops->read_write_prepare &&
5444 		  ops->read_write_prepare(vcpu, val, bytes))
5445 		return X86EMUL_CONTINUE;
5446 
5447 	vcpu->mmio_nr_fragments = 0;
5448 
5449 	/* Crossing a page boundary? */
5450 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5451 		int now;
5452 
5453 		now = -addr & ~PAGE_MASK;
5454 		rc = emulator_read_write_onepage(addr, val, now, exception,
5455 						 vcpu, ops);
5456 
5457 		if (rc != X86EMUL_CONTINUE)
5458 			return rc;
5459 		addr += now;
5460 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5461 			addr = (u32)addr;
5462 		val += now;
5463 		bytes -= now;
5464 	}
5465 
5466 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5467 					 vcpu, ops);
5468 	if (rc != X86EMUL_CONTINUE)
5469 		return rc;
5470 
5471 	if (!vcpu->mmio_nr_fragments)
5472 		return rc;
5473 
5474 	gpa = vcpu->mmio_fragments[0].gpa;
5475 
5476 	vcpu->mmio_needed = 1;
5477 	vcpu->mmio_cur_fragment = 0;
5478 
5479 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5480 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5481 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5482 	vcpu->run->mmio.phys_addr = gpa;
5483 
5484 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5485 }
5486 
5487 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5488 				  unsigned long addr,
5489 				  void *val,
5490 				  unsigned int bytes,
5491 				  struct x86_exception *exception)
5492 {
5493 	return emulator_read_write(ctxt, addr, val, bytes,
5494 				   exception, &read_emultor);
5495 }
5496 
5497 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5498 			    unsigned long addr,
5499 			    const void *val,
5500 			    unsigned int bytes,
5501 			    struct x86_exception *exception)
5502 {
5503 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5504 				   exception, &write_emultor);
5505 }
5506 
5507 #define CMPXCHG_TYPE(t, ptr, old, new) \
5508 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5509 
5510 #ifdef CONFIG_X86_64
5511 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5512 #else
5513 #  define CMPXCHG64(ptr, old, new) \
5514 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5515 #endif
5516 
5517 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5518 				     unsigned long addr,
5519 				     const void *old,
5520 				     const void *new,
5521 				     unsigned int bytes,
5522 				     struct x86_exception *exception)
5523 {
5524 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5525 	gpa_t gpa;
5526 	struct page *page;
5527 	char *kaddr;
5528 	bool exchanged;
5529 
5530 	/* guests cmpxchg8b have to be emulated atomically */
5531 	if (bytes > 8 || (bytes & (bytes - 1)))
5532 		goto emul_write;
5533 
5534 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5535 
5536 	if (gpa == UNMAPPED_GVA ||
5537 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5538 		goto emul_write;
5539 
5540 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5541 		goto emul_write;
5542 
5543 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5544 	if (is_error_page(page))
5545 		goto emul_write;
5546 
5547 	kaddr = kmap_atomic(page);
5548 	kaddr += offset_in_page(gpa);
5549 	switch (bytes) {
5550 	case 1:
5551 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5552 		break;
5553 	case 2:
5554 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5555 		break;
5556 	case 4:
5557 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5558 		break;
5559 	case 8:
5560 		exchanged = CMPXCHG64(kaddr, old, new);
5561 		break;
5562 	default:
5563 		BUG();
5564 	}
5565 	kunmap_atomic(kaddr);
5566 	kvm_release_page_dirty(page);
5567 
5568 	if (!exchanged)
5569 		return X86EMUL_CMPXCHG_FAILED;
5570 
5571 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5572 	kvm_page_track_write(vcpu, gpa, new, bytes);
5573 
5574 	return X86EMUL_CONTINUE;
5575 
5576 emul_write:
5577 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5578 
5579 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5580 }
5581 
5582 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5583 {
5584 	int r = 0, i;
5585 
5586 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5587 		if (vcpu->arch.pio.in)
5588 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5589 					    vcpu->arch.pio.size, pd);
5590 		else
5591 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5592 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5593 					     pd);
5594 		if (r)
5595 			break;
5596 		pd += vcpu->arch.pio.size;
5597 	}
5598 	return r;
5599 }
5600 
5601 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5602 			       unsigned short port, void *val,
5603 			       unsigned int count, bool in)
5604 {
5605 	vcpu->arch.pio.port = port;
5606 	vcpu->arch.pio.in = in;
5607 	vcpu->arch.pio.count  = count;
5608 	vcpu->arch.pio.size = size;
5609 
5610 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5611 		vcpu->arch.pio.count = 0;
5612 		return 1;
5613 	}
5614 
5615 	vcpu->run->exit_reason = KVM_EXIT_IO;
5616 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5617 	vcpu->run->io.size = size;
5618 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5619 	vcpu->run->io.count = count;
5620 	vcpu->run->io.port = port;
5621 
5622 	return 0;
5623 }
5624 
5625 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5626 				    int size, unsigned short port, void *val,
5627 				    unsigned int count)
5628 {
5629 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5630 	int ret;
5631 
5632 	if (vcpu->arch.pio.count)
5633 		goto data_avail;
5634 
5635 	memset(vcpu->arch.pio_data, 0, size * count);
5636 
5637 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5638 	if (ret) {
5639 data_avail:
5640 		memcpy(val, vcpu->arch.pio_data, size * count);
5641 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5642 		vcpu->arch.pio.count = 0;
5643 		return 1;
5644 	}
5645 
5646 	return 0;
5647 }
5648 
5649 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5650 				     int size, unsigned short port,
5651 				     const void *val, unsigned int count)
5652 {
5653 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5654 
5655 	memcpy(vcpu->arch.pio_data, val, size * count);
5656 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5657 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5658 }
5659 
5660 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5661 {
5662 	return kvm_x86_ops->get_segment_base(vcpu, seg);
5663 }
5664 
5665 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5666 {
5667 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5668 }
5669 
5670 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5671 {
5672 	if (!need_emulate_wbinvd(vcpu))
5673 		return X86EMUL_CONTINUE;
5674 
5675 	if (kvm_x86_ops->has_wbinvd_exit()) {
5676 		int cpu = get_cpu();
5677 
5678 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5679 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5680 				wbinvd_ipi, NULL, 1);
5681 		put_cpu();
5682 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5683 	} else
5684 		wbinvd();
5685 	return X86EMUL_CONTINUE;
5686 }
5687 
5688 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5689 {
5690 	kvm_emulate_wbinvd_noskip(vcpu);
5691 	return kvm_skip_emulated_instruction(vcpu);
5692 }
5693 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5694 
5695 
5696 
5697 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5698 {
5699 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5700 }
5701 
5702 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5703 			   unsigned long *dest)
5704 {
5705 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5706 }
5707 
5708 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5709 			   unsigned long value)
5710 {
5711 
5712 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5713 }
5714 
5715 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5716 {
5717 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5718 }
5719 
5720 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5721 {
5722 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5723 	unsigned long value;
5724 
5725 	switch (cr) {
5726 	case 0:
5727 		value = kvm_read_cr0(vcpu);
5728 		break;
5729 	case 2:
5730 		value = vcpu->arch.cr2;
5731 		break;
5732 	case 3:
5733 		value = kvm_read_cr3(vcpu);
5734 		break;
5735 	case 4:
5736 		value = kvm_read_cr4(vcpu);
5737 		break;
5738 	case 8:
5739 		value = kvm_get_cr8(vcpu);
5740 		break;
5741 	default:
5742 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5743 		return 0;
5744 	}
5745 
5746 	return value;
5747 }
5748 
5749 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5750 {
5751 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5752 	int res = 0;
5753 
5754 	switch (cr) {
5755 	case 0:
5756 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5757 		break;
5758 	case 2:
5759 		vcpu->arch.cr2 = val;
5760 		break;
5761 	case 3:
5762 		res = kvm_set_cr3(vcpu, val);
5763 		break;
5764 	case 4:
5765 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5766 		break;
5767 	case 8:
5768 		res = kvm_set_cr8(vcpu, val);
5769 		break;
5770 	default:
5771 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5772 		res = -1;
5773 	}
5774 
5775 	return res;
5776 }
5777 
5778 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5779 {
5780 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5781 }
5782 
5783 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5784 {
5785 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5786 }
5787 
5788 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5789 {
5790 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5791 }
5792 
5793 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5794 {
5795 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5796 }
5797 
5798 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5799 {
5800 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5801 }
5802 
5803 static unsigned long emulator_get_cached_segment_base(
5804 	struct x86_emulate_ctxt *ctxt, int seg)
5805 {
5806 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5807 }
5808 
5809 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5810 				 struct desc_struct *desc, u32 *base3,
5811 				 int seg)
5812 {
5813 	struct kvm_segment var;
5814 
5815 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5816 	*selector = var.selector;
5817 
5818 	if (var.unusable) {
5819 		memset(desc, 0, sizeof(*desc));
5820 		if (base3)
5821 			*base3 = 0;
5822 		return false;
5823 	}
5824 
5825 	if (var.g)
5826 		var.limit >>= 12;
5827 	set_desc_limit(desc, var.limit);
5828 	set_desc_base(desc, (unsigned long)var.base);
5829 #ifdef CONFIG_X86_64
5830 	if (base3)
5831 		*base3 = var.base >> 32;
5832 #endif
5833 	desc->type = var.type;
5834 	desc->s = var.s;
5835 	desc->dpl = var.dpl;
5836 	desc->p = var.present;
5837 	desc->avl = var.avl;
5838 	desc->l = var.l;
5839 	desc->d = var.db;
5840 	desc->g = var.g;
5841 
5842 	return true;
5843 }
5844 
5845 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5846 				 struct desc_struct *desc, u32 base3,
5847 				 int seg)
5848 {
5849 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5850 	struct kvm_segment var;
5851 
5852 	var.selector = selector;
5853 	var.base = get_desc_base(desc);
5854 #ifdef CONFIG_X86_64
5855 	var.base |= ((u64)base3) << 32;
5856 #endif
5857 	var.limit = get_desc_limit(desc);
5858 	if (desc->g)
5859 		var.limit = (var.limit << 12) | 0xfff;
5860 	var.type = desc->type;
5861 	var.dpl = desc->dpl;
5862 	var.db = desc->d;
5863 	var.s = desc->s;
5864 	var.l = desc->l;
5865 	var.g = desc->g;
5866 	var.avl = desc->avl;
5867 	var.present = desc->p;
5868 	var.unusable = !var.present;
5869 	var.padding = 0;
5870 
5871 	kvm_set_segment(vcpu, &var, seg);
5872 	return;
5873 }
5874 
5875 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5876 			    u32 msr_index, u64 *pdata)
5877 {
5878 	struct msr_data msr;
5879 	int r;
5880 
5881 	msr.index = msr_index;
5882 	msr.host_initiated = false;
5883 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5884 	if (r)
5885 		return r;
5886 
5887 	*pdata = msr.data;
5888 	return 0;
5889 }
5890 
5891 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5892 			    u32 msr_index, u64 data)
5893 {
5894 	struct msr_data msr;
5895 
5896 	msr.data = data;
5897 	msr.index = msr_index;
5898 	msr.host_initiated = false;
5899 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5900 }
5901 
5902 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5903 {
5904 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5905 
5906 	return vcpu->arch.smbase;
5907 }
5908 
5909 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5910 {
5911 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5912 
5913 	vcpu->arch.smbase = smbase;
5914 }
5915 
5916 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5917 			      u32 pmc)
5918 {
5919 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5920 }
5921 
5922 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5923 			     u32 pmc, u64 *pdata)
5924 {
5925 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5926 }
5927 
5928 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5929 {
5930 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5931 }
5932 
5933 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5934 			      struct x86_instruction_info *info,
5935 			      enum x86_intercept_stage stage)
5936 {
5937 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5938 }
5939 
5940 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5941 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5942 {
5943 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5944 }
5945 
5946 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5947 {
5948 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5949 }
5950 
5951 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5952 {
5953 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5954 }
5955 
5956 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5957 {
5958 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5959 }
5960 
5961 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5962 {
5963 	return emul_to_vcpu(ctxt)->arch.hflags;
5964 }
5965 
5966 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5967 {
5968 	emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
5969 }
5970 
5971 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
5972 				  const char *smstate)
5973 {
5974 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
5975 }
5976 
5977 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
5978 {
5979 	kvm_smm_changed(emul_to_vcpu(ctxt));
5980 }
5981 
5982 static const struct x86_emulate_ops emulate_ops = {
5983 	.read_gpr            = emulator_read_gpr,
5984 	.write_gpr           = emulator_write_gpr,
5985 	.read_std            = emulator_read_std,
5986 	.write_std           = emulator_write_std,
5987 	.read_phys           = kvm_read_guest_phys_system,
5988 	.fetch               = kvm_fetch_guest_virt,
5989 	.read_emulated       = emulator_read_emulated,
5990 	.write_emulated      = emulator_write_emulated,
5991 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5992 	.invlpg              = emulator_invlpg,
5993 	.pio_in_emulated     = emulator_pio_in_emulated,
5994 	.pio_out_emulated    = emulator_pio_out_emulated,
5995 	.get_segment         = emulator_get_segment,
5996 	.set_segment         = emulator_set_segment,
5997 	.get_cached_segment_base = emulator_get_cached_segment_base,
5998 	.get_gdt             = emulator_get_gdt,
5999 	.get_idt	     = emulator_get_idt,
6000 	.set_gdt             = emulator_set_gdt,
6001 	.set_idt	     = emulator_set_idt,
6002 	.get_cr              = emulator_get_cr,
6003 	.set_cr              = emulator_set_cr,
6004 	.cpl                 = emulator_get_cpl,
6005 	.get_dr              = emulator_get_dr,
6006 	.set_dr              = emulator_set_dr,
6007 	.get_smbase          = emulator_get_smbase,
6008 	.set_smbase          = emulator_set_smbase,
6009 	.set_msr             = emulator_set_msr,
6010 	.get_msr             = emulator_get_msr,
6011 	.check_pmc	     = emulator_check_pmc,
6012 	.read_pmc            = emulator_read_pmc,
6013 	.halt                = emulator_halt,
6014 	.wbinvd              = emulator_wbinvd,
6015 	.fix_hypercall       = emulator_fix_hypercall,
6016 	.intercept           = emulator_intercept,
6017 	.get_cpuid           = emulator_get_cpuid,
6018 	.set_nmi_mask        = emulator_set_nmi_mask,
6019 	.get_hflags          = emulator_get_hflags,
6020 	.set_hflags          = emulator_set_hflags,
6021 	.pre_leave_smm       = emulator_pre_leave_smm,
6022 	.post_leave_smm      = emulator_post_leave_smm,
6023 };
6024 
6025 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6026 {
6027 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6028 	/*
6029 	 * an sti; sti; sequence only disable interrupts for the first
6030 	 * instruction. So, if the last instruction, be it emulated or
6031 	 * not, left the system with the INT_STI flag enabled, it
6032 	 * means that the last instruction is an sti. We should not
6033 	 * leave the flag on in this case. The same goes for mov ss
6034 	 */
6035 	if (int_shadow & mask)
6036 		mask = 0;
6037 	if (unlikely(int_shadow || mask)) {
6038 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6039 		if (!mask)
6040 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6041 	}
6042 }
6043 
6044 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6045 {
6046 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6047 	if (ctxt->exception.vector == PF_VECTOR)
6048 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6049 
6050 	if (ctxt->exception.error_code_valid)
6051 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6052 				      ctxt->exception.error_code);
6053 	else
6054 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6055 	return false;
6056 }
6057 
6058 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6059 {
6060 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6061 	int cs_db, cs_l;
6062 
6063 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6064 
6065 	ctxt->eflags = kvm_get_rflags(vcpu);
6066 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6067 
6068 	ctxt->eip = kvm_rip_read(vcpu);
6069 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6070 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6071 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6072 		     cs_db				? X86EMUL_MODE_PROT32 :
6073 							  X86EMUL_MODE_PROT16;
6074 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6075 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6076 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6077 
6078 	init_decode_cache(ctxt);
6079 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6080 }
6081 
6082 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6083 {
6084 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6085 	int ret;
6086 
6087 	init_emulate_ctxt(vcpu);
6088 
6089 	ctxt->op_bytes = 2;
6090 	ctxt->ad_bytes = 2;
6091 	ctxt->_eip = ctxt->eip + inc_eip;
6092 	ret = emulate_int_real(ctxt, irq);
6093 
6094 	if (ret != X86EMUL_CONTINUE)
6095 		return EMULATE_FAIL;
6096 
6097 	ctxt->eip = ctxt->_eip;
6098 	kvm_rip_write(vcpu, ctxt->eip);
6099 	kvm_set_rflags(vcpu, ctxt->eflags);
6100 
6101 	return EMULATE_DONE;
6102 }
6103 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6104 
6105 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6106 {
6107 	int r = EMULATE_DONE;
6108 
6109 	++vcpu->stat.insn_emulation_fail;
6110 	trace_kvm_emulate_insn_failed(vcpu);
6111 
6112 	if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6113 		return EMULATE_FAIL;
6114 
6115 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6116 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6117 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6118 		vcpu->run->internal.ndata = 0;
6119 		r = EMULATE_USER_EXIT;
6120 	}
6121 
6122 	kvm_queue_exception(vcpu, UD_VECTOR);
6123 
6124 	return r;
6125 }
6126 
6127 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6128 				  bool write_fault_to_shadow_pgtable,
6129 				  int emulation_type)
6130 {
6131 	gpa_t gpa = cr2;
6132 	kvm_pfn_t pfn;
6133 
6134 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6135 		return false;
6136 
6137 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6138 		return false;
6139 
6140 	if (!vcpu->arch.mmu->direct_map) {
6141 		/*
6142 		 * Write permission should be allowed since only
6143 		 * write access need to be emulated.
