xref: /linux/arch/x86/kvm/x86.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 /*
96  * Note, kvm_caps fields should *never* have default values, all fields must be
97  * recomputed from scratch during vendor module load, e.g. to account for a
98  * vendor module being reloaded with different module parameters.
99  */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102 
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
105 
106 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
107 
108 #define emul_to_vcpu(ctxt) \
109 	((struct kvm_vcpu *)(ctxt)->vcpu)
110 
111 /* EFER defaults:
112  * - enable syscall per default because its emulated by KVM
113  * - enable LME and LMA per default on 64 bit KVM
114  */
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
121 
122 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
123 
124 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
125 
126 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
127 
128 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
129                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
130 
131 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
132 static void process_nmi(struct kvm_vcpu *vcpu);
133 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
134 static void store_regs(struct kvm_vcpu *vcpu);
135 static int sync_regs(struct kvm_vcpu *vcpu);
136 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
137 
138 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
139 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
140 
141 static DEFINE_MUTEX(vendor_module_lock);
142 struct kvm_x86_ops kvm_x86_ops __read_mostly;
143 
144 #define KVM_X86_OP(func)					     \
145 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
146 				*(((struct kvm_x86_ops *)0)->func));
147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
149 #include <asm/kvm-x86-ops.h>
150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
152 
153 static bool __read_mostly ignore_msrs = 0;
154 module_param(ignore_msrs, bool, 0644);
155 
156 bool __read_mostly report_ignored_msrs = true;
157 module_param(report_ignored_msrs, bool, 0644);
158 EXPORT_SYMBOL_GPL(report_ignored_msrs);
159 
160 unsigned int min_timer_period_us = 200;
161 module_param(min_timer_period_us, uint, 0644);
162 
163 static bool __read_mostly kvmclock_periodic_sync = true;
164 module_param(kvmclock_periodic_sync, bool, 0444);
165 
166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
167 static u32 __read_mostly tsc_tolerance_ppm = 250;
168 module_param(tsc_tolerance_ppm, uint, 0644);
169 
170 static bool __read_mostly vector_hashing = true;
171 module_param(vector_hashing, bool, 0444);
172 
173 bool __read_mostly enable_vmware_backdoor = false;
174 module_param(enable_vmware_backdoor, bool, 0444);
175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
176 
177 /*
178  * Flags to manipulate forced emulation behavior (any non-zero value will
179  * enable forced emulation).
180  */
181 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
182 static int __read_mostly force_emulation_prefix;
183 module_param(force_emulation_prefix, int, 0644);
184 
185 int __read_mostly pi_inject_timer = -1;
186 module_param(pi_inject_timer, bint, 0644);
187 
188 /* Enable/disable PMU virtualization */
189 bool __read_mostly enable_pmu = true;
190 EXPORT_SYMBOL_GPL(enable_pmu);
191 module_param(enable_pmu, bool, 0444);
192 
193 bool __read_mostly eager_page_split = true;
194 module_param(eager_page_split, bool, 0644);
195 
196 /* Enable/disable SMT_RSB bug mitigation */
197 static bool __read_mostly mitigate_smt_rsb;
198 module_param(mitigate_smt_rsb, bool, 0444);
199 
200 /*
201  * Restoring the host value for MSRs that are only consumed when running in
202  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
203  * returns to userspace, i.e. the kernel can run with the guest's value.
204  */
205 #define KVM_MAX_NR_USER_RETURN_MSRS 16
206 
207 struct kvm_user_return_msrs {
208 	struct user_return_notifier urn;
209 	bool registered;
210 	struct kvm_user_return_msr_values {
211 		u64 host;
212 		u64 curr;
213 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
214 };
215 
216 u32 __read_mostly kvm_nr_uret_msrs;
217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
219 static struct kvm_user_return_msrs __percpu *user_return_msrs;
220 
221 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
222 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
223 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
224 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
225 
226 bool __read_mostly allow_smaller_maxphyaddr = 0;
227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
228 
229 bool __read_mostly enable_apicv = true;
230 EXPORT_SYMBOL_GPL(enable_apicv);
231 
232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
233 	KVM_GENERIC_VM_STATS(),
234 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
235 	STATS_DESC_COUNTER(VM, mmu_pte_write),
236 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
237 	STATS_DESC_COUNTER(VM, mmu_flooded),
238 	STATS_DESC_COUNTER(VM, mmu_recycled),
239 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
240 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
241 	STATS_DESC_ICOUNTER(VM, pages_4k),
242 	STATS_DESC_ICOUNTER(VM, pages_2m),
243 	STATS_DESC_ICOUNTER(VM, pages_1g),
244 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
245 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
246 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
247 };
248 
249 const struct kvm_stats_header kvm_vm_stats_header = {
250 	.name_size = KVM_STATS_NAME_SIZE,
251 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
252 	.id_offset = sizeof(struct kvm_stats_header),
253 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
254 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
255 		       sizeof(kvm_vm_stats_desc),
256 };
257 
258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
259 	KVM_GENERIC_VCPU_STATS(),
260 	STATS_DESC_COUNTER(VCPU, pf_taken),
261 	STATS_DESC_COUNTER(VCPU, pf_fixed),
262 	STATS_DESC_COUNTER(VCPU, pf_emulate),
263 	STATS_DESC_COUNTER(VCPU, pf_spurious),
264 	STATS_DESC_COUNTER(VCPU, pf_fast),
265 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
266 	STATS_DESC_COUNTER(VCPU, pf_guest),
267 	STATS_DESC_COUNTER(VCPU, tlb_flush),
268 	STATS_DESC_COUNTER(VCPU, invlpg),
269 	STATS_DESC_COUNTER(VCPU, exits),
270 	STATS_DESC_COUNTER(VCPU, io_exits),
271 	STATS_DESC_COUNTER(VCPU, mmio_exits),
272 	STATS_DESC_COUNTER(VCPU, signal_exits),
273 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
274 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275 	STATS_DESC_COUNTER(VCPU, l1d_flush),
276 	STATS_DESC_COUNTER(VCPU, halt_exits),
277 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
278 	STATS_DESC_COUNTER(VCPU, irq_exits),
279 	STATS_DESC_COUNTER(VCPU, host_state_reload),
280 	STATS_DESC_COUNTER(VCPU, fpu_reload),
281 	STATS_DESC_COUNTER(VCPU, insn_emulation),
282 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283 	STATS_DESC_COUNTER(VCPU, hypercalls),
284 	STATS_DESC_COUNTER(VCPU, irq_injections),
285 	STATS_DESC_COUNTER(VCPU, nmi_injections),
286 	STATS_DESC_COUNTER(VCPU, req_event),
287 	STATS_DESC_COUNTER(VCPU, nested_run),
288 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290 	STATS_DESC_COUNTER(VCPU, preemption_reported),
291 	STATS_DESC_COUNTER(VCPU, preemption_other),
292 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
293 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
294 };
295 
296 const struct kvm_stats_header kvm_vcpu_stats_header = {
297 	.name_size = KVM_STATS_NAME_SIZE,
298 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
299 	.id_offset = sizeof(struct kvm_stats_header),
300 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
301 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
302 		       sizeof(kvm_vcpu_stats_desc),
303 };
304 
305 static struct kmem_cache *x86_emulator_cache;
306 
307 /*
308  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
309  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
310  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
311  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
312  * MSRs that KVM emulates without strictly requiring host support.
313  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
314  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
315  * msrs_to_save and emulated_msrs.
316  */
317 
318 static const u32 msrs_to_save_base[] = {
319 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
320 	MSR_STAR,
321 #ifdef CONFIG_X86_64
322 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
323 #endif
324 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
325 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
326 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
327 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
328 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
329 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
330 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
331 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
332 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
333 	MSR_IA32_UMWAIT_CONTROL,
334 
335 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
336 };
337 
338 static const u32 msrs_to_save_pmu[] = {
339 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
340 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
341 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
342 	MSR_CORE_PERF_GLOBAL_CTRL,
343 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
344 
345 	/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
346 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
347 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
348 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
349 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
350 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
351 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
352 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
353 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
354 
355 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
356 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
357 
358 	/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
359 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
360 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
361 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
362 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
363 
364 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
365 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
366 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
367 };
368 
369 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
370 			ARRAY_SIZE(msrs_to_save_pmu)];
371 static unsigned num_msrs_to_save;
372 
373 static const u32 emulated_msrs_all[] = {
374 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
375 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
376 
377 #ifdef CONFIG_KVM_HYPERV
378 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
379 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
380 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
381 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
382 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
383 	HV_X64_MSR_RESET,
384 	HV_X64_MSR_VP_INDEX,
385 	HV_X64_MSR_VP_RUNTIME,
386 	HV_X64_MSR_SCONTROL,
387 	HV_X64_MSR_STIMER0_CONFIG,
388 	HV_X64_MSR_VP_ASSIST_PAGE,
389 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
390 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
391 	HV_X64_MSR_SYNDBG_OPTIONS,
392 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
393 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
394 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
395 #endif
396 
397 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
398 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
399 
400 	MSR_IA32_TSC_ADJUST,
401 	MSR_IA32_TSC_DEADLINE,
402 	MSR_IA32_ARCH_CAPABILITIES,
403 	MSR_IA32_PERF_CAPABILITIES,
404 	MSR_IA32_MISC_ENABLE,
405 	MSR_IA32_MCG_STATUS,
406 	MSR_IA32_MCG_CTL,
407 	MSR_IA32_MCG_EXT_CTL,
408 	MSR_IA32_SMBASE,
409 	MSR_SMI_COUNT,
410 	MSR_PLATFORM_INFO,
411 	MSR_MISC_FEATURES_ENABLES,
412 	MSR_AMD64_VIRT_SPEC_CTRL,
413 	MSR_AMD64_TSC_RATIO,
414 	MSR_IA32_POWER_CTL,
415 	MSR_IA32_UCODE_REV,
416 
417 	/*
418 	 * KVM always supports the "true" VMX control MSRs, even if the host
419 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
420 	 * doesn't strictly require them to exist in the host (ignoring that
421 	 * KVM would refuse to load in the first place if the core set of MSRs
422 	 * aren't supported).
423 	 */
424 	MSR_IA32_VMX_BASIC,
425 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
426 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
427 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
428 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
429 	MSR_IA32_VMX_MISC,
430 	MSR_IA32_VMX_CR0_FIXED0,
431 	MSR_IA32_VMX_CR4_FIXED0,
432 	MSR_IA32_VMX_VMCS_ENUM,
433 	MSR_IA32_VMX_PROCBASED_CTLS2,
434 	MSR_IA32_VMX_EPT_VPID_CAP,
435 	MSR_IA32_VMX_VMFUNC,
436 
437 	MSR_K7_HWCR,
438 	MSR_KVM_POLL_CONTROL,
439 };
440 
441 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
442 static unsigned num_emulated_msrs;
443 
444 /*
445  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
446  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
447  * feature MSRs, but are handled separately to allow expedited lookups.
448  */
449 static const u32 msr_based_features_all_except_vmx[] = {
450 	MSR_AMD64_DE_CFG,
451 	MSR_IA32_UCODE_REV,
452 	MSR_IA32_ARCH_CAPABILITIES,
453 	MSR_IA32_PERF_CAPABILITIES,
454 	MSR_PLATFORM_INFO,
455 };
456 
457 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
458 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
459 static unsigned int num_msr_based_features;
460 
461 /*
462  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
463  * patch, are immutable once the vCPU model is defined.
464  */
465 static bool kvm_is_immutable_feature_msr(u32 msr)
466 {
467 	int i;
468 
469 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
470 		return true;
471 
472 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
473 		if (msr == msr_based_features_all_except_vmx[i])
474 			return msr != MSR_IA32_UCODE_REV;
475 	}
476 
477 	return false;
478 }
479 
480 static bool kvm_is_advertised_msr(u32 msr_index)
481 {
482 	unsigned int i;
483 
484 	for (i = 0; i < num_msrs_to_save; i++) {
485 		if (msrs_to_save[i] == msr_index)
486 			return true;
487 	}
488 
489 	for (i = 0; i < num_emulated_msrs; i++) {
490 		if (emulated_msrs[i] == msr_index)
491 			return true;
492 	}
493 
494 	return false;
495 }
496 
497 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
498 			    bool host_initiated);
499 
500 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
501 					     u64 *data, bool host_initiated,
502 					     enum kvm_msr_access rw,
503 					     msr_access_t msr_access_fn)
504 {
505 	const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
506 	int ret;
507 
508 	BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
509 
510 	/*
511 	 * Zero the data on read failures to avoid leaking stack data to the
512 	 * guest and/or userspace, e.g. if the failure is ignored below.
513 	 */
514 	ret = msr_access_fn(vcpu, msr, data, host_initiated);
515 	if (ret && rw == MSR_TYPE_R)
516 		*data = 0;
517 
518 	if (ret != KVM_MSR_RET_UNSUPPORTED)
519 		return ret;
520 
521 	/*
522 	 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
523 	 * advertises to userspace, even if an MSR isn't fully supported.
524 	 * Simply check that @data is '0', which covers both the write '0' case
525 	 * and all reads (in which case @data is zeroed on failure; see above).
526 	 */
527 	if (host_initiated && !*data && kvm_is_advertised_msr(msr))
528 		return 0;
529 
530 	if (!ignore_msrs) {
531 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
532 				      op, msr, *data);
533 		return ret;
534 	}
535 
536 	if (report_ignored_msrs)
537 		kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
538 
539 	return 0;
540 }
541 
542 static struct kmem_cache *kvm_alloc_emulator_cache(void)
543 {
544 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
545 	unsigned int size = sizeof(struct x86_emulate_ctxt);
546 
547 	return kmem_cache_create_usercopy("x86_emulator", size,
548 					  __alignof__(struct x86_emulate_ctxt),
549 					  SLAB_ACCOUNT, useroffset,
550 					  size - useroffset, NULL);
551 }
552 
553 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
554 
555 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
556 {
557 	int i;
558 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
559 		vcpu->arch.apf.gfns[i] = ~0;
560 }
561 
562 static void kvm_on_user_return(struct user_return_notifier *urn)
563 {
564 	unsigned slot;
565 	struct kvm_user_return_msrs *msrs
566 		= container_of(urn, struct kvm_user_return_msrs, urn);
567 	struct kvm_user_return_msr_values *values;
568 	unsigned long flags;
569 
570 	/*
571 	 * Disabling irqs at this point since the following code could be
572 	 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
573 	 */
574 	local_irq_save(flags);
575 	if (msrs->registered) {
576 		msrs->registered = false;
577 		user_return_notifier_unregister(urn);
578 	}
579 	local_irq_restore(flags);
580 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
581 		values = &msrs->values[slot];
582 		if (values->host != values->curr) {
583 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
584 			values->curr = values->host;
585 		}
586 	}
587 }
588 
589 static int kvm_probe_user_return_msr(u32 msr)
590 {
591 	u64 val;
592 	int ret;
593 
594 	preempt_disable();
595 	ret = rdmsrl_safe(msr, &val);
596 	if (ret)
597 		goto out;
598 	ret = wrmsrl_safe(msr, val);
599 out:
600 	preempt_enable();
601 	return ret;
602 }
603 
604 int kvm_add_user_return_msr(u32 msr)
605 {
606 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
607 
608 	if (kvm_probe_user_return_msr(msr))
609 		return -1;
610 
611 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
612 	return kvm_nr_uret_msrs++;
613 }
614 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
615 
616 int kvm_find_user_return_msr(u32 msr)
617 {
618 	int i;
619 
620 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
621 		if (kvm_uret_msrs_list[i] == msr)
622 			return i;
623 	}
624 	return -1;
625 }
626 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
627 
628 static void kvm_user_return_msr_cpu_online(void)
629 {
630 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
631 	u64 value;
632 	int i;
633 
634 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
635 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
636 		msrs->values[i].host = value;
637 		msrs->values[i].curr = value;
638 	}
639 }
640 
641 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
642 {
643 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
644 	int err;
645 
646 	value = (value & mask) | (msrs->values[slot].host & ~mask);
647 	if (value == msrs->values[slot].curr)
648 		return 0;
649 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
650 	if (err)
651 		return 1;
652 
653 	msrs->values[slot].curr = value;
654 	if (!msrs->registered) {
655 		msrs->urn.on_user_return = kvm_on_user_return;
656 		user_return_notifier_register(&msrs->urn);
657 		msrs->registered = true;
658 	}
659 	return 0;
660 }
661 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
662 
663 static void drop_user_return_notifiers(void)
664 {
665 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
666 
667 	if (msrs->registered)
668 		kvm_on_user_return(&msrs->urn);
669 }
670 
671 /*
672  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
673  *
674  * Hardware virtualization extension instructions may fault if a reboot turns
675  * off virtualization while processes are running.  Usually after catching the
676  * fault we just panic; during reboot instead the instruction is ignored.
677  */
678 noinstr void kvm_spurious_fault(void)
679 {
680 	/* Fault while not rebooting.  We want the trace. */
681 	BUG_ON(!kvm_rebooting);
682 }
683 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
684 
685 #define EXCPT_BENIGN		0
686 #define EXCPT_CONTRIBUTORY	1
687 #define EXCPT_PF		2
688 
689 static int exception_class(int vector)
690 {
691 	switch (vector) {
692 	case PF_VECTOR:
693 		return EXCPT_PF;
694 	case DE_VECTOR:
695 	case TS_VECTOR:
696 	case NP_VECTOR:
697 	case SS_VECTOR:
698 	case GP_VECTOR:
699 		return EXCPT_CONTRIBUTORY;
700 	default:
701 		break;
702 	}
703 	return EXCPT_BENIGN;
704 }
705 
706 #define EXCPT_FAULT		0
707 #define EXCPT_TRAP		1
708 #define EXCPT_ABORT		2
709 #define EXCPT_INTERRUPT		3
710 #define EXCPT_DB		4
711 
712 static int exception_type(int vector)
713 {
714 	unsigned int mask;
715 
716 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
717 		return EXCPT_INTERRUPT;
718 
719 	mask = 1 << vector;
720 
721 	/*
722 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
723 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
724 	 */
725 	if (mask & (1 << DB_VECTOR))
726 		return EXCPT_DB;
727 
728 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
729 		return EXCPT_TRAP;
730 
731 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
732 		return EXCPT_ABORT;
733 
734 	/* Reserved exceptions will result in fault */
735 	return EXCPT_FAULT;
736 }
737 
738 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
739 				   struct kvm_queued_exception *ex)
740 {
741 	if (!ex->has_payload)
742 		return;
743 
744 	switch (ex->vector) {
745 	case DB_VECTOR:
746 		/*
747 		 * "Certain debug exceptions may clear bit 0-3.  The
748 		 * remaining contents of the DR6 register are never
749 		 * cleared by the processor".
750 		 */
751 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
752 		/*
753 		 * In order to reflect the #DB exception payload in guest
754 		 * dr6, three components need to be considered: active low
755 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
756 		 * DR6_BS and DR6_BT)
757 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
758 		 * In the target guest dr6:
759 		 * FIXED_1 bits should always be set.
760 		 * Active low bits should be cleared if 1-setting in payload.
761 		 * Active high bits should be set if 1-setting in payload.
762 		 *
763 		 * Note, the payload is compatible with the pending debug
764 		 * exceptions/exit qualification under VMX, that active_low bits
765 		 * are active high in payload.
766 		 * So they need to be flipped for DR6.
767 		 */
768 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
769 		vcpu->arch.dr6 |= ex->payload;
770 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
771 
772 		/*
773 		 * The #DB payload is defined as compatible with the 'pending
774 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
775 		 * defined in the 'pending debug exceptions' field (enabled
776 		 * breakpoint), it is reserved and must be zero in DR6.
777 		 */
778 		vcpu->arch.dr6 &= ~BIT(12);
779 		break;
780 	case PF_VECTOR:
781 		vcpu->arch.cr2 = ex->payload;
782 		break;
783 	}
784 
785 	ex->has_payload = false;
786 	ex->payload = 0;
787 }
788 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
789 
790 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
791 				       bool has_error_code, u32 error_code,
792 				       bool has_payload, unsigned long payload)
793 {
794 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
795 
796 	ex->vector = vector;
797 	ex->injected = false;
798 	ex->pending = true;
799 	ex->has_error_code = has_error_code;
800 	ex->error_code = error_code;
801 	ex->has_payload = has_payload;
802 	ex->payload = payload;
803 }
804 
805 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
806 		unsigned nr, bool has_error, u32 error_code,
807 	        bool has_payload, unsigned long payload, bool reinject)
808 {
809 	u32 prev_nr;
810 	int class1, class2;
811 
812 	kvm_make_request(KVM_REQ_EVENT, vcpu);
813 
814 	/*
815 	 * If the exception is destined for L2 and isn't being reinjected,
816 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
817 	 * previously injected exception is not checked because it was checked
818 	 * when it was original queued, and re-checking is incorrect if _L1_
819 	 * injected the exception, in which case it's exempt from interception.
820 	 */
821 	if (!reinject && is_guest_mode(vcpu) &&
822 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
823 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
824 					   has_payload, payload);
825 		return;
826 	}
827 
828 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
829 	queue:
830 		if (reinject) {
831 			/*
832 			 * On VM-Entry, an exception can be pending if and only
833 			 * if event injection was blocked by nested_run_pending.
834 			 * In that case, however, vcpu_enter_guest() requests an
835 			 * immediate exit, and the guest shouldn't proceed far
836 			 * enough to need reinjection.
837 			 */
838 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
839 			vcpu->arch.exception.injected = true;
840 			if (WARN_ON_ONCE(has_payload)) {
841 				/*
842 				 * A reinjected event has already
843 				 * delivered its payload.
844 				 */
845 				has_payload = false;
846 				payload = 0;
847 			}
848 		} else {
849 			vcpu->arch.exception.pending = true;
850 			vcpu->arch.exception.injected = false;
851 		}
852 		vcpu->arch.exception.has_error_code = has_error;
853 		vcpu->arch.exception.vector = nr;
854 		vcpu->arch.exception.error_code = error_code;
855 		vcpu->arch.exception.has_payload = has_payload;
856 		vcpu->arch.exception.payload = payload;
857 		if (!is_guest_mode(vcpu))
858 			kvm_deliver_exception_payload(vcpu,
859 						      &vcpu->arch.exception);
860 		return;
861 	}
862 
863 	/* to check exception */
864 	prev_nr = vcpu->arch.exception.vector;
865 	if (prev_nr == DF_VECTOR) {
866 		/* triple fault -> shutdown */
867 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
868 		return;
869 	}
870 	class1 = exception_class(prev_nr);
871 	class2 = exception_class(nr);
872 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
873 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
874 		/*
875 		 * Synthesize #DF.  Clear the previously injected or pending
876 		 * exception so as not to incorrectly trigger shutdown.
877 		 */
878 		vcpu->arch.exception.injected = false;
879 		vcpu->arch.exception.pending = false;
880 
881 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
882 	} else {
883 		/* replace previous exception with a new one in a hope
884 		   that instruction re-execution will regenerate lost
885 		   exception */
886 		goto queue;
887 	}
888 }
889 
890 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
891 {
892 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
893 }
894 EXPORT_SYMBOL_GPL(kvm_queue_exception);
895 
896 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
897 {
898 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
899 }
900 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
901 
902 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
903 			   unsigned long payload)
904 {
905 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
906 }
907 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
908 
909 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
910 				    u32 error_code, unsigned long payload)
911 {
912 	kvm_multiple_exception(vcpu, nr, true, error_code,
913 			       true, payload, false);
914 }
915 
916 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
917 {
918 	if (err)
919 		kvm_inject_gp(vcpu, 0);
920 	else
921 		return kvm_skip_emulated_instruction(vcpu);
922 
923 	return 1;
924 }
925 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
926 
927 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
928 {
929 	if (err) {
930 		kvm_inject_gp(vcpu, 0);
931 		return 1;
932 	}
933 
934 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
935 				       EMULTYPE_COMPLETE_USER_EXIT);
936 }
937 
938 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
939 {
940 	++vcpu->stat.pf_guest;
941 
942 	/*
943 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
944 	 * whether or not L1 wants to intercept "regular" #PF.
945 	 */
946 	if (is_guest_mode(vcpu) && fault->async_page_fault)
947 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
948 					   true, fault->error_code,
949 					   true, fault->address);
950 	else
951 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
952 					fault->address);
953 }
954 
955 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
956 				    struct x86_exception *fault)
957 {
958 	struct kvm_mmu *fault_mmu;
959 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
960 
961 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
962 					       vcpu->arch.walk_mmu;
963 
964 	/*
965 	 * Invalidate the TLB entry for the faulting address, if it exists,
966 	 * else the access will fault indefinitely (and to emulate hardware).
967 	 */
968 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
969 	    !(fault->error_code & PFERR_RSVD_MASK))
970 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
971 					KVM_MMU_ROOT_CURRENT);
972 
973 	fault_mmu->inject_page_fault(vcpu, fault);
974 }
975 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
976 
977 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
978 {
979 	atomic_inc(&vcpu->arch.nmi_queued);
980 	kvm_make_request(KVM_REQ_NMI, vcpu);
981 }
982 
983 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
984 {
985 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
986 }
987 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
988 
989 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
990 {
991 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
992 }
993 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
994 
995 /*
996  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
997  * a #GP and return false.
998  */
999 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1000 {
1001 	if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1002 		return true;
1003 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1004 	return false;
1005 }
1006 
1007 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1008 {
1009 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1010 		return true;
1011 
1012 	kvm_queue_exception(vcpu, UD_VECTOR);
1013 	return false;
1014 }
1015 EXPORT_SYMBOL_GPL(kvm_require_dr);
1016 
1017 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1018 {
1019 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1020 }
1021 
1022 /*
1023  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
1024  */
1025 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1026 {
1027 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1028 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1029 	gpa_t real_gpa;
1030 	int i;
1031 	int ret;
1032 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1033 
1034 	/*
1035 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1036 	 * to an L1 GPA.
1037 	 */
1038 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1039 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1040 	if (real_gpa == INVALID_GPA)
1041 		return 0;
1042 
1043 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1044 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1045 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
1046 	if (ret < 0)
1047 		return 0;
1048 
1049 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1050 		if ((pdpte[i] & PT_PRESENT_MASK) &&
1051 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1052 			return 0;
1053 		}
1054 	}
1055 
1056 	/*
1057 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1058 	 * Shadow page roots need to be reconstructed instead.
1059 	 */
1060 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1061 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1062 
1063 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1064 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1065 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1066 	vcpu->arch.pdptrs_from_userspace = false;
1067 
1068 	return 1;
1069 }
1070 EXPORT_SYMBOL_GPL(load_pdptrs);
1071 
1072 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1073 {
1074 #ifdef CONFIG_X86_64
1075 	if (cr0 & 0xffffffff00000000UL)
1076 		return false;
1077 #endif
1078 
1079 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1080 		return false;
1081 
1082 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1083 		return false;
1084 
1085 	return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1086 }
1087 
1088 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1089 {
1090 	/*
1091 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1092 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
1093 	 * as there are no permission bits to emulate.  If TDP is enabled, the
1094 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
1095 	 * translations does the right thing, but there's no need to unload the
1096 	 * root as CR0.WP doesn't affect SPTEs.
1097 	 */
1098 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1099 		if (!(cr0 & X86_CR0_PG))
1100 			return;
1101 
1102 		if (tdp_enabled) {
1103 			kvm_init_mmu(vcpu);
1104 			return;
1105 		}
1106 	}
1107 
1108 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1109 		kvm_clear_async_pf_completion_queue(vcpu);
1110 		kvm_async_pf_hash_reset(vcpu);
1111 
1112 		/*
1113 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
1114 		 * perspective.
1115 		 */
1116 		if (!(cr0 & X86_CR0_PG))
1117 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1118 	}
1119 
1120 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1121 		kvm_mmu_reset_context(vcpu);
1122 }
1123 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1124 
1125 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1126 {
1127 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
1128 
1129 	if (!kvm_is_valid_cr0(vcpu, cr0))
1130 		return 1;
1131 
1132 	cr0 |= X86_CR0_ET;
1133 
1134 	/* Write to CR0 reserved bits are ignored, even on Intel. */
1135 	cr0 &= ~CR0_RESERVED_BITS;
1136 
1137 #ifdef CONFIG_X86_64
1138 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1139 	    (cr0 & X86_CR0_PG)) {
1140 		int cs_db, cs_l;
1141 
1142 		if (!is_pae(vcpu))
1143 			return 1;
1144 		kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1145 		if (cs_l)
1146 			return 1;
1147 	}
1148 #endif
1149 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1150 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1151 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1152 		return 1;
1153 
1154 	if (!(cr0 & X86_CR0_PG) &&
1155 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1156 		return 1;
1157 
1158 	kvm_x86_call(set_cr0)(vcpu, cr0);
1159 
1160 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1161 
1162 	return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1165 
1166 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1167 {
1168 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_lmsw);
1171 
1172 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1173 {
1174 	if (vcpu->arch.guest_state_protected)
1175 		return;
1176 
1177 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1178 
1179 		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1180 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1181 
1182 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1183 		    vcpu->arch.ia32_xss != kvm_host.xss)
1184 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1185 	}
1186 
1187 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1188 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1189 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1190 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1191 		write_pkru(vcpu->arch.pkru);
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1194 
1195 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1196 {
1197 	if (vcpu->arch.guest_state_protected)
1198 		return;
1199 
1200 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1201 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1202 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1203 		vcpu->arch.pkru = rdpkru();
1204 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1205 			write_pkru(vcpu->arch.host_pkru);
1206 	}
1207 
1208 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1209 
1210 		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1211 			xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1212 
1213 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1214 		    vcpu->arch.ia32_xss != kvm_host.xss)
1215 			wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1216 	}
1217 
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1220 
1221 #ifdef CONFIG_X86_64
1222 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1223 {
1224 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1225 }
1226 #endif
1227 
1228 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1229 {
1230 	u64 xcr0 = xcr;
1231 	u64 old_xcr0 = vcpu->arch.xcr0;
1232 	u64 valid_bits;
1233 
1234 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1235 	if (index != XCR_XFEATURE_ENABLED_MASK)
1236 		return 1;
1237 	if (!(xcr0 & XFEATURE_MASK_FP))
1238 		return 1;
1239 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1240 		return 1;
1241 
1242 	/*
1243 	 * Do not allow the guest to set bits that we do not support
1244 	 * saving.  However, xcr0 bit 0 is always set, even if the
1245 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1246 	 */
1247 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1248 	if (xcr0 & ~valid_bits)
1249 		return 1;
1250 
1251 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1252 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1253 		return 1;
1254 
1255 	if (xcr0 & XFEATURE_MASK_AVX512) {
1256 		if (!(xcr0 & XFEATURE_MASK_YMM))
1257 			return 1;
1258 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1259 			return 1;
1260 	}
1261 
1262 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1263 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1264 		return 1;
1265 
1266 	vcpu->arch.xcr0 = xcr0;
1267 
1268 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1269 		kvm_update_cpuid_runtime(vcpu);
1270 	return 0;
1271 }
1272 
1273 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1274 {
1275 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1276 	if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1277 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1278 		kvm_inject_gp(vcpu, 0);
1279 		return 1;
1280 	}
1281 
1282 	return kvm_skip_emulated_instruction(vcpu);
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1285 
1286 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1287 {
1288 	if (cr4 & cr4_reserved_bits)
1289 		return false;
1290 
1291 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1292 		return false;
1293 
1294 	return true;
1295 }
1296 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1297 
1298 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1299 {
1300 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1301 	       kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1302 }
1303 
1304 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1305 {
1306 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1307 		kvm_mmu_reset_context(vcpu);
1308 
1309 	/*
1310 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1311 	 * according to the SDM; however, stale prev_roots could be reused
1312 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1313 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1314 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1315 	 * so fall through.
1316 	 */
1317 	if (!tdp_enabled &&
1318 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1319 		kvm_mmu_unload(vcpu);
1320 
1321 	/*
1322 	 * The TLB has to be flushed for all PCIDs if any of the following
1323 	 * (architecturally required) changes happen:
1324 	 * - CR4.PCIDE is changed from 1 to 0
1325 	 * - CR4.PGE is toggled
1326 	 *
1327 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1328 	 */
1329 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1330 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1331 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1332 
1333 	/*
1334 	 * The TLB has to be flushed for the current PCID if any of the
1335 	 * following (architecturally required) changes happen:
1336 	 * - CR4.SMEP is changed from 0 to 1
1337 	 * - CR4.PAE is toggled
1338 	 */
1339 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1340 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1341 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1342 
1343 }
1344 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1345 
1346 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1347 {
1348 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1349 
1350 	if (!kvm_is_valid_cr4(vcpu, cr4))
1351 		return 1;
1352 
1353 	if (is_long_mode(vcpu)) {
1354 		if (!(cr4 & X86_CR4_PAE))
1355 			return 1;
1356 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1357 			return 1;
1358 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1359 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1360 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1361 		return 1;
1362 
1363 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1364 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1365 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1366 			return 1;
1367 	}
1368 
1369 	kvm_x86_call(set_cr4)(vcpu, cr4);
1370 
1371 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1372 
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1376 
1377 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1378 {
1379 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1380 	unsigned long roots_to_free = 0;
1381 	int i;
1382 
1383 	/*
1384 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1385 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1386 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1387 	 * the invalidation, but the guest's TLB entries need to be flushed as
1388 	 * the CPU may have cached entries in its TLB for the target PCID.
1389 	 */
1390 	if (unlikely(tdp_enabled)) {
1391 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1392 		return;
1393 	}
1394 
1395 	/*
1396 	 * If neither the current CR3 nor any of the prev_roots use the given
1397 	 * PCID, then nothing needs to be done here because a resync will
1398 	 * happen anyway before switching to any other CR3.
1399 	 */
1400 	if (kvm_get_active_pcid(vcpu) == pcid) {
1401 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1402 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1403 	}
1404 
1405 	/*
1406 	 * If PCID is disabled, there is no need to free prev_roots even if the
1407 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1408 	 * with PCIDE=0.
1409 	 */
1410 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1411 		return;
1412 
1413 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1414 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1415 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1416 
1417 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1418 }
1419 
1420 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1421 {
1422 	bool skip_tlb_flush = false;
1423 	unsigned long pcid = 0;
1424 #ifdef CONFIG_X86_64
1425 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1426 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1427 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1428 		pcid = cr3 & X86_CR3_PCID_MASK;
1429 	}
1430 #endif
1431 
1432 	/* PDPTRs are always reloaded for PAE paging. */
1433 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1434 		goto handle_tlb_flush;
1435 
1436 	/*
1437 	 * Do not condition the GPA check on long mode, this helper is used to
1438 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1439 	 * the current vCPU mode is accurate.
1440 	 */
1441 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1442 		return 1;
1443 
1444 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1445 		return 1;
1446 
1447 	if (cr3 != kvm_read_cr3(vcpu))
1448 		kvm_mmu_new_pgd(vcpu, cr3);
1449 
1450 	vcpu->arch.cr3 = cr3;
1451 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1452 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1453 
1454 handle_tlb_flush:
1455 	/*
1456 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1457 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1458 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1459 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1460 	 * i.e. only PCID=0 can be relevant.
1461 	 */
1462 	if (!skip_tlb_flush)
1463 		kvm_invalidate_pcid(vcpu, pcid);
1464 
1465 	return 0;
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1468 
1469 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1470 {
1471 	if (cr8 & CR8_RESERVED_BITS)
1472 		return 1;
1473 	if (lapic_in_kernel(vcpu))
1474 		kvm_lapic_set_tpr(vcpu, cr8);
1475 	else
1476 		vcpu->arch.cr8 = cr8;
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1480 
1481 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1482 {
1483 	if (lapic_in_kernel(vcpu))
1484 		return kvm_lapic_get_cr8(vcpu);
1485 	else
1486 		return vcpu->arch.cr8;
1487 }
1488 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1489 
1490 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1491 {
1492 	int i;
1493 
1494 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1495 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1496 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1497 	}
1498 }
1499 
1500 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1501 {
1502 	unsigned long dr7;
1503 
1504 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1505 		dr7 = vcpu->arch.guest_debug_dr7;
1506 	else
1507 		dr7 = vcpu->arch.dr7;
1508 	kvm_x86_call(set_dr7)(vcpu, dr7);
1509 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1510 	if (dr7 & DR7_BP_EN_MASK)
1511 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1512 }
1513 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1514 
1515 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1516 {
1517 	u64 fixed = DR6_FIXED_1;
1518 
1519 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1520 		fixed |= DR6_RTM;
1521 
1522 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1523 		fixed |= DR6_BUS_LOCK;
1524 	return fixed;
1525 }
1526 
1527 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1528 {
1529 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1530 
1531 	switch (dr) {
1532 	case 0 ... 3:
1533 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1534 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1535 			vcpu->arch.eff_db[dr] = val;
1536 		break;
1537 	case 4:
1538 	case 6:
1539 		if (!kvm_dr6_valid(val))
1540 			return 1; /* #GP */
1541 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1542 		break;
1543 	case 5:
1544 	default: /* 7 */
1545 		if (!kvm_dr7_valid(val))
1546 			return 1; /* #GP */
1547 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1548 		kvm_update_dr7(vcpu);
1549 		break;
1550 	}
1551 
1552 	return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(kvm_set_dr);
1555 
1556 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1557 {
1558 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1559 
1560 	switch (dr) {
1561 	case 0 ... 3:
1562 		return vcpu->arch.db[array_index_nospec(dr, size)];
1563 	case 4:
1564 	case 6:
1565 		return vcpu->arch.dr6;
1566 	case 5:
1567 	default: /* 7 */
1568 		return vcpu->arch.dr7;
1569 	}
1570 }
1571 EXPORT_SYMBOL_GPL(kvm_get_dr);
1572 
1573 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1574 {
1575 	u32 ecx = kvm_rcx_read(vcpu);
1576 	u64 data;
1577 
1578 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1579 		kvm_inject_gp(vcpu, 0);
1580 		return 1;
1581 	}
1582 
1583 	kvm_rax_write(vcpu, (u32)data);
1584 	kvm_rdx_write(vcpu, data >> 32);
1585 	return kvm_skip_emulated_instruction(vcpu);
1586 }
1587 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1588 
1589 /*
1590  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1591  * does not yet virtualize. These include:
1592  *   10 - MISC_PACKAGE_CTRLS
1593  *   11 - ENERGY_FILTERING_CTL
1594  *   12 - DOITM
1595  *   18 - FB_CLEAR_CTRL
1596  *   21 - XAPIC_DISABLE_STATUS
1597  *   23 - OVERCLOCKING_STATUS
1598  */
1599 
1600 #define KVM_SUPPORTED_ARCH_CAP \
1601 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1602 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1603 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1604 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1605 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1606 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1607 
1608 static u64 kvm_get_arch_capabilities(void)
1609 {
1610 	u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1611 
1612 	/*
1613 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1614 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1615 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1616 	 * L1 guests, so it need not worry about its own (L2) guests.
1617 	 */
1618 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1619 
1620 	/*
1621 	 * If we're doing cache flushes (either "always" or "cond")
1622 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1623 	 * If an outer hypervisor is doing the cache flush for us
1624 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1625 	 * capability to the guest too, and if EPT is disabled we're not
1626 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1627 	 * require a nested hypervisor to do a flush of its own.
1628 	 */
1629 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1630 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1631 
1632 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1633 		data |= ARCH_CAP_RDCL_NO;
1634 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1635 		data |= ARCH_CAP_SSB_NO;
1636 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1637 		data |= ARCH_CAP_MDS_NO;
1638 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1639 		data |= ARCH_CAP_RFDS_NO;
1640 
1641 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1642 		/*
1643 		 * If RTM=0 because the kernel has disabled TSX, the host might
1644 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1645 		 * and therefore knows that there cannot be TAA) but keep
1646 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1647 		 * and we want to allow migrating those guests to tsx=off hosts.
1648 		 */
1649 		data &= ~ARCH_CAP_TAA_NO;
1650 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1651 		data |= ARCH_CAP_TAA_NO;
1652 	} else {
1653 		/*
1654 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1655 		 * host so the guest can choose between disabling TSX or
1656 		 * using VERW to clear CPU buffers.
1657 		 */
1658 	}
1659 
1660 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1661 		data |= ARCH_CAP_GDS_NO;
1662 
1663 	return data;
1664 }
1665 
1666 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1667 			       bool host_initiated)
1668 {
1669 	WARN_ON_ONCE(!host_initiated);
1670 
1671 	switch (index) {
1672 	case MSR_IA32_ARCH_CAPABILITIES:
1673 		*data = kvm_get_arch_capabilities();
1674 		break;
1675 	case MSR_IA32_PERF_CAPABILITIES:
1676 		*data = kvm_caps.supported_perf_cap;
1677 		break;
1678 	case MSR_PLATFORM_INFO:
1679 		*data = MSR_PLATFORM_INFO_CPUID_FAULT;
1680 		break;
1681 	case MSR_IA32_UCODE_REV:
1682 		rdmsrl_safe(index, data);
1683 		break;
1684 	default:
1685 		return kvm_x86_call(get_feature_msr)(index, data);
1686 	}
1687 	return 0;
1688 }
1689 
1690 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1691 {
1692 	return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1693 				 kvm_get_feature_msr);
1694 }
1695 
1696 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1697 {
1698 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1699 		return false;
1700 
1701 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1702 		return false;
1703 
1704 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1705 		return false;
1706 
1707 	if (efer & (EFER_LME | EFER_LMA) &&
1708 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1709 		return false;
1710 
1711 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1712 		return false;
1713 
1714 	return true;
1715 
1716 }
1717 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1718 {
1719 	if (efer & efer_reserved_bits)
1720 		return false;
1721 
1722 	return __kvm_valid_efer(vcpu, efer);
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1725 
1726 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1727 {
1728 	u64 old_efer = vcpu->arch.efer;
1729 	u64 efer = msr_info->data;
1730 	int r;
1731 
1732 	if (efer & efer_reserved_bits)
1733 		return 1;
1734 
1735 	if (!msr_info->host_initiated) {
1736 		if (!__kvm_valid_efer(vcpu, efer))
1737 			return 1;
1738 
1739 		if (is_paging(vcpu) &&
1740 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1741 			return 1;
1742 	}
1743 
1744 	efer &= ~EFER_LMA;
1745 	efer |= vcpu->arch.efer & EFER_LMA;
1746 
1747 	r = kvm_x86_call(set_efer)(vcpu, efer);
1748 	if (r) {
1749 		WARN_ON(r > 0);
1750 		return r;
1751 	}
1752 
1753 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1754 		kvm_mmu_reset_context(vcpu);
1755 
1756 	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1757 	    (efer & EFER_SVME))
1758 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1759 
1760 	return 0;
1761 }
1762 
1763 void kvm_enable_efer_bits(u64 mask)
1764 {
1765        efer_reserved_bits &= ~mask;
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1768 
1769 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1770 {
1771 	struct kvm_x86_msr_filter *msr_filter;
1772 	struct msr_bitmap_range *ranges;
1773 	struct kvm *kvm = vcpu->kvm;
1774 	bool allowed;
1775 	int idx;
1776 	u32 i;
1777 
1778 	/* x2APIC MSRs do not support filtering. */
1779 	if (index >= 0x800 && index <= 0x8ff)
1780 		return true;
1781 
1782 	idx = srcu_read_lock(&kvm->srcu);
1783 
1784 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1785 	if (!msr_filter) {
1786 		allowed = true;
1787 		goto out;
1788 	}
1789 
1790 	allowed = msr_filter->default_allow;
1791 	ranges = msr_filter->ranges;
1792 
1793 	for (i = 0; i < msr_filter->count; i++) {
1794 		u32 start = ranges[i].base;
1795 		u32 end = start + ranges[i].nmsrs;
1796 		u32 flags = ranges[i].flags;
1797 		unsigned long *bitmap = ranges[i].bitmap;
1798 
1799 		if ((index >= start) && (index < end) && (flags & type)) {
1800 			allowed = test_bit(index - start, bitmap);
1801 			break;
1802 		}
1803 	}
1804 
1805 out:
1806 	srcu_read_unlock(&kvm->srcu, idx);
1807 
1808 	return allowed;
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1811 
1812 /*
1813  * Write @data into the MSR specified by @index.  Select MSR specific fault
1814  * checks are bypassed if @host_initiated is %true.
1815  * Returns 0 on success, non-0 otherwise.
1816  * Assumes vcpu_load() was already called.
1817  */
1818 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1819 			 bool host_initiated)
1820 {
1821 	struct msr_data msr;
1822 
1823 	switch (index) {
1824 	case MSR_FS_BASE:
1825 	case MSR_GS_BASE:
1826 	case MSR_KERNEL_GS_BASE:
1827 	case MSR_CSTAR:
1828 	case MSR_LSTAR:
1829 		if (is_noncanonical_msr_address(data, vcpu))
1830 			return 1;
1831 		break;
1832 	case MSR_IA32_SYSENTER_EIP:
1833 	case MSR_IA32_SYSENTER_ESP:
1834 		/*
1835 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1836 		 * non-canonical address is written on Intel but not on
1837 		 * AMD (which ignores the top 32-bits, because it does
1838 		 * not implement 64-bit SYSENTER).
1839 		 *
1840 		 * 64-bit code should hence be able to write a non-canonical
1841 		 * value on AMD.  Making the address canonical ensures that
1842 		 * vmentry does not fail on Intel after writing a non-canonical
1843 		 * value, and that something deterministic happens if the guest
1844 		 * invokes 64-bit SYSENTER.
1845 		 */
1846 		data = __canonical_address(data, max_host_virt_addr_bits());
1847 		break;
1848 	case MSR_TSC_AUX:
1849 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1850 			return 1;
1851 
1852 		if (!host_initiated &&
1853 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1854 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1855 			return 1;
1856 
1857 		/*
1858 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1859 		 * incomplete and conflicting architectural behavior.  Current
1860 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1861 		 * reserved and always read as zeros.  Enforce Intel's reserved
1862 		 * bits check if the guest CPU is Intel compatible, otherwise
1863 		 * clear the bits.  This ensures cross-vendor migration will
1864 		 * provide consistent behavior for the guest.
1865 		 */
1866 		if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1867 			return 1;
1868 
1869 		data = (u32)data;
1870 		break;
1871 	}
1872 
1873 	msr.data = data;
1874 	msr.index = index;
1875 	msr.host_initiated = host_initiated;
1876 
1877 	return kvm_x86_call(set_msr)(vcpu, &msr);
1878 }
1879 
1880 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1881 			bool host_initiated)
1882 {
1883 	return __kvm_set_msr(vcpu, index, *data, host_initiated);
1884 }
1885 
1886 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1887 				     u32 index, u64 data, bool host_initiated)
1888 {
1889 	return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1890 				 _kvm_set_msr);
1891 }
1892 
1893 /*
1894  * Read the MSR specified by @index into @data.  Select MSR specific fault
1895  * checks are bypassed if @host_initiated is %true.
1896  * Returns 0 on success, non-0 otherwise.
1897  * Assumes vcpu_load() was already called.
