1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 #include <linux/smp.h> 64 65 #include <trace/events/ipi.h> 66 #include <trace/events/kvm.h> 67 68 #include <asm/debugreg.h> 69 #include <asm/msr.h> 70 #include <asm/desc.h> 71 #include <asm/mce.h> 72 #include <asm/pkru.h> 73 #include <linux/kernel_stat.h> 74 #include <asm/fpu/api.h> 75 #include <asm/fpu/xcr.h> 76 #include <asm/fpu/xstate.h> 77 #include <asm/pvclock.h> 78 #include <asm/div64.h> 79 #include <asm/irq_remapping.h> 80 #include <asm/mshyperv.h> 81 #include <asm/hypervisor.h> 82 #include <asm/tlbflush.h> 83 #include <asm/intel_pt.h> 84 #include <asm/emulate_prefix.h> 85 #include <asm/sgx.h> 86 #include <clocksource/hyperv_timer.h> 87 88 #define CREATE_TRACE_POINTS 89 #include "trace.h" 90 91 #define MAX_IO_MSRS 256 92 #define KVM_MAX_MCE_BANKS 32 93 94 struct kvm_caps kvm_caps __read_mostly = { 95 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 96 }; 97 EXPORT_SYMBOL_GPL(kvm_caps); 98 99 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 100 101 #define emul_to_vcpu(ctxt) \ 102 ((struct kvm_vcpu *)(ctxt)->vcpu) 103 104 /* EFER defaults: 105 * - enable syscall per default because its emulated by KVM 106 * - enable LME and LMA per default on 64 bit KVM 107 */ 108 #ifdef CONFIG_X86_64 109 static 110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 111 #else 112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 113 #endif 114 115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 116 117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 118 119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 120 121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 122 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 123 124 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 125 static void process_nmi(struct kvm_vcpu *vcpu); 126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 127 static void store_regs(struct kvm_vcpu *vcpu); 128 static int sync_regs(struct kvm_vcpu *vcpu); 129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 130 131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 134 static DEFINE_MUTEX(vendor_module_lock); 135 struct kvm_x86_ops kvm_x86_ops __read_mostly; 136 137 #define KVM_X86_OP(func) \ 138 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 139 *(((struct kvm_x86_ops *)0)->func)); 140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 142 #include <asm/kvm-x86-ops.h> 143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 145 146 static bool __read_mostly ignore_msrs = 0; 147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 148 149 bool __read_mostly report_ignored_msrs = true; 150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 151 EXPORT_SYMBOL_GPL(report_ignored_msrs); 152 153 unsigned int min_timer_period_us = 200; 154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 155 156 static bool __read_mostly kvmclock_periodic_sync = true; 157 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 158 159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 160 static u32 __read_mostly tsc_tolerance_ppm = 250; 161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 162 163 /* 164 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 165 * adaptive tuning starting from default advancement of 1000ns. '0' disables 166 * advancement entirely. Any other value is used as-is and disables adaptive 167 * tuning, i.e. allows privileged userspace to set an exact advancement time. 168 */ 169 static int __read_mostly lapic_timer_advance_ns = -1; 170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 171 172 static bool __read_mostly vector_hashing = true; 173 module_param(vector_hashing, bool, S_IRUGO); 174 175 bool __read_mostly enable_vmware_backdoor = false; 176 module_param(enable_vmware_backdoor, bool, S_IRUGO); 177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 178 179 /* 180 * Flags to manipulate forced emulation behavior (any non-zero value will 181 * enable forced emulation). 182 */ 183 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 184 static int __read_mostly force_emulation_prefix; 185 module_param(force_emulation_prefix, int, 0644); 186 187 int __read_mostly pi_inject_timer = -1; 188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 189 190 /* Enable/disable PMU virtualization */ 191 bool __read_mostly enable_pmu = true; 192 EXPORT_SYMBOL_GPL(enable_pmu); 193 module_param(enable_pmu, bool, 0444); 194 195 bool __read_mostly eager_page_split = true; 196 module_param(eager_page_split, bool, 0644); 197 198 /* Enable/disable SMT_RSB bug mitigation */ 199 static bool __read_mostly mitigate_smt_rsb; 200 module_param(mitigate_smt_rsb, bool, 0444); 201 202 /* 203 * Restoring the host value for MSRs that are only consumed when running in 204 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 205 * returns to userspace, i.e. the kernel can run with the guest's value. 206 */ 207 #define KVM_MAX_NR_USER_RETURN_MSRS 16 208 209 struct kvm_user_return_msrs { 210 struct user_return_notifier urn; 211 bool registered; 212 struct kvm_user_return_msr_values { 213 u64 host; 214 u64 curr; 215 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 216 }; 217 218 u32 __read_mostly kvm_nr_uret_msrs; 219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 221 static struct kvm_user_return_msrs __percpu *user_return_msrs; 222 223 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 224 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 225 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 226 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 227 228 u64 __read_mostly host_efer; 229 EXPORT_SYMBOL_GPL(host_efer); 230 231 bool __read_mostly allow_smaller_maxphyaddr = 0; 232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 233 234 bool __read_mostly enable_apicv = true; 235 EXPORT_SYMBOL_GPL(enable_apicv); 236 237 u64 __read_mostly host_xss; 238 EXPORT_SYMBOL_GPL(host_xss); 239 240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 241 KVM_GENERIC_VM_STATS(), 242 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 243 STATS_DESC_COUNTER(VM, mmu_pte_write), 244 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 245 STATS_DESC_COUNTER(VM, mmu_flooded), 246 STATS_DESC_COUNTER(VM, mmu_recycled), 247 STATS_DESC_COUNTER(VM, mmu_cache_miss), 248 STATS_DESC_ICOUNTER(VM, mmu_unsync), 249 STATS_DESC_ICOUNTER(VM, pages_4k), 250 STATS_DESC_ICOUNTER(VM, pages_2m), 251 STATS_DESC_ICOUNTER(VM, pages_1g), 252 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 253 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 254 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 255 }; 256 257 const struct kvm_stats_header kvm_vm_stats_header = { 258 .name_size = KVM_STATS_NAME_SIZE, 259 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 260 .id_offset = sizeof(struct kvm_stats_header), 261 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 262 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 263 sizeof(kvm_vm_stats_desc), 264 }; 265 266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 267 KVM_GENERIC_VCPU_STATS(), 268 STATS_DESC_COUNTER(VCPU, pf_taken), 269 STATS_DESC_COUNTER(VCPU, pf_fixed), 270 STATS_DESC_COUNTER(VCPU, pf_emulate), 271 STATS_DESC_COUNTER(VCPU, pf_spurious), 272 STATS_DESC_COUNTER(VCPU, pf_fast), 273 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 274 STATS_DESC_COUNTER(VCPU, pf_guest), 275 STATS_DESC_COUNTER(VCPU, tlb_flush), 276 STATS_DESC_COUNTER(VCPU, invlpg), 277 STATS_DESC_COUNTER(VCPU, exits), 278 STATS_DESC_COUNTER(VCPU, io_exits), 279 STATS_DESC_COUNTER(VCPU, mmio_exits), 280 STATS_DESC_COUNTER(VCPU, signal_exits), 281 STATS_DESC_COUNTER(VCPU, irq_window_exits), 282 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 283 STATS_DESC_COUNTER(VCPU, l1d_flush), 284 STATS_DESC_COUNTER(VCPU, halt_exits), 285 STATS_DESC_COUNTER(VCPU, request_irq_exits), 286 STATS_DESC_COUNTER(VCPU, irq_exits), 287 STATS_DESC_COUNTER(VCPU, host_state_reload), 288 STATS_DESC_COUNTER(VCPU, fpu_reload), 289 STATS_DESC_COUNTER(VCPU, insn_emulation), 290 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 291 STATS_DESC_COUNTER(VCPU, hypercalls), 292 STATS_DESC_COUNTER(VCPU, irq_injections), 293 STATS_DESC_COUNTER(VCPU, nmi_injections), 294 STATS_DESC_COUNTER(VCPU, req_event), 295 STATS_DESC_COUNTER(VCPU, nested_run), 296 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 297 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 298 STATS_DESC_COUNTER(VCPU, preemption_reported), 299 STATS_DESC_COUNTER(VCPU, preemption_other), 300 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 301 STATS_DESC_COUNTER(VCPU, notify_window_exits), 302 }; 303 304 const struct kvm_stats_header kvm_vcpu_stats_header = { 305 .name_size = KVM_STATS_NAME_SIZE, 306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 307 .id_offset = sizeof(struct kvm_stats_header), 308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 310 sizeof(kvm_vcpu_stats_desc), 311 }; 312 313 u64 __read_mostly host_xcr0; 314 315 static struct kmem_cache *x86_emulator_cache; 316 317 /* 318 * When called, it means the previous get/set msr reached an invalid msr. 319 * Return true if we want to ignore/silent this failed msr access. 320 */ 321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 322 { 323 const char *op = write ? "wrmsr" : "rdmsr"; 324 325 if (ignore_msrs) { 326 if (report_ignored_msrs) 327 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 328 op, msr, data); 329 /* Mask the error */ 330 return true; 331 } else { 332 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 333 op, msr, data); 334 return false; 335 } 336 } 337 338 static struct kmem_cache *kvm_alloc_emulator_cache(void) 339 { 340 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 341 unsigned int size = sizeof(struct x86_emulate_ctxt); 342 343 return kmem_cache_create_usercopy("x86_emulator", size, 344 __alignof__(struct x86_emulate_ctxt), 345 SLAB_ACCOUNT, useroffset, 346 size - useroffset, NULL); 347 } 348 349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 350 351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 352 { 353 int i; 354 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 355 vcpu->arch.apf.gfns[i] = ~0; 356 } 357 358 static void kvm_on_user_return(struct user_return_notifier *urn) 359 { 360 unsigned slot; 361 struct kvm_user_return_msrs *msrs 362 = container_of(urn, struct kvm_user_return_msrs, urn); 363 struct kvm_user_return_msr_values *values; 364 unsigned long flags; 365 366 /* 367 * Disabling irqs at this point since the following code could be 368 * interrupted and executed through kvm_arch_hardware_disable() 369 */ 370 local_irq_save(flags); 371 if (msrs->registered) { 372 msrs->registered = false; 373 user_return_notifier_unregister(urn); 374 } 375 local_irq_restore(flags); 376 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 377 values = &msrs->values[slot]; 378 if (values->host != values->curr) { 379 wrmsrl(kvm_uret_msrs_list[slot], values->host); 380 values->curr = values->host; 381 } 382 } 383 } 384 385 static int kvm_probe_user_return_msr(u32 msr) 386 { 387 u64 val; 388 int ret; 389 390 preempt_disable(); 391 ret = rdmsrl_safe(msr, &val); 392 if (ret) 393 goto out; 394 ret = wrmsrl_safe(msr, val); 395 out: 396 preempt_enable(); 397 return ret; 398 } 399 400 int kvm_add_user_return_msr(u32 msr) 401 { 402 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 403 404 if (kvm_probe_user_return_msr(msr)) 405 return -1; 406 407 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 408 return kvm_nr_uret_msrs++; 409 } 410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 411 412 int kvm_find_user_return_msr(u32 msr) 413 { 414 int i; 415 416 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 417 if (kvm_uret_msrs_list[i] == msr) 418 return i; 419 } 420 return -1; 421 } 422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 423 424 static void kvm_user_return_msr_cpu_online(void) 425 { 426 unsigned int cpu = smp_processor_id(); 427 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 428 u64 value; 429 int i; 430 431 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 432 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 433 msrs->values[i].host = value; 434 msrs->values[i].curr = value; 435 } 436 } 437 438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 439 { 440 unsigned int cpu = smp_processor_id(); 441 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 442 int err; 443 444 value = (value & mask) | (msrs->values[slot].host & ~mask); 445 if (value == msrs->values[slot].curr) 446 return 0; 447 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 448 if (err) 449 return 1; 450 451 msrs->values[slot].curr = value; 452 if (!msrs->registered) { 453 msrs->urn.on_user_return = kvm_on_user_return; 454 user_return_notifier_register(&msrs->urn); 455 msrs->registered = true; 456 } 457 return 0; 458 } 459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 460 461 static void drop_user_return_notifiers(void) 462 { 463 unsigned int cpu = smp_processor_id(); 464 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 465 466 if (msrs->registered) 467 kvm_on_user_return(&msrs->urn); 468 } 469 470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 471 { 472 return vcpu->arch.apic_base; 473 } 474 475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 476 { 477 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 478 } 479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 480 481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 482 { 483 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 484 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 485 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 486 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 487 488 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 489 return 1; 490 if (!msr_info->host_initiated) { 491 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 492 return 1; 493 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 494 return 1; 495 } 496 497 kvm_lapic_set_base(vcpu, msr_info->data); 498 kvm_recalculate_apic_map(vcpu->kvm); 499 return 0; 500 } 501 502 /* 503 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 504 * 505 * Hardware virtualization extension instructions may fault if a reboot turns 506 * off virtualization while processes are running. Usually after catching the 507 * fault we just panic; during reboot instead the instruction is ignored. 508 */ 509 noinstr void kvm_spurious_fault(void) 510 { 511 /* Fault while not rebooting. We want the trace. */ 512 BUG_ON(!kvm_rebooting); 513 } 514 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 515 516 #define EXCPT_BENIGN 0 517 #define EXCPT_CONTRIBUTORY 1 518 #define EXCPT_PF 2 519 520 static int exception_class(int vector) 521 { 522 switch (vector) { 523 case PF_VECTOR: 524 return EXCPT_PF; 525 case DE_VECTOR: 526 case TS_VECTOR: 527 case NP_VECTOR: 528 case SS_VECTOR: 529 case GP_VECTOR: 530 return EXCPT_CONTRIBUTORY; 531 default: 532 break; 533 } 534 return EXCPT_BENIGN; 535 } 536 537 #define EXCPT_FAULT 0 538 #define EXCPT_TRAP 1 539 #define EXCPT_ABORT 2 540 #define EXCPT_INTERRUPT 3 541 #define EXCPT_DB 4 542 543 static int exception_type(int vector) 544 { 545 unsigned int mask; 546 547 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 548 return EXCPT_INTERRUPT; 549 550 mask = 1 << vector; 551 552 /* 553 * #DBs can be trap-like or fault-like, the caller must check other CPU 554 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 555 */ 556 if (mask & (1 << DB_VECTOR)) 557 return EXCPT_DB; 558 559 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 560 return EXCPT_TRAP; 561 562 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 563 return EXCPT_ABORT; 564 565 /* Reserved exceptions will result in fault */ 566 return EXCPT_FAULT; 567 } 568 569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 570 struct kvm_queued_exception *ex) 571 { 572 if (!ex->has_payload) 573 return; 574 575 switch (ex->vector) { 576 case DB_VECTOR: 577 /* 578 * "Certain debug exceptions may clear bit 0-3. The 579 * remaining contents of the DR6 register are never 580 * cleared by the processor". 581 */ 582 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 583 /* 584 * In order to reflect the #DB exception payload in guest 585 * dr6, three components need to be considered: active low 586 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 587 * DR6_BS and DR6_BT) 588 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 589 * In the target guest dr6: 590 * FIXED_1 bits should always be set. 591 * Active low bits should be cleared if 1-setting in payload. 592 * Active high bits should be set if 1-setting in payload. 593 * 594 * Note, the payload is compatible with the pending debug 595 * exceptions/exit qualification under VMX, that active_low bits 596 * are active high in payload. 597 * So they need to be flipped for DR6. 598 */ 599 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 600 vcpu->arch.dr6 |= ex->payload; 601 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 602 603 /* 604 * The #DB payload is defined as compatible with the 'pending 605 * debug exceptions' field under VMX, not DR6. While bit 12 is 606 * defined in the 'pending debug exceptions' field (enabled 607 * breakpoint), it is reserved and must be zero in DR6. 608 */ 609 vcpu->arch.dr6 &= ~BIT(12); 610 break; 611 case PF_VECTOR: 612 vcpu->arch.cr2 = ex->payload; 613 break; 614 } 615 616 ex->has_payload = false; 617 ex->payload = 0; 618 } 619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 620 621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 622 bool has_error_code, u32 error_code, 623 bool has_payload, unsigned long payload) 624 { 625 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 626 627 ex->vector = vector; 628 ex->injected = false; 629 ex->pending = true; 630 ex->has_error_code = has_error_code; 631 ex->error_code = error_code; 632 ex->has_payload = has_payload; 633 ex->payload = payload; 634 } 635 636 /* Forcibly leave the nested mode in cases like a vCPU reset */ 637 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 638 { 639 kvm_x86_ops.nested_ops->leave_nested(vcpu); 640 } 641 642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 643 unsigned nr, bool has_error, u32 error_code, 644 bool has_payload, unsigned long payload, bool reinject) 645 { 646 u32 prev_nr; 647 int class1, class2; 648 649 kvm_make_request(KVM_REQ_EVENT, vcpu); 650 651 /* 652 * If the exception is destined for L2 and isn't being reinjected, 653 * morph it to a VM-Exit if L1 wants to intercept the exception. A 654 * previously injected exception is not checked because it was checked 655 * when it was original queued, and re-checking is incorrect if _L1_ 656 * injected the exception, in which case it's exempt from interception. 657 */ 658 if (!reinject && is_guest_mode(vcpu) && 659 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 660 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 661 has_payload, payload); 662 return; 663 } 664 665 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 666 queue: 667 if (reinject) { 668 /* 669 * On VM-Entry, an exception can be pending if and only 670 * if event injection was blocked by nested_run_pending. 671 * In that case, however, vcpu_enter_guest() requests an 672 * immediate exit, and the guest shouldn't proceed far 673 * enough to need reinjection. 674 */ 675 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 676 vcpu->arch.exception.injected = true; 677 if (WARN_ON_ONCE(has_payload)) { 678 /* 679 * A reinjected event has already 680 * delivered its payload. 681 */ 682 has_payload = false; 683 payload = 0; 684 } 685 } else { 686 vcpu->arch.exception.pending = true; 687 vcpu->arch.exception.injected = false; 688 } 689 vcpu->arch.exception.has_error_code = has_error; 690 vcpu->arch.exception.vector = nr; 691 vcpu->arch.exception.error_code = error_code; 692 vcpu->arch.exception.has_payload = has_payload; 693 vcpu->arch.exception.payload = payload; 694 if (!is_guest_mode(vcpu)) 695 kvm_deliver_exception_payload(vcpu, 696 &vcpu->arch.exception); 697 return; 698 } 699 700 /* to check exception */ 701 prev_nr = vcpu->arch.exception.vector; 702 if (prev_nr == DF_VECTOR) { 703 /* triple fault -> shutdown */ 704 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 705 return; 706 } 707 class1 = exception_class(prev_nr); 708 class2 = exception_class(nr); 709 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 710 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 711 /* 712 * Synthesize #DF. Clear the previously injected or pending 713 * exception so as not to incorrectly trigger shutdown. 714 */ 715 vcpu->arch.exception.injected = false; 716 vcpu->arch.exception.pending = false; 717 718 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 719 } else { 720 /* replace previous exception with a new one in a hope 721 that instruction re-execution will regenerate lost 722 exception */ 723 goto queue; 724 } 725 } 726 727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 728 { 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 730 } 731 EXPORT_SYMBOL_GPL(kvm_queue_exception); 732 733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 734 { 735 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 736 } 737 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 738 739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 740 unsigned long payload) 741 { 742 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 743 } 744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 745 746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 747 u32 error_code, unsigned long payload) 748 { 749 kvm_multiple_exception(vcpu, nr, true, error_code, 750 true, payload, false); 751 } 752 753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 754 { 755 if (err) 756 kvm_inject_gp(vcpu, 0); 757 else 758 return kvm_skip_emulated_instruction(vcpu); 759 760 return 1; 761 } 762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 763 764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 765 { 766 if (err) { 767 kvm_inject_gp(vcpu, 0); 768 return 1; 769 } 770 771 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 772 EMULTYPE_COMPLETE_USER_EXIT); 773 } 774 775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 776 { 777 ++vcpu->stat.pf_guest; 778 779 /* 780 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 781 * whether or not L1 wants to intercept "regular" #PF. 782 */ 783 if (is_guest_mode(vcpu) && fault->async_page_fault) 784 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 785 true, fault->error_code, 786 true, fault->address); 787 else 788 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 789 fault->address); 790 } 791 792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 793 struct x86_exception *fault) 794 { 795 struct kvm_mmu *fault_mmu; 796 WARN_ON_ONCE(fault->vector != PF_VECTOR); 797 798 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 799 vcpu->arch.walk_mmu; 800 801 /* 802 * Invalidate the TLB entry for the faulting address, if it exists, 803 * else the access will fault indefinitely (and to emulate hardware). 804 */ 805 if ((fault->error_code & PFERR_PRESENT_MASK) && 806 !(fault->error_code & PFERR_RSVD_MASK)) 807 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 808 KVM_MMU_ROOT_CURRENT); 809 810 fault_mmu->inject_page_fault(vcpu, fault); 811 } 812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 813 814 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 815 { 816 atomic_inc(&vcpu->arch.nmi_queued); 817 kvm_make_request(KVM_REQ_NMI, vcpu); 818 } 819 820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 821 { 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 823 } 824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 825 826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 827 { 828 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 829 } 830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 831 832 /* 833 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 834 * a #GP and return false. 835 */ 836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 837 { 838 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 839 return true; 840 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 841 return false; 842 } 843 844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 845 { 846 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 847 return true; 848 849 kvm_queue_exception(vcpu, UD_VECTOR); 850 return false; 851 } 852 EXPORT_SYMBOL_GPL(kvm_require_dr); 853 854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 855 { 856 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 857 } 858 859 /* 860 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 861 */ 862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 863 { 864 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 865 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 866 gpa_t real_gpa; 867 int i; 868 int ret; 869 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 870 871 /* 872 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 873 * to an L1 GPA. 874 */ 875 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 876 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 877 if (real_gpa == INVALID_GPA) 878 return 0; 879 880 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 881 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 882 cr3 & GENMASK(11, 5), sizeof(pdpte)); 883 if (ret < 0) 884 return 0; 885 886 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 887 if ((pdpte[i] & PT_PRESENT_MASK) && 888 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 889 return 0; 890 } 891 } 892 893 /* 894 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 895 * Shadow page roots need to be reconstructed instead. 896 */ 897 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 898 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 899 900 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 901 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 902 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 903 vcpu->arch.pdptrs_from_userspace = false; 904 905 return 1; 906 } 907 EXPORT_SYMBOL_GPL(load_pdptrs); 908 909 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 910 { 911 #ifdef CONFIG_X86_64 912 if (cr0 & 0xffffffff00000000UL) 913 return false; 914 #endif 915 916 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 917 return false; 918 919 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 920 return false; 921 922 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); 923 } 924 925 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 926 { 927 /* 928 * CR0.WP is incorporated into the MMU role, but only for non-nested, 929 * indirect shadow MMUs. If paging is disabled, no updates are needed 930 * as there are no permission bits to emulate. If TDP is enabled, the 931 * MMU's metadata needs to be updated, e.g. so that emulating guest 932 * translations does the right thing, but there's no need to unload the 933 * root as CR0.WP doesn't affect SPTEs. 934 */ 935 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 936 if (!(cr0 & X86_CR0_PG)) 937 return; 938 939 if (tdp_enabled) { 940 kvm_init_mmu(vcpu); 941 return; 942 } 943 } 944 945 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 946 kvm_clear_async_pf_completion_queue(vcpu); 947 kvm_async_pf_hash_reset(vcpu); 948 949 /* 950 * Clearing CR0.PG is defined to flush the TLB from the guest's 951 * perspective. 952 */ 953 if (!(cr0 & X86_CR0_PG)) 954 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 955 } 956 957 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 958 kvm_mmu_reset_context(vcpu); 959 960 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 961 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 962 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 963 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 964 } 965 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 966 967 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 968 { 969 unsigned long old_cr0 = kvm_read_cr0(vcpu); 970 971 if (!kvm_is_valid_cr0(vcpu, cr0)) 972 return 1; 973 974 cr0 |= X86_CR0_ET; 975 976 /* Write to CR0 reserved bits are ignored, even on Intel. */ 977 cr0 &= ~CR0_RESERVED_BITS; 978 979 #ifdef CONFIG_X86_64 980 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 981 (cr0 & X86_CR0_PG)) { 982 int cs_db, cs_l; 983 984 if (!is_pae(vcpu)) 985 return 1; 986 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 987 if (cs_l) 988 return 1; 989 } 990 #endif 991 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 992 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 993 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 994 return 1; 995 996 if (!(cr0 & X86_CR0_PG) && 997 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 998 return 1; 999 1000 static_call(kvm_x86_set_cr0)(vcpu, cr0); 1001 1002 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1003 1004 return 0; 1005 } 1006 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1007 1008 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1009 { 1010 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1011 } 1012 EXPORT_SYMBOL_GPL(kvm_lmsw); 1013 1014 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1015 { 1016 if (vcpu->arch.guest_state_protected) 1017 return; 1018 1019 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1020 1021 if (vcpu->arch.xcr0 != host_xcr0) 1022 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1023 1024 if (vcpu->arch.xsaves_enabled && 1025 vcpu->arch.ia32_xss != host_xss) 1026 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1027 } 1028 1029 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1030 vcpu->arch.pkru != vcpu->arch.host_pkru && 1031 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1032 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1033 write_pkru(vcpu->arch.pkru); 1034 } 1035 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1036 1037 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1038 { 1039 if (vcpu->arch.guest_state_protected) 1040 return; 1041 1042 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1043 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1044 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1045 vcpu->arch.pkru = rdpkru(); 1046 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1047 write_pkru(vcpu->arch.host_pkru); 1048 } 1049 1050 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1051 1052 if (vcpu->arch.xcr0 != host_xcr0) 1053 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1054 1055 if (vcpu->arch.xsaves_enabled && 1056 vcpu->arch.ia32_xss != host_xss) 1057 wrmsrl(MSR_IA32_XSS, host_xss); 1058 } 1059 1060 } 1061 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1062 1063 #ifdef CONFIG_X86_64 1064 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1065 { 1066 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1067 } 1068 #endif 1069 1070 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1071 { 1072 u64 xcr0 = xcr; 1073 u64 old_xcr0 = vcpu->arch.xcr0; 1074 u64 valid_bits; 1075 1076 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1077 if (index != XCR_XFEATURE_ENABLED_MASK) 1078 return 1; 1079 if (!(xcr0 & XFEATURE_MASK_FP)) 1080 return 1; 1081 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1082 return 1; 1083 1084 /* 1085 * Do not allow the guest to set bits that we do not support 1086 * saving. However, xcr0 bit 0 is always set, even if the 1087 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1088 */ 1089 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1090 if (xcr0 & ~valid_bits) 1091 return 1; 1092 1093 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1094 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1095 return 1; 1096 1097 if (xcr0 & XFEATURE_MASK_AVX512) { 1098 if (!(xcr0 & XFEATURE_MASK_YMM)) 1099 return 1; 1100 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1101 return 1; 1102 } 1103 1104 if ((xcr0 & XFEATURE_MASK_XTILE) && 1105 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1106 return 1; 1107 1108 vcpu->arch.xcr0 = xcr0; 1109 1110 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1111 kvm_update_cpuid_runtime(vcpu); 1112 return 0; 1113 } 1114 1115 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1116 { 1117 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1118 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1119 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1120 kvm_inject_gp(vcpu, 0); 1121 return 1; 1122 } 1123 1124 return kvm_skip_emulated_instruction(vcpu); 1125 } 1126 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1127 1128 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1129 { 1130 if (cr4 & cr4_reserved_bits) 1131 return false; 1132 1133 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1134 return false; 1135 1136 return true; 1137 } 1138 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1139 1140 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1141 { 1142 return __kvm_is_valid_cr4(vcpu, cr4) && 1143 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1144 } 1145 1146 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1147 { 1148 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1149 kvm_mmu_reset_context(vcpu); 1150 1151 /* 1152 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1153 * according to the SDM; however, stale prev_roots could be reused 1154 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1155 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1156 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1157 * so fall through. 1158 */ 1159 if (!tdp_enabled && 1160 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1161 kvm_mmu_unload(vcpu); 1162 1163 /* 1164 * The TLB has to be flushed for all PCIDs if any of the following 1165 * (architecturally required) changes happen: 1166 * - CR4.PCIDE is changed from 1 to 0 1167 * - CR4.PGE is toggled 1168 * 1169 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1170 */ 1171 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1172 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1173 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1174 1175 /* 1176 * The TLB has to be flushed for the current PCID if any of the 1177 * following (architecturally required) changes happen: 1178 * - CR4.SMEP is changed from 0 to 1 1179 * - CR4.PAE is toggled 1180 */ 1181 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1182 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1183 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1184 1185 } 1186 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1187 1188 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1189 { 1190 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1191 1192 if (!kvm_is_valid_cr4(vcpu, cr4)) 1193 return 1; 1194 1195 if (is_long_mode(vcpu)) { 1196 if (!(cr4 & X86_CR4_PAE)) 1197 return 1; 1198 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1199 return 1; 1200 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1201 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1202 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1203 return 1; 1204 1205 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1206 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1207 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1208 return 1; 1209 } 1210 1211 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1212 1213 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1214 1215 return 0; 1216 } 1217 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1218 1219 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1220 { 1221 struct kvm_mmu *mmu = vcpu->arch.mmu; 1222 unsigned long roots_to_free = 0; 1223 int i; 1224 1225 /* 1226 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1227 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1228 * also via the emulator. KVM's TDP page tables are not in the scope of 1229 * the invalidation, but the guest's TLB entries need to be flushed as 1230 * the CPU may have cached entries in its TLB for the target PCID. 1231 */ 1232 if (unlikely(tdp_enabled)) { 1233 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1234 return; 1235 } 1236 1237 /* 1238 * If neither the current CR3 nor any of the prev_roots use the given 1239 * PCID, then nothing needs to be done here because a resync will 1240 * happen anyway before switching to any other CR3. 1241 */ 1242 if (kvm_get_active_pcid(vcpu) == pcid) { 1243 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1244 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1245 } 1246 1247 /* 1248 * If PCID is disabled, there is no need to free prev_roots even if the 1249 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1250 * with PCIDE=0. 1251 */ 1252 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1253 return; 1254 1255 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1256 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1257 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1258 1259 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1260 } 1261 1262 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1263 { 1264 bool skip_tlb_flush = false; 1265 unsigned long pcid = 0; 1266 #ifdef CONFIG_X86_64 1267 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1268 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1269 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1270 pcid = cr3 & X86_CR3_PCID_MASK; 1271 } 1272 #endif 1273 1274 /* PDPTRs are always reloaded for PAE paging. */ 1275 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1276 goto handle_tlb_flush; 1277 1278 /* 1279 * Do not condition the GPA check on long mode, this helper is used to 1280 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1281 * the current vCPU mode is accurate. 1282 */ 1283 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1284 return 1; 1285 1286 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1287 return 1; 1288 1289 if (cr3 != kvm_read_cr3(vcpu)) 1290 kvm_mmu_new_pgd(vcpu, cr3); 1291 1292 vcpu->arch.cr3 = cr3; 1293 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1294 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1295 1296 handle_tlb_flush: 1297 /* 1298 * A load of CR3 that flushes the TLB flushes only the current PCID, 1299 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1300 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1301 * and it's impossible to use a non-zero PCID when PCID is disabled, 1302 * i.e. only PCID=0 can be relevant. 1303 */ 1304 if (!skip_tlb_flush) 1305 kvm_invalidate_pcid(vcpu, pcid); 1306 1307 return 0; 1308 } 1309 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1310 1311 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1312 { 1313 if (cr8 & CR8_RESERVED_BITS) 1314 return 1; 1315 if (lapic_in_kernel(vcpu)) 1316 kvm_lapic_set_tpr(vcpu, cr8); 1317 else 1318 vcpu->arch.cr8 = cr8; 1319 return 0; 1320 } 1321 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1322 1323 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1324 { 1325 if (lapic_in_kernel(vcpu)) 1326 return kvm_lapic_get_cr8(vcpu); 1327 else 1328 return vcpu->arch.cr8; 1329 } 1330 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1331 1332 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1333 { 1334 int i; 1335 1336 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1337 for (i = 0; i < KVM_NR_DB_REGS; i++) 1338 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1339 } 1340 } 1341 1342 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1343 { 1344 unsigned long dr7; 1345 1346 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1347 dr7 = vcpu->arch.guest_debug_dr7; 1348 else 1349 dr7 = vcpu->arch.dr7; 1350 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1351 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1352 if (dr7 & DR7_BP_EN_MASK) 1353 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1354 } 1355 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1356 1357 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1358 { 1359 u64 fixed = DR6_FIXED_1; 1360 1361 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1362 fixed |= DR6_RTM; 1363 1364 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1365 fixed |= DR6_BUS_LOCK; 1366 return fixed; 1367 } 1368 1369 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1370 { 1371 size_t size = ARRAY_SIZE(vcpu->arch.db); 1372 1373 switch (dr) { 1374 case 0 ... 3: 1375 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1376 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1377 vcpu->arch.eff_db[dr] = val; 1378 break; 1379 case 4: 1380 case 6: 1381 if (!kvm_dr6_valid(val)) 1382 return 1; /* #GP */ 1383 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1384 break; 1385 case 5: 1386 default: /* 7 */ 1387 if (!kvm_dr7_valid(val)) 1388 return 1; /* #GP */ 1389 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1390 kvm_update_dr7(vcpu); 1391 break; 1392 } 1393 1394 return 0; 1395 } 1396 EXPORT_SYMBOL_GPL(kvm_set_dr); 1397 1398 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1399 { 1400 size_t size = ARRAY_SIZE(vcpu->arch.db); 1401 1402 switch (dr) { 1403 case 0 ... 3: 1404 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1405 break; 1406 case 4: 1407 case 6: 1408 *val = vcpu->arch.dr6; 1409 break; 1410 case 5: 1411 default: /* 7 */ 1412 *val = vcpu->arch.dr7; 1413 break; 1414 } 1415 } 1416 EXPORT_SYMBOL_GPL(kvm_get_dr); 1417 1418 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1419 { 1420 u32 ecx = kvm_rcx_read(vcpu); 1421 u64 data; 1422 1423 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1424 kvm_inject_gp(vcpu, 0); 1425 return 1; 1426 } 1427 1428 kvm_rax_write(vcpu, (u32)data); 1429 kvm_rdx_write(vcpu, data >> 32); 1430 return kvm_skip_emulated_instruction(vcpu); 1431 } 1432 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1433 1434 /* 1435 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 1436 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 1437 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 1438 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 1439 * MSRs that KVM emulates without strictly requiring host support. 1440 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 1441 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 1442 * msrs_to_save and emulated_msrs. 1443 */ 1444 1445 static const u32 msrs_to_save_base[] = { 1446 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1447 MSR_STAR, 1448 #ifdef CONFIG_X86_64 1449 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1450 #endif 1451 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1452 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1453 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1454 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1455 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1456 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1457 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1458 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1459 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1460 MSR_IA32_UMWAIT_CONTROL, 1461 1462 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1463 }; 1464 1465 static const u32 msrs_to_save_pmu[] = { 1466 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1467 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1468 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1469 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1470 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1471 1472 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1473 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1474 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1475 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1476 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1477 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1478 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1479 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1480 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1481 1482 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1483 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1484 1485 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1486 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1487 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1488 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1489 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1490 1491 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 1492 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 1493 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 1494 }; 1495 1496 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1497 ARRAY_SIZE(msrs_to_save_pmu)]; 1498 static unsigned num_msrs_to_save; 1499 1500 static const u32 emulated_msrs_all[] = { 1501 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1502 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1503 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1504 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1505 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1506 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1507 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1508 HV_X64_MSR_RESET, 1509 HV_X64_MSR_VP_INDEX, 1510 HV_X64_MSR_VP_RUNTIME, 1511 HV_X64_MSR_SCONTROL, 1512 HV_X64_MSR_STIMER0_CONFIG, 1513 HV_X64_MSR_VP_ASSIST_PAGE, 1514 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1515 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1516 HV_X64_MSR_SYNDBG_OPTIONS, 1517 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1518 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1519 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1520 1521 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1522 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1523 1524 MSR_IA32_TSC_ADJUST, 1525 MSR_IA32_TSC_DEADLINE, 1526 MSR_IA32_ARCH_CAPABILITIES, 1527 MSR_IA32_PERF_CAPABILITIES, 1528 MSR_IA32_MISC_ENABLE, 1529 MSR_IA32_MCG_STATUS, 1530 MSR_IA32_MCG_CTL, 1531 MSR_IA32_MCG_EXT_CTL, 1532 MSR_IA32_SMBASE, 1533 MSR_SMI_COUNT, 1534 MSR_PLATFORM_INFO, 1535 MSR_MISC_FEATURES_ENABLES, 1536 MSR_AMD64_VIRT_SPEC_CTRL, 1537 MSR_AMD64_TSC_RATIO, 1538 MSR_IA32_POWER_CTL, 1539 MSR_IA32_UCODE_REV, 1540 1541 /* 1542 * KVM always supports the "true" VMX control MSRs, even if the host 1543 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 1544 * doesn't strictly require them to exist in the host (ignoring that 1545 * KVM would refuse to load in the first place if the core set of MSRs 1546 * aren't supported). 1547 */ 1548 MSR_IA32_VMX_BASIC, 1549 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1550 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1551 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1552 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1553 MSR_IA32_VMX_MISC, 1554 MSR_IA32_VMX_CR0_FIXED0, 1555 MSR_IA32_VMX_CR4_FIXED0, 1556 MSR_IA32_VMX_VMCS_ENUM, 1557 MSR_IA32_VMX_PROCBASED_CTLS2, 1558 MSR_IA32_VMX_EPT_VPID_CAP, 1559 MSR_IA32_VMX_VMFUNC, 1560 1561 MSR_K7_HWCR, 1562 MSR_KVM_POLL_CONTROL, 1563 }; 1564 1565 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1566 static unsigned num_emulated_msrs; 1567 1568 /* 1569 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1570 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1571 * feature MSRs, but are handled separately to allow expedited lookups. 1572 */ 1573 static const u32 msr_based_features_all_except_vmx[] = { 1574 MSR_AMD64_DE_CFG, 1575 MSR_IA32_UCODE_REV, 1576 MSR_IA32_ARCH_CAPABILITIES, 1577 MSR_IA32_PERF_CAPABILITIES, 1578 }; 1579 1580 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1581 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1582 static unsigned int num_msr_based_features; 1583 1584 /* 1585 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1586 * patch, are immutable once the vCPU model is defined. 1587 */ 1588 static bool kvm_is_immutable_feature_msr(u32 msr) 1589 { 1590 int i; 1591 1592 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1593 return true; 1594 1595 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1596 if (msr == msr_based_features_all_except_vmx[i]) 1597 return msr != MSR_IA32_UCODE_REV; 1598 } 1599 1600 return false; 1601 } 1602 1603 /* 1604 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1605 * does not yet virtualize. These include: 1606 * 10 - MISC_PACKAGE_CTRLS 1607 * 11 - ENERGY_FILTERING_CTL 1608 * 12 - DOITM 1609 * 18 - FB_CLEAR_CTRL 1610 * 21 - XAPIC_DISABLE_STATUS 1611 * 23 - OVERCLOCKING_STATUS 1612 */ 1613 1614 #define KVM_SUPPORTED_ARCH_CAP \ 1615 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1616 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1617 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1618 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1619 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1620 1621 static u64 kvm_get_arch_capabilities(void) 1622 { 1623 u64 data = 0; 1624 1625 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1626 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1627 data &= KVM_SUPPORTED_ARCH_CAP; 1628 } 1629 1630 /* 1631 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1632 * the nested hypervisor runs with NX huge pages. If it is not, 1633 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1634 * L1 guests, so it need not worry about its own (L2) guests. 1635 */ 1636 data |= ARCH_CAP_PSCHANGE_MC_NO; 1637 1638 /* 1639 * If we're doing cache flushes (either "always" or "cond") 1640 * we will do one whenever the guest does a vmlaunch/vmresume. 1641 * If an outer hypervisor is doing the cache flush for us 1642 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1643 * capability to the guest too, and if EPT is disabled we're not 1644 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1645 * require a nested hypervisor to do a flush of its own. 1646 */ 1647 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1648 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1649 1650 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1651 data |= ARCH_CAP_RDCL_NO; 1652 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1653 data |= ARCH_CAP_SSB_NO; 1654 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1655 data |= ARCH_CAP_MDS_NO; 1656 1657 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1658 /* 1659 * If RTM=0 because the kernel has disabled TSX, the host might 1660 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1661 * and therefore knows that there cannot be TAA) but keep 1662 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1663 * and we want to allow migrating those guests to tsx=off hosts. 1664 */ 1665 data &= ~ARCH_CAP_TAA_NO; 1666 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1667 data |= ARCH_CAP_TAA_NO; 1668 } else { 1669 /* 1670 * Nothing to do here; we emulate TSX_CTRL if present on the 1671 * host so the guest can choose between disabling TSX or 1672 * using VERW to clear CPU buffers. 