6144 		 */
6145 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6146 
6147 		/*
6148 		 * If the mapping is invalid in guest, let cpu retry
6149 		 * it to generate fault.
6150 		 */
6151 		if (gpa == UNMAPPED_GVA)
6152 			return true;
6153 	}
6154 
6155 	/*
6156 	 * Do not retry the unhandleable instruction if it faults on the
6157 	 * readonly host memory, otherwise it will goto a infinite loop:
6158 	 * retry instruction -> write #PF -> emulation fail -> retry
6159 	 * instruction -> ...
6160 	 */
6161 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6162 
6163 	/*
6164 	 * If the instruction failed on the error pfn, it can not be fixed,
6165 	 * report the error to userspace.
6166 	 */
6167 	if (is_error_noslot_pfn(pfn))
6168 		return false;
6169 
6170 	kvm_release_pfn_clean(pfn);
6171 
6172 	/* The instructions are well-emulated on direct mmu. */
6173 	if (vcpu->arch.mmu->direct_map) {
6174 		unsigned int indirect_shadow_pages;
6175 
6176 		spin_lock(&vcpu->kvm->mmu_lock);
6177 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6178 		spin_unlock(&vcpu->kvm->mmu_lock);
6179 
6180 		if (indirect_shadow_pages)
6181 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6182 
6183 		return true;
6184 	}
6185 
6186 	/*
6187 	 * if emulation was due to access to shadowed page table
6188 	 * and it failed try to unshadow page and re-enter the
6189 	 * guest to let CPU execute the instruction.
6190 	 */
6191 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6192 
6193 	/*
6194 	 * If the access faults on its page table, it can not
6195 	 * be fixed by unprotecting shadow page and it should
6196 	 * be reported to userspace.
6197 	 */
6198 	return !write_fault_to_shadow_pgtable;
6199 }
6200 
6201 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6202 			      unsigned long cr2,  int emulation_type)
6203 {
6204 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6205 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6206 
6207 	last_retry_eip = vcpu->arch.last_retry_eip;
6208 	last_retry_addr = vcpu->arch.last_retry_addr;
6209 
6210 	/*
6211 	 * If the emulation is caused by #PF and it is non-page_table
6212 	 * writing instruction, it means the VM-EXIT is caused by shadow
6213 	 * page protected, we can zap the shadow page and retry this
6214 	 * instruction directly.
6215 	 *
6216 	 * Note: if the guest uses a non-page-table modifying instruction
6217 	 * on the PDE that points to the instruction, then we will unmap
6218 	 * the instruction and go to an infinite loop. So, we cache the
6219 	 * last retried eip and the last fault address, if we meet the eip
6220 	 * and the address again, we can break out of the potential infinite
6221 	 * loop.
6222 	 */
6223 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6224 
6225 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6226 		return false;
6227 
6228 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6229 		return false;
6230 
6231 	if (x86_page_table_writing_insn(ctxt))
6232 		return false;
6233 
6234 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6235 		return false;
6236 
6237 	vcpu->arch.last_retry_eip = ctxt->eip;
6238 	vcpu->arch.last_retry_addr = cr2;
6239 
6240 	if (!vcpu->arch.mmu->direct_map)
6241 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6242 
6243 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6244 
6245 	return true;
6246 }
6247 
6248 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6249 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6250 
6251 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6252 {
6253 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6254 		/* This is a good place to trace that we are exiting SMM.  */
6255 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6256 
6257 		/* Process a latched INIT or SMI, if any.  */
6258 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6259 	}
6260 
6261 	kvm_mmu_reset_context(vcpu);
6262 }
6263 
6264 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6265 				unsigned long *db)
6266 {
6267 	u32 dr6 = 0;
6268 	int i;
6269 	u32 enable, rwlen;
6270 
6271 	enable = dr7;
6272 	rwlen = dr7 >> 16;
6273 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6274 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6275 			dr6 |= (1 << i);
6276 	return dr6;
6277 }
6278 
6279 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6280 {
6281 	struct kvm_run *kvm_run = vcpu->run;
6282 
6283 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6284 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6285 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6286 		kvm_run->debug.arch.exception = DB_VECTOR;
6287 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6288 		*r = EMULATE_USER_EXIT;
6289 	} else {
6290 		kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6291 	}
6292 }
6293 
6294 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6295 {
6296 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6297 	int r = EMULATE_DONE;
6298 
6299 	kvm_x86_ops->skip_emulated_instruction(vcpu);
6300 
6301 	/*
6302 	 * rflags is the old, "raw" value of the flags.  The new value has
6303 	 * not been saved yet.
6304 	 *
6305 	 * This is correct even for TF set by the guest, because "the
6306 	 * processor will not generate this exception after the instruction
6307 	 * that sets the TF flag".
6308 	 */
6309 	if (unlikely(rflags & X86_EFLAGS_TF))
6310 		kvm_vcpu_do_singlestep(vcpu, &r);
6311 	return r == EMULATE_DONE;
6312 }
6313 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6314 
6315 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6316 {
6317 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6318 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6319 		struct kvm_run *kvm_run = vcpu->run;
6320 		unsigned long eip = kvm_get_linear_rip(vcpu);
6321 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6322 					   vcpu->arch.guest_debug_dr7,
6323 					   vcpu->arch.eff_db);
6324 
6325 		if (dr6 != 0) {
6326 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6327 			kvm_run->debug.arch.pc = eip;
6328 			kvm_run->debug.arch.exception = DB_VECTOR;
6329 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6330 			*r = EMULATE_USER_EXIT;
6331 			return true;
6332 		}
6333 	}
6334 
6335 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6336 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6337 		unsigned long eip = kvm_get_linear_rip(vcpu);
6338 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6339 					   vcpu->arch.dr7,
6340 					   vcpu->arch.db);
6341 
6342 		if (dr6 != 0) {
6343 			vcpu->arch.dr6 &= ~15;
6344 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6345 			kvm_queue_exception(vcpu, DB_VECTOR);
6346 			*r = EMULATE_DONE;
6347 			return true;
6348 		}
6349 	}
6350 
6351 	return false;
6352 }
6353 
6354 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6355 {
6356 	switch (ctxt->opcode_len) {
6357 	case 1:
6358 		switch (ctxt->b) {
6359 		case 0xe4:	/* IN */
6360 		case 0xe5:
6361 		case 0xec:
6362 		case 0xed:
6363 		case 0xe6:	/* OUT */
6364 		case 0xe7:
6365 		case 0xee:
6366 		case 0xef:
6367 		case 0x6c:	/* INS */
6368 		case 0x6d:
6369 		case 0x6e:	/* OUTS */
6370 		case 0x6f:
6371 			return true;
6372 		}
6373 		break;
6374 	case 2:
6375 		switch (ctxt->b) {
6376 		case 0x33:	/* RDPMC */
6377 			return true;
6378 		}
6379 		break;
6380 	}
6381 
6382 	return false;
6383 }
6384 
6385 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6386 			    unsigned long cr2,
6387 			    int emulation_type,
6388 			    void *insn,
6389 			    int insn_len)
6390 {
6391 	int r;
6392 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6393 	bool writeback = true;
6394 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6395 
6396 	vcpu->arch.l1tf_flush_l1d = true;
6397 
6398 	/*
6399 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6400 	 * never reused.
6401 	 */
6402 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6403 	kvm_clear_exception_queue(vcpu);
6404 
6405 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6406 		init_emulate_ctxt(vcpu);
6407 
6408 		/*
6409 		 * We will reenter on the same instruction since
6410 		 * we do not set complete_userspace_io.  This does not
6411 		 * handle watchpoints yet, those would be handled in
6412 		 * the emulate_ops.
6413 		 */
6414 		if (!(emulation_type & EMULTYPE_SKIP) &&
6415 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6416 			return r;
6417 
6418 		ctxt->interruptibility = 0;
6419 		ctxt->have_exception = false;
6420 		ctxt->exception.vector = -1;
6421 		ctxt->perm_ok = false;
6422 
6423 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6424 
6425 		r = x86_decode_insn(ctxt, insn, insn_len);
6426 
6427 		trace_kvm_emulate_insn_start(vcpu);
6428 		++vcpu->stat.insn_emulation;
6429 		if (r != EMULATION_OK)  {
6430 			if (emulation_type & EMULTYPE_TRAP_UD)
6431 				return EMULATE_FAIL;
6432 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6433 						emulation_type))
6434 				return EMULATE_DONE;
6435 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
6436 				return EMULATE_DONE;
6437 			if (emulation_type & EMULTYPE_SKIP)
6438 				return EMULATE_FAIL;
6439 			return handle_emulation_failure(vcpu, emulation_type);
6440 		}
6441 	}
6442 
6443 	if ((emulation_type & EMULTYPE_VMWARE) &&
6444 	    !is_vmware_backdoor_opcode(ctxt))
6445 		return EMULATE_FAIL;
6446 
6447 	if (emulation_type & EMULTYPE_SKIP) {
6448 		kvm_rip_write(vcpu, ctxt->_eip);
6449 		if (ctxt->eflags & X86_EFLAGS_RF)
6450 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6451 		return EMULATE_DONE;
6452 	}
6453 
6454 	if (retry_instruction(ctxt, cr2, emulation_type))
6455 		return EMULATE_DONE;
6456 
6457 	/* this is needed for vmware backdoor interface to work since it
6458 	   changes registers values  during IO operation */
6459 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6460 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6461 		emulator_invalidate_register_cache(ctxt);
6462 	}
6463 
6464 restart:
6465 	/* Save the faulting GPA (cr2) in the address field */
6466 	ctxt->exception.address = cr2;
6467 
6468 	r = x86_emulate_insn(ctxt);
6469 
6470 	if (r == EMULATION_INTERCEPTED)
6471 		return EMULATE_DONE;
6472 
6473 	if (r == EMULATION_FAILED) {
6474 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6475 					emulation_type))
6476 			return EMULATE_DONE;
6477 
6478 		return handle_emulation_failure(vcpu, emulation_type);
6479 	}
6480 
6481 	if (ctxt->have_exception) {
6482 		r = EMULATE_DONE;
6483 		if (inject_emulated_exception(vcpu))
6484 			return r;
6485 	} else if (vcpu->arch.pio.count) {
6486 		if (!vcpu->arch.pio.in) {
6487 			/* FIXME: return into emulator if single-stepping.  */
6488 			vcpu->arch.pio.count = 0;
6489 		} else {
6490 			writeback = false;
6491 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6492 		}
6493 		r = EMULATE_USER_EXIT;
6494 	} else if (vcpu->mmio_needed) {
6495 		if (!vcpu->mmio_is_write)
6496 			writeback = false;
6497 		r = EMULATE_USER_EXIT;
6498 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6499 	} else if (r == EMULATION_RESTART)
6500 		goto restart;
6501 	else
6502 		r = EMULATE_DONE;
6503 
6504 	if (writeback) {
6505 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6506 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6507 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6508 		kvm_rip_write(vcpu, ctxt->eip);
6509 		if (r == EMULATE_DONE && ctxt->tf)
6510 			kvm_vcpu_do_singlestep(vcpu, &r);
6511 		if (!ctxt->have_exception ||
6512 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6513 			__kvm_set_rflags(vcpu, ctxt->eflags);
6514 
6515 		/*
6516 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6517 		 * do nothing, and it will be requested again as soon as
6518 		 * the shadow expires.  But we still need to check here,
6519 		 * because POPF has no interrupt shadow.