1898  */
1899 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1900 		  bool host_initiated)
1901 {
1902 	struct msr_data msr;
1903 	int ret;
1904 
1905 	switch (index) {
1906 	case MSR_TSC_AUX:
1907 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1908 			return 1;
1909 
1910 		if (!host_initiated &&
1911 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1912 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1913 			return 1;
1914 		break;
1915 	}
1916 
1917 	msr.index = index;
1918 	msr.host_initiated = host_initiated;
1919 
1920 	ret = kvm_x86_call(get_msr)(vcpu, &msr);
1921 	if (!ret)
1922 		*data = msr.data;
1923 	return ret;
1924 }
1925 
1926 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1927 				     u32 index, u64 *data, bool host_initiated)
1928 {
1929 	return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1930 				 __kvm_get_msr);
1931 }
1932 
1933 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1934 {
1935 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1936 		return KVM_MSR_RET_FILTERED;
1937 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1940 
1941 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1942 {
1943 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1944 		return KVM_MSR_RET_FILTERED;
1945 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1946 }
1947 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1948 
1949 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1950 {
1951 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_get_msr);
1954 
1955 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1956 {
1957 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_set_msr);
1960 
1961 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1962 {
1963 	if (!vcpu->run->msr.error) {
1964 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1965 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1966 	}
1967 }
1968 
1969 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1970 {
1971 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1972 }
1973 
1974 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1975 {
1976 	complete_userspace_rdmsr(vcpu);
1977 	return complete_emulated_msr_access(vcpu);
1978 }
1979 
1980 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1981 {
1982 	return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1983 }
1984 
1985 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1986 {
1987 	complete_userspace_rdmsr(vcpu);
1988 	return complete_fast_msr_access(vcpu);
1989 }
1990 
1991 static u64 kvm_msr_reason(int r)
1992 {
1993 	switch (r) {
1994 	case KVM_MSR_RET_UNSUPPORTED:
1995 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1996 	case KVM_MSR_RET_FILTERED:
1997 		return KVM_MSR_EXIT_REASON_FILTER;
1998 	default:
1999 		return KVM_MSR_EXIT_REASON_INVAL;
2000 	}
2001 }
2002 
2003 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2004 			      u32 exit_reason, u64 data,
2005 			      int (*completion)(struct kvm_vcpu *vcpu),
2006 			      int r)
2007 {
2008 	u64 msr_reason = kvm_msr_reason(r);
2009 
2010 	/* Check if the user wanted to know about this MSR fault */
2011 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2012 		return 0;
2013 
2014 	vcpu->run->exit_reason = exit_reason;
2015 	vcpu->run->msr.error = 0;
2016 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2017 	vcpu->run->msr.reason = msr_reason;
2018 	vcpu->run->msr.index = index;
2019 	vcpu->run->msr.data = data;
2020 	vcpu->arch.complete_userspace_io = completion;
2021 
2022 	return 1;
2023 }
2024 
2025 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2026 {
2027 	u32 ecx = kvm_rcx_read(vcpu);
2028 	u64 data;
2029 	int r;
2030 
2031 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2032 
2033 	if (!r) {
2034 		trace_kvm_msr_read(ecx, data);
2035 
2036 		kvm_rax_write(vcpu, data & -1u);
2037 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2038 	} else {
2039 		/* MSR read failed? See if we should ask user space */
2040 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2041 				       complete_fast_rdmsr, r))
2042 			return 0;
2043 		trace_kvm_msr_read_ex(ecx);
2044 	}
2045 
2046 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2049 
2050 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2051 {
2052 	u32 ecx = kvm_rcx_read(vcpu);
2053 	u64 data = kvm_read_edx_eax(vcpu);
2054 	int r;
2055 
2056 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2057 
2058 	if (!r) {
2059 		trace_kvm_msr_write(ecx, data);
2060 	} else {
2061 		/* MSR write failed? See if we should ask user space */
2062 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2063 				       complete_fast_msr_access, r))
2064 			return 0;
2065 		/* Signal all other negative errors to userspace */
2066 		if (r < 0)
2067 			return r;
2068 		trace_kvm_msr_write_ex(ecx, data);
2069 	}
2070 
2071 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2072 }
2073 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2074 
2075 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2076 {
2077 	return kvm_skip_emulated_instruction(vcpu);
2078 }
2079 
2080 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2081 {
2082 	/* Treat an INVD instruction as a NOP and just skip it. */
2083 	return kvm_emulate_as_nop(vcpu);
2084 }
2085 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2086 
2087 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2088 {
2089 	kvm_queue_exception(vcpu, UD_VECTOR);
2090 	return 1;
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2093 
2094 
2095 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2096 {
2097 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2098 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2099 		return kvm_handle_invalid_op(vcpu);
2100 
2101 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2102 	return kvm_emulate_as_nop(vcpu);
2103 }
2104 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2105 {
2106 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2109 
2110 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2111 {
2112 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2115 
2116 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2117 {
2118 	xfer_to_guest_mode_prepare();
2119 
2120 	return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2121 	       kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2122 }
2123 
2124 /*
2125  * The fast path for frequent and performance sensitive wrmsr emulation,
2126  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2127  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2128  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2129  * other cases which must be called after interrupts are enabled on the host.
2130  */
2131 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2132 {
2133 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2134 		return 1;
2135 
2136 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2137 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2138 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2139 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2140 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2141 
2142 	return 1;
2143 }
2144 
2145 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2146 {
2147 	if (!kvm_can_use_hv_timer(vcpu))
2148 		return 1;
2149 
2150 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2151 	return 0;
2152 }
2153 
2154 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2155 {
2156 	u32 msr = kvm_rcx_read(vcpu);
2157 	u64 data;
2158 	fastpath_t ret;
2159 	bool handled;
2160 
2161 	kvm_vcpu_srcu_read_lock(vcpu);
2162 
2163 	switch (msr) {
2164 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2165 		data = kvm_read_edx_eax(vcpu);
2166 		handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2167 		break;
2168 	case MSR_IA32_TSC_DEADLINE:
2169 		data = kvm_read_edx_eax(vcpu);
2170 		handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2171 		break;
2172 	default:
2173 		handled = false;
2174 		break;
2175 	}
2176 
2177 	if (handled) {
2178 		if (!kvm_skip_emulated_instruction(vcpu))
2179 			ret = EXIT_FASTPATH_EXIT_USERSPACE;
2180 		else
2181 			ret = EXIT_FASTPATH_REENTER_GUEST;
2182 		trace_kvm_msr_write(msr, data);
2183 	} else {
2184 		ret = EXIT_FASTPATH_NONE;
2185 	}
2186 
2187 	kvm_vcpu_srcu_read_unlock(vcpu);
2188 
2189 	return ret;
2190 }
2191 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2192 
2193 /*
2194  * Adapt set_msr() to msr_io()'s calling convention
2195  */
2196 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2197 {
2198 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2199 }
2200 
2201 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2202 {
2203 	u64 val;
2204 
2205 	/*
2206 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2207 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2208 	 * the nVMX capabilities while L2 is running is nonsensical.  Allow
2209 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2210 	 * all MSRs when emulating RESET.
2211 	 */
2212 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2213 	    (do_get_msr(vcpu, index, &val) || *data != val))
2214 		return -EINVAL;
2215 
2216 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2217 }
2218 
2219 #ifdef CONFIG_X86_64
2220 struct pvclock_clock {
2221 	int vclock_mode;
2222 	u64 cycle_last;
2223 	u64 mask;
2224 	u32 mult;
2225 	u32 shift;
2226 	u64 base_cycles;
2227 	u64 offset;
2228 };
2229 
2230 struct pvclock_gtod_data {
2231 	seqcount_t	seq;
2232 
2233 	struct pvclock_clock clock; /* extract of a clocksource struct */
2234 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2235 
2236 	ktime_t		offs_boot;
2237 	u64		wall_time_sec;
2238 };
2239 
2240 static struct pvclock_gtod_data pvclock_gtod_data;
2241 
2242 static void update_pvclock_gtod(struct timekeeper *tk)
2243 {
2244 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2245 
2246 	write_seqcount_begin(&vdata->seq);
2247 
2248 	/* copy pvclock gtod data */
2249 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2250 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2251 	vdata->clock.mask		= tk->tkr_mono.mask;
2252 	vdata->clock.mult		= tk->tkr_mono.mult;
2253 	vdata->clock.shift		= tk->tkr_mono.shift;
2254 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2255 	vdata->clock.offset		= tk->tkr_mono.base;
2256 
2257 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2258 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2259 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2260 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2261 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2262 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2263 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2264 
2265 	vdata->wall_time_sec            = tk->xtime_sec;
2266 
2267 	vdata->offs_boot		= tk->offs_boot;
2268 
2269 	write_seqcount_end(&vdata->seq);
2270 }
2271 
2272 static s64 get_kvmclock_base_ns(void)
2273 {
2274 	/* Count up from boot time, but with the frequency of the raw clock.  */
2275 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2276 }
2277 #else
2278 static s64 get_kvmclock_base_ns(void)
2279 {
2280 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2281 	return ktime_get_boottime_ns();
2282 }
2283 #endif
2284 
2285 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2286 {
2287 	int version;
2288 	int r;
2289 	struct pvclock_wall_clock wc;
2290 	u32 wc_sec_hi;
2291 	u64 wall_nsec;
2292 
2293 	if (!wall_clock)
2294 		return;
2295 
2296 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2297 	if (r)
2298 		return;
2299 
2300 	if (version & 1)
2301 		++version;  /* first time write, random junk */
2302 
2303 	++version;
2304 
2305 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2306 		return;
2307 
2308 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2309 
2310 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2311 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2312 	wc.version = version;
2313 
2314 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2315 
2316 	if (sec_hi_ofs) {
2317 		wc_sec_hi = wall_nsec >> 32;
2318 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2319 				&wc_sec_hi, sizeof(wc_sec_hi));
2320 	}
2321 
2322 	version++;
2323 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2324 }
2325 
2326 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2327 				  bool old_msr, bool host_initiated)
2328 {
2329 	struct kvm_arch *ka = &vcpu->kvm->arch;
2330 
2331 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2332 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2333 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2334 
2335 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2336 	}
2337 
2338 	vcpu->arch.time = system_time;
2339 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2340 
2341 	/* we verify if the enable bit is set... */
2342 	if (system_time & 1)
2343 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2344 				 sizeof(struct pvclock_vcpu_time_info));
2345 	else
2346 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2347 
2348 	return;
2349 }
2350 
2351 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2352 {
2353 	do_shl32_div32(dividend, divisor);
2354 	return dividend;
2355 }
2356 
2357 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2358 			       s8 *pshift, u32 *pmultiplier)
2359 {
2360 	uint64_t scaled64;
2361 	int32_t  shift = 0;
2362 	uint64_t tps64;
2363 	uint32_t tps32;
2364 
2365 	tps64 = base_hz;
2366 	scaled64 = scaled_hz;
2367 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2368 		tps64 >>= 1;
2369 		shift--;
2370 	}
2371 
2372 	tps32 = (uint32_t)tps64;
2373 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2374 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2375 			scaled64 >>= 1;
2376 		else
2377 			tps32 <<= 1;
2378 		shift++;
2379 	}
2380 
2381 	*pshift = shift;
2382 	*pmultiplier = div_frac(scaled64, tps32);
2383 }
2384 
2385 #ifdef CONFIG_X86_64
2386 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2387 #endif
2388 
2389 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2390 static unsigned long max_tsc_khz;
2391 
2392 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2393 {
2394 	u64 v = (u64)khz * (1000000 + ppm);
2395 	do_div(v, 1000000);
2396 	return v;
2397 }
2398 
2399 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2400 
2401 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2402 {
2403 	u64 ratio;
2404 
2405 	/* Guest TSC same frequency as host TSC? */
2406 	if (!scale) {
2407 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2408 		return 0;
2409 	}
2410 
2411 	/* TSC scaling supported? */
2412 	if (!kvm_caps.has_tsc_control) {
2413 		if (user_tsc_khz > tsc_khz) {
2414 			vcpu->arch.tsc_catchup = 1;
2415 			vcpu->arch.tsc_always_catchup = 1;
2416 			return 0;
2417 		} else {
2418 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2419 			return -1;
2420 		}
2421 	}
2422 
2423 	/* TSC scaling required  - calculate ratio */
2424 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2425 				user_tsc_khz, tsc_khz);
2426 
2427 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2428 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2429 			            user_tsc_khz);
2430 		return -1;
2431 	}
2432 
2433 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2434 	return 0;
2435 }
2436 
2437 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2438 {
2439 	u32 thresh_lo, thresh_hi;
2440 	int use_scaling = 0;
2441 
2442 	/* tsc_khz can be zero if TSC calibration fails */
2443 	if (user_tsc_khz == 0) {
2444 		/* set tsc_scaling_ratio to a safe value */
2445 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2446 		return -1;
2447 	}
2448 
2449 	/* Compute a scale to convert nanoseconds in TSC cycles */
2450 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2451 			   &vcpu->arch.virtual_tsc_shift,
2452 			   &vcpu->arch.virtual_tsc_mult);
2453 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2454 
2455 	/*
2456 	 * Compute the variation in TSC rate which is acceptable
2457 	 * within the range of tolerance and decide if the
2458 	 * rate being applied is within that bounds of the hardware
2459 	 * rate.  If so, no scaling or compensation need be done.
2460 	 */
2461 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2462 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2463 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2464 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2465 			 user_tsc_khz, thresh_lo, thresh_hi);
2466 		use_scaling = 1;
2467 	}
2468 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2469 }
2470 
2471 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2472 {
2473 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2474 				      vcpu->arch.virtual_tsc_mult,
2475 				      vcpu->arch.virtual_tsc_shift);
2476 	tsc += vcpu->arch.this_tsc_write;
2477 	return tsc;
2478 }
2479 
2480 #ifdef CONFIG_X86_64
2481 static inline bool gtod_is_based_on_tsc(int mode)
2482 {
2483 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2484 }
2485 #endif
2486 
2487 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2488 {
2489 #ifdef CONFIG_X86_64
2490 	struct kvm_arch *ka = &vcpu->kvm->arch;
2491 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2492 
2493 	/*
2494 	 * To use the masterclock, the host clocksource must be based on TSC
2495 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2496 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2497 	 */
2498 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2499 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2500 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2501 
2502 	/*
2503 	 * Request a masterclock update if the masterclock needs to be toggled
2504 	 * on/off, or when starting a new generation and the masterclock is
2505 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2506 	 * taken _after_ the new generation is created).
2507 	 */
2508 	if ((ka->use_master_clock && new_generation) ||
2509 	    (ka->use_master_clock != use_master_clock))
2510 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2511 
2512 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2513 			    atomic_read(&vcpu->kvm->online_vcpus),
2514 		            ka->use_master_clock, gtod->clock.vclock_mode);
2515 #endif
2516 }
2517 
2518 /*
2519  * Multiply tsc by a fixed point number represented by ratio.
2520  *
2521  * The most significant 64-N bits (mult) of ratio represent the
2522  * integral part of the fixed point number; the remaining N bits
2523  * (frac) represent the fractional part, ie. ratio represents a fixed
2524  * point number (mult + frac * 2^(-N)).
2525  *
2526  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2527  */
2528 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2529 {
2530 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2531 }
2532 
2533 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2534 {
2535 	u64 _tsc = tsc;
2536 
2537 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2538 		_tsc = __scale_tsc(ratio, tsc);
2539 
2540 	return _tsc;
2541 }
2542 
2543 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2544 {
2545 	u64 tsc;
2546 
2547 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2548 
2549 	return target_tsc - tsc;
2550 }
2551 
2552 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2553 {
2554 	return vcpu->arch.l1_tsc_offset +
2555 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2556 }
2557 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2558 
2559 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2560 {
2561 	u64 nested_offset;
2562 
2563 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2564 		nested_offset = l1_offset;
2565 	else
2566 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2567 						kvm_caps.tsc_scaling_ratio_frac_bits);
2568 
2569 	nested_offset += l2_offset;
2570 	return nested_offset;
2571 }
2572 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2573 
2574 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2575 {
2576 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2577 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2578 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2579 
2580 	return l1_multiplier;
2581 }
2582 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2583 
2584 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2585 {
2586 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2587 				   vcpu->arch.l1_tsc_offset,
2588 				   l1_offset);
2589 
2590 	vcpu->arch.l1_tsc_offset = l1_offset;
2591 
2592 	/*
2593 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2594 	 * according to the spec this should set L1's TSC (as opposed to
2595 	 * setting L1's offset for L2).
2596 	 */
2597 	if (is_guest_mode(vcpu))
2598 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2599 			l1_offset,
2600 			kvm_x86_call(get_l2_tsc_offset)(vcpu),
2601 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2602 	else
2603 		vcpu->arch.tsc_offset = l1_offset;
2604 
2605 	kvm_x86_call(write_tsc_offset)(vcpu);
2606 }
2607 
2608 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2609 {
2610 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2611 
2612 	/* Userspace is changing the multiplier while L2 is active */
2613 	if (is_guest_mode(vcpu))
2614 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2615 			l1_multiplier,
2616 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2617 	else
2618 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2619 
2620 	if (kvm_caps.has_tsc_control)
2621 		kvm_x86_call(write_tsc_multiplier)(vcpu);
2622 }
2623 
2624 static inline bool kvm_check_tsc_unstable(void)
2625 {
2626 #ifdef CONFIG_X86_64
2627 	/*
2628 	 * TSC is marked unstable when we're running on Hyper-V,
2629 	 * 'TSC page' clocksource is good.
2630 	 */
2631 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2632 		return false;
2633 #endif
2634 	return check_tsc_unstable();
2635 }
2636 
2637 /*
2638  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2639  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2640  * participates in.
2641  */
2642 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2643 				  u64 ns, bool matched)
2644 {
2645 	struct kvm *kvm = vcpu->kvm;
2646 
2647 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2648 
2649 	/*
2650 	 * We also track th most recent recorded KHZ, write and time to
2651 	 * allow the matching interval to be extended at each write.
2652 	 */
2653 	kvm->arch.last_tsc_nsec = ns;
2654 	kvm->arch.last_tsc_write = tsc;
2655 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2656 	kvm->arch.last_tsc_offset = offset;
2657 
2658 	vcpu->arch.last_guest_tsc = tsc;
2659 
2660 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2661 
2662 	if (!matched) {
2663 		/*
2664 		 * We split periods of matched TSC writes into generations.
2665 		 * For each generation, we track the original measured
2666 		 * nanosecond time, offset, and write, so if TSCs are in
2667 		 * sync, we can match exact offset, and if not, we can match
2668 		 * exact software computation in compute_guest_tsc()
2669 		 *
2670 		 * These values are tracked in kvm->arch.cur_xxx variables.
2671 		 */
2672 		kvm->arch.cur_tsc_generation++;
2673 		kvm->arch.cur_tsc_nsec = ns;
2674 		kvm->arch.cur_tsc_write = tsc;
2675 		kvm->arch.cur_tsc_offset = offset;
2676 		kvm->arch.nr_vcpus_matched_tsc = 0;
2677 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2678 		kvm->arch.nr_vcpus_matched_tsc++;
2679 	}
2680 
2681 	/* Keep track of which generation this VCPU has synchronized to */
2682 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2683 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2684 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2685 
2686 	kvm_track_tsc_matching(vcpu, !matched);
2687 }
2688 
2689 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2690 {
2691 	u64 data = user_value ? *user_value : 0;
2692 	struct kvm *kvm = vcpu->kvm;
2693 	u64 offset, ns, elapsed;
2694 	unsigned long flags;
2695 	bool matched = false;
2696 	bool synchronizing = false;
2697 
2698 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2699 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2700 	ns = get_kvmclock_base_ns();
2701 	elapsed = ns - kvm->arch.last_tsc_nsec;
2702 
2703 	if (vcpu->arch.virtual_tsc_khz) {
2704 		if (data == 0) {
2705 			/*
2706 			 * Force synchronization when creating a vCPU, or when
2707 			 * userspace explicitly writes a zero value.
2708 			 */
2709 			synchronizing = true;
2710 		} else if (kvm->arch.user_set_tsc) {
2711 			u64 tsc_exp = kvm->arch.last_tsc_write +
2712 						nsec_to_cycles(vcpu, elapsed);
2713 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2714 			/*
2715 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2716 			 * a small delta (1 second) of virtual cycle time against the
2717 			 * previously set vCPU, we assume that they were intended to be
2718 			 * in sync and the delta was only due to the racy nature of the
2719 			 * legacy API.
2720 			 *
2721 			 * This trick falls down when restoring a guest which genuinely
2722 			 * has been running for less time than the 1 second of imprecision
2723 			 * which we allow for in the legacy API. In this case, the first
2724 			 * value written by userspace (on any vCPU) should not be subject
2725 			 * to this 'correction' to make it sync up with values that only
2726 			 * come from the kernel's default vCPU creation. Make the 1-second
2727 			 * slop hack only trigger if the user_set_tsc flag is already set.
2728 			 */
2729 			synchronizing = data < tsc_exp + tsc_hz &&
2730 					data + tsc_hz > tsc_exp;
2731 		}
2732 	}
2733 
2734 	if (user_value)
2735 		kvm->arch.user_set_tsc = true;
2736 
2737 	/*
2738 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2739 	 * TSC, we add elapsed time in this computation.  We could let the
2740 	 * compensation code attempt to catch up if we fall behind, but
2741 	 * it's better to try to match offsets from the beginning.
2742          */
2743 	if (synchronizing &&
2744 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2745 		if (!kvm_check_tsc_unstable()) {
2746 			offset = kvm->arch.cur_tsc_offset;
2747 		} else {
2748 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2749 			data += delta;
2750 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2751 		}
2752 		matched = true;
2753 	}
2754 
2755 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2756 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2757 }
2758 
2759 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2760 					   s64 adjustment)
2761 {
2762 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2763 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2764 }
2765 
2766 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2767 {
2768 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2769 		WARN_ON(adjustment < 0);
2770 	adjustment = kvm_scale_tsc((u64) adjustment,
2771 				   vcpu->arch.l1_tsc_scaling_ratio);
2772 	adjust_tsc_offset_guest(vcpu, adjustment);
2773 }
2774 
2775 #ifdef CONFIG_X86_64
2776 
2777 static u64 read_tsc(void)
2778 {
2779 	u64 ret = (u64)rdtsc_ordered();
2780 	u64 last = pvclock_gtod_data.clock.cycle_last;
2781 
2782 	if (likely(ret >= last))
2783 		return ret;
2784 
2785 	/*
2786 	 * GCC likes to generate cmov here, but this branch is extremely
2787 	 * predictable (it's just a function of time and the likely is
2788 	 * very likely) and there's a data dependence, so force GCC
2789 	 * to generate a branch instead.  I don't barrier() because
2790 	 * we don't actually need a barrier, and if this function
2791 	 * ever gets inlined it will generate worse code.
2792 	 */
2793 	asm volatile ("");
2794 	return last;
2795 }
2796 
2797 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2798 			  int *mode)
2799 {
2800 	u64 tsc_pg_val;
2801 	long v;
2802 
2803 	switch (clock->vclock_mode) {
2804 	case VDSO_CLOCKMODE_HVCLOCK:
2805 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2806 					 tsc_timestamp, &tsc_pg_val)) {
2807 			/* TSC page valid */
2808 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2809 			v = (tsc_pg_val - clock->cycle_last) &
2810 				clock->mask;
2811 		} else {
2812 			/* TSC page invalid */
2813 			*mode = VDSO_CLOCKMODE_NONE;
2814 		}
2815 		break;
2816 	case VDSO_CLOCKMODE_TSC:
2817 		*mode = VDSO_CLOCKMODE_TSC;
2818 		*tsc_timestamp = read_tsc();
2819 		v = (*tsc_timestamp - clock->cycle_last) &
2820 			clock->mask;
2821 		break;
2822 	default:
2823 		*mode = VDSO_CLOCKMODE_NONE;
2824 	}
2825 
2826 	if (*mode == VDSO_CLOCKMODE_NONE)
2827 		*tsc_timestamp = v = 0;
2828 
2829 	return v * clock->mult;
2830 }
2831 
2832 /*
2833  * As with get_kvmclock_base_ns(), this counts from boot time, at the
2834  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2835  */
2836 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2837 {
2838 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2839 	unsigned long seq;
2840 	int mode;
2841 	u64 ns;
2842 
2843 	do {
2844 		seq = read_seqcount_begin(&gtod->seq);
2845 		ns = gtod->raw_clock.base_cycles;
2846 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2847 		ns >>= gtod->raw_clock.shift;
2848 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2849 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2850 	*t = ns;
2851 
2852 	return mode;
2853 }
2854 
2855 /*
2856  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2857  * no boot time offset.
2858  */
2859 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2860 {
2861 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2862 	unsigned long seq;
2863 	int mode;
2864 	u64 ns;
2865 
2866 	do {
2867 		seq = read_seqcount_begin(&gtod->seq);
2868 		ns = gtod->clock.base_cycles;
2869 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2870 		ns >>= gtod->clock.shift;
2871 		ns += ktime_to_ns(gtod->clock.offset);
2872 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2873 	*t = ns;
2874 
2875 	return mode;
2876 }
2877 
2878 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2879 {
2880 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2881 	unsigned long seq;
2882 	int mode;
2883 	u64 ns;
2884 
2885 	do {
2886 		seq = read_seqcount_begin(&gtod->seq);
2887 		ts->tv_sec = gtod->wall_time_sec;
2888 		ns = gtod->clock.base_cycles;
2889 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2890 		ns >>= gtod->clock.shift;
2891 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2892 
2893 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2894 	ts->tv_nsec = ns;
2895 
2896 	return mode;
2897 }
2898 
2899 /*
2900  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2901  * reports the TSC value from which it do so. Returns true if host is
2902  * using TSC based clocksource.
2903  */
2904 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2905 {
2906 	/* checked again under seqlock below */
2907 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2908 		return false;
2909 
2910 	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2911 						     tsc_timestamp));
2912 }
2913 
2914 /*
2915  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2916  * so. Returns true if host is using TSC based clocksource.
2917  */
2918 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2919 {
2920 	/* checked again under seqlock below */
2921 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2922 		return false;
2923 
2924 	return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2925 						 tsc_timestamp));
2926 }
2927 
2928 /*
2929  * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2930  * so. Returns true if host is using TSC based clocksource.
2931  *
2932  * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2933  * for that.
2934  */
2935 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2936 					   u64 *tsc_timestamp)
2937 {
2938 	/* checked again under seqlock below */
2939 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2940 		return false;
2941 
2942 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2943 }
2944 #endif
2945 
2946 /*
2947  *
2948  * Assuming a stable TSC across physical CPUS, and a stable TSC
2949  * across virtual CPUs, the following condition is possible.
2950  * Each numbered line represents an event visible to both
2951  * CPUs at the next numbered event.
2952  *
2953  * "timespecX" represents host monotonic time. "tscX" represents
2954  * RDTSC value.
2955  *
2956  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2957  *
2958  * 1.  read timespec0,tsc0
2959  * 2.					| timespec1 = timespec0 + N
2960  * 					| tsc1 = tsc0 + M
2961  * 3. transition to guest		| transition to guest
2962  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2963  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2964  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2965  *
2966  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2967  *
2968  * 	- ret0 < ret1
2969  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2970  *		...
2971  *	- 0 < N - M => M < N
2972  *
2973  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2974  * always the case (the difference between two distinct xtime instances
2975  * might be smaller then the difference between corresponding TSC reads,
2976  * when updating guest vcpus pvclock areas).
2977  *
2978  * To avoid that problem, do not allow visibility of distinct
2979  * system_timestamp/tsc_timestamp values simultaneously: use a master
2980  * copy of host monotonic time values. Update that master copy
2981  * in lockstep.
2982  *
2983  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2984  *
2985  */
2986 
2987 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2988 {
2989 #ifdef CONFIG_X86_64
2990 	struct kvm_arch *ka = &kvm->arch;
2991 	int vclock_mode;
2992 	bool host_tsc_clocksource, vcpus_matched;
2993 
2994 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2995 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2996 			atomic_read(&kvm->online_vcpus));
2997 
2998 	/*
2999 	 * If the host uses TSC clock, then passthrough TSC as stable
3000 	 * to the guest.
3001 	 */
3002 	host_tsc_clocksource = kvm_get_time_and_clockread(
3003 					&ka->master_kernel_ns,
3004 					&ka->master_cycle_now);
3005 
3006 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3007 				&& !ka->backwards_tsc_observed
3008 				&& !ka->boot_vcpu_runs_old_kvmclock;
3009 
3010 	if (ka->use_master_clock)
3011 		atomic_set(&kvm_guest_has_master_clock, 1);
3012 
3013 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3014 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3015 					vcpus_matched);
3016 #endif
3017 }
3018 
3019 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3020 {
3021 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3022 }
3023 
3024 static void __kvm_start_pvclock_update(struct kvm *kvm)
3025 {
3026 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3027 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3028 }
3029 
3030 static void kvm_start_pvclock_update(struct kvm *kvm)
3031 {
3032 	kvm_make_mclock_inprogress_request(kvm);
3033 
3034 	/* no guest entries from this point */
3035 	__kvm_start_pvclock_update(kvm);
3036 }
3037 
3038 static void kvm_end_pvclock_update(struct kvm *kvm)
3039 {
3040 	struct kvm_arch *ka = &kvm->arch;
3041 	struct kvm_vcpu *vcpu;
3042 	unsigned long i;
3043 
3044 	write_seqcount_end(&ka->pvclock_sc);
3045 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3046 	kvm_for_each_vcpu(i, vcpu, kvm)
3047 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3048 
3049 	/* guest entries allowed */
3050 	kvm_for_each_vcpu(i, vcpu, kvm)
3051 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3052 }
3053 
3054 static void kvm_update_masterclock(struct kvm *kvm)
3055 {
3056 	kvm_hv_request_tsc_page_update(kvm);
3057 	kvm_start_pvclock_update(kvm);
3058 	pvclock_update_vm_gtod_copy(kvm);
3059 	kvm_end_pvclock_update(kvm);
3060 }
3061 
3062 /*
3063  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3064  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3065  * can change during boot even if the TSC is constant, as it's possible for KVM
3066  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3067  * notification when calibration completes, but practically speaking calibration
3068  * will complete before userspace is alive enough to create VMs.
3069  */
3070 static unsigned long get_cpu_tsc_khz(void)
3071 {
3072 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3073 		return tsc_khz;
3074 	else
3075 		return __this_cpu_read(cpu_tsc_khz);
3076 }
3077 
3078 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3079 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3080 {
3081 	struct kvm_arch *ka = &kvm->arch;
3082 	struct pvclock_vcpu_time_info hv_clock;
3083 
3084 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3085 	get_cpu();
3086 
3087 	data->flags = 0;
3088 	if (ka->use_master_clock &&
3089 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3090 #ifdef CONFIG_X86_64
3091 		struct timespec64 ts;
3092 
3093 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3094 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3095 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3096 		} else
3097 #endif
3098 		data->host_tsc = rdtsc();
3099 
3100 		data->flags |= KVM_CLOCK_TSC_STABLE;
3101 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3102 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3103 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3104 				   &hv_clock.tsc_shift,
3105 				   &hv_clock.tsc_to_system_mul);
3106 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3107 	} else {
3108 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3109 	}
3110 
3111 	put_cpu();
3112 }
3113 
3114 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3115 {
3116 	struct kvm_arch *ka = &kvm->arch;
3117 	unsigned seq;
3118 
3119 	do {
3120 		seq = read_seqcount_begin(&ka->pvclock_sc);
3121 		__get_kvmclock(kvm, data);
3122 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3123 }
3124 
3125 u64 get_kvmclock_ns(struct kvm *kvm)
3126 {
3127 	struct kvm_clock_data data;
3128 
3129 	get_kvmclock(kvm, &data);
3130 	return data.clock;
3131 }
3132 
3133 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3134 				    struct gfn_to_pfn_cache *gpc,
3135 				    unsigned int offset,
3136 				    bool force_tsc_unstable)
3137 {
3138 	struct kvm_vcpu_arch *vcpu = &v->arch;
3139 	struct pvclock_vcpu_time_info *guest_hv_clock;
3140 	unsigned long flags;
3141 
3142 	read_lock_irqsave(&gpc->lock, flags);
3143 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3144 		read_unlock_irqrestore(&gpc->lock, flags);
3145 
3146 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3147 			return;
3148 
3149 		read_lock_irqsave(&gpc->lock, flags);
3150 	}
3151 
3152 	guest_hv_clock = (void *)(gpc->khva + offset);
3153 
3154 	/*
3155 	 * This VCPU is paused, but it's legal for a guest to read another
3156 	 * VCPU's kvmclock, so we really have to follow the specification where
3157 	 * it says that version is odd if data is being modified, and even after
3158 	 * it is consistent.
3159 	 */
3160 
3161 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3162 	smp_wmb();
3163 
3164 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3165 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3166 
3167 	if (vcpu->pvclock_set_guest_stopped_request) {
3168 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3169 		vcpu->pvclock_set_guest_stopped_request = false;
3170 	}
3171 
3172 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3173 
3174 	if (force_tsc_unstable)
3175 		guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3176 
3177 	smp_wmb();
3178 
3179 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3180 
3181 	kvm_gpc_mark_dirty_in_slot(gpc);
3182 	read_unlock_irqrestore(&gpc->lock, flags);
3183 
3184 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3185 }
3186 
3187 static int kvm_guest_time_update(struct kvm_vcpu *v)
3188 {
3189 	unsigned long flags, tgt_tsc_khz;
3190 	unsigned seq;
3191 	struct kvm_vcpu_arch *vcpu = &v->arch;
3192 	struct kvm_arch *ka = &v->kvm->arch;
3193 	s64 kernel_ns;
3194 	u64 tsc_timestamp, host_tsc;
3195 	u8 pvclock_flags;
3196 	bool use_master_clock;
3197 #ifdef CONFIG_KVM_XEN
3198 	/*
3199 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3200 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3201 	 * This default behaviour led to bugs in some guest kernels which cause
3202 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3203 	 */
3204 	bool xen_pvclock_tsc_unstable =
3205 		ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3206 #endif
3207 
3208 	kernel_ns = 0;
3209 	host_tsc = 0;
3210 
3211 	/*
3212 	 * If the host uses TSC clock, then passthrough TSC as stable
3213 	 * to the guest.
3214 	 */
3215 	do {
3216 		seq = read_seqcount_begin(&ka->pvclock_sc);
3217 		use_master_clock = ka->use_master_clock;
3218 		if (use_master_clock) {
3219 			host_tsc = ka->master_cycle_now;
3220 			kernel_ns = ka->master_kernel_ns;
3221 		}
3222 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3223 
3224 	/* Keep irq disabled to prevent changes to the clock */
3225 	local_irq_save(flags);
3226 	tgt_tsc_khz = get_cpu_tsc_khz();
3227 	if (unlikely(tgt_tsc_khz == 0)) {
3228 		local_irq_restore(flags);
3229 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3230 		return 1;
3231 	}
3232 	if (!use_master_clock) {
3233 		host_tsc = rdtsc();
3234 		kernel_ns = get_kvmclock_base_ns();
3235 	}
3236 
3237 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3238 
3239 	/*
3240 	 * We may have to catch up the TSC to match elapsed wall clock
3241 	 * time for two reasons, even if kvmclock is used.
3242 	 *   1) CPU could have been running below the maximum TSC rate
3243 	 *   2) Broken TSC compensation resets the base at each VCPU
3244 	 *      entry to avoid unknown leaps of TSC even when running
3245 	 *      again on the same CPU.  This may cause apparent elapsed
3246 	 *      time to disappear, and the guest to stand still or run
3247 	 *	very slowly.
3248 	 */
3249 	if (vcpu->tsc_catchup) {
3250 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3251 		if (tsc > tsc_timestamp) {
3252 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3253 			tsc_timestamp = tsc;
3254 		}
3255 	}
3256 
3257 	local_irq_restore(flags);
3258 
3259 	/* With all the info we got, fill in the values */
3260 
3261 	if (kvm_caps.has_tsc_control)
3262 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3263 					    v->arch.l1_tsc_scaling_ratio);
3264 
3265 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3266 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3267 				   &vcpu->hv_clock.tsc_shift,
3268 				   &vcpu->hv_clock.tsc_to_system_mul);
3269 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3270 		kvm_xen_update_tsc_info(v);
3271 	}
3272 
3273 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3274 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3275 	vcpu->last_guest_tsc = tsc_timestamp;
3276 
3277 	/* If the host uses TSC clocksource, then it is stable */
3278 	pvclock_flags = 0;
3279 	if (use_master_clock)
3280 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3281 
3282 	vcpu->hv_clock.flags = pvclock_flags;
3283 
3284 	if (vcpu->pv_time.active)
3285 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3286 #ifdef CONFIG_KVM_XEN
3287 	if (vcpu->xen.vcpu_info_cache.active)
3288 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3289 					offsetof(struct compat_vcpu_info, time),
3290 					xen_pvclock_tsc_unstable);
3291 	if (vcpu->xen.vcpu_time_info_cache.active)
3292 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3293 					xen_pvclock_tsc_unstable);
3294 #endif
3295 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3296 	return 0;
3297 }
3298 
3299 /*
3300  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3301  * which it started (i.e. its epoch, when its kvmclock was zero).
3302  *
3303  * In fact those clocks are subtly different; wall clock frequency is
3304  * adjusted by NTP and has leap seconds, while the kvmclock is a
3305  * simple function of the TSC without any such adjustment.
3306  *
3307  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3308  * that and kvmclock, but even that would be subject to change over
3309  * time.
3310  *
3311  * Attempt to calculate the epoch at a given moment using the *same*
3312  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3313  * wallclock and kvmclock times, and subtracting one from the other.
3314  *
3315  * Fall back to using their values at slightly different moments by
3316  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3317  */
3318 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3319 {
3320 #ifdef CONFIG_X86_64
3321 	struct pvclock_vcpu_time_info hv_clock;
3322 	struct kvm_arch *ka = &kvm->arch;
3323 	unsigned long seq, local_tsc_khz;
3324 	struct timespec64 ts;
3325 	uint64_t host_tsc;
3326 
3327 	do {
3328 		seq = read_seqcount_begin(&ka->pvclock_sc);
3329 
3330 		local_tsc_khz = 0;
3331 		if (!ka->use_master_clock)
3332 			break;
3333 
3334 		/*
3335 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3336 		 * on the same CPU.
3337 		 */
3338 		get_cpu();
3339 
3340 		local_tsc_khz = get_cpu_tsc_khz();
3341 
3342 		if (local_tsc_khz &&
3343 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3344 			local_tsc_khz = 0; /* Fall back to old method */
3345 
3346 		put_cpu();
3347 
3348 		/*
3349 		 * These values must be snapshotted within the seqcount loop.
3350 		 * After that, it's just mathematics which can happen on any
3351 		 * CPU at any time.
3352 		 */
3353 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3354 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3355 
3356 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3357 
3358 	/*
3359 	 * If the conditions were right, and obtaining the wallclock+TSC was
3360 	 * successful, calculate the KVM clock at the corresponding time and
3361 	 * subtract one from the other to get the guest's epoch in nanoseconds
3362 	 * since 1970-01-01.
3363 	 */
3364 	if (local_tsc_khz) {
3365 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3366 				   &hv_clock.tsc_shift,
3367 				   &hv_clock.tsc_to_system_mul);
3368 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3369 			__pvclock_read_cycles(&hv_clock, host_tsc);
3370 	}
3371 #endif
3372 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3373 }
3374 
3375 /*
3376  * kvmclock updates which are isolated to a given vcpu, such as
3377  * vcpu->cpu migration, should not allow system_timestamp from
3378  * the rest of the vcpus to remain static. Otherwise ntp frequency
3379  * correction applies to one vcpu's system_timestamp but not
3380  * the others.
3381  *
3382  * So in those cases, request a kvmclock update for all vcpus.
3383  * We need to rate-limit these requests though, as they can
3384  * considerably slow guests that have a large number of vcpus.
3385  * The time for a remote vcpu to update its kvmclock is bound
3386  * by the delay we use to rate-limit the updates.
3387  */
3388 
3389 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3390 
3391 static void kvmclock_update_fn(struct work_struct *work)
3392 {
3393 	unsigned long i;
3394 	struct delayed_work *dwork = to_delayed_work(work);
3395 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3396 					   kvmclock_update_work);
3397 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3398 	struct kvm_vcpu *vcpu;
3399 
3400 	kvm_for_each_vcpu(i, vcpu, kvm) {
3401 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3402 		kvm_vcpu_kick(vcpu);
3403 	}
3404 }
3405 
3406 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3407 {
3408 	struct kvm *kvm = v->kvm;
3409 
3410 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3411 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3412 					KVMCLOCK_UPDATE_DELAY);
3413 }
3414 
3415 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3416 
3417 static void kvmclock_sync_fn(struct work_struct *work)
3418 {
3419 	struct delayed_work *dwork = to_delayed_work(work);
3420 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3421 					   kvmclock_sync_work);
3422 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3423 
3424 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3425 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3426 					KVMCLOCK_SYNC_PERIOD);
3427 }
3428 
3429 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3430 static bool is_mci_control_msr(u32 msr)
3431 {
3432 	return (msr & 3) == 0;
3433 }
3434 static bool is_mci_status_msr(u32 msr)
3435 {
3436 	return (msr & 3) == 1;
3437 }
3438 
3439 /*
3440  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3441  */
3442 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3443 {
3444 	/* McStatusWrEn enabled? */
3445 	if (guest_cpuid_is_amd_compatible(vcpu))
3446 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3447 
3448 	return false;
3449 }
3450 
3451 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3452 {
3453 	u64 mcg_cap = vcpu->arch.mcg_cap;
3454 	unsigned bank_num = mcg_cap & 0xff;
3455 	u32 msr = msr_info->index;
3456 	u64 data = msr_info->data;
3457 	u32 offset, last_msr;
3458 
3459 	switch (msr) {
3460 	case MSR_IA32_MCG_STATUS:
3461 		vcpu->arch.mcg_status = data;
3462 		break;
3463 	case MSR_IA32_MCG_CTL:
3464 		if (!(mcg_cap & MCG_CTL_P) &&
3465 		    (data || !msr_info->host_initiated))
3466 			return 1;
3467 		if (data != 0 && data != ~(u64)0)
3468 			return 1;
3469 		vcpu->arch.mcg_ctl = data;
3470 		break;
3471 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3472 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3473 		if (msr > last_msr)
3474 			return 1;
3475 
3476 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3477 			return 1;
3478 		/* An attempt to write a 1 to a reserved bit raises #GP */
3479 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3480 			return 1;
3481 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3482 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3483 		vcpu->arch.mci_ctl2_banks[offset] = data;
3484 		break;
3485 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3486 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3487 		if (msr > last_msr)
3488 			return 1;
3489 
3490 		/*
3491 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3492 		 * values are architecturally undefined.  But, some Linux
3493 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3494 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3495 		 * other bits in order to avoid an uncaught #GP in the guest.
3496 		 *
3497 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3498 		 * single-bit ECC data errors.
3499 		 */
3500 		if (is_mci_control_msr(msr) &&
3501 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3502 			return 1;
3503 
3504 		/*
3505 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3506 		 * AMD-based CPUs allow non-zero values, but if and only if
3507 		 * HWCR[McStatusWrEn] is set.
3508 		 */
3509 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3510 		    data != 0 && !can_set_mci_status(vcpu))
3511 			return 1;
3512 
3513 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3514 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3515 		vcpu->arch.mce_banks[offset] = data;
3516 		break;
3517 	default:
3518 		return 1;
3519 	}
3520 	return 0;
3521 }
3522 
3523 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3524 {
3525 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3526 
3527 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3528 }
3529 
3530 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3531 {
3532 	gpa_t gpa = data & ~0x3f;
3533 
3534 	/* Bits 4:5 are reserved, Should be zero */
3535 	if (data & 0x30)
3536 		return 1;
3537 
3538 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3539 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3540 		return 1;
3541 
3542 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3543 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3544 		return 1;
3545 
3546 	if (!lapic_in_kernel(vcpu))
3547 		return data ? 1 : 0;
3548 
3549 	vcpu->arch.apf.msr_en_val = data;
3550 
3551 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3552 		kvm_clear_async_pf_completion_queue(vcpu);
3553 		kvm_async_pf_hash_reset(vcpu);
3554 		return 0;
3555 	}
3556 
3557 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3558 					sizeof(u64)))
3559 		return 1;
3560 
3561 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3562 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3563 
3564 	kvm_async_pf_wakeup_all(vcpu);
3565 
3566 	return 0;
3567 }
3568 
3569 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3570 {
3571 	/* Bits 8-63 are reserved */
3572 	if (data >> 8)
3573 		return 1;
3574 
3575 	if (!lapic_in_kernel(vcpu))
3576 		return 1;
3577 
3578 	vcpu->arch.apf.msr_int_val = data;
3579 
3580 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3581 
3582 	return 0;
3583 }
3584 
3585 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3586 {
3587 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3588 	vcpu->arch.time = 0;
3589 }
3590 
3591 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3592 {
3593 	++vcpu->stat.tlb_flush;
3594 	kvm_x86_call(flush_tlb_all)(vcpu);
3595 
3596 	/* Flushing all ASIDs flushes the current ASID... */
3597 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3598 }
3599 
3600 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3601 {
3602 	++vcpu->stat.tlb_flush;
3603 
3604 	if (!tdp_enabled) {
3605 		/*
3606 		 * A TLB flush on behalf of the guest is equivalent to
3607 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3608 		 * a forced sync of the shadow page tables.  Ensure all the
3609 		 * roots are synced and the guest TLB in hardware is clean.
3610 		 */
3611 		kvm_mmu_sync_roots(vcpu);
3612 		kvm_mmu_sync_prev_roots(vcpu);
3613 	}
3614 
3615 	kvm_x86_call(flush_tlb_guest)(vcpu);
3616 
3617 	/*
3618 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3619 	 * grained flushing.
3620 	 */
3621 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3622 }
3623 
3624 
3625 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3626 {
3627 	++vcpu->stat.tlb_flush;
3628 	kvm_x86_call(flush_tlb_current)(vcpu);
3629 }
3630 
3631 /*
3632  * Service "local" TLB flush requests, which are specific to the current MMU
3633  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3634  * TLB flushes that are targeted at an MMU context also need to be serviced
3635  * prior before nested VM-Enter/VM-Exit.
3636  */
3637 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3638 {
3639 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3640 		kvm_vcpu_flush_tlb_current(vcpu);
3641 
3642 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3643 		kvm_vcpu_flush_tlb_guest(vcpu);
3644 }
3645 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3646 
3647 static void record_steal_time(struct kvm_vcpu *vcpu)
3648 {
3649 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3650 	struct kvm_steal_time __user *st;
3651 	struct kvm_memslots *slots;
3652 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3653 	u64 steal;
3654 	u32 version;
3655 
3656 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3657 		kvm_xen_runstate_set_running(vcpu);
3658 		return;
3659 	}
3660 
3661 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3662 		return;
3663 
3664 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3665 		return;
3666 
3667 	slots = kvm_memslots(vcpu->kvm);
3668 
3669 	if (unlikely(slots->generation != ghc->generation ||
3670 		     gpa != ghc->gpa ||
3671 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3672 		/* We rely on the fact that it fits in a single page. */
3673 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3674 
3675 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3676 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3677 			return;
3678 	}
3679 
3680 	st = (struct kvm_steal_time __user *)ghc->hva;
3681 	/*
3682 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3683 	 * expensive IPIs.
3684 	 */
3685 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3686 		u8 st_preempted = 0;
3687 		int err = -EFAULT;
3688 
3689 		if (!user_access_begin(st, sizeof(*st)))
3690 			return;
3691 
3692 		asm volatile("1: xchgb %0, %2\n"
3693 			     "xor %1, %1\n"
3694 			     "2:\n"
3695 			     _ASM_EXTABLE_UA(1b, 2b)
3696 			     : "+q" (st_preempted),
3697 			       "+&r" (err),
3698 			       "+m" (st->preempted));
3699 		if (err)
3700 			goto out;
3701 
3702 		user_access_end();
3703 
3704 		vcpu->arch.st.preempted = 0;
3705 
3706 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3707 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3708 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3709 			kvm_vcpu_flush_tlb_guest(vcpu);
3710 
3711 		if (!user_access_begin(st, sizeof(*st)))
3712 			goto dirty;
3713 	} else {
3714 		if (!user_access_begin(st, sizeof(*st)))
3715 			return;
3716 
3717 		unsafe_put_user(0, &st->preempted, out);
3718 		vcpu->arch.st.preempted = 0;
3719 	}
3720 
3721 	unsafe_get_user(version, &st->version, out);
3722 	if (version & 1)
3723 		version += 1;  /* first time write, random junk */
3724 
3725 	version += 1;
3726 	unsafe_put_user(version, &st->version, out);
3727 
3728 	smp_wmb();
3729 
3730 	unsafe_get_user(steal, &st->steal, out);
3731 	steal += current->sched_info.run_delay -
3732 		vcpu->arch.st.last_steal;
3733 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3734 	unsafe_put_user(steal, &st->steal, out);
3735 
3736 	version += 1;
3737 	unsafe_put_user(version, &st->version, out);
3738 
3739  out:
3740 	user_access_end();
3741  dirty:
3742 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3743 }
3744 
3745 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3746 {
3747 	u32 msr = msr_info->index;
3748 	u64 data = msr_info->data;
3749 
3750 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3751 		return kvm_xen_write_hypercall_page(vcpu, data);
3752 
3753 	switch (msr) {
3754 	case MSR_AMD64_NB_CFG:
3755 	case MSR_IA32_UCODE_WRITE:
3756 	case MSR_VM_HSAVE_PA:
3757 	case MSR_AMD64_PATCH_LOADER:
3758 	case MSR_AMD64_BU_CFG2:
3759 	case MSR_AMD64_DC_CFG:
3760 	case MSR_AMD64_TW_CFG:
3761 	case MSR_F15H_EX_CFG:
3762 		break;
3763 
3764 	case MSR_IA32_UCODE_REV:
3765 		if (msr_info->host_initiated)
3766 			vcpu->arch.microcode_version = data;
3767 		break;
3768 	case MSR_IA32_ARCH_CAPABILITIES:
3769 		if (!msr_info->host_initiated ||
3770 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3771 			return KVM_MSR_RET_UNSUPPORTED;
3772 		vcpu->arch.arch_capabilities = data;
3773 		break;
3774 	case MSR_IA32_PERF_CAPABILITIES:
3775 		if (!msr_info->host_initiated ||
3776 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3777 			return KVM_MSR_RET_UNSUPPORTED;
3778 
3779 		if (data & ~kvm_caps.supported_perf_cap)
3780 			return 1;
3781 
3782 		/*
3783 		 * Note, this is not just a performance optimization!  KVM
3784 		 * disallows changing feature MSRs after the vCPU has run; PMU
3785 		 * refresh will bug the VM if called after the vCPU has run.
