1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 /* 96 * Note, kvm_caps fields should *never* have default values, all fields must be 97 * recomputed from scratch during vendor module load, e.g. to account for a 98 * vendor module being reloaded with different module parameters. 99 */ 100 struct kvm_caps kvm_caps __read_mostly; 101 EXPORT_SYMBOL_GPL(kvm_caps); 102 103 struct kvm_host_values kvm_host __read_mostly; 104 EXPORT_SYMBOL_GPL(kvm_host); 105 106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 107 108 #define emul_to_vcpu(ctxt) \ 109 ((struct kvm_vcpu *)(ctxt)->vcpu) 110 111 /* EFER defaults: 112 * - enable syscall per default because its emulated by KVM 113 * - enable LME and LMA per default on 64 bit KVM 114 */ 115 #ifdef CONFIG_X86_64 116 static 117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 118 #else 119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 120 #endif 121 122 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 123 124 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 125 126 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 127 128 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 129 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 130 131 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 132 static void process_nmi(struct kvm_vcpu *vcpu); 133 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 134 static void store_regs(struct kvm_vcpu *vcpu); 135 static int sync_regs(struct kvm_vcpu *vcpu); 136 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 137 138 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 139 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 140 141 static DEFINE_MUTEX(vendor_module_lock); 142 struct kvm_x86_ops kvm_x86_ops __read_mostly; 143 144 #define KVM_X86_OP(func) \ 145 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 146 *(((struct kvm_x86_ops *)0)->func)); 147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 149 #include <asm/kvm-x86-ops.h> 150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 152 153 static bool __read_mostly ignore_msrs = 0; 154 module_param(ignore_msrs, bool, 0644); 155 156 bool __read_mostly report_ignored_msrs = true; 157 module_param(report_ignored_msrs, bool, 0644); 158 EXPORT_SYMBOL_GPL(report_ignored_msrs); 159 160 unsigned int min_timer_period_us = 200; 161 module_param(min_timer_period_us, uint, 0644); 162 163 static bool __read_mostly kvmclock_periodic_sync = true; 164 module_param(kvmclock_periodic_sync, bool, 0444); 165 166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 167 static u32 __read_mostly tsc_tolerance_ppm = 250; 168 module_param(tsc_tolerance_ppm, uint, 0644); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, 0444); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, 0444); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, 0644); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* Enable/disable SMT_RSB bug mitigation */ 197 static bool __read_mostly mitigate_smt_rsb; 198 module_param(mitigate_smt_rsb, bool, 0444); 199 200 /* 201 * Restoring the host value for MSRs that are only consumed when running in 202 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 203 * returns to userspace, i.e. the kernel can run with the guest's value. 204 */ 205 #define KVM_MAX_NR_USER_RETURN_MSRS 16 206 207 struct kvm_user_return_msrs { 208 struct user_return_notifier urn; 209 bool registered; 210 struct kvm_user_return_msr_values { 211 u64 host; 212 u64 curr; 213 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 214 }; 215 216 u32 __read_mostly kvm_nr_uret_msrs; 217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 219 static struct kvm_user_return_msrs __percpu *user_return_msrs; 220 221 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 222 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 223 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 224 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 225 226 bool __read_mostly allow_smaller_maxphyaddr = 0; 227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 228 229 bool __read_mostly enable_apicv = true; 230 EXPORT_SYMBOL_GPL(enable_apicv); 231 232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 233 KVM_GENERIC_VM_STATS(), 234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 235 STATS_DESC_COUNTER(VM, mmu_pte_write), 236 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 237 STATS_DESC_COUNTER(VM, mmu_flooded), 238 STATS_DESC_COUNTER(VM, mmu_recycled), 239 STATS_DESC_COUNTER(VM, mmu_cache_miss), 240 STATS_DESC_ICOUNTER(VM, mmu_unsync), 241 STATS_DESC_ICOUNTER(VM, pages_4k), 242 STATS_DESC_ICOUNTER(VM, pages_2m), 243 STATS_DESC_ICOUNTER(VM, pages_1g), 244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 247 }; 248 249 const struct kvm_stats_header kvm_vm_stats_header = { 250 .name_size = KVM_STATS_NAME_SIZE, 251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 252 .id_offset = sizeof(struct kvm_stats_header), 253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 255 sizeof(kvm_vm_stats_desc), 256 }; 257 258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 259 KVM_GENERIC_VCPU_STATS(), 260 STATS_DESC_COUNTER(VCPU, pf_taken), 261 STATS_DESC_COUNTER(VCPU, pf_fixed), 262 STATS_DESC_COUNTER(VCPU, pf_emulate), 263 STATS_DESC_COUNTER(VCPU, pf_spurious), 264 STATS_DESC_COUNTER(VCPU, pf_fast), 265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 266 STATS_DESC_COUNTER(VCPU, pf_guest), 267 STATS_DESC_COUNTER(VCPU, tlb_flush), 268 STATS_DESC_COUNTER(VCPU, invlpg), 269 STATS_DESC_COUNTER(VCPU, exits), 270 STATS_DESC_COUNTER(VCPU, io_exits), 271 STATS_DESC_COUNTER(VCPU, mmio_exits), 272 STATS_DESC_COUNTER(VCPU, signal_exits), 273 STATS_DESC_COUNTER(VCPU, irq_window_exits), 274 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 275 STATS_DESC_COUNTER(VCPU, l1d_flush), 276 STATS_DESC_COUNTER(VCPU, halt_exits), 277 STATS_DESC_COUNTER(VCPU, request_irq_exits), 278 STATS_DESC_COUNTER(VCPU, irq_exits), 279 STATS_DESC_COUNTER(VCPU, host_state_reload), 280 STATS_DESC_COUNTER(VCPU, fpu_reload), 281 STATS_DESC_COUNTER(VCPU, insn_emulation), 282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 283 STATS_DESC_COUNTER(VCPU, hypercalls), 284 STATS_DESC_COUNTER(VCPU, irq_injections), 285 STATS_DESC_COUNTER(VCPU, nmi_injections), 286 STATS_DESC_COUNTER(VCPU, req_event), 287 STATS_DESC_COUNTER(VCPU, nested_run), 288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 289 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 290 STATS_DESC_COUNTER(VCPU, preemption_reported), 291 STATS_DESC_COUNTER(VCPU, preemption_other), 292 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 293 STATS_DESC_COUNTER(VCPU, notify_window_exits), 294 }; 295 296 const struct kvm_stats_header kvm_vcpu_stats_header = { 297 .name_size = KVM_STATS_NAME_SIZE, 298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 299 .id_offset = sizeof(struct kvm_stats_header), 300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 302 sizeof(kvm_vcpu_stats_desc), 303 }; 304 305 static struct kmem_cache *x86_emulator_cache; 306 307 /* 308 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 309 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 310 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 311 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 312 * MSRs that KVM emulates without strictly requiring host support. 313 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 314 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 315 * msrs_to_save and emulated_msrs. 316 */ 317 318 static const u32 msrs_to_save_base[] = { 319 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 320 MSR_STAR, 321 #ifdef CONFIG_X86_64 322 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 323 #endif 324 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 325 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 326 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 327 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 328 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 329 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 330 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 331 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 332 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 333 MSR_IA32_UMWAIT_CONTROL, 334 335 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 336 }; 337 338 static const u32 msrs_to_save_pmu[] = { 339 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 340 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 341 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 342 MSR_CORE_PERF_GLOBAL_CTRL, 343 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 344 345 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ 346 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 347 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 348 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 349 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 350 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 351 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 352 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 353 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 354 355 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 356 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 357 358 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ 359 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 360 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 361 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 362 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 363 364 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 365 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 366 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 367 }; 368 369 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 370 ARRAY_SIZE(msrs_to_save_pmu)]; 371 static unsigned num_msrs_to_save; 372 373 static const u32 emulated_msrs_all[] = { 374 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 375 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 376 377 #ifdef CONFIG_KVM_HYPERV 378 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 379 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 380 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 381 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 382 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 383 HV_X64_MSR_RESET, 384 HV_X64_MSR_VP_INDEX, 385 HV_X64_MSR_VP_RUNTIME, 386 HV_X64_MSR_SCONTROL, 387 HV_X64_MSR_STIMER0_CONFIG, 388 HV_X64_MSR_VP_ASSIST_PAGE, 389 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 390 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 391 HV_X64_MSR_SYNDBG_OPTIONS, 392 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 393 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 394 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 395 #endif 396 397 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 398 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 399 400 MSR_IA32_TSC_ADJUST, 401 MSR_IA32_TSC_DEADLINE, 402 MSR_IA32_ARCH_CAPABILITIES, 403 MSR_IA32_PERF_CAPABILITIES, 404 MSR_IA32_MISC_ENABLE, 405 MSR_IA32_MCG_STATUS, 406 MSR_IA32_MCG_CTL, 407 MSR_IA32_MCG_EXT_CTL, 408 MSR_IA32_SMBASE, 409 MSR_SMI_COUNT, 410 MSR_PLATFORM_INFO, 411 MSR_MISC_FEATURES_ENABLES, 412 MSR_AMD64_VIRT_SPEC_CTRL, 413 MSR_AMD64_TSC_RATIO, 414 MSR_IA32_POWER_CTL, 415 MSR_IA32_UCODE_REV, 416 417 /* 418 * KVM always supports the "true" VMX control MSRs, even if the host 419 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 420 * doesn't strictly require them to exist in the host (ignoring that 421 * KVM would refuse to load in the first place if the core set of MSRs 422 * aren't supported). 423 */ 424 MSR_IA32_VMX_BASIC, 425 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 426 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 427 MSR_IA32_VMX_TRUE_EXIT_CTLS, 428 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 429 MSR_IA32_VMX_MISC, 430 MSR_IA32_VMX_CR0_FIXED0, 431 MSR_IA32_VMX_CR4_FIXED0, 432 MSR_IA32_VMX_VMCS_ENUM, 433 MSR_IA32_VMX_PROCBASED_CTLS2, 434 MSR_IA32_VMX_EPT_VPID_CAP, 435 MSR_IA32_VMX_VMFUNC, 436 437 MSR_K7_HWCR, 438 MSR_KVM_POLL_CONTROL, 439 }; 440 441 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 442 static unsigned num_emulated_msrs; 443 444 /* 445 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 446 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 447 * feature MSRs, but are handled separately to allow expedited lookups. 448 */ 449 static const u32 msr_based_features_all_except_vmx[] = { 450 MSR_AMD64_DE_CFG, 451 MSR_IA32_UCODE_REV, 452 MSR_IA32_ARCH_CAPABILITIES, 453 MSR_IA32_PERF_CAPABILITIES, 454 MSR_PLATFORM_INFO, 455 }; 456 457 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 458 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 459 static unsigned int num_msr_based_features; 460 461 /* 462 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 463 * patch, are immutable once the vCPU model is defined. 464 */ 465 static bool kvm_is_immutable_feature_msr(u32 msr) 466 { 467 int i; 468 469 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 470 return true; 471 472 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 473 if (msr == msr_based_features_all_except_vmx[i]) 474 return msr != MSR_IA32_UCODE_REV; 475 } 476 477 return false; 478 } 479 480 static bool kvm_is_advertised_msr(u32 msr_index) 481 { 482 unsigned int i; 483 484 for (i = 0; i < num_msrs_to_save; i++) { 485 if (msrs_to_save[i] == msr_index) 486 return true; 487 } 488 489 for (i = 0; i < num_emulated_msrs; i++) { 490 if (emulated_msrs[i] == msr_index) 491 return true; 492 } 493 494 return false; 495 } 496 497 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data, 498 bool host_initiated); 499 500 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr, 501 u64 *data, bool host_initiated, 502 enum kvm_msr_access rw, 503 msr_access_t msr_access_fn) 504 { 505 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr"; 506 int ret; 507 508 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W); 509 510 /* 511 * Zero the data on read failures to avoid leaking stack data to the 512 * guest and/or userspace, e.g. if the failure is ignored below. 513 */ 514 ret = msr_access_fn(vcpu, msr, data, host_initiated); 515 if (ret && rw == MSR_TYPE_R) 516 *data = 0; 517 518 if (ret != KVM_MSR_RET_UNSUPPORTED) 519 return ret; 520 521 /* 522 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM 523 * advertises to userspace, even if an MSR isn't fully supported. 524 * Simply check that @data is '0', which covers both the write '0' case 525 * and all reads (in which case @data is zeroed on failure; see above). 526 */ 527 if (host_initiated && !*data && kvm_is_advertised_msr(msr)) 528 return 0; 529 530 if (!ignore_msrs) { 531 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 532 op, msr, *data); 533 return ret; 534 } 535 536 if (report_ignored_msrs) 537 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data); 538 539 return 0; 540 } 541 542 static struct kmem_cache *kvm_alloc_emulator_cache(void) 543 { 544 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 545 unsigned int size = sizeof(struct x86_emulate_ctxt); 546 547 return kmem_cache_create_usercopy("x86_emulator", size, 548 __alignof__(struct x86_emulate_ctxt), 549 SLAB_ACCOUNT, useroffset, 550 size - useroffset, NULL); 551 } 552 553 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 554 555 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 556 { 557 int i; 558 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 559 vcpu->arch.apf.gfns[i] = ~0; 560 } 561 562 static void kvm_on_user_return(struct user_return_notifier *urn) 563 { 564 unsigned slot; 565 struct kvm_user_return_msrs *msrs 566 = container_of(urn, struct kvm_user_return_msrs, urn); 567 struct kvm_user_return_msr_values *values; 568 unsigned long flags; 569 570 /* 571 * Disabling irqs at this point since the following code could be 572 * interrupted and executed through kvm_arch_disable_virtualization_cpu() 573 */ 574 local_irq_save(flags); 575 if (msrs->registered) { 576 msrs->registered = false; 577 user_return_notifier_unregister(urn); 578 } 579 local_irq_restore(flags); 580 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 581 values = &msrs->values[slot]; 582 if (values->host != values->curr) { 583 wrmsrl(kvm_uret_msrs_list[slot], values->host); 584 values->curr = values->host; 585 } 586 } 587 } 588 589 static int kvm_probe_user_return_msr(u32 msr) 590 { 591 u64 val; 592 int ret; 593 594 preempt_disable(); 595 ret = rdmsrl_safe(msr, &val); 596 if (ret) 597 goto out; 598 ret = wrmsrl_safe(msr, val); 599 out: 600 preempt_enable(); 601 return ret; 602 } 603 604 int kvm_add_user_return_msr(u32 msr) 605 { 606 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 607 608 if (kvm_probe_user_return_msr(msr)) 609 return -1; 610 611 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 612 return kvm_nr_uret_msrs++; 613 } 614 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 615 616 int kvm_find_user_return_msr(u32 msr) 617 { 618 int i; 619 620 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 621 if (kvm_uret_msrs_list[i] == msr) 622 return i; 623 } 624 return -1; 625 } 626 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 627 628 static void kvm_user_return_msr_cpu_online(void) 629 { 630 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 631 u64 value; 632 int i; 633 634 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 635 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 636 msrs->values[i].host = value; 637 msrs->values[i].curr = value; 638 } 639 } 640 641 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 642 { 643 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 644 int err; 645 646 value = (value & mask) | (msrs->values[slot].host & ~mask); 647 if (value == msrs->values[slot].curr) 648 return 0; 649 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 650 if (err) 651 return 1; 652 653 msrs->values[slot].curr = value; 654 if (!msrs->registered) { 655 msrs->urn.on_user_return = kvm_on_user_return; 656 user_return_notifier_register(&msrs->urn); 657 msrs->registered = true; 658 } 659 return 0; 660 } 661 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 662 663 static void drop_user_return_notifiers(void) 664 { 665 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 666 667 if (msrs->registered) 668 kvm_on_user_return(&msrs->urn); 669 } 670 671 /* 672 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 673 * 674 * Hardware virtualization extension instructions may fault if a reboot turns 675 * off virtualization while processes are running. Usually after catching the 676 * fault we just panic; during reboot instead the instruction is ignored. 677 */ 678 noinstr void kvm_spurious_fault(void) 679 { 680 /* Fault while not rebooting. We want the trace. */ 681 BUG_ON(!kvm_rebooting); 682 } 683 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 684 685 #define EXCPT_BENIGN 0 686 #define EXCPT_CONTRIBUTORY 1 687 #define EXCPT_PF 2 688 689 static int exception_class(int vector) 690 { 691 switch (vector) { 692 case PF_VECTOR: 693 return EXCPT_PF; 694 case DE_VECTOR: 695 case TS_VECTOR: 696 case NP_VECTOR: 697 case SS_VECTOR: 698 case GP_VECTOR: 699 return EXCPT_CONTRIBUTORY; 700 default: 701 break; 702 } 703 return EXCPT_BENIGN; 704 } 705 706 #define EXCPT_FAULT 0 707 #define EXCPT_TRAP 1 708 #define EXCPT_ABORT 2 709 #define EXCPT_INTERRUPT 3 710 #define EXCPT_DB 4 711 712 static int exception_type(int vector) 713 { 714 unsigned int mask; 715 716 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 717 return EXCPT_INTERRUPT; 718 719 mask = 1 << vector; 720 721 /* 722 * #DBs can be trap-like or fault-like, the caller must check other CPU 723 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 724 */ 725 if (mask & (1 << DB_VECTOR)) 726 return EXCPT_DB; 727 728 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 729 return EXCPT_TRAP; 730 731 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 732 return EXCPT_ABORT; 733 734 /* Reserved exceptions will result in fault */ 735 return EXCPT_FAULT; 736 } 737 738 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 739 struct kvm_queued_exception *ex) 740 { 741 if (!ex->has_payload) 742 return; 743 744 switch (ex->vector) { 745 case DB_VECTOR: 746 /* 747 * "Certain debug exceptions may clear bit 0-3. The 748 * remaining contents of the DR6 register are never 749 * cleared by the processor". 750 */ 751 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 752 /* 753 * In order to reflect the #DB exception payload in guest 754 * dr6, three components need to be considered: active low 755 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 756 * DR6_BS and DR6_BT) 757 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 758 * In the target guest dr6: 759 * FIXED_1 bits should always be set. 760 * Active low bits should be cleared if 1-setting in payload. 761 * Active high bits should be set if 1-setting in payload. 762 * 763 * Note, the payload is compatible with the pending debug 764 * exceptions/exit qualification under VMX, that active_low bits 765 * are active high in payload. 766 * So they need to be flipped for DR6. 767 */ 768 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 769 vcpu->arch.dr6 |= ex->payload; 770 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 771 772 /* 773 * The #DB payload is defined as compatible with the 'pending 774 * debug exceptions' field under VMX, not DR6. While bit 12 is 775 * defined in the 'pending debug exceptions' field (enabled 776 * breakpoint), it is reserved and must be zero in DR6. 777 */ 778 vcpu->arch.dr6 &= ~BIT(12); 779 break; 780 case PF_VECTOR: 781 vcpu->arch.cr2 = ex->payload; 782 break; 783 } 784 785 ex->has_payload = false; 786 ex->payload = 0; 787 } 788 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 789 790 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 791 bool has_error_code, u32 error_code, 792 bool has_payload, unsigned long payload) 793 { 794 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 795 796 ex->vector = vector; 797 ex->injected = false; 798 ex->pending = true; 799 ex->has_error_code = has_error_code; 800 ex->error_code = error_code; 801 ex->has_payload = has_payload; 802 ex->payload = payload; 803 } 804 805 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 806 unsigned nr, bool has_error, u32 error_code, 807 bool has_payload, unsigned long payload, bool reinject) 808 { 809 u32 prev_nr; 810 int class1, class2; 811 812 kvm_make_request(KVM_REQ_EVENT, vcpu); 813 814 /* 815 * If the exception is destined for L2 and isn't being reinjected, 816 * morph it to a VM-Exit if L1 wants to intercept the exception. A 817 * previously injected exception is not checked because it was checked 818 * when it was original queued, and re-checking is incorrect if _L1_ 819 * injected the exception, in which case it's exempt from interception. 820 */ 821 if (!reinject && is_guest_mode(vcpu) && 822 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 823 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 824 has_payload, payload); 825 return; 826 } 827 828 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 829 queue: 830 if (reinject) { 831 /* 832 * On VM-Entry, an exception can be pending if and only 833 * if event injection was blocked by nested_run_pending. 834 * In that case, however, vcpu_enter_guest() requests an 835 * immediate exit, and the guest shouldn't proceed far 836 * enough to need reinjection. 837 */ 838 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 839 vcpu->arch.exception.injected = true; 840 if (WARN_ON_ONCE(has_payload)) { 841 /* 842 * A reinjected event has already 843 * delivered its payload. 844 */ 845 has_payload = false; 846 payload = 0; 847 } 848 } else { 849 vcpu->arch.exception.pending = true; 850 vcpu->arch.exception.injected = false; 851 } 852 vcpu->arch.exception.has_error_code = has_error; 853 vcpu->arch.exception.vector = nr; 854 vcpu->arch.exception.error_code = error_code; 855 vcpu->arch.exception.has_payload = has_payload; 856 vcpu->arch.exception.payload = payload; 857 if (!is_guest_mode(vcpu)) 858 kvm_deliver_exception_payload(vcpu, 859 &vcpu->arch.exception); 860 return; 861 } 862 863 /* to check exception */ 864 prev_nr = vcpu->arch.exception.vector; 865 if (prev_nr == DF_VECTOR) { 866 /* triple fault -> shutdown */ 867 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 868 return; 869 } 870 class1 = exception_class(prev_nr); 871 class2 = exception_class(nr); 872 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 873 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 874 /* 875 * Synthesize #DF. Clear the previously injected or pending 876 * exception so as not to incorrectly trigger shutdown. 877 */ 878 vcpu->arch.exception.injected = false; 879 vcpu->arch.exception.pending = false; 880 881 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 882 } else { 883 /* replace previous exception with a new one in a hope 884 that instruction re-execution will regenerate lost 885 exception */ 886 goto queue; 887 } 888 } 889 890 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 891 { 892 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 893 } 894 EXPORT_SYMBOL_GPL(kvm_queue_exception); 895 896 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 897 { 898 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 899 } 900 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 901 902 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 903 unsigned long payload) 904 { 905 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 906 } 907 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 908 909 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 910 u32 error_code, unsigned long payload) 911 { 912 kvm_multiple_exception(vcpu, nr, true, error_code, 913 true, payload, false); 914 } 915 916 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 917 { 918 if (err) 919 kvm_inject_gp(vcpu, 0); 920 else 921 return kvm_skip_emulated_instruction(vcpu); 922 923 return 1; 924 } 925 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 926 927 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 928 { 929 if (err) { 930 kvm_inject_gp(vcpu, 0); 931 return 1; 932 } 933 934 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 935 EMULTYPE_COMPLETE_USER_EXIT); 936 } 937 938 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 939 { 940 ++vcpu->stat.pf_guest; 941 942 /* 943 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 944 * whether or not L1 wants to intercept "regular" #PF. 945 */ 946 if (is_guest_mode(vcpu) && fault->async_page_fault) 947 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 948 true, fault->error_code, 949 true, fault->address); 950 else 951 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 952 fault->address); 953 } 954 955 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 956 struct x86_exception *fault) 957 { 958 struct kvm_mmu *fault_mmu; 959 WARN_ON_ONCE(fault->vector != PF_VECTOR); 960 961 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 962 vcpu->arch.walk_mmu; 963 964 /* 965 * Invalidate the TLB entry for the faulting address, if it exists, 966 * else the access will fault indefinitely (and to emulate hardware). 967 */ 968 if ((fault->error_code & PFERR_PRESENT_MASK) && 969 !(fault->error_code & PFERR_RSVD_MASK)) 970 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 971 KVM_MMU_ROOT_CURRENT); 972 973 fault_mmu->inject_page_fault(vcpu, fault); 974 } 975 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 976 977 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 978 { 979 atomic_inc(&vcpu->arch.nmi_queued); 980 kvm_make_request(KVM_REQ_NMI, vcpu); 981 } 982 983 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 984 { 985 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 986 } 987 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 988 989 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 990 { 991 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 992 } 993 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 994 995 /* 996 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 997 * a #GP and return false. 998 */ 999 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 1000 { 1001 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) 1002 return true; 1003 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 1004 return false; 1005 } 1006 1007 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 1008 { 1009 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 1010 return true; 1011 1012 kvm_queue_exception(vcpu, UD_VECTOR); 1013 return false; 1014 } 1015 EXPORT_SYMBOL_GPL(kvm_require_dr); 1016 1017 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 1018 { 1019 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 1020 } 1021 1022 /* 1023 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 1024 */ 1025 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 1026 { 1027 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 1028 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 1029 gpa_t real_gpa; 1030 int i; 1031 int ret; 1032 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 1033 1034 /* 1035 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 1036 * to an L1 GPA. 1037 */ 1038 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 1039 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 1040 if (real_gpa == INVALID_GPA) 1041 return 0; 1042 1043 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 1044 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 1045 cr3 & GENMASK(11, 5), sizeof(pdpte)); 1046 if (ret < 0) 1047 return 0; 1048 1049 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 1050 if ((pdpte[i] & PT_PRESENT_MASK) && 1051 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 1052 return 0; 1053 } 1054 } 1055 1056 /* 1057 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 1058 * Shadow page roots need to be reconstructed instead. 1059 */ 1060 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 1061 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 1062 1063 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 1064 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 1065 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 1066 vcpu->arch.pdptrs_from_userspace = false; 1067 1068 return 1; 1069 } 1070 EXPORT_SYMBOL_GPL(load_pdptrs); 1071 1072 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1073 { 1074 #ifdef CONFIG_X86_64 1075 if (cr0 & 0xffffffff00000000UL) 1076 return false; 1077 #endif 1078 1079 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 1080 return false; 1081 1082 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 1083 return false; 1084 1085 return kvm_x86_call(is_valid_cr0)(vcpu, cr0); 1086 } 1087 1088 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 1089 { 1090 /* 1091 * CR0.WP is incorporated into the MMU role, but only for non-nested, 1092 * indirect shadow MMUs. If paging is disabled, no updates are needed 1093 * as there are no permission bits to emulate. If TDP is enabled, the 1094 * MMU's metadata needs to be updated, e.g. so that emulating guest 1095 * translations does the right thing, but there's no need to unload the 1096 * root as CR0.WP doesn't affect SPTEs. 1097 */ 1098 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 1099 if (!(cr0 & X86_CR0_PG)) 1100 return; 1101 1102 if (tdp_enabled) { 1103 kvm_init_mmu(vcpu); 1104 return; 1105 } 1106 } 1107 1108 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 1109 kvm_clear_async_pf_completion_queue(vcpu); 1110 kvm_async_pf_hash_reset(vcpu); 1111 1112 /* 1113 * Clearing CR0.PG is defined to flush the TLB from the guest's 1114 * perspective. 1115 */ 1116 if (!(cr0 & X86_CR0_PG)) 1117 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1118 } 1119 1120 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 1121 kvm_mmu_reset_context(vcpu); 1122 } 1123 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 1124 1125 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1126 { 1127 unsigned long old_cr0 = kvm_read_cr0(vcpu); 1128 1129 if (!kvm_is_valid_cr0(vcpu, cr0)) 1130 return 1; 1131 1132 cr0 |= X86_CR0_ET; 1133 1134 /* Write to CR0 reserved bits are ignored, even on Intel. */ 1135 cr0 &= ~CR0_RESERVED_BITS; 1136 1137 #ifdef CONFIG_X86_64 1138 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 1139 (cr0 & X86_CR0_PG)) { 1140 int cs_db, cs_l; 1141 1142 if (!is_pae(vcpu)) 1143 return 1; 1144 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 1145 if (cs_l) 1146 return 1; 1147 } 1148 #endif 1149 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 1150 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 1151 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1152 return 1; 1153 1154 if (!(cr0 & X86_CR0_PG) && 1155 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1156 return 1; 1157 1158 kvm_x86_call(set_cr0)(vcpu, cr0); 1159 1160 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1161 1162 return 0; 1163 } 1164 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1165 1166 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1167 { 1168 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1169 } 1170 EXPORT_SYMBOL_GPL(kvm_lmsw); 1171 1172 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1173 { 1174 if (vcpu->arch.guest_state_protected) 1175 return; 1176 1177 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1178 1179 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1180 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1181 1182 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1183 vcpu->arch.ia32_xss != kvm_host.xss) 1184 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1185 } 1186 1187 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1188 vcpu->arch.pkru != vcpu->arch.host_pkru && 1189 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1190 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1191 write_pkru(vcpu->arch.pkru); 1192 } 1193 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1194 1195 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1196 { 1197 if (vcpu->arch.guest_state_protected) 1198 return; 1199 1200 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1201 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1202 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1203 vcpu->arch.pkru = rdpkru(); 1204 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1205 write_pkru(vcpu->arch.host_pkru); 1206 } 1207 1208 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1209 1210 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1211 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); 1212 1213 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1214 vcpu->arch.ia32_xss != kvm_host.xss) 1215 wrmsrl(MSR_IA32_XSS, kvm_host.xss); 1216 } 1217 1218 } 1219 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1220 1221 #ifdef CONFIG_X86_64 1222 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1223 { 1224 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1225 } 1226 #endif 1227 1228 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1229 { 1230 u64 xcr0 = xcr; 1231 u64 old_xcr0 = vcpu->arch.xcr0; 1232 u64 valid_bits; 1233 1234 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1235 if (index != XCR_XFEATURE_ENABLED_MASK) 1236 return 1; 1237 if (!(xcr0 & XFEATURE_MASK_FP)) 1238 return 1; 1239 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1240 return 1; 1241 1242 /* 1243 * Do not allow the guest to set bits that we do not support 1244 * saving. However, xcr0 bit 0 is always set, even if the 1245 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1246 */ 1247 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1248 if (xcr0 & ~valid_bits) 1249 return 1; 1250 1251 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1252 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1253 return 1; 1254 1255 if (xcr0 & XFEATURE_MASK_AVX512) { 1256 if (!(xcr0 & XFEATURE_MASK_YMM)) 1257 return 1; 1258 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1259 return 1; 1260 } 1261 1262 if ((xcr0 & XFEATURE_MASK_XTILE) && 1263 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1264 return 1; 1265 1266 vcpu->arch.xcr0 = xcr0; 1267 1268 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1269 kvm_update_cpuid_runtime(vcpu); 1270 return 0; 1271 } 1272 1273 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1274 { 1275 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1276 if (kvm_x86_call(get_cpl)(vcpu) != 0 || 1277 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1278 kvm_inject_gp(vcpu, 0); 1279 return 1; 1280 } 1281 1282 return kvm_skip_emulated_instruction(vcpu); 1283 } 1284 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1285 1286 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1287 { 1288 if (cr4 & cr4_reserved_bits) 1289 return false; 1290 1291 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1292 return false; 1293 1294 return true; 1295 } 1296 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1297 1298 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1299 { 1300 return __kvm_is_valid_cr4(vcpu, cr4) && 1301 kvm_x86_call(is_valid_cr4)(vcpu, cr4); 1302 } 1303 1304 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1305 { 1306 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1307 kvm_mmu_reset_context(vcpu); 1308 1309 /* 1310 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1311 * according to the SDM; however, stale prev_roots could be reused 1312 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1313 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1314 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1315 * so fall through. 1316 */ 1317 if (!tdp_enabled && 1318 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1319 kvm_mmu_unload(vcpu); 1320 1321 /* 1322 * The TLB has to be flushed for all PCIDs if any of the following 1323 * (architecturally required) changes happen: 1324 * - CR4.PCIDE is changed from 1 to 0 1325 * - CR4.PGE is toggled 1326 * 1327 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1328 */ 1329 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1330 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1331 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1332 1333 /* 1334 * The TLB has to be flushed for the current PCID if any of the 1335 * following (architecturally required) changes happen: 1336 * - CR4.SMEP is changed from 0 to 1 1337 * - CR4.PAE is toggled 1338 */ 1339 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1340 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1341 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1342 1343 } 1344 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1345 1346 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1347 { 1348 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1349 1350 if (!kvm_is_valid_cr4(vcpu, cr4)) 1351 return 1; 1352 1353 if (is_long_mode(vcpu)) { 1354 if (!(cr4 & X86_CR4_PAE)) 1355 return 1; 1356 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1357 return 1; 1358 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1359 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1360 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1361 return 1; 1362 1363 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1364 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1365 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1366 return 1; 1367 } 1368 1369 kvm_x86_call(set_cr4)(vcpu, cr4); 1370 1371 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1372 1373 return 0; 1374 } 1375 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1376 1377 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1378 { 1379 struct kvm_mmu *mmu = vcpu->arch.mmu; 1380 unsigned long roots_to_free = 0; 1381 int i; 1382 1383 /* 1384 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1385 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1386 * also via the emulator. KVM's TDP page tables are not in the scope of 1387 * the invalidation, but the guest's TLB entries need to be flushed as 1388 * the CPU may have cached entries in its TLB for the target PCID. 1389 */ 1390 if (unlikely(tdp_enabled)) { 1391 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1392 return; 1393 } 1394 1395 /* 1396 * If neither the current CR3 nor any of the prev_roots use the given 1397 * PCID, then nothing needs to be done here because a resync will 1398 * happen anyway before switching to any other CR3. 1399 */ 1400 if (kvm_get_active_pcid(vcpu) == pcid) { 1401 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1402 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1403 } 1404 1405 /* 1406 * If PCID is disabled, there is no need to free prev_roots even if the 1407 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1408 * with PCIDE=0. 1409 */ 1410 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1411 return; 1412 1413 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1414 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1415 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1416 1417 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1418 } 1419 1420 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1421 { 1422 bool skip_tlb_flush = false; 1423 unsigned long pcid = 0; 1424 #ifdef CONFIG_X86_64 1425 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1426 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1427 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1428 pcid = cr3 & X86_CR3_PCID_MASK; 1429 } 1430 #endif 1431 1432 /* PDPTRs are always reloaded for PAE paging. */ 1433 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1434 goto handle_tlb_flush; 1435 1436 /* 1437 * Do not condition the GPA check on long mode, this helper is used to 1438 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1439 * the current vCPU mode is accurate. 1440 */ 1441 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1442 return 1; 1443 1444 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1445 return 1; 1446 1447 if (cr3 != kvm_read_cr3(vcpu)) 1448 kvm_mmu_new_pgd(vcpu, cr3); 1449 1450 vcpu->arch.cr3 = cr3; 1451 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1452 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1453 1454 handle_tlb_flush: 1455 /* 1456 * A load of CR3 that flushes the TLB flushes only the current PCID, 1457 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1458 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1459 * and it's impossible to use a non-zero PCID when PCID is disabled, 1460 * i.e. only PCID=0 can be relevant. 1461 */ 1462 if (!skip_tlb_flush) 1463 kvm_invalidate_pcid(vcpu, pcid); 1464 1465 return 0; 1466 } 1467 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1468 1469 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1470 { 1471 if (cr8 & CR8_RESERVED_BITS) 1472 return 1; 1473 if (lapic_in_kernel(vcpu)) 1474 kvm_lapic_set_tpr(vcpu, cr8); 1475 else 1476 vcpu->arch.cr8 = cr8; 1477 return 0; 1478 } 1479 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1480 1481 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1482 { 1483 if (lapic_in_kernel(vcpu)) 1484 return kvm_lapic_get_cr8(vcpu); 1485 else 1486 return vcpu->arch.cr8; 1487 } 1488 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1489 1490 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1491 { 1492 int i; 1493 1494 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1495 for (i = 0; i < KVM_NR_DB_REGS; i++) 1496 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1497 } 1498 } 1499 1500 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1501 { 1502 unsigned long dr7; 1503 1504 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1505 dr7 = vcpu->arch.guest_debug_dr7; 1506 else 1507 dr7 = vcpu->arch.dr7; 1508 kvm_x86_call(set_dr7)(vcpu, dr7); 1509 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1510 if (dr7 & DR7_BP_EN_MASK) 1511 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1512 } 1513 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1514 1515 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1516 { 1517 u64 fixed = DR6_FIXED_1; 1518 1519 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1520 fixed |= DR6_RTM; 1521 1522 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1523 fixed |= DR6_BUS_LOCK; 1524 return fixed; 1525 } 1526 1527 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1528 { 1529 size_t size = ARRAY_SIZE(vcpu->arch.db); 1530 1531 switch (dr) { 1532 case 0 ... 3: 1533 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1534 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1535 vcpu->arch.eff_db[dr] = val; 1536 break; 1537 case 4: 1538 case 6: 1539 if (!kvm_dr6_valid(val)) 1540 return 1; /* #GP */ 1541 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1542 break; 1543 case 5: 1544 default: /* 7 */ 1545 if (!kvm_dr7_valid(val)) 1546 return 1; /* #GP */ 1547 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1548 kvm_update_dr7(vcpu); 1549 break; 1550 } 1551 1552 return 0; 1553 } 1554 EXPORT_SYMBOL_GPL(kvm_set_dr); 1555 1556 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1557 { 1558 size_t size = ARRAY_SIZE(vcpu->arch.db); 1559 1560 switch (dr) { 1561 case 0 ... 3: 1562 return vcpu->arch.db[array_index_nospec(dr, size)]; 1563 case 4: 1564 case 6: 1565 return vcpu->arch.dr6; 1566 case 5: 1567 default: /* 7 */ 1568 return vcpu->arch.dr7; 1569 } 1570 } 1571 EXPORT_SYMBOL_GPL(kvm_get_dr); 1572 1573 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1574 { 1575 u32 ecx = kvm_rcx_read(vcpu); 1576 u64 data; 1577 1578 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1579 kvm_inject_gp(vcpu, 0); 1580 return 1; 1581 } 1582 1583 kvm_rax_write(vcpu, (u32)data); 1584 kvm_rdx_write(vcpu, data >> 32); 1585 return kvm_skip_emulated_instruction(vcpu); 1586 } 1587 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1588 1589 /* 1590 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1591 * does not yet virtualize. These include: 1592 * 10 - MISC_PACKAGE_CTRLS 1593 * 11 - ENERGY_FILTERING_CTL 1594 * 12 - DOITM 1595 * 18 - FB_CLEAR_CTRL 1596 * 21 - XAPIC_DISABLE_STATUS 1597 * 23 - OVERCLOCKING_STATUS 1598 */ 1599 1600 #define KVM_SUPPORTED_ARCH_CAP \ 1601 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1602 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1603 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1604 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1605 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1606 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO) 1607 1608 static u64 kvm_get_arch_capabilities(void) 1609 { 1610 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1611 1612 /* 1613 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1614 * the nested hypervisor runs with NX huge pages. If it is not, 1615 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1616 * L1 guests, so it need not worry about its own (L2) guests. 1617 */ 1618 data |= ARCH_CAP_PSCHANGE_MC_NO; 1619 1620 /* 1621 * If we're doing cache flushes (either "always" or "cond") 1622 * we will do one whenever the guest does a vmlaunch/vmresume. 1623 * If an outer hypervisor is doing the cache flush for us 1624 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1625 * capability to the guest too, and if EPT is disabled we're not 1626 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1627 * require a nested hypervisor to do a flush of its own. 1628 */ 1629 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1630 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1631 1632 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1633 data |= ARCH_CAP_RDCL_NO; 1634 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1635 data |= ARCH_CAP_SSB_NO; 1636 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1637 data |= ARCH_CAP_MDS_NO; 1638 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1639 data |= ARCH_CAP_RFDS_NO; 1640 1641 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1642 /* 1643 * If RTM=0 because the kernel has disabled TSX, the host might 1644 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1645 * and therefore knows that there cannot be TAA) but keep 1646 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1647 * and we want to allow migrating those guests to tsx=off hosts. 1648 */ 1649 data &= ~ARCH_CAP_TAA_NO; 1650 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1651 data |= ARCH_CAP_TAA_NO; 1652 } else { 1653 /* 1654 * Nothing to do here; we emulate TSX_CTRL if present on the 1655 * host so the guest can choose between disabling TSX or 1656 * using VERW to clear CPU buffers. 1657 */ 1658 } 1659 1660 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1661 data |= ARCH_CAP_GDS_NO; 1662 1663 return data; 1664 } 1665 1666 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1667 bool host_initiated) 1668 { 1669 WARN_ON_ONCE(!host_initiated); 1670 1671 switch (index) { 1672 case MSR_IA32_ARCH_CAPABILITIES: 1673 *data = kvm_get_arch_capabilities(); 1674 break; 1675 case MSR_IA32_PERF_CAPABILITIES: 1676 *data = kvm_caps.supported_perf_cap; 1677 break; 1678 case MSR_PLATFORM_INFO: 1679 *data = MSR_PLATFORM_INFO_CPUID_FAULT; 1680 break; 1681 case MSR_IA32_UCODE_REV: 1682 rdmsrl_safe(index, data); 1683 break; 1684 default: 1685 return kvm_x86_call(get_feature_msr)(index, data); 1686 } 1687 return 0; 1688 } 1689 1690 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1691 { 1692 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R, 1693 kvm_get_feature_msr); 1694 } 1695 1696 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1697 { 1698 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1699 return false; 1700 1701 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1702 return false; 1703 1704 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1705 return false; 1706 1707 if (efer & (EFER_LME | EFER_LMA) && 1708 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1709 return false; 1710 1711 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1712 return false; 1713 1714 return true; 1715 1716 } 1717 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1718 { 1719 if (efer & efer_reserved_bits) 1720 return false; 1721 1722 return __kvm_valid_efer(vcpu, efer); 1723 } 1724 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1725 1726 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1727 { 1728 u64 old_efer = vcpu->arch.efer; 1729 u64 efer = msr_info->data; 1730 int r; 1731 1732 if (efer & efer_reserved_bits) 1733 return 1; 1734 1735 if (!msr_info->host_initiated) { 1736 if (!__kvm_valid_efer(vcpu, efer)) 1737 return 1; 1738 1739 if (is_paging(vcpu) && 1740 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1741 return 1; 1742 } 1743 1744 efer &= ~EFER_LMA; 1745 efer |= vcpu->arch.efer & EFER_LMA; 1746 1747 r = kvm_x86_call(set_efer)(vcpu, efer); 1748 if (r) { 1749 WARN_ON(r > 0); 1750 return r; 1751 } 1752 1753 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1754 kvm_mmu_reset_context(vcpu); 1755 1756 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1757 (efer & EFER_SVME)) 1758 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1759 1760 return 0; 1761 } 1762 1763 void kvm_enable_efer_bits(u64 mask) 1764 { 1765 efer_reserved_bits &= ~mask; 1766 } 1767 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1768 1769 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1770 { 1771 struct kvm_x86_msr_filter *msr_filter; 1772 struct msr_bitmap_range *ranges; 1773 struct kvm *kvm = vcpu->kvm; 1774 bool allowed; 1775 int idx; 1776 u32 i; 1777 1778 /* x2APIC MSRs do not support filtering. */ 1779 if (index >= 0x800 && index <= 0x8ff) 1780 return true; 1781 1782 idx = srcu_read_lock(&kvm->srcu); 1783 1784 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1785 if (!msr_filter) { 1786 allowed = true; 1787 goto out; 1788 } 1789 1790 allowed = msr_filter->default_allow; 1791 ranges = msr_filter->ranges; 1792 1793 for (i = 0; i < msr_filter->count; i++) { 1794 u32 start = ranges[i].base; 1795 u32 end = start + ranges[i].nmsrs; 1796 u32 flags = ranges[i].flags; 1797 unsigned long *bitmap = ranges[i].bitmap; 1798 1799 if ((index >= start) && (index < end) && (flags & type)) { 1800 allowed = test_bit(index - start, bitmap); 1801 break; 1802 } 1803 } 1804 1805 out: 1806 srcu_read_unlock(&kvm->srcu, idx); 1807 1808 return allowed; 1809 } 1810 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1811 1812 /* 1813 * Write @data into the MSR specified by @index. Select MSR specific fault 1814 * checks are bypassed if @host_initiated is %true. 1815 * Returns 0 on success, non-0 otherwise. 