6520 		 */
6521 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6522 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6523 	} else
6524 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6525 
6526 	return r;
6527 }
6528 
6529 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6530 {
6531 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6532 }
6533 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6534 
6535 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6536 					void *insn, int insn_len)
6537 {
6538 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6539 }
6540 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6541 
6542 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6543 {
6544 	vcpu->arch.pio.count = 0;
6545 	return 1;
6546 }
6547 
6548 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6549 {
6550 	vcpu->arch.pio.count = 0;
6551 
6552 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6553 		return 1;
6554 
6555 	return kvm_skip_emulated_instruction(vcpu);
6556 }
6557 
6558 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6559 			    unsigned short port)
6560 {
6561 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6562 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6563 					    size, port, &val, 1);
6564 	if (ret)
6565 		return ret;
6566 
6567 	/*
6568 	 * Workaround userspace that relies on old KVM behavior of %rip being
6569 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6570 	 */
6571 	if (port == 0x7e &&
6572 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6573 		vcpu->arch.complete_userspace_io =
6574 			complete_fast_pio_out_port_0x7e;
6575 		kvm_skip_emulated_instruction(vcpu);
6576 	} else {
6577 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6578 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6579 	}
6580 	return 0;
6581 }
6582 
6583 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6584 {
6585 	unsigned long val;
6586 
6587 	/* We should only ever be called with arch.pio.count equal to 1 */
6588 	BUG_ON(vcpu->arch.pio.count != 1);
6589 
6590 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6591 		vcpu->arch.pio.count = 0;
6592 		return 1;
6593 	}
6594 
6595 	/* For size less than 4 we merge, else we zero extend */
6596 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6597 					: 0;
6598 
6599 	/*
6600 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6601 	 * the copy and tracing
6602 	 */
6603 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6604 				 vcpu->arch.pio.port, &val, 1);
6605 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6606 
6607 	return kvm_skip_emulated_instruction(vcpu);
6608 }
6609 
6610 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6611 			   unsigned short port)
6612 {
6613 	unsigned long val;
6614 	int ret;
6615 
6616 	/* For size less than 4 we merge, else we zero extend */
6617 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6618 
6619 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6620 				       &val, 1);
6621 	if (ret) {
6622 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6623 		return ret;
6624 	}
6625 
6626 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6627 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6628 
6629 	return 0;
6630 }
6631 
6632 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6633 {
6634 	int ret;
6635 
6636 	if (in)
6637 		ret = kvm_fast_pio_in(vcpu, size, port);
6638 	else
6639 		ret = kvm_fast_pio_out(vcpu, size, port);
6640 	return ret && kvm_skip_emulated_instruction(vcpu);
6641 }
6642 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6643 
6644 static int kvmclock_cpu_down_prep(unsigned int cpu)
6645 {
6646 	__this_cpu_write(cpu_tsc_khz, 0);
6647 	return 0;
6648 }
6649 
6650 static void tsc_khz_changed(void *data)
6651 {
6652 	struct cpufreq_freqs *freq = data;
6653 	unsigned long khz = 0;
6654 
6655 	if (data)
6656 		khz = freq->new;
6657 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6658 		khz = cpufreq_quick_get(raw_smp_processor_id());
6659 	if (!khz)
6660 		khz = tsc_khz;
6661 	__this_cpu_write(cpu_tsc_khz, khz);
6662 }
6663 
6664 #ifdef CONFIG_X86_64
6665 static void kvm_hyperv_tsc_notifier(void)
6666 {
6667 	struct kvm *kvm;
6668 	struct kvm_vcpu *vcpu;
6669 	int cpu;
6670 
6671 	spin_lock(&kvm_lock);
6672 	list_for_each_entry(kvm, &vm_list, vm_list)
6673 		kvm_make_mclock_inprogress_request(kvm);
6674 
6675 	hyperv_stop_tsc_emulation();
6676 
6677 	/* TSC frequency always matches when on Hyper-V */
6678 	for_each_present_cpu(cpu)
6679 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6680 	kvm_max_guest_tsc_khz = tsc_khz;
6681 
6682 	list_for_each_entry(kvm, &vm_list, vm_list) {
6683 		struct kvm_arch *ka = &kvm->arch;
6684 
6685 		spin_lock(&ka->pvclock_gtod_sync_lock);
6686 
6687 		pvclock_update_vm_gtod_copy(kvm);
6688 
6689 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6690 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6691 
6692 		kvm_for_each_vcpu(cpu, vcpu, kvm)
6693 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6694 
6695 		spin_unlock(&ka->pvclock_gtod_sync_lock);
6696 	}
6697 	spin_unlock(&kvm_lock);
6698 }
6699 #endif
6700 
6701 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6702 				     void *data)
6703 {
6704 	struct cpufreq_freqs *freq = data;
6705 	struct kvm *kvm;
6706 	struct kvm_vcpu *vcpu;
6707 	int i, send_ipi = 0;
6708 
6709 	/*
6710 	 * We allow guests to temporarily run on slowing clocks,
6711 	 * provided we notify them after, or to run on accelerating
6712 	 * clocks, provided we notify them before.  Thus time never
6713 	 * goes backwards.
6714 	 *
6715 	 * However, we have a problem.  We can't atomically update
6716 	 * the frequency of a given CPU from this function; it is
6717 	 * merely a notifier, which can be called from any CPU.
6718 	 * Changing the TSC frequency at arbitrary points in time
6719 	 * requires a recomputation of local variables related to
6720 	 * the TSC for each VCPU.  We must flag these local variables
6721 	 * to be updated and be sure the update takes place with the
6722 	 * new frequency before any guests proceed.
6723 	 *
6724 	 * Unfortunately, the combination of hotplug CPU and frequency
6725 	 * change creates an intractable locking scenario; the order
6726 	 * of when these callouts happen is undefined with respect to
6727 	 * CPU hotplug, and they can race with each other.  As such,
6728 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6729 	 * undefined; you can actually have a CPU frequency change take
6730 	 * place in between the computation of X and the setting of the
6731 	 * variable.  To protect against this problem, all updates of
6732 	 * the per_cpu tsc_khz variable are done in an interrupt
6733 	 * protected IPI, and all callers wishing to update the value
6734 	 * must wait for a synchronous IPI to complete (which is trivial
6735 	 * if the caller is on the CPU already).  This establishes the
6736 	 * necessary total order on variable updates.
6737 	 *
6738 	 * Note that because a guest time update may take place
6739 	 * anytime after the setting of the VCPU's request bit, the
6740 	 * correct TSC value must be set before the request.  However,
6741 	 * to ensure the update actually makes it to any guest which
6742 	 * starts running in hardware virtualization between the set
6743 	 * and the acquisition of the spinlock, we must also ping the
6744 	 * CPU after setting the request bit.
6745 	 *
6746 	 */
6747 
6748 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6749 		return 0;
6750 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6751 		return 0;
6752 
6753 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6754 
6755 	spin_lock(&kvm_lock);
6756 	list_for_each_entry(kvm, &vm_list, vm_list) {
6757 		kvm_for_each_vcpu(i, vcpu, kvm) {
6758 			if (vcpu->cpu != freq->cpu)
6759 				continue;
6760 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6761 			if (vcpu->cpu != smp_processor_id())
6762 				send_ipi = 1;
6763 		}
6764 	}
6765 	spin_unlock(&kvm_lock);
6766 
6767 	if (freq->old < freq->new && send_ipi) {
6768 		/*
6769 		 * We upscale the frequency.  Must make the guest
6770 		 * doesn't see old kvmclock values while running with
6771 		 * the new frequency, otherwise we risk the guest sees
6772 		 * time go backwards.
6773 		 *
6774 		 * In case we update the frequency for another cpu
6775 		 * (which might be in guest context) send an interrupt
6776 		 * to kick the cpu out of guest context.  Next time
6777 		 * guest context is entered kvmclock will be updated,
6778 		 * so the guest will not see stale values.
6779 		 */
6780 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6781 	}
6782 	return 0;
6783 }
6784 
6785 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6786 	.notifier_call  = kvmclock_cpufreq_notifier
6787 };
6788 
6789 static int kvmclock_cpu_online(unsigned int cpu)
6790 {
6791 	tsc_khz_changed(NULL);
6792 	return 0;
6793 }
6794 
6795 static void kvm_timer_init(void)
6796 {
6797 	max_tsc_khz = tsc_khz;
6798 
6799 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6800 #ifdef CONFIG_CPU_FREQ
6801 		struct cpufreq_policy policy;
6802 		int cpu;
6803 
6804 		memset(&policy, 0, sizeof(policy));
6805 		cpu = get_cpu();
6806 		cpufreq_get_policy(&policy, cpu);
6807 		if (policy.cpuinfo.max_freq)
6808 			max_tsc_khz = policy.cpuinfo.max_freq;
6809 		put_cpu();
6810 #endif
6811 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6812 					  CPUFREQ_TRANSITION_NOTIFIER);
6813 	}
6814 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6815 
6816 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6817 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6818 }
6819 
6820 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6821 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6822 
6823 int kvm_is_in_guest(void)
6824 {
6825 	return __this_cpu_read(current_vcpu) != NULL;
6826 }
6827 
6828 static int kvm_is_user_mode(void)
6829 {
6830 	int user_mode = 3;
6831 
6832 	if (__this_cpu_read(current_vcpu))
6833 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6834 
6835 	return user_mode != 0;
6836 }
6837 
6838 static unsigned long kvm_get_guest_ip(void)
6839 {
6840 	unsigned long ip = 0;
6841 
6842 	if (__this_cpu_read(current_vcpu))
6843 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6844 
6845 	return ip;
6846 }
6847 
6848 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6849 	.is_in_guest		= kvm_is_in_guest,
6850 	.is_user_mode		= kvm_is_user_mode,
6851 	.get_guest_ip		= kvm_get_guest_ip,
6852 };
6853 
6854 static void kvm_set_mmio_spte_mask(void)
6855 {
6856 	u64 mask;
6857 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6858 
6859 	/*
6860 	 * Set the reserved bits and the present bit of an paging-structure
6861 	 * entry to generate page fault with PFER.RSV = 1.
6862 	 */
6863 
6864 	/*
6865 	 * Mask the uppermost physical address bit, which would be reserved as
6866 	 * long as the supported physical address width is less than 52.
6867 	 */
6868 	mask = 1ull << 51;
6869 
6870 	/* Set the present bit. */
6871 	mask |= 1ull;
6872 
6873 	/*
6874 	 * If reserved bit is not supported, clear the present bit to disable
6875 	 * mmio page fault.
6876 	 */
6877 	if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6878 		mask &= ~1ull;
6879 
6880 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6881 }
6882 
6883 #ifdef CONFIG_X86_64
6884 static void pvclock_gtod_update_fn(struct work_struct *work)
6885 {
6886 	struct kvm *kvm;
6887 
6888 	struct kvm_vcpu *vcpu;
6889 	int i;
6890 
6891 	spin_lock(&kvm_lock);
6892 	list_for_each_entry(kvm, &vm_list, vm_list)
6893 		kvm_for_each_vcpu(i, vcpu, kvm)
6894 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6895 	atomic_set(&kvm_guest_has_master_clock, 0);
6896 	spin_unlock(&kvm_lock);
6897 }
6898 
6899 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6900 
6901 /*
6902  * Notification about pvclock gtod data update.
6903  */
6904 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6905 			       void *priv)
6906 {
6907 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6908 	struct timekeeper *tk = priv;
6909 
6910 	update_pvclock_gtod(tk);
6911 
6912 	/* disable master clock if host does not trust, or does not
6913 	 * use, TSC based clocksource.
6914 	 */
6915 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6916 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6917 		queue_work(system_long_wq, &pvclock_gtod_work);
6918 
6919 	return 0;
6920 }
6921 
6922 static struct notifier_block pvclock_gtod_notifier = {
6923 	.notifier_call = pvclock_gtod_notify,
6924 };
6925 #endif
6926 
6927 int kvm_arch_init(void *opaque)
6928 {
6929 	int r;
6930 	struct kvm_x86_ops *ops = opaque;
6931 
6932 	if (kvm_x86_ops) {
6933 		printk(KERN_ERR "kvm: already loaded the other module\n");
6934 		r = -EEXIST;
6935 		goto out;
6936 	}
6937 
6938 	if (!ops->cpu_has_kvm_support()) {
6939 		printk(KERN_ERR "kvm: no hardware support\n");
6940 		r = -EOPNOTSUPP;
6941 		goto out;
6942 	}
6943 	if (ops->disabled_by_bios()) {
6944 		printk(KERN_ERR "kvm: disabled by bios\n");
6945 		r = -EOPNOTSUPP;
6946 		goto out;
6947 	}
6948 
6949 	/*
6950 	 * KVM explicitly assumes that the guest has an FPU and
6951 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
6952 	 * vCPU's FPU state as a fxregs_state struct.
6953 	 */
6954 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
6955 		printk(KERN_ERR "kvm: inadequate fpu\n");
6956 		r = -EOPNOTSUPP;
6957 		goto out;
6958 	}
6959 
6960 	r = -ENOMEM;
6961 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
6962 					  __alignof__(struct fpu), SLAB_ACCOUNT,
6963 					  NULL);
6964 	if (!x86_fpu_cache) {
6965 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
6966 		goto out;
6967 	}
6968 
6969 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6970 	if (!shared_msrs) {
6971 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6972 		goto out_free_x86_fpu_cache;
6973 	}
6974 
6975 	r = kvm_mmu_module_init();
6976 	if (r)
6977 		goto out_free_percpu;
6978 
6979 	kvm_set_mmio_spte_mask();
6980 
6981 	kvm_x86_ops = ops;
6982 
6983 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6984 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6985 			PT_PRESENT_MASK, 0, sme_me_mask);
6986 	kvm_timer_init();
6987 
6988 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6989 
6990 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6991 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6992 
6993 	kvm_lapic_init();
6994 #ifdef CONFIG_X86_64
6995 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6996 
6997 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6998 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6999 #endif
7000 
7001 	return 0;
7002 
7003 out_free_percpu:
7004 	free_percpu(shared_msrs);
7005 out_free_x86_fpu_cache:
7006 	kmem_cache_destroy(x86_fpu_cache);
7007 out:
7008 	return r;
7009 }
7010 
7011 void kvm_arch_exit(void)
7012 {
7013 #ifdef CONFIG_X86_64
7014 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7015 		clear_hv_tscchange_cb();
7016 #endif
7017 	kvm_lapic_exit();
7018 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7019 
7020 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7021 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7022 					    CPUFREQ_TRANSITION_NOTIFIER);
7023 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7024 #ifdef CONFIG_X86_64
7025 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7026 #endif
7027 	kvm_x86_ops = NULL;
7028 	kvm_mmu_module_exit();
7029 	free_percpu(shared_msrs);
7030 	kmem_cache_destroy(x86_fpu_cache);
7031 }
7032 
7033 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7034 {
7035 	++vcpu->stat.halt_exits;
7036 	if (lapic_in_kernel(vcpu)) {
7037 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7038 		return 1;
7039 	} else {
7040 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7041 		return 0;
7042 	}
7043 }
7044 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7045 
7046 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7047 {
7048 	int ret = kvm_skip_emulated_instruction(vcpu);
7049 	/*
7050 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7051 	 * KVM_EXIT_DEBUG here.
7052 	 */
7053 	return kvm_vcpu_halt(vcpu) && ret;
7054 }
7055 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7056 
7057 #ifdef CONFIG_X86_64
7058 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7059 			        unsigned long clock_type)
7060 {
7061 	struct kvm_clock_pairing clock_pairing;
7062 	struct timespec64 ts;
7063 	u64 cycle;
7064 	int ret;
7065 
7066 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7067 		return -KVM_EOPNOTSUPP;
7068 
7069 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7070 		return -KVM_EOPNOTSUPP;
7071 
7072 	clock_pairing.sec = ts.tv_sec;
7073 	clock_pairing.nsec = ts.tv_nsec;
7074 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7075 	clock_pairing.flags = 0;
7076 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7077 
7078 	ret = 0;
7079 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7080 			    sizeof(struct kvm_clock_pairing)))
7081 		ret = -KVM_EFAULT;
7082 
7083 	return ret;
7084 }
7085 #endif
7086 
7087 /*
7088  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7089  *
7090  * @apicid - apicid of vcpu to be kicked.