3786 		 */
3787 		if (vcpu->arch.perf_capabilities == data)
3788 			break;
3789 
3790 		vcpu->arch.perf_capabilities = data;
3791 		kvm_pmu_refresh(vcpu);
3792 		break;
3793 	case MSR_IA32_PRED_CMD: {
3794 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3795 
3796 		if (!msr_info->host_initiated) {
3797 			if ((!guest_has_pred_cmd_msr(vcpu)))
3798 				return 1;
3799 
3800 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3801 			    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3802 				reserved_bits |= PRED_CMD_IBPB;
3803 
3804 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3805 				reserved_bits |= PRED_CMD_SBPB;
3806 		}
3807 
3808 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3809 			reserved_bits |= PRED_CMD_IBPB;
3810 
3811 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3812 			reserved_bits |= PRED_CMD_SBPB;
3813 
3814 		if (data & reserved_bits)
3815 			return 1;
3816 
3817 		if (!data)
3818 			break;
3819 
3820 		wrmsrl(MSR_IA32_PRED_CMD, data);
3821 		break;
3822 	}
3823 	case MSR_IA32_FLUSH_CMD:
3824 		if (!msr_info->host_initiated &&
3825 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3826 			return 1;
3827 
3828 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3829 			return 1;
3830 		if (!data)
3831 			break;
3832 
3833 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3834 		break;
3835 	case MSR_EFER:
3836 		return set_efer(vcpu, msr_info);
3837 	case MSR_K7_HWCR:
3838 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3839 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3840 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3841 
3842 		/*
3843 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3844 		 * through at least v6.6 whine if TscFreqSel is clear,
3845 		 * depending on F/M/S.
3846 		 */
3847 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3848 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3849 			return 1;
3850 		}
3851 		vcpu->arch.msr_hwcr = data;
3852 		break;
3853 	case MSR_FAM10H_MMIO_CONF_BASE:
3854 		if (data != 0) {
3855 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3856 			return 1;
3857 		}
3858 		break;
3859 	case MSR_IA32_CR_PAT:
3860 		if (!kvm_pat_valid(data))
3861 			return 1;
3862 
3863 		vcpu->arch.pat = data;
3864 		break;
3865 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3866 	case MSR_MTRRdefType:
3867 		return kvm_mtrr_set_msr(vcpu, msr, data);
3868 	case MSR_IA32_APICBASE:
3869 		return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3870 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3871 		return kvm_x2apic_msr_write(vcpu, msr, data);
3872 	case MSR_IA32_TSC_DEADLINE:
3873 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3874 		break;
3875 	case MSR_IA32_TSC_ADJUST:
3876 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3877 			if (!msr_info->host_initiated) {
3878 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3879 				adjust_tsc_offset_guest(vcpu, adj);
3880 				/* Before back to guest, tsc_timestamp must be adjusted
3881 				 * as well, otherwise guest's percpu pvclock time could jump.
3882 				 */
3883 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3884 			}
3885 			vcpu->arch.ia32_tsc_adjust_msr = data;
3886 		}
3887 		break;
3888 	case MSR_IA32_MISC_ENABLE: {
3889 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3890 
3891 		if (!msr_info->host_initiated) {
3892 			/* RO bits */
3893 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3894 				return 1;
3895 
3896 			/* R bits, i.e. writes are ignored, but don't fault. */
3897 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3898 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3899 		}
3900 
3901 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3902 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3903 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3904 				return 1;
3905 			vcpu->arch.ia32_misc_enable_msr = data;
3906 			kvm_update_cpuid_runtime(vcpu);
3907 		} else {
3908 			vcpu->arch.ia32_misc_enable_msr = data;
3909 		}
3910 		break;
3911 	}
3912 	case MSR_IA32_SMBASE:
3913 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3914 			return 1;
3915 		vcpu->arch.smbase = data;
3916 		break;
3917 	case MSR_IA32_POWER_CTL:
3918 		vcpu->arch.msr_ia32_power_ctl = data;
3919 		break;
3920 	case MSR_IA32_TSC:
3921 		if (msr_info->host_initiated) {
3922 			kvm_synchronize_tsc(vcpu, &data);
3923 		} else {
3924 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3925 			adjust_tsc_offset_guest(vcpu, adj);
3926 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3927 		}
3928 		break;
3929 	case MSR_IA32_XSS:
3930 		if (!msr_info->host_initiated &&
3931 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3932 			return 1;
3933 		/*
3934 		 * KVM supports exposing PT to the guest, but does not support
3935 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3936 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3937 		 */
3938 		if (data & ~kvm_caps.supported_xss)
3939 			return 1;
3940 		vcpu->arch.ia32_xss = data;
3941 		kvm_update_cpuid_runtime(vcpu);
3942 		break;
3943 	case MSR_SMI_COUNT:
3944 		if (!msr_info->host_initiated)
3945 			return 1;
3946 		vcpu->arch.smi_count = data;
3947 		break;
3948 	case MSR_KVM_WALL_CLOCK_NEW:
3949 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3950 			return 1;
3951 
3952 		vcpu->kvm->arch.wall_clock = data;
3953 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3954 		break;
3955 	case MSR_KVM_WALL_CLOCK:
3956 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3957 			return 1;
3958 
3959 		vcpu->kvm->arch.wall_clock = data;
3960 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3961 		break;
3962 	case MSR_KVM_SYSTEM_TIME_NEW:
3963 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3964 			return 1;
3965 
3966 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3967 		break;
3968 	case MSR_KVM_SYSTEM_TIME:
3969 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3970 			return 1;
3971 
3972 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3973 		break;
3974 	case MSR_KVM_ASYNC_PF_EN:
3975 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3976 			return 1;
3977 
3978 		if (kvm_pv_enable_async_pf(vcpu, data))
3979 			return 1;
3980 		break;
3981 	case MSR_KVM_ASYNC_PF_INT:
3982 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3983 			return 1;
3984 
3985 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3986 			return 1;
3987 		break;
3988 	case MSR_KVM_ASYNC_PF_ACK:
3989 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3990 			return 1;
3991 		if (data & 0x1) {
3992 			vcpu->arch.apf.pageready_pending = false;
3993 			kvm_check_async_pf_completion(vcpu);
3994 		}
3995 		break;
3996 	case MSR_KVM_STEAL_TIME:
3997 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3998 			return 1;
3999 
4000 		if (unlikely(!sched_info_on()))
4001 			return 1;
4002 
4003 		if (data & KVM_STEAL_RESERVED_MASK)
4004 			return 1;
4005 
4006 		vcpu->arch.st.msr_val = data;
4007 
4008 		if (!(data & KVM_MSR_ENABLED))
4009 			break;
4010 
4011 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4012 
4013 		break;
4014 	case MSR_KVM_PV_EOI_EN:
4015 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4016 			return 1;
4017 
4018 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4019 			return 1;
4020 		break;
4021 
4022 	case MSR_KVM_POLL_CONTROL:
4023 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4024 			return 1;
4025 
4026 		/* only enable bit supported */
4027 		if (data & (-1ULL << 1))
4028 			return 1;
4029 
4030 		vcpu->arch.msr_kvm_poll_control = data;
4031 		break;
4032 
4033 	case MSR_IA32_MCG_CTL:
4034 	case MSR_IA32_MCG_STATUS:
4035 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4036 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4037 		return set_msr_mce(vcpu, msr_info);
4038 
4039 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4040 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4041 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4042 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4043 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4044 			return kvm_pmu_set_msr(vcpu, msr_info);
4045 
4046 		if (data)
4047 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4048 		break;
4049 	case MSR_K7_CLK_CTL:
4050 		/*
4051 		 * Ignore all writes to this no longer documented MSR.
4052 		 * Writes are only relevant for old K7 processors,
4053 		 * all pre-dating SVM, but a recommended workaround from
4054 		 * AMD for these chips. It is possible to specify the
4055 		 * affected processor models on the command line, hence
4056 		 * the need to ignore the workaround.
4057 		 */
4058 		break;
4059 #ifdef CONFIG_KVM_HYPERV
4060 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4061 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4062 	case HV_X64_MSR_SYNDBG_OPTIONS:
4063 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4064 	case HV_X64_MSR_CRASH_CTL:
4065 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4066 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4067 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4068 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4069 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4070 		return kvm_hv_set_msr_common(vcpu, msr, data,
4071 					     msr_info->host_initiated);
4072 #endif
4073 	case MSR_IA32_BBL_CR_CTL3:
4074 		/* Drop writes to this legacy MSR -- see rdmsr
4075 		 * counterpart for further detail.
4076 		 */
4077 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4078 		break;
4079 	case MSR_AMD64_OSVW_ID_LENGTH:
4080 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4081 			return 1;
4082 		vcpu->arch.osvw.length = data;
4083 		break;
4084 	case MSR_AMD64_OSVW_STATUS:
4085 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4086 			return 1;
4087 		vcpu->arch.osvw.status = data;
4088 		break;
4089 	case MSR_PLATFORM_INFO:
4090 		if (!msr_info->host_initiated)
4091 			return 1;
4092 		vcpu->arch.msr_platform_info = data;
4093 		break;
4094 	case MSR_MISC_FEATURES_ENABLES:
4095 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4096 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4097 		     !supports_cpuid_fault(vcpu)))
4098 			return 1;
4099 		vcpu->arch.msr_misc_features_enables = data;
4100 		break;
4101 #ifdef CONFIG_X86_64
4102 	case MSR_IA32_XFD:
4103 		if (!msr_info->host_initiated &&
4104 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4105 			return 1;
4106 
4107 		if (data & ~kvm_guest_supported_xfd(vcpu))
4108 			return 1;
4109 
4110 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4111 		break;
4112 	case MSR_IA32_XFD_ERR:
4113 		if (!msr_info->host_initiated &&
4114 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4115 			return 1;
4116 
4117 		if (data & ~kvm_guest_supported_xfd(vcpu))
4118 			return 1;
4119 
4120 		vcpu->arch.guest_fpu.xfd_err = data;
4121 		break;
4122 #endif
4123 	default:
4124 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4125 			return kvm_pmu_set_msr(vcpu, msr_info);
4126 
4127 		return KVM_MSR_RET_UNSUPPORTED;
4128 	}
4129 	return 0;
4130 }
4131 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4132 
4133 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4134 {
4135 	u64 data;
4136 	u64 mcg_cap = vcpu->arch.mcg_cap;
4137 	unsigned bank_num = mcg_cap & 0xff;
4138 	u32 offset, last_msr;
4139 
4140 	switch (msr) {
4141 	case MSR_IA32_P5_MC_ADDR:
4142 	case MSR_IA32_P5_MC_TYPE:
4143 		data = 0;
4144 		break;
4145 	case MSR_IA32_MCG_CAP:
4146 		data = vcpu->arch.mcg_cap;
4147 		break;
4148 	case MSR_IA32_MCG_CTL:
4149 		if (!(mcg_cap & MCG_CTL_P) && !host)
4150 			return 1;
4151 		data = vcpu->arch.mcg_ctl;
4152 		break;
4153 	case MSR_IA32_MCG_STATUS:
4154 		data = vcpu->arch.mcg_status;
4155 		break;
4156 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4157 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4158 		if (msr > last_msr)
4159 			return 1;
4160 
4161 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4162 			return 1;
4163 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4164 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4165 		data = vcpu->arch.mci_ctl2_banks[offset];
4166 		break;
4167 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4168 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4169 		if (msr > last_msr)
4170 			return 1;
4171 
4172 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4173 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4174 		data = vcpu->arch.mce_banks[offset];
4175 		break;
4176 	default:
4177 		return 1;
4178 	}
4179 	*pdata = data;
4180 	return 0;
4181 }
4182 
4183 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4184 {
4185 	switch (msr_info->index) {
4186 	case MSR_IA32_PLATFORM_ID:
4187 	case MSR_IA32_EBL_CR_POWERON:
4188 	case MSR_IA32_LASTBRANCHFROMIP:
4189 	case MSR_IA32_LASTBRANCHTOIP:
4190 	case MSR_IA32_LASTINTFROMIP:
4191 	case MSR_IA32_LASTINTTOIP:
4192 	case MSR_AMD64_SYSCFG:
4193 	case MSR_K8_TSEG_ADDR:
4194 	case MSR_K8_TSEG_MASK:
4195 	case MSR_VM_HSAVE_PA:
4196 	case MSR_K8_INT_PENDING_MSG:
4197 	case MSR_AMD64_NB_CFG:
4198 	case MSR_FAM10H_MMIO_CONF_BASE:
4199 	case MSR_AMD64_BU_CFG2:
4200 	case MSR_IA32_PERF_CTL:
4201 	case MSR_AMD64_DC_CFG:
4202 	case MSR_AMD64_TW_CFG:
4203 	case MSR_F15H_EX_CFG:
4204 	/*
4205 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4206 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4207 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4208 	 * so for existing CPU-specific MSRs.
4209 	 */
4210 	case MSR_RAPL_POWER_UNIT:
4211 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4212 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4213 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4214 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4215 		msr_info->data = 0;
4216 		break;
4217 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4218 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4219 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4220 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4221 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4222 			return kvm_pmu_get_msr(vcpu, msr_info);
4223 		msr_info->data = 0;
4224 		break;
4225 	case MSR_IA32_UCODE_REV:
4226 		msr_info->data = vcpu->arch.microcode_version;
4227 		break;
4228 	case MSR_IA32_ARCH_CAPABILITIES:
4229 		if (!guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4230 			return KVM_MSR_RET_UNSUPPORTED;
4231 		msr_info->data = vcpu->arch.arch_capabilities;
4232 		break;
4233 	case MSR_IA32_PERF_CAPABILITIES:
4234 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4235 			return KVM_MSR_RET_UNSUPPORTED;
4236 		msr_info->data = vcpu->arch.perf_capabilities;
4237 		break;
4238 	case MSR_IA32_POWER_CTL:
4239 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4240 		break;
4241 	case MSR_IA32_TSC: {
4242 		/*
4243 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4244 		 * even when not intercepted. AMD manual doesn't explicitly
4245 		 * state this but appears to behave the same.
4246 		 *
4247 		 * On userspace reads and writes, however, we unconditionally
4248 		 * return L1's TSC value to ensure backwards-compatible
4249 		 * behavior for migration.
4250 		 */
4251 		u64 offset, ratio;
4252 
4253 		if (msr_info->host_initiated) {
4254 			offset = vcpu->arch.l1_tsc_offset;
4255 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4256 		} else {
4257 			offset = vcpu->arch.tsc_offset;
4258 			ratio = vcpu->arch.tsc_scaling_ratio;
4259 		}
4260 
4261 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4262 		break;
4263 	}
4264 	case MSR_IA32_CR_PAT:
4265 		msr_info->data = vcpu->arch.pat;
4266 		break;
4267 	case MSR_MTRRcap:
4268 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4269 	case MSR_MTRRdefType:
4270 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4271 	case 0xcd: /* fsb frequency */
4272 		msr_info->data = 3;
4273 		break;
4274 		/*
4275 		 * MSR_EBC_FREQUENCY_ID
4276 		 * Conservative value valid for even the basic CPU models.
4277 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4278 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4279 		 * and 266MHz for model 3, or 4. Set Core Clock
4280 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4281 		 * 31:24) even though these are only valid for CPU
4282 		 * models > 2, however guests may end up dividing or
4283 		 * multiplying by zero otherwise.
4284 		 */
4285 	case MSR_EBC_FREQUENCY_ID:
4286 		msr_info->data = 1 << 24;
4287 		break;
4288 	case MSR_IA32_APICBASE:
4289 		msr_info->data = vcpu->arch.apic_base;
4290 		break;
4291 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4292 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4293 	case MSR_IA32_TSC_DEADLINE:
4294 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4295 		break;
4296 	case MSR_IA32_TSC_ADJUST:
4297 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4298 		break;
4299 	case MSR_IA32_MISC_ENABLE:
4300 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4301 		break;
4302 	case MSR_IA32_SMBASE:
4303 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4304 			return 1;
4305 		msr_info->data = vcpu->arch.smbase;
4306 		break;
4307 	case MSR_SMI_COUNT:
4308 		msr_info->data = vcpu->arch.smi_count;
4309 		break;
4310 	case MSR_IA32_PERF_STATUS:
4311 		/* TSC increment by tick */
4312 		msr_info->data = 1000ULL;
4313 		/* CPU multiplier */
4314 		msr_info->data |= (((uint64_t)4ULL) << 40);
4315 		break;
4316 	case MSR_EFER:
4317 		msr_info->data = vcpu->arch.efer;
4318 		break;
4319 	case MSR_KVM_WALL_CLOCK:
4320 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4321 			return 1;
4322 
4323 		msr_info->data = vcpu->kvm->arch.wall_clock;
4324 		break;
4325 	case MSR_KVM_WALL_CLOCK_NEW:
4326 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4327 			return 1;
4328 
4329 		msr_info->data = vcpu->kvm->arch.wall_clock;
4330 		break;
4331 	case MSR_KVM_SYSTEM_TIME:
4332 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4333 			return 1;
4334 
4335 		msr_info->data = vcpu->arch.time;
4336 		break;
4337 	case MSR_KVM_SYSTEM_TIME_NEW:
4338 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4339 			return 1;
4340 
4341 		msr_info->data = vcpu->arch.time;
4342 		break;
4343 	case MSR_KVM_ASYNC_PF_EN:
4344 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4345 			return 1;
4346 
4347 		msr_info->data = vcpu->arch.apf.msr_en_val;
4348 		break;
4349 	case MSR_KVM_ASYNC_PF_INT:
4350 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4351 			return 1;
4352 
4353 		msr_info->data = vcpu->arch.apf.msr_int_val;
4354 		break;
4355 	case MSR_KVM_ASYNC_PF_ACK:
4356 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4357 			return 1;
4358 
4359 		msr_info->data = 0;
4360 		break;
4361 	case MSR_KVM_STEAL_TIME:
4362 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4363 			return 1;
4364 
4365 		msr_info->data = vcpu->arch.st.msr_val;
4366 		break;
4367 	case MSR_KVM_PV_EOI_EN:
4368 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4369 			return 1;
4370 
4371 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4372 		break;
4373 	case MSR_KVM_POLL_CONTROL:
4374 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4375 			return 1;
4376 
4377 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4378 		break;
4379 	case MSR_IA32_P5_MC_ADDR:
4380 	case MSR_IA32_P5_MC_TYPE:
4381 	case MSR_IA32_MCG_CAP:
4382 	case MSR_IA32_MCG_CTL:
4383 	case MSR_IA32_MCG_STATUS:
4384 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4385 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4386 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4387 				   msr_info->host_initiated);
4388 	case MSR_IA32_XSS:
4389 		if (!msr_info->host_initiated &&
4390 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4391 			return 1;
4392 		msr_info->data = vcpu->arch.ia32_xss;
4393 		break;
4394 	case MSR_K7_CLK_CTL:
4395 		/*
4396 		 * Provide expected ramp-up count for K7. All other
4397 		 * are set to zero, indicating minimum divisors for
4398 		 * every field.
4399 		 *
4400 		 * This prevents guest kernels on AMD host with CPU
4401 		 * type 6, model 8 and higher from exploding due to
4402 		 * the rdmsr failing.
4403 		 */
4404 		msr_info->data = 0x20000000;
4405 		break;
4406 #ifdef CONFIG_KVM_HYPERV
4407 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4408 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4409 	case HV_X64_MSR_SYNDBG_OPTIONS:
4410 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4411 	case HV_X64_MSR_CRASH_CTL:
4412 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4413 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4414 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4415 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4416 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4417 		return kvm_hv_get_msr_common(vcpu,
4418 					     msr_info->index, &msr_info->data,
4419 					     msr_info->host_initiated);
4420 #endif
4421 	case MSR_IA32_BBL_CR_CTL3:
4422 		/* This legacy MSR exists but isn't fully documented in current
4423 		 * silicon.  It is however accessed by winxp in very narrow
4424 		 * scenarios where it sets bit #19, itself documented as
4425 		 * a "reserved" bit.  Best effort attempt to source coherent
4426 		 * read data here should the balance of the register be
4427 		 * interpreted by the guest:
4428 		 *
4429 		 * L2 cache control register 3: 64GB range, 256KB size,
4430 		 * enabled, latency 0x1, configured
4431 		 */
4432 		msr_info->data = 0xbe702111;
4433 		break;
4434 	case MSR_AMD64_OSVW_ID_LENGTH:
4435 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4436 			return 1;
4437 		msr_info->data = vcpu->arch.osvw.length;
4438 		break;
4439 	case MSR_AMD64_OSVW_STATUS:
4440 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4441 			return 1;
4442 		msr_info->data = vcpu->arch.osvw.status;
4443 		break;
4444 	case MSR_PLATFORM_INFO:
4445 		if (!msr_info->host_initiated &&
4446 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4447 			return 1;
4448 		msr_info->data = vcpu->arch.msr_platform_info;
4449 		break;
4450 	case MSR_MISC_FEATURES_ENABLES:
4451 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4452 		break;
4453 	case MSR_K7_HWCR:
4454 		msr_info->data = vcpu->arch.msr_hwcr;
4455 		break;
4456 #ifdef CONFIG_X86_64
4457 	case MSR_IA32_XFD:
4458 		if (!msr_info->host_initiated &&
4459 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4460 			return 1;
4461 
4462 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4463 		break;
4464 	case MSR_IA32_XFD_ERR:
4465 		if (!msr_info->host_initiated &&
4466 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4467 			return 1;
4468 
4469 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4470 		break;
4471 #endif
4472 	default:
4473 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4474 			return kvm_pmu_get_msr(vcpu, msr_info);
4475 
4476 		return KVM_MSR_RET_UNSUPPORTED;
4477 	}
4478 	return 0;
4479 }
4480 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4481 
4482 /*
4483  * Read or write a bunch of msrs. All parameters are kernel addresses.
4484  *
4485  * @return number of msrs set successfully.
4486  */
4487 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4488 		    struct kvm_msr_entry *entries,
4489 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4490 				  unsigned index, u64 *data))
4491 {
4492 	int i;
4493 
4494 	for (i = 0; i < msrs->nmsrs; ++i)
4495 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4496 			break;
4497 
4498 	return i;
4499 }
4500 
4501 /*
4502  * Read or write a bunch of msrs. Parameters are user addresses.
4503  *
4504  * @return number of msrs set successfully.
4505  */
4506 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4507 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4508 				unsigned index, u64 *data),
4509 		  int writeback)
4510 {
4511 	struct kvm_msrs msrs;
4512 	struct kvm_msr_entry *entries;
4513 	unsigned size;
4514 	int r;
4515 
4516 	r = -EFAULT;
4517 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4518 		goto out;
4519 
4520 	r = -E2BIG;
4521 	if (msrs.nmsrs >= MAX_IO_MSRS)
4522 		goto out;
4523 
4524 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4525 	entries = memdup_user(user_msrs->entries, size);
4526 	if (IS_ERR(entries)) {
4527 		r = PTR_ERR(entries);
4528 		goto out;
4529 	}
4530 
4531 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4532 
4533 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4534 		r = -EFAULT;
4535 
4536 	kfree(entries);
4537 out:
4538 	return r;
4539 }
4540 
4541 static inline bool kvm_can_mwait_in_guest(void)
4542 {
4543 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4544 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4545 		boot_cpu_has(X86_FEATURE_ARAT);
4546 }
4547 
4548 #ifdef CONFIG_KVM_HYPERV
4549 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4550 					    struct kvm_cpuid2 __user *cpuid_arg)
4551 {
4552 	struct kvm_cpuid2 cpuid;
4553 	int r;
4554 
4555 	r = -EFAULT;
4556 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4557 		return r;
4558 
4559 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4560 	if (r)
4561 		return r;
4562 
4563 	r = -EFAULT;
4564 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4565 		return r;
4566 
4567 	return 0;
4568 }
4569 #endif
4570 
4571 static bool kvm_is_vm_type_supported(unsigned long type)
4572 {
4573 	return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4574 }
4575 
4576 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4577 {
4578 	int r = 0;
4579 
4580 	switch (ext) {
4581 	case KVM_CAP_IRQCHIP:
4582 	case KVM_CAP_HLT:
4583 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4584 	case KVM_CAP_SET_TSS_ADDR:
4585 	case KVM_CAP_EXT_CPUID:
4586 	case KVM_CAP_EXT_EMUL_CPUID:
4587 	case KVM_CAP_CLOCKSOURCE:
4588 	case KVM_CAP_PIT:
4589 	case KVM_CAP_NOP_IO_DELAY:
4590 	case KVM_CAP_MP_STATE:
4591 	case KVM_CAP_SYNC_MMU:
4592 	case KVM_CAP_USER_NMI:
4593 	case KVM_CAP_REINJECT_CONTROL:
4594 	case KVM_CAP_IRQ_INJECT_STATUS:
4595 	case KVM_CAP_IOEVENTFD:
4596 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4597 	case KVM_CAP_PIT2:
4598 	case KVM_CAP_PIT_STATE2:
4599 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4600 	case KVM_CAP_VCPU_EVENTS:
4601 #ifdef CONFIG_KVM_HYPERV
4602 	case KVM_CAP_HYPERV:
4603 	case KVM_CAP_HYPERV_VAPIC:
4604 	case KVM_CAP_HYPERV_SPIN:
4605 	case KVM_CAP_HYPERV_TIME:
4606 	case KVM_CAP_HYPERV_SYNIC:
4607 	case KVM_CAP_HYPERV_SYNIC2:
4608 	case KVM_CAP_HYPERV_VP_INDEX:
4609 	case KVM_CAP_HYPERV_EVENTFD:
4610 	case KVM_CAP_HYPERV_TLBFLUSH:
4611 	case KVM_CAP_HYPERV_SEND_IPI:
4612 	case KVM_CAP_HYPERV_CPUID:
4613 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4614 	case KVM_CAP_SYS_HYPERV_CPUID:
4615 #endif
4616 	case KVM_CAP_PCI_SEGMENT:
4617 	case KVM_CAP_DEBUGREGS:
4618 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4619 	case KVM_CAP_XSAVE:
4620 	case KVM_CAP_ASYNC_PF:
4621 	case KVM_CAP_ASYNC_PF_INT:
4622 	case KVM_CAP_GET_TSC_KHZ:
4623 	case KVM_CAP_KVMCLOCK_CTRL:
4624 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4625 	case KVM_CAP_TSC_DEADLINE_TIMER:
4626 	case KVM_CAP_DISABLE_QUIRKS:
4627 	case KVM_CAP_SET_BOOT_CPU_ID:
4628  	case KVM_CAP_SPLIT_IRQCHIP:
4629 	case KVM_CAP_IMMEDIATE_EXIT:
4630 	case KVM_CAP_PMU_EVENT_FILTER:
4631 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4632 	case KVM_CAP_GET_MSR_FEATURES:
4633 	case KVM_CAP_MSR_PLATFORM_INFO:
4634 	case KVM_CAP_EXCEPTION_PAYLOAD:
4635 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4636 	case KVM_CAP_SET_GUEST_DEBUG:
4637 	case KVM_CAP_LAST_CPU:
4638 	case KVM_CAP_X86_USER_SPACE_MSR:
4639 	case KVM_CAP_X86_MSR_FILTER:
4640 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4641 #ifdef CONFIG_X86_SGX_KVM
4642 	case KVM_CAP_SGX_ATTRIBUTE:
4643 #endif
4644 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4645 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4646 	case KVM_CAP_SREGS2:
4647 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4648 	case KVM_CAP_VCPU_ATTRIBUTES:
4649 	case KVM_CAP_SYS_ATTRIBUTES:
4650 	case KVM_CAP_VAPIC:
4651 	case KVM_CAP_ENABLE_CAP:
4652 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4653 	case KVM_CAP_IRQFD_RESAMPLE:
4654 	case KVM_CAP_MEMORY_FAULT_INFO:
4655 	case KVM_CAP_X86_GUEST_MODE:
4656 		r = 1;
4657 		break;
4658 	case KVM_CAP_PRE_FAULT_MEMORY:
4659 		r = tdp_enabled;
4660 		break;
4661 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4662 		r = APIC_BUS_CYCLE_NS_DEFAULT;
4663 		break;
4664 	case KVM_CAP_EXIT_HYPERCALL:
4665 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4666 		break;
4667 	case KVM_CAP_SET_GUEST_DEBUG2:
4668 		return KVM_GUESTDBG_VALID_MASK;
4669 #ifdef CONFIG_KVM_XEN
4670 	case KVM_CAP_XEN_HVM:
4671 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4672 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4673 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4674 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4675 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4676 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4677 		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4678 		if (sched_info_on())
4679 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4680 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4681 		break;
4682 #endif
4683 	case KVM_CAP_SYNC_REGS:
4684 		r = KVM_SYNC_X86_VALID_FIELDS;
4685 		break;
4686 	case KVM_CAP_ADJUST_CLOCK:
4687 		r = KVM_CLOCK_VALID_FLAGS;
4688 		break;
4689 	case KVM_CAP_X86_DISABLE_EXITS:
4690 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4691 
4692 		if (!mitigate_smt_rsb) {
4693 			r |= KVM_X86_DISABLE_EXITS_HLT |
4694 			     KVM_X86_DISABLE_EXITS_CSTATE;
4695 
4696 			if (kvm_can_mwait_in_guest())
4697 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4698 		}
4699 		break;
4700 	case KVM_CAP_X86_SMM:
4701 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4702 			break;
4703 
4704 		/* SMBASE is usually relocated above 1M on modern chipsets,
4705 		 * and SMM handlers might indeed rely on 4G segment limits,
4706 		 * so do not report SMM to be available if real mode is
4707 		 * emulated via vm86 mode.  Still, do not go to great lengths
4708 		 * to avoid userspace's usage of the feature, because it is a
4709 		 * fringe case that is not enabled except via specific settings
4710 		 * of the module parameters.
4711 		 */
4712 		r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4713 		break;
4714 	case KVM_CAP_NR_VCPUS:
4715 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4716 		break;
4717 	case KVM_CAP_MAX_VCPUS:
4718 		r = KVM_MAX_VCPUS;
4719 		break;
4720 	case KVM_CAP_MAX_VCPU_ID:
4721 		r = KVM_MAX_VCPU_IDS;
4722 		break;
4723 	case KVM_CAP_PV_MMU:	/* obsolete */
4724 		r = 0;
4725 		break;
4726 	case KVM_CAP_MCE:
4727 		r = KVM_MAX_MCE_BANKS;
4728 		break;
4729 	case KVM_CAP_XCRS:
4730 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4731 		break;
4732 	case KVM_CAP_TSC_CONTROL:
4733 	case KVM_CAP_VM_TSC_CONTROL:
4734 		r = kvm_caps.has_tsc_control;
4735 		break;
4736 	case KVM_CAP_X2APIC_API:
4737 		r = KVM_X2APIC_API_VALID_FLAGS;
4738 		break;
4739 	case KVM_CAP_NESTED_STATE:
4740 		r = kvm_x86_ops.nested_ops->get_state ?
4741 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4742 		break;
4743 #ifdef CONFIG_KVM_HYPERV
4744 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4745 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4746 		break;
4747 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4748 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4749 		break;
4750 #endif
4751 	case KVM_CAP_SMALLER_MAXPHYADDR:
4752 		r = (int) allow_smaller_maxphyaddr;
4753 		break;
4754 	case KVM_CAP_STEAL_TIME:
4755 		r = sched_info_on();
4756 		break;
4757 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4758 		if (kvm_caps.has_bus_lock_exit)
4759 			r = KVM_BUS_LOCK_DETECTION_OFF |
4760 			    KVM_BUS_LOCK_DETECTION_EXIT;
4761 		else
4762 			r = 0;
4763 		break;
4764 	case KVM_CAP_XSAVE2: {
4765 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4766 		if (r < sizeof(struct kvm_xsave))
4767 			r = sizeof(struct kvm_xsave);
4768 		break;
4769 	}
4770 	case KVM_CAP_PMU_CAPABILITY:
4771 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4772 		break;
4773 	case KVM_CAP_DISABLE_QUIRKS2:
4774 		r = KVM_X86_VALID_QUIRKS;
4775 		break;
4776 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4777 		r = kvm_caps.has_notify_vmexit;
4778 		break;
4779 	case KVM_CAP_VM_TYPES:
4780 		r = kvm_caps.supported_vm_types;
4781 		break;
4782 	case KVM_CAP_READONLY_MEM:
4783 		r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4784 		break;
4785 	default:
4786 		break;
4787 	}
4788 	return r;
4789 }
4790 
4791 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4792 {
4793 	if (attr->group) {
4794 		if (kvm_x86_ops.dev_get_attr)
4795 			return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4796 		return -ENXIO;
4797 	}
4798 
4799 	switch (attr->attr) {
4800 	case KVM_X86_XCOMP_GUEST_SUPP:
4801 		*val = kvm_caps.supported_xcr0;
4802 		return 0;
4803 	default:
4804 		return -ENXIO;
4805 	}
4806 }
4807 
4808 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4809 {
4810 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4811 	int r;
4812 	u64 val;
4813 
4814 	r = __kvm_x86_dev_get_attr(attr, &val);
4815 	if (r < 0)
4816 		return r;
4817 
4818 	if (put_user(val, uaddr))
4819 		return -EFAULT;
4820 
4821 	return 0;
4822 }
4823 
4824 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4825 {
4826 	u64 val;
4827 
4828 	return __kvm_x86_dev_get_attr(attr, &val);
4829 }
4830 
4831 long kvm_arch_dev_ioctl(struct file *filp,
4832 			unsigned int ioctl, unsigned long arg)
4833 {
4834 	void __user *argp = (void __user *)arg;
4835 	long r;
4836 
4837 	switch (ioctl) {
4838 	case KVM_GET_MSR_INDEX_LIST: {
4839 		struct kvm_msr_list __user *user_msr_list = argp;
4840 		struct kvm_msr_list msr_list;
4841 		unsigned n;
4842 
4843 		r = -EFAULT;
4844 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4845 			goto out;
4846 		n = msr_list.nmsrs;
4847 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4848 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4849 			goto out;
4850 		r = -E2BIG;
4851 		if (n < msr_list.nmsrs)
4852 			goto out;
4853 		r = -EFAULT;
4854 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4855 				 num_msrs_to_save * sizeof(u32)))
4856 			goto out;
4857 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4858 				 &emulated_msrs,
4859 				 num_emulated_msrs * sizeof(u32)))
4860 			goto out;
4861 		r = 0;
4862 		break;
4863 	}
4864 	case KVM_GET_SUPPORTED_CPUID:
4865 	case KVM_GET_EMULATED_CPUID: {
4866 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4867 		struct kvm_cpuid2 cpuid;
4868 
4869 		r = -EFAULT;
4870 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4871 			goto out;
4872 
4873 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4874 					    ioctl);
4875 		if (r)
4876 			goto out;
4877 
4878 		r = -EFAULT;
4879 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4880 			goto out;
4881 		r = 0;
4882 		break;
4883 	}
4884 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4885 		r = -EFAULT;
4886 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4887 				 sizeof(kvm_caps.supported_mce_cap)))
4888 			goto out;
4889 		r = 0;
4890 		break;
4891 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4892 		struct kvm_msr_list __user *user_msr_list = argp;
4893 		struct kvm_msr_list msr_list;
4894 		unsigned int n;
4895 
4896 		r = -EFAULT;
4897 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4898 			goto out;
4899 		n = msr_list.nmsrs;
4900 		msr_list.nmsrs = num_msr_based_features;
4901 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4902 			goto out;
4903 		r = -E2BIG;
4904 		if (n < msr_list.nmsrs)
4905 			goto out;
4906 		r = -EFAULT;
4907 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4908 				 num_msr_based_features * sizeof(u32)))
4909 			goto out;
4910 		r = 0;
4911 		break;
4912 	}
4913 	case KVM_GET_MSRS:
4914 		r = msr_io(NULL, argp, do_get_feature_msr, 1);
4915 		break;
4916 #ifdef CONFIG_KVM_HYPERV
4917 	case KVM_GET_SUPPORTED_HV_CPUID:
4918 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4919 		break;
4920 #endif
4921 	case KVM_GET_DEVICE_ATTR: {
4922 		struct kvm_device_attr attr;
4923 		r = -EFAULT;
4924 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4925 			break;
4926 		r = kvm_x86_dev_get_attr(&attr);
4927 		break;
4928 	}
4929 	case KVM_HAS_DEVICE_ATTR: {
4930 		struct kvm_device_attr attr;
4931 		r = -EFAULT;
4932 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4933 			break;
4934 		r = kvm_x86_dev_has_attr(&attr);
4935 		break;
4936 	}
4937 	default:
4938 		r = -EINVAL;
4939 		break;
4940 	}
4941 out:
4942 	return r;
4943 }
4944 
4945 static void wbinvd_ipi(void *garbage)
4946 {
4947 	wbinvd();
4948 }
4949 
4950 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4951 {
4952 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4953 }
4954 
4955 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4956 {
4957 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4958 
4959 	vcpu->arch.l1tf_flush_l1d = true;
4960 
4961 	if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4962 		pmu->need_cleanup = true;
4963 		kvm_make_request(KVM_REQ_PMU, vcpu);
4964 	}
4965 
4966 	/* Address WBINVD may be executed by guest */
4967 	if (need_emulate_wbinvd(vcpu)) {
4968 		if (kvm_x86_call(has_wbinvd_exit)())
4969 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4970 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4971 			smp_call_function_single(vcpu->cpu,
4972 					wbinvd_ipi, NULL, 1);
4973 	}
4974 
4975 	kvm_x86_call(vcpu_load)(vcpu, cpu);
4976 
4977 	/* Save host pkru register if supported */
4978 	vcpu->arch.host_pkru = read_pkru();
4979 
4980 	/* Apply any externally detected TSC adjustments (due to suspend) */
4981 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4982 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4983 		vcpu->arch.tsc_offset_adjustment = 0;
4984 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4985 	}
4986 
4987 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4988 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4989 				rdtsc() - vcpu->arch.last_host_tsc;
4990 		if (tsc_delta < 0)
4991 			mark_tsc_unstable("KVM discovered backwards TSC");
4992 
4993 		if (kvm_check_tsc_unstable()) {
4994 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4995 						vcpu->arch.last_guest_tsc);
4996 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4997 			vcpu->arch.tsc_catchup = 1;
4998 		}
4999 
5000 		if (kvm_lapic_hv_timer_in_use(vcpu))
5001 			kvm_lapic_restart_hv_timer(vcpu);
5002 
5003 		/*
5004 		 * On a host with synchronized TSC, there is no need to update
5005 		 * kvmclock on vcpu->cpu migration
5006 		 */
5007 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5008 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5009 		if (vcpu->cpu != cpu)
5010 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5011 		vcpu->cpu = cpu;
5012 	}
5013 
5014 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5015 }
5016 
5017 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5018 {
5019 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5020 	struct kvm_steal_time __user *st;
5021 	struct kvm_memslots *slots;
5022 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5023 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5024 
5025 	/*
5026 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5027 	 * an instruction boundary and will not trigger guest emulation of any
5028 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5029 	 * when this is true, for example allowing the vCPU to be marked
5030 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5031 	 */
5032 	if (!vcpu->arch.at_instruction_boundary) {
5033 		vcpu->stat.preemption_other++;
5034 		return;
5035 	}
5036 
5037 	vcpu->stat.preemption_reported++;
5038 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5039 		return;
5040 
5041 	if (vcpu->arch.st.preempted)
5042 		return;
5043 
5044 	/* This happens on process exit */
5045 	if (unlikely(current->mm != vcpu->kvm->mm))
5046 		return;
5047 
5048 	slots = kvm_memslots(vcpu->kvm);
5049 
5050 	if (unlikely(slots->generation != ghc->generation ||
5051 		     gpa != ghc->gpa ||
5052 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5053 		return;
5054 
5055 	st = (struct kvm_steal_time __user *)ghc->hva;
5056 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5057 
5058 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5059 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5060 
5061 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5062 }
5063 
5064 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5065 {
5066 	int idx;
5067 
5068 	if (vcpu->preempted) {
5069 		/*
5070 		 * Assume protected guests are in-kernel.  Inefficient yielding
5071 		 * due to false positives is preferable to never yielding due
5072 		 * to false negatives.
5073 		 */
5074 		vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5075 						 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5076 
5077 		/*
5078 		 * Take the srcu lock as memslots will be accessed to check the gfn
5079 		 * cache generation against the memslots generation.
5080 		 */
5081 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5082 		if (kvm_xen_msr_enabled(vcpu->kvm))
5083 			kvm_xen_runstate_set_preempted(vcpu);
5084 		else
5085 			kvm_steal_time_set_preempted(vcpu);
5086 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5087 	}
5088 
5089 	kvm_x86_call(vcpu_put)(vcpu);
5090 	vcpu->arch.last_host_tsc = rdtsc();
5091 }
5092 
5093 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5094 				    struct kvm_lapic_state *s)
5095 {
5096 	kvm_x86_call(sync_pir_to_irr)(vcpu);
5097 
5098 	return kvm_apic_get_state(vcpu, s);
5099 }
5100 
5101 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5102 				    struct kvm_lapic_state *s)
5103 {
5104 	int r;
5105 
5106 	r = kvm_apic_set_state(vcpu, s);
5107 	if (r)
5108 		return r;
5109 	update_cr8_intercept(vcpu);
5110 
5111 	return 0;
5112 }
5113 
5114 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5115 {
5116 	/*
5117 	 * We can accept userspace's request for interrupt injection
5118 	 * as long as we have a place to store the interrupt number.
5119 	 * The actual injection will happen when the CPU is able to
5120 	 * deliver the interrupt.
5121 	 */
5122 	if (kvm_cpu_has_extint(vcpu))
5123 		return false;
5124 
5125 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5126 	return (!lapic_in_kernel(vcpu) ||
5127 		kvm_apic_accept_pic_intr(vcpu));
5128 }
5129 
5130 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5131 {
5132 	/*
5133 	 * Do not cause an interrupt window exit if an exception
5134 	 * is pending or an event needs reinjection; userspace
5135 	 * might want to inject the interrupt manually using KVM_SET_REGS
5136 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5137 	 * instruction boundary and with no events half-injected.
5138 	 */
5139 	return (kvm_arch_interrupt_allowed(vcpu) &&
5140 		kvm_cpu_accept_dm_intr(vcpu) &&
5141 		!kvm_event_needs_reinjection(vcpu) &&
5142 		!kvm_is_exception_pending(vcpu));
5143 }
5144 
5145 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5146 				    struct kvm_interrupt *irq)
5147 {
5148 	if (irq->irq >= KVM_NR_INTERRUPTS)
5149 		return -EINVAL;
5150 
5151 	if (!irqchip_in_kernel(vcpu->kvm)) {
5152 		kvm_queue_interrupt(vcpu, irq->irq, false);
5153 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5154 		return 0;
5155 	}
5156 
5157 	/*
5158 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5159 	 * fail for in-kernel 8259.
5160 	 */
5161 	if (pic_in_kernel(vcpu->kvm))
5162 		return -ENXIO;
5163 
5164 	if (vcpu->arch.pending_external_vector != -1)
5165 		return -EEXIST;
5166 
5167 	vcpu->arch.pending_external_vector = irq->irq;
5168 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5169 	return 0;
5170 }
5171 
5172 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5173 {
5174 	kvm_inject_nmi(vcpu);
5175 
5176 	return 0;
5177 }
5178 
5179 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5180 					   struct kvm_tpr_access_ctl *tac)
5181 {
5182 	if (tac->flags)
5183 		return -EINVAL;
5184 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5185 	return 0;
5186 }
5187 
5188 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5189 					u64 mcg_cap)
5190 {
5191 	int r;
5192 	unsigned bank_num = mcg_cap & 0xff, bank;
5193 
5194 	r = -EINVAL;
5195 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5196 		goto out;
5197 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5198 		goto out;
5199 	r = 0;
5200 	vcpu->arch.mcg_cap = mcg_cap;
5201 	/* Init IA32_MCG_CTL to all 1s */
5202 	if (mcg_cap & MCG_CTL_P)
5203 		vcpu->arch.mcg_ctl = ~(u64)0;
5204 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5205 	for (bank = 0; bank < bank_num; bank++) {
5206 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5207 		if (mcg_cap & MCG_CMCI_P)
5208 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5209 	}
5210 
5211 	kvm_apic_after_set_mcg_cap(vcpu);
5212 
5213 	kvm_x86_call(setup_mce)(vcpu);
5214 out:
5215 	return r;
5216 }
5217 
5218 /*
5219  * Validate this is an UCNA (uncorrectable no action) error by checking the
5220  * MCG_STATUS and MCi_STATUS registers:
5221  * - none of the bits for Machine Check Exceptions are set
5222  * - both the VAL (valid) and UC (uncorrectable) bits are set
5223  * MCI_STATUS_PCC - Processor Context Corrupted
5224  * MCI_STATUS_S - Signaled as a Machine Check Exception
5225  * MCI_STATUS_AR - Software recoverable Action Required
5226  */
5227 static bool is_ucna(struct kvm_x86_mce *mce)
5228 {
5229 	return	!mce->mcg_status &&
5230 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5231 		(mce->status & MCI_STATUS_VAL) &&
5232 		(mce->status & MCI_STATUS_UC);
5233 }
5234 
5235 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5236 {
5237 	u64 mcg_cap = vcpu->arch.mcg_cap;
5238 
5239 	banks[1] = mce->status;
5240 	banks[2] = mce->addr;
5241 	banks[3] = mce->misc;
5242 	vcpu->arch.mcg_status = mce->mcg_status;
5243 
5244 	if (!(mcg_cap & MCG_CMCI_P) ||
5245 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5246 		return 0;
5247 
5248 	if (lapic_in_kernel(vcpu))
5249 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5250 
5251 	return 0;
5252 }
5253 
5254 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5255 				      struct kvm_x86_mce *mce)
5256 {
5257 	u64 mcg_cap = vcpu->arch.mcg_cap;
5258 	unsigned bank_num = mcg_cap & 0xff;
5259 	u64 *banks = vcpu->arch.mce_banks;
5260 
5261 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5262 		return -EINVAL;
5263 
5264 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5265 
5266 	if (is_ucna(mce))
5267 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5268 
5269 	/*
5270 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5271 	 * reporting is disabled
5272 	 */
5273 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5274 	    vcpu->arch.mcg_ctl != ~(u64)0)
5275 		return 0;
5276 	/*
5277 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5278 	 * reporting is disabled for the bank
5279 	 */
5280 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5281 		return 0;
5282 	if (mce->status & MCI_STATUS_UC) {
5283 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5284 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5285 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5286 			return 0;
5287 		}
5288 		if (banks[1] & MCI_STATUS_VAL)
5289 			mce->status |= MCI_STATUS_OVER;
5290 		banks[2] = mce->addr;
5291 		banks[3] = mce->misc;
5292 		vcpu->arch.mcg_status = mce->mcg_status;
5293 		banks[1] = mce->status;
5294 		kvm_queue_exception(vcpu, MC_VECTOR);
5295 	} else if (!(banks[1] & MCI_STATUS_VAL)
5296 		   || !(banks[1] & MCI_STATUS_UC)) {
5297 		if (banks[1] & MCI_STATUS_VAL)
5298 			mce->status |= MCI_STATUS_OVER;
5299 		banks[2] = mce->addr;
5300 		banks[3] = mce->misc;
5301 		banks[1] = mce->status;
5302 	} else
5303 		banks[1] |= MCI_STATUS_OVER;
5304 	return 0;
5305 }
5306 
5307 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5308 					       struct kvm_vcpu_events *events)
5309 {
5310 	struct kvm_queued_exception *ex;
5311 
5312 	process_nmi(vcpu);
5313 
5314 #ifdef CONFIG_KVM_SMM
5315 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5316 		process_smi(vcpu);
5317 #endif
5318 
5319 	/*
5320 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5321 	 * the only time there can be two queued exceptions is if there's a
5322 	 * non-exiting _injected_ exception, and a pending exiting exception.
5323 	 * In that case, ignore the VM-Exiting exception as it's an extension
5324 	 * of the injected exception.
