1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 /* 96 * Note, kvm_caps fields should *never* have default values, all fields must be 97 * recomputed from scratch during vendor module load, e.g. to account for a 98 * vendor module being reloaded with different module parameters. 99 */ 100 struct kvm_caps kvm_caps __read_mostly; 101 EXPORT_SYMBOL_GPL(kvm_caps); 102 103 struct kvm_host_values kvm_host __read_mostly; 104 EXPORT_SYMBOL_GPL(kvm_host); 105 106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 107 108 #define emul_to_vcpu(ctxt) \ 109 ((struct kvm_vcpu *)(ctxt)->vcpu) 110 111 /* EFER defaults: 112 * - enable syscall per default because its emulated by KVM 113 * - enable LME and LMA per default on 64 bit KVM 114 */ 115 #ifdef CONFIG_X86_64 116 static 117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 118 #else 119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 120 #endif 121 122 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 123 124 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 125 126 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 127 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 128 129 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 130 static void process_nmi(struct kvm_vcpu *vcpu); 131 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 132 static void store_regs(struct kvm_vcpu *vcpu); 133 static int sync_regs(struct kvm_vcpu *vcpu); 134 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 135 136 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 137 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 138 139 static DEFINE_MUTEX(vendor_module_lock); 140 struct kvm_x86_ops kvm_x86_ops __read_mostly; 141 142 #define KVM_X86_OP(func) \ 143 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 144 *(((struct kvm_x86_ops *)0)->func)); 145 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 146 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 147 #include <asm/kvm-x86-ops.h> 148 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 149 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 150 151 static bool __read_mostly ignore_msrs = 0; 152 module_param(ignore_msrs, bool, 0644); 153 154 bool __read_mostly report_ignored_msrs = true; 155 module_param(report_ignored_msrs, bool, 0644); 156 EXPORT_SYMBOL_GPL(report_ignored_msrs); 157 158 unsigned int min_timer_period_us = 200; 159 module_param(min_timer_period_us, uint, 0644); 160 161 static bool __read_mostly kvmclock_periodic_sync = true; 162 module_param(kvmclock_periodic_sync, bool, 0444); 163 164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 165 static u32 __read_mostly tsc_tolerance_ppm = 250; 166 module_param(tsc_tolerance_ppm, uint, 0644); 167 168 static bool __read_mostly vector_hashing = true; 169 module_param(vector_hashing, bool, 0444); 170 171 bool __read_mostly enable_vmware_backdoor = false; 172 module_param(enable_vmware_backdoor, bool, 0444); 173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 174 175 /* 176 * Flags to manipulate forced emulation behavior (any non-zero value will 177 * enable forced emulation). 178 */ 179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 180 static int __read_mostly force_emulation_prefix; 181 module_param(force_emulation_prefix, int, 0644); 182 183 int __read_mostly pi_inject_timer = -1; 184 module_param(pi_inject_timer, bint, 0644); 185 186 /* Enable/disable PMU virtualization */ 187 bool __read_mostly enable_pmu = true; 188 EXPORT_SYMBOL_GPL(enable_pmu); 189 module_param(enable_pmu, bool, 0444); 190 191 bool __read_mostly eager_page_split = true; 192 module_param(eager_page_split, bool, 0644); 193 194 /* Enable/disable SMT_RSB bug mitigation */ 195 static bool __read_mostly mitigate_smt_rsb; 196 module_param(mitigate_smt_rsb, bool, 0444); 197 198 /* 199 * Restoring the host value for MSRs that are only consumed when running in 200 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 201 * returns to userspace, i.e. the kernel can run with the guest's value. 