1816 * Assumes vcpu_load() was already called. 1817 */ 1818 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1819 bool host_initiated) 1820 { 1821 struct msr_data msr; 1822 1823 switch (index) { 1824 case MSR_FS_BASE: 1825 case MSR_GS_BASE: 1826 case MSR_KERNEL_GS_BASE: 1827 case MSR_CSTAR: 1828 case MSR_LSTAR: 1829 if (is_noncanonical_msr_address(data, vcpu)) 1830 return 1; 1831 break; 1832 case MSR_IA32_SYSENTER_EIP: 1833 case MSR_IA32_SYSENTER_ESP: 1834 /* 1835 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1836 * non-canonical address is written on Intel but not on 1837 * AMD (which ignores the top 32-bits, because it does 1838 * not implement 64-bit SYSENTER). 1839 * 1840 * 64-bit code should hence be able to write a non-canonical 1841 * value on AMD. Making the address canonical ensures that 1842 * vmentry does not fail on Intel after writing a non-canonical 1843 * value, and that something deterministic happens if the guest 1844 * invokes 64-bit SYSENTER. 1845 */ 1846 data = __canonical_address(data, max_host_virt_addr_bits()); 1847 break; 1848 case MSR_TSC_AUX: 1849 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1850 return 1; 1851 1852 if (!host_initiated && 1853 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1854 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1855 return 1; 1856 1857 /* 1858 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1859 * incomplete and conflicting architectural behavior. Current 1860 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1861 * reserved and always read as zeros. Enforce Intel's reserved 1862 * bits check if the guest CPU is Intel compatible, otherwise 1863 * clear the bits. This ensures cross-vendor migration will 1864 * provide consistent behavior for the guest. 1865 */ 1866 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) 1867 return 1; 1868 1869 data = (u32)data; 1870 break; 1871 } 1872 1873 msr.data = data; 1874 msr.index = index; 1875 msr.host_initiated = host_initiated; 1876 1877 return kvm_x86_call(set_msr)(vcpu, &msr); 1878 } 1879 1880 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1881 bool host_initiated) 1882 { 1883 return __kvm_set_msr(vcpu, index, *data, host_initiated); 1884 } 1885 1886 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1887 u32 index, u64 data, bool host_initiated) 1888 { 1889 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W, 1890 _kvm_set_msr); 1891 } 1892 1893 /* 1894 * Read the MSR specified by @index into @data. Select MSR specific fault 1895 * checks are bypassed if @host_initiated is %true. 1896 * Returns 0 on success, non-0 otherwise. 1897 * Assumes vcpu_load() was already called. 1898 */ 1899 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1900 bool host_initiated) 1901 { 1902 struct msr_data msr; 1903 int ret; 1904 1905 switch (index) { 1906 case MSR_TSC_AUX: 1907 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1908 return 1; 1909 1910 if (!host_initiated && 1911 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1912 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1913 return 1; 1914 break; 1915 } 1916 1917 msr.index = index; 1918 msr.host_initiated = host_initiated; 1919 1920 ret = kvm_x86_call(get_msr)(vcpu, &msr); 1921 if (!ret) 1922 *data = msr.data; 1923 return ret; 1924 } 1925 1926 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1927 u32 index, u64 *data, bool host_initiated) 1928 { 1929 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R, 1930 __kvm_get_msr); 1931 } 1932 1933 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1934 { 1935 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1936 return KVM_MSR_RET_FILTERED; 1937 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1938 } 1939 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter); 1940 1941 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1942 { 1943 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1944 return KVM_MSR_RET_FILTERED; 1945 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1946 } 1947 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter); 1948 1949 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1950 { 1951 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1952 } 1953 EXPORT_SYMBOL_GPL(kvm_get_msr); 1954 1955 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1956 { 1957 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1958 } 1959 EXPORT_SYMBOL_GPL(kvm_set_msr); 1960 1961 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1962 { 1963 if (!vcpu->run->msr.error) { 1964 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1965 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1966 } 1967 } 1968 1969 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1970 { 1971 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1972 } 1973 1974 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1975 { 1976 complete_userspace_rdmsr(vcpu); 1977 return complete_emulated_msr_access(vcpu); 1978 } 1979 1980 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1981 { 1982 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1983 } 1984 1985 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1986 { 1987 complete_userspace_rdmsr(vcpu); 1988 return complete_fast_msr_access(vcpu); 1989 } 1990 1991 static u64 kvm_msr_reason(int r) 1992 { 1993 switch (r) { 1994 case KVM_MSR_RET_UNSUPPORTED: 1995 return KVM_MSR_EXIT_REASON_UNKNOWN; 1996 case KVM_MSR_RET_FILTERED: 1997 return KVM_MSR_EXIT_REASON_FILTER; 1998 default: 1999 return KVM_MSR_EXIT_REASON_INVAL; 2000 } 2001 } 2002 2003 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2004 u32 exit_reason, u64 data, 2005 int (*completion)(struct kvm_vcpu *vcpu), 2006 int r) 2007 { 2008 u64 msr_reason = kvm_msr_reason(r); 2009 2010 /* Check if the user wanted to know about this MSR fault */ 2011 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2012 return 0; 2013 2014 vcpu->run->exit_reason = exit_reason; 2015 vcpu->run->msr.error = 0; 2016 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2017 vcpu->run->msr.reason = msr_reason; 2018 vcpu->run->msr.index = index; 2019 vcpu->run->msr.data = data; 2020 vcpu->arch.complete_userspace_io = completion; 2021 2022 return 1; 2023 } 2024 2025 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2026 { 2027 u32 ecx = kvm_rcx_read(vcpu); 2028 u64 data; 2029 int r; 2030 2031 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2032 2033 if (!r) { 2034 trace_kvm_msr_read(ecx, data); 2035 2036 kvm_rax_write(vcpu, data & -1u); 2037 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2038 } else { 2039 /* MSR read failed? See if we should ask user space */ 2040 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2041 complete_fast_rdmsr, r)) 2042 return 0; 2043 trace_kvm_msr_read_ex(ecx); 2044 } 2045 2046 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2047 } 2048 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2049 2050 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2051 { 2052 u32 ecx = kvm_rcx_read(vcpu); 2053 u64 data = kvm_read_edx_eax(vcpu); 2054 int r; 2055 2056 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2057 2058 if (!r) { 2059 trace_kvm_msr_write(ecx, data); 2060 } else { 2061 /* MSR write failed? See if we should ask user space */ 2062 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2063 complete_fast_msr_access, r)) 2064 return 0; 2065 /* Signal all other negative errors to userspace */ 2066 if (r < 0) 2067 return r; 2068 trace_kvm_msr_write_ex(ecx, data); 2069 } 2070 2071 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2072 } 2073 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2074 2075 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2076 { 2077 return kvm_skip_emulated_instruction(vcpu); 2078 } 2079 2080 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2081 { 2082 /* Treat an INVD instruction as a NOP and just skip it. */ 2083 return kvm_emulate_as_nop(vcpu); 2084 } 2085 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2086 2087 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2088 { 2089 kvm_queue_exception(vcpu, UD_VECTOR); 2090 return 1; 2091 } 2092 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2093 2094 2095 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2096 { 2097 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2098 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2099 return kvm_handle_invalid_op(vcpu); 2100 2101 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2102 return kvm_emulate_as_nop(vcpu); 2103 } 2104 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2105 { 2106 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2107 } 2108 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2109 2110 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2111 { 2112 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2113 } 2114 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2115 2116 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2117 { 2118 xfer_to_guest_mode_prepare(); 2119 2120 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE || 2121 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending(); 2122 } 2123 2124 /* 2125 * The fast path for frequent and performance sensitive wrmsr emulation, 2126 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2127 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2128 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2129 * other cases which must be called after interrupts are enabled on the host. 2130 */ 2131 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2132 { 2133 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2134 return 1; 2135 2136 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2137 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2138 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2139 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2140 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2141 2142 return 1; 2143 } 2144 2145 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2146 { 2147 if (!kvm_can_use_hv_timer(vcpu)) 2148 return 1; 2149 2150 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2151 return 0; 2152 } 2153 2154 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2155 { 2156 u32 msr = kvm_rcx_read(vcpu); 2157 u64 data; 2158 fastpath_t ret; 2159 bool handled; 2160 2161 kvm_vcpu_srcu_read_lock(vcpu); 2162 2163 switch (msr) { 2164 case APIC_BASE_MSR + (APIC_ICR >> 4): 2165 data = kvm_read_edx_eax(vcpu); 2166 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); 2167 break; 2168 case MSR_IA32_TSC_DEADLINE: 2169 data = kvm_read_edx_eax(vcpu); 2170 handled = !handle_fastpath_set_tscdeadline(vcpu, data); 2171 break; 2172 default: 2173 handled = false; 2174 break; 2175 } 2176 2177 if (handled) { 2178 if (!kvm_skip_emulated_instruction(vcpu)) 2179 ret = EXIT_FASTPATH_EXIT_USERSPACE; 2180 else 2181 ret = EXIT_FASTPATH_REENTER_GUEST; 2182 trace_kvm_msr_write(msr, data); 2183 } else { 2184 ret = EXIT_FASTPATH_NONE; 2185 } 2186 2187 kvm_vcpu_srcu_read_unlock(vcpu); 2188 2189 return ret; 2190 } 2191 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2192 2193 /* 2194 * Adapt set_msr() to msr_io()'s calling convention 2195 */ 2196 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2197 { 2198 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2199 } 2200 2201 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2202 { 2203 u64 val; 2204 2205 /* 2206 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2207 * not support modifying the guest vCPU model on the fly, e.g. changing 2208 * the nVMX capabilities while L2 is running is nonsensical. Allow 2209 * writes of the same value, e.g. to allow userspace to blindly stuff 2210 * all MSRs when emulating RESET. 2211 */ 2212 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2213 (do_get_msr(vcpu, index, &val) || *data != val)) 2214 return -EINVAL; 2215 2216 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2217 } 2218 2219 #ifdef CONFIG_X86_64 2220 struct pvclock_clock { 2221 int vclock_mode; 2222 u64 cycle_last; 2223 u64 mask; 2224 u32 mult; 2225 u32 shift; 2226 u64 base_cycles; 2227 u64 offset; 2228 }; 2229 2230 struct pvclock_gtod_data { 2231 seqcount_t seq; 2232 2233 struct pvclock_clock clock; /* extract of a clocksource struct */ 2234 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2235 2236 ktime_t offs_boot; 2237 u64 wall_time_sec; 2238 }; 2239 2240 static struct pvclock_gtod_data pvclock_gtod_data; 2241 2242 static void update_pvclock_gtod(struct timekeeper *tk) 2243 { 2244 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2245 2246 write_seqcount_begin(&vdata->seq); 2247 2248 /* copy pvclock gtod data */ 2249 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2250 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2251 vdata->clock.mask = tk->tkr_mono.mask; 2252 vdata->clock.mult = tk->tkr_mono.mult; 2253 vdata->clock.shift = tk->tkr_mono.shift; 2254 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2255 vdata->clock.offset = tk->tkr_mono.base; 2256 2257 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2258 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2259 vdata->raw_clock.mask = tk->tkr_raw.mask; 2260 vdata->raw_clock.mult = tk->tkr_raw.mult; 2261 vdata->raw_clock.shift = tk->tkr_raw.shift; 2262 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2263 vdata->raw_clock.offset = tk->tkr_raw.base; 2264 2265 vdata->wall_time_sec = tk->xtime_sec; 2266 2267 vdata->offs_boot = tk->offs_boot; 2268 2269 write_seqcount_end(&vdata->seq); 2270 } 2271 2272 static s64 get_kvmclock_base_ns(void) 2273 { 2274 /* Count up from boot time, but with the frequency of the raw clock. */ 2275 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2276 } 2277 #else 2278 static s64 get_kvmclock_base_ns(void) 2279 { 2280 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2281 return ktime_get_boottime_ns(); 2282 } 2283 #endif 2284 2285 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2286 { 2287 int version; 2288 int r; 2289 struct pvclock_wall_clock wc; 2290 u32 wc_sec_hi; 2291 u64 wall_nsec; 2292 2293 if (!wall_clock) 2294 return; 2295 2296 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2297 if (r) 2298 return; 2299 2300 if (version & 1) 2301 ++version; /* first time write, random junk */ 2302 2303 ++version; 2304 2305 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2306 return; 2307 2308 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2309 2310 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2311 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2312 wc.version = version; 2313 2314 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2315 2316 if (sec_hi_ofs) { 2317 wc_sec_hi = wall_nsec >> 32; 2318 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2319 &wc_sec_hi, sizeof(wc_sec_hi)); 2320 } 2321 2322 version++; 2323 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2324 } 2325 2326 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2327 bool old_msr, bool host_initiated) 2328 { 2329 struct kvm_arch *ka = &vcpu->kvm->arch; 2330 2331 if (vcpu->vcpu_id == 0 && !host_initiated) { 2332 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2333 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2334 2335 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2336 } 2337 2338 vcpu->arch.time = system_time; 2339 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2340 2341 /* we verify if the enable bit is set... */ 2342 if (system_time & 1) 2343 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2344 sizeof(struct pvclock_vcpu_time_info)); 2345 else 2346 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2347 2348 return; 2349 } 2350 2351 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2352 { 2353 do_shl32_div32(dividend, divisor); 2354 return dividend; 2355 } 2356 2357 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2358 s8 *pshift, u32 *pmultiplier) 2359 { 2360 uint64_t scaled64; 2361 int32_t shift = 0; 2362 uint64_t tps64; 2363 uint32_t tps32; 2364 2365 tps64 = base_hz; 2366 scaled64 = scaled_hz; 2367 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2368 tps64 >>= 1; 2369 shift--; 2370 } 2371 2372 tps32 = (uint32_t)tps64; 2373 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2374 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2375 scaled64 >>= 1; 2376 else 2377 tps32 <<= 1; 2378 shift++; 2379 } 2380 2381 *pshift = shift; 2382 *pmultiplier = div_frac(scaled64, tps32); 2383 } 2384 2385 #ifdef CONFIG_X86_64 2386 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2387 #endif 2388 2389 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2390 static unsigned long max_tsc_khz; 2391 2392 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2393 { 2394 u64 v = (u64)khz * (1000000 + ppm); 2395 do_div(v, 1000000); 2396 return v; 2397 } 2398 2399 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2400 2401 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2402 { 2403 u64 ratio; 2404 2405 /* Guest TSC same frequency as host TSC? */ 2406 if (!scale) { 2407 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2408 return 0; 2409 } 2410 2411 /* TSC scaling supported? */ 2412 if (!kvm_caps.has_tsc_control) { 2413 if (user_tsc_khz > tsc_khz) { 2414 vcpu->arch.tsc_catchup = 1; 2415 vcpu->arch.tsc_always_catchup = 1; 2416 return 0; 2417 } else { 2418 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2419 return -1; 2420 } 2421 } 2422 2423 /* TSC scaling required - calculate ratio */ 2424 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2425 user_tsc_khz, tsc_khz); 2426 2427 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2428 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2429 user_tsc_khz); 2430 return -1; 2431 } 2432 2433 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2434 return 0; 2435 } 2436 2437 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2438 { 2439 u32 thresh_lo, thresh_hi; 2440 int use_scaling = 0; 2441 2442 /* tsc_khz can be zero if TSC calibration fails */ 2443 if (user_tsc_khz == 0) { 2444 /* set tsc_scaling_ratio to a safe value */ 2445 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2446 return -1; 2447 } 2448 2449 /* Compute a scale to convert nanoseconds in TSC cycles */ 2450 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2451 &vcpu->arch.virtual_tsc_shift, 2452 &vcpu->arch.virtual_tsc_mult); 2453 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2454 2455 /* 2456 * Compute the variation in TSC rate which is acceptable 2457 * within the range of tolerance and decide if the 2458 * rate being applied is within that bounds of the hardware 2459 * rate. If so, no scaling or compensation need be done. 2460 */ 2461 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2462 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2463 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2464 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2465 user_tsc_khz, thresh_lo, thresh_hi); 2466 use_scaling = 1; 2467 } 2468 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2469 } 2470 2471 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2472 { 2473 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2474 vcpu->arch.virtual_tsc_mult, 2475 vcpu->arch.virtual_tsc_shift); 2476 tsc += vcpu->arch.this_tsc_write; 2477 return tsc; 2478 } 2479 2480 #ifdef CONFIG_X86_64 2481 static inline bool gtod_is_based_on_tsc(int mode) 2482 { 2483 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2484 } 2485 #endif 2486 2487 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2488 { 2489 #ifdef CONFIG_X86_64 2490 struct kvm_arch *ka = &vcpu->kvm->arch; 2491 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2492 2493 /* 2494 * To use the masterclock, the host clocksource must be based on TSC 2495 * and all vCPUs must have matching TSCs. Note, the count for matching 2496 * vCPUs doesn't include the reference vCPU, hence "+1". 2497 */ 2498 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2499 atomic_read(&vcpu->kvm->online_vcpus)) && 2500 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2501 2502 /* 2503 * Request a masterclock update if the masterclock needs to be toggled 2504 * on/off, or when starting a new generation and the masterclock is 2505 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2506 * taken _after_ the new generation is created). 2507 */ 2508 if ((ka->use_master_clock && new_generation) || 2509 (ka->use_master_clock != use_master_clock)) 2510 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2511 2512 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2513 atomic_read(&vcpu->kvm->online_vcpus), 2514 ka->use_master_clock, gtod->clock.vclock_mode); 2515 #endif 2516 } 2517 2518 /* 2519 * Multiply tsc by a fixed point number represented by ratio. 2520 * 2521 * The most significant 64-N bits (mult) of ratio represent the 2522 * integral part of the fixed point number; the remaining N bits 2523 * (frac) represent the fractional part, ie. ratio represents a fixed 2524 * point number (mult + frac * 2^(-N)). 2525 * 2526 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2527 */ 2528 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2529 { 2530 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2531 } 2532 2533 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2534 { 2535 u64 _tsc = tsc; 2536 2537 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2538 _tsc = __scale_tsc(ratio, tsc); 2539 2540 return _tsc; 2541 } 2542 2543 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2544 { 2545 u64 tsc; 2546 2547 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2548 2549 return target_tsc - tsc; 2550 } 2551 2552 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2553 { 2554 return vcpu->arch.l1_tsc_offset + 2555 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2556 } 2557 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2558 2559 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2560 { 2561 u64 nested_offset; 2562 2563 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2564 nested_offset = l1_offset; 2565 else 2566 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2567 kvm_caps.tsc_scaling_ratio_frac_bits); 2568 2569 nested_offset += l2_offset; 2570 return nested_offset; 2571 } 2572 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2573 2574 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2575 { 2576 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2577 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2578 kvm_caps.tsc_scaling_ratio_frac_bits); 2579 2580 return l1_multiplier; 2581 } 2582 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2583 2584 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2585 { 2586 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2587 vcpu->arch.l1_tsc_offset, 2588 l1_offset); 2589 2590 vcpu->arch.l1_tsc_offset = l1_offset; 2591 2592 /* 2593 * If we are here because L1 chose not to trap WRMSR to TSC then 2594 * according to the spec this should set L1's TSC (as opposed to 2595 * setting L1's offset for L2). 2596 */ 2597 if (is_guest_mode(vcpu)) 2598 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2599 l1_offset, 2600 kvm_x86_call(get_l2_tsc_offset)(vcpu), 2601 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2602 else 2603 vcpu->arch.tsc_offset = l1_offset; 2604 2605 kvm_x86_call(write_tsc_offset)(vcpu); 2606 } 2607 2608 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2609 { 2610 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2611 2612 /* Userspace is changing the multiplier while L2 is active */ 2613 if (is_guest_mode(vcpu)) 2614 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2615 l1_multiplier, 2616 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2617 else 2618 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2619 2620 if (kvm_caps.has_tsc_control) 2621 kvm_x86_call(write_tsc_multiplier)(vcpu); 2622 } 2623 2624 static inline bool kvm_check_tsc_unstable(void) 2625 { 2626 #ifdef CONFIG_X86_64 2627 /* 2628 * TSC is marked unstable when we're running on Hyper-V, 2629 * 'TSC page' clocksource is good. 2630 */ 2631 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2632 return false; 2633 #endif 2634 return check_tsc_unstable(); 2635 } 2636 2637 /* 2638 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2639 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2640 * participates in. 2641 */ 2642 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2643 u64 ns, bool matched) 2644 { 2645 struct kvm *kvm = vcpu->kvm; 2646 2647 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2648 2649 /* 2650 * We also track th most recent recorded KHZ, write and time to 2651 * allow the matching interval to be extended at each write. 2652 */ 2653 kvm->arch.last_tsc_nsec = ns; 2654 kvm->arch.last_tsc_write = tsc; 2655 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2656 kvm->arch.last_tsc_offset = offset; 2657 2658 vcpu->arch.last_guest_tsc = tsc; 2659 2660 kvm_vcpu_write_tsc_offset(vcpu, offset); 2661 2662 if (!matched) { 2663 /* 2664 * We split periods of matched TSC writes into generations. 2665 * For each generation, we track the original measured 2666 * nanosecond time, offset, and write, so if TSCs are in 2667 * sync, we can match exact offset, and if not, we can match 2668 * exact software computation in compute_guest_tsc() 2669 * 2670 * These values are tracked in kvm->arch.cur_xxx variables. 2671 */ 2672 kvm->arch.cur_tsc_generation++; 2673 kvm->arch.cur_tsc_nsec = ns; 2674 kvm->arch.cur_tsc_write = tsc; 2675 kvm->arch.cur_tsc_offset = offset; 2676 kvm->arch.nr_vcpus_matched_tsc = 0; 2677 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2678 kvm->arch.nr_vcpus_matched_tsc++; 2679 } 2680 2681 /* Keep track of which generation this VCPU has synchronized to */ 2682 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2683 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2684 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2685 2686 kvm_track_tsc_matching(vcpu, !matched); 2687 } 2688 2689 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2690 { 2691 u64 data = user_value ? *user_value : 0; 2692 struct kvm *kvm = vcpu->kvm; 2693 u64 offset, ns, elapsed; 2694 unsigned long flags; 2695 bool matched = false; 2696 bool synchronizing = false; 2697 2698 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2699 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2700 ns = get_kvmclock_base_ns(); 2701 elapsed = ns - kvm->arch.last_tsc_nsec; 2702 2703 if (vcpu->arch.virtual_tsc_khz) { 2704 if (data == 0) { 2705 /* 2706 * Force synchronization when creating a vCPU, or when 2707 * userspace explicitly writes a zero value. 2708 */ 2709 synchronizing = true; 2710 } else if (kvm->arch.user_set_tsc) { 2711 u64 tsc_exp = kvm->arch.last_tsc_write + 2712 nsec_to_cycles(vcpu, elapsed); 2713 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2714 /* 2715 * Here lies UAPI baggage: when a user-initiated TSC write has 2716 * a small delta (1 second) of virtual cycle time against the 2717 * previously set vCPU, we assume that they were intended to be 2718 * in sync and the delta was only due to the racy nature of the 2719 * legacy API. 2720 * 2721 * This trick falls down when restoring a guest which genuinely 2722 * has been running for less time than the 1 second of imprecision 2723 * which we allow for in the legacy API. In this case, the first 2724 * value written by userspace (on any vCPU) should not be subject 2725 * to this 'correction' to make it sync up with values that only 2726 * come from the kernel's default vCPU creation. Make the 1-second 2727 * slop hack only trigger if the user_set_tsc flag is already set. 2728 */ 2729 synchronizing = data < tsc_exp + tsc_hz && 2730 data + tsc_hz > tsc_exp; 2731 } 2732 } 2733 2734 if (user_value) 2735 kvm->arch.user_set_tsc = true; 2736 2737 /* 2738 * For a reliable TSC, we can match TSC offsets, and for an unstable 2739 * TSC, we add elapsed time in this computation. We could let the 2740 * compensation code attempt to catch up if we fall behind, but 2741 * it's better to try to match offsets from the beginning. 2742 */ 2743 if (synchronizing && 2744 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2745 if (!kvm_check_tsc_unstable()) { 2746 offset = kvm->arch.cur_tsc_offset; 2747 } else { 2748 u64 delta = nsec_to_cycles(vcpu, elapsed); 2749 data += delta; 2750 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2751 } 2752 matched = true; 2753 } 2754 2755 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2756 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2757 } 2758 2759 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2760 s64 adjustment) 2761 { 2762 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2763 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2764 } 2765 2766 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2767 { 2768 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2769 WARN_ON(adjustment < 0); 2770 adjustment = kvm_scale_tsc((u64) adjustment, 2771 vcpu->arch.l1_tsc_scaling_ratio); 2772 adjust_tsc_offset_guest(vcpu, adjustment); 2773 } 2774 2775 #ifdef CONFIG_X86_64 2776 2777 static u64 read_tsc(void) 2778 { 2779 u64 ret = (u64)rdtsc_ordered(); 2780 u64 last = pvclock_gtod_data.clock.cycle_last; 2781 2782 if (likely(ret >= last)) 2783 return ret; 2784 2785 /* 2786 * GCC likes to generate cmov here, but this branch is extremely 2787 * predictable (it's just a function of time and the likely is 2788 * very likely) and there's a data dependence, so force GCC 2789 * to generate a branch instead. I don't barrier() because 2790 * we don't actually need a barrier, and if this function 2791 * ever gets inlined it will generate worse code. 2792 */ 2793 asm volatile (""); 2794 return last; 2795 } 2796 2797 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2798 int *mode) 2799 { 2800 u64 tsc_pg_val; 2801 long v; 2802 2803 switch (clock->vclock_mode) { 2804 case VDSO_CLOCKMODE_HVCLOCK: 2805 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2806 tsc_timestamp, &tsc_pg_val)) { 2807 /* TSC page valid */ 2808 *mode = VDSO_CLOCKMODE_HVCLOCK; 2809 v = (tsc_pg_val - clock->cycle_last) & 2810 clock->mask; 2811 } else { 2812 /* TSC page invalid */ 2813 *mode = VDSO_CLOCKMODE_NONE; 2814 } 2815 break; 2816 case VDSO_CLOCKMODE_TSC: 2817 *mode = VDSO_CLOCKMODE_TSC; 2818 *tsc_timestamp = read_tsc(); 2819 v = (*tsc_timestamp - clock->cycle_last) & 2820 clock->mask; 2821 break; 2822 default: 2823 *mode = VDSO_CLOCKMODE_NONE; 2824 } 2825 2826 if (*mode == VDSO_CLOCKMODE_NONE) 2827 *tsc_timestamp = v = 0; 2828 2829 return v * clock->mult; 2830 } 2831 2832 /* 2833 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2834 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2835 */ 2836 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2837 { 2838 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2839 unsigned long seq; 2840 int mode; 2841 u64 ns; 2842 2843 do { 2844 seq = read_seqcount_begin(>od->seq); 2845 ns = gtod->raw_clock.base_cycles; 2846 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2847 ns >>= gtod->raw_clock.shift; 2848 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2849 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2850 *t = ns; 2851 2852 return mode; 2853 } 2854 2855 /* 2856 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2857 * no boot time offset. 2858 */ 2859 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2860 { 2861 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2862 unsigned long seq; 2863 int mode; 2864 u64 ns; 2865 2866 do { 2867 seq = read_seqcount_begin(>od->seq); 2868 ns = gtod->clock.base_cycles; 2869 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2870 ns >>= gtod->clock.shift; 2871 ns += ktime_to_ns(gtod->clock.offset); 2872 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2873 *t = ns; 2874 2875 return mode; 2876 } 2877 2878 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2879 { 2880 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2881 unsigned long seq; 2882 int mode; 2883 u64 ns; 2884 2885 do { 2886 seq = read_seqcount_begin(>od->seq); 2887 ts->tv_sec = gtod->wall_time_sec; 2888 ns = gtod->clock.base_cycles; 2889 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2890 ns >>= gtod->clock.shift; 2891 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2892 2893 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2894 ts->tv_nsec = ns; 2895 2896 return mode; 2897 } 2898 2899 /* 2900 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2901 * reports the TSC value from which it do so. Returns true if host is 2902 * using TSC based clocksource. 2903 */ 2904 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2905 { 2906 /* checked again under seqlock below */ 2907 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2908 return false; 2909 2910 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2911 tsc_timestamp)); 2912 } 2913 2914 /* 2915 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2916 * so. Returns true if host is using TSC based clocksource. 2917 */ 2918 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2919 { 2920 /* checked again under seqlock below */ 2921 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2922 return false; 2923 2924 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2925 tsc_timestamp)); 2926 } 2927 2928 /* 2929 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2930 * so. Returns true if host is using TSC based clocksource. 2931 * 2932 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2933 * for that. 2934 */ 2935 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2936 u64 *tsc_timestamp) 2937 { 2938 /* checked again under seqlock below */ 2939 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2940 return false; 2941 2942 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2943 } 2944 #endif 2945 2946 /* 2947 * 2948 * Assuming a stable TSC across physical CPUS, and a stable TSC 2949 * across virtual CPUs, the following condition is possible. 2950 * Each numbered line represents an event visible to both 2951 * CPUs at the next numbered event. 2952 * 2953 * "timespecX" represents host monotonic time. "tscX" represents 2954 * RDTSC value. 2955 * 2956 * VCPU0 on CPU0 | VCPU1 on CPU1 2957 * 2958 * 1. read timespec0,tsc0 2959 * 2. | timespec1 = timespec0 + N 2960 * | tsc1 = tsc0 + M 2961 * 3. transition to guest | transition to guest 2962 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2963 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2964 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2965 * 2966 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2967 * 2968 * - ret0 < ret1 2969 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2970 * ... 2971 * - 0 < N - M => M < N 2972 * 2973 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2974 * always the case (the difference between two distinct xtime instances 2975 * might be smaller then the difference between corresponding TSC reads, 2976 * when updating guest vcpus pvclock areas). 2977 * 2978 * To avoid that problem, do not allow visibility of distinct 2979 * system_timestamp/tsc_timestamp values simultaneously: use a master 2980 * copy of host monotonic time values. Update that master copy 2981 * in lockstep. 2982 * 2983 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2984 * 2985 */ 2986 2987 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2988 { 2989 #ifdef CONFIG_X86_64 2990 struct kvm_arch *ka = &kvm->arch; 2991 int vclock_mode; 2992 bool host_tsc_clocksource, vcpus_matched; 2993 2994 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2995 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2996 atomic_read(&kvm->online_vcpus)); 2997 2998 /* 2999 * If the host uses TSC clock, then passthrough TSC as stable 3000 * to the guest. 3001 */ 3002 host_tsc_clocksource = kvm_get_time_and_clockread( 3003 &ka->master_kernel_ns, 3004 &ka->master_cycle_now); 3005 3006 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3007 && !ka->backwards_tsc_observed 3008 && !ka->boot_vcpu_runs_old_kvmclock; 3009 3010 if (ka->use_master_clock) 3011 atomic_set(&kvm_guest_has_master_clock, 1); 3012 3013 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3014 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3015 vcpus_matched); 3016 #endif 3017 } 3018 3019 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3020 { 3021 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3022 } 3023 3024 static void __kvm_start_pvclock_update(struct kvm *kvm) 3025 { 3026 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3027 write_seqcount_begin(&kvm->arch.pvclock_sc); 3028 } 3029 3030 static void kvm_start_pvclock_update(struct kvm *kvm) 3031 { 3032 kvm_make_mclock_inprogress_request(kvm); 3033 3034 /* no guest entries from this point */ 3035 __kvm_start_pvclock_update(kvm); 3036 } 3037 3038 static void kvm_end_pvclock_update(struct kvm *kvm) 3039 { 3040 struct kvm_arch *ka = &kvm->arch; 3041 struct kvm_vcpu *vcpu; 3042 unsigned long i; 3043 3044 write_seqcount_end(&ka->pvclock_sc); 3045 raw_spin_unlock_irq(&ka->tsc_write_lock); 3046 kvm_for_each_vcpu(i, vcpu, kvm) 3047 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3048 3049 /* guest entries allowed */ 3050 kvm_for_each_vcpu(i, vcpu, kvm) 3051 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3052 } 3053 3054 static void kvm_update_masterclock(struct kvm *kvm) 3055 { 3056 kvm_hv_request_tsc_page_update(kvm); 3057 kvm_start_pvclock_update(kvm); 3058 pvclock_update_vm_gtod_copy(kvm); 3059 kvm_end_pvclock_update(kvm); 3060 } 3061 3062 /* 3063 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3064 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3065 * can change during boot even if the TSC is constant, as it's possible for KVM 3066 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3067 * notification when calibration completes, but practically speaking calibration 3068 * will complete before userspace is alive enough to create VMs. 3069 */ 3070 static unsigned long get_cpu_tsc_khz(void) 3071 { 3072 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3073 return tsc_khz; 3074 else 3075 return __this_cpu_read(cpu_tsc_khz); 3076 } 3077 3078 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3079 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3080 { 3081 struct kvm_arch *ka = &kvm->arch; 3082 struct pvclock_vcpu_time_info hv_clock; 3083 3084 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3085 get_cpu(); 3086 3087 data->flags = 0; 3088 if (ka->use_master_clock && 3089 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3090 #ifdef CONFIG_X86_64 3091 struct timespec64 ts; 3092 3093 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3094 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3095 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3096 } else 3097 #endif 3098 data->host_tsc = rdtsc(); 3099 3100 data->flags |= KVM_CLOCK_TSC_STABLE; 3101 hv_clock.tsc_timestamp = ka->master_cycle_now; 3102 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3103 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3104 &hv_clock.tsc_shift, 3105 &hv_clock.tsc_to_system_mul); 3106 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3107 } else { 3108 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3109 } 3110 3111 put_cpu(); 3112 } 3113 3114 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3115 { 3116 struct kvm_arch *ka = &kvm->arch; 3117 unsigned seq; 3118 3119 do { 3120 seq = read_seqcount_begin(&ka->pvclock_sc); 3121 __get_kvmclock(kvm, data); 3122 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3123 } 3124 3125 u64 get_kvmclock_ns(struct kvm *kvm) 3126 { 3127 struct kvm_clock_data data; 3128 3129 get_kvmclock(kvm, &data); 3130 return data.clock; 3131 } 3132 3133 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3134 struct gfn_to_pfn_cache *gpc, 3135 unsigned int offset, 3136 bool force_tsc_unstable) 3137 { 3138 struct kvm_vcpu_arch *vcpu = &v->arch; 3139 struct pvclock_vcpu_time_info *guest_hv_clock; 3140 unsigned long flags; 3141 3142 read_lock_irqsave(&gpc->lock, flags); 3143 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3144 read_unlock_irqrestore(&gpc->lock, flags); 3145 3146 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3147 return; 3148 3149 read_lock_irqsave(&gpc->lock, flags); 3150 } 3151 3152 guest_hv_clock = (void *)(gpc->khva + offset); 3153 3154 /* 3155 * This VCPU is paused, but it's legal for a guest to read another 3156 * VCPU's kvmclock, so we really have to follow the specification where 3157 * it says that version is odd if data is being modified, and even after 3158 * it is consistent. 3159 */ 3160 3161 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3162 smp_wmb(); 3163 3164 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3165 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3166 3167 if (vcpu->pvclock_set_guest_stopped_request) { 3168 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3169 vcpu->pvclock_set_guest_stopped_request = false; 3170 } 3171 3172 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3173 3174 if (force_tsc_unstable) 3175 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3176 3177 smp_wmb(); 3178 3179 guest_hv_clock->version = ++vcpu->hv_clock.version; 3180 3181 kvm_gpc_mark_dirty_in_slot(gpc); 3182 read_unlock_irqrestore(&gpc->lock, flags); 3183 3184 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3185 } 3186 3187 static int kvm_guest_time_update(struct kvm_vcpu *v) 3188 { 3189 unsigned long flags, tgt_tsc_khz; 3190 unsigned seq; 3191 struct kvm_vcpu_arch *vcpu = &v->arch; 3192 struct kvm_arch *ka = &v->kvm->arch; 3193 s64 kernel_ns; 3194 u64 tsc_timestamp, host_tsc; 3195 u8 pvclock_flags; 3196 bool use_master_clock; 3197 #ifdef CONFIG_KVM_XEN 3198 /* 3199 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3200 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3201 * This default behaviour led to bugs in some guest kernels which cause 3202 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3203 */ 3204 bool xen_pvclock_tsc_unstable = 3205 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3206 #endif 3207 3208 kernel_ns = 0; 3209 host_tsc = 0; 3210 3211 /* 3212 * If the host uses TSC clock, then passthrough TSC as stable 3213 * to the guest. 3214 */ 3215 do { 3216 seq = read_seqcount_begin(&ka->pvclock_sc); 3217 use_master_clock = ka->use_master_clock; 3218 if (use_master_clock) { 3219 host_tsc = ka->master_cycle_now; 3220 kernel_ns = ka->master_kernel_ns; 3221 } 3222 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3223 3224 /* Keep irq disabled to prevent changes to the clock */ 3225 local_irq_save(flags); 3226 tgt_tsc_khz = get_cpu_tsc_khz(); 3227 if (unlikely(tgt_tsc_khz == 0)) { 3228 local_irq_restore(flags); 3229 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3230 return 1; 3231 } 3232 if (!use_master_clock) { 3233 host_tsc = rdtsc(); 3234 kernel_ns = get_kvmclock_base_ns(); 3235 } 3236 3237 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3238 3239 /* 3240 * We may have to catch up the TSC to match elapsed wall clock 3241 * time for two reasons, even if kvmclock is used. 3242 * 1) CPU could have been running below the maximum TSC rate 3243 * 2) Broken TSC compensation resets the base at each VCPU 3244 * entry to avoid unknown leaps of TSC even when running 3245 * again on the same CPU. This may cause apparent elapsed 3246 * time to disappear, and the guest to stand still or run 3247 * very slowly. 3248 */ 3249 if (vcpu->tsc_catchup) { 3250 u64 tsc = compute_guest_tsc(v, kernel_ns); 3251 if (tsc > tsc_timestamp) { 3252 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3253 tsc_timestamp = tsc; 3254 } 3255 } 3256 3257 local_irq_restore(flags); 3258 3259 /* With all the info we got, fill in the values */ 3260 3261 if (kvm_caps.has_tsc_control) 3262 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3263 v->arch.l1_tsc_scaling_ratio); 3264 3265 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3266 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3267 &vcpu->hv_clock.tsc_shift, 3268 &vcpu->hv_clock.tsc_to_system_mul); 3269 vcpu->hw_tsc_khz = tgt_tsc_khz; 3270 kvm_xen_update_tsc_info(v); 3271 } 3272 3273 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3274 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3275 vcpu->last_guest_tsc = tsc_timestamp; 3276 3277 /* If the host uses TSC clocksource, then it is stable */ 3278 pvclock_flags = 0; 3279 if (use_master_clock) 3280 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3281 3282 vcpu->hv_clock.flags = pvclock_flags; 3283 3284 if (vcpu->pv_time.active) 3285 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3286 #ifdef CONFIG_KVM_XEN 3287 if (vcpu->xen.vcpu_info_cache.active) 3288 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3289 offsetof(struct compat_vcpu_info, time), 3290 xen_pvclock_tsc_unstable); 3291 if (vcpu->xen.vcpu_time_info_cache.active) 3292 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3293 xen_pvclock_tsc_unstable); 3294 #endif 3295 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3296 return 0; 3297 } 3298 3299 /* 3300 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3301 * which it started (i.e. its epoch, when its kvmclock was zero). 3302 * 3303 * In fact those clocks are subtly different; wall clock frequency is 3304 * adjusted by NTP and has leap seconds, while the kvmclock is a 3305 * simple function of the TSC without any such adjustment. 3306 * 3307 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3308 * that and kvmclock, but even that would be subject to change over 3309 * time. 3310 * 3311 * Attempt to calculate the epoch at a given moment using the *same* 3312 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3313 * wallclock and kvmclock times, and subtracting one from the other. 3314 * 3315 * Fall back to using their values at slightly different moments by 3316 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3317 */ 3318 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3319 { 3320 #ifdef CONFIG_X86_64 3321 struct pvclock_vcpu_time_info hv_clock; 3322 struct kvm_arch *ka = &kvm->arch; 3323 unsigned long seq, local_tsc_khz; 3324 struct timespec64 ts; 3325 uint64_t host_tsc; 3326 3327 do { 3328 seq = read_seqcount_begin(&ka->pvclock_sc); 3329 3330 local_tsc_khz = 0; 3331 if (!ka->use_master_clock) 3332 break; 3333 3334 /* 3335 * The TSC read and the call to get_cpu_tsc_khz() must happen 3336 * on the same CPU. 3337 */ 3338 get_cpu(); 3339 3340 local_tsc_khz = get_cpu_tsc_khz(); 3341 3342 if (local_tsc_khz && 3343 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3344 local_tsc_khz = 0; /* Fall back to old method */ 3345 3346 put_cpu(); 3347 3348 /* 3349 * These values must be snapshotted within the seqcount loop. 3350 * After that, it's just mathematics which can happen on any 3351 * CPU at any time. 3352 */ 3353 hv_clock.tsc_timestamp = ka->master_cycle_now; 3354 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3355 3356 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3357 3358 /* 3359 * If the conditions were right, and obtaining the wallclock+TSC was 3360 * successful, calculate the KVM clock at the corresponding time and 3361 * subtract one from the other to get the guest's epoch in nanoseconds 3362 * since 1970-01-01. 3363 */ 3364 if (local_tsc_khz) { 3365 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3366 &hv_clock.tsc_shift, 3367 &hv_clock.tsc_to_system_mul); 3368 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3369 __pvclock_read_cycles(&hv_clock, host_tsc); 3370 } 3371 #endif 3372 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3373 } 3374 3375 /* 3376 * kvmclock updates which are isolated to a given vcpu, such as 3377 * vcpu->cpu migration, should not allow system_timestamp from 3378 * the rest of the vcpus to remain static. Otherwise ntp frequency 3379 * correction applies to one vcpu's system_timestamp but not 3380 * the others. 3381 * 3382 * So in those cases, request a kvmclock update for all vcpus. 3383 * We need to rate-limit these requests though, as they can 3384 * considerably slow guests that have a large number of vcpus. 3385 * The time for a remote vcpu to update its kvmclock is bound 3386 * by the delay we use to rate-limit the updates. 3387 */ 3388 3389 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3390 3391 static void kvmclock_update_fn(struct work_struct *work) 3392 { 3393 unsigned long i; 3394 struct delayed_work *dwork = to_delayed_work(work); 3395 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3396 kvmclock_update_work); 3397 struct kvm *kvm = container_of(ka, struct kvm, arch); 3398 struct kvm_vcpu *vcpu; 3399 3400 kvm_for_each_vcpu(i, vcpu, kvm) { 3401 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3402 kvm_vcpu_kick(vcpu); 3403 } 3404 } 3405 3406 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3407 { 3408 struct kvm *kvm = v->kvm; 3409 3410 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3411 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3412 KVMCLOCK_UPDATE_DELAY); 3413 } 3414 3415 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3416 3417 static void kvmclock_sync_fn(struct work_struct *work) 3418 { 3419 struct delayed_work *dwork = to_delayed_work(work); 3420 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3421 kvmclock_sync_work); 3422 struct kvm *kvm = container_of(ka, struct kvm, arch); 3423 3424 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3425 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3426 KVMCLOCK_SYNC_PERIOD); 3427 } 3428 3429 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3430 static bool is_mci_control_msr(u32 msr) 3431 { 3432 return (msr & 3) == 0; 3433 } 3434 static bool is_mci_status_msr(u32 msr) 3435 { 3436 return (msr & 3) == 1; 3437 } 3438 3439 /* 3440 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3441 */ 3442 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3443 { 3444 /* McStatusWrEn enabled? */ 3445 if (guest_cpuid_is_amd_compatible(vcpu)) 3446 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3447 3448 return false; 3449 } 3450 3451 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3452 { 3453 u64 mcg_cap = vcpu->arch.mcg_cap; 3454 unsigned bank_num = mcg_cap & 0xff; 3455 u32 msr = msr_info->index; 3456 u64 data = msr_info->data; 3457 u32 offset, last_msr; 3458 3459 switch (msr) { 3460 case MSR_IA32_MCG_STATUS: 3461 vcpu->arch.mcg_status = data; 3462 break; 3463 case MSR_IA32_MCG_CTL: 3464 if (!(mcg_cap & MCG_CTL_P) && 3465 (data || !msr_info->host_initiated)) 3466 return 1; 3467 if (data != 0 && data != ~(u64)0) 3468 return 1; 3469 vcpu->arch.mcg_ctl = data; 3470 break; 3471 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3472 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3473 if (msr > last_msr) 3474 return 1; 3475 3476 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3477 return 1; 3478 /* An attempt to write a 1 to a reserved bit raises #GP */ 3479 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3480 return 1; 3481 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3482 last_msr + 1 - MSR_IA32_MC0_CTL2); 3483 vcpu->arch.mci_ctl2_banks[offset] = data; 3484 break; 3485 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3486 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3487 if (msr > last_msr) 3488 return 1; 3489 3490 /* 3491 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3492 * values are architecturally undefined. But, some Linux 3493 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3494 * issue on AMD K8s, allow bit 10 to be clear when setting all 3495 * other bits in order to avoid an uncaught #GP in the guest. 3496 * 3497 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3498 * single-bit ECC data errors. 