5325 	 */
5326 	if (vcpu->arch.exception_vmexit.pending &&
5327 	    !vcpu->arch.exception.pending &&
5328 	    !vcpu->arch.exception.injected)
5329 		ex = &vcpu->arch.exception_vmexit;
5330 	else
5331 		ex = &vcpu->arch.exception;
5332 
5333 	/*
5334 	 * In guest mode, payload delivery should be deferred if the exception
5335 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5336 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5337 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5338 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5339 	 * the payload if the capability hasn't been requested.
5340 	 */
5341 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5342 	    ex->pending && ex->has_payload)
5343 		kvm_deliver_exception_payload(vcpu, ex);
5344 
5345 	memset(events, 0, sizeof(*events));
5346 
5347 	/*
5348 	 * The API doesn't provide the instruction length for software
5349 	 * exceptions, so don't report them. As long as the guest RIP
5350 	 * isn't advanced, we should expect to encounter the exception
5351 	 * again.
5352 	 */
5353 	if (!kvm_exception_is_soft(ex->vector)) {
5354 		events->exception.injected = ex->injected;
5355 		events->exception.pending = ex->pending;
5356 		/*
5357 		 * For ABI compatibility, deliberately conflate
5358 		 * pending and injected exceptions when
5359 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5360 		 */
5361 		if (!vcpu->kvm->arch.exception_payload_enabled)
5362 			events->exception.injected |= ex->pending;
5363 	}
5364 	events->exception.nr = ex->vector;
5365 	events->exception.has_error_code = ex->has_error_code;
5366 	events->exception.error_code = ex->error_code;
5367 	events->exception_has_payload = ex->has_payload;
5368 	events->exception_payload = ex->payload;
5369 
5370 	events->interrupt.injected =
5371 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5372 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5373 	events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5374 
5375 	events->nmi.injected = vcpu->arch.nmi_injected;
5376 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5377 	events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5378 
5379 	/* events->sipi_vector is never valid when reporting to user space */
5380 
5381 #ifdef CONFIG_KVM_SMM
5382 	events->smi.smm = is_smm(vcpu);
5383 	events->smi.pending = vcpu->arch.smi_pending;
5384 	events->smi.smm_inside_nmi =
5385 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5386 #endif
5387 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5388 
5389 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5390 			 | KVM_VCPUEVENT_VALID_SHADOW
5391 			 | KVM_VCPUEVENT_VALID_SMM);
5392 	if (vcpu->kvm->arch.exception_payload_enabled)
5393 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5394 	if (vcpu->kvm->arch.triple_fault_event) {
5395 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5396 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5397 	}
5398 }
5399 
5400 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5401 					      struct kvm_vcpu_events *events)
5402 {
5403 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5404 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5405 			      | KVM_VCPUEVENT_VALID_SHADOW
5406 			      | KVM_VCPUEVENT_VALID_SMM
5407 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5408 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5409 		return -EINVAL;
5410 
5411 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5412 		if (!vcpu->kvm->arch.exception_payload_enabled)
5413 			return -EINVAL;
5414 		if (events->exception.pending)
5415 			events->exception.injected = 0;
5416 		else
5417 			events->exception_has_payload = 0;
5418 	} else {
5419 		events->exception.pending = 0;
5420 		events->exception_has_payload = 0;
5421 	}
5422 
5423 	if ((events->exception.injected || events->exception.pending) &&
5424 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5425 		return -EINVAL;
5426 
5427 	/* INITs are latched while in SMM */
5428 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5429 	    (events->smi.smm || events->smi.pending) &&
5430 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5431 		return -EINVAL;
5432 
5433 	process_nmi(vcpu);
5434 
5435 	/*
5436 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5437 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5438 	 * pending exceptions, already-injected exceptions are not subject to
5439 	 * intercpetion.  Note, userspace that conflates pending and injected
5440 	 * is hosed, and will incorrectly convert an injected exception into a
5441 	 * pending exception, which in turn may cause a spurious VM-Exit.
5442 	 */
5443 	vcpu->arch.exception_from_userspace = events->exception.pending;
5444 
5445 	vcpu->arch.exception_vmexit.pending = false;
5446 
5447 	vcpu->arch.exception.injected = events->exception.injected;
5448 	vcpu->arch.exception.pending = events->exception.pending;
5449 	vcpu->arch.exception.vector = events->exception.nr;
5450 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5451 	vcpu->arch.exception.error_code = events->exception.error_code;
5452 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5453 	vcpu->arch.exception.payload = events->exception_payload;
5454 
5455 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5456 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5457 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5458 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5459 		kvm_x86_call(set_interrupt_shadow)(vcpu,
5460 						   events->interrupt.shadow);
5461 
5462 	vcpu->arch.nmi_injected = events->nmi.injected;
5463 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5464 		vcpu->arch.nmi_pending = 0;
5465 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5466 		if (events->nmi.pending)
5467 			kvm_make_request(KVM_REQ_NMI, vcpu);
5468 	}
5469 	kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5470 
5471 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5472 	    lapic_in_kernel(vcpu))
5473 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5474 
5475 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5476 #ifdef CONFIG_KVM_SMM
5477 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5478 			kvm_leave_nested(vcpu);
5479 			kvm_smm_changed(vcpu, events->smi.smm);
5480 		}
5481 
5482 		vcpu->arch.smi_pending = events->smi.pending;
5483 
5484 		if (events->smi.smm) {
5485 			if (events->smi.smm_inside_nmi)
5486 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5487 			else
5488 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5489 		}
5490 
5491 #else
5492 		if (events->smi.smm || events->smi.pending ||
5493 		    events->smi.smm_inside_nmi)
5494 			return -EINVAL;
5495 #endif
5496 
5497 		if (lapic_in_kernel(vcpu)) {
5498 			if (events->smi.latched_init)
5499 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5500 			else
5501 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5502 		}
5503 	}
5504 
5505 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5506 		if (!vcpu->kvm->arch.triple_fault_event)
5507 			return -EINVAL;
5508 		if (events->triple_fault.pending)
5509 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5510 		else
5511 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5512 	}
5513 
5514 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5515 
5516 	return 0;
5517 }
5518 
5519 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5520 					    struct kvm_debugregs *dbgregs)
5521 {
5522 	unsigned int i;
5523 
5524 	if (vcpu->kvm->arch.has_protected_state &&
5525 	    vcpu->arch.guest_state_protected)
5526 		return -EINVAL;
5527 
5528 	memset(dbgregs, 0, sizeof(*dbgregs));
5529 
5530 	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5531 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5532 		dbgregs->db[i] = vcpu->arch.db[i];
5533 
5534 	dbgregs->dr6 = vcpu->arch.dr6;
5535 	dbgregs->dr7 = vcpu->arch.dr7;
5536 	return 0;
5537 }
5538 
5539 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5540 					    struct kvm_debugregs *dbgregs)
5541 {
5542 	unsigned int i;
5543 
5544 	if (vcpu->kvm->arch.has_protected_state &&
5545 	    vcpu->arch.guest_state_protected)
5546 		return -EINVAL;
5547 
5548 	if (dbgregs->flags)
5549 		return -EINVAL;
5550 
5551 	if (!kvm_dr6_valid(dbgregs->dr6))
5552 		return -EINVAL;
5553 	if (!kvm_dr7_valid(dbgregs->dr7))
5554 		return -EINVAL;
5555 
5556 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5557 		vcpu->arch.db[i] = dbgregs->db[i];
5558 
5559 	kvm_update_dr0123(vcpu);
5560 	vcpu->arch.dr6 = dbgregs->dr6;
5561 	vcpu->arch.dr7 = dbgregs->dr7;
5562 	kvm_update_dr7(vcpu);
5563 
5564 	return 0;
5565 }
5566 
5567 
5568 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5569 					 u8 *state, unsigned int size)
5570 {
5571 	/*
5572 	 * Only copy state for features that are enabled for the guest.  The
5573 	 * state itself isn't problematic, but setting bits in the header for
5574 	 * features that are supported in *this* host but not exposed to the
5575 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5576 	 * compatible host without the features that are NOT exposed to the
5577 	 * guest.
5578 	 *
5579 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5580 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5581 	 * supported by the host.
5582 	 */
5583 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5584 			     XFEATURE_MASK_FPSSE;
5585 
5586 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5587 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5588 
5589 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5590 				       supported_xcr0, vcpu->arch.pkru);
5591 	return 0;
5592 }
5593 
5594 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5595 					struct kvm_xsave *guest_xsave)
5596 {
5597 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5598 					     sizeof(guest_xsave->region));
5599 }
5600 
5601 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5602 					struct kvm_xsave *guest_xsave)
5603 {
5604 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5605 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5606 
5607 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5608 					      guest_xsave->region,
5609 					      kvm_caps.supported_xcr0,
5610 					      &vcpu->arch.pkru);
5611 }
5612 
5613 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5614 				       struct kvm_xcrs *guest_xcrs)
5615 {
5616 	if (vcpu->kvm->arch.has_protected_state &&
5617 	    vcpu->arch.guest_state_protected)
5618 		return -EINVAL;
5619 
5620 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5621 		guest_xcrs->nr_xcrs = 0;
5622 		return 0;
5623 	}
5624 
5625 	guest_xcrs->nr_xcrs = 1;
5626 	guest_xcrs->flags = 0;
5627 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5628 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5629 	return 0;
5630 }
5631 
5632 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5633 				       struct kvm_xcrs *guest_xcrs)
5634 {
5635 	int i, r = 0;
5636 
5637 	if (vcpu->kvm->arch.has_protected_state &&
5638 	    vcpu->arch.guest_state_protected)
5639 		return -EINVAL;
5640 
5641 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5642 		return -EINVAL;
5643 
5644 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5645 		return -EINVAL;
5646 
5647 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5648 		/* Only support XCR0 currently */
5649 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5650 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5651 				guest_xcrs->xcrs[i].value);
5652 			break;
5653 		}
5654 	if (r)
5655 		r = -EINVAL;
5656 	return r;
5657 }
5658 
5659 /*
5660  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5661  * stopped by the hypervisor.  This function will be called from the host only.
5662  * EINVAL is returned when the host attempts to set the flag for a guest that
5663  * does not support pv clocks.
5664  */
5665 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5666 {
5667 	if (!vcpu->arch.pv_time.active)
5668 		return -EINVAL;
5669 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5670 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5671 	return 0;
5672 }
5673 
5674 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5675 				 struct kvm_device_attr *attr)
5676 {
5677 	int r;
5678 
5679 	switch (attr->attr) {
5680 	case KVM_VCPU_TSC_OFFSET:
5681 		r = 0;
5682 		break;
5683 	default:
5684 		r = -ENXIO;
5685 	}
5686 
5687 	return r;
5688 }
5689 
5690 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5691 				 struct kvm_device_attr *attr)
5692 {
5693 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5694 	int r;
5695 
5696 	switch (attr->attr) {
5697 	case KVM_VCPU_TSC_OFFSET:
5698 		r = -EFAULT;
5699 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5700 			break;
5701 		r = 0;
5702 		break;
5703 	default:
5704 		r = -ENXIO;
5705 	}
5706 
5707 	return r;
5708 }
5709 
5710 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5711 				 struct kvm_device_attr *attr)
5712 {
5713 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5714 	struct kvm *kvm = vcpu->kvm;
5715 	int r;
5716 
5717 	switch (attr->attr) {
5718 	case KVM_VCPU_TSC_OFFSET: {
5719 		u64 offset, tsc, ns;
5720 		unsigned long flags;
5721 		bool matched;
5722 
5723 		r = -EFAULT;
5724 		if (get_user(offset, uaddr))
5725 			break;
5726 
5727 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5728 
5729 		matched = (vcpu->arch.virtual_tsc_khz &&
5730 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5731 			   kvm->arch.last_tsc_offset == offset);
5732 
5733 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5734 		ns = get_kvmclock_base_ns();
5735 
5736 		kvm->arch.user_set_tsc = true;
5737 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5738 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5739 
5740 		r = 0;
5741 		break;
5742 	}
5743 	default:
5744 		r = -ENXIO;
5745 	}
5746 
5747 	return r;
5748 }
5749 
5750 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5751 				      unsigned int ioctl,
5752 				      void __user *argp)
5753 {
5754 	struct kvm_device_attr attr;
5755 	int r;
5756 
5757 	if (copy_from_user(&attr, argp, sizeof(attr)))
5758 		return -EFAULT;
5759 
5760 	if (attr.group != KVM_VCPU_TSC_CTRL)
5761 		return -ENXIO;
5762 
5763 	switch (ioctl) {
5764 	case KVM_HAS_DEVICE_ATTR:
5765 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5766 		break;
5767 	case KVM_GET_DEVICE_ATTR:
5768 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5769 		break;
5770 	case KVM_SET_DEVICE_ATTR:
5771 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5772 		break;
5773 	}
5774 
5775 	return r;
5776 }
5777 
5778 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5779 				     struct kvm_enable_cap *cap)
5780 {
5781 	if (cap->flags)
5782 		return -EINVAL;
5783 
5784 	switch (cap->cap) {
5785 #ifdef CONFIG_KVM_HYPERV
5786 	case KVM_CAP_HYPERV_SYNIC2:
5787 		if (cap->args[0])
5788 			return -EINVAL;
5789 		fallthrough;
5790 
5791 	case KVM_CAP_HYPERV_SYNIC:
5792 		if (!irqchip_in_kernel(vcpu->kvm))
5793 			return -EINVAL;
5794 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5795 					     KVM_CAP_HYPERV_SYNIC2);
5796 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5797 		{
5798 			int r;
5799 			uint16_t vmcs_version;
5800 			void __user *user_ptr;
5801 
5802 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5803 				return -ENOTTY;
5804 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5805 			if (!r) {
5806 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5807 				if (copy_to_user(user_ptr, &vmcs_version,
5808 						 sizeof(vmcs_version)))
5809 					r = -EFAULT;
5810 			}
5811 			return r;
5812 		}
5813 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5814 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5815 			return -ENOTTY;
5816 
5817 		return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5818 
5819 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5820 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5821 #endif
5822 
5823 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5824 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5825 		if (vcpu->arch.pv_cpuid.enforce)
5826 			kvm_update_pv_runtime(vcpu);
5827 
5828 		return 0;
5829 	default:
5830 		return -EINVAL;
5831 	}
5832 }
5833 
5834 long kvm_arch_vcpu_ioctl(struct file *filp,
5835 			 unsigned int ioctl, unsigned long arg)
5836 {
5837 	struct kvm_vcpu *vcpu = filp->private_data;
5838 	void __user *argp = (void __user *)arg;
5839 	int r;
5840 	union {
5841 		struct kvm_sregs2 *sregs2;
5842 		struct kvm_lapic_state *lapic;
5843 		struct kvm_xsave *xsave;
5844 		struct kvm_xcrs *xcrs;
5845 		void *buffer;
5846 	} u;
5847 
5848 	vcpu_load(vcpu);
5849 
5850 	u.buffer = NULL;
5851 	switch (ioctl) {
5852 	case KVM_GET_LAPIC: {
5853 		r = -EINVAL;
5854 		if (!lapic_in_kernel(vcpu))
5855 			goto out;
5856 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5857 
5858 		r = -ENOMEM;
5859 		if (!u.lapic)
5860 			goto out;
5861 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5862 		if (r)
5863 			goto out;
5864 		r = -EFAULT;
5865 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5866 			goto out;
5867 		r = 0;
5868 		break;
5869 	}
5870 	case KVM_SET_LAPIC: {
5871 		r = -EINVAL;
5872 		if (!lapic_in_kernel(vcpu))
5873 			goto out;
5874 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5875 		if (IS_ERR(u.lapic)) {
5876 			r = PTR_ERR(u.lapic);
5877 			goto out_nofree;
5878 		}
5879 
5880 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5881 		break;
5882 	}
5883 	case KVM_INTERRUPT: {
5884 		struct kvm_interrupt irq;
5885 
5886 		r = -EFAULT;
5887 		if (copy_from_user(&irq, argp, sizeof(irq)))
5888 			goto out;
5889 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5890 		break;
5891 	}
5892 	case KVM_NMI: {
5893 		r = kvm_vcpu_ioctl_nmi(vcpu);
5894 		break;
5895 	}
5896 	case KVM_SMI: {
5897 		r = kvm_inject_smi(vcpu);
5898 		break;
5899 	}
5900 	case KVM_SET_CPUID: {
5901 		struct kvm_cpuid __user *cpuid_arg = argp;
5902 		struct kvm_cpuid cpuid;
5903 
5904 		r = -EFAULT;
5905 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5906 			goto out;
5907 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5908 		break;
5909 	}
5910 	case KVM_SET_CPUID2: {
5911 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5912 		struct kvm_cpuid2 cpuid;
5913 
5914 		r = -EFAULT;
5915 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5916 			goto out;
5917 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5918 					      cpuid_arg->entries);
5919 		break;
5920 	}
5921 	case KVM_GET_CPUID2: {
5922 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5923 		struct kvm_cpuid2 cpuid;
5924 
5925 		r = -EFAULT;
5926 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5927 			goto out;
5928 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5929 					      cpuid_arg->entries);
5930 		if (r)
5931 			goto out;
5932 		r = -EFAULT;
5933 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5934 			goto out;
5935 		r = 0;
5936 		break;
5937 	}
5938 	case KVM_GET_MSRS: {
5939 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5940 		r = msr_io(vcpu, argp, do_get_msr, 1);
5941 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5942 		break;
5943 	}
5944 	case KVM_SET_MSRS: {
5945 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5946 		r = msr_io(vcpu, argp, do_set_msr, 0);
5947 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5948 		break;
5949 	}
5950 	case KVM_TPR_ACCESS_REPORTING: {
5951 		struct kvm_tpr_access_ctl tac;
5952 
5953 		r = -EFAULT;
5954 		if (copy_from_user(&tac, argp, sizeof(tac)))
5955 			goto out;
5956 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5957 		if (r)
5958 			goto out;
5959 		r = -EFAULT;
5960 		if (copy_to_user(argp, &tac, sizeof(tac)))
5961 			goto out;
5962 		r = 0;
5963 		break;
5964 	};
5965 	case KVM_SET_VAPIC_ADDR: {
5966 		struct kvm_vapic_addr va;
5967 		int idx;
5968 
5969 		r = -EINVAL;
5970 		if (!lapic_in_kernel(vcpu))
5971 			goto out;
5972 		r = -EFAULT;
5973 		if (copy_from_user(&va, argp, sizeof(va)))
5974 			goto out;
5975 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5976 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5977 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5978 		break;
5979 	}
5980 	case KVM_X86_SETUP_MCE: {
5981 		u64 mcg_cap;
5982 
5983 		r = -EFAULT;
5984 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5985 			goto out;
5986 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5987 		break;
5988 	}
5989 	case KVM_X86_SET_MCE: {
5990 		struct kvm_x86_mce mce;
5991 
5992 		r = -EFAULT;
5993 		if (copy_from_user(&mce, argp, sizeof(mce)))
5994 			goto out;
5995 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5996 		break;
5997 	}
5998 	case KVM_GET_VCPU_EVENTS: {
5999 		struct kvm_vcpu_events events;
6000 
6001 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6002 
6003 		r = -EFAULT;
6004 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6005 			break;
6006 		r = 0;
6007 		break;
6008 	}
6009 	case KVM_SET_VCPU_EVENTS: {
6010 		struct kvm_vcpu_events events;
6011 
6012 		r = -EFAULT;
6013 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6014 			break;
6015 
6016 		kvm_vcpu_srcu_read_lock(vcpu);
6017 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6018 		kvm_vcpu_srcu_read_unlock(vcpu);
6019 		break;
6020 	}
6021 	case KVM_GET_DEBUGREGS: {
6022 		struct kvm_debugregs dbgregs;
6023 
6024 		r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6025 		if (r < 0)
6026 			break;
6027 
6028 		r = -EFAULT;
6029 		if (copy_to_user(argp, &dbgregs,
6030 				 sizeof(struct kvm_debugregs)))
6031 			break;
6032 		r = 0;
6033 		break;
6034 	}
6035 	case KVM_SET_DEBUGREGS: {
6036 		struct kvm_debugregs dbgregs;
6037 
6038 		r = -EFAULT;
6039 		if (copy_from_user(&dbgregs, argp,
6040 				   sizeof(struct kvm_debugregs)))
6041 			break;
6042 
6043 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6044 		break;
6045 	}
6046 	case KVM_GET_XSAVE: {
6047 		r = -EINVAL;
6048 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6049 			break;
6050 
6051 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6052 		r = -ENOMEM;
6053 		if (!u.xsave)
6054 			break;
6055 
6056 		r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6057 		if (r < 0)
6058 			break;
6059 
6060 		r = -EFAULT;
6061 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6062 			break;
6063 		r = 0;
6064 		break;
6065 	}
6066 	case KVM_SET_XSAVE: {
6067 		int size = vcpu->arch.guest_fpu.uabi_size;
6068 
6069 		u.xsave = memdup_user(argp, size);
6070 		if (IS_ERR(u.xsave)) {
6071 			r = PTR_ERR(u.xsave);
6072 			goto out_nofree;
6073 		}
6074 
6075 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6076 		break;
6077 	}
6078 
6079 	case KVM_GET_XSAVE2: {
6080 		int size = vcpu->arch.guest_fpu.uabi_size;
6081 
6082 		u.xsave = kzalloc(size, GFP_KERNEL);
6083 		r = -ENOMEM;
6084 		if (!u.xsave)
6085 			break;
6086 
6087 		r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6088 		if (r < 0)
6089 			break;
6090 
6091 		r = -EFAULT;
6092 		if (copy_to_user(argp, u.xsave, size))
6093 			break;
6094 
6095 		r = 0;
6096 		break;
6097 	}
6098 
6099 	case KVM_GET_XCRS: {
6100 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6101 		r = -ENOMEM;
6102 		if (!u.xcrs)
6103 			break;
6104 
6105 		r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6106 		if (r < 0)
6107 			break;
6108 
6109 		r = -EFAULT;
6110 		if (copy_to_user(argp, u.xcrs,
6111 				 sizeof(struct kvm_xcrs)))
6112 			break;
6113 		r = 0;
6114 		break;
6115 	}
6116 	case KVM_SET_XCRS: {
6117 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6118 		if (IS_ERR(u.xcrs)) {
6119 			r = PTR_ERR(u.xcrs);
6120 			goto out_nofree;
6121 		}
6122 
6123 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6124 		break;
6125 	}
6126 	case KVM_SET_TSC_KHZ: {
6127 		u32 user_tsc_khz;
6128 
6129 		r = -EINVAL;
6130 		user_tsc_khz = (u32)arg;
6131 
6132 		if (kvm_caps.has_tsc_control &&
6133 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6134 			goto out;
6135 
6136 		if (user_tsc_khz == 0)
6137 			user_tsc_khz = tsc_khz;
6138 
6139 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6140 			r = 0;
6141 
6142 		goto out;
6143 	}
6144 	case KVM_GET_TSC_KHZ: {
6145 		r = vcpu->arch.virtual_tsc_khz;
6146 		goto out;
6147 	}
6148 	case KVM_KVMCLOCK_CTRL: {
6149 		r = kvm_set_guest_paused(vcpu);
6150 		goto out;
6151 	}
6152 	case KVM_ENABLE_CAP: {
6153 		struct kvm_enable_cap cap;
6154 
6155 		r = -EFAULT;
6156 		if (copy_from_user(&cap, argp, sizeof(cap)))
6157 			goto out;
6158 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6159 		break;
6160 	}
6161 	case KVM_GET_NESTED_STATE: {
6162 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6163 		u32 user_data_size;
6164 
6165 		r = -EINVAL;
6166 		if (!kvm_x86_ops.nested_ops->get_state)
6167 			break;
6168 
6169 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6170 		r = -EFAULT;
6171 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6172 			break;
6173 
6174 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6175 						     user_data_size);
6176 		if (r < 0)
6177 			break;
6178 
6179 		if (r > user_data_size) {
6180 			if (put_user(r, &user_kvm_nested_state->size))
6181 				r = -EFAULT;
6182 			else
6183 				r = -E2BIG;
6184 			break;
6185 		}
6186 
6187 		r = 0;
6188 		break;
6189 	}
6190 	case KVM_SET_NESTED_STATE: {
6191 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6192 		struct kvm_nested_state kvm_state;
6193 		int idx;
6194 
6195 		r = -EINVAL;
6196 		if (!kvm_x86_ops.nested_ops->set_state)
6197 			break;
6198 
6199 		r = -EFAULT;
6200 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6201 			break;
6202 
6203 		r = -EINVAL;
6204 		if (kvm_state.size < sizeof(kvm_state))
6205 			break;
6206 
6207 		if (kvm_state.flags &
6208 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6209 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6210 		      | KVM_STATE_NESTED_GIF_SET))
6211 			break;
6212 
6213 		/* nested_run_pending implies guest_mode.  */
6214 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6215 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6216 			break;
6217 
6218 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6219 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6220 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6221 		break;
6222 	}
6223 #ifdef CONFIG_KVM_HYPERV
6224 	case KVM_GET_SUPPORTED_HV_CPUID:
6225 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6226 		break;
6227 #endif
6228 #ifdef CONFIG_KVM_XEN
6229 	case KVM_XEN_VCPU_GET_ATTR: {
6230 		struct kvm_xen_vcpu_attr xva;
6231 
6232 		r = -EFAULT;
6233 		if (copy_from_user(&xva, argp, sizeof(xva)))
6234 			goto out;
6235 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6236 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6237 			r = -EFAULT;
6238 		break;
6239 	}
6240 	case KVM_XEN_VCPU_SET_ATTR: {
6241 		struct kvm_xen_vcpu_attr xva;
6242 
6243 		r = -EFAULT;
6244 		if (copy_from_user(&xva, argp, sizeof(xva)))
6245 			goto out;
6246 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6247 		break;
6248 	}
6249 #endif
6250 	case KVM_GET_SREGS2: {
6251 		r = -EINVAL;
6252 		if (vcpu->kvm->arch.has_protected_state &&
6253 		    vcpu->arch.guest_state_protected)
6254 			goto out;
6255 
6256 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6257 		r = -ENOMEM;
6258 		if (!u.sregs2)
6259 			goto out;
6260 		__get_sregs2(vcpu, u.sregs2);
6261 		r = -EFAULT;
6262 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6263 			goto out;
6264 		r = 0;
6265 		break;
6266 	}
6267 	case KVM_SET_SREGS2: {
6268 		r = -EINVAL;
6269 		if (vcpu->kvm->arch.has_protected_state &&
6270 		    vcpu->arch.guest_state_protected)
6271 			goto out;
6272 
6273 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6274 		if (IS_ERR(u.sregs2)) {
6275 			r = PTR_ERR(u.sregs2);
6276 			u.sregs2 = NULL;
6277 			goto out;
6278 		}
6279 		r = __set_sregs2(vcpu, u.sregs2);
6280 		break;
6281 	}
6282 	case KVM_HAS_DEVICE_ATTR:
6283 	case KVM_GET_DEVICE_ATTR:
6284 	case KVM_SET_DEVICE_ATTR:
6285 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6286 		break;
6287 	default:
6288 		r = -EINVAL;
6289 	}
6290 out:
6291 	kfree(u.buffer);
6292 out_nofree:
6293 	vcpu_put(vcpu);
6294 	return r;
6295 }
6296 
6297 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6298 {
6299 	return VM_FAULT_SIGBUS;
6300 }
6301 
6302 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6303 {
6304 	int ret;
6305 
6306 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6307 		return -EINVAL;
6308 	ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6309 	return ret;
6310 }
6311 
6312 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6313 					      u64 ident_addr)
6314 {
6315 	return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6316 }
6317 
6318 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6319 					 unsigned long kvm_nr_mmu_pages)
6320 {
6321 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6322 		return -EINVAL;
6323 
6324 	mutex_lock(&kvm->slots_lock);
6325 
6326 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6327 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6328 
6329 	mutex_unlock(&kvm->slots_lock);
6330 	return 0;
6331 }
6332 
6333 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6334 {
6335 	struct kvm_pic *pic = kvm->arch.vpic;
6336 	int r;
6337 
6338 	r = 0;
6339 	switch (chip->chip_id) {
6340 	case KVM_IRQCHIP_PIC_MASTER:
6341 		memcpy(&chip->chip.pic, &pic->pics[0],
6342 			sizeof(struct kvm_pic_state));
6343 		break;
6344 	case KVM_IRQCHIP_PIC_SLAVE:
6345 		memcpy(&chip->chip.pic, &pic->pics[1],
6346 			sizeof(struct kvm_pic_state));
6347 		break;
6348 	case KVM_IRQCHIP_IOAPIC:
6349 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6350 		break;
6351 	default:
6352 		r = -EINVAL;
6353 		break;
6354 	}
6355 	return r;
6356 }
6357 
6358 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6359 {
6360 	struct kvm_pic *pic = kvm->arch.vpic;
6361 	int r;
6362 
6363 	r = 0;
6364 	switch (chip->chip_id) {
6365 	case KVM_IRQCHIP_PIC_MASTER:
6366 		spin_lock(&pic->lock);
6367 		memcpy(&pic->pics[0], &chip->chip.pic,
6368 			sizeof(struct kvm_pic_state));
6369 		spin_unlock(&pic->lock);
6370 		break;
6371 	case KVM_IRQCHIP_PIC_SLAVE:
6372 		spin_lock(&pic->lock);
6373 		memcpy(&pic->pics[1], &chip->chip.pic,
6374 			sizeof(struct kvm_pic_state));
6375 		spin_unlock(&pic->lock);
6376 		break;
6377 	case KVM_IRQCHIP_IOAPIC:
6378 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6379 		break;
6380 	default:
6381 		r = -EINVAL;
6382 		break;
6383 	}
6384 	kvm_pic_update_irq(pic);
6385 	return r;
6386 }
6387 
6388 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6389 {
6390 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6391 
6392 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6393 
6394 	mutex_lock(&kps->lock);
6395 	memcpy(ps, &kps->channels, sizeof(*ps));
6396 	mutex_unlock(&kps->lock);
6397 	return 0;
6398 }
6399 
6400 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6401 {
6402 	int i;
6403 	struct kvm_pit *pit = kvm->arch.vpit;
6404 
6405 	mutex_lock(&pit->pit_state.lock);
6406 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6407 	for (i = 0; i < 3; i++)
6408 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6409 	mutex_unlock(&pit->pit_state.lock);
6410 	return 0;
6411 }
6412 
6413 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6414 {
6415 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6416 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6417 		sizeof(ps->channels));
6418 	ps->flags = kvm->arch.vpit->pit_state.flags;
6419 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6420 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6421 	return 0;
6422 }
6423 
6424 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6425 {
6426 	int start = 0;
6427 	int i;
6428 	u32 prev_legacy, cur_legacy;
6429 	struct kvm_pit *pit = kvm->arch.vpit;
6430 
6431 	mutex_lock(&pit->pit_state.lock);
6432 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6433 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6434 	if (!prev_legacy && cur_legacy)
6435 		start = 1;
6436 	memcpy(&pit->pit_state.channels, &ps->channels,
6437 	       sizeof(pit->pit_state.channels));
6438 	pit->pit_state.flags = ps->flags;
6439 	for (i = 0; i < 3; i++)
6440 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6441 				   start && i == 0);
6442 	mutex_unlock(&pit->pit_state.lock);
6443 	return 0;
6444 }
6445 
6446 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6447 				 struct kvm_reinject_control *control)
6448 {
6449 	struct kvm_pit *pit = kvm->arch.vpit;
6450 
6451 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6452 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6453 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6454 	 */
6455 	mutex_lock(&pit->pit_state.lock);
6456 	kvm_pit_set_reinject(pit, control->pit_reinject);
6457 	mutex_unlock(&pit->pit_state.lock);
6458 
6459 	return 0;
6460 }
6461 
6462 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6463 {
6464 
6465 	/*
6466 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6467 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6468 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6469 	 * VM-Exit.
6470 	 */
6471 	struct kvm_vcpu *vcpu;
6472 	unsigned long i;
6473 
6474 	if (!kvm_x86_ops.cpu_dirty_log_size)
6475 		return;
6476 
6477 	kvm_for_each_vcpu(i, vcpu, kvm)
6478 		kvm_vcpu_kick(vcpu);
6479 }
6480 
6481 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6482 			bool line_status)
6483 {
6484 	if (!irqchip_in_kernel(kvm))
6485 		return -ENXIO;
6486 
6487 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6488 					irq_event->irq, irq_event->level,
6489 					line_status);
6490 	return 0;
6491 }
6492 
6493 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6494 			    struct kvm_enable_cap *cap)
6495 {
6496 	int r;
6497 
6498 	if (cap->flags)
6499 		return -EINVAL;
6500 
6501 	switch (cap->cap) {
6502 	case KVM_CAP_DISABLE_QUIRKS2:
6503 		r = -EINVAL;
6504 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6505 			break;
6506 		fallthrough;
6507 	case KVM_CAP_DISABLE_QUIRKS:
6508 		kvm->arch.disabled_quirks = cap->args[0];
6509 		r = 0;
6510 		break;
6511 	case KVM_CAP_SPLIT_IRQCHIP: {
6512 		mutex_lock(&kvm->lock);
6513 		r = -EINVAL;
6514 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6515 			goto split_irqchip_unlock;
6516 		r = -EEXIST;
6517 		if (irqchip_in_kernel(kvm))
6518 			goto split_irqchip_unlock;
6519 		if (kvm->created_vcpus)
6520 			goto split_irqchip_unlock;
6521 		/* Pairs with irqchip_in_kernel. */
6522 		smp_wmb();
6523 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6524 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6525 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6526 		r = 0;
6527 split_irqchip_unlock:
6528 		mutex_unlock(&kvm->lock);
6529 		break;
6530 	}
6531 	case KVM_CAP_X2APIC_API:
6532 		r = -EINVAL;
6533 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6534 			break;
6535 
6536 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6537 			kvm->arch.x2apic_format = true;
6538 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6539 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6540 
6541 		r = 0;
6542 		break;
6543 	case KVM_CAP_X86_DISABLE_EXITS:
6544 		r = -EINVAL;
6545 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6546 			break;
6547 
6548 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6549 			kvm->arch.pause_in_guest = true;
6550 
6551 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6552 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6553 
6554 		if (!mitigate_smt_rsb) {
6555 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6556 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6557 				pr_warn_once(SMT_RSB_MSG);
6558 
6559 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6560 			    kvm_can_mwait_in_guest())
6561 				kvm->arch.mwait_in_guest = true;
6562 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6563 				kvm->arch.hlt_in_guest = true;
6564 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6565 				kvm->arch.cstate_in_guest = true;
6566 		}
6567 
6568 		r = 0;
6569 		break;
6570 	case KVM_CAP_MSR_PLATFORM_INFO:
6571 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6572 		r = 0;
6573 		break;
6574 	case KVM_CAP_EXCEPTION_PAYLOAD:
6575 		kvm->arch.exception_payload_enabled = cap->args[0];
6576 		r = 0;
6577 		break;
6578 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6579 		kvm->arch.triple_fault_event = cap->args[0];
6580 		r = 0;
6581 		break;
6582 	case KVM_CAP_X86_USER_SPACE_MSR:
6583 		r = -EINVAL;
6584 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6585 			break;
6586 		kvm->arch.user_space_msr_mask = cap->args[0];
6587 		r = 0;
6588 		break;
6589 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6590 		r = -EINVAL;
6591 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6592 			break;
6593 
6594 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6595 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6596 			break;
6597 
6598 		if (kvm_caps.has_bus_lock_exit &&
6599 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6600 			kvm->arch.bus_lock_detection_enabled = true;
6601 		r = 0;
6602 		break;
6603 #ifdef CONFIG_X86_SGX_KVM
6604 	case KVM_CAP_SGX_ATTRIBUTE: {
6605 		unsigned long allowed_attributes = 0;
6606 
6607 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6608 		if (r)
6609 			break;
6610 
6611 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6612 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6613 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6614 			kvm->arch.sgx_provisioning_allowed = true;
6615 		else
6616 			r = -EINVAL;
6617 		break;
6618 	}
6619 #endif
6620 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6621 		r = -EINVAL;
6622 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6623 			break;
6624 
6625 		r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6626 		break;
6627 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6628 		r = -EINVAL;
6629 		if (!kvm_x86_ops.vm_move_enc_context_from)
6630 			break;
6631 
6632 		r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6633 		break;
6634 	case KVM_CAP_EXIT_HYPERCALL:
6635 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6636 			r = -EINVAL;
6637 			break;
6638 		}
6639 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6640 		r = 0;
6641 		break;
6642 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6643 		r = -EINVAL;
6644 		if (cap->args[0] & ~1)
6645 			break;
6646 		kvm->arch.exit_on_emulation_error = cap->args[0];
6647 		r = 0;
6648 		break;
6649 	case KVM_CAP_PMU_CAPABILITY:
6650 		r = -EINVAL;
6651 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6652 			break;
6653 
6654 		mutex_lock(&kvm->lock);
6655 		if (!kvm->created_vcpus) {
6656 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6657 			r = 0;
6658 		}
6659 		mutex_unlock(&kvm->lock);
6660 		break;
6661 	case KVM_CAP_MAX_VCPU_ID:
6662 		r = -EINVAL;
6663 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6664 			break;
6665 
6666 		mutex_lock(&kvm->lock);
6667 		if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6668 			;
6669 		} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6670 			r = 0;
6671 		} else if (!kvm->arch.max_vcpu_ids) {
6672 			kvm->arch.max_vcpu_ids = cap->args[0];
6673 			r = 0;
6674 		}
6675 		mutex_unlock(&kvm->lock);
6676 		break;
6677 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6678 		r = -EINVAL;
6679 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6680 			break;
6681 		if (!kvm_caps.has_notify_vmexit)
6682 			break;
6683 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6684 			break;
6685 		mutex_lock(&kvm->lock);
6686 		if (!kvm->created_vcpus) {
6687 			kvm->arch.notify_window = cap->args[0] >> 32;
6688 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6689 			r = 0;
6690 		}
6691 		mutex_unlock(&kvm->lock);
6692 		break;
6693 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6694 		r = -EINVAL;
6695 
6696 		/*
6697 		 * Since the risk of disabling NX hugepages is a guest crashing
6698 		 * the system, ensure the userspace process has permission to
6699 		 * reboot the system.
6700 		 *
6701 		 * Note that unlike the reboot() syscall, the process must have
6702 		 * this capability in the root namespace because exposing
6703 		 * /dev/kvm into a container does not limit the scope of the
6704 		 * iTLB multihit bug to that container. In other words,
6705 		 * this must use capable(), not ns_capable().
6706 		 */
6707 		if (!capable(CAP_SYS_BOOT)) {
6708 			r = -EPERM;
6709 			break;
6710 		}
6711 
6712 		if (cap->args[0])
6713 			break;
6714 
6715 		mutex_lock(&kvm->lock);
6716 		if (!kvm->created_vcpus) {
6717 			kvm->arch.disable_nx_huge_pages = true;
6718 			r = 0;
6719 		}
6720 		mutex_unlock(&kvm->lock);
6721 		break;
6722 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6723 		u64 bus_cycle_ns = cap->args[0];
6724 		u64 unused;
6725 
6726 		/*
6727 		 * Guard against overflow in tmict_to_ns(). 128 is the highest
6728 		 * divide value that can be programmed in APIC_TDCR.
6729 		 */
6730 		r = -EINVAL;
6731 		if (!bus_cycle_ns ||
6732 		    check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6733 			break;
6734 
6735 		r = 0;
6736 		mutex_lock(&kvm->lock);
6737 		if (!irqchip_in_kernel(kvm))
6738 			r = -ENXIO;
6739 		else if (kvm->created_vcpus)
6740 			r = -EINVAL;
6741 		else
6742 			kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6743 		mutex_unlock(&kvm->lock);
6744 		break;
6745 	}
6746 	default:
6747 		r = -EINVAL;
6748 		break;
6749 	}
6750 	return r;
6751 }
6752 
6753 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6754 {
6755 	struct kvm_x86_msr_filter *msr_filter;
6756 
6757 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6758 	if (!msr_filter)
6759 		return NULL;
6760 
6761 	msr_filter->default_allow = default_allow;
6762 	return msr_filter;
6763 }
6764 
6765 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6766 {
6767 	u32 i;
6768 
6769 	if (!msr_filter)
6770 		return;
6771 
6772 	for (i = 0; i < msr_filter->count; i++)
6773 		kfree(msr_filter->ranges[i].bitmap);
6774 
6775 	kfree(msr_filter);
6776 }
6777 
6778 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6779 			      struct kvm_msr_filter_range *user_range)
6780 {
6781 	unsigned long *bitmap;
6782 	size_t bitmap_size;
6783 
6784 	if (!user_range->nmsrs)
6785 		return 0;
6786 
6787 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6788 		return -EINVAL;
6789 
6790 	if (!user_range->flags)
6791 		return -EINVAL;
6792 
6793 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6794 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6795 		return -EINVAL;
6796 
6797 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6798 	if (IS_ERR(bitmap))
6799 		return PTR_ERR(bitmap);
6800 
6801 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6802 		.flags = user_range->flags,
6803 		.base = user_range->base,
6804 		.nmsrs = user_range->nmsrs,
6805 		.bitmap = bitmap,
6806 	};
6807 
6808 	msr_filter->count++;
6809 	return 0;
6810 }
6811 
6812 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6813 				       struct kvm_msr_filter *filter)
6814 {
6815 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6816 	bool default_allow;
6817 	bool empty = true;
6818 	int r;
6819 	u32 i;
6820 
6821 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6822 		return -EINVAL;
6823 
6824 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6825 		empty &= !filter->ranges[i].nmsrs;
6826 
6827 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6828 	if (empty && !default_allow)
6829 		return -EINVAL;
6830 
6831 	new_filter = kvm_alloc_msr_filter(default_allow);
6832 	if (!new_filter)
6833 		return -ENOMEM;
6834 
6835 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6836 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6837 		if (r) {
6838 			kvm_free_msr_filter(new_filter);
6839 			return r;
6840 		}
6841 	}
6842 
6843 	mutex_lock(&kvm->lock);
6844 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6845 					 mutex_is_locked(&kvm->lock));
6846 	mutex_unlock(&kvm->lock);
6847 	synchronize_srcu(&kvm->srcu);
6848 
6849 	kvm_free_msr_filter(old_filter);
6850 
6851 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6852 
6853 	return 0;
6854 }
6855 
6856 #ifdef CONFIG_KVM_COMPAT
6857 /* for KVM_X86_SET_MSR_FILTER */
6858 struct kvm_msr_filter_range_compat {
6859 	__u32 flags;
6860 	__u32 nmsrs;
6861 	__u32 base;
6862 	__u32 bitmap;
6863 };
6864 
6865 struct kvm_msr_filter_compat {
6866 	__u32 flags;
6867 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6868 };
6869 
6870 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6871 
6872 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6873 			      unsigned long arg)
6874 {
6875 	void __user *argp = (void __user *)arg;
6876 	struct kvm *kvm = filp->private_data;
6877 	long r = -ENOTTY;
6878 
6879 	switch (ioctl) {
6880 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6881 		struct kvm_msr_filter __user *user_msr_filter = argp;
6882 		struct kvm_msr_filter_compat filter_compat;
6883 		struct kvm_msr_filter filter;
6884 		int i;
6885 
6886 		if (copy_from_user(&filter_compat, user_msr_filter,
6887 				   sizeof(filter_compat)))
6888 			return -EFAULT;
6889 
6890 		filter.flags = filter_compat.flags;
6891 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6892 			struct kvm_msr_filter_range_compat *cr;
6893 
6894 			cr = &filter_compat.ranges[i];
6895 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6896 				.flags = cr->flags,
6897 				.nmsrs = cr->nmsrs,
6898 				.base = cr->base,
6899 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6900 			};
6901 		}
6902 
6903 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6904 		break;
6905 	}
6906 	}
6907 
6908 	return r;
6909 }
6910 #endif
6911 
6912 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6913 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6914 {
6915 	struct kvm_vcpu *vcpu;
6916 	unsigned long i;
6917 	int ret = 0;
6918 
6919 	mutex_lock(&kvm->lock);
6920 	kvm_for_each_vcpu(i, vcpu, kvm) {
6921 		if (!vcpu->arch.pv_time.active)
6922 			continue;
6923 
6924 		ret = kvm_set_guest_paused(vcpu);
6925 		if (ret) {
6926 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6927 				vcpu->vcpu_id, ret);
6928 			break;
6929 		}
6930 	}
6931 	mutex_unlock(&kvm->lock);
6932 
6933 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6934 }
6935 
6936 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6937 {
6938 	switch (state) {
6939 	case PM_HIBERNATION_PREPARE:
6940 	case PM_SUSPEND_PREPARE:
6941 		return kvm_arch_suspend_notifier(kvm);
6942 	}
6943 
6944 	return NOTIFY_DONE;
6945 }
6946 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6947 
6948 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6949 {
6950 	struct kvm_clock_data data = { 0 };
6951 
6952 	get_kvmclock(kvm, &data);
6953 	if (copy_to_user(argp, &data, sizeof(data)))
6954 		return -EFAULT;
6955 
6956 	return 0;
6957 }
6958 
6959 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6960 {
6961 	struct kvm_arch *ka = &kvm->arch;
6962 	struct kvm_clock_data data;
6963 	u64 now_raw_ns;
6964 
6965 	if (copy_from_user(&data, argp, sizeof(data)))
6966 		return -EFAULT;
6967 
6968 	/*
6969 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6970 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6971 	 */
6972 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6973 		return -EINVAL;
6974 
6975 	kvm_hv_request_tsc_page_update(kvm);
6976 	kvm_start_pvclock_update(kvm);
6977 	pvclock_update_vm_gtod_copy(kvm);
6978 
6979 	/*
6980 	 * This pairs with kvm_guest_time_update(): when masterclock is
6981 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6982 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6983 	 * is slightly ahead) here we risk going negative on unsigned
6984 	 * 'system_time' when 'data.clock' is very small.
6985 	 */
6986 	if (data.flags & KVM_CLOCK_REALTIME) {
6987 		u64 now_real_ns = ktime_get_real_ns();
6988 
6989 		/*
6990 		 * Avoid stepping the kvmclock backwards.
6991 		 */
6992 		if (now_real_ns > data.realtime)
6993 			data.clock += now_real_ns - data.realtime;
6994 	}
6995 
6996 	if (ka->use_master_clock)
6997 		now_raw_ns = ka->master_kernel_ns;
6998 	else
6999 		now_raw_ns = get_kvmclock_base_ns();
7000 	ka->kvmclock_offset = data.clock - now_raw_ns;
7001 	kvm_end_pvclock_update(kvm);
7002 	return 0;
7003 }
7004 
7005 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7006 {
7007 	struct kvm *kvm = filp->private_data;
7008 	void __user *argp = (void __user *)arg;
7009 	int r = -ENOTTY;
7010 	/*
7011 	 * This union makes it completely explicit to gcc-3.x
7012 	 * that these two variables' stack usage should be
7013 	 * combined, not added together.