202 */ 203 #define KVM_MAX_NR_USER_RETURN_MSRS 16 204 205 struct kvm_user_return_msrs { 206 struct user_return_notifier urn; 207 bool registered; 208 struct kvm_user_return_msr_values { 209 u64 host; 210 u64 curr; 211 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 212 }; 213 214 u32 __read_mostly kvm_nr_uret_msrs; 215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 217 static struct kvm_user_return_msrs __percpu *user_return_msrs; 218 219 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 220 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 221 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 222 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 223 224 bool __read_mostly allow_smaller_maxphyaddr = 0; 225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 226 227 bool __read_mostly enable_apicv = true; 228 EXPORT_SYMBOL_GPL(enable_apicv); 229 230 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 231 KVM_GENERIC_VM_STATS(), 232 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 233 STATS_DESC_COUNTER(VM, mmu_pte_write), 234 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 235 STATS_DESC_COUNTER(VM, mmu_flooded), 236 STATS_DESC_COUNTER(VM, mmu_recycled), 237 STATS_DESC_COUNTER(VM, mmu_cache_miss), 238 STATS_DESC_ICOUNTER(VM, mmu_unsync), 239 STATS_DESC_ICOUNTER(VM, pages_4k), 240 STATS_DESC_ICOUNTER(VM, pages_2m), 241 STATS_DESC_ICOUNTER(VM, pages_1g), 242 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 243 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 244 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 245 }; 246 247 const struct kvm_stats_header kvm_vm_stats_header = { 248 .name_size = KVM_STATS_NAME_SIZE, 249 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 250 .id_offset = sizeof(struct kvm_stats_header), 251 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 252 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 253 sizeof(kvm_vm_stats_desc), 254 }; 255 256 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 257 KVM_GENERIC_VCPU_STATS(), 258 STATS_DESC_COUNTER(VCPU, pf_taken), 259 STATS_DESC_COUNTER(VCPU, pf_fixed), 260 STATS_DESC_COUNTER(VCPU, pf_emulate), 261 STATS_DESC_COUNTER(VCPU, pf_spurious), 262 STATS_DESC_COUNTER(VCPU, pf_fast), 263 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 264 STATS_DESC_COUNTER(VCPU, pf_guest), 265 STATS_DESC_COUNTER(VCPU, tlb_flush), 266 STATS_DESC_COUNTER(VCPU, invlpg), 267 STATS_DESC_COUNTER(VCPU, exits), 268 STATS_DESC_COUNTER(VCPU, io_exits), 269 STATS_DESC_COUNTER(VCPU, mmio_exits), 270 STATS_DESC_COUNTER(VCPU, signal_exits), 271 STATS_DESC_COUNTER(VCPU, irq_window_exits), 272 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 273 STATS_DESC_COUNTER(VCPU, l1d_flush), 274 STATS_DESC_COUNTER(VCPU, halt_exits), 275 STATS_DESC_COUNTER(VCPU, request_irq_exits), 276 STATS_DESC_COUNTER(VCPU, irq_exits), 277 STATS_DESC_COUNTER(VCPU, host_state_reload), 278 STATS_DESC_COUNTER(VCPU, fpu_reload), 279 STATS_DESC_COUNTER(VCPU, insn_emulation), 280 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 281 STATS_DESC_COUNTER(VCPU, hypercalls), 282 STATS_DESC_COUNTER(VCPU, irq_injections), 283 STATS_DESC_COUNTER(VCPU, nmi_injections), 284 STATS_DESC_COUNTER(VCPU, req_event), 285 STATS_DESC_COUNTER(VCPU, nested_run), 286 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 287 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 288 STATS_DESC_COUNTER(VCPU, preemption_reported), 289 STATS_DESC_COUNTER(VCPU, preemption_other), 290 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 291 STATS_DESC_COUNTER(VCPU, notify_window_exits), 292 }; 293 294 const struct kvm_stats_header kvm_vcpu_stats_header = { 295 .name_size = KVM_STATS_NAME_SIZE, 296 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 297 .id_offset = sizeof(struct kvm_stats_header), 298 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 299 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 300 sizeof(kvm_vcpu_stats_desc), 301 }; 302 303 static struct kmem_cache *x86_emulator_cache; 304 305 /* 306 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 307 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 308 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 309 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 310 * MSRs that KVM emulates without strictly requiring host support. 311 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 312 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 313 * msrs_to_save and emulated_msrs. 314 */ 315 316 static const u32 msrs_to_save_base[] = { 317 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 318 MSR_STAR, 319 #ifdef CONFIG_X86_64 320 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 321 #endif 322 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 323 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 324 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 325 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 326 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 327 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 328 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 329 