1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 #include <linux/entry-kvm.h> 60 #include <linux/suspend.h> 61 62 #include <trace/events/kvm.h> 63 64 #include <asm/debugreg.h> 65 #include <asm/msr.h> 66 #include <asm/desc.h> 67 #include <asm/mce.h> 68 #include <asm/pkru.h> 69 #include <linux/kernel_stat.h> 70 #include <asm/fpu/api.h> 71 #include <asm/fpu/xcr.h> 72 #include <asm/fpu/xstate.h> 73 #include <asm/pvclock.h> 74 #include <asm/div64.h> 75 #include <asm/irq_remapping.h> 76 #include <asm/mshyperv.h> 77 #include <asm/hypervisor.h> 78 #include <asm/tlbflush.h> 79 #include <asm/intel_pt.h> 80 #include <asm/emulate_prefix.h> 81 #include <asm/sgx.h> 82 #include <clocksource/hyperv_timer.h> 83 84 #define CREATE_TRACE_POINTS 85 #include "trace.h" 86 87 #define MAX_IO_MSRS 256 88 #define KVM_MAX_MCE_BANKS 32 89 90 struct kvm_caps kvm_caps __read_mostly = { 91 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 92 }; 93 EXPORT_SYMBOL_GPL(kvm_caps); 94 95 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 96 97 #define emul_to_vcpu(ctxt) \ 98 ((struct kvm_vcpu *)(ctxt)->vcpu) 99 100 /* EFER defaults: 101 * - enable syscall per default because its emulated by KVM 102 * - enable LME and LMA per default on 64 bit KVM 103 */ 104 #ifdef CONFIG_X86_64 105 static 106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 107 #else 108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 109 #endif 110 111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 112 113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 114 115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 116 117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 118 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 119 120 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 121 static void process_nmi(struct kvm_vcpu *vcpu); 122 static void process_smi(struct kvm_vcpu *vcpu); 123 static void enter_smm(struct kvm_vcpu *vcpu); 124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 125 static void store_regs(struct kvm_vcpu *vcpu); 126 static int sync_regs(struct kvm_vcpu *vcpu); 127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 128 129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 131 132 struct kvm_x86_ops kvm_x86_ops __read_mostly; 133 134 #define KVM_X86_OP(func) \ 135 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 136 *(((struct kvm_x86_ops *)0)->func)); 137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 139 #include <asm/kvm-x86-ops.h> 140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 142 143 static bool __read_mostly ignore_msrs = 0; 144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 145 146 bool __read_mostly report_ignored_msrs = true; 147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 148 EXPORT_SYMBOL_GPL(report_ignored_msrs); 149 150 unsigned int min_timer_period_us = 200; 151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 152 153 static bool __read_mostly kvmclock_periodic_sync = true; 154 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 155 156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 157 static u32 __read_mostly tsc_tolerance_ppm = 250; 158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 159 160 /* 161 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 162 * adaptive tuning starting from default advancement of 1000ns. '0' disables 163 * advancement entirely. Any other value is used as-is and disables adaptive 164 * tuning, i.e. allows privileged userspace to set an exact advancement time. 165 */ 166 static int __read_mostly lapic_timer_advance_ns = -1; 167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 168 169 static bool __read_mostly vector_hashing = true; 170 module_param(vector_hashing, bool, S_IRUGO); 171 172 bool __read_mostly enable_vmware_backdoor = false; 173 module_param(enable_vmware_backdoor, bool, S_IRUGO); 174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 175 176 /* 177 * Flags to manipulate forced emulation behavior (any non-zero value will 178 * enable forced emulation). 179 */ 180 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 181 static int __read_mostly force_emulation_prefix; 182 module_param(force_emulation_prefix, int, 0644); 183 184 int __read_mostly pi_inject_timer = -1; 185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 186 187 /* Enable/disable PMU virtualization */ 188 bool __read_mostly enable_pmu = true; 189 EXPORT_SYMBOL_GPL(enable_pmu); 190 module_param(enable_pmu, bool, 0444); 191 192 bool __read_mostly eager_page_split = true; 193 module_param(eager_page_split, bool, 0644); 194 195 /* 196 * Restoring the host value for MSRs that are only consumed when running in 197 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 198 * returns to userspace, i.e. the kernel can run with the guest's value. 199 */ 200 #define KVM_MAX_NR_USER_RETURN_MSRS 16 201 202 struct kvm_user_return_msrs { 203 struct user_return_notifier urn; 204 bool registered; 205 struct kvm_user_return_msr_values { 206 u64 host; 207 u64 curr; 208 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 209 }; 210 211 u32 __read_mostly kvm_nr_uret_msrs; 212 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 213 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 214 static struct kvm_user_return_msrs __percpu *user_return_msrs; 215 216 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 217 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 218 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 219 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 220 221 u64 __read_mostly host_efer; 222 EXPORT_SYMBOL_GPL(host_efer); 223 224 bool __read_mostly allow_smaller_maxphyaddr = 0; 225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 226 227 bool __read_mostly enable_apicv = true; 228 EXPORT_SYMBOL_GPL(enable_apicv); 229 230 u64 __read_mostly host_xss; 231 EXPORT_SYMBOL_GPL(host_xss); 232 233 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 234 KVM_GENERIC_VM_STATS(), 235 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 236 STATS_DESC_COUNTER(VM, mmu_pte_write), 237 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 238 STATS_DESC_COUNTER(VM, mmu_flooded), 239 STATS_DESC_COUNTER(VM, mmu_recycled), 240 STATS_DESC_COUNTER(VM, mmu_cache_miss), 241 STATS_DESC_ICOUNTER(VM, mmu_unsync), 242 STATS_DESC_ICOUNTER(VM, pages_4k), 243 STATS_DESC_ICOUNTER(VM, pages_2m), 244 STATS_DESC_ICOUNTER(VM, pages_1g), 245 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 246 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 247 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 248 }; 249 250 const struct kvm_stats_header kvm_vm_stats_header = { 251 .name_size = KVM_STATS_NAME_SIZE, 252 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 253 .id_offset = sizeof(struct kvm_stats_header), 254 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 255 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 256 sizeof(kvm_vm_stats_desc), 257 }; 258 259 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 260 KVM_GENERIC_VCPU_STATS(), 261 STATS_DESC_COUNTER(VCPU, pf_taken), 262 STATS_DESC_COUNTER(VCPU, pf_fixed), 263 STATS_DESC_COUNTER(VCPU, pf_emulate), 264 STATS_DESC_COUNTER(VCPU, pf_spurious), 265 STATS_DESC_COUNTER(VCPU, pf_fast), 266 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 267 STATS_DESC_COUNTER(VCPU, pf_guest), 268 STATS_DESC_COUNTER(VCPU, tlb_flush), 269 STATS_DESC_COUNTER(VCPU, invlpg), 270 STATS_DESC_COUNTER(VCPU, exits), 271 STATS_DESC_COUNTER(VCPU, io_exits), 272 STATS_DESC_COUNTER(VCPU, mmio_exits), 273 STATS_DESC_COUNTER(VCPU, signal_exits), 274 STATS_DESC_COUNTER(VCPU, irq_window_exits), 275 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 276 STATS_DESC_COUNTER(VCPU, l1d_flush), 277 STATS_DESC_COUNTER(VCPU, halt_exits), 278 STATS_DESC_COUNTER(VCPU, request_irq_exits), 279 STATS_DESC_COUNTER(VCPU, irq_exits), 280 STATS_DESC_COUNTER(VCPU, host_state_reload), 281 STATS_DESC_COUNTER(VCPU, fpu_reload), 282 STATS_DESC_COUNTER(VCPU, insn_emulation), 283 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 284 STATS_DESC_COUNTER(VCPU, hypercalls), 285 STATS_DESC_COUNTER(VCPU, irq_injections), 286 STATS_DESC_COUNTER(VCPU, nmi_injections), 287 STATS_DESC_COUNTER(VCPU, req_event), 288 STATS_DESC_COUNTER(VCPU, nested_run), 289 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 290 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 291 STATS_DESC_COUNTER(VCPU, preemption_reported), 292 STATS_DESC_COUNTER(VCPU, preemption_other), 293 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 294 STATS_DESC_COUNTER(VCPU, notify_window_exits), 295 }; 296 297 const struct kvm_stats_header kvm_vcpu_stats_header = { 298 .name_size = KVM_STATS_NAME_SIZE, 299 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 300 .id_offset = sizeof(struct kvm_stats_header), 301 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 302 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 303 sizeof(kvm_vcpu_stats_desc), 304 }; 305 306 u64 __read_mostly host_xcr0; 307 308 static struct kmem_cache *x86_emulator_cache; 309 310 /* 311 * When called, it means the previous get/set msr reached an invalid msr. 312 * Return true if we want to ignore/silent this failed msr access. 313 */ 314 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 315 { 316 const char *op = write ? "wrmsr" : "rdmsr"; 317 318 if (ignore_msrs) { 319 if (report_ignored_msrs) 320 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 321 op, msr, data); 322 /* Mask the error */ 323 return true; 324 } else { 325 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 326 op, msr, data); 327 return false; 328 } 329 } 330 331 static struct kmem_cache *kvm_alloc_emulator_cache(void) 332 { 333 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 334 unsigned int size = sizeof(struct x86_emulate_ctxt); 335 336 return kmem_cache_create_usercopy("x86_emulator", size, 337 __alignof__(struct x86_emulate_ctxt), 338 SLAB_ACCOUNT, useroffset, 339 size - useroffset, NULL); 340 } 341 342 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 343 344 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 345 { 346 int i; 347 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 348 vcpu->arch.apf.gfns[i] = ~0; 349 } 350 351 static void kvm_on_user_return(struct user_return_notifier *urn) 352 { 353 unsigned slot; 354 struct kvm_user_return_msrs *msrs 355 = container_of(urn, struct kvm_user_return_msrs, urn); 356 struct kvm_user_return_msr_values *values; 357 unsigned long flags; 358 359 /* 360 * Disabling irqs at this point since the following code could be 361 * interrupted and executed through kvm_arch_hardware_disable() 362 */ 363 local_irq_save(flags); 364 if (msrs->registered) { 365 msrs->registered = false; 366 user_return_notifier_unregister(urn); 367 } 368 local_irq_restore(flags); 369 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 370 values = &msrs->values[slot]; 371 if (values->host != values->curr) { 372 wrmsrl(kvm_uret_msrs_list[slot], values->host); 373 values->curr = values->host; 374 } 375 } 376 } 377 378 static int kvm_probe_user_return_msr(u32 msr) 379 { 380 u64 val; 381 int ret; 382 383 preempt_disable(); 384 ret = rdmsrl_safe(msr, &val); 385 if (ret) 386 goto out; 387 ret = wrmsrl_safe(msr, val); 388 out: 389 preempt_enable(); 390 return ret; 391 } 392 393 int kvm_add_user_return_msr(u32 msr) 394 { 395 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 396 397 if (kvm_probe_user_return_msr(msr)) 398 return -1; 399 400 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 401 return kvm_nr_uret_msrs++; 402 } 403 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 404 405 int kvm_find_user_return_msr(u32 msr) 406 { 407 int i; 408 409 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 410 if (kvm_uret_msrs_list[i] == msr) 411 return i; 412 } 413 return -1; 414 } 415 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 416 417 static void kvm_user_return_msr_cpu_online(void) 418 { 419 unsigned int cpu = smp_processor_id(); 420 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 421 u64 value; 422 int i; 423 424 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 425 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 426 msrs->values[i].host = value; 427 msrs->values[i].curr = value; 428 } 429 } 430 431 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 432 { 433 unsigned int cpu = smp_processor_id(); 434 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 435 int err; 436 437 value = (value & mask) | (msrs->values[slot].host & ~mask); 438 if (value == msrs->values[slot].curr) 439 return 0; 440 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 441 if (err) 442 return 1; 443 444 msrs->values[slot].curr = value; 445 if (!msrs->registered) { 446 msrs->urn.on_user_return = kvm_on_user_return; 447 user_return_notifier_register(&msrs->urn); 448 msrs->registered = true; 449 } 450 return 0; 451 } 452 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 453 454 static void drop_user_return_notifiers(void) 455 { 456 unsigned int cpu = smp_processor_id(); 457 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 458 459 if (msrs->registered) 460 kvm_on_user_return(&msrs->urn); 461 } 462 463 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 464 { 465 return vcpu->arch.apic_base; 466 } 467 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 468 469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 470 { 471 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 472 } 473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 474 475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 476 { 477 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 478 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 479 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 480 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 481 482 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 483 return 1; 484 if (!msr_info->host_initiated) { 485 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 486 return 1; 487 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 488 return 1; 489 } 490 491 kvm_lapic_set_base(vcpu, msr_info->data); 492 kvm_recalculate_apic_map(vcpu->kvm); 493 return 0; 494 } 495 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 496 497 /* 498 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 499 * 500 * Hardware virtualization extension instructions may fault if a reboot turns 501 * off virtualization while processes are running. Usually after catching the 502 * fault we just panic; during reboot instead the instruction is ignored. 503 */ 504 noinstr void kvm_spurious_fault(void) 505 { 506 /* Fault while not rebooting. We want the trace. */ 507 BUG_ON(!kvm_rebooting); 508 } 509 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 510 511 #define EXCPT_BENIGN 0 512 #define EXCPT_CONTRIBUTORY 1 513 #define EXCPT_PF 2 514 515 static int exception_class(int vector) 516 { 517 switch (vector) { 518 case PF_VECTOR: 519 return EXCPT_PF; 520 case DE_VECTOR: 521 case TS_VECTOR: 522 case NP_VECTOR: 523 case SS_VECTOR: 524 case GP_VECTOR: 525 return EXCPT_CONTRIBUTORY; 526 default: 527 break; 528 } 529 return EXCPT_BENIGN; 530 } 531 532 #define EXCPT_FAULT 0 533 #define EXCPT_TRAP 1 534 #define EXCPT_ABORT 2 535 #define EXCPT_INTERRUPT 3 536 #define EXCPT_DB 4 537 538 static int exception_type(int vector) 539 { 540 unsigned int mask; 541 542 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 543 return EXCPT_INTERRUPT; 544 545 mask = 1 << vector; 546 547 /* 548 * #DBs can be trap-like or fault-like, the caller must check other CPU 549 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 550 */ 551 if (mask & (1 << DB_VECTOR)) 552 return EXCPT_DB; 553 554 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 555 return EXCPT_TRAP; 556 557 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 558 return EXCPT_ABORT; 559 560 /* Reserved exceptions will result in fault */ 561 return EXCPT_FAULT; 562 } 563 564 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 565 struct kvm_queued_exception *ex) 566 { 567 if (!ex->has_payload) 568 return; 569 570 switch (ex->vector) { 571 case DB_VECTOR: 572 /* 573 * "Certain debug exceptions may clear bit 0-3. The 574 * remaining contents of the DR6 register are never 575 * cleared by the processor". 576 */ 577 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 578 /* 579 * In order to reflect the #DB exception payload in guest 580 * dr6, three components need to be considered: active low 581 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 582 * DR6_BS and DR6_BT) 583 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 584 * In the target guest dr6: 585 * FIXED_1 bits should always be set. 586 * Active low bits should be cleared if 1-setting in payload. 587 * Active high bits should be set if 1-setting in payload. 588 * 589 * Note, the payload is compatible with the pending debug 590 * exceptions/exit qualification under VMX, that active_low bits 591 * are active high in payload. 592 * So they need to be flipped for DR6. 593 */ 594 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 595 vcpu->arch.dr6 |= ex->payload; 596 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 597 598 /* 599 * The #DB payload is defined as compatible with the 'pending 600 * debug exceptions' field under VMX, not DR6. While bit 12 is 601 * defined in the 'pending debug exceptions' field (enabled 602 * breakpoint), it is reserved and must be zero in DR6. 603 */ 604 vcpu->arch.dr6 &= ~BIT(12); 605 break; 606 case PF_VECTOR: 607 vcpu->arch.cr2 = ex->payload; 608 break; 609 } 610 611 ex->has_payload = false; 612 ex->payload = 0; 613 } 614 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 615 616 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 617 bool has_error_code, u32 error_code, 618 bool has_payload, unsigned long payload) 619 { 620 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 621 622 ex->vector = vector; 623 ex->injected = false; 624 ex->pending = true; 625 ex->has_error_code = has_error_code; 626 ex->error_code = error_code; 627 ex->has_payload = has_payload; 628 ex->payload = payload; 629 } 630 631 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 632 unsigned nr, bool has_error, u32 error_code, 633 bool has_payload, unsigned long payload, bool reinject) 634 { 635 u32 prev_nr; 636 int class1, class2; 637 638 kvm_make_request(KVM_REQ_EVENT, vcpu); 639 640 /* 641 * If the exception is destined for L2 and isn't being reinjected, 642 * morph it to a VM-Exit if L1 wants to intercept the exception. A 643 * previously injected exception is not checked because it was checked 644 * when it was original queued, and re-checking is incorrect if _L1_ 645 * injected the exception, in which case it's exempt from interception. 646 */ 647 if (!reinject && is_guest_mode(vcpu) && 648 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 649 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 650 has_payload, payload); 651 return; 652 } 653 654 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 655 queue: 656 if (reinject) { 657 /* 658 * On VM-Entry, an exception can be pending if and only 659 * if event injection was blocked by nested_run_pending. 660 * In that case, however, vcpu_enter_guest() requests an 661 * immediate exit, and the guest shouldn't proceed far 662 * enough to need reinjection. 663 */ 664 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 665 vcpu->arch.exception.injected = true; 666 if (WARN_ON_ONCE(has_payload)) { 667 /* 668 * A reinjected event has already 669 * delivered its payload. 670 */ 671 has_payload = false; 672 payload = 0; 673 } 674 } else { 675 vcpu->arch.exception.pending = true; 676 vcpu->arch.exception.injected = false; 677 } 678 vcpu->arch.exception.has_error_code = has_error; 679 vcpu->arch.exception.vector = nr; 680 vcpu->arch.exception.error_code = error_code; 681 vcpu->arch.exception.has_payload = has_payload; 682 vcpu->arch.exception.payload = payload; 683 if (!is_guest_mode(vcpu)) 684 kvm_deliver_exception_payload(vcpu, 685 &vcpu->arch.exception); 686 return; 687 } 688 689 /* to check exception */ 690 prev_nr = vcpu->arch.exception.vector; 691 if (prev_nr == DF_VECTOR) { 692 /* triple fault -> shutdown */ 693 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 694 return; 695 } 696 class1 = exception_class(prev_nr); 697 class2 = exception_class(nr); 698 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 699 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 700 /* 701 * Synthesize #DF. Clear the previously injected or pending 702 * exception so as not to incorrectly trigger shutdown. 703 */ 704 vcpu->arch.exception.injected = false; 705 vcpu->arch.exception.pending = false; 706 707 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 708 } else { 709 /* replace previous exception with a new one in a hope 710 that instruction re-execution will regenerate lost 711 exception */ 712 goto queue; 713 } 714 } 715 716 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 717 { 718 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 719 } 720 EXPORT_SYMBOL_GPL(kvm_queue_exception); 721 722 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 723 { 724 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 725 } 726 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 727 728 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 729 unsigned long payload) 730 { 731 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 732 } 733 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 734 735 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 736 u32 error_code, unsigned long payload) 737 { 738 kvm_multiple_exception(vcpu, nr, true, error_code, 739 true, payload, false); 740 } 741 742 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 743 { 744 if (err) 745 kvm_inject_gp(vcpu, 0); 746 else 747 return kvm_skip_emulated_instruction(vcpu); 748 749 return 1; 750 } 751 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 752 753 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 754 { 755 if (err) { 756 kvm_inject_gp(vcpu, 0); 757 return 1; 758 } 759 760 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 761 EMULTYPE_COMPLETE_USER_EXIT); 762 } 763 764 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 765 { 766 ++vcpu->stat.pf_guest; 767 768 /* 769 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 770 * whether or not L1 wants to intercept "regular" #PF. 771 */ 772 if (is_guest_mode(vcpu) && fault->async_page_fault) 773 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 774 true, fault->error_code, 775 true, fault->address); 776 else 777 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 778 fault->address); 779 } 780 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 781 782 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 783 struct x86_exception *fault) 784 { 785 struct kvm_mmu *fault_mmu; 786 WARN_ON_ONCE(fault->vector != PF_VECTOR); 787 788 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 789 vcpu->arch.walk_mmu; 790 791 /* 792 * Invalidate the TLB entry for the faulting address, if it exists, 793 * else the access will fault indefinitely (and to emulate hardware). 794 */ 795 if ((fault->error_code & PFERR_PRESENT_MASK) && 796 !(fault->error_code & PFERR_RSVD_MASK)) 797 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 798 fault_mmu->root.hpa); 799 800 fault_mmu->inject_page_fault(vcpu, fault); 801 } 802 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 803 804 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 805 { 806 atomic_inc(&vcpu->arch.nmi_queued); 807 kvm_make_request(KVM_REQ_NMI, vcpu); 808 } 809 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 810 811 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 812 { 813 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 814 } 815 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 816 817 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 818 { 819 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 820 } 821 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 822 823 /* 824 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 825 * a #GP and return false. 826 */ 827 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 828 { 829 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 830 return true; 831 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 832 return false; 833 } 834 EXPORT_SYMBOL_GPL(kvm_require_cpl); 835 836 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 837 { 838 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 839 return true; 840 841 kvm_queue_exception(vcpu, UD_VECTOR); 842 return false; 843 } 844 EXPORT_SYMBOL_GPL(kvm_require_dr); 845 846 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 847 { 848 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 849 } 850 851 /* 852 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 853 */ 854 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 855 { 856 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 857 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 858 gpa_t real_gpa; 859 int i; 860 int ret; 861 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 862 863 /* 864 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 865 * to an L1 GPA. 866 */ 867 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 868 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 869 if (real_gpa == INVALID_GPA) 870 return 0; 871 872 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 873 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 874 cr3 & GENMASK(11, 5), sizeof(pdpte)); 875 if (ret < 0) 876 return 0; 877 878 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 879 if ((pdpte[i] & PT_PRESENT_MASK) && 880 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 881 return 0; 882 } 883 } 884 885 /* 886 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 887 * Shadow page roots need to be reconstructed instead. 888 */ 889 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 890 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 891 892 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 893 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 894 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 895 vcpu->arch.pdptrs_from_userspace = false; 896 897 return 1; 898 } 899 EXPORT_SYMBOL_GPL(load_pdptrs); 900 901 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 902 { 903 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 904 kvm_clear_async_pf_completion_queue(vcpu); 905 kvm_async_pf_hash_reset(vcpu); 906 907 /* 908 * Clearing CR0.PG is defined to flush the TLB from the guest's 909 * perspective. 910 */ 911 if (!(cr0 & X86_CR0_PG)) 912 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 913 } 914 915 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 916 kvm_mmu_reset_context(vcpu); 917 918 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 919 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 920 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 921 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 922 } 923 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 924 925 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 926 { 927 unsigned long old_cr0 = kvm_read_cr0(vcpu); 928 929 cr0 |= X86_CR0_ET; 930 931 #ifdef CONFIG_X86_64 932 if (cr0 & 0xffffffff00000000UL) 933 return 1; 934 #endif 935 936 cr0 &= ~CR0_RESERVED_BITS; 937 938 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 939 return 1; 940 941 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 942 return 1; 943 944 #ifdef CONFIG_X86_64 945 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 946 (cr0 & X86_CR0_PG)) { 947 int cs_db, cs_l; 948 949 if (!is_pae(vcpu)) 950 return 1; 951 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 952 if (cs_l) 953 return 1; 954 } 955 #endif 956 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 957 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 958 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 959 return 1; 960 961 if (!(cr0 & X86_CR0_PG) && 962 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 963 return 1; 964 965 static_call(kvm_x86_set_cr0)(vcpu, cr0); 966 967 kvm_post_set_cr0(vcpu, old_cr0, cr0); 968 969 return 0; 970 } 971 EXPORT_SYMBOL_GPL(kvm_set_cr0); 972 973 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 974 { 975 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 976 } 977 EXPORT_SYMBOL_GPL(kvm_lmsw); 978 979 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 980 { 981 if (vcpu->arch.guest_state_protected) 982 return; 983 984 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 985 986 if (vcpu->arch.xcr0 != host_xcr0) 987 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 988 989 if (vcpu->arch.xsaves_enabled && 990 vcpu->arch.ia32_xss != host_xss) 991 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 992 } 993 994 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 995 if (static_cpu_has(X86_FEATURE_PKU) && 996 vcpu->arch.pkru != vcpu->arch.host_pkru && 997 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 998 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 999 write_pkru(vcpu->arch.pkru); 1000 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1001 } 1002 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1003 1004 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1005 { 1006 if (vcpu->arch.guest_state_protected) 1007 return; 1008 1009 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1010 if (static_cpu_has(X86_FEATURE_PKU) && 1011 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1012 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1013 vcpu->arch.pkru = rdpkru(); 1014 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1015 write_pkru(vcpu->arch.host_pkru); 1016 } 1017 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1018 1019 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1020 1021 if (vcpu->arch.xcr0 != host_xcr0) 1022 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1023 1024 if (vcpu->arch.xsaves_enabled && 1025 vcpu->arch.ia32_xss != host_xss) 1026 wrmsrl(MSR_IA32_XSS, host_xss); 1027 } 1028 1029 } 1030 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1031 1032 #ifdef CONFIG_X86_64 1033 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1034 { 1035 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1036 } 1037 #endif 1038 1039 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1040 { 1041 u64 xcr0 = xcr; 1042 u64 old_xcr0 = vcpu->arch.xcr0; 1043 u64 valid_bits; 1044 1045 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1046 if (index != XCR_XFEATURE_ENABLED_MASK) 1047 return 1; 1048 if (!(xcr0 & XFEATURE_MASK_FP)) 1049 return 1; 1050 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1051 return 1; 1052 1053 /* 1054 * Do not allow the guest to set bits that we do not support 1055 * saving. However, xcr0 bit 0 is always set, even if the 1056 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1057 */ 1058 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1059 if (xcr0 & ~valid_bits) 1060 return 1; 1061 1062 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1063 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1064 return 1; 1065 1066 if (xcr0 & XFEATURE_MASK_AVX512) { 1067 if (!(xcr0 & XFEATURE_MASK_YMM)) 1068 return 1; 1069 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1070 return 1; 1071 } 1072 1073 if ((xcr0 & XFEATURE_MASK_XTILE) && 1074 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1075 return 1; 1076 1077 vcpu->arch.xcr0 = xcr0; 1078 1079 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1080 kvm_update_cpuid_runtime(vcpu); 1081 return 0; 1082 } 1083 1084 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1085 { 1086 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1087 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1088 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1089 kvm_inject_gp(vcpu, 0); 1090 return 1; 1091 } 1092 1093 return kvm_skip_emulated_instruction(vcpu); 1094 } 1095 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1096 1097 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1098 { 1099 if (cr4 & cr4_reserved_bits) 1100 return false; 1101 1102 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1103 return false; 1104 1105 return true; 1106 } 1107 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1108 1109 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1110 { 1111 return __kvm_is_valid_cr4(vcpu, cr4) && 1112 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1113 } 1114 1115 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1116 { 1117 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1118 kvm_mmu_reset_context(vcpu); 1119 1120 /* 1121 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1122 * according to the SDM; however, stale prev_roots could be reused 1123 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1124 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1125 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1126 * so fall through. 1127 */ 1128 if (!tdp_enabled && 1129 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1130 kvm_mmu_unload(vcpu); 1131 1132 /* 1133 * The TLB has to be flushed for all PCIDs if any of the following 1134 * (architecturally required) changes happen: 1135 * - CR4.PCIDE is changed from 1 to 0 1136 * - CR4.PGE is toggled 1137 * 1138 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1139 */ 1140 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1141 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1142 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1143 1144 /* 1145 * The TLB has to be flushed for the current PCID if any of the 1146 * following (architecturally required) changes happen: 1147 * - CR4.SMEP is changed from 0 to 1 1148 * - CR4.PAE is toggled 1149 */ 1150 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1151 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1152 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1153 1154 } 1155 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1156 1157 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1158 { 1159 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1160 1161 if (!kvm_is_valid_cr4(vcpu, cr4)) 1162 return 1; 1163 1164 if (is_long_mode(vcpu)) { 1165 if (!(cr4 & X86_CR4_PAE)) 1166 return 1; 1167 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1168 return 1; 1169 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1170 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1171 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1172 return 1; 1173 1174 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1175 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1176 return 1; 1177 1178 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1179 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1180 return 1; 1181 } 1182 1183 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1184 1185 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1186 1187 return 0; 1188 } 1189 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1190 1191 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1192 { 1193 struct kvm_mmu *mmu = vcpu->arch.mmu; 1194 unsigned long roots_to_free = 0; 1195 int i; 1196 1197 /* 1198 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1199 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1200 * also via the emulator. KVM's TDP page tables are not in the scope of 1201 * the invalidation, but the guest's TLB entries need to be flushed as 1202 * the CPU may have cached entries in its TLB for the target PCID. 1203 */ 1204 if (unlikely(tdp_enabled)) { 1205 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1206 return; 1207 } 1208 1209 /* 1210 * If neither the current CR3 nor any of the prev_roots use the given 1211 * PCID, then nothing needs to be done here because a resync will 1212 * happen anyway before switching to any other CR3. 1213 */ 1214 if (kvm_get_active_pcid(vcpu) == pcid) { 1215 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1216 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1217 } 1218 1219 /* 1220 * If PCID is disabled, there is no need to free prev_roots even if the 1221 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1222 * with PCIDE=0. 1223 */ 1224 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1225 return; 1226 1227 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1228 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1229 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1230 1231 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1232 } 1233 1234 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1235 { 1236 bool skip_tlb_flush = false; 1237 unsigned long pcid = 0; 1238 #ifdef CONFIG_X86_64 1239 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1240 1241 if (pcid_enabled) { 1242 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1243 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1244 pcid = cr3 & X86_CR3_PCID_MASK; 1245 } 1246 #endif 1247 1248 /* PDPTRs are always reloaded for PAE paging. */ 1249 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1250 goto handle_tlb_flush; 1251 1252 /* 1253 * Do not condition the GPA check on long mode, this helper is used to 1254 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1255 * the current vCPU mode is accurate. 1256 */ 1257 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1258 return 1; 1259 1260 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1261 return 1; 1262 1263 if (cr3 != kvm_read_cr3(vcpu)) 1264 kvm_mmu_new_pgd(vcpu, cr3); 1265 1266 vcpu->arch.cr3 = cr3; 1267 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1268 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1269 1270 handle_tlb_flush: 1271 /* 1272 * A load of CR3 that flushes the TLB flushes only the current PCID, 1273 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1274 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1275 * and it's impossible to use a non-zero PCID when PCID is disabled, 1276 * i.e. only PCID=0 can be relevant. 1277 */ 1278 if (!skip_tlb_flush) 1279 kvm_invalidate_pcid(vcpu, pcid); 1280 1281 return 0; 1282 } 1283 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1284 1285 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1286 { 1287 if (cr8 & CR8_RESERVED_BITS) 1288 return 1; 1289 if (lapic_in_kernel(vcpu)) 1290 kvm_lapic_set_tpr(vcpu, cr8); 1291 else 1292 vcpu->arch.cr8 = cr8; 1293 return 0; 1294 } 1295 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1296 1297 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1298 { 1299 if (lapic_in_kernel(vcpu)) 1300 return kvm_lapic_get_cr8(vcpu); 1301 else 1302 return vcpu->arch.cr8; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1305 1306 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1307 { 1308 int i; 1309 1310 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1311 for (i = 0; i < KVM_NR_DB_REGS; i++) 1312 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1313 } 1314 } 1315 1316 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1317 { 1318 unsigned long dr7; 1319 1320 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1321 dr7 = vcpu->arch.guest_debug_dr7; 1322 else 1323 dr7 = vcpu->arch.dr7; 1324 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1325 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1326 if (dr7 & DR7_BP_EN_MASK) 1327 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1328 } 1329 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1330 1331 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1332 { 1333 u64 fixed = DR6_FIXED_1; 1334 1335 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1336 fixed |= DR6_RTM; 1337 1338 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1339 fixed |= DR6_BUS_LOCK; 1340 return fixed; 1341 } 1342 1343 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1344 { 1345 size_t size = ARRAY_SIZE(vcpu->arch.db); 1346 1347 switch (dr) { 1348 case 0 ... 3: 1349 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1350 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1351 vcpu->arch.eff_db[dr] = val; 1352 break; 1353 case 4: 1354 case 6: 1355 if (!kvm_dr6_valid(val)) 1356 return 1; /* #GP */ 1357 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1358 break; 1359 case 5: 1360 default: /* 7 */ 1361 if (!kvm_dr7_valid(val)) 1362 return 1; /* #GP */ 1363 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1364 kvm_update_dr7(vcpu); 1365 break; 1366 } 1367 1368 return 0; 1369 } 1370 EXPORT_SYMBOL_GPL(kvm_set_dr); 1371 1372 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1373 { 1374 size_t size = ARRAY_SIZE(vcpu->arch.db); 1375 1376 switch (dr) { 1377 case 0 ... 3: 1378 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1379 break; 1380 case 4: 1381 case 6: 1382 *val = vcpu->arch.dr6; 1383 break; 1384 case 5: 1385 default: /* 7 */ 1386 *val = vcpu->arch.dr7; 1387 break; 1388 } 1389 } 1390 EXPORT_SYMBOL_GPL(kvm_get_dr); 1391 1392 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1393 { 1394 u32 ecx = kvm_rcx_read(vcpu); 1395 u64 data; 1396 1397 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1398 kvm_inject_gp(vcpu, 0); 1399 return 1; 1400 } 1401 1402 kvm_rax_write(vcpu, (u32)data); 1403 kvm_rdx_write(vcpu, data >> 32); 1404 return kvm_skip_emulated_instruction(vcpu); 1405 } 1406 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1407 1408 /* 1409 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1410 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1411 * 1412 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1413 * extract the supported MSRs from the related const lists. 1414 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1415 * capabilities of the host cpu. This capabilities test skips MSRs that are 1416 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1417 * may depend on host virtualization features rather than host cpu features. 1418 */ 1419 1420 static const u32 msrs_to_save_all[] = { 1421 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1422 MSR_STAR, 1423 #ifdef CONFIG_X86_64 1424 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1425 #endif 1426 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1427 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1428 MSR_IA32_SPEC_CTRL, 1429 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1430 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1431 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1432 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1433 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1434 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1435 MSR_IA32_UMWAIT_CONTROL, 1436 1437 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1438 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1439 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1440 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1441 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1442 1443 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1444 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1445 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1446 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1447 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1448 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1449 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1450 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1452 1453 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1454 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1455 1456 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1457 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1458 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1459 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1460 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1461 1462 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1463 }; 1464 1465 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1466 static unsigned num_msrs_to_save; 1467 1468 static const u32 emulated_msrs_all[] = { 1469 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1470 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1471 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1472 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1473 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1474 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1475 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1476 HV_X64_MSR_RESET, 1477 HV_X64_MSR_VP_INDEX, 1478 HV_X64_MSR_VP_RUNTIME, 1479 HV_X64_MSR_SCONTROL, 1480 HV_X64_MSR_STIMER0_CONFIG, 1481 HV_X64_MSR_VP_ASSIST_PAGE, 1482 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1483 HV_X64_MSR_TSC_EMULATION_STATUS, 1484 HV_X64_MSR_SYNDBG_OPTIONS, 1485 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1486 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1487 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1488 1489 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1490 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1491 1492 MSR_IA32_TSC_ADJUST, 1493 MSR_IA32_TSC_DEADLINE, 1494 MSR_IA32_ARCH_CAPABILITIES, 1495 MSR_IA32_PERF_CAPABILITIES, 1496 MSR_IA32_MISC_ENABLE, 1497 MSR_IA32_MCG_STATUS, 1498 MSR_IA32_MCG_CTL, 1499 MSR_IA32_MCG_EXT_CTL, 1500 MSR_IA32_SMBASE, 1501 MSR_SMI_COUNT, 1502 MSR_PLATFORM_INFO, 1503 MSR_MISC_FEATURES_ENABLES, 1504 MSR_AMD64_VIRT_SPEC_CTRL, 1505 MSR_AMD64_TSC_RATIO, 1506 MSR_IA32_POWER_CTL, 1507 MSR_IA32_UCODE_REV, 1508 1509 /* 1510 * The following list leaves out MSRs whose values are determined 1511 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1512 * We always support the "true" VMX control MSRs, even if the host 1513 * processor does not, so I am putting these registers here rather 1514 * than in msrs_to_save_all. 1515 */ 1516 MSR_IA32_VMX_BASIC, 1517 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1518 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1519 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1520 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1521 MSR_IA32_VMX_MISC, 1522 MSR_IA32_VMX_CR0_FIXED0, 1523 MSR_IA32_VMX_CR4_FIXED0, 1524 MSR_IA32_VMX_VMCS_ENUM, 1525 MSR_IA32_VMX_PROCBASED_CTLS2, 1526 MSR_IA32_VMX_EPT_VPID_CAP, 1527 MSR_IA32_VMX_VMFUNC, 1528 1529 MSR_K7_HWCR, 1530 MSR_KVM_POLL_CONTROL, 1531 }; 1532 1533 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1534 static unsigned num_emulated_msrs; 1535 1536 /* 1537 * List of msr numbers which are used to expose MSR-based features that 1538 * can be used by a hypervisor to validate requested CPU features. 1539 */ 1540 static const u32 msr_based_features_all[] = { 1541 MSR_IA32_VMX_BASIC, 1542 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1543 MSR_IA32_VMX_PINBASED_CTLS, 1544 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1545 MSR_IA32_VMX_PROCBASED_CTLS, 1546 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1547 MSR_IA32_VMX_EXIT_CTLS, 1548 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1549 MSR_IA32_VMX_ENTRY_CTLS, 1550 MSR_IA32_VMX_MISC, 1551 MSR_IA32_VMX_CR0_FIXED0, 1552 MSR_IA32_VMX_CR0_FIXED1, 1553 MSR_IA32_VMX_CR4_FIXED0, 1554 MSR_IA32_VMX_CR4_FIXED1, 1555 MSR_IA32_VMX_VMCS_ENUM, 1556 MSR_IA32_VMX_PROCBASED_CTLS2, 1557 MSR_IA32_VMX_EPT_VPID_CAP, 1558 MSR_IA32_VMX_VMFUNC, 1559 1560 MSR_AMD64_DE_CFG, 1561 MSR_IA32_UCODE_REV, 1562 MSR_IA32_ARCH_CAPABILITIES, 1563 MSR_IA32_PERF_CAPABILITIES, 1564 }; 1565 1566 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1567 static unsigned int num_msr_based_features; 1568 1569 /* 1570 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1571 * does not yet virtualize. These include: 1572 * 10 - MISC_PACKAGE_CTRLS 1573 * 11 - ENERGY_FILTERING_CTL 1574 * 12 - DOITM 1575 * 18 - FB_CLEAR_CTRL 1576 * 21 - XAPIC_DISABLE_STATUS 1577 * 23 - OVERCLOCKING_STATUS 1578 */ 1579 1580 #define KVM_SUPPORTED_ARCH_CAP \ 1581 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1582 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1583 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1584 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1585 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1586 1587 static u64 kvm_get_arch_capabilities(void) 1588 { 1589 u64 data = 0; 1590 1591 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1592 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1593 data &= KVM_SUPPORTED_ARCH_CAP; 1594 } 1595 1596 /* 1597 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1598 * the nested hypervisor runs with NX huge pages. If it is not, 1599 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1600 * L1 guests, so it need not worry about its own (L2) guests. 1601 */ 1602 data |= ARCH_CAP_PSCHANGE_MC_NO; 1603 1604 /* 1605 * If we're doing cache flushes (either "always" or "cond") 1606 * we will do one whenever the guest does a vmlaunch/vmresume. 1607 * If an outer hypervisor is doing the cache flush for us 1608 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1609 * capability to the guest too, and if EPT is disabled we're not 1610 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1611 * require a nested hypervisor to do a flush of its own. 1612 */ 1613 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1614 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1615 1616 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1617 data |= ARCH_CAP_RDCL_NO; 1618 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1619 data |= ARCH_CAP_SSB_NO; 1620 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1621 data |= ARCH_CAP_MDS_NO; 1622 1623 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1624 /* 1625 * If RTM=0 because the kernel has disabled TSX, the host might 1626 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1627 * and therefore knows that there cannot be TAA) but keep 1628 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1629 * and we want to allow migrating those guests to tsx=off hosts. 1630 */ 1631 data &= ~ARCH_CAP_TAA_NO; 1632 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1633 data |= ARCH_CAP_TAA_NO; 1634 } else { 1635 /* 1636 * Nothing to do here; we emulate TSX_CTRL if present on the 1637 * host so the guest can choose between disabling TSX or 1638 * using VERW to clear CPU buffers. 1639 */ 1640 } 1641 1642 return data; 1643 } 1644 1645 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1646 { 1647 switch (msr->index) { 1648 case MSR_IA32_ARCH_CAPABILITIES: 1649 msr->data = kvm_get_arch_capabilities(); 1650 break; 1651 case MSR_IA32_UCODE_REV: 1652 rdmsrl_safe(msr->index, &msr->data); 1653 break; 1654 default: 1655 return static_call(kvm_x86_get_msr_feature)(msr); 1656 } 1657 return 0; 1658 } 1659 1660 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1661 { 1662 struct kvm_msr_entry msr; 1663 int r; 1664 1665 msr.index = index; 1666 r = kvm_get_msr_feature(&msr); 1667 1668 if (r == KVM_MSR_RET_INVALID) { 1669 /* Unconditionally clear the output for simplicity */ 1670 *data = 0; 1671 if (kvm_msr_ignored_check(index, 0, false)) 1672 r = 0; 1673 } 1674 1675 if (r) 1676 return r; 1677 1678 *data = msr.data; 1679 1680 return 0; 1681 } 1682 1683 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1684 { 1685 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1686 return false; 1687 1688 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1689 return false; 1690 1691 if (efer & (EFER_LME | EFER_LMA) && 1692 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1693 return false; 1694 1695 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1696 return false; 1697 1698 return true; 1699 1700 } 1701 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1702 { 1703 if (efer & efer_reserved_bits) 1704 return false; 1705 1706 return __kvm_valid_efer(vcpu, efer); 1707 } 1708 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1709 1710 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1711 { 1712 u64 old_efer = vcpu->arch.efer; 1713 u64 efer = msr_info->data; 1714 int r; 1715 1716 if (efer & efer_reserved_bits) 1717 return 1; 1718 1719 if (!msr_info->host_initiated) { 1720 if (!