7014 	 */
7015 	union {
7016 		struct kvm_pit_state ps;
7017 		struct kvm_pit_state2 ps2;
7018 		struct kvm_pit_config pit_config;
7019 	} u;
7020 
7021 	switch (ioctl) {
7022 	case KVM_SET_TSS_ADDR:
7023 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7024 		break;
7025 	case KVM_SET_IDENTITY_MAP_ADDR: {
7026 		u64 ident_addr;
7027 
7028 		mutex_lock(&kvm->lock);
7029 		r = -EINVAL;
7030 		if (kvm->created_vcpus)
7031 			goto set_identity_unlock;
7032 		r = -EFAULT;
7033 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7034 			goto set_identity_unlock;
7035 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7036 set_identity_unlock:
7037 		mutex_unlock(&kvm->lock);
7038 		break;
7039 	}
7040 	case KVM_SET_NR_MMU_PAGES:
7041 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7042 		break;
7043 	case KVM_CREATE_IRQCHIP: {
7044 		mutex_lock(&kvm->lock);
7045 
7046 		r = -EEXIST;
7047 		if (irqchip_in_kernel(kvm))
7048 			goto create_irqchip_unlock;
7049 
7050 		r = -EINVAL;
7051 		if (kvm->created_vcpus)
7052 			goto create_irqchip_unlock;
7053 
7054 		r = kvm_pic_init(kvm);
7055 		if (r)
7056 			goto create_irqchip_unlock;
7057 
7058 		r = kvm_ioapic_init(kvm);
7059 		if (r) {
7060 			kvm_pic_destroy(kvm);
7061 			goto create_irqchip_unlock;
7062 		}
7063 
7064 		r = kvm_setup_default_irq_routing(kvm);
7065 		if (r) {
7066 			kvm_ioapic_destroy(kvm);
7067 			kvm_pic_destroy(kvm);
7068 			goto create_irqchip_unlock;
7069 		}
7070 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7071 		smp_wmb();
7072 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7073 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7074 	create_irqchip_unlock:
7075 		mutex_unlock(&kvm->lock);
7076 		break;
7077 	}
7078 	case KVM_CREATE_PIT:
7079 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7080 		goto create_pit;
7081 	case KVM_CREATE_PIT2:
7082 		r = -EFAULT;
7083 		if (copy_from_user(&u.pit_config, argp,
7084 				   sizeof(struct kvm_pit_config)))
7085 			goto out;
7086 	create_pit:
7087 		mutex_lock(&kvm->lock);
7088 		r = -EEXIST;
7089 		if (kvm->arch.vpit)
7090 			goto create_pit_unlock;
7091 		r = -ENOENT;
7092 		if (!pic_in_kernel(kvm))
7093 			goto create_pit_unlock;
7094 		r = -ENOMEM;
7095 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7096 		if (kvm->arch.vpit)
7097 			r = 0;
7098 	create_pit_unlock:
7099 		mutex_unlock(&kvm->lock);
7100 		break;
7101 	case KVM_GET_IRQCHIP: {
7102 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7103 		struct kvm_irqchip *chip;
7104 
7105 		chip = memdup_user(argp, sizeof(*chip));
7106 		if (IS_ERR(chip)) {
7107 			r = PTR_ERR(chip);
7108 			goto out;
7109 		}
7110 
7111 		r = -ENXIO;
7112 		if (!irqchip_kernel(kvm))
7113 			goto get_irqchip_out;
7114 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7115 		if (r)
7116 			goto get_irqchip_out;
7117 		r = -EFAULT;
7118 		if (copy_to_user(argp, chip, sizeof(*chip)))
7119 			goto get_irqchip_out;
7120 		r = 0;
7121 	get_irqchip_out:
7122 		kfree(chip);
7123 		break;
7124 	}
7125 	case KVM_SET_IRQCHIP: {
7126 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7127 		struct kvm_irqchip *chip;
7128 
7129 		chip = memdup_user(argp, sizeof(*chip));
7130 		if (IS_ERR(chip)) {
7131 			r = PTR_ERR(chip);
7132 			goto out;
7133 		}
7134 
7135 		r = -ENXIO;
7136 		if (!irqchip_kernel(kvm))
7137 			goto set_irqchip_out;
7138 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7139 	set_irqchip_out:
7140 		kfree(chip);
7141 		break;
7142 	}
7143 	case KVM_GET_PIT: {
7144 		r = -EFAULT;
7145 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7146 			goto out;
7147 		r = -ENXIO;
7148 		if (!kvm->arch.vpit)
7149 			goto out;
7150 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7151 		if (r)
7152 			goto out;
7153 		r = -EFAULT;
7154 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7155 			goto out;
7156 		r = 0;
7157 		break;
7158 	}
7159 	case KVM_SET_PIT: {
7160 		r = -EFAULT;
7161 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7162 			goto out;
7163 		mutex_lock(&kvm->lock);
7164 		r = -ENXIO;
7165 		if (!kvm->arch.vpit)
7166 			goto set_pit_out;
7167 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7168 set_pit_out:
7169 		mutex_unlock(&kvm->lock);
7170 		break;
7171 	}
7172 	case KVM_GET_PIT2: {
7173 		r = -ENXIO;
7174 		if (!kvm->arch.vpit)
7175 			goto out;
7176 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7177 		if (r)
7178 			goto out;
7179 		r = -EFAULT;
7180 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7181 			goto out;
7182 		r = 0;
7183 		break;
7184 	}
7185 	case KVM_SET_PIT2: {
7186 		r = -EFAULT;
7187 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7188 			goto out;
7189 		mutex_lock(&kvm->lock);
7190 		r = -ENXIO;
7191 		if (!kvm->arch.vpit)
7192 			goto set_pit2_out;
7193 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7194 set_pit2_out:
7195 		mutex_unlock(&kvm->lock);
7196 		break;
7197 	}
7198 	case KVM_REINJECT_CONTROL: {
7199 		struct kvm_reinject_control control;
7200 		r =  -EFAULT;
7201 		if (copy_from_user(&control, argp, sizeof(control)))
7202 			goto out;
7203 		r = -ENXIO;
7204 		if (!kvm->arch.vpit)
7205 			goto out;
7206 		r = kvm_vm_ioctl_reinject(kvm, &control);
7207 		break;
7208 	}
7209 	case KVM_SET_BOOT_CPU_ID:
7210 		r = 0;
7211 		mutex_lock(&kvm->lock);
7212 		if (kvm->created_vcpus)
7213 			r = -EBUSY;
7214 		else if (arg > KVM_MAX_VCPU_IDS ||
7215 			 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7216 			r = -EINVAL;
7217 		else
7218 			kvm->arch.bsp_vcpu_id = arg;
7219 		mutex_unlock(&kvm->lock);
7220 		break;
7221 #ifdef CONFIG_KVM_XEN
7222 	case KVM_XEN_HVM_CONFIG: {
7223 		struct kvm_xen_hvm_config xhc;
7224 		r = -EFAULT;
7225 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7226 			goto out;
7227 		r = kvm_xen_hvm_config(kvm, &xhc);
7228 		break;
7229 	}
7230 	case KVM_XEN_HVM_GET_ATTR: {
7231 		struct kvm_xen_hvm_attr xha;
7232 
7233 		r = -EFAULT;
7234 		if (copy_from_user(&xha, argp, sizeof(xha)))
7235 			goto out;
7236 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7237 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7238 			r = -EFAULT;
7239 		break;
7240 	}
7241 	case KVM_XEN_HVM_SET_ATTR: {
7242 		struct kvm_xen_hvm_attr xha;
7243 
7244 		r = -EFAULT;
7245 		if (copy_from_user(&xha, argp, sizeof(xha)))
7246 			goto out;
7247 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7248 		break;
7249 	}
7250 	case KVM_XEN_HVM_EVTCHN_SEND: {
7251 		struct kvm_irq_routing_xen_evtchn uxe;
7252 
7253 		r = -EFAULT;
7254 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7255 			goto out;
7256 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7257 		break;
7258 	}
7259 #endif
7260 	case KVM_SET_CLOCK:
7261 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7262 		break;
7263 	case KVM_GET_CLOCK:
7264 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7265 		break;
7266 	case KVM_SET_TSC_KHZ: {
7267 		u32 user_tsc_khz;
7268 
7269 		r = -EINVAL;
7270 		user_tsc_khz = (u32)arg;
7271 
7272 		if (kvm_caps.has_tsc_control &&
7273 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7274 			goto out;
7275 
7276 		if (user_tsc_khz == 0)
7277 			user_tsc_khz = tsc_khz;
7278 
7279 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7280 		r = 0;
7281 
7282 		goto out;
7283 	}
7284 	case KVM_GET_TSC_KHZ: {
7285 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7286 		goto out;
7287 	}
7288 	case KVM_MEMORY_ENCRYPT_OP: {
7289 		r = -ENOTTY;
7290 		if (!kvm_x86_ops.mem_enc_ioctl)
7291 			goto out;
7292 
7293 		r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7294 		break;
7295 	}
7296 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7297 		struct kvm_enc_region region;
7298 
7299 		r = -EFAULT;
7300 		if (copy_from_user(&region, argp, sizeof(region)))
7301 			goto out;
7302 
7303 		r = -ENOTTY;
7304 		if (!kvm_x86_ops.mem_enc_register_region)
7305 			goto out;
7306 
7307 		r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7308 		break;
7309 	}
7310 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7311 		struct kvm_enc_region region;
7312 
7313 		r = -EFAULT;
7314 		if (copy_from_user(&region, argp, sizeof(region)))
7315 			goto out;
7316 
7317 		r = -ENOTTY;
7318 		if (!kvm_x86_ops.mem_enc_unregister_region)
7319 			goto out;
7320 
7321 		r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7322 		break;
7323 	}
7324 #ifdef CONFIG_KVM_HYPERV
7325 	case KVM_HYPERV_EVENTFD: {
7326 		struct kvm_hyperv_eventfd hvevfd;
7327 
7328 		r = -EFAULT;
7329 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7330 			goto out;
7331 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7332 		break;
7333 	}
7334 #endif
7335 	case KVM_SET_PMU_EVENT_FILTER:
7336 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7337 		break;
7338 	case KVM_X86_SET_MSR_FILTER: {
7339 		struct kvm_msr_filter __user *user_msr_filter = argp;
7340 		struct kvm_msr_filter filter;
7341 
7342 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7343 			return -EFAULT;
7344 
7345 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7346 		break;
7347 	}
7348 	default:
7349 		r = -ENOTTY;
7350 	}
7351 out:
7352 	return r;
7353 }
7354 
7355 static void kvm_probe_feature_msr(u32 msr_index)
7356 {
7357 	u64 data;
7358 
7359 	if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7360 		return;
7361 
7362 	msr_based_features[num_msr_based_features++] = msr_index;
7363 }
7364 
7365 static void kvm_probe_msr_to_save(u32 msr_index)
7366 {
7367 	u32 dummy[2];
7368 
7369 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7370 		return;
7371 
7372 	/*
7373 	 * Even MSRs that are valid in the host may not be exposed to guests in
7374 	 * some cases.
7375 	 */
7376 	switch (msr_index) {
7377 	case MSR_IA32_BNDCFGS:
7378 		if (!kvm_mpx_supported())
7379 			return;
7380 		break;
7381 	case MSR_TSC_AUX:
7382 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7383 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7384 			return;
7385 		break;
7386 	case MSR_IA32_UMWAIT_CONTROL:
7387 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7388 			return;
7389 		break;
7390 	case MSR_IA32_RTIT_CTL:
7391 	case MSR_IA32_RTIT_STATUS:
7392 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7393 			return;
7394 		break;
7395 	case MSR_IA32_RTIT_CR3_MATCH:
7396 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7397 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7398 			return;
7399 		break;
7400 	case MSR_IA32_RTIT_OUTPUT_BASE:
7401 	case MSR_IA32_RTIT_OUTPUT_MASK:
7402 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7403 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7404 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7405 			return;
7406 		break;
7407 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7408 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7409 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7410 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7411 			return;
7412 		break;
7413 	case MSR_ARCH_PERFMON_PERFCTR0 ...
7414 	     MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7415 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7416 		    kvm_pmu_cap.num_counters_gp)
7417 			return;
7418 		break;
7419 	case MSR_ARCH_PERFMON_EVENTSEL0 ...
7420 	     MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7421 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7422 		    kvm_pmu_cap.num_counters_gp)
7423 			return;
7424 		break;
7425 	case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7426 	     MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7427 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7428 		    kvm_pmu_cap.num_counters_fixed)
7429 			return;
7430 		break;
7431 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7432 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7433 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7434 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7435 			return;
7436 		break;
7437 	case MSR_IA32_XFD:
7438 	case MSR_IA32_XFD_ERR:
7439 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7440 			return;
7441 		break;
7442 	case MSR_IA32_TSX_CTRL:
7443 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7444 			return;
7445 		break;
7446 	default:
7447 		break;
7448 	}
7449 
7450 	msrs_to_save[num_msrs_to_save++] = msr_index;
7451 }
7452 
7453 static void kvm_init_msr_lists(void)
7454 {
7455 	unsigned i;
7456 
7457 	BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7458 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7459 
7460 	num_msrs_to_save = 0;
7461 	num_emulated_msrs = 0;
7462 	num_msr_based_features = 0;
7463 
7464 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7465 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7466 
7467 	if (enable_pmu) {
7468 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7469 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7470 	}
7471 
7472 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7473 		if (!kvm_x86_call(has_emulated_msr)(NULL,
7474 						    emulated_msrs_all[i]))
7475 			continue;
7476 
7477 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7478 	}
7479 
7480 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7481 		kvm_probe_feature_msr(i);
7482 
7483 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7484 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7485 }
7486 
7487 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7488 			   const void *v)
7489 {
7490 	int handled = 0;
7491 	int n;
7492 
7493 	do {
7494 		n = min(len, 8);
7495 		if (!(lapic_in_kernel(vcpu) &&
7496 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7497 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7498 			break;
7499 		handled += n;
7500 		addr += n;
7501 		len -= n;
7502 		v += n;
7503 	} while (len);
7504 
7505 	return handled;
7506 }
7507 
7508 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7509 {
7510 	int handled = 0;
7511 	int n;
7512 
7513 	do {
7514 		n = min(len, 8);
7515 		if (!(lapic_in_kernel(vcpu) &&
7516 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7517 					 addr, n, v))
7518 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7519 			break;
7520 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7521 		handled += n;
7522 		addr += n;
7523 		len -= n;
7524 		v += n;
7525 	} while (len);
7526 
7527 	return handled;
7528 }
7529 
7530 void kvm_set_segment(struct kvm_vcpu *vcpu,
7531 		     struct kvm_segment *var, int seg)
7532 {
7533 	kvm_x86_call(set_segment)(vcpu, var, seg);
7534 }
7535 
7536 void kvm_get_segment(struct kvm_vcpu *vcpu,
7537 		     struct kvm_segment *var, int seg)
7538 {
7539 	kvm_x86_call(get_segment)(vcpu, var, seg);
7540 }
7541 
7542 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7543 			   struct x86_exception *exception)
7544 {
7545 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7546 	gpa_t t_gpa;
7547 
7548 	BUG_ON(!mmu_is_nested(vcpu));
7549 
7550 	/* NPT walks are always user-walks */
7551 	access |= PFERR_USER_MASK;
7552 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7553 
7554 	return t_gpa;
7555 }
7556 
7557 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7558 			      struct x86_exception *exception)
7559 {
7560 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7561 
7562 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7563 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7564 }
7565 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7566 
7567 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7568 			       struct x86_exception *exception)
7569 {
7570 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7571 
7572 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7573 	access |= PFERR_WRITE_MASK;
7574 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7575 }
7576 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7577 
7578 /* uses this to access any guest's mapped memory without checking CPL */
7579 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7580 				struct x86_exception *exception)
7581 {
7582 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7583 
7584 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7585 }
7586 
7587 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7588 				      struct kvm_vcpu *vcpu, u64 access,
7589 				      struct x86_exception *exception)
7590 {
7591 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7592 	void *data = val;
7593 	int r = X86EMUL_CONTINUE;
7594 
7595 	while (bytes) {
7596 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7597 		unsigned offset = addr & (PAGE_SIZE-1);
7598 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7599 		int ret;
7600 
7601 		if (gpa == INVALID_GPA)
7602 			return X86EMUL_PROPAGATE_FAULT;
7603 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7604 					       offset, toread);
7605 		if (ret < 0) {
7606 			r = X86EMUL_IO_NEEDED;
7607 			goto out;
7608 		}
7609 
7610 		bytes -= toread;
7611 		data += toread;
7612 		addr += toread;
7613 	}
7614 out:
7615 	return r;
7616 }
7617 
7618 /* used for instruction fetching */
7619 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7620 				gva_t addr, void *val, unsigned int bytes,
7621 				struct x86_exception *exception)
7622 {
7623 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7624 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7625 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7626 	unsigned offset;
7627 	int ret;
7628 
7629 	/* Inline kvm_read_guest_virt_helper for speed.  */
7630 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7631 				    exception);
7632 	if (unlikely(gpa == INVALID_GPA))
7633 		return X86EMUL_PROPAGATE_FAULT;
7634 
7635 	offset = addr & (PAGE_SIZE-1);
7636 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7637 		bytes = (unsigned)PAGE_SIZE - offset;
7638 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7639 				       offset, bytes);
7640 	if (unlikely(ret < 0))
7641 		return X86EMUL_IO_NEEDED;
7642 
7643 	return X86EMUL_CONTINUE;
7644 }
7645 
7646 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7647 			       gva_t addr, void *val, unsigned int bytes,
7648 			       struct x86_exception *exception)
7649 {
7650 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7651 
7652 	/*
7653 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7654 	 * is returned, but our callers are not ready for that and they blindly
7655 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7656 	 * uninitialized kernel stack memory into cr2 and error code.
7657 	 */
7658 	memset(exception, 0, sizeof(*exception));
7659 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7660 					  exception);
7661 }
7662 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7663 
7664 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7665 			     gva_t addr, void *val, unsigned int bytes,
7666 			     struct x86_exception *exception, bool system)
7667 {
7668 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7669 	u64 access = 0;
7670 
7671 	if (system)
7672 		access |= PFERR_IMPLICIT_ACCESS;
7673 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7674 		access |= PFERR_USER_MASK;
7675 
7676 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7677 }
7678 
7679 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7680 				      struct kvm_vcpu *vcpu, u64 access,
7681 				      struct x86_exception *exception)
7682 {
7683 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7684 	void *data = val;
7685 	int r = X86EMUL_CONTINUE;
7686 
7687 	while (bytes) {
7688 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7689 		unsigned offset = addr & (PAGE_SIZE-1);
7690 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7691 		int ret;
7692 
7693 		if (gpa == INVALID_GPA)
7694 			return X86EMUL_PROPAGATE_FAULT;
7695 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7696 		if (ret < 0) {
7697 			r = X86EMUL_IO_NEEDED;
7698 			goto out;
7699 		}
7700 
7701 		bytes -= towrite;
7702 		data += towrite;
7703 		addr += towrite;
7704 	}
7705 out:
7706 	return r;
7707 }
7708 
7709 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7710 			      unsigned int bytes, struct x86_exception *exception,
7711 			      bool system)
7712 {
7713 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7714 	u64 access = PFERR_WRITE_MASK;
7715 
7716 	if (system)
7717 		access |= PFERR_IMPLICIT_ACCESS;
7718 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7719 		access |= PFERR_USER_MASK;
7720 
7721 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7722 					   access, exception);
7723 }
7724 
7725 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7726 				unsigned int bytes, struct x86_exception *exception)
7727 {
7728 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7729 	vcpu->arch.l1tf_flush_l1d = true;
7730 
7731 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7732 					   PFERR_WRITE_MASK, exception);
7733 }
7734 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7735 
7736 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7737 				  void *insn, int insn_len)
7738 {
7739 	return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7740 						       insn, insn_len);
7741 }
7742 
7743 int handle_ud(struct kvm_vcpu *vcpu)
7744 {
7745 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7746 	int fep_flags = READ_ONCE(force_emulation_prefix);
7747 	int emul_type = EMULTYPE_TRAP_UD;
7748 	char sig[5]; /* ud2; .ascii "kvm" */
7749 	struct x86_exception e;
7750 	int r;
7751 
7752 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7753 	if (r != X86EMUL_CONTINUE)
7754 		return 1;
7755 
7756 	if (fep_flags &&
7757 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7758 				sig, sizeof(sig), &e) == 0 &&
7759 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7760 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7761 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7762 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7763 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7764 	}
7765 
7766 	return kvm_emulate_instruction(vcpu, emul_type);
7767 }
7768 EXPORT_SYMBOL_GPL(handle_ud);
7769 
7770 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7771 			    gpa_t gpa, bool write)
7772 {
7773 	/* For APIC access vmexit */
7774 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7775 		return 1;
7776 
7777 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7778 		trace_vcpu_match_mmio(gva, gpa, write, true);
7779 		return 1;
7780 	}
7781 
7782 	return 0;
7783 }
7784 
7785 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7786 				gpa_t *gpa, struct x86_exception *exception,
7787 				bool write)
7788 {
7789 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7790 	u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7791 		     | (write ? PFERR_WRITE_MASK : 0);
7792 
7793 	/*
7794 	 * currently PKRU is only applied to ept enabled guest so
7795 	 * there is no pkey in EPT page table for L1 guest or EPT
7796 	 * shadow page table for L2 guest.
7797 	 */
7798 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7799 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7800 			      vcpu->arch.mmio_access, 0, access))) {
7801 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7802 					(gva & (PAGE_SIZE - 1));
7803 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7804 		return 1;
7805 	}
7806 
7807 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7808 
7809 	if (*gpa == INVALID_GPA)
7810 		return -1;
7811 
7812 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7813 }
7814 
7815 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7816 			const void *val, int bytes)
7817 {
7818 	int ret;
7819 
7820 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7821 	if (ret < 0)
7822 		return 0;
7823 	kvm_page_track_write(vcpu, gpa, val, bytes);
7824 	return 1;
7825 }
7826 
7827 struct read_write_emulator_ops {
7828 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7829 				  int bytes);
7830 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7831 				  void *val, int bytes);
7832 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7833 			       int bytes, void *val);
7834 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7835 				    void *val, int bytes);
7836 	bool write;
7837 };
7838 
7839 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7840 {
7841 	if (vcpu->mmio_read_completed) {
7842 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7843 			       vcpu->mmio_fragments[0].gpa, val);
7844 		vcpu->mmio_read_completed = 0;
7845 		return 1;
7846 	}
7847 
7848 	return 0;
7849 }
7850 
7851 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7852 			void *val, int bytes)
7853 {
7854 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7855 }
7856 
7857 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7858 			 void *val, int bytes)
7859 {
7860 	return emulator_write_phys(vcpu, gpa, val, bytes);
7861 }
7862 
7863 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7864 {
7865 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7866 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7867 }
7868 
7869 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7870 			  void *val, int bytes)
7871 {
7872 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7873 	return X86EMUL_IO_NEEDED;
7874 }
7875 
7876 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7877 			   void *val, int bytes)
7878 {
7879 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7880 
7881 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7882 	return X86EMUL_CONTINUE;
7883 }
7884 
7885 static const struct read_write_emulator_ops read_emultor = {
7886 	.read_write_prepare = read_prepare,
7887 	.read_write_emulate = read_emulate,
7888 	.read_write_mmio = vcpu_mmio_read,
7889 	.read_write_exit_mmio = read_exit_mmio,
7890 };
7891 
7892 static const struct read_write_emulator_ops write_emultor = {
7893 	.read_write_emulate = write_emulate,
7894 	.read_write_mmio = write_mmio,
7895 	.read_write_exit_mmio = write_exit_mmio,
7896 	.write = true,
7897 };
7898 
7899 static int emulator_read_write_onepage(unsigned long addr, void *val,
7900 				       unsigned int bytes,
7901 				       struct x86_exception *exception,
7902 				       struct kvm_vcpu *vcpu,
7903 				       const struct read_write_emulator_ops *ops)
7904 {
7905 	gpa_t gpa;
7906 	int handled, ret;
7907 	bool write = ops->write;
7908 	struct kvm_mmio_fragment *frag;
7909 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7910 
7911 	/*
7912 	 * If the exit was due to a NPF we may already have a GPA.
7913 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7914 	 * Note, this cannot be used on string operations since string
7915 	 * operation using rep will only have the initial GPA from the NPF
7916 	 * occurred.
7917 	 */
7918 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7919 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7920 		gpa = ctxt->gpa_val;
7921 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7922 	} else {
7923 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7924 		if (ret < 0)
7925 			return X86EMUL_PROPAGATE_FAULT;
7926 	}
7927 
7928 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7929 		return X86EMUL_CONTINUE;
7930 
7931 	/*
7932 	 * Is this MMIO handled locally?
7933 	 */
7934 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7935 	if (handled == bytes)
7936 		return X86EMUL_CONTINUE;
7937 
7938 	gpa += handled;
7939 	bytes -= handled;
7940 	val += handled;
7941 
7942 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7943 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7944 	frag->gpa = gpa;
7945 	frag->data = val;
7946 	frag->len = bytes;
7947 	return X86EMUL_CONTINUE;
7948 }
7949 
7950 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7951 			unsigned long addr,
7952 			void *val, unsigned int bytes,
7953 			struct x86_exception *exception,
7954 			const struct read_write_emulator_ops *ops)
7955 {
7956 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7957 	gpa_t gpa;
7958 	int rc;
7959 
7960 	if (ops->read_write_prepare &&
7961 		  ops->read_write_prepare(vcpu, val, bytes))
7962 		return X86EMUL_CONTINUE;
7963 
7964 	vcpu->mmio_nr_fragments = 0;
7965 
7966 	/* Crossing a page boundary? */
7967 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7968 		int now;
7969 
7970 		now = -addr & ~PAGE_MASK;
7971 		rc = emulator_read_write_onepage(addr, val, now, exception,
7972 						 vcpu, ops);
7973 
7974 		if (rc != X86EMUL_CONTINUE)
7975 			return rc;
7976 		addr += now;
7977 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7978 			addr = (u32)addr;
7979 		val += now;
7980 		bytes -= now;
7981 	}
7982 
7983 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7984 					 vcpu, ops);
7985 	if (rc != X86EMUL_CONTINUE)
7986 		return rc;
7987 
7988 	if (!vcpu->mmio_nr_fragments)
7989 		return rc;
7990 
7991 	gpa = vcpu->mmio_fragments[0].gpa;
7992 
7993 	vcpu->mmio_needed = 1;
7994 	vcpu->mmio_cur_fragment = 0;
7995 
7996 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7997 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7998 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7999 	vcpu->run->mmio.phys_addr = gpa;
8000 
8001 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8002 }
8003 
8004 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8005 				  unsigned long addr,
8006 				  void *val,
8007 				  unsigned int bytes,
8008 				  struct x86_exception *exception)
8009 {
8010 	return emulator_read_write(ctxt, addr, val, bytes,
8011 				   exception, &read_emultor);
8012 }
8013 
8014 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8015 			    unsigned long addr,
8016 			    const void *val,
8017 			    unsigned int bytes,
8018 			    struct x86_exception *exception)
8019 {
8020 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
8021 				   exception, &write_emultor);
8022 }
8023 
8024 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8025 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8026 
8027 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8028 				     unsigned long addr,
8029 				     const void *old,
8030 				     const void *new,
8031 				     unsigned int bytes,
8032 				     struct x86_exception *exception)
8033 {
8034 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8035 	u64 page_line_mask;
8036 	unsigned long hva;
8037 	gpa_t gpa;
8038 	int r;
8039 
8040 	/* guests cmpxchg8b have to be emulated atomically */
8041 	if (bytes > 8 || (bytes & (bytes - 1)))
8042 		goto emul_write;
8043 
8044 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8045 
8046 	if (gpa == INVALID_GPA ||
8047 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8048 		goto emul_write;
8049 
8050 	/*
8051 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
8052 	 * enabled in the host and the access splits a cache line.
8053 	 */
8054 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8055 		page_line_mask = ~(cache_line_size() - 1);
8056 	else
8057 		page_line_mask = PAGE_MASK;
8058 
8059 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8060 		goto emul_write;
8061 
8062 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8063 	if (kvm_is_error_hva(hva))
8064 		goto emul_write;
8065 
8066 	hva += offset_in_page(gpa);
8067 
8068 	switch (bytes) {
8069 	case 1:
8070 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
8071 		break;
8072 	case 2:
8073 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8074 		break;
8075 	case 4:
8076 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8077 		break;
8078 	case 8:
8079 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8080 		break;
8081 	default:
8082 		BUG();
8083 	}
8084 
8085 	if (r < 0)
8086 		return X86EMUL_UNHANDLEABLE;
8087 
8088 	/*
8089 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8090 	 * successful, as the old value is written back on failure.  Note, for
8091 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8092 	 * back the original value and the access is atomic, but KVM's ABI is
8093 	 * that all writes are dirty logged, regardless of the value written.
8094 	 */
8095 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8096 
8097 	if (r)
8098 		return X86EMUL_CMPXCHG_FAILED;
8099 
8100 	kvm_page_track_write(vcpu, gpa, new, bytes);
8101 
8102 	return X86EMUL_CONTINUE;
8103 
8104 emul_write:
8105 	pr_warn_once("emulating exchange as write\n");
8106 
8107 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8108 }
8109 
8110 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8111 			       unsigned short port, void *data,
8112 			       unsigned int count, bool in)
8113 {
8114 	unsigned i;
8115 	int r;
8116 
8117 	WARN_ON_ONCE(vcpu->arch.pio.count);
8118 	for (i = 0; i < count; i++) {
8119 		if (in)
8120 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8121 		else
8122 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8123 
8124 		if (r) {
8125 			if (i == 0)
8126 				goto userspace_io;
8127 
8128 			/*
8129 			 * Userspace must have unregistered the device while PIO
8130 			 * was running.  Drop writes / read as 0.
8131 			 */
8132 			if (in)
8133 				memset(data, 0, size * (count - i));
8134 			break;
8135 		}
8136 
8137 		data += size;
8138 	}
8139 	return 1;
8140 
8141 userspace_io:
8142 	vcpu->arch.pio.port = port;
8143 	vcpu->arch.pio.in = in;
8144 	vcpu->arch.pio.count = count;
8145 	vcpu->arch.pio.size = size;
8146 
8147 	if (in)
8148 		memset(vcpu->arch.pio_data, 0, size * count);
8149 	else
8150 		memcpy(vcpu->arch.pio_data, data, size * count);
8151 
8152 	vcpu->run->exit_reason = KVM_EXIT_IO;
8153 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8154 	vcpu->run->io.size = size;
8155 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8156 	vcpu->run->io.count = count;
8157 	vcpu->run->io.port = port;
8158 	return 0;
8159 }
8160 
8161 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8162       			   unsigned short port, void *val, unsigned int count)
8163 {
8164 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8165 	if (r)
8166 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8167 
8168 	return r;
8169 }
8170 
8171 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8172 {
8173 	int size = vcpu->arch.pio.size;
8174 	unsigned int count = vcpu->arch.pio.count;
8175 	memcpy(val, vcpu->arch.pio_data, size * count);
8176 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8177 	vcpu->arch.pio.count = 0;
8178 }
8179 
8180 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8181 				    int size, unsigned short port, void *val,
8182 				    unsigned int count)
8183 {
8184 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8185 	if (vcpu->arch.pio.count) {
8186 		/*
8187 		 * Complete a previous iteration that required userspace I/O.
8188 		 * Note, @count isn't guaranteed to match pio.count as userspace
8189 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8190 		 * shenanigans as KVM doesn't support modifying the rep count,
8191 		 * and the emulator ensures @count doesn't overflow the buffer.
8192 		 */
8193 		complete_emulator_pio_in(vcpu, val);
8194 		return 1;
8195 	}
8196 
8197 	return emulator_pio_in(vcpu, size, port, val, count);
8198 }
8199 
8200 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8201 			    unsigned short port, const void *val,
8202 			    unsigned int count)
8203 {
8204 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8205 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8206 }
8207 
8208 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8209 				     int size, unsigned short port,
8210 				     const void *val, unsigned int count)
8211 {
8212 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8213 }
8214 
8215 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8216 {
8217 	return kvm_x86_call(get_segment_base)(vcpu, seg);
8218 }
8219 
8220 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8221 {
8222 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8223 }
8224 
8225 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8226 {
8227 	if (!need_emulate_wbinvd(vcpu))
8228 		return X86EMUL_CONTINUE;
8229 
8230 	if (kvm_x86_call(has_wbinvd_exit)()) {
8231 		int cpu = get_cpu();
8232 
8233 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8234 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8235 				wbinvd_ipi, NULL, 1);
8236 		put_cpu();
8237 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8238 	} else
8239 		wbinvd();
8240 	return X86EMUL_CONTINUE;
8241 }
8242 
8243 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8244 {
8245 	kvm_emulate_wbinvd_noskip(vcpu);
8246 	return kvm_skip_emulated_instruction(vcpu);
8247 }
8248 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8249 
8250 
8251 
8252 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8253 {
8254 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8255 }
8256 
8257 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8258 {
8259 	return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8260 }
8261 
8262 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8263 			   unsigned long value)
8264 {
8265 
8266 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8267 }
8268 
8269 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8270 {
8271 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8272 }
8273 
8274 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8275 {
8276 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8277 	unsigned long value;
8278 
8279 	switch (cr) {
8280 	case 0:
8281 		value = kvm_read_cr0(vcpu);
8282 		break;
8283 	case 2:
8284 		value = vcpu->arch.cr2;
8285 		break;
8286 	case 3:
8287 		value = kvm_read_cr3(vcpu);
8288 		break;
8289 	case 4:
8290 		value = kvm_read_cr4(vcpu);
8291 		break;
8292 	case 8:
8293 		value = kvm_get_cr8(vcpu);
8294 		break;
8295 	default:
8296 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8297 		return 0;
8298 	}
8299 
8300 	return value;
8301 }
8302 
8303 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8304 {
8305 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8306 	int res = 0;
8307 
8308 	switch (cr) {
8309 	case 0:
8310 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8311 		break;
8312 	case 2:
8313 		vcpu->arch.cr2 = val;
8314 		break;
8315 	case 3:
8316 		res = kvm_set_cr3(vcpu, val);
8317 		break;
8318 	case 4:
8319 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8320 		break;
8321 	case 8:
8322 		res = kvm_set_cr8(vcpu, val);
8323 		break;
8324 	default:
8325 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8326 		res = -1;
8327 	}
8328 
8329 	return res;
8330 }
8331 
8332 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8333 {
8334 	return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8335 }
8336 
8337 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8338 {
8339 	kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8340 }
8341 
8342 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8343 {
8344 	kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8345 }
8346 
8347 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8348 {
8349 	kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8350 }
8351 
8352 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8353 {
8354 	kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8355 }
8356 
8357 static unsigned long emulator_get_cached_segment_base(
8358 	struct x86_emulate_ctxt *ctxt, int seg)
8359 {
8360 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8361 }
8362 
8363 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8364 				 struct desc_struct *desc, u32 *base3,
8365 				 int seg)
8366 {
8367 	struct kvm_segment var;
8368 
8369 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8370 	*selector = var.selector;
8371 
8372 	if (var.unusable) {
8373 		memset(desc, 0, sizeof(*desc));
8374 		if (base3)
8375 			*base3 = 0;
8376 		return false;
8377 	}
8378 
8379 	if (var.g)
8380 		var.limit >>= 12;
8381 	set_desc_limit(desc, var.limit);
8382 	set_desc_base(desc, (unsigned long)var.base);
8383 #ifdef CONFIG_X86_64
8384 	if (base3)
8385 		*base3 = var.base >> 32;
8386 #endif
8387 	desc->type = var.type;
8388 	desc->s = var.s;
8389 	desc->dpl = var.dpl;
8390 	desc->p = var.present;
8391 	desc->avl = var.avl;
8392 	desc->l = var.l;
8393 	desc->d = var.db;
8394 	desc->g = var.g;
8395 
8396 	return true;
8397 }
8398 
8399 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8400 				 struct desc_struct *desc, u32 base3,
8401 				 int seg)
8402 {
8403 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8404 	struct kvm_segment var;
8405 
8406 	var.selector = selector;
8407 	var.base = get_desc_base(desc);
8408 #ifdef CONFIG_X86_64
8409 	var.base |= ((u64)base3) << 32;
8410 #endif
8411 	var.limit = get_desc_limit(desc);
8412 	if (desc->g)
8413 		var.limit = (var.limit << 12) | 0xfff;
8414 	var.type = desc->type;
8415 	var.dpl = desc->dpl;
8416 	var.db = desc->d;
8417 	var.s = desc->s;
8418 	var.l = desc->l;
8419 	var.g = desc->g;
8420 	var.avl = desc->avl;
8421 	var.present = desc->p;
8422 	var.unusable = !var.present;
8423 	var.padding = 0;
8424 
8425 	kvm_set_segment(vcpu, &var, seg);
8426 	return;
8427 }
8428 
8429 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8430 					u32 msr_index, u64 *pdata)
8431 {
8432 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8433 	int r;
8434 
8435 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8436 	if (r < 0)
8437 		return X86EMUL_UNHANDLEABLE;
8438 
8439 	if (r) {
8440 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8441 				       complete_emulated_rdmsr, r))
8442 			return X86EMUL_IO_NEEDED;
8443 
8444 		trace_kvm_msr_read_ex(msr_index);
8445 		return X86EMUL_PROPAGATE_FAULT;
8446 	}
8447 
8448 	trace_kvm_msr_read(msr_index, *pdata);
8449 	return X86EMUL_CONTINUE;
8450 }
8451 
8452 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8453 					u32 msr_index, u64 data)
8454 {
8455 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8456 	int r;
8457 
8458 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8459 	if (r < 0)
8460 		return X86EMUL_UNHANDLEABLE;
8461 
8462 	if (r) {
8463 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8464 				       complete_emulated_msr_access, r))
8465 			return X86EMUL_IO_NEEDED;
8466 
8467 		trace_kvm_msr_write_ex(msr_index, data);
8468 		return X86EMUL_PROPAGATE_FAULT;
8469 	}
8470 
8471 	trace_kvm_msr_write(msr_index, data);
8472 	return X86EMUL_CONTINUE;
8473 }
8474 
8475 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8476 			    u32 msr_index, u64 *pdata)
8477 {
8478 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8479 }
8480 
8481 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8482 {
8483 	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8484 }
8485 
8486 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8487 			     u32 pmc, u64 *pdata)
8488 {
8489 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8490 }
8491 
8492 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8493 {
8494 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8495 }
8496 
8497 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8498 			      struct x86_instruction_info *info,
8499 			      enum x86_intercept_stage stage)
8500 {
8501 	return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8502 					     &ctxt->exception);
8503 }
8504 
8505 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8506 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8507 			      bool exact_only)
8508 {
8509 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8510 }
8511 
8512 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8513 {
8514 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8515 }
8516 
8517 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8518 {
8519 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8520 }
8521 
8522 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8523 {
8524 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8525 }
8526 
8527 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8528 {
8529 	return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8530 }
8531 
8532 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8533 {
8534 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8535 }
8536 
8537 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8538 {
8539 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8540 }
8541 
8542 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8543 {
8544 	kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8545 }
8546 
8547 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8548 {
8549 	return is_smm(emul_to_vcpu(ctxt));
8550 }
8551 
8552 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8553 {
8554 	return is_guest_mode(emul_to_vcpu(ctxt));
8555 }
8556 
8557 #ifndef CONFIG_KVM_SMM
8558 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8559 {
8560 	WARN_ON_ONCE(1);
8561 	return X86EMUL_UNHANDLEABLE;
8562 }
8563 #endif
8564 
8565 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8566 {
8567 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8568 }
8569 
8570 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8571 {
8572 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8573 }
8574 
8575 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8576 {
8577 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8578 
8579 	if (!kvm->vm_bugged)
8580 		kvm_vm_bugged(kvm);
8581 }
8582 
8583 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8584 					gva_t addr, unsigned int flags)
8585 {
8586 	if (!kvm_x86_ops.get_untagged_addr)
8587 		return addr;
8588 
8589 	return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8590 					       addr, flags);
8591 }
8592 
8593 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8594 				       gva_t addr, unsigned int flags)
8595 {
8596 	return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8597 }
8598 
8599 static const struct x86_emulate_ops emulate_ops = {
8600 	.vm_bugged           = emulator_vm_bugged,
8601 	.read_gpr            = emulator_read_gpr,
8602 	.write_gpr           = emulator_write_gpr,
8603 	.read_std            = emulator_read_std,
8604 	.write_std           = emulator_write_std,
8605 	.fetch               = kvm_fetch_guest_virt,
8606 	.read_emulated       = emulator_read_emulated,
8607 	.write_emulated      = emulator_write_emulated,
8608 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8609 	.invlpg              = emulator_invlpg,
8610 	.pio_in_emulated     = emulator_pio_in_emulated,
8611 	.pio_out_emulated    = emulator_pio_out_emulated,
8612 	.get_segment         = emulator_get_segment,
8613 	.set_segment         = emulator_set_segment,
8614 	.get_cached_segment_base = emulator_get_cached_segment_base,
8615 	.get_gdt             = emulator_get_gdt,
8616 	.get_idt	     = emulator_get_idt,
8617 	.set_gdt             = emulator_set_gdt,
8618 	.set_idt	     = emulator_set_idt,
8619 	.get_cr              = emulator_get_cr,
8620 	.set_cr              = emulator_set_cr,
8621 	.cpl                 = emulator_get_cpl,
8622 	.get_dr              = emulator_get_dr,
8623 	.set_dr              = emulator_set_dr,
8624 	.set_msr_with_filter = emulator_set_msr_with_filter,
8625 	.get_msr_with_filter = emulator_get_msr_with_filter,
8626 	.get_msr             = emulator_get_msr,
8627 	.check_rdpmc_early   = emulator_check_rdpmc_early,
8628 	.read_pmc            = emulator_read_pmc,
8629 	.halt                = emulator_halt,
8630 	.wbinvd              = emulator_wbinvd,
8631 	.fix_hypercall       = emulator_fix_hypercall,
8632 	.intercept           = emulator_intercept,
8633 	.get_cpuid           = emulator_get_cpuid,
8634 	.guest_has_movbe     = emulator_guest_has_movbe,
8635 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8636 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8637 	.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8638 	.set_nmi_mask        = emulator_set_nmi_mask,
8639 	.is_smm              = emulator_is_smm,
8640 	.is_guest_mode       = emulator_is_guest_mode,
8641 	.leave_smm           = emulator_leave_smm,
8642 	.triple_fault        = emulator_triple_fault,
8643 	.set_xcr             = emulator_set_xcr,
8644 	.get_untagged_addr   = emulator_get_untagged_addr,
8645 	.is_canonical_addr   = emulator_is_canonical_addr,
8646 };
8647 
8648 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8649 {
8650 	u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8651 	/*
8652 	 * an sti; sti; sequence only disable interrupts for the first
8653 	 * instruction. So, if the last instruction, be it emulated or
8654 	 * not, left the system with the INT_STI flag enabled, it
8655 	 * means that the last instruction is an sti. We should not
8656 	 * leave the flag on in this case. The same goes for mov ss
8657 	 */
8658 	if (int_shadow & mask)
8659 		mask = 0;
8660 	if (unlikely(int_shadow || mask)) {
8661 		kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8662 		if (!mask)
8663 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8664 	}
8665 }
8666 
8667 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8668 {
8669 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8670 
8671 	if (ctxt->exception.vector == PF_VECTOR)
8672 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8673 	else if (ctxt->exception.error_code_valid)
8674 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8675 				      ctxt->exception.error_code);
8676 	else
8677 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8678 }
8679 
8680 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8681 {
8682 	struct x86_emulate_ctxt *ctxt;
8683 
8684 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8685 	if (!ctxt) {
8686 		pr_err("failed to allocate vcpu's emulator\n");
8687 		return NULL;
8688 	}
8689 
8690 	ctxt->vcpu = vcpu;
8691 	ctxt->ops = &emulate_ops;
8692 	vcpu->arch.emulate_ctxt = ctxt;
8693 
8694 	return ctxt;
8695 }
8696 
8697 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8698 {
8699 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8700 	int cs_db, cs_l;
8701 
8702 	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8703 
8704 	ctxt->gpa_available = false;
8705 	ctxt->eflags = kvm_get_rflags(vcpu);
8706 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8707 
8708 	ctxt->eip = kvm_rip_read(vcpu);
8709 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8710 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8711 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8712 		     cs_db				? X86EMUL_MODE_PROT32 :
8713 							  X86EMUL_MODE_PROT16;
8714 	ctxt->interruptibility = 0;
8715 	ctxt->have_exception = false;
8716 	ctxt->exception.vector = -1;
8717 	ctxt->perm_ok = false;
8718 
8719 	init_decode_cache(ctxt);
8720 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8721 }
8722 
8723 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8724 {
8725 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8726 	int ret;
8727 
8728 	init_emulate_ctxt(vcpu);
8729 
8730 	ctxt->op_bytes = 2;
8731 	ctxt->ad_bytes = 2;
8732 	ctxt->_eip = ctxt->eip + inc_eip;
8733 	ret = emulate_int_real(ctxt, irq);
8734 
8735 	if (ret != X86EMUL_CONTINUE) {
8736 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8737 	} else {
8738 		ctxt->eip = ctxt->_eip;
8739 		kvm_rip_write(vcpu, ctxt->eip);
8740 		kvm_set_rflags(vcpu, ctxt->eflags);
8741 	}
8742 }
8743 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8744 
8745 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8746 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8747 {
8748 	struct kvm_run *run = vcpu->run;
8749 	u64 info[5];
8750 	u8 info_start;
8751 
8752 	/*
8753 	 * Zero the whole array used to retrieve the exit info, as casting to
8754 	 * u32 for select entries will leave some chunks uninitialized.
8755 	 */
8756 	memset(&info, 0, sizeof(info));
8757 
8758 	kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8759 				    (u32 *)&info[3], (u32 *)&info[4]);
8760 
8761 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8762 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8763 
8764 	/*
8765 	 * There's currently space for 13 entries, but 5 are used for the exit
8766 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8767 	 * when expanding kvm_run.emulation_failure in the future.
8768 	 */
8769 	if (WARN_ON_ONCE(ndata > 4))
8770 		ndata = 4;
8771 
8772 	/* Always include the flags as a 'data' entry. */
8773 	info_start = 1;
8774 	run->emulation_failure.flags = 0;
8775 
8776 	if (insn_size) {
8777 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8778 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8779 		info_start += 2;
8780 		run->emulation_failure.flags |=
8781 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8782 		run->emulation_failure.insn_size = insn_size;
8783 		memset(run->emulation_failure.insn_bytes, 0x90,
8784 		       sizeof(run->emulation_failure.insn_bytes));
8785 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8786 	}
8787 
8788 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8789 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8790 	       ndata * sizeof(data[0]));
8791 
8792 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8793 }
8794 
8795 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8796 {
8797 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8798 
8799 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8800 				       ctxt->fetch.end - ctxt->fetch.data);
8801 }
8802 
8803 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8804 					  u8 ndata)
8805 {
8806 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8807 }
8808 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8809 
8810 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8811 {
8812 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8813 }
8814 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8815 
8816 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8817 {
8818 	struct kvm *kvm = vcpu->kvm;
8819 
8820 	++vcpu->stat.insn_emulation_fail;
8821 	trace_kvm_emulate_insn_failed(vcpu);
8822 
8823 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8824 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8825 		return 1;
8826 	}
8827 
8828 	if (kvm->arch.exit_on_emulation_error ||
8829 	    (emulation_type & EMULTYPE_SKIP)) {
8830 		prepare_emulation_ctxt_failure_exit(vcpu);
8831 		return 0;
8832 	}
8833 
8834 	kvm_queue_exception(vcpu, UD_VECTOR);
8835 
8836 	if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8837 		prepare_emulation_ctxt_failure_exit(vcpu);
8838 		return 0;
8839 	}
8840 
8841 	return 1;
8842 }
8843 
8844 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8845 					       gpa_t cr2_or_gpa,
8846 					       int emulation_type)
8847 {
8848 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8849 		return false;
8850 
8851 	/*
8852 	 * If the failed instruction faulted on an access to page tables that
8853 	 * are used to translate any part of the instruction, KVM can't resolve
8854 	 * the issue by unprotecting the gfn, as zapping the shadow page will
8855 	 * result in the instruction taking a !PRESENT page fault and thus put
8856 	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8857 	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8858 	 * then zap the SPTE to unprotect the gfn, and then do it all over
8859 	 * again.  Report the error to userspace.
8860 	 */
8861 	if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8862 		return false;
8863 
8864 	/*
8865 	 * If emulation may have been triggered by a write to a shadowed page
8866 	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8867 	 * guest to let the CPU re-execute the instruction in the hope that the
8868 	 * CPU can cleanly execute the instruction that KVM failed to emulate.
8869 	 */
8870 	__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8871 
8872 	/*
8873 	 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8874 	 * all SPTEs were already zapped by a different task.  The alternative
8875 	 * is to report the error to userspace and likely terminate the guest,
8876 	 * and the last_retry_{eip,addr} checks will prevent retrying the page
8877 	 * fault indefinitely, i.e. there's nothing to lose by retrying.
8878 	 */
8879 	return true;
8880 }
8881 
8882 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8883 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8884 
8885 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8886 				unsigned long *db)
8887 {
8888 	u32 dr6 = 0;
8889 	int i;
8890 	u32 enable, rwlen;
8891 
8892 	enable = dr7;
8893 	rwlen = dr7 >> 16;
8894 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8895 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8896 			dr6 |= (1 << i);
8897 	return dr6;
8898 }
8899 
8900 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8901 {
8902 	struct kvm_run *kvm_run = vcpu->run;
8903 
8904 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8905 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8906 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8907 		kvm_run->debug.arch.exception = DB_VECTOR;
8908 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8909 		return 0;
8910 	}
8911 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8912 	return 1;
8913 }
8914 
8915 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8916 {
8917 	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8918 	int r;
8919 
8920 	r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8921 	if (unlikely(!r))
8922 		return 0;
8923 
8924 	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8925 
8926 	/*
8927 	 * rflags is the old, "raw" value of the flags.  The new value has
8928 	 * not been saved yet.