7091  */
7092 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7093 {
7094 	struct kvm_lapic_irq lapic_irq;
7095 
7096 	lapic_irq.shorthand = 0;
7097 	lapic_irq.dest_mode = 0;
7098 	lapic_irq.level = 0;
7099 	lapic_irq.dest_id = apicid;
7100 	lapic_irq.msi_redir_hint = false;
7101 
7102 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7103 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7104 }
7105 
7106 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7107 {
7108 	if (!lapic_in_kernel(vcpu)) {
7109 		WARN_ON_ONCE(vcpu->arch.apicv_active);
7110 		return;
7111 	}
7112 	if (!vcpu->arch.apicv_active)
7113 		return;
7114 
7115 	vcpu->arch.apicv_active = false;
7116 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7117 }
7118 
7119 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7120 {
7121 	unsigned long nr, a0, a1, a2, a3, ret;
7122 	int op_64_bit;
7123 
7124 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7125 		return kvm_hv_hypercall(vcpu);
7126 
7127 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
7128 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
7129 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
7130 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
7131 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
7132 
7133 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7134 
7135 	op_64_bit = is_64_bit_mode(vcpu);
7136 	if (!op_64_bit) {
7137 		nr &= 0xFFFFFFFF;
7138 		a0 &= 0xFFFFFFFF;
7139 		a1 &= 0xFFFFFFFF;
7140 		a2 &= 0xFFFFFFFF;
7141 		a3 &= 0xFFFFFFFF;
7142 	}
7143 
7144 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7145 		ret = -KVM_EPERM;
7146 		goto out;
7147 	}
7148 
7149 	switch (nr) {
7150 	case KVM_HC_VAPIC_POLL_IRQ:
7151 		ret = 0;
7152 		break;
7153 	case KVM_HC_KICK_CPU:
7154 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7155 		ret = 0;
7156 		break;
7157 #ifdef CONFIG_X86_64
7158 	case KVM_HC_CLOCK_PAIRING:
7159 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7160 		break;
7161 #endif
7162 	case KVM_HC_SEND_IPI:
7163 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7164 		break;
7165 	default:
7166 		ret = -KVM_ENOSYS;
7167 		break;
7168 	}
7169 out:
7170 	if (!op_64_bit)
7171 		ret = (u32)ret;
7172 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7173 
7174 	++vcpu->stat.hypercalls;
7175 	return kvm_skip_emulated_instruction(vcpu);
7176 }
7177 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7178 
7179 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7180 {
7181 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7182 	char instruction[3];
7183 	unsigned long rip = kvm_rip_read(vcpu);
7184 
7185 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7186 
7187 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7188 		&ctxt->exception);
7189 }
7190 
7191 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7192 {
7193 	return vcpu->run->request_interrupt_window &&
7194 		likely(!pic_in_kernel(vcpu->kvm));
7195 }
7196 
7197 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7198 {
7199 	struct kvm_run *kvm_run = vcpu->run;
7200 
7201 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7202 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7203 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7204 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7205 	kvm_run->ready_for_interrupt_injection =
7206 		pic_in_kernel(vcpu->kvm) ||
7207 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7208 }
7209 
7210 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7211 {
7212 	int max_irr, tpr;
7213 
7214 	if (!kvm_x86_ops->update_cr8_intercept)
7215 		return;
7216 
7217 	if (!lapic_in_kernel(vcpu))
7218 		return;
7219 
7220 	if (vcpu->arch.apicv_active)
7221 		return;
7222 
7223 	if (!vcpu->arch.apic->vapic_addr)
7224 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7225 	else
7226 		max_irr = -1;
7227 
7228 	if (max_irr != -1)
7229 		max_irr >>= 4;
7230 
7231 	tpr = kvm_lapic_get_cr8(vcpu);
7232 
7233 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7234 }
7235 
7236 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7237 {
7238 	int r;
7239 
7240 	/* try to reinject previous events if any */
7241 
7242 	if (vcpu->arch.exception.injected)
7243 		kvm_x86_ops->queue_exception(vcpu);
7244 	/*
7245 	 * Do not inject an NMI or interrupt if there is a pending
7246 	 * exception.  Exceptions and interrupts are recognized at
7247 	 * instruction boundaries, i.e. the start of an instruction.
7248 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7249 	 * NMIs and interrupts, i.e. traps are recognized before an
7250 	 * NMI/interrupt that's pending on the same instruction.
7251 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7252 	 * priority, but are only generated (pended) during instruction
7253 	 * execution, i.e. a pending fault-like exception means the
7254 	 * fault occurred on the *previous* instruction and must be
7255 	 * serviced prior to recognizing any new events in order to
7256 	 * fully complete the previous instruction.
7257 	 */
7258 	else if (!vcpu->arch.exception.pending) {
7259 		if (vcpu->arch.nmi_injected)
7260 			kvm_x86_ops->set_nmi(vcpu);
7261 		else if (vcpu->arch.interrupt.injected)
7262 			kvm_x86_ops->set_irq(vcpu);
7263 	}
7264 
7265 	/*
7266 	 * Call check_nested_events() even if we reinjected a previous event
7267 	 * in order for caller to determine if it should require immediate-exit
7268 	 * from L2 to L1 due to pending L1 events which require exit
7269 	 * from L2 to L1.
7270 	 */
7271 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7272 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7273 		if (r != 0)
7274 			return r;
7275 	}
7276 
7277 	/* try to inject new event if pending */
7278 	if (vcpu->arch.exception.pending) {
7279 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7280 					vcpu->arch.exception.has_error_code,
7281 					vcpu->arch.exception.error_code);
7282 
7283 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7284 		vcpu->arch.exception.pending = false;
7285 		vcpu->arch.exception.injected = true;
7286 
7287 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7288 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7289 					     X86_EFLAGS_RF);
7290 
7291 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7292 			/*
7293 			 * This code assumes that nSVM doesn't use
7294 			 * check_nested_events(). If it does, the
7295 			 * DR6/DR7 changes should happen before L1
7296 			 * gets a #VMEXIT for an intercepted #DB in
7297 			 * L2.  (Under VMX, on the other hand, the
7298 			 * DR6/DR7 changes should not happen in the
7299 			 * event of a VM-exit to L1 for an intercepted
7300 			 * #DB in L2.)
7301 			 */
7302 			kvm_deliver_exception_payload(vcpu);
7303 			if (vcpu->arch.dr7 & DR7_GD) {
7304 				vcpu->arch.dr7 &= ~DR7_GD;
7305 				kvm_update_dr7(vcpu);
7306 			}
7307 		}
7308 
7309 		kvm_x86_ops->queue_exception(vcpu);
7310 	}
7311 
7312 	/* Don't consider new event if we re-injected an event */
7313 	if (kvm_event_needs_reinjection(vcpu))
7314 		return 0;
7315 
7316 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7317 	    kvm_x86_ops->smi_allowed(vcpu)) {
7318 		vcpu->arch.smi_pending = false;
7319 		++vcpu->arch.smi_count;
7320 		enter_smm(vcpu);
7321 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7322 		--vcpu->arch.nmi_pending;
7323 		vcpu->arch.nmi_injected = true;
7324 		kvm_x86_ops->set_nmi(vcpu);
7325 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7326 		/*
7327 		 * Because interrupts can be injected asynchronously, we are
7328 		 * calling check_nested_events again here to avoid a race condition.
7329 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7330 		 * proposal and current concerns.  Perhaps we should be setting
7331 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7332 		 */
7333 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7334 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7335 			if (r != 0)
7336 				return r;
7337 		}
7338 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7339 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7340 					    false);
7341 			kvm_x86_ops->set_irq(vcpu);
7342 		}
7343 	}
7344 
7345 	return 0;
7346 }
7347 
7348 static void process_nmi(struct kvm_vcpu *vcpu)
7349 {
7350 	unsigned limit = 2;
7351 
7352 	/*
7353 	 * x86 is limited to one NMI running, and one NMI pending after it.
7354 	 * If an NMI is already in progress, limit further NMIs to just one.
7355 	 * Otherwise, allow two (and we'll inject the first one immediately).
7356 	 */
7357 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7358 		limit = 1;
7359 
7360 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7361 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7362 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7363 }
7364 
7365 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7366 {
7367 	u32 flags = 0;
7368 	flags |= seg->g       << 23;
7369 	flags |= seg->db      << 22;
7370 	flags |= seg->l       << 21;
7371 	flags |= seg->avl     << 20;
7372 	flags |= seg->present << 15;
7373 	flags |= seg->dpl     << 13;
7374 	flags |= seg->s       << 12;
7375 	flags |= seg->type    << 8;
7376 	return flags;
7377 }
7378 
7379 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7380 {
7381 	struct kvm_segment seg;
7382 	int offset;
7383 
7384 	kvm_get_segment(vcpu, &seg, n);
7385 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7386 
7387 	if (n < 3)
7388 		offset = 0x7f84 + n * 12;
7389 	else
7390 		offset = 0x7f2c + (n - 3) * 12;
7391 
7392 	put_smstate(u32, buf, offset + 8, seg.base);
7393 	put_smstate(u32, buf, offset + 4, seg.limit);
7394 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7395 }
7396 
7397 #ifdef CONFIG_X86_64
7398 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7399 {
7400 	struct kvm_segment seg;
7401 	int offset;
7402 	u16 flags;
7403 
7404 	kvm_get_segment(vcpu, &seg, n);
7405 	offset = 0x7e00 + n * 16;
7406 
7407 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7408 	put_smstate(u16, buf, offset, seg.selector);
7409 	put_smstate(u16, buf, offset + 2, flags);
7410 	put_smstate(u32, buf, offset + 4, seg.limit);
7411 	put_smstate(u64, buf, offset + 8, seg.base);
7412 }
7413 #endif
7414 
7415 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7416 {
7417 	struct desc_ptr dt;
7418 	struct kvm_segment seg;
7419 	unsigned long val;
7420 	int i;
7421 
7422 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7423 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7424 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7425 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7426 
7427 	for (i = 0; i < 8; i++)
7428 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7429 
7430 	kvm_get_dr(vcpu, 6, &val);
7431 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7432 	kvm_get_dr(vcpu, 7, &val);
7433 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7434 
7435 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7436 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7437 	put_smstate(u32, buf, 0x7f64, seg.base);
7438 	put_smstate(u32, buf, 0x7f60, seg.limit);
7439 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7440 
7441 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7442 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7443 	put_smstate(u32, buf, 0x7f80, seg.base);
7444 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7445 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7446 
7447 	kvm_x86_ops->get_gdt(vcpu, &dt);
7448 	put_smstate(u32, buf, 0x7f74, dt.address);
7449 	put_smstate(u32, buf, 0x7f70, dt.size);
7450 
7451 	kvm_x86_ops->get_idt(vcpu, &dt);
7452 	put_smstate(u32, buf, 0x7f58, dt.address);
7453 	put_smstate(u32, buf, 0x7f54, dt.size);
7454 
7455 	for (i = 0; i < 6; i++)
7456 		enter_smm_save_seg_32(vcpu, buf, i);
7457 
7458 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7459 
7460 	/* revision id */
7461 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7462 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7463 }
7464 
7465 #ifdef CONFIG_X86_64
7466 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7467 {
7468 	struct desc_ptr dt;
7469 	struct kvm_segment seg;
7470 	unsigned long val;
7471 	int i;
7472 
7473 	for (i = 0; i < 16; i++)
7474 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7475 
7476 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7477 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7478 
7479 	kvm_get_dr(vcpu, 6, &val);
7480 	put_smstate(u64, buf, 0x7f68, val);
7481 	kvm_get_dr(vcpu, 7, &val);
7482 	put_smstate(u64, buf, 0x7f60, val);
7483 
7484 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7485 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7486 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7487 
7488 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7489 
7490 	/* revision id */
7491 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7492 
7493 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7494 
7495 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7496 	put_smstate(u16, buf, 0x7e90, seg.selector);
7497 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7498 	put_smstate(u32, buf, 0x7e94, seg.limit);
7499 	put_smstate(u64, buf, 0x7e98, seg.base);
7500 
7501 	kvm_x86_ops->get_idt(vcpu, &dt);
7502 	put_smstate(u32, buf, 0x7e84, dt.size);
7503 	put_smstate(u64, buf, 0x7e88, dt.address);
7504 
7505 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7506 	put_smstate(u16, buf, 0x7e70, seg.selector);
7507 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7508 	put_smstate(u32, buf, 0x7e74, seg.limit);
7509 	put_smstate(u64, buf, 0x7e78, seg.base);
7510 
7511 	kvm_x86_ops->get_gdt(vcpu, &dt);
7512 	put_smstate(u32, buf, 0x7e64, dt.size);
7513 	put_smstate(u64, buf, 0x7e68, dt.address);
7514 
7515 	for (i = 0; i < 6; i++)
7516 		enter_smm_save_seg_64(vcpu, buf, i);
7517 }
7518 #endif
7519 
7520 static void enter_smm(struct kvm_vcpu *vcpu)
7521 {
7522 	struct kvm_segment cs, ds;
7523 	struct desc_ptr dt;
7524 	char buf[512];
7525 	u32 cr0;
7526 
7527 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7528 	memset(buf, 0, 512);
7529 #ifdef CONFIG_X86_64
7530 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7531 		enter_smm_save_state_64(vcpu, buf);
7532 	else
7533 #endif
7534 		enter_smm_save_state_32(vcpu, buf);
7535 
7536 	/*
7537 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7538 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7539 	 * the SMM state-save area.
7540 	 */
7541 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7542 
7543 	vcpu->arch.hflags |= HF_SMM_MASK;
7544 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7545 
7546 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7547 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7548 	else
7549 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7550 
7551 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7552 	kvm_rip_write(vcpu, 0x8000);
7553 
7554 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7555 	kvm_x86_ops->set_cr0(vcpu, cr0);
7556 	vcpu->arch.cr0 = cr0;
7557 
7558 	kvm_x86_ops->set_cr4(vcpu, 0);
7559 
7560 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7561 	dt.address = dt.size = 0;
7562 	kvm_x86_ops->set_idt(vcpu, &dt);
7563 
7564 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7565 
7566 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7567 	cs.base = vcpu->arch.smbase;
7568 
7569 	ds.selector = 0;
7570 	ds.base = 0;
7571 
7572 	cs.limit    = ds.limit = 0xffffffff;
7573 	cs.type     = ds.type = 0x3;
7574 	cs.dpl      = ds.dpl = 0;
7575 	cs.db       = ds.db = 0;
7576 	cs.s        = ds.s = 1;
7577 	cs.l        = ds.l = 0;
7578 	cs.g        = ds.g = 1;
7579 	cs.avl      = ds.avl = 0;
7580 	cs.present  = ds.present = 1;
7581 	cs.unusable = ds.unusable = 0;
7582 	cs.padding  = ds.padding = 0;
7583 
7584 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7585 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7586 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7587 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7588 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7589 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7590 
7591 #ifdef CONFIG_X86_64
7592 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7593 		kvm_x86_ops->set_efer(vcpu, 0);
7594 #endif
7595 
7596 	kvm_update_cpuid(vcpu);
7597 	kvm_mmu_reset_context(vcpu);
7598 }
7599 
7600 static void process_smi(struct kvm_vcpu *vcpu)
7601 {
7602 	vcpu->arch.smi_pending = true;
7603 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7604 }
7605 
7606 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7607 {
7608 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7609 }
7610 
7611 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7612 {
7613 	if (!kvm_apic_present(vcpu))
7614 		return;
7615 
7616 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7617 
7618 	if (irqchip_split(vcpu->kvm))
7619 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7620 	else {
7621 		if (vcpu->arch.apicv_active)
7622 			kvm_x86_ops->sync_pir_to_irr(vcpu);
7623 		if (ioapic_in_kernel(vcpu->kvm))
7624 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7625 	}
7626 
7627 	if (is_guest_mode(vcpu))
7628 		vcpu->arch.load_eoi_exitmap_pending = true;
7629 	else
7630 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7631 }
7632 
7633 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7634 {
7635 	u64 eoi_exit_bitmap[4];
7636 
7637 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7638 		return;
7639 
7640 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7641 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
7642 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7643 }
7644 
7645 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7646 		unsigned long start, unsigned long end,
7647 		bool blockable)
7648 {
7649 	unsigned long apic_address;
7650 
7651 	/*
7652 	 * The physical address of apic access page is stored in the VMCS.
7653 	 * Update it when it becomes invalid.
7654 	 */
7655 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7656 	if (start <= apic_address && apic_address < end)
7657 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7658 
7659 	return 0;
7660 }
7661 
7662 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7663 {
7664 	struct page *page = NULL;
7665 
7666 	if (!lapic_in_kernel(vcpu))
7667 		return;
7668 
7669 	if (!kvm_x86_ops->set_apic_access_page_addr)
7670 		return;
7671 
7672 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7673 	if (is_error_page(page))
7674 		return;
7675 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7676 
7677 	/*
7678 	 * Do not pin apic access page in memory, the MMU notifier
7679 	 * will call us again if it is migrated or swapped out.
7680 	 */
7681 	put_page(page);
7682 }
7683 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7684 
7685 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7686 {
7687 	smp_send_reschedule(vcpu->cpu);
7688 }
7689 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7690 
7691 /*
7692  * Returns 1 to let vcpu_run() continue the guest execution loop without
7693  * exiting to the userspace.  Otherwise, the value will be returned to the
7694  * userspace.