__kvm_valid_efer(vcpu, efer)) 1721 return 1; 1722 1723 if (is_paging(vcpu) && 1724 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1725 return 1; 1726 } 1727 1728 efer &= ~EFER_LMA; 1729 efer |= vcpu->arch.efer & EFER_LMA; 1730 1731 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1732 if (r) { 1733 WARN_ON(r > 0); 1734 return r; 1735 } 1736 1737 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1738 kvm_mmu_reset_context(vcpu); 1739 1740 return 0; 1741 } 1742 1743 void kvm_enable_efer_bits(u64 mask) 1744 { 1745 efer_reserved_bits &= ~mask; 1746 } 1747 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1748 1749 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1750 { 1751 struct kvm_x86_msr_filter *msr_filter; 1752 struct msr_bitmap_range *ranges; 1753 struct kvm *kvm = vcpu->kvm; 1754 bool allowed; 1755 int idx; 1756 u32 i; 1757 1758 /* x2APIC MSRs do not support filtering. */ 1759 if (index >= 0x800 && index <= 0x8ff) 1760 return true; 1761 1762 idx = srcu_read_lock(&kvm->srcu); 1763 1764 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1765 if (!msr_filter) { 1766 allowed = true; 1767 goto out; 1768 } 1769 1770 allowed = msr_filter->default_allow; 1771 ranges = msr_filter->ranges; 1772 1773 for (i = 0; i < msr_filter->count; i++) { 1774 u32 start = ranges[i].base; 1775 u32 end = start + ranges[i].nmsrs; 1776 u32 flags = ranges[i].flags; 1777 unsigned long *bitmap = ranges[i].bitmap; 1778 1779 if ((index >= start) && (index < end) && (flags & type)) { 1780 allowed = !!test_bit(index - start, bitmap); 1781 break; 1782 } 1783 } 1784 1785 out: 1786 srcu_read_unlock(&kvm->srcu, idx); 1787 1788 return allowed; 1789 } 1790 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1791 1792 /* 1793 * Write @data into the MSR specified by @index. Select MSR specific fault 1794 * checks are bypassed if @host_initiated is %true. 1795 * Returns 0 on success, non-0 otherwise. 1796 * Assumes vcpu_load() was already called. 1797 */ 1798 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1799 bool host_initiated) 1800 { 1801 struct msr_data msr; 1802 1803 switch (index) { 1804 case MSR_FS_BASE: 1805 case MSR_GS_BASE: 1806 case MSR_KERNEL_GS_BASE: 1807 case MSR_CSTAR: 1808 case MSR_LSTAR: 1809 if (is_noncanonical_address(data, vcpu)) 1810 return 1; 1811 break; 1812 case MSR_IA32_SYSENTER_EIP: 1813 case MSR_IA32_SYSENTER_ESP: 1814 /* 1815 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1816 * non-canonical address is written on Intel but not on 1817 * AMD (which ignores the top 32-bits, because it does 1818 * not implement 64-bit SYSENTER). 1819 * 1820 * 64-bit code should hence be able to write a non-canonical 1821 * value on AMD. Making the address canonical ensures that 1822 * vmentry does not fail on Intel after writing a non-canonical 1823 * value, and that something deterministic happens if the guest 1824 * invokes 64-bit SYSENTER. 1825 */ 1826 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1827 break; 1828 case MSR_TSC_AUX: 1829 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1830 return 1; 1831 1832 if (!host_initiated && 1833 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1834 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1835 return 1; 1836 1837 /* 1838 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1839 * incomplete and conflicting architectural behavior. Current 1840 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1841 * reserved and always read as zeros. Enforce Intel's reserved 1842 * bits check if and only if the guest CPU is Intel, and clear 1843 * the bits in all other cases. This ensures cross-vendor 1844 * migration will provide consistent behavior for the guest. 1845 */ 1846 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1847 return 1; 1848 1849 data = (u32)data; 1850 break; 1851 } 1852 1853 msr.data = data; 1854 msr.index = index; 1855 msr.host_initiated = host_initiated; 1856 1857 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1858 } 1859 1860 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1861 u32 index, u64 data, bool host_initiated) 1862 { 1863 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1864 1865 if (ret == KVM_MSR_RET_INVALID) 1866 if (kvm_msr_ignored_check(index, data, true)) 1867 ret = 0; 1868 1869 return ret; 1870 } 1871 1872 /* 1873 * Read the MSR specified by @index into @data. Select MSR specific fault 1874 * checks are bypassed if @host_initiated is %true. 1875 * Returns 0 on success, non-0 otherwise. 1876 * Assumes vcpu_load() was already called. 1877 */ 1878 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1879 bool host_initiated) 1880 { 1881 struct msr_data msr; 1882 int ret; 1883 1884 switch (index) { 1885 case MSR_TSC_AUX: 1886 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1887 return 1; 1888 1889 if (!host_initiated && 1890 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1891 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1892 return 1; 1893 break; 1894 } 1895 1896 msr.index = index; 1897 msr.host_initiated = host_initiated; 1898 1899 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1900 if (!ret) 1901 *data = msr.data; 1902 return ret; 1903 } 1904 1905 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1906 u32 index, u64 *data, bool host_initiated) 1907 { 1908 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1909 1910 if (ret == KVM_MSR_RET_INVALID) { 1911 /* Unconditionally clear *data for simplicity */ 1912 *data = 0; 1913 if (kvm_msr_ignored_check(index, 0, false)) 1914 ret = 0; 1915 } 1916 1917 return ret; 1918 } 1919 1920 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1921 { 1922 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1923 return KVM_MSR_RET_FILTERED; 1924 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1925 } 1926 1927 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1928 { 1929 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1930 return KVM_MSR_RET_FILTERED; 1931 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1932 } 1933 1934 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1935 { 1936 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1937 } 1938 EXPORT_SYMBOL_GPL(kvm_get_msr); 1939 1940 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1941 { 1942 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1943 } 1944 EXPORT_SYMBOL_GPL(kvm_set_msr); 1945 1946 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1947 { 1948 if (!vcpu->run->msr.error) { 1949 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1950 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1951 } 1952 } 1953 1954 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1955 { 1956 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1957 } 1958 1959 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1960 { 1961 complete_userspace_rdmsr(vcpu); 1962 return complete_emulated_msr_access(vcpu); 1963 } 1964 1965 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1966 { 1967 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1968 } 1969 1970 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1971 { 1972 complete_userspace_rdmsr(vcpu); 1973 return complete_fast_msr_access(vcpu); 1974 } 1975 1976 static u64 kvm_msr_reason(int r) 1977 { 1978 switch (r) { 1979 case KVM_MSR_RET_INVALID: 1980 return KVM_MSR_EXIT_REASON_UNKNOWN; 1981 case KVM_MSR_RET_FILTERED: 1982 return KVM_MSR_EXIT_REASON_FILTER; 1983 default: 1984 return KVM_MSR_EXIT_REASON_INVAL; 1985 } 1986 } 1987 1988 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1989 u32 exit_reason, u64 data, 1990 int (*completion)(struct kvm_vcpu *vcpu), 1991 int r) 1992 { 1993 u64 msr_reason = kvm_msr_reason(r); 1994 1995 /* Check if the user wanted to know about this MSR fault */ 1996 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1997 return 0; 1998 1999 vcpu->run->exit_reason = exit_reason; 2000 vcpu->run->msr.error = 0; 2001 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2002 vcpu->run->msr.reason = msr_reason; 2003 vcpu->run->msr.index = index; 2004 vcpu->run->msr.data = data; 2005 vcpu->arch.complete_userspace_io = completion; 2006 2007 return 1; 2008 } 2009 2010 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2011 { 2012 u32 ecx = kvm_rcx_read(vcpu); 2013 u64 data; 2014 int r; 2015 2016 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2017 2018 if (!r) { 2019 trace_kvm_msr_read(ecx, data); 2020 2021 kvm_rax_write(vcpu, data & -1u); 2022 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2023 } else { 2024 /* MSR read failed? See if we should ask user space */ 2025 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2026 complete_fast_rdmsr, r)) 2027 return 0; 2028 trace_kvm_msr_read_ex(ecx); 2029 } 2030 2031 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2032 } 2033 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2034 2035 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2036 { 2037 u32 ecx = kvm_rcx_read(vcpu); 2038 u64 data = kvm_read_edx_eax(vcpu); 2039 int r; 2040 2041 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2042 2043 if (!r) { 2044 trace_kvm_msr_write(ecx, data); 2045 } else { 2046 /* MSR write failed? See if we should ask user space */ 2047 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2048 complete_fast_msr_access, r)) 2049 return 0; 2050 /* Signal all other negative errors to userspace */ 2051 if (r < 0) 2052 return r; 2053 trace_kvm_msr_write_ex(ecx, data); 2054 } 2055 2056 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2057 } 2058 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2059 2060 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2061 { 2062 return kvm_skip_emulated_instruction(vcpu); 2063 } 2064 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 2065 2066 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2067 { 2068 /* Treat an INVD instruction as a NOP and just skip it. */ 2069 return kvm_emulate_as_nop(vcpu); 2070 } 2071 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2072 2073 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2074 { 2075 kvm_queue_exception(vcpu, UD_VECTOR); 2076 return 1; 2077 } 2078 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2079 2080 2081 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2082 { 2083 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2084 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2085 return kvm_handle_invalid_op(vcpu); 2086 2087 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn); 2088 return kvm_emulate_as_nop(vcpu); 2089 } 2090 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2091 { 2092 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2093 } 2094 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2095 2096 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2097 { 2098 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2099 } 2100 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2101 2102 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2103 { 2104 xfer_to_guest_mode_prepare(); 2105 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2106 xfer_to_guest_mode_work_pending(); 2107 } 2108 2109 /* 2110 * The fast path for frequent and performance sensitive wrmsr emulation, 2111 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2112 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2113 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2114 * other cases which must be called after interrupts are enabled on the host. 2115 */ 2116 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2117 { 2118 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2119 return 1; 2120 2121 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2122 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2123 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2124 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2125 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2126 2127 return 1; 2128 } 2129 2130 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2131 { 2132 if (!kvm_can_use_hv_timer(vcpu)) 2133 return 1; 2134 2135 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2136 return 0; 2137 } 2138 2139 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2140 { 2141 u32 msr = kvm_rcx_read(vcpu); 2142 u64 data; 2143 fastpath_t ret = EXIT_FASTPATH_NONE; 2144 2145 switch (msr) { 2146 case APIC_BASE_MSR + (APIC_ICR >> 4): 2147 data = kvm_read_edx_eax(vcpu); 2148 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2149 kvm_skip_emulated_instruction(vcpu); 2150 ret = EXIT_FASTPATH_EXIT_HANDLED; 2151 } 2152 break; 2153 case MSR_IA32_TSC_DEADLINE: 2154 data = kvm_read_edx_eax(vcpu); 2155 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2156 kvm_skip_emulated_instruction(vcpu); 2157 ret = EXIT_FASTPATH_REENTER_GUEST; 2158 } 2159 break; 2160 default: 2161 break; 2162 } 2163 2164 if (ret != EXIT_FASTPATH_NONE) 2165 trace_kvm_msr_write(msr, data); 2166 2167 return ret; 2168 } 2169 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2170 2171 /* 2172 * Adapt set_msr() to msr_io()'s calling convention 2173 */ 2174 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2175 { 2176 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2177 } 2178 2179 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2180 { 2181 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2182 } 2183 2184 #ifdef CONFIG_X86_64 2185 struct pvclock_clock { 2186 int vclock_mode; 2187 u64 cycle_last; 2188 u64 mask; 2189 u32 mult; 2190 u32 shift; 2191 u64 base_cycles; 2192 u64 offset; 2193 }; 2194 2195 struct pvclock_gtod_data { 2196 seqcount_t seq; 2197 2198 struct pvclock_clock clock; /* extract of a clocksource struct */ 2199 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2200 2201 ktime_t offs_boot; 2202 u64 wall_time_sec; 2203 }; 2204 2205 static struct pvclock_gtod_data pvclock_gtod_data; 2206 2207 static void update_pvclock_gtod(struct timekeeper *tk) 2208 { 2209 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2210 2211 write_seqcount_begin(&vdata->seq); 2212 2213 /* copy pvclock gtod data */ 2214 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2215 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2216 vdata->clock.mask = tk->tkr_mono.mask; 2217 vdata->clock.mult = tk->tkr_mono.mult; 2218 vdata->clock.shift = tk->tkr_mono.shift; 2219 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2220 vdata->clock.offset = tk->tkr_mono.base; 2221 2222 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2223 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2224 vdata->raw_clock.mask = tk->tkr_raw.mask; 2225 vdata->raw_clock.mult = tk->tkr_raw.mult; 2226 vdata->raw_clock.shift = tk->tkr_raw.shift; 2227 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2228 vdata->raw_clock.offset = tk->tkr_raw.base; 2229 2230 vdata->wall_time_sec = tk->xtime_sec; 2231 2232 vdata->offs_boot = tk->offs_boot; 2233 2234 write_seqcount_end(&vdata->seq); 2235 } 2236 2237 static s64 get_kvmclock_base_ns(void) 2238 { 2239 /* Count up from boot time, but with the frequency of the raw clock. */ 2240 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2241 } 2242 #else 2243 static s64 get_kvmclock_base_ns(void) 2244 { 2245 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2246 return ktime_get_boottime_ns(); 2247 } 2248 #endif 2249 2250 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2251 { 2252 int version; 2253 int r; 2254 struct pvclock_wall_clock wc; 2255 u32 wc_sec_hi; 2256 u64 wall_nsec; 2257 2258 if (!wall_clock) 2259 return; 2260 2261 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2262 if (r) 2263 return; 2264 2265 if (version & 1) 2266 ++version; /* first time write, random junk */ 2267 2268 ++version; 2269 2270 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2271 return; 2272 2273 /* 2274 * The guest calculates current wall clock time by adding 2275 * system time (updated by kvm_guest_time_update below) to the 2276 * wall clock specified here. We do the reverse here. 2277 */ 2278 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2279 2280 wc.nsec = do_div(wall_nsec, 1000000000); 2281 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2282 wc.version = version; 2283 2284 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2285 2286 if (sec_hi_ofs) { 2287 wc_sec_hi = wall_nsec >> 32; 2288 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2289 &wc_sec_hi, sizeof(wc_sec_hi)); 2290 } 2291 2292 version++; 2293 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2294 } 2295 2296 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2297 bool old_msr, bool host_initiated) 2298 { 2299 struct kvm_arch *ka = &vcpu->kvm->arch; 2300 2301 if (vcpu->vcpu_id == 0 && !host_initiated) { 2302 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2303 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2304 2305 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2306 } 2307 2308 vcpu->arch.time = system_time; 2309 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2310 2311 /* we verify if the enable bit is set... */ 2312 if (system_time & 1) { 2313 kvm_gpc_activate(vcpu->kvm, &vcpu->arch.pv_time, vcpu, 2314 KVM_HOST_USES_PFN, system_time & ~1ULL, 2315 sizeof(struct pvclock_vcpu_time_info)); 2316 } else { 2317 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.pv_time); 2318 } 2319 2320 return; 2321 } 2322 2323 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2324 { 2325 do_shl32_div32(dividend, divisor); 2326 return dividend; 2327 } 2328 2329 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2330 s8 *pshift, u32 *pmultiplier) 2331 { 2332 uint64_t scaled64; 2333 int32_t shift = 0; 2334 uint64_t tps64; 2335 uint32_t tps32; 2336 2337 tps64 = base_hz; 2338 scaled64 = scaled_hz; 2339 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2340 tps64 >>= 1; 2341 shift--; 2342 } 2343 2344 tps32 = (uint32_t)tps64; 2345 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2346 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2347 scaled64 >>= 1; 2348 else 2349 tps32 <<= 1; 2350 shift++; 2351 } 2352 2353 *pshift = shift; 2354 *pmultiplier = div_frac(scaled64, tps32); 2355 } 2356 2357 #ifdef CONFIG_X86_64 2358 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2359 #endif 2360 2361 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2362 static unsigned long max_tsc_khz; 2363 2364 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2365 { 2366 u64 v = (u64)khz * (1000000 + ppm); 2367 do_div(v, 1000000); 2368 return v; 2369 } 2370 2371 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2372 2373 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2374 { 2375 u64 ratio; 2376 2377 /* Guest TSC same frequency as host TSC? */ 2378 if (!scale) { 2379 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2380 return 0; 2381 } 2382 2383 /* TSC scaling supported? */ 2384 if (!kvm_caps.has_tsc_control) { 2385 if (user_tsc_khz > tsc_khz) { 2386 vcpu->arch.tsc_catchup = 1; 2387 vcpu->arch.tsc_always_catchup = 1; 2388 return 0; 2389 } else { 2390 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2391 return -1; 2392 } 2393 } 2394 2395 /* TSC scaling required - calculate ratio */ 2396 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2397 user_tsc_khz, tsc_khz); 2398 2399 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2400 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2401 user_tsc_khz); 2402 return -1; 2403 } 2404 2405 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2406 return 0; 2407 } 2408 2409 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2410 { 2411 u32 thresh_lo, thresh_hi; 2412 int use_scaling = 0; 2413 2414 /* tsc_khz can be zero if TSC calibration fails */ 2415 if (user_tsc_khz == 0) { 2416 /* set tsc_scaling_ratio to a safe value */ 2417 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2418 return -1; 2419 } 2420 2421 /* Compute a scale to convert nanoseconds in TSC cycles */ 2422 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2423 &vcpu->arch.virtual_tsc_shift, 2424 &vcpu->arch.virtual_tsc_mult); 2425 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2426 2427 /* 2428 * Compute the variation in TSC rate which is acceptable 2429 * within the range of tolerance and decide if the 2430 * rate being applied is within that bounds of the hardware 2431 * rate. If so, no scaling or compensation need be done. 2432 */ 2433 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2434 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2435 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2436 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2437 use_scaling = 1; 2438 } 2439 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2440 } 2441 2442 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2443 { 2444 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2445 vcpu->arch.virtual_tsc_mult, 2446 vcpu->arch.virtual_tsc_shift); 2447 tsc += vcpu->arch.this_tsc_write; 2448 return tsc; 2449 } 2450 2451 #ifdef CONFIG_X86_64 2452 static inline int gtod_is_based_on_tsc(int mode) 2453 { 2454 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2455 } 2456 #endif 2457 2458 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2459 { 2460 #ifdef CONFIG_X86_64 2461 bool vcpus_matched; 2462 struct kvm_arch *ka = &vcpu->kvm->arch; 2463 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2464 2465 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2466 atomic_read(&vcpu->kvm->online_vcpus)); 2467 2468 /* 2469 * Once the masterclock is enabled, always perform request in 2470 * order to update it. 2471 * 2472 * In order to enable masterclock, the host clocksource must be TSC 2473 * and the vcpus need to have matched TSCs. When that happens, 2474 * perform request to enable masterclock. 2475 */ 2476 if (ka->use_master_clock || 2477 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2478 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2479 2480 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2481 atomic_read(&vcpu->kvm->online_vcpus), 2482 ka->use_master_clock, gtod->clock.vclock_mode); 2483 #endif 2484 } 2485 2486 /* 2487 * Multiply tsc by a fixed point number represented by ratio. 2488 * 2489 * The most significant 64-N bits (mult) of ratio represent the 2490 * integral part of the fixed point number; the remaining N bits 2491 * (frac) represent the fractional part, ie. ratio represents a fixed 2492 * point number (mult + frac * 2^(-N)). 2493 * 2494 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2495 */ 2496 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2497 { 2498 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2499 } 2500 2501 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2502 { 2503 u64 _tsc = tsc; 2504 2505 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2506 _tsc = __scale_tsc(ratio, tsc); 2507 2508 return _tsc; 2509 } 2510 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2511 2512 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2513 { 2514 u64 tsc; 2515 2516 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2517 2518 return target_tsc - tsc; 2519 } 2520 2521 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2522 { 2523 return vcpu->arch.l1_tsc_offset + 2524 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2525 } 2526 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2527 2528 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2529 { 2530 u64 nested_offset; 2531 2532 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2533 nested_offset = l1_offset; 2534 else 2535 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2536 kvm_caps.tsc_scaling_ratio_frac_bits); 2537 2538 nested_offset += l2_offset; 2539 return nested_offset; 2540 } 2541 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2542 2543 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2544 { 2545 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2546 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2547 kvm_caps.tsc_scaling_ratio_frac_bits); 2548 2549 return l1_multiplier; 2550 } 2551 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2552 2553 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2554 { 2555 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2556 vcpu->arch.l1_tsc_offset, 2557 l1_offset); 2558 2559 vcpu->arch.l1_tsc_offset = l1_offset; 2560 2561 /* 2562 * If we are here because L1 chose not to trap WRMSR to TSC then 2563 * according to the spec this should set L1's TSC (as opposed to 2564 * setting L1's offset for L2). 2565 */ 2566 if (is_guest_mode(vcpu)) 2567 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2568 l1_offset, 2569 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2570 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2571 else 2572 vcpu->arch.tsc_offset = l1_offset; 2573 2574 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2575 } 2576 2577 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2578 { 2579 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2580 2581 /* Userspace is changing the multiplier while L2 is active */ 2582 if (is_guest_mode(vcpu)) 2583 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2584 l1_multiplier, 2585 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2586 else 2587 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2588 2589 if (kvm_caps.has_tsc_control) 2590 static_call(kvm_x86_write_tsc_multiplier)( 2591 vcpu, vcpu->arch.tsc_scaling_ratio); 2592 } 2593 2594 static inline bool kvm_check_tsc_unstable(void) 2595 { 2596 #ifdef CONFIG_X86_64 2597 /* 2598 * TSC is marked unstable when we're running on Hyper-V, 2599 * 'TSC page' clocksource is good. 2600 */ 2601 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2602 return false; 2603 #endif 2604 return check_tsc_unstable(); 2605 } 2606 2607 /* 2608 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2609 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2610 * participates in. 2611 */ 2612 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2613 u64 ns, bool matched) 2614 { 2615 struct kvm *kvm = vcpu->kvm; 2616 2617 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2618 2619 /* 2620 * We also track th most recent recorded KHZ, write and time to 2621 * allow the matching interval to be extended at each write. 2622 */ 2623 kvm->arch.last_tsc_nsec = ns; 2624 kvm->arch.last_tsc_write = tsc; 2625 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2626 kvm->arch.last_tsc_offset = offset; 2627 2628 vcpu->arch.last_guest_tsc = tsc; 2629 2630 kvm_vcpu_write_tsc_offset(vcpu, offset); 2631 2632 if (!matched) { 2633 /* 2634 * We split periods of matched TSC writes into generations. 2635 * For each generation, we track the original measured 2636 * nanosecond time, offset, and write, so if TSCs are in 2637 * sync, we can match exact offset, and if not, we can match 2638 * exact software computation in compute_guest_tsc() 2639 * 2640 * These values are tracked in kvm->arch.cur_xxx variables. 2641 */ 2642 kvm->arch.cur_tsc_generation++; 2643 kvm->arch.cur_tsc_nsec = ns; 2644 kvm->arch.cur_tsc_write = tsc; 2645 kvm->arch.cur_tsc_offset = offset; 2646 kvm->arch.nr_vcpus_matched_tsc = 0; 2647 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2648 kvm->arch.nr_vcpus_matched_tsc++; 2649 } 2650 2651 /* Keep track of which generation this VCPU has synchronized to */ 2652 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2653 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2654 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2655 2656 kvm_track_tsc_matching(vcpu); 2657 } 2658 2659 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2660 { 2661 struct kvm *kvm = vcpu->kvm; 2662 u64 offset, ns, elapsed; 2663 unsigned long flags; 2664 bool matched = false; 2665 bool synchronizing = false; 2666 2667 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2668 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2669 ns = get_kvmclock_base_ns(); 2670 elapsed = ns - kvm->arch.last_tsc_nsec; 2671 2672 if (vcpu->arch.virtual_tsc_khz) { 2673 if (data == 0) { 2674 /* 2675 * detection of vcpu initialization -- need to sync 2676 * with other vCPUs. This particularly helps to keep 2677 * kvm_clock stable after CPU hotplug 2678 */ 2679 synchronizing = true; 2680 } else { 2681 u64 tsc_exp = kvm->arch.last_tsc_write + 2682 nsec_to_cycles(vcpu, elapsed); 2683 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2684 /* 2685 * Special case: TSC write with a small delta (1 second) 2686 * of virtual cycle time against real time is 2687 * interpreted as an attempt to synchronize the CPU. 2688 */ 2689 synchronizing = data < tsc_exp + tsc_hz && 2690 data + tsc_hz > tsc_exp; 2691 } 2692 } 2693 2694 /* 2695 * For a reliable TSC, we can match TSC offsets, and for an unstable 2696 * TSC, we add elapsed time in this computation. We could let the 2697 * compensation code attempt to catch up if we fall behind, but 2698 * it's better to try to match offsets from the beginning. 2699 */ 2700 if (synchronizing && 2701 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2702 if (!kvm_check_tsc_unstable()) { 2703 offset = kvm->arch.cur_tsc_offset; 2704 } else { 2705 u64 delta = nsec_to_cycles(vcpu, elapsed); 2706 data += delta; 2707 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2708 } 2709 matched = true; 2710 } 2711 2712 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2713 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2714 } 2715 2716 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2717 s64 adjustment) 2718 { 2719 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2720 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2721 } 2722 2723 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2724 { 2725 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2726 WARN_ON(adjustment < 0); 2727 adjustment = kvm_scale_tsc((u64) adjustment, 2728 vcpu->arch.l1_tsc_scaling_ratio); 2729 adjust_tsc_offset_guest(vcpu, adjustment); 2730 } 2731 2732 #ifdef CONFIG_X86_64 2733 2734 static u64 read_tsc(void) 2735 { 2736 u64 ret = (u64)rdtsc_ordered(); 2737 u64 last = pvclock_gtod_data.clock.cycle_last; 2738 2739 if (likely(ret >= last)) 2740 return ret; 2741 2742 /* 2743 * GCC likes to generate cmov here, but this branch is extremely 2744 * predictable (it's just a function of time and the likely is 2745 * very likely) and there's a data dependence, so force GCC 2746 * to generate a branch instead. I don't barrier() because 2747 * we don't actually need a barrier, and if this function 2748 * ever gets inlined it will generate worse code. 2749 */ 2750 asm volatile (""); 2751 return last; 2752 } 2753 2754 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2755 int *mode) 2756 { 2757 long v; 2758 u64 tsc_pg_val; 2759 2760 switch (clock->vclock_mode) { 2761 case VDSO_CLOCKMODE_HVCLOCK: 2762 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2763 tsc_timestamp); 2764 if (tsc_pg_val != U64_MAX) { 2765 /* TSC page valid */ 2766 *mode = VDSO_CLOCKMODE_HVCLOCK; 2767 v = (tsc_pg_val - clock->cycle_last) & 2768 clock->mask; 2769 } else { 2770 /* TSC page invalid */ 2771 *mode = VDSO_CLOCKMODE_NONE; 2772 } 2773 break; 2774 case VDSO_CLOCKMODE_TSC: 2775 *mode = VDSO_CLOCKMODE_TSC; 2776 *tsc_timestamp = read_tsc(); 2777 v = (*tsc_timestamp - clock->cycle_last) & 2778 clock->mask; 2779 break; 2780 default: 2781 *mode = VDSO_CLOCKMODE_NONE; 2782 } 2783 2784 if (*mode == VDSO_CLOCKMODE_NONE) 2785 *tsc_timestamp = v = 0; 2786 2787 return v * clock->mult; 2788 } 2789 2790 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2791 { 2792 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2793 unsigned long seq; 2794 int mode; 2795 u64 ns; 2796 2797 do { 2798 seq = read_seqcount_begin(>od->seq); 2799 ns = gtod->raw_clock.base_cycles; 2800 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2801 ns >>= gtod->raw_clock.shift; 2802 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2803 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2804 *t = ns; 2805 2806 return mode; 2807 } 2808 2809 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2810 { 2811 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2812 unsigned long seq; 2813 int mode; 2814 u64 ns; 2815 2816 do { 2817 seq = read_seqcount_begin(>od->seq); 2818 ts->tv_sec = gtod->wall_time_sec; 2819 ns = gtod->clock.base_cycles; 2820 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2821 ns >>= gtod->clock.shift; 2822 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2823 2824 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2825 ts->tv_nsec = ns; 2826 2827 return mode; 2828 } 2829 2830 /* returns true if host is using TSC based clocksource */ 2831 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2832 { 2833 /* checked again under seqlock below */ 2834 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2835 return false; 2836 2837 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2838 tsc_timestamp)); 2839 } 2840 2841 /* returns true if host is using TSC based clocksource */ 2842 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2843 u64 *tsc_timestamp) 2844 { 2845 /* checked again under seqlock below */ 2846 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2847 return false; 2848 2849 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2850 } 2851 #endif 2852 2853 /* 2854 * 2855 * Assuming a stable TSC across physical CPUS, and a stable TSC 2856 * across virtual CPUs, the following condition is possible. 2857 * Each numbered line represents an event visible to both 2858 * CPUs at the next numbered event. 2859 * 2860 * "timespecX" represents host monotonic time. "tscX" represents 2861 * RDTSC value. 2862 * 2863 * VCPU0 on CPU0 | VCPU1 on CPU1 2864 * 2865 * 1. read timespec0,tsc0 2866 * 2. | timespec1 = timespec0 + N 2867 * | tsc1 = tsc0 + M 2868 * 3. transition to guest | transition to guest 2869 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2870 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2871 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2872 * 2873 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2874 * 2875 * - ret0 < ret1 2876 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2877 * ... 2878 * - 0 < N - M => M < N 2879 * 2880 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2881 * always the case (the difference between two distinct xtime instances 2882 * might be smaller then the difference between corresponding TSC reads, 2883 * when updating guest vcpus pvclock areas). 2884 * 2885 * To avoid that problem, do not allow visibility of distinct 2886 * system_timestamp/tsc_timestamp values simultaneously: use a master 2887 * copy of host monotonic time values. Update that master copy 2888 * in lockstep. 2889 * 2890 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2891 * 2892 */ 2893 2894 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2895 { 2896 #ifdef CONFIG_X86_64 2897 struct kvm_arch *ka = &kvm->arch; 2898 int vclock_mode; 2899 bool host_tsc_clocksource, vcpus_matched; 2900 2901 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2902 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2903 atomic_read(&kvm->online_vcpus)); 2904 2905 /* 2906 * If the host uses TSC clock, then passthrough TSC as stable 2907 * to the guest. 2908 */ 2909 host_tsc_clocksource = kvm_get_time_and_clockread( 2910 &ka->master_kernel_ns, 2911 &ka->master_cycle_now); 2912 2913 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2914 && !ka->backwards_tsc_observed 2915 && !ka->boot_vcpu_runs_old_kvmclock; 2916 2917 if (ka->use_master_clock) 2918 atomic_set(&kvm_guest_has_master_clock, 1); 2919 2920 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2921 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2922 vcpus_matched); 2923 #endif 2924 } 2925 2926 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2927 { 2928 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2929 } 2930 2931 static void __kvm_start_pvclock_update(struct kvm *kvm) 2932 { 2933 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2934 write_seqcount_begin(&kvm->arch.pvclock_sc); 2935 } 2936 2937 static void kvm_start_pvclock_update(struct kvm *kvm) 2938 { 2939 kvm_make_mclock_inprogress_request(kvm); 2940 2941 /* no guest entries from this point */ 2942 __kvm_start_pvclock_update(kvm); 2943 } 2944 2945 static void kvm_end_pvclock_update(struct kvm *kvm) 2946 { 2947 struct kvm_arch *ka = &kvm->arch; 2948 struct kvm_vcpu *vcpu; 2949 unsigned long i; 2950 2951 write_seqcount_end(&ka->pvclock_sc); 2952 raw_spin_unlock_irq(&ka->tsc_write_lock); 2953 kvm_for_each_vcpu(i, vcpu, kvm) 2954 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2955 2956 /* guest entries allowed */ 2957 kvm_for_each_vcpu(i, vcpu, kvm) 2958 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2959 } 2960 2961 static void kvm_update_masterclock(struct kvm *kvm) 2962 { 2963 kvm_hv_request_tsc_page_update(kvm); 2964 kvm_start_pvclock_update(kvm); 2965 pvclock_update_vm_gtod_copy(kvm); 2966 kvm_end_pvclock_update(kvm); 2967 } 2968 2969 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2970 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2971 { 2972 struct kvm_arch *ka = &kvm->arch; 2973 struct pvclock_vcpu_time_info hv_clock; 2974 2975 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2976 get_cpu(); 2977 2978 data->flags = 0; 2979 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2980 #ifdef CONFIG_X86_64 2981 struct timespec64 ts; 2982 2983 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2984 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2985 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2986 } else 2987 #endif 2988 data->host_tsc = rdtsc(); 2989 2990 data->flags |= KVM_CLOCK_TSC_STABLE; 2991 hv_clock.tsc_timestamp = ka->master_cycle_now; 2992 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2993 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2994 &hv_clock.tsc_shift, 2995 &hv_clock.tsc_to_system_mul); 2996 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 2997 } else { 2998 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 2999 } 3000 3001 put_cpu(); 3002 } 3003 3004 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3005 { 3006 struct kvm_arch *ka = &kvm->arch; 3007 unsigned seq; 3008 3009 do { 3010 seq = read_seqcount_begin(&ka->pvclock_sc); 3011 __get_kvmclock(kvm, data); 3012 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3013 } 3014 3015 u64 get_kvmclock_ns(struct kvm *kvm) 3016 { 3017 struct kvm_clock_data data; 3018 3019 get_kvmclock(kvm, &data); 3020 return data.clock; 3021 } 3022 3023 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3024 struct gfn_to_pfn_cache *gpc, 3025 unsigned int offset) 3026 { 3027 struct kvm_vcpu_arch *vcpu = &v->arch; 3028 struct pvclock_vcpu_time_info *guest_hv_clock; 3029 unsigned long flags; 3030 3031 read_lock_irqsave(&gpc->lock, flags); 3032 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 3033 offset + sizeof(*guest_hv_clock))) { 3034 read_unlock_irqrestore(&gpc->lock, flags); 3035 3036 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, 3037 offset + sizeof(*guest_hv_clock))) 3038 return; 3039 3040 read_lock_irqsave(&gpc->lock, flags); 3041 } 3042 3043 guest_hv_clock = (void *)(gpc->khva + offset); 3044 3045 /* 3046 * This VCPU is paused, but it's legal for a guest to read another 3047 * VCPU's kvmclock, so we really have to follow the specification where 3048 * it says that version is odd if data is being modified, and even after 3049 * it is consistent. 3050 */ 3051 3052 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3053 smp_wmb(); 3054 3055 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3056 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3057 3058 if (vcpu->pvclock_set_guest_stopped_request) { 3059 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3060 vcpu->pvclock_set_guest_stopped_request = false; 3061 } 3062 3063 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3064 smp_wmb(); 3065 3066 guest_hv_clock->version = ++vcpu->hv_clock.version; 3067 3068 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3069 read_unlock_irqrestore(&gpc->lock, flags); 3070 3071 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3072 } 3073 3074 static int kvm_guest_time_update(struct kvm_vcpu *v) 3075 { 3076 unsigned long flags, tgt_tsc_khz; 3077 unsigned seq; 3078 struct kvm_vcpu_arch *vcpu = &v->arch; 3079 struct kvm_arch *ka = &v->kvm->arch; 3080 s64 kernel_ns; 3081 u64 tsc_timestamp, host_tsc; 3082 u8 pvclock_flags; 3083 bool use_master_clock; 3084 3085 kernel_ns = 0; 3086 host_tsc = 0; 3087 3088 /* 3089 * If the host uses TSC clock, then passthrough TSC as stable 3090 * to the guest. 3091 */ 3092 do { 3093 seq = read_seqcount_begin(&ka->pvclock_sc); 3094 use_master_clock = ka->use_master_clock; 3095 if (use_master_clock) { 3096 host_tsc = ka->master_cycle_now; 3097 kernel_ns = ka->master_kernel_ns; 3098 } 3099 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3100 3101 /* Keep irq disabled to prevent changes to the clock */ 3102 local_irq_save(flags); 3103 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3104 if (unlikely(tgt_tsc_khz == 0)) { 3105 local_irq_restore(flags); 3106 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3107 return 1; 3108 } 3109 if (!use_master_clock) { 3110 host_tsc = rdtsc(); 3111 kernel_ns = get_kvmclock_base_ns(); 3112 } 3113 3114 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3115 3116 /* 3117 * We may have to catch up the TSC to match elapsed wall clock 3118 * time for two reasons, even if kvmclock is used. 3119 * 1) CPU could have been running below the maximum TSC rate 3120 * 2) Broken TSC compensation resets the base at each VCPU 3121 * entry to avoid unknown leaps of TSC even when running 3122 * again on the same CPU. This may cause apparent elapsed 3123 * time to disappear, and the guest to stand still or run 3124 * very slowly. 3125 */ 3126 if (vcpu->tsc_catchup) { 3127 u64 tsc = compute_guest_tsc(v, kernel_ns); 3128 if (tsc > tsc_timestamp) { 3129 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3130 tsc_timestamp = tsc; 3131 } 3132 } 3133 3134 local_irq_restore(flags); 3135 3136 /* With all the info we got, fill in the values */ 3137 3138 if (kvm_caps.has_tsc_control) 3139 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3140 v->arch.l1_tsc_scaling_ratio); 3141 3142 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3143 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3144 &vcpu->hv_clock.tsc_shift, 3145 &vcpu->hv_clock.tsc_to_system_mul); 3146 vcpu->hw_tsc_khz = tgt_tsc_khz; 3147 } 3148 3149 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3150 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3151 vcpu->last_guest_tsc = tsc_timestamp; 3152 3153 /* If the host uses TSC clocksource, then it is stable */ 3154 pvclock_flags = 0; 3155 if (use_master_clock) 3156 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3157 3158 vcpu->hv_clock.flags = pvclock_flags; 3159 3160 if (vcpu->pv_time.active) 3161 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3162 if (vcpu->xen.vcpu_info_cache.active) 3163 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3164 offsetof(struct compat_vcpu_info, time)); 3165 if (vcpu->xen.vcpu_time_info_cache.active) 3166 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3167 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3168 return 0; 3169 } 3170 3171 /* 3172 * kvmclock updates which are isolated to a given vcpu, such as 3173 * vcpu->cpu migration, should not allow system_timestamp from 3174 * the rest of the vcpus to remain static. Otherwise ntp frequency 3175 * correction applies to one vcpu's system_timestamp but not 3176 * the others. 3177 * 3178 * So in those cases, request a kvmclock update for all vcpus. 3179 * We need to rate-limit these requests though, as they can 3180 * considerably slow guests that have a large number of vcpus. 3181 * The time for a remote vcpu to update its kvmclock is bound 3182 * by the delay we use to rate-limit the updates. 3183 */ 3184 3185 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3186 3187 static void kvmclock_update_fn(struct work_struct *work) 3188 { 3189 unsigned long i; 3190 struct delayed_work *dwork = to_delayed_work(work); 3191 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3192 kvmclock_update_work); 3193 struct kvm *kvm = container_of(ka, struct kvm, arch); 3194 struct kvm_vcpu *vcpu; 3195 3196 kvm_for_each_vcpu(i, vcpu, kvm) { 3197 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3198 kvm_vcpu_kick(vcpu); 3199 } 3200 } 3201 3202 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3203 { 3204 struct kvm *kvm = v->kvm; 3205 3206 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3207 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3208 KVMCLOCK_UPDATE_DELAY); 3209 } 3210 3211 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3212 3213 static void kvmclock_sync_fn(struct work_struct *work) 3214 { 3215 struct delayed_work *dwork = to_delayed_work(work); 3216 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3217 kvmclock_sync_work); 3218 struct kvm *kvm = container_of(ka, struct kvm, arch); 3219 3220 if (!kvmclock_periodic_sync) 3221 return; 3222 3223 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3224 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3225 KVMCLOCK_SYNC_PERIOD); 3226 } 3227 3228 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3229 static bool is_mci_control_msr(u32 msr) 3230 { 3231 return (msr & 3) == 0; 3232 } 3233 static bool is_mci_status_msr(u32 msr) 3234 { 3235 return (msr & 3) == 1; 3236 } 3237 3238 /* 3239 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3240 */ 3241 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3242 { 3243 /* McStatusWrEn enabled? */ 3244 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3245 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3246 3247 return false; 3248 } 3249 3250 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3251 { 3252 u64 mcg_cap = vcpu->arch.mcg_cap; 3253 unsigned bank_num = mcg_cap & 0xff; 3254 u32 msr = msr_info->index; 3255 u64 data = msr_info->data; 3256 u32 offset, last_msr; 3257 3258 switch (msr) { 3259 case MSR_IA32_MCG_STATUS: 3260 vcpu->arch.mcg_status = data; 3261 break; 3262 case MSR_IA32_MCG_CTL: 3263 if (!(mcg_cap & MCG_CTL_P) && 3264 (data || !msr_info->host_initiated)) 3265 return 1; 3266 if (data != 0 && data != ~(u64)0) 3267 return 1; 3268 vcpu->arch.mcg_ctl = data; 3269 break; 3270 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3271 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3272 if (msr > last_msr) 3273 return 1; 3274 3275 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3276 return 1; 3277 /* An attempt to write a 1 to a reserved bit raises #GP */ 3278 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3279 return 1; 3280 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3281 last_msr + 1 - MSR_IA32_MC0_CTL2); 3282 vcpu->arch.mci_ctl2_banks[offset] = data; 3283 break; 3284 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3285 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3286 if (msr > last_msr) 3287 return 1; 3288 3289 /* 3290 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3291 * values are architecturally undefined. But, some Linux 3292 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3293 * issue on AMD K8s, allow bit 10 to be clear when setting all 3294 * other bits in order to avoid an uncaught #GP in the guest. 3295 * 3296 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3297 * single-bit ECC data errors. 3298 */ 3299 if (is_mci_control_msr(msr) && 3300 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3301 return 1; 3302 3303 /* 3304 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3305 * AMD-based CPUs allow non-zero values, but if and only if 3306 * HWCR[McStatusWrEn] is set. 3307 */ 3308 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3309 data != 0 && !can_set_mci_status(vcpu)) 3310 return 1; 3311 3312 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3313 last_msr + 1 - MSR_IA32_MC0_CTL); 3314 vcpu->arch.mce_banks[offset] = data; 3315 break; 3316 default: 3317 return 1; 3318 } 3319 return 0; 3320 } 3321 3322 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3323 { 3324 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3325 3326 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3327 } 3328 3329 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3330 { 3331 gpa_t gpa = data & ~0x3f; 3332 3333 /* Bits 4:5 are reserved, Should be zero */ 3334 if (data & 0x30) 3335 return 1; 3336 3337 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3338 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3339 return 1; 3340 3341 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3342 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3343 return 1; 3344 3345 if (!lapic_in_kernel(vcpu)) 3346 return data ? 1 : 0; 3347 3348 vcpu->arch.apf.msr_en_val = data; 3349 3350 if (!kvm_pv_async_pf_enabled(vcpu)) { 3351 kvm_clear_async_pf_completion_queue(vcpu); 3352 kvm_async_pf_hash_reset(vcpu); 3353 return 0; 3354 } 3355 3356 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3357 sizeof(u64))) 3358 return 1; 3359 3360 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3361 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3362 3363 kvm_async_pf_wakeup_all(vcpu); 3364 3365 return 0; 3366 } 3367 3368 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3369 { 3370 /* Bits 8-63 are reserved */ 3371 if (data >> 8) 3372 return 1; 3373 3374 if (!lapic_in_kernel(vcpu)) 3375 return 1; 3376 3377 vcpu->arch.apf.msr_int_val = data; 3378 3379 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3380 3381 return 0; 3382 } 3383 3384 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3385 { 3386 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.pv_time); 3387 vcpu->arch.time = 0; 3388 } 3389 3390 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3391 { 3392 ++vcpu->stat.tlb_flush; 3393 static_call(kvm_x86_flush_tlb_all)(vcpu); 3394 } 3395 3396 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3397 { 3398 ++vcpu->stat.tlb_flush; 3399 3400 if (!tdp_enabled) { 3401 /* 3402 * A TLB flush on behalf of the guest is equivalent to 3403 * INVPCID(all), toggling CR4.PGE, etc., which requires 3404 * a forced sync of the shadow page tables. Ensure all the 3405 * roots are synced and the guest TLB in hardware is clean. 