3499 */ 3500 if (is_mci_control_msr(msr) && 3501 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3502 return 1; 3503 3504 /* 3505 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3506 * AMD-based CPUs allow non-zero values, but if and only if 3507 * HWCR[McStatusWrEn] is set. 3508 */ 3509 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3510 data != 0 && !can_set_mci_status(vcpu)) 3511 return 1; 3512 3513 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3514 last_msr + 1 - MSR_IA32_MC0_CTL); 3515 vcpu->arch.mce_banks[offset] = data; 3516 break; 3517 default: 3518 return 1; 3519 } 3520 return 0; 3521 } 3522 3523 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3524 { 3525 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3526 3527 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3528 } 3529 3530 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3531 { 3532 gpa_t gpa = data & ~0x3f; 3533 3534 /* Bits 4:5 are reserved, Should be zero */ 3535 if (data & 0x30) 3536 return 1; 3537 3538 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3539 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3540 return 1; 3541 3542 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3543 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3544 return 1; 3545 3546 if (!lapic_in_kernel(vcpu)) 3547 return data ? 1 : 0; 3548 3549 vcpu->arch.apf.msr_en_val = data; 3550 3551 if (!kvm_pv_async_pf_enabled(vcpu)) { 3552 kvm_clear_async_pf_completion_queue(vcpu); 3553 kvm_async_pf_hash_reset(vcpu); 3554 return 0; 3555 } 3556 3557 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3558 sizeof(u64))) 3559 return 1; 3560 3561 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3562 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3563 3564 kvm_async_pf_wakeup_all(vcpu); 3565 3566 return 0; 3567 } 3568 3569 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3570 { 3571 /* Bits 8-63 are reserved */ 3572 if (data >> 8) 3573 return 1; 3574 3575 if (!lapic_in_kernel(vcpu)) 3576 return 1; 3577 3578 vcpu->arch.apf.msr_int_val = data; 3579 3580 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3581 3582 return 0; 3583 } 3584 3585 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3586 { 3587 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3588 vcpu->arch.time = 0; 3589 } 3590 3591 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3592 { 3593 ++vcpu->stat.tlb_flush; 3594 kvm_x86_call(flush_tlb_all)(vcpu); 3595 3596 /* Flushing all ASIDs flushes the current ASID... */ 3597 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3598 } 3599 3600 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3601 { 3602 ++vcpu->stat.tlb_flush; 3603 3604 if (!tdp_enabled) { 3605 /* 3606 * A TLB flush on behalf of the guest is equivalent to 3607 * INVPCID(all), toggling CR4.PGE, etc., which requires 3608 * a forced sync of the shadow page tables. Ensure all the 3609 * roots are synced and the guest TLB in hardware is clean. 3610 */ 3611 kvm_mmu_sync_roots(vcpu); 3612 kvm_mmu_sync_prev_roots(vcpu); 3613 } 3614 3615 kvm_x86_call(flush_tlb_guest)(vcpu); 3616 3617 /* 3618 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3619 * grained flushing. 3620 */ 3621 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3622 } 3623 3624 3625 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3626 { 3627 ++vcpu->stat.tlb_flush; 3628 kvm_x86_call(flush_tlb_current)(vcpu); 3629 } 3630 3631 /* 3632 * Service "local" TLB flush requests, which are specific to the current MMU 3633 * context. In addition to the generic event handling in vcpu_enter_guest(), 3634 * TLB flushes that are targeted at an MMU context also need to be serviced 3635 * prior before nested VM-Enter/VM-Exit. 3636 */ 3637 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3638 { 3639 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3640 kvm_vcpu_flush_tlb_current(vcpu); 3641 3642 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3643 kvm_vcpu_flush_tlb_guest(vcpu); 3644 } 3645 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3646 3647 static void record_steal_time(struct kvm_vcpu *vcpu) 3648 { 3649 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3650 struct kvm_steal_time __user *st; 3651 struct kvm_memslots *slots; 3652 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3653 u64 steal; 3654 u32 version; 3655 3656 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3657 kvm_xen_runstate_set_running(vcpu); 3658 return; 3659 } 3660 3661 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3662 return; 3663 3664 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3665 return; 3666 3667 slots = kvm_memslots(vcpu->kvm); 3668 3669 if (unlikely(slots->generation != ghc->generation || 3670 gpa != ghc->gpa || 3671 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3672 /* We rely on the fact that it fits in a single page. */ 3673 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3674 3675 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3676 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3677 return; 3678 } 3679 3680 st = (struct kvm_steal_time __user *)ghc->hva; 3681 /* 3682 * Doing a TLB flush here, on the guest's behalf, can avoid 3683 * expensive IPIs. 3684 */ 3685 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3686 u8 st_preempted = 0; 3687 int err = -EFAULT; 3688 3689 if (!user_access_begin(st, sizeof(*st))) 3690 return; 3691 3692 asm volatile("1: xchgb %0, %2\n" 3693 "xor %1, %1\n" 3694 "2:\n" 3695 _ASM_EXTABLE_UA(1b, 2b) 3696 : "+q" (st_preempted), 3697 "+&r" (err), 3698 "+m" (st->preempted)); 3699 if (err) 3700 goto out; 3701 3702 user_access_end(); 3703 3704 vcpu->arch.st.preempted = 0; 3705 3706 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3707 st_preempted & KVM_VCPU_FLUSH_TLB); 3708 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3709 kvm_vcpu_flush_tlb_guest(vcpu); 3710 3711 if (!user_access_begin(st, sizeof(*st))) 3712 goto dirty; 3713 } else { 3714 if (!user_access_begin(st, sizeof(*st))) 3715 return; 3716 3717 unsafe_put_user(0, &st->preempted, out); 3718 vcpu->arch.st.preempted = 0; 3719 } 3720 3721 unsafe_get_user(version, &st->version, out); 3722 if (version & 1) 3723 version += 1; /* first time write, random junk */ 3724 3725 version += 1; 3726 unsafe_put_user(version, &st->version, out); 3727 3728 smp_wmb(); 3729 3730 unsafe_get_user(steal, &st->steal, out); 3731 steal += current->sched_info.run_delay - 3732 vcpu->arch.st.last_steal; 3733 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3734 unsafe_put_user(steal, &st->steal, out); 3735 3736 version += 1; 3737 unsafe_put_user(version, &st->version, out); 3738 3739 out: 3740 user_access_end(); 3741 dirty: 3742 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3743 } 3744 3745 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3746 { 3747 u32 msr = msr_info->index; 3748 u64 data = msr_info->data; 3749 3750 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3751 return kvm_xen_write_hypercall_page(vcpu, data); 3752 3753 switch (msr) { 3754 case MSR_AMD64_NB_CFG: 3755 case MSR_IA32_UCODE_WRITE: 3756 case MSR_VM_HSAVE_PA: 3757 case MSR_AMD64_PATCH_LOADER: 3758 case MSR_AMD64_BU_CFG2: 3759 case MSR_AMD64_DC_CFG: 3760 case MSR_AMD64_TW_CFG: 3761 case MSR_F15H_EX_CFG: 3762 break; 3763 3764 case MSR_IA32_UCODE_REV: 3765 if (msr_info->host_initiated) 3766 vcpu->arch.microcode_version = data; 3767 break; 3768 case MSR_IA32_ARCH_CAPABILITIES: 3769 if (!msr_info->host_initiated || 3770 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3771 return KVM_MSR_RET_UNSUPPORTED; 3772 vcpu->arch.arch_capabilities = data; 3773 break; 3774 case MSR_IA32_PERF_CAPABILITIES: 3775 if (!msr_info->host_initiated || 3776 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3777 return KVM_MSR_RET_UNSUPPORTED; 3778 3779 if (data & ~kvm_caps.supported_perf_cap) 3780 return 1; 3781 3782 /* 3783 * Note, this is not just a performance optimization! KVM 3784 * disallows changing feature MSRs after the vCPU has run; PMU 3785 * refresh will bug the VM if called after the vCPU has run. 3786 */ 3787 if (vcpu->arch.perf_capabilities == data) 3788 break; 3789 3790 vcpu->arch.perf_capabilities = data; 3791 kvm_pmu_refresh(vcpu); 3792 break; 3793 case MSR_IA32_PRED_CMD: { 3794 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3795 3796 if (!msr_info->host_initiated) { 3797 if ((!guest_has_pred_cmd_msr(vcpu))) 3798 return 1; 3799 3800 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3801 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3802 reserved_bits |= PRED_CMD_IBPB; 3803 3804 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3805 reserved_bits |= PRED_CMD_SBPB; 3806 } 3807 3808 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3809 reserved_bits |= PRED_CMD_IBPB; 3810 3811 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3812 reserved_bits |= PRED_CMD_SBPB; 3813 3814 if (data & reserved_bits) 3815 return 1; 3816 3817 if (!data) 3818 break; 3819 3820 wrmsrl(MSR_IA32_PRED_CMD, data); 3821 break; 3822 } 3823 case MSR_IA32_FLUSH_CMD: 3824 if (!msr_info->host_initiated && 3825 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3826 return 1; 3827 3828 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3829 return 1; 3830 if (!data) 3831 break; 3832 3833 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3834 break; 3835 case MSR_EFER: 3836 return set_efer(vcpu, msr_info); 3837 case MSR_K7_HWCR: 3838 data &= ~(u64)0x40; /* ignore flush filter disable */ 3839 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3840 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3841 3842 /* 3843 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3844 * through at least v6.6 whine if TscFreqSel is clear, 3845 * depending on F/M/S. 3846 */ 3847 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3848 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3849 return 1; 3850 } 3851 vcpu->arch.msr_hwcr = data; 3852 break; 3853 case MSR_FAM10H_MMIO_CONF_BASE: 3854 if (data != 0) { 3855 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3856 return 1; 3857 } 3858 break; 3859 case MSR_IA32_CR_PAT: 3860 if (!kvm_pat_valid(data)) 3861 return 1; 3862 3863 vcpu->arch.pat = data; 3864 break; 3865 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3866 case MSR_MTRRdefType: 3867 return kvm_mtrr_set_msr(vcpu, msr, data); 3868 case MSR_IA32_APICBASE: 3869 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated); 3870 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3871 return kvm_x2apic_msr_write(vcpu, msr, data); 3872 case MSR_IA32_TSC_DEADLINE: 3873 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3874 break; 3875 case MSR_IA32_TSC_ADJUST: 3876 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3877 if (!msr_info->host_initiated) { 3878 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3879 adjust_tsc_offset_guest(vcpu, adj); 3880 /* Before back to guest, tsc_timestamp must be adjusted 3881 * as well, otherwise guest's percpu pvclock time could jump. 3882 */ 3883 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3884 } 3885 vcpu->arch.ia32_tsc_adjust_msr = data; 3886 } 3887 break; 3888 case MSR_IA32_MISC_ENABLE: { 3889 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3890 3891 if (!msr_info->host_initiated) { 3892 /* RO bits */ 3893 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3894 return 1; 3895 3896 /* R bits, i.e. writes are ignored, but don't fault. */ 3897 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3898 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3899 } 3900 3901 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3902 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3903 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3904 return 1; 3905 vcpu->arch.ia32_misc_enable_msr = data; 3906 kvm_update_cpuid_runtime(vcpu); 3907 } else { 3908 vcpu->arch.ia32_misc_enable_msr = data; 3909 } 3910 break; 3911 } 3912 case MSR_IA32_SMBASE: 3913 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3914 return 1; 3915 vcpu->arch.smbase = data; 3916 break; 3917 case MSR_IA32_POWER_CTL: 3918 vcpu->arch.msr_ia32_power_ctl = data; 3919 break; 3920 case MSR_IA32_TSC: 3921 if (msr_info->host_initiated) { 3922 kvm_synchronize_tsc(vcpu, &data); 3923 } else { 3924 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3925 adjust_tsc_offset_guest(vcpu, adj); 3926 vcpu->arch.ia32_tsc_adjust_msr += adj; 3927 } 3928 break; 3929 case MSR_IA32_XSS: 3930 if (!msr_info->host_initiated && 3931 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3932 return 1; 3933 /* 3934 * KVM supports exposing PT to the guest, but does not support 3935 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3936 * XSAVES/XRSTORS to save/restore PT MSRs. 3937 */ 3938 if (data & ~kvm_caps.supported_xss) 3939 return 1; 3940 vcpu->arch.ia32_xss = data; 3941 kvm_update_cpuid_runtime(vcpu); 3942 break; 3943 case MSR_SMI_COUNT: 3944 if (!msr_info->host_initiated) 3945 return 1; 3946 vcpu->arch.smi_count = data; 3947 break; 3948 case MSR_KVM_WALL_CLOCK_NEW: 3949 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3950 return 1; 3951 3952 vcpu->kvm->arch.wall_clock = data; 3953 kvm_write_wall_clock(vcpu->kvm, data, 0); 3954 break; 3955 case MSR_KVM_WALL_CLOCK: 3956 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3957 return 1; 3958 3959 vcpu->kvm->arch.wall_clock = data; 3960 kvm_write_wall_clock(vcpu->kvm, data, 0); 3961 break; 3962 case MSR_KVM_SYSTEM_TIME_NEW: 3963 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3964 return 1; 3965 3966 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3967 break; 3968 case MSR_KVM_SYSTEM_TIME: 3969 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3970 return 1; 3971 3972 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3973 break; 3974 case MSR_KVM_ASYNC_PF_EN: 3975 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3976 return 1; 3977 3978 if (kvm_pv_enable_async_pf(vcpu, data)) 3979 return 1; 3980 break; 3981 case MSR_KVM_ASYNC_PF_INT: 3982 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3983 return 1; 3984 3985 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3986 return 1; 3987 break; 3988 case MSR_KVM_ASYNC_PF_ACK: 3989 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3990 return 1; 3991 if (data & 0x1) { 3992 vcpu->arch.apf.pageready_pending = false; 3993 kvm_check_async_pf_completion(vcpu); 3994 } 3995 break; 3996 case MSR_KVM_STEAL_TIME: 3997 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3998 return 1; 3999 4000 if (unlikely(!sched_info_on())) 4001 return 1; 4002 4003 if (data & KVM_STEAL_RESERVED_MASK) 4004 return 1; 4005 4006 vcpu->arch.st.msr_val = data; 4007 4008 if (!(data & KVM_MSR_ENABLED)) 4009 break; 4010 4011 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4012 4013 break; 4014 case MSR_KVM_PV_EOI_EN: 4015 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4016 return 1; 4017 4018 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4019 return 1; 4020 break; 4021 4022 case MSR_KVM_POLL_CONTROL: 4023 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4024 return 1; 4025 4026 /* only enable bit supported */ 4027 if (data & (-1ULL << 1)) 4028 return 1; 4029 4030 vcpu->arch.msr_kvm_poll_control = data; 4031 break; 4032 4033 case MSR_IA32_MCG_CTL: 4034 case MSR_IA32_MCG_STATUS: 4035 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4036 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4037 return set_msr_mce(vcpu, msr_info); 4038 4039 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4040 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4041 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4042 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4043 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4044 return kvm_pmu_set_msr(vcpu, msr_info); 4045 4046 if (data) 4047 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4048 break; 4049 case MSR_K7_CLK_CTL: 4050 /* 4051 * Ignore all writes to this no longer documented MSR. 4052 * Writes are only relevant for old K7 processors, 4053 * all pre-dating SVM, but a recommended workaround from 4054 * AMD for these chips. It is possible to specify the 4055 * affected processor models on the command line, hence 4056 * the need to ignore the workaround. 4057 */ 4058 break; 4059 #ifdef CONFIG_KVM_HYPERV 4060 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4061 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4062 case HV_X64_MSR_SYNDBG_OPTIONS: 4063 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4064 case HV_X64_MSR_CRASH_CTL: 4065 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4066 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4067 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4068 case HV_X64_MSR_TSC_EMULATION_STATUS: 4069 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4070 return kvm_hv_set_msr_common(vcpu, msr, data, 4071 msr_info->host_initiated); 4072 #endif 4073 case MSR_IA32_BBL_CR_CTL3: 4074 /* Drop writes to this legacy MSR -- see rdmsr 4075 * counterpart for further detail. 4076 */ 4077 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4078 break; 4079 case MSR_AMD64_OSVW_ID_LENGTH: 4080 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4081 return 1; 4082 vcpu->arch.osvw.length = data; 4083 break; 4084 case MSR_AMD64_OSVW_STATUS: 4085 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4086 return 1; 4087 vcpu->arch.osvw.status = data; 4088 break; 4089 case MSR_PLATFORM_INFO: 4090 if (!msr_info->host_initiated) 4091 return 1; 4092 vcpu->arch.msr_platform_info = data; 4093 break; 4094 case MSR_MISC_FEATURES_ENABLES: 4095 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4096 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4097 !supports_cpuid_fault(vcpu))) 4098 return 1; 4099 vcpu->arch.msr_misc_features_enables = data; 4100 break; 4101 #ifdef CONFIG_X86_64 4102 case MSR_IA32_XFD: 4103 if (!msr_info->host_initiated && 4104 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4105 return 1; 4106 4107 if (data & ~kvm_guest_supported_xfd(vcpu)) 4108 return 1; 4109 4110 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4111 break; 4112 case MSR_IA32_XFD_ERR: 4113 if (!msr_info->host_initiated && 4114 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4115 return 1; 4116 4117 if (data & ~kvm_guest_supported_xfd(vcpu)) 4118 return 1; 4119 4120 vcpu->arch.guest_fpu.xfd_err = data; 4121 break; 4122 #endif 4123 default: 4124 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4125 return kvm_pmu_set_msr(vcpu, msr_info); 4126 4127 return KVM_MSR_RET_UNSUPPORTED; 4128 } 4129 return 0; 4130 } 4131 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4132 4133 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4134 { 4135 u64 data; 4136 u64 mcg_cap = vcpu->arch.mcg_cap; 4137 unsigned bank_num = mcg_cap & 0xff; 4138 u32 offset, last_msr; 4139 4140 switch (msr) { 4141 case MSR_IA32_P5_MC_ADDR: 4142 case MSR_IA32_P5_MC_TYPE: 4143 data = 0; 4144 break; 4145 case MSR_IA32_MCG_CAP: 4146 data = vcpu->arch.mcg_cap; 4147 break; 4148 case MSR_IA32_MCG_CTL: 4149 if (!(mcg_cap & MCG_CTL_P) && !host) 4150 return 1; 4151 data = vcpu->arch.mcg_ctl; 4152 break; 4153 case MSR_IA32_MCG_STATUS: 4154 data = vcpu->arch.mcg_status; 4155 break; 4156 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4157 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4158 if (msr > last_msr) 4159 return 1; 4160 4161 if (!(mcg_cap & MCG_CMCI_P) && !host) 4162 return 1; 4163 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4164 last_msr + 1 - MSR_IA32_MC0_CTL2); 4165 data = vcpu->arch.mci_ctl2_banks[offset]; 4166 break; 4167 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4168 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4169 if (msr > last_msr) 4170 return 1; 4171 4172 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4173 last_msr + 1 - MSR_IA32_MC0_CTL); 4174 data = vcpu->arch.mce_banks[offset]; 4175 break; 4176 default: 4177 return 1; 4178 } 4179 *pdata = data; 4180 return 0; 4181 } 4182 4183 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4184 { 4185 switch (msr_info->index) { 4186 case MSR_IA32_PLATFORM_ID: 4187 case MSR_IA32_EBL_CR_POWERON: 4188 case MSR_IA32_LASTBRANCHFROMIP: 4189 case MSR_IA32_LASTBRANCHTOIP: 4190 case MSR_IA32_LASTINTFROMIP: 4191 case MSR_IA32_LASTINTTOIP: 4192 case MSR_AMD64_SYSCFG: 4193 case MSR_K8_TSEG_ADDR: 4194 case MSR_K8_TSEG_MASK: 4195 case MSR_VM_HSAVE_PA: 4196 case MSR_K8_INT_PENDING_MSG: 4197 case MSR_AMD64_NB_CFG: 4198 case MSR_FAM10H_MMIO_CONF_BASE: 4199 case MSR_AMD64_BU_CFG2: 4200 case MSR_IA32_PERF_CTL: 4201 case MSR_AMD64_DC_CFG: 4202 case MSR_AMD64_TW_CFG: 4203 case MSR_F15H_EX_CFG: 4204 /* 4205 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4206 * limit) MSRs. Just return 0, as we do not want to expose the host 4207 * data here. Do not conditionalize this on CPUID, as KVM does not do 4208 * so for existing CPU-specific MSRs. 4209 */ 4210 case MSR_RAPL_POWER_UNIT: 4211 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4212 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4213 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4214 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4215 msr_info->data = 0; 4216 break; 4217 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4218 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4219 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4220 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4221 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4222 return kvm_pmu_get_msr(vcpu, msr_info); 4223 msr_info->data = 0; 4224 break; 4225 case MSR_IA32_UCODE_REV: 4226 msr_info->data = vcpu->arch.microcode_version; 4227 break; 4228 case MSR_IA32_ARCH_CAPABILITIES: 4229 if (!guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4230 return KVM_MSR_RET_UNSUPPORTED; 4231 msr_info->data = vcpu->arch.arch_capabilities; 4232 break; 4233 case MSR_IA32_PERF_CAPABILITIES: 4234 if (!guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4235 return KVM_MSR_RET_UNSUPPORTED; 4236 msr_info->data = vcpu->arch.perf_capabilities; 4237 break; 4238 case MSR_IA32_POWER_CTL: 4239 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4240 break; 4241 case MSR_IA32_TSC: { 4242 /* 4243 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4244 * even when not intercepted. AMD manual doesn't explicitly 4245 * state this but appears to behave the same. 4246 * 4247 * On userspace reads and writes, however, we unconditionally 4248 * return L1's TSC value to ensure backwards-compatible 4249 * behavior for migration. 4250 */ 4251 u64 offset, ratio; 4252 4253 if (msr_info->host_initiated) { 4254 offset = vcpu->arch.l1_tsc_offset; 4255 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4256 } else { 4257 offset = vcpu->arch.tsc_offset; 4258 ratio = vcpu->arch.tsc_scaling_ratio; 4259 } 4260 4261 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4262 break; 4263 } 4264 case MSR_IA32_CR_PAT: 4265 msr_info->data = vcpu->arch.pat; 4266 break; 4267 case MSR_MTRRcap: 4268 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4269 case MSR_MTRRdefType: 4270 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4271 case 0xcd: /* fsb frequency */ 4272 msr_info->data = 3; 4273 break; 4274 /* 4275 * MSR_EBC_FREQUENCY_ID 4276 * Conservative value valid for even the basic CPU models. 4277 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4278 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4279 * and 266MHz for model 3, or 4. Set Core Clock 4280 * Frequency to System Bus Frequency Ratio to 1 (bits 4281 * 31:24) even though these are only valid for CPU 4282 * models > 2, however guests may end up dividing or 4283 * multiplying by zero otherwise. 4284 */ 4285 case MSR_EBC_FREQUENCY_ID: 4286 msr_info->data = 1 << 24; 4287 break; 4288 case MSR_IA32_APICBASE: 4289 msr_info->data = vcpu->arch.apic_base; 4290 break; 4291 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4292 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4293 case MSR_IA32_TSC_DEADLINE: 4294 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4295 break; 4296 case MSR_IA32_TSC_ADJUST: 4297 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4298 break; 4299 case MSR_IA32_MISC_ENABLE: 4300 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4301 break; 4302 case MSR_IA32_SMBASE: 4303 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4304 return 1; 4305 msr_info->data = vcpu->arch.smbase; 4306 break; 4307 case MSR_SMI_COUNT: 4308 msr_info->data = vcpu->arch.smi_count; 4309 break; 4310 case MSR_IA32_PERF_STATUS: 4311 /* TSC increment by tick */ 4312 msr_info->data = 1000ULL; 4313 /* CPU multiplier */ 4314 msr_info->data |= (((uint64_t)4ULL) << 40); 4315 break; 4316 case MSR_EFER: 4317 msr_info->data = vcpu->arch.efer; 4318 break; 4319 case MSR_KVM_WALL_CLOCK: 4320 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4321 return 1; 4322 4323 msr_info->data = vcpu->kvm->arch.wall_clock; 4324 break; 4325 case MSR_KVM_WALL_CLOCK_NEW: 4326 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4327 return 1; 4328 4329 msr_info->data = vcpu->kvm->arch.wall_clock; 4330 break; 4331 case MSR_KVM_SYSTEM_TIME: 4332 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4333 return 1; 4334 4335 msr_info->data = vcpu->arch.time; 4336 break; 4337 case MSR_KVM_SYSTEM_TIME_NEW: 4338 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4339 return 1; 4340 4341 msr_info->data = vcpu->arch.time; 4342 break; 4343 case MSR_KVM_ASYNC_PF_EN: 4344 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4345 return 1; 4346 4347 msr_info->data = vcpu->arch.apf.msr_en_val; 4348 break; 4349 case MSR_KVM_ASYNC_PF_INT: 4350 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4351 return 1; 4352 4353 msr_info->data = vcpu->arch.apf.msr_int_val; 4354 break; 4355 case MSR_KVM_ASYNC_PF_ACK: 4356 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4357 return 1; 4358 4359 msr_info->data = 0; 4360 break; 4361 case MSR_KVM_STEAL_TIME: 4362 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4363 return 1; 4364 4365 msr_info->data = vcpu->arch.st.msr_val; 4366 break; 4367 case MSR_KVM_PV_EOI_EN: 4368 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4369 return 1; 4370 4371 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4372 break; 4373 case MSR_KVM_POLL_CONTROL: 4374 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4375 return 1; 4376 4377 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4378 break; 4379 case MSR_IA32_P5_MC_ADDR: 4380 case MSR_IA32_P5_MC_TYPE: 4381 case MSR_IA32_MCG_CAP: 4382 case MSR_IA32_MCG_CTL: 4383 case MSR_IA32_MCG_STATUS: 4384 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4385 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4386 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4387 msr_info->host_initiated); 4388 case MSR_IA32_XSS: 4389 if (!msr_info->host_initiated && 4390 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4391 return 1; 4392 msr_info->data = vcpu->arch.ia32_xss; 4393 break; 4394 case MSR_K7_CLK_CTL: 4395 /* 4396 * Provide expected ramp-up count for K7. All other 4397 * are set to zero, indicating minimum divisors for 4398 * every field. 4399 * 4400 * This prevents guest kernels on AMD host with CPU 4401 * type 6, model 8 and higher from exploding due to 4402 * the rdmsr failing. 4403 */ 4404 msr_info->data = 0x20000000; 4405 break; 4406 #ifdef CONFIG_KVM_HYPERV 4407 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4408 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4409 case HV_X64_MSR_SYNDBG_OPTIONS: 4410 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4411 case HV_X64_MSR_CRASH_CTL: 4412 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4413 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4414 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4415 case HV_X64_MSR_TSC_EMULATION_STATUS: 4416 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4417 return kvm_hv_get_msr_common(vcpu, 4418 msr_info->index, &msr_info->data, 4419 msr_info->host_initiated); 4420 #endif 4421 case MSR_IA32_BBL_CR_CTL3: 4422 /* This legacy MSR exists but isn't fully documented in current 4423 * silicon. It is however accessed by winxp in very narrow 4424 * scenarios where it sets bit #19, itself documented as 4425 * a "reserved" bit. Best effort attempt to source coherent 4426 * read data here should the balance of the register be 4427 * interpreted by the guest: 4428 * 4429 * L2 cache control register 3: 64GB range, 256KB size, 4430 * enabled, latency 0x1, configured 4431 */ 4432 msr_info->data = 0xbe702111; 4433 break; 4434 case MSR_AMD64_OSVW_ID_LENGTH: 4435 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4436 return 1; 4437 msr_info->data = vcpu->arch.osvw.length; 4438 break; 4439 case MSR_AMD64_OSVW_STATUS: 4440 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4441 return 1; 4442 msr_info->data = vcpu->arch.osvw.status; 4443 break; 4444 case MSR_PLATFORM_INFO: 4445 if (!msr_info->host_initiated && 4446 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4447 return 1; 4448 msr_info->data = vcpu->arch.msr_platform_info; 4449 break; 4450 case MSR_MISC_FEATURES_ENABLES: 4451 msr_info->data = vcpu->arch.msr_misc_features_enables; 4452 break; 4453 case MSR_K7_HWCR: 4454 msr_info->data = vcpu->arch.msr_hwcr; 4455 break; 4456 #ifdef CONFIG_X86_64 4457 case MSR_IA32_XFD: 4458 if (!msr_info->host_initiated && 4459 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4460 return 1; 4461 4462 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4463 break; 4464 case MSR_IA32_XFD_ERR: 4465 if (!msr_info->host_initiated && 4466 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4467 return 1; 4468 4469 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4470 break; 4471 #endif 4472 default: 4473 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4474 return kvm_pmu_get_msr(vcpu, msr_info); 4475 4476 return KVM_MSR_RET_UNSUPPORTED; 4477 } 4478 return 0; 4479 } 4480 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4481 4482 /* 4483 * Read or write a bunch of msrs. All parameters are kernel addresses. 4484 * 4485 * @return number of msrs set successfully. 4486 */ 4487 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4488 struct kvm_msr_entry *entries, 4489 int (*do_msr)(struct kvm_vcpu *vcpu, 4490 unsigned index, u64 *data)) 4491 { 4492 int i; 4493 4494 for (i = 0; i < msrs->nmsrs; ++i) 4495 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4496 break; 4497 4498 return i; 4499 } 4500 4501 /* 4502 * Read or write a bunch of msrs. Parameters are user addresses. 4503 * 4504 * @return number of msrs set successfully. 4505 */ 4506 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4507 int (*do_msr)(struct kvm_vcpu *vcpu, 4508 unsigned index, u64 *data), 4509 int writeback) 4510 { 4511 struct kvm_msrs msrs; 4512 struct kvm_msr_entry *entries; 4513 unsigned size; 4514 int r; 4515 4516 r = -EFAULT; 4517 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4518 goto out; 4519 4520 r = -E2BIG; 4521 if (msrs.nmsrs >= MAX_IO_MSRS) 4522 goto out; 4523 4524 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4525 entries = memdup_user(user_msrs->entries, size); 4526 if (IS_ERR(entries)) { 4527 r = PTR_ERR(entries); 4528 goto out; 4529 } 4530 4531 r = __msr_io(vcpu, &msrs, entries, do_msr); 4532 4533 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4534 r = -EFAULT; 4535 4536 kfree(entries); 4537 out: 4538 return r; 4539 } 4540 4541 static inline bool kvm_can_mwait_in_guest(void) 4542 { 4543 return boot_cpu_has(X86_FEATURE_MWAIT) && 4544 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4545 boot_cpu_has(X86_FEATURE_ARAT); 4546 } 4547 4548 #ifdef CONFIG_KVM_HYPERV 4549 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4550 struct kvm_cpuid2 __user *cpuid_arg) 4551 { 4552 struct kvm_cpuid2 cpuid; 4553 int r; 4554 4555 r = -EFAULT; 4556 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4557 return r; 4558 4559 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4560 if (r) 4561 return r; 4562 4563 r = -EFAULT; 4564 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4565 return r; 4566 4567 return 0; 4568 } 4569 #endif 4570 4571 static bool kvm_is_vm_type_supported(unsigned long type) 4572 { 4573 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4574 } 4575 4576 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4577 { 4578 int r = 0; 4579 4580 switch (ext) { 4581 case KVM_CAP_IRQCHIP: 4582 case KVM_CAP_HLT: 4583 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4584 case KVM_CAP_SET_TSS_ADDR: 4585 case KVM_CAP_EXT_CPUID: 4586 case KVM_CAP_EXT_EMUL_CPUID: 4587 case KVM_CAP_CLOCKSOURCE: 4588 case KVM_CAP_PIT: 4589 case KVM_CAP_NOP_IO_DELAY: 4590 case KVM_CAP_MP_STATE: 4591 case KVM_CAP_SYNC_MMU: 4592 case KVM_CAP_USER_NMI: 4593 case KVM_CAP_REINJECT_CONTROL: 4594 case KVM_CAP_IRQ_INJECT_STATUS: 4595 case KVM_CAP_IOEVENTFD: 4596 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4597 case KVM_CAP_PIT2: 4598 case KVM_CAP_PIT_STATE2: 4599 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4600 case KVM_CAP_VCPU_EVENTS: 4601 #ifdef CONFIG_KVM_HYPERV 4602 case KVM_CAP_HYPERV: 4603 case KVM_CAP_HYPERV_VAPIC: 4604 case KVM_CAP_HYPERV_SPIN: 4605 case KVM_CAP_HYPERV_TIME: 4606 case KVM_CAP_HYPERV_SYNIC: 4607 case KVM_CAP_HYPERV_SYNIC2: 4608 case KVM_CAP_HYPERV_VP_INDEX: 4609 case KVM_CAP_HYPERV_EVENTFD: 4610 case KVM_CAP_HYPERV_TLBFLUSH: 4611 case KVM_CAP_HYPERV_SEND_IPI: 4612 case KVM_CAP_HYPERV_CPUID: 4613 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4614 case KVM_CAP_SYS_HYPERV_CPUID: 4615 #endif 4616 case KVM_CAP_PCI_SEGMENT: 4617 case KVM_CAP_DEBUGREGS: 4618 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4619 case KVM_CAP_XSAVE: 4620 case KVM_CAP_ASYNC_PF: 4621 case KVM_CAP_ASYNC_PF_INT: 4622 case KVM_CAP_GET_TSC_KHZ: 4623 case KVM_CAP_KVMCLOCK_CTRL: 4624 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4625 case KVM_CAP_TSC_DEADLINE_TIMER: 4626 case KVM_CAP_DISABLE_QUIRKS: 4627 case KVM_CAP_SET_BOOT_CPU_ID: 4628 case KVM_CAP_SPLIT_IRQCHIP: 4629 case KVM_CAP_IMMEDIATE_EXIT: 4630 case KVM_CAP_PMU_EVENT_FILTER: 4631 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4632 case KVM_CAP_GET_MSR_FEATURES: 4633 case KVM_CAP_MSR_PLATFORM_INFO: 4634 case KVM_CAP_EXCEPTION_PAYLOAD: 4635 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4636 case KVM_CAP_SET_GUEST_DEBUG: 4637 case KVM_CAP_LAST_CPU: 4638 case KVM_CAP_X86_USER_SPACE_MSR: 4639 case KVM_CAP_X86_MSR_FILTER: 4640 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4641 #ifdef CONFIG_X86_SGX_KVM 4642 case KVM_CAP_SGX_ATTRIBUTE: 4643 #endif 4644 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4645 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4646 case KVM_CAP_SREGS2: 4647 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4648 case KVM_CAP_VCPU_ATTRIBUTES: 4649 case KVM_CAP_SYS_ATTRIBUTES: 4650 case KVM_CAP_VAPIC: 4651 case KVM_CAP_ENABLE_CAP: 4652 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4653 case KVM_CAP_IRQFD_RESAMPLE: 4654 case KVM_CAP_MEMORY_FAULT_INFO: 4655 case KVM_CAP_X86_GUEST_MODE: 4656 r = 1; 4657 break; 4658 case KVM_CAP_PRE_FAULT_MEMORY: 4659 r = tdp_enabled; 4660 break; 4661 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: 4662 r = APIC_BUS_CYCLE_NS_DEFAULT; 4663 break; 4664 case KVM_CAP_EXIT_HYPERCALL: 4665 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4666 break; 4667 case KVM_CAP_SET_GUEST_DEBUG2: 4668 return KVM_GUESTDBG_VALID_MASK; 4669 #ifdef CONFIG_KVM_XEN 4670 case KVM_CAP_XEN_HVM: 4671 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4672 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4673 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4674 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4675 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4676 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4677 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4678 if (sched_info_on()) 4679 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4680 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4681 break; 4682 #endif 4683 case KVM_CAP_SYNC_REGS: 4684 r = KVM_SYNC_X86_VALID_FIELDS; 4685 break; 4686 case KVM_CAP_ADJUST_CLOCK: 4687 r = KVM_CLOCK_VALID_FLAGS; 4688 break; 4689 case KVM_CAP_X86_DISABLE_EXITS: 4690 r = KVM_X86_DISABLE_EXITS_PAUSE; 4691 4692 if (!mitigate_smt_rsb) { 4693 r |= KVM_X86_DISABLE_EXITS_HLT | 4694 KVM_X86_DISABLE_EXITS_CSTATE; 4695 4696 if (kvm_can_mwait_in_guest()) 4697 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4698 } 4699 break; 4700 case KVM_CAP_X86_SMM: 4701 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4702 break; 4703 4704 /* SMBASE is usually relocated above 1M on modern chipsets, 4705 * and SMM handlers might indeed rely on 4G segment limits, 4706 * so do not report SMM to be available if real mode is 4707 * emulated via vm86 mode. Still, do not go to great lengths 4708 * to avoid userspace's usage of the feature, because it is a 4709 * fringe case that is not enabled except via specific settings 4710 * of the module parameters. 4711 */ 4712 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4713 break; 4714 case KVM_CAP_NR_VCPUS: 4715 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4716 break; 4717 case KVM_CAP_MAX_VCPUS: 4718 r = KVM_MAX_VCPUS; 4719 break; 4720 case KVM_CAP_MAX_VCPU_ID: 4721 r = KVM_MAX_VCPU_IDS; 4722 break; 4723 case KVM_CAP_PV_MMU: /* obsolete */ 4724 r = 0; 4725 break; 4726 case KVM_CAP_MCE: 4727 r = KVM_MAX_MCE_BANKS; 4728 break; 4729 case KVM_CAP_XCRS: 4730 r = boot_cpu_has(X86_FEATURE_XSAVE); 4731 break; 4732 case KVM_CAP_TSC_CONTROL: 4733 case KVM_CAP_VM_TSC_CONTROL: 4734 r = kvm_caps.has_tsc_control; 4735 break; 4736 case KVM_CAP_X2APIC_API: 4737 r = KVM_X2APIC_API_VALID_FLAGS; 4738 break; 4739 case KVM_CAP_NESTED_STATE: 4740 r = kvm_x86_ops.nested_ops->get_state ? 4741 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4742 break; 4743 #ifdef CONFIG_KVM_HYPERV 4744 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4745 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4746 break; 4747 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4748 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4749 break; 4750 #endif 4751 case KVM_CAP_SMALLER_MAXPHYADDR: 4752 r = (int) allow_smaller_maxphyaddr; 4753 break; 4754 case KVM_CAP_STEAL_TIME: 4755 r = sched_info_on(); 4756 break; 4757 case KVM_CAP_X86_BUS_LOCK_EXIT: 4758 if (kvm_caps.has_bus_lock_exit) 4759 r = KVM_BUS_LOCK_DETECTION_OFF | 4760 KVM_BUS_LOCK_DETECTION_EXIT; 4761 else 4762 r = 0; 4763 break; 4764 case KVM_CAP_XSAVE2: { 4765 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4766 if (r < sizeof(struct kvm_xsave)) 4767 r = sizeof(struct kvm_xsave); 4768 break; 4769 } 4770 case KVM_CAP_PMU_CAPABILITY: 4771 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4772 break; 4773 case KVM_CAP_DISABLE_QUIRKS2: 4774 r = KVM_X86_VALID_QUIRKS; 4775 break; 4776 case KVM_CAP_X86_NOTIFY_VMEXIT: 4777 r = kvm_caps.has_notify_vmexit; 4778 break; 4779 case KVM_CAP_VM_TYPES: 4780 r = kvm_caps.supported_vm_types; 4781 break; 4782 case KVM_CAP_READONLY_MEM: 4783 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1; 4784 break; 4785 default: 4786 break; 4787 } 4788 return r; 4789 } 4790 4791 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 4792 { 4793 if (attr->group) { 4794 if (kvm_x86_ops.dev_get_attr) 4795 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); 4796 return -ENXIO; 4797 } 4798 4799 switch (attr->attr) { 4800 case KVM_X86_XCOMP_GUEST_SUPP: 4801 *val = kvm_caps.supported_xcr0; 4802 return 0; 4803 default: 4804 return -ENXIO; 4805 } 4806 } 4807 4808 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4809 { 4810 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 4811 int r; 4812 u64 val; 4813 4814 r = __kvm_x86_dev_get_attr(attr, &val); 4815 if (r < 0) 4816 return r; 4817 4818 if (put_user(val, uaddr)) 4819 return -EFAULT; 4820 4821 return 0; 4822 } 4823 4824 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4825 { 4826 u64 val; 4827 4828 return __kvm_x86_dev_get_attr(attr, &val); 4829 } 4830 4831 long kvm_arch_dev_ioctl(struct file *filp, 4832 unsigned int ioctl, unsigned long arg) 4833 { 4834 void __user *argp = (void __user *)arg; 4835 long r; 4836 4837 switch (ioctl) { 4838 case KVM_GET_MSR_INDEX_LIST: { 4839 struct kvm_msr_list __user *user_msr_list = argp; 4840 struct kvm_msr_list msr_list; 4841 unsigned n; 4842 4843 r = -EFAULT; 4844 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4845 goto out; 4846 n = msr_list.nmsrs; 4847 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4848 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4849 goto out; 4850 r = -E2BIG; 4851 if (n < msr_list.nmsrs) 4852 goto out; 4853 r = -EFAULT; 4854 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4855 num_msrs_to_save * sizeof(u32))) 4856 goto out; 4857 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4858 &emulated_msrs, 4859 num_emulated_msrs * sizeof(u32))) 4860 goto out; 4861 r = 0; 4862 break; 4863 } 4864 case KVM_GET_SUPPORTED_CPUID: 4865 case KVM_GET_EMULATED_CPUID: { 4866 struct kvm_cpuid2 __user *cpuid_arg = argp; 4867 struct kvm_cpuid2 cpuid; 4868 4869 r = -EFAULT; 4870 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4871 goto out; 4872 4873 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4874 ioctl); 4875 if (r) 4876 goto out; 4877 4878 r = -EFAULT; 4879 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4880 goto out; 4881 r = 0; 4882 break; 4883 } 4884 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4885 r = -EFAULT; 4886 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4887 sizeof(kvm_caps.supported_mce_cap))) 4888 goto out; 4889 r = 0; 4890 break; 4891 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4892 struct kvm_msr_list __user *user_msr_list = argp; 4893 struct kvm_msr_list msr_list; 4894 unsigned int n; 4895 4896 r = -EFAULT; 4897 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4898 goto out; 4899 n = msr_list.nmsrs; 4900 msr_list.nmsrs = num_msr_based_features; 4901 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4902 goto out; 4903 r = -E2BIG; 4904 if (n < msr_list.nmsrs) 4905 goto out; 4906 r = -EFAULT; 4907 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4908 num_msr_based_features * sizeof(u32))) 4909 goto out; 4910 r = 0; 4911 break; 4912 } 4913 case KVM_GET_MSRS: 4914 r = msr_io(NULL, argp, do_get_feature_msr, 1); 4915 break; 4916 #ifdef CONFIG_KVM_HYPERV 4917 case KVM_GET_SUPPORTED_HV_CPUID: 4918 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4919 break; 4920 #endif 4921 case KVM_GET_DEVICE_ATTR: { 4922 struct kvm_device_attr attr; 4923 r = -EFAULT; 4924 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4925 break; 4926 r = kvm_x86_dev_get_attr(&attr); 4927 break; 4928 } 4929 case KVM_HAS_DEVICE_ATTR: { 4930 struct kvm_device_attr attr; 4931 r = -EFAULT; 4932 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4933 break; 4934 r = kvm_x86_dev_has_attr(&attr); 4935 break; 4936 } 4937 default: 4938 r = -EINVAL; 4939 break; 4940 } 4941 out: 4942 return r; 4943 } 4944 4945 static void wbinvd_ipi(void *garbage) 4946 { 4947 wbinvd(); 4948 } 4949 4950 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4951 { 4952 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4953 } 4954 4955 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4956 { 4957 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 4958 4959 vcpu->arch.l1tf_flush_l1d = true; 4960 4961 if (vcpu->scheduled_out && pmu->version && pmu->event_count) { 4962 pmu->need_cleanup = true; 4963 kvm_make_request(KVM_REQ_PMU, vcpu); 4964 } 4965 4966 /* Address WBINVD may be executed by guest */ 4967 if (need_emulate_wbinvd(vcpu)) { 4968 if (kvm_x86_call(has_wbinvd_exit)()) 4969 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4970 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4971 smp_call_function_single(vcpu->cpu, 4972 wbinvd_ipi, NULL, 1); 4973 } 4974 4975 kvm_x86_call(vcpu_load)(vcpu, cpu); 4976 4977 /* Save host pkru register if supported */ 4978 vcpu->arch.host_pkru = read_pkru(); 4979 4980 /* Apply any externally detected TSC adjustments (due to suspend) */ 4981 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4982 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4983 vcpu->arch.tsc_offset_adjustment = 0; 4984 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4985 } 4986 4987 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4988 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4989 rdtsc() - vcpu->arch.last_host_tsc; 4990 if (tsc_delta < 0) 4991 mark_tsc_unstable("KVM discovered backwards TSC"); 4992 4993 if (kvm_check_tsc_unstable()) { 4994 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4995 vcpu->arch.last_guest_tsc); 4996 kvm_vcpu_write_tsc_offset(vcpu, offset); 4997 vcpu->arch.tsc_catchup = 1; 4998 } 4999 5000 if (kvm_lapic_hv_timer_in_use(vcpu)) 5001 kvm_lapic_restart_hv_timer(vcpu); 5002 5003 /* 5004 * On a host with synchronized TSC, there is no need to update 5005 * kvmclock on vcpu->cpu migration 5006 */ 5007 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5008 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5009 if (vcpu->cpu != cpu) 5010 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5011 vcpu->cpu = cpu; 5012 } 5013 5014 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5015 } 5016 5017 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5018 { 5019 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5020 struct kvm_steal_time __user *st; 5021 struct kvm_memslots *slots; 5022 static const u8 preempted = KVM_VCPU_PREEMPTED; 5023 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5024 5025 /* 5026 * The vCPU can be marked preempted if and only if the VM-Exit was on 5027 * an instruction boundary and will not trigger guest emulation of any 5028 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5029 * when this is true, for example allowing the vCPU to be marked 5030 * preempted if and only if the VM-Exit was due to a host interrupt. 5031 */ 5032 if (!vcpu->arch.at_instruction_boundary) { 5033 vcpu->stat.preemption_other++; 5034 return; 5035 } 5036 5037 vcpu->stat.preemption_reported++; 5038 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5039 return; 5040 5041 if (vcpu->arch.st.preempted) 5042 return; 5043 5044 /* This happens on process exit */ 5045 if (unlikely(current->mm != vcpu->kvm->mm)) 5046 return; 5047 5048 slots = kvm_memslots(vcpu->kvm); 5049 5050 if (unlikely(slots->generation != ghc->generation || 5051 gpa != ghc->gpa || 5052 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5053 return; 5054 5055 st = (struct kvm_steal_time __user *)ghc->hva; 5056 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5057 5058 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5059 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5060 5061 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5062 } 5063 5064 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5065 { 5066 int idx; 5067 5068 if (vcpu->preempted) { 5069 /* 5070 * Assume protected guests are in-kernel. Inefficient yielding 5071 * due to false positives is preferable to never yielding due 5072 * to false negatives. 5073 */ 5074 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected || 5075 !kvm_x86_call(get_cpl_no_cache)(vcpu); 5076 5077 /* 5078 * Take the srcu lock as memslots will be accessed to check the gfn 5079 * cache generation against the memslots generation. 5080 */ 5081 idx = srcu_read_lock(&vcpu->kvm->srcu); 5082 if (kvm_xen_msr_enabled(vcpu->kvm)) 5083 kvm_xen_runstate_set_preempted(vcpu); 5084 else 5085 kvm_steal_time_set_preempted(vcpu); 5086 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5087 } 5088 5089 kvm_x86_call(vcpu_put)(vcpu); 5090 vcpu->arch.last_host_tsc = rdtsc(); 5091 } 5092 5093 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5094 struct kvm_lapic_state *s) 5095 { 5096 kvm_x86_call(sync_pir_to_irr)(vcpu); 5097 5098 return kvm_apic_get_state(vcpu, s); 5099 } 5100 5101 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5102 struct kvm_lapic_state *s) 5103 { 5104 int r; 5105 5106 r = kvm_apic_set_state(vcpu, s); 5107 if (r) 5108 return r; 5109 update_cr8_intercept(vcpu); 5110 5111 return 0; 5112 } 5113 5114 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5115 { 5116 /* 5117 * We can accept userspace's request for interrupt injection 5118 * as long as we have a place to store the interrupt number. 5119 * The actual injection will happen when the CPU is able to 5120 * deliver the interrupt. 5121 */ 5122 if (kvm_cpu_has_extint(vcpu)) 5123 return false; 5124 5125 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5126 return (!lapic_in_kernel(vcpu) || 5127 kvm_apic_accept_pic_intr(vcpu)); 5128 } 5129 5130 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5131 { 5132 /* 5133 * Do not cause an interrupt window exit if an exception 5134 * is pending or an event needs reinjection; userspace 5135 * might want to inject the interrupt manually using KVM_SET_REGS 5136 * or KVM_SET_SREGS. For that to work, we must be at an 5137 * instruction boundary and with no events half-injected. 5138 */ 5139 return (kvm_arch_interrupt_allowed(vcpu) && 5140 kvm_cpu_accept_dm_intr(vcpu) && 5141 !kvm_event_needs_reinjection(vcpu) && 5142 !kvm_is_exception_pending(vcpu)); 5143 } 5144 5145 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5146 struct kvm_interrupt *irq) 5147 { 5148 if (irq->irq >= KVM_NR_INTERRUPTS) 5149 return -EINVAL; 5150 5151 if (!irqchip_in_kernel(vcpu->kvm)) { 5152 kvm_queue_interrupt(vcpu, irq->irq, false); 5153 kvm_make_request(KVM_REQ_EVENT, vcpu); 5154 return 0; 5155 } 5156 5157 /* 5158 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5159 * fail for in-kernel 8259. 5160 */ 5161 if (pic_in_kernel(vcpu->kvm)) 5162 return -ENXIO; 5163 5164 if (vcpu->arch.pending_external_vector != -1) 5165 return -EEXIST; 5166 5167 vcpu->arch.pending_external_vector = irq->irq; 5168 kvm_make_request(KVM_REQ_EVENT, vcpu); 5169 return 0; 5170 } 5171 5172 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5173 { 5174 kvm_inject_nmi(vcpu); 5175 5176 return 0; 5177 } 5178 5179 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5180 struct kvm_tpr_access_ctl *tac) 5181 { 5182 if (tac->flags) 5183 return -EINVAL; 5184 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5185 return 0; 5186 } 5187 5188 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5189 u64 mcg_cap) 5190 { 5191 int r; 5192 unsigned bank_num = mcg_cap & 0xff, bank; 5193 5194 r = -EINVAL; 5195 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5196 goto out; 5197 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5198 goto out; 5199 r = 0; 5200 vcpu->arch.mcg_cap = mcg_cap; 5201 /* Init IA32_MCG_CTL to all 1s */ 5202 if (mcg_cap & MCG_CTL_P) 5203 vcpu->arch.mcg_ctl = ~(u64)0; 5204 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5205 for (bank = 0; bank < bank_num; bank++) { 5206 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5207 if (mcg_cap & MCG_CMCI_P) 5208 vcpu->arch.mci_ctl2_banks[bank] = 0; 5209 } 5210 5211 kvm_apic_after_set_mcg_cap(vcpu); 5212 5213 kvm_x86_call(setup_mce)(vcpu); 5214 out: 5215 return r; 5216 } 5217 5218 /* 5219 * Validate this is an UCNA (uncorrectable no action) error by checking the 5220 * MCG_STATUS and MCi_STATUS registers: 5221 * - none of the bits for Machine Check Exceptions are set 5222 * - both the VAL (valid) and UC (uncorrectable) bits are set 5223 * MCI_STATUS_PCC - Processor Context Corrupted 5224 * MCI_STATUS_S - Signaled as a Machine Check Exception 5225 * MCI_STATUS_AR - Software recoverable Action Required 5226 */ 5227 static bool is_ucna(struct kvm_x86_mce *mce) 5228 { 5229 return !mce->mcg_status && 5230 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5231 (mce->status & MCI_STATUS_VAL) && 5232 (mce->status & MCI_STATUS_UC); 5233 } 5234 5235 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5236 { 5237 u64 mcg_cap = vcpu->arch.mcg_cap; 5238 5239 banks[1] = mce->status; 5240 banks[2] = mce->addr; 5241 banks[3] = mce->misc; 5242 vcpu->arch.mcg_status = mce->mcg_status; 5243 5244 if (!