7695  */
7696 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7697 {
7698 	int r;
7699 	bool req_int_win =
7700 		dm_request_for_irq_injection(vcpu) &&
7701 		kvm_cpu_accept_dm_intr(vcpu);
7702 
7703 	bool req_immediate_exit = false;
7704 
7705 	if (kvm_request_pending(vcpu)) {
7706 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7707 			kvm_x86_ops->get_vmcs12_pages(vcpu);
7708 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7709 			kvm_mmu_unload(vcpu);
7710 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7711 			__kvm_migrate_timers(vcpu);
7712 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7713 			kvm_gen_update_masterclock(vcpu->kvm);
7714 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7715 			kvm_gen_kvmclock_update(vcpu);
7716 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7717 			r = kvm_guest_time_update(vcpu);
7718 			if (unlikely(r))
7719 				goto out;
7720 		}
7721 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7722 			kvm_mmu_sync_roots(vcpu);
7723 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7724 			kvm_mmu_load_cr3(vcpu);
7725 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7726 			kvm_vcpu_flush_tlb(vcpu, true);
7727 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7728 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7729 			r = 0;
7730 			goto out;
7731 		}
7732 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7733 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7734 			vcpu->mmio_needed = 0;
7735 			r = 0;
7736 			goto out;
7737 		}
7738 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7739 			/* Page is swapped out. Do synthetic halt */
7740 			vcpu->arch.apf.halted = true;
7741 			r = 1;
7742 			goto out;
7743 		}
7744 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7745 			record_steal_time(vcpu);
7746 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
7747 			process_smi(vcpu);
7748 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
7749 			process_nmi(vcpu);
7750 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
7751 			kvm_pmu_handle_event(vcpu);
7752 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
7753 			kvm_pmu_deliver_pmi(vcpu);
7754 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7755 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7756 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
7757 				     vcpu->arch.ioapic_handled_vectors)) {
7758 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7759 				vcpu->run->eoi.vector =
7760 						vcpu->arch.pending_ioapic_eoi;
7761 				r = 0;
7762 				goto out;
7763 			}
7764 		}
7765 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7766 			vcpu_scan_ioapic(vcpu);
7767 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7768 			vcpu_load_eoi_exitmap(vcpu);
7769 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7770 			kvm_vcpu_reload_apic_access_page(vcpu);
7771 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7772 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7773 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7774 			r = 0;
7775 			goto out;
7776 		}
7777 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7778 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7779 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7780 			r = 0;
7781 			goto out;
7782 		}
7783 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7784 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7785 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7786 			r = 0;
7787 			goto out;
7788 		}
7789 
7790 		/*
7791 		 * KVM_REQ_HV_STIMER has to be processed after
7792 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7793 		 * depend on the guest clock being up-to-date
7794 		 */
7795 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7796 			kvm_hv_process_stimers(vcpu);
7797 	}
7798 
7799 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7800 		++vcpu->stat.req_event;
7801 		kvm_apic_accept_events(vcpu);
7802 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7803 			r = 1;
7804 			goto out;
7805 		}
7806 
7807 		if (inject_pending_event(vcpu, req_int_win) != 0)
7808 			req_immediate_exit = true;
7809 		else {
7810 			/* Enable SMI/NMI/IRQ window open exits if needed.
7811 			 *
7812 			 * SMIs have three cases:
7813 			 * 1) They can be nested, and then there is nothing to
7814 			 *    do here because RSM will cause a vmexit anyway.
7815 			 * 2) There is an ISA-specific reason why SMI cannot be
7816 			 *    injected, and the moment when this changes can be
7817 			 *    intercepted.
7818 			 * 3) Or the SMI can be pending because
7819 			 *    inject_pending_event has completed the injection
7820 			 *    of an IRQ or NMI from the previous vmexit, and
7821 			 *    then we request an immediate exit to inject the
7822 			 *    SMI.
7823 			 */
7824 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
7825 				if (!kvm_x86_ops->enable_smi_window(vcpu))
7826 					req_immediate_exit = true;
7827 			if (vcpu->arch.nmi_pending)
7828 				kvm_x86_ops->enable_nmi_window(vcpu);
7829 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7830 				kvm_x86_ops->enable_irq_window(vcpu);
7831 			WARN_ON(vcpu->arch.exception.pending);
7832 		}
7833 
7834 		if (kvm_lapic_enabled(vcpu)) {
7835 			update_cr8_intercept(vcpu);
7836 			kvm_lapic_sync_to_vapic(vcpu);
7837 		}
7838 	}
7839 
7840 	r = kvm_mmu_reload(vcpu);
7841 	if (unlikely(r)) {
7842 		goto cancel_injection;
7843 	}
7844 
7845 	preempt_disable();
7846 
7847 	kvm_x86_ops->prepare_guest_switch(vcpu);
7848 
7849 	/*
7850 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7851 	 * IPI are then delayed after guest entry, which ensures that they
7852 	 * result in virtual interrupt delivery.
7853 	 */
7854 	local_irq_disable();
7855 	vcpu->mode = IN_GUEST_MODE;
7856 
7857 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7858 
7859 	/*
7860 	 * 1) We should set ->mode before checking ->requests.  Please see
7861 	 * the comment in kvm_vcpu_exiting_guest_mode().
7862 	 *
7863 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
7864 	 * pairs with the memory barrier implicit in pi_test_and_set_on
7865 	 * (see vmx_deliver_posted_interrupt).
7866 	 *
7867 	 * 3) This also orders the write to mode from any reads to the page
7868 	 * tables done while the VCPU is running.  Please see the comment
7869 	 * in kvm_flush_remote_tlbs.
7870 	 */
7871 	smp_mb__after_srcu_read_unlock();
7872 
7873 	/*
7874 	 * This handles the case where a posted interrupt was
7875 	 * notified with kvm_vcpu_kick.
7876 	 */
7877 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7878 		kvm_x86_ops->sync_pir_to_irr(vcpu);
7879 
7880 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7881 	    || need_resched() || signal_pending(current)) {
7882 		vcpu->mode = OUTSIDE_GUEST_MODE;
7883 		smp_wmb();
7884 		local_irq_enable();
7885 		preempt_enable();
7886 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7887 		r = 1;
7888 		goto cancel_injection;
7889 	}
7890 
7891 	if (req_immediate_exit) {
7892 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7893 		kvm_x86_ops->request_immediate_exit(vcpu);
7894 	}
7895 
7896 	trace_kvm_entry(vcpu->vcpu_id);
7897 	if (lapic_in_kernel(vcpu) &&
7898 	    vcpu->arch.apic->lapic_timer.timer_advance_ns)
7899 		wait_lapic_expire(vcpu);
7900 	guest_enter_irqoff();
7901 
7902 	if (unlikely(vcpu->arch.switch_db_regs)) {
7903 		set_debugreg(0, 7);
7904 		set_debugreg(vcpu->arch.eff_db[0], 0);
7905 		set_debugreg(vcpu->arch.eff_db[1], 1);
7906 		set_debugreg(vcpu->arch.eff_db[2], 2);
7907 		set_debugreg(vcpu->arch.eff_db[3], 3);
7908 		set_debugreg(vcpu->arch.dr6, 6);
7909 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7910 	}
7911 
7912 	kvm_x86_ops->run(vcpu);
7913 
7914 	/*
7915 	 * Do this here before restoring debug registers on the host.  And
7916 	 * since we do this before handling the vmexit, a DR access vmexit
7917 	 * can (a) read the correct value of the debug registers, (b) set
7918 	 * KVM_DEBUGREG_WONT_EXIT again.
7919 	 */
7920 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7921 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7922 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7923 		kvm_update_dr0123(vcpu);
7924 		kvm_update_dr6(vcpu);
7925 		kvm_update_dr7(vcpu);
7926 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7927 	}
7928 
7929 	/*
7930 	 * If the guest has used debug registers, at least dr7
7931 	 * will be disabled while returning to the host.
7932 	 * If we don't have active breakpoints in the host, we don't
7933 	 * care about the messed up debug address registers. But if
7934 	 * we have some of them active, restore the old state.
7935 	 */
7936 	if (hw_breakpoint_active())
7937 		hw_breakpoint_restore();
7938 
7939 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7940 
7941 	vcpu->mode = OUTSIDE_GUEST_MODE;
7942 	smp_wmb();
7943 
7944 	kvm_before_interrupt(vcpu);
7945 	kvm_x86_ops->handle_external_intr(vcpu);
7946 	kvm_after_interrupt(vcpu);
7947 
7948 	++vcpu->stat.exits;
7949 
7950 	guest_exit_irqoff();
7951 
7952 	local_irq_enable();
7953 	preempt_enable();
7954 
7955 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7956 
7957 	/*
7958 	 * Profile KVM exit RIPs:
7959 	 */
7960 	if (unlikely(prof_on == KVM_PROFILING)) {
7961 		unsigned long rip = kvm_rip_read(vcpu);
7962 		profile_hit(KVM_PROFILING, (void *)rip);
7963 	}
7964 
7965 	if (unlikely(vcpu->arch.tsc_always_catchup))
7966 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7967 
7968 	if (vcpu->arch.apic_attention)
7969 		kvm_lapic_sync_from_vapic(vcpu);
7970 
7971 	vcpu->arch.gpa_available = false;
7972 	r = kvm_x86_ops->handle_exit(vcpu);
7973 	return r;
7974 
7975 cancel_injection:
7976 	kvm_x86_ops->cancel_injection(vcpu);
7977 	if (unlikely(vcpu->arch.apic_attention))
7978 		kvm_lapic_sync_from_vapic(vcpu);
7979 out:
7980 	return r;
7981 }
7982 
7983 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7984 {
7985 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7986 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7987 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7988 		kvm_vcpu_block(vcpu);
7989 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7990 
7991 		if (kvm_x86_ops->post_block)
7992 			kvm_x86_ops->post_block(vcpu);
7993 
7994 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7995 			return 1;
7996 	}
7997 
7998 	kvm_apic_accept_events(vcpu);
7999 	switch(vcpu->arch.mp_state) {
8000 	case KVM_MP_STATE_HALTED:
8001 		vcpu->arch.pv.pv_unhalted = false;
8002 		vcpu->arch.mp_state =
8003 			KVM_MP_STATE_RUNNABLE;
8004 		/* fall through */
8005 	case KVM_MP_STATE_RUNNABLE:
8006 		vcpu->arch.apf.halted = false;
8007 		break;
8008 	case KVM_MP_STATE_INIT_RECEIVED:
8009 		break;
8010 	default:
8011 		return -EINTR;
8012 		break;
8013 	}
8014 	return 1;
8015 }
8016 
8017 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8018 {
8019 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8020 		kvm_x86_ops->check_nested_events(vcpu, false);
8021 
8022 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8023 		!vcpu->arch.apf.halted);
8024 }
8025 
8026 static int vcpu_run(struct kvm_vcpu *vcpu)
8027 {
8028 	int r;
8029 	struct kvm *kvm = vcpu->kvm;
8030 
8031 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8032 	vcpu->arch.l1tf_flush_l1d = true;
8033 
8034 	for (;;) {
8035 		if (kvm_vcpu_running(vcpu)) {
8036 			r = vcpu_enter_guest(vcpu);
8037 		} else {
8038 			r = vcpu_block(kvm, vcpu);
8039 		}
8040 
8041 		if (r <= 0)
8042 			break;
8043 
8044 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8045 		if (kvm_cpu_has_pending_timer(vcpu))
8046 			kvm_inject_pending_timer_irqs(vcpu);
8047 
8048 		if (dm_request_for_irq_injection(vcpu) &&
8049 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8050 			r = 0;
8051 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8052 			++vcpu->stat.request_irq_exits;
8053 			break;
8054 		}
8055 
8056 		kvm_check_async_pf_completion(vcpu);
8057 
8058 		if (signal_pending(current)) {
8059 			r = -EINTR;
8060 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8061 			++vcpu->stat.signal_exits;
8062 			break;
8063 		}
8064 		if (need_resched()) {
8065 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8066 			cond_resched();
8067 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8068 		}
8069 	}
8070 
8071 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8072 
8073 	return r;
8074 }
8075 
8076 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8077 {
8078 	int r;
8079 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8080 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8081 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8082 	if (r != EMULATE_DONE)
8083 		return 0;
8084 	return 1;
8085 }
8086 
8087 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8088 {
8089 	BUG_ON(!vcpu->arch.pio.count);
8090 
8091 	return complete_emulated_io(vcpu);
8092 }
8093 
8094 /*
8095  * Implements the following, as a state machine:
8096  *
8097  * read:
8098  *   for each fragment
8099  *     for each mmio piece in the fragment
8100  *       write gpa, len
8101  *       exit
8102  *       copy data
8103  *   execute insn
8104  *
8105  * write:
8106  *   for each fragment
8107  *     for each mmio piece in the fragment
8108  *       write gpa, len
8109  *       copy data
8110  *       exit
8111  */
8112 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8113 {
8114 	struct kvm_run *run = vcpu->run;
8115 	struct kvm_mmio_fragment *frag;
8116 	unsigned len;
8117 
8118 	BUG_ON(!vcpu->mmio_needed);
8119 
8120 	/* Complete previous fragment */
8121 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8122 	len = min(8u, frag->len);
8123 	if (!vcpu->mmio_is_write)
8124 		memcpy(frag->data, run->mmio.data, len);
8125 
8126 	if (frag->len <= 8) {
8127 		/* Switch to the next fragment. */
8128 		frag++;
8129 		vcpu->mmio_cur_fragment++;
8130 	} else {
8131 		/* Go forward to the next mmio piece. */
8132 		frag->data += len;
8133 		frag->gpa += len;
8134 		frag->len -= len;
8135 	}
8136 
8137 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8138 		vcpu->mmio_needed = 0;
8139 
8140 		/* FIXME: return into emulator if single-stepping.  */
8141 		if (vcpu->mmio_is_write)
8142 			return 1;
8143 		vcpu->mmio_read_completed = 1;
8144 		return complete_emulated_io(vcpu);
8145 	}
8146 
8147 	run->exit_reason = KVM_EXIT_MMIO;
8148 	run->mmio.phys_addr = frag->gpa;
8149 	if (vcpu->mmio_is_write)
8150 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8151 	run->mmio.len = min(8u, frag->len);
8152 	run->mmio.is_write = vcpu->mmio_is_write;
8153 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8154 	return 0;
8155 }
8156 
8157 /* Swap (qemu) user FPU context for the guest FPU context. */
8158 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8159 {
8160 	preempt_disable();
8161 	copy_fpregs_to_fpstate(&current->thread.fpu);
8162 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8163 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8164 				~XFEATURE_MASK_PKRU);
8165 	preempt_enable();
8166 	trace_kvm_fpu(1);
8167 }
8168 
8169 /* When vcpu_run ends, restore user space FPU context. */
8170 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8171 {
8172 	preempt_disable();
8173 	copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8174 	copy_kernel_to_fpregs(&current->thread.fpu.state);
8175 	preempt_enable();
8176 	++vcpu->stat.fpu_reload;
8177 	trace_kvm_fpu(0);
8178 }
8179 
8180 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8181 {
8182 	int r;
8183 
8184 	vcpu_load(vcpu);
8185 	kvm_sigset_activate(vcpu);
8186 	kvm_load_guest_fpu(vcpu);
8187 
8188 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8189 		if (kvm_run->immediate_exit) {
8190 			r = -EINTR;
8191 			goto out;
8192 		}
8193 		kvm_vcpu_block(vcpu);
8194 		kvm_apic_accept_events(vcpu);
8195 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8196 		r = -EAGAIN;
8197 		if (signal_pending(current)) {
8198 			r = -EINTR;
8199 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8200 			++vcpu->stat.signal_exits;
8201 		}
8202 		goto out;
8203 	}
8204 
8205 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8206 		r = -EINVAL;
8207 		goto out;
8208 	}
8209 
8210 	if (vcpu->run->kvm_dirty_regs) {
8211 		r = sync_regs(vcpu);
8212 		if (r != 0)
8213 			goto out;
8214 	}
8215 
8216 	/* re-sync apic's tpr */
8217 	if (!lapic_in_kernel(vcpu)) {
8218 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8219 			r = -EINVAL;
8220 			goto out;
8221 		}
8222 	}
8223 
8224 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8225 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8226 		vcpu->arch.complete_userspace_io = NULL;
8227 		r = cui(vcpu);
8228 		if (r <= 0)
8229 			goto out;
8230 	} else
8231 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8232 
8233 	if (kvm_run->immediate_exit)
8234 		r = -EINTR;
8235 	else
8236 		r = vcpu_run(vcpu);
8237 
8238 out:
8239 	kvm_put_guest_fpu(vcpu);
8240 	if (vcpu->run->kvm_valid_regs)
8241 		store_regs(vcpu);
8242 	post_kvm_run_save(vcpu);
8243 	kvm_sigset_deactivate(vcpu);
8244 
8245 	vcpu_put(vcpu);
8246 	return r;
8247 }
8248 
8249 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8250 {
8251 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8252 		/*
8253 		 * We are here if userspace calls get_regs() in the middle of
8254 		 * instruction emulation. Registers state needs to be copied
8255 		 * back from emulation context to vcpu. Userspace shouldn't do
8256 		 * that usually, but some bad designed PV devices (vmware
8257 		 * backdoor interface) need this to work
8258 		 */
8259 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8260 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8261 	}
8262 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8263 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8264 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8265 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8266 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8267 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8268 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8269 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8270 #ifdef CONFIG_X86_64