3406 */ 3407 kvm_mmu_sync_roots(vcpu); 3408 kvm_mmu_sync_prev_roots(vcpu); 3409 } 3410 3411 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3412 } 3413 3414 3415 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3416 { 3417 ++vcpu->stat.tlb_flush; 3418 static_call(kvm_x86_flush_tlb_current)(vcpu); 3419 } 3420 3421 /* 3422 * Service "local" TLB flush requests, which are specific to the current MMU 3423 * context. In addition to the generic event handling in vcpu_enter_guest(), 3424 * TLB flushes that are targeted at an MMU context also need to be serviced 3425 * prior before nested VM-Enter/VM-Exit. 3426 */ 3427 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3428 { 3429 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3430 kvm_vcpu_flush_tlb_current(vcpu); 3431 3432 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3433 kvm_vcpu_flush_tlb_guest(vcpu); 3434 } 3435 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3436 3437 static void record_steal_time(struct kvm_vcpu *vcpu) 3438 { 3439 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3440 struct kvm_steal_time __user *st; 3441 struct kvm_memslots *slots; 3442 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3443 u64 steal; 3444 u32 version; 3445 3446 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3447 kvm_xen_runstate_set_running(vcpu); 3448 return; 3449 } 3450 3451 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3452 return; 3453 3454 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3455 return; 3456 3457 slots = kvm_memslots(vcpu->kvm); 3458 3459 if (unlikely(slots->generation != ghc->generation || 3460 gpa != ghc->gpa || 3461 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3462 /* We rely on the fact that it fits in a single page. */ 3463 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3464 3465 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3466 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3467 return; 3468 } 3469 3470 st = (struct kvm_steal_time __user *)ghc->hva; 3471 /* 3472 * Doing a TLB flush here, on the guest's behalf, can avoid 3473 * expensive IPIs. 3474 */ 3475 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3476 u8 st_preempted = 0; 3477 int err = -EFAULT; 3478 3479 if (!user_access_begin(st, sizeof(*st))) 3480 return; 3481 3482 asm volatile("1: xchgb %0, %2\n" 3483 "xor %1, %1\n" 3484 "2:\n" 3485 _ASM_EXTABLE_UA(1b, 2b) 3486 : "+q" (st_preempted), 3487 "+&r" (err), 3488 "+m" (st->preempted)); 3489 if (err) 3490 goto out; 3491 3492 user_access_end(); 3493 3494 vcpu->arch.st.preempted = 0; 3495 3496 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3497 st_preempted & KVM_VCPU_FLUSH_TLB); 3498 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3499 kvm_vcpu_flush_tlb_guest(vcpu); 3500 3501 if (!user_access_begin(st, sizeof(*st))) 3502 goto dirty; 3503 } else { 3504 if (!user_access_begin(st, sizeof(*st))) 3505 return; 3506 3507 unsafe_put_user(0, &st->preempted, out); 3508 vcpu->arch.st.preempted = 0; 3509 } 3510 3511 unsafe_get_user(version, &st->version, out); 3512 if (version & 1) 3513 version += 1; /* first time write, random junk */ 3514 3515 version += 1; 3516 unsafe_put_user(version, &st->version, out); 3517 3518 smp_wmb(); 3519 3520 unsafe_get_user(steal, &st->steal, out); 3521 steal += current->sched_info.run_delay - 3522 vcpu->arch.st.last_steal; 3523 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3524 unsafe_put_user(steal, &st->steal, out); 3525 3526 version += 1; 3527 unsafe_put_user(version, &st->version, out); 3528 3529 out: 3530 user_access_end(); 3531 dirty: 3532 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3533 } 3534 3535 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3536 { 3537 bool pr = false; 3538 u32 msr = msr_info->index; 3539 u64 data = msr_info->data; 3540 3541 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3542 return kvm_xen_write_hypercall_page(vcpu, data); 3543 3544 switch (msr) { 3545 case MSR_AMD64_NB_CFG: 3546 case MSR_IA32_UCODE_WRITE: 3547 case MSR_VM_HSAVE_PA: 3548 case MSR_AMD64_PATCH_LOADER: 3549 case MSR_AMD64_BU_CFG2: 3550 case MSR_AMD64_DC_CFG: 3551 case MSR_F15H_EX_CFG: 3552 break; 3553 3554 case MSR_IA32_UCODE_REV: 3555 if (msr_info->host_initiated) 3556 vcpu->arch.microcode_version = data; 3557 break; 3558 case MSR_IA32_ARCH_CAPABILITIES: 3559 if (!msr_info->host_initiated) 3560 return 1; 3561 vcpu->arch.arch_capabilities = data; 3562 break; 3563 case MSR_IA32_PERF_CAPABILITIES: { 3564 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3565 3566 if (!msr_info->host_initiated) 3567 return 1; 3568 if (kvm_get_msr_feature(&msr_ent)) 3569 return 1; 3570 if (data & ~msr_ent.data) 3571 return 1; 3572 3573 vcpu->arch.perf_capabilities = data; 3574 kvm_pmu_refresh(vcpu); 3575 return 0; 3576 } 3577 case MSR_EFER: 3578 return set_efer(vcpu, msr_info); 3579 case MSR_K7_HWCR: 3580 data &= ~(u64)0x40; /* ignore flush filter disable */ 3581 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3582 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3583 3584 /* Handle McStatusWrEn */ 3585 if (data == BIT_ULL(18)) { 3586 vcpu->arch.msr_hwcr = data; 3587 } else if (data != 0) { 3588 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3589 data); 3590 return 1; 3591 } 3592 break; 3593 case MSR_FAM10H_MMIO_CONF_BASE: 3594 if (data != 0) { 3595 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3596 "0x%llx\n", data); 3597 return 1; 3598 } 3599 break; 3600 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3601 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3602 return kvm_mtrr_set_msr(vcpu, msr, data); 3603 case MSR_IA32_APICBASE: 3604 return kvm_set_apic_base(vcpu, msr_info); 3605 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3606 return kvm_x2apic_msr_write(vcpu, msr, data); 3607 case MSR_IA32_TSC_DEADLINE: 3608 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3609 break; 3610 case MSR_IA32_TSC_ADJUST: 3611 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3612 if (!msr_info->host_initiated) { 3613 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3614 adjust_tsc_offset_guest(vcpu, adj); 3615 /* Before back to guest, tsc_timestamp must be adjusted 3616 * as well, otherwise guest's percpu pvclock time could jump. 3617 */ 3618 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3619 } 3620 vcpu->arch.ia32_tsc_adjust_msr = data; 3621 } 3622 break; 3623 case MSR_IA32_MISC_ENABLE: { 3624 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3625 3626 if (!msr_info->host_initiated) { 3627 /* RO bits */ 3628 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3629 return 1; 3630 3631 /* R bits, i.e. writes are ignored, but don't fault. */ 3632 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3633 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3634 } 3635 3636 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3637 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3638 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3639 return 1; 3640 vcpu->arch.ia32_misc_enable_msr = data; 3641 kvm_update_cpuid_runtime(vcpu); 3642 } else { 3643 vcpu->arch.ia32_misc_enable_msr = data; 3644 } 3645 break; 3646 } 3647 case MSR_IA32_SMBASE: 3648 if (!msr_info->host_initiated) 3649 return 1; 3650 vcpu->arch.smbase = data; 3651 break; 3652 case MSR_IA32_POWER_CTL: 3653 vcpu->arch.msr_ia32_power_ctl = data; 3654 break; 3655 case MSR_IA32_TSC: 3656 if (msr_info->host_initiated) { 3657 kvm_synchronize_tsc(vcpu, data); 3658 } else { 3659 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3660 adjust_tsc_offset_guest(vcpu, adj); 3661 vcpu->arch.ia32_tsc_adjust_msr += adj; 3662 } 3663 break; 3664 case MSR_IA32_XSS: 3665 if (!msr_info->host_initiated && 3666 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3667 return 1; 3668 /* 3669 * KVM supports exposing PT to the guest, but does not support 3670 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3671 * XSAVES/XRSTORS to save/restore PT MSRs. 3672 */ 3673 if (data & ~kvm_caps.supported_xss) 3674 return 1; 3675 vcpu->arch.ia32_xss = data; 3676 kvm_update_cpuid_runtime(vcpu); 3677 break; 3678 case MSR_SMI_COUNT: 3679 if (!msr_info->host_initiated) 3680 return 1; 3681 vcpu->arch.smi_count = data; 3682 break; 3683 case MSR_KVM_WALL_CLOCK_NEW: 3684 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3685 return 1; 3686 3687 vcpu->kvm->arch.wall_clock = data; 3688 kvm_write_wall_clock(vcpu->kvm, data, 0); 3689 break; 3690 case MSR_KVM_WALL_CLOCK: 3691 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3692 return 1; 3693 3694 vcpu->kvm->arch.wall_clock = data; 3695 kvm_write_wall_clock(vcpu->kvm, data, 0); 3696 break; 3697 case MSR_KVM_SYSTEM_TIME_NEW: 3698 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3699 return 1; 3700 3701 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3702 break; 3703 case MSR_KVM_SYSTEM_TIME: 3704 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3705 return 1; 3706 3707 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3708 break; 3709 case MSR_KVM_ASYNC_PF_EN: 3710 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3711 return 1; 3712 3713 if (kvm_pv_enable_async_pf(vcpu, data)) 3714 return 1; 3715 break; 3716 case MSR_KVM_ASYNC_PF_INT: 3717 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3718 return 1; 3719 3720 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3721 return 1; 3722 break; 3723 case MSR_KVM_ASYNC_PF_ACK: 3724 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3725 return 1; 3726 if (data & 0x1) { 3727 vcpu->arch.apf.pageready_pending = false; 3728 kvm_check_async_pf_completion(vcpu); 3729 } 3730 break; 3731 case MSR_KVM_STEAL_TIME: 3732 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3733 return 1; 3734 3735 if (unlikely(!sched_info_on())) 3736 return 1; 3737 3738 if (data & KVM_STEAL_RESERVED_MASK) 3739 return 1; 3740 3741 vcpu->arch.st.msr_val = data; 3742 3743 if (!(data & KVM_MSR_ENABLED)) 3744 break; 3745 3746 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3747 3748 break; 3749 case MSR_KVM_PV_EOI_EN: 3750 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3751 return 1; 3752 3753 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3754 return 1; 3755 break; 3756 3757 case MSR_KVM_POLL_CONTROL: 3758 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3759 return 1; 3760 3761 /* only enable bit supported */ 3762 if (data & (-1ULL << 1)) 3763 return 1; 3764 3765 vcpu->arch.msr_kvm_poll_control = data; 3766 break; 3767 3768 case MSR_IA32_MCG_CTL: 3769 case MSR_IA32_MCG_STATUS: 3770 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3771 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3772 return set_msr_mce(vcpu, msr_info); 3773 3774 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3775 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3776 pr = true; 3777 fallthrough; 3778 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3779 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3780 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3781 return kvm_pmu_set_msr(vcpu, msr_info); 3782 3783 if (pr || data != 0) 3784 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3785 "0x%x data 0x%llx\n", msr, data); 3786 break; 3787 case MSR_K7_CLK_CTL: 3788 /* 3789 * Ignore all writes to this no longer documented MSR. 3790 * Writes are only relevant for old K7 processors, 3791 * all pre-dating SVM, but a recommended workaround from 3792 * AMD for these chips. It is possible to specify the 3793 * affected processor models on the command line, hence 3794 * the need to ignore the workaround. 3795 */ 3796 break; 3797 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3798 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3799 case HV_X64_MSR_SYNDBG_OPTIONS: 3800 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3801 case HV_X64_MSR_CRASH_CTL: 3802 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3803 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3804 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3805 case HV_X64_MSR_TSC_EMULATION_STATUS: 3806 return kvm_hv_set_msr_common(vcpu, msr, data, 3807 msr_info->host_initiated); 3808 case MSR_IA32_BBL_CR_CTL3: 3809 /* Drop writes to this legacy MSR -- see rdmsr 3810 * counterpart for further detail. 3811 */ 3812 if (report_ignored_msrs) 3813 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3814 msr, data); 3815 break; 3816 case MSR_AMD64_OSVW_ID_LENGTH: 3817 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3818 return 1; 3819 vcpu->arch.osvw.length = data; 3820 break; 3821 case MSR_AMD64_OSVW_STATUS: 3822 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3823 return 1; 3824 vcpu->arch.osvw.status = data; 3825 break; 3826 case MSR_PLATFORM_INFO: 3827 if (!msr_info->host_initiated || 3828 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3829 cpuid_fault_enabled(vcpu))) 3830 return 1; 3831 vcpu->arch.msr_platform_info = data; 3832 break; 3833 case MSR_MISC_FEATURES_ENABLES: 3834 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3835 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3836 !supports_cpuid_fault(vcpu))) 3837 return 1; 3838 vcpu->arch.msr_misc_features_enables = data; 3839 break; 3840 #ifdef CONFIG_X86_64 3841 case MSR_IA32_XFD: 3842 if (!msr_info->host_initiated && 3843 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3844 return 1; 3845 3846 if (data & ~kvm_guest_supported_xfd(vcpu)) 3847 return 1; 3848 3849 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3850 break; 3851 case MSR_IA32_XFD_ERR: 3852 if (!msr_info->host_initiated && 3853 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3854 return 1; 3855 3856 if (data & ~kvm_guest_supported_xfd(vcpu)) 3857 return 1; 3858 3859 vcpu->arch.guest_fpu.xfd_err = data; 3860 break; 3861 #endif 3862 case MSR_IA32_PEBS_ENABLE: 3863 case MSR_IA32_DS_AREA: 3864 case MSR_PEBS_DATA_CFG: 3865 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3866 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3867 return kvm_pmu_set_msr(vcpu, msr_info); 3868 /* 3869 * Userspace is allowed to write '0' to MSRs that KVM reports 3870 * as to-be-saved, even if an MSRs isn't fully supported. 3871 */ 3872 return !msr_info->host_initiated || data; 3873 default: 3874 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3875 return kvm_pmu_set_msr(vcpu, msr_info); 3876 return KVM_MSR_RET_INVALID; 3877 } 3878 return 0; 3879 } 3880 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3881 3882 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3883 { 3884 u64 data; 3885 u64 mcg_cap = vcpu->arch.mcg_cap; 3886 unsigned bank_num = mcg_cap & 0xff; 3887 u32 offset, last_msr; 3888 3889 switch (msr) { 3890 case MSR_IA32_P5_MC_ADDR: 3891 case MSR_IA32_P5_MC_TYPE: 3892 data = 0; 3893 break; 3894 case MSR_IA32_MCG_CAP: 3895 data = vcpu->arch.mcg_cap; 3896 break; 3897 case MSR_IA32_MCG_CTL: 3898 if (!(mcg_cap & MCG_CTL_P) && !host) 3899 return 1; 3900 data = vcpu->arch.mcg_ctl; 3901 break; 3902 case MSR_IA32_MCG_STATUS: 3903 data = vcpu->arch.mcg_status; 3904 break; 3905 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3906 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3907 if (msr > last_msr) 3908 return 1; 3909 3910 if (!(mcg_cap & MCG_CMCI_P) && !host) 3911 return 1; 3912 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3913 last_msr + 1 - MSR_IA32_MC0_CTL2); 3914 data = vcpu->arch.mci_ctl2_banks[offset]; 3915 break; 3916 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3917 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3918 if (msr > last_msr) 3919 return 1; 3920 3921 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3922 last_msr + 1 - MSR_IA32_MC0_CTL); 3923 data = vcpu->arch.mce_banks[offset]; 3924 break; 3925 default: 3926 return 1; 3927 } 3928 *pdata = data; 3929 return 0; 3930 } 3931 3932 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3933 { 3934 switch (msr_info->index) { 3935 case MSR_IA32_PLATFORM_ID: 3936 case MSR_IA32_EBL_CR_POWERON: 3937 case MSR_IA32_LASTBRANCHFROMIP: 3938 case MSR_IA32_LASTBRANCHTOIP: 3939 case MSR_IA32_LASTINTFROMIP: 3940 case MSR_IA32_LASTINTTOIP: 3941 case MSR_AMD64_SYSCFG: 3942 case MSR_K8_TSEG_ADDR: 3943 case MSR_K8_TSEG_MASK: 3944 case MSR_VM_HSAVE_PA: 3945 case MSR_K8_INT_PENDING_MSG: 3946 case MSR_AMD64_NB_CFG: 3947 case MSR_FAM10H_MMIO_CONF_BASE: 3948 case MSR_AMD64_BU_CFG2: 3949 case MSR_IA32_PERF_CTL: 3950 case MSR_AMD64_DC_CFG: 3951 case MSR_F15H_EX_CFG: 3952 /* 3953 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3954 * limit) MSRs. Just return 0, as we do not want to expose the host 3955 * data here. Do not conditionalize this on CPUID, as KVM does not do 3956 * so for existing CPU-specific MSRs. 3957 */ 3958 case MSR_RAPL_POWER_UNIT: 3959 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3960 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3961 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3962 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3963 msr_info->data = 0; 3964 break; 3965 case MSR_IA32_PEBS_ENABLE: 3966 case MSR_IA32_DS_AREA: 3967 case MSR_PEBS_DATA_CFG: 3968 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3969 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3970 return kvm_pmu_get_msr(vcpu, msr_info); 3971 /* 3972 * Userspace is allowed to read MSRs that KVM reports as 3973 * to-be-saved, even if an MSR isn't fully supported. 3974 */ 3975 if (!msr_info->host_initiated) 3976 return 1; 3977 msr_info->data = 0; 3978 break; 3979 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3980 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3981 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3982 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3983 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3984 return kvm_pmu_get_msr(vcpu, msr_info); 3985 msr_info->data = 0; 3986 break; 3987 case MSR_IA32_UCODE_REV: 3988 msr_info->data = vcpu->arch.microcode_version; 3989 break; 3990 case MSR_IA32_ARCH_CAPABILITIES: 3991 if (!msr_info->host_initiated && 3992 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3993 return 1; 3994 msr_info->data = vcpu->arch.arch_capabilities; 3995 break; 3996 case MSR_IA32_PERF_CAPABILITIES: 3997 if (!msr_info->host_initiated && 3998 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3999 return 1; 4000 msr_info->data = vcpu->arch.perf_capabilities; 4001 break; 4002 case MSR_IA32_POWER_CTL: 4003 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4004 break; 4005 case MSR_IA32_TSC: { 4006 /* 4007 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4008 * even when not intercepted. AMD manual doesn't explicitly 4009 * state this but appears to behave the same. 4010 * 4011 * On userspace reads and writes, however, we unconditionally 4012 * return L1's TSC value to ensure backwards-compatible 4013 * behavior for migration. 4014 */ 4015 u64 offset, ratio; 4016 4017 if (msr_info->host_initiated) { 4018 offset = vcpu->arch.l1_tsc_offset; 4019 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4020 } else { 4021 offset = vcpu->arch.tsc_offset; 4022 ratio = vcpu->arch.tsc_scaling_ratio; 4023 } 4024 4025 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4026 break; 4027 } 4028 case MSR_MTRRcap: 4029 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4030 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4031 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4032 case 0xcd: /* fsb frequency */ 4033 msr_info->data = 3; 4034 break; 4035 /* 4036 * MSR_EBC_FREQUENCY_ID 4037 * Conservative value valid for even the basic CPU models. 4038 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4039 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4040 * and 266MHz for model 3, or 4. Set Core Clock 4041 * Frequency to System Bus Frequency Ratio to 1 (bits 4042 * 31:24) even though these are only valid for CPU 4043 * models > 2, however guests may end up dividing or 4044 * multiplying by zero otherwise. 4045 */ 4046 case MSR_EBC_FREQUENCY_ID: 4047 msr_info->data = 1 << 24; 4048 break; 4049 case MSR_IA32_APICBASE: 4050 msr_info->data = kvm_get_apic_base(vcpu); 4051 break; 4052 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4053 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4054 case MSR_IA32_TSC_DEADLINE: 4055 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4056 break; 4057 case MSR_IA32_TSC_ADJUST: 4058 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4059 break; 4060 case MSR_IA32_MISC_ENABLE: 4061 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4062 break; 4063 case MSR_IA32_SMBASE: 4064 if (!msr_info->host_initiated) 4065 return 1; 4066 msr_info->data = vcpu->arch.smbase; 4067 break; 4068 case MSR_SMI_COUNT: 4069 msr_info->data = vcpu->arch.smi_count; 4070 break; 4071 case MSR_IA32_PERF_STATUS: 4072 /* TSC increment by tick */ 4073 msr_info->data = 1000ULL; 4074 /* CPU multiplier */ 4075 msr_info->data |= (((uint64_t)4ULL) << 40); 4076 break; 4077 case MSR_EFER: 4078 msr_info->data = vcpu->arch.efer; 4079 break; 4080 case MSR_KVM_WALL_CLOCK: 4081 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4082 return 1; 4083 4084 msr_info->data = vcpu->kvm->arch.wall_clock; 4085 break; 4086 case MSR_KVM_WALL_CLOCK_NEW: 4087 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4088 return 1; 4089 4090 msr_info->data = vcpu->kvm->arch.wall_clock; 4091 break; 4092 case MSR_KVM_SYSTEM_TIME: 4093 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4094 return 1; 4095 4096 msr_info->data = vcpu->arch.time; 4097 break; 4098 case MSR_KVM_SYSTEM_TIME_NEW: 4099 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4100 return 1; 4101 4102 msr_info->data = vcpu->arch.time; 4103 break; 4104 case MSR_KVM_ASYNC_PF_EN: 4105 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4106 return 1; 4107 4108 msr_info->data = vcpu->arch.apf.msr_en_val; 4109 break; 4110 case MSR_KVM_ASYNC_PF_INT: 4111 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4112 return 1; 4113 4114 msr_info->data = vcpu->arch.apf.msr_int_val; 4115 break; 4116 case MSR_KVM_ASYNC_PF_ACK: 4117 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4118 return 1; 4119 4120 msr_info->data = 0; 4121 break; 4122 case MSR_KVM_STEAL_TIME: 4123 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4124 return 1; 4125 4126 msr_info->data = vcpu->arch.st.msr_val; 4127 break; 4128 case MSR_KVM_PV_EOI_EN: 4129 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4130 return 1; 4131 4132 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4133 break; 4134 case MSR_KVM_POLL_CONTROL: 4135 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4136 return 1; 4137 4138 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4139 break; 4140 case MSR_IA32_P5_MC_ADDR: 4141 case MSR_IA32_P5_MC_TYPE: 4142 case MSR_IA32_MCG_CAP: 4143 case MSR_IA32_MCG_CTL: 4144 case MSR_IA32_MCG_STATUS: 4145 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4146 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4147 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4148 msr_info->host_initiated); 4149 case MSR_IA32_XSS: 4150 if (!msr_info->host_initiated && 4151 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4152 return 1; 4153 msr_info->data = vcpu->arch.ia32_xss; 4154 break; 4155 case MSR_K7_CLK_CTL: 4156 /* 4157 * Provide expected ramp-up count for K7. All other 4158 * are set to zero, indicating minimum divisors for 4159 * every field. 4160 * 4161 * This prevents guest kernels on AMD host with CPU 4162 * type 6, model 8 and higher from exploding due to 4163 * the rdmsr failing. 4164 */ 4165 msr_info->data = 0x20000000; 4166 break; 4167 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4168 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4169 case HV_X64_MSR_SYNDBG_OPTIONS: 4170 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4171 case HV_X64_MSR_CRASH_CTL: 4172 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4173 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4174 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4175 case HV_X64_MSR_TSC_EMULATION_STATUS: 4176 return kvm_hv_get_msr_common(vcpu, 4177 msr_info->index, &msr_info->data, 4178 msr_info->host_initiated); 4179 case MSR_IA32_BBL_CR_CTL3: 4180 /* This legacy MSR exists but isn't fully documented in current 4181 * silicon. It is however accessed by winxp in very narrow 4182 * scenarios where it sets bit #19, itself documented as 4183 * a "reserved" bit. Best effort attempt to source coherent 4184 * read data here should the balance of the register be 4185 * interpreted by the guest: 4186 * 4187 * L2 cache control register 3: 64GB range, 256KB size, 4188 * enabled, latency 0x1, configured 4189 */ 4190 msr_info->data = 0xbe702111; 4191 break; 4192 case MSR_AMD64_OSVW_ID_LENGTH: 4193 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4194 return 1; 4195 msr_info->data = vcpu->arch.osvw.length; 4196 break; 4197 case MSR_AMD64_OSVW_STATUS: 4198 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4199 return 1; 4200 msr_info->data = vcpu->arch.osvw.status; 4201 break; 4202 case MSR_PLATFORM_INFO: 4203 if (!msr_info->host_initiated && 4204 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4205 return 1; 4206 msr_info->data = vcpu->arch.msr_platform_info; 4207 break; 4208 case MSR_MISC_FEATURES_ENABLES: 4209 msr_info->data = vcpu->arch.msr_misc_features_enables; 4210 break; 4211 case MSR_K7_HWCR: 4212 msr_info->data = vcpu->arch.msr_hwcr; 4213 break; 4214 #ifdef CONFIG_X86_64 4215 case MSR_IA32_XFD: 4216 if (!msr_info->host_initiated && 4217 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4218 return 1; 4219 4220 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4221 break; 4222 case MSR_IA32_XFD_ERR: 4223 if (!msr_info->host_initiated && 4224 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4225 return 1; 4226 4227 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4228 break; 4229 #endif 4230 default: 4231 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4232 return kvm_pmu_get_msr(vcpu, msr_info); 4233 return KVM_MSR_RET_INVALID; 4234 } 4235 return 0; 4236 } 4237 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4238 4239 /* 4240 * Read or write a bunch of msrs. All parameters are kernel addresses. 4241 * 4242 * @return number of msrs set successfully. 4243 */ 4244 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4245 struct kvm_msr_entry *entries, 4246 int (*do_msr)(struct kvm_vcpu *vcpu, 4247 unsigned index, u64 *data)) 4248 { 4249 int i; 4250 4251 for (i = 0; i < msrs->nmsrs; ++i) 4252 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4253 break; 4254 4255 return i; 4256 } 4257 4258 /* 4259 * Read or write a bunch of msrs. Parameters are user addresses. 4260 * 4261 * @return number of msrs set successfully. 4262 */ 4263 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4264 int (*do_msr)(struct kvm_vcpu *vcpu, 4265 unsigned index, u64 *data), 4266 int writeback) 4267 { 4268 struct kvm_msrs msrs; 4269 struct kvm_msr_entry *entries; 4270 int r, n; 4271 unsigned size; 4272 4273 r = -EFAULT; 4274 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4275 goto out; 4276 4277 r = -E2BIG; 4278 if (msrs.nmsrs >= MAX_IO_MSRS) 4279 goto out; 4280 4281 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4282 entries = memdup_user(user_msrs->entries, size); 4283 if (IS_ERR(entries)) { 4284 r = PTR_ERR(entries); 4285 goto out; 4286 } 4287 4288 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4289 if (r < 0) 4290 goto out_free; 4291 4292 r = -EFAULT; 4293 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4294 goto out_free; 4295 4296 r = n; 4297 4298 out_free: 4299 kfree(entries); 4300 out: 4301 return r; 4302 } 4303 4304 static inline bool kvm_can_mwait_in_guest(void) 4305 { 4306 return boot_cpu_has(X86_FEATURE_MWAIT) && 4307 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4308 boot_cpu_has(X86_FEATURE_ARAT); 4309 } 4310 4311 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4312 struct kvm_cpuid2 __user *cpuid_arg) 4313 { 4314 struct kvm_cpuid2 cpuid; 4315 int r; 4316 4317 r = -EFAULT; 4318 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4319 return r; 4320 4321 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4322 if (r) 4323 return r; 4324 4325 r = -EFAULT; 4326 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4327 return r; 4328 4329 return 0; 4330 } 4331 4332 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4333 { 4334 int r = 0; 4335 4336 switch (ext) { 4337 case KVM_CAP_IRQCHIP: 4338 case KVM_CAP_HLT: 4339 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4340 case KVM_CAP_SET_TSS_ADDR: 4341 case KVM_CAP_EXT_CPUID: 4342 case KVM_CAP_EXT_EMUL_CPUID: 4343 case KVM_CAP_CLOCKSOURCE: 4344 case KVM_CAP_PIT: 4345 case KVM_CAP_NOP_IO_DELAY: 4346 case KVM_CAP_MP_STATE: 4347 case KVM_CAP_SYNC_MMU: 4348 case KVM_CAP_USER_NMI: 4349 case KVM_CAP_REINJECT_CONTROL: 4350 case KVM_CAP_IRQ_INJECT_STATUS: 4351 case KVM_CAP_IOEVENTFD: 4352 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4353 case KVM_CAP_PIT2: 4354 case KVM_CAP_PIT_STATE2: 4355 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4356 case KVM_CAP_VCPU_EVENTS: 4357 case KVM_CAP_HYPERV: 4358 case KVM_CAP_HYPERV_VAPIC: 4359 case KVM_CAP_HYPERV_SPIN: 4360 case KVM_CAP_HYPERV_SYNIC: 4361 case KVM_CAP_HYPERV_SYNIC2: 4362 case KVM_CAP_HYPERV_VP_INDEX: 4363 case KVM_CAP_HYPERV_EVENTFD: 4364 case KVM_CAP_HYPERV_TLBFLUSH: 4365 case KVM_CAP_HYPERV_SEND_IPI: 4366 case KVM_CAP_HYPERV_CPUID: 4367 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4368 case KVM_CAP_SYS_HYPERV_CPUID: 4369 case KVM_CAP_PCI_SEGMENT: 4370 case KVM_CAP_DEBUGREGS: 4371 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4372 case KVM_CAP_XSAVE: 4373 case KVM_CAP_ASYNC_PF: 4374 case KVM_CAP_ASYNC_PF_INT: 4375 case KVM_CAP_GET_TSC_KHZ: 4376 case KVM_CAP_KVMCLOCK_CTRL: 4377 case KVM_CAP_READONLY_MEM: 4378 case KVM_CAP_HYPERV_TIME: 4379 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4380 case KVM_CAP_TSC_DEADLINE_TIMER: 4381 case KVM_CAP_DISABLE_QUIRKS: 4382 case KVM_CAP_SET_BOOT_CPU_ID: 4383 case KVM_CAP_SPLIT_IRQCHIP: 4384 case KVM_CAP_IMMEDIATE_EXIT: 4385 case KVM_CAP_PMU_EVENT_FILTER: 4386 case KVM_CAP_GET_MSR_FEATURES: 4387 case KVM_CAP_MSR_PLATFORM_INFO: 4388 case KVM_CAP_EXCEPTION_PAYLOAD: 4389 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4390 case KVM_CAP_SET_GUEST_DEBUG: 4391 case KVM_CAP_LAST_CPU: 4392 case KVM_CAP_X86_USER_SPACE_MSR: 4393 case KVM_CAP_X86_MSR_FILTER: 4394 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4395 #ifdef CONFIG_X86_SGX_KVM 4396 case KVM_CAP_SGX_ATTRIBUTE: 4397 #endif 4398 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4399 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4400 case KVM_CAP_SREGS2: 4401 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4402 case KVM_CAP_VCPU_ATTRIBUTES: 4403 case KVM_CAP_SYS_ATTRIBUTES: 4404 case KVM_CAP_VAPIC: 4405 case KVM_CAP_ENABLE_CAP: 4406 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4407 r = 1; 4408 break; 4409 case KVM_CAP_EXIT_HYPERCALL: 4410 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4411 break; 4412 case KVM_CAP_SET_GUEST_DEBUG2: 4413 return KVM_GUESTDBG_VALID_MASK; 4414 #ifdef CONFIG_KVM_XEN 4415 case KVM_CAP_XEN_HVM: 4416 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4417 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4418 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4419 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4420 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4421 if (sched_info_on()) 4422 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4423 break; 4424 #endif 4425 case KVM_CAP_SYNC_REGS: 4426 r = KVM_SYNC_X86_VALID_FIELDS; 4427 break; 4428 case KVM_CAP_ADJUST_CLOCK: 4429 r = KVM_CLOCK_VALID_FLAGS; 4430 break; 4431 case KVM_CAP_X86_DISABLE_EXITS: 4432 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4433 KVM_X86_DISABLE_EXITS_CSTATE; 4434 if(kvm_can_mwait_in_guest()) 4435 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4436 break; 4437 case KVM_CAP_X86_SMM: 4438 /* SMBASE is usually relocated above 1M on modern chipsets, 4439 * and SMM handlers might indeed rely on 4G segment limits, 4440 * so do not report SMM to be available if real mode is 4441 * emulated via vm86 mode. Still, do not go to great lengths 4442 * to avoid userspace's usage of the feature, because it is a 4443 * fringe case that is not enabled except via specific settings 4444 * of the module parameters. 4445 */ 4446 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4447 break; 4448 case KVM_CAP_NR_VCPUS: 4449 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4450 break; 4451 case KVM_CAP_MAX_VCPUS: 4452 r = KVM_MAX_VCPUS; 4453 break; 4454 case KVM_CAP_MAX_VCPU_ID: 4455 r = KVM_MAX_VCPU_IDS; 4456 break; 4457 case KVM_CAP_PV_MMU: /* obsolete */ 4458 r = 0; 4459 break; 4460 case KVM_CAP_MCE: 4461 r = KVM_MAX_MCE_BANKS; 4462 break; 4463 case KVM_CAP_XCRS: 4464 r = boot_cpu_has(X86_FEATURE_XSAVE); 4465 break; 4466 case KVM_CAP_TSC_CONTROL: 4467 case KVM_CAP_VM_TSC_CONTROL: 4468 r = kvm_caps.has_tsc_control; 4469 break; 4470 case KVM_CAP_X2APIC_API: 4471 r = KVM_X2APIC_API_VALID_FLAGS; 4472 break; 4473 case KVM_CAP_NESTED_STATE: 4474 r = kvm_x86_ops.nested_ops->get_state ? 4475 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4476 break; 4477 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4478 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4479 break; 4480 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4481 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4482 break; 4483 case KVM_CAP_SMALLER_MAXPHYADDR: 4484 r = (int) allow_smaller_maxphyaddr; 4485 break; 4486 case KVM_CAP_STEAL_TIME: 4487 r = sched_info_on(); 4488 break; 4489 case KVM_CAP_X86_BUS_LOCK_EXIT: 4490 if (kvm_caps.has_bus_lock_exit) 4491 r = KVM_BUS_LOCK_DETECTION_OFF | 4492 KVM_BUS_LOCK_DETECTION_EXIT; 4493 else 4494 r = 0; 4495 break; 4496 case KVM_CAP_XSAVE2: { 4497 u64 guest_perm = xstate_get_guest_group_perm(); 4498 4499 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4500 if (r < sizeof(struct kvm_xsave)) 4501 r = sizeof(struct kvm_xsave); 4502 break; 4503 } 4504 case KVM_CAP_PMU_CAPABILITY: 4505 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4506 break; 4507 case KVM_CAP_DISABLE_QUIRKS2: 4508 r = KVM_X86_VALID_QUIRKS; 4509 break; 4510 case KVM_CAP_X86_NOTIFY_VMEXIT: 4511 r = kvm_caps.has_notify_vmexit; 4512 break; 4513 default: 4514 break; 4515 } 4516 return r; 4517 } 4518 4519 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4520 { 4521 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4522 4523 if ((u64)(unsigned long)uaddr != attr->addr) 4524 return ERR_PTR_USR(-EFAULT); 4525 return uaddr; 4526 } 4527 4528 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4529 { 4530 u64 __user *uaddr = kvm_get_attr_addr(attr); 4531 4532 if (attr->group) 4533 return -ENXIO; 4534 4535 if (IS_ERR(uaddr)) 4536 return PTR_ERR(uaddr); 4537 4538 switch (attr->attr) { 4539 case KVM_X86_XCOMP_GUEST_SUPP: 4540 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4541 return -EFAULT; 4542 return 0; 4543 default: 4544 return -ENXIO; 4545 break; 4546 } 4547 } 4548 4549 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4550 { 4551 if (attr->group) 4552 return -ENXIO; 4553 4554 switch (attr->attr) { 4555 case KVM_X86_XCOMP_GUEST_SUPP: 4556 return 0; 4557 default: 4558 return -ENXIO; 4559 } 4560 } 4561 4562 long kvm_arch_dev_ioctl(struct file *filp, 4563 unsigned int ioctl, unsigned long arg) 4564 { 4565 void __user *argp = (void __user *)arg; 4566 long r; 4567 4568 switch (ioctl) { 4569 case KVM_GET_MSR_INDEX_LIST: { 4570 struct kvm_msr_list __user *user_msr_list = argp; 4571 struct kvm_msr_list msr_list; 4572 unsigned n; 4573 4574 r = -EFAULT; 4575 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4576 goto out; 4577 n = msr_list.nmsrs; 4578 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4579 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4580 goto out; 4581 r = -E2BIG; 4582 if (n < msr_list.nmsrs) 4583 goto out; 4584 r = -EFAULT; 4585 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4586 num_msrs_to_save * sizeof(u32))) 4587 goto out; 4588 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4589 &emulated_msrs, 4590 num_emulated_msrs * sizeof(u32))) 4591 goto out; 4592 r = 0; 4593 break; 4594 } 4595 case KVM_GET_SUPPORTED_CPUID: 4596 case KVM_GET_EMULATED_CPUID: { 4597 struct kvm_cpuid2 __user *cpuid_arg = argp; 4598 struct kvm_cpuid2 cpuid; 4599 4600 r = -EFAULT; 4601 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4602 goto out; 4603 4604 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4605 ioctl); 4606 if (r) 4607 goto out; 4608 4609 r = -EFAULT; 4610 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4611 goto out; 4612 r = 0; 4613 break; 4614 } 4615 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4616 r = -EFAULT; 4617 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4618 sizeof(kvm_caps.supported_mce_cap))) 4619 goto out; 4620 r = 0; 4621 break; 4622 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4623 struct kvm_msr_list __user *user_msr_list = argp; 4624 struct kvm_msr_list msr_list; 4625 unsigned int n; 4626 4627 r = -EFAULT; 4628 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4629 goto out; 4630 n = msr_list.nmsrs; 4631 msr_list.nmsrs = num_msr_based_features; 4632 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4633 goto out; 4634 r = -E2BIG; 4635 if (n < msr_list.nmsrs) 4636 goto out; 4637 r = -EFAULT; 4638 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4639 num_msr_based_features * sizeof(u32))) 4640 goto out; 4641 r = 0; 4642 break; 4643 } 4644 case KVM_GET_MSRS: 4645 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4646 break; 4647 case KVM_GET_SUPPORTED_HV_CPUID: 4648 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4649 break; 4650 case KVM_GET_DEVICE_ATTR: { 4651 struct kvm_device_attr attr; 4652 r = -EFAULT; 4653 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4654 break; 4655 r = kvm_x86_dev_get_attr(&attr); 4656 break; 4657 } 4658 case KVM_HAS_DEVICE_ATTR: { 4659 struct kvm_device_attr attr; 4660 r = -EFAULT; 4661 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4662 break; 4663 r = kvm_x86_dev_has_attr(&attr); 4664 break; 4665 } 4666 default: 4667 r = -EINVAL; 4668 break; 4669 } 4670 out: 4671 return r; 4672 } 4673 4674 static void wbinvd_ipi(void *garbage) 4675 { 4676 wbinvd(); 4677 } 4678 4679 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4680 { 4681 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4682 } 4683 4684 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4685 { 4686 /* Address WBINVD may be executed by guest */ 4687 if (need_emulate_wbinvd(vcpu)) { 4688 if (static_call(kvm_x86_has_wbinvd_exit)()) 4689 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4690 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4691 smp_call_function_single(vcpu->cpu, 4692 wbinvd_ipi, NULL, 1); 4693 } 4694 4695 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4696 4697 /* Save host pkru register if supported */ 4698 vcpu->arch.host_pkru = read_pkru(); 4699 4700 /* Apply any externally detected TSC adjustments (due to suspend) */ 4701 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4702 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4703 vcpu->arch.tsc_offset_adjustment = 0; 4704 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4705 } 4706 4707 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4708 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4709 rdtsc() - vcpu->arch.last_host_tsc; 4710 if (tsc_delta < 0) 4711 mark_tsc_unstable("KVM discovered backwards TSC"); 4712 4713 if (kvm_check_tsc_unstable()) { 4714 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4715 vcpu->arch.last_guest_tsc); 4716 kvm_vcpu_write_tsc_offset(vcpu, offset); 4717 vcpu->arch.tsc_catchup = 1; 4718 } 4719 4720 if (kvm_lapic_hv_timer_in_use(vcpu)) 4721 kvm_lapic_restart_hv_timer(vcpu); 4722 4723 /* 4724 * On a host with synchronized TSC, there is no need to update 4725 * kvmclock on vcpu->cpu migration 4726 */ 4727 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4728 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4729 if (vcpu->cpu != cpu) 4730 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4731 vcpu->cpu = cpu; 4732 } 4733 4734 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4735 } 4736 4737 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4738 { 4739 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4740 struct kvm_steal_time __user *st; 4741 struct kvm_memslots *slots; 4742 static const u8 preempted = KVM_VCPU_PREEMPTED; 4743 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4744 4745 /* 4746 * The vCPU can be marked preempted if and only if the VM-Exit was on 4747 * an instruction boundary and will not trigger guest emulation of any 4748 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4749 * when this is true, for example allowing the vCPU to be marked 4750 * preempted if and only if the VM-Exit was due to a host interrupt. 4751 */ 4752 if (!vcpu->arch.at_instruction_boundary) { 4753 vcpu->stat.preemption_other++; 4754 return; 4755 } 4756 4757 vcpu->stat.preemption_reported++; 4758 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4759 return; 4760 4761 if (vcpu->arch.st.preempted) 4762 return; 4763 4764 /* This happens on process exit */ 4765 if (unlikely(current->mm != vcpu->kvm->mm)) 4766 return; 4767 4768 slots = kvm_memslots(vcpu->kvm); 4769 4770 if (unlikely(slots->generation != ghc->generation || 4771 gpa != ghc->gpa || 4772 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4773 return; 4774 4775 st = (struct kvm_steal_time __user *)ghc->hva; 4776 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4777 4778 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4779 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4780 4781 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4782 } 4783 4784 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4785 { 4786 int idx; 4787 4788 if (vcpu->preempted) { 4789 if (!vcpu->arch.guest_state_protected) 4790 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4791 4792 /* 4793 * Take the srcu lock as memslots will be accessed to check the gfn 4794 * cache generation against the memslots generation. 4795 */ 4796 idx = srcu_read_lock(&vcpu->kvm->srcu); 4797 if (kvm_xen_msr_enabled(vcpu->kvm)) 4798 kvm_xen_runstate_set_preempted(vcpu); 4799 else 4800 kvm_steal_time_set_preempted(vcpu); 4801 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4802 } 4803 4804 static_call(kvm_x86_vcpu_put)(vcpu); 4805 vcpu->arch.last_host_tsc = rdtsc(); 4806 } 4807 4808 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4809 struct kvm_lapic_state *s) 4810 { 4811 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4812 4813 return kvm_apic_get_state(vcpu, s); 4814 } 4815 4816 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4817 struct kvm_lapic_state *s) 4818 { 4819 int r; 4820 4821 r = kvm_apic_set_state(vcpu, s); 4822 if (r) 4823 return r; 4824 update_cr8_intercept(vcpu); 4825 4826 return 0; 4827 } 4828 4829 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4830 { 4831 /* 4832 * We can accept userspace's request for interrupt injection 4833 * as long as we have a place to store the interrupt number. 4834 * The actual injection will happen when the CPU is able to 4835 * deliver the interrupt. 4836 */ 4837 if (kvm_cpu_has_extint(vcpu)) 4838 return false; 4839 4840 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4841 return (!lapic_in_kernel(vcpu) || 4842 kvm_apic_accept_pic_intr(vcpu)); 4843 } 4844 4845 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4846 { 4847 /* 4848 * Do not cause an interrupt window exit if an exception 4849 * is pending or an event needs reinjection; userspace 4850 * might want to inject the interrupt manually using KVM_SET_REGS 4851 * or KVM_SET_SREGS. For that to work, we must be at an 4852 * instruction boundary and with no events half-injected. 4853 */ 4854 return (kvm_arch_interrupt_allowed(vcpu) && 4855 kvm_cpu_accept_dm_intr(vcpu) && 4856 !kvm_event_needs_reinjection(vcpu) && 4857 !kvm_is_exception_pending(vcpu)); 4858 } 4859 4860 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4861 struct kvm_interrupt *irq) 4862 { 4863 if (irq->irq >= KVM_NR_INTERRUPTS) 4864 return -EINVAL; 4865 4866 if (!irqchip_in_kernel(vcpu->kvm)) { 4867 kvm_queue_interrupt(vcpu, irq->irq, false); 4868 kvm_make_request(KVM_REQ_EVENT, vcpu); 4869 return 0; 4870 } 4871 4872 /* 4873 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4874 * fail for in-kernel 8259. 4875 */ 4876 if (pic_in_kernel(vcpu->kvm)) 4877 return -ENXIO; 4878 4879 if (vcpu->arch.pending_external_vector != -1) 4880 return -EEXIST; 4881 4882 vcpu->arch.pending_external_vector = irq->irq; 4883 kvm_make_request(KVM_REQ_EVENT, vcpu); 4884 return 0; 4885 } 4886 4887 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4888 { 4889 kvm_inject_nmi(vcpu); 4890 4891 return 0; 4892 } 4893 4894 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4895 { 4896 kvm_make_request(KVM_REQ_SMI, vcpu); 4897 4898 return 0; 4899 } 4900 4901 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4902 struct kvm_tpr_access_ctl *tac) 4903 { 4904 if (tac->flags) 4905 return -EINVAL; 4906 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4907 return 0; 4908 } 4909 4910 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4911 u64 mcg_cap) 4912 { 4913 int r; 4914 unsigned bank_num = mcg_cap & 0xff, bank; 4915 4916 r = -EINVAL; 4917 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4918 goto out; 4919 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4920 goto out; 4921 r = 0; 4922 vcpu->arch.mcg_cap = mcg_cap; 4923 /* Init IA32_MCG_CTL to all 1s */ 4924 if (mcg_cap & MCG_CTL_P) 4925 vcpu->arch.mcg_ctl = ~(u64)0; 4926 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4927 for (bank = 0; bank < bank_num; bank++) { 4928 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4929 if (mcg_cap & MCG_CMCI_P) 4930 vcpu->arch.mci_ctl2_banks[bank] = 0; 4931 } 4932 4933 kvm_apic_after_set_mcg_cap(vcpu); 4934 4935 static_call(kvm_x86_setup_mce)(vcpu); 4936 out: 4937 return r; 4938 } 4939 4940 /* 4941 * Validate this is an UCNA (uncorrectable no action) error by checking the 4942 * MCG_STATUS and MCi_STATUS registers: 4943 * - none of the bits for Machine Check Exceptions are set 4944 * - both the VAL (valid) and UC (uncorrectable) bits are set 4945 * MCI_STATUS_PCC - Processor Context Corrupted 4946 * MCI_STATUS_S - Signaled as a Machine Check Exception 4947 * MCI_STATUS_AR - Software recoverable Action Required 4948 */ 4949 static bool is_ucna(struct kvm_x86_mce *mce) 4950 { 4951 return !mce->mcg_status && 4952 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4953 (mce->status & MCI_STATUS_VAL) && 4954 (mce->status & MCI_STATUS_UC); 4955 } 4956 4957 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4958 { 4959 u64 mcg_cap = vcpu->arch.mcg_cap; 4960 4961 banks[1] = mce->status; 4962 banks[2] = mce->addr; 4963 banks[3] = mce->misc; 4964 vcpu->arch.mcg_status = mce->mcg_status; 4965 4966 if (!(mcg_cap & MCG_CMCI_P) || 4967 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4968 return 0; 4969 4970 if (lapic_in_kernel(vcpu)) 4971 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4972 4973 return 0; 4974 } 4975 4976 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4977 struct kvm_x86_mce *mce) 4978 { 4979 u64 mcg_cap = vcpu->arch.mcg_cap; 4980 unsigned bank_num = mcg_cap & 0xff; 4981 u64 *banks = vcpu->arch.mce_banks; 4982 4983 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4984 return -EINVAL; 4985 4986 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 4987 4988 if (is_ucna(mce)) 4989 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 4990 4991 /* 4992 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4993 * reporting is disabled 4994 */ 4995 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4996 vcpu->arch.mcg_ctl != ~(u64)0) 4997 return 0; 4998 /* 4999 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5000 * reporting is disabled for the bank 5001 */ 5002 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5003 return 0; 5004 if (mce->status & MCI_STATUS_UC) { 5005 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5006 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5007 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5008 return 0; 5009 } 5010 if (banks[1] & MCI_STATUS_VAL) 5011 mce->status |= MCI_STATUS_OVER; 5012 banks[2] = mce->addr; 5013 banks[3] = mce->misc; 5014 vcpu->arch.mcg_status = mce->mcg_status; 5015 banks[1] = mce->status; 5016 kvm_queue_exception(vcpu, MC_VECTOR); 5017 } else if (!(banks[1] & MCI_STATUS_VAL) 5018 || !(banks[1] & MCI_STATUS_UC)) { 5019 if (banks[1] & MCI_STATUS_VAL) 5020 mce->status |= MCI_STATUS_OVER; 5021 banks[2] = mce->addr; 5022 banks[3] = mce->misc; 5023 banks[1] = mce->status; 5024 } else 5025 banks[1] |= MCI_STATUS_OVER; 5026 return 0; 5027 } 5028 5029 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5030 struct kvm_vcpu_events *events) 5031 { 5032 struct kvm_queued_exception *ex; 5033 5034 process_nmi(vcpu); 5035 5036 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5037 process_smi(vcpu); 5038 5039 /* 5040 * KVM's ABI only allows for one exception to be migrated. Luckily, 5041 * the only time there can be two queued exceptions is if there's a 5042 * non-exiting _injected_ exception, and a pending exiting exception. 5043 * In that case, ignore the VM-Exiting exception as it's an extension 5044 * of the injected exception. 5045 */ 5046 if (vcpu->arch.exception_vmexit.pending && 5047 !vcpu->arch.exception.pending && 5048 !vcpu->arch.exception.injected) 5049 ex = &vcpu->arch.exception_vmexit; 5050 else 5051 ex = &vcpu->arch.exception; 5052 5053 /* 5054 * In guest mode, payload delivery should be deferred if the exception 5055 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5056 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5057 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5058 * propagate the payload and so it cannot be safely deferred. Deliver 5059 * the payload if the capability hasn't been requested. 5060 */ 5061 if (!vcpu->kvm->arch.exception_payload_enabled && 5062 ex->pending && ex->has_payload) 5063 kvm_deliver_exception_payload(vcpu, ex); 5064 5065 /* 5066 * The API doesn't provide the instruction length for software 5067 * exceptions, so don't report them. As long as the guest RIP 5068 * isn't advanced, we should expect to encounter the exception 5069 * again. 