8929 	 *
8930 	 * This is correct even for TF set by the guest, because "the
8931 	 * processor will not generate this exception after the instruction
8932 	 * that sets the TF flag".
8933 	 */
8934 	if (unlikely(rflags & X86_EFLAGS_TF))
8935 		r = kvm_vcpu_do_singlestep(vcpu);
8936 	return r;
8937 }
8938 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8939 
8940 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8941 {
8942 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8943 		return true;
8944 
8945 	/*
8946 	 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8947 	 * active, but AMD compatible CPUs do not.
8948 	 */
8949 	if (!guest_cpuid_is_intel_compatible(vcpu))
8950 		return false;
8951 
8952 	return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8953 }
8954 
8955 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8956 					   int emulation_type, int *r)
8957 {
8958 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8959 
8960 	/*
8961 	 * Do not check for code breakpoints if hardware has already done the
8962 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8963 	 * the instruction has passed all exception checks, and all intercepted
8964 	 * exceptions that trigger emulation have lower priority than code
8965 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8966 	 * means any code breakpoints have already been serviced.
8967 	 *
8968 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8969 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8970 	 * the instruction being emulated.  The intent of forced emulation is
8971 	 * to behave as if KVM intercepted the instruction without an exception
8972 	 * and without a prefix.
8973 	 */
8974 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8975 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8976 		return false;
8977 
8978 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8979 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8980 		struct kvm_run *kvm_run = vcpu->run;
8981 		unsigned long eip = kvm_get_linear_rip(vcpu);
8982 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8983 					   vcpu->arch.guest_debug_dr7,
8984 					   vcpu->arch.eff_db);
8985 
8986 		if (dr6 != 0) {
8987 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8988 			kvm_run->debug.arch.pc = eip;
8989 			kvm_run->debug.arch.exception = DB_VECTOR;
8990 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8991 			*r = 0;
8992 			return true;
8993 		}
8994 	}
8995 
8996 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8997 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8998 		unsigned long eip = kvm_get_linear_rip(vcpu);
8999 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9000 					   vcpu->arch.dr7,
9001 					   vcpu->arch.db);
9002 
9003 		if (dr6 != 0) {
9004 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9005 			*r = 1;
9006 			return true;
9007 		}
9008 	}
9009 
9010 	return false;
9011 }
9012 
9013 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9014 {
9015 	switch (ctxt->opcode_len) {
9016 	case 1:
9017 		switch (ctxt->b) {
9018 		case 0xe4:	/* IN */
9019 		case 0xe5:
9020 		case 0xec:
9021 		case 0xed:
9022 		case 0xe6:	/* OUT */
9023 		case 0xe7:
9024 		case 0xee:
9025 		case 0xef:
9026 		case 0x6c:	/* INS */
9027 		case 0x6d:
9028 		case 0x6e:	/* OUTS */
9029 		case 0x6f:
9030 			return true;
9031 		}
9032 		break;
9033 	case 2:
9034 		switch (ctxt->b) {
9035 		case 0x33:	/* RDPMC */
9036 			return true;
9037 		}
9038 		break;
9039 	}
9040 
9041 	return false;
9042 }
9043 
9044 /*
9045  * Decode an instruction for emulation.  The caller is responsible for handling
9046  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9047  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9048  * code breakpoints have higher priority and thus have already been done by
9049  * hardware.
9050  *
9051  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9052  *     response to a machine check.
9053  */
9054 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9055 				    void *insn, int insn_len)
9056 {
9057 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9058 	int r;
9059 
9060 	init_emulate_ctxt(vcpu);
9061 
9062 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9063 
9064 	trace_kvm_emulate_insn_start(vcpu);
9065 	++vcpu->stat.insn_emulation;
9066 
9067 	return r;
9068 }
9069 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9070 
9071 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9072 			    int emulation_type, void *insn, int insn_len)
9073 {
9074 	int r;
9075 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9076 	bool writeback = true;
9077 
9078 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9079 	    (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9080 	     WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9081 		emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9082 
9083 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9084 	if (r != X86EMUL_CONTINUE) {
9085 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9086 			return 1;
9087 
9088 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9089 		return handle_emulation_failure(vcpu, emulation_type);
9090 	}
9091 
9092 	vcpu->arch.l1tf_flush_l1d = true;
9093 
9094 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9095 		kvm_clear_exception_queue(vcpu);
9096 
9097 		/*
9098 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9099 		 * are fault-like and are higher priority than any faults on
9100 		 * the code fetch itself.
9101 		 */
9102 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9103 			return r;
9104 
9105 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9106 						    insn, insn_len);
9107 		if (r != EMULATION_OK)  {
9108 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9109 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9110 				kvm_queue_exception(vcpu, UD_VECTOR);
9111 				return 1;
9112 			}
9113 			if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9114 							       emulation_type))
9115 				return 1;
9116 
9117 			if (ctxt->have_exception &&
9118 			    !(emulation_type & EMULTYPE_SKIP)) {
9119 				/*
9120 				 * #UD should result in just EMULATION_FAILED, and trap-like
9121 				 * exception should not be encountered during decode.
9122 				 */
9123 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9124 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9125 				inject_emulated_exception(vcpu);
9126 				return 1;
9127 			}
9128 			return handle_emulation_failure(vcpu, emulation_type);
9129 		}
9130 	}
9131 
9132 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9133 	    !is_vmware_backdoor_opcode(ctxt)) {
9134 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9135 		return 1;
9136 	}
9137 
9138 	/*
9139 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9140 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9141 	 * The caller is responsible for updating interruptibility state and
9142 	 * injecting single-step #DBs.
9143 	 */
9144 	if (emulation_type & EMULTYPE_SKIP) {
9145 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9146 			ctxt->eip = (u32)ctxt->_eip;
9147 		else
9148 			ctxt->eip = ctxt->_eip;
9149 
9150 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9151 			r = 1;
9152 			goto writeback;
9153 		}
9154 
9155 		kvm_rip_write(vcpu, ctxt->eip);
9156 		if (ctxt->eflags & X86_EFLAGS_RF)
9157 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9158 		return 1;
9159 	}
9160 
9161 	/*
9162 	 * If emulation was caused by a write-protection #PF on a non-page_table
9163 	 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9164 	 * and retry the instruction, as the vCPU is likely no longer using the
9165 	 * gfn as a page table.
9166 	 */
9167 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9168 	    !x86_page_table_writing_insn(ctxt) &&
9169 	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9170 		return 1;
9171 
9172 	/* this is needed for vmware backdoor interface to work since it
9173 	   changes registers values  during IO operation */
9174 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9175 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9176 		emulator_invalidate_register_cache(ctxt);
9177 	}
9178 
9179 restart:
9180 	if (emulation_type & EMULTYPE_PF) {
9181 		/* Save the faulting GPA (cr2) in the address field */
9182 		ctxt->exception.address = cr2_or_gpa;
9183 
9184 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9185 		if (vcpu->arch.mmu->root_role.direct) {
9186 			ctxt->gpa_available = true;
9187 			ctxt->gpa_val = cr2_or_gpa;
9188 		}
9189 	} else {
9190 		/* Sanitize the address out of an abundance of paranoia. */
9191 		ctxt->exception.address = 0;
9192 	}
9193 
9194 	r = x86_emulate_insn(ctxt);
9195 
9196 	if (r == EMULATION_INTERCEPTED)
9197 		return 1;
9198 
9199 	if (r == EMULATION_FAILED) {
9200 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9201 						       emulation_type))
9202 			return 1;
9203 
9204 		return handle_emulation_failure(vcpu, emulation_type);
9205 	}
9206 
9207 	if (ctxt->have_exception) {
9208 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9209 		vcpu->mmio_needed = false;
9210 		r = 1;
9211 		inject_emulated_exception(vcpu);
9212 	} else if (vcpu->arch.pio.count) {
9213 		if (!vcpu->arch.pio.in) {
9214 			/* FIXME: return into emulator if single-stepping.  */
9215 			vcpu->arch.pio.count = 0;
9216 		} else {
9217 			writeback = false;
9218 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9219 		}
9220 		r = 0;
9221 	} else if (vcpu->mmio_needed) {
9222 		++vcpu->stat.mmio_exits;
9223 
9224 		if (!vcpu->mmio_is_write)
9225 			writeback = false;
9226 		r = 0;
9227 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9228 	} else if (vcpu->arch.complete_userspace_io) {
9229 		writeback = false;
9230 		r = 0;
9231 	} else if (r == EMULATION_RESTART)
9232 		goto restart;
9233 	else
9234 		r = 1;
9235 
9236 writeback:
9237 	if (writeback) {
9238 		unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9239 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9240 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9241 
9242 		/*
9243 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9244 		 * only supports code breakpoints and general detect #DB, both
9245 		 * of which are fault-like.
9246 		 */
9247 		if (!ctxt->have_exception ||
9248 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9249 			kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9250 			if (ctxt->is_branch)
9251 				kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9252 			kvm_rip_write(vcpu, ctxt->eip);
9253 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9254 				r = kvm_vcpu_do_singlestep(vcpu);
9255 			kvm_x86_call(update_emulated_instruction)(vcpu);
9256 			__kvm_set_rflags(vcpu, ctxt->eflags);
9257 		}
9258 
9259 		/*
9260 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9261 		 * do nothing, and it will be requested again as soon as
9262 		 * the shadow expires.  But we still need to check here,
9263 		 * because POPF has no interrupt shadow.
9264 		 */
9265 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9266 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9267 	} else
9268 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9269 
9270 	return r;
9271 }
9272 
9273 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9274 {
9275 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9276 }
9277 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9278 
9279 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9280 					void *insn, int insn_len)
9281 {
9282 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9283 }
9284 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9285 
9286 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9287 {
9288 	vcpu->arch.pio.count = 0;
9289 	return 1;
9290 }
9291 
9292 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9293 {
9294 	vcpu->arch.pio.count = 0;
9295 
9296 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9297 		return 1;
9298 
9299 	return kvm_skip_emulated_instruction(vcpu);
9300 }
9301 
9302 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9303 			    unsigned short port)
9304 {
9305 	unsigned long val = kvm_rax_read(vcpu);
9306 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9307 
9308 	if (ret)
9309 		return ret;
9310 
9311 	/*
9312 	 * Workaround userspace that relies on old KVM behavior of %rip being
9313 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9314 	 */
9315 	if (port == 0x7e &&
9316 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9317 		vcpu->arch.complete_userspace_io =
9318 			complete_fast_pio_out_port_0x7e;
9319 		kvm_skip_emulated_instruction(vcpu);
9320 	} else {
9321 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9322 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9323 	}
9324 	return 0;
9325 }
9326 
9327 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9328 {
9329 	unsigned long val;
9330 
9331 	/* We should only ever be called with arch.pio.count equal to 1 */
9332 	BUG_ON(vcpu->arch.pio.count != 1);
9333 
9334 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9335 		vcpu->arch.pio.count = 0;
9336 		return 1;
9337 	}
9338 
9339 	/* For size less than 4 we merge, else we zero extend */
9340 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9341 
9342 	complete_emulator_pio_in(vcpu, &val);
9343 	kvm_rax_write(vcpu, val);
9344 
9345 	return kvm_skip_emulated_instruction(vcpu);
9346 }
9347 
9348 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9349 			   unsigned short port)
9350 {
9351 	unsigned long val;
9352 	int ret;
9353 
9354 	/* For size less than 4 we merge, else we zero extend */
9355 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9356 
9357 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9358 	if (ret) {
9359 		kvm_rax_write(vcpu, val);
9360 		return ret;
9361 	}
9362 
9363 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9364 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9365 
9366 	return 0;
9367 }
9368 
9369 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9370 {
9371 	int ret;
9372 
9373 	if (in)
9374 		ret = kvm_fast_pio_in(vcpu, size, port);
9375 	else
9376 		ret = kvm_fast_pio_out(vcpu, size, port);
9377 	return ret && kvm_skip_emulated_instruction(vcpu);
9378 }
9379 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9380 
9381 static int kvmclock_cpu_down_prep(unsigned int cpu)
9382 {
9383 	__this_cpu_write(cpu_tsc_khz, 0);
9384 	return 0;
9385 }
9386 
9387 static void tsc_khz_changed(void *data)
9388 {
9389 	struct cpufreq_freqs *freq = data;
9390 	unsigned long khz;
9391 
9392 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9393 
9394 	if (data)
9395 		khz = freq->new;
9396 	else
9397 		khz = cpufreq_quick_get(raw_smp_processor_id());
9398 	if (!khz)
9399 		khz = tsc_khz;
9400 	__this_cpu_write(cpu_tsc_khz, khz);
9401 }
9402 
9403 #ifdef CONFIG_X86_64
9404 static void kvm_hyperv_tsc_notifier(void)
9405 {
9406 	struct kvm *kvm;
9407 	int cpu;
9408 
9409 	mutex_lock(&kvm_lock);
9410 	list_for_each_entry(kvm, &vm_list, vm_list)
9411 		kvm_make_mclock_inprogress_request(kvm);
9412 
9413 	/* no guest entries from this point */
9414 	hyperv_stop_tsc_emulation();
9415 
9416 	/* TSC frequency always matches when on Hyper-V */
9417 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9418 		for_each_present_cpu(cpu)
9419 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9420 	}
9421 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9422 
9423 	list_for_each_entry(kvm, &vm_list, vm_list) {
9424 		__kvm_start_pvclock_update(kvm);
9425 		pvclock_update_vm_gtod_copy(kvm);
9426 		kvm_end_pvclock_update(kvm);
9427 	}
9428 
9429 	mutex_unlock(&kvm_lock);
9430 }
9431 #endif
9432 
9433 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9434 {
9435 	struct kvm *kvm;
9436 	struct kvm_vcpu *vcpu;
9437 	int send_ipi = 0;
9438 	unsigned long i;
9439 
9440 	/*
9441 	 * We allow guests to temporarily run on slowing clocks,
9442 	 * provided we notify them after, or to run on accelerating
9443 	 * clocks, provided we notify them before.  Thus time never
9444 	 * goes backwards.
9445 	 *
9446 	 * However, we have a problem.  We can't atomically update
9447 	 * the frequency of a given CPU from this function; it is
9448 	 * merely a notifier, which can be called from any CPU.
9449 	 * Changing the TSC frequency at arbitrary points in time
9450 	 * requires a recomputation of local variables related to
9451 	 * the TSC for each VCPU.  We must flag these local variables
9452 	 * to be updated and be sure the update takes place with the
9453 	 * new frequency before any guests proceed.
9454 	 *
9455 	 * Unfortunately, the combination of hotplug CPU and frequency
9456 	 * change creates an intractable locking scenario; the order
9457 	 * of when these callouts happen is undefined with respect to
9458 	 * CPU hotplug, and they can race with each other.  As such,
9459 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9460 	 * undefined; you can actually have a CPU frequency change take
9461 	 * place in between the computation of X and the setting of the
9462 	 * variable.  To protect against this problem, all updates of
9463 	 * the per_cpu tsc_khz variable are done in an interrupt
9464 	 * protected IPI, and all callers wishing to update the value
9465 	 * must wait for a synchronous IPI to complete (which is trivial
9466 	 * if the caller is on the CPU already).  This establishes the
9467 	 * necessary total order on variable updates.
9468 	 *
9469 	 * Note that because a guest time update may take place
9470 	 * anytime after the setting of the VCPU's request bit, the
9471 	 * correct TSC value must be set before the request.  However,
9472 	 * to ensure the update actually makes it to any guest which
9473 	 * starts running in hardware virtualization between the set
9474 	 * and the acquisition of the spinlock, we must also ping the
9475 	 * CPU after setting the request bit.
9476 	 *
9477 	 */
9478 
9479 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9480 
9481 	mutex_lock(&kvm_lock);
9482 	list_for_each_entry(kvm, &vm_list, vm_list) {
9483 		kvm_for_each_vcpu(i, vcpu, kvm) {
9484 			if (vcpu->cpu != cpu)
9485 				continue;
9486 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9487 			if (vcpu->cpu != raw_smp_processor_id())
9488 				send_ipi = 1;
9489 		}
9490 	}
9491 	mutex_unlock(&kvm_lock);
9492 
9493 	if (freq->old < freq->new && send_ipi) {
9494 		/*
9495 		 * We upscale the frequency.  Must make the guest
9496 		 * doesn't see old kvmclock values while running with
9497 		 * the new frequency, otherwise we risk the guest sees
9498 		 * time go backwards.
9499 		 *
9500 		 * In case we update the frequency for another cpu
9501 		 * (which might be in guest context) send an interrupt
9502 		 * to kick the cpu out of guest context.  Next time
9503 		 * guest context is entered kvmclock will be updated,
9504 		 * so the guest will not see stale values.
9505 		 */
9506 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9507 	}
9508 }
9509 
9510 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9511 				     void *data)
9512 {
9513 	struct cpufreq_freqs *freq = data;
9514 	int cpu;
9515 
9516 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9517 		return 0;
9518 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9519 		return 0;
9520 
9521 	for_each_cpu(cpu, freq->policy->cpus)
9522 		__kvmclock_cpufreq_notifier(freq, cpu);
9523 
9524 	return 0;
9525 }
9526 
9527 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9528 	.notifier_call  = kvmclock_cpufreq_notifier
9529 };
9530 
9531 static int kvmclock_cpu_online(unsigned int cpu)
9532 {
9533 	tsc_khz_changed(NULL);
9534 	return 0;
9535 }
9536 
9537 static void kvm_timer_init(void)
9538 {
9539 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9540 		max_tsc_khz = tsc_khz;
9541 
9542 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9543 			struct cpufreq_policy *policy;
9544 			int cpu;
9545 
9546 			cpu = get_cpu();
9547 			policy = cpufreq_cpu_get(cpu);
9548 			if (policy) {
9549 				if (policy->cpuinfo.max_freq)
9550 					max_tsc_khz = policy->cpuinfo.max_freq;
9551 				cpufreq_cpu_put(policy);
9552 			}
9553 			put_cpu();
9554 		}
9555 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9556 					  CPUFREQ_TRANSITION_NOTIFIER);
9557 
9558 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9559 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9560 	}
9561 }
9562 
9563 #ifdef CONFIG_X86_64
9564 static void pvclock_gtod_update_fn(struct work_struct *work)
9565 {
9566 	struct kvm *kvm;
9567 	struct kvm_vcpu *vcpu;
9568 	unsigned long i;
9569 
9570 	mutex_lock(&kvm_lock);
9571 	list_for_each_entry(kvm, &vm_list, vm_list)
9572 		kvm_for_each_vcpu(i, vcpu, kvm)
9573 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9574 	atomic_set(&kvm_guest_has_master_clock, 0);
9575 	mutex_unlock(&kvm_lock);
9576 }
9577 
9578 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9579 
9580 /*
9581  * Indirection to move queue_work() out of the tk_core.seq write held
9582  * region to prevent possible deadlocks against time accessors which
9583  * are invoked with work related locks held.
9584  */
9585 static void pvclock_irq_work_fn(struct irq_work *w)
9586 {
9587 	queue_work(system_long_wq, &pvclock_gtod_work);
9588 }
9589 
9590 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9591 
9592 /*
9593  * Notification about pvclock gtod data update.
9594  */
9595 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9596 			       void *priv)
9597 {
9598 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9599 	struct timekeeper *tk = priv;
9600 
9601 	update_pvclock_gtod(tk);
9602 
9603 	/*
9604 	 * Disable master clock if host does not trust, or does not use,
9605 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9606 	 * this is invoked with tk_core.seq write held.
9607 	 */
9608 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9609 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9610 		irq_work_queue(&pvclock_irq_work);
9611 	return 0;
9612 }
9613 
9614 static struct notifier_block pvclock_gtod_notifier = {
9615 	.notifier_call = pvclock_gtod_notify,
9616 };
9617 #endif
9618 
9619 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9620 {
9621 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9622 
9623 #define __KVM_X86_OP(func) \
9624 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9625 #define KVM_X86_OP(func) \
9626 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9627 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9628 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9629 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9630 					   (void *)__static_call_return0);
9631 #include <asm/kvm-x86-ops.h>
9632 #undef __KVM_X86_OP
9633 
9634 	kvm_pmu_ops_update(ops->pmu_ops);
9635 }
9636 
9637 static int kvm_x86_check_processor_compatibility(void)
9638 {
9639 	int cpu = smp_processor_id();
9640 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9641 
9642 	/*
9643 	 * Compatibility checks are done when loading KVM and when enabling
9644 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9645 	 * compatible, i.e. KVM should never perform a compatibility check on
9646 	 * an offline CPU.
9647 	 */
9648 	WARN_ON(!cpu_online(cpu));
9649 
9650 	if (__cr4_reserved_bits(cpu_has, c) !=
9651 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9652 		return -EIO;
9653 
9654 	return kvm_x86_call(check_processor_compatibility)();
9655 }
9656 
9657 static void kvm_x86_check_cpu_compat(void *ret)
9658 {
9659 	*(int *)ret = kvm_x86_check_processor_compatibility();
9660 }
9661 
9662 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9663 {
9664 	u64 host_pat;
9665 	int r, cpu;
9666 
9667 	guard(mutex)(&vendor_module_lock);
9668 
9669 	if (kvm_x86_ops.enable_virtualization_cpu) {
9670 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9671 		return -EEXIST;
9672 	}
9673 
9674 	/*
9675 	 * KVM explicitly assumes that the guest has an FPU and
9676 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9677 	 * vCPU's FPU state as a fxregs_state struct.
9678 	 */
9679 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9680 		pr_err("inadequate fpu\n");
9681 		return -EOPNOTSUPP;
9682 	}
9683 
9684 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9685 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9686 		return -EOPNOTSUPP;
9687 	}
9688 
9689 	/*
9690 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9691 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9692 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9693 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9694 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9695 	 */
9696 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9697 	    (host_pat & GENMASK(2, 0)) != 6) {
9698 		pr_err("host PAT[0] is not WB\n");
9699 		return -EIO;
9700 	}
9701 
9702 	memset(&kvm_caps, 0, sizeof(kvm_caps));
9703 
9704 	x86_emulator_cache = kvm_alloc_emulator_cache();
9705 	if (!x86_emulator_cache) {
9706 		pr_err("failed to allocate cache for x86 emulator\n");
9707 		return -ENOMEM;
9708 	}
9709 
9710 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9711 	if (!user_return_msrs) {
9712 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9713 		r = -ENOMEM;
9714 		goto out_free_x86_emulator_cache;
9715 	}
9716 	kvm_nr_uret_msrs = 0;
9717 
9718 	r = kvm_mmu_vendor_module_init();
9719 	if (r)
9720 		goto out_free_percpu;
9721 
9722 	kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9723 	kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9724 
9725 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9726 		kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9727 		kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9728 	}
9729 
9730 	rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9731 
9732 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9733 		rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9734 
9735 	kvm_init_pmu_capability(ops->pmu_ops);
9736 
9737 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9738 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9739 
9740 	r = ops->hardware_setup();
9741 	if (r != 0)
9742 		goto out_mmu_exit;
9743 
9744 	kvm_ops_update(ops);
9745 
9746 	for_each_online_cpu(cpu) {
9747 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9748 		if (r < 0)
9749 			goto out_unwind_ops;
9750 	}
9751 
9752 	/*
9753 	 * Point of no return!  DO NOT add error paths below this point unless
9754 	 * absolutely necessary, as most operations from this point forward
9755 	 * require unwinding.
9756 	 */
9757 	kvm_timer_init();
9758 
9759 	if (pi_inject_timer == -1)
9760 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9761 #ifdef CONFIG_X86_64
9762 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9763 
9764 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9765 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9766 #endif
9767 
9768 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9769 
9770 	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9771 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9772 
9773 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9774 		kvm_caps.supported_xss = 0;
9775 
9776 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9777 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9778 #undef __kvm_cpu_cap_has
9779 
9780 	if (kvm_caps.has_tsc_control) {
9781 		/*
9782 		 * Make sure the user can only configure tsc_khz values that
9783 		 * fit into a signed integer.
9784 		 * A min value is not calculated because it will always
9785 		 * be 1 on all machines.
9786 		 */
9787 		u64 max = min(0x7fffffffULL,
9788 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9789 		kvm_caps.max_guest_tsc_khz = max;
9790 	}
9791 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9792 	kvm_init_msr_lists();
9793 	return 0;
9794 
9795 out_unwind_ops:
9796 	kvm_x86_ops.enable_virtualization_cpu = NULL;
9797 	kvm_x86_call(hardware_unsetup)();
9798 out_mmu_exit:
9799 	kvm_mmu_vendor_module_exit();
9800 out_free_percpu:
9801 	free_percpu(user_return_msrs);
9802 out_free_x86_emulator_cache:
9803 	kmem_cache_destroy(x86_emulator_cache);
9804 	return r;
9805 }
9806 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9807 
9808 void kvm_x86_vendor_exit(void)
9809 {
9810 	kvm_unregister_perf_callbacks();
9811 
9812 #ifdef CONFIG_X86_64
9813 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9814 		clear_hv_tscchange_cb();
9815 #endif
9816 	kvm_lapic_exit();
9817 
9818 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9819 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9820 					    CPUFREQ_TRANSITION_NOTIFIER);
9821 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9822 	}
9823 #ifdef CONFIG_X86_64
9824 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9825 	irq_work_sync(&pvclock_irq_work);
9826 	cancel_work_sync(&pvclock_gtod_work);
9827 #endif
9828 	kvm_x86_call(hardware_unsetup)();
9829 	kvm_mmu_vendor_module_exit();
9830 	free_percpu(user_return_msrs);
9831 	kmem_cache_destroy(x86_emulator_cache);
9832 #ifdef CONFIG_KVM_XEN
9833 	static_key_deferred_flush(&kvm_xen_enabled);
9834 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9835 #endif
9836 	mutex_lock(&vendor_module_lock);
9837 	kvm_x86_ops.enable_virtualization_cpu = NULL;
9838 	mutex_unlock(&vendor_module_lock);
9839 }
9840 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9841 
9842 #ifdef CONFIG_X86_64
9843 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9844 			        unsigned long clock_type)
9845 {
9846 	struct kvm_clock_pairing clock_pairing;
9847 	struct timespec64 ts;
9848 	u64 cycle;
9849 	int ret;
9850 
9851 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9852 		return -KVM_EOPNOTSUPP;
9853 
9854 	/*
9855 	 * When tsc is in permanent catchup mode guests won't be able to use
9856 	 * pvclock_read_retry loop to get consistent view of pvclock
9857 	 */
9858 	if (vcpu->arch.tsc_always_catchup)
9859 		return -KVM_EOPNOTSUPP;
9860 
9861 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9862 		return -KVM_EOPNOTSUPP;
9863 
9864 	clock_pairing.sec = ts.tv_sec;
9865 	clock_pairing.nsec = ts.tv_nsec;
9866 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9867 	clock_pairing.flags = 0;
9868 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9869 
9870 	ret = 0;
9871 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9872 			    sizeof(struct kvm_clock_pairing)))
9873 		ret = -KVM_EFAULT;
9874 
9875 	return ret;
9876 }
9877 #endif
9878 
9879 /*
9880  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9881  *
9882  * @apicid - apicid of vcpu to be kicked.
9883  */
9884 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9885 {
9886 	/*
9887 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9888 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9889 	 */
9890 	struct kvm_lapic_irq lapic_irq = {
9891 		.delivery_mode = APIC_DM_REMRD,
9892 		.dest_mode = APIC_DEST_PHYSICAL,
9893 		.shorthand = APIC_DEST_NOSHORT,
9894 		.dest_id = apicid,
9895 	};
9896 
9897 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9898 }
9899 
9900 bool kvm_apicv_activated(struct kvm *kvm)
9901 {
9902 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9903 }
9904 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9905 
9906 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9907 {
9908 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9909 	ulong vcpu_reasons =
9910 			kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9911 
9912 	return (vm_reasons | vcpu_reasons) == 0;
9913 }
9914 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9915 
9916 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9917 				       enum kvm_apicv_inhibit reason, bool set)
9918 {
9919 	const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9920 
9921 	BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9922 
9923 	if (set)
9924 		__set_bit(reason, inhibits);
9925 	else
9926 		__clear_bit(reason, inhibits);
9927 
9928 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9929 }
9930 
9931 static void kvm_apicv_init(struct kvm *kvm)
9932 {
9933 	enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9934 						       APICV_INHIBIT_REASON_DISABLED;
9935 
9936 	set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9937 
9938 	init_rwsem(&kvm->arch.apicv_update_lock);
9939 }
9940 
9941 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9942 {
9943 	struct kvm_vcpu *target = NULL;
9944 	struct kvm_apic_map *map;
9945 
9946 	vcpu->stat.directed_yield_attempted++;
9947 
9948 	if (single_task_running())
9949 		goto no_yield;
9950 
9951 	rcu_read_lock();
9952 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9953 
9954 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9955 		target = map->phys_map[dest_id]->vcpu;
9956 
9957 	rcu_read_unlock();
9958 
9959 	if (!target || !READ_ONCE(target->ready))
9960 		goto no_yield;
9961 
9962 	/* Ignore requests to yield to self */
9963 	if (vcpu == target)
9964 		goto no_yield;
9965 
9966 	if (kvm_vcpu_yield_to(target) <= 0)
9967 		goto no_yield;
9968 
9969 	vcpu->stat.directed_yield_successful++;
9970 
9971 no_yield:
9972 	return;
9973 }
9974 
9975 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9976 {
9977 	u64 ret = vcpu->run->hypercall.ret;
9978 
9979 	if (!is_64_bit_mode(vcpu))
9980 		ret = (u32)ret;
9981 	kvm_rax_write(vcpu, ret);
9982 	++vcpu->stat.hypercalls;
9983 	return kvm_skip_emulated_instruction(vcpu);
9984 }
9985 
9986 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
9987 				      unsigned long a0, unsigned long a1,
9988 				      unsigned long a2, unsigned long a3,
9989 				      int op_64_bit, int cpl)
9990 {
9991 	unsigned long ret;
9992 
9993 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9994 
9995 	if (!op_64_bit) {
9996 		nr &= 0xFFFFFFFF;
9997 		a0 &= 0xFFFFFFFF;
9998 		a1 &= 0xFFFFFFFF;
9999 		a2 &= 0xFFFFFFFF;
10000 		a3 &= 0xFFFFFFFF;
10001 	}
10002 
10003 	if (cpl) {
10004 		ret = -KVM_EPERM;
10005 		goto out;
10006 	}
10007 
10008 	ret = -KVM_ENOSYS;
10009 
10010 	switch (nr) {
10011 	case KVM_HC_VAPIC_POLL_IRQ:
10012 		ret = 0;
10013 		break;
10014 	case KVM_HC_KICK_CPU:
10015 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10016 			break;
10017 
10018 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10019 		kvm_sched_yield(vcpu, a1);
10020 		ret = 0;
10021 		break;
10022 #ifdef CONFIG_X86_64
10023 	case KVM_HC_CLOCK_PAIRING:
10024 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10025 		break;
10026 #endif
10027 	case KVM_HC_SEND_IPI:
10028 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10029 			break;
10030 
10031 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10032 		break;
10033 	case KVM_HC_SCHED_YIELD:
10034 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10035 			break;
10036 
10037 		kvm_sched_yield(vcpu, a0);
10038 		ret = 0;
10039 		break;
10040 	case KVM_HC_MAP_GPA_RANGE: {
10041 		u64 gpa = a0, npages = a1, attrs = a2;
10042 
10043 		ret = -KVM_ENOSYS;
10044 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10045 			break;
10046 
10047 		if (!PAGE_ALIGNED(gpa) || !npages ||
10048 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10049 			ret = -KVM_EINVAL;
10050 			break;
10051 		}
10052 
10053 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10054 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10055 		vcpu->run->hypercall.args[0]  = gpa;
10056 		vcpu->run->hypercall.args[1]  = npages;
10057 		vcpu->run->hypercall.args[2]  = attrs;
10058 		vcpu->run->hypercall.flags    = 0;
10059 		if (op_64_bit)
10060 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10061 
10062 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10063 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10064 		/* stat is incremented on completion. */
10065 		return 0;
10066 	}
10067 	default:
10068 		ret = -KVM_ENOSYS;
10069 		break;
10070 	}
10071 
10072 out:
10073 	++vcpu->stat.hypercalls;
10074 	return ret;
10075 }
10076 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall);
10077 
10078 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10079 {
10080 	unsigned long nr, a0, a1, a2, a3, ret;
10081 	int op_64_bit;
10082 	int cpl;
10083 
10084 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10085 		return kvm_xen_hypercall(vcpu);
10086 
10087 	if (kvm_hv_hypercall_enabled(vcpu))
10088 		return kvm_hv_hypercall(vcpu);
10089 
10090 	nr = kvm_rax_read(vcpu);
10091 	a0 = kvm_rbx_read(vcpu);
10092 	a1 = kvm_rcx_read(vcpu);
10093 	a2 = kvm_rdx_read(vcpu);
10094 	a3 = kvm_rsi_read(vcpu);
10095 	op_64_bit = is_64_bit_hypercall(vcpu);
10096 	cpl = kvm_x86_call(get_cpl)(vcpu);
10097 
10098 	ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl);
10099 	if (nr == KVM_HC_MAP_GPA_RANGE && !ret)
10100 		/* MAP_GPA tosses the request to the user space. */
10101 		return 0;
10102 
10103 	if (!op_64_bit)
10104 		ret = (u32)ret;
10105 	kvm_rax_write(vcpu, ret);
10106 
10107 	return kvm_skip_emulated_instruction(vcpu);
10108 }
10109 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10110 
10111 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10112 {
10113 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10114 	char instruction[3];
10115 	unsigned long rip = kvm_rip_read(vcpu);
10116 
10117 	/*
10118 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10119 	 * the pieces.
10120 	 */
10121 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10122 		ctxt->exception.error_code_valid = false;
10123 		ctxt->exception.vector = UD_VECTOR;
10124 		ctxt->have_exception = true;
10125 		return X86EMUL_PROPAGATE_FAULT;
10126 	}
10127 
10128 	kvm_x86_call(patch_hypercall)(vcpu, instruction);
10129 
10130 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10131 		&ctxt->exception);
10132 }
10133 
10134 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10135 {
10136 	return vcpu->run->request_interrupt_window &&
10137 		likely(!pic_in_kernel(vcpu->kvm));
10138 }
10139 
10140 /* Called within kvm->srcu read side.  */
10141 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10142 {
10143 	struct kvm_run *kvm_run = vcpu->run;
10144 
10145 	kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10146 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10147 	kvm_run->apic_base = vcpu->arch.apic_base;
10148 
10149 	kvm_run->ready_for_interrupt_injection =
10150 		pic_in_kernel(vcpu->kvm) ||
10151 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10152 
10153 	if (is_smm(vcpu))
10154 		kvm_run->flags |= KVM_RUN_X86_SMM;
10155 	if (is_guest_mode(vcpu))
10156 		kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10157 }
10158 
10159 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10160 {
10161 	int max_irr, tpr;
10162 
10163 	if (!kvm_x86_ops.update_cr8_intercept)
10164 		return;
10165 
10166 	if (!lapic_in_kernel(vcpu))
10167 		return;
10168 
10169 	if (vcpu->arch.apic->apicv_active)
10170 		return;
10171 
10172 	if (!vcpu->arch.apic->vapic_addr)
10173 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10174 	else
10175 		max_irr = -1;
10176 
10177 	if (max_irr != -1)
10178 		max_irr >>= 4;
10179 
10180 	tpr = kvm_lapic_get_cr8(vcpu);
10181 
10182 	kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10183 }
10184 
10185 
10186 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10187 {
10188 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10189 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10190 		return 1;
10191 	}
10192 
10193 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10194 }
10195 
10196 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10197 {
10198 	/*
10199 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10200 	 * exceptions don't report error codes.  The presence of an error code
10201 	 * is carried with the exception and only stripped when the exception
10202 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10203 	 * report an error code despite the CPU being in Real Mode.
10204 	 */
10205 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10206 
10207 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10208 				vcpu->arch.exception.has_error_code,
10209 				vcpu->arch.exception.error_code,
10210 				vcpu->arch.exception.injected);
10211 
10212 	kvm_x86_call(inject_exception)(vcpu);
10213 }
10214 
10215 /*
10216  * Check for any event (interrupt or exception) that is ready to be injected,
10217  * and if there is at least one event, inject the event with the highest
10218  * priority.  This handles both "pending" events, i.e. events that have never
10219  * been injected into the guest, and "injected" events, i.e. events that were
10220  * injected as part of a previous VM-Enter, but weren't successfully delivered
10221  * and need to be re-injected.
10222  *
10223  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10224  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10225  * be able to inject exceptions in the "middle" of an instruction, and so must
10226  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10227  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10228  * boundaries is necessary and correct.
10229  *
10230  * For simplicity, KVM uses a single path to inject all events (except events
10231  * that are injected directly from L1 to L2) and doesn't explicitly track
10232  * instruction boundaries for asynchronous events.  However, because VM-Exits
10233  * that can occur during instruction execution typically result in KVM skipping
10234  * the instruction or injecting an exception, e.g. instruction and exception
10235  * intercepts, and because pending exceptions have higher priority than pending
10236  * interrupts, KVM still honors instruction boundaries in most scenarios.
10237  *
10238  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10239  * the instruction or inject an exception, then KVM can incorrecty inject a new
10240  * asynchronous event if the event became pending after the CPU fetched the
10241  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10242  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10243  * injected on the restarted instruction instead of being deferred until the
10244  * instruction completes.
10245  *
10246  * In practice, this virtualization hole is unlikely to be observed by the
10247  * guest, and even less likely to cause functional problems.  To detect the
10248  * hole, the guest would have to trigger an event on a side effect of an early
10249  * phase of instruction execution, e.g. on the instruction fetch from memory.
10250  * And for it to be a functional problem, the guest would need to depend on the
10251  * ordering between that side effect, the instruction completing, _and_ the
10252  * delivery of the asynchronous event.
10253  */
10254 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10255 				       bool *req_immediate_exit)
10256 {
10257 	bool can_inject;
10258 	int r;
10259 
10260 	/*
10261 	 * Process nested events first, as nested VM-Exit supersedes event
10262 	 * re-injection.  If there's an event queued for re-injection, it will
10263 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10264 	 */
10265 	if (is_guest_mode(vcpu))
10266 		r = kvm_check_nested_events(vcpu);
10267 	else
10268 		r = 0;
10269 
10270 	/*
10271 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10272 	 * to/from L2 is needed, as any event that has already been injected
10273 	 * into L2 needs to complete its lifecycle before injecting a new event.
10274 	 *
10275 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10276 	 * This collision arises if an exception occurred while vectoring the
10277 	 * injected event, KVM intercepted said exception, and KVM ultimately
10278 	 * determined the fault belongs to the guest and queues the exception
10279 	 * for injection back into the guest.
10280 	 *
10281 	 * "Injected" interrupts can also collide with pending exceptions if
10282 	 * userspace ignores the "ready for injection" flag and blindly queues
10283 	 * an interrupt.  In that case, prioritizing the exception is correct,
10284 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10285 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10286 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10287 	 * priority, they're only generated (pended) during instruction
10288 	 * execution, and interrupts are recognized at instruction boundaries.
10289 	 * Thus a pending fault-like exception means the fault occurred on the
10290 	 * *previous* instruction and must be serviced prior to recognizing any
10291 	 * new events in order to fully complete the previous instruction.
10292 	 */
10293 	if (vcpu->arch.exception.injected)
10294 		kvm_inject_exception(vcpu);
10295 	else if (kvm_is_exception_pending(vcpu))
10296 		; /* see above */
10297 	else if (vcpu->arch.nmi_injected)
10298 		kvm_x86_call(inject_nmi)(vcpu);
10299 	else if (vcpu->arch.interrupt.injected)
10300 		kvm_x86_call(inject_irq)(vcpu, true);
10301 
10302 	/*
10303 	 * Exceptions that morph to VM-Exits are handled above, and pending
10304 	 * exceptions on top of injected exceptions that do not VM-Exit should
10305 	 * either morph to #DF or, sadly, override the injected exception.
10306 	 */
10307 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10308 		     vcpu->arch.exception.pending);
10309 
10310 	/*
10311 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10312 	 * nested VM-Enter or event re-injection so that a different pending
10313 	 * event can be serviced (or if KVM needs to exit to userspace).
10314 	 *
10315 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10316 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10317 	 * there may now be events that can be injected into L1.
10318 	 */
10319 	if (r < 0)
10320 		goto out;
10321 
10322 	/*
10323 	 * A pending exception VM-Exit should either result in nested VM-Exit
10324 	 * or force an immediate re-entry and exit to/from L2, and exception
10325 	 * VM-Exits cannot be injected (flag should _never_ be set).
10326 	 */
10327 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10328 		     vcpu->arch.exception_vmexit.pending);
10329 
10330 	/*
10331 	 * New events, other than exceptions, cannot be injected if KVM needs
10332 	 * to re-inject a previous event.  See above comments on re-injecting
10333 	 * for why pending exceptions get priority.
10334 	 */
10335 	can_inject = !kvm_event_needs_reinjection(vcpu);
10336 
10337 	if (vcpu->arch.exception.pending) {
10338 		/*
10339 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10340 		 * value pushed on the stack.  Trap-like exception and all #DBs
10341 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10342 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10343 		 *
10344 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10345 		 * describe the behavior of General Detect #DBs, which are
10346 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10347 		 */
10348 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10349 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10350 					     X86_EFLAGS_RF);
10351 
10352 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10353 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10354 			if (vcpu->arch.dr7 & DR7_GD) {
10355 				vcpu->arch.dr7 &= ~DR7_GD;
10356 				kvm_update_dr7(vcpu);
10357 			}
10358 		}
10359 
10360 		kvm_inject_exception(vcpu);
10361 
10362 		vcpu->arch.exception.pending = false;
10363 		vcpu->arch.exception.injected = true;
10364 
10365 		can_inject = false;
10366 	}
10367 
10368 	/* Don't inject interrupts if the user asked to avoid doing so */
10369 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10370 		return 0;
10371 
10372 	/*
10373 	 * Finally, inject interrupt events.  If an event cannot be injected
10374 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10375 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10376 	 * and can architecturally be injected, but we cannot do it right now:
10377 	 * an interrupt could have arrived just now and we have to inject it
10378 	 * as a vmexit, or there could already an event in the queue, which is
10379 	 * indicated by can_inject.  In that case we request an immediate exit
10380 	 * in order to make progress and get back here for another iteration.
10381 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10382 	 */
10383 #ifdef CONFIG_KVM_SMM
10384 	if (vcpu->arch.smi_pending) {
10385 		r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10386 				 -EBUSY;
10387 		if (r < 0)
10388 			goto out;
10389 		if (r) {
10390 			vcpu->arch.smi_pending = false;
10391 			++vcpu->arch.smi_count;
10392 			enter_smm(vcpu);
10393 			can_inject = false;
10394 		} else
10395 			kvm_x86_call(enable_smi_window)(vcpu);
10396 	}
10397 #endif
10398 
10399 	if (vcpu->arch.nmi_pending) {
10400 		r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10401 				 -EBUSY;
10402 		if (r < 0)
10403 			goto out;
10404 		if (r) {
10405 			--vcpu->arch.nmi_pending;
10406 			vcpu->arch.nmi_injected = true;
10407 			kvm_x86_call(inject_nmi)(vcpu);
10408 			can_inject = false;
10409 			WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10410 		}
10411 		if (vcpu->arch.nmi_pending)
10412 			kvm_x86_call(enable_nmi_window)(vcpu);
10413 	}
10414 
10415 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10416 		r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10417 				 -EBUSY;
10418 		if (r < 0)
10419 			goto out;
10420 		if (r) {
10421 			int irq = kvm_cpu_get_interrupt(vcpu);
10422 
10423 			if (!WARN_ON_ONCE(irq == -1)) {
10424 				kvm_queue_interrupt(vcpu, irq, false);
10425 				kvm_x86_call(inject_irq)(vcpu, false);
10426 				WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10427 			}
10428 		}
10429 		if (kvm_cpu_has_injectable_intr(vcpu))
10430 			kvm_x86_call(enable_irq_window)(vcpu);
10431 	}
10432 
10433 	if (is_guest_mode(vcpu) &&
10434 	    kvm_x86_ops.nested_ops->has_events &&
10435 	    kvm_x86_ops.nested_ops->has_events(vcpu, true))
10436 		*req_immediate_exit = true;
10437 
10438 	/*
10439 	 * KVM must never queue a new exception while injecting an event; KVM
10440 	 * is done emulating and should only propagate the to-be-injected event
10441 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10442 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10443 	 * exception and start the cycle all over.
10444 	 *
10445 	 * Exempt triple faults as they have special handling and won't put the
10446 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10447 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10448 	 * Mode events (see kvm_inject_realmode_interrupt()).
10449 	 */
10450 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10451 		     vcpu->arch.exception_vmexit.pending);
10452 	return 0;
10453 
10454 out:
10455 	if (r == -EBUSY) {
10456 		*req_immediate_exit = true;
10457 		r = 0;
10458 	}
10459 	return r;
10460 }
10461 
10462 static void process_nmi(struct kvm_vcpu *vcpu)
10463 {
10464 	unsigned int limit;
10465 
10466 	/*
10467 	 * x86 is limited to one NMI pending, but because KVM can't react to
10468 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10469 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10470 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10471 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10472 	 * waiting for a previous NMI injection to complete (which effectively
10473 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10474 	 * will request an NMI window to handle the second NMI.
10475 	 */
10476 	if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10477 		limit = 1;
10478 	else
10479 		limit = 2;
10480 
10481 	/*
10482 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10483 	 * tracked in vcpu->arch.nmi_pending.
10484 	 */
10485 	if (kvm_x86_call(is_vnmi_pending)(vcpu))
10486 		limit--;
10487 
10488 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10489 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10490 
10491 	if (vcpu->arch.nmi_pending &&
10492 	    (kvm_x86_call(set_vnmi_pending)(vcpu)))
10493 		vcpu->arch.nmi_pending--;
10494 
10495 	if (vcpu->arch.nmi_pending)
10496 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10497 }
10498 
10499 /* Return total number of NMIs pending injection to the VM */
10500 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10501 {
10502 	return vcpu->arch.nmi_pending +
10503 	       kvm_x86_call(is_vnmi_pending)(vcpu);
10504 }
10505 
10506 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10507 				       unsigned long *vcpu_bitmap)
10508 {
10509 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10510 }
10511 
10512 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10513 {
10514 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10515 }
10516 
10517 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10518 {
10519 	struct kvm_lapic *apic = vcpu->arch.apic;
10520 	bool activate;
10521 
10522 	if (!lapic_in_kernel(vcpu))
10523 		return;
10524 
10525 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10526 	preempt_disable();
10527 
10528 	/* Do not activate APICV when APIC is disabled */
10529 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10530 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10531 
10532 	if (apic->apicv_active == activate)
10533 		goto out;
10534 
10535 	apic->apicv_active = activate;
10536 	kvm_apic_update_apicv(vcpu);
10537 	kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10538 
10539 	/*
10540 	 * When APICv gets disabled, we may still have injected interrupts
10541 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10542 	 * still active when the interrupt got accepted. Make sure
10543 	 * kvm_check_and_inject_events() is called to check for that.
10544 	 */
10545 	if (!apic->apicv_active)
10546 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10547 
10548 out:
10549 	preempt_enable();
10550 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10551 }
10552 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10553 
10554 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10555 {
10556 	if (!lapic_in_kernel(vcpu))
10557 		return;
10558 
10559 	/*
10560 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10561 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10562 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10563 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10564 	 * this case so that KVM can use the AVIC doorbell to inject interrupts
10565 	 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10566 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10567 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10568 	 * access page is sticky.
10569 	 */
10570 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10571 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10572 		kvm_inhibit_apic_access_page(vcpu);
10573 
10574 	__kvm_vcpu_update_apicv(vcpu);
10575 }
10576 
10577 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10578 				      enum kvm_apicv_inhibit reason, bool set)
10579 {
10580 	unsigned long old, new;
10581 
10582 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10583 
10584 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10585 		return;
10586 
10587 	old = new = kvm->arch.apicv_inhibit_reasons;
10588 
10589 	set_or_clear_apicv_inhibit(&new, reason, set);
10590 
10591 	if (!!old != !!new) {
10592 		/*
10593 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10594 		 * false positives in the sanity check WARN in vcpu_enter_guest().
10595 		 * This task will wait for all vCPUs to ack the kick IRQ before
10596 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10597 		 * block on acquiring apicv_update_lock so that vCPUs can't
10598 		 * redo vcpu_enter_guest() without seeing the new inhibit state.
10599 		 *
10600 		 * Note, holding apicv_update_lock and taking it in the read
10601 		 * side (handling the request) also prevents other vCPUs from
10602 		 * servicing the request with a stale apicv_inhibit_reasons.