1673 */ 1674 } 1675 1676 return data; 1677 } 1678 1679 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1680 { 1681 switch (msr->index) { 1682 case MSR_IA32_ARCH_CAPABILITIES: 1683 msr->data = kvm_get_arch_capabilities(); 1684 break; 1685 case MSR_IA32_PERF_CAPABILITIES: 1686 msr->data = kvm_caps.supported_perf_cap; 1687 break; 1688 case MSR_IA32_UCODE_REV: 1689 rdmsrl_safe(msr->index, &msr->data); 1690 break; 1691 default: 1692 return static_call(kvm_x86_get_msr_feature)(msr); 1693 } 1694 return 0; 1695 } 1696 1697 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1698 { 1699 struct kvm_msr_entry msr; 1700 int r; 1701 1702 msr.index = index; 1703 r = kvm_get_msr_feature(&msr); 1704 1705 if (r == KVM_MSR_RET_INVALID) { 1706 /* Unconditionally clear the output for simplicity */ 1707 *data = 0; 1708 if (kvm_msr_ignored_check(index, 0, false)) 1709 r = 0; 1710 } 1711 1712 if (r) 1713 return r; 1714 1715 *data = msr.data; 1716 1717 return 0; 1718 } 1719 1720 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1721 { 1722 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1723 return false; 1724 1725 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1726 return false; 1727 1728 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1729 return false; 1730 1731 if (efer & (EFER_LME | EFER_LMA) && 1732 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1733 return false; 1734 1735 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1736 return false; 1737 1738 return true; 1739 1740 } 1741 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1742 { 1743 if (efer & efer_reserved_bits) 1744 return false; 1745 1746 return __kvm_valid_efer(vcpu, efer); 1747 } 1748 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1749 1750 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1751 { 1752 u64 old_efer = vcpu->arch.efer; 1753 u64 efer = msr_info->data; 1754 int r; 1755 1756 if (efer & efer_reserved_bits) 1757 return 1; 1758 1759 if (!msr_info->host_initiated) { 1760 if (!__kvm_valid_efer(vcpu, efer)) 1761 return 1; 1762 1763 if (is_paging(vcpu) && 1764 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1765 return 1; 1766 } 1767 1768 efer &= ~EFER_LMA; 1769 efer |= vcpu->arch.efer & EFER_LMA; 1770 1771 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1772 if (r) { 1773 WARN_ON(r > 0); 1774 return r; 1775 } 1776 1777 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1778 kvm_mmu_reset_context(vcpu); 1779 1780 return 0; 1781 } 1782 1783 void kvm_enable_efer_bits(u64 mask) 1784 { 1785 efer_reserved_bits &= ~mask; 1786 } 1787 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1788 1789 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1790 { 1791 struct kvm_x86_msr_filter *msr_filter; 1792 struct msr_bitmap_range *ranges; 1793 struct kvm *kvm = vcpu->kvm; 1794 bool allowed; 1795 int idx; 1796 u32 i; 1797 1798 /* x2APIC MSRs do not support filtering. */ 1799 if (index >= 0x800 && index <= 0x8ff) 1800 return true; 1801 1802 idx = srcu_read_lock(&kvm->srcu); 1803 1804 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1805 if (!msr_filter) { 1806 allowed = true; 1807 goto out; 1808 } 1809 1810 allowed = msr_filter->default_allow; 1811 ranges = msr_filter->ranges; 1812 1813 for (i = 0; i < msr_filter->count; i++) { 1814 u32 start = ranges[i].base; 1815 u32 end = start + ranges[i].nmsrs; 1816 u32 flags = ranges[i].flags; 1817 unsigned long *bitmap = ranges[i].bitmap; 1818 1819 if ((index >= start) && (index < end) && (flags & type)) { 1820 allowed = test_bit(index - start, bitmap); 1821 break; 1822 } 1823 } 1824 1825 out: 1826 srcu_read_unlock(&kvm->srcu, idx); 1827 1828 return allowed; 1829 } 1830 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1831 1832 /* 1833 * Write @data into the MSR specified by @index. Select MSR specific fault 1834 * checks are bypassed if @host_initiated is %true. 1835 * Returns 0 on success, non-0 otherwise. 1836 * Assumes vcpu_load() was already called. 1837 */ 1838 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1839 bool host_initiated) 1840 { 1841 struct msr_data msr; 1842 1843 switch (index) { 1844 case MSR_FS_BASE: 1845 case MSR_GS_BASE: 1846 case MSR_KERNEL_GS_BASE: 1847 case MSR_CSTAR: 1848 case MSR_LSTAR: 1849 if (is_noncanonical_address(data, vcpu)) 1850 return 1; 1851 break; 1852 case MSR_IA32_SYSENTER_EIP: 1853 case MSR_IA32_SYSENTER_ESP: 1854 /* 1855 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1856 * non-canonical address is written on Intel but not on 1857 * AMD (which ignores the top 32-bits, because it does 1858 * not implement 64-bit SYSENTER). 1859 * 1860 * 64-bit code should hence be able to write a non-canonical 1861 * value on AMD. Making the address canonical ensures that 1862 * vmentry does not fail on Intel after writing a non-canonical 1863 * value, and that something deterministic happens if the guest 1864 * invokes 64-bit SYSENTER. 1865 */ 1866 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1867 break; 1868 case MSR_TSC_AUX: 1869 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1870 return 1; 1871 1872 if (!host_initiated && 1873 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1874 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1875 return 1; 1876 1877 /* 1878 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1879 * incomplete and conflicting architectural behavior. Current 1880 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1881 * reserved and always read as zeros. Enforce Intel's reserved 1882 * bits check if and only if the guest CPU is Intel, and clear 1883 * the bits in all other cases. This ensures cross-vendor 1884 * migration will provide consistent behavior for the guest. 1885 */ 1886 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1887 return 1; 1888 1889 data = (u32)data; 1890 break; 1891 } 1892 1893 msr.data = data; 1894 msr.index = index; 1895 msr.host_initiated = host_initiated; 1896 1897 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1898 } 1899 1900 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1901 u32 index, u64 data, bool host_initiated) 1902 { 1903 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1904 1905 if (ret == KVM_MSR_RET_INVALID) 1906 if (kvm_msr_ignored_check(index, data, true)) 1907 ret = 0; 1908 1909 return ret; 1910 } 1911 1912 /* 1913 * Read the MSR specified by @index into @data. Select MSR specific fault 1914 * checks are bypassed if @host_initiated is %true. 1915 * Returns 0 on success, non-0 otherwise. 1916 * Assumes vcpu_load() was already called. 1917 */ 1918 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1919 bool host_initiated) 1920 { 1921 struct msr_data msr; 1922 int ret; 1923 1924 switch (index) { 1925 case MSR_TSC_AUX: 1926 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1927 return 1; 1928 1929 if (!host_initiated && 1930 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1931 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1932 return 1; 1933 break; 1934 } 1935 1936 msr.index = index; 1937 msr.host_initiated = host_initiated; 1938 1939 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1940 if (!ret) 1941 *data = msr.data; 1942 return ret; 1943 } 1944 1945 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1946 u32 index, u64 *data, bool host_initiated) 1947 { 1948 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1949 1950 if (ret == KVM_MSR_RET_INVALID) { 1951 /* Unconditionally clear *data for simplicity */ 1952 *data = 0; 1953 if (kvm_msr_ignored_check(index, 0, false)) 1954 ret = 0; 1955 } 1956 1957 return ret; 1958 } 1959 1960 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1961 { 1962 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1963 return KVM_MSR_RET_FILTERED; 1964 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1965 } 1966 1967 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1968 { 1969 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1970 return KVM_MSR_RET_FILTERED; 1971 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1972 } 1973 1974 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1975 { 1976 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1977 } 1978 EXPORT_SYMBOL_GPL(kvm_get_msr); 1979 1980 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1981 { 1982 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1983 } 1984 EXPORT_SYMBOL_GPL(kvm_set_msr); 1985 1986 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1987 { 1988 if (!vcpu->run->msr.error) { 1989 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1990 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1991 } 1992 } 1993 1994 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1995 { 1996 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1997 } 1998 1999 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2000 { 2001 complete_userspace_rdmsr(vcpu); 2002 return complete_emulated_msr_access(vcpu); 2003 } 2004 2005 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2006 { 2007 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2008 } 2009 2010 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2011 { 2012 complete_userspace_rdmsr(vcpu); 2013 return complete_fast_msr_access(vcpu); 2014 } 2015 2016 static u64 kvm_msr_reason(int r) 2017 { 2018 switch (r) { 2019 case KVM_MSR_RET_INVALID: 2020 return KVM_MSR_EXIT_REASON_UNKNOWN; 2021 case KVM_MSR_RET_FILTERED: 2022 return KVM_MSR_EXIT_REASON_FILTER; 2023 default: 2024 return KVM_MSR_EXIT_REASON_INVAL; 2025 } 2026 } 2027 2028 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2029 u32 exit_reason, u64 data, 2030 int (*completion)(struct kvm_vcpu *vcpu), 2031 int r) 2032 { 2033 u64 msr_reason = kvm_msr_reason(r); 2034 2035 /* Check if the user wanted to know about this MSR fault */ 2036 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2037 return 0; 2038 2039 vcpu->run->exit_reason = exit_reason; 2040 vcpu->run->msr.error = 0; 2041 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2042 vcpu->run->msr.reason = msr_reason; 2043 vcpu->run->msr.index = index; 2044 vcpu->run->msr.data = data; 2045 vcpu->arch.complete_userspace_io = completion; 2046 2047 return 1; 2048 } 2049 2050 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2051 { 2052 u32 ecx = kvm_rcx_read(vcpu); 2053 u64 data; 2054 int r; 2055 2056 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2057 2058 if (!r) { 2059 trace_kvm_msr_read(ecx, data); 2060 2061 kvm_rax_write(vcpu, data & -1u); 2062 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2063 } else { 2064 /* MSR read failed? See if we should ask user space */ 2065 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2066 complete_fast_rdmsr, r)) 2067 return 0; 2068 trace_kvm_msr_read_ex(ecx); 2069 } 2070 2071 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2072 } 2073 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2074 2075 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2076 { 2077 u32 ecx = kvm_rcx_read(vcpu); 2078 u64 data = kvm_read_edx_eax(vcpu); 2079 int r; 2080 2081 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2082 2083 if (!r) { 2084 trace_kvm_msr_write(ecx, data); 2085 } else { 2086 /* MSR write failed? See if we should ask user space */ 2087 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2088 complete_fast_msr_access, r)) 2089 return 0; 2090 /* Signal all other negative errors to userspace */ 2091 if (r < 0) 2092 return r; 2093 trace_kvm_msr_write_ex(ecx, data); 2094 } 2095 2096 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2097 } 2098 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2099 2100 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2101 { 2102 return kvm_skip_emulated_instruction(vcpu); 2103 } 2104 2105 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2106 { 2107 /* Treat an INVD instruction as a NOP and just skip it. */ 2108 return kvm_emulate_as_nop(vcpu); 2109 } 2110 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2111 2112 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2113 { 2114 kvm_queue_exception(vcpu, UD_VECTOR); 2115 return 1; 2116 } 2117 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2118 2119 2120 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2121 { 2122 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2123 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2124 return kvm_handle_invalid_op(vcpu); 2125 2126 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2127 return kvm_emulate_as_nop(vcpu); 2128 } 2129 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2130 { 2131 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2132 } 2133 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2134 2135 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2136 { 2137 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2138 } 2139 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2140 2141 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2142 { 2143 xfer_to_guest_mode_prepare(); 2144 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2145 xfer_to_guest_mode_work_pending(); 2146 } 2147 2148 /* 2149 * The fast path for frequent and performance sensitive wrmsr emulation, 2150 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2151 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2152 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2153 * other cases which must be called after interrupts are enabled on the host. 2154 */ 2155 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2156 { 2157 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2158 return 1; 2159 2160 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2161 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2162 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2163 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2164 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2165 2166 return 1; 2167 } 2168 2169 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2170 { 2171 if (!kvm_can_use_hv_timer(vcpu)) 2172 return 1; 2173 2174 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2175 return 0; 2176 } 2177 2178 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2179 { 2180 u32 msr = kvm_rcx_read(vcpu); 2181 u64 data; 2182 fastpath_t ret = EXIT_FASTPATH_NONE; 2183 2184 kvm_vcpu_srcu_read_lock(vcpu); 2185 2186 switch (msr) { 2187 case APIC_BASE_MSR + (APIC_ICR >> 4): 2188 data = kvm_read_edx_eax(vcpu); 2189 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2190 kvm_skip_emulated_instruction(vcpu); 2191 ret = EXIT_FASTPATH_EXIT_HANDLED; 2192 } 2193 break; 2194 case MSR_IA32_TSC_DEADLINE: 2195 data = kvm_read_edx_eax(vcpu); 2196 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2197 kvm_skip_emulated_instruction(vcpu); 2198 ret = EXIT_FASTPATH_REENTER_GUEST; 2199 } 2200 break; 2201 default: 2202 break; 2203 } 2204 2205 if (ret != EXIT_FASTPATH_NONE) 2206 trace_kvm_msr_write(msr, data); 2207 2208 kvm_vcpu_srcu_read_unlock(vcpu); 2209 2210 return ret; 2211 } 2212 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2213 2214 /* 2215 * Adapt set_msr() to msr_io()'s calling convention 2216 */ 2217 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2218 { 2219 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2220 } 2221 2222 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2223 { 2224 u64 val; 2225 2226 /* 2227 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2228 * not support modifying the guest vCPU model on the fly, e.g. changing 2229 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2230 * writes of the same value, e.g. to allow userspace to blindly stuff 2231 * all MSRs when emulating RESET. 2232 */ 2233 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2234 if (do_get_msr(vcpu, index, &val) || *data != val) 2235 return -EINVAL; 2236 2237 return 0; 2238 } 2239 2240 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2241 } 2242 2243 #ifdef CONFIG_X86_64 2244 struct pvclock_clock { 2245 int vclock_mode; 2246 u64 cycle_last; 2247 u64 mask; 2248 u32 mult; 2249 u32 shift; 2250 u64 base_cycles; 2251 u64 offset; 2252 }; 2253 2254 struct pvclock_gtod_data { 2255 seqcount_t seq; 2256 2257 struct pvclock_clock clock; /* extract of a clocksource struct */ 2258 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2259 2260 ktime_t offs_boot; 2261 u64 wall_time_sec; 2262 }; 2263 2264 static struct pvclock_gtod_data pvclock_gtod_data; 2265 2266 static void update_pvclock_gtod(struct timekeeper *tk) 2267 { 2268 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2269 2270 write_seqcount_begin(&vdata->seq); 2271 2272 /* copy pvclock gtod data */ 2273 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2274 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2275 vdata->clock.mask = tk->tkr_mono.mask; 2276 vdata->clock.mult = tk->tkr_mono.mult; 2277 vdata->clock.shift = tk->tkr_mono.shift; 2278 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2279 vdata->clock.offset = tk->tkr_mono.base; 2280 2281 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2282 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2283 vdata->raw_clock.mask = tk->tkr_raw.mask; 2284 vdata->raw_clock.mult = tk->tkr_raw.mult; 2285 vdata->raw_clock.shift = tk->tkr_raw.shift; 2286 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2287 vdata->raw_clock.offset = tk->tkr_raw.base; 2288 2289 vdata->wall_time_sec = tk->xtime_sec; 2290 2291 vdata->offs_boot = tk->offs_boot; 2292 2293 write_seqcount_end(&vdata->seq); 2294 } 2295 2296 static s64 get_kvmclock_base_ns(void) 2297 { 2298 /* Count up from boot time, but with the frequency of the raw clock. */ 2299 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2300 } 2301 #else 2302 static s64 get_kvmclock_base_ns(void) 2303 { 2304 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2305 return ktime_get_boottime_ns(); 2306 } 2307 #endif 2308 2309 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2310 { 2311 int version; 2312 int r; 2313 struct pvclock_wall_clock wc; 2314 u32 wc_sec_hi; 2315 u64 wall_nsec; 2316 2317 if (!wall_clock) 2318 return; 2319 2320 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2321 if (r) 2322 return; 2323 2324 if (version & 1) 2325 ++version; /* first time write, random junk */ 2326 2327 ++version; 2328 2329 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2330 return; 2331 2332 /* 2333 * The guest calculates current wall clock time by adding 2334 * system time (updated by kvm_guest_time_update below) to the 2335 * wall clock specified here. We do the reverse here. 2336 */ 2337 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2338 2339 wc.nsec = do_div(wall_nsec, 1000000000); 2340 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2341 wc.version = version; 2342 2343 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2344 2345 if (sec_hi_ofs) { 2346 wc_sec_hi = wall_nsec >> 32; 2347 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2348 &wc_sec_hi, sizeof(wc_sec_hi)); 2349 } 2350 2351 version++; 2352 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2353 } 2354 2355 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2356 bool old_msr, bool host_initiated) 2357 { 2358 struct kvm_arch *ka = &vcpu->kvm->arch; 2359 2360 if (vcpu->vcpu_id == 0 && !host_initiated) { 2361 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2362 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2363 2364 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2365 } 2366 2367 vcpu->arch.time = system_time; 2368 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2369 2370 /* we verify if the enable bit is set... */ 2371 if (system_time & 1) 2372 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2373 sizeof(struct pvclock_vcpu_time_info)); 2374 else 2375 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2376 2377 return; 2378 } 2379 2380 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2381 { 2382 do_shl32_div32(dividend, divisor); 2383 return dividend; 2384 } 2385 2386 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2387 s8 *pshift, u32 *pmultiplier) 2388 { 2389 uint64_t scaled64; 2390 int32_t shift = 0; 2391 uint64_t tps64; 2392 uint32_t tps32; 2393 2394 tps64 = base_hz; 2395 scaled64 = scaled_hz; 2396 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2397 tps64 >>= 1; 2398 shift--; 2399 } 2400 2401 tps32 = (uint32_t)tps64; 2402 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2403 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2404 scaled64 >>= 1; 2405 else 2406 tps32 <<= 1; 2407 shift++; 2408 } 2409 2410 *pshift = shift; 2411 *pmultiplier = div_frac(scaled64, tps32); 2412 } 2413 2414 #ifdef CONFIG_X86_64 2415 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2416 #endif 2417 2418 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2419 static unsigned long max_tsc_khz; 2420 2421 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2422 { 2423 u64 v = (u64)khz * (1000000 + ppm); 2424 do_div(v, 1000000); 2425 return v; 2426 } 2427 2428 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2429 2430 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2431 { 2432 u64 ratio; 2433 2434 /* Guest TSC same frequency as host TSC? */ 2435 if (!scale) { 2436 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2437 return 0; 2438 } 2439 2440 /* TSC scaling supported? */ 2441 if (!kvm_caps.has_tsc_control) { 2442 if (user_tsc_khz > tsc_khz) { 2443 vcpu->arch.tsc_catchup = 1; 2444 vcpu->arch.tsc_always_catchup = 1; 2445 return 0; 2446 } else { 2447 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2448 return -1; 2449 } 2450 } 2451 2452 /* TSC scaling required - calculate ratio */ 2453 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2454 user_tsc_khz, tsc_khz); 2455 2456 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2457 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2458 user_tsc_khz); 2459 return -1; 2460 } 2461 2462 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2463 return 0; 2464 } 2465 2466 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2467 { 2468 u32 thresh_lo, thresh_hi; 2469 int use_scaling = 0; 2470 2471 /* tsc_khz can be zero if TSC calibration fails */ 2472 if (user_tsc_khz == 0) { 2473 /* set tsc_scaling_ratio to a safe value */ 2474 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2475 return -1; 2476 } 2477 2478 /* Compute a scale to convert nanoseconds in TSC cycles */ 2479 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2480 &vcpu->arch.virtual_tsc_shift, 2481 &vcpu->arch.virtual_tsc_mult); 2482 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2483 2484 /* 2485 * Compute the variation in TSC rate which is acceptable 2486 * within the range of tolerance and decide if the 2487 * rate being applied is within that bounds of the hardware 2488 * rate. If so, no scaling or compensation need be done. 2489 */ 2490 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2491 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2492 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2493 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2494 user_tsc_khz, thresh_lo, thresh_hi); 2495 use_scaling = 1; 2496 } 2497 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2498 } 2499 2500 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2501 { 2502 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2503 vcpu->arch.virtual_tsc_mult, 2504 vcpu->arch.virtual_tsc_shift); 2505 tsc += vcpu->arch.this_tsc_write; 2506 return tsc; 2507 } 2508 2509 #ifdef CONFIG_X86_64 2510 static inline int gtod_is_based_on_tsc(int mode) 2511 { 2512 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2513 } 2514 #endif 2515 2516 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2517 { 2518 #ifdef CONFIG_X86_64 2519 bool vcpus_matched; 2520 struct kvm_arch *ka = &vcpu->kvm->arch; 2521 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2522 2523 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2524 atomic_read(&vcpu->kvm->online_vcpus)); 2525 2526 /* 2527 * Once the masterclock is enabled, always perform request in 2528 * order to update it. 2529 * 2530 * In order to enable masterclock, the host clocksource must be TSC 2531 * and the vcpus need to have matched TSCs. When that happens, 2532 * perform request to enable masterclock. 2533 */ 2534 if (ka->use_master_clock || 2535 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2536 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2537 2538 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2539 atomic_read(&vcpu->kvm->online_vcpus), 2540 ka->use_master_clock, gtod->clock.vclock_mode); 2541 #endif 2542 } 2543 2544 /* 2545 * Multiply tsc by a fixed point number represented by ratio. 2546 * 2547 * The most significant 64-N bits (mult) of ratio represent the 2548 * integral part of the fixed point number; the remaining N bits 2549 * (frac) represent the fractional part, ie. ratio represents a fixed 2550 * point number (mult + frac * 2^(-N)). 2551 * 2552 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2553 */ 2554 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2555 { 2556 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2557 } 2558 2559 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2560 { 2561 u64 _tsc = tsc; 2562 2563 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2564 _tsc = __scale_tsc(ratio, tsc); 2565 2566 return _tsc; 2567 } 2568 2569 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2570 { 2571 u64 tsc; 2572 2573 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2574 2575 return target_tsc - tsc; 2576 } 2577 2578 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2579 { 2580 return vcpu->arch.l1_tsc_offset + 2581 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2582 } 2583 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2584 2585 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2586 { 2587 u64 nested_offset; 2588 2589 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2590 nested_offset = l1_offset; 2591 else 2592 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2593 kvm_caps.tsc_scaling_ratio_frac_bits); 2594 2595 nested_offset += l2_offset; 2596 return nested_offset; 2597 } 2598 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2599 2600 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2601 { 2602 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2603 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2604 kvm_caps.tsc_scaling_ratio_frac_bits); 2605 2606 return l1_multiplier; 2607 } 2608 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2609 2610 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2611 { 2612 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2613 vcpu->arch.l1_tsc_offset, 2614 l1_offset); 2615 2616 vcpu->arch.l1_tsc_offset = l1_offset; 2617 2618 /* 2619 * If we are here because L1 chose not to trap WRMSR to TSC then 2620 * according to the spec this should set L1's TSC (as opposed to 2621 * setting L1's offset for L2). 2622 */ 2623 if (is_guest_mode(vcpu)) 2624 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2625 l1_offset, 2626 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2627 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2628 else 2629 vcpu->arch.tsc_offset = l1_offset; 2630 2631 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2632 } 2633 2634 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2635 { 2636 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2637 2638 /* Userspace is changing the multiplier while L2 is active */ 2639 if (is_guest_mode(vcpu)) 2640 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2641 l1_multiplier, 2642 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2643 else 2644 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2645 2646 if (kvm_caps.has_tsc_control) 2647 static_call(kvm_x86_write_tsc_multiplier)( 2648 vcpu, vcpu->arch.tsc_scaling_ratio); 2649 } 2650 2651 static inline bool kvm_check_tsc_unstable(void) 2652 { 2653 #ifdef CONFIG_X86_64 2654 /* 2655 * TSC is marked unstable when we're running on Hyper-V, 2656 * 'TSC page' clocksource is good. 2657 */ 2658 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2659 return false; 2660 #endif 2661 return check_tsc_unstable(); 2662 } 2663 2664 /* 2665 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2666 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2667 * participates in. 2668 */ 2669 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2670 u64 ns, bool matched) 2671 { 2672 struct kvm *kvm = vcpu->kvm; 2673 2674 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2675 2676 /* 2677 * We also track th most recent recorded KHZ, write and time to 2678 * allow the matching interval to be extended at each write. 2679 */ 2680 kvm->arch.last_tsc_nsec = ns; 2681 kvm->arch.last_tsc_write = tsc; 2682 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2683 kvm->arch.last_tsc_offset = offset; 2684 2685 vcpu->arch.last_guest_tsc = tsc; 2686 2687 kvm_vcpu_write_tsc_offset(vcpu, offset); 2688 2689 if (!matched) { 2690 /* 2691 * We split periods of matched TSC writes into generations. 2692 * For each generation, we track the original measured 2693 * nanosecond time, offset, and write, so if TSCs are in 2694 * sync, we can match exact offset, and if not, we can match 2695 * exact software computation in compute_guest_tsc() 2696 * 2697 * These values are tracked in kvm->arch.cur_xxx variables. 2698 */ 2699 kvm->arch.cur_tsc_generation++; 2700 kvm->arch.cur_tsc_nsec = ns; 2701 kvm->arch.cur_tsc_write = tsc; 2702 kvm->arch.cur_tsc_offset = offset; 2703 kvm->arch.nr_vcpus_matched_tsc = 0; 2704 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2705 kvm->arch.nr_vcpus_matched_tsc++; 2706 } 2707 2708 /* Keep track of which generation this VCPU has synchronized to */ 2709 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2710 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2711 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2712 2713 kvm_track_tsc_matching(vcpu); 2714 } 2715 2716 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2717 { 2718 struct kvm *kvm = vcpu->kvm; 2719 u64 offset, ns, elapsed; 2720 unsigned long flags; 2721 bool matched = false; 2722 bool synchronizing = false; 2723 2724 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2725 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2726 ns = get_kvmclock_base_ns(); 2727 elapsed = ns - kvm->arch.last_tsc_nsec; 2728 2729 if (vcpu->arch.virtual_tsc_khz) { 2730 if (data == 0) { 2731 /* 2732 * detection of vcpu initialization -- need to sync 2733 * with other vCPUs. This particularly helps to keep 2734 * kvm_clock stable after CPU hotplug 2735 */ 2736 synchronizing = true; 2737 } else { 2738 u64 tsc_exp = kvm->arch.last_tsc_write + 2739 nsec_to_cycles(vcpu, elapsed); 2740 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2741 /* 2742 * Special case: TSC write with a small delta (1 second) 2743 * of virtual cycle time against real time is 2744 * interpreted as an attempt to synchronize the CPU. 2745 */ 2746 synchronizing = data < tsc_exp + tsc_hz && 2747 data + tsc_hz > tsc_exp; 2748 } 2749 } 2750 2751 /* 2752 * For a reliable TSC, we can match TSC offsets, and for an unstable 2753 * TSC, we add elapsed time in this computation. We could let the 2754 * compensation code attempt to catch up if we fall behind, but 2755 * it's better to try to match offsets from the beginning. 2756 */ 2757 if (synchronizing && 2758 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2759 if (!kvm_check_tsc_unstable()) { 2760 offset = kvm->arch.cur_tsc_offset; 2761 } else { 2762 u64 delta = nsec_to_cycles(vcpu, elapsed); 2763 data += delta; 2764 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2765 } 2766 matched = true; 2767 } 2768 2769 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2770 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2771 } 2772 2773 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2774 s64 adjustment) 2775 { 2776 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2777 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2778 } 2779 2780 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2781 { 2782 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2783 WARN_ON(adjustment < 0); 2784 adjustment = kvm_scale_tsc((u64) adjustment, 2785 vcpu->arch.l1_tsc_scaling_ratio); 2786 adjust_tsc_offset_guest(vcpu, adjustment); 2787 } 2788 2789 #ifdef CONFIG_X86_64 2790 2791 static u64 read_tsc(void) 2792 { 2793 u64 ret = (u64)rdtsc_ordered(); 2794 u64 last = pvclock_gtod_data.clock.cycle_last; 2795 2796 if (likely(ret >= last)) 2797 return ret; 2798 2799 /* 2800 * GCC likes to generate cmov here, but this branch is extremely 2801 * predictable (it's just a function of time and the likely is 2802 * very likely) and there's a data dependence, so force GCC 2803 * to generate a branch instead. I don't barrier() because 2804 * we don't actually need a barrier, and if this function 2805 * ever gets inlined it will generate worse code. 2806 */ 2807 asm volatile (""); 2808 return last; 2809 } 2810 2811 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2812 int *mode) 2813 { 2814 u64 tsc_pg_val; 2815 long v; 2816 2817 switch (clock->vclock_mode) { 2818 case VDSO_CLOCKMODE_HVCLOCK: 2819 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2820 tsc_timestamp, &tsc_pg_val)) { 2821 /* TSC page valid */ 2822 *mode = VDSO_CLOCKMODE_HVCLOCK; 2823 v = (tsc_pg_val - clock->cycle_last) & 2824 clock->mask; 2825 } else { 2826 /* TSC page invalid */ 2827 *mode = VDSO_CLOCKMODE_NONE; 2828 } 2829 break; 2830 case VDSO_CLOCKMODE_TSC: 2831 *mode = VDSO_CLOCKMODE_TSC; 2832 *tsc_timestamp = read_tsc(); 2833 v = (*tsc_timestamp - clock->cycle_last) & 2834 clock->mask; 2835 break; 2836 default: 2837 *mode = VDSO_CLOCKMODE_NONE; 2838 } 2839 2840 if (*mode == VDSO_CLOCKMODE_NONE) 2841 *tsc_timestamp = v = 0; 2842 2843 return v * clock->mult; 2844 } 2845 2846 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2847 { 2848 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2849 unsigned long seq; 2850 int mode; 2851 u64 ns; 2852 2853 do { 2854 seq = read_seqcount_begin(>od->seq); 2855 ns = gtod->raw_clock.base_cycles; 2856 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2857 ns >>= gtod->raw_clock.shift; 2858 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2859 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2860 *t = ns; 2861 2862 return mode; 2863 } 2864 2865 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2866 { 2867 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2868 unsigned long seq; 2869 int mode; 2870 u64 ns; 2871 2872 do { 2873 seq = read_seqcount_begin(>od->seq); 2874 ts->tv_sec = gtod->wall_time_sec; 2875 ns = gtod->clock.base_cycles; 2876 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2877 ns >>= gtod->clock.shift; 2878 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2879 2880 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2881 ts->tv_nsec = ns; 2882 2883 return mode; 2884 } 2885 2886 /* returns true if host is using TSC based clocksource */ 2887 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2888 { 2889 /* checked again under seqlock below */ 2890 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2891 return false; 2892 2893 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2894 tsc_timestamp)); 2895 } 2896 2897 /* returns true if host is using TSC based clocksource */ 2898 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2899 u64 *tsc_timestamp) 2900 { 2901 /* checked again under seqlock below */ 2902 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2903 return false; 2904 2905 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2906 } 2907 #endif 2908 2909 /* 2910 * 2911 * Assuming a stable TSC across physical CPUS, and a stable TSC 2912 * across virtual CPUs, the following condition is possible. 2913 * Each numbered line represents an event visible to both 2914 * CPUs at the next numbered event. 2915 * 2916 * "timespecX" represents host monotonic time. "tscX" represents 2917 * RDTSC value. 2918 * 2919 * VCPU0 on CPU0 | VCPU1 on CPU1 2920 * 2921 * 1. read timespec0,tsc0 2922 * 2. | timespec1 = timespec0 + N 2923 * | tsc1 = tsc0 + M 2924 * 3. transition to guest | transition to guest 2925 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2926 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2927 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2928 * 2929 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2930 * 2931 * - ret0 < ret1 2932 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2933 * ... 2934 * - 0 < N - M => M < N 2935 * 2936 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2937 * always the case (the difference between two distinct xtime instances 2938 * might be smaller then the difference between corresponding TSC reads, 2939 * when updating guest vcpus pvclock areas). 2940 * 2941 * To avoid that problem, do not allow visibility of distinct 2942 * system_timestamp/tsc_timestamp values simultaneously: use a master 2943 * copy of host monotonic time values. Update that master copy 2944 * in lockstep. 2945 * 2946 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2947 * 2948 */ 2949 2950 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2951 { 2952 #ifdef CONFIG_X86_64 2953 struct kvm_arch *ka = &kvm->arch; 2954 int vclock_mode; 2955 bool host_tsc_clocksource, vcpus_matched; 2956 2957 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2958 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2959 atomic_read(&kvm->online_vcpus)); 2960 2961 /* 2962 * If the host uses TSC clock, then passthrough TSC as stable 2963 * to the guest. 2964 */ 2965 host_tsc_clocksource = kvm_get_time_and_clockread( 2966 &ka->master_kernel_ns, 2967 &ka->master_cycle_now); 2968 2969 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2970 && !ka->backwards_tsc_observed 2971 && !ka->boot_vcpu_runs_old_kvmclock; 2972 2973 if (ka->use_master_clock) 2974 atomic_set(&kvm_guest_has_master_clock, 1); 2975 2976 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2977 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2978 vcpus_matched); 2979 #endif 2980 } 2981 2982 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2983 { 2984 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2985 } 2986 2987 static void __kvm_start_pvclock_update(struct kvm *kvm) 2988 { 2989 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2990 write_seqcount_begin(&kvm->arch.pvclock_sc); 2991 } 2992 2993 static void kvm_start_pvclock_update(struct kvm *kvm) 2994 { 2995 kvm_make_mclock_inprogress_request(kvm); 2996 2997 /* no guest entries from this point */ 2998 __kvm_start_pvclock_update(kvm); 2999 } 3000 3001 static void kvm_end_pvclock_update(struct kvm *kvm) 3002 { 3003 struct kvm_arch *ka = &kvm->arch; 3004 struct kvm_vcpu *vcpu; 3005 unsigned long i; 3006 3007 write_seqcount_end(&ka->pvclock_sc); 3008 raw_spin_unlock_irq(&ka->tsc_write_lock); 3009 kvm_for_each_vcpu(i, vcpu, kvm) 3010 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3011 3012 /* guest entries allowed */ 3013 kvm_for_each_vcpu(i, vcpu, kvm) 3014 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3015 } 3016 3017 static void kvm_update_masterclock(struct kvm *kvm) 3018 { 3019 kvm_hv_request_tsc_page_update(kvm); 3020 kvm_start_pvclock_update(kvm); 3021 pvclock_update_vm_gtod_copy(kvm); 3022 kvm_end_pvclock_update(kvm); 3023 } 3024 3025 /* 3026 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3027 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3028 * can change during boot even if the TSC is constant, as it's possible for KVM 3029 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3030 * notification when calibration completes, but practically speaking calibration 3031 * will complete before userspace is alive enough to create VMs. 3032 */ 3033 static unsigned long get_cpu_tsc_khz(void) 3034 { 3035 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3036 return tsc_khz; 3037 else 3038 return __this_cpu_read(cpu_tsc_khz); 3039 } 3040 3041 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3042 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3043 { 3044 struct kvm_arch *ka = &kvm->arch; 3045 struct pvclock_vcpu_time_info hv_clock; 3046 3047 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3048 get_cpu(); 3049 3050 data->flags = 0; 3051 if (ka->use_master_clock && 3052 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3053 #ifdef CONFIG_X86_64 3054 struct timespec64 ts; 3055 3056 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3057 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3058 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3059 } else 3060 #endif 3061 data->host_tsc = rdtsc(); 3062 3063 data->flags |= KVM_CLOCK_TSC_STABLE; 3064 hv_clock.tsc_timestamp = ka->master_cycle_now; 3065 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3066 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3067 &hv_clock.tsc_shift, 3068 &hv_clock.tsc_to_system_mul); 3069 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3070 } else { 3071 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3072 } 3073 3074 put_cpu(); 3075 } 3076 3077 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3078 { 3079 struct kvm_arch *ka = &kvm->arch; 3080 unsigned seq; 3081 3082 do { 3083 seq = read_seqcount_begin(&ka->pvclock_sc); 3084 __get_kvmclock(kvm, data); 3085 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3086 } 3087 3088 u64 get_kvmclock_ns(struct kvm *kvm) 3089 { 3090 struct kvm_clock_data data; 3091 3092 get_kvmclock(kvm, &data); 3093 return data.clock; 3094 } 3095 3096 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3097 struct gfn_to_pfn_cache *gpc, 3098 unsigned int offset) 3099 { 3100 struct kvm_vcpu_arch *vcpu = &v->arch; 3101 struct pvclock_vcpu_time_info *guest_hv_clock; 3102 unsigned long flags; 3103 3104 read_lock_irqsave(&gpc->lock, flags); 3105 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3106 read_unlock_irqrestore(&gpc->lock, flags); 3107 3108 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3109 return; 3110 3111 read_lock_irqsave(&gpc->lock, flags); 3112 } 3113 3114 guest_hv_clock = (void *)(gpc->khva + offset); 3115 3116 /* 3117 * This VCPU is paused, but it's legal for a guest to read another 3118 * VCPU's kvmclock, so we really have to follow the specification where 3119 * it says that version is odd if data is being modified, and even after 3120 * it is consistent. 3121 */ 3122 3123 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3124 smp_wmb(); 3125 3126 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3127 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3128 3129 if (vcpu->pvclock_set_guest_stopped_request) { 3130 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3131 vcpu->pvclock_set_guest_stopped_request = false; 3132 } 3133 3134 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3135 smp_wmb(); 3136 3137 guest_hv_clock->version = ++vcpu->hv_clock.version; 3138 3139 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3140 read_unlock_irqrestore(&gpc->lock, flags); 3141 3142 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3143 } 3144 3145 static int kvm_guest_time_update(struct kvm_vcpu *v) 3146 { 3147 unsigned long flags, tgt_tsc_khz; 3148 unsigned seq; 3149 struct kvm_vcpu_arch *vcpu = &v->arch; 3150 struct kvm_arch *ka = &v->kvm->arch; 3151 s64 kernel_ns; 3152 u64 tsc_timestamp, host_tsc; 3153 u8 pvclock_flags; 3154 bool use_master_clock; 3155 3156 kernel_ns = 0; 3157 host_tsc = 0; 3158 3159 /* 3160 * If the host uses TSC clock, then passthrough TSC as stable 3161 * to the guest. 3162 */ 3163 do { 3164 seq = read_seqcount_begin(&ka->pvclock_sc); 3165 use_master_clock = ka->use_master_clock; 3166 if (use_master_clock) { 3167 host_tsc = ka->master_cycle_now; 3168 kernel_ns = ka->master_kernel_ns; 3169 } 3170 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3171 3172 /* Keep irq disabled to prevent changes to the clock */ 3173 local_irq_save(flags); 3174 tgt_tsc_khz = get_cpu_tsc_khz(); 3175 if (unlikely(tgt_tsc_khz == 0)) { 3176 local_irq_restore(flags); 3177 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3178 return 1; 3179 } 3180 if (!use_master_clock) { 3181 host_tsc = rdtsc(); 3182 kernel_ns = get_kvmclock_base_ns(); 3183 } 3184 3185 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3186 3187 /* 3188 * We may have to catch up the TSC to match elapsed wall clock 3189 * time for two reasons, even if kvmclock is used. 3190 * 1) CPU could have been running below the maximum TSC rate 3191 * 2) Broken TSC compensation resets the base at each VCPU 3192 * entry to avoid unknown leaps of TSC even when running 3193 * again on the same CPU. This may cause apparent elapsed 3194 * time to disappear, and the guest to stand still or run 3195 * very slowly. 3196 */ 3197 if (vcpu->tsc_catchup) { 3198 u64 tsc = compute_guest_tsc(v, kernel_ns); 3199 if (tsc > tsc_timestamp) { 3200 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3201 tsc_timestamp = tsc; 3202 } 3203 } 3204 3205 local_irq_restore(flags); 3206 3207 /* With all the info we got, fill in the values */ 3208 3209 if (kvm_caps.has_tsc_control) 3210 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3211 v->arch.l1_tsc_scaling_ratio); 3212 3213 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3214 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3215 &vcpu->hv_clock.tsc_shift, 3216 &vcpu->hv_clock.tsc_to_system_mul); 3217 vcpu->hw_tsc_khz = tgt_tsc_khz; 3218 kvm_xen_update_tsc_info(v); 3219 } 3220 3221 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3222 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3223 vcpu->last_guest_tsc = tsc_timestamp; 3224 3225 /* If the host uses TSC clocksource, then it is stable */ 3226 pvclock_flags = 0; 3227 if (use_master_clock) 3228 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3229 3230 vcpu->hv_clock.flags = pvclock_flags; 3231 3232 if (vcpu->pv_time.active) 3233 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3234 if (vcpu->xen.vcpu_info_cache.active) 3235 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3236 offsetof(struct compat_vcpu_info, time)); 3237 if (vcpu->xen.vcpu_time_info_cache.active) 3238 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3239 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3240 return 0; 3241 } 3242 3243 /* 3244 * kvmclock updates which are isolated to a given vcpu, such as 3245 * vcpu->cpu migration, should not allow system_timestamp from 3246 * the rest of the vcpus to remain static. Otherwise ntp frequency 3247 * correction applies to one vcpu's system_timestamp but not 3248 * the others. 3249 * 3250 * So in those cases, request a kvmclock update for all vcpus. 3251 * We need to rate-limit these requests though, as they can 3252 * considerably slow guests that have a large number of vcpus. 3253 * The time for a remote vcpu to update its kvmclock is bound 3254 * by the delay we use to rate-limit the updates. 3255 */ 3256 3257 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3258 3259 static void kvmclock_update_fn(struct work_struct *work) 3260 { 3261 unsigned long i; 3262 struct delayed_work *dwork = to_delayed_work(work); 3263 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3264 kvmclock_update_work); 3265 struct kvm *kvm = container_of(ka, struct kvm, arch); 3266 struct kvm_vcpu *vcpu; 3267 3268 kvm_for_each_vcpu(i, vcpu, kvm) { 3269 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3270 kvm_vcpu_kick(vcpu); 3271 } 3272 } 3273 3274 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3275 { 3276 struct kvm *kvm = v->kvm; 3277 3278 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3279 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3280 KVMCLOCK_UPDATE_DELAY); 3281 } 3282 3283 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3284 3285 static void kvmclock_sync_fn(struct work_struct *work) 3286 { 3287 struct delayed_work *dwork = to_delayed_work(work); 3288 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3289 kvmclock_sync_work); 3290 struct kvm *kvm = container_of(ka, struct kvm, arch); 3291 3292 if (!kvmclock_periodic_sync) 3293 return; 3294 3295 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3296 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3297 KVMCLOCK_SYNC_PERIOD); 3298 } 3299 3300 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3301 static bool is_mci_control_msr(u32 msr) 3302 { 3303 return (msr & 3) == 0; 3304 } 3305 static bool is_mci_status_msr(u32 msr) 3306 { 3307 return (msr & 3) == 1; 3308 } 3309 3310 /* 3311 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3312 */ 3313 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3314 { 3315 /* McStatusWrEn enabled? */ 3316 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3317 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3318 3319 return false; 3320 } 3321 3322 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3323 { 3324 u64 mcg_cap = vcpu->arch.mcg_cap; 3325 unsigned bank_num = mcg_cap & 0xff; 3326 u32 msr = msr_info->index; 3327 u64 data = msr_info->data; 3328 u32 offset, last_msr; 3329 3330 switch (msr) { 3331 case MSR_IA32_MCG_STATUS: 3332 vcpu->arch.mcg_status = data; 3333 break; 3334 case MSR_IA32_MCG_CTL: 3335 if (!(mcg_cap & MCG_CTL_P) && 3336 (data || !msr_info->host_initiated)) 3337 return 1; 3338 if (data != 0 && data != ~(u64)0) 3339 return 1; 3340 vcpu->arch.mcg_ctl = data; 3341 break; 3342 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3343 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3344 if (msr > last_msr) 3345 return 1; 3346 3347 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3348 return 1; 3349 /* An attempt to write a 1 to a reserved bit raises #GP */ 3350 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3351 return 1; 3352 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3353 last_msr + 1 - MSR_IA32_MC0_CTL2); 3354 vcpu->arch.mci_ctl2_banks[offset] = data; 3355 break; 3356 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3357 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3358 if (msr > last_msr) 3359 return 1; 3360 3361 /* 3362 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3363 * values are architecturally undefined. But, some Linux 3364 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3365 * issue on AMD K8s, allow bit 10 to be clear when setting all 3366 * other bits in order to avoid an uncaught #GP in the guest. 3367 * 3368 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3369 * single-bit ECC data errors. 3370 */ 3371 if (is_mci_control_msr(msr) && 3372 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3373 return 1; 3374 3375 /* 3376 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3377 * AMD-based CPUs allow non-zero values, but if and only if 3378 * HWCR[McStatusWrEn] is set. 3379 */ 3380 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3381 data != 0 && !can_set_mci_status(vcpu)) 3382 return 1; 3383 3384 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3385 last_msr + 1 - MSR_IA32_MC0_CTL); 3386 vcpu->arch.mce_banks[offset] = data; 3387 break; 3388 default: 3389 return 1; 3390 } 3391 return 0; 3392 } 3393 3394 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3395 { 3396 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3397 3398 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3399 } 3400 3401 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3402 { 3403 gpa_t gpa = data & ~0x3f; 3404 3405 /* Bits 4:5 are reserved, Should be zero */ 3406 if (data & 0x30) 3407 return 1; 3408 3409 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3410 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3411 return 1; 3412 3413 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3414 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3415 return 1; 3416 3417 if (!lapic_in_kernel(vcpu)) 3418 return data ? 