(mcg_cap & MCG_CMCI_P) || 5245 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5246 return 0; 5247 5248 if (lapic_in_kernel(vcpu)) 5249 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5250 5251 return 0; 5252 } 5253 5254 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5255 struct kvm_x86_mce *mce) 5256 { 5257 u64 mcg_cap = vcpu->arch.mcg_cap; 5258 unsigned bank_num = mcg_cap & 0xff; 5259 u64 *banks = vcpu->arch.mce_banks; 5260 5261 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5262 return -EINVAL; 5263 5264 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5265 5266 if (is_ucna(mce)) 5267 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5268 5269 /* 5270 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5271 * reporting is disabled 5272 */ 5273 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5274 vcpu->arch.mcg_ctl != ~(u64)0) 5275 return 0; 5276 /* 5277 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5278 * reporting is disabled for the bank 5279 */ 5280 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5281 return 0; 5282 if (mce->status & MCI_STATUS_UC) { 5283 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5284 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5285 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5286 return 0; 5287 } 5288 if (banks[1] & MCI_STATUS_VAL) 5289 mce->status |= MCI_STATUS_OVER; 5290 banks[2] = mce->addr; 5291 banks[3] = mce->misc; 5292 vcpu->arch.mcg_status = mce->mcg_status; 5293 banks[1] = mce->status; 5294 kvm_queue_exception(vcpu, MC_VECTOR); 5295 } else if (!(banks[1] & MCI_STATUS_VAL) 5296 || !(banks[1] & MCI_STATUS_UC)) { 5297 if (banks[1] & MCI_STATUS_VAL) 5298 mce->status |= MCI_STATUS_OVER; 5299 banks[2] = mce->addr; 5300 banks[3] = mce->misc; 5301 banks[1] = mce->status; 5302 } else 5303 banks[1] |= MCI_STATUS_OVER; 5304 return 0; 5305 } 5306 5307 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5308 struct kvm_vcpu_events *events) 5309 { 5310 struct kvm_queued_exception *ex; 5311 5312 process_nmi(vcpu); 5313 5314 #ifdef CONFIG_KVM_SMM 5315 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5316 process_smi(vcpu); 5317 #endif 5318 5319 /* 5320 * KVM's ABI only allows for one exception to be migrated. Luckily, 5321 * the only time there can be two queued exceptions is if there's a 5322 * non-exiting _injected_ exception, and a pending exiting exception. 5323 * In that case, ignore the VM-Exiting exception as it's an extension 5324 * of the injected exception. 5325 */ 5326 if (vcpu->arch.exception_vmexit.pending && 5327 !vcpu->arch.exception.pending && 5328 !vcpu->arch.exception.injected) 5329 ex = &vcpu->arch.exception_vmexit; 5330 else 5331 ex = &vcpu->arch.exception; 5332 5333 /* 5334 * In guest mode, payload delivery should be deferred if the exception 5335 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5336 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5337 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5338 * propagate the payload and so it cannot be safely deferred. Deliver 5339 * the payload if the capability hasn't been requested. 5340 */ 5341 if (!vcpu->kvm->arch.exception_payload_enabled && 5342 ex->pending && ex->has_payload) 5343 kvm_deliver_exception_payload(vcpu, ex); 5344 5345 memset(events, 0, sizeof(*events)); 5346 5347 /* 5348 * The API doesn't provide the instruction length for software 5349 * exceptions, so don't report them. As long as the guest RIP 5350 * isn't advanced, we should expect to encounter the exception 5351 * again. 5352 */ 5353 if (!kvm_exception_is_soft(ex->vector)) { 5354 events->exception.injected = ex->injected; 5355 events->exception.pending = ex->pending; 5356 /* 5357 * For ABI compatibility, deliberately conflate 5358 * pending and injected exceptions when 5359 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5360 */ 5361 if (!vcpu->kvm->arch.exception_payload_enabled) 5362 events->exception.injected |= ex->pending; 5363 } 5364 events->exception.nr = ex->vector; 5365 events->exception.has_error_code = ex->has_error_code; 5366 events->exception.error_code = ex->error_code; 5367 events->exception_has_payload = ex->has_payload; 5368 events->exception_payload = ex->payload; 5369 5370 events->interrupt.injected = 5371 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5372 events->interrupt.nr = vcpu->arch.interrupt.nr; 5373 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 5374 5375 events->nmi.injected = vcpu->arch.nmi_injected; 5376 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5377 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); 5378 5379 /* events->sipi_vector is never valid when reporting to user space */ 5380 5381 #ifdef CONFIG_KVM_SMM 5382 events->smi.smm = is_smm(vcpu); 5383 events->smi.pending = vcpu->arch.smi_pending; 5384 events->smi.smm_inside_nmi = 5385 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5386 #endif 5387 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5388 5389 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5390 | KVM_VCPUEVENT_VALID_SHADOW 5391 | KVM_VCPUEVENT_VALID_SMM); 5392 if (vcpu->kvm->arch.exception_payload_enabled) 5393 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5394 if (vcpu->kvm->arch.triple_fault_event) { 5395 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5396 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5397 } 5398 } 5399 5400 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5401 struct kvm_vcpu_events *events) 5402 { 5403 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5404 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5405 | KVM_VCPUEVENT_VALID_SHADOW 5406 | KVM_VCPUEVENT_VALID_SMM 5407 | KVM_VCPUEVENT_VALID_PAYLOAD 5408 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5409 return -EINVAL; 5410 5411 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5412 if (!vcpu->kvm->arch.exception_payload_enabled) 5413 return -EINVAL; 5414 if (events->exception.pending) 5415 events->exception.injected = 0; 5416 else 5417 events->exception_has_payload = 0; 5418 } else { 5419 events->exception.pending = 0; 5420 events->exception_has_payload = 0; 5421 } 5422 5423 if ((events->exception.injected || events->exception.pending) && 5424 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5425 return -EINVAL; 5426 5427 /* INITs are latched while in SMM */ 5428 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5429 (events->smi.smm || events->smi.pending) && 5430 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5431 return -EINVAL; 5432 5433 process_nmi(vcpu); 5434 5435 /* 5436 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5437 * morph the exception to a VM-Exit if appropriate. Do this only for 5438 * pending exceptions, already-injected exceptions are not subject to 5439 * intercpetion. Note, userspace that conflates pending and injected 5440 * is hosed, and will incorrectly convert an injected exception into a 5441 * pending exception, which in turn may cause a spurious VM-Exit. 5442 */ 5443 vcpu->arch.exception_from_userspace = events->exception.pending; 5444 5445 vcpu->arch.exception_vmexit.pending = false; 5446 5447 vcpu->arch.exception.injected = events->exception.injected; 5448 vcpu->arch.exception.pending = events->exception.pending; 5449 vcpu->arch.exception.vector = events->exception.nr; 5450 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5451 vcpu->arch.exception.error_code = events->exception.error_code; 5452 vcpu->arch.exception.has_payload = events->exception_has_payload; 5453 vcpu->arch.exception.payload = events->exception_payload; 5454 5455 vcpu->arch.interrupt.injected = events->interrupt.injected; 5456 vcpu->arch.interrupt.nr = events->interrupt.nr; 5457 vcpu->arch.interrupt.soft = events->interrupt.soft; 5458 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5459 kvm_x86_call(set_interrupt_shadow)(vcpu, 5460 events->interrupt.shadow); 5461 5462 vcpu->arch.nmi_injected = events->nmi.injected; 5463 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5464 vcpu->arch.nmi_pending = 0; 5465 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5466 if (events->nmi.pending) 5467 kvm_make_request(KVM_REQ_NMI, vcpu); 5468 } 5469 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); 5470 5471 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5472 lapic_in_kernel(vcpu)) 5473 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5474 5475 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5476 #ifdef CONFIG_KVM_SMM 5477 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5478 kvm_leave_nested(vcpu); 5479 kvm_smm_changed(vcpu, events->smi.smm); 5480 } 5481 5482 vcpu->arch.smi_pending = events->smi.pending; 5483 5484 if (events->smi.smm) { 5485 if (events->smi.smm_inside_nmi) 5486 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5487 else 5488 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5489 } 5490 5491 #else 5492 if (events->smi.smm || events->smi.pending || 5493 events->smi.smm_inside_nmi) 5494 return -EINVAL; 5495 #endif 5496 5497 if (lapic_in_kernel(vcpu)) { 5498 if (events->smi.latched_init) 5499 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5500 else 5501 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5502 } 5503 } 5504 5505 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5506 if (!vcpu->kvm->arch.triple_fault_event) 5507 return -EINVAL; 5508 if (events->triple_fault.pending) 5509 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5510 else 5511 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5512 } 5513 5514 kvm_make_request(KVM_REQ_EVENT, vcpu); 5515 5516 return 0; 5517 } 5518 5519 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5520 struct kvm_debugregs *dbgregs) 5521 { 5522 unsigned int i; 5523 5524 if (vcpu->kvm->arch.has_protected_state && 5525 vcpu->arch.guest_state_protected) 5526 return -EINVAL; 5527 5528 memset(dbgregs, 0, sizeof(*dbgregs)); 5529 5530 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5531 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5532 dbgregs->db[i] = vcpu->arch.db[i]; 5533 5534 dbgregs->dr6 = vcpu->arch.dr6; 5535 dbgregs->dr7 = vcpu->arch.dr7; 5536 return 0; 5537 } 5538 5539 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5540 struct kvm_debugregs *dbgregs) 5541 { 5542 unsigned int i; 5543 5544 if (vcpu->kvm->arch.has_protected_state && 5545 vcpu->arch.guest_state_protected) 5546 return -EINVAL; 5547 5548 if (dbgregs->flags) 5549 return -EINVAL; 5550 5551 if (!kvm_dr6_valid(dbgregs->dr6)) 5552 return -EINVAL; 5553 if (!kvm_dr7_valid(dbgregs->dr7)) 5554 return -EINVAL; 5555 5556 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5557 vcpu->arch.db[i] = dbgregs->db[i]; 5558 5559 kvm_update_dr0123(vcpu); 5560 vcpu->arch.dr6 = dbgregs->dr6; 5561 vcpu->arch.dr7 = dbgregs->dr7; 5562 kvm_update_dr7(vcpu); 5563 5564 return 0; 5565 } 5566 5567 5568 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5569 u8 *state, unsigned int size) 5570 { 5571 /* 5572 * Only copy state for features that are enabled for the guest. The 5573 * state itself isn't problematic, but setting bits in the header for 5574 * features that are supported in *this* host but not exposed to the 5575 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5576 * compatible host without the features that are NOT exposed to the 5577 * guest. 5578 * 5579 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5580 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5581 * supported by the host. 5582 */ 5583 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5584 XFEATURE_MASK_FPSSE; 5585 5586 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5587 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5588 5589 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5590 supported_xcr0, vcpu->arch.pkru); 5591 return 0; 5592 } 5593 5594 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5595 struct kvm_xsave *guest_xsave) 5596 { 5597 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5598 sizeof(guest_xsave->region)); 5599 } 5600 5601 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5602 struct kvm_xsave *guest_xsave) 5603 { 5604 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5605 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5606 5607 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5608 guest_xsave->region, 5609 kvm_caps.supported_xcr0, 5610 &vcpu->arch.pkru); 5611 } 5612 5613 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5614 struct kvm_xcrs *guest_xcrs) 5615 { 5616 if (vcpu->kvm->arch.has_protected_state && 5617 vcpu->arch.guest_state_protected) 5618 return -EINVAL; 5619 5620 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5621 guest_xcrs->nr_xcrs = 0; 5622 return 0; 5623 } 5624 5625 guest_xcrs->nr_xcrs = 1; 5626 guest_xcrs->flags = 0; 5627 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5628 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5629 return 0; 5630 } 5631 5632 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5633 struct kvm_xcrs *guest_xcrs) 5634 { 5635 int i, r = 0; 5636 5637 if (vcpu->kvm->arch.has_protected_state && 5638 vcpu->arch.guest_state_protected) 5639 return -EINVAL; 5640 5641 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5642 return -EINVAL; 5643 5644 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5645 return -EINVAL; 5646 5647 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5648 /* Only support XCR0 currently */ 5649 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5650 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5651 guest_xcrs->xcrs[i].value); 5652 break; 5653 } 5654 if (r) 5655 r = -EINVAL; 5656 return r; 5657 } 5658 5659 /* 5660 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5661 * stopped by the hypervisor. This function will be called from the host only. 5662 * EINVAL is returned when the host attempts to set the flag for a guest that 5663 * does not support pv clocks. 5664 */ 5665 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5666 { 5667 if (!vcpu->arch.pv_time.active) 5668 return -EINVAL; 5669 vcpu->arch.pvclock_set_guest_stopped_request = true; 5670 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5671 return 0; 5672 } 5673 5674 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5675 struct kvm_device_attr *attr) 5676 { 5677 int r; 5678 5679 switch (attr->attr) { 5680 case KVM_VCPU_TSC_OFFSET: 5681 r = 0; 5682 break; 5683 default: 5684 r = -ENXIO; 5685 } 5686 5687 return r; 5688 } 5689 5690 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5691 struct kvm_device_attr *attr) 5692 { 5693 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5694 int r; 5695 5696 switch (attr->attr) { 5697 case KVM_VCPU_TSC_OFFSET: 5698 r = -EFAULT; 5699 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5700 break; 5701 r = 0; 5702 break; 5703 default: 5704 r = -ENXIO; 5705 } 5706 5707 return r; 5708 } 5709 5710 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5711 struct kvm_device_attr *attr) 5712 { 5713 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5714 struct kvm *kvm = vcpu->kvm; 5715 int r; 5716 5717 switch (attr->attr) { 5718 case KVM_VCPU_TSC_OFFSET: { 5719 u64 offset, tsc, ns; 5720 unsigned long flags; 5721 bool matched; 5722 5723 r = -EFAULT; 5724 if (get_user(offset, uaddr)) 5725 break; 5726 5727 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5728 5729 matched = (vcpu->arch.virtual_tsc_khz && 5730 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5731 kvm->arch.last_tsc_offset == offset); 5732 5733 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5734 ns = get_kvmclock_base_ns(); 5735 5736 kvm->arch.user_set_tsc = true; 5737 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5738 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5739 5740 r = 0; 5741 break; 5742 } 5743 default: 5744 r = -ENXIO; 5745 } 5746 5747 return r; 5748 } 5749 5750 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5751 unsigned int ioctl, 5752 void __user *argp) 5753 { 5754 struct kvm_device_attr attr; 5755 int r; 5756 5757 if (copy_from_user(&attr, argp, sizeof(attr))) 5758 return -EFAULT; 5759 5760 if (attr.group != KVM_VCPU_TSC_CTRL) 5761 return -ENXIO; 5762 5763 switch (ioctl) { 5764 case KVM_HAS_DEVICE_ATTR: 5765 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5766 break; 5767 case KVM_GET_DEVICE_ATTR: 5768 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5769 break; 5770 case KVM_SET_DEVICE_ATTR: 5771 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5772 break; 5773 } 5774 5775 return r; 5776 } 5777 5778 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5779 struct kvm_enable_cap *cap) 5780 { 5781 if (cap->flags) 5782 return -EINVAL; 5783 5784 switch (cap->cap) { 5785 #ifdef CONFIG_KVM_HYPERV 5786 case KVM_CAP_HYPERV_SYNIC2: 5787 if (cap->args[0]) 5788 return -EINVAL; 5789 fallthrough; 5790 5791 case KVM_CAP_HYPERV_SYNIC: 5792 if (!irqchip_in_kernel(vcpu->kvm)) 5793 return -EINVAL; 5794 return kvm_hv_activate_synic(vcpu, cap->cap == 5795 KVM_CAP_HYPERV_SYNIC2); 5796 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5797 { 5798 int r; 5799 uint16_t vmcs_version; 5800 void __user *user_ptr; 5801 5802 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5803 return -ENOTTY; 5804 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5805 if (!r) { 5806 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5807 if (copy_to_user(user_ptr, &vmcs_version, 5808 sizeof(vmcs_version))) 5809 r = -EFAULT; 5810 } 5811 return r; 5812 } 5813 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5814 if (!kvm_x86_ops.enable_l2_tlb_flush) 5815 return -ENOTTY; 5816 5817 return kvm_x86_call(enable_l2_tlb_flush)(vcpu); 5818 5819 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5820 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5821 #endif 5822 5823 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5824 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5825 if (vcpu->arch.pv_cpuid.enforce) 5826 kvm_update_pv_runtime(vcpu); 5827 5828 return 0; 5829 default: 5830 return -EINVAL; 5831 } 5832 } 5833 5834 long kvm_arch_vcpu_ioctl(struct file *filp, 5835 unsigned int ioctl, unsigned long arg) 5836 { 5837 struct kvm_vcpu *vcpu = filp->private_data; 5838 void __user *argp = (void __user *)arg; 5839 int r; 5840 union { 5841 struct kvm_sregs2 *sregs2; 5842 struct kvm_lapic_state *lapic; 5843 struct kvm_xsave *xsave; 5844 struct kvm_xcrs *xcrs; 5845 void *buffer; 5846 } u; 5847 5848 vcpu_load(vcpu); 5849 5850 u.buffer = NULL; 5851 switch (ioctl) { 5852 case KVM_GET_LAPIC: { 5853 r = -EINVAL; 5854 if (!lapic_in_kernel(vcpu)) 5855 goto out; 5856 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 5857 5858 r = -ENOMEM; 5859 if (!u.lapic) 5860 goto out; 5861 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5862 if (r) 5863 goto out; 5864 r = -EFAULT; 5865 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5866 goto out; 5867 r = 0; 5868 break; 5869 } 5870 case KVM_SET_LAPIC: { 5871 r = -EINVAL; 5872 if (!lapic_in_kernel(vcpu)) 5873 goto out; 5874 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5875 if (IS_ERR(u.lapic)) { 5876 r = PTR_ERR(u.lapic); 5877 goto out_nofree; 5878 } 5879 5880 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5881 break; 5882 } 5883 case KVM_INTERRUPT: { 5884 struct kvm_interrupt irq; 5885 5886 r = -EFAULT; 5887 if (copy_from_user(&irq, argp, sizeof(irq))) 5888 goto out; 5889 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5890 break; 5891 } 5892 case KVM_NMI: { 5893 r = kvm_vcpu_ioctl_nmi(vcpu); 5894 break; 5895 } 5896 case KVM_SMI: { 5897 r = kvm_inject_smi(vcpu); 5898 break; 5899 } 5900 case KVM_SET_CPUID: { 5901 struct kvm_cpuid __user *cpuid_arg = argp; 5902 struct kvm_cpuid cpuid; 5903 5904 r = -EFAULT; 5905 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5906 goto out; 5907 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5908 break; 5909 } 5910 case KVM_SET_CPUID2: { 5911 struct kvm_cpuid2 __user *cpuid_arg = argp; 5912 struct kvm_cpuid2 cpuid; 5913 5914 r = -EFAULT; 5915 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5916 goto out; 5917 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5918 cpuid_arg->entries); 5919 break; 5920 } 5921 case KVM_GET_CPUID2: { 5922 struct kvm_cpuid2 __user *cpuid_arg = argp; 5923 struct kvm_cpuid2 cpuid; 5924 5925 r = -EFAULT; 5926 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5927 goto out; 5928 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5929 cpuid_arg->entries); 5930 if (r) 5931 goto out; 5932 r = -EFAULT; 5933 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5934 goto out; 5935 r = 0; 5936 break; 5937 } 5938 case KVM_GET_MSRS: { 5939 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5940 r = msr_io(vcpu, argp, do_get_msr, 1); 5941 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5942 break; 5943 } 5944 case KVM_SET_MSRS: { 5945 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5946 r = msr_io(vcpu, argp, do_set_msr, 0); 5947 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5948 break; 5949 } 5950 case KVM_TPR_ACCESS_REPORTING: { 5951 struct kvm_tpr_access_ctl tac; 5952 5953 r = -EFAULT; 5954 if (copy_from_user(&tac, argp, sizeof(tac))) 5955 goto out; 5956 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5957 if (r) 5958 goto out; 5959 r = -EFAULT; 5960 if (copy_to_user(argp, &tac, sizeof(tac))) 5961 goto out; 5962 r = 0; 5963 break; 5964 }; 5965 case KVM_SET_VAPIC_ADDR: { 5966 struct kvm_vapic_addr va; 5967 int idx; 5968 5969 r = -EINVAL; 5970 if (!lapic_in_kernel(vcpu)) 5971 goto out; 5972 r = -EFAULT; 5973 if (copy_from_user(&va, argp, sizeof(va))) 5974 goto out; 5975 idx = srcu_read_lock(&vcpu->kvm->srcu); 5976 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5977 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5978 break; 5979 } 5980 case KVM_X86_SETUP_MCE: { 5981 u64 mcg_cap; 5982 5983 r = -EFAULT; 5984 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5985 goto out; 5986 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5987 break; 5988 } 5989 case KVM_X86_SET_MCE: { 5990 struct kvm_x86_mce mce; 5991 5992 r = -EFAULT; 5993 if (copy_from_user(&mce, argp, sizeof(mce))) 5994 goto out; 5995 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5996 break; 5997 } 5998 case KVM_GET_VCPU_EVENTS: { 5999 struct kvm_vcpu_events events; 6000 6001 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6002 6003 r = -EFAULT; 6004 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6005 break; 6006 r = 0; 6007 break; 6008 } 6009 case KVM_SET_VCPU_EVENTS: { 6010 struct kvm_vcpu_events events; 6011 6012 r = -EFAULT; 6013 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6014 break; 6015 6016 kvm_vcpu_srcu_read_lock(vcpu); 6017 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6018 kvm_vcpu_srcu_read_unlock(vcpu); 6019 break; 6020 } 6021 case KVM_GET_DEBUGREGS: { 6022 struct kvm_debugregs dbgregs; 6023 6024 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6025 if (r < 0) 6026 break; 6027 6028 r = -EFAULT; 6029 if (copy_to_user(argp, &dbgregs, 6030 sizeof(struct kvm_debugregs))) 6031 break; 6032 r = 0; 6033 break; 6034 } 6035 case KVM_SET_DEBUGREGS: { 6036 struct kvm_debugregs dbgregs; 6037 6038 r = -EFAULT; 6039 if (copy_from_user(&dbgregs, argp, 6040 sizeof(struct kvm_debugregs))) 6041 break; 6042 6043 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6044 break; 6045 } 6046 case KVM_GET_XSAVE: { 6047 r = -EINVAL; 6048 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6049 break; 6050 6051 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 6052 r = -ENOMEM; 6053 if (!u.xsave) 6054 break; 6055 6056 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6057 if (r < 0) 6058 break; 6059 6060 r = -EFAULT; 6061 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6062 break; 6063 r = 0; 6064 break; 6065 } 6066 case KVM_SET_XSAVE: { 6067 int size = vcpu->arch.guest_fpu.uabi_size; 6068 6069 u.xsave = memdup_user(argp, size); 6070 if (IS_ERR(u.xsave)) { 6071 r = PTR_ERR(u.xsave); 6072 goto out_nofree; 6073 } 6074 6075 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6076 break; 6077 } 6078 6079 case KVM_GET_XSAVE2: { 6080 int size = vcpu->arch.guest_fpu.uabi_size; 6081 6082 u.xsave = kzalloc(size, GFP_KERNEL); 6083 r = -ENOMEM; 6084 if (!u.xsave) 6085 break; 6086 6087 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6088 if (r < 0) 6089 break; 6090 6091 r = -EFAULT; 6092 if (copy_to_user(argp, u.xsave, size)) 6093 break; 6094 6095 r = 0; 6096 break; 6097 } 6098 6099 case KVM_GET_XCRS: { 6100 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 6101 r = -ENOMEM; 6102 if (!u.xcrs) 6103 break; 6104 6105 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6106 if (r < 0) 6107 break; 6108 6109 r = -EFAULT; 6110 if (copy_to_user(argp, u.xcrs, 6111 sizeof(struct kvm_xcrs))) 6112 break; 6113 r = 0; 6114 break; 6115 } 6116 case KVM_SET_XCRS: { 6117 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6118 if (IS_ERR(u.xcrs)) { 6119 r = PTR_ERR(u.xcrs); 6120 goto out_nofree; 6121 } 6122 6123 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6124 break; 6125 } 6126 case KVM_SET_TSC_KHZ: { 6127 u32 user_tsc_khz; 6128 6129 r = -EINVAL; 6130 user_tsc_khz = (u32)arg; 6131 6132 if (kvm_caps.has_tsc_control && 6133 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6134 goto out; 6135 6136 if (user_tsc_khz == 0) 6137 user_tsc_khz = tsc_khz; 6138 6139 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6140 r = 0; 6141 6142 goto out; 6143 } 6144 case KVM_GET_TSC_KHZ: { 6145 r = vcpu->arch.virtual_tsc_khz; 6146 goto out; 6147 } 6148 case KVM_KVMCLOCK_CTRL: { 6149 r = kvm_set_guest_paused(vcpu); 6150 goto out; 6151 } 6152 case KVM_ENABLE_CAP: { 6153 struct kvm_enable_cap cap; 6154 6155 r = -EFAULT; 6156 if (copy_from_user(&cap, argp, sizeof(cap))) 6157 goto out; 6158 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6159 break; 6160 } 6161 case KVM_GET_NESTED_STATE: { 6162 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6163 u32 user_data_size; 6164 6165 r = -EINVAL; 6166 if (!kvm_x86_ops.nested_ops->get_state) 6167 break; 6168 6169 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6170 r = -EFAULT; 6171 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6172 break; 6173 6174 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6175 user_data_size); 6176 if (r < 0) 6177 break; 6178 6179 if (r > user_data_size) { 6180 if (put_user(r, &user_kvm_nested_state->size)) 6181 r = -EFAULT; 6182 else 6183 r = -E2BIG; 6184 break; 6185 } 6186 6187 r = 0; 6188 break; 6189 } 6190 case KVM_SET_NESTED_STATE: { 6191 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6192 struct kvm_nested_state kvm_state; 6193 int idx; 6194 6195 r = -EINVAL; 6196 if (!kvm_x86_ops.nested_ops->set_state) 6197 break; 6198 6199 r = -EFAULT; 6200 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6201 break; 6202 6203 r = -EINVAL; 6204 if (kvm_state.size < sizeof(kvm_state)) 6205 break; 6206 6207 if (kvm_state.flags & 6208 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6209 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6210 | KVM_STATE_NESTED_GIF_SET)) 6211 break; 6212 6213 /* nested_run_pending implies guest_mode. */ 6214 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6215 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6216 break; 6217 6218 idx = srcu_read_lock(&vcpu->kvm->srcu); 6219 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6220 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6221 break; 6222 } 6223 #ifdef CONFIG_KVM_HYPERV 6224 case KVM_GET_SUPPORTED_HV_CPUID: 6225 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6226 break; 6227 #endif 6228 #ifdef CONFIG_KVM_XEN 6229 case KVM_XEN_VCPU_GET_ATTR: { 6230 struct kvm_xen_vcpu_attr xva; 6231 6232 r = -EFAULT; 6233 if (copy_from_user(&xva, argp, sizeof(xva))) 6234 goto out; 6235 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6236 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6237 r = -EFAULT; 6238 break; 6239 } 6240 case KVM_XEN_VCPU_SET_ATTR: { 6241 struct kvm_xen_vcpu_attr xva; 6242 6243 r = -EFAULT; 6244 if (copy_from_user(&xva, argp, sizeof(xva))) 6245 goto out; 6246 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6247 break; 6248 } 6249 #endif 6250 case KVM_GET_SREGS2: { 6251 r = -EINVAL; 6252 if (vcpu->kvm->arch.has_protected_state && 6253 vcpu->arch.guest_state_protected) 6254 goto out; 6255 6256 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6257 r = -ENOMEM; 6258 if (!u.sregs2) 6259 goto out; 6260 __get_sregs2(vcpu, u.sregs2); 6261 r = -EFAULT; 6262 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6263 goto out; 6264 r = 0; 6265 break; 6266 } 6267 case KVM_SET_SREGS2: { 6268 r = -EINVAL; 6269 if (vcpu->kvm->arch.has_protected_state && 6270 vcpu->arch.guest_state_protected) 6271 goto out; 6272 6273 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6274 if (IS_ERR(u.sregs2)) { 6275 r = PTR_ERR(u.sregs2); 6276 u.sregs2 = NULL; 6277 goto out; 6278 } 6279 r = __set_sregs2(vcpu, u.sregs2); 6280 break; 6281 } 6282 case KVM_HAS_DEVICE_ATTR: 6283 case KVM_GET_DEVICE_ATTR: 6284 case KVM_SET_DEVICE_ATTR: 6285 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6286 break; 6287 default: 6288 r = -EINVAL; 6289 } 6290 out: 6291 kfree(u.buffer); 6292 out_nofree: 6293 vcpu_put(vcpu); 6294 return r; 6295 } 6296 6297 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6298 { 6299 return VM_FAULT_SIGBUS; 6300 } 6301 6302 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6303 { 6304 int ret; 6305 6306 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6307 return -EINVAL; 6308 ret = kvm_x86_call(set_tss_addr)(kvm, addr); 6309 return ret; 6310 } 6311 6312 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6313 u64 ident_addr) 6314 { 6315 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); 6316 } 6317 6318 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6319 unsigned long kvm_nr_mmu_pages) 6320 { 6321 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6322 return -EINVAL; 6323 6324 mutex_lock(&kvm->slots_lock); 6325 6326 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6327 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6328 6329 mutex_unlock(&kvm->slots_lock); 6330 return 0; 6331 } 6332 6333 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6334 { 6335 struct kvm_pic *pic = kvm->arch.vpic; 6336 int r; 6337 6338 r = 0; 6339 switch (chip->chip_id) { 6340 case KVM_IRQCHIP_PIC_MASTER: 6341 memcpy(&chip->chip.pic, &pic->pics[0], 6342 sizeof(struct kvm_pic_state)); 6343 break; 6344 case KVM_IRQCHIP_PIC_SLAVE: 6345 memcpy(&chip->chip.pic, &pic->pics[1], 6346 sizeof(struct kvm_pic_state)); 6347 break; 6348 case KVM_IRQCHIP_IOAPIC: 6349 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6350 break; 6351 default: 6352 r = -EINVAL; 6353 break; 6354 } 6355 return r; 6356 } 6357 6358 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6359 { 6360 struct kvm_pic *pic = kvm->arch.vpic; 6361 int r; 6362 6363 r = 0; 6364 switch (chip->chip_id) { 6365 case KVM_IRQCHIP_PIC_MASTER: 6366 spin_lock(&pic->lock); 6367 memcpy(&pic->pics[0], &chip->chip.pic, 6368 sizeof(struct kvm_pic_state)); 6369 spin_unlock(&pic->lock); 6370 break; 6371 case KVM_IRQCHIP_PIC_SLAVE: 6372 spin_lock(&pic->lock); 6373 memcpy(&pic->pics[1], &chip->chip.pic, 6374 sizeof(struct kvm_pic_state)); 6375 spin_unlock(&pic->lock); 6376 break; 6377 case KVM_IRQCHIP_IOAPIC: 6378 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6379 break; 6380 default: 6381 r = -EINVAL; 6382 break; 6383 } 6384 kvm_pic_update_irq(pic); 6385 return r; 6386 } 6387 6388 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6389 { 6390 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6391 6392 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6393 6394 mutex_lock(&kps->lock); 6395 memcpy(ps, &kps->channels, sizeof(*ps)); 6396 mutex_unlock(&kps->lock); 6397 return 0; 6398 } 6399 6400 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6401 { 6402 int i; 6403 struct kvm_pit *pit = kvm->arch.vpit; 6404 6405 mutex_lock(&pit->pit_state.lock); 6406 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6407 for (i = 0; i < 3; i++) 6408 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6409 mutex_unlock(&pit->pit_state.lock); 6410 return 0; 6411 } 6412 6413 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6414 { 6415 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6416 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6417 sizeof(ps->channels)); 6418 ps->flags = kvm->arch.vpit->pit_state.flags; 6419 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6420 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6421 return 0; 6422 } 6423 6424 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6425 { 6426 int start = 0; 6427 int i; 6428 u32 prev_legacy, cur_legacy; 6429 struct kvm_pit *pit = kvm->arch.vpit; 6430 6431 mutex_lock(&pit->pit_state.lock); 6432 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6433 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6434 if (!prev_legacy && cur_legacy) 6435 start = 1; 6436 memcpy(&pit->pit_state.channels, &ps->channels, 6437 sizeof(pit->pit_state.channels)); 6438 pit->pit_state.flags = ps->flags; 6439 for (i = 0; i < 3; i++) 6440 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6441 start && i == 0); 6442 mutex_unlock(&pit->pit_state.lock); 6443 return 0; 6444 } 6445 6446 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6447 struct kvm_reinject_control *control) 6448 { 6449 struct kvm_pit *pit = kvm->arch.vpit; 6450 6451 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6452 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6453 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6454 */ 6455 mutex_lock(&pit->pit_state.lock); 6456 kvm_pit_set_reinject(pit, control->pit_reinject); 6457 mutex_unlock(&pit->pit_state.lock); 6458 6459 return 0; 6460 } 6461 6462 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6463 { 6464 6465 /* 6466 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6467 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6468 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6469 * VM-Exit. 6470 */ 6471 struct kvm_vcpu *vcpu; 6472 unsigned long i; 6473 6474 if (!kvm_x86_ops.cpu_dirty_log_size) 6475 return; 6476 6477 kvm_for_each_vcpu(i, vcpu, kvm) 6478 kvm_vcpu_kick(vcpu); 6479 } 6480 6481 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6482 bool line_status) 6483 { 6484 if (!irqchip_in_kernel(kvm)) 6485 return -ENXIO; 6486 6487 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6488 irq_event->irq, irq_event->level, 6489 line_status); 6490 return 0; 6491 } 6492 6493 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6494 struct kvm_enable_cap *cap) 6495 { 6496 int r; 6497 6498 if (cap->flags) 6499 return -EINVAL; 6500 6501 switch (cap->cap) { 6502 case KVM_CAP_DISABLE_QUIRKS2: 6503 r = -EINVAL; 6504 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6505 break; 6506 fallthrough; 6507 case KVM_CAP_DISABLE_QUIRKS: 6508 kvm->arch.disabled_quirks = cap->args[0]; 6509 r = 0; 6510 break; 6511 case KVM_CAP_SPLIT_IRQCHIP: { 6512 mutex_lock(&kvm->lock); 6513 r = -EINVAL; 6514 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6515 goto split_irqchip_unlock; 6516 r = -EEXIST; 6517 if (irqchip_in_kernel(kvm)) 6518 goto split_irqchip_unlock; 6519 if (kvm->created_vcpus) 6520 goto split_irqchip_unlock; 6521 /* Pairs with irqchip_in_kernel. */ 6522 smp_wmb(); 6523 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6524 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6525 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6526 r = 0; 6527 split_irqchip_unlock: 6528 mutex_unlock(&kvm->lock); 6529 break; 6530 } 6531 case KVM_CAP_X2APIC_API: 6532 r = -EINVAL; 6533 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6534 break; 6535 6536 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6537 kvm->arch.x2apic_format = true; 6538 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6539 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6540 6541 r = 0; 6542 break; 6543 case KVM_CAP_X86_DISABLE_EXITS: 6544 r = -EINVAL; 6545 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6546 break; 6547 6548 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6549 kvm->arch.pause_in_guest = true; 6550 6551 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6552 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6553 6554 if (!mitigate_smt_rsb) { 6555 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6556 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6557 pr_warn_once(SMT_RSB_MSG); 6558 6559 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6560 kvm_can_mwait_in_guest()) 6561 kvm->arch.mwait_in_guest = true; 6562 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6563 kvm->arch.hlt_in_guest = true; 6564 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6565 kvm->arch.cstate_in_guest = true; 6566 } 6567 6568 r = 0; 6569 break; 6570 case KVM_CAP_MSR_PLATFORM_INFO: 6571 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6572 r = 0; 6573 break; 6574 case KVM_CAP_EXCEPTION_PAYLOAD: 6575 kvm->arch.exception_payload_enabled = cap->args[0]; 6576 r = 0; 6577 break; 6578 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6579 kvm->arch.triple_fault_event = cap->args[0]; 6580 r = 0; 6581 break; 6582 case KVM_CAP_X86_USER_SPACE_MSR: 6583 r = -EINVAL; 6584 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6585 break; 6586 kvm->arch.user_space_msr_mask = cap->args[0]; 6587 r = 0; 6588 break; 6589 case KVM_CAP_X86_BUS_LOCK_EXIT: 6590 r = -EINVAL; 6591 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6592 break; 6593 6594 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6595 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6596 break; 6597 6598 if (kvm_caps.has_bus_lock_exit && 6599 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6600 kvm->arch.bus_lock_detection_enabled = true; 6601 r = 0; 6602 break; 6603 #ifdef CONFIG_X86_SGX_KVM 6604 case KVM_CAP_SGX_ATTRIBUTE: { 6605 unsigned long allowed_attributes = 0; 6606 6607 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6608 if (r) 6609 break; 6610 6611 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6612 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6613 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6614 kvm->arch.sgx_provisioning_allowed = true; 6615 else 6616 r = -EINVAL; 6617 break; 6618 } 6619 #endif 6620 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6621 r = -EINVAL; 6622 if (!kvm_x86_ops.vm_copy_enc_context_from) 6623 break; 6624 6625 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); 6626 break; 6627 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6628 r = -EINVAL; 6629 if (!kvm_x86_ops.vm_move_enc_context_from) 6630 break; 6631 6632 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); 6633 break; 6634 case KVM_CAP_EXIT_HYPERCALL: 6635 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6636 r = -EINVAL; 6637 break; 6638 } 6639 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6640 r = 0; 6641 break; 6642 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6643 r = -EINVAL; 6644 if (cap->args[0] & ~1) 6645 break; 6646 kvm->arch.exit_on_emulation_error = cap->args[0]; 6647 r = 0; 6648 break; 6649 case KVM_CAP_PMU_CAPABILITY: 6650 r = -EINVAL; 6651 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6652 break; 6653 6654 mutex_lock(&kvm->lock); 6655 if (!kvm->created_vcpus) { 6656 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6657 r = 0; 6658 } 6659 mutex_unlock(&kvm->lock); 6660 break; 6661 case KVM_CAP_MAX_VCPU_ID: 6662 r = -EINVAL; 6663 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6664 break; 6665 6666 mutex_lock(&kvm->lock); 6667 if (kvm->arch.bsp_vcpu_id > cap->args[0]) { 6668 ; 6669 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6670 r = 0; 6671 } else if (!kvm->arch.max_vcpu_ids) { 6672 kvm->arch.max_vcpu_ids = cap->args[0]; 6673 r = 0; 6674 } 6675 mutex_unlock(&kvm->lock); 6676 break; 6677 case KVM_CAP_X86_NOTIFY_VMEXIT: 6678 r = -EINVAL; 6679 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6680 break; 6681 if (!kvm_caps.has_notify_vmexit) 6682 break; 6683 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6684 break; 6685 mutex_lock(&kvm->lock); 6686 if (!kvm->created_vcpus) { 6687 kvm->arch.notify_window = cap->args[0] >> 32; 6688 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6689 r = 0; 6690 } 6691 mutex_unlock(&kvm->lock); 6692 break; 6693 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6694 r = -EINVAL; 6695 6696 /* 6697 * Since the risk of disabling NX hugepages is a guest crashing 6698 * the system, ensure the userspace process has permission to 6699 * reboot the system. 6700 * 6701 * Note that unlike the reboot() syscall, the process must have 6702 * this capability in the root namespace because exposing 6703 * /dev/kvm into a container does not limit the scope of the 6704 * iTLB multihit bug to that container. In other words, 6705 * this must use capable(), not ns_capable(). 6706 */ 6707 if (!capable(CAP_SYS_BOOT)) { 6708 r = -EPERM; 6709 break; 6710 } 6711 6712 if (cap->args[0]) 6713 break; 6714 6715 mutex_lock(&kvm->lock); 6716 if (!kvm->created_vcpus) { 6717 kvm->arch.disable_nx_huge_pages = true; 6718 r = 0; 6719 } 6720 mutex_unlock(&kvm->lock); 6721 break; 6722 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { 6723 u64 bus_cycle_ns = cap->args[0]; 6724 u64 unused; 6725 6726 /* 6727 * Guard against overflow in tmict_to_ns(). 128 is the highest 6728 * divide value that can be programmed in APIC_TDCR. 6729 */ 6730 r = -EINVAL; 6731 if (!bus_cycle_ns || 6732 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) 6733 break; 6734 6735 r = 0; 6736 mutex_lock(&kvm->lock); 6737 if (!irqchip_in_kernel(kvm)) 6738 r = -ENXIO; 6739 else if (kvm->created_vcpus) 6740 r = -EINVAL; 6741 else 6742 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; 6743 mutex_unlock(&kvm->lock); 6744 break; 6745 } 6746 default: 6747 r = -EINVAL; 6748 break; 6749 } 6750 return r; 6751 } 6752 6753 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6754 { 6755 struct kvm_x86_msr_filter *msr_filter; 6756 6757 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6758 if (!msr_filter) 6759 return NULL; 6760 6761 msr_filter->default_allow = default_allow; 6762 return msr_filter; 6763 } 6764 6765 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6766 { 6767 u32 i; 6768 6769 if (!msr_filter) 6770 return; 6771 6772 for (i = 0; i < msr_filter->count; i++) 6773 kfree(msr_filter->ranges[i].bitmap); 6774 6775 kfree(msr_filter); 6776 } 6777 6778 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6779 struct kvm_msr_filter_range *user_range) 6780 { 6781 unsigned long *bitmap; 6782 size_t bitmap_size; 6783 6784 if (!user_range->nmsrs) 6785 return 0; 6786 6787 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6788 return -EINVAL; 6789 6790 if (!user_range->flags) 6791 return -EINVAL; 6792 6793 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6794 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6795 return -EINVAL; 6796 6797 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6798 if (IS_ERR(bitmap)) 6799 return PTR_ERR(bitmap); 6800 6801 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6802 .flags = user_range->flags, 6803 .base = user_range->base, 6804 .nmsrs = user_range->nmsrs, 6805 .bitmap = bitmap, 6806 }; 6807 6808 msr_filter->count++; 6809 return 0; 6810 } 6811 6812 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6813 struct kvm_msr_filter *filter) 6814 { 6815 struct kvm_x86_msr_filter *new_filter, *old_filter; 6816 bool default_allow; 6817 bool empty = true; 6818 int r; 6819 u32 i; 6820 6821 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6822 return -EINVAL; 6823 6824 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6825 empty &= !filter->ranges[i].nmsrs; 6826 6827 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6828 if (empty && !default_allow) 6829 return -EINVAL; 6830 6831 new_filter = kvm_alloc_msr_filter(default_allow); 6832 if (!new_filter) 6833 return -ENOMEM; 6834 6835 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6836 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6837 if (r) { 6838 kvm_free_msr_filter(new_filter); 6839 return r; 6840 } 6841 } 6842 6843 mutex_lock(&kvm->lock); 6844 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6845 mutex_is_locked(&kvm->lock)); 6846 mutex_unlock(&kvm->lock); 6847 synchronize_srcu(&kvm->srcu); 6848 6849 kvm_free_msr_filter(old_filter); 6850 6851 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6852 6853 return 0; 6854 } 6855 6856 #ifdef CONFIG_KVM_COMPAT 6857 /* for KVM_X86_SET_MSR_FILTER */ 6858 struct kvm_msr_filter_range_compat { 6859 __u32 flags; 6860 __u32 nmsrs; 6861 __u32 base; 6862 __u32 bitmap; 6863 }; 6864 6865 struct kvm_msr_filter_compat { 6866 __u32 flags; 6867 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6868 }; 6869 6870 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6871 6872 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6873 unsigned long arg) 6874 { 6875 void __user *argp = (void __user *)arg; 6876 struct kvm *kvm = filp->private_data; 6877 long r = -ENOTTY; 6878 6879 switch (ioctl) { 6880 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6881 struct kvm_msr_filter __user *user_msr_filter = argp; 6882 struct kvm_msr_filter_compat filter_compat; 6883 struct kvm_msr_filter filter; 6884 int i; 6885 6886 if (copy_from_user(&filter_compat, user_msr_filter, 6887 sizeof(filter_compat))) 6888 return -EFAULT; 6889 6890 filter.flags = filter_compat.flags; 6891 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6892 struct kvm_msr_filter_range_compat *cr; 6893 6894 cr = &filter_compat.ranges[i]; 6895 filter.ranges[i] = (struct kvm_msr_filter_range) { 6896 .flags = cr->flags, 6897 .nmsrs = cr->nmsrs, 6898 .base = cr->base, 6899 .bitmap = (__u8 *)(ulong)cr->bitmap, 6900 }; 6901 } 6902 6903 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6904 break; 6905 } 6906 } 6907 6908 return r; 6909 } 6910 #endif 6911 6912 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6913 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6914 { 6915 struct kvm_vcpu *vcpu; 6916 unsigned long i; 6917 int ret = 0; 6918 6919 mutex_lock(&kvm->lock); 6920 kvm_for_each_vcpu(i, vcpu, kvm) { 6921 if (!vcpu->arch.pv_time.active) 6922 continue; 6923 6924 ret = kvm_set_guest_paused(vcpu); 6925 if (ret) { 6926 kvm_err("Failed to pause guest VCPU%d: %d\n", 6927 vcpu->vcpu_id, ret); 6928 break; 6929 } 6930 } 6931 mutex_unlock(&kvm->lock); 6932 6933 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6934 } 6935 6936 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6937 { 6938 switch (state) { 6939 case PM_HIBERNATION_PREPARE: 6940 case PM_SUSPEND_PREPARE: 6941 return kvm_arch_suspend_notifier(kvm); 6942 } 6943 6944 return NOTIFY_DONE; 6945 } 6946 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6947 6948 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6949 { 6950 struct kvm_clock_data data = { 0 }; 6951 6952 get_kvmclock(kvm, &data); 6953 if (copy_to_user(argp, &data, sizeof(data))) 6954 return -EFAULT; 6955 6956 return 0; 6957 } 6958 6959 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6960 { 6961 struct kvm_arch *ka = &kvm->arch; 6962 struct kvm_clock_data data; 6963 u64 now_raw_ns; 6964 6965 if (copy_from_user(&data, argp, sizeof(data))) 6966 return -EFAULT; 6967 6968 /* 6969 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6970 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6971 */ 6972 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6973 return -EINVAL; 6974 6975 kvm_hv_request_tsc_page_update(kvm); 6976 kvm_start_pvclock_update(kvm); 6977 pvclock_update_vm_gtod_copy(kvm); 6978 6979 /* 6980 * This pairs with kvm_guest_time_update(): when masterclock is 6981 * in use, we use master_kernel_ns + kvmclock_offset to set 6982 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6983 * is slightly ahead) here we risk going negative on unsigned 6984 * 'system_time' when 'data.clock' is very small. 6985 */ 6986 if (data.flags & KVM_CLOCK_REALTIME) { 6987 u64 now_real_ns = ktime_get_real_ns(); 6988 6989 /* 6990 * Avoid stepping the kvmclock backwards. 6991 */ 6992 if (now_real_ns > data.realtime) 6993 data.clock += now_real_ns - data.realtime; 6994 } 6995 6996 if (ka->use_master_clock) 6997 now_raw_ns = ka->master_kernel_ns; 6998 else 6999 now_raw_ns = get_kvmclock_base_ns(); 7000 ka->kvmclock_offset = data.clock - now_raw_ns; 7001 kvm_end_pvclock_update(kvm); 7002 return 0; 7003 } 7004 7005 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 7006 { 7007 struct kvm *kvm = filp->private_data; 7008 void __user *argp = (void __user *)arg; 7009 int r = -ENOTTY; 7010 /* 7011 * This union makes it completely explicit to gcc-3.x 7012 * that these two variables' stack usage should be 7013 * combined, not added together. 