5070 */ 5071 if (kvm_exception_is_soft(ex->vector)) { 5072 events->exception.injected = 0; 5073 events->exception.pending = 0; 5074 } else { 5075 events->exception.injected = ex->injected; 5076 events->exception.pending = ex->pending; 5077 /* 5078 * For ABI compatibility, deliberately conflate 5079 * pending and injected exceptions when 5080 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5081 */ 5082 if (!vcpu->kvm->arch.exception_payload_enabled) 5083 events->exception.injected |= ex->pending; 5084 } 5085 events->exception.nr = ex->vector; 5086 events->exception.has_error_code = ex->has_error_code; 5087 events->exception.error_code = ex->error_code; 5088 events->exception_has_payload = ex->has_payload; 5089 events->exception_payload = ex->payload; 5090 5091 events->interrupt.injected = 5092 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5093 events->interrupt.nr = vcpu->arch.interrupt.nr; 5094 events->interrupt.soft = 0; 5095 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5096 5097 events->nmi.injected = vcpu->arch.nmi_injected; 5098 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5099 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5100 events->nmi.pad = 0; 5101 5102 events->sipi_vector = 0; /* never valid when reporting to user space */ 5103 5104 events->smi.smm = is_smm(vcpu); 5105 events->smi.pending = vcpu->arch.smi_pending; 5106 events->smi.smm_inside_nmi = 5107 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5108 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5109 5110 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5111 | KVM_VCPUEVENT_VALID_SHADOW 5112 | KVM_VCPUEVENT_VALID_SMM); 5113 if (vcpu->kvm->arch.exception_payload_enabled) 5114 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5115 if (vcpu->kvm->arch.triple_fault_event) { 5116 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5117 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5118 } 5119 5120 memset(&events->reserved, 0, sizeof(events->reserved)); 5121 } 5122 5123 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 5124 5125 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5126 struct kvm_vcpu_events *events) 5127 { 5128 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5129 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5130 | KVM_VCPUEVENT_VALID_SHADOW 5131 | KVM_VCPUEVENT_VALID_SMM 5132 | KVM_VCPUEVENT_VALID_PAYLOAD 5133 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5134 return -EINVAL; 5135 5136 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5137 if (!vcpu->kvm->arch.exception_payload_enabled) 5138 return -EINVAL; 5139 if (events->exception.pending) 5140 events->exception.injected = 0; 5141 else 5142 events->exception_has_payload = 0; 5143 } else { 5144 events->exception.pending = 0; 5145 events->exception_has_payload = 0; 5146 } 5147 5148 if ((events->exception.injected || events->exception.pending) && 5149 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5150 return -EINVAL; 5151 5152 /* INITs are latched while in SMM */ 5153 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5154 (events->smi.smm || events->smi.pending) && 5155 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5156 return -EINVAL; 5157 5158 process_nmi(vcpu); 5159 5160 /* 5161 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5162 * morph the exception to a VM-Exit if appropriate. Do this only for 5163 * pending exceptions, already-injected exceptions are not subject to 5164 * intercpetion. Note, userspace that conflates pending and injected 5165 * is hosed, and will incorrectly convert an injected exception into a 5166 * pending exception, which in turn may cause a spurious VM-Exit. 5167 */ 5168 vcpu->arch.exception_from_userspace = events->exception.pending; 5169 5170 vcpu->arch.exception_vmexit.pending = false; 5171 5172 vcpu->arch.exception.injected = events->exception.injected; 5173 vcpu->arch.exception.pending = events->exception.pending; 5174 vcpu->arch.exception.vector = events->exception.nr; 5175 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5176 vcpu->arch.exception.error_code = events->exception.error_code; 5177 vcpu->arch.exception.has_payload = events->exception_has_payload; 5178 vcpu->arch.exception.payload = events->exception_payload; 5179 5180 vcpu->arch.interrupt.injected = events->interrupt.injected; 5181 vcpu->arch.interrupt.nr = events->interrupt.nr; 5182 vcpu->arch.interrupt.soft = events->interrupt.soft; 5183 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5184 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5185 events->interrupt.shadow); 5186 5187 vcpu->arch.nmi_injected = events->nmi.injected; 5188 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5189 vcpu->arch.nmi_pending = events->nmi.pending; 5190 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5191 5192 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5193 lapic_in_kernel(vcpu)) 5194 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5195 5196 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5197 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5198 kvm_x86_ops.nested_ops->leave_nested(vcpu); 5199 kvm_smm_changed(vcpu, events->smi.smm); 5200 } 5201 5202 vcpu->arch.smi_pending = events->smi.pending; 5203 5204 if (events->smi.smm) { 5205 if (events->smi.smm_inside_nmi) 5206 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5207 else 5208 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5209 } 5210 5211 if (lapic_in_kernel(vcpu)) { 5212 if (events->smi.latched_init) 5213 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5214 else 5215 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5216 } 5217 } 5218 5219 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5220 if (!vcpu->kvm->arch.triple_fault_event) 5221 return -EINVAL; 5222 if (events->triple_fault.pending) 5223 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5224 else 5225 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5226 } 5227 5228 kvm_make_request(KVM_REQ_EVENT, vcpu); 5229 5230 return 0; 5231 } 5232 5233 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5234 struct kvm_debugregs *dbgregs) 5235 { 5236 unsigned long val; 5237 5238 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5239 kvm_get_dr(vcpu, 6, &val); 5240 dbgregs->dr6 = val; 5241 dbgregs->dr7 = vcpu->arch.dr7; 5242 dbgregs->flags = 0; 5243 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5244 } 5245 5246 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5247 struct kvm_debugregs *dbgregs) 5248 { 5249 if (dbgregs->flags) 5250 return -EINVAL; 5251 5252 if (!kvm_dr6_valid(dbgregs->dr6)) 5253 return -EINVAL; 5254 if (!kvm_dr7_valid(dbgregs->dr7)) 5255 return -EINVAL; 5256 5257 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5258 kvm_update_dr0123(vcpu); 5259 vcpu->arch.dr6 = dbgregs->dr6; 5260 vcpu->arch.dr7 = dbgregs->dr7; 5261 kvm_update_dr7(vcpu); 5262 5263 return 0; 5264 } 5265 5266 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5267 struct kvm_xsave *guest_xsave) 5268 { 5269 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5270 return; 5271 5272 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5273 guest_xsave->region, 5274 sizeof(guest_xsave->region), 5275 vcpu->arch.pkru); 5276 } 5277 5278 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5279 u8 *state, unsigned int size) 5280 { 5281 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5282 return; 5283 5284 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5285 state, size, vcpu->arch.pkru); 5286 } 5287 5288 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5289 struct kvm_xsave *guest_xsave) 5290 { 5291 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5292 return 0; 5293 5294 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5295 guest_xsave->region, 5296 kvm_caps.supported_xcr0, 5297 &vcpu->arch.pkru); 5298 } 5299 5300 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5301 struct kvm_xcrs *guest_xcrs) 5302 { 5303 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5304 guest_xcrs->nr_xcrs = 0; 5305 return; 5306 } 5307 5308 guest_xcrs->nr_xcrs = 1; 5309 guest_xcrs->flags = 0; 5310 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5311 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5312 } 5313 5314 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5315 struct kvm_xcrs *guest_xcrs) 5316 { 5317 int i, r = 0; 5318 5319 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5320 return -EINVAL; 5321 5322 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5323 return -EINVAL; 5324 5325 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5326 /* Only support XCR0 currently */ 5327 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5328 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5329 guest_xcrs->xcrs[i].value); 5330 break; 5331 } 5332 if (r) 5333 r = -EINVAL; 5334 return r; 5335 } 5336 5337 /* 5338 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5339 * stopped by the hypervisor. This function will be called from the host only. 5340 * EINVAL is returned when the host attempts to set the flag for a guest that 5341 * does not support pv clocks. 5342 */ 5343 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5344 { 5345 if (!vcpu->arch.pv_time.active) 5346 return -EINVAL; 5347 vcpu->arch.pvclock_set_guest_stopped_request = true; 5348 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5349 return 0; 5350 } 5351 5352 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5353 struct kvm_device_attr *attr) 5354 { 5355 int r; 5356 5357 switch (attr->attr) { 5358 case KVM_VCPU_TSC_OFFSET: 5359 r = 0; 5360 break; 5361 default: 5362 r = -ENXIO; 5363 } 5364 5365 return r; 5366 } 5367 5368 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5369 struct kvm_device_attr *attr) 5370 { 5371 u64 __user *uaddr = kvm_get_attr_addr(attr); 5372 int r; 5373 5374 if (IS_ERR(uaddr)) 5375 return PTR_ERR(uaddr); 5376 5377 switch (attr->attr) { 5378 case KVM_VCPU_TSC_OFFSET: 5379 r = -EFAULT; 5380 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5381 break; 5382 r = 0; 5383 break; 5384 default: 5385 r = -ENXIO; 5386 } 5387 5388 return r; 5389 } 5390 5391 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5392 struct kvm_device_attr *attr) 5393 { 5394 u64 __user *uaddr = kvm_get_attr_addr(attr); 5395 struct kvm *kvm = vcpu->kvm; 5396 int r; 5397 5398 if (IS_ERR(uaddr)) 5399 return PTR_ERR(uaddr); 5400 5401 switch (attr->attr) { 5402 case KVM_VCPU_TSC_OFFSET: { 5403 u64 offset, tsc, ns; 5404 unsigned long flags; 5405 bool matched; 5406 5407 r = -EFAULT; 5408 if (get_user(offset, uaddr)) 5409 break; 5410 5411 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5412 5413 matched = (vcpu->arch.virtual_tsc_khz && 5414 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5415 kvm->arch.last_tsc_offset == offset); 5416 5417 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5418 ns = get_kvmclock_base_ns(); 5419 5420 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5421 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5422 5423 r = 0; 5424 break; 5425 } 5426 default: 5427 r = -ENXIO; 5428 } 5429 5430 return r; 5431 } 5432 5433 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5434 unsigned int ioctl, 5435 void __user *argp) 5436 { 5437 struct kvm_device_attr attr; 5438 int r; 5439 5440 if (copy_from_user(&attr, argp, sizeof(attr))) 5441 return -EFAULT; 5442 5443 if (attr.group != KVM_VCPU_TSC_CTRL) 5444 return -ENXIO; 5445 5446 switch (ioctl) { 5447 case KVM_HAS_DEVICE_ATTR: 5448 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5449 break; 5450 case KVM_GET_DEVICE_ATTR: 5451 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5452 break; 5453 case KVM_SET_DEVICE_ATTR: 5454 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5455 break; 5456 } 5457 5458 return r; 5459 } 5460 5461 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5462 struct kvm_enable_cap *cap) 5463 { 5464 int r; 5465 uint16_t vmcs_version; 5466 void __user *user_ptr; 5467 5468 if (cap->flags) 5469 return -EINVAL; 5470 5471 switch (cap->cap) { 5472 case KVM_CAP_HYPERV_SYNIC2: 5473 if (cap->args[0]) 5474 return -EINVAL; 5475 fallthrough; 5476 5477 case KVM_CAP_HYPERV_SYNIC: 5478 if (!irqchip_in_kernel(vcpu->kvm)) 5479 return -EINVAL; 5480 return kvm_hv_activate_synic(vcpu, cap->cap == 5481 KVM_CAP_HYPERV_SYNIC2); 5482 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5483 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5484 return -ENOTTY; 5485 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5486 if (!r) { 5487 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5488 if (copy_to_user(user_ptr, &vmcs_version, 5489 sizeof(vmcs_version))) 5490 r = -EFAULT; 5491 } 5492 return r; 5493 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5494 if (!kvm_x86_ops.enable_direct_tlbflush) 5495 return -ENOTTY; 5496 5497 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5498 5499 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5500 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5501 5502 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5503 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5504 if (vcpu->arch.pv_cpuid.enforce) 5505 kvm_update_pv_runtime(vcpu); 5506 5507 return 0; 5508 default: 5509 return -EINVAL; 5510 } 5511 } 5512 5513 long kvm_arch_vcpu_ioctl(struct file *filp, 5514 unsigned int ioctl, unsigned long arg) 5515 { 5516 struct kvm_vcpu *vcpu = filp->private_data; 5517 void __user *argp = (void __user *)arg; 5518 int r; 5519 union { 5520 struct kvm_sregs2 *sregs2; 5521 struct kvm_lapic_state *lapic; 5522 struct kvm_xsave *xsave; 5523 struct kvm_xcrs *xcrs; 5524 void *buffer; 5525 } u; 5526 5527 vcpu_load(vcpu); 5528 5529 u.buffer = NULL; 5530 switch (ioctl) { 5531 case KVM_GET_LAPIC: { 5532 r = -EINVAL; 5533 if (!lapic_in_kernel(vcpu)) 5534 goto out; 5535 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5536 GFP_KERNEL_ACCOUNT); 5537 5538 r = -ENOMEM; 5539 if (!u.lapic) 5540 goto out; 5541 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5542 if (r) 5543 goto out; 5544 r = -EFAULT; 5545 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5546 goto out; 5547 r = 0; 5548 break; 5549 } 5550 case KVM_SET_LAPIC: { 5551 r = -EINVAL; 5552 if (!lapic_in_kernel(vcpu)) 5553 goto out; 5554 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5555 if (IS_ERR(u.lapic)) { 5556 r = PTR_ERR(u.lapic); 5557 goto out_nofree; 5558 } 5559 5560 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5561 break; 5562 } 5563 case KVM_INTERRUPT: { 5564 struct kvm_interrupt irq; 5565 5566 r = -EFAULT; 5567 if (copy_from_user(&irq, argp, sizeof(irq))) 5568 goto out; 5569 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5570 break; 5571 } 5572 case KVM_NMI: { 5573 r = kvm_vcpu_ioctl_nmi(vcpu); 5574 break; 5575 } 5576 case KVM_SMI: { 5577 r = kvm_vcpu_ioctl_smi(vcpu); 5578 break; 5579 } 5580 case KVM_SET_CPUID: { 5581 struct kvm_cpuid __user *cpuid_arg = argp; 5582 struct kvm_cpuid cpuid; 5583 5584 r = -EFAULT; 5585 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5586 goto out; 5587 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5588 break; 5589 } 5590 case KVM_SET_CPUID2: { 5591 struct kvm_cpuid2 __user *cpuid_arg = argp; 5592 struct kvm_cpuid2 cpuid; 5593 5594 r = -EFAULT; 5595 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5596 goto out; 5597 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5598 cpuid_arg->entries); 5599 break; 5600 } 5601 case KVM_GET_CPUID2: { 5602 struct kvm_cpuid2 __user *cpuid_arg = argp; 5603 struct kvm_cpuid2 cpuid; 5604 5605 r = -EFAULT; 5606 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5607 goto out; 5608 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5609 cpuid_arg->entries); 5610 if (r) 5611 goto out; 5612 r = -EFAULT; 5613 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5614 goto out; 5615 r = 0; 5616 break; 5617 } 5618 case KVM_GET_MSRS: { 5619 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5620 r = msr_io(vcpu, argp, do_get_msr, 1); 5621 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5622 break; 5623 } 5624 case KVM_SET_MSRS: { 5625 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5626 r = msr_io(vcpu, argp, do_set_msr, 0); 5627 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5628 break; 5629 } 5630 case KVM_TPR_ACCESS_REPORTING: { 5631 struct kvm_tpr_access_ctl tac; 5632 5633 r = -EFAULT; 5634 if (copy_from_user(&tac, argp, sizeof(tac))) 5635 goto out; 5636 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5637 if (r) 5638 goto out; 5639 r = -EFAULT; 5640 if (copy_to_user(argp, &tac, sizeof(tac))) 5641 goto out; 5642 r = 0; 5643 break; 5644 }; 5645 case KVM_SET_VAPIC_ADDR: { 5646 struct kvm_vapic_addr va; 5647 int idx; 5648 5649 r = -EINVAL; 5650 if (!lapic_in_kernel(vcpu)) 5651 goto out; 5652 r = -EFAULT; 5653 if (copy_from_user(&va, argp, sizeof(va))) 5654 goto out; 5655 idx = srcu_read_lock(&vcpu->kvm->srcu); 5656 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5657 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5658 break; 5659 } 5660 case KVM_X86_SETUP_MCE: { 5661 u64 mcg_cap; 5662 5663 r = -EFAULT; 5664 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5665 goto out; 5666 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5667 break; 5668 } 5669 case KVM_X86_SET_MCE: { 5670 struct kvm_x86_mce mce; 5671 5672 r = -EFAULT; 5673 if (copy_from_user(&mce, argp, sizeof(mce))) 5674 goto out; 5675 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5676 break; 5677 } 5678 case KVM_GET_VCPU_EVENTS: { 5679 struct kvm_vcpu_events events; 5680 5681 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5682 5683 r = -EFAULT; 5684 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5685 break; 5686 r = 0; 5687 break; 5688 } 5689 case KVM_SET_VCPU_EVENTS: { 5690 struct kvm_vcpu_events events; 5691 5692 r = -EFAULT; 5693 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5694 break; 5695 5696 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5697 break; 5698 } 5699 case KVM_GET_DEBUGREGS: { 5700 struct kvm_debugregs dbgregs; 5701 5702 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5703 5704 r = -EFAULT; 5705 if (copy_to_user(argp, &dbgregs, 5706 sizeof(struct kvm_debugregs))) 5707 break; 5708 r = 0; 5709 break; 5710 } 5711 case KVM_SET_DEBUGREGS: { 5712 struct kvm_debugregs dbgregs; 5713 5714 r = -EFAULT; 5715 if (copy_from_user(&dbgregs, argp, 5716 sizeof(struct kvm_debugregs))) 5717 break; 5718 5719 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5720 break; 5721 } 5722 case KVM_GET_XSAVE: { 5723 r = -EINVAL; 5724 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5725 break; 5726 5727 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5728 r = -ENOMEM; 5729 if (!u.xsave) 5730 break; 5731 5732 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5733 5734 r = -EFAULT; 5735 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5736 break; 5737 r = 0; 5738 break; 5739 } 5740 case KVM_SET_XSAVE: { 5741 int size = vcpu->arch.guest_fpu.uabi_size; 5742 5743 u.xsave = memdup_user(argp, size); 5744 if (IS_ERR(u.xsave)) { 5745 r = PTR_ERR(u.xsave); 5746 goto out_nofree; 5747 } 5748 5749 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5750 break; 5751 } 5752 5753 case KVM_GET_XSAVE2: { 5754 int size = vcpu->arch.guest_fpu.uabi_size; 5755 5756 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5757 r = -ENOMEM; 5758 if (!u.xsave) 5759 break; 5760 5761 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5762 5763 r = -EFAULT; 5764 if (copy_to_user(argp, u.xsave, size)) 5765 break; 5766 5767 r = 0; 5768 break; 5769 } 5770 5771 case KVM_GET_XCRS: { 5772 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5773 r = -ENOMEM; 5774 if (!u.xcrs) 5775 break; 5776 5777 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5778 5779 r = -EFAULT; 5780 if (copy_to_user(argp, u.xcrs, 5781 sizeof(struct kvm_xcrs))) 5782 break; 5783 r = 0; 5784 break; 5785 } 5786 case KVM_SET_XCRS: { 5787 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5788 if (IS_ERR(u.xcrs)) { 5789 r = PTR_ERR(u.xcrs); 5790 goto out_nofree; 5791 } 5792 5793 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5794 break; 5795 } 5796 case KVM_SET_TSC_KHZ: { 5797 u32 user_tsc_khz; 5798 5799 r = -EINVAL; 5800 user_tsc_khz = (u32)arg; 5801 5802 if (kvm_caps.has_tsc_control && 5803 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5804 goto out; 5805 5806 if (user_tsc_khz == 0) 5807 user_tsc_khz = tsc_khz; 5808 5809 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5810 r = 0; 5811 5812 goto out; 5813 } 5814 case KVM_GET_TSC_KHZ: { 5815 r = vcpu->arch.virtual_tsc_khz; 5816 goto out; 5817 } 5818 case KVM_KVMCLOCK_CTRL: { 5819 r = kvm_set_guest_paused(vcpu); 5820 goto out; 5821 } 5822 case KVM_ENABLE_CAP: { 5823 struct kvm_enable_cap cap; 5824 5825 r = -EFAULT; 5826 if (copy_from_user(&cap, argp, sizeof(cap))) 5827 goto out; 5828 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5829 break; 5830 } 5831 case KVM_GET_NESTED_STATE: { 5832 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5833 u32 user_data_size; 5834 5835 r = -EINVAL; 5836 if (!kvm_x86_ops.nested_ops->get_state) 5837 break; 5838 5839 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5840 r = -EFAULT; 5841 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5842 break; 5843 5844 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5845 user_data_size); 5846 if (r < 0) 5847 break; 5848 5849 if (r > user_data_size) { 5850 if (put_user(r, &user_kvm_nested_state->size)) 5851 r = -EFAULT; 5852 else 5853 r = -E2BIG; 5854 break; 5855 } 5856 5857 r = 0; 5858 break; 5859 } 5860 case KVM_SET_NESTED_STATE: { 5861 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5862 struct kvm_nested_state kvm_state; 5863 int idx; 5864 5865 r = -EINVAL; 5866 if (!kvm_x86_ops.nested_ops->set_state) 5867 break; 5868 5869 r = -EFAULT; 5870 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5871 break; 5872 5873 r = -EINVAL; 5874 if (kvm_state.size < sizeof(kvm_state)) 5875 break; 5876 5877 if (kvm_state.flags & 5878 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5879 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5880 | KVM_STATE_NESTED_GIF_SET)) 5881 break; 5882 5883 /* nested_run_pending implies guest_mode. */ 5884 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5885 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5886 break; 5887 5888 idx = srcu_read_lock(&vcpu->kvm->srcu); 5889 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5890 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5891 break; 5892 } 5893 case KVM_GET_SUPPORTED_HV_CPUID: 5894 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5895 break; 5896 #ifdef CONFIG_KVM_XEN 5897 case KVM_XEN_VCPU_GET_ATTR: { 5898 struct kvm_xen_vcpu_attr xva; 5899 5900 r = -EFAULT; 5901 if (copy_from_user(&xva, argp, sizeof(xva))) 5902 goto out; 5903 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5904 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5905 r = -EFAULT; 5906 break; 5907 } 5908 case KVM_XEN_VCPU_SET_ATTR: { 5909 struct kvm_xen_vcpu_attr xva; 5910 5911 r = -EFAULT; 5912 if (copy_from_user(&xva, argp, sizeof(xva))) 5913 goto out; 5914 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5915 break; 5916 } 5917 #endif 5918 case KVM_GET_SREGS2: { 5919 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5920 r = -ENOMEM; 5921 if (!u.sregs2) 5922 goto out; 5923 __get_sregs2(vcpu, u.sregs2); 5924 r = -EFAULT; 5925 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5926 goto out; 5927 r = 0; 5928 break; 5929 } 5930 case KVM_SET_SREGS2: { 5931 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5932 if (IS_ERR(u.sregs2)) { 5933 r = PTR_ERR(u.sregs2); 5934 u.sregs2 = NULL; 5935 goto out; 5936 } 5937 r = __set_sregs2(vcpu, u.sregs2); 5938 break; 5939 } 5940 case KVM_HAS_DEVICE_ATTR: 5941 case KVM_GET_DEVICE_ATTR: 5942 case KVM_SET_DEVICE_ATTR: 5943 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5944 break; 5945 default: 5946 r = -EINVAL; 5947 } 5948 out: 5949 kfree(u.buffer); 5950 out_nofree: 5951 vcpu_put(vcpu); 5952 return r; 5953 } 5954 5955 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5956 { 5957 return VM_FAULT_SIGBUS; 5958 } 5959 5960 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5961 { 5962 int ret; 5963 5964 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5965 return -EINVAL; 5966 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5967 return ret; 5968 } 5969 5970 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5971 u64 ident_addr) 5972 { 5973 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5974 } 5975 5976 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5977 unsigned long kvm_nr_mmu_pages) 5978 { 5979 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5980 return -EINVAL; 5981 5982 mutex_lock(&kvm->slots_lock); 5983 5984 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5985 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5986 5987 mutex_unlock(&kvm->slots_lock); 5988 return 0; 5989 } 5990 5991 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5992 { 5993 return kvm->arch.n_max_mmu_pages; 5994 } 5995 5996 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5997 { 5998 struct kvm_pic *pic = kvm->arch.vpic; 5999 int r; 6000 6001 r = 0; 6002 switch (chip->chip_id) { 6003 case KVM_IRQCHIP_PIC_MASTER: 6004 memcpy(&chip->chip.pic, &pic->pics[0], 6005 sizeof(struct kvm_pic_state)); 6006 break; 6007 case KVM_IRQCHIP_PIC_SLAVE: 6008 memcpy(&chip->chip.pic, &pic->pics[1], 6009 sizeof(struct kvm_pic_state)); 6010 break; 6011 case KVM_IRQCHIP_IOAPIC: 6012 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6013 break; 6014 default: 6015 r = -EINVAL; 6016 break; 6017 } 6018 return r; 6019 } 6020 6021 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6022 { 6023 struct kvm_pic *pic = kvm->arch.vpic; 6024 int r; 6025 6026 r = 0; 6027 switch (chip->chip_id) { 6028 case KVM_IRQCHIP_PIC_MASTER: 6029 spin_lock(&pic->lock); 6030 memcpy(&pic->pics[0], &chip->chip.pic, 6031 sizeof(struct kvm_pic_state)); 6032 spin_unlock(&pic->lock); 6033 break; 6034 case KVM_IRQCHIP_PIC_SLAVE: 6035 spin_lock(&pic->lock); 6036 memcpy(&pic->pics[1], &chip->chip.pic, 6037 sizeof(struct kvm_pic_state)); 6038 spin_unlock(&pic->lock); 6039 break; 6040 case KVM_IRQCHIP_IOAPIC: 6041 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6042 break; 6043 default: 6044 r = -EINVAL; 6045 break; 6046 } 6047 kvm_pic_update_irq(pic); 6048 return r; 6049 } 6050 6051 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6052 { 6053 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6054 6055 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6056 6057 mutex_lock(&kps->lock); 6058 memcpy(ps, &kps->channels, sizeof(*ps)); 6059 mutex_unlock(&kps->lock); 6060 return 0; 6061 } 6062 6063 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6064 { 6065 int i; 6066 struct kvm_pit *pit = kvm->arch.vpit; 6067 6068 mutex_lock(&pit->pit_state.lock); 6069 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6070 for (i = 0; i < 3; i++) 6071 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6072 mutex_unlock(&pit->pit_state.lock); 6073 return 0; 6074 } 6075 6076 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6077 { 6078 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6079 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6080 sizeof(ps->channels)); 6081 ps->flags = kvm->arch.vpit->pit_state.flags; 6082 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6083 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6084 return 0; 6085 } 6086 6087 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6088 { 6089 int start = 0; 6090 int i; 6091 u32 prev_legacy, cur_legacy; 6092 struct kvm_pit *pit = kvm->arch.vpit; 6093 6094 mutex_lock(&pit->pit_state.lock); 6095 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6096 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6097 if (!prev_legacy && cur_legacy) 6098 start = 1; 6099 memcpy(&pit->pit_state.channels, &ps->channels, 6100 sizeof(pit->pit_state.channels)); 6101 pit->pit_state.flags = ps->flags; 6102 for (i = 0; i < 3; i++) 6103 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6104 start && i == 0); 6105 mutex_unlock(&pit->pit_state.lock); 6106 return 0; 6107 } 6108 6109 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6110 struct kvm_reinject_control *control) 6111 { 6112 struct kvm_pit *pit = kvm->arch.vpit; 6113 6114 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6115 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6116 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6117 */ 6118 mutex_lock(&pit->pit_state.lock); 6119 kvm_pit_set_reinject(pit, control->pit_reinject); 6120 mutex_unlock(&pit->pit_state.lock); 6121 6122 return 0; 6123 } 6124 6125 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6126 { 6127 6128 /* 6129 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6130 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6131 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6132 * VM-Exit. 6133 */ 6134 struct kvm_vcpu *vcpu; 6135 unsigned long i; 6136 6137 kvm_for_each_vcpu(i, vcpu, kvm) 6138 kvm_vcpu_kick(vcpu); 6139 } 6140 6141 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6142 bool line_status) 6143 { 6144 if (!irqchip_in_kernel(kvm)) 6145 return -ENXIO; 6146 6147 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6148 irq_event->irq, irq_event->level, 6149 line_status); 6150 return 0; 6151 } 6152 6153 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6154 struct kvm_enable_cap *cap) 6155 { 6156 int r; 6157 6158 if (cap->flags) 6159 return -EINVAL; 6160 6161 switch (cap->cap) { 6162 case KVM_CAP_DISABLE_QUIRKS2: 6163 r = -EINVAL; 6164 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6165 break; 6166 fallthrough; 6167 case KVM_CAP_DISABLE_QUIRKS: 6168 kvm->arch.disabled_quirks = cap->args[0]; 6169 r = 0; 6170 break; 6171 case KVM_CAP_SPLIT_IRQCHIP: { 6172 mutex_lock(&kvm->lock); 6173 r = -EINVAL; 6174 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6175 goto split_irqchip_unlock; 6176 r = -EEXIST; 6177 if (irqchip_in_kernel(kvm)) 6178 goto split_irqchip_unlock; 6179 if (kvm->created_vcpus) 6180 goto split_irqchip_unlock; 6181 r = kvm_setup_empty_irq_routing(kvm); 6182 if (r) 6183 goto split_irqchip_unlock; 6184 /* Pairs with irqchip_in_kernel. */ 6185 smp_wmb(); 6186 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6187 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6188 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6189 r = 0; 6190 split_irqchip_unlock: 6191 mutex_unlock(&kvm->lock); 6192 break; 6193 } 6194 case KVM_CAP_X2APIC_API: 6195 r = -EINVAL; 6196 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6197 break; 6198 6199 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6200 kvm->arch.x2apic_format = true; 6201 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6202 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6203 6204 r = 0; 6205 break; 6206 case KVM_CAP_X86_DISABLE_EXITS: 6207 r = -EINVAL; 6208 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6209 break; 6210 6211 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6212 kvm_can_mwait_in_guest()) 6213 kvm->arch.mwait_in_guest = true; 6214 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6215 kvm->arch.hlt_in_guest = true; 6216 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6217 kvm->arch.pause_in_guest = true; 6218 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6219 kvm->arch.cstate_in_guest = true; 6220 r = 0; 6221 break; 6222 case KVM_CAP_MSR_PLATFORM_INFO: 6223 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6224 r = 0; 6225 break; 6226 case KVM_CAP_EXCEPTION_PAYLOAD: 6227 kvm->arch.exception_payload_enabled = cap->args[0]; 6228 r = 0; 6229 break; 6230 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6231 kvm->arch.triple_fault_event = cap->args[0]; 6232 r = 0; 6233 break; 6234 case KVM_CAP_X86_USER_SPACE_MSR: 6235 r = -EINVAL; 6236 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL | 6237 KVM_MSR_EXIT_REASON_UNKNOWN | 6238 KVM_MSR_EXIT_REASON_FILTER)) 6239 break; 6240 kvm->arch.user_space_msr_mask = cap->args[0]; 6241 r = 0; 6242 break; 6243 case KVM_CAP_X86_BUS_LOCK_EXIT: 6244 r = -EINVAL; 6245 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6246 break; 6247 6248 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6249 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6250 break; 6251 6252 if (kvm_caps.has_bus_lock_exit && 6253 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6254 kvm->arch.bus_lock_detection_enabled = true; 6255 r = 0; 6256 break; 6257 #ifdef CONFIG_X86_SGX_KVM 6258 case KVM_CAP_SGX_ATTRIBUTE: { 6259 unsigned long allowed_attributes = 0; 6260 6261 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6262 if (r) 6263 break; 6264 6265 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6266 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6267 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6268 kvm->arch.sgx_provisioning_allowed = true; 6269 else 6270 r = -EINVAL; 6271 break; 6272 } 6273 #endif 6274 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6275 r = -EINVAL; 6276 if (!kvm_x86_ops.vm_copy_enc_context_from) 6277 break; 6278 6279 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6280 break; 6281 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6282 r = -EINVAL; 6283 if (!kvm_x86_ops.vm_move_enc_context_from) 6284 break; 6285 6286 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6287 break; 6288 case KVM_CAP_EXIT_HYPERCALL: 6289 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6290 r = -EINVAL; 6291 break; 6292 } 6293 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6294 r = 0; 6295 break; 6296 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6297 r = -EINVAL; 6298 if (cap->args[0] & ~1) 6299 break; 6300 kvm->arch.exit_on_emulation_error = cap->args[0]; 6301 r = 0; 6302 break; 6303 case KVM_CAP_PMU_CAPABILITY: 6304 r = -EINVAL; 6305 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6306 break; 6307 6308 mutex_lock(&kvm->lock); 6309 if (!kvm->created_vcpus) { 6310 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6311 r = 0; 6312 } 6313 mutex_unlock(&kvm->lock); 6314 break; 6315 case KVM_CAP_MAX_VCPU_ID: 6316 r = -EINVAL; 6317 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6318 break; 6319 6320 mutex_lock(&kvm->lock); 6321 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6322 r = 0; 6323 } else if (!kvm->arch.max_vcpu_ids) { 6324 kvm->arch.max_vcpu_ids = cap->args[0]; 6325 r = 0; 6326 } 6327 mutex_unlock(&kvm->lock); 6328 break; 6329 case KVM_CAP_X86_NOTIFY_VMEXIT: 6330 r = -EINVAL; 6331 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6332 break; 6333 if (!kvm_caps.has_notify_vmexit) 6334 break; 6335 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6336 break; 6337 mutex_lock(&kvm->lock); 6338 if (!kvm->created_vcpus) { 6339 kvm->arch.notify_window = cap->args[0] >> 32; 6340 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6341 r = 0; 6342 } 6343 mutex_unlock(&kvm->lock); 6344 break; 6345 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6346 r = -EINVAL; 6347 6348 /* 6349 * Since the risk of disabling NX hugepages is a guest crashing 6350 * the system, ensure the userspace process has permission to 6351 * reboot the system. 6352 * 6353 * Note that unlike the reboot() syscall, the process must have 6354 * this capability in the root namespace because exposing 6355 * /dev/kvm into a container does not limit the scope of the 6356 * iTLB multihit bug to that container. In other words, 6357 * this must use capable(), not ns_capable(). 6358 */ 6359 if (!capable(CAP_SYS_BOOT)) { 6360 r = -EPERM; 6361 break; 6362 } 6363 6364 if (cap->args[0]) 6365 break; 6366 6367 mutex_lock(&kvm->lock); 6368 if (!kvm->created_vcpus) { 6369 kvm->arch.disable_nx_huge_pages = true; 6370 r = 0; 6371 } 6372 mutex_unlock(&kvm->lock); 6373 break; 6374 default: 6375 r = -EINVAL; 6376 break; 6377 } 6378 return r; 6379 } 6380 6381 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6382 { 6383 struct kvm_x86_msr_filter *msr_filter; 6384 6385 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6386 if (!msr_filter) 6387 return NULL; 6388 6389 msr_filter->default_allow = default_allow; 6390 return msr_filter; 6391 } 6392 6393 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6394 { 6395 u32 i; 6396 6397 if (!msr_filter) 6398 return; 6399 6400 for (i = 0; i < msr_filter->count; i++) 6401 kfree(msr_filter->ranges[i].bitmap); 6402 6403 kfree(msr_filter); 6404 } 6405 6406 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6407 struct kvm_msr_filter_range *user_range) 6408 { 6409 unsigned long *bitmap = NULL; 6410 size_t bitmap_size; 6411 6412 if (!user_range->nmsrs) 6413 return 0; 6414 6415 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6416 return -EINVAL; 6417 6418 if (!user_range->flags) 6419 return -EINVAL; 6420 6421 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6422 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6423 return -EINVAL; 6424 6425 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6426 if (IS_ERR(bitmap)) 6427 return PTR_ERR(bitmap); 6428 6429 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6430 .flags = user_range->flags, 6431 .base = user_range->base, 6432 .nmsrs = user_range->nmsrs, 6433 .bitmap = bitmap, 6434 }; 6435 6436 msr_filter->count++; 6437 return 0; 6438 } 6439 6440 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6441 struct kvm_msr_filter *filter) 6442 { 6443 struct kvm_x86_msr_filter *new_filter, *old_filter; 6444 bool default_allow; 6445 bool empty = true; 6446 int r = 0; 6447 u32 i; 6448 6449 if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY) 6450 return -EINVAL; 6451 6452 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6453 empty &= !filter->ranges[i].nmsrs; 6454 6455 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6456 if (empty && !default_allow) 6457 return -EINVAL; 6458 6459 new_filter = kvm_alloc_msr_filter(default_allow); 6460 if (!new_filter) 6461 return -ENOMEM; 6462 6463 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6464 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6465 if (r) { 6466 kvm_free_msr_filter(new_filter); 6467 return r; 6468 } 6469 } 6470 6471 mutex_lock(&kvm->lock); 6472 6473 /* The per-VM filter is protected by kvm->lock... */ 6474 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6475 6476 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6477 synchronize_srcu(&kvm->srcu); 6478 6479 kvm_free_msr_filter(old_filter); 6480 6481 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6482 mutex_unlock(&kvm->lock); 6483 6484 return 0; 6485 } 6486 6487 #ifdef CONFIG_KVM_COMPAT 6488 /* for KVM_X86_SET_MSR_FILTER */ 6489 struct kvm_msr_filter_range_compat { 6490 __u32 flags; 6491 __u32 nmsrs; 6492 __u32 base; 6493 __u32 bitmap; 6494 }; 6495 6496 struct kvm_msr_filter_compat { 6497 __u32 flags; 6498 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6499 }; 6500 6501 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6502 6503 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6504 unsigned long arg) 6505 { 6506 void __user *argp = (void __user *)arg; 6507 struct kvm *kvm = filp->private_data; 6508 long r = -ENOTTY; 6509 6510 switch (ioctl) { 6511 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6512 struct kvm_msr_filter __user *user_msr_filter = argp; 6513 struct kvm_msr_filter_compat filter_compat; 6514 struct kvm_msr_filter filter; 6515 int i; 6516 6517 if (copy_from_user(&filter_compat, user_msr_filter, 6518 sizeof(filter_compat))) 6519 return -EFAULT; 6520 6521 filter.flags = filter_compat.flags; 6522 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6523 struct kvm_msr_filter_range_compat *cr; 6524 6525 cr = &filter_compat.ranges[i]; 6526 filter.ranges[i] = (struct kvm_msr_filter_range) { 6527 .flags = cr->flags, 6528 .nmsrs = cr->nmsrs, 6529 .base = cr->base, 6530 .bitmap = (__u8 *)(ulong)cr->bitmap, 6531 }; 6532 } 6533 6534 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6535 break; 6536 } 6537 } 6538 6539 return r; 6540 } 6541 #endif 6542 6543 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6544 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6545 { 6546 struct kvm_vcpu *vcpu; 6547 unsigned long i; 6548 int ret = 0; 6549 6550 mutex_lock(&kvm->lock); 6551 kvm_for_each_vcpu(i, vcpu, kvm) { 6552 if (!vcpu->arch.pv_time.active) 6553 continue; 6554 6555 ret = kvm_set_guest_paused(vcpu); 6556 if (ret) { 6557 kvm_err("Failed to pause guest VCPU%d: %d\n", 6558 vcpu->vcpu_id, ret); 6559 break; 6560 } 6561 } 6562 mutex_unlock(&kvm->lock); 6563 6564 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6565 } 6566 6567 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6568 { 6569 switch (state) { 6570 case PM_HIBERNATION_PREPARE: 6571 case PM_SUSPEND_PREPARE: 6572 return kvm_arch_suspend_notifier(kvm); 6573 } 6574 6575 return NOTIFY_DONE; 6576 } 6577 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6578 6579 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6580 { 6581 struct kvm_clock_data data = { 0 }; 6582 6583 get_kvmclock(kvm, &data); 6584 if (copy_to_user(argp, &data, sizeof(data))) 6585 return -EFAULT; 6586 6587 return 0; 6588 } 6589 6590 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6591 { 6592 struct kvm_arch *ka = &kvm->arch; 6593 struct kvm_clock_data data; 6594 u64 now_raw_ns; 6595 6596 if (copy_from_user(&data, argp, sizeof(data))) 6597 return -EFAULT; 6598 6599 /* 6600 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6601 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6602 */ 6603 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6604 return -EINVAL; 6605 6606 kvm_hv_request_tsc_page_update(kvm); 6607 kvm_start_pvclock_update(kvm); 6608 pvclock_update_vm_gtod_copy(kvm); 6609 6610 /* 6611 * This pairs with kvm_guest_time_update(): when masterclock is 6612 * in use, we use master_kernel_ns + kvmclock_offset to set 6613 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6614 * is slightly ahead) here we risk going negative on unsigned 6615 * 'system_time' when 'data.clock' is very small. 6616 */ 6617 if (data.flags & KVM_CLOCK_REALTIME) { 6618 u64 now_real_ns = ktime_get_real_ns(); 6619 6620 /* 6621 * Avoid stepping the kvmclock backwards. 6622 */ 6623 if (now_real_ns > data.realtime) 6624 data.clock += now_real_ns - data.realtime; 6625 } 6626 6627 if (ka->use_master_clock) 6628 now_raw_ns = ka->master_kernel_ns; 6629 else 6630 now_raw_ns = get_kvmclock_base_ns(); 6631 ka->kvmclock_offset = data.clock - now_raw_ns; 6632 kvm_end_pvclock_update(kvm); 6633 return 0; 6634 } 6635 6636 long kvm_arch_vm_ioctl(struct file *filp, 6637 unsigned int ioctl, unsigned long arg) 6638 { 6639 struct kvm *kvm = filp->private_data; 6640 void __user *argp = (void __user *)arg; 6641 int r = -ENOTTY; 6642 /* 6643 * This union makes it completely explicit to gcc-3.x 6644 * that these two variables' stack usage should be 6645 * combined, not added together. 6646 */ 6647 union { 6648 struct kvm_pit_state ps; 6649 struct kvm_pit_state2 ps2; 6650 struct kvm_pit_config pit_config; 6651 } u; 6652 6653 switch (ioctl) { 6654 case KVM_SET_TSS_ADDR: 6655 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6656 break; 6657 case KVM_SET_IDENTITY_MAP_ADDR: { 6658 u64 ident_addr; 6659 6660 mutex_lock(&kvm->lock); 6661 r = -EINVAL; 6662 if (kvm->created_vcpus) 6663 goto set_identity_unlock; 6664 r = -EFAULT; 6665 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6666 goto set_identity_unlock; 6667 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6668 set_identity_unlock: 6669 mutex_unlock(&kvm->lock); 6670 break; 6671 } 6672 case KVM_SET_NR_MMU_PAGES: 6673 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6674 break; 6675 case KVM_GET_NR_MMU_PAGES: 6676 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6677 break; 6678 case KVM_CREATE_IRQCHIP: { 6679 mutex_lock(&kvm->lock); 6680 6681 r = -EEXIST; 6682 if (irqchip_in_kernel(kvm)) 6683 goto create_irqchip_unlock; 6684 6685 r = -EINVAL; 6686 if (kvm->created_vcpus) 6687 goto create_irqchip_unlock; 6688 6689 r = kvm_pic_init(kvm); 6690 if (r) 6691 goto create_irqchip_unlock; 6692 6693 r = kvm_ioapic_init(kvm); 6694 if (r) { 6695 kvm_pic_destroy(kvm); 6696 goto create_irqchip_unlock; 6697 } 6698 6699 r = kvm_setup_default_irq_routing(kvm); 6700 if (r) { 6701 kvm_ioapic_destroy(kvm); 6702 kvm_pic_destroy(kvm); 6703 goto create_irqchip_unlock; 6704 } 6705 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6706 smp_wmb(); 6707 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6708 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6709 create_irqchip_unlock: 6710 mutex_unlock(&kvm->lock); 6711 break; 6712 } 6713 case KVM_CREATE_PIT: 6714 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6715 goto create_pit; 6716 case KVM_CREATE_PIT2: 6717 r = -EFAULT; 6718 if (copy_from_user(&u.pit_config, argp, 6719 sizeof(struct kvm_pit_config))) 6720 goto out; 6721 create_pit: 6722 mutex_lock(&kvm->lock); 6723 r = -EEXIST; 6724 if (kvm->arch.vpit) 6725 goto create_pit_unlock; 6726 r = -ENOMEM; 6727 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6728 if (kvm->arch.vpit) 6729 r = 0; 6730 create_pit_unlock: 6731 mutex_unlock(&kvm->lock); 6732 break; 6733 case KVM_GET_IRQCHIP: { 6734 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6735 struct kvm_irqchip *chip; 6736 6737 chip = memdup_user(argp, sizeof(*chip)); 6738 if (IS_ERR(chip)) { 6739 r = PTR_ERR(chip); 6740 goto out; 6741 } 6742 6743 r = -ENXIO; 6744 if (!irqchip_kernel(kvm)) 6745 goto get_irqchip_out; 6746 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6747 if (r) 6748 goto get_irqchip_out; 6749 r = -EFAULT; 6750 if (copy_to_user(argp, chip, sizeof(*chip))) 6751 goto get_irqchip_out; 6752 r = 0; 6753 get_irqchip_out: 6754 kfree(chip); 6755 break; 6756 } 6757 case KVM_SET_IRQCHIP: { 6758 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6759 struct kvm_irqchip *chip; 6760 6761 chip = memdup_user(argp, sizeof(*chip)); 6762 if (IS_ERR(chip)) { 6763 r = PTR_ERR(chip); 6764 goto out; 6765 } 6766 6767 r = -ENXIO; 6768 if (!irqchip_kernel(kvm)) 6769 goto set_irqchip_out; 6770 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6771 set_irqchip_out: 6772 kfree(chip); 6773 break; 6774 } 6775 case KVM_GET_PIT: { 6776 r = -EFAULT; 6777 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6778 goto out; 6779 r = -ENXIO; 6780 if (!kvm->arch.vpit) 6781 goto out; 6782 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6783 if (r) 6784 goto out; 6785 r = -EFAULT; 6786 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6787 goto out; 6788 r = 0; 6789 break; 6790 } 6791 case KVM_SET_PIT: { 6792 r = -EFAULT; 6793 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6794 goto out; 6795 mutex_lock(&kvm->lock); 6796 r = -ENXIO; 6797 if (!kvm->arch.vpit) 6798 goto set_pit_out; 6799 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6800 set_pit_out: 6801 mutex_unlock(&kvm->lock); 6802 break; 6803 } 6804 case KVM_GET_PIT2: { 6805 r = -ENXIO; 6806 if (!kvm->arch.vpit) 6807 goto out; 6808 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6809 if (r) 6810 goto out; 6811 r = -EFAULT; 6812 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6813 goto out; 6814 r = 0; 6815 break; 6816 } 6817 case KVM_SET_PIT2: { 6818 r = -EFAULT; 6819 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6820 goto out; 6821 mutex_lock(&kvm->lock); 6822 r = -ENXIO; 6823 if (!kvm->arch.vpit) 6824 goto set_pit2_out; 6825 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6826 set_pit2_out: 6827 mutex_unlock(&kvm->lock); 6828 break; 6829 } 6830 case KVM_REINJECT_CONTROL: { 6831 struct kvm_reinject_control control; 6832 r = -EFAULT; 6833 if (copy_from_user(&control, argp, sizeof(control))) 6834 goto out; 6835 r = -ENXIO; 6836 if (!kvm->arch.vpit) 6837 goto out; 6838 r = kvm_vm_ioctl_reinject(kvm, &control); 6839 break; 6840 } 6841 case KVM_SET_BOOT_CPU_ID: 6842 r = 0; 6843 mutex_lock(&kvm->lock); 6844 if (kvm->created_vcpus) 6845 r = -EBUSY; 6846 else 6847 kvm->arch.bsp_vcpu_id = arg; 6848 mutex_unlock(&kvm->lock); 6849 break; 6850 #ifdef CONFIG_KVM_XEN 6851 case KVM_XEN_HVM_CONFIG: { 6852 struct kvm_xen_hvm_config xhc; 6853 r = -EFAULT; 6854 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6855 goto out; 6856 r = kvm_xen_hvm_config(kvm, &xhc); 6857 break; 6858 } 6859 case KVM_XEN_HVM_GET_ATTR: { 6860 struct kvm_xen_hvm_attr xha; 6861 6862 r = -EFAULT; 6863 if (copy_from_user(&xha, argp, sizeof(xha))) 6864 goto out; 6865 r = kvm_xen_hvm_get_attr(kvm, &xha); 6866 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6867 r = -EFAULT; 6868 break; 6869 } 6870 case KVM_XEN_HVM_SET_ATTR: { 6871 struct kvm_xen_hvm_attr xha; 6872 6873 r = -EFAULT; 6874 if (copy_from_user(&xha, argp, sizeof(xha))) 6875 goto out; 6876 r = kvm_xen_hvm_set_attr(kvm, &xha); 6877 break; 6878 } 6879 case KVM_XEN_HVM_EVTCHN_SEND: { 6880 struct kvm_irq_routing_xen_evtchn uxe; 6881 6882 r = -EFAULT; 6883 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6884 goto out; 6885 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6886 break; 6887 } 6888 #endif 6889 case KVM_SET_CLOCK: 6890 r = kvm_vm_ioctl_set_clock(kvm, argp); 6891 break; 6892 case KVM_GET_CLOCK: 6893 r = kvm_vm_ioctl_get_clock(kvm, argp); 6894 break; 6895 case KVM_SET_TSC_KHZ: { 6896 u32 user_tsc_khz; 6897 6898 r = -EINVAL; 6899 user_tsc_khz = (u32)arg; 6900 6901 if (kvm_caps.has_tsc_control && 6902 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6903 goto out; 6904 6905 if (user_tsc_khz == 0) 6906 user_tsc_khz = tsc_khz; 6907 6908 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6909 r = 0; 6910 6911 goto out; 6912 } 6913 case KVM_GET_TSC_KHZ: { 6914 r = READ_ONCE(kvm->arch.default_tsc_khz); 6915 goto out; 6916 } 6917 case KVM_MEMORY_ENCRYPT_OP: { 6918 r = -ENOTTY; 6919 if (!kvm_x86_ops.mem_enc_ioctl) 6920 goto out; 6921 6922 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6923 break; 6924 } 6925 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6926 struct kvm_enc_region region; 6927 6928 r = -EFAULT; 6929 if (copy_from_user(®ion, argp, sizeof(region))) 6930 goto out; 6931 6932 r = -ENOTTY; 6933 if (!kvm_x86_ops.mem_enc_register_region) 6934 goto out; 6935 6936 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6937 break; 6938 } 6939 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6940 struct kvm_enc_region region; 6941 6942 r = -EFAULT; 6943 if (copy_from_user(®ion, argp, sizeof(region))) 6944 goto out; 6945 6946 r = -ENOTTY; 6947 if (!kvm_x86_ops.mem_enc_unregister_region) 6948 goto out; 6949 6950 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6951 break; 6952 } 6953 case KVM_HYPERV_EVENTFD: { 6954 struct kvm_hyperv_eventfd hvevfd; 6955 6956 r = -EFAULT; 6957 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6958 goto out; 6959 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6960 break; 6961 } 6962 case KVM_SET_PMU_EVENT_FILTER: 6963 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6964 break; 6965 case KVM_X86_SET_MSR_FILTER: { 6966 struct kvm_msr_filter __user *user_msr_filter = argp; 6967 struct kvm_msr_filter filter; 6968 6969 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6970 return -EFAULT; 6971 6972 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6973 break; 6974 } 6975 default: 6976 r = -ENOTTY; 6977 } 6978 out: 6979 return r; 6980 } 6981 6982 static void kvm_init_msr_list(void) 6983 { 6984 u32 dummy[2]; 6985 unsigned i; 6986 6987 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 6988 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6989 6990 num_msrs_to_save = 0; 6991 num_emulated_msrs = 0; 6992 num_msr_based_features = 0; 6993 6994 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6995 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6996 continue; 6997 6998 /* 6999 * Even MSRs that are valid in the host may not be exposed 7000 * to the guests in some cases. 