1 : 0; 3419 3420 vcpu->arch.apf.msr_en_val = data; 3421 3422 if (!kvm_pv_async_pf_enabled(vcpu)) { 3423 kvm_clear_async_pf_completion_queue(vcpu); 3424 kvm_async_pf_hash_reset(vcpu); 3425 return 0; 3426 } 3427 3428 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3429 sizeof(u64))) 3430 return 1; 3431 3432 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3433 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3434 3435 kvm_async_pf_wakeup_all(vcpu); 3436 3437 return 0; 3438 } 3439 3440 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3441 { 3442 /* Bits 8-63 are reserved */ 3443 if (data >> 8) 3444 return 1; 3445 3446 if (!lapic_in_kernel(vcpu)) 3447 return 1; 3448 3449 vcpu->arch.apf.msr_int_val = data; 3450 3451 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3452 3453 return 0; 3454 } 3455 3456 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3457 { 3458 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3459 vcpu->arch.time = 0; 3460 } 3461 3462 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3463 { 3464 ++vcpu->stat.tlb_flush; 3465 static_call(kvm_x86_flush_tlb_all)(vcpu); 3466 3467 /* Flushing all ASIDs flushes the current ASID... */ 3468 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3469 } 3470 3471 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3472 { 3473 ++vcpu->stat.tlb_flush; 3474 3475 if (!tdp_enabled) { 3476 /* 3477 * A TLB flush on behalf of the guest is equivalent to 3478 * INVPCID(all), toggling CR4.PGE, etc., which requires 3479 * a forced sync of the shadow page tables. Ensure all the 3480 * roots are synced and the guest TLB in hardware is clean. 3481 */ 3482 kvm_mmu_sync_roots(vcpu); 3483 kvm_mmu_sync_prev_roots(vcpu); 3484 } 3485 3486 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3487 3488 /* 3489 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3490 * grained flushing. 3491 */ 3492 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3493 } 3494 3495 3496 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3497 { 3498 ++vcpu->stat.tlb_flush; 3499 static_call(kvm_x86_flush_tlb_current)(vcpu); 3500 } 3501 3502 /* 3503 * Service "local" TLB flush requests, which are specific to the current MMU 3504 * context. In addition to the generic event handling in vcpu_enter_guest(), 3505 * TLB flushes that are targeted at an MMU context also need to be serviced 3506 * prior before nested VM-Enter/VM-Exit. 3507 */ 3508 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3509 { 3510 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3511 kvm_vcpu_flush_tlb_current(vcpu); 3512 3513 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3514 kvm_vcpu_flush_tlb_guest(vcpu); 3515 } 3516 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3517 3518 static void record_steal_time(struct kvm_vcpu *vcpu) 3519 { 3520 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3521 struct kvm_steal_time __user *st; 3522 struct kvm_memslots *slots; 3523 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3524 u64 steal; 3525 u32 version; 3526 3527 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3528 kvm_xen_runstate_set_running(vcpu); 3529 return; 3530 } 3531 3532 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3533 return; 3534 3535 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3536 return; 3537 3538 slots = kvm_memslots(vcpu->kvm); 3539 3540 if (unlikely(slots->generation != ghc->generation || 3541 gpa != ghc->gpa || 3542 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3543 /* We rely on the fact that it fits in a single page. */ 3544 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3545 3546 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3547 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3548 return; 3549 } 3550 3551 st = (struct kvm_steal_time __user *)ghc->hva; 3552 /* 3553 * Doing a TLB flush here, on the guest's behalf, can avoid 3554 * expensive IPIs. 3555 */ 3556 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3557 u8 st_preempted = 0; 3558 int err = -EFAULT; 3559 3560 if (!user_access_begin(st, sizeof(*st))) 3561 return; 3562 3563 asm volatile("1: xchgb %0, %2\n" 3564 "xor %1, %1\n" 3565 "2:\n" 3566 _ASM_EXTABLE_UA(1b, 2b) 3567 : "+q" (st_preempted), 3568 "+&r" (err), 3569 "+m" (st->preempted)); 3570 if (err) 3571 goto out; 3572 3573 user_access_end(); 3574 3575 vcpu->arch.st.preempted = 0; 3576 3577 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3578 st_preempted & KVM_VCPU_FLUSH_TLB); 3579 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3580 kvm_vcpu_flush_tlb_guest(vcpu); 3581 3582 if (!user_access_begin(st, sizeof(*st))) 3583 goto dirty; 3584 } else { 3585 if (!user_access_begin(st, sizeof(*st))) 3586 return; 3587 3588 unsafe_put_user(0, &st->preempted, out); 3589 vcpu->arch.st.preempted = 0; 3590 } 3591 3592 unsafe_get_user(version, &st->version, out); 3593 if (version & 1) 3594 version += 1; /* first time write, random junk */ 3595 3596 version += 1; 3597 unsafe_put_user(version, &st->version, out); 3598 3599 smp_wmb(); 3600 3601 unsafe_get_user(steal, &st->steal, out); 3602 steal += current->sched_info.run_delay - 3603 vcpu->arch.st.last_steal; 3604 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3605 unsafe_put_user(steal, &st->steal, out); 3606 3607 version += 1; 3608 unsafe_put_user(version, &st->version, out); 3609 3610 out: 3611 user_access_end(); 3612 dirty: 3613 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3614 } 3615 3616 static bool kvm_is_msr_to_save(u32 msr_index) 3617 { 3618 unsigned int i; 3619 3620 for (i = 0; i < num_msrs_to_save; i++) { 3621 if (msrs_to_save[i] == msr_index) 3622 return true; 3623 } 3624 3625 return false; 3626 } 3627 3628 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3629 { 3630 u32 msr = msr_info->index; 3631 u64 data = msr_info->data; 3632 3633 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3634 return kvm_xen_write_hypercall_page(vcpu, data); 3635 3636 switch (msr) { 3637 case MSR_AMD64_NB_CFG: 3638 case MSR_IA32_UCODE_WRITE: 3639 case MSR_VM_HSAVE_PA: 3640 case MSR_AMD64_PATCH_LOADER: 3641 case MSR_AMD64_BU_CFG2: 3642 case MSR_AMD64_DC_CFG: 3643 case MSR_F15H_EX_CFG: 3644 break; 3645 3646 case MSR_IA32_UCODE_REV: 3647 if (msr_info->host_initiated) 3648 vcpu->arch.microcode_version = data; 3649 break; 3650 case MSR_IA32_ARCH_CAPABILITIES: 3651 if (!msr_info->host_initiated) 3652 return 1; 3653 vcpu->arch.arch_capabilities = data; 3654 break; 3655 case MSR_IA32_PERF_CAPABILITIES: 3656 if (!msr_info->host_initiated) 3657 return 1; 3658 if (data & ~kvm_caps.supported_perf_cap) 3659 return 1; 3660 3661 /* 3662 * Note, this is not just a performance optimization! KVM 3663 * disallows changing feature MSRs after the vCPU has run; PMU 3664 * refresh will bug the VM if called after the vCPU has run. 3665 */ 3666 if (vcpu->arch.perf_capabilities == data) 3667 break; 3668 3669 vcpu->arch.perf_capabilities = data; 3670 kvm_pmu_refresh(vcpu); 3671 break; 3672 case MSR_IA32_PRED_CMD: 3673 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) 3674 return 1; 3675 3676 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) 3677 return 1; 3678 if (!data) 3679 break; 3680 3681 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 3682 break; 3683 case MSR_IA32_FLUSH_CMD: 3684 if (!msr_info->host_initiated && 3685 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3686 return 1; 3687 3688 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3689 return 1; 3690 if (!data) 3691 break; 3692 3693 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3694 break; 3695 case MSR_EFER: 3696 return set_efer(vcpu, msr_info); 3697 case MSR_K7_HWCR: 3698 data &= ~(u64)0x40; /* ignore flush filter disable */ 3699 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3700 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3701 3702 /* Handle McStatusWrEn */ 3703 if (data == BIT_ULL(18)) { 3704 vcpu->arch.msr_hwcr = data; 3705 } else if (data != 0) { 3706 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3707 return 1; 3708 } 3709 break; 3710 case MSR_FAM10H_MMIO_CONF_BASE: 3711 if (data != 0) { 3712 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3713 return 1; 3714 } 3715 break; 3716 case MSR_IA32_CR_PAT: 3717 if (!kvm_pat_valid(data)) 3718 return 1; 3719 3720 vcpu->arch.pat = data; 3721 break; 3722 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3723 case MSR_MTRRdefType: 3724 return kvm_mtrr_set_msr(vcpu, msr, data); 3725 case MSR_IA32_APICBASE: 3726 return kvm_set_apic_base(vcpu, msr_info); 3727 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3728 return kvm_x2apic_msr_write(vcpu, msr, data); 3729 case MSR_IA32_TSC_DEADLINE: 3730 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3731 break; 3732 case MSR_IA32_TSC_ADJUST: 3733 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3734 if (!msr_info->host_initiated) { 3735 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3736 adjust_tsc_offset_guest(vcpu, adj); 3737 /* Before back to guest, tsc_timestamp must be adjusted 3738 * as well, otherwise guest's percpu pvclock time could jump. 3739 */ 3740 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3741 } 3742 vcpu->arch.ia32_tsc_adjust_msr = data; 3743 } 3744 break; 3745 case MSR_IA32_MISC_ENABLE: { 3746 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3747 3748 if (!msr_info->host_initiated) { 3749 /* RO bits */ 3750 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3751 return 1; 3752 3753 /* R bits, i.e. writes are ignored, but don't fault. */ 3754 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3755 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3756 } 3757 3758 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3759 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3760 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3761 return 1; 3762 vcpu->arch.ia32_misc_enable_msr = data; 3763 kvm_update_cpuid_runtime(vcpu); 3764 } else { 3765 vcpu->arch.ia32_misc_enable_msr = data; 3766 } 3767 break; 3768 } 3769 case MSR_IA32_SMBASE: 3770 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3771 return 1; 3772 vcpu->arch.smbase = data; 3773 break; 3774 case MSR_IA32_POWER_CTL: 3775 vcpu->arch.msr_ia32_power_ctl = data; 3776 break; 3777 case MSR_IA32_TSC: 3778 if (msr_info->host_initiated) { 3779 kvm_synchronize_tsc(vcpu, data); 3780 } else { 3781 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3782 adjust_tsc_offset_guest(vcpu, adj); 3783 vcpu->arch.ia32_tsc_adjust_msr += adj; 3784 } 3785 break; 3786 case MSR_IA32_XSS: 3787 if (!msr_info->host_initiated && 3788 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3789 return 1; 3790 /* 3791 * KVM supports exposing PT to the guest, but does not support 3792 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3793 * XSAVES/XRSTORS to save/restore PT MSRs. 3794 */ 3795 if (data & ~kvm_caps.supported_xss) 3796 return 1; 3797 vcpu->arch.ia32_xss = data; 3798 kvm_update_cpuid_runtime(vcpu); 3799 break; 3800 case MSR_SMI_COUNT: 3801 if (!msr_info->host_initiated) 3802 return 1; 3803 vcpu->arch.smi_count = data; 3804 break; 3805 case MSR_KVM_WALL_CLOCK_NEW: 3806 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3807 return 1; 3808 3809 vcpu->kvm->arch.wall_clock = data; 3810 kvm_write_wall_clock(vcpu->kvm, data, 0); 3811 break; 3812 case MSR_KVM_WALL_CLOCK: 3813 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3814 return 1; 3815 3816 vcpu->kvm->arch.wall_clock = data; 3817 kvm_write_wall_clock(vcpu->kvm, data, 0); 3818 break; 3819 case MSR_KVM_SYSTEM_TIME_NEW: 3820 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3821 return 1; 3822 3823 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3824 break; 3825 case MSR_KVM_SYSTEM_TIME: 3826 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3827 return 1; 3828 3829 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3830 break; 3831 case MSR_KVM_ASYNC_PF_EN: 3832 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3833 return 1; 3834 3835 if (kvm_pv_enable_async_pf(vcpu, data)) 3836 return 1; 3837 break; 3838 case MSR_KVM_ASYNC_PF_INT: 3839 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3840 return 1; 3841 3842 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3843 return 1; 3844 break; 3845 case MSR_KVM_ASYNC_PF_ACK: 3846 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3847 return 1; 3848 if (data & 0x1) { 3849 vcpu->arch.apf.pageready_pending = false; 3850 kvm_check_async_pf_completion(vcpu); 3851 } 3852 break; 3853 case MSR_KVM_STEAL_TIME: 3854 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3855 return 1; 3856 3857 if (unlikely(!sched_info_on())) 3858 return 1; 3859 3860 if (data & KVM_STEAL_RESERVED_MASK) 3861 return 1; 3862 3863 vcpu->arch.st.msr_val = data; 3864 3865 if (!(data & KVM_MSR_ENABLED)) 3866 break; 3867 3868 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3869 3870 break; 3871 case MSR_KVM_PV_EOI_EN: 3872 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3873 return 1; 3874 3875 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3876 return 1; 3877 break; 3878 3879 case MSR_KVM_POLL_CONTROL: 3880 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3881 return 1; 3882 3883 /* only enable bit supported */ 3884 if (data & (-1ULL << 1)) 3885 return 1; 3886 3887 vcpu->arch.msr_kvm_poll_control = data; 3888 break; 3889 3890 case MSR_IA32_MCG_CTL: 3891 case MSR_IA32_MCG_STATUS: 3892 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3893 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3894 return set_msr_mce(vcpu, msr_info); 3895 3896 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3897 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3898 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3899 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3900 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3901 return kvm_pmu_set_msr(vcpu, msr_info); 3902 3903 if (data) 3904 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3905 break; 3906 case MSR_K7_CLK_CTL: 3907 /* 3908 * Ignore all writes to this no longer documented MSR. 3909 * Writes are only relevant for old K7 processors, 3910 * all pre-dating SVM, but a recommended workaround from 3911 * AMD for these chips. It is possible to specify the 3912 * affected processor models on the command line, hence 3913 * the need to ignore the workaround. 3914 */ 3915 break; 3916 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3917 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3918 case HV_X64_MSR_SYNDBG_OPTIONS: 3919 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3920 case HV_X64_MSR_CRASH_CTL: 3921 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3922 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3923 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3924 case HV_X64_MSR_TSC_EMULATION_STATUS: 3925 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3926 return kvm_hv_set_msr_common(vcpu, msr, data, 3927 msr_info->host_initiated); 3928 case MSR_IA32_BBL_CR_CTL3: 3929 /* Drop writes to this legacy MSR -- see rdmsr 3930 * counterpart for further detail. 3931 */ 3932 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3933 break; 3934 case MSR_AMD64_OSVW_ID_LENGTH: 3935 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3936 return 1; 3937 vcpu->arch.osvw.length = data; 3938 break; 3939 case MSR_AMD64_OSVW_STATUS: 3940 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3941 return 1; 3942 vcpu->arch.osvw.status = data; 3943 break; 3944 case MSR_PLATFORM_INFO: 3945 if (!msr_info->host_initiated || 3946 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3947 cpuid_fault_enabled(vcpu))) 3948 return 1; 3949 vcpu->arch.msr_platform_info = data; 3950 break; 3951 case MSR_MISC_FEATURES_ENABLES: 3952 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3953 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3954 !supports_cpuid_fault(vcpu))) 3955 return 1; 3956 vcpu->arch.msr_misc_features_enables = data; 3957 break; 3958 #ifdef CONFIG_X86_64 3959 case MSR_IA32_XFD: 3960 if (!msr_info->host_initiated && 3961 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3962 return 1; 3963 3964 if (data & ~kvm_guest_supported_xfd(vcpu)) 3965 return 1; 3966 3967 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3968 break; 3969 case MSR_IA32_XFD_ERR: 3970 if (!msr_info->host_initiated && 3971 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3972 return 1; 3973 3974 if (data & ~kvm_guest_supported_xfd(vcpu)) 3975 return 1; 3976 3977 vcpu->arch.guest_fpu.xfd_err = data; 3978 break; 3979 #endif 3980 default: 3981 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3982 return kvm_pmu_set_msr(vcpu, msr_info); 3983 3984 /* 3985 * Userspace is allowed to write '0' to MSRs that KVM reports 3986 * as to-be-saved, even if an MSRs isn't fully supported. 3987 */ 3988 if (msr_info->host_initiated && !data && 3989 kvm_is_msr_to_save(msr)) 3990 break; 3991 3992 return KVM_MSR_RET_INVALID; 3993 } 3994 return 0; 3995 } 3996 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3997 3998 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3999 { 4000 u64 data; 4001 u64 mcg_cap = vcpu->arch.mcg_cap; 4002 unsigned bank_num = mcg_cap & 0xff; 4003 u32 offset, last_msr; 4004 4005 switch (msr) { 4006 case MSR_IA32_P5_MC_ADDR: 4007 case MSR_IA32_P5_MC_TYPE: 4008 data = 0; 4009 break; 4010 case MSR_IA32_MCG_CAP: 4011 data = vcpu->arch.mcg_cap; 4012 break; 4013 case MSR_IA32_MCG_CTL: 4014 if (!(mcg_cap & MCG_CTL_P) && !host) 4015 return 1; 4016 data = vcpu->arch.mcg_ctl; 4017 break; 4018 case MSR_IA32_MCG_STATUS: 4019 data = vcpu->arch.mcg_status; 4020 break; 4021 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4022 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4023 if (msr > last_msr) 4024 return 1; 4025 4026 if (!(mcg_cap & MCG_CMCI_P) && !host) 4027 return 1; 4028 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4029 last_msr + 1 - MSR_IA32_MC0_CTL2); 4030 data = vcpu->arch.mci_ctl2_banks[offset]; 4031 break; 4032 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4033 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4034 if (msr > last_msr) 4035 return 1; 4036 4037 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4038 last_msr + 1 - MSR_IA32_MC0_CTL); 4039 data = vcpu->arch.mce_banks[offset]; 4040 break; 4041 default: 4042 return 1; 4043 } 4044 *pdata = data; 4045 return 0; 4046 } 4047 4048 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4049 { 4050 switch (msr_info->index) { 4051 case MSR_IA32_PLATFORM_ID: 4052 case MSR_IA32_EBL_CR_POWERON: 4053 case MSR_IA32_LASTBRANCHFROMIP: 4054 case MSR_IA32_LASTBRANCHTOIP: 4055 case MSR_IA32_LASTINTFROMIP: 4056 case MSR_IA32_LASTINTTOIP: 4057 case MSR_AMD64_SYSCFG: 4058 case MSR_K8_TSEG_ADDR: 4059 case MSR_K8_TSEG_MASK: 4060 case MSR_VM_HSAVE_PA: 4061 case MSR_K8_INT_PENDING_MSG: 4062 case MSR_AMD64_NB_CFG: 4063 case MSR_FAM10H_MMIO_CONF_BASE: 4064 case MSR_AMD64_BU_CFG2: 4065 case MSR_IA32_PERF_CTL: 4066 case MSR_AMD64_DC_CFG: 4067 case MSR_F15H_EX_CFG: 4068 /* 4069 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4070 * limit) MSRs. Just return 0, as we do not want to expose the host 4071 * data here. Do not conditionalize this on CPUID, as KVM does not do 4072 * so for existing CPU-specific MSRs. 4073 */ 4074 case MSR_RAPL_POWER_UNIT: 4075 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4076 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4077 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4078 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4079 msr_info->data = 0; 4080 break; 4081 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4082 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4083 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4084 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4085 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4086 return kvm_pmu_get_msr(vcpu, msr_info); 4087 msr_info->data = 0; 4088 break; 4089 case MSR_IA32_UCODE_REV: 4090 msr_info->data = vcpu->arch.microcode_version; 4091 break; 4092 case MSR_IA32_ARCH_CAPABILITIES: 4093 if (!msr_info->host_initiated && 4094 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4095 return 1; 4096 msr_info->data = vcpu->arch.arch_capabilities; 4097 break; 4098 case MSR_IA32_PERF_CAPABILITIES: 4099 if (!msr_info->host_initiated && 4100 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4101 return 1; 4102 msr_info->data = vcpu->arch.perf_capabilities; 4103 break; 4104 case MSR_IA32_POWER_CTL: 4105 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4106 break; 4107 case MSR_IA32_TSC: { 4108 /* 4109 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4110 * even when not intercepted. AMD manual doesn't explicitly 4111 * state this but appears to behave the same. 4112 * 4113 * On userspace reads and writes, however, we unconditionally 4114 * return L1's TSC value to ensure backwards-compatible 4115 * behavior for migration. 4116 */ 4117 u64 offset, ratio; 4118 4119 if (msr_info->host_initiated) { 4120 offset = vcpu->arch.l1_tsc_offset; 4121 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4122 } else { 4123 offset = vcpu->arch.tsc_offset; 4124 ratio = vcpu->arch.tsc_scaling_ratio; 4125 } 4126 4127 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4128 break; 4129 } 4130 case MSR_IA32_CR_PAT: 4131 msr_info->data = vcpu->arch.pat; 4132 break; 4133 case MSR_MTRRcap: 4134 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4135 case MSR_MTRRdefType: 4136 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4137 case 0xcd: /* fsb frequency */ 4138 msr_info->data = 3; 4139 break; 4140 /* 4141 * MSR_EBC_FREQUENCY_ID 4142 * Conservative value valid for even the basic CPU models. 4143 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4144 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4145 * and 266MHz for model 3, or 4. Set Core Clock 4146 * Frequency to System Bus Frequency Ratio to 1 (bits 4147 * 31:24) even though these are only valid for CPU 4148 * models > 2, however guests may end up dividing or 4149 * multiplying by zero otherwise. 4150 */ 4151 case MSR_EBC_FREQUENCY_ID: 4152 msr_info->data = 1 << 24; 4153 break; 4154 case MSR_IA32_APICBASE: 4155 msr_info->data = kvm_get_apic_base(vcpu); 4156 break; 4157 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4158 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4159 case MSR_IA32_TSC_DEADLINE: 4160 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4161 break; 4162 case MSR_IA32_TSC_ADJUST: 4163 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4164 break; 4165 case MSR_IA32_MISC_ENABLE: 4166 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4167 break; 4168 case MSR_IA32_SMBASE: 4169 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4170 return 1; 4171 msr_info->data = vcpu->arch.smbase; 4172 break; 4173 case MSR_SMI_COUNT: 4174 msr_info->data = vcpu->arch.smi_count; 4175 break; 4176 case MSR_IA32_PERF_STATUS: 4177 /* TSC increment by tick */ 4178 msr_info->data = 1000ULL; 4179 /* CPU multiplier */ 4180 msr_info->data |= (((uint64_t)4ULL) << 40); 4181 break; 4182 case MSR_EFER: 4183 msr_info->data = vcpu->arch.efer; 4184 break; 4185 case MSR_KVM_WALL_CLOCK: 4186 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4187 return 1; 4188 4189 msr_info->data = vcpu->kvm->arch.wall_clock; 4190 break; 4191 case MSR_KVM_WALL_CLOCK_NEW: 4192 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4193 return 1; 4194 4195 msr_info->data = vcpu->kvm->arch.wall_clock; 4196 break; 4197 case MSR_KVM_SYSTEM_TIME: 4198 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4199 return 1; 4200 4201 msr_info->data = vcpu->arch.time; 4202 break; 4203 case MSR_KVM_SYSTEM_TIME_NEW: 4204 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4205 return 1; 4206 4207 msr_info->data = vcpu->arch.time; 4208 break; 4209 case MSR_KVM_ASYNC_PF_EN: 4210 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4211 return 1; 4212 4213 msr_info->data = vcpu->arch.apf.msr_en_val; 4214 break; 4215 case MSR_KVM_ASYNC_PF_INT: 4216 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4217 return 1; 4218 4219 msr_info->data = vcpu->arch.apf.msr_int_val; 4220 break; 4221 case MSR_KVM_ASYNC_PF_ACK: 4222 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4223 return 1; 4224 4225 msr_info->data = 0; 4226 break; 4227 case MSR_KVM_STEAL_TIME: 4228 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4229 return 1; 4230 4231 msr_info->data = vcpu->arch.st.msr_val; 4232 break; 4233 case MSR_KVM_PV_EOI_EN: 4234 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4235 return 1; 4236 4237 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4238 break; 4239 case MSR_KVM_POLL_CONTROL: 4240 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4241 return 1; 4242 4243 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4244 break; 4245 case MSR_IA32_P5_MC_ADDR: 4246 case MSR_IA32_P5_MC_TYPE: 4247 case MSR_IA32_MCG_CAP: 4248 case MSR_IA32_MCG_CTL: 4249 case MSR_IA32_MCG_STATUS: 4250 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4251 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4252 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4253 msr_info->host_initiated); 4254 case MSR_IA32_XSS: 4255 if (!msr_info->host_initiated && 4256 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4257 return 1; 4258 msr_info->data = vcpu->arch.ia32_xss; 4259 break; 4260 case MSR_K7_CLK_CTL: 4261 /* 4262 * Provide expected ramp-up count for K7. All other 4263 * are set to zero, indicating minimum divisors for 4264 * every field. 4265 * 4266 * This prevents guest kernels on AMD host with CPU 4267 * type 6, model 8 and higher from exploding due to 4268 * the rdmsr failing. 4269 */ 4270 msr_info->data = 0x20000000; 4271 break; 4272 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4273 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4274 case HV_X64_MSR_SYNDBG_OPTIONS: 4275 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4276 case HV_X64_MSR_CRASH_CTL: 4277 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4278 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4279 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4280 case HV_X64_MSR_TSC_EMULATION_STATUS: 4281 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4282 return kvm_hv_get_msr_common(vcpu, 4283 msr_info->index, &msr_info->data, 4284 msr_info->host_initiated); 4285 case MSR_IA32_BBL_CR_CTL3: 4286 /* This legacy MSR exists but isn't fully documented in current 4287 * silicon. It is however accessed by winxp in very narrow 4288 * scenarios where it sets bit #19, itself documented as 4289 * a "reserved" bit. Best effort attempt to source coherent 4290 * read data here should the balance of the register be 4291 * interpreted by the guest: 4292 * 4293 * L2 cache control register 3: 64GB range, 256KB size, 4294 * enabled, latency 0x1, configured 4295 */ 4296 msr_info->data = 0xbe702111; 4297 break; 4298 case MSR_AMD64_OSVW_ID_LENGTH: 4299 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4300 return 1; 4301 msr_info->data = vcpu->arch.osvw.length; 4302 break; 4303 case MSR_AMD64_OSVW_STATUS: 4304 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4305 return 1; 4306 msr_info->data = vcpu->arch.osvw.status; 4307 break; 4308 case MSR_PLATFORM_INFO: 4309 if (!msr_info->host_initiated && 4310 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4311 return 1; 4312 msr_info->data = vcpu->arch.msr_platform_info; 4313 break; 4314 case MSR_MISC_FEATURES_ENABLES: 4315 msr_info->data = vcpu->arch.msr_misc_features_enables; 4316 break; 4317 case MSR_K7_HWCR: 4318 msr_info->data = vcpu->arch.msr_hwcr; 4319 break; 4320 #ifdef CONFIG_X86_64 4321 case MSR_IA32_XFD: 4322 if (!msr_info->host_initiated && 4323 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4324 return 1; 4325 4326 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4327 break; 4328 case MSR_IA32_XFD_ERR: 4329 if (!msr_info->host_initiated && 4330 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4331 return 1; 4332 4333 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4334 break; 4335 #endif 4336 default: 4337 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4338 return kvm_pmu_get_msr(vcpu, msr_info); 4339 4340 /* 4341 * Userspace is allowed to read MSRs that KVM reports as 4342 * to-be-saved, even if an MSR isn't fully supported. 4343 */ 4344 if (msr_info->host_initiated && 4345 kvm_is_msr_to_save(msr_info->index)) { 4346 msr_info->data = 0; 4347 break; 4348 } 4349 4350 return KVM_MSR_RET_INVALID; 4351 } 4352 return 0; 4353 } 4354 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4355 4356 /* 4357 * Read or write a bunch of msrs. All parameters are kernel addresses. 4358 * 4359 * @return number of msrs set successfully. 4360 */ 4361 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4362 struct kvm_msr_entry *entries, 4363 int (*do_msr)(struct kvm_vcpu *vcpu, 4364 unsigned index, u64 *data)) 4365 { 4366 int i; 4367 4368 for (i = 0; i < msrs->nmsrs; ++i) 4369 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4370 break; 4371 4372 return i; 4373 } 4374 4375 /* 4376 * Read or write a bunch of msrs. Parameters are user addresses. 4377 * 4378 * @return number of msrs set successfully. 4379 */ 4380 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4381 int (*do_msr)(struct kvm_vcpu *vcpu, 4382 unsigned index, u64 *data), 4383 int writeback) 4384 { 4385 struct kvm_msrs msrs; 4386 struct kvm_msr_entry *entries; 4387 unsigned size; 4388 int r; 4389 4390 r = -EFAULT; 4391 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4392 goto out; 4393 4394 r = -E2BIG; 4395 if (msrs.nmsrs >= MAX_IO_MSRS) 4396 goto out; 4397 4398 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4399 entries = memdup_user(user_msrs->entries, size); 4400 if (IS_ERR(entries)) { 4401 r = PTR_ERR(entries); 4402 goto out; 4403 } 4404 4405 r = __msr_io(vcpu, &msrs, entries, do_msr); 4406 4407 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4408 r = -EFAULT; 4409 4410 kfree(entries); 4411 out: 4412 return r; 4413 } 4414 4415 static inline bool kvm_can_mwait_in_guest(void) 4416 { 4417 return boot_cpu_has(X86_FEATURE_MWAIT) && 4418 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4419 boot_cpu_has(X86_FEATURE_ARAT); 4420 } 4421 4422 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4423 struct kvm_cpuid2 __user *cpuid_arg) 4424 { 4425 struct kvm_cpuid2 cpuid; 4426 int r; 4427 4428 r = -EFAULT; 4429 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4430 return r; 4431 4432 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4433 if (r) 4434 return r; 4435 4436 r = -EFAULT; 4437 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4438 return r; 4439 4440 return 0; 4441 } 4442 4443 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4444 { 4445 int r = 0; 4446 4447 switch (ext) { 4448 case KVM_CAP_IRQCHIP: 4449 case KVM_CAP_HLT: 4450 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4451 case KVM_CAP_SET_TSS_ADDR: 4452 case KVM_CAP_EXT_CPUID: 4453 case KVM_CAP_EXT_EMUL_CPUID: 4454 case KVM_CAP_CLOCKSOURCE: 4455 case KVM_CAP_PIT: 4456 case KVM_CAP_NOP_IO_DELAY: 4457 case KVM_CAP_MP_STATE: 4458 case KVM_CAP_SYNC_MMU: 4459 case KVM_CAP_USER_NMI: 4460 case KVM_CAP_REINJECT_CONTROL: 4461 case KVM_CAP_IRQ_INJECT_STATUS: 4462 case KVM_CAP_IOEVENTFD: 4463 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4464 case KVM_CAP_PIT2: 4465 case KVM_CAP_PIT_STATE2: 4466 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4467 case KVM_CAP_VCPU_EVENTS: 4468 case KVM_CAP_HYPERV: 4469 case KVM_CAP_HYPERV_VAPIC: 4470 case KVM_CAP_HYPERV_SPIN: 4471 case KVM_CAP_HYPERV_SYNIC: 4472 case KVM_CAP_HYPERV_SYNIC2: 4473 case KVM_CAP_HYPERV_VP_INDEX: 4474 case KVM_CAP_HYPERV_EVENTFD: 4475 case KVM_CAP_HYPERV_TLBFLUSH: 4476 case KVM_CAP_HYPERV_SEND_IPI: 4477 case KVM_CAP_HYPERV_CPUID: 4478 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4479 case KVM_CAP_SYS_HYPERV_CPUID: 4480 case KVM_CAP_PCI_SEGMENT: 4481 case KVM_CAP_DEBUGREGS: 4482 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4483 case KVM_CAP_XSAVE: 4484 case KVM_CAP_ASYNC_PF: 4485 case KVM_CAP_ASYNC_PF_INT: 4486 case KVM_CAP_GET_TSC_KHZ: 4487 case KVM_CAP_KVMCLOCK_CTRL: 4488 case KVM_CAP_READONLY_MEM: 4489 case KVM_CAP_HYPERV_TIME: 4490 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4491 case KVM_CAP_TSC_DEADLINE_TIMER: 4492 case KVM_CAP_DISABLE_QUIRKS: 4493 case KVM_CAP_SET_BOOT_CPU_ID: 4494 case KVM_CAP_SPLIT_IRQCHIP: 4495 case KVM_CAP_IMMEDIATE_EXIT: 4496 case KVM_CAP_PMU_EVENT_FILTER: 4497 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4498 case KVM_CAP_GET_MSR_FEATURES: 4499 case KVM_CAP_MSR_PLATFORM_INFO: 4500 case KVM_CAP_EXCEPTION_PAYLOAD: 4501 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4502 case KVM_CAP_SET_GUEST_DEBUG: 4503 case KVM_CAP_LAST_CPU: 4504 case KVM_CAP_X86_USER_SPACE_MSR: 4505 case KVM_CAP_X86_MSR_FILTER: 4506 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4507 #ifdef CONFIG_X86_SGX_KVM 4508 case KVM_CAP_SGX_ATTRIBUTE: 4509 #endif 4510 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4511 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4512 case KVM_CAP_SREGS2: 4513 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4514 case KVM_CAP_VCPU_ATTRIBUTES: 4515 case KVM_CAP_SYS_ATTRIBUTES: 4516 case KVM_CAP_VAPIC: 4517 case KVM_CAP_ENABLE_CAP: 4518 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4519 case KVM_CAP_IRQFD_RESAMPLE: 4520 r = 1; 4521 break; 4522 case KVM_CAP_EXIT_HYPERCALL: 4523 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4524 break; 4525 case KVM_CAP_SET_GUEST_DEBUG2: 4526 return KVM_GUESTDBG_VALID_MASK; 4527 #ifdef CONFIG_KVM_XEN 4528 case KVM_CAP_XEN_HVM: 4529 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4530 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4531 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4532 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4533 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4534 if (sched_info_on()) 4535 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4536 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4537 break; 4538 #endif 4539 case KVM_CAP_SYNC_REGS: 4540 r = KVM_SYNC_X86_VALID_FIELDS; 4541 break; 4542 case KVM_CAP_ADJUST_CLOCK: 4543 r = KVM_CLOCK_VALID_FLAGS; 4544 break; 4545 case KVM_CAP_X86_DISABLE_EXITS: 4546 r = KVM_X86_DISABLE_EXITS_PAUSE; 4547 4548 if (!mitigate_smt_rsb) { 4549 r |= KVM_X86_DISABLE_EXITS_HLT | 4550 KVM_X86_DISABLE_EXITS_CSTATE; 4551 4552 if (kvm_can_mwait_in_guest()) 4553 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4554 } 4555 break; 4556 case KVM_CAP_X86_SMM: 4557 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4558 break; 4559 4560 /* SMBASE is usually relocated above 1M on modern chipsets, 4561 * and SMM handlers might indeed rely on 4G segment limits, 4562 * so do not report SMM to be available if real mode is 4563 * emulated via vm86 mode. Still, do not go to great lengths 4564 * to avoid userspace's usage of the feature, because it is a 4565 * fringe case that is not enabled except via specific settings 4566 * of the module parameters. 4567 */ 4568 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4569 break; 4570 case KVM_CAP_NR_VCPUS: 4571 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4572 break; 4573 case KVM_CAP_MAX_VCPUS: 4574 r = KVM_MAX_VCPUS; 4575 break; 4576 case KVM_CAP_MAX_VCPU_ID: 4577 r = KVM_MAX_VCPU_IDS; 4578 break; 4579 case KVM_CAP_PV_MMU: /* obsolete */ 4580 r = 0; 4581 break; 4582 case KVM_CAP_MCE: 4583 r = KVM_MAX_MCE_BANKS; 4584 break; 4585 case KVM_CAP_XCRS: 4586 r = boot_cpu_has(X86_FEATURE_XSAVE); 4587 break; 4588 case KVM_CAP_TSC_CONTROL: 4589 case KVM_CAP_VM_TSC_CONTROL: 4590 r = kvm_caps.has_tsc_control; 4591 break; 4592 case KVM_CAP_X2APIC_API: 4593 r = KVM_X2APIC_API_VALID_FLAGS; 4594 break; 4595 case KVM_CAP_NESTED_STATE: 4596 r = kvm_x86_ops.nested_ops->get_state ? 4597 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4598 break; 4599 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4600 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4601 break; 4602 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4603 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4604 break; 4605 case KVM_CAP_SMALLER_MAXPHYADDR: 4606 r = (int) allow_smaller_maxphyaddr; 4607 break; 4608 case KVM_CAP_STEAL_TIME: 4609 r = sched_info_on(); 4610 break; 4611 case KVM_CAP_X86_BUS_LOCK_EXIT: 4612 if (kvm_caps.has_bus_lock_exit) 4613 r = KVM_BUS_LOCK_DETECTION_OFF | 4614 KVM_BUS_LOCK_DETECTION_EXIT; 4615 else 4616 r = 0; 4617 break; 4618 case KVM_CAP_XSAVE2: { 4619 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4620 if (r < sizeof(struct kvm_xsave)) 4621 r = sizeof(struct kvm_xsave); 4622 break; 4623 } 4624 case KVM_CAP_PMU_CAPABILITY: 4625 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4626 break; 4627 case KVM_CAP_DISABLE_QUIRKS2: 4628 r = KVM_X86_VALID_QUIRKS; 4629 break; 4630 case KVM_CAP_X86_NOTIFY_VMEXIT: 4631 r = kvm_caps.has_notify_vmexit; 4632 break; 4633 default: 4634 break; 4635 } 4636 return r; 4637 } 4638 4639 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4640 { 4641 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4642 4643 if ((u64)(unsigned long)uaddr != attr->addr) 4644 return ERR_PTR_USR(-EFAULT); 4645 return uaddr; 4646 } 4647 4648 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4649 { 4650 u64 __user *uaddr = kvm_get_attr_addr(attr); 4651 4652 if (attr->group) 4653 return -ENXIO; 4654 4655 if (IS_ERR(uaddr)) 4656 return PTR_ERR(uaddr); 4657 4658 switch (attr->attr) { 4659 case KVM_X86_XCOMP_GUEST_SUPP: 4660 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4661 return -EFAULT; 4662 return 0; 4663 default: 4664 return -ENXIO; 4665 break; 4666 } 4667 } 4668 4669 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4670 { 4671 if (attr->group) 4672 return -ENXIO; 4673 4674 switch (attr->attr) { 4675 case KVM_X86_XCOMP_GUEST_SUPP: 4676 return 0; 4677 default: 4678 return -ENXIO; 4679 } 4680 } 4681 4682 long kvm_arch_dev_ioctl(struct file *filp, 4683 unsigned int ioctl, unsigned long arg) 4684 { 4685 void __user *argp = (void __user *)arg; 4686 long r; 4687 4688 switch (ioctl) { 4689 case KVM_GET_MSR_INDEX_LIST: { 4690 struct kvm_msr_list __user *user_msr_list = argp; 4691 struct kvm_msr_list msr_list; 4692 unsigned n; 4693 4694 r = -EFAULT; 4695 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4696 goto out; 4697 n = msr_list.nmsrs; 4698 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4699 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4700 goto out; 4701 r = -E2BIG; 4702 if (n < msr_list.nmsrs) 4703 goto out; 4704 r = -EFAULT; 4705 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4706 num_msrs_to_save * sizeof(u32))) 4707 goto out; 4708 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4709 &emulated_msrs, 4710 num_emulated_msrs * sizeof(u32))) 4711 goto out; 4712 r = 0; 4713 break; 4714 } 4715 case KVM_GET_SUPPORTED_CPUID: 4716 case KVM_GET_EMULATED_CPUID: { 4717 struct kvm_cpuid2 __user *cpuid_arg = argp; 4718 struct kvm_cpuid2 cpuid; 4719 4720 r = -EFAULT; 4721 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4722 goto out; 4723 4724 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4725 ioctl); 4726 if (r) 4727 goto out; 4728 4729 r = -EFAULT; 4730 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4731 goto out; 4732 r = 0; 4733 break; 4734 } 4735 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4736 r = -EFAULT; 4737 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4738 sizeof(kvm_caps.supported_mce_cap))) 4739 goto out; 4740 r = 0; 4741 break; 4742 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4743 struct kvm_msr_list __user *user_msr_list = argp; 4744 struct kvm_msr_list msr_list; 4745 unsigned int n; 4746 4747 r = -EFAULT; 4748 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4749 goto out; 4750 n = msr_list.nmsrs; 4751 msr_list.nmsrs = num_msr_based_features; 4752 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4753 goto out; 4754 r = -E2BIG; 4755 if (n < msr_list.nmsrs) 4756 goto out; 4757 r = -EFAULT; 4758 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4759 num_msr_based_features * sizeof(u32))) 4760 goto out; 4761 r = 0; 4762 break; 4763 } 4764 case KVM_GET_MSRS: 4765 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4766 break; 4767 case KVM_GET_SUPPORTED_HV_CPUID: 4768 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4769 break; 4770 case KVM_GET_DEVICE_ATTR: { 4771 struct kvm_device_attr attr; 4772 r = -EFAULT; 4773 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4774 break; 4775 r = kvm_x86_dev_get_attr(&attr); 4776 break; 4777 } 4778 case KVM_HAS_DEVICE_ATTR: { 4779 struct kvm_device_attr attr; 4780 r = -EFAULT; 4781 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4782 break; 4783 r = kvm_x86_dev_has_attr(&attr); 4784 break; 4785 } 4786 default: 4787 r = -EINVAL; 4788 break; 4789 } 4790 out: 4791 return r; 4792 } 4793 4794 static void wbinvd_ipi(void *garbage) 4795 { 4796 wbinvd(); 4797 } 4798 4799 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4800 { 4801 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4802 } 4803 4804 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4805 { 4806 /* Address WBINVD may be executed by guest */ 4807 if (need_emulate_wbinvd(vcpu)) { 4808 if (static_call(kvm_x86_has_wbinvd_exit)()) 4809 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4810 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4811 smp_call_function_single(vcpu->cpu, 4812 wbinvd_ipi, NULL, 1); 4813 } 4814 4815 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4816 4817 /* Save host pkru register if supported */ 4818 vcpu->arch.host_pkru = read_pkru(); 4819 4820 /* Apply any externally detected TSC adjustments (due to suspend) */ 4821 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4822 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4823 vcpu->arch.tsc_offset_adjustment = 0; 4824 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4825 } 4826 4827 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4828 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4829 rdtsc() - vcpu->arch.last_host_tsc; 4830 if (tsc_delta < 0) 4831 mark_tsc_unstable("KVM discovered backwards TSC"); 4832 4833 if (kvm_check_tsc_unstable()) { 4834 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4835 vcpu->arch.last_guest_tsc); 4836 kvm_vcpu_write_tsc_offset(vcpu, offset); 4837 vcpu->arch.tsc_catchup = 1; 4838 } 4839 4840 if (kvm_lapic_hv_timer_in_use(vcpu)) 4841 kvm_lapic_restart_hv_timer(vcpu); 4842 4843 /* 4844 * On a host with synchronized TSC, there is no need to update 4845 * kvmclock on vcpu->cpu migration 4846 */ 4847 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4848 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4849 if (vcpu->cpu != cpu) 4850 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4851 vcpu->cpu = cpu; 4852 } 4853 4854 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4855 } 4856 4857 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4858 { 4859 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4860 struct kvm_steal_time __user *st; 4861 struct kvm_memslots *slots; 4862 static const u8 preempted = KVM_VCPU_PREEMPTED; 4863 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4864 4865 /* 4866 * The vCPU can be marked preempted if and only if the VM-Exit was on 4867 * an instruction boundary and will not trigger guest emulation of any 4868 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4869 * when this is true, for example allowing the vCPU to be marked 4870 * preempted if and only if the VM-Exit was due to a host interrupt. 4871 */ 4872 if (!vcpu->arch.at_instruction_boundary) { 4873 vcpu->stat.preemption_other++; 4874 return; 4875 } 4876 4877 vcpu->stat.preemption_reported++; 4878 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4879 return; 4880 4881 if (vcpu->arch.st.preempted) 4882 return; 4883 4884 /* This happens on process exit */ 4885 if (unlikely(current->mm != vcpu->kvm->mm)) 4886 return; 4887 4888 slots = kvm_memslots(vcpu->kvm); 4889 4890 if (unlikely(slots->generation != ghc->generation || 4891 gpa != ghc->gpa || 4892 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4893 return; 4894 4895 st = (struct kvm_steal_time __user *)ghc->hva; 4896 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4897 4898 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4899 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4900 4901 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4902 } 4903 4904 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4905 { 4906 int idx; 4907 4908 if (vcpu->preempted) { 4909 if (!vcpu->arch.guest_state_protected) 4910 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4911 4912 /* 4913 * Take the srcu lock as memslots will be accessed to check the gfn 4914 * cache generation against the memslots generation. 4915 */ 4916 idx = srcu_read_lock(&vcpu->kvm->srcu); 4917 if (kvm_xen_msr_enabled(vcpu->kvm)) 4918 kvm_xen_runstate_set_preempted(vcpu); 4919 else 4920 kvm_steal_time_set_preempted(vcpu); 4921 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4922 } 4923 4924 static_call(kvm_x86_vcpu_put)(vcpu); 4925 vcpu->arch.last_host_tsc = rdtsc(); 4926 } 4927 4928 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4929 struct kvm_lapic_state *s) 4930 { 4931 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4932 4933 return kvm_apic_get_state(vcpu, s); 4934 } 4935 4936 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4937 struct kvm_lapic_state *s) 4938 { 4939 int r; 4940 4941 r = kvm_apic_set_state(vcpu, s); 4942 if (r) 4943 return r; 4944 update_cr8_intercept(vcpu); 4945 4946 return 0; 4947 } 4948 4949 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4950 { 4951 /* 4952 * We can accept userspace's request for interrupt injection 4953 * as long as we have a place to store the interrupt number. 4954 * The actual injection will happen when the CPU is able to 4955 * deliver the interrupt. 4956 */ 4957 if (kvm_cpu_has_extint(vcpu)) 4958 return false; 4959 4960 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4961 return (!lapic_in_kernel(vcpu) || 4962 kvm_apic_accept_pic_intr(vcpu)); 4963 } 4964 4965 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4966 { 4967 /* 4968 * Do not cause an interrupt window exit if an exception 4969 * is pending or an event needs reinjection; userspace 4970 * might want to inject the interrupt manually using KVM_SET_REGS 4971 * or KVM_SET_SREGS. For that to work, we must be at an 4972 * instruction boundary and with no events half-injected. 4973 */ 4974 return (kvm_arch_interrupt_allowed(vcpu) && 4975 kvm_cpu_accept_dm_intr(vcpu) && 4976 !kvm_event_needs_reinjection(vcpu) && 4977 !kvm_is_exception_pending(vcpu)); 4978 } 4979 4980 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4981 struct kvm_interrupt *irq) 4982 { 4983 if (irq->irq >= KVM_NR_INTERRUPTS) 4984 return -EINVAL; 4985 4986 if (!irqchip_in_kernel(vcpu->kvm)) { 4987 kvm_queue_interrupt(vcpu, irq->irq, false); 4988 kvm_make_request(KVM_REQ_EVENT, vcpu); 4989 return 0; 4990 } 4991 4992 /* 4993 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4994 * fail for in-kernel 8259. 4995 */ 4996 if (pic_in_kernel(vcpu->kvm)) 4997 return -ENXIO; 4998 4999 if (vcpu->arch.pending_external_vector != -1) 5000 return -EEXIST; 5001 5002 vcpu->arch.pending_external_vector = irq->irq; 5003 kvm_make_request(KVM_REQ_EVENT, vcpu); 5004 return 0; 5005 } 5006 5007 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5008 { 5009 kvm_inject_nmi(vcpu); 5010 5011 return 0; 5012 } 5013 5014 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5015 struct kvm_tpr_access_ctl *tac) 5016 { 5017 if (tac->flags) 5018 return -EINVAL; 5019 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5020 return 0; 5021 } 5022 5023 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5024 u64 mcg_cap) 5025 { 5026 int r; 5027 unsigned bank_num = mcg_cap & 0xff, bank; 5028 5029 r = -EINVAL; 5030 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5031 goto out; 5032 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5033 goto out; 5034 r = 0; 5035 vcpu->arch.mcg_cap = mcg_cap; 5036 /* Init IA32_MCG_CTL to all 1s */ 5037 if (mcg_cap & MCG_CTL_P) 5038 vcpu->arch.mcg_ctl = ~(u64)0; 5039 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5040 for (bank = 0; bank < bank_num; bank++) { 5041 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5042 if (mcg_cap & MCG_CMCI_P) 5043 vcpu->arch.mci_ctl2_banks[bank] = 0; 5044 } 5045 5046 kvm_apic_after_set_mcg_cap(vcpu); 5047 5048 static_call(kvm_x86_setup_mce)(vcpu); 5049 out: 5050 return r; 5051 } 5052 5053 /* 5054 * Validate this is an UCNA (uncorrectable no action) error by checking the 5055 * MCG_STATUS and MCi_STATUS registers: 5056 * - none of the bits for Machine Check Exceptions are set 5057 * - both the VAL (valid) and UC (uncorrectable) bits are set 5058 * MCI_STATUS_PCC - Processor Context Corrupted 5059 * MCI_STATUS_S - Signaled as a Machine Check Exception 5060 * MCI_STATUS_AR - Software recoverable Action Required 5061 */ 5062 static bool is_ucna(struct kvm_x86_mce *mce) 5063 { 5064 return !mce->mcg_status && 5065 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5066 (mce->status & MCI_STATUS_VAL) && 5067 (mce->status & MCI_STATUS_UC); 5068 } 5069 5070 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5071 { 5072 u64 mcg_cap = vcpu->arch.mcg_cap; 5073 5074 banks[1] = mce->status; 5075 banks[2] = mce->addr; 5076 banks[3] = mce->misc; 5077 vcpu->arch.mcg_status = mce->mcg_status; 5078 5079 if (!(mcg_cap & MCG_CMCI_P) || 5080 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5081 return 0; 5082 5083 if (lapic_in_kernel(vcpu)) 5084 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5085 5086 return 0; 5087 } 5088 5089 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5090 struct kvm_x86_mce *mce) 5091 { 5092 u64 mcg_cap = vcpu->arch.mcg_cap; 5093 unsigned bank_num = mcg_cap & 0xff; 5094 u64 *banks = vcpu->arch.mce_banks; 5095 5096 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5097 return -EINVAL; 5098 5099 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5100 5101 if (is_ucna(mce)) 5102 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5103 5104 /* 5105 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5106 * reporting is disabled 5107 */ 5108 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5109 vcpu->arch.mcg_ctl != ~(u64)0) 5110 return 0; 5111 /* 5112 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5113 * reporting is disabled for the bank 5114 */ 5115 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5116 return 0; 5117 if (mce->status & MCI_STATUS_UC) { 5118 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5119 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5120 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5121 return 0; 5122 } 5123 if (banks[1] & MCI_STATUS_VAL) 5124 mce->status |= MCI_STATUS_OVER; 5125 banks[2] = mce->addr; 5126 banks[3] = mce->misc; 5127 vcpu->arch.mcg_status = mce->mcg_status; 5128 banks[1] = mce->status; 5129 kvm_queue_exception(vcpu, MC_VECTOR); 5130 } else if (!