7014 */ 7015 union { 7016 struct kvm_pit_state ps; 7017 struct kvm_pit_state2 ps2; 7018 struct kvm_pit_config pit_config; 7019 } u; 7020 7021 switch (ioctl) { 7022 case KVM_SET_TSS_ADDR: 7023 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 7024 break; 7025 case KVM_SET_IDENTITY_MAP_ADDR: { 7026 u64 ident_addr; 7027 7028 mutex_lock(&kvm->lock); 7029 r = -EINVAL; 7030 if (kvm->created_vcpus) 7031 goto set_identity_unlock; 7032 r = -EFAULT; 7033 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 7034 goto set_identity_unlock; 7035 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 7036 set_identity_unlock: 7037 mutex_unlock(&kvm->lock); 7038 break; 7039 } 7040 case KVM_SET_NR_MMU_PAGES: 7041 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 7042 break; 7043 case KVM_CREATE_IRQCHIP: { 7044 mutex_lock(&kvm->lock); 7045 7046 r = -EEXIST; 7047 if (irqchip_in_kernel(kvm)) 7048 goto create_irqchip_unlock; 7049 7050 r = -EINVAL; 7051 if (kvm->created_vcpus) 7052 goto create_irqchip_unlock; 7053 7054 r = kvm_pic_init(kvm); 7055 if (r) 7056 goto create_irqchip_unlock; 7057 7058 r = kvm_ioapic_init(kvm); 7059 if (r) { 7060 kvm_pic_destroy(kvm); 7061 goto create_irqchip_unlock; 7062 } 7063 7064 r = kvm_setup_default_irq_routing(kvm); 7065 if (r) { 7066 kvm_ioapic_destroy(kvm); 7067 kvm_pic_destroy(kvm); 7068 goto create_irqchip_unlock; 7069 } 7070 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7071 smp_wmb(); 7072 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7073 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7074 create_irqchip_unlock: 7075 mutex_unlock(&kvm->lock); 7076 break; 7077 } 7078 case KVM_CREATE_PIT: 7079 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7080 goto create_pit; 7081 case KVM_CREATE_PIT2: 7082 r = -EFAULT; 7083 if (copy_from_user(&u.pit_config, argp, 7084 sizeof(struct kvm_pit_config))) 7085 goto out; 7086 create_pit: 7087 mutex_lock(&kvm->lock); 7088 r = -EEXIST; 7089 if (kvm->arch.vpit) 7090 goto create_pit_unlock; 7091 r = -ENOENT; 7092 if (!pic_in_kernel(kvm)) 7093 goto create_pit_unlock; 7094 r = -ENOMEM; 7095 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7096 if (kvm->arch.vpit) 7097 r = 0; 7098 create_pit_unlock: 7099 mutex_unlock(&kvm->lock); 7100 break; 7101 case KVM_GET_IRQCHIP: { 7102 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7103 struct kvm_irqchip *chip; 7104 7105 chip = memdup_user(argp, sizeof(*chip)); 7106 if (IS_ERR(chip)) { 7107 r = PTR_ERR(chip); 7108 goto out; 7109 } 7110 7111 r = -ENXIO; 7112 if (!irqchip_kernel(kvm)) 7113 goto get_irqchip_out; 7114 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7115 if (r) 7116 goto get_irqchip_out; 7117 r = -EFAULT; 7118 if (copy_to_user(argp, chip, sizeof(*chip))) 7119 goto get_irqchip_out; 7120 r = 0; 7121 get_irqchip_out: 7122 kfree(chip); 7123 break; 7124 } 7125 case KVM_SET_IRQCHIP: { 7126 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7127 struct kvm_irqchip *chip; 7128 7129 chip = memdup_user(argp, sizeof(*chip)); 7130 if (IS_ERR(chip)) { 7131 r = PTR_ERR(chip); 7132 goto out; 7133 } 7134 7135 r = -ENXIO; 7136 if (!irqchip_kernel(kvm)) 7137 goto set_irqchip_out; 7138 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7139 set_irqchip_out: 7140 kfree(chip); 7141 break; 7142 } 7143 case KVM_GET_PIT: { 7144 r = -EFAULT; 7145 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7146 goto out; 7147 r = -ENXIO; 7148 if (!kvm->arch.vpit) 7149 goto out; 7150 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7151 if (r) 7152 goto out; 7153 r = -EFAULT; 7154 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7155 goto out; 7156 r = 0; 7157 break; 7158 } 7159 case KVM_SET_PIT: { 7160 r = -EFAULT; 7161 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7162 goto out; 7163 mutex_lock(&kvm->lock); 7164 r = -ENXIO; 7165 if (!kvm->arch.vpit) 7166 goto set_pit_out; 7167 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7168 set_pit_out: 7169 mutex_unlock(&kvm->lock); 7170 break; 7171 } 7172 case KVM_GET_PIT2: { 7173 r = -ENXIO; 7174 if (!kvm->arch.vpit) 7175 goto out; 7176 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7177 if (r) 7178 goto out; 7179 r = -EFAULT; 7180 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7181 goto out; 7182 r = 0; 7183 break; 7184 } 7185 case KVM_SET_PIT2: { 7186 r = -EFAULT; 7187 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7188 goto out; 7189 mutex_lock(&kvm->lock); 7190 r = -ENXIO; 7191 if (!kvm->arch.vpit) 7192 goto set_pit2_out; 7193 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7194 set_pit2_out: 7195 mutex_unlock(&kvm->lock); 7196 break; 7197 } 7198 case KVM_REINJECT_CONTROL: { 7199 struct kvm_reinject_control control; 7200 r = -EFAULT; 7201 if (copy_from_user(&control, argp, sizeof(control))) 7202 goto out; 7203 r = -ENXIO; 7204 if (!kvm->arch.vpit) 7205 goto out; 7206 r = kvm_vm_ioctl_reinject(kvm, &control); 7207 break; 7208 } 7209 case KVM_SET_BOOT_CPU_ID: 7210 r = 0; 7211 mutex_lock(&kvm->lock); 7212 if (kvm->created_vcpus) 7213 r = -EBUSY; 7214 else if (arg > KVM_MAX_VCPU_IDS || 7215 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) 7216 r = -EINVAL; 7217 else 7218 kvm->arch.bsp_vcpu_id = arg; 7219 mutex_unlock(&kvm->lock); 7220 break; 7221 #ifdef CONFIG_KVM_XEN 7222 case KVM_XEN_HVM_CONFIG: { 7223 struct kvm_xen_hvm_config xhc; 7224 r = -EFAULT; 7225 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7226 goto out; 7227 r = kvm_xen_hvm_config(kvm, &xhc); 7228 break; 7229 } 7230 case KVM_XEN_HVM_GET_ATTR: { 7231 struct kvm_xen_hvm_attr xha; 7232 7233 r = -EFAULT; 7234 if (copy_from_user(&xha, argp, sizeof(xha))) 7235 goto out; 7236 r = kvm_xen_hvm_get_attr(kvm, &xha); 7237 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7238 r = -EFAULT; 7239 break; 7240 } 7241 case KVM_XEN_HVM_SET_ATTR: { 7242 struct kvm_xen_hvm_attr xha; 7243 7244 r = -EFAULT; 7245 if (copy_from_user(&xha, argp, sizeof(xha))) 7246 goto out; 7247 r = kvm_xen_hvm_set_attr(kvm, &xha); 7248 break; 7249 } 7250 case KVM_XEN_HVM_EVTCHN_SEND: { 7251 struct kvm_irq_routing_xen_evtchn uxe; 7252 7253 r = -EFAULT; 7254 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7255 goto out; 7256 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7257 break; 7258 } 7259 #endif 7260 case KVM_SET_CLOCK: 7261 r = kvm_vm_ioctl_set_clock(kvm, argp); 7262 break; 7263 case KVM_GET_CLOCK: 7264 r = kvm_vm_ioctl_get_clock(kvm, argp); 7265 break; 7266 case KVM_SET_TSC_KHZ: { 7267 u32 user_tsc_khz; 7268 7269 r = -EINVAL; 7270 user_tsc_khz = (u32)arg; 7271 7272 if (kvm_caps.has_tsc_control && 7273 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7274 goto out; 7275 7276 if (user_tsc_khz == 0) 7277 user_tsc_khz = tsc_khz; 7278 7279 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7280 r = 0; 7281 7282 goto out; 7283 } 7284 case KVM_GET_TSC_KHZ: { 7285 r = READ_ONCE(kvm->arch.default_tsc_khz); 7286 goto out; 7287 } 7288 case KVM_MEMORY_ENCRYPT_OP: { 7289 r = -ENOTTY; 7290 if (!kvm_x86_ops.mem_enc_ioctl) 7291 goto out; 7292 7293 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); 7294 break; 7295 } 7296 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7297 struct kvm_enc_region region; 7298 7299 r = -EFAULT; 7300 if (copy_from_user(®ion, argp, sizeof(region))) 7301 goto out; 7302 7303 r = -ENOTTY; 7304 if (!kvm_x86_ops.mem_enc_register_region) 7305 goto out; 7306 7307 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); 7308 break; 7309 } 7310 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7311 struct kvm_enc_region region; 7312 7313 r = -EFAULT; 7314 if (copy_from_user(®ion, argp, sizeof(region))) 7315 goto out; 7316 7317 r = -ENOTTY; 7318 if (!kvm_x86_ops.mem_enc_unregister_region) 7319 goto out; 7320 7321 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); 7322 break; 7323 } 7324 #ifdef CONFIG_KVM_HYPERV 7325 case KVM_HYPERV_EVENTFD: { 7326 struct kvm_hyperv_eventfd hvevfd; 7327 7328 r = -EFAULT; 7329 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7330 goto out; 7331 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7332 break; 7333 } 7334 #endif 7335 case KVM_SET_PMU_EVENT_FILTER: 7336 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7337 break; 7338 case KVM_X86_SET_MSR_FILTER: { 7339 struct kvm_msr_filter __user *user_msr_filter = argp; 7340 struct kvm_msr_filter filter; 7341 7342 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7343 return -EFAULT; 7344 7345 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7346 break; 7347 } 7348 default: 7349 r = -ENOTTY; 7350 } 7351 out: 7352 return r; 7353 } 7354 7355 static void kvm_probe_feature_msr(u32 msr_index) 7356 { 7357 u64 data; 7358 7359 if (kvm_get_feature_msr(NULL, msr_index, &data, true)) 7360 return; 7361 7362 msr_based_features[num_msr_based_features++] = msr_index; 7363 } 7364 7365 static void kvm_probe_msr_to_save(u32 msr_index) 7366 { 7367 u32 dummy[2]; 7368 7369 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7370 return; 7371 7372 /* 7373 * Even MSRs that are valid in the host may not be exposed to guests in 7374 * some cases. 7375 */ 7376 switch (msr_index) { 7377 case MSR_IA32_BNDCFGS: 7378 if (!kvm_mpx_supported()) 7379 return; 7380 break; 7381 case MSR_TSC_AUX: 7382 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7383 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7384 return; 7385 break; 7386 case MSR_IA32_UMWAIT_CONTROL: 7387 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7388 return; 7389 break; 7390 case MSR_IA32_RTIT_CTL: 7391 case MSR_IA32_RTIT_STATUS: 7392 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7393 return; 7394 break; 7395 case MSR_IA32_RTIT_CR3_MATCH: 7396 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7397 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7398 return; 7399 break; 7400 case MSR_IA32_RTIT_OUTPUT_BASE: 7401 case MSR_IA32_RTIT_OUTPUT_MASK: 7402 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7403 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7404 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7405 return; 7406 break; 7407 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7408 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7409 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7410 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7411 return; 7412 break; 7413 case MSR_ARCH_PERFMON_PERFCTR0 ... 7414 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: 7415 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7416 kvm_pmu_cap.num_counters_gp) 7417 return; 7418 break; 7419 case MSR_ARCH_PERFMON_EVENTSEL0 ... 7420 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: 7421 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7422 kvm_pmu_cap.num_counters_gp) 7423 return; 7424 break; 7425 case MSR_ARCH_PERFMON_FIXED_CTR0 ... 7426 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: 7427 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7428 kvm_pmu_cap.num_counters_fixed) 7429 return; 7430 break; 7431 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7432 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7433 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7434 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7435 return; 7436 break; 7437 case MSR_IA32_XFD: 7438 case MSR_IA32_XFD_ERR: 7439 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7440 return; 7441 break; 7442 case MSR_IA32_TSX_CTRL: 7443 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7444 return; 7445 break; 7446 default: 7447 break; 7448 } 7449 7450 msrs_to_save[num_msrs_to_save++] = msr_index; 7451 } 7452 7453 static void kvm_init_msr_lists(void) 7454 { 7455 unsigned i; 7456 7457 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, 7458 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7459 7460 num_msrs_to_save = 0; 7461 num_emulated_msrs = 0; 7462 num_msr_based_features = 0; 7463 7464 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7465 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7466 7467 if (enable_pmu) { 7468 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7469 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7470 } 7471 7472 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7473 if (!kvm_x86_call(has_emulated_msr)(NULL, 7474 emulated_msrs_all[i])) 7475 continue; 7476 7477 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7478 } 7479 7480 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7481 kvm_probe_feature_msr(i); 7482 7483 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7484 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7485 } 7486 7487 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7488 const void *v) 7489 { 7490 int handled = 0; 7491 int n; 7492 7493 do { 7494 n = min(len, 8); 7495 if (!(lapic_in_kernel(vcpu) && 7496 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7497 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7498 break; 7499 handled += n; 7500 addr += n; 7501 len -= n; 7502 v += n; 7503 } while (len); 7504 7505 return handled; 7506 } 7507 7508 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7509 { 7510 int handled = 0; 7511 int n; 7512 7513 do { 7514 n = min(len, 8); 7515 if (!(lapic_in_kernel(vcpu) && 7516 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7517 addr, n, v)) 7518 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7519 break; 7520 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7521 handled += n; 7522 addr += n; 7523 len -= n; 7524 v += n; 7525 } while (len); 7526 7527 return handled; 7528 } 7529 7530 void kvm_set_segment(struct kvm_vcpu *vcpu, 7531 struct kvm_segment *var, int seg) 7532 { 7533 kvm_x86_call(set_segment)(vcpu, var, seg); 7534 } 7535 7536 void kvm_get_segment(struct kvm_vcpu *vcpu, 7537 struct kvm_segment *var, int seg) 7538 { 7539 kvm_x86_call(get_segment)(vcpu, var, seg); 7540 } 7541 7542 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7543 struct x86_exception *exception) 7544 { 7545 struct kvm_mmu *mmu = vcpu->arch.mmu; 7546 gpa_t t_gpa; 7547 7548 BUG_ON(!mmu_is_nested(vcpu)); 7549 7550 /* NPT walks are always user-walks */ 7551 access |= PFERR_USER_MASK; 7552 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7553 7554 return t_gpa; 7555 } 7556 7557 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7558 struct x86_exception *exception) 7559 { 7560 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7561 7562 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7563 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7564 } 7565 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7566 7567 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7568 struct x86_exception *exception) 7569 { 7570 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7571 7572 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7573 access |= PFERR_WRITE_MASK; 7574 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7575 } 7576 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7577 7578 /* uses this to access any guest's mapped memory without checking CPL */ 7579 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7580 struct x86_exception *exception) 7581 { 7582 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7583 7584 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7585 } 7586 7587 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7588 struct kvm_vcpu *vcpu, u64 access, 7589 struct x86_exception *exception) 7590 { 7591 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7592 void *data = val; 7593 int r = X86EMUL_CONTINUE; 7594 7595 while (bytes) { 7596 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7597 unsigned offset = addr & (PAGE_SIZE-1); 7598 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7599 int ret; 7600 7601 if (gpa == INVALID_GPA) 7602 return X86EMUL_PROPAGATE_FAULT; 7603 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7604 offset, toread); 7605 if (ret < 0) { 7606 r = X86EMUL_IO_NEEDED; 7607 goto out; 7608 } 7609 7610 bytes -= toread; 7611 data += toread; 7612 addr += toread; 7613 } 7614 out: 7615 return r; 7616 } 7617 7618 /* used for instruction fetching */ 7619 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7620 gva_t addr, void *val, unsigned int bytes, 7621 struct x86_exception *exception) 7622 { 7623 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7624 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7625 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7626 unsigned offset; 7627 int ret; 7628 7629 /* Inline kvm_read_guest_virt_helper for speed. */ 7630 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7631 exception); 7632 if (unlikely(gpa == INVALID_GPA)) 7633 return X86EMUL_PROPAGATE_FAULT; 7634 7635 offset = addr & (PAGE_SIZE-1); 7636 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7637 bytes = (unsigned)PAGE_SIZE - offset; 7638 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7639 offset, bytes); 7640 if (unlikely(ret < 0)) 7641 return X86EMUL_IO_NEEDED; 7642 7643 return X86EMUL_CONTINUE; 7644 } 7645 7646 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7647 gva_t addr, void *val, unsigned int bytes, 7648 struct x86_exception *exception) 7649 { 7650 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7651 7652 /* 7653 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7654 * is returned, but our callers are not ready for that and they blindly 7655 * call kvm_inject_page_fault. Ensure that they at least do not leak 7656 * uninitialized kernel stack memory into cr2 and error code. 7657 */ 7658 memset(exception, 0, sizeof(*exception)); 7659 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7660 exception); 7661 } 7662 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7663 7664 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7665 gva_t addr, void *val, unsigned int bytes, 7666 struct x86_exception *exception, bool system) 7667 { 7668 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7669 u64 access = 0; 7670 7671 if (system) 7672 access |= PFERR_IMPLICIT_ACCESS; 7673 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7674 access |= PFERR_USER_MASK; 7675 7676 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7677 } 7678 7679 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7680 struct kvm_vcpu *vcpu, u64 access, 7681 struct x86_exception *exception) 7682 { 7683 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7684 void *data = val; 7685 int r = X86EMUL_CONTINUE; 7686 7687 while (bytes) { 7688 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7689 unsigned offset = addr & (PAGE_SIZE-1); 7690 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7691 int ret; 7692 7693 if (gpa == INVALID_GPA) 7694 return X86EMUL_PROPAGATE_FAULT; 7695 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7696 if (ret < 0) { 7697 r = X86EMUL_IO_NEEDED; 7698 goto out; 7699 } 7700 7701 bytes -= towrite; 7702 data += towrite; 7703 addr += towrite; 7704 } 7705 out: 7706 return r; 7707 } 7708 7709 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7710 unsigned int bytes, struct x86_exception *exception, 7711 bool system) 7712 { 7713 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7714 u64 access = PFERR_WRITE_MASK; 7715 7716 if (system) 7717 access |= PFERR_IMPLICIT_ACCESS; 7718 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7719 access |= PFERR_USER_MASK; 7720 7721 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7722 access, exception); 7723 } 7724 7725 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7726 unsigned int bytes, struct x86_exception *exception) 7727 { 7728 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7729 vcpu->arch.l1tf_flush_l1d = true; 7730 7731 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7732 PFERR_WRITE_MASK, exception); 7733 } 7734 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7735 7736 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7737 void *insn, int insn_len) 7738 { 7739 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, 7740 insn, insn_len); 7741 } 7742 7743 int handle_ud(struct kvm_vcpu *vcpu) 7744 { 7745 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7746 int fep_flags = READ_ONCE(force_emulation_prefix); 7747 int emul_type = EMULTYPE_TRAP_UD; 7748 char sig[5]; /* ud2; .ascii "kvm" */ 7749 struct x86_exception e; 7750 int r; 7751 7752 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7753 if (r != X86EMUL_CONTINUE) 7754 return 1; 7755 7756 if (fep_flags && 7757 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7758 sig, sizeof(sig), &e) == 0 && 7759 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7760 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7761 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7762 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7763 emul_type = EMULTYPE_TRAP_UD_FORCED; 7764 } 7765 7766 return kvm_emulate_instruction(vcpu, emul_type); 7767 } 7768 EXPORT_SYMBOL_GPL(handle_ud); 7769 7770 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7771 gpa_t gpa, bool write) 7772 { 7773 /* For APIC access vmexit */ 7774 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7775 return 1; 7776 7777 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7778 trace_vcpu_match_mmio(gva, gpa, write, true); 7779 return 1; 7780 } 7781 7782 return 0; 7783 } 7784 7785 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7786 gpa_t *gpa, struct x86_exception *exception, 7787 bool write) 7788 { 7789 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7790 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7791 | (write ? PFERR_WRITE_MASK : 0); 7792 7793 /* 7794 * currently PKRU is only applied to ept enabled guest so 7795 * there is no pkey in EPT page table for L1 guest or EPT 7796 * shadow page table for L2 guest. 7797 */ 7798 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7799 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7800 vcpu->arch.mmio_access, 0, access))) { 7801 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7802 (gva & (PAGE_SIZE - 1)); 7803 trace_vcpu_match_mmio(gva, *gpa, write, false); 7804 return 1; 7805 } 7806 7807 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7808 7809 if (*gpa == INVALID_GPA) 7810 return -1; 7811 7812 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7813 } 7814 7815 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7816 const void *val, int bytes) 7817 { 7818 int ret; 7819 7820 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7821 if (ret < 0) 7822 return 0; 7823 kvm_page_track_write(vcpu, gpa, val, bytes); 7824 return 1; 7825 } 7826 7827 struct read_write_emulator_ops { 7828 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7829 int bytes); 7830 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7831 void *val, int bytes); 7832 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7833 int bytes, void *val); 7834 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7835 void *val, int bytes); 7836 bool write; 7837 }; 7838 7839 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7840 { 7841 if (vcpu->mmio_read_completed) { 7842 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7843 vcpu->mmio_fragments[0].gpa, val); 7844 vcpu->mmio_read_completed = 0; 7845 return 1; 7846 } 7847 7848 return 0; 7849 } 7850 7851 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7852 void *val, int bytes) 7853 { 7854 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7855 } 7856 7857 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7858 void *val, int bytes) 7859 { 7860 return emulator_write_phys(vcpu, gpa, val, bytes); 7861 } 7862 7863 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7864 { 7865 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7866 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7867 } 7868 7869 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7870 void *val, int bytes) 7871 { 7872 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7873 return X86EMUL_IO_NEEDED; 7874 } 7875 7876 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7877 void *val, int bytes) 7878 { 7879 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7880 7881 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7882 return X86EMUL_CONTINUE; 7883 } 7884 7885 static const struct read_write_emulator_ops read_emultor = { 7886 .read_write_prepare = read_prepare, 7887 .read_write_emulate = read_emulate, 7888 .read_write_mmio = vcpu_mmio_read, 7889 .read_write_exit_mmio = read_exit_mmio, 7890 }; 7891 7892 static const struct read_write_emulator_ops write_emultor = { 7893 .read_write_emulate = write_emulate, 7894 .read_write_mmio = write_mmio, 7895 .read_write_exit_mmio = write_exit_mmio, 7896 .write = true, 7897 }; 7898 7899 static int emulator_read_write_onepage(unsigned long addr, void *val, 7900 unsigned int bytes, 7901 struct x86_exception *exception, 7902 struct kvm_vcpu *vcpu, 7903 const struct read_write_emulator_ops *ops) 7904 { 7905 gpa_t gpa; 7906 int handled, ret; 7907 bool write = ops->write; 7908 struct kvm_mmio_fragment *frag; 7909 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7910 7911 /* 7912 * If the exit was due to a NPF we may already have a GPA. 7913 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7914 * Note, this cannot be used on string operations since string 7915 * operation using rep will only have the initial GPA from the NPF 7916 * occurred. 7917 */ 7918 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7919 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7920 gpa = ctxt->gpa_val; 7921 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7922 } else { 7923 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7924 if (ret < 0) 7925 return X86EMUL_PROPAGATE_FAULT; 7926 } 7927 7928 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7929 return X86EMUL_CONTINUE; 7930 7931 /* 7932 * Is this MMIO handled locally? 7933 */ 7934 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7935 if (handled == bytes) 7936 return X86EMUL_CONTINUE; 7937 7938 gpa += handled; 7939 bytes -= handled; 7940 val += handled; 7941 7942 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7943 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7944 frag->gpa = gpa; 7945 frag->data = val; 7946 frag->len = bytes; 7947 return X86EMUL_CONTINUE; 7948 } 7949 7950 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7951 unsigned long addr, 7952 void *val, unsigned int bytes, 7953 struct x86_exception *exception, 7954 const struct read_write_emulator_ops *ops) 7955 { 7956 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7957 gpa_t gpa; 7958 int rc; 7959 7960 if (ops->read_write_prepare && 7961 ops->read_write_prepare(vcpu, val, bytes)) 7962 return X86EMUL_CONTINUE; 7963 7964 vcpu->mmio_nr_fragments = 0; 7965 7966 /* Crossing a page boundary? */ 7967 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7968 int now; 7969 7970 now = -addr & ~PAGE_MASK; 7971 rc = emulator_read_write_onepage(addr, val, now, exception, 7972 vcpu, ops); 7973 7974 if (rc != X86EMUL_CONTINUE) 7975 return rc; 7976 addr += now; 7977 if (ctxt->mode != X86EMUL_MODE_PROT64) 7978 addr = (u32)addr; 7979 val += now; 7980 bytes -= now; 7981 } 7982 7983 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7984 vcpu, ops); 7985 if (rc != X86EMUL_CONTINUE) 7986 return rc; 7987 7988 if (!vcpu->mmio_nr_fragments) 7989 return rc; 7990 7991 gpa = vcpu->mmio_fragments[0].gpa; 7992 7993 vcpu->mmio_needed = 1; 7994 vcpu->mmio_cur_fragment = 0; 7995 7996 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7997 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7998 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7999 vcpu->run->mmio.phys_addr = gpa; 8000 8001 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 8002 } 8003 8004 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 8005 unsigned long addr, 8006 void *val, 8007 unsigned int bytes, 8008 struct x86_exception *exception) 8009 { 8010 return emulator_read_write(ctxt, addr, val, bytes, 8011 exception, &read_emultor); 8012 } 8013 8014 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 8015 unsigned long addr, 8016 const void *val, 8017 unsigned int bytes, 8018 struct x86_exception *exception) 8019 { 8020 return emulator_read_write(ctxt, addr, (void *)val, bytes, 8021 exception, &write_emultor); 8022 } 8023 8024 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 8025 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 8026 8027 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 8028 unsigned long addr, 8029 const void *old, 8030 const void *new, 8031 unsigned int bytes, 8032 struct x86_exception *exception) 8033 { 8034 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8035 u64 page_line_mask; 8036 unsigned long hva; 8037 gpa_t gpa; 8038 int r; 8039 8040 /* guests cmpxchg8b have to be emulated atomically */ 8041 if (bytes > 8 || (bytes & (bytes - 1))) 8042 goto emul_write; 8043 8044 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 8045 8046 if (gpa == INVALID_GPA || 8047 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8048 goto emul_write; 8049 8050 /* 8051 * Emulate the atomic as a straight write to avoid #AC if SLD is 8052 * enabled in the host and the access splits a cache line. 8053 */ 8054 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 8055 page_line_mask = ~(cache_line_size() - 1); 8056 else 8057 page_line_mask = PAGE_MASK; 8058 8059 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 8060 goto emul_write; 8061 8062 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 8063 if (kvm_is_error_hva(hva)) 8064 goto emul_write; 8065 8066 hva += offset_in_page(gpa); 8067 8068 switch (bytes) { 8069 case 1: 8070 r = emulator_try_cmpxchg_user(u8, hva, old, new); 8071 break; 8072 case 2: 8073 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8074 break; 8075 case 4: 8076 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8077 break; 8078 case 8: 8079 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8080 break; 8081 default: 8082 BUG(); 8083 } 8084 8085 if (r < 0) 8086 return X86EMUL_UNHANDLEABLE; 8087 8088 /* 8089 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8090 * successful, as the old value is written back on failure. Note, for 8091 * live migration, this is unnecessarily conservative as CMPXCHG writes 8092 * back the original value and the access is atomic, but KVM's ABI is 8093 * that all writes are dirty logged, regardless of the value written. 8094 */ 8095 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8096 8097 if (r) 8098 return X86EMUL_CMPXCHG_FAILED; 8099 8100 kvm_page_track_write(vcpu, gpa, new, bytes); 8101 8102 return X86EMUL_CONTINUE; 8103 8104 emul_write: 8105 pr_warn_once("emulating exchange as write\n"); 8106 8107 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8108 } 8109 8110 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8111 unsigned short port, void *data, 8112 unsigned int count, bool in) 8113 { 8114 unsigned i; 8115 int r; 8116 8117 WARN_ON_ONCE(vcpu->arch.pio.count); 8118 for (i = 0; i < count; i++) { 8119 if (in) 8120 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8121 else 8122 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8123 8124 if (r) { 8125 if (i == 0) 8126 goto userspace_io; 8127 8128 /* 8129 * Userspace must have unregistered the device while PIO 8130 * was running. Drop writes / read as 0. 8131 */ 8132 if (in) 8133 memset(data, 0, size * (count - i)); 8134 break; 8135 } 8136 8137 data += size; 8138 } 8139 return 1; 8140 8141 userspace_io: 8142 vcpu->arch.pio.port = port; 8143 vcpu->arch.pio.in = in; 8144 vcpu->arch.pio.count = count; 8145 vcpu->arch.pio.size = size; 8146 8147 if (in) 8148 memset(vcpu->arch.pio_data, 0, size * count); 8149 else 8150 memcpy(vcpu->arch.pio_data, data, size * count); 8151 8152 vcpu->run->exit_reason = KVM_EXIT_IO; 8153 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8154 vcpu->run->io.size = size; 8155 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8156 vcpu->run->io.count = count; 8157 vcpu->run->io.port = port; 8158 return 0; 8159 } 8160 8161 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8162 unsigned short port, void *val, unsigned int count) 8163 { 8164 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8165 if (r) 8166 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8167 8168 return r; 8169 } 8170 8171 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8172 { 8173 int size = vcpu->arch.pio.size; 8174 unsigned int count = vcpu->arch.pio.count; 8175 memcpy(val, vcpu->arch.pio_data, size * count); 8176 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8177 vcpu->arch.pio.count = 0; 8178 } 8179 8180 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8181 int size, unsigned short port, void *val, 8182 unsigned int count) 8183 { 8184 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8185 if (vcpu->arch.pio.count) { 8186 /* 8187 * Complete a previous iteration that required userspace I/O. 8188 * Note, @count isn't guaranteed to match pio.count as userspace 8189 * can modify ECX before rerunning the vCPU. Ignore any such 8190 * shenanigans as KVM doesn't support modifying the rep count, 8191 * and the emulator ensures @count doesn't overflow the buffer. 8192 */ 8193 complete_emulator_pio_in(vcpu, val); 8194 return 1; 8195 } 8196 8197 return emulator_pio_in(vcpu, size, port, val, count); 8198 } 8199 8200 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8201 unsigned short port, const void *val, 8202 unsigned int count) 8203 { 8204 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8205 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8206 } 8207 8208 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8209 int size, unsigned short port, 8210 const void *val, unsigned int count) 8211 { 8212 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8213 } 8214 8215 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8216 { 8217 return kvm_x86_call(get_segment_base)(vcpu, seg); 8218 } 8219 8220 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8221 { 8222 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8223 } 8224 8225 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8226 { 8227 if (!need_emulate_wbinvd(vcpu)) 8228 return X86EMUL_CONTINUE; 8229 8230 if (kvm_x86_call(has_wbinvd_exit)()) { 8231 int cpu = get_cpu(); 8232 8233 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8234 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8235 wbinvd_ipi, NULL, 1); 8236 put_cpu(); 8237 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8238 } else 8239 wbinvd(); 8240 return X86EMUL_CONTINUE; 8241 } 8242 8243 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8244 { 8245 kvm_emulate_wbinvd_noskip(vcpu); 8246 return kvm_skip_emulated_instruction(vcpu); 8247 } 8248 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8249 8250 8251 8252 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8253 { 8254 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8255 } 8256 8257 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8258 { 8259 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8260 } 8261 8262 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8263 unsigned long value) 8264 { 8265 8266 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8267 } 8268 8269 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8270 { 8271 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8272 } 8273 8274 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8275 { 8276 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8277 unsigned long value; 8278 8279 switch (cr) { 8280 case 0: 8281 value = kvm_read_cr0(vcpu); 8282 break; 8283 case 2: 8284 value = vcpu->arch.cr2; 8285 break; 8286 case 3: 8287 value = kvm_read_cr3(vcpu); 8288 break; 8289 case 4: 8290 value = kvm_read_cr4(vcpu); 8291 break; 8292 case 8: 8293 value = kvm_get_cr8(vcpu); 8294 break; 8295 default: 8296 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8297 return 0; 8298 } 8299 8300 return value; 8301 } 8302 8303 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8304 { 8305 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8306 int res = 0; 8307 8308 switch (cr) { 8309 case 0: 8310 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8311 break; 8312 case 2: 8313 vcpu->arch.cr2 = val; 8314 break; 8315 case 3: 8316 res = kvm_set_cr3(vcpu, val); 8317 break; 8318 case 4: 8319 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8320 break; 8321 case 8: 8322 res = kvm_set_cr8(vcpu, val); 8323 break; 8324 default: 8325 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8326 res = -1; 8327 } 8328 8329 return res; 8330 } 8331 8332 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8333 { 8334 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); 8335 } 8336 8337 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8338 { 8339 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); 8340 } 8341 8342 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8343 { 8344 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); 8345 } 8346 8347 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8348 { 8349 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); 8350 } 8351 8352 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8353 { 8354 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); 8355 } 8356 8357 static unsigned long emulator_get_cached_segment_base( 8358 struct x86_emulate_ctxt *ctxt, int seg) 8359 { 8360 return get_segment_base(emul_to_vcpu(ctxt), seg); 8361 } 8362 8363 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8364 struct desc_struct *desc, u32 *base3, 8365 int seg) 8366 { 8367 struct kvm_segment var; 8368 8369 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8370 *selector = var.selector; 8371 8372 if (var.unusable) { 8373 memset(desc, 0, sizeof(*desc)); 8374 if (base3) 8375 *base3 = 0; 8376 return false; 8377 } 8378 8379 if (var.g) 8380 var.limit >>= 12; 8381 set_desc_limit(desc, var.limit); 8382 set_desc_base(desc, (unsigned long)var.base); 8383 #ifdef CONFIG_X86_64 8384 if (base3) 8385 *base3 = var.base >> 32; 8386 #endif 8387 desc->type = var.type; 8388 desc->s = var.s; 8389 desc->dpl = var.dpl; 8390 desc->p = var.present; 8391 desc->avl = var.avl; 8392 desc->l = var.l; 8393 desc->d = var.db; 8394 desc->g = var.g; 8395 8396 return true; 8397 } 8398 8399 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8400 struct desc_struct *desc, u32 base3, 8401 int seg) 8402 { 8403 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8404 struct kvm_segment var; 8405 8406 var.selector = selector; 8407 var.base = get_desc_base(desc); 8408 #ifdef CONFIG_X86_64 8409 var.base |= ((u64)base3) << 32; 8410 #endif 8411 var.limit = get_desc_limit(desc); 8412 if (desc->g) 8413 var.limit = (var.limit << 12) | 0xfff; 8414 var.type = desc->type; 8415 var.dpl = desc->dpl; 8416 var.db = desc->d; 8417 var.s = desc->s; 8418 var.l = desc->l; 8419 var.g = desc->g; 8420 var.avl = desc->avl; 8421 var.present = desc->p; 8422 var.unusable = !var.present; 8423 var.padding = 0; 8424 8425 kvm_set_segment(vcpu, &var, seg); 8426 return; 8427 } 8428 8429 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8430 u32 msr_index, u64 *pdata) 8431 { 8432 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8433 int r; 8434 8435 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8436 if (r < 0) 8437 return X86EMUL_UNHANDLEABLE; 8438 8439 if (r) { 8440 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8441 complete_emulated_rdmsr, r)) 8442 return X86EMUL_IO_NEEDED; 8443 8444 trace_kvm_msr_read_ex(msr_index); 8445 return X86EMUL_PROPAGATE_FAULT; 8446 } 8447 8448 trace_kvm_msr_read(msr_index, *pdata); 8449 return X86EMUL_CONTINUE; 8450 } 8451 8452 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8453 u32 msr_index, u64 data) 8454 { 8455 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8456 int r; 8457 8458 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8459 if (r < 0) 8460 return X86EMUL_UNHANDLEABLE; 8461 8462 if (r) { 8463 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8464 complete_emulated_msr_access, r)) 8465 return X86EMUL_IO_NEEDED; 8466 8467 trace_kvm_msr_write_ex(msr_index, data); 8468 return X86EMUL_PROPAGATE_FAULT; 8469 } 8470 8471 trace_kvm_msr_write(msr_index, data); 8472 return X86EMUL_CONTINUE; 8473 } 8474 8475 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8476 u32 msr_index, u64 *pdata) 8477 { 8478 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8479 } 8480 8481 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8482 { 8483 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8484 } 8485 8486 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8487 u32 pmc, u64 *pdata) 8488 { 8489 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8490 } 8491 8492 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8493 { 8494 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8495 } 8496 8497 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8498 struct x86_instruction_info *info, 8499 enum x86_intercept_stage stage) 8500 { 8501 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, 8502 &ctxt->exception); 8503 } 8504 8505 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8506 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8507 bool exact_only) 8508 { 8509 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8510 } 8511 8512 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8513 { 8514 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8515 } 8516 8517 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8518 { 8519 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8520 } 8521 8522 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8523 { 8524 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8525 } 8526 8527 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) 8528 { 8529 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); 8530 } 8531 8532 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8533 { 8534 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8535 } 8536 8537 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8538 { 8539 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8540 } 8541 8542 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8543 { 8544 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8545 } 8546 8547 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8548 { 8549 return is_smm(emul_to_vcpu(ctxt)); 8550 } 8551 8552 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8553 { 8554 return is_guest_mode(emul_to_vcpu(ctxt)); 8555 } 8556 8557 #ifndef CONFIG_KVM_SMM 8558 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8559 { 8560 WARN_ON_ONCE(1); 8561 return X86EMUL_UNHANDLEABLE; 8562 } 8563 #endif 8564 8565 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8566 { 8567 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8568 } 8569 8570 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8571 { 8572 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8573 } 8574 8575 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8576 { 8577 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8578 8579 if (!kvm->vm_bugged) 8580 kvm_vm_bugged(kvm); 8581 } 8582 8583 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8584 gva_t addr, unsigned int flags) 8585 { 8586 if (!kvm_x86_ops.get_untagged_addr) 8587 return addr; 8588 8589 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), 8590 addr, flags); 8591 } 8592 8593 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt, 8594 gva_t addr, unsigned int flags) 8595 { 8596 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags); 8597 } 8598 8599 static const struct x86_emulate_ops emulate_ops = { 8600 .vm_bugged = emulator_vm_bugged, 8601 .read_gpr = emulator_read_gpr, 8602 .write_gpr = emulator_write_gpr, 8603 .read_std = emulator_read_std, 8604 .write_std = emulator_write_std, 8605 .fetch = kvm_fetch_guest_virt, 8606 .read_emulated = emulator_read_emulated, 8607 .write_emulated = emulator_write_emulated, 8608 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8609 .invlpg = emulator_invlpg, 8610 .pio_in_emulated = emulator_pio_in_emulated, 8611 .pio_out_emulated = emulator_pio_out_emulated, 8612 .get_segment = emulator_get_segment, 8613 .set_segment = emulator_set_segment, 8614 .get_cached_segment_base = emulator_get_cached_segment_base, 8615 .get_gdt = emulator_get_gdt, 8616 .get_idt = emulator_get_idt, 8617 .set_gdt = emulator_set_gdt, 8618 .set_idt = emulator_set_idt, 8619 .get_cr = emulator_get_cr, 8620 .set_cr = emulator_set_cr, 8621 .cpl = emulator_get_cpl, 8622 .get_dr = emulator_get_dr, 8623 .set_dr = emulator_set_dr, 8624 .set_msr_with_filter = emulator_set_msr_with_filter, 8625 .get_msr_with_filter = emulator_get_msr_with_filter, 8626 .get_msr = emulator_get_msr, 8627 .check_rdpmc_early = emulator_check_rdpmc_early, 8628 .read_pmc = emulator_read_pmc, 8629 .halt = emulator_halt, 8630 .wbinvd = emulator_wbinvd, 8631 .fix_hypercall = emulator_fix_hypercall, 8632 .intercept = emulator_intercept, 8633 .get_cpuid = emulator_get_cpuid, 8634 .guest_has_movbe = emulator_guest_has_movbe, 8635 .guest_has_fxsr = emulator_guest_has_fxsr, 8636 .guest_has_rdpid = emulator_guest_has_rdpid, 8637 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, 8638 .set_nmi_mask = emulator_set_nmi_mask, 8639 .is_smm = emulator_is_smm, 8640 .is_guest_mode = emulator_is_guest_mode, 8641 .leave_smm = emulator_leave_smm, 8642 .triple_fault = emulator_triple_fault, 8643 .set_xcr = emulator_set_xcr, 8644 .get_untagged_addr = emulator_get_untagged_addr, 8645 .is_canonical_addr = emulator_is_canonical_addr, 8646 }; 8647 8648 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8649 { 8650 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 8651 /* 8652 * an sti; sti; sequence only disable interrupts for the first 8653 * instruction. So, if the last instruction, be it emulated or 8654 * not, left the system with the INT_STI flag enabled, it 8655 * means that the last instruction is an sti. We should not 8656 * leave the flag on in this case. The same goes for mov ss 8657 */ 8658 if (int_shadow & mask) 8659 mask = 0; 8660 if (unlikely(int_shadow || mask)) { 8661 kvm_x86_call(set_interrupt_shadow)(vcpu, mask); 8662 if (!mask) 8663 kvm_make_request(KVM_REQ_EVENT, vcpu); 8664 } 8665 } 8666 8667 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8668 { 8669 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8670 8671 if (ctxt->exception.vector == PF_VECTOR) 8672 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8673 else if (ctxt->exception.error_code_valid) 8674 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8675 ctxt->exception.error_code); 8676 else 8677 kvm_queue_exception(vcpu, ctxt->exception.vector); 8678 } 8679 8680 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8681 { 8682 struct x86_emulate_ctxt *ctxt; 8683 8684 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8685 if (!ctxt) { 8686 pr_err("failed to allocate vcpu's emulator\n"); 8687 return NULL; 8688 } 8689 8690 ctxt->vcpu = vcpu; 8691 ctxt->ops = &emulate_ops; 8692 vcpu->arch.emulate_ctxt = ctxt; 8693 8694 return ctxt; 8695 } 8696 8697 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8698 { 8699 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8700 int cs_db, cs_l; 8701 8702 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8703 8704 ctxt->gpa_available = false; 8705 ctxt->eflags = kvm_get_rflags(vcpu); 8706 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8707 8708 ctxt->eip = kvm_rip_read(vcpu); 8709 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8710 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8711 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8712 cs_db ? X86EMUL_MODE_PROT32 : 8713 X86EMUL_MODE_PROT16; 8714 ctxt->interruptibility = 0; 8715 ctxt->have_exception = false; 8716 ctxt->exception.vector = -1; 8717 ctxt->perm_ok = false; 8718 8719 init_decode_cache(ctxt); 8720 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8721 } 8722 8723 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8724 { 8725 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8726 int ret; 8727 8728 init_emulate_ctxt(vcpu); 8729 8730 ctxt->op_bytes = 2; 8731 ctxt->ad_bytes = 2; 8732 ctxt->_eip = ctxt->eip + inc_eip; 8733 ret = emulate_int_real(ctxt, irq); 8734 8735 if (ret != X86EMUL_CONTINUE) { 8736 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8737 } else { 8738 ctxt->eip = ctxt->_eip; 8739 kvm_rip_write(vcpu, ctxt->eip); 8740 kvm_set_rflags(vcpu, ctxt->eflags); 8741 } 8742 } 8743 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8744 8745 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8746 u8 ndata, u8 *insn_bytes, u8 insn_size) 8747 { 8748 struct kvm_run *run = vcpu->run; 8749 u64 info[5]; 8750 u8 info_start; 8751 8752 /* 8753 * Zero the whole array used to retrieve the exit info, as casting to 8754 * u32 for select entries will leave some chunks uninitialized. 8755 */ 8756 memset(&info, 0, sizeof(info)); 8757 8758 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], 8759 (u32 *)&info[3], (u32 *)&info[4]); 8760 8761 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8762 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8763 8764 /* 8765 * There's currently space for 13 entries, but 5 are used for the exit 8766 * reason and info. Restrict to 4 to reduce the maintenance burden 8767 * when expanding kvm_run.emulation_failure in the future. 8768 */ 8769 if (WARN_ON_ONCE(ndata > 4)) 8770 ndata = 4; 8771 8772 /* Always include the flags as a 'data' entry. */ 8773 info_start = 1; 8774 run->emulation_failure.flags = 0; 8775 8776 if (insn_size) { 8777 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8778 sizeof(run->emulation_failure.insn_bytes) != 16)); 8779 info_start += 2; 8780 run->emulation_failure.flags |= 8781 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8782 run->emulation_failure.insn_size = insn_size; 8783 memset(run->emulation_failure.insn_bytes, 0x90, 8784 sizeof(run->emulation_failure.insn_bytes)); 8785 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8786 } 8787 8788 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8789 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8790 ndata * sizeof(data[0])); 8791 8792 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8793 } 8794 8795 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8796 { 8797 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8798 8799 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8800 ctxt->fetch.end - ctxt->fetch.data); 8801 } 8802 8803 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8804 u8 ndata) 8805 { 8806 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8807 } 8808 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8809 8810 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8811 { 8812 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8813 } 8814 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8815 8816 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8817 { 8818 struct kvm *kvm = vcpu->kvm; 8819 8820 ++vcpu->stat.insn_emulation_fail; 8821 trace_kvm_emulate_insn_failed(vcpu); 8822 8823 if (emulation_type & EMULTYPE_VMWARE_GP) { 8824 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8825 return 1; 8826 } 8827 8828 if (kvm->arch.exit_on_emulation_error || 8829 (emulation_type & EMULTYPE_SKIP)) { 8830 prepare_emulation_ctxt_failure_exit(vcpu); 8831 return 0; 8832 } 8833 8834 kvm_queue_exception(vcpu, UD_VECTOR); 8835 8836 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { 8837 prepare_emulation_ctxt_failure_exit(vcpu); 8838 return 0; 8839 } 8840 8841 return 1; 8842 } 8843 8844 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu, 8845 gpa_t cr2_or_gpa, 8846 int emulation_type) 8847 { 8848 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8849 return false; 8850 8851 /* 8852 * If the failed instruction faulted on an access to page tables that 8853 * are used to translate any part of the instruction, KVM can't resolve 8854 * the issue by unprotecting the gfn, as zapping the shadow page will 8855 * result in the instruction taking a !PRESENT page fault and thus put 8856 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8857 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8858 * then zap the SPTE to unprotect the gfn, and then do it all over 8859 * again. Report the error to userspace. 8860 */ 8861 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP) 8862 return false; 8863 8864 /* 8865 * If emulation may have been triggered by a write to a shadowed page 8866 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8867 * guest to let the CPU re-execute the instruction in the hope that the 8868 * CPU can cleanly execute the instruction that KVM failed to emulate. 8869 */ 8870 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true); 8871 8872 /* 8873 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible 8874 * all SPTEs were already zapped by a different task. The alternative 8875 * is to report the error to userspace and likely terminate the guest, 8876 * and the last_retry_{eip,addr} checks will prevent retrying the page 8877 * fault indefinitely, i.e. there's nothing to lose by retrying. 8878 */ 8879 return true; 8880 } 8881 8882 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8883 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8884 8885 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8886 unsigned long *db) 8887 { 8888 u32 dr6 = 0; 8889 int i; 8890 u32 enable, rwlen; 8891 8892 enable = dr7; 8893 rwlen = dr7 >> 16; 8894 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8895 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8896 dr6 |= (1 << i); 8897 return dr6; 8898 } 8899 8900 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8901 { 8902 struct kvm_run *kvm_run = vcpu->run; 8903 8904 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8905 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8906 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8907 kvm_run->debug.arch.exception = DB_VECTOR; 8908 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8909 return 0; 8910 } 8911 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8912 return 1; 8913 } 8914 8915 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8916 { 8917 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 8918 int r; 8919 8920 r = kvm_x86_call(skip_emulated_instruction)(vcpu); 8921 if (unlikely(!r)) 8922 return 0; 8923 8924 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 8925 8926 /* 8927 * rflags is the old, "raw" value of the flags. The new value has 8928 * not been saved yet. 8929 * 8930 * This is correct even for TF set by the guest, because "the 8931 * processor will not generate this exception after the instruction 8932 * that sets the TF flag". 8933 */ 8934 if (unlikely(rflags & X86_EFLAGS_TF)) 8935 r = kvm_vcpu_do_singlestep(vcpu); 8936 return r; 8937 } 8938 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8939 8940 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8941 { 8942 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8943 return true; 8944 8945 /* 8946 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is 8947 * active, but AMD compatible CPUs do not. 8948 */ 8949 if (!guest_cpuid_is_intel_compatible(vcpu)) 8950 return false; 8951 8952 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; 8953 } 8954 8955 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8956 int emulation_type, int *r) 8957 { 8958 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8959 8960 /* 8961 * Do not check for code breakpoints if hardware has already done the 8962 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8963 * the instruction has passed all exception checks, and all intercepted 8964 * exceptions that trigger emulation have lower priority than code 8965 * breakpoints, i.e. the fact that the intercepted exception occurred 8966 * means any code breakpoints have already been serviced. 8967 * 8968 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8969 * hardware has checked the RIP of the magic prefix, but not the RIP of 8970 * the instruction being emulated. The intent of forced emulation is 8971 * to behave as if KVM intercepted the instruction without an exception 8972 * and without a prefix. 