7001 */ 7002 switch (msrs_to_save_all[i]) { 7003 case MSR_IA32_BNDCFGS: 7004 if (!kvm_mpx_supported()) 7005 continue; 7006 break; 7007 case MSR_TSC_AUX: 7008 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7009 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7010 continue; 7011 break; 7012 case MSR_IA32_UMWAIT_CONTROL: 7013 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7014 continue; 7015 break; 7016 case MSR_IA32_RTIT_CTL: 7017 case MSR_IA32_RTIT_STATUS: 7018 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7019 continue; 7020 break; 7021 case MSR_IA32_RTIT_CR3_MATCH: 7022 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7023 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7024 continue; 7025 break; 7026 case MSR_IA32_RTIT_OUTPUT_BASE: 7027 case MSR_IA32_RTIT_OUTPUT_MASK: 7028 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7029 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7030 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7031 continue; 7032 break; 7033 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7034 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7035 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 7036 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 7037 continue; 7038 break; 7039 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7040 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 7041 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7042 continue; 7043 break; 7044 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7045 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 7046 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7047 continue; 7048 break; 7049 case MSR_IA32_XFD: 7050 case MSR_IA32_XFD_ERR: 7051 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7052 continue; 7053 break; 7054 default: 7055 break; 7056 } 7057 7058 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7059 } 7060 7061 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7062 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7063 continue; 7064 7065 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7066 } 7067 7068 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7069 struct kvm_msr_entry msr; 7070 7071 msr.index = msr_based_features_all[i]; 7072 if (kvm_get_msr_feature(&msr)) 7073 continue; 7074 7075 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7076 } 7077 } 7078 7079 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7080 const void *v) 7081 { 7082 int handled = 0; 7083 int n; 7084 7085 do { 7086 n = min(len, 8); 7087 if (!(lapic_in_kernel(vcpu) && 7088 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7089 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7090 break; 7091 handled += n; 7092 addr += n; 7093 len -= n; 7094 v += n; 7095 } while (len); 7096 7097 return handled; 7098 } 7099 7100 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7101 { 7102 int handled = 0; 7103 int n; 7104 7105 do { 7106 n = min(len, 8); 7107 if (!(lapic_in_kernel(vcpu) && 7108 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7109 addr, n, v)) 7110 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7111 break; 7112 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7113 handled += n; 7114 addr += n; 7115 len -= n; 7116 v += n; 7117 } while (len); 7118 7119 return handled; 7120 } 7121 7122 static void kvm_set_segment(struct kvm_vcpu *vcpu, 7123 struct kvm_segment *var, int seg) 7124 { 7125 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7126 } 7127 7128 void kvm_get_segment(struct kvm_vcpu *vcpu, 7129 struct kvm_segment *var, int seg) 7130 { 7131 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7132 } 7133 7134 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7135 struct x86_exception *exception) 7136 { 7137 struct kvm_mmu *mmu = vcpu->arch.mmu; 7138 gpa_t t_gpa; 7139 7140 BUG_ON(!mmu_is_nested(vcpu)); 7141 7142 /* NPT walks are always user-walks */ 7143 access |= PFERR_USER_MASK; 7144 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7145 7146 return t_gpa; 7147 } 7148 7149 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7150 struct x86_exception *exception) 7151 { 7152 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7153 7154 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7155 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7156 } 7157 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7158 7159 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 7160 struct x86_exception *exception) 7161 { 7162 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7163 7164 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7165 access |= PFERR_FETCH_MASK; 7166 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7167 } 7168 7169 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7170 struct x86_exception *exception) 7171 { 7172 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7173 7174 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7175 access |= PFERR_WRITE_MASK; 7176 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7177 } 7178 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7179 7180 /* uses this to access any guest's mapped memory without checking CPL */ 7181 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7182 struct x86_exception *exception) 7183 { 7184 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7185 7186 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7187 } 7188 7189 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7190 struct kvm_vcpu *vcpu, u64 access, 7191 struct x86_exception *exception) 7192 { 7193 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7194 void *data = val; 7195 int r = X86EMUL_CONTINUE; 7196 7197 while (bytes) { 7198 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7199 unsigned offset = addr & (PAGE_SIZE-1); 7200 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7201 int ret; 7202 7203 if (gpa == INVALID_GPA) 7204 return X86EMUL_PROPAGATE_FAULT; 7205 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7206 offset, toread); 7207 if (ret < 0) { 7208 r = X86EMUL_IO_NEEDED; 7209 goto out; 7210 } 7211 7212 bytes -= toread; 7213 data += toread; 7214 addr += toread; 7215 } 7216 out: 7217 return r; 7218 } 7219 7220 /* used for instruction fetching */ 7221 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7222 gva_t addr, void *val, unsigned int bytes, 7223 struct x86_exception *exception) 7224 { 7225 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7226 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7227 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7228 unsigned offset; 7229 int ret; 7230 7231 /* Inline kvm_read_guest_virt_helper for speed. */ 7232 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7233 exception); 7234 if (unlikely(gpa == INVALID_GPA)) 7235 return X86EMUL_PROPAGATE_FAULT; 7236 7237 offset = addr & (PAGE_SIZE-1); 7238 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7239 bytes = (unsigned)PAGE_SIZE - offset; 7240 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7241 offset, bytes); 7242 if (unlikely(ret < 0)) 7243 return X86EMUL_IO_NEEDED; 7244 7245 return X86EMUL_CONTINUE; 7246 } 7247 7248 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7249 gva_t addr, void *val, unsigned int bytes, 7250 struct x86_exception *exception) 7251 { 7252 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7253 7254 /* 7255 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7256 * is returned, but our callers are not ready for that and they blindly 7257 * call kvm_inject_page_fault. Ensure that they at least do not leak 7258 * uninitialized kernel stack memory into cr2 and error code. 7259 */ 7260 memset(exception, 0, sizeof(*exception)); 7261 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7262 exception); 7263 } 7264 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7265 7266 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7267 gva_t addr, void *val, unsigned int bytes, 7268 struct x86_exception *exception, bool system) 7269 { 7270 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7271 u64 access = 0; 7272 7273 if (system) 7274 access |= PFERR_IMPLICIT_ACCESS; 7275 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7276 access |= PFERR_USER_MASK; 7277 7278 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7279 } 7280 7281 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 7282 unsigned long addr, void *val, unsigned int bytes) 7283 { 7284 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7285 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 7286 7287 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 7288 } 7289 7290 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7291 struct kvm_vcpu *vcpu, u64 access, 7292 struct x86_exception *exception) 7293 { 7294 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7295 void *data = val; 7296 int r = X86EMUL_CONTINUE; 7297 7298 while (bytes) { 7299 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7300 unsigned offset = addr & (PAGE_SIZE-1); 7301 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7302 int ret; 7303 7304 if (gpa == INVALID_GPA) 7305 return X86EMUL_PROPAGATE_FAULT; 7306 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7307 if (ret < 0) { 7308 r = X86EMUL_IO_NEEDED; 7309 goto out; 7310 } 7311 7312 bytes -= towrite; 7313 data += towrite; 7314 addr += towrite; 7315 } 7316 out: 7317 return r; 7318 } 7319 7320 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7321 unsigned int bytes, struct x86_exception *exception, 7322 bool system) 7323 { 7324 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7325 u64 access = PFERR_WRITE_MASK; 7326 7327 if (system) 7328 access |= PFERR_IMPLICIT_ACCESS; 7329 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7330 access |= PFERR_USER_MASK; 7331 7332 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7333 access, exception); 7334 } 7335 7336 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7337 unsigned int bytes, struct x86_exception *exception) 7338 { 7339 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7340 vcpu->arch.l1tf_flush_l1d = true; 7341 7342 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7343 PFERR_WRITE_MASK, exception); 7344 } 7345 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7346 7347 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7348 void *insn, int insn_len) 7349 { 7350 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7351 insn, insn_len); 7352 } 7353 7354 int handle_ud(struct kvm_vcpu *vcpu) 7355 { 7356 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7357 int fep_flags = READ_ONCE(force_emulation_prefix); 7358 int emul_type = EMULTYPE_TRAP_UD; 7359 char sig[5]; /* ud2; .ascii "kvm" */ 7360 struct x86_exception e; 7361 7362 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7363 return 1; 7364 7365 if (fep_flags && 7366 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7367 sig, sizeof(sig), &e) == 0 && 7368 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7369 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7370 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7371 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7372 emul_type = EMULTYPE_TRAP_UD_FORCED; 7373 } 7374 7375 return kvm_emulate_instruction(vcpu, emul_type); 7376 } 7377 EXPORT_SYMBOL_GPL(handle_ud); 7378 7379 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7380 gpa_t gpa, bool write) 7381 { 7382 /* For APIC access vmexit */ 7383 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7384 return 1; 7385 7386 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7387 trace_vcpu_match_mmio(gva, gpa, write, true); 7388 return 1; 7389 } 7390 7391 return 0; 7392 } 7393 7394 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7395 gpa_t *gpa, struct x86_exception *exception, 7396 bool write) 7397 { 7398 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7399 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7400 | (write ? PFERR_WRITE_MASK : 0); 7401 7402 /* 7403 * currently PKRU is only applied to ept enabled guest so 7404 * there is no pkey in EPT page table for L1 guest or EPT 7405 * shadow page table for L2 guest. 7406 */ 7407 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7408 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7409 vcpu->arch.mmio_access, 0, access))) { 7410 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7411 (gva & (PAGE_SIZE - 1)); 7412 trace_vcpu_match_mmio(gva, *gpa, write, false); 7413 return 1; 7414 } 7415 7416 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7417 7418 if (*gpa == INVALID_GPA) 7419 return -1; 7420 7421 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7422 } 7423 7424 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7425 const void *val, int bytes) 7426 { 7427 int ret; 7428 7429 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7430 if (ret < 0) 7431 return 0; 7432 kvm_page_track_write(vcpu, gpa, val, bytes); 7433 return 1; 7434 } 7435 7436 struct read_write_emulator_ops { 7437 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7438 int bytes); 7439 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7440 void *val, int bytes); 7441 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7442 int bytes, void *val); 7443 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7444 void *val, int bytes); 7445 bool write; 7446 }; 7447 7448 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7449 { 7450 if (vcpu->mmio_read_completed) { 7451 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7452 vcpu->mmio_fragments[0].gpa, val); 7453 vcpu->mmio_read_completed = 0; 7454 return 1; 7455 } 7456 7457 return 0; 7458 } 7459 7460 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7461 void *val, int bytes) 7462 { 7463 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7464 } 7465 7466 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7467 void *val, int bytes) 7468 { 7469 return emulator_write_phys(vcpu, gpa, val, bytes); 7470 } 7471 7472 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7473 { 7474 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7475 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7476 } 7477 7478 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7479 void *val, int bytes) 7480 { 7481 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7482 return X86EMUL_IO_NEEDED; 7483 } 7484 7485 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7486 void *val, int bytes) 7487 { 7488 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7489 7490 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7491 return X86EMUL_CONTINUE; 7492 } 7493 7494 static const struct read_write_emulator_ops read_emultor = { 7495 .read_write_prepare = read_prepare, 7496 .read_write_emulate = read_emulate, 7497 .read_write_mmio = vcpu_mmio_read, 7498 .read_write_exit_mmio = read_exit_mmio, 7499 }; 7500 7501 static const struct read_write_emulator_ops write_emultor = { 7502 .read_write_emulate = write_emulate, 7503 .read_write_mmio = write_mmio, 7504 .read_write_exit_mmio = write_exit_mmio, 7505 .write = true, 7506 }; 7507 7508 static int emulator_read_write_onepage(unsigned long addr, void *val, 7509 unsigned int bytes, 7510 struct x86_exception *exception, 7511 struct kvm_vcpu *vcpu, 7512 const struct read_write_emulator_ops *ops) 7513 { 7514 gpa_t gpa; 7515 int handled, ret; 7516 bool write = ops->write; 7517 struct kvm_mmio_fragment *frag; 7518 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7519 7520 /* 7521 * If the exit was due to a NPF we may already have a GPA. 7522 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7523 * Note, this cannot be used on string operations since string 7524 * operation using rep will only have the initial GPA from the NPF 7525 * occurred. 7526 */ 7527 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7528 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7529 gpa = ctxt->gpa_val; 7530 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7531 } else { 7532 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7533 if (ret < 0) 7534 return X86EMUL_PROPAGATE_FAULT; 7535 } 7536 7537 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7538 return X86EMUL_CONTINUE; 7539 7540 /* 7541 * Is this MMIO handled locally? 7542 */ 7543 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7544 if (handled == bytes) 7545 return X86EMUL_CONTINUE; 7546 7547 gpa += handled; 7548 bytes -= handled; 7549 val += handled; 7550 7551 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7552 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7553 frag->gpa = gpa; 7554 frag->data = val; 7555 frag->len = bytes; 7556 return X86EMUL_CONTINUE; 7557 } 7558 7559 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7560 unsigned long addr, 7561 void *val, unsigned int bytes, 7562 struct x86_exception *exception, 7563 const struct read_write_emulator_ops *ops) 7564 { 7565 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7566 gpa_t gpa; 7567 int rc; 7568 7569 if (ops->read_write_prepare && 7570 ops->read_write_prepare(vcpu, val, bytes)) 7571 return X86EMUL_CONTINUE; 7572 7573 vcpu->mmio_nr_fragments = 0; 7574 7575 /* Crossing a page boundary? */ 7576 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7577 int now; 7578 7579 now = -addr & ~PAGE_MASK; 7580 rc = emulator_read_write_onepage(addr, val, now, exception, 7581 vcpu, ops); 7582 7583 if (rc != X86EMUL_CONTINUE) 7584 return rc; 7585 addr += now; 7586 if (ctxt->mode != X86EMUL_MODE_PROT64) 7587 addr = (u32)addr; 7588 val += now; 7589 bytes -= now; 7590 } 7591 7592 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7593 vcpu, ops); 7594 if (rc != X86EMUL_CONTINUE) 7595 return rc; 7596 7597 if (!vcpu->mmio_nr_fragments) 7598 return rc; 7599 7600 gpa = vcpu->mmio_fragments[0].gpa; 7601 7602 vcpu->mmio_needed = 1; 7603 vcpu->mmio_cur_fragment = 0; 7604 7605 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7606 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7607 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7608 vcpu->run->mmio.phys_addr = gpa; 7609 7610 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7611 } 7612 7613 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7614 unsigned long addr, 7615 void *val, 7616 unsigned int bytes, 7617 struct x86_exception *exception) 7618 { 7619 return emulator_read_write(ctxt, addr, val, bytes, 7620 exception, &read_emultor); 7621 } 7622 7623 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7624 unsigned long addr, 7625 const void *val, 7626 unsigned int bytes, 7627 struct x86_exception *exception) 7628 { 7629 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7630 exception, &write_emultor); 7631 } 7632 7633 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7634 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7635 7636 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7637 unsigned long addr, 7638 const void *old, 7639 const void *new, 7640 unsigned int bytes, 7641 struct x86_exception *exception) 7642 { 7643 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7644 u64 page_line_mask; 7645 unsigned long hva; 7646 gpa_t gpa; 7647 int r; 7648 7649 /* guests cmpxchg8b have to be emulated atomically */ 7650 if (bytes > 8 || (bytes & (bytes - 1))) 7651 goto emul_write; 7652 7653 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7654 7655 if (gpa == INVALID_GPA || 7656 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7657 goto emul_write; 7658 7659 /* 7660 * Emulate the atomic as a straight write to avoid #AC if SLD is 7661 * enabled in the host and the access splits a cache line. 7662 */ 7663 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7664 page_line_mask = ~(cache_line_size() - 1); 7665 else 7666 page_line_mask = PAGE_MASK; 7667 7668 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7669 goto emul_write; 7670 7671 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7672 if (kvm_is_error_hva(hva)) 7673 goto emul_write; 7674 7675 hva += offset_in_page(gpa); 7676 7677 switch (bytes) { 7678 case 1: 7679 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7680 break; 7681 case 2: 7682 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7683 break; 7684 case 4: 7685 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7686 break; 7687 case 8: 7688 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7689 break; 7690 default: 7691 BUG(); 7692 } 7693 7694 if (r < 0) 7695 return X86EMUL_UNHANDLEABLE; 7696 if (r) 7697 return X86EMUL_CMPXCHG_FAILED; 7698 7699 kvm_page_track_write(vcpu, gpa, new, bytes); 7700 7701 return X86EMUL_CONTINUE; 7702 7703 emul_write: 7704 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7705 7706 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7707 } 7708 7709 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7710 unsigned short port, void *data, 7711 unsigned int count, bool in) 7712 { 7713 unsigned i; 7714 int r; 7715 7716 WARN_ON_ONCE(vcpu->arch.pio.count); 7717 for (i = 0; i < count; i++) { 7718 if (in) 7719 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7720 else 7721 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7722 7723 if (r) { 7724 if (i == 0) 7725 goto userspace_io; 7726 7727 /* 7728 * Userspace must have unregistered the device while PIO 7729 * was running. Drop writes / read as 0. 7730 */ 7731 if (in) 7732 memset(data, 0, size * (count - i)); 7733 break; 7734 } 7735 7736 data += size; 7737 } 7738 return 1; 7739 7740 userspace_io: 7741 vcpu->arch.pio.port = port; 7742 vcpu->arch.pio.in = in; 7743 vcpu->arch.pio.count = count; 7744 vcpu->arch.pio.size = size; 7745 7746 if (in) 7747 memset(vcpu->arch.pio_data, 0, size * count); 7748 else 7749 memcpy(vcpu->arch.pio_data, data, size * count); 7750 7751 vcpu->run->exit_reason = KVM_EXIT_IO; 7752 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7753 vcpu->run->io.size = size; 7754 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7755 vcpu->run->io.count = count; 7756 vcpu->run->io.port = port; 7757 return 0; 7758 } 7759 7760 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7761 unsigned short port, void *val, unsigned int count) 7762 { 7763 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7764 if (r) 7765 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7766 7767 return r; 7768 } 7769 7770 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7771 { 7772 int size = vcpu->arch.pio.size; 7773 unsigned int count = vcpu->arch.pio.count; 7774 memcpy(val, vcpu->arch.pio_data, size * count); 7775 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7776 vcpu->arch.pio.count = 0; 7777 } 7778 7779 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7780 int size, unsigned short port, void *val, 7781 unsigned int count) 7782 { 7783 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7784 if (vcpu->arch.pio.count) { 7785 /* 7786 * Complete a previous iteration that required userspace I/O. 7787 * Note, @count isn't guaranteed to match pio.count as userspace 7788 * can modify ECX before rerunning the vCPU. Ignore any such 7789 * shenanigans as KVM doesn't support modifying the rep count, 7790 * and the emulator ensures @count doesn't overflow the buffer. 7791 */ 7792 complete_emulator_pio_in(vcpu, val); 7793 return 1; 7794 } 7795 7796 return emulator_pio_in(vcpu, size, port, val, count); 7797 } 7798 7799 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7800 unsigned short port, const void *val, 7801 unsigned int count) 7802 { 7803 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7804 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7805 } 7806 7807 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7808 int size, unsigned short port, 7809 const void *val, unsigned int count) 7810 { 7811 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7812 } 7813 7814 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7815 { 7816 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7817 } 7818 7819 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7820 { 7821 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7822 } 7823 7824 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7825 { 7826 if (!need_emulate_wbinvd(vcpu)) 7827 return X86EMUL_CONTINUE; 7828 7829 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7830 int cpu = get_cpu(); 7831 7832 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7833 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7834 wbinvd_ipi, NULL, 1); 7835 put_cpu(); 7836 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7837 } else 7838 wbinvd(); 7839 return X86EMUL_CONTINUE; 7840 } 7841 7842 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7843 { 7844 kvm_emulate_wbinvd_noskip(vcpu); 7845 return kvm_skip_emulated_instruction(vcpu); 7846 } 7847 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7848 7849 7850 7851 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7852 { 7853 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7854 } 7855 7856 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7857 unsigned long *dest) 7858 { 7859 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7860 } 7861 7862 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7863 unsigned long value) 7864 { 7865 7866 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7867 } 7868 7869 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7870 { 7871 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7872 } 7873 7874 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7875 { 7876 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7877 unsigned long value; 7878 7879 switch (cr) { 7880 case 0: 7881 value = kvm_read_cr0(vcpu); 7882 break; 7883 case 2: 7884 value = vcpu->arch.cr2; 7885 break; 7886 case 3: 7887 value = kvm_read_cr3(vcpu); 7888 break; 7889 case 4: 7890 value = kvm_read_cr4(vcpu); 7891 break; 7892 case 8: 7893 value = kvm_get_cr8(vcpu); 7894 break; 7895 default: 7896 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7897 return 0; 7898 } 7899 7900 return value; 7901 } 7902 7903 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7904 { 7905 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7906 int res = 0; 7907 7908 switch (cr) { 7909 case 0: 7910 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7911 break; 7912 case 2: 7913 vcpu->arch.cr2 = val; 7914 break; 7915 case 3: 7916 res = kvm_set_cr3(vcpu, val); 7917 break; 7918 case 4: 7919 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7920 break; 7921 case 8: 7922 res = kvm_set_cr8(vcpu, val); 7923 break; 7924 default: 7925 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7926 res = -1; 7927 } 7928 7929 return res; 7930 } 7931 7932 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7933 { 7934 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7935 } 7936 7937 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7938 { 7939 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7940 } 7941 7942 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7943 { 7944 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7945 } 7946 7947 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7948 { 7949 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7950 } 7951 7952 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7953 { 7954 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7955 } 7956 7957 static unsigned long emulator_get_cached_segment_base( 7958 struct x86_emulate_ctxt *ctxt, int seg) 7959 { 7960 return get_segment_base(emul_to_vcpu(ctxt), seg); 7961 } 7962 7963 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7964 struct desc_struct *desc, u32 *base3, 7965 int seg) 7966 { 7967 struct kvm_segment var; 7968 7969 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7970 *selector = var.selector; 7971 7972 if (var.unusable) { 7973 memset(desc, 0, sizeof(*desc)); 7974 if (base3) 7975 *base3 = 0; 7976 return false; 7977 } 7978 7979 if (var.g) 7980 var.limit >>= 12; 7981 set_desc_limit(desc, var.limit); 7982 set_desc_base(desc, (unsigned long)var.base); 7983 #ifdef CONFIG_X86_64 7984 if (base3) 7985 *base3 = var.base >> 32; 7986 #endif 7987 desc->type = var.type; 7988 desc->s = var.s; 7989 desc->dpl = var.dpl; 7990 desc->p = var.present; 7991 desc->avl = var.avl; 7992 desc->l = var.l; 7993 desc->d = var.db; 7994 desc->g = var.g; 7995 7996 return true; 7997 } 7998 7999 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8000 struct desc_struct *desc, u32 base3, 8001 int seg) 8002 { 8003 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8004 struct kvm_segment var; 8005 8006 var.selector = selector; 8007 var.base = get_desc_base(desc); 8008 #ifdef CONFIG_X86_64 8009 var.base |= ((u64)base3) << 32; 8010 #endif 8011 var.limit = get_desc_limit(desc); 8012 if (desc->g) 8013 var.limit = (var.limit << 12) | 0xfff; 8014 var.type = desc->type; 8015 var.dpl = desc->dpl; 8016 var.db = desc->d; 8017 var.s = desc->s; 8018 var.l = desc->l; 8019 var.g = desc->g; 8020 var.avl = desc->avl; 8021 var.present = desc->p; 8022 var.unusable = !var.present; 8023 var.padding = 0; 8024 8025 kvm_set_segment(vcpu, &var, seg); 8026 return; 8027 } 8028 8029 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8030 u32 msr_index, u64 *pdata) 8031 { 8032 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8033 int r; 8034 8035 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8036 if (r < 0) 8037 return X86EMUL_UNHANDLEABLE; 8038 8039 if (r) { 8040 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8041 complete_emulated_rdmsr, r)) 8042 return X86EMUL_IO_NEEDED; 8043 8044 trace_kvm_msr_read_ex(msr_index); 8045 return X86EMUL_PROPAGATE_FAULT; 8046 } 8047 8048 trace_kvm_msr_read(msr_index, *pdata); 8049 return X86EMUL_CONTINUE; 8050 } 8051 8052 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8053 u32 msr_index, u64 data) 8054 { 8055 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8056 int r; 8057 8058 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8059 if (r < 0) 8060 return X86EMUL_UNHANDLEABLE; 8061 8062 if (r) { 8063 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8064 complete_emulated_msr_access, r)) 8065 return X86EMUL_IO_NEEDED; 8066 8067 trace_kvm_msr_write_ex(msr_index, data); 8068 return X86EMUL_PROPAGATE_FAULT; 8069 } 8070 8071 trace_kvm_msr_write(msr_index, data); 8072 return X86EMUL_CONTINUE; 8073 } 8074 8075 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8076 u32 msr_index, u64 *pdata) 8077 { 8078 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8079 } 8080 8081 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 8082 u32 msr_index, u64 data) 8083 { 8084 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 8085 } 8086 8087 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 8088 { 8089 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8090 8091 return vcpu->arch.smbase; 8092 } 8093 8094 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 8095 { 8096 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8097 8098 vcpu->arch.smbase = smbase; 8099 } 8100 8101 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8102 u32 pmc) 8103 { 8104 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8105 return 0; 8106 return -EINVAL; 8107 } 8108 8109 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8110 u32 pmc, u64 *pdata) 8111 { 8112 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8113 } 8114 8115 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8116 { 8117 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8118 } 8119 8120 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8121 struct x86_instruction_info *info, 8122 enum x86_intercept_stage stage) 8123 { 8124 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8125 &ctxt->exception); 8126 } 8127 8128 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8129 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8130 bool exact_only) 8131 { 8132 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8133 } 8134 8135 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8136 { 8137 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8138 } 8139 8140 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8141 { 8142 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8143 } 8144 8145 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8146 { 8147 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8148 } 8149 8150 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8151 { 8152 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8153 } 8154 8155 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8156 { 8157 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8158 } 8159 8160 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8161 { 8162 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8163 } 8164 8165 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8166 { 8167 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8168 } 8169 8170 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8171 { 8172 return emul_to_vcpu(ctxt)->arch.hflags; 8173 } 8174 8175 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 8176 { 8177 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8178 8179 kvm_smm_changed(vcpu, false); 8180 } 8181 8182 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 8183 const char *smstate) 8184 { 8185 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 8186 } 8187 8188 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8189 { 8190 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8191 } 8192 8193 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8194 { 8195 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8196 } 8197 8198 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8199 { 8200 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8201 8202 if (!kvm->vm_bugged) 8203 kvm_vm_bugged(kvm); 8204 } 8205 8206 static const struct x86_emulate_ops emulate_ops = { 8207 .vm_bugged = emulator_vm_bugged, 8208 .read_gpr = emulator_read_gpr, 8209 .write_gpr = emulator_write_gpr, 8210 .read_std = emulator_read_std, 8211 .write_std = emulator_write_std, 8212 .read_phys = kvm_read_guest_phys_system, 8213 .fetch = kvm_fetch_guest_virt, 8214 .read_emulated = emulator_read_emulated, 8215 .write_emulated = emulator_write_emulated, 8216 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8217 .invlpg = emulator_invlpg, 8218 .pio_in_emulated = emulator_pio_in_emulated, 8219 .pio_out_emulated = emulator_pio_out_emulated, 8220 .get_segment = emulator_get_segment, 8221 .set_segment = emulator_set_segment, 8222 .get_cached_segment_base = emulator_get_cached_segment_base, 8223 .get_gdt = emulator_get_gdt, 8224 .get_idt = emulator_get_idt, 8225 .set_gdt = emulator_set_gdt, 8226 .set_idt = emulator_set_idt, 8227 .get_cr = emulator_get_cr, 8228 .set_cr = emulator_set_cr, 8229 .cpl = emulator_get_cpl, 8230 .get_dr = emulator_get_dr, 8231 .set_dr = emulator_set_dr, 8232 .get_smbase = emulator_get_smbase, 8233 .set_smbase = emulator_set_smbase, 8234 .set_msr_with_filter = emulator_set_msr_with_filter, 8235 .get_msr_with_filter = emulator_get_msr_with_filter, 8236 .set_msr = emulator_set_msr, 8237 .get_msr = emulator_get_msr, 8238 .check_pmc = emulator_check_pmc, 8239 .read_pmc = emulator_read_pmc, 8240 .halt = emulator_halt, 8241 .wbinvd = emulator_wbinvd, 8242 .fix_hypercall = emulator_fix_hypercall, 8243 .intercept = emulator_intercept, 8244 .get_cpuid = emulator_get_cpuid, 8245 .guest_has_long_mode = emulator_guest_has_long_mode, 8246 .guest_has_movbe = emulator_guest_has_movbe, 8247 .guest_has_fxsr = emulator_guest_has_fxsr, 8248 .guest_has_rdpid = emulator_guest_has_rdpid, 8249 .set_nmi_mask = emulator_set_nmi_mask, 8250 .get_hflags = emulator_get_hflags, 8251 .exiting_smm = emulator_exiting_smm, 8252 .leave_smm = emulator_leave_smm, 8253 .triple_fault = emulator_triple_fault, 8254 .set_xcr = emulator_set_xcr, 8255 }; 8256 8257 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8258 { 8259 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8260 /* 8261 * an sti; sti; sequence only disable interrupts for the first 8262 * instruction. So, if the last instruction, be it emulated or 8263 * not, left the system with the INT_STI flag enabled, it 8264 * means that the last instruction is an sti. We should not 8265 * leave the flag on in this case. The same goes for mov ss 8266 */ 8267 if (int_shadow & mask) 8268 mask = 0; 8269 if (unlikely(int_shadow || mask)) { 8270 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8271 if (!mask) 8272 kvm_make_request(KVM_REQ_EVENT, vcpu); 8273 } 8274 } 8275 8276 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8277 { 8278 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8279 8280 if (ctxt->exception.vector == PF_VECTOR) 8281 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8282 else if (ctxt->exception.error_code_valid) 8283 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8284 ctxt->exception.error_code); 8285 else 8286 kvm_queue_exception(vcpu, ctxt->exception.vector); 8287 } 8288 8289 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8290 { 8291 struct x86_emulate_ctxt *ctxt; 8292 8293 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8294 if (!ctxt) { 8295 pr_err("kvm: failed to allocate vcpu's emulator\n"); 8296 return NULL; 8297 } 8298 8299 ctxt->vcpu = vcpu; 8300 ctxt->ops = &emulate_ops; 8301 vcpu->arch.emulate_ctxt = ctxt; 8302 8303 return ctxt; 8304 } 8305 8306 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8307 { 8308 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8309 int cs_db, cs_l; 8310 8311 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8312 8313 ctxt->gpa_available = false; 8314 ctxt->eflags = kvm_get_rflags(vcpu); 8315 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8316 8317 ctxt->eip = kvm_rip_read(vcpu); 8318 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8319 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8320 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8321 cs_db ? X86EMUL_MODE_PROT32 : 8322 X86EMUL_MODE_PROT16; 8323 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8324 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 8325 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 8326 8327 ctxt->interruptibility = 0; 8328 ctxt->have_exception = false; 8329 ctxt->exception.vector = -1; 8330 ctxt->perm_ok = false; 8331 8332 init_decode_cache(ctxt); 8333 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8334 } 8335 8336 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8337 { 8338 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8339 int ret; 8340 8341 init_emulate_ctxt(vcpu); 8342 8343 ctxt->op_bytes = 2; 8344 ctxt->ad_bytes = 2; 8345 ctxt->_eip = ctxt->eip + inc_eip; 8346 ret = emulate_int_real(ctxt, irq); 8347 8348 if (ret != X86EMUL_CONTINUE) { 8349 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8350 } else { 8351 ctxt->eip = ctxt->_eip; 8352 kvm_rip_write(vcpu, ctxt->eip); 8353 kvm_set_rflags(vcpu, ctxt->eflags); 8354 } 8355 } 8356 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8357 8358 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8359 u8 ndata, u8 *insn_bytes, u8 insn_size) 8360 { 8361 struct kvm_run *run = vcpu->run; 8362 u64 info[5]; 8363 u8 info_start; 8364 8365 /* 8366 * Zero the whole array used to retrieve the exit info, as casting to 8367 * u32 for select entries will leave some chunks uninitialized. 8368 */ 8369 memset(&info, 0, sizeof(info)); 8370 8371 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8372 &info[2], (u32 *)&info[3], 8373 (u32 *)&info[4]); 8374 8375 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8376 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8377 8378 /* 8379 * There's currently space for 13 entries, but 5 are used for the exit 8380 * reason and info. Restrict to 4 to reduce the maintenance burden 8381 * when expanding kvm_run.emulation_failure in the future. 8382 */ 8383 if (WARN_ON_ONCE(ndata > 4)) 8384 ndata = 4; 8385 8386 /* Always include the flags as a 'data' entry. */ 8387 info_start = 1; 8388 run->emulation_failure.flags = 0; 8389 8390 if (insn_size) { 8391 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8392 sizeof(run->emulation_failure.insn_bytes) != 16)); 8393 info_start += 2; 8394 run->emulation_failure.flags |= 8395 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8396 run->emulation_failure.insn_size = insn_size; 8397 memset(run->emulation_failure.insn_bytes, 0x90, 8398 sizeof(run->emulation_failure.insn_bytes)); 8399 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8400 } 8401 8402 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8403 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8404 ndata * sizeof(data[0])); 8405 8406 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8407 } 8408 8409 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8410 { 8411 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8412 8413 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8414 ctxt->fetch.end - ctxt->fetch.data); 8415 } 8416 8417 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8418 u8 ndata) 8419 { 8420 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8421 } 8422 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8423 8424 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8425 { 8426 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8427 } 8428 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8429 8430 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8431 { 8432 struct kvm *kvm = vcpu->kvm; 8433 8434 ++vcpu->stat.insn_emulation_fail; 8435 trace_kvm_emulate_insn_failed(vcpu); 8436 8437 if (emulation_type & EMULTYPE_VMWARE_GP) { 8438 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8439 return 1; 8440 } 8441 8442 if (kvm->arch.exit_on_emulation_error || 8443 (emulation_type & EMULTYPE_SKIP)) { 8444 prepare_emulation_ctxt_failure_exit(vcpu); 8445 return 0; 8446 } 8447 8448 kvm_queue_exception(vcpu, UD_VECTOR); 8449 8450 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8451 prepare_emulation_ctxt_failure_exit(vcpu); 8452 return 0; 8453 } 8454 8455 return 1; 8456 } 8457 8458 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8459 bool write_fault_to_shadow_pgtable, 8460 int emulation_type) 8461 { 8462 gpa_t gpa = cr2_or_gpa; 8463 kvm_pfn_t pfn; 8464 8465 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8466 return false; 8467 8468 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8469 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8470 return false; 8471 8472 if (!vcpu->arch.mmu->root_role.direct) { 8473 /* 8474 * Write permission should be allowed since only 8475 * write access need to be emulated. 8476 */ 8477 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8478 8479 /* 8480 * If the mapping is invalid in guest, let cpu retry 8481 * it to generate fault. 8482 */ 8483 if (gpa == INVALID_GPA) 8484 return true; 8485 } 8486 8487 /* 8488 * Do not retry the unhandleable instruction if it faults on the 8489 * readonly host memory, otherwise it will goto a infinite loop: 8490 * retry instruction -> write #PF -> emulation fail -> retry 8491 * instruction -> ... 8492 */ 8493 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8494 8495 /* 8496 * If the instruction failed on the error pfn, it can not be fixed, 8497 * report the error to userspace. 8498 */ 8499 if (is_error_noslot_pfn(pfn)) 8500 return false; 8501 8502 kvm_release_pfn_clean(pfn); 8503 8504 /* The instructions are well-emulated on direct mmu. */ 8505 if (vcpu->arch.mmu->root_role.direct) { 8506 unsigned int indirect_shadow_pages; 8507 8508 write_lock(&vcpu->kvm->mmu_lock); 8509 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8510 write_unlock(&vcpu->kvm->mmu_lock); 8511 8512 if (indirect_shadow_pages) 8513 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8514 8515 return true; 8516 } 8517 8518 /* 8519 * if emulation was due to access to shadowed page table 8520 * and it failed try to unshadow page and re-enter the 8521 * guest to let CPU execute the instruction. 8522 */ 8523 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8524 8525 /* 8526 * If the access faults on its page table, it can not 8527 * be fixed by unprotecting shadow page and it should 8528 * be reported to userspace. 8529 */ 8530 return !write_fault_to_shadow_pgtable; 8531 } 8532 8533 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8534 gpa_t cr2_or_gpa, int emulation_type) 8535 { 8536 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8537 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8538 8539 last_retry_eip = vcpu->arch.last_retry_eip; 8540 last_retry_addr = vcpu->arch.last_retry_addr; 8541 8542 /* 8543 * If the emulation is caused by #PF and it is non-page_table 8544 * writing instruction, it means the VM-EXIT is caused by shadow 8545 * page protected, we can zap the shadow page and retry this 8546 * instruction directly. 8547 * 8548 * Note: if the guest uses a non-page-table modifying instruction 8549 * on the PDE that points to the instruction, then we will unmap 8550 * the instruction and go to an infinite loop. So, we cache the 8551 * last retried eip and the last fault address, if we meet the eip 8552 * and the address again, we can break out of the potential infinite 8553 * loop. 8554 */ 8555 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8556 8557 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8558 return false; 8559 8560 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8561 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8562 return false; 8563 8564 if (x86_page_table_writing_insn(ctxt)) 8565 return false; 8566 8567 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8568 return false; 8569 8570 vcpu->arch.last_retry_eip = ctxt->eip; 8571 vcpu->arch.last_retry_addr = cr2_or_gpa; 8572 8573 if (!vcpu->arch.mmu->root_role.direct) 8574 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8575 8576 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8577 8578 return true; 8579 } 8580 8581 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8582 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8583 8584 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8585 { 8586 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8587 8588 if (entering_smm) { 8589 vcpu->arch.hflags |= HF_SMM_MASK; 8590 } else { 8591 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8592 8593 /* Process a latched INIT or SMI, if any. */ 8594 kvm_make_request(KVM_REQ_EVENT, vcpu); 8595 8596 /* 8597 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8598 * on SMM exit we still need to reload them from 8599 * guest memory 8600 */ 8601 vcpu->arch.pdptrs_from_userspace = false; 8602 } 8603 8604 kvm_mmu_reset_context(vcpu); 8605 } 8606 8607 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8608 unsigned long *db) 8609 { 8610 u32 dr6 = 0; 8611 int i; 8612 u32 enable, rwlen; 8613 8614 enable = dr7; 8615 rwlen = dr7 >> 16; 8616 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8617 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8618 dr6 |= (1 << i); 8619 return dr6; 8620 } 8621 8622 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8623 { 8624 struct kvm_run *kvm_run = vcpu->run; 8625 8626 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8627 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8628 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8629 kvm_run->debug.arch.exception = DB_VECTOR; 8630 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8631 return 0; 8632 } 8633 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8634 return 1; 8635 } 8636 8637 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8638 { 8639 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8640 int r; 8641 8642 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8643 if (unlikely(!r)) 8644 return 0; 8645 8646 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8647 8648 /* 8649 * rflags is the old, "raw" value of the flags. The new value has 8650 * not been saved yet. 8651 * 8652 * This is correct even for TF set by the guest, because "the 8653 * processor will not generate this exception after the instruction 8654 * that sets the TF flag". 8655 */ 8656 if (unlikely(rflags & X86_EFLAGS_TF)) 8657 r = kvm_vcpu_do_singlestep(vcpu); 8658 return r; 8659 } 8660 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8661 8662 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8663 { 8664 u32 shadow; 8665 8666 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8667 return true; 8668 8669 /* 8670 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8671 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8672 * to avoid the relatively expensive CPUID lookup. 8673 */ 8674 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8675 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8676 guest_cpuid_is_intel(vcpu); 8677 } 8678 8679 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8680 int emulation_type, int *r) 8681 { 8682 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8683 8684 /* 8685 * Do not check for code breakpoints if hardware has already done the 8686 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8687 * the instruction has passed all exception checks, and all intercepted 8688 * exceptions that trigger emulation have lower priority than code 8689 * breakpoints, i.e. the fact that the intercepted exception occurred 8690 * means any code breakpoints have already been serviced. 8691 * 8692 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8693 * hardware has checked the RIP of the magic prefix, but not the RIP of 8694 * the instruction being emulated. The intent of forced emulation is 8695 * to behave as if KVM intercepted the instruction without an exception 8696 * and without a prefix. 8697 */ 8698 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8699 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8700 return false; 8701 8702 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8703 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8704 struct kvm_run *kvm_run = vcpu->run; 8705 unsigned long eip = kvm_get_linear_rip(vcpu); 8706 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8707 vcpu->arch.guest_debug_dr7, 8708 vcpu->arch.eff_db); 8709 8710 if (dr6 != 0) { 8711 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8712 kvm_run->debug.arch.pc = eip; 8713 kvm_run->debug.arch.exception = DB_VECTOR; 8714 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8715 *r = 0; 8716 return true; 8717 } 8718 } 8719 8720 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8721 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8722 unsigned long eip = kvm_get_linear_rip(vcpu); 8723 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8724 vcpu->arch.dr7, 8725 vcpu->arch.db); 8726 8727 if (dr6 != 0) { 8728 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8729 *r = 1; 8730 return true; 8731 } 8732 } 8733 8734 return false; 8735 } 8736 8737 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8738 { 8739 switch (ctxt->opcode_len) { 8740 case 1: 8741 switch (ctxt->b) { 8742 case 0xe4: /* IN */ 8743 case 0xe5: 8744 case 0xec: 8745 case 0xed: 8746 case 0xe6: /* OUT */ 8747 case 0xe7: 8748 case 0xee: 8749 case 0xef: 8750 case 0x6c: /* INS */ 8751 case 0x6d: 8752 case 0x6e: /* OUTS */ 8753 case 0x6f: 8754 return true; 8755 } 8756 break; 8757 case 2: 8758 switch (ctxt->b) { 8759 case 0x33: /* RDPMC */ 8760 return true; 8761 } 8762 break; 8763 } 8764 8765 return false; 8766 } 8767 8768 /* 8769 * Decode an instruction for emulation. The caller is responsible for handling 8770 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8771 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8772 * code breakpoints have higher priority and thus have already been done by 8773 * hardware. 8774 * 8775 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8776 * response to a machine check. 8777 */ 8778 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8779 void *insn, int insn_len) 8780 { 8781 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8782 int r; 8783 8784 init_emulate_ctxt(vcpu); 8785 8786 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8787 8788 trace_kvm_emulate_insn_start(vcpu); 8789 ++vcpu->stat.insn_emulation; 8790 8791 return r; 8792 } 8793 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8794 8795 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8796 int emulation_type, void *insn, int insn_len) 8797 { 8798 int r; 8799 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8800 bool writeback = true; 8801 bool write_fault_to_spt; 8802 8803 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8804 return 1; 8805 8806 vcpu->arch.l1tf_flush_l1d = true; 8807 8808 /* 8809 * Clear write_fault_to_shadow_pgtable here to ensure it is 8810 * never reused. 