(banks[1] & MCI_STATUS_VAL) 5131 || !(banks[1] & MCI_STATUS_UC)) { 5132 if (banks[1] & MCI_STATUS_VAL) 5133 mce->status |= MCI_STATUS_OVER; 5134 banks[2] = mce->addr; 5135 banks[3] = mce->misc; 5136 banks[1] = mce->status; 5137 } else 5138 banks[1] |= MCI_STATUS_OVER; 5139 return 0; 5140 } 5141 5142 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5143 struct kvm_vcpu_events *events) 5144 { 5145 struct kvm_queued_exception *ex; 5146 5147 process_nmi(vcpu); 5148 5149 #ifdef CONFIG_KVM_SMM 5150 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5151 process_smi(vcpu); 5152 #endif 5153 5154 /* 5155 * KVM's ABI only allows for one exception to be migrated. Luckily, 5156 * the only time there can be two queued exceptions is if there's a 5157 * non-exiting _injected_ exception, and a pending exiting exception. 5158 * In that case, ignore the VM-Exiting exception as it's an extension 5159 * of the injected exception. 5160 */ 5161 if (vcpu->arch.exception_vmexit.pending && 5162 !vcpu->arch.exception.pending && 5163 !vcpu->arch.exception.injected) 5164 ex = &vcpu->arch.exception_vmexit; 5165 else 5166 ex = &vcpu->arch.exception; 5167 5168 /* 5169 * In guest mode, payload delivery should be deferred if the exception 5170 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5171 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5172 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5173 * propagate the payload and so it cannot be safely deferred. Deliver 5174 * the payload if the capability hasn't been requested. 5175 */ 5176 if (!vcpu->kvm->arch.exception_payload_enabled && 5177 ex->pending && ex->has_payload) 5178 kvm_deliver_exception_payload(vcpu, ex); 5179 5180 memset(events, 0, sizeof(*events)); 5181 5182 /* 5183 * The API doesn't provide the instruction length for software 5184 * exceptions, so don't report them. As long as the guest RIP 5185 * isn't advanced, we should expect to encounter the exception 5186 * again. 5187 */ 5188 if (!kvm_exception_is_soft(ex->vector)) { 5189 events->exception.injected = ex->injected; 5190 events->exception.pending = ex->pending; 5191 /* 5192 * For ABI compatibility, deliberately conflate 5193 * pending and injected exceptions when 5194 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5195 */ 5196 if (!vcpu->kvm->arch.exception_payload_enabled) 5197 events->exception.injected |= ex->pending; 5198 } 5199 events->exception.nr = ex->vector; 5200 events->exception.has_error_code = ex->has_error_code; 5201 events->exception.error_code = ex->error_code; 5202 events->exception_has_payload = ex->has_payload; 5203 events->exception_payload = ex->payload; 5204 5205 events->interrupt.injected = 5206 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5207 events->interrupt.nr = vcpu->arch.interrupt.nr; 5208 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5209 5210 events->nmi.injected = vcpu->arch.nmi_injected; 5211 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5212 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5213 5214 /* events->sipi_vector is never valid when reporting to user space */ 5215 5216 #ifdef CONFIG_KVM_SMM 5217 events->smi.smm = is_smm(vcpu); 5218 events->smi.pending = vcpu->arch.smi_pending; 5219 events->smi.smm_inside_nmi = 5220 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5221 #endif 5222 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5223 5224 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5225 | KVM_VCPUEVENT_VALID_SHADOW 5226 | KVM_VCPUEVENT_VALID_SMM); 5227 if (vcpu->kvm->arch.exception_payload_enabled) 5228 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5229 if (vcpu->kvm->arch.triple_fault_event) { 5230 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5231 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5232 } 5233 } 5234 5235 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5236 struct kvm_vcpu_events *events) 5237 { 5238 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5239 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5240 | KVM_VCPUEVENT_VALID_SHADOW 5241 | KVM_VCPUEVENT_VALID_SMM 5242 | KVM_VCPUEVENT_VALID_PAYLOAD 5243 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5244 return -EINVAL; 5245 5246 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5247 if (!vcpu->kvm->arch.exception_payload_enabled) 5248 return -EINVAL; 5249 if (events->exception.pending) 5250 events->exception.injected = 0; 5251 else 5252 events->exception_has_payload = 0; 5253 } else { 5254 events->exception.pending = 0; 5255 events->exception_has_payload = 0; 5256 } 5257 5258 if ((events->exception.injected || events->exception.pending) && 5259 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5260 return -EINVAL; 5261 5262 /* INITs are latched while in SMM */ 5263 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5264 (events->smi.smm || events->smi.pending) && 5265 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5266 return -EINVAL; 5267 5268 process_nmi(vcpu); 5269 5270 /* 5271 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5272 * morph the exception to a VM-Exit if appropriate. Do this only for 5273 * pending exceptions, already-injected exceptions are not subject to 5274 * intercpetion. Note, userspace that conflates pending and injected 5275 * is hosed, and will incorrectly convert an injected exception into a 5276 * pending exception, which in turn may cause a spurious VM-Exit. 5277 */ 5278 vcpu->arch.exception_from_userspace = events->exception.pending; 5279 5280 vcpu->arch.exception_vmexit.pending = false; 5281 5282 vcpu->arch.exception.injected = events->exception.injected; 5283 vcpu->arch.exception.pending = events->exception.pending; 5284 vcpu->arch.exception.vector = events->exception.nr; 5285 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5286 vcpu->arch.exception.error_code = events->exception.error_code; 5287 vcpu->arch.exception.has_payload = events->exception_has_payload; 5288 vcpu->arch.exception.payload = events->exception_payload; 5289 5290 vcpu->arch.interrupt.injected = events->interrupt.injected; 5291 vcpu->arch.interrupt.nr = events->interrupt.nr; 5292 vcpu->arch.interrupt.soft = events->interrupt.soft; 5293 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5294 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5295 events->interrupt.shadow); 5296 5297 vcpu->arch.nmi_injected = events->nmi.injected; 5298 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5299 vcpu->arch.nmi_pending = 0; 5300 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5301 kvm_make_request(KVM_REQ_NMI, vcpu); 5302 } 5303 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5304 5305 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5306 lapic_in_kernel(vcpu)) 5307 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5308 5309 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5310 #ifdef CONFIG_KVM_SMM 5311 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5312 kvm_leave_nested(vcpu); 5313 kvm_smm_changed(vcpu, events->smi.smm); 5314 } 5315 5316 vcpu->arch.smi_pending = events->smi.pending; 5317 5318 if (events->smi.smm) { 5319 if (events->smi.smm_inside_nmi) 5320 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5321 else 5322 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5323 } 5324 5325 #else 5326 if (events->smi.smm || events->smi.pending || 5327 events->smi.smm_inside_nmi) 5328 return -EINVAL; 5329 #endif 5330 5331 if (lapic_in_kernel(vcpu)) { 5332 if (events->smi.latched_init) 5333 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5334 else 5335 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5336 } 5337 } 5338 5339 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5340 if (!vcpu->kvm->arch.triple_fault_event) 5341 return -EINVAL; 5342 if (events->triple_fault.pending) 5343 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5344 else 5345 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5346 } 5347 5348 kvm_make_request(KVM_REQ_EVENT, vcpu); 5349 5350 return 0; 5351 } 5352 5353 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5354 struct kvm_debugregs *dbgregs) 5355 { 5356 unsigned long val; 5357 5358 memset(dbgregs, 0, sizeof(*dbgregs)); 5359 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5360 kvm_get_dr(vcpu, 6, &val); 5361 dbgregs->dr6 = val; 5362 dbgregs->dr7 = vcpu->arch.dr7; 5363 } 5364 5365 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5366 struct kvm_debugregs *dbgregs) 5367 { 5368 if (dbgregs->flags) 5369 return -EINVAL; 5370 5371 if (!kvm_dr6_valid(dbgregs->dr6)) 5372 return -EINVAL; 5373 if (!kvm_dr7_valid(dbgregs->dr7)) 5374 return -EINVAL; 5375 5376 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5377 kvm_update_dr0123(vcpu); 5378 vcpu->arch.dr6 = dbgregs->dr6; 5379 vcpu->arch.dr7 = dbgregs->dr7; 5380 kvm_update_dr7(vcpu); 5381 5382 return 0; 5383 } 5384 5385 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5386 struct kvm_xsave *guest_xsave) 5387 { 5388 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5389 return; 5390 5391 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5392 guest_xsave->region, 5393 sizeof(guest_xsave->region), 5394 vcpu->arch.pkru); 5395 } 5396 5397 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5398 u8 *state, unsigned int size) 5399 { 5400 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5401 return; 5402 5403 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5404 state, size, vcpu->arch.pkru); 5405 } 5406 5407 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5408 struct kvm_xsave *guest_xsave) 5409 { 5410 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5411 return 0; 5412 5413 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5414 guest_xsave->region, 5415 kvm_caps.supported_xcr0, 5416 &vcpu->arch.pkru); 5417 } 5418 5419 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5420 struct kvm_xcrs *guest_xcrs) 5421 { 5422 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5423 guest_xcrs->nr_xcrs = 0; 5424 return; 5425 } 5426 5427 guest_xcrs->nr_xcrs = 1; 5428 guest_xcrs->flags = 0; 5429 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5430 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5431 } 5432 5433 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5434 struct kvm_xcrs *guest_xcrs) 5435 { 5436 int i, r = 0; 5437 5438 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5439 return -EINVAL; 5440 5441 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5442 return -EINVAL; 5443 5444 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5445 /* Only support XCR0 currently */ 5446 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5447 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5448 guest_xcrs->xcrs[i].value); 5449 break; 5450 } 5451 if (r) 5452 r = -EINVAL; 5453 return r; 5454 } 5455 5456 /* 5457 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5458 * stopped by the hypervisor. This function will be called from the host only. 5459 * EINVAL is returned when the host attempts to set the flag for a guest that 5460 * does not support pv clocks. 5461 */ 5462 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5463 { 5464 if (!vcpu->arch.pv_time.active) 5465 return -EINVAL; 5466 vcpu->arch.pvclock_set_guest_stopped_request = true; 5467 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5468 return 0; 5469 } 5470 5471 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5472 struct kvm_device_attr *attr) 5473 { 5474 int r; 5475 5476 switch (attr->attr) { 5477 case KVM_VCPU_TSC_OFFSET: 5478 r = 0; 5479 break; 5480 default: 5481 r = -ENXIO; 5482 } 5483 5484 return r; 5485 } 5486 5487 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5488 struct kvm_device_attr *attr) 5489 { 5490 u64 __user *uaddr = kvm_get_attr_addr(attr); 5491 int r; 5492 5493 if (IS_ERR(uaddr)) 5494 return PTR_ERR(uaddr); 5495 5496 switch (attr->attr) { 5497 case KVM_VCPU_TSC_OFFSET: 5498 r = -EFAULT; 5499 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5500 break; 5501 r = 0; 5502 break; 5503 default: 5504 r = -ENXIO; 5505 } 5506 5507 return r; 5508 } 5509 5510 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5511 struct kvm_device_attr *attr) 5512 { 5513 u64 __user *uaddr = kvm_get_attr_addr(attr); 5514 struct kvm *kvm = vcpu->kvm; 5515 int r; 5516 5517 if (IS_ERR(uaddr)) 5518 return PTR_ERR(uaddr); 5519 5520 switch (attr->attr) { 5521 case KVM_VCPU_TSC_OFFSET: { 5522 u64 offset, tsc, ns; 5523 unsigned long flags; 5524 bool matched; 5525 5526 r = -EFAULT; 5527 if (get_user(offset, uaddr)) 5528 break; 5529 5530 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5531 5532 matched = (vcpu->arch.virtual_tsc_khz && 5533 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5534 kvm->arch.last_tsc_offset == offset); 5535 5536 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5537 ns = get_kvmclock_base_ns(); 5538 5539 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5540 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5541 5542 r = 0; 5543 break; 5544 } 5545 default: 5546 r = -ENXIO; 5547 } 5548 5549 return r; 5550 } 5551 5552 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5553 unsigned int ioctl, 5554 void __user *argp) 5555 { 5556 struct kvm_device_attr attr; 5557 int r; 5558 5559 if (copy_from_user(&attr, argp, sizeof(attr))) 5560 return -EFAULT; 5561 5562 if (attr.group != KVM_VCPU_TSC_CTRL) 5563 return -ENXIO; 5564 5565 switch (ioctl) { 5566 case KVM_HAS_DEVICE_ATTR: 5567 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5568 break; 5569 case KVM_GET_DEVICE_ATTR: 5570 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5571 break; 5572 case KVM_SET_DEVICE_ATTR: 5573 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5574 break; 5575 } 5576 5577 return r; 5578 } 5579 5580 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5581 struct kvm_enable_cap *cap) 5582 { 5583 int r; 5584 uint16_t vmcs_version; 5585 void __user *user_ptr; 5586 5587 if (cap->flags) 5588 return -EINVAL; 5589 5590 switch (cap->cap) { 5591 case KVM_CAP_HYPERV_SYNIC2: 5592 if (cap->args[0]) 5593 return -EINVAL; 5594 fallthrough; 5595 5596 case KVM_CAP_HYPERV_SYNIC: 5597 if (!irqchip_in_kernel(vcpu->kvm)) 5598 return -EINVAL; 5599 return kvm_hv_activate_synic(vcpu, cap->cap == 5600 KVM_CAP_HYPERV_SYNIC2); 5601 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5602 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5603 return -ENOTTY; 5604 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5605 if (!r) { 5606 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5607 if (copy_to_user(user_ptr, &vmcs_version, 5608 sizeof(vmcs_version))) 5609 r = -EFAULT; 5610 } 5611 return r; 5612 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5613 if (!kvm_x86_ops.enable_l2_tlb_flush) 5614 return -ENOTTY; 5615 5616 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5617 5618 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5619 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5620 5621 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5622 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5623 if (vcpu->arch.pv_cpuid.enforce) 5624 kvm_update_pv_runtime(vcpu); 5625 5626 return 0; 5627 default: 5628 return -EINVAL; 5629 } 5630 } 5631 5632 long kvm_arch_vcpu_ioctl(struct file *filp, 5633 unsigned int ioctl, unsigned long arg) 5634 { 5635 struct kvm_vcpu *vcpu = filp->private_data; 5636 void __user *argp = (void __user *)arg; 5637 int r; 5638 union { 5639 struct kvm_sregs2 *sregs2; 5640 struct kvm_lapic_state *lapic; 5641 struct kvm_xsave *xsave; 5642 struct kvm_xcrs *xcrs; 5643 void *buffer; 5644 } u; 5645 5646 vcpu_load(vcpu); 5647 5648 u.buffer = NULL; 5649 switch (ioctl) { 5650 case KVM_GET_LAPIC: { 5651 r = -EINVAL; 5652 if (!lapic_in_kernel(vcpu)) 5653 goto out; 5654 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5655 GFP_KERNEL_ACCOUNT); 5656 5657 r = -ENOMEM; 5658 if (!u.lapic) 5659 goto out; 5660 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5661 if (r) 5662 goto out; 5663 r = -EFAULT; 5664 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5665 goto out; 5666 r = 0; 5667 break; 5668 } 5669 case KVM_SET_LAPIC: { 5670 r = -EINVAL; 5671 if (!lapic_in_kernel(vcpu)) 5672 goto out; 5673 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5674 if (IS_ERR(u.lapic)) { 5675 r = PTR_ERR(u.lapic); 5676 goto out_nofree; 5677 } 5678 5679 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5680 break; 5681 } 5682 case KVM_INTERRUPT: { 5683 struct kvm_interrupt irq; 5684 5685 r = -EFAULT; 5686 if (copy_from_user(&irq, argp, sizeof(irq))) 5687 goto out; 5688 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5689 break; 5690 } 5691 case KVM_NMI: { 5692 r = kvm_vcpu_ioctl_nmi(vcpu); 5693 break; 5694 } 5695 case KVM_SMI: { 5696 r = kvm_inject_smi(vcpu); 5697 break; 5698 } 5699 case KVM_SET_CPUID: { 5700 struct kvm_cpuid __user *cpuid_arg = argp; 5701 struct kvm_cpuid cpuid; 5702 5703 r = -EFAULT; 5704 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5705 goto out; 5706 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5707 break; 5708 } 5709 case KVM_SET_CPUID2: { 5710 struct kvm_cpuid2 __user *cpuid_arg = argp; 5711 struct kvm_cpuid2 cpuid; 5712 5713 r = -EFAULT; 5714 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5715 goto out; 5716 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5717 cpuid_arg->entries); 5718 break; 5719 } 5720 case KVM_GET_CPUID2: { 5721 struct kvm_cpuid2 __user *cpuid_arg = argp; 5722 struct kvm_cpuid2 cpuid; 5723 5724 r = -EFAULT; 5725 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5726 goto out; 5727 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5728 cpuid_arg->entries); 5729 if (r) 5730 goto out; 5731 r = -EFAULT; 5732 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5733 goto out; 5734 r = 0; 5735 break; 5736 } 5737 case KVM_GET_MSRS: { 5738 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5739 r = msr_io(vcpu, argp, do_get_msr, 1); 5740 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5741 break; 5742 } 5743 case KVM_SET_MSRS: { 5744 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5745 r = msr_io(vcpu, argp, do_set_msr, 0); 5746 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5747 break; 5748 } 5749 case KVM_TPR_ACCESS_REPORTING: { 5750 struct kvm_tpr_access_ctl tac; 5751 5752 r = -EFAULT; 5753 if (copy_from_user(&tac, argp, sizeof(tac))) 5754 goto out; 5755 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5756 if (r) 5757 goto out; 5758 r = -EFAULT; 5759 if (copy_to_user(argp, &tac, sizeof(tac))) 5760 goto out; 5761 r = 0; 5762 break; 5763 }; 5764 case KVM_SET_VAPIC_ADDR: { 5765 struct kvm_vapic_addr va; 5766 int idx; 5767 5768 r = -EINVAL; 5769 if (!lapic_in_kernel(vcpu)) 5770 goto out; 5771 r = -EFAULT; 5772 if (copy_from_user(&va, argp, sizeof(va))) 5773 goto out; 5774 idx = srcu_read_lock(&vcpu->kvm->srcu); 5775 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5776 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5777 break; 5778 } 5779 case KVM_X86_SETUP_MCE: { 5780 u64 mcg_cap; 5781 5782 r = -EFAULT; 5783 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5784 goto out; 5785 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5786 break; 5787 } 5788 case KVM_X86_SET_MCE: { 5789 struct kvm_x86_mce mce; 5790 5791 r = -EFAULT; 5792 if (copy_from_user(&mce, argp, sizeof(mce))) 5793 goto out; 5794 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5795 break; 5796 } 5797 case KVM_GET_VCPU_EVENTS: { 5798 struct kvm_vcpu_events events; 5799 5800 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5801 5802 r = -EFAULT; 5803 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5804 break; 5805 r = 0; 5806 break; 5807 } 5808 case KVM_SET_VCPU_EVENTS: { 5809 struct kvm_vcpu_events events; 5810 5811 r = -EFAULT; 5812 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5813 break; 5814 5815 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5816 break; 5817 } 5818 case KVM_GET_DEBUGREGS: { 5819 struct kvm_debugregs dbgregs; 5820 5821 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5822 5823 r = -EFAULT; 5824 if (copy_to_user(argp, &dbgregs, 5825 sizeof(struct kvm_debugregs))) 5826 break; 5827 r = 0; 5828 break; 5829 } 5830 case KVM_SET_DEBUGREGS: { 5831 struct kvm_debugregs dbgregs; 5832 5833 r = -EFAULT; 5834 if (copy_from_user(&dbgregs, argp, 5835 sizeof(struct kvm_debugregs))) 5836 break; 5837 5838 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5839 break; 5840 } 5841 case KVM_GET_XSAVE: { 5842 r = -EINVAL; 5843 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5844 break; 5845 5846 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5847 r = -ENOMEM; 5848 if (!u.xsave) 5849 break; 5850 5851 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5852 5853 r = -EFAULT; 5854 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5855 break; 5856 r = 0; 5857 break; 5858 } 5859 case KVM_SET_XSAVE: { 5860 int size = vcpu->arch.guest_fpu.uabi_size; 5861 5862 u.xsave = memdup_user(argp, size); 5863 if (IS_ERR(u.xsave)) { 5864 r = PTR_ERR(u.xsave); 5865 goto out_nofree; 5866 } 5867 5868 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5869 break; 5870 } 5871 5872 case KVM_GET_XSAVE2: { 5873 int size = vcpu->arch.guest_fpu.uabi_size; 5874 5875 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5876 r = -ENOMEM; 5877 if (!u.xsave) 5878 break; 5879 5880 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5881 5882 r = -EFAULT; 5883 if (copy_to_user(argp, u.xsave, size)) 5884 break; 5885 5886 r = 0; 5887 break; 5888 } 5889 5890 case KVM_GET_XCRS: { 5891 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5892 r = -ENOMEM; 5893 if (!u.xcrs) 5894 break; 5895 5896 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5897 5898 r = -EFAULT; 5899 if (copy_to_user(argp, u.xcrs, 5900 sizeof(struct kvm_xcrs))) 5901 break; 5902 r = 0; 5903 break; 5904 } 5905 case KVM_SET_XCRS: { 5906 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5907 if (IS_ERR(u.xcrs)) { 5908 r = PTR_ERR(u.xcrs); 5909 goto out_nofree; 5910 } 5911 5912 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5913 break; 5914 } 5915 case KVM_SET_TSC_KHZ: { 5916 u32 user_tsc_khz; 5917 5918 r = -EINVAL; 5919 user_tsc_khz = (u32)arg; 5920 5921 if (kvm_caps.has_tsc_control && 5922 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5923 goto out; 5924 5925 if (user_tsc_khz == 0) 5926 user_tsc_khz = tsc_khz; 5927 5928 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5929 r = 0; 5930 5931 goto out; 5932 } 5933 case KVM_GET_TSC_KHZ: { 5934 r = vcpu->arch.virtual_tsc_khz; 5935 goto out; 5936 } 5937 case KVM_KVMCLOCK_CTRL: { 5938 r = kvm_set_guest_paused(vcpu); 5939 goto out; 5940 } 5941 case KVM_ENABLE_CAP: { 5942 struct kvm_enable_cap cap; 5943 5944 r = -EFAULT; 5945 if (copy_from_user(&cap, argp, sizeof(cap))) 5946 goto out; 5947 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5948 break; 5949 } 5950 case KVM_GET_NESTED_STATE: { 5951 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5952 u32 user_data_size; 5953 5954 r = -EINVAL; 5955 if (!kvm_x86_ops.nested_ops->get_state) 5956 break; 5957 5958 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5959 r = -EFAULT; 5960 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5961 break; 5962 5963 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5964 user_data_size); 5965 if (r < 0) 5966 break; 5967 5968 if (r > user_data_size) { 5969 if (put_user(r, &user_kvm_nested_state->size)) 5970 r = -EFAULT; 5971 else 5972 r = -E2BIG; 5973 break; 5974 } 5975 5976 r = 0; 5977 break; 5978 } 5979 case KVM_SET_NESTED_STATE: { 5980 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5981 struct kvm_nested_state kvm_state; 5982 int idx; 5983 5984 r = -EINVAL; 5985 if (!kvm_x86_ops.nested_ops->set_state) 5986 break; 5987 5988 r = -EFAULT; 5989 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5990 break; 5991 5992 r = -EINVAL; 5993 if (kvm_state.size < sizeof(kvm_state)) 5994 break; 5995 5996 if (kvm_state.flags & 5997 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5998 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5999 | KVM_STATE_NESTED_GIF_SET)) 6000 break; 6001 6002 /* nested_run_pending implies guest_mode. */ 6003 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6004 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6005 break; 6006 6007 idx = srcu_read_lock(&vcpu->kvm->srcu); 6008 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6009 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6010 break; 6011 } 6012 case KVM_GET_SUPPORTED_HV_CPUID: 6013 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6014 break; 6015 #ifdef CONFIG_KVM_XEN 6016 case KVM_XEN_VCPU_GET_ATTR: { 6017 struct kvm_xen_vcpu_attr xva; 6018 6019 r = -EFAULT; 6020 if (copy_from_user(&xva, argp, sizeof(xva))) 6021 goto out; 6022 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6023 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6024 r = -EFAULT; 6025 break; 6026 } 6027 case KVM_XEN_VCPU_SET_ATTR: { 6028 struct kvm_xen_vcpu_attr xva; 6029 6030 r = -EFAULT; 6031 if (copy_from_user(&xva, argp, sizeof(xva))) 6032 goto out; 6033 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6034 break; 6035 } 6036 #endif 6037 case KVM_GET_SREGS2: { 6038 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6039 r = -ENOMEM; 6040 if (!u.sregs2) 6041 goto out; 6042 __get_sregs2(vcpu, u.sregs2); 6043 r = -EFAULT; 6044 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6045 goto out; 6046 r = 0; 6047 break; 6048 } 6049 case KVM_SET_SREGS2: { 6050 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6051 if (IS_ERR(u.sregs2)) { 6052 r = PTR_ERR(u.sregs2); 6053 u.sregs2 = NULL; 6054 goto out; 6055 } 6056 r = __set_sregs2(vcpu, u.sregs2); 6057 break; 6058 } 6059 case KVM_HAS_DEVICE_ATTR: 6060 case KVM_GET_DEVICE_ATTR: 6061 case KVM_SET_DEVICE_ATTR: 6062 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6063 break; 6064 default: 6065 r = -EINVAL; 6066 } 6067 out: 6068 kfree(u.buffer); 6069 out_nofree: 6070 vcpu_put(vcpu); 6071 return r; 6072 } 6073 6074 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6075 { 6076 return VM_FAULT_SIGBUS; 6077 } 6078 6079 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6080 { 6081 int ret; 6082 6083 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6084 return -EINVAL; 6085 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6086 return ret; 6087 } 6088 6089 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6090 u64 ident_addr) 6091 { 6092 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6093 } 6094 6095 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6096 unsigned long kvm_nr_mmu_pages) 6097 { 6098 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6099 return -EINVAL; 6100 6101 mutex_lock(&kvm->slots_lock); 6102 6103 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6104 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6105 6106 mutex_unlock(&kvm->slots_lock); 6107 return 0; 6108 } 6109 6110 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6111 { 6112 struct kvm_pic *pic = kvm->arch.vpic; 6113 int r; 6114 6115 r = 0; 6116 switch (chip->chip_id) { 6117 case KVM_IRQCHIP_PIC_MASTER: 6118 memcpy(&chip->chip.pic, &pic->pics[0], 6119 sizeof(struct kvm_pic_state)); 6120 break; 6121 case KVM_IRQCHIP_PIC_SLAVE: 6122 memcpy(&chip->chip.pic, &pic->pics[1], 6123 sizeof(struct kvm_pic_state)); 6124 break; 6125 case KVM_IRQCHIP_IOAPIC: 6126 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6127 break; 6128 default: 6129 r = -EINVAL; 6130 break; 6131 } 6132 return r; 6133 } 6134 6135 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6136 { 6137 struct kvm_pic *pic = kvm->arch.vpic; 6138 int r; 6139 6140 r = 0; 6141 switch (chip->chip_id) { 6142 case KVM_IRQCHIP_PIC_MASTER: 6143 spin_lock(&pic->lock); 6144 memcpy(&pic->pics[0], &chip->chip.pic, 6145 sizeof(struct kvm_pic_state)); 6146 spin_unlock(&pic->lock); 6147 break; 6148 case KVM_IRQCHIP_PIC_SLAVE: 6149 spin_lock(&pic->lock); 6150 memcpy(&pic->pics[1], &chip->chip.pic, 6151 sizeof(struct kvm_pic_state)); 6152 spin_unlock(&pic->lock); 6153 break; 6154 case KVM_IRQCHIP_IOAPIC: 6155 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6156 break; 6157 default: 6158 r = -EINVAL; 6159 break; 6160 } 6161 kvm_pic_update_irq(pic); 6162 return r; 6163 } 6164 6165 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6166 { 6167 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6168 6169 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6170 6171 mutex_lock(&kps->lock); 6172 memcpy(ps, &kps->channels, sizeof(*ps)); 6173 mutex_unlock(&kps->lock); 6174 return 0; 6175 } 6176 6177 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6178 { 6179 int i; 6180 struct kvm_pit *pit = kvm->arch.vpit; 6181 6182 mutex_lock(&pit->pit_state.lock); 6183 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6184 for (i = 0; i < 3; i++) 6185 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6186 mutex_unlock(&pit->pit_state.lock); 6187 return 0; 6188 } 6189 6190 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6191 { 6192 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6193 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6194 sizeof(ps->channels)); 6195 ps->flags = kvm->arch.vpit->pit_state.flags; 6196 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6197 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6198 return 0; 6199 } 6200 6201 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6202 { 6203 int start = 0; 6204 int i; 6205 u32 prev_legacy, cur_legacy; 6206 struct kvm_pit *pit = kvm->arch.vpit; 6207 6208 mutex_lock(&pit->pit_state.lock); 6209 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6210 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6211 if (!prev_legacy && cur_legacy) 6212 start = 1; 6213 memcpy(&pit->pit_state.channels, &ps->channels, 6214 sizeof(pit->pit_state.channels)); 6215 pit->pit_state.flags = ps->flags; 6216 for (i = 0; i < 3; i++) 6217 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6218 start && i == 0); 6219 mutex_unlock(&pit->pit_state.lock); 6220 return 0; 6221 } 6222 6223 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6224 struct kvm_reinject_control *control) 6225 { 6226 struct kvm_pit *pit = kvm->arch.vpit; 6227 6228 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6229 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6230 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6231 */ 6232 mutex_lock(&pit->pit_state.lock); 6233 kvm_pit_set_reinject(pit, control->pit_reinject); 6234 mutex_unlock(&pit->pit_state.lock); 6235 6236 return 0; 6237 } 6238 6239 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6240 { 6241 6242 /* 6243 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6244 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6245 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6246 * VM-Exit. 6247 */ 6248 struct kvm_vcpu *vcpu; 6249 unsigned long i; 6250 6251 kvm_for_each_vcpu(i, vcpu, kvm) 6252 kvm_vcpu_kick(vcpu); 6253 } 6254 6255 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6256 bool line_status) 6257 { 6258 if (!irqchip_in_kernel(kvm)) 6259 return -ENXIO; 6260 6261 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6262 irq_event->irq, irq_event->level, 6263 line_status); 6264 return 0; 6265 } 6266 6267 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6268 struct kvm_enable_cap *cap) 6269 { 6270 int r; 6271 6272 if (cap->flags) 6273 return -EINVAL; 6274 6275 switch (cap->cap) { 6276 case KVM_CAP_DISABLE_QUIRKS2: 6277 r = -EINVAL; 6278 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6279 break; 6280 fallthrough; 6281 case KVM_CAP_DISABLE_QUIRKS: 6282 kvm->arch.disabled_quirks = cap->args[0]; 6283 r = 0; 6284 break; 6285 case KVM_CAP_SPLIT_IRQCHIP: { 6286 mutex_lock(&kvm->lock); 6287 r = -EINVAL; 6288 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6289 goto split_irqchip_unlock; 6290 r = -EEXIST; 6291 if (irqchip_in_kernel(kvm)) 6292 goto split_irqchip_unlock; 6293 if (kvm->created_vcpus) 6294 goto split_irqchip_unlock; 6295 r = kvm_setup_empty_irq_routing(kvm); 6296 if (r) 6297 goto split_irqchip_unlock; 6298 /* Pairs with irqchip_in_kernel. */ 6299 smp_wmb(); 6300 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6301 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6302 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6303 r = 0; 6304 split_irqchip_unlock: 6305 mutex_unlock(&kvm->lock); 6306 break; 6307 } 6308 case KVM_CAP_X2APIC_API: 6309 r = -EINVAL; 6310 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6311 break; 6312 6313 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6314 kvm->arch.x2apic_format = true; 6315 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6316 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6317 6318 r = 0; 6319 break; 6320 case KVM_CAP_X86_DISABLE_EXITS: 6321 r = -EINVAL; 6322 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6323 break; 6324 6325 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6326 kvm->arch.pause_in_guest = true; 6327 6328 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6329 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6330 6331 if (!mitigate_smt_rsb) { 6332 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6333 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6334 pr_warn_once(SMT_RSB_MSG); 6335 6336 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6337 kvm_can_mwait_in_guest()) 6338 kvm->arch.mwait_in_guest = true; 6339 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6340 kvm->arch.hlt_in_guest = true; 6341 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6342 kvm->arch.cstate_in_guest = true; 6343 } 6344 6345 r = 0; 6346 break; 6347 case KVM_CAP_MSR_PLATFORM_INFO: 6348 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6349 r = 0; 6350 break; 6351 case KVM_CAP_EXCEPTION_PAYLOAD: 6352 kvm->arch.exception_payload_enabled = cap->args[0]; 6353 r = 0; 6354 break; 6355 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6356 kvm->arch.triple_fault_event = cap->args[0]; 6357 r = 0; 6358 break; 6359 case KVM_CAP_X86_USER_SPACE_MSR: 6360 r = -EINVAL; 6361 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6362 break; 6363 kvm->arch.user_space_msr_mask = cap->args[0]; 6364 r = 0; 6365 break; 6366 case KVM_CAP_X86_BUS_LOCK_EXIT: 6367 r = -EINVAL; 6368 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6369 break; 6370 6371 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6372 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6373 break; 6374 6375 if (kvm_caps.has_bus_lock_exit && 6376 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6377 kvm->arch.bus_lock_detection_enabled = true; 6378 r = 0; 6379 break; 6380 #ifdef CONFIG_X86_SGX_KVM 6381 case KVM_CAP_SGX_ATTRIBUTE: { 6382 unsigned long allowed_attributes = 0; 6383 6384 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6385 if (r) 6386 break; 6387 6388 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6389 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6390 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6391 kvm->arch.sgx_provisioning_allowed = true; 6392 else 6393 r = -EINVAL; 6394 break; 6395 } 6396 #endif 6397 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6398 r = -EINVAL; 6399 if (!kvm_x86_ops.vm_copy_enc_context_from) 6400 break; 6401 6402 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6403 break; 6404 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6405 r = -EINVAL; 6406 if (!kvm_x86_ops.vm_move_enc_context_from) 6407 break; 6408 6409 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6410 break; 6411 case KVM_CAP_EXIT_HYPERCALL: 6412 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6413 r = -EINVAL; 6414 break; 6415 } 6416 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6417 r = 0; 6418 break; 6419 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6420 r = -EINVAL; 6421 if (cap->args[0] & ~1) 6422 break; 6423 kvm->arch.exit_on_emulation_error = cap->args[0]; 6424 r = 0; 6425 break; 6426 case KVM_CAP_PMU_CAPABILITY: 6427 r = -EINVAL; 6428 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6429 break; 6430 6431 mutex_lock(&kvm->lock); 6432 if (!kvm->created_vcpus) { 6433 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6434 r = 0; 6435 } 6436 mutex_unlock(&kvm->lock); 6437 break; 6438 case KVM_CAP_MAX_VCPU_ID: 6439 r = -EINVAL; 6440 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6441 break; 6442 6443 mutex_lock(&kvm->lock); 6444 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6445 r = 0; 6446 } else if (!kvm->arch.max_vcpu_ids) { 6447 kvm->arch.max_vcpu_ids = cap->args[0]; 6448 r = 0; 6449 } 6450 mutex_unlock(&kvm->lock); 6451 break; 6452 case KVM_CAP_X86_NOTIFY_VMEXIT: 6453 r = -EINVAL; 6454 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6455 break; 6456 if (!kvm_caps.has_notify_vmexit) 6457 break; 6458 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6459 break; 6460 mutex_lock(&kvm->lock); 6461 if (!kvm->created_vcpus) { 6462 kvm->arch.notify_window = cap->args[0] >> 32; 6463 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6464 r = 0; 6465 } 6466 mutex_unlock(&kvm->lock); 6467 break; 6468 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6469 r = -EINVAL; 6470 6471 /* 6472 * Since the risk of disabling NX hugepages is a guest crashing 6473 * the system, ensure the userspace process has permission to 6474 * reboot the system. 6475 * 6476 * Note that unlike the reboot() syscall, the process must have 6477 * this capability in the root namespace because exposing 6478 * /dev/kvm into a container does not limit the scope of the 6479 * iTLB multihit bug to that container. In other words, 6480 * this must use capable(), not ns_capable(). 6481 */ 6482 if (!capable(CAP_SYS_BOOT)) { 6483 r = -EPERM; 6484 break; 6485 } 6486 6487 if (cap->args[0]) 6488 break; 6489 6490 mutex_lock(&kvm->lock); 6491 if (!kvm->created_vcpus) { 6492 kvm->arch.disable_nx_huge_pages = true; 6493 r = 0; 6494 } 6495 mutex_unlock(&kvm->lock); 6496 break; 6497 default: 6498 r = -EINVAL; 6499 break; 6500 } 6501 return r; 6502 } 6503 6504 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6505 { 6506 struct kvm_x86_msr_filter *msr_filter; 6507 6508 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6509 if (!msr_filter) 6510 return NULL; 6511 6512 msr_filter->default_allow = default_allow; 6513 return msr_filter; 6514 } 6515 6516 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6517 { 6518 u32 i; 6519 6520 if (!msr_filter) 6521 return; 6522 6523 for (i = 0; i < msr_filter->count; i++) 6524 kfree(msr_filter->ranges[i].bitmap); 6525 6526 kfree(msr_filter); 6527 } 6528 6529 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6530 struct kvm_msr_filter_range *user_range) 6531 { 6532 unsigned long *bitmap = NULL; 6533 size_t bitmap_size; 6534 6535 if (!user_range->nmsrs) 6536 return 0; 6537 6538 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6539 return -EINVAL; 6540 6541 if (!user_range->flags) 6542 return -EINVAL; 6543 6544 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6545 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6546 return -EINVAL; 6547 6548 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6549 if (IS_ERR(bitmap)) 6550 return PTR_ERR(bitmap); 6551 6552 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6553 .flags = user_range->flags, 6554 .base = user_range->base, 6555 .nmsrs = user_range->nmsrs, 6556 .bitmap = bitmap, 6557 }; 6558 6559 msr_filter->count++; 6560 return 0; 6561 } 6562 6563 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6564 struct kvm_msr_filter *filter) 6565 { 6566 struct kvm_x86_msr_filter *new_filter, *old_filter; 6567 bool default_allow; 6568 bool empty = true; 6569 int r; 6570 u32 i; 6571 6572 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6573 return -EINVAL; 6574 6575 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6576 empty &= !filter->ranges[i].nmsrs; 6577 6578 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6579 if (empty && !default_allow) 6580 return -EINVAL; 6581 6582 new_filter = kvm_alloc_msr_filter(default_allow); 6583 if (!new_filter) 6584 return -ENOMEM; 6585 6586 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6587 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6588 if (r) { 6589 kvm_free_msr_filter(new_filter); 6590 return r; 6591 } 6592 } 6593 6594 mutex_lock(&kvm->lock); 6595 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6596 mutex_is_locked(&kvm->lock)); 6597 mutex_unlock(&kvm->lock); 6598 synchronize_srcu(&kvm->srcu); 6599 6600 kvm_free_msr_filter(old_filter); 6601 6602 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6603 6604 return 0; 6605 } 6606 6607 #ifdef CONFIG_KVM_COMPAT 6608 /* for KVM_X86_SET_MSR_FILTER */ 6609 struct kvm_msr_filter_range_compat { 6610 __u32 flags; 6611 __u32 nmsrs; 6612 __u32 base; 6613 __u32 bitmap; 6614 }; 6615 6616 struct kvm_msr_filter_compat { 6617 __u32 flags; 6618 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6619 }; 6620 6621 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6622 6623 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6624 unsigned long arg) 6625 { 6626 void __user *argp = (void __user *)arg; 6627 struct kvm *kvm = filp->private_data; 6628 long r = -ENOTTY; 6629 6630 switch (ioctl) { 6631 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6632 struct kvm_msr_filter __user *user_msr_filter = argp; 6633 struct kvm_msr_filter_compat filter_compat; 6634 struct kvm_msr_filter filter; 6635 int i; 6636 6637 if (copy_from_user(&filter_compat, user_msr_filter, 6638 sizeof(filter_compat))) 6639 return -EFAULT; 6640 6641 filter.flags = filter_compat.flags; 6642 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6643 struct kvm_msr_filter_range_compat *cr; 6644 6645 cr = &filter_compat.ranges[i]; 6646 filter.ranges[i] = (struct kvm_msr_filter_range) { 6647 .flags = cr->flags, 6648 .nmsrs = cr->nmsrs, 6649 .base = cr->base, 6650 .bitmap = (__u8 *)(ulong)cr->bitmap, 6651 }; 6652 } 6653 6654 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6655 break; 6656 } 6657 } 6658 6659 return r; 6660 } 6661 #endif 6662 6663 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6664 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6665 { 6666 struct kvm_vcpu *vcpu; 6667 unsigned long i; 6668 int ret = 0; 6669 6670 mutex_lock(&kvm->lock); 6671 kvm_for_each_vcpu(i, vcpu, kvm) { 6672 if (!vcpu->arch.pv_time.active) 6673 continue; 6674 6675 ret = kvm_set_guest_paused(vcpu); 6676 if (ret) { 6677 kvm_err("Failed to pause guest VCPU%d: %d\n", 6678 vcpu->vcpu_id, ret); 6679 break; 6680 } 6681 } 6682 mutex_unlock(&kvm->lock); 6683 6684 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6685 } 6686 6687 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6688 { 6689 switch (state) { 6690 case PM_HIBERNATION_PREPARE: 6691 case PM_SUSPEND_PREPARE: 6692 return kvm_arch_suspend_notifier(kvm); 6693 } 6694 6695 return NOTIFY_DONE; 6696 } 6697 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6698 6699 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6700 { 6701 struct kvm_clock_data data = { 0 }; 6702 6703 get_kvmclock(kvm, &data); 6704 if (copy_to_user(argp, &data, sizeof(data))) 6705 return -EFAULT; 6706 6707 return 0; 6708 } 6709 6710 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6711 { 6712 struct kvm_arch *ka = &kvm->arch; 6713 struct kvm_clock_data data; 6714 u64 now_raw_ns; 6715 6716 if (copy_from_user(&data, argp, sizeof(data))) 6717 return -EFAULT; 6718 6719 /* 6720 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6721 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6722 */ 6723 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6724 return -EINVAL; 6725 6726 kvm_hv_request_tsc_page_update(kvm); 6727 kvm_start_pvclock_update(kvm); 6728 pvclock_update_vm_gtod_copy(kvm); 6729 6730 /* 6731 * This pairs with kvm_guest_time_update(): when masterclock is 6732 * in use, we use master_kernel_ns + kvmclock_offset to set 6733 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6734 * is slightly ahead) here we risk going negative on unsigned 6735 * 'system_time' when 'data.clock' is very small. 6736 */ 6737 if (data.flags & KVM_CLOCK_REALTIME) { 6738 u64 now_real_ns = ktime_get_real_ns(); 6739 6740 /* 6741 * Avoid stepping the kvmclock backwards. 6742 */ 6743 if (now_real_ns > data.realtime) 6744 data.clock += now_real_ns - data.realtime; 6745 } 6746 6747 if (ka->use_master_clock) 6748 now_raw_ns = ka->master_kernel_ns; 6749 else 6750 now_raw_ns = get_kvmclock_base_ns(); 6751 ka->kvmclock_offset = data.clock - now_raw_ns; 6752 kvm_end_pvclock_update(kvm); 6753 return 0; 6754 } 6755 6756 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6757 { 6758 struct kvm *kvm = filp->private_data; 6759 void __user *argp = (void __user *)arg; 6760 int r = -ENOTTY; 6761 /* 6762 * This union makes it completely explicit to gcc-3.x 6763 * that these two variables' stack usage should be 6764 * combined, not added together. 6765 */ 6766 union { 6767 struct kvm_pit_state ps; 6768 struct kvm_pit_state2 ps2; 6769 struct kvm_pit_config pit_config; 6770 } u; 6771 6772 switch (ioctl) { 6773 case KVM_SET_TSS_ADDR: 6774 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6775 break; 6776 case KVM_SET_IDENTITY_MAP_ADDR: { 6777 u64 ident_addr; 6778 6779 mutex_lock(&kvm->lock); 6780 r = -EINVAL; 6781 if (kvm->created_vcpus) 6782 goto set_identity_unlock; 6783 r = -EFAULT; 6784 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6785 goto set_identity_unlock; 6786 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6787 set_identity_unlock: 6788 mutex_unlock(&kvm->lock); 6789 break; 6790 } 6791 case KVM_SET_NR_MMU_PAGES: 6792 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6793 break; 6794 case KVM_CREATE_IRQCHIP: { 6795 mutex_lock(&kvm->lock); 6796 6797 r = -EEXIST; 6798 if (irqchip_in_kernel(kvm)) 6799 goto create_irqchip_unlock; 6800 6801 r = -EINVAL; 6802 if (kvm->created_vcpus) 6803 goto create_irqchip_unlock; 6804 6805 r = kvm_pic_init(kvm); 6806 if (r) 6807 goto create_irqchip_unlock; 6808 6809 r = kvm_ioapic_init(kvm); 6810 if (r) { 6811 kvm_pic_destroy(kvm); 6812 goto create_irqchip_unlock; 6813 } 6814 6815 r = kvm_setup_default_irq_routing(kvm); 6816 if (r) { 6817 kvm_ioapic_destroy(kvm); 6818 kvm_pic_destroy(kvm); 6819 goto create_irqchip_unlock; 6820 } 6821 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6822 smp_wmb(); 6823 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6824 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6825 create_irqchip_unlock: 6826 mutex_unlock(&kvm->lock); 6827 break; 6828 } 6829 case KVM_CREATE_PIT: 6830 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6831 goto create_pit; 6832 case KVM_CREATE_PIT2: 6833 r = -EFAULT; 6834 if (copy_from_user(&u.pit_config, argp, 6835 sizeof(struct kvm_pit_config))) 6836 goto out; 6837 create_pit: 6838 mutex_lock(&kvm->lock); 6839 r = -EEXIST; 6840 if (kvm->arch.vpit) 6841 goto create_pit_unlock; 6842 r = -ENOMEM; 6843 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6844 if (kvm->arch.vpit) 6845 r = 0; 6846 create_pit_unlock: 6847 mutex_unlock(&kvm->lock); 6848 break; 6849 case KVM_GET_IRQCHIP: { 6850 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6851 struct kvm_irqchip *chip; 6852 6853 chip = memdup_user(argp, sizeof(*chip)); 6854 if (IS_ERR(chip)) { 6855 r = PTR_ERR(chip); 6856 goto out; 6857 } 6858 6859 r = -ENXIO; 6860 if (!irqchip_kernel(kvm)) 6861 goto get_irqchip_out; 6862 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6863 if (r) 6864 goto get_irqchip_out; 6865 r = -EFAULT; 6866 if (copy_to_user(argp, chip, sizeof(*chip))) 6867 goto get_irqchip_out; 6868 r = 0; 6869 get_irqchip_out: 6870 kfree(chip); 6871 break; 6872 } 6873 case KVM_SET_IRQCHIP: { 6874 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6875 struct kvm_irqchip *chip; 6876 6877 chip = memdup_user(argp, sizeof(*chip)); 6878 if (IS_ERR(chip)) { 6879 r = PTR_ERR(chip); 6880 goto out; 6881 } 6882 6883 r = -ENXIO; 6884 if (!irqchip_kernel(kvm)) 6885 goto set_irqchip_out; 6886 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6887 set_irqchip_out: 6888 kfree(chip); 6889 break; 6890 } 6891 case KVM_GET_PIT: { 6892 r = -EFAULT; 6893 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6894 goto out; 6895 r = -ENXIO; 6896 if (!kvm->arch.vpit) 6897 goto out; 6898 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6899 if (r) 6900 goto out; 6901 r = -EFAULT; 6902 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6903 goto out; 6904 r = 0; 6905 break; 6906 } 6907 case KVM_SET_PIT: { 6908 r = -EFAULT; 6909 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6910 goto out; 6911 mutex_lock(&kvm->lock); 6912 r = -ENXIO; 6913 if (!kvm->arch.vpit) 6914 goto set_pit_out; 6915 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6916 set_pit_out: 6917 mutex_unlock(&kvm->lock); 6918 break; 6919 } 6920 case KVM_GET_PIT2: { 6921 r = -ENXIO; 6922 if (!kvm->arch.vpit) 6923 goto out; 6924 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6925 if (r) 6926 goto out; 6927 r = -EFAULT; 6928 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6929 goto out; 6930 r = 0; 6931 break; 6932 } 6933 case KVM_SET_PIT2: { 6934 r = -EFAULT; 6935 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6936 goto out; 6937 mutex_lock(&kvm->lock); 6938 r = -ENXIO; 6939 if (!kvm->arch.vpit) 6940 goto set_pit2_out; 6941 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6942 set_pit2_out: 6943 mutex_unlock(&kvm->lock); 6944 break; 6945 } 6946 case KVM_REINJECT_CONTROL: { 6947 struct kvm_reinject_control control; 6948 r = -EFAULT; 6949 if (copy_from_user(&control, argp, sizeof(control))) 6950 goto out; 6951 r = -ENXIO; 6952 if (!kvm->arch.vpit) 6953 goto out; 6954 r = kvm_vm_ioctl_reinject(kvm, &control); 6955 break; 6956 } 6957 case KVM_SET_BOOT_CPU_ID: 6958 r = 0; 6959 mutex_lock(&kvm->lock); 6960 if (kvm->created_vcpus) 6961 r = -EBUSY; 6962 else 6963 kvm->arch.bsp_vcpu_id = arg; 6964 mutex_unlock(&kvm->lock); 6965 break; 6966 #ifdef CONFIG_KVM_XEN 6967 case KVM_XEN_HVM_CONFIG: { 6968 struct kvm_xen_hvm_config xhc; 6969 r = -EFAULT; 6970 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6971 goto out; 6972 r = kvm_xen_hvm_config(kvm, &xhc); 6973 break; 6974 } 6975 case KVM_XEN_HVM_GET_ATTR: { 6976 struct kvm_xen_hvm_attr xha; 6977 6978 r = -EFAULT; 6979 if (copy_from_user(&xha, argp, sizeof(xha))) 6980 goto out; 6981 r = kvm_xen_hvm_get_attr(kvm, &xha); 6982 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6983 r = -EFAULT; 6984 break; 6985 } 6986 case KVM_XEN_HVM_SET_ATTR: { 6987 struct kvm_xen_hvm_attr xha; 6988 6989 r = -EFAULT; 6990 if (copy_from_user(&xha, argp, sizeof(xha))) 6991 goto out; 6992 r = kvm_xen_hvm_set_attr(kvm, &xha); 6993 break; 6994 } 6995 case KVM_XEN_HVM_EVTCHN_SEND: { 6996 struct kvm_irq_routing_xen_evtchn uxe; 6997 6998 r = -EFAULT; 6999 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7000 goto out; 7001 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7002 break; 7003 } 7004 #endif 7005 case KVM_SET_CLOCK: 7006 r = kvm_vm_ioctl_set_clock(kvm, argp); 7007 break; 7008 case KVM_GET_CLOCK: 7009 r = kvm_vm_ioctl_get_clock(kvm, argp); 7010 break; 7011 case KVM_SET_TSC_KHZ: { 7012 u32 user_tsc_khz; 7013 7014 r = -EINVAL; 7015 user_tsc_khz = (u32)arg; 7016 7017 if (kvm_caps.has_tsc_control && 7018 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7019 goto out; 7020 7021 if (user_tsc_khz == 0) 7022 user_tsc_khz = tsc_khz; 7023 7024 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7025 r = 0; 7026 7027 goto out; 7028 } 7029 case KVM_GET_TSC_KHZ: { 7030 r = READ_ONCE(kvm->arch.default_tsc_khz); 7031 goto out; 7032 } 7033 case KVM_MEMORY_ENCRYPT_OP: { 7034 r = -ENOTTY; 7035 if (!kvm_x86_ops.mem_enc_ioctl) 7036 goto out; 7037 7038 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7039 break; 7040 } 7041 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7042 struct kvm_enc_region region; 7043 7044 r = -EFAULT; 7045 if (copy_from_user(®ion, argp, sizeof(region))) 7046 goto out; 7047 7048 r = -ENOTTY; 7049 if (!kvm_x86_ops.mem_enc_register_region) 7050 goto out; 7051 7052 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7053 break; 7054 } 7055 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7056 struct kvm_enc_region region; 7057 7058 r = -EFAULT; 7059 if (copy_from_user(®ion, argp, sizeof(region))) 7060 goto out; 7061 7062 r = -ENOTTY; 7063 if (!kvm_x86_ops.mem_enc_unregister_region) 7064 goto out; 7065 7066 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7067 break; 7068 } 7069 case KVM_HYPERV_EVENTFD: { 7070 struct kvm_hyperv_eventfd hvevfd; 7071 7072 r = -EFAULT; 7073 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7074 goto out; 7075 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7076 break; 7077 } 7078 case KVM_SET_PMU_EVENT_FILTER: 7079 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7080 break; 7081 case KVM_X86_SET_MSR_FILTER: { 7082 struct kvm_msr_filter __user *user_msr_filter = argp; 7083 struct kvm_msr_filter filter; 7084 7085 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7086 return -EFAULT; 7087 7088 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7089 break; 7090 } 7091 default: 7092 r = -ENOTTY; 7093 } 7094 out: 7095 return r; 7096 } 7097 7098 static void kvm_probe_feature_msr(u32 msr_index) 7099 { 7100 struct kvm_msr_entry msr = { 7101 .index = msr_index, 7102 }; 7103 7104 if (kvm_get_msr_feature(&msr)) 7105 return; 7106 7107 msr_based_features[num_msr_based_features++] = msr_index; 7108 } 7109 7110 static void kvm_probe_msr_to_save(u32 msr_index) 7111 { 7112 u32 dummy[2]; 7113 7114 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7115 return; 7116 7117 /* 7118 * Even MSRs that are valid in the host may not be exposed to guests in 7119 * some cases. 