10603 		 */
10604 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10605 		kvm->arch.apicv_inhibit_reasons = new;
10606 		if (new) {
10607 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10608 			int idx = srcu_read_lock(&kvm->srcu);
10609 
10610 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10611 			srcu_read_unlock(&kvm->srcu, idx);
10612 		}
10613 	} else {
10614 		kvm->arch.apicv_inhibit_reasons = new;
10615 	}
10616 }
10617 
10618 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10619 				    enum kvm_apicv_inhibit reason, bool set)
10620 {
10621 	if (!enable_apicv)
10622 		return;
10623 
10624 	down_write(&kvm->arch.apicv_update_lock);
10625 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10626 	up_write(&kvm->arch.apicv_update_lock);
10627 }
10628 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10629 
10630 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10631 {
10632 	if (!kvm_apic_present(vcpu))
10633 		return;
10634 
10635 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10636 
10637 	kvm_x86_call(sync_pir_to_irr)(vcpu);
10638 
10639 	if (irqchip_split(vcpu->kvm))
10640 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10641 	else if (ioapic_in_kernel(vcpu->kvm))
10642 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10643 
10644 	if (is_guest_mode(vcpu))
10645 		vcpu->arch.load_eoi_exitmap_pending = true;
10646 	else
10647 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10648 }
10649 
10650 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10651 {
10652 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10653 		return;
10654 
10655 #ifdef CONFIG_KVM_HYPERV
10656 	if (to_hv_vcpu(vcpu)) {
10657 		u64 eoi_exit_bitmap[4];
10658 
10659 		bitmap_or((ulong *)eoi_exit_bitmap,
10660 			  vcpu->arch.ioapic_handled_vectors,
10661 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10662 		kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10663 		return;
10664 	}
10665 #endif
10666 	kvm_x86_call(load_eoi_exitmap)(
10667 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10668 }
10669 
10670 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10671 {
10672 	kvm_x86_call(guest_memory_reclaimed)(kvm);
10673 }
10674 
10675 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10676 {
10677 	if (!lapic_in_kernel(vcpu))
10678 		return;
10679 
10680 	kvm_x86_call(set_apic_access_page_addr)(vcpu);
10681 }
10682 
10683 /*
10684  * Called within kvm->srcu read side.
10685  * Returns 1 to let vcpu_run() continue the guest execution loop without
10686  * exiting to the userspace.  Otherwise, the value will be returned to the
10687  * userspace.
10688  */
10689 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10690 {
10691 	int r;
10692 	bool req_int_win =
10693 		dm_request_for_irq_injection(vcpu) &&
10694 		kvm_cpu_accept_dm_intr(vcpu);
10695 	fastpath_t exit_fastpath;
10696 
10697 	bool req_immediate_exit = false;
10698 
10699 	if (kvm_request_pending(vcpu)) {
10700 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10701 			r = -EIO;
10702 			goto out;
10703 		}
10704 
10705 		if (kvm_dirty_ring_check_request(vcpu)) {
10706 			r = 0;
10707 			goto out;
10708 		}
10709 
10710 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10711 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10712 				r = 0;
10713 				goto out;
10714 			}
10715 		}
10716 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10717 			kvm_mmu_free_obsolete_roots(vcpu);
10718 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10719 			__kvm_migrate_timers(vcpu);
10720 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10721 			kvm_update_masterclock(vcpu->kvm);
10722 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10723 			kvm_gen_kvmclock_update(vcpu);
10724 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10725 			r = kvm_guest_time_update(vcpu);
10726 			if (unlikely(r))
10727 				goto out;
10728 		}
10729 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10730 			kvm_mmu_sync_roots(vcpu);
10731 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10732 			kvm_mmu_load_pgd(vcpu);
10733 
10734 		/*
10735 		 * Note, the order matters here, as flushing "all" TLB entries
10736 		 * also flushes the "current" TLB entries, i.e. servicing the
10737 		 * flush "all" will clear any request to flush "current".
10738 		 */
10739 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10740 			kvm_vcpu_flush_tlb_all(vcpu);
10741 
10742 		kvm_service_local_tlb_flush_requests(vcpu);
10743 
10744 		/*
10745 		 * Fall back to a "full" guest flush if Hyper-V's precise
10746 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10747 		 * the flushes are considered "remote" and not "local" because
10748 		 * the requests can be initiated from other vCPUs.
10749 		 */
10750 #ifdef CONFIG_KVM_HYPERV
10751 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10752 		    kvm_hv_vcpu_flush_tlb(vcpu))
10753 			kvm_vcpu_flush_tlb_guest(vcpu);
10754 #endif
10755 
10756 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10757 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10758 			r = 0;
10759 			goto out;
10760 		}
10761 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10762 			if (is_guest_mode(vcpu))
10763 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10764 
10765 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10766 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10767 				vcpu->mmio_needed = 0;
10768 				r = 0;
10769 				goto out;
10770 			}
10771 		}
10772 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10773 			/* Page is swapped out. Do synthetic halt */
10774 			vcpu->arch.apf.halted = true;
10775 			r = 1;
10776 			goto out;
10777 		}
10778 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10779 			record_steal_time(vcpu);
10780 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10781 			kvm_pmu_handle_event(vcpu);
10782 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10783 			kvm_pmu_deliver_pmi(vcpu);
10784 #ifdef CONFIG_KVM_SMM
10785 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10786 			process_smi(vcpu);
10787 #endif
10788 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10789 			process_nmi(vcpu);
10790 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10791 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10792 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10793 				     vcpu->arch.ioapic_handled_vectors)) {
10794 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10795 				vcpu->run->eoi.vector =
10796 						vcpu->arch.pending_ioapic_eoi;
10797 				r = 0;
10798 				goto out;
10799 			}
10800 		}
10801 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10802 			vcpu_scan_ioapic(vcpu);
10803 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10804 			vcpu_load_eoi_exitmap(vcpu);
10805 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10806 			kvm_vcpu_reload_apic_access_page(vcpu);
10807 #ifdef CONFIG_KVM_HYPERV
10808 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10809 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10810 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10811 			vcpu->run->system_event.ndata = 0;
10812 			r = 0;
10813 			goto out;
10814 		}
10815 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10816 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10817 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10818 			vcpu->run->system_event.ndata = 0;
10819 			r = 0;
10820 			goto out;
10821 		}
10822 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10823 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10824 
10825 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10826 			vcpu->run->hyperv = hv_vcpu->exit;
10827 			r = 0;
10828 			goto out;
10829 		}
10830 
10831 		/*
10832 		 * KVM_REQ_HV_STIMER has to be processed after
10833 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10834 		 * depend on the guest clock being up-to-date
10835 		 */
10836 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10837 			kvm_hv_process_stimers(vcpu);
10838 #endif
10839 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10840 			kvm_vcpu_update_apicv(vcpu);
10841 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10842 			kvm_check_async_pf_completion(vcpu);
10843 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10844 			kvm_x86_call(msr_filter_changed)(vcpu);
10845 
10846 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10847 			kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10848 
10849 		if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10850 			kvm_vcpu_reset(vcpu, true);
10851 			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10852 				r = 1;
10853 				goto out;
10854 			}
10855 		}
10856 	}
10857 
10858 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10859 	    kvm_xen_has_interrupt(vcpu)) {
10860 		++vcpu->stat.req_event;
10861 		r = kvm_apic_accept_events(vcpu);
10862 		if (r < 0) {
10863 			r = 0;
10864 			goto out;
10865 		}
10866 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10867 			r = 1;
10868 			goto out;
10869 		}
10870 
10871 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10872 		if (r < 0) {
10873 			r = 0;
10874 			goto out;
10875 		}
10876 		if (req_int_win)
10877 			kvm_x86_call(enable_irq_window)(vcpu);
10878 
10879 		if (kvm_lapic_enabled(vcpu)) {
10880 			update_cr8_intercept(vcpu);
10881 			kvm_lapic_sync_to_vapic(vcpu);
10882 		}
10883 	}
10884 
10885 	r = kvm_mmu_reload(vcpu);
10886 	if (unlikely(r)) {
10887 		goto cancel_injection;
10888 	}
10889 
10890 	preempt_disable();
10891 
10892 	kvm_x86_call(prepare_switch_to_guest)(vcpu);
10893 
10894 	/*
10895 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10896 	 * IPI are then delayed after guest entry, which ensures that they
10897 	 * result in virtual interrupt delivery.
10898 	 */
10899 	local_irq_disable();
10900 
10901 	/* Store vcpu->apicv_active before vcpu->mode.  */
10902 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10903 
10904 	kvm_vcpu_srcu_read_unlock(vcpu);
10905 
10906 	/*
10907 	 * 1) We should set ->mode before checking ->requests.  Please see
10908 	 * the comment in kvm_vcpu_exiting_guest_mode().
10909 	 *
10910 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10911 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10912 	 * (see vmx_deliver_posted_interrupt).
10913 	 *
10914 	 * 3) This also orders the write to mode from any reads to the page
10915 	 * tables done while the VCPU is running.  Please see the comment
10916 	 * in kvm_flush_remote_tlbs.
10917 	 */
10918 	smp_mb__after_srcu_read_unlock();
10919 
10920 	/*
10921 	 * Process pending posted interrupts to handle the case where the
10922 	 * notification IRQ arrived in the host, or was never sent (because the
10923 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10924 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10925 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10926 	 */
10927 	if (kvm_lapic_enabled(vcpu))
10928 		kvm_x86_call(sync_pir_to_irr)(vcpu);
10929 
10930 	if (kvm_vcpu_exit_request(vcpu)) {
10931 		vcpu->mode = OUTSIDE_GUEST_MODE;
10932 		smp_wmb();
10933 		local_irq_enable();
10934 		preempt_enable();
10935 		kvm_vcpu_srcu_read_lock(vcpu);
10936 		r = 1;
10937 		goto cancel_injection;
10938 	}
10939 
10940 	if (req_immediate_exit)
10941 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10942 
10943 	fpregs_assert_state_consistent();
10944 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10945 		switch_fpu_return();
10946 
10947 	if (vcpu->arch.guest_fpu.xfd_err)
10948 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10949 
10950 	if (unlikely(vcpu->arch.switch_db_regs)) {
10951 		set_debugreg(0, 7);
10952 		set_debugreg(vcpu->arch.eff_db[0], 0);
10953 		set_debugreg(vcpu->arch.eff_db[1], 1);
10954 		set_debugreg(vcpu->arch.eff_db[2], 2);
10955 		set_debugreg(vcpu->arch.eff_db[3], 3);
10956 	} else if (unlikely(hw_breakpoint_active())) {
10957 		set_debugreg(0, 7);
10958 	}
10959 
10960 	guest_timing_enter_irqoff();
10961 
10962 	for (;;) {
10963 		/*
10964 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10965 		 * update must kick and wait for all vCPUs before toggling the
10966 		 * per-VM state, and responding vCPUs must wait for the update
10967 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10968 		 */
10969 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10970 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10971 
10972 		exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
10973 						       req_immediate_exit);
10974 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10975 			break;
10976 
10977 		if (kvm_lapic_enabled(vcpu))
10978 			kvm_x86_call(sync_pir_to_irr)(vcpu);
10979 
10980 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10981 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10982 			break;
10983 		}
10984 
10985 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10986 		++vcpu->stat.exits;
10987 	}
10988 
10989 	/*
10990 	 * Do this here before restoring debug registers on the host.  And
10991 	 * since we do this before handling the vmexit, a DR access vmexit
10992 	 * can (a) read the correct value of the debug registers, (b) set
10993 	 * KVM_DEBUGREG_WONT_EXIT again.
10994 	 */
10995 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10996 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10997 		kvm_x86_call(sync_dirty_debug_regs)(vcpu);
10998 		kvm_update_dr0123(vcpu);
10999 		kvm_update_dr7(vcpu);
11000 	}
11001 
11002 	/*
11003 	 * If the guest has used debug registers, at least dr7
11004 	 * will be disabled while returning to the host.
11005 	 * If we don't have active breakpoints in the host, we don't
11006 	 * care about the messed up debug address registers. But if
11007 	 * we have some of them active, restore the old state.
11008 	 */
11009 	if (hw_breakpoint_active())
11010 		hw_breakpoint_restore();
11011 
11012 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11013 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11014 
11015 	vcpu->mode = OUTSIDE_GUEST_MODE;
11016 	smp_wmb();
11017 
11018 	/*
11019 	 * Sync xfd before calling handle_exit_irqoff() which may
11020 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11021 	 * in #NM irqoff handler).
11022 	 */
11023 	if (vcpu->arch.xfd_no_write_intercept)
11024 		fpu_sync_guest_vmexit_xfd_state();
11025 
11026 	kvm_x86_call(handle_exit_irqoff)(vcpu);
11027 
11028 	if (vcpu->arch.guest_fpu.xfd_err)
11029 		wrmsrl(MSR_IA32_XFD_ERR, 0);
11030 
11031 	/*
11032 	 * Consume any pending interrupts, including the possible source of
11033 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11034 	 * An instruction is required after local_irq_enable() to fully unblock
11035 	 * interrupts on processors that implement an interrupt shadow, the
11036 	 * stat.exits increment will do nicely.
11037 	 */
11038 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11039 	local_irq_enable();
11040 	++vcpu->stat.exits;
11041 	local_irq_disable();
11042 	kvm_after_interrupt(vcpu);
11043 
11044 	/*
11045 	 * Wait until after servicing IRQs to account guest time so that any
11046 	 * ticks that occurred while running the guest are properly accounted
11047 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11048 	 * of accounting via context tracking, but the loss of accuracy is
11049 	 * acceptable for all known use cases.
11050 	 */
11051 	guest_timing_exit_irqoff();
11052 
11053 	local_irq_enable();
11054 	preempt_enable();
11055 
11056 	kvm_vcpu_srcu_read_lock(vcpu);
11057 
11058 	/*
11059 	 * Call this to ensure WC buffers in guest are evicted after each VM
11060 	 * Exit, so that the evicted WC writes can be snooped across all cpus
11061 	 */
11062 	smp_mb__after_srcu_read_lock();
11063 
11064 	/*
11065 	 * Profile KVM exit RIPs:
11066 	 */
11067 	if (unlikely(prof_on == KVM_PROFILING)) {
11068 		unsigned long rip = kvm_rip_read(vcpu);
11069 		profile_hit(KVM_PROFILING, (void *)rip);
11070 	}
11071 
11072 	if (unlikely(vcpu->arch.tsc_always_catchup))
11073 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11074 
11075 	if (vcpu->arch.apic_attention)
11076 		kvm_lapic_sync_from_vapic(vcpu);
11077 
11078 	if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11079 		return 0;
11080 
11081 	r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11082 	return r;
11083 
11084 cancel_injection:
11085 	if (req_immediate_exit)
11086 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11087 	kvm_x86_call(cancel_injection)(vcpu);
11088 	if (unlikely(vcpu->arch.apic_attention))
11089 		kvm_lapic_sync_from_vapic(vcpu);
11090 out:
11091 	return r;
11092 }
11093 
11094 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11095 {
11096 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11097 		!vcpu->arch.apf.halted);
11098 }
11099 
11100 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11101 {
11102 	if (!list_empty_careful(&vcpu->async_pf.done))
11103 		return true;
11104 
11105 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11106 	    kvm_apic_init_sipi_allowed(vcpu))
11107 		return true;
11108 
11109 	if (vcpu->arch.pv.pv_unhalted)
11110 		return true;
11111 
11112 	if (kvm_is_exception_pending(vcpu))
11113 		return true;
11114 
11115 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11116 	    (vcpu->arch.nmi_pending &&
11117 	     kvm_x86_call(nmi_allowed)(vcpu, false)))
11118 		return true;
11119 
11120 #ifdef CONFIG_KVM_SMM
11121 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11122 	    (vcpu->arch.smi_pending &&
11123 	     kvm_x86_call(smi_allowed)(vcpu, false)))
11124 		return true;
11125 #endif
11126 
11127 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
11128 		return true;
11129 
11130 	if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11131 		return true;
11132 
11133 	if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11134 		return true;
11135 
11136 	if (kvm_hv_has_stimer_pending(vcpu))
11137 		return true;
11138 
11139 	if (is_guest_mode(vcpu) &&
11140 	    kvm_x86_ops.nested_ops->has_events &&
11141 	    kvm_x86_ops.nested_ops->has_events(vcpu, false))
11142 		return true;
11143 
11144 	if (kvm_xen_has_pending_events(vcpu))
11145 		return true;
11146 
11147 	return false;
11148 }
11149 
11150 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11151 {
11152 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11153 }
11154 
11155 /* Called within kvm->srcu read side.  */
11156 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11157 {
11158 	bool hv_timer;
11159 
11160 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11161 		/*
11162 		 * Switch to the software timer before halt-polling/blocking as
11163 		 * the guest's timer may be a break event for the vCPU, and the
11164 		 * hypervisor timer runs only when the CPU is in guest mode.
11165 		 * Switch before halt-polling so that KVM recognizes an expired
11166 		 * timer before blocking.
11167 		 */
11168 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11169 		if (hv_timer)
11170 			kvm_lapic_switch_to_sw_timer(vcpu);
11171 
11172 		kvm_vcpu_srcu_read_unlock(vcpu);
11173 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11174 			kvm_vcpu_halt(vcpu);
11175 		else
11176 			kvm_vcpu_block(vcpu);
11177 		kvm_vcpu_srcu_read_lock(vcpu);
11178 
11179 		if (hv_timer)
11180 			kvm_lapic_switch_to_hv_timer(vcpu);
11181 
11182 		/*
11183 		 * If the vCPU is not runnable, a signal or another host event
11184 		 * of some kind is pending; service it without changing the
11185 		 * vCPU's activity state.
11186 		 */
11187 		if (!kvm_arch_vcpu_runnable(vcpu))
11188 			return 1;
11189 	}
11190 
11191 	/*
11192 	 * Evaluate nested events before exiting the halted state.  This allows
11193 	 * the halt state to be recorded properly in the VMCS12's activity
11194 	 * state field (AMD does not have a similar field and a VM-Exit always
11195 	 * causes a spurious wakeup from HLT).
11196 	 */
11197 	if (is_guest_mode(vcpu)) {
11198 		int r = kvm_check_nested_events(vcpu);
11199 
11200 		WARN_ON_ONCE(r == -EBUSY);
11201 		if (r < 0)
11202 			return 0;
11203 	}
11204 
11205 	if (kvm_apic_accept_events(vcpu) < 0)
11206 		return 0;
11207 	switch(vcpu->arch.mp_state) {
11208 	case KVM_MP_STATE_HALTED:
11209 	case KVM_MP_STATE_AP_RESET_HOLD:
11210 		vcpu->arch.pv.pv_unhalted = false;
11211 		vcpu->arch.mp_state =
11212 			KVM_MP_STATE_RUNNABLE;
11213 		fallthrough;
11214 	case KVM_MP_STATE_RUNNABLE:
11215 		vcpu->arch.apf.halted = false;
11216 		break;
11217 	case KVM_MP_STATE_INIT_RECEIVED:
11218 		break;
11219 	default:
11220 		WARN_ON_ONCE(1);
11221 		break;
11222 	}
11223 	return 1;
11224 }
11225 
11226 /* Called within kvm->srcu read side.  */
11227 static int vcpu_run(struct kvm_vcpu *vcpu)
11228 {
11229 	int r;
11230 
11231 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11232 
11233 	for (;;) {
11234 		/*
11235 		 * If another guest vCPU requests a PV TLB flush in the middle
11236 		 * of instruction emulation, the rest of the emulation could
11237 		 * use a stale page translation. Assume that any code after
11238 		 * this point can start executing an instruction.
11239 		 */
11240 		vcpu->arch.at_instruction_boundary = false;
11241 		if (kvm_vcpu_running(vcpu)) {
11242 			r = vcpu_enter_guest(vcpu);
11243 		} else {
11244 			r = vcpu_block(vcpu);
11245 		}
11246 
11247 		if (r <= 0)
11248 			break;
11249 
11250 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11251 		if (kvm_xen_has_pending_events(vcpu))
11252 			kvm_xen_inject_pending_events(vcpu);
11253 
11254 		if (kvm_cpu_has_pending_timer(vcpu))
11255 			kvm_inject_pending_timer_irqs(vcpu);
11256 
11257 		if (dm_request_for_irq_injection(vcpu) &&
11258 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11259 			r = 0;
11260 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11261 			++vcpu->stat.request_irq_exits;
11262 			break;
11263 		}
11264 
11265 		if (__xfer_to_guest_mode_work_pending()) {
11266 			kvm_vcpu_srcu_read_unlock(vcpu);
11267 			r = xfer_to_guest_mode_handle_work(vcpu);
11268 			kvm_vcpu_srcu_read_lock(vcpu);
11269 			if (r)
11270 				return r;
11271 		}
11272 	}
11273 
11274 	return r;
11275 }
11276 
11277 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11278 {
11279 	/*
11280 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
11281 	 * local APIC is in-kernel, the run loop will detect the non-runnable
11282 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
11283 	 * managed by userspace, in which case userspace is responsible for
11284 	 * handling wake events.
11285 	 */
11286 	++vcpu->stat.halt_exits;
11287 	if (lapic_in_kernel(vcpu)) {
11288 		if (kvm_vcpu_has_events(vcpu))
11289 			vcpu->arch.pv.pv_unhalted = false;
11290 		else
11291 			vcpu->arch.mp_state = state;
11292 		return 1;
11293 	} else {
11294 		vcpu->run->exit_reason = reason;
11295 		return 0;
11296 	}
11297 }
11298 
11299 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11300 {
11301 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11302 }
11303 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11304 
11305 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11306 {
11307 	int ret = kvm_skip_emulated_instruction(vcpu);
11308 	/*
11309 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11310 	 * KVM_EXIT_DEBUG here.
11311 	 */
11312 	return kvm_emulate_halt_noskip(vcpu) && ret;
11313 }
11314 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11315 
11316 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11317 {
11318 	int ret;
11319 
11320 	kvm_vcpu_srcu_read_lock(vcpu);
11321 	ret = kvm_emulate_halt(vcpu);
11322 	kvm_vcpu_srcu_read_unlock(vcpu);
11323 
11324 	if (!ret)
11325 		return EXIT_FASTPATH_EXIT_USERSPACE;
11326 
11327 	if (kvm_vcpu_running(vcpu))
11328 		return EXIT_FASTPATH_REENTER_GUEST;
11329 
11330 	return EXIT_FASTPATH_EXIT_HANDLED;
11331 }
11332 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11333 
11334 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11335 {
11336 	int ret = kvm_skip_emulated_instruction(vcpu);
11337 
11338 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11339 					KVM_EXIT_AP_RESET_HOLD) && ret;
11340 }
11341 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11342 
11343 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11344 {
11345 	return kvm_vcpu_apicv_active(vcpu) &&
11346 	       kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11347 }
11348 
11349 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11350 {
11351 	return vcpu->arch.preempted_in_kernel;
11352 }
11353 
11354 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11355 {
11356 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11357 		return true;
11358 
11359 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11360 #ifdef CONFIG_KVM_SMM
11361 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11362 #endif
11363 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11364 		return true;
11365 
11366 	return kvm_arch_dy_has_pending_interrupt(vcpu);
11367 }
11368 
11369 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11370 {
11371 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11372 }
11373 
11374 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11375 {
11376 	BUG_ON(!vcpu->arch.pio.count);
11377 
11378 	return complete_emulated_io(vcpu);
11379 }
11380 
11381 /*
11382  * Implements the following, as a state machine:
11383  *
11384  * read:
11385  *   for each fragment
11386  *     for each mmio piece in the fragment
11387  *       write gpa, len
11388  *       exit
11389  *       copy data
11390  *   execute insn
11391  *
11392  * write:
11393  *   for each fragment
11394  *     for each mmio piece in the fragment
11395  *       write gpa, len
11396  *       copy data
11397  *       exit
11398  */
11399 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11400 {
11401 	struct kvm_run *run = vcpu->run;
11402 	struct kvm_mmio_fragment *frag;
11403 	unsigned len;
11404 
11405 	BUG_ON(!vcpu->mmio_needed);
11406 
11407 	/* Complete previous fragment */
11408 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11409 	len = min(8u, frag->len);
11410 	if (!vcpu->mmio_is_write)
11411 		memcpy(frag->data, run->mmio.data, len);
11412 
11413 	if (frag->len <= 8) {
11414 		/* Switch to the next fragment. */
11415 		frag++;
11416 		vcpu->mmio_cur_fragment++;
11417 	} else {
11418 		/* Go forward to the next mmio piece. */
11419 		frag->data += len;
11420 		frag->gpa += len;
11421 		frag->len -= len;
11422 	}
11423 
11424 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11425 		vcpu->mmio_needed = 0;
11426 
11427 		/* FIXME: return into emulator if single-stepping.  */
11428 		if (vcpu->mmio_is_write)
11429 			return 1;
11430 		vcpu->mmio_read_completed = 1;
11431 		return complete_emulated_io(vcpu);
11432 	}
11433 
11434 	run->exit_reason = KVM_EXIT_MMIO;
11435 	run->mmio.phys_addr = frag->gpa;
11436 	if (vcpu->mmio_is_write)
11437 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11438 	run->mmio.len = min(8u, frag->len);
11439 	run->mmio.is_write = vcpu->mmio_is_write;
11440 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11441 	return 0;
11442 }
11443 
11444 /* Swap (qemu) user FPU context for the guest FPU context. */
11445 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11446 {
11447 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11448 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11449 	trace_kvm_fpu(1);
11450 }
11451 
11452 /* When vcpu_run ends, restore user space FPU context. */
11453 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11454 {
11455 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11456 	++vcpu->stat.fpu_reload;
11457 	trace_kvm_fpu(0);
11458 }
11459 
11460 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11461 {
11462 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11463 	struct kvm_run *kvm_run = vcpu->run;
11464 	int r;
11465 
11466 	vcpu_load(vcpu);
11467 	kvm_sigset_activate(vcpu);
11468 	kvm_run->flags = 0;
11469 	kvm_load_guest_fpu(vcpu);
11470 
11471 	kvm_vcpu_srcu_read_lock(vcpu);
11472 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11473 		if (!vcpu->wants_to_run) {
11474 			r = -EINTR;
11475 			goto out;
11476 		}
11477 
11478 		/*
11479 		 * Don't bother switching APIC timer emulation from the
11480 		 * hypervisor timer to the software timer, the only way for the
11481 		 * APIC timer to be active is if userspace stuffed vCPU state,
11482 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11483 		 * will transition the vCPU out of UNINITIALIZED (without more
11484 		 * state stuffing from userspace), which will reset the local
11485 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11486 		 * already expired).
11487 		 */
11488 		kvm_vcpu_srcu_read_unlock(vcpu);
11489 		kvm_vcpu_block(vcpu);
11490 		kvm_vcpu_srcu_read_lock(vcpu);
11491 
11492 		if (kvm_apic_accept_events(vcpu) < 0) {
11493 			r = 0;
11494 			goto out;
11495 		}
11496 		r = -EAGAIN;
11497 		if (signal_pending(current)) {
11498 			r = -EINTR;
11499 			kvm_run->exit_reason = KVM_EXIT_INTR;
11500 			++vcpu->stat.signal_exits;
11501 		}
11502 		goto out;
11503 	}
11504 
11505 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11506 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11507 		r = -EINVAL;
11508 		goto out;
11509 	}
11510 
11511 	if (kvm_run->kvm_dirty_regs) {
11512 		r = sync_regs(vcpu);
11513 		if (r != 0)
11514 			goto out;
11515 	}
11516 
11517 	/* re-sync apic's tpr */
11518 	if (!lapic_in_kernel(vcpu)) {
11519 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11520 			r = -EINVAL;
11521 			goto out;
11522 		}
11523 	}
11524 
11525 	/*
11526 	 * If userspace set a pending exception and L2 is active, convert it to
11527 	 * a pending VM-Exit if L1 wants to intercept the exception.
11528 	 */
11529 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11530 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11531 							ex->error_code)) {
11532 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11533 					   ex->has_error_code, ex->error_code,
11534 					   ex->has_payload, ex->payload);
11535 		ex->injected = false;
11536 		ex->pending = false;
11537 	}
11538 	vcpu->arch.exception_from_userspace = false;
11539 
11540 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11541 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11542 		vcpu->arch.complete_userspace_io = NULL;
11543 		r = cui(vcpu);
11544 		if (r <= 0)
11545 			goto out;
11546 	} else {
11547 		WARN_ON_ONCE(vcpu->arch.pio.count);
11548 		WARN_ON_ONCE(vcpu->mmio_needed);
11549 	}
11550 
11551 	if (!vcpu->wants_to_run) {
11552 		r = -EINTR;
11553 		goto out;
11554 	}
11555 
11556 	r = kvm_x86_call(vcpu_pre_run)(vcpu);
11557 	if (r <= 0)
11558 		goto out;
11559 
11560 	r = vcpu_run(vcpu);
11561 
11562 out:
11563 	kvm_put_guest_fpu(vcpu);
11564 	if (kvm_run->kvm_valid_regs)
11565 		store_regs(vcpu);
11566 	post_kvm_run_save(vcpu);
11567 	kvm_vcpu_srcu_read_unlock(vcpu);
11568 
11569 	kvm_sigset_deactivate(vcpu);
11570 	vcpu_put(vcpu);
11571 	return r;
11572 }
11573 
11574 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11575 {
11576 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11577 		/*
11578 		 * We are here if userspace calls get_regs() in the middle of
11579 		 * instruction emulation. Registers state needs to be copied
11580 		 * back from emulation context to vcpu. Userspace shouldn't do
11581 		 * that usually, but some bad designed PV devices (vmware
11582 		 * backdoor interface) need this to work
11583 		 */
11584 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11585 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11586 	}
11587 	regs->rax = kvm_rax_read(vcpu);
11588 	regs->rbx = kvm_rbx_read(vcpu);
11589 	regs->rcx = kvm_rcx_read(vcpu);
11590 	regs->rdx = kvm_rdx_read(vcpu);
11591 	regs->rsi = kvm_rsi_read(vcpu);
11592 	regs->rdi = kvm_rdi_read(vcpu);
11593 	regs->rsp = kvm_rsp_read(vcpu);
11594 	regs->rbp = kvm_rbp_read(vcpu);
11595 #ifdef CONFIG_X86_64
11596 	regs->r8 = kvm_r8_read(vcpu);
11597 	regs->r9 = kvm_r9_read(vcpu);
11598 	regs->r10 = kvm_r10_read(vcpu);
11599 	regs->r11 = kvm_r11_read(vcpu);
11600 	regs->r12 = kvm_r12_read(vcpu);
11601 	regs->r13 = kvm_r13_read(vcpu);
11602 	regs->r14 = kvm_r14_read(vcpu);
11603 	regs->r15 = kvm_r15_read(vcpu);
11604 #endif
11605 
11606 	regs->rip = kvm_rip_read(vcpu);
11607 	regs->rflags = kvm_get_rflags(vcpu);
11608 }
11609 
11610 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11611 {
11612 	if (vcpu->kvm->arch.has_protected_state &&
11613 	    vcpu->arch.guest_state_protected)
11614 		return -EINVAL;
11615 
11616 	vcpu_load(vcpu);
11617 	__get_regs(vcpu, regs);
11618 	vcpu_put(vcpu);
11619 	return 0;
11620 }
11621 
11622 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11623 {
11624 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11625 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11626 
11627 	kvm_rax_write(vcpu, regs->rax);
11628 	kvm_rbx_write(vcpu, regs->rbx);
11629 	kvm_rcx_write(vcpu, regs->rcx);
11630 	kvm_rdx_write(vcpu, regs->rdx);
11631 	kvm_rsi_write(vcpu, regs->rsi);
11632 	kvm_rdi_write(vcpu, regs->rdi);
11633 	kvm_rsp_write(vcpu, regs->rsp);
11634 	kvm_rbp_write(vcpu, regs->rbp);
11635 #ifdef CONFIG_X86_64
11636 	kvm_r8_write(vcpu, regs->r8);
11637 	kvm_r9_write(vcpu, regs->r9);
11638 	kvm_r10_write(vcpu, regs->r10);
11639 	kvm_r11_write(vcpu, regs->r11);
11640 	kvm_r12_write(vcpu, regs->r12);
11641 	kvm_r13_write(vcpu, regs->r13);
11642 	kvm_r14_write(vcpu, regs->r14);
11643 	kvm_r15_write(vcpu, regs->r15);
11644 #endif
11645 
11646 	kvm_rip_write(vcpu, regs->rip);
11647 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11648 
11649 	vcpu->arch.exception.pending = false;
11650 	vcpu->arch.exception_vmexit.pending = false;
11651 
11652 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11653 }
11654 
11655 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11656 {
11657 	if (vcpu->kvm->arch.has_protected_state &&
11658 	    vcpu->arch.guest_state_protected)
11659 		return -EINVAL;
11660 
11661 	vcpu_load(vcpu);
11662 	__set_regs(vcpu, regs);
11663 	vcpu_put(vcpu);
11664 	return 0;
11665 }
11666 
11667 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11668 {
11669 	struct desc_ptr dt;
11670 
11671 	if (vcpu->arch.guest_state_protected)
11672 		goto skip_protected_regs;
11673 
11674 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11675 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11676 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11677 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11678 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11679 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11680 
11681 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11682 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11683 
11684 	kvm_x86_call(get_idt)(vcpu, &dt);
11685 	sregs->idt.limit = dt.size;
11686 	sregs->idt.base = dt.address;
11687 	kvm_x86_call(get_gdt)(vcpu, &dt);
11688 	sregs->gdt.limit = dt.size;
11689 	sregs->gdt.base = dt.address;
11690 
11691 	sregs->cr2 = vcpu->arch.cr2;
11692 	sregs->cr3 = kvm_read_cr3(vcpu);
11693 
11694 skip_protected_regs:
11695 	sregs->cr0 = kvm_read_cr0(vcpu);
11696 	sregs->cr4 = kvm_read_cr4(vcpu);
11697 	sregs->cr8 = kvm_get_cr8(vcpu);
11698 	sregs->efer = vcpu->arch.efer;
11699 	sregs->apic_base = vcpu->arch.apic_base;
11700 }
11701 
11702 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11703 {
11704 	__get_sregs_common(vcpu, sregs);
11705 
11706 	if (vcpu->arch.guest_state_protected)
11707 		return;
11708 
11709 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11710 		set_bit(vcpu->arch.interrupt.nr,
11711 			(unsigned long *)sregs->interrupt_bitmap);
11712 }
11713 
11714 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11715 {
11716 	int i;
11717 
11718 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11719 
11720 	if (vcpu->arch.guest_state_protected)
11721 		return;
11722 
11723 	if (is_pae_paging(vcpu)) {
11724 		for (i = 0 ; i < 4 ; i++)
11725 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11726 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11727 	}
11728 }
11729 
11730 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11731 				  struct kvm_sregs *sregs)
11732 {
11733 	if (vcpu->kvm->arch.has_protected_state &&
11734 	    vcpu->arch.guest_state_protected)
11735 		return -EINVAL;
11736 
11737 	vcpu_load(vcpu);
11738 	__get_sregs(vcpu, sregs);
11739 	vcpu_put(vcpu);
11740 	return 0;
11741 }
11742 
11743 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11744 				    struct kvm_mp_state *mp_state)
11745 {
11746 	int r;
11747 
11748 	vcpu_load(vcpu);
11749 	if (kvm_mpx_supported())
11750 		kvm_load_guest_fpu(vcpu);
11751 
11752 	r = kvm_apic_accept_events(vcpu);
11753 	if (r < 0)
11754 		goto out;
11755 	r = 0;
11756 
11757 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11758 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11759 	    vcpu->arch.pv.pv_unhalted)
11760 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11761 	else
11762 		mp_state->mp_state = vcpu->arch.mp_state;
11763 
11764 out:
11765 	if (kvm_mpx_supported())
11766 		kvm_put_guest_fpu(vcpu);
11767 	vcpu_put(vcpu);
11768 	return r;
11769 }
11770 
11771 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11772 				    struct kvm_mp_state *mp_state)
11773 {
11774 	int ret = -EINVAL;
11775 
11776 	vcpu_load(vcpu);
11777 
11778 	switch (mp_state->mp_state) {
11779 	case KVM_MP_STATE_UNINITIALIZED:
11780 	case KVM_MP_STATE_HALTED:
11781 	case KVM_MP_STATE_AP_RESET_HOLD:
11782 	case KVM_MP_STATE_INIT_RECEIVED:
11783 	case KVM_MP_STATE_SIPI_RECEIVED:
11784 		if (!lapic_in_kernel(vcpu))
11785 			goto out;
11786 		break;
11787 
11788 	case KVM_MP_STATE_RUNNABLE:
11789 		break;
11790 
11791 	default:
11792 		goto out;
11793 	}
11794 
11795 	/*
11796 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11797 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11798 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11799 	 * if an SMI is pending as well.
11800 	 */
11801 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11802 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11803 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11804 		goto out;
11805 
11806 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11807 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11808 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11809 	} else
11810 		vcpu->arch.mp_state = mp_state->mp_state;
11811 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11812 
11813 	ret = 0;
11814 out:
11815 	vcpu_put(vcpu);
11816 	return ret;
11817 }
11818 
11819 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11820 		    int reason, bool has_error_code, u32 error_code)
11821 {
11822 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11823 	int ret;
11824 
11825 	init_emulate_ctxt(vcpu);
11826 
11827 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11828 				   has_error_code, error_code);
11829 
11830 	/*
11831 	 * Report an error userspace if MMIO is needed, as KVM doesn't support
11832 	 * MMIO during a task switch (or any other complex operation).
11833 	 */
11834 	if (ret || vcpu->mmio_needed) {
11835 		vcpu->mmio_needed = false;
11836 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11837 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11838 		vcpu->run->internal.ndata = 0;
11839 		return 0;
11840 	}
11841 
11842 	kvm_rip_write(vcpu, ctxt->eip);
11843 	kvm_set_rflags(vcpu, ctxt->eflags);
11844 	return 1;
11845 }
11846 EXPORT_SYMBOL_GPL(kvm_task_switch);
11847 
11848 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11849 {
11850 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11851 		/*
11852 		 * When EFER.LME and CR0.PG are set, the processor is in
11853 		 * 64-bit mode (though maybe in a 32-bit code segment).
11854 		 * CR4.PAE and EFER.LMA must be set.
11855 		 */
11856 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11857 			return false;
11858 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11859 			return false;
11860 	} else {
11861 		/*
11862 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11863 		 * segment cannot be 64-bit.
11864 		 */
11865 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11866 			return false;
11867 	}
11868 
11869 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11870 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11871 }
11872 
11873 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11874 		int *mmu_reset_needed, bool update_pdptrs)
11875 {
11876 	int idx;
11877 	struct desc_ptr dt;
11878 
11879 	if (!kvm_is_valid_sregs(vcpu, sregs))
11880 		return -EINVAL;
11881 
11882 	if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11883 		return -EINVAL;
11884 
11885 	if (vcpu->arch.guest_state_protected)
11886 		return 0;
11887 
11888 	dt.size = sregs->idt.limit;
11889 	dt.address = sregs->idt.base;
11890 	kvm_x86_call(set_idt)(vcpu, &dt);
11891 	dt.size = sregs->gdt.limit;
11892 	dt.address = sregs->gdt.base;
11893 	kvm_x86_call(set_gdt)(vcpu, &dt);
11894 
11895 	vcpu->arch.cr2 = sregs->cr2;
11896 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11897 	vcpu->arch.cr3 = sregs->cr3;
11898 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11899 	kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11900 
11901 	kvm_set_cr8(vcpu, sregs->cr8);
11902 
11903 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11904 	kvm_x86_call(set_efer)(vcpu, sregs->efer);
11905 
11906 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11907 	kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11908 
11909 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11910 	kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11911 
11912 	if (update_pdptrs) {
11913 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11914 		if (is_pae_paging(vcpu)) {
11915 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11916 			*mmu_reset_needed = 1;
11917 		}
11918 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11919 	}
11920 
11921 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11922 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11923 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11924 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11925 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11926 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11927 
11928 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11929 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11930 
11931 	update_cr8_intercept(vcpu);
11932 
11933 	/* Older userspace won't unhalt the vcpu on reset. */
11934 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11935 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11936 	    !is_protmode(vcpu))
11937 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11938 
11939 	return 0;
11940 }
11941 
11942 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11943 {
11944 	int pending_vec, max_bits;
11945 	int mmu_reset_needed = 0;
11946 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11947 
11948 	if (ret)
11949 		return ret;
11950 
11951 	if (mmu_reset_needed) {
11952 		kvm_mmu_reset_context(vcpu);
11953 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11954 	}
11955 
11956 	max_bits = KVM_NR_INTERRUPTS;
11957 	pending_vec = find_first_bit(
11958 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11959 
11960 	if (pending_vec < max_bits) {
11961 		kvm_queue_interrupt(vcpu, pending_vec, false);
11962 		pr_debug("Set back pending irq %d\n", pending_vec);
11963 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11964 	}
11965 	return 0;
11966 }
11967 
11968 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11969 {
11970 	int mmu_reset_needed = 0;
11971 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11972 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11973 		!(sregs2->efer & EFER_LMA);
11974 	int i, ret;
11975 
11976 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11977 		return -EINVAL;
11978 
11979 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11980 		return -EINVAL;
11981 
11982 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11983 				 &mmu_reset_needed, !valid_pdptrs);
11984 	if (ret)
11985 		return ret;
11986 
11987 	if (valid_pdptrs) {
11988 		for (i = 0; i < 4 ; i++)
11989 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11990 
11991 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11992 		mmu_reset_needed = 1;
11993 		vcpu->arch.pdptrs_from_userspace = true;
11994 	}
11995 	if (mmu_reset_needed) {
11996 		kvm_mmu_reset_context(vcpu);
11997 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11998 	}
11999 	return 0;
12000 }
12001 
12002 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12003 				  struct kvm_sregs *sregs)
12004 {
12005 	int ret;
12006 
12007 	if (vcpu->kvm->arch.has_protected_state &&
12008 	    vcpu->arch.guest_state_protected)
12009 		return -EINVAL;
12010 
12011 	vcpu_load(vcpu);
12012 	ret = __set_sregs(vcpu, sregs);
12013 	vcpu_put(vcpu);
12014 	return ret;
12015 }
12016 
12017 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12018 {
12019 	bool set = false;
12020 	struct kvm_vcpu *vcpu;
12021 	unsigned long i;
12022 
12023 	if (!enable_apicv)
12024 		return;
12025 
12026 	down_write(&kvm->arch.apicv_update_lock);
12027 
12028 	kvm_for_each_vcpu(i, vcpu, kvm) {
12029 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12030 			set = true;
12031 			break;
12032 		}
12033 	}
12034 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12035 	up_write(&kvm->arch.apicv_update_lock);
12036 }
12037 
12038 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12039 					struct kvm_guest_debug *dbg)
12040 {
12041 	unsigned long rflags;
12042 	int i, r;
12043 
12044 	if (vcpu->arch.guest_state_protected)
12045 		return -EINVAL;
12046 
12047 	vcpu_load(vcpu);
12048 
12049 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12050 		r = -EBUSY;
12051 		if (kvm_is_exception_pending(vcpu))
12052 			goto out;
12053 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12054 			kvm_queue_exception(vcpu, DB_VECTOR);
12055 		else
12056 			kvm_queue_exception(vcpu, BP_VECTOR);
12057 	}
12058 
12059 	/*
12060 	 * Read rflags as long as potentially injected trace flags are still
12061 	 * filtered out.
12062 	 */
12063 	rflags = kvm_get_rflags(vcpu);
12064 
12065 	vcpu->guest_debug = dbg->control;
12066 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12067 		vcpu->guest_debug = 0;
12068 
12069 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12070 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
12071 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12072 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12073 	} else {
12074 		for (i = 0; i < KVM_NR_DB_REGS; i++)
12075 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12076 	}
12077 	kvm_update_dr7(vcpu);
12078 
12079 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12080 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12081 
12082 	/*
12083 	 * Trigger an rflags update that will inject or remove the trace
12084 	 * flags.
12085 	 */
12086 	kvm_set_rflags(vcpu, rflags);
12087 
12088 	kvm_x86_call(update_exception_bitmap)(vcpu);
12089 
12090 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12091 
12092 	r = 0;
12093 
12094 out:
12095 	vcpu_put(vcpu);
12096 	return r;
12097 }
12098 
12099 /*
12100  * Translate a guest virtual address to a guest physical address.
12101  */
12102 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12103 				    struct kvm_translation *tr)
12104 {
12105 	unsigned long vaddr = tr->linear_address;
12106 	gpa_t gpa;
12107 	int idx;
12108 
12109 	vcpu_load(vcpu);
12110 
12111 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12112 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12113 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12114 	tr->physical_address = gpa;
12115 	tr->valid = gpa != INVALID_GPA;
12116 	tr->writeable = 1;
12117 	tr->usermode = 0;
12118 
12119 	vcpu_put(vcpu);
12120 	return 0;
12121 }
12122 
12123 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12124 {
12125 	struct fxregs_state *fxsave;
12126 
12127 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12128 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12129 
12130 	vcpu_load(vcpu);
12131 
12132 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12133 	memcpy(fpu->fpr, fxsave->st_space, 128);
12134 	fpu->fcw = fxsave->cwd;
12135 	fpu->fsw = fxsave->swd;
12136 	fpu->ftwx = fxsave->twd;
12137 	fpu->last_opcode = fxsave->fop;
12138 	fpu->last_ip = fxsave->rip;
12139 	fpu->last_dp = fxsave->rdp;
12140 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12141 
12142 	vcpu_put(vcpu);
12143 	return 0;
12144 }
12145 
12146 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12147 {
12148 	struct fxregs_state *fxsave;
12149 
12150 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12151 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12152 
12153 	vcpu_load(vcpu);
12154 
12155 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12156 
12157 	memcpy(fxsave->st_space, fpu->fpr, 128);
12158 	fxsave->cwd = fpu->fcw;
12159 	fxsave->swd = fpu->fsw;
12160 	fxsave->twd = fpu->ftwx;
12161 	fxsave->fop = fpu->last_opcode;
12162 	fxsave->rip = fpu->last_ip;
12163 	fxsave->rdp = fpu->last_dp;
12164 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12165 
12166 	vcpu_put(vcpu);
12167 	return 0;
12168 }
12169 
12170 static void store_regs(struct kvm_vcpu *vcpu)
12171 {
12172 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12173 
12174 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12175 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12176 
12177 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12178 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12179 
12180 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12181 		kvm_vcpu_ioctl_x86_get_vcpu_events(
12182 				vcpu, &vcpu->run->s.regs.events);
12183 }
12184 
12185 static int sync_regs(struct kvm_vcpu *vcpu)
12186 {
12187 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12188 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12189 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12190 	}
12191 
12192 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12193 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12194 
12195 		if (__set_sregs(vcpu, &sregs))
12196 			return -EINVAL;
12197 
12198 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12199 	}
12200 
12201 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12202 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12203 
12204 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12205 			return -EINVAL;
12206 
12207 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12208 	}
12209 
12210 	return 0;
12211 }
12212 
12213 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12214 {
12215 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12216 		pr_warn_once("SMP vm created on host with unstable TSC; "
12217 			     "guest TSC will not be reliable\n");
12218 
12219 	if (!kvm->arch.max_vcpu_ids)
12220 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12221 
12222 	if (id >= kvm->arch.max_vcpu_ids)
12223 		return -EINVAL;
12224 
12225 	return kvm_x86_call(vcpu_precreate)(kvm);
12226 }
12227 
12228 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12229 {
12230 	struct page *page;
12231 	int r;
12232 
12233 	vcpu->arch.last_vmentry_cpu = -1;
12234 	vcpu->arch.regs_avail = ~0;
12235 	vcpu->arch.regs_dirty = ~0;
12236 
12237 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12238 
12239 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12240 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12241 	else
12242 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12243 
12244 	r = kvm_mmu_create(vcpu);
12245 	if (r < 0)
12246 		return r;
12247 
12248 	r = kvm_create_lapic(vcpu);
12249 	if (r < 0)
12250 		goto fail_mmu_destroy;
12251 
12252 	r = -ENOMEM;
12253 
12254 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12255 	if (!page)
12256 		goto fail_free_lapic;
12257 	vcpu->arch.pio_data = page_address(page);
12258 
12259 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12260 				       GFP_KERNEL_ACCOUNT);
12261 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12262 					    GFP_KERNEL_ACCOUNT);
12263 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12264 		goto fail_free_mce_banks;
12265 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12266 
12267 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12268 				GFP_KERNEL_ACCOUNT))
12269 		goto fail_free_mce_banks;
12270 
12271 	if (!alloc_emulate_ctxt(vcpu))
12272 		goto free_wbinvd_dirty_mask;
12273 
12274 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12275 		pr_err("failed to allocate vcpu's fpu\n");
12276 		goto free_emulate_ctxt;
12277 	}
12278 
12279 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12280 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12281 
12282 	kvm_async_pf_hash_reset(vcpu);
12283 
12284 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12285 		vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12286 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12287 		vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12288 	}
12289 	kvm_pmu_init(vcpu);
12290 
12291 	vcpu->arch.pending_external_vector = -1;
12292 	vcpu->arch.preempted_in_kernel = false;
12293 
12294 #if IS_ENABLED(CONFIG_HYPERV)
12295 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12296 #endif
12297 
12298 	r = kvm_x86_call(vcpu_create)(vcpu);
12299 	if (r)
12300 		goto free_guest_fpu;
12301 
12302 	kvm_xen_init_vcpu(vcpu);
12303 	vcpu_load(vcpu);
12304 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12305 	kvm_vcpu_reset(vcpu, false);
12306 	kvm_init_mmu(vcpu);
12307 	vcpu_put(vcpu);
12308 	return 0;
12309 
12310 free_guest_fpu:
12311 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12312 free_emulate_ctxt:
12313 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12314 free_wbinvd_dirty_mask:
12315 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12316 fail_free_mce_banks:
12317 	kfree(vcpu->arch.mce_banks);
12318 	kfree(vcpu->arch.mci_ctl2_banks);
12319 	free_page((unsigned long)vcpu->arch.pio_data);
12320 fail_free_lapic:
12321 	kvm_free_lapic(vcpu);
12322 fail_mmu_destroy:
12323 	kvm_mmu_destroy(vcpu);
12324 	return r;
12325 }
12326 
12327 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12328 {
12329 	struct kvm *kvm = vcpu->kvm;
12330 
12331 	if (mutex_lock_killable(&vcpu->mutex))
12332 		return;
12333 	vcpu_load(vcpu);
12334 	kvm_synchronize_tsc(vcpu, NULL);
12335 	vcpu_put(vcpu);
12336 
12337 	/* poll control enabled by default */
12338 	vcpu->arch.msr_kvm_poll_control = 1;
12339 
12340 	mutex_unlock(&vcpu->mutex);
12341 
12342 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12343 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12344 						KVMCLOCK_SYNC_PERIOD);
12345 }
12346 
12347 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12348 {
12349 	int idx;
12350 
12351 	kvmclock_reset(vcpu);
12352 
12353 	kvm_x86_call(vcpu_free)(vcpu);
12354 
12355 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12356 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12357 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12358 
12359 	kvm_xen_destroy_vcpu(vcpu);
12360 	kvm_hv_vcpu_uninit(vcpu);
12361 	kvm_pmu_destroy(vcpu);
12362 	kfree(vcpu->arch.mce_banks);
12363 	kfree(vcpu->arch.mci_ctl2_banks);
12364 	kvm_free_lapic(vcpu);
12365 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12366 	kvm_mmu_destroy(vcpu);
12367 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12368 	free_page((unsigned long)vcpu->arch.pio_data);
12369 	kvfree(vcpu->arch.cpuid_entries);
12370 }
12371 
12372 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12373 {
12374 	struct kvm_cpuid_entry2 *cpuid_0x1;
12375 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12376 	unsigned long new_cr0;
12377 
12378 	/*
12379 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12380 	 * to handle side effects.  RESET emulation hits those flows and relies
12381 	 * on emulated/virtualized registers, including those that are loaded
12382 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12383 	 * to detect improper or missing initialization.