8973 */ 8974 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8975 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8976 return false; 8977 8978 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8979 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8980 struct kvm_run *kvm_run = vcpu->run; 8981 unsigned long eip = kvm_get_linear_rip(vcpu); 8982 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8983 vcpu->arch.guest_debug_dr7, 8984 vcpu->arch.eff_db); 8985 8986 if (dr6 != 0) { 8987 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8988 kvm_run->debug.arch.pc = eip; 8989 kvm_run->debug.arch.exception = DB_VECTOR; 8990 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8991 *r = 0; 8992 return true; 8993 } 8994 } 8995 8996 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8997 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8998 unsigned long eip = kvm_get_linear_rip(vcpu); 8999 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9000 vcpu->arch.dr7, 9001 vcpu->arch.db); 9002 9003 if (dr6 != 0) { 9004 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9005 *r = 1; 9006 return true; 9007 } 9008 } 9009 9010 return false; 9011 } 9012 9013 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9014 { 9015 switch (ctxt->opcode_len) { 9016 case 1: 9017 switch (ctxt->b) { 9018 case 0xe4: /* IN */ 9019 case 0xe5: 9020 case 0xec: 9021 case 0xed: 9022 case 0xe6: /* OUT */ 9023 case 0xe7: 9024 case 0xee: 9025 case 0xef: 9026 case 0x6c: /* INS */ 9027 case 0x6d: 9028 case 0x6e: /* OUTS */ 9029 case 0x6f: 9030 return true; 9031 } 9032 break; 9033 case 2: 9034 switch (ctxt->b) { 9035 case 0x33: /* RDPMC */ 9036 return true; 9037 } 9038 break; 9039 } 9040 9041 return false; 9042 } 9043 9044 /* 9045 * Decode an instruction for emulation. The caller is responsible for handling 9046 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9047 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9048 * code breakpoints have higher priority and thus have already been done by 9049 * hardware. 9050 * 9051 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9052 * response to a machine check. 9053 */ 9054 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9055 void *insn, int insn_len) 9056 { 9057 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9058 int r; 9059 9060 init_emulate_ctxt(vcpu); 9061 9062 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9063 9064 trace_kvm_emulate_insn_start(vcpu); 9065 ++vcpu->stat.insn_emulation; 9066 9067 return r; 9068 } 9069 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9070 9071 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9072 int emulation_type, void *insn, int insn_len) 9073 { 9074 int r; 9075 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9076 bool writeback = true; 9077 9078 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9079 (WARN_ON_ONCE(is_guest_mode(vcpu)) || 9080 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))) 9081 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF; 9082 9083 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9084 if (r != X86EMUL_CONTINUE) { 9085 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9086 return 1; 9087 9088 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9089 return handle_emulation_failure(vcpu, emulation_type); 9090 } 9091 9092 vcpu->arch.l1tf_flush_l1d = true; 9093 9094 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9095 kvm_clear_exception_queue(vcpu); 9096 9097 /* 9098 * Return immediately if RIP hits a code breakpoint, such #DBs 9099 * are fault-like and are higher priority than any faults on 9100 * the code fetch itself. 9101 */ 9102 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9103 return r; 9104 9105 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9106 insn, insn_len); 9107 if (r != EMULATION_OK) { 9108 if ((emulation_type & EMULTYPE_TRAP_UD) || 9109 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9110 kvm_queue_exception(vcpu, UD_VECTOR); 9111 return 1; 9112 } 9113 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9114 emulation_type)) 9115 return 1; 9116 9117 if (ctxt->have_exception && 9118 !(emulation_type & EMULTYPE_SKIP)) { 9119 /* 9120 * #UD should result in just EMULATION_FAILED, and trap-like 9121 * exception should not be encountered during decode. 9122 */ 9123 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9124 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9125 inject_emulated_exception(vcpu); 9126 return 1; 9127 } 9128 return handle_emulation_failure(vcpu, emulation_type); 9129 } 9130 } 9131 9132 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9133 !is_vmware_backdoor_opcode(ctxt)) { 9134 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9135 return 1; 9136 } 9137 9138 /* 9139 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9140 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9141 * The caller is responsible for updating interruptibility state and 9142 * injecting single-step #DBs. 9143 */ 9144 if (emulation_type & EMULTYPE_SKIP) { 9145 if (ctxt->mode != X86EMUL_MODE_PROT64) 9146 ctxt->eip = (u32)ctxt->_eip; 9147 else 9148 ctxt->eip = ctxt->_eip; 9149 9150 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9151 r = 1; 9152 goto writeback; 9153 } 9154 9155 kvm_rip_write(vcpu, ctxt->eip); 9156 if (ctxt->eflags & X86_EFLAGS_RF) 9157 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9158 return 1; 9159 } 9160 9161 /* 9162 * If emulation was caused by a write-protection #PF on a non-page_table 9163 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages, 9164 * and retry the instruction, as the vCPU is likely no longer using the 9165 * gfn as a page table. 9166 */ 9167 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9168 !x86_page_table_writing_insn(ctxt) && 9169 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 9170 return 1; 9171 9172 /* this is needed for vmware backdoor interface to work since it 9173 changes registers values during IO operation */ 9174 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9175 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9176 emulator_invalidate_register_cache(ctxt); 9177 } 9178 9179 restart: 9180 if (emulation_type & EMULTYPE_PF) { 9181 /* Save the faulting GPA (cr2) in the address field */ 9182 ctxt->exception.address = cr2_or_gpa; 9183 9184 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9185 if (vcpu->arch.mmu->root_role.direct) { 9186 ctxt->gpa_available = true; 9187 ctxt->gpa_val = cr2_or_gpa; 9188 } 9189 } else { 9190 /* Sanitize the address out of an abundance of paranoia. */ 9191 ctxt->exception.address = 0; 9192 } 9193 9194 r = x86_emulate_insn(ctxt); 9195 9196 if (r == EMULATION_INTERCEPTED) 9197 return 1; 9198 9199 if (r == EMULATION_FAILED) { 9200 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9201 emulation_type)) 9202 return 1; 9203 9204 return handle_emulation_failure(vcpu, emulation_type); 9205 } 9206 9207 if (ctxt->have_exception) { 9208 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9209 vcpu->mmio_needed = false; 9210 r = 1; 9211 inject_emulated_exception(vcpu); 9212 } else if (vcpu->arch.pio.count) { 9213 if (!vcpu->arch.pio.in) { 9214 /* FIXME: return into emulator if single-stepping. */ 9215 vcpu->arch.pio.count = 0; 9216 } else { 9217 writeback = false; 9218 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9219 } 9220 r = 0; 9221 } else if (vcpu->mmio_needed) { 9222 ++vcpu->stat.mmio_exits; 9223 9224 if (!vcpu->mmio_is_write) 9225 writeback = false; 9226 r = 0; 9227 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9228 } else if (vcpu->arch.complete_userspace_io) { 9229 writeback = false; 9230 r = 0; 9231 } else if (r == EMULATION_RESTART) 9232 goto restart; 9233 else 9234 r = 1; 9235 9236 writeback: 9237 if (writeback) { 9238 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9239 toggle_interruptibility(vcpu, ctxt->interruptibility); 9240 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9241 9242 /* 9243 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9244 * only supports code breakpoints and general detect #DB, both 9245 * of which are fault-like. 9246 */ 9247 if (!ctxt->have_exception || 9248 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9249 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9250 if (ctxt->is_branch) 9251 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9252 kvm_rip_write(vcpu, ctxt->eip); 9253 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9254 r = kvm_vcpu_do_singlestep(vcpu); 9255 kvm_x86_call(update_emulated_instruction)(vcpu); 9256 __kvm_set_rflags(vcpu, ctxt->eflags); 9257 } 9258 9259 /* 9260 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9261 * do nothing, and it will be requested again as soon as 9262 * the shadow expires. But we still need to check here, 9263 * because POPF has no interrupt shadow. 9264 */ 9265 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9266 kvm_make_request(KVM_REQ_EVENT, vcpu); 9267 } else 9268 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9269 9270 return r; 9271 } 9272 9273 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9274 { 9275 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9276 } 9277 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9278 9279 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9280 void *insn, int insn_len) 9281 { 9282 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9283 } 9284 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9285 9286 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9287 { 9288 vcpu->arch.pio.count = 0; 9289 return 1; 9290 } 9291 9292 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9293 { 9294 vcpu->arch.pio.count = 0; 9295 9296 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9297 return 1; 9298 9299 return kvm_skip_emulated_instruction(vcpu); 9300 } 9301 9302 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9303 unsigned short port) 9304 { 9305 unsigned long val = kvm_rax_read(vcpu); 9306 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9307 9308 if (ret) 9309 return ret; 9310 9311 /* 9312 * Workaround userspace that relies on old KVM behavior of %rip being 9313 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9314 */ 9315 if (port == 0x7e && 9316 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9317 vcpu->arch.complete_userspace_io = 9318 complete_fast_pio_out_port_0x7e; 9319 kvm_skip_emulated_instruction(vcpu); 9320 } else { 9321 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9322 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9323 } 9324 return 0; 9325 } 9326 9327 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9328 { 9329 unsigned long val; 9330 9331 /* We should only ever be called with arch.pio.count equal to 1 */ 9332 BUG_ON(vcpu->arch.pio.count != 1); 9333 9334 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9335 vcpu->arch.pio.count = 0; 9336 return 1; 9337 } 9338 9339 /* For size less than 4 we merge, else we zero extend */ 9340 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9341 9342 complete_emulator_pio_in(vcpu, &val); 9343 kvm_rax_write(vcpu, val); 9344 9345 return kvm_skip_emulated_instruction(vcpu); 9346 } 9347 9348 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9349 unsigned short port) 9350 { 9351 unsigned long val; 9352 int ret; 9353 9354 /* For size less than 4 we merge, else we zero extend */ 9355 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9356 9357 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9358 if (ret) { 9359 kvm_rax_write(vcpu, val); 9360 return ret; 9361 } 9362 9363 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9364 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9365 9366 return 0; 9367 } 9368 9369 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9370 { 9371 int ret; 9372 9373 if (in) 9374 ret = kvm_fast_pio_in(vcpu, size, port); 9375 else 9376 ret = kvm_fast_pio_out(vcpu, size, port); 9377 return ret && kvm_skip_emulated_instruction(vcpu); 9378 } 9379 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9380 9381 static int kvmclock_cpu_down_prep(unsigned int cpu) 9382 { 9383 __this_cpu_write(cpu_tsc_khz, 0); 9384 return 0; 9385 } 9386 9387 static void tsc_khz_changed(void *data) 9388 { 9389 struct cpufreq_freqs *freq = data; 9390 unsigned long khz; 9391 9392 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9393 9394 if (data) 9395 khz = freq->new; 9396 else 9397 khz = cpufreq_quick_get(raw_smp_processor_id()); 9398 if (!khz) 9399 khz = tsc_khz; 9400 __this_cpu_write(cpu_tsc_khz, khz); 9401 } 9402 9403 #ifdef CONFIG_X86_64 9404 static void kvm_hyperv_tsc_notifier(void) 9405 { 9406 struct kvm *kvm; 9407 int cpu; 9408 9409 mutex_lock(&kvm_lock); 9410 list_for_each_entry(kvm, &vm_list, vm_list) 9411 kvm_make_mclock_inprogress_request(kvm); 9412 9413 /* no guest entries from this point */ 9414 hyperv_stop_tsc_emulation(); 9415 9416 /* TSC frequency always matches when on Hyper-V */ 9417 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9418 for_each_present_cpu(cpu) 9419 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9420 } 9421 kvm_caps.max_guest_tsc_khz = tsc_khz; 9422 9423 list_for_each_entry(kvm, &vm_list, vm_list) { 9424 __kvm_start_pvclock_update(kvm); 9425 pvclock_update_vm_gtod_copy(kvm); 9426 kvm_end_pvclock_update(kvm); 9427 } 9428 9429 mutex_unlock(&kvm_lock); 9430 } 9431 #endif 9432 9433 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9434 { 9435 struct kvm *kvm; 9436 struct kvm_vcpu *vcpu; 9437 int send_ipi = 0; 9438 unsigned long i; 9439 9440 /* 9441 * We allow guests to temporarily run on slowing clocks, 9442 * provided we notify them after, or to run on accelerating 9443 * clocks, provided we notify them before. Thus time never 9444 * goes backwards. 9445 * 9446 * However, we have a problem. We can't atomically update 9447 * the frequency of a given CPU from this function; it is 9448 * merely a notifier, which can be called from any CPU. 9449 * Changing the TSC frequency at arbitrary points in time 9450 * requires a recomputation of local variables related to 9451 * the TSC for each VCPU. We must flag these local variables 9452 * to be updated and be sure the update takes place with the 9453 * new frequency before any guests proceed. 9454 * 9455 * Unfortunately, the combination of hotplug CPU and frequency 9456 * change creates an intractable locking scenario; the order 9457 * of when these callouts happen is undefined with respect to 9458 * CPU hotplug, and they can race with each other. As such, 9459 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9460 * undefined; you can actually have a CPU frequency change take 9461 * place in between the computation of X and the setting of the 9462 * variable. To protect against this problem, all updates of 9463 * the per_cpu tsc_khz variable are done in an interrupt 9464 * protected IPI, and all callers wishing to update the value 9465 * must wait for a synchronous IPI to complete (which is trivial 9466 * if the caller is on the CPU already). This establishes the 9467 * necessary total order on variable updates. 9468 * 9469 * Note that because a guest time update may take place 9470 * anytime after the setting of the VCPU's request bit, the 9471 * correct TSC value must be set before the request. However, 9472 * to ensure the update actually makes it to any guest which 9473 * starts running in hardware virtualization between the set 9474 * and the acquisition of the spinlock, we must also ping the 9475 * CPU after setting the request bit. 9476 * 9477 */ 9478 9479 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9480 9481 mutex_lock(&kvm_lock); 9482 list_for_each_entry(kvm, &vm_list, vm_list) { 9483 kvm_for_each_vcpu(i, vcpu, kvm) { 9484 if (vcpu->cpu != cpu) 9485 continue; 9486 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9487 if (vcpu->cpu != raw_smp_processor_id()) 9488 send_ipi = 1; 9489 } 9490 } 9491 mutex_unlock(&kvm_lock); 9492 9493 if (freq->old < freq->new && send_ipi) { 9494 /* 9495 * We upscale the frequency. Must make the guest 9496 * doesn't see old kvmclock values while running with 9497 * the new frequency, otherwise we risk the guest sees 9498 * time go backwards. 9499 * 9500 * In case we update the frequency for another cpu 9501 * (which might be in guest context) send an interrupt 9502 * to kick the cpu out of guest context. Next time 9503 * guest context is entered kvmclock will be updated, 9504 * so the guest will not see stale values. 9505 */ 9506 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9507 } 9508 } 9509 9510 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9511 void *data) 9512 { 9513 struct cpufreq_freqs *freq = data; 9514 int cpu; 9515 9516 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9517 return 0; 9518 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9519 return 0; 9520 9521 for_each_cpu(cpu, freq->policy->cpus) 9522 __kvmclock_cpufreq_notifier(freq, cpu); 9523 9524 return 0; 9525 } 9526 9527 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9528 .notifier_call = kvmclock_cpufreq_notifier 9529 }; 9530 9531 static int kvmclock_cpu_online(unsigned int cpu) 9532 { 9533 tsc_khz_changed(NULL); 9534 return 0; 9535 } 9536 9537 static void kvm_timer_init(void) 9538 { 9539 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9540 max_tsc_khz = tsc_khz; 9541 9542 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9543 struct cpufreq_policy *policy; 9544 int cpu; 9545 9546 cpu = get_cpu(); 9547 policy = cpufreq_cpu_get(cpu); 9548 if (policy) { 9549 if (policy->cpuinfo.max_freq) 9550 max_tsc_khz = policy->cpuinfo.max_freq; 9551 cpufreq_cpu_put(policy); 9552 } 9553 put_cpu(); 9554 } 9555 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9556 CPUFREQ_TRANSITION_NOTIFIER); 9557 9558 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9559 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9560 } 9561 } 9562 9563 #ifdef CONFIG_X86_64 9564 static void pvclock_gtod_update_fn(struct work_struct *work) 9565 { 9566 struct kvm *kvm; 9567 struct kvm_vcpu *vcpu; 9568 unsigned long i; 9569 9570 mutex_lock(&kvm_lock); 9571 list_for_each_entry(kvm, &vm_list, vm_list) 9572 kvm_for_each_vcpu(i, vcpu, kvm) 9573 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9574 atomic_set(&kvm_guest_has_master_clock, 0); 9575 mutex_unlock(&kvm_lock); 9576 } 9577 9578 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9579 9580 /* 9581 * Indirection to move queue_work() out of the tk_core.seq write held 9582 * region to prevent possible deadlocks against time accessors which 9583 * are invoked with work related locks held. 9584 */ 9585 static void pvclock_irq_work_fn(struct irq_work *w) 9586 { 9587 queue_work(system_long_wq, &pvclock_gtod_work); 9588 } 9589 9590 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9591 9592 /* 9593 * Notification about pvclock gtod data update. 9594 */ 9595 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9596 void *priv) 9597 { 9598 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9599 struct timekeeper *tk = priv; 9600 9601 update_pvclock_gtod(tk); 9602 9603 /* 9604 * Disable master clock if host does not trust, or does not use, 9605 * TSC based clocksource. Delegate queue_work() to irq_work as 9606 * this is invoked with tk_core.seq write held. 9607 */ 9608 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9609 atomic_read(&kvm_guest_has_master_clock) != 0) 9610 irq_work_queue(&pvclock_irq_work); 9611 return 0; 9612 } 9613 9614 static struct notifier_block pvclock_gtod_notifier = { 9615 .notifier_call = pvclock_gtod_notify, 9616 }; 9617 #endif 9618 9619 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9620 { 9621 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9622 9623 #define __KVM_X86_OP(func) \ 9624 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9625 #define KVM_X86_OP(func) \ 9626 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9627 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9628 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9629 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9630 (void *)__static_call_return0); 9631 #include <asm/kvm-x86-ops.h> 9632 #undef __KVM_X86_OP 9633 9634 kvm_pmu_ops_update(ops->pmu_ops); 9635 } 9636 9637 static int kvm_x86_check_processor_compatibility(void) 9638 { 9639 int cpu = smp_processor_id(); 9640 struct cpuinfo_x86 *c = &cpu_data(cpu); 9641 9642 /* 9643 * Compatibility checks are done when loading KVM and when enabling 9644 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9645 * compatible, i.e. KVM should never perform a compatibility check on 9646 * an offline CPU. 9647 */ 9648 WARN_ON(!cpu_online(cpu)); 9649 9650 if (__cr4_reserved_bits(cpu_has, c) != 9651 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9652 return -EIO; 9653 9654 return kvm_x86_call(check_processor_compatibility)(); 9655 } 9656 9657 static void kvm_x86_check_cpu_compat(void *ret) 9658 { 9659 *(int *)ret = kvm_x86_check_processor_compatibility(); 9660 } 9661 9662 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9663 { 9664 u64 host_pat; 9665 int r, cpu; 9666 9667 guard(mutex)(&vendor_module_lock); 9668 9669 if (kvm_x86_ops.enable_virtualization_cpu) { 9670 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9671 return -EEXIST; 9672 } 9673 9674 /* 9675 * KVM explicitly assumes that the guest has an FPU and 9676 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9677 * vCPU's FPU state as a fxregs_state struct. 9678 */ 9679 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9680 pr_err("inadequate fpu\n"); 9681 return -EOPNOTSUPP; 9682 } 9683 9684 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9685 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9686 return -EOPNOTSUPP; 9687 } 9688 9689 /* 9690 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9691 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9692 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9693 * with an exception. PAT[0] is set to WB on RESET and also by the 9694 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9695 */ 9696 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9697 (host_pat & GENMASK(2, 0)) != 6) { 9698 pr_err("host PAT[0] is not WB\n"); 9699 return -EIO; 9700 } 9701 9702 memset(&kvm_caps, 0, sizeof(kvm_caps)); 9703 9704 x86_emulator_cache = kvm_alloc_emulator_cache(); 9705 if (!x86_emulator_cache) { 9706 pr_err("failed to allocate cache for x86 emulator\n"); 9707 return -ENOMEM; 9708 } 9709 9710 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9711 if (!user_return_msrs) { 9712 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9713 r = -ENOMEM; 9714 goto out_free_x86_emulator_cache; 9715 } 9716 kvm_nr_uret_msrs = 0; 9717 9718 r = kvm_mmu_vendor_module_init(); 9719 if (r) 9720 goto out_free_percpu; 9721 9722 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 9723 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 9724 9725 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9726 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9727 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; 9728 } 9729 9730 rdmsrl_safe(MSR_EFER, &kvm_host.efer); 9731 9732 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9733 rdmsrl(MSR_IA32_XSS, kvm_host.xss); 9734 9735 kvm_init_pmu_capability(ops->pmu_ops); 9736 9737 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9738 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); 9739 9740 r = ops->hardware_setup(); 9741 if (r != 0) 9742 goto out_mmu_exit; 9743 9744 kvm_ops_update(ops); 9745 9746 for_each_online_cpu(cpu) { 9747 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9748 if (r < 0) 9749 goto out_unwind_ops; 9750 } 9751 9752 /* 9753 * Point of no return! DO NOT add error paths below this point unless 9754 * absolutely necessary, as most operations from this point forward 9755 * require unwinding. 9756 */ 9757 kvm_timer_init(); 9758 9759 if (pi_inject_timer == -1) 9760 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9761 #ifdef CONFIG_X86_64 9762 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9763 9764 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9765 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9766 #endif 9767 9768 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9769 9770 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 9771 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 9772 9773 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9774 kvm_caps.supported_xss = 0; 9775 9776 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9777 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9778 #undef __kvm_cpu_cap_has 9779 9780 if (kvm_caps.has_tsc_control) { 9781 /* 9782 * Make sure the user can only configure tsc_khz values that 9783 * fit into a signed integer. 9784 * A min value is not calculated because it will always 9785 * be 1 on all machines. 9786 */ 9787 u64 max = min(0x7fffffffULL, 9788 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9789 kvm_caps.max_guest_tsc_khz = max; 9790 } 9791 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9792 kvm_init_msr_lists(); 9793 return 0; 9794 9795 out_unwind_ops: 9796 kvm_x86_ops.enable_virtualization_cpu = NULL; 9797 kvm_x86_call(hardware_unsetup)(); 9798 out_mmu_exit: 9799 kvm_mmu_vendor_module_exit(); 9800 out_free_percpu: 9801 free_percpu(user_return_msrs); 9802 out_free_x86_emulator_cache: 9803 kmem_cache_destroy(x86_emulator_cache); 9804 return r; 9805 } 9806 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9807 9808 void kvm_x86_vendor_exit(void) 9809 { 9810 kvm_unregister_perf_callbacks(); 9811 9812 #ifdef CONFIG_X86_64 9813 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9814 clear_hv_tscchange_cb(); 9815 #endif 9816 kvm_lapic_exit(); 9817 9818 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9819 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9820 CPUFREQ_TRANSITION_NOTIFIER); 9821 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9822 } 9823 #ifdef CONFIG_X86_64 9824 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9825 irq_work_sync(&pvclock_irq_work); 9826 cancel_work_sync(&pvclock_gtod_work); 9827 #endif 9828 kvm_x86_call(hardware_unsetup)(); 9829 kvm_mmu_vendor_module_exit(); 9830 free_percpu(user_return_msrs); 9831 kmem_cache_destroy(x86_emulator_cache); 9832 #ifdef CONFIG_KVM_XEN 9833 static_key_deferred_flush(&kvm_xen_enabled); 9834 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9835 #endif 9836 mutex_lock(&vendor_module_lock); 9837 kvm_x86_ops.enable_virtualization_cpu = NULL; 9838 mutex_unlock(&vendor_module_lock); 9839 } 9840 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9841 9842 #ifdef CONFIG_X86_64 9843 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9844 unsigned long clock_type) 9845 { 9846 struct kvm_clock_pairing clock_pairing; 9847 struct timespec64 ts; 9848 u64 cycle; 9849 int ret; 9850 9851 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9852 return -KVM_EOPNOTSUPP; 9853 9854 /* 9855 * When tsc is in permanent catchup mode guests won't be able to use 9856 * pvclock_read_retry loop to get consistent view of pvclock 9857 */ 9858 if (vcpu->arch.tsc_always_catchup) 9859 return -KVM_EOPNOTSUPP; 9860 9861 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9862 return -KVM_EOPNOTSUPP; 9863 9864 clock_pairing.sec = ts.tv_sec; 9865 clock_pairing.nsec = ts.tv_nsec; 9866 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9867 clock_pairing.flags = 0; 9868 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9869 9870 ret = 0; 9871 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9872 sizeof(struct kvm_clock_pairing))) 9873 ret = -KVM_EFAULT; 9874 9875 return ret; 9876 } 9877 #endif 9878 9879 /* 9880 * kvm_pv_kick_cpu_op: Kick a vcpu. 9881 * 9882 * @apicid - apicid of vcpu to be kicked. 9883 */ 9884 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9885 { 9886 /* 9887 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9888 * common code, e.g. for tracing. Defer initialization to the compiler. 9889 */ 9890 struct kvm_lapic_irq lapic_irq = { 9891 .delivery_mode = APIC_DM_REMRD, 9892 .dest_mode = APIC_DEST_PHYSICAL, 9893 .shorthand = APIC_DEST_NOSHORT, 9894 .dest_id = apicid, 9895 }; 9896 9897 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9898 } 9899 9900 bool kvm_apicv_activated(struct kvm *kvm) 9901 { 9902 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9903 } 9904 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9905 9906 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9907 { 9908 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9909 ulong vcpu_reasons = 9910 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); 9911 9912 return (vm_reasons | vcpu_reasons) == 0; 9913 } 9914 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9915 9916 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9917 enum kvm_apicv_inhibit reason, bool set) 9918 { 9919 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; 9920 9921 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); 9922 9923 if (set) 9924 __set_bit(reason, inhibits); 9925 else 9926 __clear_bit(reason, inhibits); 9927 9928 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9929 } 9930 9931 static void kvm_apicv_init(struct kvm *kvm) 9932 { 9933 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 9934 APICV_INHIBIT_REASON_DISABLED; 9935 9936 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 9937 9938 init_rwsem(&kvm->arch.apicv_update_lock); 9939 } 9940 9941 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9942 { 9943 struct kvm_vcpu *target = NULL; 9944 struct kvm_apic_map *map; 9945 9946 vcpu->stat.directed_yield_attempted++; 9947 9948 if (single_task_running()) 9949 goto no_yield; 9950 9951 rcu_read_lock(); 9952 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9953 9954 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9955 target = map->phys_map[dest_id]->vcpu; 9956 9957 rcu_read_unlock(); 9958 9959 if (!target || !READ_ONCE(target->ready)) 9960 goto no_yield; 9961 9962 /* Ignore requests to yield to self */ 9963 if (vcpu == target) 9964 goto no_yield; 9965 9966 if (kvm_vcpu_yield_to(target) <= 0) 9967 goto no_yield; 9968 9969 vcpu->stat.directed_yield_successful++; 9970 9971 no_yield: 9972 return; 9973 } 9974 9975 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9976 { 9977 u64 ret = vcpu->run->hypercall.ret; 9978 9979 if (!is_64_bit_mode(vcpu)) 9980 ret = (u32)ret; 9981 kvm_rax_write(vcpu, ret); 9982 ++vcpu->stat.hypercalls; 9983 return kvm_skip_emulated_instruction(vcpu); 9984 } 9985 9986 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 9987 unsigned long a0, unsigned long a1, 9988 unsigned long a2, unsigned long a3, 9989 int op_64_bit, int cpl) 9990 { 9991 unsigned long ret; 9992 9993 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9994 9995 if (!op_64_bit) { 9996 nr &= 0xFFFFFFFF; 9997 a0 &= 0xFFFFFFFF; 9998 a1 &= 0xFFFFFFFF; 9999 a2 &= 0xFFFFFFFF; 10000 a3 &= 0xFFFFFFFF; 10001 } 10002 10003 if (cpl) { 10004 ret = -KVM_EPERM; 10005 goto out; 10006 } 10007 10008 ret = -KVM_ENOSYS; 10009 10010 switch (nr) { 10011 case KVM_HC_VAPIC_POLL_IRQ: 10012 ret = 0; 10013 break; 10014 case KVM_HC_KICK_CPU: 10015 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10016 break; 10017 10018 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10019 kvm_sched_yield(vcpu, a1); 10020 ret = 0; 10021 break; 10022 #ifdef CONFIG_X86_64 10023 case KVM_HC_CLOCK_PAIRING: 10024 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10025 break; 10026 #endif 10027 case KVM_HC_SEND_IPI: 10028 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10029 break; 10030 10031 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10032 break; 10033 case KVM_HC_SCHED_YIELD: 10034 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10035 break; 10036 10037 kvm_sched_yield(vcpu, a0); 10038 ret = 0; 10039 break; 10040 case KVM_HC_MAP_GPA_RANGE: { 10041 u64 gpa = a0, npages = a1, attrs = a2; 10042 10043 ret = -KVM_ENOSYS; 10044 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10045 break; 10046 10047 if (!PAGE_ALIGNED(gpa) || !npages || 10048 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10049 ret = -KVM_EINVAL; 10050 break; 10051 } 10052 10053 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10054 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10055 vcpu->run->hypercall.args[0] = gpa; 10056 vcpu->run->hypercall.args[1] = npages; 10057 vcpu->run->hypercall.args[2] = attrs; 10058 vcpu->run->hypercall.flags = 0; 10059 if (op_64_bit) 10060 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10061 10062 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10063 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10064 /* stat is incremented on completion. */ 10065 return 0; 10066 } 10067 default: 10068 ret = -KVM_ENOSYS; 10069 break; 10070 } 10071 10072 out: 10073 ++vcpu->stat.hypercalls; 10074 return ret; 10075 } 10076 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall); 10077 10078 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10079 { 10080 unsigned long nr, a0, a1, a2, a3, ret; 10081 int op_64_bit; 10082 int cpl; 10083 10084 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10085 return kvm_xen_hypercall(vcpu); 10086 10087 if (kvm_hv_hypercall_enabled(vcpu)) 10088 return kvm_hv_hypercall(vcpu); 10089 10090 nr = kvm_rax_read(vcpu); 10091 a0 = kvm_rbx_read(vcpu); 10092 a1 = kvm_rcx_read(vcpu); 10093 a2 = kvm_rdx_read(vcpu); 10094 a3 = kvm_rsi_read(vcpu); 10095 op_64_bit = is_64_bit_hypercall(vcpu); 10096 cpl = kvm_x86_call(get_cpl)(vcpu); 10097 10098 ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl); 10099 if (nr == KVM_HC_MAP_GPA_RANGE && !ret) 10100 /* MAP_GPA tosses the request to the user space. */ 10101 return 0; 10102 10103 if (!op_64_bit) 10104 ret = (u32)ret; 10105 kvm_rax_write(vcpu, ret); 10106 10107 return kvm_skip_emulated_instruction(vcpu); 10108 } 10109 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10110 10111 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10112 { 10113 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10114 char instruction[3]; 10115 unsigned long rip = kvm_rip_read(vcpu); 10116 10117 /* 10118 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10119 * the pieces. 10120 */ 10121 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10122 ctxt->exception.error_code_valid = false; 10123 ctxt->exception.vector = UD_VECTOR; 10124 ctxt->have_exception = true; 10125 return X86EMUL_PROPAGATE_FAULT; 10126 } 10127 10128 kvm_x86_call(patch_hypercall)(vcpu, instruction); 10129 10130 return emulator_write_emulated(ctxt, rip, instruction, 3, 10131 &ctxt->exception); 10132 } 10133 10134 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10135 { 10136 return vcpu->run->request_interrupt_window && 10137 likely(!pic_in_kernel(vcpu->kvm)); 10138 } 10139 10140 /* Called within kvm->srcu read side. */ 10141 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10142 { 10143 struct kvm_run *kvm_run = vcpu->run; 10144 10145 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); 10146 kvm_run->cr8 = kvm_get_cr8(vcpu); 10147 kvm_run->apic_base = vcpu->arch.apic_base; 10148 10149 kvm_run->ready_for_interrupt_injection = 10150 pic_in_kernel(vcpu->kvm) || 10151 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10152 10153 if (is_smm(vcpu)) 10154 kvm_run->flags |= KVM_RUN_X86_SMM; 10155 if (is_guest_mode(vcpu)) 10156 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; 10157 } 10158 10159 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10160 { 10161 int max_irr, tpr; 10162 10163 if (!kvm_x86_ops.update_cr8_intercept) 10164 return; 10165 10166 if (!lapic_in_kernel(vcpu)) 10167 return; 10168 10169 if (vcpu->arch.apic->apicv_active) 10170 return; 10171 10172 if (!vcpu->arch.apic->vapic_addr) 10173 max_irr = kvm_lapic_find_highest_irr(vcpu); 10174 else 10175 max_irr = -1; 10176 10177 if (max_irr != -1) 10178 max_irr >>= 4; 10179 10180 tpr = kvm_lapic_get_cr8(vcpu); 10181 10182 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); 10183 } 10184 10185 10186 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10187 { 10188 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10189 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10190 return 1; 10191 } 10192 10193 return kvm_x86_ops.nested_ops->check_events(vcpu); 10194 } 10195 10196 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10197 { 10198 /* 10199 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10200 * exceptions don't report error codes. The presence of an error code 10201 * is carried with the exception and only stripped when the exception 10202 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10203 * report an error code despite the CPU being in Real Mode. 10204 */ 10205 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10206 10207 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10208 vcpu->arch.exception.has_error_code, 10209 vcpu->arch.exception.error_code, 10210 vcpu->arch.exception.injected); 10211 10212 kvm_x86_call(inject_exception)(vcpu); 10213 } 10214 10215 /* 10216 * Check for any event (interrupt or exception) that is ready to be injected, 10217 * and if there is at least one event, inject the event with the highest 10218 * priority. This handles both "pending" events, i.e. events that have never 10219 * been injected into the guest, and "injected" events, i.e. events that were 10220 * injected as part of a previous VM-Enter, but weren't successfully delivered 10221 * and need to be re-injected. 10222 * 10223 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10224 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10225 * be able to inject exceptions in the "middle" of an instruction, and so must 10226 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10227 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10228 * boundaries is necessary and correct. 10229 * 10230 * For simplicity, KVM uses a single path to inject all events (except events 10231 * that are injected directly from L1 to L2) and doesn't explicitly track 10232 * instruction boundaries for asynchronous events. However, because VM-Exits 10233 * that can occur during instruction execution typically result in KVM skipping 10234 * the instruction or injecting an exception, e.g. instruction and exception 10235 * intercepts, and because pending exceptions have higher priority than pending 10236 * interrupts, KVM still honors instruction boundaries in most scenarios. 10237 * 10238 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10239 * the instruction or inject an exception, then KVM can incorrecty inject a new 10240 * asynchronous event if the event became pending after the CPU fetched the 10241 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10242 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10243 * injected on the restarted instruction instead of being deferred until the 10244 * instruction completes. 10245 * 10246 * In practice, this virtualization hole is unlikely to be observed by the 10247 * guest, and even less likely to cause functional problems. To detect the 10248 * hole, the guest would have to trigger an event on a side effect of an early 10249 * phase of instruction execution, e.g. on the instruction fetch from memory. 10250 * And for it to be a functional problem, the guest would need to depend on the 10251 * ordering between that side effect, the instruction completing, _and_ the 10252 * delivery of the asynchronous event. 10253 */ 10254 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10255 bool *req_immediate_exit) 10256 { 10257 bool can_inject; 10258 int r; 10259 10260 /* 10261 * Process nested events first, as nested VM-Exit supersedes event 10262 * re-injection. If there's an event queued for re-injection, it will 10263 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10264 */ 10265 if (is_guest_mode(vcpu)) 10266 r = kvm_check_nested_events(vcpu); 10267 else 10268 r = 0; 10269 10270 /* 10271 * Re-inject exceptions and events *especially* if immediate entry+exit 10272 * to/from L2 is needed, as any event that has already been injected 10273 * into L2 needs to complete its lifecycle before injecting a new event. 10274 * 10275 * Don't re-inject an NMI or interrupt if there is a pending exception. 10276 * This collision arises if an exception occurred while vectoring the 10277 * injected event, KVM intercepted said exception, and KVM ultimately 10278 * determined the fault belongs to the guest and queues the exception 10279 * for injection back into the guest. 10280 * 10281 * "Injected" interrupts can also collide with pending exceptions if 10282 * userspace ignores the "ready for injection" flag and blindly queues 10283 * an interrupt. In that case, prioritizing the exception is correct, 10284 * as the exception "occurred" before the exit to userspace. Trap-like 10285 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10286 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10287 * priority, they're only generated (pended) during instruction 10288 * execution, and interrupts are recognized at instruction boundaries. 10289 * Thus a pending fault-like exception means the fault occurred on the 10290 * *previous* instruction and must be serviced prior to recognizing any 10291 * new events in order to fully complete the previous instruction. 10292 */ 10293 if (vcpu->arch.exception.injected) 10294 kvm_inject_exception(vcpu); 10295 else if (kvm_is_exception_pending(vcpu)) 10296 ; /* see above */ 10297 else if (vcpu->arch.nmi_injected) 10298 kvm_x86_call(inject_nmi)(vcpu); 10299 else if (vcpu->arch.interrupt.injected) 10300 kvm_x86_call(inject_irq)(vcpu, true); 10301 10302 /* 10303 * Exceptions that morph to VM-Exits are handled above, and pending 10304 * exceptions on top of injected exceptions that do not VM-Exit should 10305 * either morph to #DF or, sadly, override the injected exception. 10306 */ 10307 WARN_ON_ONCE(vcpu->arch.exception.injected && 10308 vcpu->arch.exception.pending); 10309 10310 /* 10311 * Bail if immediate entry+exit to/from the guest is needed to complete 10312 * nested VM-Enter or event re-injection so that a different pending 10313 * event can be serviced (or if KVM needs to exit to userspace). 10314 * 10315 * Otherwise, continue processing events even if VM-Exit occurred. The 10316 * VM-Exit will have cleared exceptions that were meant for L2, but 10317 * there may now be events that can be injected into L1. 10318 */ 10319 if (r < 0) 10320 goto out; 10321 10322 /* 10323 * A pending exception VM-Exit should either result in nested VM-Exit 10324 * or force an immediate re-entry and exit to/from L2, and exception 10325 * VM-Exits cannot be injected (flag should _never_ be set). 10326 */ 10327 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10328 vcpu->arch.exception_vmexit.pending); 10329 10330 /* 10331 * New events, other than exceptions, cannot be injected if KVM needs 10332 * to re-inject a previous event. See above comments on re-injecting 10333 * for why pending exceptions get priority. 10334 */ 10335 can_inject = !kvm_event_needs_reinjection(vcpu); 10336 10337 if (vcpu->arch.exception.pending) { 10338 /* 10339 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10340 * value pushed on the stack. Trap-like exception and all #DBs 10341 * leave RF as-is (KVM follows Intel's behavior in this regard; 10342 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10343 * 10344 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10345 * describe the behavior of General Detect #DBs, which are 10346 * fault-like. They do _not_ set RF, a la code breakpoints. 10347 */ 10348 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10349 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10350 X86_EFLAGS_RF); 10351 10352 if (vcpu->arch.exception.vector == DB_VECTOR) { 10353 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10354 if (vcpu->arch.dr7 & DR7_GD) { 10355 vcpu->arch.dr7 &= ~DR7_GD; 10356 kvm_update_dr7(vcpu); 10357 } 10358 } 10359 10360 kvm_inject_exception(vcpu); 10361 10362 vcpu->arch.exception.pending = false; 10363 vcpu->arch.exception.injected = true; 10364 10365 can_inject = false; 10366 } 10367 10368 /* Don't inject interrupts if the user asked to avoid doing so */ 10369 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10370 return 0; 10371 10372 /* 10373 * Finally, inject interrupt events. If an event cannot be injected 10374 * due to architectural conditions (e.g. IF=0) a window-open exit 10375 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10376 * and can architecturally be injected, but we cannot do it right now: 10377 * an interrupt could have arrived just now and we have to inject it 10378 * as a vmexit, or there could already an event in the queue, which is 10379 * indicated by can_inject. In that case we request an immediate exit 10380 * in order to make progress and get back here for another iteration. 10381 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10382 */ 10383 #ifdef CONFIG_KVM_SMM 10384 if (vcpu->arch.smi_pending) { 10385 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : 10386 -EBUSY; 10387 if (r < 0) 10388 goto out; 10389 if (r) { 10390 vcpu->arch.smi_pending = false; 10391 ++vcpu->arch.smi_count; 10392 enter_smm(vcpu); 10393 can_inject = false; 10394 } else 10395 kvm_x86_call(enable_smi_window)(vcpu); 10396 } 10397 #endif 10398 10399 if (vcpu->arch.nmi_pending) { 10400 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : 10401 -EBUSY; 10402 if (r < 0) 10403 goto out; 10404 if (r) { 10405 --vcpu->arch.nmi_pending; 10406 vcpu->arch.nmi_injected = true; 10407 kvm_x86_call(inject_nmi)(vcpu); 10408 can_inject = false; 10409 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); 10410 } 10411 if (vcpu->arch.nmi_pending) 10412 kvm_x86_call(enable_nmi_window)(vcpu); 10413 } 10414 10415 if (kvm_cpu_has_injectable_intr(vcpu)) { 10416 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : 10417 -EBUSY; 10418 if (r < 0) 10419 goto out; 10420 if (r) { 10421 int irq = kvm_cpu_get_interrupt(vcpu); 10422 10423 if (!WARN_ON_ONCE(irq == -1)) { 10424 kvm_queue_interrupt(vcpu, irq, false); 10425 kvm_x86_call(inject_irq)(vcpu, false); 10426 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); 10427 } 10428 } 10429 if (kvm_cpu_has_injectable_intr(vcpu)) 10430 kvm_x86_call(enable_irq_window)(vcpu); 10431 } 10432 10433 if (is_guest_mode(vcpu) && 10434 kvm_x86_ops.nested_ops->has_events && 10435 kvm_x86_ops.nested_ops->has_events(vcpu, true)) 10436 *req_immediate_exit = true; 10437 10438 /* 10439 * KVM must never queue a new exception while injecting an event; KVM 10440 * is done emulating and should only propagate the to-be-injected event 10441 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10442 * infinite loop as KVM will bail from VM-Enter to inject the pending 10443 * exception and start the cycle all over. 10444 * 10445 * Exempt triple faults as they have special handling and won't put the 10446 * vCPU into an infinite loop. Triple fault can be queued when running 10447 * VMX without unrestricted guest, as that requires KVM to emulate Real 10448 * Mode events (see kvm_inject_realmode_interrupt()). 10449 */ 10450 WARN_ON_ONCE(vcpu->arch.exception.pending || 10451 vcpu->arch.exception_vmexit.pending); 10452 return 0; 10453 10454 out: 10455 if (r == -EBUSY) { 10456 *req_immediate_exit = true; 10457 r = 0; 10458 } 10459 return r; 10460 } 10461 10462 static void process_nmi(struct kvm_vcpu *vcpu) 10463 { 10464 unsigned int limit; 10465 10466 /* 10467 * x86 is limited to one NMI pending, but because KVM can't react to 10468 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10469 * scheduled out, KVM needs to play nice with two queued NMIs showing 10470 * up at the same time. To handle this scenario, allow two NMIs to be 10471 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10472 * waiting for a previous NMI injection to complete (which effectively 10473 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10474 * will request an NMI window to handle the second NMI. 10475 */ 10476 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10477 limit = 1; 10478 else 10479 limit = 2; 10480 10481 /* 10482 * Adjust the limit to account for pending virtual NMIs, which aren't 10483 * tracked in vcpu->arch.nmi_pending. 10484 */ 10485 if (kvm_x86_call(is_vnmi_pending)(vcpu)) 10486 limit--; 10487 10488 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10489 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10490 10491 if (vcpu->arch.nmi_pending && 10492 (kvm_x86_call(set_vnmi_pending)(vcpu))) 10493 vcpu->arch.nmi_pending--; 10494 10495 if (vcpu->arch.nmi_pending) 10496 kvm_make_request(KVM_REQ_EVENT, vcpu); 10497 } 10498 10499 /* Return total number of NMIs pending injection to the VM */ 10500 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10501 { 10502 return vcpu->arch.nmi_pending + 10503 kvm_x86_call(is_vnmi_pending)(vcpu); 10504 } 10505 10506 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10507 unsigned long *vcpu_bitmap) 10508 { 10509 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10510 } 10511 10512 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10513 { 10514 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10515 } 10516 10517 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10518 { 10519 struct kvm_lapic *apic = vcpu->arch.apic; 10520 bool activate; 10521 10522 if (!lapic_in_kernel(vcpu)) 10523 return; 10524 10525 down_read(&vcpu->kvm->arch.apicv_update_lock); 10526 preempt_disable(); 10527 10528 /* Do not activate APICV when APIC is disabled */ 10529 activate = kvm_vcpu_apicv_activated(vcpu) && 10530 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10531 10532 if (apic->apicv_active == activate) 10533 goto out; 10534 10535 apic->apicv_active = activate; 10536 kvm_apic_update_apicv(vcpu); 10537 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); 10538 10539 /* 10540 * When APICv gets disabled, we may still have injected interrupts 10541 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10542 * still active when the interrupt got accepted. Make sure 10543 * kvm_check_and_inject_events() is called to check for that. 10544 */ 10545 if (!apic->apicv_active) 10546 kvm_make_request(KVM_REQ_EVENT, vcpu); 10547 10548 out: 10549 preempt_enable(); 10550 up_read(&vcpu->kvm->arch.apicv_update_lock); 10551 } 10552 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10553 10554 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10555 { 10556 if (!lapic_in_kernel(vcpu)) 10557 return; 10558 10559 /* 10560 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10561 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10562 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10563 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10564 * this case so that KVM can use the AVIC doorbell to inject interrupts 10565 * to running vCPUs, but KVM must not create SPTEs for the APIC base as 10566 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10567 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10568 * access page is sticky. 10569 */ 10570 if (apic_x2apic_mode(vcpu->arch.apic) && 10571 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10572 kvm_inhibit_apic_access_page(vcpu); 10573 10574 __kvm_vcpu_update_apicv(vcpu); 10575 } 10576 10577 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10578 enum kvm_apicv_inhibit reason, bool set) 10579 { 10580 unsigned long old, new; 10581 10582 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10583 10584 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10585 return; 10586 10587 old = new = kvm->arch.apicv_inhibit_reasons; 10588 10589 set_or_clear_apicv_inhibit(&new, reason, set); 10590 10591 if (!!old != !!new) { 10592 /* 10593 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10594 * false positives in the sanity check WARN in vcpu_enter_guest(). 10595 * This task will wait for all vCPUs to ack the kick IRQ before 10596 * updating apicv_inhibit_reasons, and all other vCPUs will 10597 * block on acquiring apicv_update_lock so that vCPUs can't 10598 * redo vcpu_enter_guest() without seeing the new inhibit state. 10599 * 10600 * Note, holding apicv_update_lock and taking it in the read 10601 * side (handling the request) also prevents other vCPUs from 10602 * servicing the request with a stale apicv_inhibit_reasons. 