7120 */ 7121 switch (msr_index) { 7122 case MSR_IA32_BNDCFGS: 7123 if (!kvm_mpx_supported()) 7124 return; 7125 break; 7126 case MSR_TSC_AUX: 7127 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7128 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7129 return; 7130 break; 7131 case MSR_IA32_UMWAIT_CONTROL: 7132 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7133 return; 7134 break; 7135 case MSR_IA32_RTIT_CTL: 7136 case MSR_IA32_RTIT_STATUS: 7137 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7138 return; 7139 break; 7140 case MSR_IA32_RTIT_CR3_MATCH: 7141 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7142 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7143 return; 7144 break; 7145 case MSR_IA32_RTIT_OUTPUT_BASE: 7146 case MSR_IA32_RTIT_OUTPUT_MASK: 7147 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7148 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7149 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7150 return; 7151 break; 7152 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7153 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7154 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7155 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7156 return; 7157 break; 7158 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7159 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7160 kvm_pmu_cap.num_counters_gp) 7161 return; 7162 break; 7163 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7164 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7165 kvm_pmu_cap.num_counters_gp) 7166 return; 7167 break; 7168 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7169 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7170 kvm_pmu_cap.num_counters_fixed) 7171 return; 7172 break; 7173 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7174 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7175 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7176 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7177 return; 7178 break; 7179 case MSR_IA32_XFD: 7180 case MSR_IA32_XFD_ERR: 7181 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7182 return; 7183 break; 7184 case MSR_IA32_TSX_CTRL: 7185 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7186 return; 7187 break; 7188 default: 7189 break; 7190 } 7191 7192 msrs_to_save[num_msrs_to_save++] = msr_index; 7193 } 7194 7195 static void kvm_init_msr_lists(void) 7196 { 7197 unsigned i; 7198 7199 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7200 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7201 7202 num_msrs_to_save = 0; 7203 num_emulated_msrs = 0; 7204 num_msr_based_features = 0; 7205 7206 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7207 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7208 7209 if (enable_pmu) { 7210 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7211 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7212 } 7213 7214 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7215 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7216 continue; 7217 7218 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7219 } 7220 7221 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7222 kvm_probe_feature_msr(i); 7223 7224 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7225 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7226 } 7227 7228 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7229 const void *v) 7230 { 7231 int handled = 0; 7232 int n; 7233 7234 do { 7235 n = min(len, 8); 7236 if (!(lapic_in_kernel(vcpu) && 7237 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7238 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7239 break; 7240 handled += n; 7241 addr += n; 7242 len -= n; 7243 v += n; 7244 } while (len); 7245 7246 return handled; 7247 } 7248 7249 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7250 { 7251 int handled = 0; 7252 int n; 7253 7254 do { 7255 n = min(len, 8); 7256 if (!(lapic_in_kernel(vcpu) && 7257 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7258 addr, n, v)) 7259 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7260 break; 7261 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7262 handled += n; 7263 addr += n; 7264 len -= n; 7265 v += n; 7266 } while (len); 7267 7268 return handled; 7269 } 7270 7271 void kvm_set_segment(struct kvm_vcpu *vcpu, 7272 struct kvm_segment *var, int seg) 7273 { 7274 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7275 } 7276 7277 void kvm_get_segment(struct kvm_vcpu *vcpu, 7278 struct kvm_segment *var, int seg) 7279 { 7280 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7281 } 7282 7283 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7284 struct x86_exception *exception) 7285 { 7286 struct kvm_mmu *mmu = vcpu->arch.mmu; 7287 gpa_t t_gpa; 7288 7289 BUG_ON(!mmu_is_nested(vcpu)); 7290 7291 /* NPT walks are always user-walks */ 7292 access |= PFERR_USER_MASK; 7293 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7294 7295 return t_gpa; 7296 } 7297 7298 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7299 struct x86_exception *exception) 7300 { 7301 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7302 7303 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7304 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7305 } 7306 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7307 7308 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7309 struct x86_exception *exception) 7310 { 7311 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7312 7313 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7314 access |= PFERR_WRITE_MASK; 7315 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7316 } 7317 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7318 7319 /* uses this to access any guest's mapped memory without checking CPL */ 7320 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7321 struct x86_exception *exception) 7322 { 7323 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7324 7325 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7326 } 7327 7328 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7329 struct kvm_vcpu *vcpu, u64 access, 7330 struct x86_exception *exception) 7331 { 7332 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7333 void *data = val; 7334 int r = X86EMUL_CONTINUE; 7335 7336 while (bytes) { 7337 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7338 unsigned offset = addr & (PAGE_SIZE-1); 7339 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7340 int ret; 7341 7342 if (gpa == INVALID_GPA) 7343 return X86EMUL_PROPAGATE_FAULT; 7344 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7345 offset, toread); 7346 if (ret < 0) { 7347 r = X86EMUL_IO_NEEDED; 7348 goto out; 7349 } 7350 7351 bytes -= toread; 7352 data += toread; 7353 addr += toread; 7354 } 7355 out: 7356 return r; 7357 } 7358 7359 /* used for instruction fetching */ 7360 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7361 gva_t addr, void *val, unsigned int bytes, 7362 struct x86_exception *exception) 7363 { 7364 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7365 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7366 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7367 unsigned offset; 7368 int ret; 7369 7370 /* Inline kvm_read_guest_virt_helper for speed. */ 7371 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7372 exception); 7373 if (unlikely(gpa == INVALID_GPA)) 7374 return X86EMUL_PROPAGATE_FAULT; 7375 7376 offset = addr & (PAGE_SIZE-1); 7377 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7378 bytes = (unsigned)PAGE_SIZE - offset; 7379 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7380 offset, bytes); 7381 if (unlikely(ret < 0)) 7382 return X86EMUL_IO_NEEDED; 7383 7384 return X86EMUL_CONTINUE; 7385 } 7386 7387 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7388 gva_t addr, void *val, unsigned int bytes, 7389 struct x86_exception *exception) 7390 { 7391 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7392 7393 /* 7394 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7395 * is returned, but our callers are not ready for that and they blindly 7396 * call kvm_inject_page_fault. Ensure that they at least do not leak 7397 * uninitialized kernel stack memory into cr2 and error code. 7398 */ 7399 memset(exception, 0, sizeof(*exception)); 7400 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7401 exception); 7402 } 7403 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7404 7405 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7406 gva_t addr, void *val, unsigned int bytes, 7407 struct x86_exception *exception, bool system) 7408 { 7409 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7410 u64 access = 0; 7411 7412 if (system) 7413 access |= PFERR_IMPLICIT_ACCESS; 7414 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7415 access |= PFERR_USER_MASK; 7416 7417 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7418 } 7419 7420 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7421 struct kvm_vcpu *vcpu, u64 access, 7422 struct x86_exception *exception) 7423 { 7424 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7425 void *data = val; 7426 int r = X86EMUL_CONTINUE; 7427 7428 while (bytes) { 7429 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7430 unsigned offset = addr & (PAGE_SIZE-1); 7431 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7432 int ret; 7433 7434 if (gpa == INVALID_GPA) 7435 return X86EMUL_PROPAGATE_FAULT; 7436 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7437 if (ret < 0) { 7438 r = X86EMUL_IO_NEEDED; 7439 goto out; 7440 } 7441 7442 bytes -= towrite; 7443 data += towrite; 7444 addr += towrite; 7445 } 7446 out: 7447 return r; 7448 } 7449 7450 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7451 unsigned int bytes, struct x86_exception *exception, 7452 bool system) 7453 { 7454 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7455 u64 access = PFERR_WRITE_MASK; 7456 7457 if (system) 7458 access |= PFERR_IMPLICIT_ACCESS; 7459 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7460 access |= PFERR_USER_MASK; 7461 7462 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7463 access, exception); 7464 } 7465 7466 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7467 unsigned int bytes, struct x86_exception *exception) 7468 { 7469 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7470 vcpu->arch.l1tf_flush_l1d = true; 7471 7472 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7473 PFERR_WRITE_MASK, exception); 7474 } 7475 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7476 7477 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7478 void *insn, int insn_len) 7479 { 7480 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7481 insn, insn_len); 7482 } 7483 7484 int handle_ud(struct kvm_vcpu *vcpu) 7485 { 7486 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7487 int fep_flags = READ_ONCE(force_emulation_prefix); 7488 int emul_type = EMULTYPE_TRAP_UD; 7489 char sig[5]; /* ud2; .ascii "kvm" */ 7490 struct x86_exception e; 7491 7492 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7493 return 1; 7494 7495 if (fep_flags && 7496 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7497 sig, sizeof(sig), &e) == 0 && 7498 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7499 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7500 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7501 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7502 emul_type = EMULTYPE_TRAP_UD_FORCED; 7503 } 7504 7505 return kvm_emulate_instruction(vcpu, emul_type); 7506 } 7507 EXPORT_SYMBOL_GPL(handle_ud); 7508 7509 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7510 gpa_t gpa, bool write) 7511 { 7512 /* For APIC access vmexit */ 7513 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7514 return 1; 7515 7516 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7517 trace_vcpu_match_mmio(gva, gpa, write, true); 7518 return 1; 7519 } 7520 7521 return 0; 7522 } 7523 7524 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7525 gpa_t *gpa, struct x86_exception *exception, 7526 bool write) 7527 { 7528 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7529 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7530 | (write ? PFERR_WRITE_MASK : 0); 7531 7532 /* 7533 * currently PKRU is only applied to ept enabled guest so 7534 * there is no pkey in EPT page table for L1 guest or EPT 7535 * shadow page table for L2 guest. 7536 */ 7537 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7538 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7539 vcpu->arch.mmio_access, 0, access))) { 7540 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7541 (gva & (PAGE_SIZE - 1)); 7542 trace_vcpu_match_mmio(gva, *gpa, write, false); 7543 return 1; 7544 } 7545 7546 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7547 7548 if (*gpa == INVALID_GPA) 7549 return -1; 7550 7551 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7552 } 7553 7554 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7555 const void *val, int bytes) 7556 { 7557 int ret; 7558 7559 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7560 if (ret < 0) 7561 return 0; 7562 kvm_page_track_write(vcpu, gpa, val, bytes); 7563 return 1; 7564 } 7565 7566 struct read_write_emulator_ops { 7567 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7568 int bytes); 7569 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7570 void *val, int bytes); 7571 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7572 int bytes, void *val); 7573 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7574 void *val, int bytes); 7575 bool write; 7576 }; 7577 7578 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7579 { 7580 if (vcpu->mmio_read_completed) { 7581 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7582 vcpu->mmio_fragments[0].gpa, val); 7583 vcpu->mmio_read_completed = 0; 7584 return 1; 7585 } 7586 7587 return 0; 7588 } 7589 7590 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7591 void *val, int bytes) 7592 { 7593 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7594 } 7595 7596 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7597 void *val, int bytes) 7598 { 7599 return emulator_write_phys(vcpu, gpa, val, bytes); 7600 } 7601 7602 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7603 { 7604 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7605 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7606 } 7607 7608 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7609 void *val, int bytes) 7610 { 7611 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7612 return X86EMUL_IO_NEEDED; 7613 } 7614 7615 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7616 void *val, int bytes) 7617 { 7618 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7619 7620 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7621 return X86EMUL_CONTINUE; 7622 } 7623 7624 static const struct read_write_emulator_ops read_emultor = { 7625 .read_write_prepare = read_prepare, 7626 .read_write_emulate = read_emulate, 7627 .read_write_mmio = vcpu_mmio_read, 7628 .read_write_exit_mmio = read_exit_mmio, 7629 }; 7630 7631 static const struct read_write_emulator_ops write_emultor = { 7632 .read_write_emulate = write_emulate, 7633 .read_write_mmio = write_mmio, 7634 .read_write_exit_mmio = write_exit_mmio, 7635 .write = true, 7636 }; 7637 7638 static int emulator_read_write_onepage(unsigned long addr, void *val, 7639 unsigned int bytes, 7640 struct x86_exception *exception, 7641 struct kvm_vcpu *vcpu, 7642 const struct read_write_emulator_ops *ops) 7643 { 7644 gpa_t gpa; 7645 int handled, ret; 7646 bool write = ops->write; 7647 struct kvm_mmio_fragment *frag; 7648 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7649 7650 /* 7651 * If the exit was due to a NPF we may already have a GPA. 7652 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7653 * Note, this cannot be used on string operations since string 7654 * operation using rep will only have the initial GPA from the NPF 7655 * occurred. 7656 */ 7657 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7658 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7659 gpa = ctxt->gpa_val; 7660 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7661 } else { 7662 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7663 if (ret < 0) 7664 return X86EMUL_PROPAGATE_FAULT; 7665 } 7666 7667 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7668 return X86EMUL_CONTINUE; 7669 7670 /* 7671 * Is this MMIO handled locally? 7672 */ 7673 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7674 if (handled == bytes) 7675 return X86EMUL_CONTINUE; 7676 7677 gpa += handled; 7678 bytes -= handled; 7679 val += handled; 7680 7681 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7682 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7683 frag->gpa = gpa; 7684 frag->data = val; 7685 frag->len = bytes; 7686 return X86EMUL_CONTINUE; 7687 } 7688 7689 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7690 unsigned long addr, 7691 void *val, unsigned int bytes, 7692 struct x86_exception *exception, 7693 const struct read_write_emulator_ops *ops) 7694 { 7695 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7696 gpa_t gpa; 7697 int rc; 7698 7699 if (ops->read_write_prepare && 7700 ops->read_write_prepare(vcpu, val, bytes)) 7701 return X86EMUL_CONTINUE; 7702 7703 vcpu->mmio_nr_fragments = 0; 7704 7705 /* Crossing a page boundary? */ 7706 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7707 int now; 7708 7709 now = -addr & ~PAGE_MASK; 7710 rc = emulator_read_write_onepage(addr, val, now, exception, 7711 vcpu, ops); 7712 7713 if (rc != X86EMUL_CONTINUE) 7714 return rc; 7715 addr += now; 7716 if (ctxt->mode != X86EMUL_MODE_PROT64) 7717 addr = (u32)addr; 7718 val += now; 7719 bytes -= now; 7720 } 7721 7722 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7723 vcpu, ops); 7724 if (rc != X86EMUL_CONTINUE) 7725 return rc; 7726 7727 if (!vcpu->mmio_nr_fragments) 7728 return rc; 7729 7730 gpa = vcpu->mmio_fragments[0].gpa; 7731 7732 vcpu->mmio_needed = 1; 7733 vcpu->mmio_cur_fragment = 0; 7734 7735 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7736 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7737 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7738 vcpu->run->mmio.phys_addr = gpa; 7739 7740 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7741 } 7742 7743 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7744 unsigned long addr, 7745 void *val, 7746 unsigned int bytes, 7747 struct x86_exception *exception) 7748 { 7749 return emulator_read_write(ctxt, addr, val, bytes, 7750 exception, &read_emultor); 7751 } 7752 7753 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7754 unsigned long addr, 7755 const void *val, 7756 unsigned int bytes, 7757 struct x86_exception *exception) 7758 { 7759 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7760 exception, &write_emultor); 7761 } 7762 7763 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7764 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7765 7766 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7767 unsigned long addr, 7768 const void *old, 7769 const void *new, 7770 unsigned int bytes, 7771 struct x86_exception *exception) 7772 { 7773 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7774 u64 page_line_mask; 7775 unsigned long hva; 7776 gpa_t gpa; 7777 int r; 7778 7779 /* guests cmpxchg8b have to be emulated atomically */ 7780 if (bytes > 8 || (bytes & (bytes - 1))) 7781 goto emul_write; 7782 7783 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7784 7785 if (gpa == INVALID_GPA || 7786 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7787 goto emul_write; 7788 7789 /* 7790 * Emulate the atomic as a straight write to avoid #AC if SLD is 7791 * enabled in the host and the access splits a cache line. 7792 */ 7793 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7794 page_line_mask = ~(cache_line_size() - 1); 7795 else 7796 page_line_mask = PAGE_MASK; 7797 7798 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7799 goto emul_write; 7800 7801 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7802 if (kvm_is_error_hva(hva)) 7803 goto emul_write; 7804 7805 hva += offset_in_page(gpa); 7806 7807 switch (bytes) { 7808 case 1: 7809 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7810 break; 7811 case 2: 7812 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7813 break; 7814 case 4: 7815 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7816 break; 7817 case 8: 7818 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7819 break; 7820 default: 7821 BUG(); 7822 } 7823 7824 if (r < 0) 7825 return X86EMUL_UNHANDLEABLE; 7826 if (r) 7827 return X86EMUL_CMPXCHG_FAILED; 7828 7829 kvm_page_track_write(vcpu, gpa, new, bytes); 7830 7831 return X86EMUL_CONTINUE; 7832 7833 emul_write: 7834 pr_warn_once("emulating exchange as write\n"); 7835 7836 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7837 } 7838 7839 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7840 unsigned short port, void *data, 7841 unsigned int count, bool in) 7842 { 7843 unsigned i; 7844 int r; 7845 7846 WARN_ON_ONCE(vcpu->arch.pio.count); 7847 for (i = 0; i < count; i++) { 7848 if (in) 7849 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7850 else 7851 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7852 7853 if (r) { 7854 if (i == 0) 7855 goto userspace_io; 7856 7857 /* 7858 * Userspace must have unregistered the device while PIO 7859 * was running. Drop writes / read as 0. 7860 */ 7861 if (in) 7862 memset(data, 0, size * (count - i)); 7863 break; 7864 } 7865 7866 data += size; 7867 } 7868 return 1; 7869 7870 userspace_io: 7871 vcpu->arch.pio.port = port; 7872 vcpu->arch.pio.in = in; 7873 vcpu->arch.pio.count = count; 7874 vcpu->arch.pio.size = size; 7875 7876 if (in) 7877 memset(vcpu->arch.pio_data, 0, size * count); 7878 else 7879 memcpy(vcpu->arch.pio_data, data, size * count); 7880 7881 vcpu->run->exit_reason = KVM_EXIT_IO; 7882 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7883 vcpu->run->io.size = size; 7884 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7885 vcpu->run->io.count = count; 7886 vcpu->run->io.port = port; 7887 return 0; 7888 } 7889 7890 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7891 unsigned short port, void *val, unsigned int count) 7892 { 7893 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7894 if (r) 7895 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7896 7897 return r; 7898 } 7899 7900 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7901 { 7902 int size = vcpu->arch.pio.size; 7903 unsigned int count = vcpu->arch.pio.count; 7904 memcpy(val, vcpu->arch.pio_data, size * count); 7905 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7906 vcpu->arch.pio.count = 0; 7907 } 7908 7909 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7910 int size, unsigned short port, void *val, 7911 unsigned int count) 7912 { 7913 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7914 if (vcpu->arch.pio.count) { 7915 /* 7916 * Complete a previous iteration that required userspace I/O. 7917 * Note, @count isn't guaranteed to match pio.count as userspace 7918 * can modify ECX before rerunning the vCPU. Ignore any such 7919 * shenanigans as KVM doesn't support modifying the rep count, 7920 * and the emulator ensures @count doesn't overflow the buffer. 7921 */ 7922 complete_emulator_pio_in(vcpu, val); 7923 return 1; 7924 } 7925 7926 return emulator_pio_in(vcpu, size, port, val, count); 7927 } 7928 7929 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7930 unsigned short port, const void *val, 7931 unsigned int count) 7932 { 7933 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7934 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7935 } 7936 7937 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7938 int size, unsigned short port, 7939 const void *val, unsigned int count) 7940 { 7941 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7942 } 7943 7944 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7945 { 7946 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7947 } 7948 7949 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7950 { 7951 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7952 } 7953 7954 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7955 { 7956 if (!need_emulate_wbinvd(vcpu)) 7957 return X86EMUL_CONTINUE; 7958 7959 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7960 int cpu = get_cpu(); 7961 7962 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7963 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7964 wbinvd_ipi, NULL, 1); 7965 put_cpu(); 7966 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7967 } else 7968 wbinvd(); 7969 return X86EMUL_CONTINUE; 7970 } 7971 7972 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7973 { 7974 kvm_emulate_wbinvd_noskip(vcpu); 7975 return kvm_skip_emulated_instruction(vcpu); 7976 } 7977 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7978 7979 7980 7981 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7982 { 7983 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7984 } 7985 7986 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7987 unsigned long *dest) 7988 { 7989 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7990 } 7991 7992 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7993 unsigned long value) 7994 { 7995 7996 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7997 } 7998 7999 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8000 { 8001 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8002 } 8003 8004 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8005 { 8006 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8007 unsigned long value; 8008 8009 switch (cr) { 8010 case 0: 8011 value = kvm_read_cr0(vcpu); 8012 break; 8013 case 2: 8014 value = vcpu->arch.cr2; 8015 break; 8016 case 3: 8017 value = kvm_read_cr3(vcpu); 8018 break; 8019 case 4: 8020 value = kvm_read_cr4(vcpu); 8021 break; 8022 case 8: 8023 value = kvm_get_cr8(vcpu); 8024 break; 8025 default: 8026 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8027 return 0; 8028 } 8029 8030 return value; 8031 } 8032 8033 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8034 { 8035 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8036 int res = 0; 8037 8038 switch (cr) { 8039 case 0: 8040 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8041 break; 8042 case 2: 8043 vcpu->arch.cr2 = val; 8044 break; 8045 case 3: 8046 res = kvm_set_cr3(vcpu, val); 8047 break; 8048 case 4: 8049 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8050 break; 8051 case 8: 8052 res = kvm_set_cr8(vcpu, val); 8053 break; 8054 default: 8055 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8056 res = -1; 8057 } 8058 8059 return res; 8060 } 8061 8062 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8063 { 8064 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8065 } 8066 8067 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8068 { 8069 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8070 } 8071 8072 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8073 { 8074 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8075 } 8076 8077 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8078 { 8079 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8080 } 8081 8082 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8083 { 8084 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8085 } 8086 8087 static unsigned long emulator_get_cached_segment_base( 8088 struct x86_emulate_ctxt *ctxt, int seg) 8089 { 8090 return get_segment_base(emul_to_vcpu(ctxt), seg); 8091 } 8092 8093 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8094 struct desc_struct *desc, u32 *base3, 8095 int seg) 8096 { 8097 struct kvm_segment var; 8098 8099 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8100 *selector = var.selector; 8101 8102 if (var.unusable) { 8103 memset(desc, 0, sizeof(*desc)); 8104 if (base3) 8105 *base3 = 0; 8106 return false; 8107 } 8108 8109 if (var.g) 8110 var.limit >>= 12; 8111 set_desc_limit(desc, var.limit); 8112 set_desc_base(desc, (unsigned long)var.base); 8113 #ifdef CONFIG_X86_64 8114 if (base3) 8115 *base3 = var.base >> 32; 8116 #endif 8117 desc->type = var.type; 8118 desc->s = var.s; 8119 desc->dpl = var.dpl; 8120 desc->p = var.present; 8121 desc->avl = var.avl; 8122 desc->l = var.l; 8123 desc->d = var.db; 8124 desc->g = var.g; 8125 8126 return true; 8127 } 8128 8129 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8130 struct desc_struct *desc, u32 base3, 8131 int seg) 8132 { 8133 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8134 struct kvm_segment var; 8135 8136 var.selector = selector; 8137 var.base = get_desc_base(desc); 8138 #ifdef CONFIG_X86_64 8139 var.base |= ((u64)base3) << 32; 8140 #endif 8141 var.limit = get_desc_limit(desc); 8142 if (desc->g) 8143 var.limit = (var.limit << 12) | 0xfff; 8144 var.type = desc->type; 8145 var.dpl = desc->dpl; 8146 var.db = desc->d; 8147 var.s = desc->s; 8148 var.l = desc->l; 8149 var.g = desc->g; 8150 var.avl = desc->avl; 8151 var.present = desc->p; 8152 var.unusable = !var.present; 8153 var.padding = 0; 8154 8155 kvm_set_segment(vcpu, &var, seg); 8156 return; 8157 } 8158 8159 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8160 u32 msr_index, u64 *pdata) 8161 { 8162 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8163 int r; 8164 8165 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8166 if (r < 0) 8167 return X86EMUL_UNHANDLEABLE; 8168 8169 if (r) { 8170 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8171 complete_emulated_rdmsr, r)) 8172 return X86EMUL_IO_NEEDED; 8173 8174 trace_kvm_msr_read_ex(msr_index); 8175 return X86EMUL_PROPAGATE_FAULT; 8176 } 8177 8178 trace_kvm_msr_read(msr_index, *pdata); 8179 return X86EMUL_CONTINUE; 8180 } 8181 8182 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8183 u32 msr_index, u64 data) 8184 { 8185 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8186 int r; 8187 8188 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8189 if (r < 0) 8190 return X86EMUL_UNHANDLEABLE; 8191 8192 if (r) { 8193 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8194 complete_emulated_msr_access, r)) 8195 return X86EMUL_IO_NEEDED; 8196 8197 trace_kvm_msr_write_ex(msr_index, data); 8198 return X86EMUL_PROPAGATE_FAULT; 8199 } 8200 8201 trace_kvm_msr_write(msr_index, data); 8202 return X86EMUL_CONTINUE; 8203 } 8204 8205 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8206 u32 msr_index, u64 *pdata) 8207 { 8208 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8209 } 8210 8211 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8212 u32 pmc) 8213 { 8214 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8215 return 0; 8216 return -EINVAL; 8217 } 8218 8219 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8220 u32 pmc, u64 *pdata) 8221 { 8222 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8223 } 8224 8225 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8226 { 8227 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8228 } 8229 8230 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8231 struct x86_instruction_info *info, 8232 enum x86_intercept_stage stage) 8233 { 8234 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8235 &ctxt->exception); 8236 } 8237 8238 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8239 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8240 bool exact_only) 8241 { 8242 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8243 } 8244 8245 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8246 { 8247 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8248 } 8249 8250 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8251 { 8252 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8253 } 8254 8255 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8256 { 8257 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8258 } 8259 8260 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8261 { 8262 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8263 } 8264 8265 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8266 { 8267 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8268 } 8269 8270 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8271 { 8272 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8273 } 8274 8275 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8276 { 8277 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8278 } 8279 8280 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8281 { 8282 return is_smm(emul_to_vcpu(ctxt)); 8283 } 8284 8285 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8286 { 8287 return is_guest_mode(emul_to_vcpu(ctxt)); 8288 } 8289 8290 #ifndef CONFIG_KVM_SMM 8291 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8292 { 8293 WARN_ON_ONCE(1); 8294 return X86EMUL_UNHANDLEABLE; 8295 } 8296 #endif 8297 8298 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8299 { 8300 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8301 } 8302 8303 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8304 { 8305 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8306 } 8307 8308 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8309 { 8310 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8311 8312 if (!kvm->vm_bugged) 8313 kvm_vm_bugged(kvm); 8314 } 8315 8316 static const struct x86_emulate_ops emulate_ops = { 8317 .vm_bugged = emulator_vm_bugged, 8318 .read_gpr = emulator_read_gpr, 8319 .write_gpr = emulator_write_gpr, 8320 .read_std = emulator_read_std, 8321 .write_std = emulator_write_std, 8322 .fetch = kvm_fetch_guest_virt, 8323 .read_emulated = emulator_read_emulated, 8324 .write_emulated = emulator_write_emulated, 8325 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8326 .invlpg = emulator_invlpg, 8327 .pio_in_emulated = emulator_pio_in_emulated, 8328 .pio_out_emulated = emulator_pio_out_emulated, 8329 .get_segment = emulator_get_segment, 8330 .set_segment = emulator_set_segment, 8331 .get_cached_segment_base = emulator_get_cached_segment_base, 8332 .get_gdt = emulator_get_gdt, 8333 .get_idt = emulator_get_idt, 8334 .set_gdt = emulator_set_gdt, 8335 .set_idt = emulator_set_idt, 8336 .get_cr = emulator_get_cr, 8337 .set_cr = emulator_set_cr, 8338 .cpl = emulator_get_cpl, 8339 .get_dr = emulator_get_dr, 8340 .set_dr = emulator_set_dr, 8341 .set_msr_with_filter = emulator_set_msr_with_filter, 8342 .get_msr_with_filter = emulator_get_msr_with_filter, 8343 .get_msr = emulator_get_msr, 8344 .check_pmc = emulator_check_pmc, 8345 .read_pmc = emulator_read_pmc, 8346 .halt = emulator_halt, 8347 .wbinvd = emulator_wbinvd, 8348 .fix_hypercall = emulator_fix_hypercall, 8349 .intercept = emulator_intercept, 8350 .get_cpuid = emulator_get_cpuid, 8351 .guest_has_long_mode = emulator_guest_has_long_mode, 8352 .guest_has_movbe = emulator_guest_has_movbe, 8353 .guest_has_fxsr = emulator_guest_has_fxsr, 8354 .guest_has_rdpid = emulator_guest_has_rdpid, 8355 .set_nmi_mask = emulator_set_nmi_mask, 8356 .is_smm = emulator_is_smm, 8357 .is_guest_mode = emulator_is_guest_mode, 8358 .leave_smm = emulator_leave_smm, 8359 .triple_fault = emulator_triple_fault, 8360 .set_xcr = emulator_set_xcr, 8361 }; 8362 8363 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8364 { 8365 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8366 /* 8367 * an sti; sti; sequence only disable interrupts for the first 8368 * instruction. So, if the last instruction, be it emulated or 8369 * not, left the system with the INT_STI flag enabled, it 8370 * means that the last instruction is an sti. We should not 8371 * leave the flag on in this case. The same goes for mov ss 8372 */ 8373 if (int_shadow & mask) 8374 mask = 0; 8375 if (unlikely(int_shadow || mask)) { 8376 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8377 if (!mask) 8378 kvm_make_request(KVM_REQ_EVENT, vcpu); 8379 } 8380 } 8381 8382 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8383 { 8384 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8385 8386 if (ctxt->exception.vector == PF_VECTOR) 8387 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8388 else if (ctxt->exception.error_code_valid) 8389 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8390 ctxt->exception.error_code); 8391 else 8392 kvm_queue_exception(vcpu, ctxt->exception.vector); 8393 } 8394 8395 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8396 { 8397 struct x86_emulate_ctxt *ctxt; 8398 8399 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8400 if (!ctxt) { 8401 pr_err("failed to allocate vcpu's emulator\n"); 8402 return NULL; 8403 } 8404 8405 ctxt->vcpu = vcpu; 8406 ctxt->ops = &emulate_ops; 8407 vcpu->arch.emulate_ctxt = ctxt; 8408 8409 return ctxt; 8410 } 8411 8412 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8413 { 8414 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8415 int cs_db, cs_l; 8416 8417 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8418 8419 ctxt->gpa_available = false; 8420 ctxt->eflags = kvm_get_rflags(vcpu); 8421 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8422 8423 ctxt->eip = kvm_rip_read(vcpu); 8424 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8425 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8426 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8427 cs_db ? X86EMUL_MODE_PROT32 : 8428 X86EMUL_MODE_PROT16; 8429 ctxt->interruptibility = 0; 8430 ctxt->have_exception = false; 8431 ctxt->exception.vector = -1; 8432 ctxt->perm_ok = false; 8433 8434 init_decode_cache(ctxt); 8435 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8436 } 8437 8438 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8439 { 8440 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8441 int ret; 8442 8443 init_emulate_ctxt(vcpu); 8444 8445 ctxt->op_bytes = 2; 8446 ctxt->ad_bytes = 2; 8447 ctxt->_eip = ctxt->eip + inc_eip; 8448 ret = emulate_int_real(ctxt, irq); 8449 8450 if (ret != X86EMUL_CONTINUE) { 8451 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8452 } else { 8453 ctxt->eip = ctxt->_eip; 8454 kvm_rip_write(vcpu, ctxt->eip); 8455 kvm_set_rflags(vcpu, ctxt->eflags); 8456 } 8457 } 8458 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8459 8460 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8461 u8 ndata, u8 *insn_bytes, u8 insn_size) 8462 { 8463 struct kvm_run *run = vcpu->run; 8464 u64 info[5]; 8465 u8 info_start; 8466 8467 /* 8468 * Zero the whole array used to retrieve the exit info, as casting to 8469 * u32 for select entries will leave some chunks uninitialized. 8470 */ 8471 memset(&info, 0, sizeof(info)); 8472 8473 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8474 &info[2], (u32 *)&info[3], 8475 (u32 *)&info[4]); 8476 8477 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8478 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8479 8480 /* 8481 * There's currently space for 13 entries, but 5 are used for the exit 8482 * reason and info. Restrict to 4 to reduce the maintenance burden 8483 * when expanding kvm_run.emulation_failure in the future. 8484 */ 8485 if (WARN_ON_ONCE(ndata > 4)) 8486 ndata = 4; 8487 8488 /* Always include the flags as a 'data' entry. */ 8489 info_start = 1; 8490 run->emulation_failure.flags = 0; 8491 8492 if (insn_size) { 8493 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8494 sizeof(run->emulation_failure.insn_bytes) != 16)); 8495 info_start += 2; 8496 run->emulation_failure.flags |= 8497 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8498 run->emulation_failure.insn_size = insn_size; 8499 memset(run->emulation_failure.insn_bytes, 0x90, 8500 sizeof(run->emulation_failure.insn_bytes)); 8501 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8502 } 8503 8504 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8505 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8506 ndata * sizeof(data[0])); 8507 8508 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8509 } 8510 8511 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8512 { 8513 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8514 8515 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8516 ctxt->fetch.end - ctxt->fetch.data); 8517 } 8518 8519 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8520 u8 ndata) 8521 { 8522 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8523 } 8524 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8525 8526 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8527 { 8528 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8529 } 8530 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8531 8532 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8533 { 8534 struct kvm *kvm = vcpu->kvm; 8535 8536 ++vcpu->stat.insn_emulation_fail; 8537 trace_kvm_emulate_insn_failed(vcpu); 8538 8539 if (emulation_type & EMULTYPE_VMWARE_GP) { 8540 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8541 return 1; 8542 } 8543 8544 if (kvm->arch.exit_on_emulation_error || 8545 (emulation_type & EMULTYPE_SKIP)) { 8546 prepare_emulation_ctxt_failure_exit(vcpu); 8547 return 0; 8548 } 8549 8550 kvm_queue_exception(vcpu, UD_VECTOR); 8551 8552 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8553 prepare_emulation_ctxt_failure_exit(vcpu); 8554 return 0; 8555 } 8556 8557 return 1; 8558 } 8559 8560 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8561 int emulation_type) 8562 { 8563 gpa_t gpa = cr2_or_gpa; 8564 kvm_pfn_t pfn; 8565 8566 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8567 return false; 8568 8569 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8570 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8571 return false; 8572 8573 if (!vcpu->arch.mmu->root_role.direct) { 8574 /* 8575 * Write permission should be allowed since only 8576 * write access need to be emulated. 8577 */ 8578 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8579 8580 /* 8581 * If the mapping is invalid in guest, let cpu retry 8582 * it to generate fault. 8583 */ 8584 if (gpa == INVALID_GPA) 8585 return true; 8586 } 8587 8588 /* 8589 * Do not retry the unhandleable instruction if it faults on the 8590 * readonly host memory, otherwise it will goto a infinite loop: 8591 * retry instruction -> write #PF -> emulation fail -> retry 8592 * instruction -> ... 8593 */ 8594 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8595 8596 /* 8597 * If the instruction failed on the error pfn, it can not be fixed, 8598 * report the error to userspace. 8599 */ 8600 if (is_error_noslot_pfn(pfn)) 8601 return false; 8602 8603 kvm_release_pfn_clean(pfn); 8604 8605 /* The instructions are well-emulated on direct mmu. */ 8606 if (vcpu->arch.mmu->root_role.direct) { 8607 unsigned int indirect_shadow_pages; 8608 8609 write_lock(&vcpu->kvm->mmu_lock); 8610 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8611 write_unlock(&vcpu->kvm->mmu_lock); 8612 8613 if (indirect_shadow_pages) 8614 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8615 8616 return true; 8617 } 8618 8619 /* 8620 * if emulation was due to access to shadowed page table 8621 * and it failed try to unshadow page and re-enter the 8622 * guest to let CPU execute the instruction. 8623 */ 8624 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8625 8626 /* 8627 * If the access faults on its page table, it can not 8628 * be fixed by unprotecting shadow page and it should 8629 * be reported to userspace. 8630 */ 8631 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8632 } 8633 8634 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8635 gpa_t cr2_or_gpa, int emulation_type) 8636 { 8637 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8638 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8639 8640 last_retry_eip = vcpu->arch.last_retry_eip; 8641 last_retry_addr = vcpu->arch.last_retry_addr; 8642 8643 /* 8644 * If the emulation is caused by #PF and it is non-page_table 8645 * writing instruction, it means the VM-EXIT is caused by shadow 8646 * page protected, we can zap the shadow page and retry this 8647 * instruction directly. 8648 * 8649 * Note: if the guest uses a non-page-table modifying instruction 8650 * on the PDE that points to the instruction, then we will unmap 8651 * the instruction and go to an infinite loop. So, we cache the 8652 * last retried eip and the last fault address, if we meet the eip 8653 * and the address again, we can break out of the potential infinite 8654 * loop. 8655 */ 8656 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8657 8658 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8659 return false; 8660 8661 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8662 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8663 return false; 8664 8665 if (x86_page_table_writing_insn(ctxt)) 8666 return false; 8667 8668 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8669 return false; 8670 8671 vcpu->arch.last_retry_eip = ctxt->eip; 8672 vcpu->arch.last_retry_addr = cr2_or_gpa; 8673 8674 if (!vcpu->arch.mmu->root_role.direct) 8675 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8676 8677 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8678 8679 return true; 8680 } 8681 8682 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8683 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8684 8685 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8686 unsigned long *db) 8687 { 8688 u32 dr6 = 0; 8689 int i; 8690 u32 enable, rwlen; 8691 8692 enable = dr7; 8693 rwlen = dr7 >> 16; 8694 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8695 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8696 dr6 |= (1 << i); 8697 return dr6; 8698 } 8699 8700 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8701 { 8702 struct kvm_run *kvm_run = vcpu->run; 8703 8704 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8705 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8706 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8707 kvm_run->debug.arch.exception = DB_VECTOR; 8708 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8709 return 0; 8710 } 8711 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8712 return 1; 8713 } 8714 8715 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8716 { 8717 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8718 int r; 8719 8720 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8721 if (unlikely(!r)) 8722 return 0; 8723 8724 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8725 8726 /* 8727 * rflags is the old, "raw" value of the flags. The new value has 8728 * not been saved yet. 8729 * 8730 * This is correct even for TF set by the guest, because "the 8731 * processor will not generate this exception after the instruction 8732 * that sets the TF flag". 8733 */ 8734 if (unlikely(rflags & X86_EFLAGS_TF)) 8735 r = kvm_vcpu_do_singlestep(vcpu); 8736 return r; 8737 } 8738 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8739 8740 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8741 { 8742 u32 shadow; 8743 8744 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8745 return true; 8746 8747 /* 8748 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8749 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8750 * to avoid the relatively expensive CPUID lookup. 8751 */ 8752 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8753 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8754 guest_cpuid_is_intel(vcpu); 8755 } 8756 8757 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8758 int emulation_type, int *r) 8759 { 8760 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8761 8762 /* 8763 * Do not check for code breakpoints if hardware has already done the 8764 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8765 * the instruction has passed all exception checks, and all intercepted 8766 * exceptions that trigger emulation have lower priority than code 8767 * breakpoints, i.e. the fact that the intercepted exception occurred 8768 * means any code breakpoints have already been serviced. 