8271 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8272 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8273 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8274 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8275 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8276 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8277 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8278 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8279 #endif
8280 
8281 	regs->rip = kvm_rip_read(vcpu);
8282 	regs->rflags = kvm_get_rflags(vcpu);
8283 }
8284 
8285 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8286 {
8287 	vcpu_load(vcpu);
8288 	__get_regs(vcpu, regs);
8289 	vcpu_put(vcpu);
8290 	return 0;
8291 }
8292 
8293 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8294 {
8295 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8296 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8297 
8298 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8299 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8300 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8301 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8302 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8303 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8304 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8305 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8306 #ifdef CONFIG_X86_64
8307 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8308 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8309 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8310 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8311 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8312 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8313 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8314 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8315 #endif
8316 
8317 	kvm_rip_write(vcpu, regs->rip);
8318 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8319 
8320 	vcpu->arch.exception.pending = false;
8321 
8322 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8323 }
8324 
8325 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8326 {
8327 	vcpu_load(vcpu);
8328 	__set_regs(vcpu, regs);
8329 	vcpu_put(vcpu);
8330 	return 0;
8331 }
8332 
8333 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8334 {
8335 	struct kvm_segment cs;
8336 
8337 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8338 	*db = cs.db;
8339 	*l = cs.l;
8340 }
8341 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8342 
8343 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8344 {
8345 	struct desc_ptr dt;
8346 
8347 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8348 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8349 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8350 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8351 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8352 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8353 
8354 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8355 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8356 
8357 	kvm_x86_ops->get_idt(vcpu, &dt);
8358 	sregs->idt.limit = dt.size;
8359 	sregs->idt.base = dt.address;
8360 	kvm_x86_ops->get_gdt(vcpu, &dt);
8361 	sregs->gdt.limit = dt.size;
8362 	sregs->gdt.base = dt.address;
8363 
8364 	sregs->cr0 = kvm_read_cr0(vcpu);
8365 	sregs->cr2 = vcpu->arch.cr2;
8366 	sregs->cr3 = kvm_read_cr3(vcpu);
8367 	sregs->cr4 = kvm_read_cr4(vcpu);
8368 	sregs->cr8 = kvm_get_cr8(vcpu);
8369 	sregs->efer = vcpu->arch.efer;
8370 	sregs->apic_base = kvm_get_apic_base(vcpu);
8371 
8372 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8373 
8374 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8375 		set_bit(vcpu->arch.interrupt.nr,
8376 			(unsigned long *)sregs->interrupt_bitmap);
8377 }
8378 
8379 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8380 				  struct kvm_sregs *sregs)
8381 {
8382 	vcpu_load(vcpu);
8383 	__get_sregs(vcpu, sregs);
8384 	vcpu_put(vcpu);
8385 	return 0;
8386 }
8387 
8388 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8389 				    struct kvm_mp_state *mp_state)
8390 {
8391 	vcpu_load(vcpu);
8392 
8393 	kvm_apic_accept_events(vcpu);
8394 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8395 					vcpu->arch.pv.pv_unhalted)
8396 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8397 	else
8398 		mp_state->mp_state = vcpu->arch.mp_state;
8399 
8400 	vcpu_put(vcpu);
8401 	return 0;
8402 }
8403 
8404 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8405 				    struct kvm_mp_state *mp_state)
8406 {
8407 	int ret = -EINVAL;
8408 
8409 	vcpu_load(vcpu);
8410 
8411 	if (!lapic_in_kernel(vcpu) &&
8412 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8413 		goto out;
8414 
8415 	/* INITs are latched while in SMM */
8416 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8417 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8418 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8419 		goto out;
8420 
8421 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8422 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8423 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8424 	} else
8425 		vcpu->arch.mp_state = mp_state->mp_state;
8426 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8427 
8428 	ret = 0;
8429 out:
8430 	vcpu_put(vcpu);
8431 	return ret;
8432 }
8433 
8434 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8435 		    int reason, bool has_error_code, u32 error_code)
8436 {
8437 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8438 	int ret;
8439 
8440 	init_emulate_ctxt(vcpu);
8441 
8442 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8443 				   has_error_code, error_code);
8444 
8445 	if (ret)
8446 		return EMULATE_FAIL;
8447 
8448 	kvm_rip_write(vcpu, ctxt->eip);
8449 	kvm_set_rflags(vcpu, ctxt->eflags);
8450 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8451 	return EMULATE_DONE;
8452 }
8453 EXPORT_SYMBOL_GPL(kvm_task_switch);
8454 
8455 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8456 {
8457 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8458 			(sregs->cr4 & X86_CR4_OSXSAVE))
8459 		return  -EINVAL;
8460 
8461 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8462 		/*
8463 		 * When EFER.LME and CR0.PG are set, the processor is in
8464 		 * 64-bit mode (though maybe in a 32-bit code segment).
8465 		 * CR4.PAE and EFER.LMA must be set.
8466 		 */
8467 		if (!(sregs->cr4 & X86_CR4_PAE)
8468 		    || !(sregs->efer & EFER_LMA))
8469 			return -EINVAL;
8470 	} else {
8471 		/*
8472 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8473 		 * segment cannot be 64-bit.
8474 		 */
8475 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8476 			return -EINVAL;
8477 	}
8478 
8479 	return 0;
8480 }
8481 
8482 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8483 {
8484 	struct msr_data apic_base_msr;
8485 	int mmu_reset_needed = 0;
8486 	int cpuid_update_needed = 0;
8487 	int pending_vec, max_bits, idx;
8488 	struct desc_ptr dt;
8489 	int ret = -EINVAL;
8490 
8491 	if (kvm_valid_sregs(vcpu, sregs))
8492 		goto out;
8493 
8494 	apic_base_msr.data = sregs->apic_base;
8495 	apic_base_msr.host_initiated = true;
8496 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8497 		goto out;
8498 
8499 	dt.size = sregs->idt.limit;
8500 	dt.address = sregs->idt.base;
8501 	kvm_x86_ops->set_idt(vcpu, &dt);
8502 	dt.size = sregs->gdt.limit;
8503 	dt.address = sregs->gdt.base;
8504 	kvm_x86_ops->set_gdt(vcpu, &dt);
8505 
8506 	vcpu->arch.cr2 = sregs->cr2;
8507 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8508 	vcpu->arch.cr3 = sregs->cr3;
8509 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8510 
8511 	kvm_set_cr8(vcpu, sregs->cr8);
8512 
8513 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8514 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8515 
8516 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8517 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8518 	vcpu->arch.cr0 = sregs->cr0;
8519 
8520 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8521 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8522 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8523 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8524 	if (cpuid_update_needed)
8525 		kvm_update_cpuid(vcpu);
8526 
8527 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8528 	if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8529 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8530 		mmu_reset_needed = 1;
8531 	}
8532 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8533 
8534 	if (mmu_reset_needed)
8535 		kvm_mmu_reset_context(vcpu);
8536 
8537 	max_bits = KVM_NR_INTERRUPTS;
8538 	pending_vec = find_first_bit(
8539 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
8540 	if (pending_vec < max_bits) {
8541 		kvm_queue_interrupt(vcpu, pending_vec, false);
8542 		pr_debug("Set back pending irq %d\n", pending_vec);
8543 	}
8544 
8545 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8546 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8547 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8548 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8549 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8550 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8551 
8552 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8553 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8554 
8555 	update_cr8_intercept(vcpu);
8556 
8557 	/* Older userspace won't unhalt the vcpu on reset. */
8558 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8559 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8560 	    !is_protmode(vcpu))
8561 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8562 
8563 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8564 
8565 	ret = 0;
8566 out:
8567 	return ret;
8568 }
8569 
8570 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8571 				  struct kvm_sregs *sregs)
8572 {
8573 	int ret;
8574 
8575 	vcpu_load(vcpu);
8576 	ret = __set_sregs(vcpu, sregs);
8577 	vcpu_put(vcpu);
8578 	return ret;
8579 }
8580 
8581 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8582 					struct kvm_guest_debug *dbg)
8583 {
8584 	unsigned long rflags;
8585 	int i, r;
8586 
8587 	vcpu_load(vcpu);
8588 
8589 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8590 		r = -EBUSY;
8591 		if (vcpu->arch.exception.pending)
8592 			goto out;
8593 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8594 			kvm_queue_exception(vcpu, DB_VECTOR);
8595 		else
8596 			kvm_queue_exception(vcpu, BP_VECTOR);
8597 	}
8598 
8599 	/*
8600 	 * Read rflags as long as potentially injected trace flags are still
8601 	 * filtered out.
8602 	 */
8603 	rflags = kvm_get_rflags(vcpu);
8604 
8605 	vcpu->guest_debug = dbg->control;
8606 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8607 		vcpu->guest_debug = 0;
8608 
8609 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8610 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
8611 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8612 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8613 	} else {
8614 		for (i = 0; i < KVM_NR_DB_REGS; i++)
8615 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8616 	}
8617 	kvm_update_dr7(vcpu);
8618 
8619 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8620 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8621 			get_segment_base(vcpu, VCPU_SREG_CS);
8622 
8623 	/*
8624 	 * Trigger an rflags update that will inject or remove the trace
8625 	 * flags.
8626 	 */
8627 	kvm_set_rflags(vcpu, rflags);
8628 
8629 	kvm_x86_ops->update_bp_intercept(vcpu);
8630 
8631 	r = 0;
8632 
8633 out:
8634 	vcpu_put(vcpu);
8635 	return r;
8636 }
8637 
8638 /*
8639  * Translate a guest virtual address to a guest physical address.
8640  */
8641 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8642 				    struct kvm_translation *tr)
8643 {
8644 	unsigned long vaddr = tr->linear_address;
8645 	gpa_t gpa;
8646 	int idx;
8647 
8648 	vcpu_load(vcpu);
8649 
8650 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8651 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8652 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8653 	tr->physical_address = gpa;
8654 	tr->valid = gpa != UNMAPPED_GVA;
8655 	tr->writeable = 1;
8656 	tr->usermode = 0;
8657 
8658 	vcpu_put(vcpu);
8659 	return 0;
8660 }
8661 
8662 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8663 {
8664 	struct fxregs_state *fxsave;
8665 
8666 	vcpu_load(vcpu);
8667 
8668 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8669 	memcpy(fpu->fpr, fxsave->st_space, 128);
8670 	fpu->fcw = fxsave->cwd;
8671 	fpu->fsw = fxsave->swd;
8672 	fpu->ftwx = fxsave->twd;
8673 	fpu->last_opcode = fxsave->fop;
8674 	fpu->last_ip = fxsave->rip;
8675 	fpu->last_dp = fxsave->rdp;
8676 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8677 
8678 	vcpu_put(vcpu);
8679 	return 0;
8680 }
8681 
8682 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8683 {
8684 	struct fxregs_state *fxsave;
8685 
8686 	vcpu_load(vcpu);
8687 
8688 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8689 
8690 	memcpy(fxsave->st_space, fpu->fpr, 128);
8691 	fxsave->cwd = fpu->fcw;
8692 	fxsave->swd = fpu->fsw;
8693 	fxsave->twd = fpu->ftwx;
8694 	fxsave->fop = fpu->last_opcode;
8695 	fxsave->rip = fpu->last_ip;
8696 	fxsave->rdp = fpu->last_dp;
8697 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8698 
8699 	vcpu_put(vcpu);
8700 	return 0;
8701 }
8702 
8703 static void store_regs(struct kvm_vcpu *vcpu)
8704 {
8705 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8706 
8707 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8708 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
8709 
8710 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8711 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8712 
8713 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8714 		kvm_vcpu_ioctl_x86_get_vcpu_events(
8715 				vcpu, &vcpu->run->s.regs.events);
8716 }
8717 
8718 static int sync_regs(struct kvm_vcpu *vcpu)
8719 {
8720 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8721 		return -EINVAL;
8722 
8723 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8724 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
8725 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8726 	}
8727 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8728 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8729 			return -EINVAL;
8730 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8731 	}
8732 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8733 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8734 				vcpu, &vcpu->run->s.regs.events))
8735 			return -EINVAL;
8736 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8737 	}
8738 
8739 	return 0;
8740 }
8741 
8742 static void fx_init(struct kvm_vcpu *vcpu)
8743 {
8744 	fpstate_init(&vcpu->arch.guest_fpu->state);
8745 	if (boot_cpu_has(X86_FEATURE_XSAVES))
8746 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8747 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
8748 
8749 	/*
8750 	 * Ensure guest xcr0 is valid for loading
8751 	 */
8752 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8753 
8754 	vcpu->arch.cr0 |= X86_CR0_ET;
8755 }
8756 
8757 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8758 {
8759 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8760 
8761 	kvmclock_reset(vcpu);
8762 
8763 	kvm_x86_ops->vcpu_free(vcpu);
8764 	free_cpumask_var(wbinvd_dirty_mask);
8765 }
8766 
8767 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8768 						unsigned int id)
8769 {
8770 	struct kvm_vcpu *vcpu;
8771 
8772 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8773 		printk_once(KERN_WARNING
8774 		"kvm: SMP vm created on host with unstable TSC; "
8775 		"guest TSC will not be reliable\n");
8776 
8777 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8778 
8779 	return vcpu;
8780 }
8781 
8782 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8783 {
8784 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8785 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8786 	kvm_vcpu_mtrr_init(vcpu);
8787 	vcpu_load(vcpu);
8788 	kvm_vcpu_reset(vcpu, false);
8789 	kvm_init_mmu(vcpu, false);
8790 	vcpu_put(vcpu);
8791 	return 0;
8792 }
8793 
8794 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8795 {
8796 	struct msr_data msr;
8797 	struct kvm *kvm = vcpu->kvm;
8798 
8799 	kvm_hv_vcpu_postcreate(vcpu);
8800 
8801 	if (mutex_lock_killable(&vcpu->mutex))
8802 		return;
8803 	vcpu_load(vcpu);
8804 	msr.data = 0x0;
8805 	msr.index = MSR_IA32_TSC;
8806 	msr.host_initiated = true;
8807 	kvm_write_tsc(vcpu, &msr);
8808 	vcpu_put(vcpu);
8809 	mutex_unlock(&vcpu->mutex);
8810 
8811 	if (!kvmclock_periodic_sync)
8812 		return;
8813 
8814 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8815 					KVMCLOCK_SYNC_PERIOD);
8816 }
8817 
8818 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8819 {
8820 	vcpu->arch.apf.msr_val = 0;
8821 
8822 	vcpu_load(vcpu);
8823 	kvm_mmu_unload(vcpu);
8824 	vcpu_put(vcpu);
8825 
8826 	kvm_x86_ops->vcpu_free(vcpu);
8827 }
8828 
8829 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8830 {
8831 	kvm_lapic_reset(vcpu, init_event);
8832 
8833 	vcpu->arch.hflags = 0;
8834 
8835 	vcpu->arch.smi_pending = 0;
8836 	vcpu->arch.smi_count = 0;
8837 	atomic_set(&vcpu->arch.nmi_queued, 0);
8838 	vcpu->arch.nmi_pending = 0;
8839 	vcpu->arch.nmi_injected = false;
8840 	kvm_clear_interrupt_queue(vcpu);
8841 	kvm_clear_exception_queue(vcpu);
8842 	vcpu->arch.exception.pending = false;
8843 
8844 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8845 	kvm_update_dr0123(vcpu);
8846 	vcpu->arch.dr6 = DR6_INIT;
8847 	kvm_update_dr6(vcpu);
8848 	vcpu->arch.dr7 = DR7_FIXED_1;
8849 	kvm_update_dr7(vcpu);
8850 
8851 	vcpu->arch.cr2 = 0;
8852 
8853 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8854 	vcpu->arch.apf.msr_val = 0;
8855 	vcpu->arch.st.msr_val = 0;
8856 
8857 	kvmclock_reset(vcpu);
8858 
8859 	kvm_clear_async_pf_completion_queue(vcpu);
8860 	kvm_async_pf_hash_reset(vcpu);
8861 	vcpu->arch.apf.halted = false;
8862 
8863 	if (kvm_mpx_supported()) {
8864 		void *mpx_state_buffer;
8865 
8866 		/*
8867 		 * To avoid have the INIT path from kvm_apic_has_events() that be
8868 		 * called with loaded FPU and does not let userspace fix the state.