10603 */ 10604 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10605 kvm->arch.apicv_inhibit_reasons = new; 10606 if (new) { 10607 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10608 int idx = srcu_read_lock(&kvm->srcu); 10609 10610 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10611 srcu_read_unlock(&kvm->srcu, idx); 10612 } 10613 } else { 10614 kvm->arch.apicv_inhibit_reasons = new; 10615 } 10616 } 10617 10618 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10619 enum kvm_apicv_inhibit reason, bool set) 10620 { 10621 if (!enable_apicv) 10622 return; 10623 10624 down_write(&kvm->arch.apicv_update_lock); 10625 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10626 up_write(&kvm->arch.apicv_update_lock); 10627 } 10628 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10629 10630 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10631 { 10632 if (!kvm_apic_present(vcpu)) 10633 return; 10634 10635 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10636 10637 kvm_x86_call(sync_pir_to_irr)(vcpu); 10638 10639 if (irqchip_split(vcpu->kvm)) 10640 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10641 else if (ioapic_in_kernel(vcpu->kvm)) 10642 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10643 10644 if (is_guest_mode(vcpu)) 10645 vcpu->arch.load_eoi_exitmap_pending = true; 10646 else 10647 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10648 } 10649 10650 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10651 { 10652 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10653 return; 10654 10655 #ifdef CONFIG_KVM_HYPERV 10656 if (to_hv_vcpu(vcpu)) { 10657 u64 eoi_exit_bitmap[4]; 10658 10659 bitmap_or((ulong *)eoi_exit_bitmap, 10660 vcpu->arch.ioapic_handled_vectors, 10661 to_hv_synic(vcpu)->vec_bitmap, 256); 10662 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10663 return; 10664 } 10665 #endif 10666 kvm_x86_call(load_eoi_exitmap)( 10667 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10668 } 10669 10670 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10671 { 10672 kvm_x86_call(guest_memory_reclaimed)(kvm); 10673 } 10674 10675 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10676 { 10677 if (!lapic_in_kernel(vcpu)) 10678 return; 10679 10680 kvm_x86_call(set_apic_access_page_addr)(vcpu); 10681 } 10682 10683 /* 10684 * Called within kvm->srcu read side. 10685 * Returns 1 to let vcpu_run() continue the guest execution loop without 10686 * exiting to the userspace. Otherwise, the value will be returned to the 10687 * userspace. 10688 */ 10689 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10690 { 10691 int r; 10692 bool req_int_win = 10693 dm_request_for_irq_injection(vcpu) && 10694 kvm_cpu_accept_dm_intr(vcpu); 10695 fastpath_t exit_fastpath; 10696 10697 bool req_immediate_exit = false; 10698 10699 if (kvm_request_pending(vcpu)) { 10700 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10701 r = -EIO; 10702 goto out; 10703 } 10704 10705 if (kvm_dirty_ring_check_request(vcpu)) { 10706 r = 0; 10707 goto out; 10708 } 10709 10710 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10711 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10712 r = 0; 10713 goto out; 10714 } 10715 } 10716 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10717 kvm_mmu_free_obsolete_roots(vcpu); 10718 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10719 __kvm_migrate_timers(vcpu); 10720 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10721 kvm_update_masterclock(vcpu->kvm); 10722 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10723 kvm_gen_kvmclock_update(vcpu); 10724 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10725 r = kvm_guest_time_update(vcpu); 10726 if (unlikely(r)) 10727 goto out; 10728 } 10729 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10730 kvm_mmu_sync_roots(vcpu); 10731 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10732 kvm_mmu_load_pgd(vcpu); 10733 10734 /* 10735 * Note, the order matters here, as flushing "all" TLB entries 10736 * also flushes the "current" TLB entries, i.e. servicing the 10737 * flush "all" will clear any request to flush "current". 10738 */ 10739 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10740 kvm_vcpu_flush_tlb_all(vcpu); 10741 10742 kvm_service_local_tlb_flush_requests(vcpu); 10743 10744 /* 10745 * Fall back to a "full" guest flush if Hyper-V's precise 10746 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10747 * the flushes are considered "remote" and not "local" because 10748 * the requests can be initiated from other vCPUs. 10749 */ 10750 #ifdef CONFIG_KVM_HYPERV 10751 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10752 kvm_hv_vcpu_flush_tlb(vcpu)) 10753 kvm_vcpu_flush_tlb_guest(vcpu); 10754 #endif 10755 10756 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10757 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10758 r = 0; 10759 goto out; 10760 } 10761 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10762 if (is_guest_mode(vcpu)) 10763 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10764 10765 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10766 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10767 vcpu->mmio_needed = 0; 10768 r = 0; 10769 goto out; 10770 } 10771 } 10772 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10773 /* Page is swapped out. Do synthetic halt */ 10774 vcpu->arch.apf.halted = true; 10775 r = 1; 10776 goto out; 10777 } 10778 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10779 record_steal_time(vcpu); 10780 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10781 kvm_pmu_handle_event(vcpu); 10782 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10783 kvm_pmu_deliver_pmi(vcpu); 10784 #ifdef CONFIG_KVM_SMM 10785 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10786 process_smi(vcpu); 10787 #endif 10788 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10789 process_nmi(vcpu); 10790 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10791 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10792 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10793 vcpu->arch.ioapic_handled_vectors)) { 10794 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10795 vcpu->run->eoi.vector = 10796 vcpu->arch.pending_ioapic_eoi; 10797 r = 0; 10798 goto out; 10799 } 10800 } 10801 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10802 vcpu_scan_ioapic(vcpu); 10803 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10804 vcpu_load_eoi_exitmap(vcpu); 10805 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10806 kvm_vcpu_reload_apic_access_page(vcpu); 10807 #ifdef CONFIG_KVM_HYPERV 10808 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10809 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10810 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10811 vcpu->run->system_event.ndata = 0; 10812 r = 0; 10813 goto out; 10814 } 10815 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10816 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10817 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10818 vcpu->run->system_event.ndata = 0; 10819 r = 0; 10820 goto out; 10821 } 10822 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10823 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10824 10825 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10826 vcpu->run->hyperv = hv_vcpu->exit; 10827 r = 0; 10828 goto out; 10829 } 10830 10831 /* 10832 * KVM_REQ_HV_STIMER has to be processed after 10833 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10834 * depend on the guest clock being up-to-date 10835 */ 10836 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10837 kvm_hv_process_stimers(vcpu); 10838 #endif 10839 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10840 kvm_vcpu_update_apicv(vcpu); 10841 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10842 kvm_check_async_pf_completion(vcpu); 10843 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10844 kvm_x86_call(msr_filter_changed)(vcpu); 10845 10846 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10847 kvm_x86_call(update_cpu_dirty_logging)(vcpu); 10848 10849 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { 10850 kvm_vcpu_reset(vcpu, true); 10851 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { 10852 r = 1; 10853 goto out; 10854 } 10855 } 10856 } 10857 10858 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10859 kvm_xen_has_interrupt(vcpu)) { 10860 ++vcpu->stat.req_event; 10861 r = kvm_apic_accept_events(vcpu); 10862 if (r < 0) { 10863 r = 0; 10864 goto out; 10865 } 10866 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10867 r = 1; 10868 goto out; 10869 } 10870 10871 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10872 if (r < 0) { 10873 r = 0; 10874 goto out; 10875 } 10876 if (req_int_win) 10877 kvm_x86_call(enable_irq_window)(vcpu); 10878 10879 if (kvm_lapic_enabled(vcpu)) { 10880 update_cr8_intercept(vcpu); 10881 kvm_lapic_sync_to_vapic(vcpu); 10882 } 10883 } 10884 10885 r = kvm_mmu_reload(vcpu); 10886 if (unlikely(r)) { 10887 goto cancel_injection; 10888 } 10889 10890 preempt_disable(); 10891 10892 kvm_x86_call(prepare_switch_to_guest)(vcpu); 10893 10894 /* 10895 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10896 * IPI are then delayed after guest entry, which ensures that they 10897 * result in virtual interrupt delivery. 10898 */ 10899 local_irq_disable(); 10900 10901 /* Store vcpu->apicv_active before vcpu->mode. */ 10902 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10903 10904 kvm_vcpu_srcu_read_unlock(vcpu); 10905 10906 /* 10907 * 1) We should set ->mode before checking ->requests. Please see 10908 * the comment in kvm_vcpu_exiting_guest_mode(). 10909 * 10910 * 2) For APICv, we should set ->mode before checking PID.ON. This 10911 * pairs with the memory barrier implicit in pi_test_and_set_on 10912 * (see vmx_deliver_posted_interrupt). 10913 * 10914 * 3) This also orders the write to mode from any reads to the page 10915 * tables done while the VCPU is running. Please see the comment 10916 * in kvm_flush_remote_tlbs. 10917 */ 10918 smp_mb__after_srcu_read_unlock(); 10919 10920 /* 10921 * Process pending posted interrupts to handle the case where the 10922 * notification IRQ arrived in the host, or was never sent (because the 10923 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10924 * status, KVM doesn't update assigned devices when APICv is inhibited, 10925 * i.e. they can post interrupts even if APICv is temporarily disabled. 10926 */ 10927 if (kvm_lapic_enabled(vcpu)) 10928 kvm_x86_call(sync_pir_to_irr)(vcpu); 10929 10930 if (kvm_vcpu_exit_request(vcpu)) { 10931 vcpu->mode = OUTSIDE_GUEST_MODE; 10932 smp_wmb(); 10933 local_irq_enable(); 10934 preempt_enable(); 10935 kvm_vcpu_srcu_read_lock(vcpu); 10936 r = 1; 10937 goto cancel_injection; 10938 } 10939 10940 if (req_immediate_exit) 10941 kvm_make_request(KVM_REQ_EVENT, vcpu); 10942 10943 fpregs_assert_state_consistent(); 10944 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10945 switch_fpu_return(); 10946 10947 if (vcpu->arch.guest_fpu.xfd_err) 10948 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10949 10950 if (unlikely(vcpu->arch.switch_db_regs)) { 10951 set_debugreg(0, 7); 10952 set_debugreg(vcpu->arch.eff_db[0], 0); 10953 set_debugreg(vcpu->arch.eff_db[1], 1); 10954 set_debugreg(vcpu->arch.eff_db[2], 2); 10955 set_debugreg(vcpu->arch.eff_db[3], 3); 10956 } else if (unlikely(hw_breakpoint_active())) { 10957 set_debugreg(0, 7); 10958 } 10959 10960 guest_timing_enter_irqoff(); 10961 10962 for (;;) { 10963 /* 10964 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10965 * update must kick and wait for all vCPUs before toggling the 10966 * per-VM state, and responding vCPUs must wait for the update 10967 * to complete before servicing KVM_REQ_APICV_UPDATE. 10968 */ 10969 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10970 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10971 10972 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, 10973 req_immediate_exit); 10974 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10975 break; 10976 10977 if (kvm_lapic_enabled(vcpu)) 10978 kvm_x86_call(sync_pir_to_irr)(vcpu); 10979 10980 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10981 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10982 break; 10983 } 10984 10985 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10986 ++vcpu->stat.exits; 10987 } 10988 10989 /* 10990 * Do this here before restoring debug registers on the host. And 10991 * since we do this before handling the vmexit, a DR access vmexit 10992 * can (a) read the correct value of the debug registers, (b) set 10993 * KVM_DEBUGREG_WONT_EXIT again. 10994 */ 10995 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10996 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10997 kvm_x86_call(sync_dirty_debug_regs)(vcpu); 10998 kvm_update_dr0123(vcpu); 10999 kvm_update_dr7(vcpu); 11000 } 11001 11002 /* 11003 * If the guest has used debug registers, at least dr7 11004 * will be disabled while returning to the host. 11005 * If we don't have active breakpoints in the host, we don't 11006 * care about the messed up debug address registers. But if 11007 * we have some of them active, restore the old state. 11008 */ 11009 if (hw_breakpoint_active()) 11010 hw_breakpoint_restore(); 11011 11012 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11013 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11014 11015 vcpu->mode = OUTSIDE_GUEST_MODE; 11016 smp_wmb(); 11017 11018 /* 11019 * Sync xfd before calling handle_exit_irqoff() which may 11020 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11021 * in #NM irqoff handler). 11022 */ 11023 if (vcpu->arch.xfd_no_write_intercept) 11024 fpu_sync_guest_vmexit_xfd_state(); 11025 11026 kvm_x86_call(handle_exit_irqoff)(vcpu); 11027 11028 if (vcpu->arch.guest_fpu.xfd_err) 11029 wrmsrl(MSR_IA32_XFD_ERR, 0); 11030 11031 /* 11032 * Consume any pending interrupts, including the possible source of 11033 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11034 * An instruction is required after local_irq_enable() to fully unblock 11035 * interrupts on processors that implement an interrupt shadow, the 11036 * stat.exits increment will do nicely. 11037 */ 11038 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11039 local_irq_enable(); 11040 ++vcpu->stat.exits; 11041 local_irq_disable(); 11042 kvm_after_interrupt(vcpu); 11043 11044 /* 11045 * Wait until after servicing IRQs to account guest time so that any 11046 * ticks that occurred while running the guest are properly accounted 11047 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11048 * of accounting via context tracking, but the loss of accuracy is 11049 * acceptable for all known use cases. 11050 */ 11051 guest_timing_exit_irqoff(); 11052 11053 local_irq_enable(); 11054 preempt_enable(); 11055 11056 kvm_vcpu_srcu_read_lock(vcpu); 11057 11058 /* 11059 * Call this to ensure WC buffers in guest are evicted after each VM 11060 * Exit, so that the evicted WC writes can be snooped across all cpus 11061 */ 11062 smp_mb__after_srcu_read_lock(); 11063 11064 /* 11065 * Profile KVM exit RIPs: 11066 */ 11067 if (unlikely(prof_on == KVM_PROFILING)) { 11068 unsigned long rip = kvm_rip_read(vcpu); 11069 profile_hit(KVM_PROFILING, (void *)rip); 11070 } 11071 11072 if (unlikely(vcpu->arch.tsc_always_catchup)) 11073 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11074 11075 if (vcpu->arch.apic_attention) 11076 kvm_lapic_sync_from_vapic(vcpu); 11077 11078 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE)) 11079 return 0; 11080 11081 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); 11082 return r; 11083 11084 cancel_injection: 11085 if (req_immediate_exit) 11086 kvm_make_request(KVM_REQ_EVENT, vcpu); 11087 kvm_x86_call(cancel_injection)(vcpu); 11088 if (unlikely(vcpu->arch.apic_attention)) 11089 kvm_lapic_sync_from_vapic(vcpu); 11090 out: 11091 return r; 11092 } 11093 11094 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11095 { 11096 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11097 !vcpu->arch.apf.halted); 11098 } 11099 11100 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 11101 { 11102 if (!list_empty_careful(&vcpu->async_pf.done)) 11103 return true; 11104 11105 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 11106 kvm_apic_init_sipi_allowed(vcpu)) 11107 return true; 11108 11109 if (vcpu->arch.pv.pv_unhalted) 11110 return true; 11111 11112 if (kvm_is_exception_pending(vcpu)) 11113 return true; 11114 11115 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11116 (vcpu->arch.nmi_pending && 11117 kvm_x86_call(nmi_allowed)(vcpu, false))) 11118 return true; 11119 11120 #ifdef CONFIG_KVM_SMM 11121 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 11122 (vcpu->arch.smi_pending && 11123 kvm_x86_call(smi_allowed)(vcpu, false))) 11124 return true; 11125 #endif 11126 11127 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 11128 return true; 11129 11130 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) 11131 return true; 11132 11133 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) 11134 return true; 11135 11136 if (kvm_hv_has_stimer_pending(vcpu)) 11137 return true; 11138 11139 if (is_guest_mode(vcpu) && 11140 kvm_x86_ops.nested_ops->has_events && 11141 kvm_x86_ops.nested_ops->has_events(vcpu, false)) 11142 return true; 11143 11144 if (kvm_xen_has_pending_events(vcpu)) 11145 return true; 11146 11147 return false; 11148 } 11149 11150 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 11151 { 11152 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 11153 } 11154 11155 /* Called within kvm->srcu read side. */ 11156 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11157 { 11158 bool hv_timer; 11159 11160 if (!kvm_arch_vcpu_runnable(vcpu)) { 11161 /* 11162 * Switch to the software timer before halt-polling/blocking as 11163 * the guest's timer may be a break event for the vCPU, and the 11164 * hypervisor timer runs only when the CPU is in guest mode. 11165 * Switch before halt-polling so that KVM recognizes an expired 11166 * timer before blocking. 11167 */ 11168 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11169 if (hv_timer) 11170 kvm_lapic_switch_to_sw_timer(vcpu); 11171 11172 kvm_vcpu_srcu_read_unlock(vcpu); 11173 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11174 kvm_vcpu_halt(vcpu); 11175 else 11176 kvm_vcpu_block(vcpu); 11177 kvm_vcpu_srcu_read_lock(vcpu); 11178 11179 if (hv_timer) 11180 kvm_lapic_switch_to_hv_timer(vcpu); 11181 11182 /* 11183 * If the vCPU is not runnable, a signal or another host event 11184 * of some kind is pending; service it without changing the 11185 * vCPU's activity state. 11186 */ 11187 if (!kvm_arch_vcpu_runnable(vcpu)) 11188 return 1; 11189 } 11190 11191 /* 11192 * Evaluate nested events before exiting the halted state. This allows 11193 * the halt state to be recorded properly in the VMCS12's activity 11194 * state field (AMD does not have a similar field and a VM-Exit always 11195 * causes a spurious wakeup from HLT). 11196 */ 11197 if (is_guest_mode(vcpu)) { 11198 int r = kvm_check_nested_events(vcpu); 11199 11200 WARN_ON_ONCE(r == -EBUSY); 11201 if (r < 0) 11202 return 0; 11203 } 11204 11205 if (kvm_apic_accept_events(vcpu) < 0) 11206 return 0; 11207 switch(vcpu->arch.mp_state) { 11208 case KVM_MP_STATE_HALTED: 11209 case KVM_MP_STATE_AP_RESET_HOLD: 11210 vcpu->arch.pv.pv_unhalted = false; 11211 vcpu->arch.mp_state = 11212 KVM_MP_STATE_RUNNABLE; 11213 fallthrough; 11214 case KVM_MP_STATE_RUNNABLE: 11215 vcpu->arch.apf.halted = false; 11216 break; 11217 case KVM_MP_STATE_INIT_RECEIVED: 11218 break; 11219 default: 11220 WARN_ON_ONCE(1); 11221 break; 11222 } 11223 return 1; 11224 } 11225 11226 /* Called within kvm->srcu read side. */ 11227 static int vcpu_run(struct kvm_vcpu *vcpu) 11228 { 11229 int r; 11230 11231 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11232 11233 for (;;) { 11234 /* 11235 * If another guest vCPU requests a PV TLB flush in the middle 11236 * of instruction emulation, the rest of the emulation could 11237 * use a stale page translation. Assume that any code after 11238 * this point can start executing an instruction. 11239 */ 11240 vcpu->arch.at_instruction_boundary = false; 11241 if (kvm_vcpu_running(vcpu)) { 11242 r = vcpu_enter_guest(vcpu); 11243 } else { 11244 r = vcpu_block(vcpu); 11245 } 11246 11247 if (r <= 0) 11248 break; 11249 11250 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11251 if (kvm_xen_has_pending_events(vcpu)) 11252 kvm_xen_inject_pending_events(vcpu); 11253 11254 if (kvm_cpu_has_pending_timer(vcpu)) 11255 kvm_inject_pending_timer_irqs(vcpu); 11256 11257 if (dm_request_for_irq_injection(vcpu) && 11258 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11259 r = 0; 11260 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11261 ++vcpu->stat.request_irq_exits; 11262 break; 11263 } 11264 11265 if (__xfer_to_guest_mode_work_pending()) { 11266 kvm_vcpu_srcu_read_unlock(vcpu); 11267 r = xfer_to_guest_mode_handle_work(vcpu); 11268 kvm_vcpu_srcu_read_lock(vcpu); 11269 if (r) 11270 return r; 11271 } 11272 } 11273 11274 return r; 11275 } 11276 11277 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 11278 { 11279 /* 11280 * The vCPU has halted, e.g. executed HLT. Update the run state if the 11281 * local APIC is in-kernel, the run loop will detect the non-runnable 11282 * state and halt the vCPU. Exit to userspace if the local APIC is 11283 * managed by userspace, in which case userspace is responsible for 11284 * handling wake events. 11285 */ 11286 ++vcpu->stat.halt_exits; 11287 if (lapic_in_kernel(vcpu)) { 11288 if (kvm_vcpu_has_events(vcpu)) 11289 vcpu->arch.pv.pv_unhalted = false; 11290 else 11291 vcpu->arch.mp_state = state; 11292 return 1; 11293 } else { 11294 vcpu->run->exit_reason = reason; 11295 return 0; 11296 } 11297 } 11298 11299 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 11300 { 11301 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 11302 } 11303 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 11304 11305 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 11306 { 11307 int ret = kvm_skip_emulated_instruction(vcpu); 11308 /* 11309 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 11310 * KVM_EXIT_DEBUG here. 11311 */ 11312 return kvm_emulate_halt_noskip(vcpu) && ret; 11313 } 11314 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 11315 11316 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu) 11317 { 11318 int ret; 11319 11320 kvm_vcpu_srcu_read_lock(vcpu); 11321 ret = kvm_emulate_halt(vcpu); 11322 kvm_vcpu_srcu_read_unlock(vcpu); 11323 11324 if (!ret) 11325 return EXIT_FASTPATH_EXIT_USERSPACE; 11326 11327 if (kvm_vcpu_running(vcpu)) 11328 return EXIT_FASTPATH_REENTER_GUEST; 11329 11330 return EXIT_FASTPATH_EXIT_HANDLED; 11331 } 11332 EXPORT_SYMBOL_GPL(handle_fastpath_hlt); 11333 11334 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 11335 { 11336 int ret = kvm_skip_emulated_instruction(vcpu); 11337 11338 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 11339 KVM_EXIT_AP_RESET_HOLD) && ret; 11340 } 11341 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 11342 11343 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 11344 { 11345 return kvm_vcpu_apicv_active(vcpu) && 11346 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); 11347 } 11348 11349 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 11350 { 11351 return vcpu->arch.preempted_in_kernel; 11352 } 11353 11354 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 11355 { 11356 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 11357 return true; 11358 11359 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11360 #ifdef CONFIG_KVM_SMM 11361 kvm_test_request(KVM_REQ_SMI, vcpu) || 11362 #endif 11363 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11364 return true; 11365 11366 return kvm_arch_dy_has_pending_interrupt(vcpu); 11367 } 11368 11369 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11370 { 11371 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11372 } 11373 11374 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11375 { 11376 BUG_ON(!vcpu->arch.pio.count); 11377 11378 return complete_emulated_io(vcpu); 11379 } 11380 11381 /* 11382 * Implements the following, as a state machine: 11383 * 11384 * read: 11385 * for each fragment 11386 * for each mmio piece in the fragment 11387 * write gpa, len 11388 * exit 11389 * copy data 11390 * execute insn 11391 * 11392 * write: 11393 * for each fragment 11394 * for each mmio piece in the fragment 11395 * write gpa, len 11396 * copy data 11397 * exit 11398 */ 11399 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11400 { 11401 struct kvm_run *run = vcpu->run; 11402 struct kvm_mmio_fragment *frag; 11403 unsigned len; 11404 11405 BUG_ON(!vcpu->mmio_needed); 11406 11407 /* Complete previous fragment */ 11408 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11409 len = min(8u, frag->len); 11410 if (!vcpu->mmio_is_write) 11411 memcpy(frag->data, run->mmio.data, len); 11412 11413 if (frag->len <= 8) { 11414 /* Switch to the next fragment. */ 11415 frag++; 11416 vcpu->mmio_cur_fragment++; 11417 } else { 11418 /* Go forward to the next mmio piece. */ 11419 frag->data += len; 11420 frag->gpa += len; 11421 frag->len -= len; 11422 } 11423 11424 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11425 vcpu->mmio_needed = 0; 11426 11427 /* FIXME: return into emulator if single-stepping. */ 11428 if (vcpu->mmio_is_write) 11429 return 1; 11430 vcpu->mmio_read_completed = 1; 11431 return complete_emulated_io(vcpu); 11432 } 11433 11434 run->exit_reason = KVM_EXIT_MMIO; 11435 run->mmio.phys_addr = frag->gpa; 11436 if (vcpu->mmio_is_write) 11437 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11438 run->mmio.len = min(8u, frag->len); 11439 run->mmio.is_write = vcpu->mmio_is_write; 11440 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11441 return 0; 11442 } 11443 11444 /* Swap (qemu) user FPU context for the guest FPU context. */ 11445 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11446 { 11447 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11448 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11449 trace_kvm_fpu(1); 11450 } 11451 11452 /* When vcpu_run ends, restore user space FPU context. */ 11453 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11454 { 11455 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11456 ++vcpu->stat.fpu_reload; 11457 trace_kvm_fpu(0); 11458 } 11459 11460 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11461 { 11462 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11463 struct kvm_run *kvm_run = vcpu->run; 11464 int r; 11465 11466 vcpu_load(vcpu); 11467 kvm_sigset_activate(vcpu); 11468 kvm_run->flags = 0; 11469 kvm_load_guest_fpu(vcpu); 11470 11471 kvm_vcpu_srcu_read_lock(vcpu); 11472 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11473 if (!vcpu->wants_to_run) { 11474 r = -EINTR; 11475 goto out; 11476 } 11477 11478 /* 11479 * Don't bother switching APIC timer emulation from the 11480 * hypervisor timer to the software timer, the only way for the 11481 * APIC timer to be active is if userspace stuffed vCPU state, 11482 * i.e. put the vCPU into a nonsensical state. Only an INIT 11483 * will transition the vCPU out of UNINITIALIZED (without more 11484 * state stuffing from userspace), which will reset the local 11485 * APIC and thus cancel the timer or drop the IRQ (if the timer 11486 * already expired). 11487 */ 11488 kvm_vcpu_srcu_read_unlock(vcpu); 11489 kvm_vcpu_block(vcpu); 11490 kvm_vcpu_srcu_read_lock(vcpu); 11491 11492 if (kvm_apic_accept_events(vcpu) < 0) { 11493 r = 0; 11494 goto out; 11495 } 11496 r = -EAGAIN; 11497 if (signal_pending(current)) { 11498 r = -EINTR; 11499 kvm_run->exit_reason = KVM_EXIT_INTR; 11500 ++vcpu->stat.signal_exits; 11501 } 11502 goto out; 11503 } 11504 11505 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11506 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11507 r = -EINVAL; 11508 goto out; 11509 } 11510 11511 if (kvm_run->kvm_dirty_regs) { 11512 r = sync_regs(vcpu); 11513 if (r != 0) 11514 goto out; 11515 } 11516 11517 /* re-sync apic's tpr */ 11518 if (!lapic_in_kernel(vcpu)) { 11519 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11520 r = -EINVAL; 11521 goto out; 11522 } 11523 } 11524 11525 /* 11526 * If userspace set a pending exception and L2 is active, convert it to 11527 * a pending VM-Exit if L1 wants to intercept the exception. 11528 */ 11529 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11530 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11531 ex->error_code)) { 11532 kvm_queue_exception_vmexit(vcpu, ex->vector, 11533 ex->has_error_code, ex->error_code, 11534 ex->has_payload, ex->payload); 11535 ex->injected = false; 11536 ex->pending = false; 11537 } 11538 vcpu->arch.exception_from_userspace = false; 11539 11540 if (unlikely(vcpu->arch.complete_userspace_io)) { 11541 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11542 vcpu->arch.complete_userspace_io = NULL; 11543 r = cui(vcpu); 11544 if (r <= 0) 11545 goto out; 11546 } else { 11547 WARN_ON_ONCE(vcpu->arch.pio.count); 11548 WARN_ON_ONCE(vcpu->mmio_needed); 11549 } 11550 11551 if (!vcpu->wants_to_run) { 11552 r = -EINTR; 11553 goto out; 11554 } 11555 11556 r = kvm_x86_call(vcpu_pre_run)(vcpu); 11557 if (r <= 0) 11558 goto out; 11559 11560 r = vcpu_run(vcpu); 11561 11562 out: 11563 kvm_put_guest_fpu(vcpu); 11564 if (kvm_run->kvm_valid_regs) 11565 store_regs(vcpu); 11566 post_kvm_run_save(vcpu); 11567 kvm_vcpu_srcu_read_unlock(vcpu); 11568 11569 kvm_sigset_deactivate(vcpu); 11570 vcpu_put(vcpu); 11571 return r; 11572 } 11573 11574 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11575 { 11576 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11577 /* 11578 * We are here if userspace calls get_regs() in the middle of 11579 * instruction emulation. Registers state needs to be copied 11580 * back from emulation context to vcpu. Userspace shouldn't do 11581 * that usually, but some bad designed PV devices (vmware 11582 * backdoor interface) need this to work 11583 */ 11584 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11585 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11586 } 11587 regs->rax = kvm_rax_read(vcpu); 11588 regs->rbx = kvm_rbx_read(vcpu); 11589 regs->rcx = kvm_rcx_read(vcpu); 11590 regs->rdx = kvm_rdx_read(vcpu); 11591 regs->rsi = kvm_rsi_read(vcpu); 11592 regs->rdi = kvm_rdi_read(vcpu); 11593 regs->rsp = kvm_rsp_read(vcpu); 11594 regs->rbp = kvm_rbp_read(vcpu); 11595 #ifdef CONFIG_X86_64 11596 regs->r8 = kvm_r8_read(vcpu); 11597 regs->r9 = kvm_r9_read(vcpu); 11598 regs->r10 = kvm_r10_read(vcpu); 11599 regs->r11 = kvm_r11_read(vcpu); 11600 regs->r12 = kvm_r12_read(vcpu); 11601 regs->r13 = kvm_r13_read(vcpu); 11602 regs->r14 = kvm_r14_read(vcpu); 11603 regs->r15 = kvm_r15_read(vcpu); 11604 #endif 11605 11606 regs->rip = kvm_rip_read(vcpu); 11607 regs->rflags = kvm_get_rflags(vcpu); 11608 } 11609 11610 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11611 { 11612 if (vcpu->kvm->arch.has_protected_state && 11613 vcpu->arch.guest_state_protected) 11614 return -EINVAL; 11615 11616 vcpu_load(vcpu); 11617 __get_regs(vcpu, regs); 11618 vcpu_put(vcpu); 11619 return 0; 11620 } 11621 11622 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11623 { 11624 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11625 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11626 11627 kvm_rax_write(vcpu, regs->rax); 11628 kvm_rbx_write(vcpu, regs->rbx); 11629 kvm_rcx_write(vcpu, regs->rcx); 11630 kvm_rdx_write(vcpu, regs->rdx); 11631 kvm_rsi_write(vcpu, regs->rsi); 11632 kvm_rdi_write(vcpu, regs->rdi); 11633 kvm_rsp_write(vcpu, regs->rsp); 11634 kvm_rbp_write(vcpu, regs->rbp); 11635 #ifdef CONFIG_X86_64 11636 kvm_r8_write(vcpu, regs->r8); 11637 kvm_r9_write(vcpu, regs->r9); 11638 kvm_r10_write(vcpu, regs->r10); 11639 kvm_r11_write(vcpu, regs->r11); 11640 kvm_r12_write(vcpu, regs->r12); 11641 kvm_r13_write(vcpu, regs->r13); 11642 kvm_r14_write(vcpu, regs->r14); 11643 kvm_r15_write(vcpu, regs->r15); 11644 #endif 11645 11646 kvm_rip_write(vcpu, regs->rip); 11647 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11648 11649 vcpu->arch.exception.pending = false; 11650 vcpu->arch.exception_vmexit.pending = false; 11651 11652 kvm_make_request(KVM_REQ_EVENT, vcpu); 11653 } 11654 11655 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11656 { 11657 if (vcpu->kvm->arch.has_protected_state && 11658 vcpu->arch.guest_state_protected) 11659 return -EINVAL; 11660 11661 vcpu_load(vcpu); 11662 __set_regs(vcpu, regs); 11663 vcpu_put(vcpu); 11664 return 0; 11665 } 11666 11667 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11668 { 11669 struct desc_ptr dt; 11670 11671 if (vcpu->arch.guest_state_protected) 11672 goto skip_protected_regs; 11673 11674 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11675 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11676 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11677 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11678 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11679 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11680 11681 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11682 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11683 11684 kvm_x86_call(get_idt)(vcpu, &dt); 11685 sregs->idt.limit = dt.size; 11686 sregs->idt.base = dt.address; 11687 kvm_x86_call(get_gdt)(vcpu, &dt); 11688 sregs->gdt.limit = dt.size; 11689 sregs->gdt.base = dt.address; 11690 11691 sregs->cr2 = vcpu->arch.cr2; 11692 sregs->cr3 = kvm_read_cr3(vcpu); 11693 11694 skip_protected_regs: 11695 sregs->cr0 = kvm_read_cr0(vcpu); 11696 sregs->cr4 = kvm_read_cr4(vcpu); 11697 sregs->cr8 = kvm_get_cr8(vcpu); 11698 sregs->efer = vcpu->arch.efer; 11699 sregs->apic_base = vcpu->arch.apic_base; 11700 } 11701 11702 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11703 { 11704 __get_sregs_common(vcpu, sregs); 11705 11706 if (vcpu->arch.guest_state_protected) 11707 return; 11708 11709 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11710 set_bit(vcpu->arch.interrupt.nr, 11711 (unsigned long *)sregs->interrupt_bitmap); 11712 } 11713 11714 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11715 { 11716 int i; 11717 11718 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11719 11720 if (vcpu->arch.guest_state_protected) 11721 return; 11722 11723 if (is_pae_paging(vcpu)) { 11724 for (i = 0 ; i < 4 ; i++) 11725 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11726 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11727 } 11728 } 11729 11730 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11731 struct kvm_sregs *sregs) 11732 { 11733 if (vcpu->kvm->arch.has_protected_state && 11734 vcpu->arch.guest_state_protected) 11735 return -EINVAL; 11736 11737 vcpu_load(vcpu); 11738 __get_sregs(vcpu, sregs); 11739 vcpu_put(vcpu); 11740 return 0; 11741 } 11742 11743 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11744 struct kvm_mp_state *mp_state) 11745 { 11746 int r; 11747 11748 vcpu_load(vcpu); 11749 if (kvm_mpx_supported()) 11750 kvm_load_guest_fpu(vcpu); 11751 11752 r = kvm_apic_accept_events(vcpu); 11753 if (r < 0) 11754 goto out; 11755 r = 0; 11756 11757 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11758 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11759 vcpu->arch.pv.pv_unhalted) 11760 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11761 else 11762 mp_state->mp_state = vcpu->arch.mp_state; 11763 11764 out: 11765 if (kvm_mpx_supported()) 11766 kvm_put_guest_fpu(vcpu); 11767 vcpu_put(vcpu); 11768 return r; 11769 } 11770 11771 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11772 struct kvm_mp_state *mp_state) 11773 { 11774 int ret = -EINVAL; 11775 11776 vcpu_load(vcpu); 11777 11778 switch (mp_state->mp_state) { 11779 case KVM_MP_STATE_UNINITIALIZED: 11780 case KVM_MP_STATE_HALTED: 11781 case KVM_MP_STATE_AP_RESET_HOLD: 11782 case KVM_MP_STATE_INIT_RECEIVED: 11783 case KVM_MP_STATE_SIPI_RECEIVED: 11784 if (!lapic_in_kernel(vcpu)) 11785 goto out; 11786 break; 11787 11788 case KVM_MP_STATE_RUNNABLE: 11789 break; 11790 11791 default: 11792 goto out; 11793 } 11794 11795 /* 11796 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11797 * forcing the guest into INIT/SIPI if those events are supposed to be 11798 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11799 * if an SMI is pending as well. 11800 */ 11801 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11802 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11803 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11804 goto out; 11805 11806 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11807 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11808 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11809 } else 11810 vcpu->arch.mp_state = mp_state->mp_state; 11811 kvm_make_request(KVM_REQ_EVENT, vcpu); 11812 11813 ret = 0; 11814 out: 11815 vcpu_put(vcpu); 11816 return ret; 11817 } 11818 11819 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11820 int reason, bool has_error_code, u32 error_code) 11821 { 11822 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11823 int ret; 11824 11825 init_emulate_ctxt(vcpu); 11826 11827 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11828 has_error_code, error_code); 11829 11830 /* 11831 * Report an error userspace if MMIO is needed, as KVM doesn't support 11832 * MMIO during a task switch (or any other complex operation). 11833 */ 11834 if (ret || vcpu->mmio_needed) { 11835 vcpu->mmio_needed = false; 11836 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11837 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11838 vcpu->run->internal.ndata = 0; 11839 return 0; 11840 } 11841 11842 kvm_rip_write(vcpu, ctxt->eip); 11843 kvm_set_rflags(vcpu, ctxt->eflags); 11844 return 1; 11845 } 11846 EXPORT_SYMBOL_GPL(kvm_task_switch); 11847 11848 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11849 { 11850 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11851 /* 11852 * When EFER.LME and CR0.PG are set, the processor is in 11853 * 64-bit mode (though maybe in a 32-bit code segment). 11854 * CR4.PAE and EFER.LMA must be set. 11855 */ 11856 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11857 return false; 11858 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11859 return false; 11860 } else { 11861 /* 11862 * Not in 64-bit mode: EFER.LMA is clear and the code 11863 * segment cannot be 64-bit. 11864 */ 11865 if (sregs->efer & EFER_LMA || sregs->cs.l) 11866 return false; 11867 } 11868 11869 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11870 kvm_is_valid_cr0(vcpu, sregs->cr0); 11871 } 11872 11873 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11874 int *mmu_reset_needed, bool update_pdptrs) 11875 { 11876 int idx; 11877 struct desc_ptr dt; 11878 11879 if (!kvm_is_valid_sregs(vcpu, sregs)) 11880 return -EINVAL; 11881 11882 if (kvm_apic_set_base(vcpu, sregs->apic_base, true)) 11883 return -EINVAL; 11884 11885 if (vcpu->arch.guest_state_protected) 11886 return 0; 11887 11888 dt.size = sregs->idt.limit; 11889 dt.address = sregs->idt.base; 11890 kvm_x86_call(set_idt)(vcpu, &dt); 11891 dt.size = sregs->gdt.limit; 11892 dt.address = sregs->gdt.base; 11893 kvm_x86_call(set_gdt)(vcpu, &dt); 11894 11895 vcpu->arch.cr2 = sregs->cr2; 11896 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11897 vcpu->arch.cr3 = sregs->cr3; 11898 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11899 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); 11900 11901 kvm_set_cr8(vcpu, sregs->cr8); 11902 11903 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11904 kvm_x86_call(set_efer)(vcpu, sregs->efer); 11905 11906 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11907 kvm_x86_call(set_cr0)(vcpu, sregs->cr0); 11908 11909 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11910 kvm_x86_call(set_cr4)(vcpu, sregs->cr4); 11911 11912 if (update_pdptrs) { 11913 idx = srcu_read_lock(&vcpu->kvm->srcu); 11914 if (is_pae_paging(vcpu)) { 11915 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11916 *mmu_reset_needed = 1; 11917 } 11918 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11919 } 11920 11921 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11922 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11923 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11924 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11925 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11926 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11927 11928 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11929 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11930 11931 update_cr8_intercept(vcpu); 11932 11933 /* Older userspace won't unhalt the vcpu on reset. */ 11934 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11935 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11936 !is_protmode(vcpu)) 11937 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11938 11939 return 0; 11940 } 11941 11942 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11943 { 11944 int pending_vec, max_bits; 11945 int mmu_reset_needed = 0; 11946 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11947 11948 if (ret) 11949 return ret; 11950 11951 if (mmu_reset_needed) { 11952 kvm_mmu_reset_context(vcpu); 11953 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11954 } 11955 11956 max_bits = KVM_NR_INTERRUPTS; 11957 pending_vec = find_first_bit( 11958 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11959 11960 if (pending_vec < max_bits) { 11961 kvm_queue_interrupt(vcpu, pending_vec, false); 11962 pr_debug("Set back pending irq %d\n", pending_vec); 11963 kvm_make_request(KVM_REQ_EVENT, vcpu); 11964 } 11965 return 0; 11966 } 11967 11968 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11969 { 11970 int mmu_reset_needed = 0; 11971 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11972 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11973 !(sregs2->efer & EFER_LMA); 11974 int i, ret; 11975 11976 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11977 return -EINVAL; 11978 11979 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11980 return -EINVAL; 11981 11982 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11983 &mmu_reset_needed, !valid_pdptrs); 11984 if (ret) 11985 return ret; 11986 11987 if (valid_pdptrs) { 11988 for (i = 0; i < 4 ; i++) 11989 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11990 11991 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11992 mmu_reset_needed = 1; 11993 vcpu->arch.pdptrs_from_userspace = true; 11994 } 11995 if (mmu_reset_needed) { 11996 kvm_mmu_reset_context(vcpu); 11997 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11998 } 11999 return 0; 12000 } 12001 12002 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 12003 struct kvm_sregs *sregs) 12004 { 12005 int ret; 12006 12007 if (vcpu->kvm->arch.has_protected_state && 12008 vcpu->arch.guest_state_protected) 12009 return -EINVAL; 12010 12011 vcpu_load(vcpu); 12012 ret = __set_sregs(vcpu, sregs); 12013 vcpu_put(vcpu); 12014 return ret; 12015 } 12016 12017 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 12018 { 12019 bool set = false; 12020 struct kvm_vcpu *vcpu; 12021 unsigned long i; 12022 12023 if (!enable_apicv) 12024 return; 12025 12026 down_write(&kvm->arch.apicv_update_lock); 12027 12028 kvm_for_each_vcpu(i, vcpu, kvm) { 12029 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 12030 set = true; 12031 break; 12032 } 12033 } 12034 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 12035 up_write(&kvm->arch.apicv_update_lock); 12036 } 12037 12038 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 12039 struct kvm_guest_debug *dbg) 12040 { 12041 unsigned long rflags; 12042 int i, r; 12043 12044 if (vcpu->arch.guest_state_protected) 12045 return -EINVAL; 12046 12047 vcpu_load(vcpu); 12048 12049 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 12050 r = -EBUSY; 12051 if (kvm_is_exception_pending(vcpu)) 12052 goto out; 12053 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 12054 kvm_queue_exception(vcpu, DB_VECTOR); 12055 else 12056 kvm_queue_exception(vcpu, BP_VECTOR); 12057 } 12058 12059 /* 12060 * Read rflags as long as potentially injected trace flags are still 12061 * filtered out. 12062 */ 12063 rflags = kvm_get_rflags(vcpu); 12064 12065 vcpu->guest_debug = dbg->control; 12066 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 12067 vcpu->guest_debug = 0; 12068 12069 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 12070 for (i = 0; i < KVM_NR_DB_REGS; ++i) 12071 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 12072 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 12073 } else { 12074 for (i = 0; i < KVM_NR_DB_REGS; i++) 12075 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 12076 } 12077 kvm_update_dr7(vcpu); 12078 12079 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12080 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 12081 12082 /* 12083 * Trigger an rflags update that will inject or remove the trace 12084 * flags. 12085 */ 12086 kvm_set_rflags(vcpu, rflags); 12087 12088 kvm_x86_call(update_exception_bitmap)(vcpu); 12089 12090 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12091 12092 r = 0; 12093 12094 out: 12095 vcpu_put(vcpu); 12096 return r; 12097 } 12098 12099 /* 12100 * Translate a guest virtual address to a guest physical address. 12101 */ 12102 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12103 struct kvm_translation *tr) 12104 { 12105 unsigned long vaddr = tr->linear_address; 12106 gpa_t gpa; 12107 int idx; 12108 12109 vcpu_load(vcpu); 12110 12111 idx = srcu_read_lock(&vcpu->kvm->srcu); 12112 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12113 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12114 tr->physical_address = gpa; 12115 tr->valid = gpa != INVALID_GPA; 12116 tr->writeable = 1; 12117 tr->usermode = 0; 12118 12119 vcpu_put(vcpu); 12120 return 0; 12121 } 12122 12123 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12124 { 12125 struct fxregs_state *fxsave; 12126 12127 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12128 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12129 12130 vcpu_load(vcpu); 12131 12132 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12133 memcpy(fpu->fpr, fxsave->st_space, 128); 12134 fpu->fcw = fxsave->cwd; 12135 fpu->fsw = fxsave->swd; 12136 fpu->ftwx = fxsave->twd; 12137 fpu->last_opcode = fxsave->fop; 12138 fpu->last_ip = fxsave->rip; 12139 fpu->last_dp = fxsave->rdp; 12140 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12141 12142 vcpu_put(vcpu); 12143 return 0; 12144 } 12145 12146 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12147 { 12148 struct fxregs_state *fxsave; 12149 12150 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12151 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12152 12153 vcpu_load(vcpu); 12154 12155 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12156 12157 memcpy(fxsave->st_space, fpu->fpr, 128); 12158 fxsave->cwd = fpu->fcw; 12159 fxsave->swd = fpu->fsw; 12160 fxsave->twd = fpu->ftwx; 12161 fxsave->fop = fpu->last_opcode; 12162 fxsave->rip = fpu->last_ip; 12163 fxsave->rdp = fpu->last_dp; 12164 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12165 12166 vcpu_put(vcpu); 12167 return 0; 12168 } 12169 12170 static void store_regs(struct kvm_vcpu *vcpu) 12171 { 12172 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12173 12174 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12175 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12176 12177 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12178 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12179 12180 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12181 kvm_vcpu_ioctl_x86_get_vcpu_events( 12182 vcpu, &vcpu->run->s.regs.events); 12183 } 12184 12185 static int sync_regs(struct kvm_vcpu *vcpu) 12186 { 12187 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12188 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12189 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12190 } 12191 12192 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12193 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12194 12195 if (__set_sregs(vcpu, &sregs)) 12196 return -EINVAL; 12197 12198 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12199 } 12200 12201 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12202 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12203 12204 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12205 return -EINVAL; 12206 12207 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12208 } 12209 12210 return 0; 12211 } 12212 12213 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12214 { 12215 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12216 pr_warn_once("SMP vm created on host with unstable TSC; " 12217 "guest TSC will not be reliable\n"); 12218 12219 if (!kvm->arch.max_vcpu_ids) 12220 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12221 12222 if (id >= kvm->arch.max_vcpu_ids) 12223 return -EINVAL; 12224 12225 return kvm_x86_call(vcpu_precreate)(kvm); 12226 } 12227 12228 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12229 { 12230 struct page *page; 12231 int r; 12232 12233 vcpu->arch.last_vmentry_cpu = -1; 12234 vcpu->arch.regs_avail = ~0; 12235 vcpu->arch.regs_dirty = ~0; 12236 12237 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12238 12239 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12240 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12241 else 12242 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12243 12244 r = kvm_mmu_create(vcpu); 12245 if (r < 0) 12246 return r; 12247 12248 r = kvm_create_lapic(vcpu); 12249 if (r < 0) 12250 goto fail_mmu_destroy; 12251 12252 r = -ENOMEM; 12253 12254 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12255 if (!page) 12256 goto fail_free_lapic; 12257 vcpu->arch.pio_data = page_address(page); 12258 12259 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12260 GFP_KERNEL_ACCOUNT); 12261 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12262 GFP_KERNEL_ACCOUNT); 12263 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12264 goto fail_free_mce_banks; 12265 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12266 12267 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12268 GFP_KERNEL_ACCOUNT)) 12269 goto fail_free_mce_banks; 12270 12271 if (!alloc_emulate_ctxt(vcpu)) 12272 goto free_wbinvd_dirty_mask; 12273 12274 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12275 pr_err("failed to allocate vcpu's fpu\n"); 12276 goto free_emulate_ctxt; 12277 } 12278 12279 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12280 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12281 12282 kvm_async_pf_hash_reset(vcpu); 12283 12284 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { 12285 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12286 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12287 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12288 } 12289 kvm_pmu_init(vcpu); 12290 12291 vcpu->arch.pending_external_vector = -1; 12292 vcpu->arch.preempted_in_kernel = false; 12293 12294 #if IS_ENABLED(CONFIG_HYPERV) 12295 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12296 #endif 12297 12298 r = kvm_x86_call(vcpu_create)(vcpu); 12299 if (r) 12300 goto free_guest_fpu; 12301 12302 kvm_xen_init_vcpu(vcpu); 12303 vcpu_load(vcpu); 12304 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12305 kvm_vcpu_reset(vcpu, false); 12306 kvm_init_mmu(vcpu); 12307 vcpu_put(vcpu); 12308 return 0; 12309 12310 free_guest_fpu: 12311 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12312 free_emulate_ctxt: 12313 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12314 free_wbinvd_dirty_mask: 12315 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12316 fail_free_mce_banks: 12317 kfree(vcpu->arch.mce_banks); 12318 kfree(vcpu->arch.mci_ctl2_banks); 12319 free_page((unsigned long)vcpu->arch.pio_data); 12320 fail_free_lapic: 12321 kvm_free_lapic(vcpu); 12322 fail_mmu_destroy: 12323 kvm_mmu_destroy(vcpu); 12324 return r; 12325 } 12326 12327 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12328 { 12329 struct kvm *kvm = vcpu->kvm; 12330 12331 if (mutex_lock_killable(&vcpu->mutex)) 12332 return; 12333 vcpu_load(vcpu); 12334 kvm_synchronize_tsc(vcpu, NULL); 12335 vcpu_put(vcpu); 12336 12337 /* poll control enabled by default */ 12338 vcpu->arch.msr_kvm_poll_control = 1; 12339 12340 mutex_unlock(&vcpu->mutex); 12341 12342 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12343 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12344 KVMCLOCK_SYNC_PERIOD); 12345 } 12346 12347 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12348 { 12349 int idx; 12350 12351 kvmclock_reset(vcpu); 12352 12353 kvm_x86_call(vcpu_free)(vcpu); 12354 12355 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12356 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12357 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12358 12359 kvm_xen_destroy_vcpu(vcpu); 12360 kvm_hv_vcpu_uninit(vcpu); 12361 kvm_pmu_destroy(vcpu); 12362 kfree(vcpu->arch.mce_banks); 12363 kfree(vcpu->arch.mci_ctl2_banks); 12364 kvm_free_lapic(vcpu); 12365 idx = srcu_read_lock(&vcpu->kvm->srcu); 12366 kvm_mmu_destroy(vcpu); 12367 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12368 free_page((unsigned long)vcpu->arch.pio_data); 12369 kvfree(vcpu->arch.cpuid_entries); 12370 } 12371 12372 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12373 { 12374 struct kvm_cpuid_entry2 *cpuid_0x1; 12375 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12376 unsigned long new_cr0; 12377 12378 /* 12379 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12380 * to handle side effects. RESET emulation hits those flows and relies 12381 * on emulated/virtualized registers, including those that are loaded 12382 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12383 * to detect improper or missing initialization. 