8769 * 8770 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8771 * hardware has checked the RIP of the magic prefix, but not the RIP of 8772 * the instruction being emulated. The intent of forced emulation is 8773 * to behave as if KVM intercepted the instruction without an exception 8774 * and without a prefix. 8775 */ 8776 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8777 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8778 return false; 8779 8780 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8781 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8782 struct kvm_run *kvm_run = vcpu->run; 8783 unsigned long eip = kvm_get_linear_rip(vcpu); 8784 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8785 vcpu->arch.guest_debug_dr7, 8786 vcpu->arch.eff_db); 8787 8788 if (dr6 != 0) { 8789 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8790 kvm_run->debug.arch.pc = eip; 8791 kvm_run->debug.arch.exception = DB_VECTOR; 8792 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8793 *r = 0; 8794 return true; 8795 } 8796 } 8797 8798 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8799 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8800 unsigned long eip = kvm_get_linear_rip(vcpu); 8801 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8802 vcpu->arch.dr7, 8803 vcpu->arch.db); 8804 8805 if (dr6 != 0) { 8806 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8807 *r = 1; 8808 return true; 8809 } 8810 } 8811 8812 return false; 8813 } 8814 8815 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8816 { 8817 switch (ctxt->opcode_len) { 8818 case 1: 8819 switch (ctxt->b) { 8820 case 0xe4: /* IN */ 8821 case 0xe5: 8822 case 0xec: 8823 case 0xed: 8824 case 0xe6: /* OUT */ 8825 case 0xe7: 8826 case 0xee: 8827 case 0xef: 8828 case 0x6c: /* INS */ 8829 case 0x6d: 8830 case 0x6e: /* OUTS */ 8831 case 0x6f: 8832 return true; 8833 } 8834 break; 8835 case 2: 8836 switch (ctxt->b) { 8837 case 0x33: /* RDPMC */ 8838 return true; 8839 } 8840 break; 8841 } 8842 8843 return false; 8844 } 8845 8846 /* 8847 * Decode an instruction for emulation. The caller is responsible for handling 8848 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8849 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8850 * code breakpoints have higher priority and thus have already been done by 8851 * hardware. 8852 * 8853 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8854 * response to a machine check. 8855 */ 8856 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8857 void *insn, int insn_len) 8858 { 8859 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8860 int r; 8861 8862 init_emulate_ctxt(vcpu); 8863 8864 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8865 8866 trace_kvm_emulate_insn_start(vcpu); 8867 ++vcpu->stat.insn_emulation; 8868 8869 return r; 8870 } 8871 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8872 8873 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8874 int emulation_type, void *insn, int insn_len) 8875 { 8876 int r; 8877 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8878 bool writeback = true; 8879 8880 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8881 return 1; 8882 8883 vcpu->arch.l1tf_flush_l1d = true; 8884 8885 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8886 kvm_clear_exception_queue(vcpu); 8887 8888 /* 8889 * Return immediately if RIP hits a code breakpoint, such #DBs 8890 * are fault-like and are higher priority than any faults on 8891 * the code fetch itself. 8892 */ 8893 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8894 return r; 8895 8896 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8897 insn, insn_len); 8898 if (r != EMULATION_OK) { 8899 if ((emulation_type & EMULTYPE_TRAP_UD) || 8900 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8901 kvm_queue_exception(vcpu, UD_VECTOR); 8902 return 1; 8903 } 8904 if (reexecute_instruction(vcpu, cr2_or_gpa, 8905 emulation_type)) 8906 return 1; 8907 8908 if (ctxt->have_exception && 8909 !(emulation_type & EMULTYPE_SKIP)) { 8910 /* 8911 * #UD should result in just EMULATION_FAILED, and trap-like 8912 * exception should not be encountered during decode. 8913 */ 8914 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8915 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8916 inject_emulated_exception(vcpu); 8917 return 1; 8918 } 8919 return handle_emulation_failure(vcpu, emulation_type); 8920 } 8921 } 8922 8923 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8924 !is_vmware_backdoor_opcode(ctxt)) { 8925 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8926 return 1; 8927 } 8928 8929 /* 8930 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8931 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8932 * The caller is responsible for updating interruptibility state and 8933 * injecting single-step #DBs. 8934 */ 8935 if (emulation_type & EMULTYPE_SKIP) { 8936 if (ctxt->mode != X86EMUL_MODE_PROT64) 8937 ctxt->eip = (u32)ctxt->_eip; 8938 else 8939 ctxt->eip = ctxt->_eip; 8940 8941 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8942 r = 1; 8943 goto writeback; 8944 } 8945 8946 kvm_rip_write(vcpu, ctxt->eip); 8947 if (ctxt->eflags & X86_EFLAGS_RF) 8948 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8949 return 1; 8950 } 8951 8952 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8953 return 1; 8954 8955 /* this is needed for vmware backdoor interface to work since it 8956 changes registers values during IO operation */ 8957 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8958 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8959 emulator_invalidate_register_cache(ctxt); 8960 } 8961 8962 restart: 8963 if (emulation_type & EMULTYPE_PF) { 8964 /* Save the faulting GPA (cr2) in the address field */ 8965 ctxt->exception.address = cr2_or_gpa; 8966 8967 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8968 if (vcpu->arch.mmu->root_role.direct) { 8969 ctxt->gpa_available = true; 8970 ctxt->gpa_val = cr2_or_gpa; 8971 } 8972 } else { 8973 /* Sanitize the address out of an abundance of paranoia. */ 8974 ctxt->exception.address = 0; 8975 } 8976 8977 r = x86_emulate_insn(ctxt); 8978 8979 if (r == EMULATION_INTERCEPTED) 8980 return 1; 8981 8982 if (r == EMULATION_FAILED) { 8983 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 8984 return 1; 8985 8986 return handle_emulation_failure(vcpu, emulation_type); 8987 } 8988 8989 if (ctxt->have_exception) { 8990 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 8991 vcpu->mmio_needed = false; 8992 r = 1; 8993 inject_emulated_exception(vcpu); 8994 } else if (vcpu->arch.pio.count) { 8995 if (!vcpu->arch.pio.in) { 8996 /* FIXME: return into emulator if single-stepping. */ 8997 vcpu->arch.pio.count = 0; 8998 } else { 8999 writeback = false; 9000 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9001 } 9002 r = 0; 9003 } else if (vcpu->mmio_needed) { 9004 ++vcpu->stat.mmio_exits; 9005 9006 if (!vcpu->mmio_is_write) 9007 writeback = false; 9008 r = 0; 9009 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9010 } else if (vcpu->arch.complete_userspace_io) { 9011 writeback = false; 9012 r = 0; 9013 } else if (r == EMULATION_RESTART) 9014 goto restart; 9015 else 9016 r = 1; 9017 9018 writeback: 9019 if (writeback) { 9020 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 9021 toggle_interruptibility(vcpu, ctxt->interruptibility); 9022 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9023 9024 /* 9025 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9026 * only supports code breakpoints and general detect #DB, both 9027 * of which are fault-like. 9028 */ 9029 if (!ctxt->have_exception || 9030 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9031 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9032 if (ctxt->is_branch) 9033 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9034 kvm_rip_write(vcpu, ctxt->eip); 9035 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9036 r = kvm_vcpu_do_singlestep(vcpu); 9037 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9038 __kvm_set_rflags(vcpu, ctxt->eflags); 9039 } 9040 9041 /* 9042 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9043 * do nothing, and it will be requested again as soon as 9044 * the shadow expires. But we still need to check here, 9045 * because POPF has no interrupt shadow. 9046 */ 9047 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9048 kvm_make_request(KVM_REQ_EVENT, vcpu); 9049 } else 9050 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9051 9052 return r; 9053 } 9054 9055 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9056 { 9057 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9058 } 9059 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9060 9061 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9062 void *insn, int insn_len) 9063 { 9064 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9065 } 9066 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9067 9068 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9069 { 9070 vcpu->arch.pio.count = 0; 9071 return 1; 9072 } 9073 9074 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9075 { 9076 vcpu->arch.pio.count = 0; 9077 9078 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9079 return 1; 9080 9081 return kvm_skip_emulated_instruction(vcpu); 9082 } 9083 9084 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9085 unsigned short port) 9086 { 9087 unsigned long val = kvm_rax_read(vcpu); 9088 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9089 9090 if (ret) 9091 return ret; 9092 9093 /* 9094 * Workaround userspace that relies on old KVM behavior of %rip being 9095 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9096 */ 9097 if (port == 0x7e && 9098 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9099 vcpu->arch.complete_userspace_io = 9100 complete_fast_pio_out_port_0x7e; 9101 kvm_skip_emulated_instruction(vcpu); 9102 } else { 9103 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9104 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9105 } 9106 return 0; 9107 } 9108 9109 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9110 { 9111 unsigned long val; 9112 9113 /* We should only ever be called with arch.pio.count equal to 1 */ 9114 BUG_ON(vcpu->arch.pio.count != 1); 9115 9116 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9117 vcpu->arch.pio.count = 0; 9118 return 1; 9119 } 9120 9121 /* For size less than 4 we merge, else we zero extend */ 9122 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9123 9124 complete_emulator_pio_in(vcpu, &val); 9125 kvm_rax_write(vcpu, val); 9126 9127 return kvm_skip_emulated_instruction(vcpu); 9128 } 9129 9130 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9131 unsigned short port) 9132 { 9133 unsigned long val; 9134 int ret; 9135 9136 /* For size less than 4 we merge, else we zero extend */ 9137 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9138 9139 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9140 if (ret) { 9141 kvm_rax_write(vcpu, val); 9142 return ret; 9143 } 9144 9145 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9146 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9147 9148 return 0; 9149 } 9150 9151 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9152 { 9153 int ret; 9154 9155 if (in) 9156 ret = kvm_fast_pio_in(vcpu, size, port); 9157 else 9158 ret = kvm_fast_pio_out(vcpu, size, port); 9159 return ret && kvm_skip_emulated_instruction(vcpu); 9160 } 9161 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9162 9163 static int kvmclock_cpu_down_prep(unsigned int cpu) 9164 { 9165 __this_cpu_write(cpu_tsc_khz, 0); 9166 return 0; 9167 } 9168 9169 static void tsc_khz_changed(void *data) 9170 { 9171 struct cpufreq_freqs *freq = data; 9172 unsigned long khz = 0; 9173 9174 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9175 9176 if (data) 9177 khz = freq->new; 9178 else 9179 khz = cpufreq_quick_get(raw_smp_processor_id()); 9180 if (!khz) 9181 khz = tsc_khz; 9182 __this_cpu_write(cpu_tsc_khz, khz); 9183 } 9184 9185 #ifdef CONFIG_X86_64 9186 static void kvm_hyperv_tsc_notifier(void) 9187 { 9188 struct kvm *kvm; 9189 int cpu; 9190 9191 mutex_lock(&kvm_lock); 9192 list_for_each_entry(kvm, &vm_list, vm_list) 9193 kvm_make_mclock_inprogress_request(kvm); 9194 9195 /* no guest entries from this point */ 9196 hyperv_stop_tsc_emulation(); 9197 9198 /* TSC frequency always matches when on Hyper-V */ 9199 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9200 for_each_present_cpu(cpu) 9201 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9202 } 9203 kvm_caps.max_guest_tsc_khz = tsc_khz; 9204 9205 list_for_each_entry(kvm, &vm_list, vm_list) { 9206 __kvm_start_pvclock_update(kvm); 9207 pvclock_update_vm_gtod_copy(kvm); 9208 kvm_end_pvclock_update(kvm); 9209 } 9210 9211 mutex_unlock(&kvm_lock); 9212 } 9213 #endif 9214 9215 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9216 { 9217 struct kvm *kvm; 9218 struct kvm_vcpu *vcpu; 9219 int send_ipi = 0; 9220 unsigned long i; 9221 9222 /* 9223 * We allow guests to temporarily run on slowing clocks, 9224 * provided we notify them after, or to run on accelerating 9225 * clocks, provided we notify them before. Thus time never 9226 * goes backwards. 9227 * 9228 * However, we have a problem. We can't atomically update 9229 * the frequency of a given CPU from this function; it is 9230 * merely a notifier, which can be called from any CPU. 9231 * Changing the TSC frequency at arbitrary points in time 9232 * requires a recomputation of local variables related to 9233 * the TSC for each VCPU. We must flag these local variables 9234 * to be updated and be sure the update takes place with the 9235 * new frequency before any guests proceed. 9236 * 9237 * Unfortunately, the combination of hotplug CPU and frequency 9238 * change creates an intractable locking scenario; the order 9239 * of when these callouts happen is undefined with respect to 9240 * CPU hotplug, and they can race with each other. As such, 9241 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9242 * undefined; you can actually have a CPU frequency change take 9243 * place in between the computation of X and the setting of the 9244 * variable. To protect against this problem, all updates of 9245 * the per_cpu tsc_khz variable are done in an interrupt 9246 * protected IPI, and all callers wishing to update the value 9247 * must wait for a synchronous IPI to complete (which is trivial 9248 * if the caller is on the CPU already). This establishes the 9249 * necessary total order on variable updates. 9250 * 9251 * Note that because a guest time update may take place 9252 * anytime after the setting of the VCPU's request bit, the 9253 * correct TSC value must be set before the request. However, 9254 * to ensure the update actually makes it to any guest which 9255 * starts running in hardware virtualization between the set 9256 * and the acquisition of the spinlock, we must also ping the 9257 * CPU after setting the request bit. 9258 * 9259 */ 9260 9261 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9262 9263 mutex_lock(&kvm_lock); 9264 list_for_each_entry(kvm, &vm_list, vm_list) { 9265 kvm_for_each_vcpu(i, vcpu, kvm) { 9266 if (vcpu->cpu != cpu) 9267 continue; 9268 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9269 if (vcpu->cpu != raw_smp_processor_id()) 9270 send_ipi = 1; 9271 } 9272 } 9273 mutex_unlock(&kvm_lock); 9274 9275 if (freq->old < freq->new && send_ipi) { 9276 /* 9277 * We upscale the frequency. Must make the guest 9278 * doesn't see old kvmclock values while running with 9279 * the new frequency, otherwise we risk the guest sees 9280 * time go backwards. 9281 * 9282 * In case we update the frequency for another cpu 9283 * (which might be in guest context) send an interrupt 9284 * to kick the cpu out of guest context. Next time 9285 * guest context is entered kvmclock will be updated, 9286 * so the guest will not see stale values. 9287 */ 9288 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9289 } 9290 } 9291 9292 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9293 void *data) 9294 { 9295 struct cpufreq_freqs *freq = data; 9296 int cpu; 9297 9298 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9299 return 0; 9300 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9301 return 0; 9302 9303 for_each_cpu(cpu, freq->policy->cpus) 9304 __kvmclock_cpufreq_notifier(freq, cpu); 9305 9306 return 0; 9307 } 9308 9309 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9310 .notifier_call = kvmclock_cpufreq_notifier 9311 }; 9312 9313 static int kvmclock_cpu_online(unsigned int cpu) 9314 { 9315 tsc_khz_changed(NULL); 9316 return 0; 9317 } 9318 9319 static void kvm_timer_init(void) 9320 { 9321 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9322 max_tsc_khz = tsc_khz; 9323 9324 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9325 struct cpufreq_policy *policy; 9326 int cpu; 9327 9328 cpu = get_cpu(); 9329 policy = cpufreq_cpu_get(cpu); 9330 if (policy) { 9331 if (policy->cpuinfo.max_freq) 9332 max_tsc_khz = policy->cpuinfo.max_freq; 9333 cpufreq_cpu_put(policy); 9334 } 9335 put_cpu(); 9336 } 9337 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9338 CPUFREQ_TRANSITION_NOTIFIER); 9339 9340 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9341 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9342 } 9343 } 9344 9345 #ifdef CONFIG_X86_64 9346 static void pvclock_gtod_update_fn(struct work_struct *work) 9347 { 9348 struct kvm *kvm; 9349 struct kvm_vcpu *vcpu; 9350 unsigned long i; 9351 9352 mutex_lock(&kvm_lock); 9353 list_for_each_entry(kvm, &vm_list, vm_list) 9354 kvm_for_each_vcpu(i, vcpu, kvm) 9355 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9356 atomic_set(&kvm_guest_has_master_clock, 0); 9357 mutex_unlock(&kvm_lock); 9358 } 9359 9360 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9361 9362 /* 9363 * Indirection to move queue_work() out of the tk_core.seq write held 9364 * region to prevent possible deadlocks against time accessors which 9365 * are invoked with work related locks held. 9366 */ 9367 static void pvclock_irq_work_fn(struct irq_work *w) 9368 { 9369 queue_work(system_long_wq, &pvclock_gtod_work); 9370 } 9371 9372 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9373 9374 /* 9375 * Notification about pvclock gtod data update. 9376 */ 9377 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9378 void *priv) 9379 { 9380 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9381 struct timekeeper *tk = priv; 9382 9383 update_pvclock_gtod(tk); 9384 9385 /* 9386 * Disable master clock if host does not trust, or does not use, 9387 * TSC based clocksource. Delegate queue_work() to irq_work as 9388 * this is invoked with tk_core.seq write held. 9389 */ 9390 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9391 atomic_read(&kvm_guest_has_master_clock) != 0) 9392 irq_work_queue(&pvclock_irq_work); 9393 return 0; 9394 } 9395 9396 static struct notifier_block pvclock_gtod_notifier = { 9397 .notifier_call = pvclock_gtod_notify, 9398 }; 9399 #endif 9400 9401 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9402 { 9403 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9404 9405 #define __KVM_X86_OP(func) \ 9406 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9407 #define KVM_X86_OP(func) \ 9408 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9409 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9410 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9411 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9412 (void *)__static_call_return0); 9413 #include <asm/kvm-x86-ops.h> 9414 #undef __KVM_X86_OP 9415 9416 kvm_pmu_ops_update(ops->pmu_ops); 9417 } 9418 9419 static int kvm_x86_check_processor_compatibility(void) 9420 { 9421 int cpu = smp_processor_id(); 9422 struct cpuinfo_x86 *c = &cpu_data(cpu); 9423 9424 /* 9425 * Compatibility checks are done when loading KVM and when enabling 9426 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9427 * compatible, i.e. KVM should never perform a compatibility check on 9428 * an offline CPU. 9429 */ 9430 WARN_ON(!cpu_online(cpu)); 9431 9432 if (__cr4_reserved_bits(cpu_has, c) != 9433 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9434 return -EIO; 9435 9436 return static_call(kvm_x86_check_processor_compatibility)(); 9437 } 9438 9439 static void kvm_x86_check_cpu_compat(void *ret) 9440 { 9441 *(int *)ret = kvm_x86_check_processor_compatibility(); 9442 } 9443 9444 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9445 { 9446 u64 host_pat; 9447 int r, cpu; 9448 9449 if (kvm_x86_ops.hardware_enable) { 9450 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9451 return -EEXIST; 9452 } 9453 9454 /* 9455 * KVM explicitly assumes that the guest has an FPU and 9456 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9457 * vCPU's FPU state as a fxregs_state struct. 9458 */ 9459 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9460 pr_err("inadequate fpu\n"); 9461 return -EOPNOTSUPP; 9462 } 9463 9464 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9465 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9466 return -EOPNOTSUPP; 9467 } 9468 9469 /* 9470 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9471 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9472 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9473 * with an exception. PAT[0] is set to WB on RESET and also by the 9474 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9475 */ 9476 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9477 (host_pat & GENMASK(2, 0)) != 6) { 9478 pr_err("host PAT[0] is not WB\n"); 9479 return -EIO; 9480 } 9481 9482 x86_emulator_cache = kvm_alloc_emulator_cache(); 9483 if (!x86_emulator_cache) { 9484 pr_err("failed to allocate cache for x86 emulator\n"); 9485 return -ENOMEM; 9486 } 9487 9488 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9489 if (!user_return_msrs) { 9490 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9491 r = -ENOMEM; 9492 goto out_free_x86_emulator_cache; 9493 } 9494 kvm_nr_uret_msrs = 0; 9495 9496 r = kvm_mmu_vendor_module_init(); 9497 if (r) 9498 goto out_free_percpu; 9499 9500 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9501 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9502 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9503 } 9504 9505 rdmsrl_safe(MSR_EFER, &host_efer); 9506 9507 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9508 rdmsrl(MSR_IA32_XSS, host_xss); 9509 9510 kvm_init_pmu_capability(ops->pmu_ops); 9511 9512 r = ops->hardware_setup(); 9513 if (r != 0) 9514 goto out_mmu_exit; 9515 9516 kvm_ops_update(ops); 9517 9518 for_each_online_cpu(cpu) { 9519 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9520 if (r < 0) 9521 goto out_unwind_ops; 9522 } 9523 9524 /* 9525 * Point of no return! DO NOT add error paths below this point unless 9526 * absolutely necessary, as most operations from this point forward 9527 * require unwinding. 9528 */ 9529 kvm_timer_init(); 9530 9531 if (pi_inject_timer == -1) 9532 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9533 #ifdef CONFIG_X86_64 9534 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9535 9536 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9537 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9538 #endif 9539 9540 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9541 9542 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9543 kvm_caps.supported_xss = 0; 9544 9545 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9546 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9547 #undef __kvm_cpu_cap_has 9548 9549 if (kvm_caps.has_tsc_control) { 9550 /* 9551 * Make sure the user can only configure tsc_khz values that 9552 * fit into a signed integer. 9553 * A min value is not calculated because it will always 9554 * be 1 on all machines. 9555 */ 9556 u64 max = min(0x7fffffffULL, 9557 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9558 kvm_caps.max_guest_tsc_khz = max; 9559 } 9560 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9561 kvm_init_msr_lists(); 9562 return 0; 9563 9564 out_unwind_ops: 9565 kvm_x86_ops.hardware_enable = NULL; 9566 static_call(kvm_x86_hardware_unsetup)(); 9567 out_mmu_exit: 9568 kvm_mmu_vendor_module_exit(); 9569 out_free_percpu: 9570 free_percpu(user_return_msrs); 9571 out_free_x86_emulator_cache: 9572 kmem_cache_destroy(x86_emulator_cache); 9573 return r; 9574 } 9575 9576 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9577 { 9578 int r; 9579 9580 mutex_lock(&vendor_module_lock); 9581 r = __kvm_x86_vendor_init(ops); 9582 mutex_unlock(&vendor_module_lock); 9583 9584 return r; 9585 } 9586 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9587 9588 void kvm_x86_vendor_exit(void) 9589 { 9590 kvm_unregister_perf_callbacks(); 9591 9592 #ifdef CONFIG_X86_64 9593 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9594 clear_hv_tscchange_cb(); 9595 #endif 9596 kvm_lapic_exit(); 9597 9598 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9599 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9600 CPUFREQ_TRANSITION_NOTIFIER); 9601 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9602 } 9603 #ifdef CONFIG_X86_64 9604 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9605 irq_work_sync(&pvclock_irq_work); 9606 cancel_work_sync(&pvclock_gtod_work); 9607 #endif 9608 static_call(kvm_x86_hardware_unsetup)(); 9609 kvm_mmu_vendor_module_exit(); 9610 free_percpu(user_return_msrs); 9611 kmem_cache_destroy(x86_emulator_cache); 9612 #ifdef CONFIG_KVM_XEN 9613 static_key_deferred_flush(&kvm_xen_enabled); 9614 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9615 #endif 9616 mutex_lock(&vendor_module_lock); 9617 kvm_x86_ops.hardware_enable = NULL; 9618 mutex_unlock(&vendor_module_lock); 9619 } 9620 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9621 9622 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9623 { 9624 /* 9625 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9626 * local APIC is in-kernel, the run loop will detect the non-runnable 9627 * state and halt the vCPU. Exit to userspace if the local APIC is 9628 * managed by userspace, in which case userspace is responsible for 9629 * handling wake events. 9630 */ 9631 ++vcpu->stat.halt_exits; 9632 if (lapic_in_kernel(vcpu)) { 9633 vcpu->arch.mp_state = state; 9634 return 1; 9635 } else { 9636 vcpu->run->exit_reason = reason; 9637 return 0; 9638 } 9639 } 9640 9641 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9642 { 9643 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9644 } 9645 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9646 9647 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9648 { 9649 int ret = kvm_skip_emulated_instruction(vcpu); 9650 /* 9651 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9652 * KVM_EXIT_DEBUG here. 9653 */ 9654 return kvm_emulate_halt_noskip(vcpu) && ret; 9655 } 9656 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9657 9658 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9659 { 9660 int ret = kvm_skip_emulated_instruction(vcpu); 9661 9662 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9663 KVM_EXIT_AP_RESET_HOLD) && ret; 9664 } 9665 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9666 9667 #ifdef CONFIG_X86_64 9668 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9669 unsigned long clock_type) 9670 { 9671 struct kvm_clock_pairing clock_pairing; 9672 struct timespec64 ts; 9673 u64 cycle; 9674 int ret; 9675 9676 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9677 return -KVM_EOPNOTSUPP; 9678 9679 /* 9680 * When tsc is in permanent catchup mode guests won't be able to use 9681 * pvclock_read_retry loop to get consistent view of pvclock 9682 */ 9683 if (vcpu->arch.tsc_always_catchup) 9684 return -KVM_EOPNOTSUPP; 9685 9686 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9687 return -KVM_EOPNOTSUPP; 9688 9689 clock_pairing.sec = ts.tv_sec; 9690 clock_pairing.nsec = ts.tv_nsec; 9691 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9692 clock_pairing.flags = 0; 9693 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9694 9695 ret = 0; 9696 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9697 sizeof(struct kvm_clock_pairing))) 9698 ret = -KVM_EFAULT; 9699 9700 return ret; 9701 } 9702 #endif 9703 9704 /* 9705 * kvm_pv_kick_cpu_op: Kick a vcpu. 9706 * 9707 * @apicid - apicid of vcpu to be kicked. 9708 */ 9709 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9710 { 9711 /* 9712 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9713 * common code, e.g. for tracing. Defer initialization to the compiler. 9714 */ 9715 struct kvm_lapic_irq lapic_irq = { 9716 .delivery_mode = APIC_DM_REMRD, 9717 .dest_mode = APIC_DEST_PHYSICAL, 9718 .shorthand = APIC_DEST_NOSHORT, 9719 .dest_id = apicid, 9720 }; 9721 9722 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9723 } 9724 9725 bool kvm_apicv_activated(struct kvm *kvm) 9726 { 9727 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9728 } 9729 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9730 9731 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9732 { 9733 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9734 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9735 9736 return (vm_reasons | vcpu_reasons) == 0; 9737 } 9738 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9739 9740 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9741 enum kvm_apicv_inhibit reason, bool set) 9742 { 9743 if (set) 9744 __set_bit(reason, inhibits); 9745 else 9746 __clear_bit(reason, inhibits); 9747 9748 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9749 } 9750 9751 static void kvm_apicv_init(struct kvm *kvm) 9752 { 9753 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9754 9755 init_rwsem(&kvm->arch.apicv_update_lock); 9756 9757 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9758 9759 if (!enable_apicv) 9760 set_or_clear_apicv_inhibit(inhibits, 9761 APICV_INHIBIT_REASON_DISABLE, true); 9762 } 9763 9764 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9765 { 9766 struct kvm_vcpu *target = NULL; 9767 struct kvm_apic_map *map; 9768 9769 vcpu->stat.directed_yield_attempted++; 9770 9771 if (single_task_running()) 9772 goto no_yield; 9773 9774 rcu_read_lock(); 9775 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9776 9777 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9778 target = map->phys_map[dest_id]->vcpu; 9779 9780 rcu_read_unlock(); 9781 9782 if (!target || !READ_ONCE(target->ready)) 9783 goto no_yield; 9784 9785 /* Ignore requests to yield to self */ 9786 if (vcpu == target) 9787 goto no_yield; 9788 9789 if (kvm_vcpu_yield_to(target) <= 0) 9790 goto no_yield; 9791 9792 vcpu->stat.directed_yield_successful++; 9793 9794 no_yield: 9795 return; 9796 } 9797 9798 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9799 { 9800 u64 ret = vcpu->run->hypercall.ret; 9801 9802 if (!is_64_bit_mode(vcpu)) 9803 ret = (u32)ret; 9804 kvm_rax_write(vcpu, ret); 9805 ++vcpu->stat.hypercalls; 9806 return kvm_skip_emulated_instruction(vcpu); 9807 } 9808 9809 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9810 { 9811 unsigned long nr, a0, a1, a2, a3, ret; 9812 int op_64_bit; 9813 9814 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9815 return kvm_xen_hypercall(vcpu); 9816 9817 if (kvm_hv_hypercall_enabled(vcpu)) 9818 return kvm_hv_hypercall(vcpu); 9819 9820 nr = kvm_rax_read(vcpu); 9821 a0 = kvm_rbx_read(vcpu); 9822 a1 = kvm_rcx_read(vcpu); 9823 a2 = kvm_rdx_read(vcpu); 9824 a3 = kvm_rsi_read(vcpu); 9825 9826 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9827 9828 op_64_bit = is_64_bit_hypercall(vcpu); 9829 if (!op_64_bit) { 9830 nr &= 0xFFFFFFFF; 9831 a0 &= 0xFFFFFFFF; 9832 a1 &= 0xFFFFFFFF; 9833 a2 &= 0xFFFFFFFF; 9834 a3 &= 0xFFFFFFFF; 9835 } 9836 9837 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9838 ret = -KVM_EPERM; 9839 goto out; 9840 } 9841 9842 ret = -KVM_ENOSYS; 9843 9844 switch (nr) { 9845 case KVM_HC_VAPIC_POLL_IRQ: 9846 ret = 0; 9847 break; 9848 case KVM_HC_KICK_CPU: 9849 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9850 break; 9851 9852 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9853 kvm_sched_yield(vcpu, a1); 9854 ret = 0; 9855 break; 9856 #ifdef CONFIG_X86_64 9857 case KVM_HC_CLOCK_PAIRING: 9858 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9859 break; 9860 #endif 9861 case KVM_HC_SEND_IPI: 9862 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9863 break; 9864 9865 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9866 break; 9867 case KVM_HC_SCHED_YIELD: 9868 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9869 break; 9870 9871 kvm_sched_yield(vcpu, a0); 9872 ret = 0; 9873 break; 9874 case KVM_HC_MAP_GPA_RANGE: { 9875 u64 gpa = a0, npages = a1, attrs = a2; 9876 9877 ret = -KVM_ENOSYS; 9878 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9879 break; 9880 9881 if (!PAGE_ALIGNED(gpa) || !npages || 9882 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9883 ret = -KVM_EINVAL; 9884 break; 9885 } 9886 9887 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9888 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9889 vcpu->run->hypercall.args[0] = gpa; 9890 vcpu->run->hypercall.args[1] = npages; 9891 vcpu->run->hypercall.args[2] = attrs; 9892 vcpu->run->hypercall.flags = 0; 9893 if (op_64_bit) 9894 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 9895 9896 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 9897 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9898 return 0; 9899 } 9900 default: 9901 ret = -KVM_ENOSYS; 9902 break; 9903 } 9904 out: 9905 if (!op_64_bit) 9906 ret = (u32)ret; 9907 kvm_rax_write(vcpu, ret); 9908 9909 ++vcpu->stat.hypercalls; 9910 return kvm_skip_emulated_instruction(vcpu); 9911 } 9912 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9913 9914 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9915 { 9916 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9917 char instruction[3]; 9918 unsigned long rip = kvm_rip_read(vcpu); 9919 9920 /* 9921 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9922 * the pieces. 9923 */ 9924 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9925 ctxt->exception.error_code_valid = false; 9926 ctxt->exception.vector = UD_VECTOR; 9927 ctxt->have_exception = true; 9928 return X86EMUL_PROPAGATE_FAULT; 9929 } 9930 9931 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9932 9933 return emulator_write_emulated(ctxt, rip, instruction, 3, 9934 &ctxt->exception); 9935 } 9936 9937 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9938 { 9939 return vcpu->run->request_interrupt_window && 9940 likely(!pic_in_kernel(vcpu->kvm)); 9941 } 9942 9943 /* Called within kvm->srcu read side. */ 9944 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9945 { 9946 struct kvm_run *kvm_run = vcpu->run; 9947 9948 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9949 kvm_run->cr8 = kvm_get_cr8(vcpu); 9950 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9951 9952 kvm_run->ready_for_interrupt_injection = 9953 pic_in_kernel(vcpu->kvm) || 9954 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9955 9956 if (is_smm(vcpu)) 9957 kvm_run->flags |= KVM_RUN_X86_SMM; 9958 } 9959 9960 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9961 { 9962 int max_irr, tpr; 9963 9964 if (!kvm_x86_ops.update_cr8_intercept) 9965 return; 9966 9967 if (!lapic_in_kernel(vcpu)) 9968 return; 9969 9970 if (vcpu->arch.apic->apicv_active) 9971 return; 9972 9973 if (!vcpu->arch.apic->vapic_addr) 9974 max_irr = kvm_lapic_find_highest_irr(vcpu); 9975 else 9976 max_irr = -1; 9977 9978 if (max_irr != -1) 9979 max_irr >>= 4; 9980 9981 tpr = kvm_lapic_get_cr8(vcpu); 9982 9983 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9984 } 9985 9986 9987 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9988 { 9989 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9990 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9991 return 1; 9992 } 9993 9994 return kvm_x86_ops.nested_ops->check_events(vcpu); 9995 } 9996 9997 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9998 { 9999 /* 10000 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10001 * exceptions don't report error codes. The presence of an error code 10002 * is carried with the exception and only stripped when the exception 10003 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10004 * report an error code despite the CPU being in Real Mode. 10005 */ 10006 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10007 10008 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10009 vcpu->arch.exception.has_error_code, 10010 vcpu->arch.exception.error_code, 10011 vcpu->arch.exception.injected); 10012 10013 static_call(kvm_x86_inject_exception)(vcpu); 10014 } 10015 10016 /* 10017 * Check for any event (interrupt or exception) that is ready to be injected, 10018 * and if there is at least one event, inject the event with the highest 10019 * priority. This handles both "pending" events, i.e. events that have never 10020 * been injected into the guest, and "injected" events, i.e. events that were 10021 * injected as part of a previous VM-Enter, but weren't successfully delivered 10022 * and need to be re-injected. 10023 * 10024 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10025 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10026 * be able to inject exceptions in the "middle" of an instruction, and so must 10027 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10028 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10029 * boundaries is necessary and correct. 10030 * 10031 * For simplicity, KVM uses a single path to inject all events (except events 10032 * that are injected directly from L1 to L2) and doesn't explicitly track 10033 * instruction boundaries for asynchronous events. However, because VM-Exits 10034 * that can occur during instruction execution typically result in KVM skipping 10035 * the instruction or injecting an exception, e.g. instruction and exception 10036 * intercepts, and because pending exceptions have higher priority than pending 10037 * interrupts, KVM still honors instruction boundaries in most scenarios. 10038 * 10039 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10040 * the instruction or inject an exception, then KVM can incorrecty inject a new 10041 * asynchrounous event if the event became pending after the CPU fetched the 10042 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10043 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10044 * injected on the restarted instruction instead of being deferred until the 10045 * instruction completes. 10046 * 10047 * In practice, this virtualization hole is unlikely to be observed by the 10048 * guest, and even less likely to cause functional problems. To detect the 10049 * hole, the guest would have to trigger an event on a side effect of an early 10050 * phase of instruction execution, e.g. on the instruction fetch from memory. 10051 * And for it to be a functional problem, the guest would need to depend on the 10052 * ordering between that side effect, the instruction completing, _and_ the 10053 * delivery of the asynchronous event. 10054 */ 10055 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10056 bool *req_immediate_exit) 10057 { 10058 bool can_inject; 10059 int r; 10060 10061 /* 10062 * Process nested events first, as nested VM-Exit supercedes event 10063 * re-injection. If there's an event queued for re-injection, it will 10064 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10065 */ 10066 if (is_guest_mode(vcpu)) 10067 r = kvm_check_nested_events(vcpu); 10068 else 10069 r = 0; 10070 10071 /* 10072 * Re-inject exceptions and events *especially* if immediate entry+exit 10073 * to/from L2 is needed, as any event that has already been injected 10074 * into L2 needs to complete its lifecycle before injecting a new event. 10075 * 10076 * Don't re-inject an NMI or interrupt if there is a pending exception. 10077 * This collision arises if an exception occurred while vectoring the 10078 * injected event, KVM intercepted said exception, and KVM ultimately 10079 * determined the fault belongs to the guest and queues the exception 10080 * for injection back into the guest. 10081 * 10082 * "Injected" interrupts can also collide with pending exceptions if 10083 * userspace ignores the "ready for injection" flag and blindly queues 10084 * an interrupt. In that case, prioritizing the exception is correct, 10085 * as the exception "occurred" before the exit to userspace. Trap-like 10086 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10087 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10088 * priority, they're only generated (pended) during instruction 10089 * execution, and interrupts are recognized at instruction boundaries. 10090 * Thus a pending fault-like exception means the fault occurred on the 10091 * *previous* instruction and must be serviced prior to recognizing any 10092 * new events in order to fully complete the previous instruction. 10093 */ 10094 if (vcpu->arch.exception.injected) 10095 kvm_inject_exception(vcpu); 10096 else if (kvm_is_exception_pending(vcpu)) 10097 ; /* see above */ 10098 else if (vcpu->arch.nmi_injected) 10099 static_call(kvm_x86_inject_nmi)(vcpu); 10100 else if (vcpu->arch.interrupt.injected) 10101 static_call(kvm_x86_inject_irq)(vcpu, true); 10102 10103 /* 10104 * Exceptions that morph to VM-Exits are handled above, and pending 10105 * exceptions on top of injected exceptions that do not VM-Exit should 10106 * either morph to #DF or, sadly, override the injected exception. 10107 */ 10108 WARN_ON_ONCE(vcpu->arch.exception.injected && 10109 vcpu->arch.exception.pending); 10110 10111 /* 10112 * Bail if immediate entry+exit to/from the guest is needed to complete 10113 * nested VM-Enter or event re-injection so that a different pending 10114 * event can be serviced (or if KVM needs to exit to userspace). 10115 * 10116 * Otherwise, continue processing events even if VM-Exit occurred. The 10117 * VM-Exit will have cleared exceptions that were meant for L2, but 10118 * there may now be events that can be injected into L1. 10119 */ 10120 if (r < 0) 10121 goto out; 10122 10123 /* 10124 * A pending exception VM-Exit should either result in nested VM-Exit 10125 * or force an immediate re-entry and exit to/from L2, and exception 10126 * VM-Exits cannot be injected (flag should _never_ be set). 10127 */ 10128 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10129 vcpu->arch.exception_vmexit.pending); 10130 10131 /* 10132 * New events, other than exceptions, cannot be injected if KVM needs 10133 * to re-inject a previous event. See above comments on re-injecting 10134 * for why pending exceptions get priority. 10135 */ 10136 can_inject = !kvm_event_needs_reinjection(vcpu); 10137 10138 if (vcpu->arch.exception.pending) { 10139 /* 10140 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10141 * value pushed on the stack. Trap-like exception and all #DBs 10142 * leave RF as-is (KVM follows Intel's behavior in this regard; 10143 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10144 * 10145 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10146 * describe the behavior of General Detect #DBs, which are 10147 * fault-like. They do _not_ set RF, a la code breakpoints. 10148 */ 10149 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10150 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10151 X86_EFLAGS_RF); 10152 10153 if (vcpu->arch.exception.vector == DB_VECTOR) { 10154 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10155 if (vcpu->arch.dr7 & DR7_GD) { 10156 vcpu->arch.dr7 &= ~DR7_GD; 10157 kvm_update_dr7(vcpu); 10158 } 10159 } 10160 10161 kvm_inject_exception(vcpu); 10162 10163 vcpu->arch.exception.pending = false; 10164 vcpu->arch.exception.injected = true; 10165 10166 can_inject = false; 10167 } 10168 10169 /* Don't inject interrupts if the user asked to avoid doing so */ 10170 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10171 return 0; 10172 10173 /* 10174 * Finally, inject interrupt events. If an event cannot be injected 10175 * due to architectural conditions (e.g. IF=0) a window-open exit 10176 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10177 * and can architecturally be injected, but we cannot do it right now: 10178 * an interrupt could have arrived just now and we have to inject it 10179 * as a vmexit, or there could already an event in the queue, which is 10180 * indicated by can_inject. In that case we request an immediate exit 10181 * in order to make progress and get back here for another iteration. 10182 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10183 */ 10184 #ifdef CONFIG_KVM_SMM 10185 if (vcpu->arch.smi_pending) { 10186 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10187 if (r < 0) 10188 goto out; 10189 if (r) { 10190 vcpu->arch.smi_pending = false; 10191 ++vcpu->arch.smi_count; 10192 enter_smm(vcpu); 10193 can_inject = false; 10194 } else 10195 static_call(kvm_x86_enable_smi_window)(vcpu); 10196 } 10197 #endif 10198 10199 if (vcpu->arch.nmi_pending) { 10200 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10201 if (r < 0) 10202 goto out; 10203 if (r) { 10204 --vcpu->arch.nmi_pending; 10205 vcpu->arch.nmi_injected = true; 10206 static_call(kvm_x86_inject_nmi)(vcpu); 10207 can_inject = false; 10208 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10209 } 10210 if (vcpu->arch.nmi_pending) 10211 static_call(kvm_x86_enable_nmi_window)(vcpu); 10212 } 10213 10214 if (kvm_cpu_has_injectable_intr(vcpu)) { 10215 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10216 if (r < 0) 10217 goto out; 10218 if (r) { 10219 int irq = kvm_cpu_get_interrupt(vcpu); 10220 10221 if (!WARN_ON_ONCE(irq == -1)) { 10222 kvm_queue_interrupt(vcpu, irq, false); 10223 static_call(kvm_x86_inject_irq)(vcpu, false); 10224 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10225 } 10226 } 10227 if (kvm_cpu_has_injectable_intr(vcpu)) 10228 static_call(kvm_x86_enable_irq_window)(vcpu); 10229 } 10230 10231 if (is_guest_mode(vcpu) && 10232 kvm_x86_ops.nested_ops->has_events && 10233 kvm_x86_ops.nested_ops->has_events(vcpu)) 10234 *req_immediate_exit = true; 10235 10236 /* 10237 * KVM must never queue a new exception while injecting an event; KVM 10238 * is done emulating and should only propagate the to-be-injected event 10239 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10240 * infinite loop as KVM will bail from VM-Enter to inject the pending 10241 * exception and start the cycle all over. 10242 * 10243 * Exempt triple faults as they have special handling and won't put the 10244 * vCPU into an infinite loop. Triple fault can be queued when running 10245 * VMX without unrestricted guest, as that requires KVM to emulate Real 10246 * Mode events (see kvm_inject_realmode_interrupt()). 10247 */ 10248 WARN_ON_ONCE(vcpu->arch.exception.pending || 10249 vcpu->arch.exception_vmexit.pending); 10250 return 0; 10251 10252 out: 10253 if (r == -EBUSY) { 10254 *req_immediate_exit = true; 10255 r = 0; 10256 } 10257 return r; 10258 } 10259 10260 static void process_nmi(struct kvm_vcpu *vcpu) 10261 { 10262 unsigned int limit; 10263 10264 /* 10265 * x86 is limited to one NMI pending, but because KVM can't react to 10266 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10267 * scheduled out, KVM needs to play nice with two queued NMIs showing 10268 * up at the same time. To handle this scenario, allow two NMIs to be 10269 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10270 * waiting for a previous NMI injection to complete (which effectively 10271 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10272 * will request an NMI window to handle the second NMI. 10273 */ 10274 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10275 limit = 1; 10276 else 10277 limit = 2; 10278 10279 /* 10280 * Adjust the limit to account for pending virtual NMIs, which aren't 10281 * tracked in vcpu->arch.nmi_pending. 10282 */ 10283 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10284 limit--; 10285 10286 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10287 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10288 10289 if (vcpu->arch.nmi_pending && 10290 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10291 vcpu->arch.nmi_pending--; 10292 10293 if (vcpu->arch.nmi_pending) 10294 kvm_make_request(KVM_REQ_EVENT, vcpu); 10295 } 10296 10297 /* Return total number of NMIs pending injection to the VM */ 10298 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10299 { 10300 return vcpu->arch.nmi_pending + 10301 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10302 } 10303 10304 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10305 unsigned long *vcpu_bitmap) 10306 { 10307 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10308 } 10309 10310 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10311 { 10312 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10313 } 10314 10315 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10316 { 10317 struct kvm_lapic *apic = vcpu->arch.apic; 10318 bool activate; 10319 10320 if (!lapic_in_kernel(vcpu)) 10321 return; 10322 10323 down_read(&vcpu->kvm->arch.apicv_update_lock); 10324 preempt_disable(); 10325 10326 /* Do not activate APICV when APIC is disabled */ 10327 activate = kvm_vcpu_apicv_activated(vcpu) && 10328 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10329 10330 if (apic->apicv_active == activate) 10331 goto out; 10332 10333 apic->apicv_active = activate; 10334 kvm_apic_update_apicv(vcpu); 10335 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10336 10337 /* 10338 * When APICv gets disabled, we may still have injected interrupts 10339 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10340 * still active when the interrupt got accepted. Make sure 10341 * kvm_check_and_inject_events() is called to check for that. 10342 */ 10343 if (!apic->apicv_active) 10344 kvm_make_request(KVM_REQ_EVENT, vcpu); 10345 10346 out: 10347 preempt_enable(); 10348 up_read(&vcpu->kvm->arch.apicv_update_lock); 10349 } 10350 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10351 10352 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10353 { 10354 if (!lapic_in_kernel(vcpu)) 10355 return; 10356 10357 /* 10358 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10359 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10360 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10361 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10362 * this case so that KVM can the AVIC doorbell to inject interrupts to 10363 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10364 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10365 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10366 * access page is sticky. 