8811 */ 8812 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8813 vcpu->arch.write_fault_to_shadow_pgtable = false; 8814 8815 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8816 kvm_clear_exception_queue(vcpu); 8817 8818 /* 8819 * Return immediately if RIP hits a code breakpoint, such #DBs 8820 * are fault-like and are higher priority than any faults on 8821 * the code fetch itself. 8822 */ 8823 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8824 return r; 8825 8826 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8827 insn, insn_len); 8828 if (r != EMULATION_OK) { 8829 if ((emulation_type & EMULTYPE_TRAP_UD) || 8830 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8831 kvm_queue_exception(vcpu, UD_VECTOR); 8832 return 1; 8833 } 8834 if (reexecute_instruction(vcpu, cr2_or_gpa, 8835 write_fault_to_spt, 8836 emulation_type)) 8837 return 1; 8838 if (ctxt->have_exception) { 8839 /* 8840 * #UD should result in just EMULATION_FAILED, and trap-like 8841 * exception should not be encountered during decode. 8842 */ 8843 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8844 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8845 inject_emulated_exception(vcpu); 8846 return 1; 8847 } 8848 return handle_emulation_failure(vcpu, emulation_type); 8849 } 8850 } 8851 8852 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8853 !is_vmware_backdoor_opcode(ctxt)) { 8854 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8855 return 1; 8856 } 8857 8858 /* 8859 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8860 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8861 * The caller is responsible for updating interruptibility state and 8862 * injecting single-step #DBs. 8863 */ 8864 if (emulation_type & EMULTYPE_SKIP) { 8865 if (ctxt->mode != X86EMUL_MODE_PROT64) 8866 ctxt->eip = (u32)ctxt->_eip; 8867 else 8868 ctxt->eip = ctxt->_eip; 8869 8870 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8871 r = 1; 8872 goto writeback; 8873 } 8874 8875 kvm_rip_write(vcpu, ctxt->eip); 8876 if (ctxt->eflags & X86_EFLAGS_RF) 8877 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8878 return 1; 8879 } 8880 8881 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8882 return 1; 8883 8884 /* this is needed for vmware backdoor interface to work since it 8885 changes registers values during IO operation */ 8886 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8887 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8888 emulator_invalidate_register_cache(ctxt); 8889 } 8890 8891 restart: 8892 if (emulation_type & EMULTYPE_PF) { 8893 /* Save the faulting GPA (cr2) in the address field */ 8894 ctxt->exception.address = cr2_or_gpa; 8895 8896 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8897 if (vcpu->arch.mmu->root_role.direct) { 8898 ctxt->gpa_available = true; 8899 ctxt->gpa_val = cr2_or_gpa; 8900 } 8901 } else { 8902 /* Sanitize the address out of an abundance of paranoia. */ 8903 ctxt->exception.address = 0; 8904 } 8905 8906 r = x86_emulate_insn(ctxt); 8907 8908 if (r == EMULATION_INTERCEPTED) 8909 return 1; 8910 8911 if (r == EMULATION_FAILED) { 8912 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8913 emulation_type)) 8914 return 1; 8915 8916 return handle_emulation_failure(vcpu, emulation_type); 8917 } 8918 8919 if (ctxt->have_exception) { 8920 r = 1; 8921 inject_emulated_exception(vcpu); 8922 } else if (vcpu->arch.pio.count) { 8923 if (!vcpu->arch.pio.in) { 8924 /* FIXME: return into emulator if single-stepping. */ 8925 vcpu->arch.pio.count = 0; 8926 } else { 8927 writeback = false; 8928 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8929 } 8930 r = 0; 8931 } else if (vcpu->mmio_needed) { 8932 ++vcpu->stat.mmio_exits; 8933 8934 if (!vcpu->mmio_is_write) 8935 writeback = false; 8936 r = 0; 8937 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8938 } else if (vcpu->arch.complete_userspace_io) { 8939 writeback = false; 8940 r = 0; 8941 } else if (r == EMULATION_RESTART) 8942 goto restart; 8943 else 8944 r = 1; 8945 8946 writeback: 8947 if (writeback) { 8948 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8949 toggle_interruptibility(vcpu, ctxt->interruptibility); 8950 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8951 8952 /* 8953 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8954 * only supports code breakpoints and general detect #DB, both 8955 * of which are fault-like. 8956 */ 8957 if (!ctxt->have_exception || 8958 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8959 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8960 if (ctxt->is_branch) 8961 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8962 kvm_rip_write(vcpu, ctxt->eip); 8963 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8964 r = kvm_vcpu_do_singlestep(vcpu); 8965 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8966 __kvm_set_rflags(vcpu, ctxt->eflags); 8967 } 8968 8969 /* 8970 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8971 * do nothing, and it will be requested again as soon as 8972 * the shadow expires. But we still need to check here, 8973 * because POPF has no interrupt shadow. 8974 */ 8975 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8976 kvm_make_request(KVM_REQ_EVENT, vcpu); 8977 } else 8978 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8979 8980 return r; 8981 } 8982 8983 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8984 { 8985 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8986 } 8987 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8988 8989 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8990 void *insn, int insn_len) 8991 { 8992 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8993 } 8994 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8995 8996 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8997 { 8998 vcpu->arch.pio.count = 0; 8999 return 1; 9000 } 9001 9002 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9003 { 9004 vcpu->arch.pio.count = 0; 9005 9006 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9007 return 1; 9008 9009 return kvm_skip_emulated_instruction(vcpu); 9010 } 9011 9012 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9013 unsigned short port) 9014 { 9015 unsigned long val = kvm_rax_read(vcpu); 9016 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9017 9018 if (ret) 9019 return ret; 9020 9021 /* 9022 * Workaround userspace that relies on old KVM behavior of %rip being 9023 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9024 */ 9025 if (port == 0x7e && 9026 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9027 vcpu->arch.complete_userspace_io = 9028 complete_fast_pio_out_port_0x7e; 9029 kvm_skip_emulated_instruction(vcpu); 9030 } else { 9031 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9032 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9033 } 9034 return 0; 9035 } 9036 9037 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9038 { 9039 unsigned long val; 9040 9041 /* We should only ever be called with arch.pio.count equal to 1 */ 9042 BUG_ON(vcpu->arch.pio.count != 1); 9043 9044 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9045 vcpu->arch.pio.count = 0; 9046 return 1; 9047 } 9048 9049 /* For size less than 4 we merge, else we zero extend */ 9050 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9051 9052 complete_emulator_pio_in(vcpu, &val); 9053 kvm_rax_write(vcpu, val); 9054 9055 return kvm_skip_emulated_instruction(vcpu); 9056 } 9057 9058 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9059 unsigned short port) 9060 { 9061 unsigned long val; 9062 int ret; 9063 9064 /* For size less than 4 we merge, else we zero extend */ 9065 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9066 9067 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9068 if (ret) { 9069 kvm_rax_write(vcpu, val); 9070 return ret; 9071 } 9072 9073 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9074 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9075 9076 return 0; 9077 } 9078 9079 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9080 { 9081 int ret; 9082 9083 if (in) 9084 ret = kvm_fast_pio_in(vcpu, size, port); 9085 else 9086 ret = kvm_fast_pio_out(vcpu, size, port); 9087 return ret && kvm_skip_emulated_instruction(vcpu); 9088 } 9089 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9090 9091 static int kvmclock_cpu_down_prep(unsigned int cpu) 9092 { 9093 __this_cpu_write(cpu_tsc_khz, 0); 9094 return 0; 9095 } 9096 9097 static void tsc_khz_changed(void *data) 9098 { 9099 struct cpufreq_freqs *freq = data; 9100 unsigned long khz = 0; 9101 9102 if (data) 9103 khz = freq->new; 9104 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9105 khz = cpufreq_quick_get(raw_smp_processor_id()); 9106 if (!khz) 9107 khz = tsc_khz; 9108 __this_cpu_write(cpu_tsc_khz, khz); 9109 } 9110 9111 #ifdef CONFIG_X86_64 9112 static void kvm_hyperv_tsc_notifier(void) 9113 { 9114 struct kvm *kvm; 9115 int cpu; 9116 9117 mutex_lock(&kvm_lock); 9118 list_for_each_entry(kvm, &vm_list, vm_list) 9119 kvm_make_mclock_inprogress_request(kvm); 9120 9121 /* no guest entries from this point */ 9122 hyperv_stop_tsc_emulation(); 9123 9124 /* TSC frequency always matches when on Hyper-V */ 9125 for_each_present_cpu(cpu) 9126 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9127 kvm_caps.max_guest_tsc_khz = tsc_khz; 9128 9129 list_for_each_entry(kvm, &vm_list, vm_list) { 9130 __kvm_start_pvclock_update(kvm); 9131 pvclock_update_vm_gtod_copy(kvm); 9132 kvm_end_pvclock_update(kvm); 9133 } 9134 9135 mutex_unlock(&kvm_lock); 9136 } 9137 #endif 9138 9139 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9140 { 9141 struct kvm *kvm; 9142 struct kvm_vcpu *vcpu; 9143 int send_ipi = 0; 9144 unsigned long i; 9145 9146 /* 9147 * We allow guests to temporarily run on slowing clocks, 9148 * provided we notify them after, or to run on accelerating 9149 * clocks, provided we notify them before. Thus time never 9150 * goes backwards. 9151 * 9152 * However, we have a problem. We can't atomically update 9153 * the frequency of a given CPU from this function; it is 9154 * merely a notifier, which can be called from any CPU. 9155 * Changing the TSC frequency at arbitrary points in time 9156 * requires a recomputation of local variables related to 9157 * the TSC for each VCPU. We must flag these local variables 9158 * to be updated and be sure the update takes place with the 9159 * new frequency before any guests proceed. 9160 * 9161 * Unfortunately, the combination of hotplug CPU and frequency 9162 * change creates an intractable locking scenario; the order 9163 * of when these callouts happen is undefined with respect to 9164 * CPU hotplug, and they can race with each other. As such, 9165 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9166 * undefined; you can actually have a CPU frequency change take 9167 * place in between the computation of X and the setting of the 9168 * variable. To protect against this problem, all updates of 9169 * the per_cpu tsc_khz variable are done in an interrupt 9170 * protected IPI, and all callers wishing to update the value 9171 * must wait for a synchronous IPI to complete (which is trivial 9172 * if the caller is on the CPU already). This establishes the 9173 * necessary total order on variable updates. 9174 * 9175 * Note that because a guest time update may take place 9176 * anytime after the setting of the VCPU's request bit, the 9177 * correct TSC value must be set before the request. However, 9178 * to ensure the update actually makes it to any guest which 9179 * starts running in hardware virtualization between the set 9180 * and the acquisition of the spinlock, we must also ping the 9181 * CPU after setting the request bit. 9182 * 9183 */ 9184 9185 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9186 9187 mutex_lock(&kvm_lock); 9188 list_for_each_entry(kvm, &vm_list, vm_list) { 9189 kvm_for_each_vcpu(i, vcpu, kvm) { 9190 if (vcpu->cpu != cpu) 9191 continue; 9192 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9193 if (vcpu->cpu != raw_smp_processor_id()) 9194 send_ipi = 1; 9195 } 9196 } 9197 mutex_unlock(&kvm_lock); 9198 9199 if (freq->old < freq->new && send_ipi) { 9200 /* 9201 * We upscale the frequency. Must make the guest 9202 * doesn't see old kvmclock values while running with 9203 * the new frequency, otherwise we risk the guest sees 9204 * time go backwards. 9205 * 9206 * In case we update the frequency for another cpu 9207 * (which might be in guest context) send an interrupt 9208 * to kick the cpu out of guest context. Next time 9209 * guest context is entered kvmclock will be updated, 9210 * so the guest will not see stale values. 9211 */ 9212 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9213 } 9214 } 9215 9216 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9217 void *data) 9218 { 9219 struct cpufreq_freqs *freq = data; 9220 int cpu; 9221 9222 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9223 return 0; 9224 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9225 return 0; 9226 9227 for_each_cpu(cpu, freq->policy->cpus) 9228 __kvmclock_cpufreq_notifier(freq, cpu); 9229 9230 return 0; 9231 } 9232 9233 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9234 .notifier_call = kvmclock_cpufreq_notifier 9235 }; 9236 9237 static int kvmclock_cpu_online(unsigned int cpu) 9238 { 9239 tsc_khz_changed(NULL); 9240 return 0; 9241 } 9242 9243 static void kvm_timer_init(void) 9244 { 9245 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9246 max_tsc_khz = tsc_khz; 9247 9248 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9249 struct cpufreq_policy *policy; 9250 int cpu; 9251 9252 cpu = get_cpu(); 9253 policy = cpufreq_cpu_get(cpu); 9254 if (policy) { 9255 if (policy->cpuinfo.max_freq) 9256 max_tsc_khz = policy->cpuinfo.max_freq; 9257 cpufreq_cpu_put(policy); 9258 } 9259 put_cpu(); 9260 } 9261 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9262 CPUFREQ_TRANSITION_NOTIFIER); 9263 } 9264 9265 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9266 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9267 } 9268 9269 #ifdef CONFIG_X86_64 9270 static void pvclock_gtod_update_fn(struct work_struct *work) 9271 { 9272 struct kvm *kvm; 9273 struct kvm_vcpu *vcpu; 9274 unsigned long i; 9275 9276 mutex_lock(&kvm_lock); 9277 list_for_each_entry(kvm, &vm_list, vm_list) 9278 kvm_for_each_vcpu(i, vcpu, kvm) 9279 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9280 atomic_set(&kvm_guest_has_master_clock, 0); 9281 mutex_unlock(&kvm_lock); 9282 } 9283 9284 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9285 9286 /* 9287 * Indirection to move queue_work() out of the tk_core.seq write held 9288 * region to prevent possible deadlocks against time accessors which 9289 * are invoked with work related locks held. 9290 */ 9291 static void pvclock_irq_work_fn(struct irq_work *w) 9292 { 9293 queue_work(system_long_wq, &pvclock_gtod_work); 9294 } 9295 9296 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9297 9298 /* 9299 * Notification about pvclock gtod data update. 9300 */ 9301 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9302 void *priv) 9303 { 9304 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9305 struct timekeeper *tk = priv; 9306 9307 update_pvclock_gtod(tk); 9308 9309 /* 9310 * Disable master clock if host does not trust, or does not use, 9311 * TSC based clocksource. Delegate queue_work() to irq_work as 9312 * this is invoked with tk_core.seq write held. 9313 */ 9314 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9315 atomic_read(&kvm_guest_has_master_clock) != 0) 9316 irq_work_queue(&pvclock_irq_work); 9317 return 0; 9318 } 9319 9320 static struct notifier_block pvclock_gtod_notifier = { 9321 .notifier_call = pvclock_gtod_notify, 9322 }; 9323 #endif 9324 9325 int kvm_arch_init(void *opaque) 9326 { 9327 struct kvm_x86_init_ops *ops = opaque; 9328 u64 host_pat; 9329 int r; 9330 9331 if (kvm_x86_ops.hardware_enable) { 9332 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 9333 return -EEXIST; 9334 } 9335 9336 if (!ops->cpu_has_kvm_support()) { 9337 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 9338 ops->runtime_ops->name); 9339 return -EOPNOTSUPP; 9340 } 9341 if (ops->disabled_by_bios()) { 9342 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 9343 ops->runtime_ops->name); 9344 return -EOPNOTSUPP; 9345 } 9346 9347 /* 9348 * KVM explicitly assumes that the guest has an FPU and 9349 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9350 * vCPU's FPU state as a fxregs_state struct. 9351 */ 9352 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9353 printk(KERN_ERR "kvm: inadequate fpu\n"); 9354 return -EOPNOTSUPP; 9355 } 9356 9357 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9358 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9359 return -EOPNOTSUPP; 9360 } 9361 9362 /* 9363 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9364 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9365 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9366 * with an exception. PAT[0] is set to WB on RESET and also by the 9367 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9368 */ 9369 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9370 (host_pat & GENMASK(2, 0)) != 6) { 9371 pr_err("kvm: host PAT[0] is not WB\n"); 9372 return -EIO; 9373 } 9374 9375 x86_emulator_cache = kvm_alloc_emulator_cache(); 9376 if (!x86_emulator_cache) { 9377 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 9378 return -ENOMEM; 9379 } 9380 9381 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9382 if (!user_return_msrs) { 9383 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9384 r = -ENOMEM; 9385 goto out_free_x86_emulator_cache; 9386 } 9387 kvm_nr_uret_msrs = 0; 9388 9389 r = kvm_mmu_vendor_module_init(); 9390 if (r) 9391 goto out_free_percpu; 9392 9393 kvm_timer_init(); 9394 9395 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9396 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9397 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9398 } 9399 9400 if (pi_inject_timer == -1) 9401 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9402 #ifdef CONFIG_X86_64 9403 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9404 9405 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9406 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9407 #endif 9408 9409 return 0; 9410 9411 out_free_percpu: 9412 free_percpu(user_return_msrs); 9413 out_free_x86_emulator_cache: 9414 kmem_cache_destroy(x86_emulator_cache); 9415 return r; 9416 } 9417 9418 void kvm_arch_exit(void) 9419 { 9420 #ifdef CONFIG_X86_64 9421 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9422 clear_hv_tscchange_cb(); 9423 #endif 9424 kvm_lapic_exit(); 9425 9426 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9427 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9428 CPUFREQ_TRANSITION_NOTIFIER); 9429 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9430 #ifdef CONFIG_X86_64 9431 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9432 irq_work_sync(&pvclock_irq_work); 9433 cancel_work_sync(&pvclock_gtod_work); 9434 #endif 9435 kvm_x86_ops.hardware_enable = NULL; 9436 kvm_mmu_vendor_module_exit(); 9437 free_percpu(user_return_msrs); 9438 kmem_cache_destroy(x86_emulator_cache); 9439 #ifdef CONFIG_KVM_XEN 9440 static_key_deferred_flush(&kvm_xen_enabled); 9441 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9442 #endif 9443 } 9444 9445 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9446 { 9447 /* 9448 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9449 * local APIC is in-kernel, the run loop will detect the non-runnable 9450 * state and halt the vCPU. Exit to userspace if the local APIC is 9451 * managed by userspace, in which case userspace is responsible for 9452 * handling wake events. 9453 */ 9454 ++vcpu->stat.halt_exits; 9455 if (lapic_in_kernel(vcpu)) { 9456 vcpu->arch.mp_state = state; 9457 return 1; 9458 } else { 9459 vcpu->run->exit_reason = reason; 9460 return 0; 9461 } 9462 } 9463 9464 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9465 { 9466 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9467 } 9468 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9469 9470 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9471 { 9472 int ret = kvm_skip_emulated_instruction(vcpu); 9473 /* 9474 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9475 * KVM_EXIT_DEBUG here. 9476 */ 9477 return kvm_emulate_halt_noskip(vcpu) && ret; 9478 } 9479 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9480 9481 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9482 { 9483 int ret = kvm_skip_emulated_instruction(vcpu); 9484 9485 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9486 KVM_EXIT_AP_RESET_HOLD) && ret; 9487 } 9488 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9489 9490 #ifdef CONFIG_X86_64 9491 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9492 unsigned long clock_type) 9493 { 9494 struct kvm_clock_pairing clock_pairing; 9495 struct timespec64 ts; 9496 u64 cycle; 9497 int ret; 9498 9499 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9500 return -KVM_EOPNOTSUPP; 9501 9502 /* 9503 * When tsc is in permanent catchup mode guests won't be able to use 9504 * pvclock_read_retry loop to get consistent view of pvclock 9505 */ 9506 if (vcpu->arch.tsc_always_catchup) 9507 return -KVM_EOPNOTSUPP; 9508 9509 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9510 return -KVM_EOPNOTSUPP; 9511 9512 clock_pairing.sec = ts.tv_sec; 9513 clock_pairing.nsec = ts.tv_nsec; 9514 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9515 clock_pairing.flags = 0; 9516 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9517 9518 ret = 0; 9519 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9520 sizeof(struct kvm_clock_pairing))) 9521 ret = -KVM_EFAULT; 9522 9523 return ret; 9524 } 9525 #endif 9526 9527 /* 9528 * kvm_pv_kick_cpu_op: Kick a vcpu. 9529 * 9530 * @apicid - apicid of vcpu to be kicked. 9531 */ 9532 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9533 { 9534 /* 9535 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9536 * common code, e.g. for tracing. Defer initialization to the compiler. 9537 */ 9538 struct kvm_lapic_irq lapic_irq = { 9539 .delivery_mode = APIC_DM_REMRD, 9540 .dest_mode = APIC_DEST_PHYSICAL, 9541 .shorthand = APIC_DEST_NOSHORT, 9542 .dest_id = apicid, 9543 }; 9544 9545 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9546 } 9547 9548 bool kvm_apicv_activated(struct kvm *kvm) 9549 { 9550 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9551 } 9552 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9553 9554 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9555 { 9556 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9557 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9558 9559 return (vm_reasons | vcpu_reasons) == 0; 9560 } 9561 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9562 9563 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9564 enum kvm_apicv_inhibit reason, bool set) 9565 { 9566 if (set) 9567 __set_bit(reason, inhibits); 9568 else 9569 __clear_bit(reason, inhibits); 9570 9571 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9572 } 9573 9574 static void kvm_apicv_init(struct kvm *kvm) 9575 { 9576 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9577 9578 init_rwsem(&kvm->arch.apicv_update_lock); 9579 9580 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9581 9582 if (!enable_apicv) 9583 set_or_clear_apicv_inhibit(inhibits, 9584 APICV_INHIBIT_REASON_DISABLE, true); 9585 } 9586 9587 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9588 { 9589 struct kvm_vcpu *target = NULL; 9590 struct kvm_apic_map *map; 9591 9592 vcpu->stat.directed_yield_attempted++; 9593 9594 if (single_task_running()) 9595 goto no_yield; 9596 9597 rcu_read_lock(); 9598 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9599 9600 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9601 target = map->phys_map[dest_id]->vcpu; 9602 9603 rcu_read_unlock(); 9604 9605 if (!target || !READ_ONCE(target->ready)) 9606 goto no_yield; 9607 9608 /* Ignore requests to yield to self */ 9609 if (vcpu == target) 9610 goto no_yield; 9611 9612 if (kvm_vcpu_yield_to(target) <= 0) 9613 goto no_yield; 9614 9615 vcpu->stat.directed_yield_successful++; 9616 9617 no_yield: 9618 return; 9619 } 9620 9621 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9622 { 9623 u64 ret = vcpu->run->hypercall.ret; 9624 9625 if (!is_64_bit_mode(vcpu)) 9626 ret = (u32)ret; 9627 kvm_rax_write(vcpu, ret); 9628 ++vcpu->stat.hypercalls; 9629 return kvm_skip_emulated_instruction(vcpu); 9630 } 9631 9632 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9633 { 9634 unsigned long nr, a0, a1, a2, a3, ret; 9635 int op_64_bit; 9636 9637 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9638 return kvm_xen_hypercall(vcpu); 9639 9640 if (kvm_hv_hypercall_enabled(vcpu)) 9641 return kvm_hv_hypercall(vcpu); 9642 9643 nr = kvm_rax_read(vcpu); 9644 a0 = kvm_rbx_read(vcpu); 9645 a1 = kvm_rcx_read(vcpu); 9646 a2 = kvm_rdx_read(vcpu); 9647 a3 = kvm_rsi_read(vcpu); 9648 9649 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9650 9651 op_64_bit = is_64_bit_hypercall(vcpu); 9652 if (!op_64_bit) { 9653 nr &= 0xFFFFFFFF; 9654 a0 &= 0xFFFFFFFF; 9655 a1 &= 0xFFFFFFFF; 9656 a2 &= 0xFFFFFFFF; 9657 a3 &= 0xFFFFFFFF; 9658 } 9659 9660 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9661 ret = -KVM_EPERM; 9662 goto out; 9663 } 9664 9665 ret = -KVM_ENOSYS; 9666 9667 switch (nr) { 9668 case KVM_HC_VAPIC_POLL_IRQ: 9669 ret = 0; 9670 break; 9671 case KVM_HC_KICK_CPU: 9672 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9673 break; 9674 9675 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9676 kvm_sched_yield(vcpu, a1); 9677 ret = 0; 9678 break; 9679 #ifdef CONFIG_X86_64 9680 case KVM_HC_CLOCK_PAIRING: 9681 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9682 break; 9683 #endif 9684 case KVM_HC_SEND_IPI: 9685 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9686 break; 9687 9688 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9689 break; 9690 case KVM_HC_SCHED_YIELD: 9691 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9692 break; 9693 9694 kvm_sched_yield(vcpu, a0); 9695 ret = 0; 9696 break; 9697 case KVM_HC_MAP_GPA_RANGE: { 9698 u64 gpa = a0, npages = a1, attrs = a2; 9699 9700 ret = -KVM_ENOSYS; 9701 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9702 break; 9703 9704 if (!PAGE_ALIGNED(gpa) || !npages || 9705 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9706 ret = -KVM_EINVAL; 9707 break; 9708 } 9709 9710 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9711 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9712 vcpu->run->hypercall.args[0] = gpa; 9713 vcpu->run->hypercall.args[1] = npages; 9714 vcpu->run->hypercall.args[2] = attrs; 9715 vcpu->run->hypercall.longmode = op_64_bit; 9716 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9717 return 0; 9718 } 9719 default: 9720 ret = -KVM_ENOSYS; 9721 break; 9722 } 9723 out: 9724 if (!op_64_bit) 9725 ret = (u32)ret; 9726 kvm_rax_write(vcpu, ret); 9727 9728 ++vcpu->stat.hypercalls; 9729 return kvm_skip_emulated_instruction(vcpu); 9730 } 9731 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9732 9733 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9734 { 9735 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9736 char instruction[3]; 9737 unsigned long rip = kvm_rip_read(vcpu); 9738 9739 /* 9740 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9741 * the pieces. 9742 */ 9743 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9744 ctxt->exception.error_code_valid = false; 9745 ctxt->exception.vector = UD_VECTOR; 9746 ctxt->have_exception = true; 9747 return X86EMUL_PROPAGATE_FAULT; 9748 } 9749 9750 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9751 9752 return emulator_write_emulated(ctxt, rip, instruction, 3, 9753 &ctxt->exception); 9754 } 9755 9756 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9757 { 9758 return vcpu->run->request_interrupt_window && 9759 likely(!pic_in_kernel(vcpu->kvm)); 9760 } 9761 9762 /* Called within kvm->srcu read side. */ 9763 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9764 { 9765 struct kvm_run *kvm_run = vcpu->run; 9766 9767 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9768 kvm_run->cr8 = kvm_get_cr8(vcpu); 9769 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9770 9771 kvm_run->ready_for_interrupt_injection = 9772 pic_in_kernel(vcpu->kvm) || 9773 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9774 9775 if (is_smm(vcpu)) 9776 kvm_run->flags |= KVM_RUN_X86_SMM; 9777 } 9778 9779 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9780 { 9781 int max_irr, tpr; 9782 9783 if (!kvm_x86_ops.update_cr8_intercept) 9784 return; 9785 9786 if (!lapic_in_kernel(vcpu)) 9787 return; 9788 9789 if (vcpu->arch.apic->apicv_active) 9790 return; 9791 9792 if (!vcpu->arch.apic->vapic_addr) 9793 max_irr = kvm_lapic_find_highest_irr(vcpu); 9794 else 9795 max_irr = -1; 9796 9797 if (max_irr != -1) 9798 max_irr >>= 4; 9799 9800 tpr = kvm_lapic_get_cr8(vcpu); 9801 9802 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9803 } 9804 9805 9806 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9807 { 9808 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9809 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9810 return 1; 9811 } 9812 9813 return kvm_x86_ops.nested_ops->check_events(vcpu); 9814 } 9815 9816 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9817 { 9818 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9819 vcpu->arch.exception.has_error_code, 9820 vcpu->arch.exception.error_code, 9821 vcpu->arch.exception.injected); 9822 9823 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9824 vcpu->arch.exception.error_code = false; 9825 static_call(kvm_x86_inject_exception)(vcpu); 9826 } 9827 9828 /* 9829 * Check for any event (interrupt or exception) that is ready to be injected, 9830 * and if there is at least one event, inject the event with the highest 9831 * priority. This handles both "pending" events, i.e. events that have never 9832 * been injected into the guest, and "injected" events, i.e. events that were 9833 * injected as part of a previous VM-Enter, but weren't successfully delivered 9834 * and need to be re-injected. 9835 * 9836 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9837 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9838 * be able to inject exceptions in the "middle" of an instruction, and so must 9839 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9840 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9841 * boundaries is necessary and correct. 9842 * 9843 * For simplicity, KVM uses a single path to inject all events (except events 9844 * that are injected directly from L1 to L2) and doesn't explicitly track 9845 * instruction boundaries for asynchronous events. However, because VM-Exits 9846 * that can occur during instruction execution typically result in KVM skipping 9847 * the instruction or injecting an exception, e.g. instruction and exception 9848 * intercepts, and because pending exceptions have higher priority than pending 9849 * interrupts, KVM still honors instruction boundaries in most scenarios. 9850 * 9851 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9852 * the instruction or inject an exception, then KVM can incorrecty inject a new 9853 * asynchrounous event if the event became pending after the CPU fetched the 9854 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9855 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9856 * injected on the restarted instruction instead of being deferred until the 9857 * instruction completes. 9858 * 9859 * In practice, this virtualization hole is unlikely to be observed by the 9860 * guest, and even less likely to cause functional problems. To detect the 9861 * hole, the guest would have to trigger an event on a side effect of an early 9862 * phase of instruction execution, e.g. on the instruction fetch from memory. 9863 * And for it to be a functional problem, the guest would need to depend on the 9864 * ordering between that side effect, the instruction completing, _and_ the 9865 * delivery of the asynchronous event. 9866 */ 9867 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9868 bool *req_immediate_exit) 9869 { 9870 bool can_inject; 9871 int r; 9872 9873 /* 9874 * Process nested events first, as nested VM-Exit supercedes event 9875 * re-injection. If there's an event queued for re-injection, it will 9876 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9877 */ 9878 if (is_guest_mode(vcpu)) 9879 r = kvm_check_nested_events(vcpu); 9880 else 9881 r = 0; 9882 9883 /* 9884 * Re-inject exceptions and events *especially* if immediate entry+exit 9885 * to/from L2 is needed, as any event that has already been injected 9886 * into L2 needs to complete its lifecycle before injecting a new event. 9887 * 9888 * Don't re-inject an NMI or interrupt if there is a pending exception. 9889 * This collision arises if an exception occurred while vectoring the 9890 * injected event, KVM intercepted said exception, and KVM ultimately 9891 * determined the fault belongs to the guest and queues the exception 9892 * for injection back into the guest. 9893 * 9894 * "Injected" interrupts can also collide with pending exceptions if 9895 * userspace ignores the "ready for injection" flag and blindly queues 9896 * an interrupt. In that case, prioritizing the exception is correct, 9897 * as the exception "occurred" before the exit to userspace. Trap-like 9898 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9899 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9900 * priority, they're only generated (pended) during instruction 9901 * execution, and interrupts are recognized at instruction boundaries. 9902 * Thus a pending fault-like exception means the fault occurred on the 9903 * *previous* instruction and must be serviced prior to recognizing any 9904 * new events in order to fully complete the previous instruction. 9905 */ 9906 if (vcpu->arch.exception.injected) 9907 kvm_inject_exception(vcpu); 9908 else if (kvm_is_exception_pending(vcpu)) 9909 ; /* see above */ 9910 else if (vcpu->arch.nmi_injected) 9911 static_call(kvm_x86_inject_nmi)(vcpu); 9912 else if (vcpu->arch.interrupt.injected) 9913 static_call(kvm_x86_inject_irq)(vcpu, true); 9914 9915 /* 9916 * Exceptions that morph to VM-Exits are handled above, and pending 9917 * exceptions on top of injected exceptions that do not VM-Exit should 9918 * either morph to #DF or, sadly, override the injected exception. 9919 */ 9920 WARN_ON_ONCE(vcpu->arch.exception.injected && 9921 vcpu->arch.exception.pending); 9922 9923 /* 9924 * Bail if immediate entry+exit to/from the guest is needed to complete 9925 * nested VM-Enter or event re-injection so that a different pending 9926 * event can be serviced (or if KVM needs to exit to userspace). 9927 * 9928 * Otherwise, continue processing events even if VM-Exit occurred. The 9929 * VM-Exit will have cleared exceptions that were meant for L2, but 9930 * there may now be events that can be injected into L1. 9931 */ 9932 if (r < 0) 9933 goto out; 9934 9935 /* 9936 * A pending exception VM-Exit should either result in nested VM-Exit 9937 * or force an immediate re-entry and exit to/from L2, and exception 9938 * VM-Exits cannot be injected (flag should _never_ be set). 9939 */ 9940 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9941 vcpu->arch.exception_vmexit.pending); 9942 9943 /* 9944 * New events, other than exceptions, cannot be injected if KVM needs 9945 * to re-inject a previous event. See above comments on re-injecting 9946 * for why pending exceptions get priority. 9947 */ 9948 can_inject = !kvm_event_needs_reinjection(vcpu); 9949 9950 if (vcpu->arch.exception.pending) { 9951 /* 9952 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 9953 * value pushed on the stack. Trap-like exception and all #DBs 9954 * leave RF as-is (KVM follows Intel's behavior in this regard; 9955 * AMD states that code breakpoint #DBs excplitly clear RF=0). 9956 * 9957 * Note, most versions of Intel's SDM and AMD's APM incorrectly 9958 * describe the behavior of General Detect #DBs, which are 9959 * fault-like. They do _not_ set RF, a la code breakpoints. 9960 */ 9961 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 9962 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9963 X86_EFLAGS_RF); 9964 9965 if (vcpu->arch.exception.vector == DB_VECTOR) { 9966 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 9967 if (vcpu->arch.dr7 & DR7_GD) { 9968 vcpu->arch.dr7 &= ~DR7_GD; 9969 kvm_update_dr7(vcpu); 9970 } 9971 } 9972 9973 kvm_inject_exception(vcpu); 9974 9975 vcpu->arch.exception.pending = false; 9976 vcpu->arch.exception.injected = true; 9977 9978 can_inject = false; 9979 } 9980 9981 /* Don't inject interrupts if the user asked to avoid doing so */ 9982 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9983 return 0; 9984 9985 /* 9986 * Finally, inject interrupt events. If an event cannot be injected 9987 * due to architectural conditions (e.g. IF=0) a window-open exit 9988 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9989 * and can architecturally be injected, but we cannot do it right now: 9990 * an interrupt could have arrived just now and we have to inject it 9991 * as a vmexit, or there could already an event in the queue, which is 9992 * indicated by can_inject. In that case we request an immediate exit 9993 * in order to make progress and get back here for another iteration. 9994 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9995 */ 9996 if (vcpu->arch.smi_pending) { 9997 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9998 if (r < 0) 9999 goto out; 10000 if (r) { 10001 vcpu->arch.smi_pending = false; 10002 ++vcpu->arch.smi_count; 10003 enter_smm(vcpu); 10004 can_inject = false; 10005 } else 10006 static_call(kvm_x86_enable_smi_window)(vcpu); 10007 } 10008 10009 if (vcpu->arch.nmi_pending) { 10010 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10011 if (r < 0) 10012 goto out; 10013 if (r) { 10014 --vcpu->arch.nmi_pending; 10015 vcpu->arch.nmi_injected = true; 10016 static_call(kvm_x86_inject_nmi)(vcpu); 10017 can_inject = false; 10018 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10019 } 10020 if (vcpu->arch.nmi_pending) 10021 static_call(kvm_x86_enable_nmi_window)(vcpu); 10022 } 10023 10024 if (kvm_cpu_has_injectable_intr(vcpu)) { 10025 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10026 if (r < 0) 10027 goto out; 10028 if (r) { 10029 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10030 static_call(kvm_x86_inject_irq)(vcpu, false); 10031 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10032 } 10033 if (kvm_cpu_has_injectable_intr(vcpu)) 10034 static_call(kvm_x86_enable_irq_window)(vcpu); 10035 } 10036 10037 if (is_guest_mode(vcpu) && 10038 kvm_x86_ops.nested_ops->has_events && 10039 kvm_x86_ops.nested_ops->has_events(vcpu)) 10040 *req_immediate_exit = true; 10041 10042 /* 10043 * KVM must never queue a new exception while injecting an event; KVM 10044 * is done emulating and should only propagate the to-be-injected event 10045 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10046 * infinite loop as KVM will bail from VM-Enter to inject the pending 10047 * exception and start the cycle all over. 10048 * 10049 * Exempt triple faults as they have special handling and won't put the 10050 * vCPU into an infinite loop. Triple fault can be queued when running 10051 * VMX without unrestricted guest, as that requires KVM to emulate Real 10052 * Mode events (see kvm_inject_realmode_interrupt()). 10053 */ 10054 WARN_ON_ONCE(vcpu->arch.exception.pending || 10055 vcpu->arch.exception_vmexit.pending); 10056 return 0; 10057 10058 out: 10059 if (r == -EBUSY) { 10060 *req_immediate_exit = true; 10061 r = 0; 10062 } 10063 return r; 10064 } 10065 10066 static void process_nmi(struct kvm_vcpu *vcpu) 10067 { 10068 unsigned limit = 2; 10069 10070 /* 10071 * x86 is limited to one NMI running, and one NMI pending after it. 10072 * If an NMI is already in progress, limit further NMIs to just one. 10073 * Otherwise, allow two (and we'll inject the first one immediately). 10074 */ 10075 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10076 limit = 1; 10077 10078 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10079 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10080 kvm_make_request(KVM_REQ_EVENT, vcpu); 10081 } 10082 10083 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 10084 { 10085 u32 flags = 0; 10086 flags |= seg->g << 23; 10087 flags |= seg->db << 22; 10088 flags |= seg->l << 21; 10089 flags |= seg->avl << 20; 10090 flags |= seg->present << 15; 10091 flags |= seg->dpl << 13; 10092 flags |= seg->s << 12; 10093 flags |= seg->type << 8; 10094 return flags; 10095 } 10096 10097 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 10098 { 10099 struct kvm_segment seg; 10100 int offset; 10101 10102 kvm_get_segment(vcpu, &seg, n); 10103 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 10104 10105 if (n < 3) 10106 offset = 0x7f84 + n * 12; 10107 else 10108 offset = 0x7f2c + (n - 3) * 12; 10109 10110 put_smstate(u32, buf, offset + 8, seg.base); 10111 put_smstate(u32, buf, offset + 4, seg.limit); 10112 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 10113 } 10114 10115 #ifdef CONFIG_X86_64 10116 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 10117 { 10118 struct kvm_segment seg; 10119 int offset; 10120 u16 flags; 10121 10122 kvm_get_segment(vcpu, &seg, n); 10123 offset = 0x7e00 + n * 16; 10124 10125 flags = enter_smm_get_segment_flags(&seg) >> 8; 10126 put_smstate(u16, buf, offset, seg.selector); 10127 put_smstate(u16, buf, offset + 2, flags); 10128 put_smstate(u32, buf, offset + 4, seg.limit); 10129 put_smstate(u64, buf, offset + 8, seg.base); 10130 } 10131 #endif 10132 10133 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 10134 { 10135 struct desc_ptr dt; 10136 struct kvm_segment seg; 10137 unsigned long val; 10138 int i; 10139 10140 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 10141 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 10142 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 10143 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 10144 10145 for (i = 0; i < 8; i++) 10146 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 10147 10148 kvm_get_dr(vcpu, 6, &val); 10149 put_smstate(u32, buf, 0x7fcc, (u32)val); 10150 kvm_get_dr(vcpu, 7, &val); 10151 put_smstate(u32, buf, 0x7fc8, (u32)val); 10152 10153 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 10154 put_smstate(u32, buf, 0x7fc4, seg.selector); 10155 put_smstate(u32, buf, 0x7f64, seg.base); 10156 put_smstate(u32, buf, 0x7f60, seg.limit); 10157 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 10158 10159 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 10160 put_smstate(u32, buf, 0x7fc0, seg.selector); 10161 put_smstate(u32, buf, 0x7f80, seg.base); 10162 put_smstate(u32, buf, 0x7f7c, seg.limit); 10163 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 10164 10165 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10166 put_smstate(u32, buf, 0x7f74, dt.address); 10167 put_smstate(u32, buf, 0x7f70, dt.size); 10168 10169 static_call(kvm_x86_get_idt)(vcpu, &dt); 10170 put_smstate(u32, buf, 0x7f58, dt.address); 10171 put_smstate(u32, buf, 0x7f54, dt.size); 10172 10173 for (i = 0; i < 6; i++) 10174 enter_smm_save_seg_32(vcpu, buf, i); 10175 10176 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 10177 10178 /* revision id */ 10179 put_smstate(u32, buf, 0x7efc, 0x00020000); 10180 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 10181 } 10182 10183 #ifdef CONFIG_X86_64 10184 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 10185 { 10186 struct desc_ptr dt; 10187 struct kvm_segment seg; 10188 unsigned long val; 10189 int i; 10190 10191 for (i = 0; i < 16; i++) 10192 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 10193 10194 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 10195 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 10196 10197 kvm_get_dr(vcpu, 6, &val); 10198 put_smstate(u64, buf, 0x7f68, val); 10199 kvm_get_dr(vcpu, 7, &val); 10200 put_smstate(u64, buf, 0x7f60, val); 10201 10202 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 10203 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 10204 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 10205 10206 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 10207 10208 /* revision id */ 10209 put_smstate(u32, buf, 0x7efc, 0x00020064); 10210 10211 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 10212 10213 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 10214 put_smstate(u16, buf, 0x7e90, seg.selector); 10215 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 10216 put_smstate(u32, buf, 0x7e94, seg.limit); 10217 put_smstate(u64, buf, 0x7e98, seg.base); 10218 10219 static_call(kvm_x86_get_idt)(vcpu, &dt); 10220 put_smstate(u32, buf, 0x7e84, dt.size); 10221 put_smstate(u64, buf, 0x7e88, dt.address); 10222 10223 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 10224 put_smstate(u16, buf, 0x7e70, seg.selector); 10225 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 10226 put_smstate(u32, buf, 0x7e74, seg.limit); 10227 put_smstate(u64, buf, 0x7e78, seg.base); 10228 10229 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10230 put_smstate(u32, buf, 0x7e64, dt.size); 10231 put_smstate(u64, buf, 0x7e68, dt.address); 10232 10233 for (i = 0; i < 6; i++) 10234 enter_smm_save_seg_64(vcpu, buf, i); 10235 } 10236 #endif 10237 10238 static void enter_smm(struct kvm_vcpu *vcpu) 10239 { 10240 struct kvm_segment cs, ds; 10241 struct desc_ptr dt; 10242 unsigned long cr0; 10243 char buf[512]; 10244 10245 memset(buf, 0, 512); 10246 #ifdef CONFIG_X86_64 10247 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 10248 enter_smm_save_state_64(vcpu, buf); 10249 else 10250 #endif 10251 enter_smm_save_state_32(vcpu, buf); 10252 10253 /* 10254 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 10255 * state (e.g. leave guest mode) after we've saved the state into the 10256 * SMM state-save area. 10257 */ 10258 static_call(kvm_x86_enter_smm)(vcpu, buf); 10259 10260 kvm_smm_changed(vcpu, true); 10261 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 10262 10263 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 10264 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 10265 else 10266 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 10267 10268 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 10269 kvm_rip_write(vcpu, 0x8000); 10270 10271 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 10272 static_call(kvm_x86_set_cr0)(vcpu, cr0); 10273 vcpu->arch.cr0 = cr0; 10274 10275 static_call(kvm_x86_set_cr4)(vcpu, 0); 10276 10277 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 10278 dt.address = dt.size = 0; 10279 static_call(kvm_x86_set_idt)(vcpu, &dt); 10280 10281 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 10282 10283 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 10284 cs.base = vcpu->arch.smbase; 10285 10286 ds.selector = 0; 10287 ds.base = 0; 10288 10289 cs.limit = ds.limit = 0xffffffff; 10290 cs.type = ds.type = 0x3; 10291 cs.dpl = ds.dpl = 0; 10292 cs.db = ds.db = 0; 10293 cs.s = ds.s = 1; 10294 cs.l = ds.l = 0; 10295 cs.g = ds.g = 1; 10296 cs.avl = ds.avl = 0; 10297 cs.present = ds.present = 1; 10298 cs.unusable = ds.unusable = 0; 10299 cs.padding = ds.padding = 0; 10300 10301 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10302 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 10303 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 10304 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 10305 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 10306 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 10307 10308 #ifdef CONFIG_X86_64 10309 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 10310 static_call(kvm_x86_set_efer)(vcpu, 0); 10311 #endif 10312 10313 kvm_update_cpuid_runtime(vcpu); 10314 kvm_mmu_reset_context(vcpu); 10315 } 10316 10317 static void process_smi(struct kvm_vcpu *vcpu) 10318 { 10319 vcpu->arch.smi_pending = true; 10320 kvm_make_request(KVM_REQ_EVENT, vcpu); 10321 } 10322 10323 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10324 unsigned long *vcpu_bitmap) 10325 { 10326 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10327 } 10328 10329 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10330 { 10331 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10332 } 10333 10334 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10335 { 10336 struct kvm_lapic *apic = vcpu->arch.apic; 10337 bool activate; 10338 10339 if (!lapic_in_kernel(vcpu)) 10340 return; 10341 10342 down_read(&vcpu->kvm->arch.apicv_update_lock); 10343 preempt_disable(); 10344 10345 /* Do not activate APICV when APIC is disabled */ 10346 activate = kvm_vcpu_apicv_activated(vcpu) && 10347 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10348 10349 if (apic->apicv_active == activate) 10350 goto out; 10351 10352 apic->apicv_active = activate; 10353 kvm_apic_update_apicv(vcpu); 10354 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10355 10356 /* 10357 * When APICv gets disabled, we may still have injected interrupts 10358 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10359 * still active when the interrupt got accepted. Make sure 10360 * kvm_check_and_inject_events() is called to check for that. 10361 */ 10362 if (!apic->apicv_active) 10363 kvm_make_request(KVM_REQ_EVENT, vcpu); 10364 10365 out: 10366 preempt_enable(); 10367 up_read(&vcpu->kvm->arch.apicv_update_lock); 10368 } 10369 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 10370 10371 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10372 enum kvm_apicv_inhibit reason, bool set) 10373 { 10374 unsigned long old, new; 10375 10376 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10377 10378 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 10379 return; 10380 10381 old = new = kvm->arch.apicv_inhibit_reasons; 10382 10383 set_or_clear_apicv_inhibit(&new, reason, set); 10384 10385 if (!!old != !!new) { 10386 /* 10387 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10388 * false positives in the sanity check WARN in svm_vcpu_run(). 10389 * This task will wait for all vCPUs to ack the kick IRQ before 10390 * updating apicv_inhibit_reasons, and all other vCPUs will 10391 * block on acquiring apicv_update_lock so that vCPUs can't 10392 * redo svm_vcpu_run() without seeing the new inhibit state. 10393 * 10394 * Note, holding apicv_update_lock and taking it in the read 10395 * side (handling the request) also prevents other vCPUs from 10396 * servicing the request with a stale apicv_inhibit_reasons. 