12384 	 */
12385 	WARN_ON_ONCE(!init_event &&
12386 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12387 
12388 	/*
12389 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12390 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12391 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12392 	 * bits), i.e. virtualization is disabled.
12393 	 */
12394 	if (is_guest_mode(vcpu))
12395 		kvm_leave_nested(vcpu);
12396 
12397 	kvm_lapic_reset(vcpu, init_event);
12398 
12399 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12400 	vcpu->arch.hflags = 0;
12401 
12402 	vcpu->arch.smi_pending = 0;
12403 	vcpu->arch.smi_count = 0;
12404 	atomic_set(&vcpu->arch.nmi_queued, 0);
12405 	vcpu->arch.nmi_pending = 0;
12406 	vcpu->arch.nmi_injected = false;
12407 	kvm_clear_interrupt_queue(vcpu);
12408 	kvm_clear_exception_queue(vcpu);
12409 
12410 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12411 	kvm_update_dr0123(vcpu);
12412 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12413 	vcpu->arch.dr7 = DR7_FIXED_1;
12414 	kvm_update_dr7(vcpu);
12415 
12416 	vcpu->arch.cr2 = 0;
12417 
12418 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12419 	vcpu->arch.apf.msr_en_val = 0;
12420 	vcpu->arch.apf.msr_int_val = 0;
12421 	vcpu->arch.st.msr_val = 0;
12422 
12423 	kvmclock_reset(vcpu);
12424 
12425 	kvm_clear_async_pf_completion_queue(vcpu);
12426 	kvm_async_pf_hash_reset(vcpu);
12427 	vcpu->arch.apf.halted = false;
12428 
12429 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12430 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12431 
12432 		/*
12433 		 * All paths that lead to INIT are required to load the guest's
12434 		 * FPU state (because most paths are buried in KVM_RUN).
12435 		 */
12436 		if (init_event)
12437 			kvm_put_guest_fpu(vcpu);
12438 
12439 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12440 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12441 
12442 		if (init_event)
12443 			kvm_load_guest_fpu(vcpu);
12444 	}
12445 
12446 	if (!init_event) {
12447 		vcpu->arch.smbase = 0x30000;
12448 
12449 		vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12450 
12451 		vcpu->arch.msr_misc_features_enables = 0;
12452 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12453 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12454 
12455 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12456 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12457 	}
12458 
12459 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12460 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12461 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12462 
12463 	/*
12464 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12465 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12466 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12467 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12468 	 * on RESET.  But, go through the motions in case that's ever remedied.
12469 	 */
12470 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12471 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12472 
12473 	kvm_x86_call(vcpu_reset)(vcpu, init_event);
12474 
12475 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12476 	kvm_rip_write(vcpu, 0xfff0);
12477 
12478 	vcpu->arch.cr3 = 0;
12479 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12480 
12481 	/*
12482 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12483 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12484 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12485 	 */
12486 	new_cr0 = X86_CR0_ET;
12487 	if (init_event)
12488 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12489 	else
12490 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12491 
12492 	kvm_x86_call(set_cr0)(vcpu, new_cr0);
12493 	kvm_x86_call(set_cr4)(vcpu, 0);
12494 	kvm_x86_call(set_efer)(vcpu, 0);
12495 	kvm_x86_call(update_exception_bitmap)(vcpu);
12496 
12497 	/*
12498 	 * On the standard CR0/CR4/EFER modification paths, there are several
12499 	 * complex conditions determining whether the MMU has to be reset and/or
12500 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12501 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12502 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12503 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12504 	 */
12505 	if (old_cr0 & X86_CR0_PG) {
12506 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12507 		kvm_mmu_reset_context(vcpu);
12508 	}
12509 
12510 	/*
12511 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12512 	 * APM states the TLBs are untouched by INIT, but it also states that
12513 	 * the TLBs are flushed on "External initialization of the processor."
12514 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12515 	 * benefit in relying on the guest to flush the TLB immediately after
12516 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12517 	 * performance perspective.
12518 	 */
12519 	if (init_event)
12520 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12521 }
12522 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12523 
12524 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12525 {
12526 	struct kvm_segment cs;
12527 
12528 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12529 	cs.selector = vector << 8;
12530 	cs.base = vector << 12;
12531 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12532 	kvm_rip_write(vcpu, 0);
12533 }
12534 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12535 
12536 void kvm_arch_enable_virtualization(void)
12537 {
12538 	cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12539 }
12540 
12541 void kvm_arch_disable_virtualization(void)
12542 {
12543 	cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12544 }
12545 
12546 int kvm_arch_enable_virtualization_cpu(void)
12547 {
12548 	struct kvm *kvm;
12549 	struct kvm_vcpu *vcpu;
12550 	unsigned long i;
12551 	int ret;
12552 	u64 local_tsc;
12553 	u64 max_tsc = 0;
12554 	bool stable, backwards_tsc = false;
12555 
12556 	kvm_user_return_msr_cpu_online();
12557 
12558 	ret = kvm_x86_check_processor_compatibility();
12559 	if (ret)
12560 		return ret;
12561 
12562 	ret = kvm_x86_call(enable_virtualization_cpu)();
12563 	if (ret != 0)
12564 		return ret;
12565 
12566 	local_tsc = rdtsc();
12567 	stable = !kvm_check_tsc_unstable();
12568 	list_for_each_entry(kvm, &vm_list, vm_list) {
12569 		kvm_for_each_vcpu(i, vcpu, kvm) {
12570 			if (!stable && vcpu->cpu == smp_processor_id())
12571 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12572 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12573 				backwards_tsc = true;
12574 				if (vcpu->arch.last_host_tsc > max_tsc)
12575 					max_tsc = vcpu->arch.last_host_tsc;
12576 			}
12577 		}
12578 	}
12579 
12580 	/*
12581 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12582 	 * platforms that reset TSC during suspend or hibernate actions, but
12583 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12584 	 * detect that condition here, which happens early in CPU bringup,
12585 	 * before any KVM threads can be running.  Unfortunately, we can't
12586 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12587 	 * enough into CPU bringup that we know how much real time has actually
12588 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12589 	 * variables that haven't been updated yet.
12590 	 *
12591 	 * So we simply find the maximum observed TSC above, then record the
12592 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12593 	 * the adjustment will be applied.  Note that we accumulate
12594 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12595 	 * gets a chance to run again.  In the event that no KVM threads get a
12596 	 * chance to run, we will miss the entire elapsed period, as we'll have
12597 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12598 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12599 	 * uniform across all VCPUs (not to mention the scenario is extremely
12600 	 * unlikely). It is possible that a second hibernate recovery happens
12601 	 * much faster than a first, causing the observed TSC here to be
12602 	 * smaller; this would require additional padding adjustment, which is
12603 	 * why we set last_host_tsc to the local tsc observed here.
12604 	 *
12605 	 * N.B. - this code below runs only on platforms with reliable TSC,
12606 	 * as that is the only way backwards_tsc is set above.  Also note
12607 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12608 	 * have the same delta_cyc adjustment applied if backwards_tsc
12609 	 * is detected.  Note further, this adjustment is only done once,
12610 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12611 	 * called multiple times (one for each physical CPU bringup).
12612 	 *
12613 	 * Platforms with unreliable TSCs don't have to deal with this, they
12614 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12615 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12616 	 * guarantee that they stay in perfect synchronization.
12617 	 */
12618 	if (backwards_tsc) {
12619 		u64 delta_cyc = max_tsc - local_tsc;
12620 		list_for_each_entry(kvm, &vm_list, vm_list) {
12621 			kvm->arch.backwards_tsc_observed = true;
12622 			kvm_for_each_vcpu(i, vcpu, kvm) {
12623 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12624 				vcpu->arch.last_host_tsc = local_tsc;
12625 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12626 			}
12627 
12628 			/*
12629 			 * We have to disable TSC offset matching.. if you were
12630 			 * booting a VM while issuing an S4 host suspend....
12631 			 * you may have some problem.  Solving this issue is
12632 			 * left as an exercise to the reader.
12633 			 */
12634 			kvm->arch.last_tsc_nsec = 0;
12635 			kvm->arch.last_tsc_write = 0;
12636 		}
12637 
12638 	}
12639 	return 0;
12640 }
12641 
12642 void kvm_arch_disable_virtualization_cpu(void)
12643 {
12644 	kvm_x86_call(disable_virtualization_cpu)();
12645 	drop_user_return_notifiers();
12646 }
12647 
12648 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12649 {
12650 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12651 }
12652 
12653 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12654 {
12655 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12656 }
12657 
12658 void kvm_arch_free_vm(struct kvm *kvm)
12659 {
12660 #if IS_ENABLED(CONFIG_HYPERV)
12661 	kfree(kvm->arch.hv_pa_pg);
12662 #endif
12663 	__kvm_arch_free_vm(kvm);
12664 }
12665 
12666 
12667 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12668 {
12669 	int ret;
12670 	unsigned long flags;
12671 
12672 	if (!kvm_is_vm_type_supported(type))
12673 		return -EINVAL;
12674 
12675 	kvm->arch.vm_type = type;
12676 	kvm->arch.has_private_mem =
12677 		(type == KVM_X86_SW_PROTECTED_VM);
12678 	/* Decided by the vendor code for other VM types.  */
12679 	kvm->arch.pre_fault_allowed =
12680 		type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12681 
12682 	ret = kvm_page_track_init(kvm);
12683 	if (ret)
12684 		goto out;
12685 
12686 	kvm_mmu_init_vm(kvm);
12687 
12688 	ret = kvm_x86_call(vm_init)(kvm);
12689 	if (ret)
12690 		goto out_uninit_mmu;
12691 
12692 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12693 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12694 
12695 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12696 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12697 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12698 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12699 		&kvm->arch.irq_sources_bitmap);
12700 
12701 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12702 	mutex_init(&kvm->arch.apic_map_lock);
12703 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12704 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12705 
12706 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12707 	pvclock_update_vm_gtod_copy(kvm);
12708 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12709 
12710 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12711 	kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12712 	kvm->arch.guest_can_read_msr_platform_info = true;
12713 	kvm->arch.enable_pmu = enable_pmu;
12714 
12715 #if IS_ENABLED(CONFIG_HYPERV)
12716 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12717 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12718 #endif
12719 
12720 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12721 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12722 
12723 	kvm_apicv_init(kvm);
12724 	kvm_hv_init_vm(kvm);
12725 	kvm_xen_init_vm(kvm);
12726 
12727 	return 0;
12728 
12729 out_uninit_mmu:
12730 	kvm_mmu_uninit_vm(kvm);
12731 	kvm_page_track_cleanup(kvm);
12732 out:
12733 	return ret;
12734 }
12735 
12736 int kvm_arch_post_init_vm(struct kvm *kvm)
12737 {
12738 	return kvm_mmu_post_init_vm(kvm);
12739 }
12740 
12741 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12742 {
12743 	vcpu_load(vcpu);
12744 	kvm_mmu_unload(vcpu);
12745 	vcpu_put(vcpu);
12746 }
12747 
12748 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12749 {
12750 	unsigned long i;
12751 	struct kvm_vcpu *vcpu;
12752 
12753 	kvm_for_each_vcpu(i, vcpu, kvm) {
12754 		kvm_clear_async_pf_completion_queue(vcpu);
12755 		kvm_unload_vcpu_mmu(vcpu);
12756 	}
12757 }
12758 
12759 void kvm_arch_sync_events(struct kvm *kvm)
12760 {
12761 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12762 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12763 	kvm_free_pit(kvm);
12764 }
12765 
12766 /**
12767  * __x86_set_memory_region: Setup KVM internal memory slot
12768  *
12769  * @kvm: the kvm pointer to the VM.
12770  * @id: the slot ID to setup.
12771  * @gpa: the GPA to install the slot (unused when @size == 0).
12772  * @size: the size of the slot. Set to zero to uninstall a slot.
12773  *
12774  * This function helps to setup a KVM internal memory slot.  Specify
12775  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12776  * slot.  The return code can be one of the following:
12777  *
12778  *   HVA:           on success (uninstall will return a bogus HVA)
12779  *   -errno:        on error
12780  *
12781  * The caller should always use IS_ERR() to check the return value
12782  * before use.  Note, the KVM internal memory slots are guaranteed to
12783  * remain valid and unchanged until the VM is destroyed, i.e., the
12784  * GPA->HVA translation will not change.  However, the HVA is a user
12785  * address, i.e. its accessibility is not guaranteed, and must be
12786  * accessed via __copy_{to,from}_user().
12787  */
12788 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12789 				      u32 size)
12790 {
12791 	int i, r;
12792 	unsigned long hva, old_npages;
12793 	struct kvm_memslots *slots = kvm_memslots(kvm);
12794 	struct kvm_memory_slot *slot;
12795 
12796 	/* Called with kvm->slots_lock held.  */
12797 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12798 		return ERR_PTR_USR(-EINVAL);
12799 
12800 	slot = id_to_memslot(slots, id);
12801 	if (size) {
12802 		if (slot && slot->npages)
12803 			return ERR_PTR_USR(-EEXIST);
12804 
12805 		/*
12806 		 * MAP_SHARED to prevent internal slot pages from being moved
12807 		 * by fork()/COW.
12808 		 */
12809 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12810 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12811 		if (IS_ERR_VALUE(hva))
12812 			return (void __user *)hva;
12813 	} else {
12814 		if (!slot || !slot->npages)
12815 			return NULL;
12816 
12817 		old_npages = slot->npages;
12818 		hva = slot->userspace_addr;
12819 	}
12820 
12821 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12822 		struct kvm_userspace_memory_region2 m;
12823 
12824 		m.slot = id | (i << 16);
12825 		m.flags = 0;
12826 		m.guest_phys_addr = gpa;
12827 		m.userspace_addr = hva;
12828 		m.memory_size = size;
12829 		r = __kvm_set_memory_region(kvm, &m);
12830 		if (r < 0)
12831 			return ERR_PTR_USR(r);
12832 	}
12833 
12834 	if (!size)
12835 		vm_munmap(hva, old_npages * PAGE_SIZE);
12836 
12837 	return (void __user *)hva;
12838 }
12839 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12840 
12841 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12842 {
12843 	kvm_mmu_pre_destroy_vm(kvm);
12844 }
12845 
12846 void kvm_arch_destroy_vm(struct kvm *kvm)
12847 {
12848 	if (current->mm == kvm->mm) {
12849 		/*
12850 		 * Free memory regions allocated on behalf of userspace,
12851 		 * unless the memory map has changed due to process exit
12852 		 * or fd copying.
12853 		 */
12854 		mutex_lock(&kvm->slots_lock);
12855 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12856 					0, 0);
12857 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12858 					0, 0);
12859 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12860 		mutex_unlock(&kvm->slots_lock);
12861 	}
12862 	kvm_unload_vcpu_mmus(kvm);
12863 	kvm_x86_call(vm_destroy)(kvm);
12864 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12865 	kvm_pic_destroy(kvm);
12866 	kvm_ioapic_destroy(kvm);
12867 	kvm_destroy_vcpus(kvm);
12868 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12869 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12870 	kvm_mmu_uninit_vm(kvm);
12871 	kvm_page_track_cleanup(kvm);
12872 	kvm_xen_destroy_vm(kvm);
12873 	kvm_hv_destroy_vm(kvm);
12874 }
12875 
12876 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12877 {
12878 	int i;
12879 
12880 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12881 		vfree(slot->arch.rmap[i]);
12882 		slot->arch.rmap[i] = NULL;
12883 	}
12884 }
12885 
12886 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12887 {
12888 	int i;
12889 
12890 	memslot_rmap_free(slot);
12891 
12892 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12893 		vfree(slot->arch.lpage_info[i - 1]);
12894 		slot->arch.lpage_info[i - 1] = NULL;
12895 	}
12896 
12897 	kvm_page_track_free_memslot(slot);
12898 }
12899 
12900 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12901 {
12902 	const int sz = sizeof(*slot->arch.rmap[0]);
12903 	int i;
12904 
12905 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12906 		int level = i + 1;
12907 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12908 
12909 		if (slot->arch.rmap[i])
12910 			continue;
12911 
12912 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12913 		if (!slot->arch.rmap[i]) {
12914 			memslot_rmap_free(slot);
12915 			return -ENOMEM;
12916 		}
12917 	}
12918 
12919 	return 0;
12920 }
12921 
12922 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12923 				      struct kvm_memory_slot *slot)
12924 {
12925 	unsigned long npages = slot->npages;
12926 	int i, r;
12927 
12928 	/*
12929 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12930 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12931 	 * the new memslot is successful.
12932 	 */
12933 	memset(&slot->arch, 0, sizeof(slot->arch));
12934 
12935 	if (kvm_memslots_have_rmaps(kvm)) {
12936 		r = memslot_rmap_alloc(slot, npages);
12937 		if (r)
12938 			return r;
12939 	}
12940 
12941 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12942 		struct kvm_lpage_info *linfo;
12943 		unsigned long ugfn;
12944 		int lpages;
12945 		int level = i + 1;
12946 
12947 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12948 
12949 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12950 		if (!linfo)
12951 			goto out_free;
12952 
12953 		slot->arch.lpage_info[i - 1] = linfo;
12954 
12955 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12956 			linfo[0].disallow_lpage = 1;
12957 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12958 			linfo[lpages - 1].disallow_lpage = 1;
12959 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12960 		/*
12961 		 * If the gfn and userspace address are not aligned wrt each
12962 		 * other, disable large page support for this slot.
12963 		 */
12964 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12965 			unsigned long j;
12966 
12967 			for (j = 0; j < lpages; ++j)
12968 				linfo[j].disallow_lpage = 1;
12969 		}
12970 	}
12971 
12972 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12973 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12974 #endif
12975 
12976 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12977 		goto out_free;
12978 
12979 	return 0;
12980 
12981 out_free:
12982 	memslot_rmap_free(slot);
12983 
12984 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12985 		vfree(slot->arch.lpage_info[i - 1]);
12986 		slot->arch.lpage_info[i - 1] = NULL;
12987 	}
12988 	return -ENOMEM;
12989 }
12990 
12991 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12992 {
12993 	struct kvm_vcpu *vcpu;
12994 	unsigned long i;
12995 
12996 	/*
12997 	 * memslots->generation has been incremented.
12998 	 * mmio generation may have reached its maximum value.
12999 	 */
13000 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13001 
13002 	/* Force re-initialization of steal_time cache */
13003 	kvm_for_each_vcpu(i, vcpu, kvm)
13004 		kvm_vcpu_kick(vcpu);
13005 }
13006 
13007 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13008 				   const struct kvm_memory_slot *old,
13009 				   struct kvm_memory_slot *new,
13010 				   enum kvm_mr_change change)
13011 {
13012 	/*
13013 	 * KVM doesn't support moving memslots when there are external page
13014 	 * trackers attached to the VM, i.e. if KVMGT is in use.
13015 	 */
13016 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13017 		return -EINVAL;
13018 
13019 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13020 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13021 			return -EINVAL;
13022 
13023 		return kvm_alloc_memslot_metadata(kvm, new);
13024 	}
13025 
13026 	if (change == KVM_MR_FLAGS_ONLY)
13027 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
13028 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13029 		return -EIO;
13030 
13031 	return 0;
13032 }
13033 
13034 
13035 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13036 {
13037 	int nr_slots;
13038 
13039 	if (!kvm_x86_ops.cpu_dirty_log_size)
13040 		return;
13041 
13042 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13043 	if ((enable && nr_slots == 1) || !nr_slots)
13044 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13045 }
13046 
13047 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13048 				     struct kvm_memory_slot *old,
13049 				     const struct kvm_memory_slot *new,
13050 				     enum kvm_mr_change change)
13051 {
13052 	u32 old_flags = old ? old->flags : 0;
13053 	u32 new_flags = new ? new->flags : 0;
13054 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13055 
13056 	/*
13057 	 * Update CPU dirty logging if dirty logging is being toggled.  This
13058 	 * applies to all operations.
13059 	 */
13060 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13061 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13062 
13063 	/*
13064 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
13065 	 * made writable) or CREATE/MOVE/DELETE of a slot.
13066 	 *
13067 	 * For a memslot with dirty logging disabled:
13068 	 * CREATE:      No dirty mappings will already exist.
13069 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13070 	 *		kvm_arch_flush_shadow_memslot()
13071 	 *
13072 	 * For a memslot with dirty logging enabled:
13073 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
13074 	 *		and no dirty bits to clear.
13075 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13076 	 *		kvm_arch_flush_shadow_memslot().
13077 	 */
13078 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13079 		return;
13080 
13081 	/*
13082 	 * READONLY and non-flags changes were filtered out above, and the only
13083 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13084 	 * logging isn't being toggled on or off.
13085 	 */
13086 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13087 		return;
13088 
13089 	if (!log_dirty_pages) {
13090 		/*
13091 		 * Recover huge page mappings in the slot now that dirty logging
13092 		 * is disabled, i.e. now that KVM does not have to track guest
13093 		 * writes at 4KiB granularity.
13094 		 *
13095 		 * Dirty logging might be disabled by userspace if an ongoing VM
13096 		 * live migration is cancelled and the VM must continue running
13097 		 * on the source.
13098 		 */
13099 		kvm_mmu_recover_huge_pages(kvm, new);
13100 	} else {
13101 		/*
13102 		 * Initially-all-set does not require write protecting any page,
13103 		 * because they're all assumed to be dirty.
13104 		 */
13105 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13106 			return;
13107 
13108 		if (READ_ONCE(eager_page_split))
13109 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13110 
13111 		if (kvm_x86_ops.cpu_dirty_log_size) {
13112 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13113 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13114 		} else {
13115 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13116 		}
13117 
13118 		/*
13119 		 * Unconditionally flush the TLBs after enabling dirty logging.
13120 		 * A flush is almost always going to be necessary (see below),
13121 		 * and unconditionally flushing allows the helpers to omit
13122 		 * the subtly complex checks when removing write access.
13123 		 *
13124 		 * Do the flush outside of mmu_lock to reduce the amount of
13125 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
13126 		 * safe as KVM only needs to guarantee the slot is fully
13127 		 * write-protected before returning to userspace, i.e. before
13128 		 * userspace can consume the dirty status.
13129 		 *
13130 		 * Flushing outside of mmu_lock requires KVM to be careful when
13131 		 * making decisions based on writable status of an SPTE, e.g. a
13132 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13133 		 *
13134 		 * Specifically, KVM also write-protects guest page tables to
13135 		 * monitor changes when using shadow paging, and must guarantee
13136 		 * no CPUs can write to those page before mmu_lock is dropped.
13137 		 * Because CPUs may have stale TLB entries at this point, a
13138 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13139 		 *
13140 		 * KVM also allows making SPTES writable outside of mmu_lock,
13141 		 * e.g. to allow dirty logging without taking mmu_lock.
13142 		 *
13143 		 * To handle these scenarios, KVM uses a separate software-only
13144 		 * bit (MMU-writable) to track if a SPTE is !writable due to
13145 		 * a guest page table being write-protected (KVM clears the
13146 		 * MMU-writable flag when write-protecting for shadow paging).
13147 		 *
13148 		 * The use of MMU-writable is also the primary motivation for
13149 		 * the unconditional flush.  Because KVM must guarantee that a
13150 		 * CPU doesn't contain stale, writable TLB entries for a
13151 		 * !MMU-writable SPTE, KVM must flush if it encounters any
13152 		 * MMU-writable SPTE regardless of whether the actual hardware
13153 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13154 		 * to flush, while unconditionally flushing allows the "remove
13155 		 * write access" helpers to ignore MMU-writable entirely.
13156 		 *
13157 		 * See is_writable_pte() for more details (the case involving
13158 		 * access-tracked SPTEs is particularly relevant).
13159 		 */
13160 		kvm_flush_remote_tlbs_memslot(kvm, new);
13161 	}
13162 }
13163 
13164 void kvm_arch_commit_memory_region(struct kvm *kvm,
13165 				struct kvm_memory_slot *old,
13166 				const struct kvm_memory_slot *new,
13167 				enum kvm_mr_change change)
13168 {
13169 	if (change == KVM_MR_DELETE)
13170 		kvm_page_track_delete_slot(kvm, old);
13171 
13172 	if (!kvm->arch.n_requested_mmu_pages &&
13173 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13174 		unsigned long nr_mmu_pages;
13175 
13176 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13177 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13178 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13179 	}
13180 
13181 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13182 
13183 	/* Free the arrays associated with the old memslot. */
13184 	if (change == KVM_MR_MOVE)
13185 		kvm_arch_free_memslot(kvm, old);
13186 }
13187 
13188 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13189 {
13190 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13191 
13192 	if (vcpu->arch.guest_state_protected)
13193 		return true;
13194 
13195 	return kvm_x86_call(get_cpl)(vcpu) == 0;
13196 }
13197 
13198 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13199 {
13200 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13201 
13202 	if (vcpu->arch.guest_state_protected)
13203 		return 0;
13204 
13205 	return kvm_rip_read(vcpu);
13206 }
13207 
13208 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13209 {
13210 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13211 }
13212 
13213 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13214 {
13215 	return kvm_x86_call(interrupt_allowed)(vcpu, false);
13216 }
13217 
13218 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13219 {
13220 	/* Can't read the RIP when guest state is protected, just return 0 */
13221 	if (vcpu->arch.guest_state_protected)
13222 		return 0;
13223 
13224 	if (is_64_bit_mode(vcpu))
13225 		return kvm_rip_read(vcpu);
13226 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13227 		     kvm_rip_read(vcpu));
13228 }
13229 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13230 
13231 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13232 {
13233 	return kvm_get_linear_rip(vcpu) == linear_rip;
13234 }
13235 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13236 
13237 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13238 {
13239 	unsigned long rflags;
13240 
13241 	rflags = kvm_x86_call(get_rflags)(vcpu);
13242 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13243 		rflags &= ~X86_EFLAGS_TF;
13244 	return rflags;
13245 }
13246 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13247 
13248 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13249 {
13250 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13251 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13252 		rflags |= X86_EFLAGS_TF;
13253 	kvm_x86_call(set_rflags)(vcpu, rflags);
13254 }
13255 
13256 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13257 {
13258 	__kvm_set_rflags(vcpu, rflags);
13259 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13260 }
13261 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13262 
13263 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13264 {
13265 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13266 
13267 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13268 }
13269 
13270 static inline u32 kvm_async_pf_next_probe(u32 key)
13271 {
13272 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13273 }
13274 
13275 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13276 {
13277 	u32 key = kvm_async_pf_hash_fn(gfn);
13278 
13279 	while (vcpu->arch.apf.gfns[key] != ~0)
13280 		key = kvm_async_pf_next_probe(key);
13281 
13282 	vcpu->arch.apf.gfns[key] = gfn;
13283 }
13284 
13285 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13286 {
13287 	int i;
13288 	u32 key = kvm_async_pf_hash_fn(gfn);
13289 
13290 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13291 		     (vcpu->arch.apf.gfns[key] != gfn &&
13292 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13293 		key = kvm_async_pf_next_probe(key);
13294 
13295 	return key;
13296 }
13297 
13298 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13299 {
13300 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13301 }
13302 
13303 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13304 {
13305 	u32 i, j, k;
13306 
13307 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13308 
13309 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13310 		return;
13311 
13312 	while (true) {
13313 		vcpu->arch.apf.gfns[i] = ~0;
13314 		do {
13315 			j = kvm_async_pf_next_probe(j);
13316 			if (vcpu->arch.apf.gfns[j] == ~0)
13317 				return;
13318 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13319 			/*
13320 			 * k lies cyclically in ]i,j]
13321 			 * |    i.k.j |
13322 			 * |....j i.k.| or  |.k..j i...|
13323 			 */
13324 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13325 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13326 		i = j;
13327 	}
13328 }
13329 
13330 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13331 {
13332 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13333 
13334 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13335 				      sizeof(reason));
13336 }
13337 
13338 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13339 {
13340 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13341 
13342 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13343 					     &token, offset, sizeof(token));
13344 }
13345 
13346 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13347 {
13348 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13349 	u32 val;
13350 
13351 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13352 					 &val, offset, sizeof(val)))
13353 		return false;
13354 
13355 	return !val;
13356 }
13357 
13358 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13359 {
13360 
13361 	if (!kvm_pv_async_pf_enabled(vcpu))
13362 		return false;
13363 
13364 	if (vcpu->arch.apf.send_user_only &&
13365 	    kvm_x86_call(get_cpl)(vcpu) == 0)
13366 		return false;
13367 
13368 	if (is_guest_mode(vcpu)) {
13369 		/*
13370 		 * L1 needs to opt into the special #PF vmexits that are
13371 		 * used to deliver async page faults.
13372 		 */
13373 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13374 	} else {
13375 		/*
13376 		 * Play it safe in case the guest temporarily disables paging.
13377 		 * The real mode IDT in particular is unlikely to have a #PF
13378 		 * exception setup.
13379 		 */
13380 		return is_paging(vcpu);
13381 	}
13382 }
13383 
13384 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13385 {
13386 	if (unlikely(!lapic_in_kernel(vcpu) ||
13387 		     kvm_event_needs_reinjection(vcpu) ||
13388 		     kvm_is_exception_pending(vcpu)))
13389 		return false;
13390 
13391 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13392 		return false;
13393 
13394 	/*
13395 	 * If interrupts are off we cannot even use an artificial
13396 	 * halt state.
13397 	 */
13398 	return kvm_arch_interrupt_allowed(vcpu);
13399 }
13400 
13401 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13402 				     struct kvm_async_pf *work)
13403 {
13404 	struct x86_exception fault;
13405 
13406 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13407 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13408 
13409 	if (kvm_can_deliver_async_pf(vcpu) &&
13410 	    !apf_put_user_notpresent(vcpu)) {
13411 		fault.vector = PF_VECTOR;
13412 		fault.error_code_valid = true;
13413 		fault.error_code = 0;
13414 		fault.nested_page_fault = false;
13415 		fault.address = work->arch.token;
13416 		fault.async_page_fault = true;
13417 		kvm_inject_page_fault(vcpu, &fault);
13418 		return true;
13419 	} else {
13420 		/*
13421 		 * It is not possible to deliver a paravirtualized asynchronous
13422 		 * page fault, but putting the guest in an artificial halt state
13423 		 * can be beneficial nevertheless: if an interrupt arrives, we
13424 		 * can deliver it timely and perhaps the guest will schedule
13425 		 * another process.  When the instruction that triggered a page
13426 		 * fault is retried, hopefully the page will be ready in the host.
13427 		 */
13428 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13429 		return false;
13430 	}
13431 }
13432 
13433 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13434 				 struct kvm_async_pf *work)
13435 {
13436 	struct kvm_lapic_irq irq = {
13437 		.delivery_mode = APIC_DM_FIXED,
13438 		.vector = vcpu->arch.apf.vec
13439 	};
13440 
13441 	if (work->wakeup_all)
13442 		work->arch.token = ~0; /* broadcast wakeup */
13443 	else
13444 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13445 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13446 
13447 	if ((work->wakeup_all || work->notpresent_injected) &&
13448 	    kvm_pv_async_pf_enabled(vcpu) &&
13449 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13450 		vcpu->arch.apf.pageready_pending = true;
13451 		kvm_apic_set_irq(vcpu, &irq, NULL);
13452 	}
13453 
13454 	vcpu->arch.apf.halted = false;
13455 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13456 }
13457 
13458 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13459 {
13460 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13461 	if (!vcpu->arch.apf.pageready_pending)
13462 		kvm_vcpu_kick(vcpu);
13463 }
13464 
13465 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13466 {
13467 	if (!kvm_pv_async_pf_enabled(vcpu))
13468 		return true;
13469 	else
13470 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13471 }
13472 
13473 void kvm_arch_start_assignment(struct kvm *kvm)
13474 {
13475 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13476 		kvm_x86_call(pi_start_assignment)(kvm);
13477 }
13478 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13479 
13480 void kvm_arch_end_assignment(struct kvm *kvm)
13481 {
13482 	atomic_dec(&kvm->arch.assigned_device_count);
13483 }
13484 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13485 
13486 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13487 {
13488 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13489 }
13490 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13491 
13492 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13493 {
13494 	/*
13495 	 * Non-coherent DMA assignment and de-assignment may affect whether or
13496 	 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13497 	 * due to toggling the "ignore PAT" bit.  Zap all SPTEs when the first
13498 	 * (or last) non-coherent device is (un)registered to so that new SPTEs
13499 	 * with the correct "ignore guest PAT" setting are created.
13500 	 */
13501 	if (kvm_mmu_may_ignore_guest_pat())
13502 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13503 }
13504 
13505 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13506 {
13507 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13508 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13509 }
13510 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13511 
13512 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13513 {
13514 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13515 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13516 }
13517 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13518 
13519 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13520 {
13521 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13522 }
13523 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13524 
13525 bool kvm_arch_has_irq_bypass(void)
13526 {
13527 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13528 }
13529 
13530 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13531 				      struct irq_bypass_producer *prod)
13532 {
13533 	struct kvm_kernel_irqfd *irqfd =
13534 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13535 	int ret;
13536 
13537 	irqfd->producer = prod;
13538 	kvm_arch_start_assignment(irqfd->kvm);
13539 	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13540 					   prod->irq, irqfd->gsi, 1);
13541 	if (ret)
13542 		kvm_arch_end_assignment(irqfd->kvm);
13543 
13544 	return ret;
13545 }
13546 
13547 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13548 				      struct irq_bypass_producer *prod)
13549 {
13550 	int ret;
13551 	struct kvm_kernel_irqfd *irqfd =
13552 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13553 
13554 	WARN_ON(irqfd->producer != prod);
13555 	irqfd->producer = NULL;
13556 
13557 	/*
13558 	 * When producer of consumer is unregistered, we change back to
13559 	 * remapped mode, so we can re-use the current implementation
13560 	 * when the irq is masked/disabled or the consumer side (KVM
13561 	 * int this case doesn't want to receive the interrupts.
13562 	*/
13563 	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13564 					   prod->irq, irqfd->gsi, 0);
13565 	if (ret)
13566 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13567 		       " fails: %d\n", irqfd->consumer.token, ret);
13568 
13569 	kvm_arch_end_assignment(irqfd->kvm);
13570 }
13571 
13572 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13573 				   uint32_t guest_irq, bool set)
13574 {
13575 	return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13576 }
13577 
13578 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13579 				  struct kvm_kernel_irq_routing_entry *new)
13580 {
13581 	if (new->type != KVM_IRQ_ROUTING_MSI)
13582 		return true;
13583 
13584 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13585 }
13586 
13587 bool kvm_vector_hashing_enabled(void)
13588 {
13589 	return vector_hashing;
13590 }
13591 
13592 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13593 {
13594 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13595 }
13596 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13597 
13598 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
13599 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13600 {
13601 	return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13602 }
13603 #endif
13604 
13605 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
13606 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13607 {
13608 	kvm_x86_call(gmem_invalidate)(start, end);
13609 }
13610 #endif
13611 
13612 int kvm_spec_ctrl_test_value(u64 value)
13613 {
13614 	/*
13615 	 * test that setting IA32_SPEC_CTRL to given value
13616 	 * is allowed by the host processor
13617 	 */
13618 
13619 	u64 saved_value;
13620 	unsigned long flags;
13621 	int ret = 0;
13622 
13623 	local_irq_save(flags);
13624 
13625 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13626 		ret = 1;
13627 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13628 		ret = 1;
13629 	else
13630 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13631 
13632 	local_irq_restore(flags);
13633 
13634 	return ret;
13635 }
13636 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13637 
13638 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13639 {
13640 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13641 	struct x86_exception fault;
13642 	u64 access = error_code &
13643 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13644 
13645 	if (!(error_code & PFERR_PRESENT_MASK) ||
13646 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13647 		/*
13648 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13649 		 * tables probably do not match the TLB.  Just proceed
13650 		 * with the error code that the processor gave.
13651 		 */
13652 		fault.vector = PF_VECTOR;
13653 		fault.error_code_valid = true;
13654 		fault.error_code = error_code;
13655 		fault.nested_page_fault = false;
13656 		fault.address = gva;
13657 		fault.async_page_fault = false;
13658 	}
13659 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13660 }
13661 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13662 
13663 /*
13664  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13665  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13666  * indicates whether exit to userspace is needed.
13667  */
13668 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13669 			      struct x86_exception *e)
13670 {
13671 	if (r == X86EMUL_PROPAGATE_FAULT) {
13672 		if (KVM_BUG_ON(!e, vcpu->kvm))
13673 			return -EIO;
13674 
13675 		kvm_inject_emulated_page_fault(vcpu, e);
13676 		return 1;
13677 	}
13678 
13679 	/*
13680 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13681 	 * while handling a VMX instruction KVM could've handled the request
13682 	 * correctly by exiting to userspace and performing I/O but there
13683 	 * doesn't seem to be a real use-case behind such requests, just return
13684 	 * KVM_EXIT_INTERNAL_ERROR for now.
13685 	 */
13686 	kvm_prepare_emulation_failure_exit(vcpu);
13687 
13688 	return 0;
13689 }
13690 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13691 
13692 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13693 {
13694 	bool pcid_enabled;
13695 	struct x86_exception e;
13696 	struct {
13697 		u64 pcid;
13698 		u64 gla;
13699 	} operand;
13700 	int r;
13701 
13702 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13703 	if (r != X86EMUL_CONTINUE)
13704 		return kvm_handle_memory_failure(vcpu, r, &e);
13705 
13706 	if (operand.pcid >> 12 != 0) {
13707 		kvm_inject_gp(vcpu, 0);
13708 		return 1;
13709 	}
13710 
13711 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13712 
13713 	switch (type) {
13714 	case INVPCID_TYPE_INDIV_ADDR:
13715 		/*
13716 		 * LAM doesn't apply to addresses that are inputs to TLB
13717 		 * invalidation.
13718 		 */
13719 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13720 		    is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13721 			kvm_inject_gp(vcpu, 0);
13722 			return 1;
13723 		}
13724 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13725 		return kvm_skip_emulated_instruction(vcpu);
13726 
13727 	case INVPCID_TYPE_SINGLE_CTXT:
13728 		if (!pcid_enabled && (operand.pcid != 0)) {
13729 			kvm_inject_gp(vcpu, 0);
13730 			return 1;
13731 		}
13732 
13733 		kvm_invalidate_pcid(vcpu, operand.pcid);
13734 		return kvm_skip_emulated_instruction(vcpu);
13735 
13736 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13737 		/*
13738 		 * Currently, KVM doesn't mark global entries in the shadow
13739 		 * page tables, so a non-global flush just degenerates to a
13740 		 * global flush. If needed, we could optimize this later by
13741 		 * keeping track of global entries in shadow page tables.
13742 		 */
13743 
13744 		fallthrough;
13745 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13746 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13747 		return kvm_skip_emulated_instruction(vcpu);
13748 
13749 	default:
13750 		kvm_inject_gp(vcpu, 0);
13751 		return 1;
13752 	}
13753 }
13754 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13755 
13756 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13757 {
13758 	struct kvm_run *run = vcpu->run;
13759 	struct kvm_mmio_fragment *frag;
13760 	unsigned int len;
13761 
13762 	BUG_ON(!vcpu->mmio_needed);
13763 
13764 	/* Complete previous fragment */
13765 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13766 	len = min(8u, frag->len);
13767 	if (!vcpu->mmio_is_write)
13768 		memcpy(frag->data, run->mmio.data, len);
13769 
13770 	if (frag->len <= 8) {
13771 		/* Switch to the next fragment. */
13772 		frag++;
13773 		vcpu->mmio_cur_fragment++;
13774 	} else {
13775 		/* Go forward to the next mmio piece. */
13776 		frag->data += len;
13777 		frag->gpa += len;
13778 		frag->len -= len;
13779 	}
13780 
13781 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13782 		vcpu->mmio_needed = 0;
13783 
13784 		// VMG change, at this point, we're always done
13785 		// RIP has already been advanced
13786 		return 1;
13787 	}
13788 
13789 	// More MMIO is needed
13790 	run->mmio.phys_addr = frag->gpa;
13791 	run->mmio.len = min(8u, frag->len);
13792 	run->mmio.is_write = vcpu->mmio_is_write;
13793 	if (run->mmio.is_write)
13794 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13795 	run->exit_reason = KVM_EXIT_MMIO;
13796 
13797 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13798 
13799 	return 0;
13800 }
13801 
13802 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13803 			  void *data)
13804 {
13805 	int handled;
13806 	struct kvm_mmio_fragment *frag;
13807 
13808 	if (!data)
13809 		return -EINVAL;
13810 
13811 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13812 	if (handled == bytes)
13813 		return 1;
13814 
13815 	bytes -= handled;
13816 	gpa += handled;
13817 	data += handled;
13818 
13819 	/*TODO: Check if need to increment number of frags */
13820 	frag = vcpu->mmio_fragments;
13821 	vcpu->mmio_nr_fragments = 1;
13822 	frag->len = bytes;
13823 	frag->gpa = gpa;
13824 	frag->data = data;
13825 
13826 	vcpu->mmio_needed = 1;
13827 	vcpu->mmio_cur_fragment = 0;
13828 
13829 	vcpu->run->mmio.phys_addr = gpa;
13830 	vcpu->run->mmio.len = min(8u, frag->len);
13831 	vcpu->run->mmio.is_write = 1;
13832 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13833 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13834 
13835 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13836 
13837 	return 0;
13838 }
13839 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13840 
13841 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13842 			 void *data)
13843 {
13844 	int handled;
13845 	struct kvm_mmio_fragment *frag;
13846 
13847 	if (!data)
13848 		return -EINVAL;
13849 
13850 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13851 	if (handled == bytes)
13852 		return 1;
13853 
13854 	bytes -= handled;
13855 	gpa += handled;
13856 	data += handled;
13857 
13858 	/*TODO: Check if need to increment number of frags */
13859 	frag = vcpu->mmio_fragments;
13860 	vcpu->mmio_nr_fragments = 1;
13861 	frag->len = bytes;
13862 	frag->gpa = gpa;
13863 	frag->data = data;
13864 
13865 	vcpu->mmio_needed = 1;
13866 	vcpu->mmio_cur_fragment = 0;
13867 
13868 	vcpu->run->mmio.phys_addr = gpa;
13869 	vcpu->run->mmio.len = min(8u, frag->len);
13870 	vcpu->run->mmio.is_write = 0;
13871 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13872 
13873 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13874 
13875 	return 0;
13876 }
13877 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13878 
13879 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13880 {
13881 	vcpu->arch.sev_pio_count -= count;
13882 	vcpu->arch.sev_pio_data += count * size;
13883 }
13884 
13885 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13886 			   unsigned int port);
13887 
13888 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13889 {
13890 	int size = vcpu->arch.pio.size;
13891 	int port = vcpu->arch.pio.port;
13892 
13893 	vcpu->arch.pio.count = 0;
13894 	if (vcpu->arch.sev_pio_count)
13895 		return kvm_sev_es_outs(vcpu, size, port);
13896 	return 1;
13897 }
13898 
13899 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13900 			   unsigned int port)
13901 {
13902 	for (;;) {
13903 		unsigned int count =
13904 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13905 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13906 
13907 		/* memcpy done already by emulator_pio_out.  */
13908 		advance_sev_es_emulated_pio(vcpu, count, size);
13909 		if (!ret)
13910 			break;
13911 
13912 		/* Emulation done by the kernel.  */
13913 		if (!vcpu->arch.sev_pio_count)
13914 			return 1;
13915 	}
13916 
13917 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13918 	return 0;
13919 }
13920 
13921 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13922 			  unsigned int port);
13923 
13924 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13925 {
13926 	unsigned count = vcpu->arch.pio.count;
13927 	int size = vcpu->arch.pio.size;
13928 	int port = vcpu->arch.pio.port;
13929 
13930 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13931 	advance_sev_es_emulated_pio(vcpu, count, size);
13932 	if (vcpu->arch.sev_pio_count)
13933 		return kvm_sev_es_ins(vcpu, size, port);
13934 	return 1;
13935 }
13936 
13937 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13938 			  unsigned int port)
13939 {
13940 	for (;;) {
13941 		unsigned int count =
13942 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13943 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13944 			break;
13945 
13946 		/* Emulation done by the kernel.  */
13947 		advance_sev_es_emulated_pio(vcpu, count, size);
13948 		if (!vcpu->arch.sev_pio_count)
13949 			return 1;
13950 	}
13951 
13952 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13953 	return 0;
13954 }
13955 
13956 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13957 			 unsigned int port, void *data,  unsigned int count,
13958 			 int in)
13959 {
13960 	vcpu->arch.sev_pio_data = data;
13961 	vcpu->arch.sev_pio_count = count;
13962 	return in ? kvm_sev_es_ins(vcpu, size, port)
13963 		  : kvm_sev_es_outs(vcpu, size, port);
13964 }
13965 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13966 
13967 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13968 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13969 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13970 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13971 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13972 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13973 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
13997 
13998 static int __init kvm_x86_init(void)
13999 {
14000 	kvm_mmu_x86_module_init();
14001 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14002 	return 0;
14003 }
14004 module_init(kvm_x86_init);
14005 
14006 static void __exit kvm_x86_exit(void)
14007 {
14008 	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14009 }
14010 module_exit(kvm_x86_exit);
14011