8869 		 */
8870 		if (init_event)
8871 			kvm_put_guest_fpu(vcpu);
8872 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8873 					XFEATURE_MASK_BNDREGS);
8874 		if (mpx_state_buffer)
8875 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8876 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8877 					XFEATURE_MASK_BNDCSR);
8878 		if (mpx_state_buffer)
8879 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8880 		if (init_event)
8881 			kvm_load_guest_fpu(vcpu);
8882 	}
8883 
8884 	if (!init_event) {
8885 		kvm_pmu_reset(vcpu);
8886 		vcpu->arch.smbase = 0x30000;
8887 
8888 		vcpu->arch.msr_misc_features_enables = 0;
8889 
8890 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8891 	}
8892 
8893 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8894 	vcpu->arch.regs_avail = ~0;
8895 	vcpu->arch.regs_dirty = ~0;
8896 
8897 	vcpu->arch.ia32_xss = 0;
8898 
8899 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
8900 }
8901 
8902 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8903 {
8904 	struct kvm_segment cs;
8905 
8906 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8907 	cs.selector = vector << 8;
8908 	cs.base = vector << 12;
8909 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8910 	kvm_rip_write(vcpu, 0);
8911 }
8912 
8913 int kvm_arch_hardware_enable(void)
8914 {
8915 	struct kvm *kvm;
8916 	struct kvm_vcpu *vcpu;
8917 	int i;
8918 	int ret;
8919 	u64 local_tsc;
8920 	u64 max_tsc = 0;
8921 	bool stable, backwards_tsc = false;
8922 
8923 	kvm_shared_msr_cpu_online();
8924 	ret = kvm_x86_ops->hardware_enable();
8925 	if (ret != 0)
8926 		return ret;
8927 
8928 	local_tsc = rdtsc();
8929 	stable = !kvm_check_tsc_unstable();
8930 	list_for_each_entry(kvm, &vm_list, vm_list) {
8931 		kvm_for_each_vcpu(i, vcpu, kvm) {
8932 			if (!stable && vcpu->cpu == smp_processor_id())
8933 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8934 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8935 				backwards_tsc = true;
8936 				if (vcpu->arch.last_host_tsc > max_tsc)
8937 					max_tsc = vcpu->arch.last_host_tsc;
8938 			}
8939 		}
8940 	}
8941 
8942 	/*
8943 	 * Sometimes, even reliable TSCs go backwards.  This happens on
8944 	 * platforms that reset TSC during suspend or hibernate actions, but
8945 	 * maintain synchronization.  We must compensate.  Fortunately, we can
8946 	 * detect that condition here, which happens early in CPU bringup,
8947 	 * before any KVM threads can be running.  Unfortunately, we can't
8948 	 * bring the TSCs fully up to date with real time, as we aren't yet far
8949 	 * enough into CPU bringup that we know how much real time has actually
8950 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8951 	 * variables that haven't been updated yet.
8952 	 *
8953 	 * So we simply find the maximum observed TSC above, then record the
8954 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8955 	 * the adjustment will be applied.  Note that we accumulate
8956 	 * adjustments, in case multiple suspend cycles happen before some VCPU
8957 	 * gets a chance to run again.  In the event that no KVM threads get a
8958 	 * chance to run, we will miss the entire elapsed period, as we'll have
8959 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8960 	 * loose cycle time.  This isn't too big a deal, since the loss will be
8961 	 * uniform across all VCPUs (not to mention the scenario is extremely
8962 	 * unlikely). It is possible that a second hibernate recovery happens
8963 	 * much faster than a first, causing the observed TSC here to be
8964 	 * smaller; this would require additional padding adjustment, which is
8965 	 * why we set last_host_tsc to the local tsc observed here.
8966 	 *
8967 	 * N.B. - this code below runs only on platforms with reliable TSC,
8968 	 * as that is the only way backwards_tsc is set above.  Also note
8969 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8970 	 * have the same delta_cyc adjustment applied if backwards_tsc
8971 	 * is detected.  Note further, this adjustment is only done once,
8972 	 * as we reset last_host_tsc on all VCPUs to stop this from being
8973 	 * called multiple times (one for each physical CPU bringup).
8974 	 *
8975 	 * Platforms with unreliable TSCs don't have to deal with this, they
8976 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
8977 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
8978 	 * guarantee that they stay in perfect synchronization.
8979 	 */
8980 	if (backwards_tsc) {
8981 		u64 delta_cyc = max_tsc - local_tsc;
8982 		list_for_each_entry(kvm, &vm_list, vm_list) {
8983 			kvm->arch.backwards_tsc_observed = true;
8984 			kvm_for_each_vcpu(i, vcpu, kvm) {
8985 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
8986 				vcpu->arch.last_host_tsc = local_tsc;
8987 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8988 			}
8989 
8990 			/*
8991 			 * We have to disable TSC offset matching.. if you were
8992 			 * booting a VM while issuing an S4 host suspend....
8993 			 * you may have some problem.  Solving this issue is
8994 			 * left as an exercise to the reader.
8995 			 */
8996 			kvm->arch.last_tsc_nsec = 0;
8997 			kvm->arch.last_tsc_write = 0;
8998 		}
8999 
9000 	}
9001 	return 0;
9002 }
9003 
9004 void kvm_arch_hardware_disable(void)
9005 {
9006 	kvm_x86_ops->hardware_disable();
9007 	drop_user_return_notifiers();
9008 }
9009 
9010 int kvm_arch_hardware_setup(void)
9011 {
9012 	int r;
9013 
9014 	r = kvm_x86_ops->hardware_setup();
9015 	if (r != 0)
9016 		return r;
9017 
9018 	if (kvm_has_tsc_control) {
9019 		/*
9020 		 * Make sure the user can only configure tsc_khz values that
9021 		 * fit into a signed integer.
9022 		 * A min value is not calculated because it will always
9023 		 * be 1 on all machines.
9024 		 */
9025 		u64 max = min(0x7fffffffULL,
9026 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9027 		kvm_max_guest_tsc_khz = max;
9028 
9029 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9030 	}
9031 
9032 	kvm_init_msr_list();
9033 	return 0;
9034 }
9035 
9036 void kvm_arch_hardware_unsetup(void)
9037 {
9038 	kvm_x86_ops->hardware_unsetup();
9039 }
9040 
9041 void kvm_arch_check_processor_compat(void *rtn)
9042 {
9043 	kvm_x86_ops->check_processor_compatibility(rtn);
9044 }
9045 
9046 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9047 {
9048 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9049 }
9050 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9051 
9052 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9053 {
9054 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9055 }
9056 
9057 struct static_key kvm_no_apic_vcpu __read_mostly;
9058 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9059 
9060 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9061 {
9062 	struct page *page;
9063 	int r;
9064 
9065 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9066 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9067 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9068 	else
9069 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9070 
9071 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9072 	if (!page) {
9073 		r = -ENOMEM;
9074 		goto fail;
9075 	}
9076 	vcpu->arch.pio_data = page_address(page);
9077 
9078 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9079 
9080 	r = kvm_mmu_create(vcpu);
9081 	if (r < 0)
9082 		goto fail_free_pio_data;
9083 
9084 	if (irqchip_in_kernel(vcpu->kvm)) {
9085 		vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9086 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9087 		if (r < 0)
9088 			goto fail_mmu_destroy;
9089 	} else
9090 		static_key_slow_inc(&kvm_no_apic_vcpu);
9091 
9092 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9093 				       GFP_KERNEL_ACCOUNT);
9094 	if (!vcpu->arch.mce_banks) {
9095 		r = -ENOMEM;
9096 		goto fail_free_lapic;
9097 	}
9098 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9099 
9100 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9101 				GFP_KERNEL_ACCOUNT)) {
9102 		r = -ENOMEM;
9103 		goto fail_free_mce_banks;
9104 	}
9105 
9106 	fx_init(vcpu);
9107 
9108 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9109 
9110 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9111 
9112 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9113 
9114 	kvm_async_pf_hash_reset(vcpu);
9115 	kvm_pmu_init(vcpu);
9116 
9117 	vcpu->arch.pending_external_vector = -1;
9118 	vcpu->arch.preempted_in_kernel = false;
9119 
9120 	kvm_hv_vcpu_init(vcpu);
9121 
9122 	return 0;
9123 
9124 fail_free_mce_banks:
9125 	kfree(vcpu->arch.mce_banks);
9126 fail_free_lapic:
9127 	kvm_free_lapic(vcpu);
9128 fail_mmu_destroy:
9129 	kvm_mmu_destroy(vcpu);
9130 fail_free_pio_data:
9131 	free_page((unsigned long)vcpu->arch.pio_data);
9132 fail:
9133 	return r;
9134 }
9135 
9136 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9137 {
9138 	int idx;
9139 
9140 	kvm_hv_vcpu_uninit(vcpu);
9141 	kvm_pmu_destroy(vcpu);
9142 	kfree(vcpu->arch.mce_banks);
9143 	kvm_free_lapic(vcpu);
9144 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9145 	kvm_mmu_destroy(vcpu);
9146 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9147 	free_page((unsigned long)vcpu->arch.pio_data);
9148 	if (!lapic_in_kernel(vcpu))
9149 		static_key_slow_dec(&kvm_no_apic_vcpu);
9150 }
9151 
9152 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9153 {
9154 	vcpu->arch.l1tf_flush_l1d = true;
9155 	kvm_x86_ops->sched_in(vcpu, cpu);
9156 }
9157 
9158 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9159 {
9160 	if (type)
9161 		return -EINVAL;
9162 
9163 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9164 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9165 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9166 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9167 
9168 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9169 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9170 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9171 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9172 		&kvm->arch.irq_sources_bitmap);
9173 
9174 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9175 	mutex_init(&kvm->arch.apic_map_lock);
9176 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9177 
9178 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9179 	pvclock_update_vm_gtod_copy(kvm);
9180 
9181 	kvm->arch.guest_can_read_msr_platform_info = true;
9182 
9183 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9184 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9185 
9186 	kvm_hv_init_vm(kvm);
9187 	kvm_page_track_init(kvm);
9188 	kvm_mmu_init_vm(kvm);
9189 
9190 	if (kvm_x86_ops->vm_init)
9191 		return kvm_x86_ops->vm_init(kvm);
9192 
9193 	return 0;
9194 }
9195 
9196 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9197 {
9198 	vcpu_load(vcpu);
9199 	kvm_mmu_unload(vcpu);
9200 	vcpu_put(vcpu);
9201 }
9202 
9203 static void kvm_free_vcpus(struct kvm *kvm)
9204 {
9205 	unsigned int i;
9206 	struct kvm_vcpu *vcpu;
9207 
9208 	/*
9209 	 * Unpin any mmu pages first.
9210 	 */
9211 	kvm_for_each_vcpu(i, vcpu, kvm) {
9212 		kvm_clear_async_pf_completion_queue(vcpu);
9213 		kvm_unload_vcpu_mmu(vcpu);
9214 	}
9215 	kvm_for_each_vcpu(i, vcpu, kvm)
9216 		kvm_arch_vcpu_free(vcpu);
9217 
9218 	mutex_lock(&kvm->lock);
9219 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9220 		kvm->vcpus[i] = NULL;
9221 
9222 	atomic_set(&kvm->online_vcpus, 0);
9223 	mutex_unlock(&kvm->lock);
9224 }
9225 
9226 void kvm_arch_sync_events(struct kvm *kvm)
9227 {
9228 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9229 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9230 	kvm_free_pit(kvm);
9231 }
9232 
9233 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9234 {
9235 	int i, r;
9236 	unsigned long hva;
9237 	struct kvm_memslots *slots = kvm_memslots(kvm);
9238 	struct kvm_memory_slot *slot, old;
9239 
9240 	/* Called with kvm->slots_lock held.  */
9241 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9242 		return -EINVAL;
9243 
9244 	slot = id_to_memslot(slots, id);
9245 	if (size) {
9246 		if (slot->npages)
9247 			return -EEXIST;
9248 
9249 		/*
9250 		 * MAP_SHARED to prevent internal slot pages from being moved
9251 		 * by fork()/COW.
9252 		 */
9253 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9254 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9255 		if (IS_ERR((void *)hva))
9256 			return PTR_ERR((void *)hva);
9257 	} else {
9258 		if (!slot->npages)
9259 			return 0;
9260 
9261 		hva = 0;
9262 	}
9263 
9264 	old = *slot;
9265 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9266 		struct kvm_userspace_memory_region m;
9267 
9268 		m.slot = id | (i << 16);
9269 		m.flags = 0;
9270 		m.guest_phys_addr = gpa;
9271 		m.userspace_addr = hva;
9272 		m.memory_size = size;
9273 		r = __kvm_set_memory_region(kvm, &m);
9274 		if (r < 0)
9275 			return r;
9276 	}
9277 
9278 	if (!size)
9279 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9280 
9281 	return 0;
9282 }
9283 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9284 
9285 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9286 {
9287 	int r;
9288 
9289 	mutex_lock(&kvm->slots_lock);
9290 	r = __x86_set_memory_region(kvm, id, gpa, size);
9291 	mutex_unlock(&kvm->slots_lock);
9292 
9293 	return r;
9294 }
9295 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9296 
9297 void kvm_arch_destroy_vm(struct kvm *kvm)
9298 {
9299 	if (current->mm == kvm->mm) {
9300 		/*
9301 		 * Free memory regions allocated on behalf of userspace,
9302 		 * unless the the memory map has changed due to process exit
9303 		 * or fd copying.