10397 */ 10398 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10399 kvm->arch.apicv_inhibit_reasons = new; 10400 if (new) { 10401 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10402 int idx = srcu_read_lock(&kvm->srcu); 10403 10404 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10405 srcu_read_unlock(&kvm->srcu, idx); 10406 } 10407 } else { 10408 kvm->arch.apicv_inhibit_reasons = new; 10409 } 10410 } 10411 10412 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10413 enum kvm_apicv_inhibit reason, bool set) 10414 { 10415 if (!enable_apicv) 10416 return; 10417 10418 down_write(&kvm->arch.apicv_update_lock); 10419 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10420 up_write(&kvm->arch.apicv_update_lock); 10421 } 10422 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10423 10424 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10425 { 10426 if (!kvm_apic_present(vcpu)) 10427 return; 10428 10429 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10430 10431 if (irqchip_split(vcpu->kvm)) 10432 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10433 else { 10434 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10435 if (ioapic_in_kernel(vcpu->kvm)) 10436 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10437 } 10438 10439 if (is_guest_mode(vcpu)) 10440 vcpu->arch.load_eoi_exitmap_pending = true; 10441 else 10442 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10443 } 10444 10445 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10446 { 10447 u64 eoi_exit_bitmap[4]; 10448 10449 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10450 return; 10451 10452 if (to_hv_vcpu(vcpu)) { 10453 bitmap_or((ulong *)eoi_exit_bitmap, 10454 vcpu->arch.ioapic_handled_vectors, 10455 to_hv_synic(vcpu)->vec_bitmap, 256); 10456 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10457 return; 10458 } 10459 10460 static_call_cond(kvm_x86_load_eoi_exitmap)( 10461 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10462 } 10463 10464 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10465 unsigned long start, unsigned long end) 10466 { 10467 unsigned long apic_address; 10468 10469 /* 10470 * The physical address of apic access page is stored in the VMCS. 10471 * Update it when it becomes invalid. 10472 */ 10473 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10474 if (start <= apic_address && apic_address < end) 10475 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10476 } 10477 10478 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10479 { 10480 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10481 } 10482 10483 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10484 { 10485 if (!lapic_in_kernel(vcpu)) 10486 return; 10487 10488 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10489 } 10490 10491 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10492 { 10493 smp_send_reschedule(vcpu->cpu); 10494 } 10495 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10496 10497 /* 10498 * Called within kvm->srcu read side. 10499 * Returns 1 to let vcpu_run() continue the guest execution loop without 10500 * exiting to the userspace. Otherwise, the value will be returned to the 10501 * userspace. 10502 */ 10503 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10504 { 10505 int r; 10506 bool req_int_win = 10507 dm_request_for_irq_injection(vcpu) && 10508 kvm_cpu_accept_dm_intr(vcpu); 10509 fastpath_t exit_fastpath; 10510 10511 bool req_immediate_exit = false; 10512 10513 /* Forbid vmenter if vcpu dirty ring is soft-full */ 10514 if (unlikely(vcpu->kvm->dirty_ring_size && 10515 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 10516 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 10517 trace_kvm_dirty_ring_exit(vcpu); 10518 r = 0; 10519 goto out; 10520 } 10521 10522 if (kvm_request_pending(vcpu)) { 10523 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10524 r = -EIO; 10525 goto out; 10526 } 10527 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10528 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10529 r = 0; 10530 goto out; 10531 } 10532 } 10533 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10534 kvm_mmu_free_obsolete_roots(vcpu); 10535 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10536 __kvm_migrate_timers(vcpu); 10537 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10538 kvm_update_masterclock(vcpu->kvm); 10539 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10540 kvm_gen_kvmclock_update(vcpu); 10541 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10542 r = kvm_guest_time_update(vcpu); 10543 if (unlikely(r)) 10544 goto out; 10545 } 10546 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10547 kvm_mmu_sync_roots(vcpu); 10548 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10549 kvm_mmu_load_pgd(vcpu); 10550 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 10551 kvm_vcpu_flush_tlb_all(vcpu); 10552 10553 /* Flushing all ASIDs flushes the current ASID... */ 10554 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 10555 } 10556 kvm_service_local_tlb_flush_requests(vcpu); 10557 10558 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10559 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10560 r = 0; 10561 goto out; 10562 } 10563 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10564 if (is_guest_mode(vcpu)) { 10565 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10566 } else { 10567 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10568 vcpu->mmio_needed = 0; 10569 r = 0; 10570 goto out; 10571 } 10572 } 10573 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10574 /* Page is swapped out. Do synthetic halt */ 10575 vcpu->arch.apf.halted = true; 10576 r = 1; 10577 goto out; 10578 } 10579 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10580 record_steal_time(vcpu); 10581 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10582 process_smi(vcpu); 10583 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10584 process_nmi(vcpu); 10585 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10586 kvm_pmu_handle_event(vcpu); 10587 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10588 kvm_pmu_deliver_pmi(vcpu); 10589 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10590 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10591 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10592 vcpu->arch.ioapic_handled_vectors)) { 10593 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10594 vcpu->run->eoi.vector = 10595 vcpu->arch.pending_ioapic_eoi; 10596 r = 0; 10597 goto out; 10598 } 10599 } 10600 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10601 vcpu_scan_ioapic(vcpu); 10602 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10603 vcpu_load_eoi_exitmap(vcpu); 10604 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10605 kvm_vcpu_reload_apic_access_page(vcpu); 10606 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10607 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10608 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10609 vcpu->run->system_event.ndata = 0; 10610 r = 0; 10611 goto out; 10612 } 10613 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10614 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10615 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10616 vcpu->run->system_event.ndata = 0; 10617 r = 0; 10618 goto out; 10619 } 10620 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10621 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10622 10623 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10624 vcpu->run->hyperv = hv_vcpu->exit; 10625 r = 0; 10626 goto out; 10627 } 10628 10629 /* 10630 * KVM_REQ_HV_STIMER has to be processed after 10631 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10632 * depend on the guest clock being up-to-date 10633 */ 10634 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10635 kvm_hv_process_stimers(vcpu); 10636 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10637 kvm_vcpu_update_apicv(vcpu); 10638 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10639 kvm_check_async_pf_completion(vcpu); 10640 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10641 static_call(kvm_x86_msr_filter_changed)(vcpu); 10642 10643 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10644 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10645 } 10646 10647 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10648 kvm_xen_has_interrupt(vcpu)) { 10649 ++vcpu->stat.req_event; 10650 r = kvm_apic_accept_events(vcpu); 10651 if (r < 0) { 10652 r = 0; 10653 goto out; 10654 } 10655 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10656 r = 1; 10657 goto out; 10658 } 10659 10660 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10661 if (r < 0) { 10662 r = 0; 10663 goto out; 10664 } 10665 if (req_int_win) 10666 static_call(kvm_x86_enable_irq_window)(vcpu); 10667 10668 if (kvm_lapic_enabled(vcpu)) { 10669 update_cr8_intercept(vcpu); 10670 kvm_lapic_sync_to_vapic(vcpu); 10671 } 10672 } 10673 10674 r = kvm_mmu_reload(vcpu); 10675 if (unlikely(r)) { 10676 goto cancel_injection; 10677 } 10678 10679 preempt_disable(); 10680 10681 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10682 10683 /* 10684 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10685 * IPI are then delayed after guest entry, which ensures that they 10686 * result in virtual interrupt delivery. 10687 */ 10688 local_irq_disable(); 10689 10690 /* Store vcpu->apicv_active before vcpu->mode. */ 10691 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10692 10693 kvm_vcpu_srcu_read_unlock(vcpu); 10694 10695 /* 10696 * 1) We should set ->mode before checking ->requests. Please see 10697 * the comment in kvm_vcpu_exiting_guest_mode(). 10698 * 10699 * 2) For APICv, we should set ->mode before checking PID.ON. This 10700 * pairs with the memory barrier implicit in pi_test_and_set_on 10701 * (see vmx_deliver_posted_interrupt). 10702 * 10703 * 3) This also orders the write to mode from any reads to the page 10704 * tables done while the VCPU is running. Please see the comment 10705 * in kvm_flush_remote_tlbs. 10706 */ 10707 smp_mb__after_srcu_read_unlock(); 10708 10709 /* 10710 * Process pending posted interrupts to handle the case where the 10711 * notification IRQ arrived in the host, or was never sent (because the 10712 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10713 * status, KVM doesn't update assigned devices when APICv is inhibited, 10714 * i.e. they can post interrupts even if APICv is temporarily disabled. 10715 */ 10716 if (kvm_lapic_enabled(vcpu)) 10717 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10718 10719 if (kvm_vcpu_exit_request(vcpu)) { 10720 vcpu->mode = OUTSIDE_GUEST_MODE; 10721 smp_wmb(); 10722 local_irq_enable(); 10723 preempt_enable(); 10724 kvm_vcpu_srcu_read_lock(vcpu); 10725 r = 1; 10726 goto cancel_injection; 10727 } 10728 10729 if (req_immediate_exit) { 10730 kvm_make_request(KVM_REQ_EVENT, vcpu); 10731 static_call(kvm_x86_request_immediate_exit)(vcpu); 10732 } 10733 10734 fpregs_assert_state_consistent(); 10735 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10736 switch_fpu_return(); 10737 10738 if (vcpu->arch.guest_fpu.xfd_err) 10739 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10740 10741 if (unlikely(vcpu->arch.switch_db_regs)) { 10742 set_debugreg(0, 7); 10743 set_debugreg(vcpu->arch.eff_db[0], 0); 10744 set_debugreg(vcpu->arch.eff_db[1], 1); 10745 set_debugreg(vcpu->arch.eff_db[2], 2); 10746 set_debugreg(vcpu->arch.eff_db[3], 3); 10747 } else if (unlikely(hw_breakpoint_active())) { 10748 set_debugreg(0, 7); 10749 } 10750 10751 guest_timing_enter_irqoff(); 10752 10753 for (;;) { 10754 /* 10755 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10756 * update must kick and wait for all vCPUs before toggling the 10757 * per-VM state, and responsing vCPUs must wait for the update 10758 * to complete before servicing KVM_REQ_APICV_UPDATE. 10759 */ 10760 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10761 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10762 10763 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10764 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10765 break; 10766 10767 if (kvm_lapic_enabled(vcpu)) 10768 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10769 10770 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10771 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10772 break; 10773 } 10774 } 10775 10776 /* 10777 * Do this here before restoring debug registers on the host. And 10778 * since we do this before handling the vmexit, a DR access vmexit 10779 * can (a) read the correct value of the debug registers, (b) set 10780 * KVM_DEBUGREG_WONT_EXIT again. 10781 */ 10782 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10783 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10784 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10785 kvm_update_dr0123(vcpu); 10786 kvm_update_dr7(vcpu); 10787 } 10788 10789 /* 10790 * If the guest has used debug registers, at least dr7 10791 * will be disabled while returning to the host. 10792 * If we don't have active breakpoints in the host, we don't 10793 * care about the messed up debug address registers. But if 10794 * we have some of them active, restore the old state. 10795 */ 10796 if (hw_breakpoint_active()) 10797 hw_breakpoint_restore(); 10798 10799 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10800 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10801 10802 vcpu->mode = OUTSIDE_GUEST_MODE; 10803 smp_wmb(); 10804 10805 /* 10806 * Sync xfd before calling handle_exit_irqoff() which may 10807 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10808 * in #NM irqoff handler). 10809 */ 10810 if (vcpu->arch.xfd_no_write_intercept) 10811 fpu_sync_guest_vmexit_xfd_state(); 10812 10813 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10814 10815 if (vcpu->arch.guest_fpu.xfd_err) 10816 wrmsrl(MSR_IA32_XFD_ERR, 0); 10817 10818 /* 10819 * Consume any pending interrupts, including the possible source of 10820 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10821 * An instruction is required after local_irq_enable() to fully unblock 10822 * interrupts on processors that implement an interrupt shadow, the 10823 * stat.exits increment will do nicely. 10824 */ 10825 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10826 local_irq_enable(); 10827 ++vcpu->stat.exits; 10828 local_irq_disable(); 10829 kvm_after_interrupt(vcpu); 10830 10831 /* 10832 * Wait until after servicing IRQs to account guest time so that any 10833 * ticks that occurred while running the guest are properly accounted 10834 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10835 * of accounting via context tracking, but the loss of accuracy is 10836 * acceptable for all known use cases. 10837 */ 10838 guest_timing_exit_irqoff(); 10839 10840 local_irq_enable(); 10841 preempt_enable(); 10842 10843 kvm_vcpu_srcu_read_lock(vcpu); 10844 10845 /* 10846 * Profile KVM exit RIPs: 10847 */ 10848 if (unlikely(prof_on == KVM_PROFILING)) { 10849 unsigned long rip = kvm_rip_read(vcpu); 10850 profile_hit(KVM_PROFILING, (void *)rip); 10851 } 10852 10853 if (unlikely(vcpu->arch.tsc_always_catchup)) 10854 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10855 10856 if (vcpu->arch.apic_attention) 10857 kvm_lapic_sync_from_vapic(vcpu); 10858 10859 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10860 return r; 10861 10862 cancel_injection: 10863 if (req_immediate_exit) 10864 kvm_make_request(KVM_REQ_EVENT, vcpu); 10865 static_call(kvm_x86_cancel_injection)(vcpu); 10866 if (unlikely(vcpu->arch.apic_attention)) 10867 kvm_lapic_sync_from_vapic(vcpu); 10868 out: 10869 return r; 10870 } 10871 10872 /* Called within kvm->srcu read side. */ 10873 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10874 { 10875 bool hv_timer; 10876 10877 if (!kvm_arch_vcpu_runnable(vcpu)) { 10878 /* 10879 * Switch to the software timer before halt-polling/blocking as 10880 * the guest's timer may be a break event for the vCPU, and the 10881 * hypervisor timer runs only when the CPU is in guest mode. 10882 * Switch before halt-polling so that KVM recognizes an expired 10883 * timer before blocking. 10884 */ 10885 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10886 if (hv_timer) 10887 kvm_lapic_switch_to_sw_timer(vcpu); 10888 10889 kvm_vcpu_srcu_read_unlock(vcpu); 10890 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10891 kvm_vcpu_halt(vcpu); 10892 else 10893 kvm_vcpu_block(vcpu); 10894 kvm_vcpu_srcu_read_lock(vcpu); 10895 10896 if (hv_timer) 10897 kvm_lapic_switch_to_hv_timer(vcpu); 10898 10899 /* 10900 * If the vCPU is not runnable, a signal or another host event 10901 * of some kind is pending; service it without changing the 10902 * vCPU's activity state. 10903 */ 10904 if (!kvm_arch_vcpu_runnable(vcpu)) 10905 return 1; 10906 } 10907 10908 /* 10909 * Evaluate nested events before exiting the halted state. This allows 10910 * the halt state to be recorded properly in the VMCS12's activity 10911 * state field (AMD does not have a similar field and a VM-Exit always 10912 * causes a spurious wakeup from HLT). 10913 */ 10914 if (is_guest_mode(vcpu)) { 10915 if (kvm_check_nested_events(vcpu) < 0) 10916 return 0; 10917 } 10918 10919 if (kvm_apic_accept_events(vcpu) < 0) 10920 return 0; 10921 switch(vcpu->arch.mp_state) { 10922 case KVM_MP_STATE_HALTED: 10923 case KVM_MP_STATE_AP_RESET_HOLD: 10924 vcpu->arch.pv.pv_unhalted = false; 10925 vcpu->arch.mp_state = 10926 KVM_MP_STATE_RUNNABLE; 10927 fallthrough; 10928 case KVM_MP_STATE_RUNNABLE: 10929 vcpu->arch.apf.halted = false; 10930 break; 10931 case KVM_MP_STATE_INIT_RECEIVED: 10932 break; 10933 default: 10934 WARN_ON_ONCE(1); 10935 break; 10936 } 10937 return 1; 10938 } 10939 10940 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10941 { 10942 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10943 !vcpu->arch.apf.halted); 10944 } 10945 10946 /* Called within kvm->srcu read side. */ 10947 static int vcpu_run(struct kvm_vcpu *vcpu) 10948 { 10949 int r; 10950 10951 vcpu->arch.l1tf_flush_l1d = true; 10952 10953 for (;;) { 10954 /* 10955 * If another guest vCPU requests a PV TLB flush in the middle 10956 * of instruction emulation, the rest of the emulation could 10957 * use a stale page translation. Assume that any code after 10958 * this point can start executing an instruction. 10959 */ 10960 vcpu->arch.at_instruction_boundary = false; 10961 if (kvm_vcpu_running(vcpu)) { 10962 r = vcpu_enter_guest(vcpu); 10963 } else { 10964 r = vcpu_block(vcpu); 10965 } 10966 10967 if (r <= 0) 10968 break; 10969 10970 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10971 if (kvm_xen_has_pending_events(vcpu)) 10972 kvm_xen_inject_pending_events(vcpu); 10973 10974 if (kvm_cpu_has_pending_timer(vcpu)) 10975 kvm_inject_pending_timer_irqs(vcpu); 10976 10977 if (dm_request_for_irq_injection(vcpu) && 10978 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10979 r = 0; 10980 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10981 ++vcpu->stat.request_irq_exits; 10982 break; 10983 } 10984 10985 if (__xfer_to_guest_mode_work_pending()) { 10986 kvm_vcpu_srcu_read_unlock(vcpu); 10987 r = xfer_to_guest_mode_handle_work(vcpu); 10988 kvm_vcpu_srcu_read_lock(vcpu); 10989 if (r) 10990 return r; 10991 } 10992 } 10993 10994 return r; 10995 } 10996 10997 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10998 { 10999 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11000 } 11001 11002 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11003 { 11004 BUG_ON(!vcpu->arch.pio.count); 11005 11006 return complete_emulated_io(vcpu); 11007 } 11008 11009 /* 11010 * Implements the following, as a state machine: 11011 * 11012 * read: 11013 * for each fragment 11014 * for each mmio piece in the fragment 11015 * write gpa, len 11016 * exit 11017 * copy data 11018 * execute insn 11019 * 11020 * write: 11021 * for each fragment 11022 * for each mmio piece in the fragment 11023 * write gpa, len 11024 * copy data 11025 * exit 11026 */ 11027 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11028 { 11029 struct kvm_run *run = vcpu->run; 11030 struct kvm_mmio_fragment *frag; 11031 unsigned len; 11032 11033 BUG_ON(!vcpu->mmio_needed); 11034 11035 /* Complete previous fragment */ 11036 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11037 len = min(8u, frag->len); 11038 if (!vcpu->mmio_is_write) 11039 memcpy(frag->data, run->mmio.data, len); 11040 11041 if (frag->len <= 8) { 11042 /* Switch to the next fragment. */ 11043 frag++; 11044 vcpu->mmio_cur_fragment++; 11045 } else { 11046 /* Go forward to the next mmio piece. */ 11047 frag->data += len; 11048 frag->gpa += len; 11049 frag->len -= len; 11050 } 11051 11052 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11053 vcpu->mmio_needed = 0; 11054 11055 /* FIXME: return into emulator if single-stepping. */ 11056 if (vcpu->mmio_is_write) 11057 return 1; 11058 vcpu->mmio_read_completed = 1; 11059 return complete_emulated_io(vcpu); 11060 } 11061 11062 run->exit_reason = KVM_EXIT_MMIO; 11063 run->mmio.phys_addr = frag->gpa; 11064 if (vcpu->mmio_is_write) 11065 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11066 run->mmio.len = min(8u, frag->len); 11067 run->mmio.is_write = vcpu->mmio_is_write; 11068 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11069 return 0; 11070 } 11071 11072 /* Swap (qemu) user FPU context for the guest FPU context. */ 11073 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11074 { 11075 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11076 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11077 trace_kvm_fpu(1); 11078 } 11079 11080 /* When vcpu_run ends, restore user space FPU context. */ 11081 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11082 { 11083 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11084 ++vcpu->stat.fpu_reload; 11085 trace_kvm_fpu(0); 11086 } 11087 11088 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11089 { 11090 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11091 struct kvm_run *kvm_run = vcpu->run; 11092 int r; 11093 11094 vcpu_load(vcpu); 11095 kvm_sigset_activate(vcpu); 11096 kvm_run->flags = 0; 11097 kvm_load_guest_fpu(vcpu); 11098 11099 kvm_vcpu_srcu_read_lock(vcpu); 11100 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11101 if (kvm_run->immediate_exit) { 11102 r = -EINTR; 11103 goto out; 11104 } 11105 /* 11106 * It should be impossible for the hypervisor timer to be in 11107 * use before KVM has ever run the vCPU. 11108 */ 11109 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 11110 11111 kvm_vcpu_srcu_read_unlock(vcpu); 11112 kvm_vcpu_block(vcpu); 11113 kvm_vcpu_srcu_read_lock(vcpu); 11114 11115 if (kvm_apic_accept_events(vcpu) < 0) { 11116 r = 0; 11117 goto out; 11118 } 11119 r = -EAGAIN; 11120 if (signal_pending(current)) { 11121 r = -EINTR; 11122 kvm_run->exit_reason = KVM_EXIT_INTR; 11123 ++vcpu->stat.signal_exits; 11124 } 11125 goto out; 11126 } 11127 11128 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11129 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11130 r = -EINVAL; 11131 goto out; 11132 } 11133 11134 if (kvm_run->kvm_dirty_regs) { 11135 r = sync_regs(vcpu); 11136 if (r != 0) 11137 goto out; 11138 } 11139 11140 /* re-sync apic's tpr */ 11141 if (!lapic_in_kernel(vcpu)) { 11142 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11143 r = -EINVAL; 11144 goto out; 11145 } 11146 } 11147 11148 /* 11149 * If userspace set a pending exception and L2 is active, convert it to 11150 * a pending VM-Exit if L1 wants to intercept the exception. 11151 */ 11152 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11153 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11154 ex->error_code)) { 11155 kvm_queue_exception_vmexit(vcpu, ex->vector, 11156 ex->has_error_code, ex->error_code, 11157 ex->has_payload, ex->payload); 11158 ex->injected = false; 11159 ex->pending = false; 11160 } 11161 vcpu->arch.exception_from_userspace = false; 11162 11163 if (unlikely(vcpu->arch.complete_userspace_io)) { 11164 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11165 vcpu->arch.complete_userspace_io = NULL; 11166 r = cui(vcpu); 11167 if (r <= 0) 11168 goto out; 11169 } else { 11170 WARN_ON_ONCE(vcpu->arch.pio.count); 11171 WARN_ON_ONCE(vcpu->mmio_needed); 11172 } 11173 11174 if (kvm_run->immediate_exit) { 11175 r = -EINTR; 11176 goto out; 11177 } 11178 11179 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11180 if (r <= 0) 11181 goto out; 11182 11183 r = vcpu_run(vcpu); 11184 11185 out: 11186 kvm_put_guest_fpu(vcpu); 11187 if (kvm_run->kvm_valid_regs) 11188 store_regs(vcpu); 11189 post_kvm_run_save(vcpu); 11190 kvm_vcpu_srcu_read_unlock(vcpu); 11191 11192 kvm_sigset_deactivate(vcpu); 11193 vcpu_put(vcpu); 11194 return r; 11195 } 11196 11197 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11198 { 11199 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11200 /* 11201 * We are here if userspace calls get_regs() in the middle of 11202 * instruction emulation. Registers state needs to be copied 11203 * back from emulation context to vcpu. Userspace shouldn't do 11204 * that usually, but some bad designed PV devices (vmware 11205 * backdoor interface) need this to work 11206 */ 11207 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11208 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11209 } 11210 regs->rax = kvm_rax_read(vcpu); 11211 regs->rbx = kvm_rbx_read(vcpu); 11212 regs->rcx = kvm_rcx_read(vcpu); 11213 regs->rdx = kvm_rdx_read(vcpu); 11214 regs->rsi = kvm_rsi_read(vcpu); 11215 regs->rdi = kvm_rdi_read(vcpu); 11216 regs->rsp = kvm_rsp_read(vcpu); 11217 regs->rbp = kvm_rbp_read(vcpu); 11218 #ifdef CONFIG_X86_64 11219 regs->r8 = kvm_r8_read(vcpu); 11220 regs->r9 = kvm_r9_read(vcpu); 11221 regs->r10 = kvm_r10_read(vcpu); 11222 regs->r11 = kvm_r11_read(vcpu); 11223 regs->r12 = kvm_r12_read(vcpu); 11224 regs->r13 = kvm_r13_read(vcpu); 11225 regs->r14 = kvm_r14_read(vcpu); 11226 regs->r15 = kvm_r15_read(vcpu); 11227 #endif 11228 11229 regs->rip = kvm_rip_read(vcpu); 11230 regs->rflags = kvm_get_rflags(vcpu); 11231 } 11232 11233 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11234 { 11235 vcpu_load(vcpu); 11236 __get_regs(vcpu, regs); 11237 vcpu_put(vcpu); 11238 return 0; 11239 } 11240 11241 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11242 { 11243 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11244 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11245 11246 kvm_rax_write(vcpu, regs->rax); 11247 kvm_rbx_write(vcpu, regs->rbx); 11248 kvm_rcx_write(vcpu, regs->rcx); 11249 kvm_rdx_write(vcpu, regs->rdx); 11250 kvm_rsi_write(vcpu, regs->rsi); 11251 kvm_rdi_write(vcpu, regs->rdi); 11252 kvm_rsp_write(vcpu, regs->rsp); 11253 kvm_rbp_write(vcpu, regs->rbp); 11254 #ifdef CONFIG_X86_64 11255 kvm_r8_write(vcpu, regs->r8); 11256 kvm_r9_write(vcpu, regs->r9); 11257 kvm_r10_write(vcpu, regs->r10); 11258 kvm_r11_write(vcpu, regs->r11); 11259 kvm_r12_write(vcpu, regs->r12); 11260 kvm_r13_write(vcpu, regs->r13); 11261 kvm_r14_write(vcpu, regs->r14); 11262 kvm_r15_write(vcpu, regs->r15); 11263 #endif 11264 11265 kvm_rip_write(vcpu, regs->rip); 11266 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11267 11268 vcpu->arch.exception.pending = false; 11269 vcpu->arch.exception_vmexit.pending = false; 11270 11271 kvm_make_request(KVM_REQ_EVENT, vcpu); 11272 } 11273 11274 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11275 { 11276 vcpu_load(vcpu); 11277 __set_regs(vcpu, regs); 11278 vcpu_put(vcpu); 11279 return 0; 11280 } 11281 11282 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11283 { 11284 struct desc_ptr dt; 11285 11286 if (vcpu->arch.guest_state_protected) 11287 goto skip_protected_regs; 11288 11289 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11290 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11291 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11292 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11293 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11294 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11295 11296 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11297 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11298 11299 static_call(kvm_x86_get_idt)(vcpu, &dt); 11300 sregs->idt.limit = dt.size; 11301 sregs->idt.base = dt.address; 11302 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11303 sregs->gdt.limit = dt.size; 11304 sregs->gdt.base = dt.address; 11305 11306 sregs->cr2 = vcpu->arch.cr2; 11307 sregs->cr3 = kvm_read_cr3(vcpu); 11308 11309 skip_protected_regs: 11310 sregs->cr0 = kvm_read_cr0(vcpu); 11311 sregs->cr4 = kvm_read_cr4(vcpu); 11312 sregs->cr8 = kvm_get_cr8(vcpu); 11313 sregs->efer = vcpu->arch.efer; 11314 sregs->apic_base = kvm_get_apic_base(vcpu); 11315 } 11316 11317 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11318 { 11319 __get_sregs_common(vcpu, sregs); 11320 11321 if (vcpu->arch.guest_state_protected) 11322 return; 11323 11324 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11325 set_bit(vcpu->arch.interrupt.nr, 11326 (unsigned long *)sregs->interrupt_bitmap); 11327 } 11328 11329 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11330 { 11331 int i; 11332 11333 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11334 11335 if (vcpu->arch.guest_state_protected) 11336 return; 11337 11338 if (is_pae_paging(vcpu)) { 11339 for (i = 0 ; i < 4 ; i++) 11340 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11341 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11342 } 11343 } 11344 11345 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11346 struct kvm_sregs *sregs) 11347 { 11348 vcpu_load(vcpu); 11349 __get_sregs(vcpu, sregs); 11350 vcpu_put(vcpu); 11351 return 0; 11352 } 11353 11354 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11355 struct kvm_mp_state *mp_state) 11356 { 11357 int r; 11358 11359 vcpu_load(vcpu); 11360 if (kvm_mpx_supported()) 11361 kvm_load_guest_fpu(vcpu); 11362 11363 r = kvm_apic_accept_events(vcpu); 11364 if (r < 0) 11365 goto out; 11366 r = 0; 11367 11368 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11369 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11370 vcpu->arch.pv.pv_unhalted) 11371 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11372 else 11373 mp_state->mp_state = vcpu->arch.mp_state; 11374 11375 out: 11376 if (kvm_mpx_supported()) 11377 kvm_put_guest_fpu(vcpu); 11378 vcpu_put(vcpu); 11379 return r; 11380 } 11381 11382 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11383 struct kvm_mp_state *mp_state) 11384 { 11385 int ret = -EINVAL; 11386 11387 vcpu_load(vcpu); 11388 11389 switch (mp_state->mp_state) { 11390 case KVM_MP_STATE_UNINITIALIZED: 11391 case KVM_MP_STATE_HALTED: 11392 case KVM_MP_STATE_AP_RESET_HOLD: 11393 case KVM_MP_STATE_INIT_RECEIVED: 11394 case KVM_MP_STATE_SIPI_RECEIVED: 11395 if (!lapic_in_kernel(vcpu)) 11396 goto out; 11397 break; 11398 11399 case KVM_MP_STATE_RUNNABLE: 11400 break; 11401 11402 default: 11403 goto out; 11404 } 11405 11406 /* 11407 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11408 * forcing the guest into INIT/SIPI if those events are supposed to be 11409 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11410 * if an SMI is pending as well. 11411 */ 11412 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11413 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11414 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11415 goto out; 11416 11417 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11418 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11419 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11420 } else 11421 vcpu->arch.mp_state = mp_state->mp_state; 11422 kvm_make_request(KVM_REQ_EVENT, vcpu); 11423 11424 ret = 0; 11425 out: 11426 vcpu_put(vcpu); 11427 return ret; 11428 } 11429 11430 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11431 int reason, bool has_error_code, u32 error_code) 11432 { 11433 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11434 int ret; 11435 11436 init_emulate_ctxt(vcpu); 11437 11438 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11439 has_error_code, error_code); 11440 if (ret) { 11441 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11442 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11443 vcpu->run->internal.ndata = 0; 11444 return 0; 11445 } 11446 11447 kvm_rip_write(vcpu, ctxt->eip); 11448 kvm_set_rflags(vcpu, ctxt->eflags); 11449 return 1; 11450 } 11451 EXPORT_SYMBOL_GPL(kvm_task_switch); 11452 11453 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11454 { 11455 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11456 /* 11457 * When EFER.LME and CR0.PG are set, the processor is in 11458 * 64-bit mode (though maybe in a 32-bit code segment). 11459 * CR4.PAE and EFER.LMA must be set. 11460 */ 11461 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11462 return false; 11463 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11464 return false; 11465 } else { 11466 /* 11467 * Not in 64-bit mode: EFER.LMA is clear and the code 11468 * segment cannot be 64-bit. 11469 */ 11470 if (sregs->efer & EFER_LMA || sregs->cs.l) 11471 return false; 11472 } 11473 11474 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11475 } 11476 11477 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11478 int *mmu_reset_needed, bool update_pdptrs) 11479 { 11480 struct msr_data apic_base_msr; 11481 int idx; 11482 struct desc_ptr dt; 11483 11484 if (!kvm_is_valid_sregs(vcpu, sregs)) 11485 return -EINVAL; 11486 11487 apic_base_msr.data = sregs->apic_base; 11488 apic_base_msr.host_initiated = true; 11489 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11490 return -EINVAL; 11491 11492 if (vcpu->arch.guest_state_protected) 11493 return 0; 11494 11495 dt.size = sregs->idt.limit; 11496 dt.address = sregs->idt.base; 11497 static_call(kvm_x86_set_idt)(vcpu, &dt); 11498 dt.size = sregs->gdt.limit; 11499 dt.address = sregs->gdt.base; 11500 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11501 11502 vcpu->arch.cr2 = sregs->cr2; 11503 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11504 vcpu->arch.cr3 = sregs->cr3; 11505 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11506 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11507 11508 kvm_set_cr8(vcpu, sregs->cr8); 11509 11510 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11511 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11512 11513 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11514 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11515 vcpu->arch.cr0 = sregs->cr0; 11516 11517 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11518 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11519 11520 if (update_pdptrs) { 11521 idx = srcu_read_lock(&vcpu->kvm->srcu); 11522 if (is_pae_paging(vcpu)) { 11523 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11524 *mmu_reset_needed = 1; 11525 } 11526 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11527 } 11528 11529 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11530 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11531 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11532 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11533 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11534 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11535 11536 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11537 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11538 11539 update_cr8_intercept(vcpu); 11540 11541 /* Older userspace won't unhalt the vcpu on reset. */ 11542 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11543 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11544 !is_protmode(vcpu)) 11545 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11546 11547 return 0; 11548 } 11549 11550 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11551 { 11552 int pending_vec, max_bits; 11553 int mmu_reset_needed = 0; 11554 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11555 11556 if (ret) 11557 return ret; 11558 11559 if (mmu_reset_needed) 11560 kvm_mmu_reset_context(vcpu); 11561 11562 max_bits = KVM_NR_INTERRUPTS; 11563 pending_vec = find_first_bit( 11564 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11565 11566 if (pending_vec < max_bits) { 11567 kvm_queue_interrupt(vcpu, pending_vec, false); 11568 pr_debug("Set back pending irq %d\n", pending_vec); 11569 kvm_make_request(KVM_REQ_EVENT, vcpu); 11570 } 11571 return 0; 11572 } 11573 11574 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11575 { 11576 int mmu_reset_needed = 0; 11577 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11578 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11579 !(sregs2->efer & EFER_LMA); 11580 int i, ret; 11581 11582 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11583 return -EINVAL; 11584 11585 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11586 return -EINVAL; 11587 11588 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11589 &mmu_reset_needed, !valid_pdptrs); 11590 if (ret) 11591 return ret; 11592 11593 if (valid_pdptrs) { 11594 for (i = 0; i < 4 ; i++) 11595 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11596 11597 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11598 mmu_reset_needed = 1; 11599 vcpu->arch.pdptrs_from_userspace = true; 11600 } 11601 if (mmu_reset_needed) 11602 kvm_mmu_reset_context(vcpu); 11603 return 0; 11604 } 11605 11606 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11607 struct kvm_sregs *sregs) 11608 { 11609 int ret; 11610 11611 vcpu_load(vcpu); 11612 ret = __set_sregs(vcpu, sregs); 11613 vcpu_put(vcpu); 11614 return ret; 11615 } 11616 11617 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11618 { 11619 bool set = false; 11620 struct kvm_vcpu *vcpu; 11621 unsigned long i; 11622 11623 if (!enable_apicv) 11624 return; 11625 11626 down_write(&kvm->arch.apicv_update_lock); 11627 11628 kvm_for_each_vcpu(i, vcpu, kvm) { 11629 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11630 set = true; 11631 break; 11632 } 11633 } 11634 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11635 up_write(&kvm->arch.apicv_update_lock); 11636 } 11637 11638 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11639 struct kvm_guest_debug *dbg) 11640 { 11641 unsigned long rflags; 11642 int i, r; 11643 11644 if (vcpu->arch.guest_state_protected) 11645 return -EINVAL; 11646 11647 vcpu_load(vcpu); 11648 11649 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11650 r = -EBUSY; 11651 if (kvm_is_exception_pending(vcpu)) 11652 goto out; 11653 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11654 kvm_queue_exception(vcpu, DB_VECTOR); 11655 else 11656 kvm_queue_exception(vcpu, BP_VECTOR); 11657 } 11658 11659 /* 11660 * Read rflags as long as potentially injected trace flags are still 11661 * filtered out. 11662 */ 11663 rflags = kvm_get_rflags(vcpu); 11664 11665 vcpu->guest_debug = dbg->control; 11666 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11667 vcpu->guest_debug = 0; 11668 11669 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11670 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11671 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11672 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11673 } else { 11674 for (i = 0; i < KVM_NR_DB_REGS; i++) 11675 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11676 } 11677 kvm_update_dr7(vcpu); 11678 11679 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11680 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11681 11682 /* 11683 * Trigger an rflags update that will inject or remove the trace 11684 * flags. 11685 */ 11686 kvm_set_rflags(vcpu, rflags); 11687 11688 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11689 11690 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11691 11692 r = 0; 11693 11694 out: 11695 vcpu_put(vcpu); 11696 return r; 11697 } 11698 11699 /* 11700 * Translate a guest virtual address to a guest physical address. 11701 */ 11702 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11703 struct kvm_translation *tr) 11704 { 11705 unsigned long vaddr = tr->linear_address; 11706 gpa_t gpa; 11707 int idx; 11708 11709 vcpu_load(vcpu); 11710 11711 idx = srcu_read_lock(&vcpu->kvm->srcu); 11712 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11713 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11714 tr->physical_address = gpa; 11715 tr->valid = gpa != INVALID_GPA; 11716 tr->writeable = 1; 11717 tr->usermode = 0; 11718 11719 vcpu_put(vcpu); 11720 return 0; 11721 } 11722 11723 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11724 { 11725 struct fxregs_state *fxsave; 11726 11727 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11728 return 0; 11729 11730 vcpu_load(vcpu); 11731 11732 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11733 memcpy(fpu->fpr, fxsave->st_space, 128); 11734 fpu->fcw = fxsave->cwd; 11735 fpu->fsw = fxsave->swd; 11736 fpu->ftwx = fxsave->twd; 11737 fpu->last_opcode = fxsave->fop; 11738 fpu->last_ip = fxsave->rip; 11739 fpu->last_dp = fxsave->rdp; 11740 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11741 11742 vcpu_put(vcpu); 11743 return 0; 11744 } 11745 11746 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11747 { 11748 struct fxregs_state *fxsave; 11749 11750 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11751 return 0; 11752 11753 vcpu_load(vcpu); 11754 11755 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11756 11757 memcpy(fxsave->st_space, fpu->fpr, 128); 11758 fxsave->cwd = fpu->fcw; 11759 fxsave->swd = fpu->fsw; 11760 fxsave->twd = fpu->ftwx; 11761 fxsave->fop = fpu->last_opcode; 11762 fxsave->rip = fpu->last_ip; 11763 fxsave->rdp = fpu->last_dp; 11764 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11765 11766 vcpu_put(vcpu); 11767 return 0; 11768 } 11769 11770 static void store_regs(struct kvm_vcpu *vcpu) 11771 { 11772 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11773 11774 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11775 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11776 11777 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11778 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11779 11780 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11781 kvm_vcpu_ioctl_x86_get_vcpu_events( 11782 vcpu, &vcpu->run->s.regs.events); 11783 } 11784 11785 static int sync_regs(struct kvm_vcpu *vcpu) 11786 { 11787 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11788 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11789 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11790 } 11791 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11792 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11793 return -EINVAL; 11794 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11795 } 11796 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11797 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11798 vcpu, &vcpu->run->s.regs.events)) 11799 return -EINVAL; 11800 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11801 } 11802 11803 return 0; 11804 } 11805 11806 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11807 { 11808 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11809 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11810 "guest TSC will not be reliable\n"); 11811 11812 if (!kvm->arch.max_vcpu_ids) 11813 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11814 11815 if (id >= kvm->arch.max_vcpu_ids) 11816 return -EINVAL; 11817 11818 return static_call(kvm_x86_vcpu_precreate)(kvm); 11819 } 11820 11821 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11822 { 11823 struct page *page; 11824 int r; 11825 11826 vcpu->arch.last_vmentry_cpu = -1; 11827 vcpu->arch.regs_avail = ~0; 11828 vcpu->arch.regs_dirty = ~0; 11829 11830 kvm_gpc_init(&vcpu->arch.pv_time); 11831 11832 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11833 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11834 else 11835 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11836 11837 r = kvm_mmu_create(vcpu); 11838 if (r < 0) 11839 return r; 11840 11841 if (irqchip_in_kernel(vcpu->kvm)) { 11842 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11843 if (r < 0) 11844 goto fail_mmu_destroy; 11845 11846 /* 11847 * Defer evaluating inhibits until the vCPU is first run, as 11848 * this vCPU will not get notified of any changes until this 11849 * vCPU is visible to other vCPUs (marked online and added to 11850 * the set of vCPUs). Opportunistically mark APICv active as 11851 * VMX in particularly is highly unlikely to have inhibits. 11852 * Ignore the current per-VM APICv state so that vCPU creation 11853 * is guaranteed to run with a deterministic value, the request 11854 * will ensure the vCPU gets the correct state before VM-Entry. 11855 */ 11856 if (enable_apicv) { 11857 vcpu->arch.apic->apicv_active = true; 11858 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11859 } 11860 } else 11861 static_branch_inc(&kvm_has_noapic_vcpu); 11862 11863 r = -ENOMEM; 11864 11865 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11866 if (!page) 11867 goto fail_free_lapic; 11868 vcpu->arch.pio_data = page_address(page); 11869 11870 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11871 GFP_KERNEL_ACCOUNT); 11872 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11873 GFP_KERNEL_ACCOUNT); 11874 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11875 goto fail_free_mce_banks; 11876 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11877 11878 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11879 GFP_KERNEL_ACCOUNT)) 11880 goto fail_free_mce_banks; 11881 11882 if (!alloc_emulate_ctxt(vcpu)) 11883 goto free_wbinvd_dirty_mask; 11884 11885 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11886 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11887 goto free_emulate_ctxt; 11888 } 11889 11890 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11891 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11892 11893 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11894 11895 kvm_async_pf_hash_reset(vcpu); 11896 kvm_pmu_init(vcpu); 11897 11898 vcpu->arch.pending_external_vector = -1; 11899 vcpu->arch.preempted_in_kernel = false; 11900 11901 #if IS_ENABLED(CONFIG_HYPERV) 11902 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11903 #endif 11904 11905 r = static_call(kvm_x86_vcpu_create)(vcpu); 11906 if (r) 11907 goto free_guest_fpu; 11908 11909 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11910 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11911 kvm_xen_init_vcpu(vcpu); 11912 kvm_vcpu_mtrr_init(vcpu); 11913 vcpu_load(vcpu); 11914 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11915 kvm_vcpu_reset(vcpu, false); 11916 kvm_init_mmu(vcpu); 11917 vcpu_put(vcpu); 11918 return 0; 11919 11920 free_guest_fpu: 11921 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11922 free_emulate_ctxt: 11923 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11924 free_wbinvd_dirty_mask: 11925 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11926 fail_free_mce_banks: 11927 kfree(vcpu->arch.mce_banks); 11928 kfree(vcpu->arch.mci_ctl2_banks); 11929 free_page((unsigned long)vcpu->arch.pio_data); 11930 fail_free_lapic: 11931 kvm_free_lapic(vcpu); 11932 fail_mmu_destroy: 11933 kvm_mmu_destroy(vcpu); 11934 return r; 11935 } 11936 11937 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11938 { 11939 struct kvm *kvm = vcpu->kvm; 11940 11941 if (mutex_lock_killable(&vcpu->mutex)) 11942 return; 11943 vcpu_load(vcpu); 11944 kvm_synchronize_tsc(vcpu, 0); 11945 vcpu_put(vcpu); 11946 11947 /* poll control enabled by default */ 11948 vcpu->arch.msr_kvm_poll_control = 1; 11949 11950 mutex_unlock(&vcpu->mutex); 11951 11952 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11953 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11954 KVMCLOCK_SYNC_PERIOD); 11955 } 11956 11957 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11958 { 11959 int idx; 11960 11961 kvmclock_reset(vcpu); 11962 11963 static_call(kvm_x86_vcpu_free)(vcpu); 11964 11965 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11966 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11967 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11968 11969 kvm_xen_destroy_vcpu(vcpu); 11970 kvm_hv_vcpu_uninit(vcpu); 11971 kvm_pmu_destroy(vcpu); 11972 kfree(vcpu->arch.mce_banks); 11973 kfree(vcpu->arch.mci_ctl2_banks); 11974 kvm_free_lapic(vcpu); 11975 idx = srcu_read_lock(&vcpu->kvm->srcu); 11976 kvm_mmu_destroy(vcpu); 11977 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11978 free_page((unsigned long)vcpu->arch.pio_data); 11979 kvfree(vcpu->arch.cpuid_entries); 11980 if (!lapic_in_kernel(vcpu)) 11981 static_branch_dec(&kvm_has_noapic_vcpu); 11982 } 11983 11984 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11985 { 11986 struct kvm_cpuid_entry2 *cpuid_0x1; 11987 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11988 unsigned long new_cr0; 11989 11990 /* 11991 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11992 * to handle side effects. RESET emulation hits those flows and relies 11993 * on emulated/virtualized registers, including those that are loaded 11994 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11995 * to detect improper or missing initialization. 11996 */ 11997 WARN_ON_ONCE(!init_event && 11998 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11999 12000 kvm_lapic_reset(vcpu, init_event); 12001 12002 vcpu->arch.hflags = 0; 12003 12004 vcpu->arch.smi_pending = 0; 12005 vcpu->arch.smi_count = 0; 12006 atomic_set(&vcpu->arch.nmi_queued, 0); 12007 vcpu->arch.nmi_pending = 0; 12008 vcpu->arch.nmi_injected = false; 12009 kvm_clear_interrupt_queue(vcpu); 12010 kvm_clear_exception_queue(vcpu); 12011 12012 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12013 kvm_update_dr0123(vcpu); 12014 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12015 vcpu->arch.dr7 = DR7_FIXED_1; 12016 kvm_update_dr7(vcpu); 12017 12018 vcpu->arch.cr2 = 0; 12019 12020 kvm_make_request(KVM_REQ_EVENT, vcpu); 12021 vcpu->arch.apf.msr_en_val = 0; 12022 vcpu->arch.apf.msr_int_val = 0; 12023 vcpu->arch.st.msr_val = 0; 12024 12025 kvmclock_reset(vcpu); 12026 12027 kvm_clear_async_pf_completion_queue(vcpu); 12028 kvm_async_pf_hash_reset(vcpu); 12029 vcpu->arch.apf.halted = false; 12030 12031 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12032 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12033 12034 /* 12035 * All paths that lead to INIT are required to load the guest's 12036 * FPU state (because most paths are buried in KVM_RUN). 12037 */ 12038 if (init_event) 12039 kvm_put_guest_fpu(vcpu); 12040 12041 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12042 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12043 12044 if (init_event) 12045 kvm_load_guest_fpu(vcpu); 12046 } 12047 12048 if (!init_event) { 12049 kvm_pmu_reset(vcpu); 12050 vcpu->arch.smbase = 0x30000; 12051 12052 vcpu->arch.msr_misc_features_enables = 0; 12053 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12054 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12055 12056 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12057 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12058 } 12059 12060 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12061 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12062 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12063 12064 /* 12065 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12066 * if no CPUID match is found. Note, it's impossible to get a match at 12067 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12068 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12069 * on RESET. But, go through the motions in case that's ever remedied. 