10367 */ 10368 if (apic_x2apic_mode(vcpu->arch.apic) && 10369 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10370 kvm_inhibit_apic_access_page(vcpu); 10371 10372 __kvm_vcpu_update_apicv(vcpu); 10373 } 10374 10375 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10376 enum kvm_apicv_inhibit reason, bool set) 10377 { 10378 unsigned long old, new; 10379 10380 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10381 10382 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10383 return; 10384 10385 old = new = kvm->arch.apicv_inhibit_reasons; 10386 10387 set_or_clear_apicv_inhibit(&new, reason, set); 10388 10389 if (!!old != !!new) { 10390 /* 10391 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10392 * false positives in the sanity check WARN in svm_vcpu_run(). 10393 * This task will wait for all vCPUs to ack the kick IRQ before 10394 * updating apicv_inhibit_reasons, and all other vCPUs will 10395 * block on acquiring apicv_update_lock so that vCPUs can't 10396 * redo svm_vcpu_run() without seeing the new inhibit state. 10397 * 10398 * Note, holding apicv_update_lock and taking it in the read 10399 * side (handling the request) also prevents other vCPUs from 10400 * servicing the request with a stale apicv_inhibit_reasons. 10401 */ 10402 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10403 kvm->arch.apicv_inhibit_reasons = new; 10404 if (new) { 10405 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10406 int idx = srcu_read_lock(&kvm->srcu); 10407 10408 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10409 srcu_read_unlock(&kvm->srcu, idx); 10410 } 10411 } else { 10412 kvm->arch.apicv_inhibit_reasons = new; 10413 } 10414 } 10415 10416 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10417 enum kvm_apicv_inhibit reason, bool set) 10418 { 10419 if (!enable_apicv) 10420 return; 10421 10422 down_write(&kvm->arch.apicv_update_lock); 10423 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10424 up_write(&kvm->arch.apicv_update_lock); 10425 } 10426 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10427 10428 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10429 { 10430 if (!kvm_apic_present(vcpu)) 10431 return; 10432 10433 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10434 10435 if (irqchip_split(vcpu->kvm)) 10436 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10437 else { 10438 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10439 if (ioapic_in_kernel(vcpu->kvm)) 10440 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10441 } 10442 10443 if (is_guest_mode(vcpu)) 10444 vcpu->arch.load_eoi_exitmap_pending = true; 10445 else 10446 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10447 } 10448 10449 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10450 { 10451 u64 eoi_exit_bitmap[4]; 10452 10453 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10454 return; 10455 10456 if (to_hv_vcpu(vcpu)) { 10457 bitmap_or((ulong *)eoi_exit_bitmap, 10458 vcpu->arch.ioapic_handled_vectors, 10459 to_hv_synic(vcpu)->vec_bitmap, 256); 10460 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10461 return; 10462 } 10463 10464 static_call_cond(kvm_x86_load_eoi_exitmap)( 10465 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10466 } 10467 10468 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10469 { 10470 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10471 } 10472 10473 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10474 { 10475 if (!lapic_in_kernel(vcpu)) 10476 return; 10477 10478 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10479 } 10480 10481 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10482 { 10483 smp_send_reschedule(vcpu->cpu); 10484 } 10485 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10486 10487 /* 10488 * Called within kvm->srcu read side. 10489 * Returns 1 to let vcpu_run() continue the guest execution loop without 10490 * exiting to the userspace. Otherwise, the value will be returned to the 10491 * userspace. 10492 */ 10493 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10494 { 10495 int r; 10496 bool req_int_win = 10497 dm_request_for_irq_injection(vcpu) && 10498 kvm_cpu_accept_dm_intr(vcpu); 10499 fastpath_t exit_fastpath; 10500 10501 bool req_immediate_exit = false; 10502 10503 if (kvm_request_pending(vcpu)) { 10504 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10505 r = -EIO; 10506 goto out; 10507 } 10508 10509 if (kvm_dirty_ring_check_request(vcpu)) { 10510 r = 0; 10511 goto out; 10512 } 10513 10514 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10515 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10516 r = 0; 10517 goto out; 10518 } 10519 } 10520 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10521 kvm_mmu_free_obsolete_roots(vcpu); 10522 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10523 __kvm_migrate_timers(vcpu); 10524 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10525 kvm_update_masterclock(vcpu->kvm); 10526 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10527 kvm_gen_kvmclock_update(vcpu); 10528 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10529 r = kvm_guest_time_update(vcpu); 10530 if (unlikely(r)) 10531 goto out; 10532 } 10533 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10534 kvm_mmu_sync_roots(vcpu); 10535 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10536 kvm_mmu_load_pgd(vcpu); 10537 10538 /* 10539 * Note, the order matters here, as flushing "all" TLB entries 10540 * also flushes the "current" TLB entries, i.e. servicing the 10541 * flush "all" will clear any request to flush "current". 10542 */ 10543 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10544 kvm_vcpu_flush_tlb_all(vcpu); 10545 10546 kvm_service_local_tlb_flush_requests(vcpu); 10547 10548 /* 10549 * Fall back to a "full" guest flush if Hyper-V's precise 10550 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10551 * the flushes are considered "remote" and not "local" because 10552 * the requests can be initiated from other vCPUs. 10553 */ 10554 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10555 kvm_hv_vcpu_flush_tlb(vcpu)) 10556 kvm_vcpu_flush_tlb_guest(vcpu); 10557 10558 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10559 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10560 r = 0; 10561 goto out; 10562 } 10563 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10564 if (is_guest_mode(vcpu)) 10565 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10566 10567 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10568 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10569 vcpu->mmio_needed = 0; 10570 r = 0; 10571 goto out; 10572 } 10573 } 10574 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10575 /* Page is swapped out. Do synthetic halt */ 10576 vcpu->arch.apf.halted = true; 10577 r = 1; 10578 goto out; 10579 } 10580 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10581 record_steal_time(vcpu); 10582 #ifdef CONFIG_KVM_SMM 10583 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10584 process_smi(vcpu); 10585 #endif 10586 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10587 process_nmi(vcpu); 10588 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10589 kvm_pmu_handle_event(vcpu); 10590 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10591 kvm_pmu_deliver_pmi(vcpu); 10592 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10593 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10594 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10595 vcpu->arch.ioapic_handled_vectors)) { 10596 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10597 vcpu->run->eoi.vector = 10598 vcpu->arch.pending_ioapic_eoi; 10599 r = 0; 10600 goto out; 10601 } 10602 } 10603 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10604 vcpu_scan_ioapic(vcpu); 10605 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10606 vcpu_load_eoi_exitmap(vcpu); 10607 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10608 kvm_vcpu_reload_apic_access_page(vcpu); 10609 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10610 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10611 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10612 vcpu->run->system_event.ndata = 0; 10613 r = 0; 10614 goto out; 10615 } 10616 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10617 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10618 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10619 vcpu->run->system_event.ndata = 0; 10620 r = 0; 10621 goto out; 10622 } 10623 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10624 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10625 10626 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10627 vcpu->run->hyperv = hv_vcpu->exit; 10628 r = 0; 10629 goto out; 10630 } 10631 10632 /* 10633 * KVM_REQ_HV_STIMER has to be processed after 10634 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10635 * depend on the guest clock being up-to-date 10636 */ 10637 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10638 kvm_hv_process_stimers(vcpu); 10639 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10640 kvm_vcpu_update_apicv(vcpu); 10641 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10642 kvm_check_async_pf_completion(vcpu); 10643 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10644 static_call(kvm_x86_msr_filter_changed)(vcpu); 10645 10646 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10647 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10648 } 10649 10650 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10651 kvm_xen_has_interrupt(vcpu)) { 10652 ++vcpu->stat.req_event; 10653 r = kvm_apic_accept_events(vcpu); 10654 if (r < 0) { 10655 r = 0; 10656 goto out; 10657 } 10658 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10659 r = 1; 10660 goto out; 10661 } 10662 10663 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10664 if (r < 0) { 10665 r = 0; 10666 goto out; 10667 } 10668 if (req_int_win) 10669 static_call(kvm_x86_enable_irq_window)(vcpu); 10670 10671 if (kvm_lapic_enabled(vcpu)) { 10672 update_cr8_intercept(vcpu); 10673 kvm_lapic_sync_to_vapic(vcpu); 10674 } 10675 } 10676 10677 r = kvm_mmu_reload(vcpu); 10678 if (unlikely(r)) { 10679 goto cancel_injection; 10680 } 10681 10682 preempt_disable(); 10683 10684 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10685 10686 /* 10687 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10688 * IPI are then delayed after guest entry, which ensures that they 10689 * result in virtual interrupt delivery. 10690 */ 10691 local_irq_disable(); 10692 10693 /* Store vcpu->apicv_active before vcpu->mode. */ 10694 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10695 10696 kvm_vcpu_srcu_read_unlock(vcpu); 10697 10698 /* 10699 * 1) We should set ->mode before checking ->requests. Please see 10700 * the comment in kvm_vcpu_exiting_guest_mode(). 10701 * 10702 * 2) For APICv, we should set ->mode before checking PID.ON. This 10703 * pairs with the memory barrier implicit in pi_test_and_set_on 10704 * (see vmx_deliver_posted_interrupt). 10705 * 10706 * 3) This also orders the write to mode from any reads to the page 10707 * tables done while the VCPU is running. Please see the comment 10708 * in kvm_flush_remote_tlbs. 10709 */ 10710 smp_mb__after_srcu_read_unlock(); 10711 10712 /* 10713 * Process pending posted interrupts to handle the case where the 10714 * notification IRQ arrived in the host, or was never sent (because the 10715 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10716 * status, KVM doesn't update assigned devices when APICv is inhibited, 10717 * i.e. they can post interrupts even if APICv is temporarily disabled. 10718 */ 10719 if (kvm_lapic_enabled(vcpu)) 10720 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10721 10722 if (kvm_vcpu_exit_request(vcpu)) { 10723 vcpu->mode = OUTSIDE_GUEST_MODE; 10724 smp_wmb(); 10725 local_irq_enable(); 10726 preempt_enable(); 10727 kvm_vcpu_srcu_read_lock(vcpu); 10728 r = 1; 10729 goto cancel_injection; 10730 } 10731 10732 if (req_immediate_exit) { 10733 kvm_make_request(KVM_REQ_EVENT, vcpu); 10734 static_call(kvm_x86_request_immediate_exit)(vcpu); 10735 } 10736 10737 fpregs_assert_state_consistent(); 10738 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10739 switch_fpu_return(); 10740 10741 if (vcpu->arch.guest_fpu.xfd_err) 10742 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10743 10744 if (unlikely(vcpu->arch.switch_db_regs)) { 10745 set_debugreg(0, 7); 10746 set_debugreg(vcpu->arch.eff_db[0], 0); 10747 set_debugreg(vcpu->arch.eff_db[1], 1); 10748 set_debugreg(vcpu->arch.eff_db[2], 2); 10749 set_debugreg(vcpu->arch.eff_db[3], 3); 10750 } else if (unlikely(hw_breakpoint_active())) { 10751 set_debugreg(0, 7); 10752 } 10753 10754 guest_timing_enter_irqoff(); 10755 10756 for (;;) { 10757 /* 10758 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10759 * update must kick and wait for all vCPUs before toggling the 10760 * per-VM state, and responsing vCPUs must wait for the update 10761 * to complete before servicing KVM_REQ_APICV_UPDATE. 10762 */ 10763 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10764 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10765 10766 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10767 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10768 break; 10769 10770 if (kvm_lapic_enabled(vcpu)) 10771 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10772 10773 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10774 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10775 break; 10776 } 10777 10778 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10779 ++vcpu->stat.exits; 10780 } 10781 10782 /* 10783 * Do this here before restoring debug registers on the host. And 10784 * since we do this before handling the vmexit, a DR access vmexit 10785 * can (a) read the correct value of the debug registers, (b) set 10786 * KVM_DEBUGREG_WONT_EXIT again. 10787 */ 10788 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10789 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10790 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10791 kvm_update_dr0123(vcpu); 10792 kvm_update_dr7(vcpu); 10793 } 10794 10795 /* 10796 * If the guest has used debug registers, at least dr7 10797 * will be disabled while returning to the host. 10798 * If we don't have active breakpoints in the host, we don't 10799 * care about the messed up debug address registers. But if 10800 * we have some of them active, restore the old state. 10801 */ 10802 if (hw_breakpoint_active()) 10803 hw_breakpoint_restore(); 10804 10805 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10806 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10807 10808 vcpu->mode = OUTSIDE_GUEST_MODE; 10809 smp_wmb(); 10810 10811 /* 10812 * Sync xfd before calling handle_exit_irqoff() which may 10813 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10814 * in #NM irqoff handler). 10815 */ 10816 if (vcpu->arch.xfd_no_write_intercept) 10817 fpu_sync_guest_vmexit_xfd_state(); 10818 10819 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10820 10821 if (vcpu->arch.guest_fpu.xfd_err) 10822 wrmsrl(MSR_IA32_XFD_ERR, 0); 10823 10824 /* 10825 * Consume any pending interrupts, including the possible source of 10826 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10827 * An instruction is required after local_irq_enable() to fully unblock 10828 * interrupts on processors that implement an interrupt shadow, the 10829 * stat.exits increment will do nicely. 10830 */ 10831 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10832 local_irq_enable(); 10833 ++vcpu->stat.exits; 10834 local_irq_disable(); 10835 kvm_after_interrupt(vcpu); 10836 10837 /* 10838 * Wait until after servicing IRQs to account guest time so that any 10839 * ticks that occurred while running the guest are properly accounted 10840 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10841 * of accounting via context tracking, but the loss of accuracy is 10842 * acceptable for all known use cases. 10843 */ 10844 guest_timing_exit_irqoff(); 10845 10846 local_irq_enable(); 10847 preempt_enable(); 10848 10849 kvm_vcpu_srcu_read_lock(vcpu); 10850 10851 /* 10852 * Profile KVM exit RIPs: 10853 */ 10854 if (unlikely(prof_on == KVM_PROFILING)) { 10855 unsigned long rip = kvm_rip_read(vcpu); 10856 profile_hit(KVM_PROFILING, (void *)rip); 10857 } 10858 10859 if (unlikely(vcpu->arch.tsc_always_catchup)) 10860 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10861 10862 if (vcpu->arch.apic_attention) 10863 kvm_lapic_sync_from_vapic(vcpu); 10864 10865 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10866 return r; 10867 10868 cancel_injection: 10869 if (req_immediate_exit) 10870 kvm_make_request(KVM_REQ_EVENT, vcpu); 10871 static_call(kvm_x86_cancel_injection)(vcpu); 10872 if (unlikely(vcpu->arch.apic_attention)) 10873 kvm_lapic_sync_from_vapic(vcpu); 10874 out: 10875 return r; 10876 } 10877 10878 /* Called within kvm->srcu read side. */ 10879 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10880 { 10881 bool hv_timer; 10882 10883 if (!kvm_arch_vcpu_runnable(vcpu)) { 10884 /* 10885 * Switch to the software timer before halt-polling/blocking as 10886 * the guest's timer may be a break event for the vCPU, and the 10887 * hypervisor timer runs only when the CPU is in guest mode. 10888 * Switch before halt-polling so that KVM recognizes an expired 10889 * timer before blocking. 10890 */ 10891 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10892 if (hv_timer) 10893 kvm_lapic_switch_to_sw_timer(vcpu); 10894 10895 kvm_vcpu_srcu_read_unlock(vcpu); 10896 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10897 kvm_vcpu_halt(vcpu); 10898 else 10899 kvm_vcpu_block(vcpu); 10900 kvm_vcpu_srcu_read_lock(vcpu); 10901 10902 if (hv_timer) 10903 kvm_lapic_switch_to_hv_timer(vcpu); 10904 10905 /* 10906 * If the vCPU is not runnable, a signal or another host event 10907 * of some kind is pending; service it without changing the 10908 * vCPU's activity state. 10909 */ 10910 if (!kvm_arch_vcpu_runnable(vcpu)) 10911 return 1; 10912 } 10913 10914 /* 10915 * Evaluate nested events before exiting the halted state. This allows 10916 * the halt state to be recorded properly in the VMCS12's activity 10917 * state field (AMD does not have a similar field and a VM-Exit always 10918 * causes a spurious wakeup from HLT). 10919 */ 10920 if (is_guest_mode(vcpu)) { 10921 if (kvm_check_nested_events(vcpu) < 0) 10922 return 0; 10923 } 10924 10925 if (kvm_apic_accept_events(vcpu) < 0) 10926 return 0; 10927 switch(vcpu->arch.mp_state) { 10928 case KVM_MP_STATE_HALTED: 10929 case KVM_MP_STATE_AP_RESET_HOLD: 10930 vcpu->arch.pv.pv_unhalted = false; 10931 vcpu->arch.mp_state = 10932 KVM_MP_STATE_RUNNABLE; 10933 fallthrough; 10934 case KVM_MP_STATE_RUNNABLE: 10935 vcpu->arch.apf.halted = false; 10936 break; 10937 case KVM_MP_STATE_INIT_RECEIVED: 10938 break; 10939 default: 10940 WARN_ON_ONCE(1); 10941 break; 10942 } 10943 return 1; 10944 } 10945 10946 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10947 { 10948 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10949 !vcpu->arch.apf.halted); 10950 } 10951 10952 /* Called within kvm->srcu read side. */ 10953 static int vcpu_run(struct kvm_vcpu *vcpu) 10954 { 10955 int r; 10956 10957 vcpu->arch.l1tf_flush_l1d = true; 10958 10959 for (;;) { 10960 /* 10961 * If another guest vCPU requests a PV TLB flush in the middle 10962 * of instruction emulation, the rest of the emulation could 10963 * use a stale page translation. Assume that any code after 10964 * this point can start executing an instruction. 10965 */ 10966 vcpu->arch.at_instruction_boundary = false; 10967 if (kvm_vcpu_running(vcpu)) { 10968 r = vcpu_enter_guest(vcpu); 10969 } else { 10970 r = vcpu_block(vcpu); 10971 } 10972 10973 if (r <= 0) 10974 break; 10975 10976 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10977 if (kvm_xen_has_pending_events(vcpu)) 10978 kvm_xen_inject_pending_events(vcpu); 10979 10980 if (kvm_cpu_has_pending_timer(vcpu)) 10981 kvm_inject_pending_timer_irqs(vcpu); 10982 10983 if (dm_request_for_irq_injection(vcpu) && 10984 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10985 r = 0; 10986 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10987 ++vcpu->stat.request_irq_exits; 10988 break; 10989 } 10990 10991 if (__xfer_to_guest_mode_work_pending()) { 10992 kvm_vcpu_srcu_read_unlock(vcpu); 10993 r = xfer_to_guest_mode_handle_work(vcpu); 10994 kvm_vcpu_srcu_read_lock(vcpu); 10995 if (r) 10996 return r; 10997 } 10998 } 10999 11000 return r; 11001 } 11002 11003 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11004 { 11005 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11006 } 11007 11008 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11009 { 11010 BUG_ON(!vcpu->arch.pio.count); 11011 11012 return complete_emulated_io(vcpu); 11013 } 11014 11015 /* 11016 * Implements the following, as a state machine: 11017 * 11018 * read: 11019 * for each fragment 11020 * for each mmio piece in the fragment 11021 * write gpa, len 11022 * exit 11023 * copy data 11024 * execute insn 11025 * 11026 * write: 11027 * for each fragment 11028 * for each mmio piece in the fragment 11029 * write gpa, len 11030 * copy data 11031 * exit 11032 */ 11033 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11034 { 11035 struct kvm_run *run = vcpu->run; 11036 struct kvm_mmio_fragment *frag; 11037 unsigned len; 11038 11039 BUG_ON(!vcpu->mmio_needed); 11040 11041 /* Complete previous fragment */ 11042 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11043 len = min(8u, frag->len); 11044 if (!vcpu->mmio_is_write) 11045 memcpy(frag->data, run->mmio.data, len); 11046 11047 if (frag->len <= 8) { 11048 /* Switch to the next fragment. */ 11049 frag++; 11050 vcpu->mmio_cur_fragment++; 11051 } else { 11052 /* Go forward to the next mmio piece. */ 11053 frag->data += len; 11054 frag->gpa += len; 11055 frag->len -= len; 11056 } 11057 11058 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11059 vcpu->mmio_needed = 0; 11060 11061 /* FIXME: return into emulator if single-stepping. */ 11062 if (vcpu->mmio_is_write) 11063 return 1; 11064 vcpu->mmio_read_completed = 1; 11065 return complete_emulated_io(vcpu); 11066 } 11067 11068 run->exit_reason = KVM_EXIT_MMIO; 11069 run->mmio.phys_addr = frag->gpa; 11070 if (vcpu->mmio_is_write) 11071 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11072 run->mmio.len = min(8u, frag->len); 11073 run->mmio.is_write = vcpu->mmio_is_write; 11074 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11075 return 0; 11076 } 11077 11078 /* Swap (qemu) user FPU context for the guest FPU context. */ 11079 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11080 { 11081 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11082 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11083 trace_kvm_fpu(1); 11084 } 11085 11086 /* When vcpu_run ends, restore user space FPU context. */ 11087 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11088 { 11089 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11090 ++vcpu->stat.fpu_reload; 11091 trace_kvm_fpu(0); 11092 } 11093 11094 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11095 { 11096 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11097 struct kvm_run *kvm_run = vcpu->run; 11098 int r; 11099 11100 vcpu_load(vcpu); 11101 kvm_sigset_activate(vcpu); 11102 kvm_run->flags = 0; 11103 kvm_load_guest_fpu(vcpu); 11104 11105 kvm_vcpu_srcu_read_lock(vcpu); 11106 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11107 if (kvm_run->immediate_exit) { 11108 r = -EINTR; 11109 goto out; 11110 } 11111 /* 11112 * It should be impossible for the hypervisor timer to be in 11113 * use before KVM has ever run the vCPU. 11114 */ 11115 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 11116 11117 kvm_vcpu_srcu_read_unlock(vcpu); 11118 kvm_vcpu_block(vcpu); 11119 kvm_vcpu_srcu_read_lock(vcpu); 11120 11121 if (kvm_apic_accept_events(vcpu) < 0) { 11122 r = 0; 11123 goto out; 11124 } 11125 r = -EAGAIN; 11126 if (signal_pending(current)) { 11127 r = -EINTR; 11128 kvm_run->exit_reason = KVM_EXIT_INTR; 11129 ++vcpu->stat.signal_exits; 11130 } 11131 goto out; 11132 } 11133 11134 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11135 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11136 r = -EINVAL; 11137 goto out; 11138 } 11139 11140 if (kvm_run->kvm_dirty_regs) { 11141 r = sync_regs(vcpu); 11142 if (r != 0) 11143 goto out; 11144 } 11145 11146 /* re-sync apic's tpr */ 11147 if (!lapic_in_kernel(vcpu)) { 11148 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11149 r = -EINVAL; 11150 goto out; 11151 } 11152 } 11153 11154 /* 11155 * If userspace set a pending exception and L2 is active, convert it to 11156 * a pending VM-Exit if L1 wants to intercept the exception. 11157 */ 11158 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11159 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11160 ex->error_code)) { 11161 kvm_queue_exception_vmexit(vcpu, ex->vector, 11162 ex->has_error_code, ex->error_code, 11163 ex->has_payload, ex->payload); 11164 ex->injected = false; 11165 ex->pending = false; 11166 } 11167 vcpu->arch.exception_from_userspace = false; 11168 11169 if (unlikely(vcpu->arch.complete_userspace_io)) { 11170 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11171 vcpu->arch.complete_userspace_io = NULL; 11172 r = cui(vcpu); 11173 if (r <= 0) 11174 goto out; 11175 } else { 11176 WARN_ON_ONCE(vcpu->arch.pio.count); 11177 WARN_ON_ONCE(vcpu->mmio_needed); 11178 } 11179 11180 if (kvm_run->immediate_exit) { 11181 r = -EINTR; 11182 goto out; 11183 } 11184 11185 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11186 if (r <= 0) 11187 goto out; 11188 11189 r = vcpu_run(vcpu); 11190 11191 out: 11192 kvm_put_guest_fpu(vcpu); 11193 if (kvm_run->kvm_valid_regs) 11194 store_regs(vcpu); 11195 post_kvm_run_save(vcpu); 11196 kvm_vcpu_srcu_read_unlock(vcpu); 11197 11198 kvm_sigset_deactivate(vcpu); 11199 vcpu_put(vcpu); 11200 return r; 11201 } 11202 11203 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11204 { 11205 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11206 /* 11207 * We are here if userspace calls get_regs() in the middle of 11208 * instruction emulation. Registers state needs to be copied 11209 * back from emulation context to vcpu. Userspace shouldn't do 11210 * that usually, but some bad designed PV devices (vmware 11211 * backdoor interface) need this to work 11212 */ 11213 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11214 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11215 } 11216 regs->rax = kvm_rax_read(vcpu); 11217 regs->rbx = kvm_rbx_read(vcpu); 11218 regs->rcx = kvm_rcx_read(vcpu); 11219 regs->rdx = kvm_rdx_read(vcpu); 11220 regs->rsi = kvm_rsi_read(vcpu); 11221 regs->rdi = kvm_rdi_read(vcpu); 11222 regs->rsp = kvm_rsp_read(vcpu); 11223 regs->rbp = kvm_rbp_read(vcpu); 11224 #ifdef CONFIG_X86_64 11225 regs->r8 = kvm_r8_read(vcpu); 11226 regs->r9 = kvm_r9_read(vcpu); 11227 regs->r10 = kvm_r10_read(vcpu); 11228 regs->r11 = kvm_r11_read(vcpu); 11229 regs->r12 = kvm_r12_read(vcpu); 11230 regs->r13 = kvm_r13_read(vcpu); 11231 regs->r14 = kvm_r14_read(vcpu); 11232 regs->r15 = kvm_r15_read(vcpu); 11233 #endif 11234 11235 regs->rip = kvm_rip_read(vcpu); 11236 regs->rflags = kvm_get_rflags(vcpu); 11237 } 11238 11239 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11240 { 11241 vcpu_load(vcpu); 11242 __get_regs(vcpu, regs); 11243 vcpu_put(vcpu); 11244 return 0; 11245 } 11246 11247 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11248 { 11249 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11250 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11251 11252 kvm_rax_write(vcpu, regs->rax); 11253 kvm_rbx_write(vcpu, regs->rbx); 11254 kvm_rcx_write(vcpu, regs->rcx); 11255 kvm_rdx_write(vcpu, regs->rdx); 11256 kvm_rsi_write(vcpu, regs->rsi); 11257 kvm_rdi_write(vcpu, regs->rdi); 11258 kvm_rsp_write(vcpu, regs->rsp); 11259 kvm_rbp_write(vcpu, regs->rbp); 11260 #ifdef CONFIG_X86_64 11261 kvm_r8_write(vcpu, regs->r8); 11262 kvm_r9_write(vcpu, regs->r9); 11263 kvm_r10_write(vcpu, regs->r10); 11264 kvm_r11_write(vcpu, regs->r11); 11265 kvm_r12_write(vcpu, regs->r12); 11266 kvm_r13_write(vcpu, regs->r13); 11267 kvm_r14_write(vcpu, regs->r14); 11268 kvm_r15_write(vcpu, regs->r15); 11269 #endif 11270 11271 kvm_rip_write(vcpu, regs->rip); 11272 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11273 11274 vcpu->arch.exception.pending = false; 11275 vcpu->arch.exception_vmexit.pending = false; 11276 11277 kvm_make_request(KVM_REQ_EVENT, vcpu); 11278 } 11279 11280 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11281 { 11282 vcpu_load(vcpu); 11283 __set_regs(vcpu, regs); 11284 vcpu_put(vcpu); 11285 return 0; 11286 } 11287 11288 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11289 { 11290 struct desc_ptr dt; 11291 11292 if (vcpu->arch.guest_state_protected) 11293 goto skip_protected_regs; 11294 11295 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11296 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11297 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11298 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11299 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11300 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11301 11302 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11303 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11304 11305 static_call(kvm_x86_get_idt)(vcpu, &dt); 11306 sregs->idt.limit = dt.size; 11307 sregs->idt.base = dt.address; 11308 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11309 sregs->gdt.limit = dt.size; 11310 sregs->gdt.base = dt.address; 11311 11312 sregs->cr2 = vcpu->arch.cr2; 11313 sregs->cr3 = kvm_read_cr3(vcpu); 11314 11315 skip_protected_regs: 11316 sregs->cr0 = kvm_read_cr0(vcpu); 11317 sregs->cr4 = kvm_read_cr4(vcpu); 11318 sregs->cr8 = kvm_get_cr8(vcpu); 11319 sregs->efer = vcpu->arch.efer; 11320 sregs->apic_base = kvm_get_apic_base(vcpu); 11321 } 11322 11323 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11324 { 11325 __get_sregs_common(vcpu, sregs); 11326 11327 if (vcpu->arch.guest_state_protected) 11328 return; 11329 11330 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11331 set_bit(vcpu->arch.interrupt.nr, 11332 (unsigned long *)sregs->interrupt_bitmap); 11333 } 11334 11335 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11336 { 11337 int i; 11338 11339 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11340 11341 if (vcpu->arch.guest_state_protected) 11342 return; 11343 11344 if (is_pae_paging(vcpu)) { 11345 for (i = 0 ; i < 4 ; i++) 11346 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11347 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11348 } 11349 } 11350 11351 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11352 struct kvm_sregs *sregs) 11353 { 11354 vcpu_load(vcpu); 11355 __get_sregs(vcpu, sregs); 11356 vcpu_put(vcpu); 11357 return 0; 11358 } 11359 11360 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11361 struct kvm_mp_state *mp_state) 11362 { 11363 int r; 11364 11365 vcpu_load(vcpu); 11366 if (kvm_mpx_supported()) 11367 kvm_load_guest_fpu(vcpu); 11368 11369 r = kvm_apic_accept_events(vcpu); 11370 if (r < 0) 11371 goto out; 11372 r = 0; 11373 11374 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11375 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11376 vcpu->arch.pv.pv_unhalted) 11377 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11378 else 11379 mp_state->mp_state = vcpu->arch.mp_state; 11380 11381 out: 11382 if (kvm_mpx_supported()) 11383 kvm_put_guest_fpu(vcpu); 11384 vcpu_put(vcpu); 11385 return r; 11386 } 11387 11388 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11389 struct kvm_mp_state *mp_state) 11390 { 11391 int ret = -EINVAL; 11392 11393 vcpu_load(vcpu); 11394 11395 switch (mp_state->mp_state) { 11396 case KVM_MP_STATE_UNINITIALIZED: 11397 case KVM_MP_STATE_HALTED: 11398 case KVM_MP_STATE_AP_RESET_HOLD: 11399 case KVM_MP_STATE_INIT_RECEIVED: 11400 case KVM_MP_STATE_SIPI_RECEIVED: 11401 if (!lapic_in_kernel(vcpu)) 11402 goto out; 11403 break; 11404 11405 case KVM_MP_STATE_RUNNABLE: 11406 break; 11407 11408 default: 11409 goto out; 11410 } 11411 11412 /* 11413 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11414 * forcing the guest into INIT/SIPI if those events are supposed to be 11415 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11416 * if an SMI is pending as well. 11417 */ 11418 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11419 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11420 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11421 goto out; 11422 11423 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11424 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11425 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11426 } else 11427 vcpu->arch.mp_state = mp_state->mp_state; 11428 kvm_make_request(KVM_REQ_EVENT, vcpu); 11429 11430 ret = 0; 11431 out: 11432 vcpu_put(vcpu); 11433 return ret; 11434 } 11435 11436 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11437 int reason, bool has_error_code, u32 error_code) 11438 { 11439 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11440 int ret; 11441 11442 init_emulate_ctxt(vcpu); 11443 11444 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11445 has_error_code, error_code); 11446 if (ret) { 11447 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11448 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11449 vcpu->run->internal.ndata = 0; 11450 return 0; 11451 } 11452 11453 kvm_rip_write(vcpu, ctxt->eip); 11454 kvm_set_rflags(vcpu, ctxt->eflags); 11455 return 1; 11456 } 11457 EXPORT_SYMBOL_GPL(kvm_task_switch); 11458 11459 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11460 { 11461 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11462 /* 11463 * When EFER.LME and CR0.PG are set, the processor is in 11464 * 64-bit mode (though maybe in a 32-bit code segment). 11465 * CR4.PAE and EFER.LMA must be set. 11466 */ 11467 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11468 return false; 11469 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11470 return false; 11471 } else { 11472 /* 11473 * Not in 64-bit mode: EFER.LMA is clear and the code 11474 * segment cannot be 64-bit. 11475 */ 11476 if (sregs->efer & EFER_LMA || sregs->cs.l) 11477 return false; 11478 } 11479 11480 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11481 kvm_is_valid_cr0(vcpu, sregs->cr0); 11482 } 11483 11484 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11485 int *mmu_reset_needed, bool update_pdptrs) 11486 { 11487 struct msr_data apic_base_msr; 11488 int idx; 11489 struct desc_ptr dt; 11490 11491 if (!kvm_is_valid_sregs(vcpu, sregs)) 11492 return -EINVAL; 11493 11494 apic_base_msr.data = sregs->apic_base; 11495 apic_base_msr.host_initiated = true; 11496 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11497 return -EINVAL; 11498 11499 if (vcpu->arch.guest_state_protected) 11500 return 0; 11501 11502 dt.size = sregs->idt.limit; 11503 dt.address = sregs->idt.base; 11504 static_call(kvm_x86_set_idt)(vcpu, &dt); 11505 dt.size = sregs->gdt.limit; 11506 dt.address = sregs->gdt.base; 11507 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11508 11509 vcpu->arch.cr2 = sregs->cr2; 11510 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11511 vcpu->arch.cr3 = sregs->cr3; 11512 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11513 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11514 11515 kvm_set_cr8(vcpu, sregs->cr8); 11516 11517 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11518 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11519 11520 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11521 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11522 vcpu->arch.cr0 = sregs->cr0; 11523 11524 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11525 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11526 11527 if (update_pdptrs) { 11528 idx = srcu_read_lock(&vcpu->kvm->srcu); 11529 if (is_pae_paging(vcpu)) { 11530 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11531 *mmu_reset_needed = 1; 11532 } 11533 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11534 } 11535 11536 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11537 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11538 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11539 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11540 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11541 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11542 11543 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11544 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11545 11546 update_cr8_intercept(vcpu); 11547 11548 /* Older userspace won't unhalt the vcpu on reset. */ 11549 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11550 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11551 !is_protmode(vcpu)) 11552 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11553 11554 return 0; 11555 } 11556 11557 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11558 { 11559 int pending_vec, max_bits; 11560 int mmu_reset_needed = 0; 11561 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11562 11563 if (ret) 11564 return ret; 11565 11566 if (mmu_reset_needed) 11567 kvm_mmu_reset_context(vcpu); 11568 11569 max_bits = KVM_NR_INTERRUPTS; 11570 pending_vec = find_first_bit( 11571 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11572 11573 if (pending_vec < max_bits) { 11574 kvm_queue_interrupt(vcpu, pending_vec, false); 11575 pr_debug("Set back pending irq %d\n", pending_vec); 11576 kvm_make_request(KVM_REQ_EVENT, vcpu); 11577 } 11578 return 0; 11579 } 11580 11581 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11582 { 11583 int mmu_reset_needed = 0; 11584 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11585 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11586 !(sregs2->efer & EFER_LMA); 11587 int i, ret; 11588 11589 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11590 return -EINVAL; 11591 11592 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11593 return -EINVAL; 11594 11595 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11596 &mmu_reset_needed, !valid_pdptrs); 11597 if (ret) 11598 return ret; 11599 11600 if (valid_pdptrs) { 11601 for (i = 0; i < 4 ; i++) 11602 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11603 11604 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11605 mmu_reset_needed = 1; 11606 vcpu->arch.pdptrs_from_userspace = true; 11607 } 11608 if (mmu_reset_needed) 11609 kvm_mmu_reset_context(vcpu); 11610 return 0; 11611 } 11612 11613 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11614 struct kvm_sregs *sregs) 11615 { 11616 int ret; 11617 11618 vcpu_load(vcpu); 11619 ret = __set_sregs(vcpu, sregs); 11620 vcpu_put(vcpu); 11621 return ret; 11622 } 11623 11624 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11625 { 11626 bool set = false; 11627 struct kvm_vcpu *vcpu; 11628 unsigned long i; 11629 11630 if (!enable_apicv) 11631 return; 11632 11633 down_write(&kvm->arch.apicv_update_lock); 11634 11635 kvm_for_each_vcpu(i, vcpu, kvm) { 11636 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11637 set = true; 11638 break; 11639 } 11640 } 11641 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11642 up_write(&kvm->arch.apicv_update_lock); 11643 } 11644 11645 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11646 struct kvm_guest_debug *dbg) 11647 { 11648 unsigned long rflags; 11649 int i, r; 11650 11651 if (vcpu->arch.guest_state_protected) 11652 return -EINVAL; 11653 11654 vcpu_load(vcpu); 11655 11656 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11657 r = -EBUSY; 11658 if (kvm_is_exception_pending(vcpu)) 11659 goto out; 11660 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11661 kvm_queue_exception(vcpu, DB_VECTOR); 11662 else 11663 kvm_queue_exception(vcpu, BP_VECTOR); 11664 } 11665 11666 /* 11667 * Read rflags as long as potentially injected trace flags are still 11668 * filtered out. 11669 */ 11670 rflags = kvm_get_rflags(vcpu); 11671 11672 vcpu->guest_debug = dbg->control; 11673 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11674 vcpu->guest_debug = 0; 11675 11676 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11677 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11678 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11679 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11680 } else { 11681 for (i = 0; i < KVM_NR_DB_REGS; i++) 11682 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11683 } 11684 kvm_update_dr7(vcpu); 11685 11686 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11687 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11688 11689 /* 11690 * Trigger an rflags update that will inject or remove the trace 11691 * flags. 11692 */ 11693 kvm_set_rflags(vcpu, rflags); 11694 11695 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11696 11697 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11698 11699 r = 0; 11700 11701 out: 11702 vcpu_put(vcpu); 11703 return r; 11704 } 11705 11706 /* 11707 * Translate a guest virtual address to a guest physical address. 11708 */ 11709 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11710 struct kvm_translation *tr) 11711 { 11712 unsigned long vaddr = tr->linear_address; 11713 gpa_t gpa; 11714 int idx; 11715 11716 vcpu_load(vcpu); 11717 11718 idx = srcu_read_lock(&vcpu->kvm->srcu); 11719 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11720 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11721 tr->physical_address = gpa; 11722 tr->valid = gpa != INVALID_GPA; 11723 tr->writeable = 1; 11724 tr->usermode = 0; 11725 11726 vcpu_put(vcpu); 11727 return 0; 11728 } 11729 11730 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11731 { 11732 struct fxregs_state *fxsave; 11733 11734 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11735 return 0; 11736 11737 vcpu_load(vcpu); 11738 11739 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11740 memcpy(fpu->fpr, fxsave->st_space, 128); 11741 fpu->fcw = fxsave->cwd; 11742 fpu->fsw = fxsave->swd; 11743 fpu->ftwx = fxsave->twd; 11744 fpu->last_opcode = fxsave->fop; 11745 fpu->last_ip = fxsave->rip; 11746 fpu->last_dp = fxsave->rdp; 11747 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11748 11749 vcpu_put(vcpu); 11750 return 0; 11751 } 11752 11753 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11754 { 11755 struct fxregs_state *fxsave; 11756 11757 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11758 return 0; 11759 11760 vcpu_load(vcpu); 11761 11762 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11763 11764 memcpy(fxsave->st_space, fpu->fpr, 128); 11765 fxsave->cwd = fpu->fcw; 11766 fxsave->swd = fpu->fsw; 11767 fxsave->twd = fpu->ftwx; 11768 fxsave->fop = fpu->last_opcode; 11769 fxsave->rip = fpu->last_ip; 11770 fxsave->rdp = fpu->last_dp; 11771 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11772 11773 vcpu_put(vcpu); 11774 return 0; 11775 } 11776 11777 static void store_regs(struct kvm_vcpu *vcpu) 11778 { 11779 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11780 11781 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11782 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11783 11784 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11785 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11786 11787 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11788 kvm_vcpu_ioctl_x86_get_vcpu_events( 11789 vcpu, &vcpu->run->s.regs.events); 11790 } 11791 11792 static int sync_regs(struct kvm_vcpu *vcpu) 11793 { 11794 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11795 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11796 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11797 } 11798 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11799 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11800 return -EINVAL; 11801 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11802 } 11803 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11804 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11805 vcpu, &vcpu->run->s.regs.events)) 11806 return -EINVAL; 11807 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11808 } 11809 11810 return 0; 11811 } 11812 11813 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11814 { 11815 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11816 pr_warn_once("SMP vm created on host with unstable TSC; " 11817 "guest TSC will not be reliable\n"); 11818 11819 if (!kvm->arch.max_vcpu_ids) 11820 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11821 11822 if (id >= kvm->arch.max_vcpu_ids) 11823 return -EINVAL; 11824 11825 return static_call(kvm_x86_vcpu_precreate)(kvm); 11826 } 11827 11828 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11829 { 11830 struct page *page; 11831 int r; 11832 11833 vcpu->arch.last_vmentry_cpu = -1; 11834 vcpu->arch.regs_avail = ~0; 11835 vcpu->arch.regs_dirty = ~0; 11836 11837 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11838 11839 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11840 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11841 else 11842 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11843 11844 r = kvm_mmu_create(vcpu); 11845 if (r < 0) 11846 return r; 11847 11848 if (irqchip_in_kernel(vcpu->kvm)) { 11849 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11850 if (r < 0) 11851 goto fail_mmu_destroy; 11852 11853 /* 11854 * Defer evaluating inhibits until the vCPU is first run, as 11855 * this vCPU will not get notified of any changes until this 11856 * vCPU is visible to other vCPUs (marked online and added to 11857 * the set of vCPUs). Opportunistically mark APICv active as 11858 * VMX in particularly is highly unlikely to have inhibits. 11859 * Ignore the current per-VM APICv state so that vCPU creation 11860 * is guaranteed to run with a deterministic value, the request 11861 * will ensure the vCPU gets the correct state before VM-Entry. 11862 */ 11863 if (enable_apicv) { 11864 vcpu->arch.apic->apicv_active = true; 11865 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11866 } 11867 } else 11868 static_branch_inc(&kvm_has_noapic_vcpu); 11869 11870 r = -ENOMEM; 11871 11872 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11873 if (!page) 11874 goto fail_free_lapic; 11875 vcpu->arch.pio_data = page_address(page); 11876 11877 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11878 GFP_KERNEL_ACCOUNT); 11879 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11880 GFP_KERNEL_ACCOUNT); 11881 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11882 goto fail_free_mce_banks; 11883 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11884 11885 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11886 GFP_KERNEL_ACCOUNT)) 11887 goto fail_free_mce_banks; 11888 11889 if (!alloc_emulate_ctxt(vcpu)) 11890 goto free_wbinvd_dirty_mask; 11891 11892 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11893 pr_err("failed to allocate vcpu's fpu\n"); 11894 goto free_emulate_ctxt; 11895 } 11896 11897 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11898 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11899 11900 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11901 11902 kvm_async_pf_hash_reset(vcpu); 11903 11904 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11905 kvm_pmu_init(vcpu); 11906 11907 vcpu->arch.pending_external_vector = -1; 11908 vcpu->arch.preempted_in_kernel = false; 11909 11910 #if IS_ENABLED(CONFIG_HYPERV) 11911 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11912 #endif 11913 11914 r = static_call(kvm_x86_vcpu_create)(vcpu); 11915 if (r) 11916 goto free_guest_fpu; 11917 11918 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11919 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11920 kvm_xen_init_vcpu(vcpu); 11921 kvm_vcpu_mtrr_init(vcpu); 11922 vcpu_load(vcpu); 11923 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11924 kvm_vcpu_reset(vcpu, false); 11925 kvm_init_mmu(vcpu); 11926 vcpu_put(vcpu); 11927 return 0; 11928 11929 free_guest_fpu: 11930 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11931 free_emulate_ctxt: 11932 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11933 free_wbinvd_dirty_mask: 11934 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11935 fail_free_mce_banks: 11936 kfree(vcpu->arch.mce_banks); 11937 kfree(vcpu->arch.mci_ctl2_banks); 11938 free_page((unsigned long)vcpu->arch.pio_data); 11939 fail_free_lapic: 11940 kvm_free_lapic(vcpu); 11941 fail_mmu_destroy: 11942 kvm_mmu_destroy(vcpu); 11943 return r; 11944 } 11945 11946 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11947 { 11948 struct kvm *kvm = vcpu->kvm; 11949 11950 if (mutex_lock_killable(&vcpu->mutex)) 11951 return; 11952 vcpu_load(vcpu); 11953 kvm_synchronize_tsc(vcpu, 0); 11954 vcpu_put(vcpu); 11955 11956 /* poll control enabled by default */ 11957 vcpu->arch.msr_kvm_poll_control = 1; 11958 11959 mutex_unlock(&vcpu->mutex); 11960 11961 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11962 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11963 KVMCLOCK_SYNC_PERIOD); 11964 } 11965 11966 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11967 { 11968 int idx; 11969 11970 kvmclock_reset(vcpu); 11971 11972 static_call(kvm_x86_vcpu_free)(vcpu); 11973 11974 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11975 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11976 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11977 11978 kvm_xen_destroy_vcpu(vcpu); 11979 kvm_hv_vcpu_uninit(vcpu); 11980 kvm_pmu_destroy(vcpu); 11981 kfree(vcpu->arch.mce_banks); 11982 kfree(vcpu->arch.mci_ctl2_banks); 11983 kvm_free_lapic(vcpu); 11984 idx = srcu_read_lock(&vcpu->kvm->srcu); 11985 kvm_mmu_destroy(vcpu); 11986 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11987 free_page((unsigned long)vcpu->arch.pio_data); 11988 kvfree(vcpu->arch.cpuid_entries); 11989 if (!lapic_in_kernel(vcpu)) 11990 static_branch_dec(&kvm_has_noapic_vcpu); 11991 } 11992 11993 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11994 { 11995 struct kvm_cpuid_entry2 *cpuid_0x1; 11996 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11997 unsigned long new_cr0; 11998 11999 /* 12000 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12001 * to handle side effects. RESET emulation hits those flows and relies 12002 * on emulated/virtualized registers, including those that are loaded 12003 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12004 * to detect improper or missing initialization. 12005 */ 12006 WARN_ON_ONCE(!init_event && 12007 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12008 12009 /* 12010 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12011 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12012 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12013 * bits), i.e. virtualization is disabled. 