12384 */ 12385 WARN_ON_ONCE(!init_event && 12386 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12387 12388 /* 12389 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12390 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12391 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12392 * bits), i.e. virtualization is disabled. 12393 */ 12394 if (is_guest_mode(vcpu)) 12395 kvm_leave_nested(vcpu); 12396 12397 kvm_lapic_reset(vcpu, init_event); 12398 12399 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12400 vcpu->arch.hflags = 0; 12401 12402 vcpu->arch.smi_pending = 0; 12403 vcpu->arch.smi_count = 0; 12404 atomic_set(&vcpu->arch.nmi_queued, 0); 12405 vcpu->arch.nmi_pending = 0; 12406 vcpu->arch.nmi_injected = false; 12407 kvm_clear_interrupt_queue(vcpu); 12408 kvm_clear_exception_queue(vcpu); 12409 12410 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12411 kvm_update_dr0123(vcpu); 12412 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12413 vcpu->arch.dr7 = DR7_FIXED_1; 12414 kvm_update_dr7(vcpu); 12415 12416 vcpu->arch.cr2 = 0; 12417 12418 kvm_make_request(KVM_REQ_EVENT, vcpu); 12419 vcpu->arch.apf.msr_en_val = 0; 12420 vcpu->arch.apf.msr_int_val = 0; 12421 vcpu->arch.st.msr_val = 0; 12422 12423 kvmclock_reset(vcpu); 12424 12425 kvm_clear_async_pf_completion_queue(vcpu); 12426 kvm_async_pf_hash_reset(vcpu); 12427 vcpu->arch.apf.halted = false; 12428 12429 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12430 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12431 12432 /* 12433 * All paths that lead to INIT are required to load the guest's 12434 * FPU state (because most paths are buried in KVM_RUN). 12435 */ 12436 if (init_event) 12437 kvm_put_guest_fpu(vcpu); 12438 12439 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12440 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12441 12442 if (init_event) 12443 kvm_load_guest_fpu(vcpu); 12444 } 12445 12446 if (!init_event) { 12447 vcpu->arch.smbase = 0x30000; 12448 12449 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12450 12451 vcpu->arch.msr_misc_features_enables = 0; 12452 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12453 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12454 12455 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12456 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12457 } 12458 12459 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12460 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12461 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12462 12463 /* 12464 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12465 * if no CPUID match is found. Note, it's impossible to get a match at 12466 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12467 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12468 * on RESET. But, go through the motions in case that's ever remedied. 12469 */ 12470 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12471 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12472 12473 kvm_x86_call(vcpu_reset)(vcpu, init_event); 12474 12475 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12476 kvm_rip_write(vcpu, 0xfff0); 12477 12478 vcpu->arch.cr3 = 0; 12479 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12480 12481 /* 12482 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12483 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12484 * (or qualify) that with a footnote stating that CD/NW are preserved. 12485 */ 12486 new_cr0 = X86_CR0_ET; 12487 if (init_event) 12488 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12489 else 12490 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12491 12492 kvm_x86_call(set_cr0)(vcpu, new_cr0); 12493 kvm_x86_call(set_cr4)(vcpu, 0); 12494 kvm_x86_call(set_efer)(vcpu, 0); 12495 kvm_x86_call(update_exception_bitmap)(vcpu); 12496 12497 /* 12498 * On the standard CR0/CR4/EFER modification paths, there are several 12499 * complex conditions determining whether the MMU has to be reset and/or 12500 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12501 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12502 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12503 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12504 */ 12505 if (old_cr0 & X86_CR0_PG) { 12506 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12507 kvm_mmu_reset_context(vcpu); 12508 } 12509 12510 /* 12511 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12512 * APM states the TLBs are untouched by INIT, but it also states that 12513 * the TLBs are flushed on "External initialization of the processor." 12514 * Flush the guest TLB regardless of vendor, there is no meaningful 12515 * benefit in relying on the guest to flush the TLB immediately after 12516 * INIT. A spurious TLB flush is benign and likely negligible from a 12517 * performance perspective. 12518 */ 12519 if (init_event) 12520 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12521 } 12522 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12523 12524 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12525 { 12526 struct kvm_segment cs; 12527 12528 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12529 cs.selector = vector << 8; 12530 cs.base = vector << 12; 12531 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12532 kvm_rip_write(vcpu, 0); 12533 } 12534 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12535 12536 void kvm_arch_enable_virtualization(void) 12537 { 12538 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12539 } 12540 12541 void kvm_arch_disable_virtualization(void) 12542 { 12543 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12544 } 12545 12546 int kvm_arch_enable_virtualization_cpu(void) 12547 { 12548 struct kvm *kvm; 12549 struct kvm_vcpu *vcpu; 12550 unsigned long i; 12551 int ret; 12552 u64 local_tsc; 12553 u64 max_tsc = 0; 12554 bool stable, backwards_tsc = false; 12555 12556 kvm_user_return_msr_cpu_online(); 12557 12558 ret = kvm_x86_check_processor_compatibility(); 12559 if (ret) 12560 return ret; 12561 12562 ret = kvm_x86_call(enable_virtualization_cpu)(); 12563 if (ret != 0) 12564 return ret; 12565 12566 local_tsc = rdtsc(); 12567 stable = !kvm_check_tsc_unstable(); 12568 list_for_each_entry(kvm, &vm_list, vm_list) { 12569 kvm_for_each_vcpu(i, vcpu, kvm) { 12570 if (!stable && vcpu->cpu == smp_processor_id()) 12571 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12572 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12573 backwards_tsc = true; 12574 if (vcpu->arch.last_host_tsc > max_tsc) 12575 max_tsc = vcpu->arch.last_host_tsc; 12576 } 12577 } 12578 } 12579 12580 /* 12581 * Sometimes, even reliable TSCs go backwards. This happens on 12582 * platforms that reset TSC during suspend or hibernate actions, but 12583 * maintain synchronization. We must compensate. Fortunately, we can 12584 * detect that condition here, which happens early in CPU bringup, 12585 * before any KVM threads can be running. Unfortunately, we can't 12586 * bring the TSCs fully up to date with real time, as we aren't yet far 12587 * enough into CPU bringup that we know how much real time has actually 12588 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12589 * variables that haven't been updated yet. 12590 * 12591 * So we simply find the maximum observed TSC above, then record the 12592 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12593 * the adjustment will be applied. Note that we accumulate 12594 * adjustments, in case multiple suspend cycles happen before some VCPU 12595 * gets a chance to run again. In the event that no KVM threads get a 12596 * chance to run, we will miss the entire elapsed period, as we'll have 12597 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12598 * loose cycle time. This isn't too big a deal, since the loss will be 12599 * uniform across all VCPUs (not to mention the scenario is extremely 12600 * unlikely). It is possible that a second hibernate recovery happens 12601 * much faster than a first, causing the observed TSC here to be 12602 * smaller; this would require additional padding adjustment, which is 12603 * why we set last_host_tsc to the local tsc observed here. 12604 * 12605 * N.B. - this code below runs only on platforms with reliable TSC, 12606 * as that is the only way backwards_tsc is set above. Also note 12607 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12608 * have the same delta_cyc adjustment applied if backwards_tsc 12609 * is detected. Note further, this adjustment is only done once, 12610 * as we reset last_host_tsc on all VCPUs to stop this from being 12611 * called multiple times (one for each physical CPU bringup). 12612 * 12613 * Platforms with unreliable TSCs don't have to deal with this, they 12614 * will be compensated by the logic in vcpu_load, which sets the TSC to 12615 * catchup mode. This will catchup all VCPUs to real time, but cannot 12616 * guarantee that they stay in perfect synchronization. 12617 */ 12618 if (backwards_tsc) { 12619 u64 delta_cyc = max_tsc - local_tsc; 12620 list_for_each_entry(kvm, &vm_list, vm_list) { 12621 kvm->arch.backwards_tsc_observed = true; 12622 kvm_for_each_vcpu(i, vcpu, kvm) { 12623 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12624 vcpu->arch.last_host_tsc = local_tsc; 12625 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12626 } 12627 12628 /* 12629 * We have to disable TSC offset matching.. if you were 12630 * booting a VM while issuing an S4 host suspend.... 12631 * you may have some problem. Solving this issue is 12632 * left as an exercise to the reader. 12633 */ 12634 kvm->arch.last_tsc_nsec = 0; 12635 kvm->arch.last_tsc_write = 0; 12636 } 12637 12638 } 12639 return 0; 12640 } 12641 12642 void kvm_arch_disable_virtualization_cpu(void) 12643 { 12644 kvm_x86_call(disable_virtualization_cpu)(); 12645 drop_user_return_notifiers(); 12646 } 12647 12648 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12649 { 12650 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12651 } 12652 12653 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12654 { 12655 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12656 } 12657 12658 void kvm_arch_free_vm(struct kvm *kvm) 12659 { 12660 #if IS_ENABLED(CONFIG_HYPERV) 12661 kfree(kvm->arch.hv_pa_pg); 12662 #endif 12663 __kvm_arch_free_vm(kvm); 12664 } 12665 12666 12667 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12668 { 12669 int ret; 12670 unsigned long flags; 12671 12672 if (!kvm_is_vm_type_supported(type)) 12673 return -EINVAL; 12674 12675 kvm->arch.vm_type = type; 12676 kvm->arch.has_private_mem = 12677 (type == KVM_X86_SW_PROTECTED_VM); 12678 /* Decided by the vendor code for other VM types. */ 12679 kvm->arch.pre_fault_allowed = 12680 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; 12681 12682 ret = kvm_page_track_init(kvm); 12683 if (ret) 12684 goto out; 12685 12686 kvm_mmu_init_vm(kvm); 12687 12688 ret = kvm_x86_call(vm_init)(kvm); 12689 if (ret) 12690 goto out_uninit_mmu; 12691 12692 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12693 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12694 12695 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12696 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12697 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12698 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12699 &kvm->arch.irq_sources_bitmap); 12700 12701 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12702 mutex_init(&kvm->arch.apic_map_lock); 12703 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12704 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12705 12706 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12707 pvclock_update_vm_gtod_copy(kvm); 12708 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12709 12710 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12711 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; 12712 kvm->arch.guest_can_read_msr_platform_info = true; 12713 kvm->arch.enable_pmu = enable_pmu; 12714 12715 #if IS_ENABLED(CONFIG_HYPERV) 12716 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12717 kvm->arch.hv_root_tdp = INVALID_PAGE; 12718 #endif 12719 12720 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12721 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12722 12723 kvm_apicv_init(kvm); 12724 kvm_hv_init_vm(kvm); 12725 kvm_xen_init_vm(kvm); 12726 12727 return 0; 12728 12729 out_uninit_mmu: 12730 kvm_mmu_uninit_vm(kvm); 12731 kvm_page_track_cleanup(kvm); 12732 out: 12733 return ret; 12734 } 12735 12736 int kvm_arch_post_init_vm(struct kvm *kvm) 12737 { 12738 return kvm_mmu_post_init_vm(kvm); 12739 } 12740 12741 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12742 { 12743 vcpu_load(vcpu); 12744 kvm_mmu_unload(vcpu); 12745 vcpu_put(vcpu); 12746 } 12747 12748 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12749 { 12750 unsigned long i; 12751 struct kvm_vcpu *vcpu; 12752 12753 kvm_for_each_vcpu(i, vcpu, kvm) { 12754 kvm_clear_async_pf_completion_queue(vcpu); 12755 kvm_unload_vcpu_mmu(vcpu); 12756 } 12757 } 12758 12759 void kvm_arch_sync_events(struct kvm *kvm) 12760 { 12761 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12762 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12763 kvm_free_pit(kvm); 12764 } 12765 12766 /** 12767 * __x86_set_memory_region: Setup KVM internal memory slot 12768 * 12769 * @kvm: the kvm pointer to the VM. 12770 * @id: the slot ID to setup. 12771 * @gpa: the GPA to install the slot (unused when @size == 0). 12772 * @size: the size of the slot. Set to zero to uninstall a slot. 12773 * 12774 * This function helps to setup a KVM internal memory slot. Specify 12775 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12776 * slot. The return code can be one of the following: 12777 * 12778 * HVA: on success (uninstall will return a bogus HVA) 12779 * -errno: on error 12780 * 12781 * The caller should always use IS_ERR() to check the return value 12782 * before use. Note, the KVM internal memory slots are guaranteed to 12783 * remain valid and unchanged until the VM is destroyed, i.e., the 12784 * GPA->HVA translation will not change. However, the HVA is a user 12785 * address, i.e. its accessibility is not guaranteed, and must be 12786 * accessed via __copy_{to,from}_user(). 12787 */ 12788 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12789 u32 size) 12790 { 12791 int i, r; 12792 unsigned long hva, old_npages; 12793 struct kvm_memslots *slots = kvm_memslots(kvm); 12794 struct kvm_memory_slot *slot; 12795 12796 /* Called with kvm->slots_lock held. */ 12797 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12798 return ERR_PTR_USR(-EINVAL); 12799 12800 slot = id_to_memslot(slots, id); 12801 if (size) { 12802 if (slot && slot->npages) 12803 return ERR_PTR_USR(-EEXIST); 12804 12805 /* 12806 * MAP_SHARED to prevent internal slot pages from being moved 12807 * by fork()/COW. 12808 */ 12809 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12810 MAP_SHARED | MAP_ANONYMOUS, 0); 12811 if (IS_ERR_VALUE(hva)) 12812 return (void __user *)hva; 12813 } else { 12814 if (!slot || !slot->npages) 12815 return NULL; 12816 12817 old_npages = slot->npages; 12818 hva = slot->userspace_addr; 12819 } 12820 12821 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12822 struct kvm_userspace_memory_region2 m; 12823 12824 m.slot = id | (i << 16); 12825 m.flags = 0; 12826 m.guest_phys_addr = gpa; 12827 m.userspace_addr = hva; 12828 m.memory_size = size; 12829 r = __kvm_set_memory_region(kvm, &m); 12830 if (r < 0) 12831 return ERR_PTR_USR(r); 12832 } 12833 12834 if (!size) 12835 vm_munmap(hva, old_npages * PAGE_SIZE); 12836 12837 return (void __user *)hva; 12838 } 12839 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12840 12841 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12842 { 12843 kvm_mmu_pre_destroy_vm(kvm); 12844 } 12845 12846 void kvm_arch_destroy_vm(struct kvm *kvm) 12847 { 12848 if (current->mm == kvm->mm) { 12849 /* 12850 * Free memory regions allocated on behalf of userspace, 12851 * unless the memory map has changed due to process exit 12852 * or fd copying. 12853 */ 12854 mutex_lock(&kvm->slots_lock); 12855 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12856 0, 0); 12857 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12858 0, 0); 12859 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12860 mutex_unlock(&kvm->slots_lock); 12861 } 12862 kvm_unload_vcpu_mmus(kvm); 12863 kvm_x86_call(vm_destroy)(kvm); 12864 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12865 kvm_pic_destroy(kvm); 12866 kvm_ioapic_destroy(kvm); 12867 kvm_destroy_vcpus(kvm); 12868 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12869 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12870 kvm_mmu_uninit_vm(kvm); 12871 kvm_page_track_cleanup(kvm); 12872 kvm_xen_destroy_vm(kvm); 12873 kvm_hv_destroy_vm(kvm); 12874 } 12875 12876 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12877 { 12878 int i; 12879 12880 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12881 vfree(slot->arch.rmap[i]); 12882 slot->arch.rmap[i] = NULL; 12883 } 12884 } 12885 12886 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12887 { 12888 int i; 12889 12890 memslot_rmap_free(slot); 12891 12892 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12893 vfree(slot->arch.lpage_info[i - 1]); 12894 slot->arch.lpage_info[i - 1] = NULL; 12895 } 12896 12897 kvm_page_track_free_memslot(slot); 12898 } 12899 12900 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12901 { 12902 const int sz = sizeof(*slot->arch.rmap[0]); 12903 int i; 12904 12905 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12906 int level = i + 1; 12907 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12908 12909 if (slot->arch.rmap[i]) 12910 continue; 12911 12912 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12913 if (!slot->arch.rmap[i]) { 12914 memslot_rmap_free(slot); 12915 return -ENOMEM; 12916 } 12917 } 12918 12919 return 0; 12920 } 12921 12922 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12923 struct kvm_memory_slot *slot) 12924 { 12925 unsigned long npages = slot->npages; 12926 int i, r; 12927 12928 /* 12929 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12930 * old arrays will be freed by __kvm_set_memory_region() if installing 12931 * the new memslot is successful. 12932 */ 12933 memset(&slot->arch, 0, sizeof(slot->arch)); 12934 12935 if (kvm_memslots_have_rmaps(kvm)) { 12936 r = memslot_rmap_alloc(slot, npages); 12937 if (r) 12938 return r; 12939 } 12940 12941 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12942 struct kvm_lpage_info *linfo; 12943 unsigned long ugfn; 12944 int lpages; 12945 int level = i + 1; 12946 12947 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12948 12949 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12950 if (!linfo) 12951 goto out_free; 12952 12953 slot->arch.lpage_info[i - 1] = linfo; 12954 12955 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12956 linfo[0].disallow_lpage = 1; 12957 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12958 linfo[lpages - 1].disallow_lpage = 1; 12959 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12960 /* 12961 * If the gfn and userspace address are not aligned wrt each 12962 * other, disable large page support for this slot. 12963 */ 12964 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12965 unsigned long j; 12966 12967 for (j = 0; j < lpages; ++j) 12968 linfo[j].disallow_lpage = 1; 12969 } 12970 } 12971 12972 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12973 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12974 #endif 12975 12976 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12977 goto out_free; 12978 12979 return 0; 12980 12981 out_free: 12982 memslot_rmap_free(slot); 12983 12984 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12985 vfree(slot->arch.lpage_info[i - 1]); 12986 slot->arch.lpage_info[i - 1] = NULL; 12987 } 12988 return -ENOMEM; 12989 } 12990 12991 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12992 { 12993 struct kvm_vcpu *vcpu; 12994 unsigned long i; 12995 12996 /* 12997 * memslots->generation has been incremented. 12998 * mmio generation may have reached its maximum value. 12999 */ 13000 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 13001 13002 /* Force re-initialization of steal_time cache */ 13003 kvm_for_each_vcpu(i, vcpu, kvm) 13004 kvm_vcpu_kick(vcpu); 13005 } 13006 13007 int kvm_arch_prepare_memory_region(struct kvm *kvm, 13008 const struct kvm_memory_slot *old, 13009 struct kvm_memory_slot *new, 13010 enum kvm_mr_change change) 13011 { 13012 /* 13013 * KVM doesn't support moving memslots when there are external page 13014 * trackers attached to the VM, i.e. if KVMGT is in use. 13015 */ 13016 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 13017 return -EINVAL; 13018 13019 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 13020 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 13021 return -EINVAL; 13022 13023 return kvm_alloc_memslot_metadata(kvm, new); 13024 } 13025 13026 if (change == KVM_MR_FLAGS_ONLY) 13027 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 13028 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 13029 return -EIO; 13030 13031 return 0; 13032 } 13033 13034 13035 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 13036 { 13037 int nr_slots; 13038 13039 if (!kvm_x86_ops.cpu_dirty_log_size) 13040 return; 13041 13042 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 13043 if ((enable && nr_slots == 1) || !nr_slots) 13044 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 13045 } 13046 13047 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 13048 struct kvm_memory_slot *old, 13049 const struct kvm_memory_slot *new, 13050 enum kvm_mr_change change) 13051 { 13052 u32 old_flags = old ? old->flags : 0; 13053 u32 new_flags = new ? new->flags : 0; 13054 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 13055 13056 /* 13057 * Update CPU dirty logging if dirty logging is being toggled. This 13058 * applies to all operations. 13059 */ 13060 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 13061 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 13062 13063 /* 13064 * Nothing more to do for RO slots (which can't be dirtied and can't be 13065 * made writable) or CREATE/MOVE/DELETE of a slot. 13066 * 13067 * For a memslot with dirty logging disabled: 13068 * CREATE: No dirty mappings will already exist. 13069 * MOVE/DELETE: The old mappings will already have been cleaned up by 13070 * kvm_arch_flush_shadow_memslot() 13071 * 13072 * For a memslot with dirty logging enabled: 13073 * CREATE: No shadow pages exist, thus nothing to write-protect 13074 * and no dirty bits to clear. 13075 * MOVE/DELETE: The old mappings will already have been cleaned up by 13076 * kvm_arch_flush_shadow_memslot(). 13077 */ 13078 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 13079 return; 13080 13081 /* 13082 * READONLY and non-flags changes were filtered out above, and the only 13083 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 13084 * logging isn't being toggled on or off. 13085 */ 13086 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 13087 return; 13088 13089 if (!log_dirty_pages) { 13090 /* 13091 * Recover huge page mappings in the slot now that dirty logging 13092 * is disabled, i.e. now that KVM does not have to track guest 13093 * writes at 4KiB granularity. 13094 * 13095 * Dirty logging might be disabled by userspace if an ongoing VM 13096 * live migration is cancelled and the VM must continue running 13097 * on the source. 13098 */ 13099 kvm_mmu_recover_huge_pages(kvm, new); 13100 } else { 13101 /* 13102 * Initially-all-set does not require write protecting any page, 13103 * because they're all assumed to be dirty. 13104 */ 13105 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13106 return; 13107 13108 if (READ_ONCE(eager_page_split)) 13109 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13110 13111 if (kvm_x86_ops.cpu_dirty_log_size) { 13112 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13113 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13114 } else { 13115 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13116 } 13117 13118 /* 13119 * Unconditionally flush the TLBs after enabling dirty logging. 13120 * A flush is almost always going to be necessary (see below), 13121 * and unconditionally flushing allows the helpers to omit 13122 * the subtly complex checks when removing write access. 13123 * 13124 * Do the flush outside of mmu_lock to reduce the amount of 13125 * time mmu_lock is held. Flushing after dropping mmu_lock is 13126 * safe as KVM only needs to guarantee the slot is fully 13127 * write-protected before returning to userspace, i.e. before 13128 * userspace can consume the dirty status. 13129 * 13130 * Flushing outside of mmu_lock requires KVM to be careful when 13131 * making decisions based on writable status of an SPTE, e.g. a 13132 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13133 * 13134 * Specifically, KVM also write-protects guest page tables to 13135 * monitor changes when using shadow paging, and must guarantee 13136 * no CPUs can write to those page before mmu_lock is dropped. 13137 * Because CPUs may have stale TLB entries at this point, a 13138 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13139 * 13140 * KVM also allows making SPTES writable outside of mmu_lock, 13141 * e.g. to allow dirty logging without taking mmu_lock. 13142 * 13143 * To handle these scenarios, KVM uses a separate software-only 13144 * bit (MMU-writable) to track if a SPTE is !writable due to 13145 * a guest page table being write-protected (KVM clears the 13146 * MMU-writable flag when write-protecting for shadow paging). 13147 * 13148 * The use of MMU-writable is also the primary motivation for 13149 * the unconditional flush. Because KVM must guarantee that a 13150 * CPU doesn't contain stale, writable TLB entries for a 13151 * !MMU-writable SPTE, KVM must flush if it encounters any 13152 * MMU-writable SPTE regardless of whether the actual hardware 13153 * writable bit was set. I.e. KVM is almost guaranteed to need 13154 * to flush, while unconditionally flushing allows the "remove 13155 * write access" helpers to ignore MMU-writable entirely. 13156 * 13157 * See is_writable_pte() for more details (the case involving 13158 * access-tracked SPTEs is particularly relevant). 13159 */ 13160 kvm_flush_remote_tlbs_memslot(kvm, new); 13161 } 13162 } 13163 13164 void kvm_arch_commit_memory_region(struct kvm *kvm, 13165 struct kvm_memory_slot *old, 13166 const struct kvm_memory_slot *new, 13167 enum kvm_mr_change change) 13168 { 13169 if (change == KVM_MR_DELETE) 13170 kvm_page_track_delete_slot(kvm, old); 13171 13172 if (!kvm->arch.n_requested_mmu_pages && 13173 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13174 unsigned long nr_mmu_pages; 13175 13176 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13177 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13178 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13179 } 13180 13181 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13182 13183 /* Free the arrays associated with the old memslot. */ 13184 if (change == KVM_MR_MOVE) 13185 kvm_arch_free_memslot(kvm, old); 13186 } 13187 13188 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13189 { 13190 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13191 13192 if (vcpu->arch.guest_state_protected) 13193 return true; 13194 13195 return kvm_x86_call(get_cpl)(vcpu) == 0; 13196 } 13197 13198 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13199 { 13200 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13201 13202 if (vcpu->arch.guest_state_protected) 13203 return 0; 13204 13205 return kvm_rip_read(vcpu); 13206 } 13207 13208 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13209 { 13210 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13211 } 13212 13213 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13214 { 13215 return kvm_x86_call(interrupt_allowed)(vcpu, false); 13216 } 13217 13218 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13219 { 13220 /* Can't read the RIP when guest state is protected, just return 0 */ 13221 if (vcpu->arch.guest_state_protected) 13222 return 0; 13223 13224 if (is_64_bit_mode(vcpu)) 13225 return kvm_rip_read(vcpu); 13226 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13227 kvm_rip_read(vcpu)); 13228 } 13229 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13230 13231 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13232 { 13233 return kvm_get_linear_rip(vcpu) == linear_rip; 13234 } 13235 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13236 13237 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13238 { 13239 unsigned long rflags; 13240 13241 rflags = kvm_x86_call(get_rflags)(vcpu); 13242 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13243 rflags &= ~X86_EFLAGS_TF; 13244 return rflags; 13245 } 13246 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13247 13248 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13249 { 13250 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13251 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13252 rflags |= X86_EFLAGS_TF; 13253 kvm_x86_call(set_rflags)(vcpu, rflags); 13254 } 13255 13256 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13257 { 13258 __kvm_set_rflags(vcpu, rflags); 13259 kvm_make_request(KVM_REQ_EVENT, vcpu); 13260 } 13261 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13262 13263 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13264 { 13265 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13266 13267 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13268 } 13269 13270 static inline u32 kvm_async_pf_next_probe(u32 key) 13271 { 13272 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13273 } 13274 13275 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13276 { 13277 u32 key = kvm_async_pf_hash_fn(gfn); 13278 13279 while (vcpu->arch.apf.gfns[key] != ~0) 13280 key = kvm_async_pf_next_probe(key); 13281 13282 vcpu->arch.apf.gfns[key] = gfn; 13283 } 13284 13285 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13286 { 13287 int i; 13288 u32 key = kvm_async_pf_hash_fn(gfn); 13289 13290 for (i = 0; i < ASYNC_PF_PER_VCPU && 13291 (vcpu->arch.apf.gfns[key] != gfn && 13292 vcpu->arch.apf.gfns[key] != ~0); i++) 13293 key = kvm_async_pf_next_probe(key); 13294 13295 return key; 13296 } 13297 13298 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13299 { 13300 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13301 } 13302 13303 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13304 { 13305 u32 i, j, k; 13306 13307 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13308 13309 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13310 return; 13311 13312 while (true) { 13313 vcpu->arch.apf.gfns[i] = ~0; 13314 do { 13315 j = kvm_async_pf_next_probe(j); 13316 if (vcpu->arch.apf.gfns[j] == ~0) 13317 return; 13318 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13319 /* 13320 * k lies cyclically in ]i,j] 13321 * | i.k.j | 13322 * |....j i.k.| or |.k..j i...| 13323 */ 13324 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13325 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13326 i = j; 13327 } 13328 } 13329 13330 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13331 { 13332 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13333 13334 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13335 sizeof(reason)); 13336 } 13337 13338 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13339 { 13340 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13341 13342 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13343 &token, offset, sizeof(token)); 13344 } 13345 13346 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13347 { 13348 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13349 u32 val; 13350 13351 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13352 &val, offset, sizeof(val))) 13353 return false; 13354 13355 return !val; 13356 } 13357 13358 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13359 { 13360 13361 if (!kvm_pv_async_pf_enabled(vcpu)) 13362 return false; 13363 13364 if (vcpu->arch.apf.send_user_only && 13365 kvm_x86_call(get_cpl)(vcpu) == 0) 13366 return false; 13367 13368 if (is_guest_mode(vcpu)) { 13369 /* 13370 * L1 needs to opt into the special #PF vmexits that are 13371 * used to deliver async page faults. 13372 */ 13373 return vcpu->arch.apf.delivery_as_pf_vmexit; 13374 } else { 13375 /* 13376 * Play it safe in case the guest temporarily disables paging. 13377 * The real mode IDT in particular is unlikely to have a #PF 13378 * exception setup. 13379 */ 13380 return is_paging(vcpu); 13381 } 13382 } 13383 13384 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13385 { 13386 if (unlikely(!lapic_in_kernel(vcpu) || 13387 kvm_event_needs_reinjection(vcpu) || 13388 kvm_is_exception_pending(vcpu))) 13389 return false; 13390 13391 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13392 return false; 13393 13394 /* 13395 * If interrupts are off we cannot even use an artificial 13396 * halt state. 13397 */ 13398 return kvm_arch_interrupt_allowed(vcpu); 13399 } 13400 13401 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13402 struct kvm_async_pf *work) 13403 { 13404 struct x86_exception fault; 13405 13406 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13407 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13408 13409 if (kvm_can_deliver_async_pf(vcpu) && 13410 !apf_put_user_notpresent(vcpu)) { 13411 fault.vector = PF_VECTOR; 13412 fault.error_code_valid = true; 13413 fault.error_code = 0; 13414 fault.nested_page_fault = false; 13415 fault.address = work->arch.token; 13416 fault.async_page_fault = true; 13417 kvm_inject_page_fault(vcpu, &fault); 13418 return true; 13419 } else { 13420 /* 13421 * It is not possible to deliver a paravirtualized asynchronous 13422 * page fault, but putting the guest in an artificial halt state 13423 * can be beneficial nevertheless: if an interrupt arrives, we 13424 * can deliver it timely and perhaps the guest will schedule 13425 * another process. When the instruction that triggered a page 13426 * fault is retried, hopefully the page will be ready in the host. 13427 */ 13428 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13429 return false; 13430 } 13431 } 13432 13433 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13434 struct kvm_async_pf *work) 13435 { 13436 struct kvm_lapic_irq irq = { 13437 .delivery_mode = APIC_DM_FIXED, 13438 .vector = vcpu->arch.apf.vec 13439 }; 13440 13441 if (work->wakeup_all) 13442 work->arch.token = ~0; /* broadcast wakeup */ 13443 else 13444 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13445 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13446 13447 if ((work->wakeup_all || work->notpresent_injected) && 13448 kvm_pv_async_pf_enabled(vcpu) && 13449 !apf_put_user_ready(vcpu, work->arch.token)) { 13450 vcpu->arch.apf.pageready_pending = true; 13451 kvm_apic_set_irq(vcpu, &irq, NULL); 13452 } 13453 13454 vcpu->arch.apf.halted = false; 13455 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13456 } 13457 13458 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13459 { 13460 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13461 if (!vcpu->arch.apf.pageready_pending) 13462 kvm_vcpu_kick(vcpu); 13463 } 13464 13465 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13466 { 13467 if (!kvm_pv_async_pf_enabled(vcpu)) 13468 return true; 13469 else 13470 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13471 } 13472 13473 void kvm_arch_start_assignment(struct kvm *kvm) 13474 { 13475 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13476 kvm_x86_call(pi_start_assignment)(kvm); 13477 } 13478 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13479 13480 void kvm_arch_end_assignment(struct kvm *kvm) 13481 { 13482 atomic_dec(&kvm->arch.assigned_device_count); 13483 } 13484 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13485 13486 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13487 { 13488 return raw_atomic_read(&kvm->arch.assigned_device_count); 13489 } 13490 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13491 13492 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13493 { 13494 /* 13495 * Non-coherent DMA assignment and de-assignment may affect whether or 13496 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs 13497 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first 13498 * (or last) non-coherent device is (un)registered to so that new SPTEs 13499 * with the correct "ignore guest PAT" setting are created. 13500 */ 13501 if (kvm_mmu_may_ignore_guest_pat()) 13502 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13503 } 13504 13505 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13506 { 13507 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13508 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13509 } 13510 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13511 13512 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13513 { 13514 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13515 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13516 } 13517 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13518 13519 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13520 { 13521 return atomic_read(&kvm->arch.noncoherent_dma_count); 13522 } 13523 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13524 13525 bool kvm_arch_has_irq_bypass(void) 13526 { 13527 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13528 } 13529 13530 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13531 struct irq_bypass_producer *prod) 13532 { 13533 struct kvm_kernel_irqfd *irqfd = 13534 container_of(cons, struct kvm_kernel_irqfd, consumer); 13535 int ret; 13536 13537 irqfd->producer = prod; 13538 kvm_arch_start_assignment(irqfd->kvm); 13539 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13540 prod->irq, irqfd->gsi, 1); 13541 if (ret) 13542 kvm_arch_end_assignment(irqfd->kvm); 13543 13544 return ret; 13545 } 13546 13547 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13548 struct irq_bypass_producer *prod) 13549 { 13550 int ret; 13551 struct kvm_kernel_irqfd *irqfd = 13552 container_of(cons, struct kvm_kernel_irqfd, consumer); 13553 13554 WARN_ON(irqfd->producer != prod); 13555 irqfd->producer = NULL; 13556 13557 /* 13558 * When producer of consumer is unregistered, we change back to 13559 * remapped mode, so we can re-use the current implementation 13560 * when the irq is masked/disabled or the consumer side (KVM 13561 * int this case doesn't want to receive the interrupts. 13562 */ 13563 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13564 prod->irq, irqfd->gsi, 0); 13565 if (ret) 13566 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13567 " fails: %d\n", irqfd->consumer.token, ret); 13568 13569 kvm_arch_end_assignment(irqfd->kvm); 13570 } 13571 13572 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13573 uint32_t guest_irq, bool set) 13574 { 13575 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set); 13576 } 13577 13578 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13579 struct kvm_kernel_irq_routing_entry *new) 13580 { 13581 if (new->type != KVM_IRQ_ROUTING_MSI) 13582 return true; 13583 13584 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13585 } 13586 13587 bool kvm_vector_hashing_enabled(void) 13588 { 13589 return vector_hashing; 13590 } 13591 13592 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13593 { 13594 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13595 } 13596 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13597 13598 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 13599 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) 13600 { 13601 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); 13602 } 13603 #endif 13604 13605 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 13606 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 13607 { 13608 kvm_x86_call(gmem_invalidate)(start, end); 13609 } 13610 #endif 13611 13612 int kvm_spec_ctrl_test_value(u64 value) 13613 { 13614 /* 13615 * test that setting IA32_SPEC_CTRL to given value 13616 * is allowed by the host processor 13617 */ 13618 13619 u64 saved_value; 13620 unsigned long flags; 13621 int ret = 0; 13622 13623 local_irq_save(flags); 13624 13625 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13626 ret = 1; 13627 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13628 ret = 1; 13629 else 13630 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13631 13632 local_irq_restore(flags); 13633 13634 return ret; 13635 } 13636 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13637 13638 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13639 { 13640 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13641 struct x86_exception fault; 13642 u64 access = error_code & 13643 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13644 13645 if (!(error_code & PFERR_PRESENT_MASK) || 13646 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13647 /* 13648 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13649 * tables probably do not match the TLB. Just proceed 13650 * with the error code that the processor gave. 13651 */ 13652 fault.vector = PF_VECTOR; 13653 fault.error_code_valid = true; 13654 fault.error_code = error_code; 13655 fault.nested_page_fault = false; 13656 fault.address = gva; 13657 fault.async_page_fault = false; 13658 } 13659 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13660 } 13661 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13662 13663 /* 13664 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13665 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13666 * indicates whether exit to userspace is needed. 13667 */ 13668 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13669 struct x86_exception *e) 13670 { 13671 if (r == X86EMUL_PROPAGATE_FAULT) { 13672 if (KVM_BUG_ON(!e, vcpu->kvm)) 13673 return -EIO; 13674 13675 kvm_inject_emulated_page_fault(vcpu, e); 13676 return 1; 13677 } 13678 13679 /* 13680 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13681 * while handling a VMX instruction KVM could've handled the request 13682 * correctly by exiting to userspace and performing I/O but there 13683 * doesn't seem to be a real use-case behind such requests, just return 13684 * KVM_EXIT_INTERNAL_ERROR for now. 13685 */ 13686 kvm_prepare_emulation_failure_exit(vcpu); 13687 13688 return 0; 13689 } 13690 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13691 13692 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13693 { 13694 bool pcid_enabled; 13695 struct x86_exception e; 13696 struct { 13697 u64 pcid; 13698 u64 gla; 13699 } operand; 13700 int r; 13701 13702 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13703 if (r != X86EMUL_CONTINUE) 13704 return kvm_handle_memory_failure(vcpu, r, &e); 13705 13706 if (operand.pcid >> 12 != 0) { 13707 kvm_inject_gp(vcpu, 0); 13708 return 1; 13709 } 13710 13711 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13712 13713 switch (type) { 13714 case INVPCID_TYPE_INDIV_ADDR: 13715 /* 13716 * LAM doesn't apply to addresses that are inputs to TLB 13717 * invalidation. 13718 */ 13719 if ((!pcid_enabled && (operand.pcid != 0)) || 13720 is_noncanonical_invlpg_address(operand.gla, vcpu)) { 13721 kvm_inject_gp(vcpu, 0); 13722 return 1; 13723 } 13724 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13725 return kvm_skip_emulated_instruction(vcpu); 13726 13727 case INVPCID_TYPE_SINGLE_CTXT: 13728 if (!pcid_enabled && (operand.pcid != 0)) { 13729 kvm_inject_gp(vcpu, 0); 13730 return 1; 13731 } 13732 13733 kvm_invalidate_pcid(vcpu, operand.pcid); 13734 return kvm_skip_emulated_instruction(vcpu); 13735 13736 case INVPCID_TYPE_ALL_NON_GLOBAL: 13737 /* 13738 * Currently, KVM doesn't mark global entries in the shadow 13739 * page tables, so a non-global flush just degenerates to a 13740 * global flush. If needed, we could optimize this later by 13741 * keeping track of global entries in shadow page tables. 13742 */ 13743 13744 fallthrough; 13745 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13746 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13747 return kvm_skip_emulated_instruction(vcpu); 13748 13749 default: 13750 kvm_inject_gp(vcpu, 0); 13751 return 1; 13752 } 13753 } 13754 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13755 13756 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13757 { 13758 struct kvm_run *run = vcpu->run; 13759 struct kvm_mmio_fragment *frag; 13760 unsigned int len; 13761 13762 BUG_ON(!vcpu->mmio_needed); 13763 13764 /* Complete previous fragment */ 13765 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13766 len = min(8u, frag->len); 13767 if (!vcpu->mmio_is_write) 13768 memcpy(frag->data, run->mmio.data, len); 13769 13770 if (frag->len <= 8) { 13771 /* Switch to the next fragment. */ 13772 frag++; 13773 vcpu->mmio_cur_fragment++; 13774 } else { 13775 /* Go forward to the next mmio piece. */ 13776 frag->data += len; 13777 frag->gpa += len; 13778 frag->len -= len; 13779 } 13780 13781 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13782 vcpu->mmio_needed = 0; 13783 13784 // VMG change, at this point, we're always done 13785 // RIP has already been advanced 13786 return 1; 13787 } 13788 13789 // More MMIO is needed 13790 run->mmio.phys_addr = frag->gpa; 13791 run->mmio.len = min(8u, frag->len); 13792 run->mmio.is_write = vcpu->mmio_is_write; 13793 if (run->mmio.is_write) 13794 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13795 run->exit_reason = KVM_EXIT_MMIO; 13796 13797 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13798 13799 return 0; 13800 } 13801 13802 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13803 void *data) 13804 { 13805 int handled; 13806 struct kvm_mmio_fragment *frag; 13807 13808 if (!data) 13809 return -EINVAL; 13810 13811 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13812 if (handled == bytes) 13813 return 1; 13814 13815 bytes -= handled; 13816 gpa += handled; 13817 data += handled; 13818 13819 /*TODO: Check if need to increment number of frags */ 13820 frag = vcpu->mmio_fragments; 13821 vcpu->mmio_nr_fragments = 1; 13822 frag->len = bytes; 13823 frag->gpa = gpa; 13824 frag->data = data; 13825 13826 vcpu->mmio_needed = 1; 13827 vcpu->mmio_cur_fragment = 0; 13828 13829 vcpu->run->mmio.phys_addr = gpa; 13830 vcpu->run->mmio.len = min(8u, frag->len); 13831 vcpu->run->mmio.is_write = 1; 13832 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13833 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13834 13835 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13836 13837 return 0; 13838 } 13839 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13840 13841 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13842 void *data) 13843 { 13844 int handled; 13845 struct kvm_mmio_fragment *frag; 13846 13847 if (!data) 13848 return -EINVAL; 13849 13850 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13851 if (handled == bytes) 13852 return 1; 13853 13854 bytes -= handled; 13855 gpa += handled; 13856 data += handled; 13857 13858 /*TODO: Check if need to increment number of frags */ 13859 frag = vcpu->mmio_fragments; 13860 vcpu->mmio_nr_fragments = 1; 13861 frag->len = bytes; 13862 frag->gpa = gpa; 13863 frag->data = data; 13864 13865 vcpu->mmio_needed = 1; 13866 vcpu->mmio_cur_fragment = 0; 13867 13868 vcpu->run->mmio.phys_addr = gpa; 13869 vcpu->run->mmio.len = min(8u, frag->len); 13870 vcpu->run->mmio.is_write = 0; 13871 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13872 13873 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13874 13875 return 0; 13876 } 13877 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13878 13879 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13880 { 13881 vcpu->arch.sev_pio_count -= count; 13882 vcpu->arch.sev_pio_data += count * size; 13883 } 13884 13885 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13886 unsigned int port); 13887 13888 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13889 { 13890 int size = vcpu->arch.pio.size; 13891 int port = vcpu->arch.pio.port; 13892 13893 vcpu->arch.pio.count = 0; 13894 if (vcpu->arch.sev_pio_count) 13895 return kvm_sev_es_outs(vcpu, size, port); 13896 return 1; 13897 } 13898 13899 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13900 unsigned int port) 13901 { 13902 for (;;) { 13903 unsigned int count = 13904 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13905 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13906 13907 /* memcpy done already by emulator_pio_out. */ 13908 advance_sev_es_emulated_pio(vcpu, count, size); 13909 if (!ret) 13910 break; 13911 13912 /* Emulation done by the kernel. */ 13913 if (!vcpu->arch.sev_pio_count) 13914 return 1; 13915 } 13916 13917 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13918 return 0; 13919 } 13920 13921 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13922 unsigned int port); 13923 13924 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13925 { 13926 unsigned count = vcpu->arch.pio.count; 13927 int size = vcpu->arch.pio.size; 13928 int port = vcpu->arch.pio.port; 13929 13930 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13931 advance_sev_es_emulated_pio(vcpu, count, size); 13932 if (vcpu->arch.sev_pio_count) 13933 return kvm_sev_es_ins(vcpu, size, port); 13934 return 1; 13935 } 13936 13937 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13938 unsigned int port) 13939 { 13940 for (;;) { 13941 unsigned int count = 13942 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13943 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13944 break; 13945 13946 /* Emulation done by the kernel. */ 13947 advance_sev_es_emulated_pio(vcpu, count, size); 13948 if (!vcpu->arch.sev_pio_count) 13949 return 1; 13950 } 13951 13952 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13953 return 0; 13954 } 13955 13956 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13957 unsigned int port, void *data, unsigned int count, 13958 int in) 13959 { 13960 vcpu->arch.sev_pio_data = data; 13961 vcpu->arch.sev_pio_count = count; 13962 return in ? kvm_sev_es_ins(vcpu, size, port) 13963 : kvm_sev_es_outs(vcpu, size, port); 13964 } 13965 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13966 13967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); 13997 13998 static int __init kvm_x86_init(void) 13999 { 14000 kvm_mmu_x86_module_init(); 14001 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 14002 return 0; 14003 } 14004 module_init(kvm_x86_init); 14005 14006 static void __exit kvm_x86_exit(void) 14007 { 14008 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 14009 } 14010 module_exit(kvm_x86_exit); 14011