12070 */ 12071 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12072 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12073 12074 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12075 12076 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12077 kvm_rip_write(vcpu, 0xfff0); 12078 12079 vcpu->arch.cr3 = 0; 12080 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12081 12082 /* 12083 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12084 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12085 * (or qualify) that with a footnote stating that CD/NW are preserved. 12086 */ 12087 new_cr0 = X86_CR0_ET; 12088 if (init_event) 12089 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12090 else 12091 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12092 12093 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12094 static_call(kvm_x86_set_cr4)(vcpu, 0); 12095 static_call(kvm_x86_set_efer)(vcpu, 0); 12096 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12097 12098 /* 12099 * On the standard CR0/CR4/EFER modification paths, there are several 12100 * complex conditions determining whether the MMU has to be reset and/or 12101 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12102 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12103 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12104 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12105 */ 12106 if (old_cr0 & X86_CR0_PG) { 12107 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12108 kvm_mmu_reset_context(vcpu); 12109 } 12110 12111 /* 12112 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12113 * APM states the TLBs are untouched by INIT, but it also states that 12114 * the TLBs are flushed on "External initialization of the processor." 12115 * Flush the guest TLB regardless of vendor, there is no meaningful 12116 * benefit in relying on the guest to flush the TLB immediately after 12117 * INIT. A spurious TLB flush is benign and likely negligible from a 12118 * performance perspective. 12119 */ 12120 if (init_event) 12121 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12122 } 12123 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12124 12125 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12126 { 12127 struct kvm_segment cs; 12128 12129 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12130 cs.selector = vector << 8; 12131 cs.base = vector << 12; 12132 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12133 kvm_rip_write(vcpu, 0); 12134 } 12135 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12136 12137 int kvm_arch_hardware_enable(void) 12138 { 12139 struct kvm *kvm; 12140 struct kvm_vcpu *vcpu; 12141 unsigned long i; 12142 int ret; 12143 u64 local_tsc; 12144 u64 max_tsc = 0; 12145 bool stable, backwards_tsc = false; 12146 12147 kvm_user_return_msr_cpu_online(); 12148 ret = static_call(kvm_x86_hardware_enable)(); 12149 if (ret != 0) 12150 return ret; 12151 12152 local_tsc = rdtsc(); 12153 stable = !kvm_check_tsc_unstable(); 12154 list_for_each_entry(kvm, &vm_list, vm_list) { 12155 kvm_for_each_vcpu(i, vcpu, kvm) { 12156 if (!stable && vcpu->cpu == smp_processor_id()) 12157 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12158 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12159 backwards_tsc = true; 12160 if (vcpu->arch.last_host_tsc > max_tsc) 12161 max_tsc = vcpu->arch.last_host_tsc; 12162 } 12163 } 12164 } 12165 12166 /* 12167 * Sometimes, even reliable TSCs go backwards. This happens on 12168 * platforms that reset TSC during suspend or hibernate actions, but 12169 * maintain synchronization. We must compensate. Fortunately, we can 12170 * detect that condition here, which happens early in CPU bringup, 12171 * before any KVM threads can be running. Unfortunately, we can't 12172 * bring the TSCs fully up to date with real time, as we aren't yet far 12173 * enough into CPU bringup that we know how much real time has actually 12174 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12175 * variables that haven't been updated yet. 12176 * 12177 * So we simply find the maximum observed TSC above, then record the 12178 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12179 * the adjustment will be applied. Note that we accumulate 12180 * adjustments, in case multiple suspend cycles happen before some VCPU 12181 * gets a chance to run again. In the event that no KVM threads get a 12182 * chance to run, we will miss the entire elapsed period, as we'll have 12183 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12184 * loose cycle time. This isn't too big a deal, since the loss will be 12185 * uniform across all VCPUs (not to mention the scenario is extremely 12186 * unlikely). It is possible that a second hibernate recovery happens 12187 * much faster than a first, causing the observed TSC here to be 12188 * smaller; this would require additional padding adjustment, which is 12189 * why we set last_host_tsc to the local tsc observed here. 12190 * 12191 * N.B. - this code below runs only on platforms with reliable TSC, 12192 * as that is the only way backwards_tsc is set above. Also note 12193 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12194 * have the same delta_cyc adjustment applied if backwards_tsc 12195 * is detected. Note further, this adjustment is only done once, 12196 * as we reset last_host_tsc on all VCPUs to stop this from being 12197 * called multiple times (one for each physical CPU bringup). 12198 * 12199 * Platforms with unreliable TSCs don't have to deal with this, they 12200 * will be compensated by the logic in vcpu_load, which sets the TSC to 12201 * catchup mode. This will catchup all VCPUs to real time, but cannot 12202 * guarantee that they stay in perfect synchronization. 12203 */ 12204 if (backwards_tsc) { 12205 u64 delta_cyc = max_tsc - local_tsc; 12206 list_for_each_entry(kvm, &vm_list, vm_list) { 12207 kvm->arch.backwards_tsc_observed = true; 12208 kvm_for_each_vcpu(i, vcpu, kvm) { 12209 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12210 vcpu->arch.last_host_tsc = local_tsc; 12211 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12212 } 12213 12214 /* 12215 * We have to disable TSC offset matching.. if you were 12216 * booting a VM while issuing an S4 host suspend.... 12217 * you may have some problem. Solving this issue is 12218 * left as an exercise to the reader. 12219 */ 12220 kvm->arch.last_tsc_nsec = 0; 12221 kvm->arch.last_tsc_write = 0; 12222 } 12223 12224 } 12225 return 0; 12226 } 12227 12228 void kvm_arch_hardware_disable(void) 12229 { 12230 static_call(kvm_x86_hardware_disable)(); 12231 drop_user_return_notifiers(); 12232 } 12233 12234 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 12235 { 12236 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 12237 12238 #define __KVM_X86_OP(func) \ 12239 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 12240 #define KVM_X86_OP(func) \ 12241 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 12242 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 12243 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 12244 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 12245 (void *)__static_call_return0); 12246 #include <asm/kvm-x86-ops.h> 12247 #undef __KVM_X86_OP 12248 12249 kvm_pmu_ops_update(ops->pmu_ops); 12250 } 12251 12252 int kvm_arch_hardware_setup(void *opaque) 12253 { 12254 struct kvm_x86_init_ops *ops = opaque; 12255 int r; 12256 12257 rdmsrl_safe(MSR_EFER, &host_efer); 12258 12259 if (boot_cpu_has(X86_FEATURE_XSAVES)) 12260 rdmsrl(MSR_IA32_XSS, host_xss); 12261 12262 kvm_init_pmu_capability(); 12263 12264 r = ops->hardware_setup(); 12265 if (r != 0) 12266 return r; 12267 12268 kvm_ops_update(ops); 12269 12270 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 12271 12272 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 12273 kvm_caps.supported_xss = 0; 12274 12275 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 12276 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 12277 #undef __kvm_cpu_cap_has 12278 12279 if (kvm_caps.has_tsc_control) { 12280 /* 12281 * Make sure the user can only configure tsc_khz values that 12282 * fit into a signed integer. 12283 * A min value is not calculated because it will always 12284 * be 1 on all machines. 12285 */ 12286 u64 max = min(0x7fffffffULL, 12287 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 12288 kvm_caps.max_guest_tsc_khz = max; 12289 } 12290 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 12291 kvm_init_msr_list(); 12292 return 0; 12293 } 12294 12295 void kvm_arch_hardware_unsetup(void) 12296 { 12297 kvm_unregister_perf_callbacks(); 12298 12299 static_call(kvm_x86_hardware_unsetup)(); 12300 } 12301 12302 int kvm_arch_check_processor_compat(void *opaque) 12303 { 12304 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 12305 struct kvm_x86_init_ops *ops = opaque; 12306 12307 WARN_ON(!irqs_disabled()); 12308 12309 if (__cr4_reserved_bits(cpu_has, c) != 12310 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 12311 return -EIO; 12312 12313 return ops->check_processor_compatibility(); 12314 } 12315 12316 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12317 { 12318 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12319 } 12320 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 12321 12322 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12323 { 12324 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12325 } 12326 12327 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12328 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12329 12330 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12331 { 12332 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12333 12334 vcpu->arch.l1tf_flush_l1d = true; 12335 if (pmu->version && unlikely(pmu->event_count)) { 12336 pmu->need_cleanup = true; 12337 kvm_make_request(KVM_REQ_PMU, vcpu); 12338 } 12339 static_call(kvm_x86_sched_in)(vcpu, cpu); 12340 } 12341 12342 void kvm_arch_free_vm(struct kvm *kvm) 12343 { 12344 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12345 __kvm_arch_free_vm(kvm); 12346 } 12347 12348 12349 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12350 { 12351 int ret; 12352 unsigned long flags; 12353 12354 if (type) 12355 return -EINVAL; 12356 12357 ret = kvm_page_track_init(kvm); 12358 if (ret) 12359 goto out; 12360 12361 ret = kvm_mmu_init_vm(kvm); 12362 if (ret) 12363 goto out_page_track; 12364 12365 ret = static_call(kvm_x86_vm_init)(kvm); 12366 if (ret) 12367 goto out_uninit_mmu; 12368 12369 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12370 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12371 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12372 12373 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12374 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12375 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12376 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12377 &kvm->arch.irq_sources_bitmap); 12378 12379 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12380 mutex_init(&kvm->arch.apic_map_lock); 12381 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12382 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12383 12384 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12385 pvclock_update_vm_gtod_copy(kvm); 12386 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12387 12388 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12389 kvm->arch.guest_can_read_msr_platform_info = true; 12390 kvm->arch.enable_pmu = enable_pmu; 12391 12392 #if IS_ENABLED(CONFIG_HYPERV) 12393 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12394 kvm->arch.hv_root_tdp = INVALID_PAGE; 12395 #endif 12396 12397 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12398 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12399 12400 kvm_apicv_init(kvm); 12401 kvm_hv_init_vm(kvm); 12402 kvm_xen_init_vm(kvm); 12403 12404 return 0; 12405 12406 out_uninit_mmu: 12407 kvm_mmu_uninit_vm(kvm); 12408 out_page_track: 12409 kvm_page_track_cleanup(kvm); 12410 out: 12411 return ret; 12412 } 12413 12414 int kvm_arch_post_init_vm(struct kvm *kvm) 12415 { 12416 return kvm_mmu_post_init_vm(kvm); 12417 } 12418 12419 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12420 { 12421 vcpu_load(vcpu); 12422 kvm_mmu_unload(vcpu); 12423 vcpu_put(vcpu); 12424 } 12425 12426 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12427 { 12428 unsigned long i; 12429 struct kvm_vcpu *vcpu; 12430 12431 kvm_for_each_vcpu(i, vcpu, kvm) { 12432 kvm_clear_async_pf_completion_queue(vcpu); 12433 kvm_unload_vcpu_mmu(vcpu); 12434 } 12435 } 12436 12437 void kvm_arch_sync_events(struct kvm *kvm) 12438 { 12439 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12440 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12441 kvm_free_pit(kvm); 12442 } 12443 12444 /** 12445 * __x86_set_memory_region: Setup KVM internal memory slot 12446 * 12447 * @kvm: the kvm pointer to the VM. 12448 * @id: the slot ID to setup. 12449 * @gpa: the GPA to install the slot (unused when @size == 0). 12450 * @size: the size of the slot. Set to zero to uninstall a slot. 12451 * 12452 * This function helps to setup a KVM internal memory slot. Specify 12453 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12454 * slot. The return code can be one of the following: 12455 * 12456 * HVA: on success (uninstall will return a bogus HVA) 12457 * -errno: on error 12458 * 12459 * The caller should always use IS_ERR() to check the return value 12460 * before use. Note, the KVM internal memory slots are guaranteed to 12461 * remain valid and unchanged until the VM is destroyed, i.e., the 12462 * GPA->HVA translation will not change. However, the HVA is a user 12463 * address, i.e. its accessibility is not guaranteed, and must be 12464 * accessed via __copy_{to,from}_user(). 12465 */ 12466 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12467 u32 size) 12468 { 12469 int i, r; 12470 unsigned long hva, old_npages; 12471 struct kvm_memslots *slots = kvm_memslots(kvm); 12472 struct kvm_memory_slot *slot; 12473 12474 /* Called with kvm->slots_lock held. */ 12475 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12476 return ERR_PTR_USR(-EINVAL); 12477 12478 slot = id_to_memslot(slots, id); 12479 if (size) { 12480 if (slot && slot->npages) 12481 return ERR_PTR_USR(-EEXIST); 12482 12483 /* 12484 * MAP_SHARED to prevent internal slot pages from being moved 12485 * by fork()/COW. 12486 */ 12487 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12488 MAP_SHARED | MAP_ANONYMOUS, 0); 12489 if (IS_ERR((void *)hva)) 12490 return (void __user *)hva; 12491 } else { 12492 if (!slot || !slot->npages) 12493 return NULL; 12494 12495 old_npages = slot->npages; 12496 hva = slot->userspace_addr; 12497 } 12498 12499 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12500 struct kvm_userspace_memory_region m; 12501 12502 m.slot = id | (i << 16); 12503 m.flags = 0; 12504 m.guest_phys_addr = gpa; 12505 m.userspace_addr = hva; 12506 m.memory_size = size; 12507 r = __kvm_set_memory_region(kvm, &m); 12508 if (r < 0) 12509 return ERR_PTR_USR(r); 12510 } 12511 12512 if (!size) 12513 vm_munmap(hva, old_npages * PAGE_SIZE); 12514 12515 return (void __user *)hva; 12516 } 12517 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12518 12519 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12520 { 12521 kvm_mmu_pre_destroy_vm(kvm); 12522 } 12523 12524 void kvm_arch_destroy_vm(struct kvm *kvm) 12525 { 12526 if (current->mm == kvm->mm) { 12527 /* 12528 * Free memory regions allocated on behalf of userspace, 12529 * unless the memory map has changed due to process exit 12530 * or fd copying. 12531 */ 12532 mutex_lock(&kvm->slots_lock); 12533 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12534 0, 0); 12535 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12536 0, 0); 12537 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12538 mutex_unlock(&kvm->slots_lock); 12539 } 12540 kvm_unload_vcpu_mmus(kvm); 12541 static_call_cond(kvm_x86_vm_destroy)(kvm); 12542 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12543 kvm_pic_destroy(kvm); 12544 kvm_ioapic_destroy(kvm); 12545 kvm_destroy_vcpus(kvm); 12546 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12547 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12548 kvm_mmu_uninit_vm(kvm); 12549 kvm_page_track_cleanup(kvm); 12550 kvm_xen_destroy_vm(kvm); 12551 kvm_hv_destroy_vm(kvm); 12552 } 12553 12554 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12555 { 12556 int i; 12557 12558 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12559 kvfree(slot->arch.rmap[i]); 12560 slot->arch.rmap[i] = NULL; 12561 } 12562 } 12563 12564 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12565 { 12566 int i; 12567 12568 memslot_rmap_free(slot); 12569 12570 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12571 kvfree(slot->arch.lpage_info[i - 1]); 12572 slot->arch.lpage_info[i - 1] = NULL; 12573 } 12574 12575 kvm_page_track_free_memslot(slot); 12576 } 12577 12578 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12579 { 12580 const int sz = sizeof(*slot->arch.rmap[0]); 12581 int i; 12582 12583 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12584 int level = i + 1; 12585 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12586 12587 if (slot->arch.rmap[i]) 12588 continue; 12589 12590 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12591 if (!slot->arch.rmap[i]) { 12592 memslot_rmap_free(slot); 12593 return -ENOMEM; 12594 } 12595 } 12596 12597 return 0; 12598 } 12599 12600 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12601 struct kvm_memory_slot *slot) 12602 { 12603 unsigned long npages = slot->npages; 12604 int i, r; 12605 12606 /* 12607 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12608 * old arrays will be freed by __kvm_set_memory_region() if installing 12609 * the new memslot is successful. 12610 */ 12611 memset(&slot->arch, 0, sizeof(slot->arch)); 12612 12613 if (kvm_memslots_have_rmaps(kvm)) { 12614 r = memslot_rmap_alloc(slot, npages); 12615 if (r) 12616 return r; 12617 } 12618 12619 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12620 struct kvm_lpage_info *linfo; 12621 unsigned long ugfn; 12622 int lpages; 12623 int level = i + 1; 12624 12625 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12626 12627 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12628 if (!linfo) 12629 goto out_free; 12630 12631 slot->arch.lpage_info[i - 1] = linfo; 12632 12633 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12634 linfo[0].disallow_lpage = 1; 12635 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12636 linfo[lpages - 1].disallow_lpage = 1; 12637 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12638 /* 12639 * If the gfn and userspace address are not aligned wrt each 12640 * other, disable large page support for this slot. 12641 */ 12642 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12643 unsigned long j; 12644 12645 for (j = 0; j < lpages; ++j) 12646 linfo[j].disallow_lpage = 1; 12647 } 12648 } 12649 12650 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12651 goto out_free; 12652 12653 return 0; 12654 12655 out_free: 12656 memslot_rmap_free(slot); 12657 12658 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12659 kvfree(slot->arch.lpage_info[i - 1]); 12660 slot->arch.lpage_info[i - 1] = NULL; 12661 } 12662 return -ENOMEM; 12663 } 12664 12665 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12666 { 12667 struct kvm_vcpu *vcpu; 12668 unsigned long i; 12669 12670 /* 12671 * memslots->generation has been incremented. 12672 * mmio generation may have reached its maximum value. 12673 */ 12674 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12675 12676 /* Force re-initialization of steal_time cache */ 12677 kvm_for_each_vcpu(i, vcpu, kvm) 12678 kvm_vcpu_kick(vcpu); 12679 } 12680 12681 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12682 const struct kvm_memory_slot *old, 12683 struct kvm_memory_slot *new, 12684 enum kvm_mr_change change) 12685 { 12686 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12687 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12688 return -EINVAL; 12689 12690 return kvm_alloc_memslot_metadata(kvm, new); 12691 } 12692 12693 if (change == KVM_MR_FLAGS_ONLY) 12694 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12695 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12696 return -EIO; 12697 12698 return 0; 12699 } 12700 12701 12702 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12703 { 12704 struct kvm_arch *ka = &kvm->arch; 12705 12706 if (!kvm_x86_ops.cpu_dirty_log_size) 12707 return; 12708 12709 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12710 (!enable && --ka->cpu_dirty_logging_count == 0)) 12711 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12712 12713 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12714 } 12715 12716 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12717 struct kvm_memory_slot *old, 12718 const struct kvm_memory_slot *new, 12719 enum kvm_mr_change change) 12720 { 12721 u32 old_flags = old ? old->flags : 0; 12722 u32 new_flags = new ? new->flags : 0; 12723 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12724 12725 /* 12726 * Update CPU dirty logging if dirty logging is being toggled. This 12727 * applies to all operations. 12728 */ 12729 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12730 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12731 12732 /* 12733 * Nothing more to do for RO slots (which can't be dirtied and can't be 12734 * made writable) or CREATE/MOVE/DELETE of a slot. 12735 * 12736 * For a memslot with dirty logging disabled: 12737 * CREATE: No dirty mappings will already exist. 12738 * MOVE/DELETE: The old mappings will already have been cleaned up by 12739 * kvm_arch_flush_shadow_memslot() 12740 * 12741 * For a memslot with dirty logging enabled: 12742 * CREATE: No shadow pages exist, thus nothing to write-protect 12743 * and no dirty bits to clear. 12744 * MOVE/DELETE: The old mappings will already have been cleaned up by 12745 * kvm_arch_flush_shadow_memslot(). 12746 */ 12747 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12748 return; 12749 12750 /* 12751 * READONLY and non-flags changes were filtered out above, and the only 12752 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12753 * logging isn't being toggled on or off. 12754 */ 12755 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12756 return; 12757 12758 if (!log_dirty_pages) { 12759 /* 12760 * Dirty logging tracks sptes in 4k granularity, meaning that 12761 * large sptes have to be split. If live migration succeeds, 12762 * the guest in the source machine will be destroyed and large 12763 * sptes will be created in the destination. However, if the 12764 * guest continues to run in the source machine (for example if 12765 * live migration fails), small sptes will remain around and 12766 * cause bad performance. 12767 * 12768 * Scan sptes if dirty logging has been stopped, dropping those 12769 * which can be collapsed into a single large-page spte. Later 12770 * page faults will create the large-page sptes. 12771 */ 12772 kvm_mmu_zap_collapsible_sptes(kvm, new); 12773 } else { 12774 /* 12775 * Initially-all-set does not require write protecting any page, 12776 * because they're all assumed to be dirty. 12777 */ 12778 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12779 return; 12780 12781 if (READ_ONCE(eager_page_split)) 12782 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12783 12784 if (kvm_x86_ops.cpu_dirty_log_size) { 12785 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12786 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12787 } else { 12788 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12789 } 12790 12791 /* 12792 * Unconditionally flush the TLBs after enabling dirty logging. 12793 * A flush is almost always going to be necessary (see below), 12794 * and unconditionally flushing allows the helpers to omit 12795 * the subtly complex checks when removing write access. 12796 * 12797 * Do the flush outside of mmu_lock to reduce the amount of 12798 * time mmu_lock is held. Flushing after dropping mmu_lock is 12799 * safe as KVM only needs to guarantee the slot is fully 12800 * write-protected before returning to userspace, i.e. before 12801 * userspace can consume the dirty status. 12802 * 12803 * Flushing outside of mmu_lock requires KVM to be careful when 12804 * making decisions based on writable status of an SPTE, e.g. a 12805 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12806 * 12807 * Specifically, KVM also write-protects guest page tables to 12808 * monitor changes when using shadow paging, and must guarantee 12809 * no CPUs can write to those page before mmu_lock is dropped. 12810 * Because CPUs may have stale TLB entries at this point, a 12811 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12812 * 12813 * KVM also allows making SPTES writable outside of mmu_lock, 12814 * e.g. to allow dirty logging without taking mmu_lock. 12815 * 12816 * To handle these scenarios, KVM uses a separate software-only 12817 * bit (MMU-writable) to track if a SPTE is !writable due to 12818 * a guest page table being write-protected (KVM clears the 12819 * MMU-writable flag when write-protecting for shadow paging). 12820 * 12821 * The use of MMU-writable is also the primary motivation for 12822 * the unconditional flush. Because KVM must guarantee that a 12823 * CPU doesn't contain stale, writable TLB entries for a 12824 * !MMU-writable SPTE, KVM must flush if it encounters any 12825 * MMU-writable SPTE regardless of whether the actual hardware 12826 * writable bit was set. I.e. KVM is almost guaranteed to need 12827 * to flush, while unconditionally flushing allows the "remove 12828 * write access" helpers to ignore MMU-writable entirely. 12829 * 12830 * See is_writable_pte() for more details (the case involving 12831 * access-tracked SPTEs is particularly relevant). 12832 */ 12833 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12834 } 12835 } 12836 12837 void kvm_arch_commit_memory_region(struct kvm *kvm, 12838 struct kvm_memory_slot *old, 12839 const struct kvm_memory_slot *new, 12840 enum kvm_mr_change change) 12841 { 12842 if (!kvm->arch.n_requested_mmu_pages && 12843 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12844 unsigned long nr_mmu_pages; 12845 12846 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12847 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12848 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12849 } 12850 12851 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12852 12853 /* Free the arrays associated with the old memslot. */ 12854 if (change == KVM_MR_MOVE) 12855 kvm_arch_free_memslot(kvm, old); 12856 } 12857 12858 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12859 { 12860 kvm_mmu_zap_all(kvm); 12861 } 12862 12863 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12864 struct kvm_memory_slot *slot) 12865 { 12866 kvm_page_track_flush_slot(kvm, slot); 12867 } 12868 12869 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12870 { 12871 return (is_guest_mode(vcpu) && 12872 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12873 } 12874 12875 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12876 { 12877 if (!list_empty_careful(&vcpu->async_pf.done)) 12878 return true; 12879 12880 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12881 kvm_apic_init_sipi_allowed(vcpu)) 12882 return true; 12883 12884 if (vcpu->arch.pv.pv_unhalted) 12885 return true; 12886 12887 if (kvm_is_exception_pending(vcpu)) 12888 return true; 12889 12890 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12891 (vcpu->arch.nmi_pending && 12892 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12893 return true; 12894 12895 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12896 (vcpu->arch.smi_pending && 12897 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12898 return true; 12899 12900 if (kvm_arch_interrupt_allowed(vcpu) && 12901 (kvm_cpu_has_interrupt(vcpu) || 12902 kvm_guest_apic_has_interrupt(vcpu))) 12903 return true; 12904 12905 if (kvm_hv_has_stimer_pending(vcpu)) 12906 return true; 12907 12908 if (is_guest_mode(vcpu) && 12909 kvm_x86_ops.nested_ops->has_events && 12910 kvm_x86_ops.nested_ops->has_events(vcpu)) 12911 return true; 12912 12913 if (kvm_xen_has_pending_events(vcpu)) 12914 return true; 12915 12916 return false; 12917 } 12918 12919 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12920 { 12921 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12922 } 12923 12924 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12925 { 12926 if (kvm_vcpu_apicv_active(vcpu) && 12927 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12928 return true; 12929 12930 return false; 12931 } 12932 12933 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12934 { 12935 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12936 return true; 12937 12938 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12939 kvm_test_request(KVM_REQ_SMI, vcpu) || 12940 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12941 return true; 12942 12943 return kvm_arch_dy_has_pending_interrupt(vcpu); 12944 } 12945 12946 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12947 { 12948 if (vcpu->arch.guest_state_protected) 12949 return true; 12950 12951 return vcpu->arch.preempted_in_kernel; 12952 } 12953 12954 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12955 { 12956 return kvm_rip_read(vcpu); 12957 } 12958 12959 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12960 { 12961 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12962 } 12963 12964 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12965 { 12966 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12967 } 12968 12969 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12970 { 12971 /* Can't read the RIP when guest state is protected, just return 0 */ 12972 if (vcpu->arch.guest_state_protected) 12973 return 0; 12974 12975 if (is_64_bit_mode(vcpu)) 12976 return kvm_rip_read(vcpu); 12977 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12978 kvm_rip_read(vcpu)); 12979 } 12980 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12981 12982 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12983 { 12984 return kvm_get_linear_rip(vcpu) == linear_rip; 12985 } 12986 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12987 12988 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12989 { 12990 unsigned long rflags; 12991 12992 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12993 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12994 rflags &= ~X86_EFLAGS_TF; 12995 return rflags; 12996 } 12997 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12998 12999 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13000 { 13001 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13002 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13003 rflags |= X86_EFLAGS_TF; 13004 static_call(kvm_x86_set_rflags)(vcpu, rflags); 13005 } 13006 13007 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13008 { 13009 __kvm_set_rflags(vcpu, rflags); 13010 kvm_make_request(KVM_REQ_EVENT, vcpu); 13011 } 13012 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13013 13014 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13015 { 13016 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13017 13018 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13019 } 13020 13021 static inline u32 kvm_async_pf_next_probe(u32 key) 13022 { 13023 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13024 } 13025 13026 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13027 { 13028 u32 key = kvm_async_pf_hash_fn(gfn); 13029 13030 while (vcpu->arch.apf.gfns[key] != ~0) 13031 key = kvm_async_pf_next_probe(key); 13032 13033 vcpu->arch.apf.gfns[key] = gfn; 13034 } 13035 13036 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13037 { 13038 int i; 13039 u32 key = kvm_async_pf_hash_fn(gfn); 13040 13041 for (i = 0; i < ASYNC_PF_PER_VCPU && 13042 (vcpu->arch.apf.gfns[key] != gfn && 13043 vcpu->arch.apf.gfns[key] != ~0); i++) 13044 key = kvm_async_pf_next_probe(key); 13045 13046 return key; 13047 } 13048 13049 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13050 { 13051 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13052 } 13053 13054 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13055 { 13056 u32 i, j, k; 13057 13058 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13059 13060 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13061 return; 13062 13063 while (true) { 13064 vcpu->arch.apf.gfns[i] = ~0; 13065 do { 13066 j = kvm_async_pf_next_probe(j); 13067 if (vcpu->arch.apf.gfns[j] == ~0) 13068 return; 13069 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13070 /* 13071 * k lies cyclically in ]i,j] 13072 * | i.k.j | 13073 * |....j i.k.| or |.k..j i...| 13074 */ 13075 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13076 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13077 i = j; 13078 } 13079 } 13080 13081 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13082 { 13083 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13084 13085 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13086 sizeof(reason)); 13087 } 13088 13089 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13090 { 13091 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13092 13093 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13094 &token, offset, sizeof(token)); 13095 } 13096 13097 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13098 { 13099 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13100 u32 val; 13101 13102 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13103 &val, offset, sizeof(val))) 13104 return false; 13105 13106 return !val; 13107 } 13108 13109 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13110 { 13111 13112 if (!kvm_pv_async_pf_enabled(vcpu)) 13113 return false; 13114 13115 if (vcpu->arch.apf.send_user_only && 13116 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13117 return false; 13118 13119 if (is_guest_mode(vcpu)) { 13120 /* 13121 * L1 needs to opt into the special #PF vmexits that are 13122 * used to deliver async page faults. 13123 */ 13124 return vcpu->arch.apf.delivery_as_pf_vmexit; 13125 } else { 13126 /* 13127 * Play it safe in case the guest temporarily disables paging. 13128 * The real mode IDT in particular is unlikely to have a #PF 13129 * exception setup. 13130 */ 13131 return is_paging(vcpu); 13132 } 13133 } 13134 13135 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13136 { 13137 if (unlikely(!lapic_in_kernel(vcpu) || 13138 kvm_event_needs_reinjection(vcpu) || 13139 kvm_is_exception_pending(vcpu))) 13140 return false; 13141 13142 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13143 return false; 13144 13145 /* 13146 * If interrupts are off we cannot even use an artificial 13147 * halt state. 13148 */ 13149 return kvm_arch_interrupt_allowed(vcpu); 13150 } 13151 13152 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13153 struct kvm_async_pf *work) 13154 { 13155 struct x86_exception fault; 13156 13157 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13158 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13159 13160 if (kvm_can_deliver_async_pf(vcpu) && 13161 !apf_put_user_notpresent(vcpu)) { 13162 fault.vector = PF_VECTOR; 13163 fault.error_code_valid = true; 13164 fault.error_code = 0; 13165 fault.nested_page_fault = false; 13166 fault.address = work->arch.token; 13167 fault.async_page_fault = true; 13168 kvm_inject_page_fault(vcpu, &fault); 13169 return true; 13170 } else { 13171 /* 13172 * It is not possible to deliver a paravirtualized asynchronous 13173 * page fault, but putting the guest in an artificial halt state 13174 * can be beneficial nevertheless: if an interrupt arrives, we 13175 * can deliver it timely and perhaps the guest will schedule 13176 * another process. When the instruction that triggered a page 13177 * fault is retried, hopefully the page will be ready in the host. 13178 */ 13179 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13180 return false; 13181 } 13182 } 13183 13184 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13185 struct kvm_async_pf *work) 13186 { 13187 struct kvm_lapic_irq irq = { 13188 .delivery_mode = APIC_DM_FIXED, 13189 .vector = vcpu->arch.apf.vec 13190 }; 13191 13192 if (work->wakeup_all) 13193 work->arch.token = ~0; /* broadcast wakeup */ 13194 else 13195 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13196 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13197 13198 if ((work->wakeup_all || work->notpresent_injected) && 13199 kvm_pv_async_pf_enabled(vcpu) && 13200 !apf_put_user_ready(vcpu, work->arch.token)) { 13201 vcpu->arch.apf.pageready_pending = true; 13202 kvm_apic_set_irq(vcpu, &irq, NULL); 13203 } 13204 13205 vcpu->arch.apf.halted = false; 13206 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13207 } 13208 13209 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13210 { 13211 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13212 if (!vcpu->arch.apf.pageready_pending) 13213 kvm_vcpu_kick(vcpu); 13214 } 13215 13216 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13217 { 13218 if (!kvm_pv_async_pf_enabled(vcpu)) 13219 return true; 13220 else 13221 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13222 } 13223 13224 void kvm_arch_start_assignment(struct kvm *kvm) 13225 { 13226 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13227 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13228 } 13229 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13230 13231 void kvm_arch_end_assignment(struct kvm *kvm) 13232 { 13233 atomic_dec(&kvm->arch.assigned_device_count); 13234 } 13235 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13236 13237 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13238 { 13239 return arch_atomic_read(&kvm->arch.assigned_device_count); 13240 } 13241 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13242 13243 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13244 { 13245 atomic_inc(&kvm->arch.noncoherent_dma_count); 13246 } 13247 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13248 13249 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13250 { 13251 atomic_dec(&kvm->arch.noncoherent_dma_count); 13252 } 13253 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13254 13255 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13256 { 13257 return atomic_read(&kvm->arch.noncoherent_dma_count); 13258 } 13259 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13260 13261 bool kvm_arch_has_irq_bypass(void) 13262 { 13263 return true; 13264 } 13265 13266 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13267 struct irq_bypass_producer *prod) 13268 { 13269 struct kvm_kernel_irqfd *irqfd = 13270 container_of(cons, struct kvm_kernel_irqfd, consumer); 13271 int ret; 13272 13273 irqfd->producer = prod; 13274 kvm_arch_start_assignment(irqfd->kvm); 13275 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13276 prod->irq, irqfd->gsi, 1); 13277 13278 if (ret) 13279 kvm_arch_end_assignment(irqfd->kvm); 13280 13281 return ret; 13282 } 13283 13284 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13285 struct irq_bypass_producer *prod) 13286 { 13287 int ret; 13288 struct kvm_kernel_irqfd *irqfd = 13289 container_of(cons, struct kvm_kernel_irqfd, consumer); 13290 13291 WARN_ON(irqfd->producer != prod); 13292 irqfd->producer = NULL; 13293 13294 /* 13295 * When producer of consumer is unregistered, we change back to 13296 * remapped mode, so we can re-use the current implementation 13297 * when the irq is masked/disabled or the consumer side (KVM 13298 * int this case doesn't want to receive the interrupts. 13299 */ 13300 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13301 if (ret) 13302 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13303 " fails: %d\n", irqfd->consumer.token, ret); 13304 13305 kvm_arch_end_assignment(irqfd->kvm); 13306 } 13307 13308 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13309 uint32_t guest_irq, bool set) 13310 { 13311 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13312 } 13313 13314 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13315 struct kvm_kernel_irq_routing_entry *new) 13316 { 13317 if (new->type != KVM_IRQ_ROUTING_MSI) 13318 return true; 13319 13320 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13321 } 13322 13323 bool kvm_vector_hashing_enabled(void) 13324 { 13325 return vector_hashing; 13326 } 13327 13328 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13329 { 13330 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13331 } 13332 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13333 13334 13335 int kvm_spec_ctrl_test_value(u64 value) 13336 { 13337 /* 13338 * test that setting IA32_SPEC_CTRL to given value 13339 * is allowed by the host processor 13340 */ 13341 13342 u64 saved_value; 13343 unsigned long flags; 13344 int ret = 0; 13345 13346 local_irq_save(flags); 13347 13348 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13349 ret = 1; 13350 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13351 ret = 1; 13352 else 13353 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13354 13355 local_irq_restore(flags); 13356 13357 return ret; 13358 } 13359 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13360 13361 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13362 { 13363 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13364 struct x86_exception fault; 13365 u64 access = error_code & 13366 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13367 13368 if (!(error_code & PFERR_PRESENT_MASK) || 13369 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13370 /* 13371 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13372 * tables probably do not match the TLB. Just proceed 13373 * with the error code that the processor gave. 13374 */ 13375 fault.vector = PF_VECTOR; 13376 fault.error_code_valid = true; 13377 fault.error_code = error_code; 13378 fault.nested_page_fault = false; 13379 fault.address = gva; 13380 fault.async_page_fault = false; 13381 } 13382 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13383 } 13384 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13385 13386 /* 13387 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13388 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13389 * indicates whether exit to userspace is needed. 13390 */ 13391 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13392 struct x86_exception *e) 13393 { 13394 if (r == X86EMUL_PROPAGATE_FAULT) { 13395 kvm_inject_emulated_page_fault(vcpu, e); 13396 return 1; 13397 } 13398 13399 /* 13400 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13401 * while handling a VMX instruction KVM could've handled the request 13402 * correctly by exiting to userspace and performing I/O but there 13403 * doesn't seem to be a real use-case behind such requests, just return 13404 * KVM_EXIT_INTERNAL_ERROR for now. 13405 */ 13406 kvm_prepare_emulation_failure_exit(vcpu); 13407 13408 return 0; 13409 } 13410 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13411 13412 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13413 { 13414 bool pcid_enabled; 13415 struct x86_exception e; 13416 struct { 13417 u64 pcid; 13418 u64 gla; 13419 } operand; 13420 int r; 13421 13422 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13423 if (r != X86EMUL_CONTINUE) 13424 return kvm_handle_memory_failure(vcpu, r, &e); 13425 13426 if (operand.pcid >> 12 != 0) { 13427 kvm_inject_gp(vcpu, 0); 13428 return 1; 13429 } 13430 13431 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13432 13433 switch (type) { 13434 case INVPCID_TYPE_INDIV_ADDR: 13435 if ((!pcid_enabled && (operand.pcid != 0)) || 13436 is_noncanonical_address(operand.gla, vcpu)) { 13437 kvm_inject_gp(vcpu, 0); 13438 return 1; 13439 } 13440 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13441 return kvm_skip_emulated_instruction(vcpu); 13442 13443 case INVPCID_TYPE_SINGLE_CTXT: 13444 if (!pcid_enabled && (operand.pcid != 0)) { 13445 kvm_inject_gp(vcpu, 0); 13446 return 1; 13447 } 13448 13449 kvm_invalidate_pcid(vcpu, operand.pcid); 13450 return kvm_skip_emulated_instruction(vcpu); 13451 13452 case INVPCID_TYPE_ALL_NON_GLOBAL: 13453 /* 13454 * Currently, KVM doesn't mark global entries in the shadow 13455 * page tables, so a non-global flush just degenerates to a 13456 * global flush. If needed, we could optimize this later by 13457 * keeping track of global entries in shadow page tables. 13458 */ 13459 13460 fallthrough; 13461 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13462 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13463 return kvm_skip_emulated_instruction(vcpu); 13464 13465 default: 13466 kvm_inject_gp(vcpu, 0); 13467 return 1; 13468 } 13469 } 13470 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13471 13472 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13473 { 13474 struct kvm_run *run = vcpu->run; 13475 struct kvm_mmio_fragment *frag; 13476 unsigned int len; 13477 13478 BUG_ON(!vcpu->mmio_needed); 13479 13480 /* Complete previous fragment */ 13481 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13482 len = min(8u, frag->len); 13483 if (!vcpu->mmio_is_write) 13484 memcpy(frag->data, run->mmio.data, len); 13485 13486 if (frag->len <= 8) { 13487 /* Switch to the next fragment. */ 13488 frag++; 13489 vcpu->mmio_cur_fragment++; 13490 } else { 13491 /* Go forward to the next mmio piece. */ 13492 frag->data += len; 13493 frag->gpa += len; 13494 frag->len -= len; 13495 } 13496 13497 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13498 vcpu->mmio_needed = 0; 13499 13500 // VMG change, at this point, we're always done 13501 // RIP has already been advanced 13502 return 1; 13503 } 13504 13505 // More MMIO is needed 13506 run->mmio.phys_addr = frag->gpa; 13507 run->mmio.len = min(8u, frag->len); 13508 run->mmio.is_write = vcpu->mmio_is_write; 13509 if (run->mmio.is_write) 13510 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13511 run->exit_reason = KVM_EXIT_MMIO; 13512 13513 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13514 13515 return 0; 13516 } 13517 13518 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13519 void *data) 13520 { 13521 int handled; 13522 struct kvm_mmio_fragment *frag; 13523 13524 if (!data) 13525 return -EINVAL; 13526 13527 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13528 if (handled == bytes) 13529 return 1; 13530 13531 bytes -= handled; 13532 gpa += handled; 13533 data += handled; 13534 13535 /*TODO: Check if need to increment number of frags */ 13536 frag = vcpu->mmio_fragments; 13537 vcpu->mmio_nr_fragments = 1; 13538 frag->len = bytes; 13539 frag->gpa = gpa; 13540 frag->data = data; 13541 13542 vcpu->mmio_needed = 1; 13543 vcpu->mmio_cur_fragment = 0; 13544 13545 vcpu->run->mmio.phys_addr = gpa; 13546 vcpu->run->mmio.len = min(8u, frag->len); 13547 vcpu->run->mmio.is_write = 1; 13548 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13549 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13550 13551 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13552 13553 return 0; 13554 } 13555 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13556 13557 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13558 void *data) 13559 { 13560 int handled; 13561 struct kvm_mmio_fragment *frag; 13562 13563 if (!data) 13564 return -EINVAL; 13565 13566 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13567 if (handled == bytes) 13568 return 1; 13569 13570 bytes -= handled; 13571 gpa += handled; 13572 data += handled; 13573 13574 /*TODO: Check if need to increment number of frags */ 13575 frag = vcpu->mmio_fragments; 13576 vcpu->mmio_nr_fragments = 1; 13577 frag->len = bytes; 13578 frag->gpa = gpa; 13579 frag->data = data; 13580 13581 vcpu->mmio_needed = 1; 13582 vcpu->mmio_cur_fragment = 0; 13583 13584 vcpu->run->mmio.phys_addr = gpa; 13585 vcpu->run->mmio.len = min(8u, frag->len); 13586 vcpu->run->mmio.is_write = 0; 13587 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13588 13589 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13590 13591 return 0; 13592 } 13593 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13594 13595 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13596 { 13597 vcpu->arch.sev_pio_count -= count; 13598 vcpu->arch.sev_pio_data += count * size; 13599 } 13600 13601 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13602 unsigned int port); 13603 13604 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13605 { 13606 int size = vcpu->arch.pio.size; 13607 int port = vcpu->arch.pio.port; 13608 13609 vcpu->arch.pio.count = 0; 13610 if (vcpu->arch.sev_pio_count) 13611 return kvm_sev_es_outs(vcpu, size, port); 13612 return 1; 13613 } 13614 13615 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13616 unsigned int port) 13617 { 13618 for (;;) { 13619 unsigned int count = 13620 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13621 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13622 13623 /* memcpy done already by emulator_pio_out. */ 13624 advance_sev_es_emulated_pio(vcpu, count, size); 13625 if (!ret) 13626 break; 13627 13628 /* Emulation done by the kernel. */ 13629 if (!vcpu->arch.sev_pio_count) 13630 return 1; 13631 } 13632 13633 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13634 return 0; 13635 } 13636 13637 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13638 unsigned int port); 13639 13640 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13641 { 13642 unsigned count = vcpu->arch.pio.count; 13643 int size = vcpu->arch.pio.size; 13644 int port = vcpu->arch.pio.port; 13645 13646 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13647 advance_sev_es_emulated_pio(vcpu, count, size); 13648 if (vcpu->arch.sev_pio_count) 13649 return kvm_sev_es_ins(vcpu, size, port); 13650 return 1; 13651 } 13652 13653 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13654 unsigned int port) 13655 { 13656 for (;;) { 13657 unsigned int count = 13658 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13659 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13660 break; 13661 13662 /* Emulation done by the kernel. */ 13663 advance_sev_es_emulated_pio(vcpu, count, size); 13664 if (!vcpu->arch.sev_pio_count) 13665 return 1; 13666 } 13667 13668 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13669 return 0; 13670 } 13671 13672 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13673 unsigned int port, void *data, unsigned int count, 13674 int in) 13675 { 13676 vcpu->arch.sev_pio_data = data; 13677 vcpu->arch.sev_pio_count = count; 13678 return in ? kvm_sev_es_ins(vcpu, size, port) 13679 : kvm_sev_es_outs(vcpu, size, port); 13680 } 13681 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13682 13683 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13684 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13712 13713 static int __init kvm_x86_init(void) 13714 { 13715 kvm_mmu_x86_module_init(); 13716 return 0; 13717 } 13718 module_init(kvm_x86_init); 13719 13720 static void __exit kvm_x86_exit(void) 13721 { 13722 /* 13723 * If module_init() is implemented, module_exit() must also be 13724 * implemented to allow module unload. 13725 */ 13726 } 13727 module_exit(kvm_x86_exit); 13728