9304 		 */
9305 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9306 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9307 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9308 	}
9309 	if (kvm_x86_ops->vm_destroy)
9310 		kvm_x86_ops->vm_destroy(kvm);
9311 	kvm_pic_destroy(kvm);
9312 	kvm_ioapic_destroy(kvm);
9313 	kvm_free_vcpus(kvm);
9314 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9315 	kvm_mmu_uninit_vm(kvm);
9316 	kvm_page_track_cleanup(kvm);
9317 	kvm_hv_destroy_vm(kvm);
9318 }
9319 
9320 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9321 			   struct kvm_memory_slot *dont)
9322 {
9323 	int i;
9324 
9325 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9326 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9327 			kvfree(free->arch.rmap[i]);
9328 			free->arch.rmap[i] = NULL;
9329 		}
9330 		if (i == 0)
9331 			continue;
9332 
9333 		if (!dont || free->arch.lpage_info[i - 1] !=
9334 			     dont->arch.lpage_info[i - 1]) {
9335 			kvfree(free->arch.lpage_info[i - 1]);
9336 			free->arch.lpage_info[i - 1] = NULL;
9337 		}
9338 	}
9339 
9340 	kvm_page_track_free_memslot(free, dont);
9341 }
9342 
9343 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9344 			    unsigned long npages)
9345 {
9346 	int i;
9347 
9348 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9349 		struct kvm_lpage_info *linfo;
9350 		unsigned long ugfn;
9351 		int lpages;
9352 		int level = i + 1;
9353 
9354 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9355 				      slot->base_gfn, level) + 1;
9356 
9357 		slot->arch.rmap[i] =
9358 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9359 				 GFP_KERNEL_ACCOUNT);
9360 		if (!slot->arch.rmap[i])
9361 			goto out_free;
9362 		if (i == 0)
9363 			continue;
9364 
9365 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9366 		if (!linfo)
9367 			goto out_free;
9368 
9369 		slot->arch.lpage_info[i - 1] = linfo;
9370 
9371 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9372 			linfo[0].disallow_lpage = 1;
9373 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9374 			linfo[lpages - 1].disallow_lpage = 1;
9375 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9376 		/*
9377 		 * If the gfn and userspace address are not aligned wrt each
9378 		 * other, or if explicitly asked to, disable large page
9379 		 * support for this slot
9380 		 */
9381 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9382 		    !kvm_largepages_enabled()) {
9383 			unsigned long j;
9384 
9385 			for (j = 0; j < lpages; ++j)
9386 				linfo[j].disallow_lpage = 1;
9387 		}
9388 	}
9389 
9390 	if (kvm_page_track_create_memslot(slot, npages))
9391 		goto out_free;
9392 
9393 	return 0;
9394 
9395 out_free:
9396 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9397 		kvfree(slot->arch.rmap[i]);
9398 		slot->arch.rmap[i] = NULL;
9399 		if (i == 0)
9400 			continue;
9401 
9402 		kvfree(slot->arch.lpage_info[i - 1]);
9403 		slot->arch.lpage_info[i - 1] = NULL;
9404 	}
9405 	return -ENOMEM;
9406 }
9407 
9408 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9409 {
9410 	/*
9411 	 * memslots->generation has been incremented.
9412 	 * mmio generation may have reached its maximum value.
9413 	 */
9414 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9415 }
9416 
9417 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9418 				struct kvm_memory_slot *memslot,
9419 				const struct kvm_userspace_memory_region *mem,
9420 				enum kvm_mr_change change)
9421 {
9422 	return 0;
9423 }
9424 
9425 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9426 				     struct kvm_memory_slot *new)
9427 {
9428 	/* Still write protect RO slot */
9429 	if (new->flags & KVM_MEM_READONLY) {
9430 		kvm_mmu_slot_remove_write_access(kvm, new);
9431 		return;
9432 	}
9433 
9434 	/*
9435 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9436 	 *
9437 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9438 	 *
9439 	 *  - KVM_MR_CREATE with dirty logging is disabled
9440 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9441 	 *
9442 	 * The reason is, in case of PML, we need to set D-bit for any slots
9443 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9444 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9445 	 * guarantees leaving PML enabled during guest's lifetime won't have
9446 	 * any additional overhead from PML when guest is running with dirty
9447 	 * logging disabled for memory slots.
9448 	 *
9449 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9450 	 * to dirty logging mode.
9451 	 *
9452 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9453 	 *
9454 	 * In case of write protect:
9455 	 *
9456 	 * Write protect all pages for dirty logging.
9457 	 *
9458 	 * All the sptes including the large sptes which point to this
9459 	 * slot are set to readonly. We can not create any new large
9460 	 * spte on this slot until the end of the logging.
9461 	 *
9462 	 * See the comments in fast_page_fault().
9463 	 */
9464 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9465 		if (kvm_x86_ops->slot_enable_log_dirty)
9466 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9467 		else
9468 			kvm_mmu_slot_remove_write_access(kvm, new);
9469 	} else {
9470 		if (kvm_x86_ops->slot_disable_log_dirty)
9471 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9472 	}
9473 }
9474 
9475 void kvm_arch_commit_memory_region(struct kvm *kvm,
9476 				const struct kvm_userspace_memory_region *mem,
9477 				const struct kvm_memory_slot *old,
9478 				const struct kvm_memory_slot *new,
9479 				enum kvm_mr_change change)
9480 {
9481 	if (!kvm->arch.n_requested_mmu_pages)
9482 		kvm_mmu_change_mmu_pages(kvm,
9483 				kvm_mmu_calculate_default_mmu_pages(kvm));
9484 
9485 	/*
9486 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9487 	 * sptes have to be split.  If live migration is successful, the guest
9488 	 * in the source machine will be destroyed and large sptes will be
9489 	 * created in the destination. However, if the guest continues to run
9490 	 * in the source machine (for example if live migration fails), small
9491 	 * sptes will remain around and cause bad performance.
9492 	 *
9493 	 * Scan sptes if dirty logging has been stopped, dropping those
9494 	 * which can be collapsed into a single large-page spte.  Later
9495 	 * page faults will create the large-page sptes.
9496 	 */
9497 	if ((change != KVM_MR_DELETE) &&
9498 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9499 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9500 		kvm_mmu_zap_collapsible_sptes(kvm, new);
9501 
9502 	/*
9503 	 * Set up write protection and/or dirty logging for the new slot.
9504 	 *
9505 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9506 	 * been zapped so no dirty logging staff is needed for old slot. For
9507 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9508 	 * new and it's also covered when dealing with the new slot.
9509 	 *
9510 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
9511 	 */
9512 	if (change != KVM_MR_DELETE)
9513 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9514 }
9515 
9516 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9517 {
9518 	kvm_mmu_zap_all(kvm);
9519 }
9520 
9521 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9522 				   struct kvm_memory_slot *slot)
9523 {
9524 	kvm_page_track_flush_slot(kvm, slot);
9525 }
9526 
9527 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9528 {
9529 	return (is_guest_mode(vcpu) &&
9530 			kvm_x86_ops->guest_apic_has_interrupt &&
9531 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9532 }
9533 
9534 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9535 {
9536 	if (!list_empty_careful(&vcpu->async_pf.done))
9537 		return true;
9538 
9539 	if (kvm_apic_has_events(vcpu))
9540 		return true;
9541 
9542 	if (vcpu->arch.pv.pv_unhalted)
9543 		return true;
9544 
9545 	if (vcpu->arch.exception.pending)
9546 		return true;
9547 
9548 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9549 	    (vcpu->arch.nmi_pending &&
9550 	     kvm_x86_ops->nmi_allowed(vcpu)))
9551 		return true;
9552 
9553 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9554 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
9555 		return true;
9556 
9557 	if (kvm_arch_interrupt_allowed(vcpu) &&
9558 	    (kvm_cpu_has_interrupt(vcpu) ||
9559 	    kvm_guest_apic_has_interrupt(vcpu)))
9560 		return true;
9561 
9562 	if (kvm_hv_has_stimer_pending(vcpu))
9563 		return true;
9564 
9565 	return false;
9566 }
9567 
9568 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9569 {
9570 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9571 }
9572 
9573 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9574 {
9575 	return vcpu->arch.preempted_in_kernel;
9576 }
9577 
9578 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9579 {
9580 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9581 }
9582 
9583 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9584 {
9585 	return kvm_x86_ops->interrupt_allowed(vcpu);
9586 }
9587 
9588 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9589 {
9590 	if (is_64_bit_mode(vcpu))
9591 		return kvm_rip_read(vcpu);
9592 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9593 		     kvm_rip_read(vcpu));
9594 }
9595 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9596 
9597 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9598 {
9599 	return kvm_get_linear_rip(vcpu) == linear_rip;
9600 }
9601 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9602 
9603 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9604 {
9605 	unsigned long rflags;
9606 
9607 	rflags = kvm_x86_ops->get_rflags(vcpu);
9608 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9609 		rflags &= ~X86_EFLAGS_TF;
9610 	return rflags;
9611 }
9612 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9613 
9614 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9615 {
9616 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9617 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9618 		rflags |= X86_EFLAGS_TF;
9619 	kvm_x86_ops->set_rflags(vcpu, rflags);
9620 }
9621 
9622 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9623 {
9624 	__kvm_set_rflags(vcpu, rflags);
9625 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9626 }
9627 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9628 
9629 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9630 {
9631 	int r;
9632 
9633 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9634 	      work->wakeup_all)
9635 		return;
9636 
9637 	r = kvm_mmu_reload(vcpu);
9638 	if (unlikely(r))
9639 		return;
9640 
9641 	if (!vcpu->arch.mmu->direct_map &&
9642 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9643 		return;
9644 
9645 	vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9646 }
9647 
9648 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9649 {
9650 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9651 }
9652 
9653 static inline u32 kvm_async_pf_next_probe(u32 key)
9654 {
9655 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9656 }
9657 
9658 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9659 {
9660 	u32 key = kvm_async_pf_hash_fn(gfn);
9661 
9662 	while (vcpu->arch.apf.gfns[key] != ~0)
9663 		key = kvm_async_pf_next_probe(key);
9664 
9665 	vcpu->arch.apf.gfns[key] = gfn;
9666 }
9667 
9668 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9669 {
9670 	int i;
9671 	u32 key = kvm_async_pf_hash_fn(gfn);
9672 
9673 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9674 		     (vcpu->arch.apf.gfns[key] != gfn &&
9675 		      vcpu->arch.apf.gfns[key] != ~0); i++)
9676 		key = kvm_async_pf_next_probe(key);
9677 
9678 	return key;
9679 }
9680 
9681 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9682 {
9683 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9684 }
9685 
9686 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9687 {
9688 	u32 i, j, k;
9689 
9690 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9691 	while (true) {
9692 		vcpu->arch.apf.gfns[i] = ~0;
9693 		do {
9694 			j = kvm_async_pf_next_probe(j);
9695 			if (vcpu->arch.apf.gfns[j] == ~0)
9696 				return;
9697 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9698 			/*
9699 			 * k lies cyclically in ]i,j]
9700 			 * |    i.k.j |
9701 			 * |....j i.k.| or  |.k..j i...|
9702 			 */
9703 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9704 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9705 		i = j;
9706 	}
9707 }
9708 
9709 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9710 {
9711 
9712 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9713 				      sizeof(val));
9714 }
9715 
9716 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9717 {
9718 
9719 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9720 				      sizeof(u32));
9721 }
9722 
9723 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9724 				     struct kvm_async_pf *work)
9725 {
9726 	struct x86_exception fault;
9727 
9728 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9729 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9730 
9731 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9732 	    (vcpu->arch.apf.send_user_only &&
9733 	     kvm_x86_ops->get_cpl(vcpu) == 0))
9734 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9735 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9736 		fault.vector = PF_VECTOR;
9737 		fault.error_code_valid = true;
9738 		fault.error_code = 0;
9739 		fault.nested_page_fault = false;
9740 		fault.address = work->arch.token;
9741 		fault.async_page_fault = true;
9742 		kvm_inject_page_fault(vcpu, &fault);
9743 	}
9744 }
9745 
9746 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9747 				 struct kvm_async_pf *work)
9748 {
9749 	struct x86_exception fault;
9750 	u32 val;
9751 
9752 	if (work->wakeup_all)
9753 		work->arch.token = ~0; /* broadcast wakeup */
9754 	else
9755 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9756 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
9757 
9758 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9759 	    !apf_get_user(vcpu, &val)) {
9760 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9761 		    vcpu->arch.exception.pending &&
9762 		    vcpu->arch.exception.nr == PF_VECTOR &&
9763 		    !apf_put_user(vcpu, 0)) {
9764 			vcpu->arch.exception.injected = false;
9765 			vcpu->arch.exception.pending = false;
9766 			vcpu->arch.exception.nr = 0;
9767 			vcpu->arch.exception.has_error_code = false;
9768 			vcpu->arch.exception.error_code = 0;
9769 			vcpu->arch.exception.has_payload = false;
9770 			vcpu->arch.exception.payload = 0;
9771 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9772 			fault.vector = PF_VECTOR;
9773 			fault.error_code_valid = true;
9774 			fault.error_code = 0;
9775 			fault.nested_page_fault = false;
9776 			fault.address = work->arch.token;
9777 			fault.async_page_fault = true;
9778 			kvm_inject_page_fault(vcpu, &fault);
9779 		}
9780 	}
9781 	vcpu->arch.apf.halted = false;
9782 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9783 }
9784 
9785 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9786 {
9787 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9788 		return true;
9789 	else
9790 		return kvm_can_do_async_pf(vcpu);
9791 }
9792 
9793 void kvm_arch_start_assignment(struct kvm *kvm)
9794 {
9795 	atomic_inc(&kvm->arch.assigned_device_count);
9796 }
9797 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9798 
9799 void kvm_arch_end_assignment(struct kvm *kvm)
9800 {
9801 	atomic_dec(&kvm->arch.assigned_device_count);
9802 }
9803 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9804 
9805 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9806 {
9807 	return atomic_read(&kvm->arch.assigned_device_count);
9808 }
9809 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9810 
9811 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9812 {
9813 	atomic_inc(&kvm->arch.noncoherent_dma_count);
9814 }
9815 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9816 
9817 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9818 {
9819 	atomic_dec(&kvm->arch.noncoherent_dma_count);
9820 }
9821 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9822 
9823 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9824 {
9825 	return atomic_read(&kvm->arch.noncoherent_dma_count);
9826 }
9827 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9828 
9829 bool kvm_arch_has_irq_bypass(void)
9830 {
9831 	return kvm_x86_ops->update_pi_irte != NULL;
9832 }
9833 
9834 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9835 				      struct irq_bypass_producer *prod)
9836 {
9837 	struct kvm_kernel_irqfd *irqfd =
9838 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9839 
9840 	irqfd->producer = prod;
9841 
9842 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9843 					   prod->irq, irqfd->gsi, 1);
9844 }
9845 
9846 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9847 				      struct irq_bypass_producer *prod)
9848 {
9849 	int ret;
9850 	struct kvm_kernel_irqfd *irqfd =
9851 		container_of(cons, struct kvm_kernel_irqfd, consumer);
9852 
9853 	WARN_ON(irqfd->producer != prod);
9854 	irqfd->producer = NULL;
9855 
9856 	/*
9857 	 * When producer of consumer is unregistered, we change back to
9858 	 * remapped mode, so we can re-use the current implementation
9859 	 * when the irq is masked/disabled or the consumer side (KVM
9860 	 * int this case doesn't want to receive the interrupts.
9861 	*/
9862 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9863 	if (ret)
9864 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9865 		       " fails: %d\n", irqfd->consumer.token, ret);
9866 }
9867 
9868 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9869 				   uint32_t guest_irq, bool set)
9870 {
9871 	if (!kvm_x86_ops->update_pi_irte)
9872 		return -EINVAL;
9873 
9874 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9875 }
9876 
9877 bool kvm_vector_hashing_enabled(void)
9878 {
9879 	return vector_hashing;
9880 }
9881 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9882 
9883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9902