12014 */ 12015 if (is_guest_mode(vcpu)) 12016 kvm_leave_nested(vcpu); 12017 12018 kvm_lapic_reset(vcpu, init_event); 12019 12020 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12021 vcpu->arch.hflags = 0; 12022 12023 vcpu->arch.smi_pending = 0; 12024 vcpu->arch.smi_count = 0; 12025 atomic_set(&vcpu->arch.nmi_queued, 0); 12026 vcpu->arch.nmi_pending = 0; 12027 vcpu->arch.nmi_injected = false; 12028 kvm_clear_interrupt_queue(vcpu); 12029 kvm_clear_exception_queue(vcpu); 12030 12031 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12032 kvm_update_dr0123(vcpu); 12033 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12034 vcpu->arch.dr7 = DR7_FIXED_1; 12035 kvm_update_dr7(vcpu); 12036 12037 vcpu->arch.cr2 = 0; 12038 12039 kvm_make_request(KVM_REQ_EVENT, vcpu); 12040 vcpu->arch.apf.msr_en_val = 0; 12041 vcpu->arch.apf.msr_int_val = 0; 12042 vcpu->arch.st.msr_val = 0; 12043 12044 kvmclock_reset(vcpu); 12045 12046 kvm_clear_async_pf_completion_queue(vcpu); 12047 kvm_async_pf_hash_reset(vcpu); 12048 vcpu->arch.apf.halted = false; 12049 12050 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12051 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12052 12053 /* 12054 * All paths that lead to INIT are required to load the guest's 12055 * FPU state (because most paths are buried in KVM_RUN). 12056 */ 12057 if (init_event) 12058 kvm_put_guest_fpu(vcpu); 12059 12060 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12061 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12062 12063 if (init_event) 12064 kvm_load_guest_fpu(vcpu); 12065 } 12066 12067 if (!init_event) { 12068 kvm_pmu_reset(vcpu); 12069 vcpu->arch.smbase = 0x30000; 12070 12071 vcpu->arch.msr_misc_features_enables = 0; 12072 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12073 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12074 12075 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12076 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12077 } 12078 12079 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12080 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12081 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12082 12083 /* 12084 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12085 * if no CPUID match is found. Note, it's impossible to get a match at 12086 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12087 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12088 * on RESET. But, go through the motions in case that's ever remedied. 12089 */ 12090 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12091 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12092 12093 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12094 12095 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12096 kvm_rip_write(vcpu, 0xfff0); 12097 12098 vcpu->arch.cr3 = 0; 12099 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12100 12101 /* 12102 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12103 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12104 * (or qualify) that with a footnote stating that CD/NW are preserved. 12105 */ 12106 new_cr0 = X86_CR0_ET; 12107 if (init_event) 12108 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12109 else 12110 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12111 12112 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12113 static_call(kvm_x86_set_cr4)(vcpu, 0); 12114 static_call(kvm_x86_set_efer)(vcpu, 0); 12115 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12116 12117 /* 12118 * On the standard CR0/CR4/EFER modification paths, there are several 12119 * complex conditions determining whether the MMU has to be reset and/or 12120 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12121 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12122 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12123 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12124 */ 12125 if (old_cr0 & X86_CR0_PG) { 12126 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12127 kvm_mmu_reset_context(vcpu); 12128 } 12129 12130 /* 12131 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12132 * APM states the TLBs are untouched by INIT, but it also states that 12133 * the TLBs are flushed on "External initialization of the processor." 12134 * Flush the guest TLB regardless of vendor, there is no meaningful 12135 * benefit in relying on the guest to flush the TLB immediately after 12136 * INIT. A spurious TLB flush is benign and likely negligible from a 12137 * performance perspective. 12138 */ 12139 if (init_event) 12140 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12141 } 12142 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12143 12144 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12145 { 12146 struct kvm_segment cs; 12147 12148 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12149 cs.selector = vector << 8; 12150 cs.base = vector << 12; 12151 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12152 kvm_rip_write(vcpu, 0); 12153 } 12154 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12155 12156 int kvm_arch_hardware_enable(void) 12157 { 12158 struct kvm *kvm; 12159 struct kvm_vcpu *vcpu; 12160 unsigned long i; 12161 int ret; 12162 u64 local_tsc; 12163 u64 max_tsc = 0; 12164 bool stable, backwards_tsc = false; 12165 12166 kvm_user_return_msr_cpu_online(); 12167 12168 ret = kvm_x86_check_processor_compatibility(); 12169 if (ret) 12170 return ret; 12171 12172 ret = static_call(kvm_x86_hardware_enable)(); 12173 if (ret != 0) 12174 return ret; 12175 12176 local_tsc = rdtsc(); 12177 stable = !kvm_check_tsc_unstable(); 12178 list_for_each_entry(kvm, &vm_list, vm_list) { 12179 kvm_for_each_vcpu(i, vcpu, kvm) { 12180 if (!stable && vcpu->cpu == smp_processor_id()) 12181 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12182 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12183 backwards_tsc = true; 12184 if (vcpu->arch.last_host_tsc > max_tsc) 12185 max_tsc = vcpu->arch.last_host_tsc; 12186 } 12187 } 12188 } 12189 12190 /* 12191 * Sometimes, even reliable TSCs go backwards. This happens on 12192 * platforms that reset TSC during suspend or hibernate actions, but 12193 * maintain synchronization. We must compensate. Fortunately, we can 12194 * detect that condition here, which happens early in CPU bringup, 12195 * before any KVM threads can be running. Unfortunately, we can't 12196 * bring the TSCs fully up to date with real time, as we aren't yet far 12197 * enough into CPU bringup that we know how much real time has actually 12198 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12199 * variables that haven't been updated yet. 12200 * 12201 * So we simply find the maximum observed TSC above, then record the 12202 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12203 * the adjustment will be applied. Note that we accumulate 12204 * adjustments, in case multiple suspend cycles happen before some VCPU 12205 * gets a chance to run again. In the event that no KVM threads get a 12206 * chance to run, we will miss the entire elapsed period, as we'll have 12207 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12208 * loose cycle time. This isn't too big a deal, since the loss will be 12209 * uniform across all VCPUs (not to mention the scenario is extremely 12210 * unlikely). It is possible that a second hibernate recovery happens 12211 * much faster than a first, causing the observed TSC here to be 12212 * smaller; this would require additional padding adjustment, which is 12213 * why we set last_host_tsc to the local tsc observed here. 12214 * 12215 * N.B. - this code below runs only on platforms with reliable TSC, 12216 * as that is the only way backwards_tsc is set above. Also note 12217 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12218 * have the same delta_cyc adjustment applied if backwards_tsc 12219 * is detected. Note further, this adjustment is only done once, 12220 * as we reset last_host_tsc on all VCPUs to stop this from being 12221 * called multiple times (one for each physical CPU bringup). 12222 * 12223 * Platforms with unreliable TSCs don't have to deal with this, they 12224 * will be compensated by the logic in vcpu_load, which sets the TSC to 12225 * catchup mode. This will catchup all VCPUs to real time, but cannot 12226 * guarantee that they stay in perfect synchronization. 12227 */ 12228 if (backwards_tsc) { 12229 u64 delta_cyc = max_tsc - local_tsc; 12230 list_for_each_entry(kvm, &vm_list, vm_list) { 12231 kvm->arch.backwards_tsc_observed = true; 12232 kvm_for_each_vcpu(i, vcpu, kvm) { 12233 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12234 vcpu->arch.last_host_tsc = local_tsc; 12235 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12236 } 12237 12238 /* 12239 * We have to disable TSC offset matching.. if you were 12240 * booting a VM while issuing an S4 host suspend.... 12241 * you may have some problem. Solving this issue is 12242 * left as an exercise to the reader. 12243 */ 12244 kvm->arch.last_tsc_nsec = 0; 12245 kvm->arch.last_tsc_write = 0; 12246 } 12247 12248 } 12249 return 0; 12250 } 12251 12252 void kvm_arch_hardware_disable(void) 12253 { 12254 static_call(kvm_x86_hardware_disable)(); 12255 drop_user_return_notifiers(); 12256 } 12257 12258 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12259 { 12260 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12261 } 12262 12263 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12264 { 12265 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12266 } 12267 12268 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12269 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12270 12271 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12272 { 12273 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12274 12275 vcpu->arch.l1tf_flush_l1d = true; 12276 if (pmu->version && unlikely(pmu->event_count)) { 12277 pmu->need_cleanup = true; 12278 kvm_make_request(KVM_REQ_PMU, vcpu); 12279 } 12280 static_call(kvm_x86_sched_in)(vcpu, cpu); 12281 } 12282 12283 void kvm_arch_free_vm(struct kvm *kvm) 12284 { 12285 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12286 __kvm_arch_free_vm(kvm); 12287 } 12288 12289 12290 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12291 { 12292 int ret; 12293 unsigned long flags; 12294 12295 if (type) 12296 return -EINVAL; 12297 12298 ret = kvm_page_track_init(kvm); 12299 if (ret) 12300 goto out; 12301 12302 ret = kvm_mmu_init_vm(kvm); 12303 if (ret) 12304 goto out_page_track; 12305 12306 ret = static_call(kvm_x86_vm_init)(kvm); 12307 if (ret) 12308 goto out_uninit_mmu; 12309 12310 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12311 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12312 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12313 12314 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12315 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12316 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12317 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12318 &kvm->arch.irq_sources_bitmap); 12319 12320 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12321 mutex_init(&kvm->arch.apic_map_lock); 12322 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12323 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12324 12325 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12326 pvclock_update_vm_gtod_copy(kvm); 12327 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12328 12329 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12330 kvm->arch.guest_can_read_msr_platform_info = true; 12331 kvm->arch.enable_pmu = enable_pmu; 12332 12333 #if IS_ENABLED(CONFIG_HYPERV) 12334 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12335 kvm->arch.hv_root_tdp = INVALID_PAGE; 12336 #endif 12337 12338 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12339 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12340 12341 kvm_apicv_init(kvm); 12342 kvm_hv_init_vm(kvm); 12343 kvm_xen_init_vm(kvm); 12344 12345 return 0; 12346 12347 out_uninit_mmu: 12348 kvm_mmu_uninit_vm(kvm); 12349 out_page_track: 12350 kvm_page_track_cleanup(kvm); 12351 out: 12352 return ret; 12353 } 12354 12355 int kvm_arch_post_init_vm(struct kvm *kvm) 12356 { 12357 return kvm_mmu_post_init_vm(kvm); 12358 } 12359 12360 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12361 { 12362 vcpu_load(vcpu); 12363 kvm_mmu_unload(vcpu); 12364 vcpu_put(vcpu); 12365 } 12366 12367 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12368 { 12369 unsigned long i; 12370 struct kvm_vcpu *vcpu; 12371 12372 kvm_for_each_vcpu(i, vcpu, kvm) { 12373 kvm_clear_async_pf_completion_queue(vcpu); 12374 kvm_unload_vcpu_mmu(vcpu); 12375 } 12376 } 12377 12378 void kvm_arch_sync_events(struct kvm *kvm) 12379 { 12380 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12381 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12382 kvm_free_pit(kvm); 12383 } 12384 12385 /** 12386 * __x86_set_memory_region: Setup KVM internal memory slot 12387 * 12388 * @kvm: the kvm pointer to the VM. 12389 * @id: the slot ID to setup. 12390 * @gpa: the GPA to install the slot (unused when @size == 0). 12391 * @size: the size of the slot. Set to zero to uninstall a slot. 12392 * 12393 * This function helps to setup a KVM internal memory slot. Specify 12394 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12395 * slot. The return code can be one of the following: 12396 * 12397 * HVA: on success (uninstall will return a bogus HVA) 12398 * -errno: on error 12399 * 12400 * The caller should always use IS_ERR() to check the return value 12401 * before use. Note, the KVM internal memory slots are guaranteed to 12402 * remain valid and unchanged until the VM is destroyed, i.e., the 12403 * GPA->HVA translation will not change. However, the HVA is a user 12404 * address, i.e. its accessibility is not guaranteed, and must be 12405 * accessed via __copy_{to,from}_user(). 12406 */ 12407 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12408 u32 size) 12409 { 12410 int i, r; 12411 unsigned long hva, old_npages; 12412 struct kvm_memslots *slots = kvm_memslots(kvm); 12413 struct kvm_memory_slot *slot; 12414 12415 /* Called with kvm->slots_lock held. */ 12416 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12417 return ERR_PTR_USR(-EINVAL); 12418 12419 slot = id_to_memslot(slots, id); 12420 if (size) { 12421 if (slot && slot->npages) 12422 return ERR_PTR_USR(-EEXIST); 12423 12424 /* 12425 * MAP_SHARED to prevent internal slot pages from being moved 12426 * by fork()/COW. 12427 */ 12428 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12429 MAP_SHARED | MAP_ANONYMOUS, 0); 12430 if (IS_ERR_VALUE(hva)) 12431 return (void __user *)hva; 12432 } else { 12433 if (!slot || !slot->npages) 12434 return NULL; 12435 12436 old_npages = slot->npages; 12437 hva = slot->userspace_addr; 12438 } 12439 12440 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12441 struct kvm_userspace_memory_region m; 12442 12443 m.slot = id | (i << 16); 12444 m.flags = 0; 12445 m.guest_phys_addr = gpa; 12446 m.userspace_addr = hva; 12447 m.memory_size = size; 12448 r = __kvm_set_memory_region(kvm, &m); 12449 if (r < 0) 12450 return ERR_PTR_USR(r); 12451 } 12452 12453 if (!size) 12454 vm_munmap(hva, old_npages * PAGE_SIZE); 12455 12456 return (void __user *)hva; 12457 } 12458 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12459 12460 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12461 { 12462 kvm_mmu_pre_destroy_vm(kvm); 12463 } 12464 12465 void kvm_arch_destroy_vm(struct kvm *kvm) 12466 { 12467 if (current->mm == kvm->mm) { 12468 /* 12469 * Free memory regions allocated on behalf of userspace, 12470 * unless the memory map has changed due to process exit 12471 * or fd copying. 12472 */ 12473 mutex_lock(&kvm->slots_lock); 12474 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12475 0, 0); 12476 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12477 0, 0); 12478 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12479 mutex_unlock(&kvm->slots_lock); 12480 } 12481 kvm_unload_vcpu_mmus(kvm); 12482 static_call_cond(kvm_x86_vm_destroy)(kvm); 12483 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12484 kvm_pic_destroy(kvm); 12485 kvm_ioapic_destroy(kvm); 12486 kvm_destroy_vcpus(kvm); 12487 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12488 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12489 kvm_mmu_uninit_vm(kvm); 12490 kvm_page_track_cleanup(kvm); 12491 kvm_xen_destroy_vm(kvm); 12492 kvm_hv_destroy_vm(kvm); 12493 } 12494 12495 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12496 { 12497 int i; 12498 12499 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12500 kvfree(slot->arch.rmap[i]); 12501 slot->arch.rmap[i] = NULL; 12502 } 12503 } 12504 12505 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12506 { 12507 int i; 12508 12509 memslot_rmap_free(slot); 12510 12511 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12512 kvfree(slot->arch.lpage_info[i - 1]); 12513 slot->arch.lpage_info[i - 1] = NULL; 12514 } 12515 12516 kvm_page_track_free_memslot(slot); 12517 } 12518 12519 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12520 { 12521 const int sz = sizeof(*slot->arch.rmap[0]); 12522 int i; 12523 12524 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12525 int level = i + 1; 12526 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12527 12528 if (slot->arch.rmap[i]) 12529 continue; 12530 12531 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12532 if (!slot->arch.rmap[i]) { 12533 memslot_rmap_free(slot); 12534 return -ENOMEM; 12535 } 12536 } 12537 12538 return 0; 12539 } 12540 12541 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12542 struct kvm_memory_slot *slot) 12543 { 12544 unsigned long npages = slot->npages; 12545 int i, r; 12546 12547 /* 12548 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12549 * old arrays will be freed by __kvm_set_memory_region() if installing 12550 * the new memslot is successful. 12551 */ 12552 memset(&slot->arch, 0, sizeof(slot->arch)); 12553 12554 if (kvm_memslots_have_rmaps(kvm)) { 12555 r = memslot_rmap_alloc(slot, npages); 12556 if (r) 12557 return r; 12558 } 12559 12560 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12561 struct kvm_lpage_info *linfo; 12562 unsigned long ugfn; 12563 int lpages; 12564 int level = i + 1; 12565 12566 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12567 12568 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12569 if (!linfo) 12570 goto out_free; 12571 12572 slot->arch.lpage_info[i - 1] = linfo; 12573 12574 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12575 linfo[0].disallow_lpage = 1; 12576 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12577 linfo[lpages - 1].disallow_lpage = 1; 12578 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12579 /* 12580 * If the gfn and userspace address are not aligned wrt each 12581 * other, disable large page support for this slot. 12582 */ 12583 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12584 unsigned long j; 12585 12586 for (j = 0; j < lpages; ++j) 12587 linfo[j].disallow_lpage = 1; 12588 } 12589 } 12590 12591 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12592 goto out_free; 12593 12594 return 0; 12595 12596 out_free: 12597 memslot_rmap_free(slot); 12598 12599 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12600 kvfree(slot->arch.lpage_info[i - 1]); 12601 slot->arch.lpage_info[i - 1] = NULL; 12602 } 12603 return -ENOMEM; 12604 } 12605 12606 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12607 { 12608 struct kvm_vcpu *vcpu; 12609 unsigned long i; 12610 12611 /* 12612 * memslots->generation has been incremented. 12613 * mmio generation may have reached its maximum value. 12614 */ 12615 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12616 12617 /* Force re-initialization of steal_time cache */ 12618 kvm_for_each_vcpu(i, vcpu, kvm) 12619 kvm_vcpu_kick(vcpu); 12620 } 12621 12622 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12623 const struct kvm_memory_slot *old, 12624 struct kvm_memory_slot *new, 12625 enum kvm_mr_change change) 12626 { 12627 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12628 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12629 return -EINVAL; 12630 12631 return kvm_alloc_memslot_metadata(kvm, new); 12632 } 12633 12634 if (change == KVM_MR_FLAGS_ONLY) 12635 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12636 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12637 return -EIO; 12638 12639 return 0; 12640 } 12641 12642 12643 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12644 { 12645 int nr_slots; 12646 12647 if (!kvm_x86_ops.cpu_dirty_log_size) 12648 return; 12649 12650 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12651 if ((enable && nr_slots == 1) || !nr_slots) 12652 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12653 } 12654 12655 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12656 struct kvm_memory_slot *old, 12657 const struct kvm_memory_slot *new, 12658 enum kvm_mr_change change) 12659 { 12660 u32 old_flags = old ? old->flags : 0; 12661 u32 new_flags = new ? new->flags : 0; 12662 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12663 12664 /* 12665 * Update CPU dirty logging if dirty logging is being toggled. This 12666 * applies to all operations. 12667 */ 12668 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12669 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12670 12671 /* 12672 * Nothing more to do for RO slots (which can't be dirtied and can't be 12673 * made writable) or CREATE/MOVE/DELETE of a slot. 12674 * 12675 * For a memslot with dirty logging disabled: 12676 * CREATE: No dirty mappings will already exist. 12677 * MOVE/DELETE: The old mappings will already have been cleaned up by 12678 * kvm_arch_flush_shadow_memslot() 12679 * 12680 * For a memslot with dirty logging enabled: 12681 * CREATE: No shadow pages exist, thus nothing to write-protect 12682 * and no dirty bits to clear. 12683 * MOVE/DELETE: The old mappings will already have been cleaned up by 12684 * kvm_arch_flush_shadow_memslot(). 12685 */ 12686 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12687 return; 12688 12689 /* 12690 * READONLY and non-flags changes were filtered out above, and the only 12691 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12692 * logging isn't being toggled on or off. 12693 */ 12694 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12695 return; 12696 12697 if (!log_dirty_pages) { 12698 /* 12699 * Dirty logging tracks sptes in 4k granularity, meaning that 12700 * large sptes have to be split. If live migration succeeds, 12701 * the guest in the source machine will be destroyed and large 12702 * sptes will be created in the destination. However, if the 12703 * guest continues to run in the source machine (for example if 12704 * live migration fails), small sptes will remain around and 12705 * cause bad performance. 12706 * 12707 * Scan sptes if dirty logging has been stopped, dropping those 12708 * which can be collapsed into a single large-page spte. Later 12709 * page faults will create the large-page sptes. 12710 */ 12711 kvm_mmu_zap_collapsible_sptes(kvm, new); 12712 } else { 12713 /* 12714 * Initially-all-set does not require write protecting any page, 12715 * because they're all assumed to be dirty. 12716 */ 12717 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12718 return; 12719 12720 if (READ_ONCE(eager_page_split)) 12721 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12722 12723 if (kvm_x86_ops.cpu_dirty_log_size) { 12724 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12725 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12726 } else { 12727 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12728 } 12729 12730 /* 12731 * Unconditionally flush the TLBs after enabling dirty logging. 12732 * A flush is almost always going to be necessary (see below), 12733 * and unconditionally flushing allows the helpers to omit 12734 * the subtly complex checks when removing write access. 12735 * 12736 * Do the flush outside of mmu_lock to reduce the amount of 12737 * time mmu_lock is held. Flushing after dropping mmu_lock is 12738 * safe as KVM only needs to guarantee the slot is fully 12739 * write-protected before returning to userspace, i.e. before 12740 * userspace can consume the dirty status. 12741 * 12742 * Flushing outside of mmu_lock requires KVM to be careful when 12743 * making decisions based on writable status of an SPTE, e.g. a 12744 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12745 * 12746 * Specifically, KVM also write-protects guest page tables to 12747 * monitor changes when using shadow paging, and must guarantee 12748 * no CPUs can write to those page before mmu_lock is dropped. 12749 * Because CPUs may have stale TLB entries at this point, a 12750 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12751 * 12752 * KVM also allows making SPTES writable outside of mmu_lock, 12753 * e.g. to allow dirty logging without taking mmu_lock. 12754 * 12755 * To handle these scenarios, KVM uses a separate software-only 12756 * bit (MMU-writable) to track if a SPTE is !writable due to 12757 * a guest page table being write-protected (KVM clears the 12758 * MMU-writable flag when write-protecting for shadow paging). 12759 * 12760 * The use of MMU-writable is also the primary motivation for 12761 * the unconditional flush. Because KVM must guarantee that a 12762 * CPU doesn't contain stale, writable TLB entries for a 12763 * !MMU-writable SPTE, KVM must flush if it encounters any 12764 * MMU-writable SPTE regardless of whether the actual hardware 12765 * writable bit was set. I.e. KVM is almost guaranteed to need 12766 * to flush, while unconditionally flushing allows the "remove 12767 * write access" helpers to ignore MMU-writable entirely. 12768 * 12769 * See is_writable_pte() for more details (the case involving 12770 * access-tracked SPTEs is particularly relevant). 12771 */ 12772 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12773 } 12774 } 12775 12776 void kvm_arch_commit_memory_region(struct kvm *kvm, 12777 struct kvm_memory_slot *old, 12778 const struct kvm_memory_slot *new, 12779 enum kvm_mr_change change) 12780 { 12781 if (!kvm->arch.n_requested_mmu_pages && 12782 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12783 unsigned long nr_mmu_pages; 12784 12785 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12786 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12787 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12788 } 12789 12790 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12791 12792 /* Free the arrays associated with the old memslot. */ 12793 if (change == KVM_MR_MOVE) 12794 kvm_arch_free_memslot(kvm, old); 12795 } 12796 12797 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12798 { 12799 kvm_mmu_zap_all(kvm); 12800 } 12801 12802 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12803 struct kvm_memory_slot *slot) 12804 { 12805 kvm_page_track_flush_slot(kvm, slot); 12806 } 12807 12808 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12809 { 12810 return (is_guest_mode(vcpu) && 12811 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12812 } 12813 12814 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12815 { 12816 if (!list_empty_careful(&vcpu->async_pf.done)) 12817 return true; 12818 12819 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12820 kvm_apic_init_sipi_allowed(vcpu)) 12821 return true; 12822 12823 if (vcpu->arch.pv.pv_unhalted) 12824 return true; 12825 12826 if (kvm_is_exception_pending(vcpu)) 12827 return true; 12828 12829 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12830 (vcpu->arch.nmi_pending && 12831 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12832 return true; 12833 12834 #ifdef CONFIG_KVM_SMM 12835 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12836 (vcpu->arch.smi_pending && 12837 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12838 return true; 12839 #endif 12840 12841 if (kvm_arch_interrupt_allowed(vcpu) && 12842 (kvm_cpu_has_interrupt(vcpu) || 12843 kvm_guest_apic_has_interrupt(vcpu))) 12844 return true; 12845 12846 if (kvm_hv_has_stimer_pending(vcpu)) 12847 return true; 12848 12849 if (is_guest_mode(vcpu) && 12850 kvm_x86_ops.nested_ops->has_events && 12851 kvm_x86_ops.nested_ops->has_events(vcpu)) 12852 return true; 12853 12854 if (kvm_xen_has_pending_events(vcpu)) 12855 return true; 12856 12857 return false; 12858 } 12859 12860 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12861 { 12862 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12863 } 12864 12865 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12866 { 12867 if (kvm_vcpu_apicv_active(vcpu) && 12868 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12869 return true; 12870 12871 return false; 12872 } 12873 12874 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12875 { 12876 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12877 return true; 12878 12879 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12880 #ifdef CONFIG_KVM_SMM 12881 kvm_test_request(KVM_REQ_SMI, vcpu) || 12882 #endif 12883 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12884 return true; 12885 12886 return kvm_arch_dy_has_pending_interrupt(vcpu); 12887 } 12888 12889 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12890 { 12891 if (vcpu->arch.guest_state_protected) 12892 return true; 12893 12894 return vcpu->arch.preempted_in_kernel; 12895 } 12896 12897 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12898 { 12899 return kvm_rip_read(vcpu); 12900 } 12901 12902 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12903 { 12904 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12905 } 12906 12907 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12908 { 12909 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12910 } 12911 12912 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12913 { 12914 /* Can't read the RIP when guest state is protected, just return 0 */ 12915 if (vcpu->arch.guest_state_protected) 12916 return 0; 12917 12918 if (is_64_bit_mode(vcpu)) 12919 return kvm_rip_read(vcpu); 12920 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12921 kvm_rip_read(vcpu)); 12922 } 12923 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12924 12925 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12926 { 12927 return kvm_get_linear_rip(vcpu) == linear_rip; 12928 } 12929 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12930 12931 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12932 { 12933 unsigned long rflags; 12934 12935 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12936 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12937 rflags &= ~X86_EFLAGS_TF; 12938 return rflags; 12939 } 12940 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12941 12942 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12943 { 12944 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12945 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12946 rflags |= X86_EFLAGS_TF; 12947 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12948 } 12949 12950 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12951 { 12952 __kvm_set_rflags(vcpu, rflags); 12953 kvm_make_request(KVM_REQ_EVENT, vcpu); 12954 } 12955 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12956 12957 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12958 { 12959 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12960 12961 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12962 } 12963 12964 static inline u32 kvm_async_pf_next_probe(u32 key) 12965 { 12966 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12967 } 12968 12969 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12970 { 12971 u32 key = kvm_async_pf_hash_fn(gfn); 12972 12973 while (vcpu->arch.apf.gfns[key] != ~0) 12974 key = kvm_async_pf_next_probe(key); 12975 12976 vcpu->arch.apf.gfns[key] = gfn; 12977 } 12978 12979 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12980 { 12981 int i; 12982 u32 key = kvm_async_pf_hash_fn(gfn); 12983 12984 for (i = 0; i < ASYNC_PF_PER_VCPU && 12985 (vcpu->arch.apf.gfns[key] != gfn && 12986 vcpu->arch.apf.gfns[key] != ~0); i++) 12987 key = kvm_async_pf_next_probe(key); 12988 12989 return key; 12990 } 12991 12992 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12993 { 12994 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12995 } 12996 12997 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12998 { 12999 u32 i, j, k; 13000 13001 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13002 13003 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13004 return; 13005 13006 while (true) { 13007 vcpu->arch.apf.gfns[i] = ~0; 13008 do { 13009 j = kvm_async_pf_next_probe(j); 13010 if (vcpu->arch.apf.gfns[j] == ~0) 13011 return; 13012 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13013 /* 13014 * k lies cyclically in ]i,j] 13015 * | i.k.j | 13016 * |....j i.k.| or |.k..j i...| 13017 */ 13018 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13019 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13020 i = j; 13021 } 13022 } 13023 13024 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13025 { 13026 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13027 13028 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13029 sizeof(reason)); 13030 } 13031 13032 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13033 { 13034 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13035 13036 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13037 &token, offset, sizeof(token)); 13038 } 13039 13040 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13041 { 13042 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13043 u32 val; 13044 13045 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13046 &val, offset, sizeof(val))) 13047 return false; 13048 13049 return !val; 13050 } 13051 13052 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13053 { 13054 13055 if (!kvm_pv_async_pf_enabled(vcpu)) 13056 return false; 13057 13058 if (vcpu->arch.apf.send_user_only && 13059 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13060 return false; 13061 13062 if (is_guest_mode(vcpu)) { 13063 /* 13064 * L1 needs to opt into the special #PF vmexits that are 13065 * used to deliver async page faults. 13066 */ 13067 return vcpu->arch.apf.delivery_as_pf_vmexit; 13068 } else { 13069 /* 13070 * Play it safe in case the guest temporarily disables paging. 13071 * The real mode IDT in particular is unlikely to have a #PF 13072 * exception setup. 13073 */ 13074 return is_paging(vcpu); 13075 } 13076 } 13077 13078 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13079 { 13080 if (unlikely(!lapic_in_kernel(vcpu) || 13081 kvm_event_needs_reinjection(vcpu) || 13082 kvm_is_exception_pending(vcpu))) 13083 return false; 13084 13085 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13086 return false; 13087 13088 /* 13089 * If interrupts are off we cannot even use an artificial 13090 * halt state. 13091 */ 13092 return kvm_arch_interrupt_allowed(vcpu); 13093 } 13094 13095 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13096 struct kvm_async_pf *work) 13097 { 13098 struct x86_exception fault; 13099 13100 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13101 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13102 13103 if (kvm_can_deliver_async_pf(vcpu) && 13104 !apf_put_user_notpresent(vcpu)) { 13105 fault.vector = PF_VECTOR; 13106 fault.error_code_valid = true; 13107 fault.error_code = 0; 13108 fault.nested_page_fault = false; 13109 fault.address = work->arch.token; 13110 fault.async_page_fault = true; 13111 kvm_inject_page_fault(vcpu, &fault); 13112 return true; 13113 } else { 13114 /* 13115 * It is not possible to deliver a paravirtualized asynchronous 13116 * page fault, but putting the guest in an artificial halt state 13117 * can be beneficial nevertheless: if an interrupt arrives, we 13118 * can deliver it timely and perhaps the guest will schedule 13119 * another process. When the instruction that triggered a page 13120 * fault is retried, hopefully the page will be ready in the host. 13121 */ 13122 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13123 return false; 13124 } 13125 } 13126 13127 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13128 struct kvm_async_pf *work) 13129 { 13130 struct kvm_lapic_irq irq = { 13131 .delivery_mode = APIC_DM_FIXED, 13132 .vector = vcpu->arch.apf.vec 13133 }; 13134 13135 if (work->wakeup_all) 13136 work->arch.token = ~0; /* broadcast wakeup */ 13137 else 13138 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13139 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13140 13141 if ((work->wakeup_all || work->notpresent_injected) && 13142 kvm_pv_async_pf_enabled(vcpu) && 13143 !apf_put_user_ready(vcpu, work->arch.token)) { 13144 vcpu->arch.apf.pageready_pending = true; 13145 kvm_apic_set_irq(vcpu, &irq, NULL); 13146 } 13147 13148 vcpu->arch.apf.halted = false; 13149 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13150 } 13151 13152 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13153 { 13154 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13155 if (!vcpu->arch.apf.pageready_pending) 13156 kvm_vcpu_kick(vcpu); 13157 } 13158 13159 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13160 { 13161 if (!kvm_pv_async_pf_enabled(vcpu)) 13162 return true; 13163 else 13164 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13165 } 13166 13167 void kvm_arch_start_assignment(struct kvm *kvm) 13168 { 13169 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13170 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13171 } 13172 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13173 13174 void kvm_arch_end_assignment(struct kvm *kvm) 13175 { 13176 atomic_dec(&kvm->arch.assigned_device_count); 13177 } 13178 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13179 13180 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13181 { 13182 return raw_atomic_read(&kvm->arch.assigned_device_count); 13183 } 13184 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13185 13186 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13187 { 13188 atomic_inc(&kvm->arch.noncoherent_dma_count); 13189 } 13190 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13191 13192 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13193 { 13194 atomic_dec(&kvm->arch.noncoherent_dma_count); 13195 } 13196 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13197 13198 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13199 { 13200 return atomic_read(&kvm->arch.noncoherent_dma_count); 13201 } 13202 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13203 13204 bool kvm_arch_has_irq_bypass(void) 13205 { 13206 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13207 } 13208 13209 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13210 struct irq_bypass_producer *prod) 13211 { 13212 struct kvm_kernel_irqfd *irqfd = 13213 container_of(cons, struct kvm_kernel_irqfd, consumer); 13214 int ret; 13215 13216 irqfd->producer = prod; 13217 kvm_arch_start_assignment(irqfd->kvm); 13218 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13219 prod->irq, irqfd->gsi, 1); 13220 13221 if (ret) 13222 kvm_arch_end_assignment(irqfd->kvm); 13223 13224 return ret; 13225 } 13226 13227 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13228 struct irq_bypass_producer *prod) 13229 { 13230 int ret; 13231 struct kvm_kernel_irqfd *irqfd = 13232 container_of(cons, struct kvm_kernel_irqfd, consumer); 13233 13234 WARN_ON(irqfd->producer != prod); 13235 irqfd->producer = NULL; 13236 13237 /* 13238 * When producer of consumer is unregistered, we change back to 13239 * remapped mode, so we can re-use the current implementation 13240 * when the irq is masked/disabled or the consumer side (KVM 13241 * int this case doesn't want to receive the interrupts. 13242 */ 13243 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13244 if (ret) 13245 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13246 " fails: %d\n", irqfd->consumer.token, ret); 13247 13248 kvm_arch_end_assignment(irqfd->kvm); 13249 } 13250 13251 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13252 uint32_t guest_irq, bool set) 13253 { 13254 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13255 } 13256 13257 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13258 struct kvm_kernel_irq_routing_entry *new) 13259 { 13260 if (new->type != KVM_IRQ_ROUTING_MSI) 13261 return true; 13262 13263 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13264 } 13265 13266 bool kvm_vector_hashing_enabled(void) 13267 { 13268 return vector_hashing; 13269 } 13270 13271 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13272 { 13273 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13274 } 13275 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13276 13277 13278 int kvm_spec_ctrl_test_value(u64 value) 13279 { 13280 /* 13281 * test that setting IA32_SPEC_CTRL to given value 13282 * is allowed by the host processor 13283 */ 13284 13285 u64 saved_value; 13286 unsigned long flags; 13287 int ret = 0; 13288 13289 local_irq_save(flags); 13290 13291 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13292 ret = 1; 13293 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13294 ret = 1; 13295 else 13296 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13297 13298 local_irq_restore(flags); 13299 13300 return ret; 13301 } 13302 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13303 13304 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13305 { 13306 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13307 struct x86_exception fault; 13308 u64 access = error_code & 13309 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13310 13311 if (!(error_code & PFERR_PRESENT_MASK) || 13312 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13313 /* 13314 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13315 * tables probably do not match the TLB. Just proceed 13316 * with the error code that the processor gave. 13317 */ 13318 fault.vector = PF_VECTOR; 13319 fault.error_code_valid = true; 13320 fault.error_code = error_code; 13321 fault.nested_page_fault = false; 13322 fault.address = gva; 13323 fault.async_page_fault = false; 13324 } 13325 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13326 } 13327 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13328 13329 /* 13330 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13331 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13332 * indicates whether exit to userspace is needed. 13333 */ 13334 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13335 struct x86_exception *e) 13336 { 13337 if (r == X86EMUL_PROPAGATE_FAULT) { 13338 if (KVM_BUG_ON(!e, vcpu->kvm)) 13339 return -EIO; 13340 13341 kvm_inject_emulated_page_fault(vcpu, e); 13342 return 1; 13343 } 13344 13345 /* 13346 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13347 * while handling a VMX instruction KVM could've handled the request 13348 * correctly by exiting to userspace and performing I/O but there 13349 * doesn't seem to be a real use-case behind such requests, just return 13350 * KVM_EXIT_INTERNAL_ERROR for now. 13351 */ 13352 kvm_prepare_emulation_failure_exit(vcpu); 13353 13354 return 0; 13355 } 13356 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13357 13358 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13359 { 13360 bool pcid_enabled; 13361 struct x86_exception e; 13362 struct { 13363 u64 pcid; 13364 u64 gla; 13365 } operand; 13366 int r; 13367 13368 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13369 if (r != X86EMUL_CONTINUE) 13370 return kvm_handle_memory_failure(vcpu, r, &e); 13371 13372 if (operand.pcid >> 12 != 0) { 13373 kvm_inject_gp(vcpu, 0); 13374 return 1; 13375 } 13376 13377 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13378 13379 switch (type) { 13380 case INVPCID_TYPE_INDIV_ADDR: 13381 if ((!pcid_enabled && (operand.pcid != 0)) || 13382 is_noncanonical_address(operand.gla, vcpu)) { 13383 kvm_inject_gp(vcpu, 0); 13384 return 1; 13385 } 13386 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13387 return kvm_skip_emulated_instruction(vcpu); 13388 13389 case INVPCID_TYPE_SINGLE_CTXT: 13390 if (!pcid_enabled && (operand.pcid != 0)) { 13391 kvm_inject_gp(vcpu, 0); 13392 return 1; 13393 } 13394 13395 kvm_invalidate_pcid(vcpu, operand.pcid); 13396 return kvm_skip_emulated_instruction(vcpu); 13397 13398 case INVPCID_TYPE_ALL_NON_GLOBAL: 13399 /* 13400 * Currently, KVM doesn't mark global entries in the shadow 13401 * page tables, so a non-global flush just degenerates to a 13402 * global flush. If needed, we could optimize this later by 13403 * keeping track of global entries in shadow page tables. 13404 */ 13405 13406 fallthrough; 13407 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13408 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13409 return kvm_skip_emulated_instruction(vcpu); 13410 13411 default: 13412 kvm_inject_gp(vcpu, 0); 13413 return 1; 13414 } 13415 } 13416 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13417 13418 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13419 { 13420 struct kvm_run *run = vcpu->run; 13421 struct kvm_mmio_fragment *frag; 13422 unsigned int len; 13423 13424 BUG_ON(!vcpu->mmio_needed); 13425 13426 /* Complete previous fragment */ 13427 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13428 len = min(8u, frag->len); 13429 if (!vcpu->mmio_is_write) 13430 memcpy(frag->data, run->mmio.data, len); 13431 13432 if (frag->len <= 8) { 13433 /* Switch to the next fragment. */ 13434 frag++; 13435 vcpu->mmio_cur_fragment++; 13436 } else { 13437 /* Go forward to the next mmio piece. */ 13438 frag->data += len; 13439 frag->gpa += len; 13440 frag->len -= len; 13441 } 13442 13443 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13444 vcpu->mmio_needed = 0; 13445 13446 // VMG change, at this point, we're always done 13447 // RIP has already been advanced 13448 return 1; 13449 } 13450 13451 // More MMIO is needed 13452 run->mmio.phys_addr = frag->gpa; 13453 run->mmio.len = min(8u, frag->len); 13454 run->mmio.is_write = vcpu->mmio_is_write; 13455 if (run->mmio.is_write) 13456 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13457 run->exit_reason = KVM_EXIT_MMIO; 13458 13459 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13460 13461 return 0; 13462 } 13463 13464 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13465 void *data) 13466 { 13467 int handled; 13468 struct kvm_mmio_fragment *frag; 13469 13470 if (!data) 13471 return -EINVAL; 13472 13473 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13474 if (handled == bytes) 13475 return 1; 13476 13477 bytes -= handled; 13478 gpa += handled; 13479 data += handled; 13480 13481 /*TODO: Check if need to increment number of frags */ 13482 frag = vcpu->mmio_fragments; 13483 vcpu->mmio_nr_fragments = 1; 13484 frag->len = bytes; 13485 frag->gpa = gpa; 13486 frag->data = data; 13487 13488 vcpu->mmio_needed = 1; 13489 vcpu->mmio_cur_fragment = 0; 13490 13491 vcpu->run->mmio.phys_addr = gpa; 13492 vcpu->run->mmio.len = min(8u, frag->len); 13493 vcpu->run->mmio.is_write = 1; 13494 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13495 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13496 13497 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13498 13499 return 0; 13500 } 13501 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13502 13503 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13504 void *data) 13505 { 13506 int handled; 13507 struct kvm_mmio_fragment *frag; 13508 13509 if (!data) 13510 return -EINVAL; 13511 13512 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13513 if (handled == bytes) 13514 return 1; 13515 13516 bytes -= handled; 13517 gpa += handled; 13518 data += handled; 13519 13520 /*TODO: Check if need to increment number of frags */ 13521 frag = vcpu->mmio_fragments; 13522 vcpu->mmio_nr_fragments = 1; 13523 frag->len = bytes; 13524 frag->gpa = gpa; 13525 frag->data = data; 13526 13527 vcpu->mmio_needed = 1; 13528 vcpu->mmio_cur_fragment = 0; 13529 13530 vcpu->run->mmio.phys_addr = gpa; 13531 vcpu->run->mmio.len = min(8u, frag->len); 13532 vcpu->run->mmio.is_write = 0; 13533 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13534 13535 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13536 13537 return 0; 13538 } 13539 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13540 13541 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13542 { 13543 vcpu->arch.sev_pio_count -= count; 13544 vcpu->arch.sev_pio_data += count * size; 13545 } 13546 13547 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13548 unsigned int port); 13549 13550 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13551 { 13552 int size = vcpu->arch.pio.size; 13553 int port = vcpu->arch.pio.port; 13554 13555 vcpu->arch.pio.count = 0; 13556 if (vcpu->arch.sev_pio_count) 13557 return kvm_sev_es_outs(vcpu, size, port); 13558 return 1; 13559 } 13560 13561 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13562 unsigned int port) 13563 { 13564 for (;;) { 13565 unsigned int count = 13566 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13567 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13568 13569 /* memcpy done already by emulator_pio_out. */ 13570 advance_sev_es_emulated_pio(vcpu, count, size); 13571 if (!ret) 13572 break; 13573 13574 /* Emulation done by the kernel. */ 13575 if (!vcpu->arch.sev_pio_count) 13576 return 1; 13577 } 13578 13579 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13580 return 0; 13581 } 13582 13583 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13584 unsigned int port); 13585 13586 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13587 { 13588 unsigned count = vcpu->arch.pio.count; 13589 int size = vcpu->arch.pio.size; 13590 int port = vcpu->arch.pio.port; 13591 13592 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13593 advance_sev_es_emulated_pio(vcpu, count, size); 13594 if (vcpu->arch.sev_pio_count) 13595 return kvm_sev_es_ins(vcpu, size, port); 13596 return 1; 13597 } 13598 13599 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13600 unsigned int port) 13601 { 13602 for (;;) { 13603 unsigned int count = 13604 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13605 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13606 break; 13607 13608 /* Emulation done by the kernel. */ 13609 advance_sev_es_emulated_pio(vcpu, count, size); 13610 if (!vcpu->arch.sev_pio_count) 13611 return 1; 13612 } 13613 13614 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13615 return 0; 13616 } 13617 13618 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13619 unsigned int port, void *data, unsigned int count, 13620 int in) 13621 { 13622 vcpu->arch.sev_pio_data = data; 13623 vcpu->arch.sev_pio_count = count; 13624 return in ? kvm_sev_es_ins(vcpu, size, port) 13625 : kvm_sev_es_outs(vcpu, size, port); 13626 } 13627 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13628 13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13658 13659 static int __init kvm_x86_init(void) 13660 { 13661 kvm_mmu_x86_module_init(); 13662 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13663 return 0; 13664 } 13665 module_init(kvm_x86_init); 13666 13667 static void __exit kvm_x86_exit(void) 13668 { 13669 /* 13670 * If module_init() is implemented, module_exit() must also be 13671 * implemented to allow module unload. 13672 */ 13673 } 13674 module_exit(kvm_x86_exit); 13675