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 330 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 331 MSR_IA32_UMWAIT_CONTROL, 332 333 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 334 }; 335 336 static const u32 msrs_to_save_pmu[] = { 337 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 338 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 339 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 340 MSR_CORE_PERF_GLOBAL_CTRL, 341 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 342 343 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ 344 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 345 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 346 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 347 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 348 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 349 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 350 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 351 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 352 353 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 354 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 355 356 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ 357 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 358 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 359 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 360 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 361 362 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 363 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 364 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 365 }; 366 367 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 368 ARRAY_SIZE(msrs_to_save_pmu)]; 369 static unsigned num_msrs_to_save; 370 371 static const u32 emulated_msrs_all[] = { 372 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 373 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 374 375 #ifdef CONFIG_KVM_HYPERV 376 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 377 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 378 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 379 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 380 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 381 HV_X64_MSR_RESET, 382 HV_X64_MSR_VP_INDEX, 383 HV_X64_MSR_VP_RUNTIME, 384 HV_X64_MSR_SCONTROL, 385 HV_X64_MSR_STIMER0_CONFIG, 386 HV_X64_MSR_VP_ASSIST_PAGE, 387 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 388 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 389 HV_X64_MSR_SYNDBG_OPTIONS, 390 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 391 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 392 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 393 #endif 394 395 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 396 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 397 398 MSR_IA32_TSC_ADJUST, 399 MSR_IA32_TSC_DEADLINE, 400 MSR_IA32_ARCH_CAPABILITIES, 401 MSR_IA32_PERF_CAPABILITIES, 402 MSR_IA32_MISC_ENABLE, 403 MSR_IA32_MCG_STATUS, 404 MSR_IA32_MCG_CTL, 405 MSR_IA32_MCG_EXT_CTL, 406 MSR_IA32_SMBASE, 407 MSR_SMI_COUNT, 408 MSR_PLATFORM_INFO, 409 MSR_MISC_FEATURES_ENABLES, 410 MSR_AMD64_VIRT_SPEC_CTRL, 411 MSR_AMD64_TSC_RATIO, 412 MSR_IA32_POWER_CTL, 413 MSR_IA32_UCODE_REV, 414 415 /* 416 * KVM always supports the "true" VMX control MSRs, even if the host 417 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 418 * doesn't strictly require them to exist in the host (ignoring that 419 * KVM would refuse to load in the first place if the core set of MSRs 420 * aren't supported). 421 */ 422 MSR_IA32_VMX_BASIC, 423 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 424 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 425 MSR_IA32_VMX_TRUE_EXIT_CTLS, 426 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 427 MSR_IA32_VMX_MISC, 428 MSR_IA32_VMX_CR0_FIXED0, 429 MSR_IA32_VMX_CR4_FIXED0, 430 MSR_IA32_VMX_VMCS_ENUM, 431 MSR_IA32_VMX_PROCBASED_CTLS2, 432 MSR_IA32_VMX_EPT_VPID_CAP, 433 MSR_IA32_VMX_VMFUNC, 434 435 MSR_K7_HWCR, 436 MSR_KVM_POLL_CONTROL, 437 }; 438 439 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 440 static unsigned num_emulated_msrs; 441 442 /* 443 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 444 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 445 * feature MSRs, but are handled separately to allow expedited lookups. 446 */ 447 static const u32 msr_based_features_all_except_vmx[] = { 448 MSR_AMD64_DE_CFG, 449 MSR_IA32_UCODE_REV, 450 MSR_IA32_ARCH_CAPABILITIES, 451 MSR_IA32_PERF_CAPABILITIES, 452 MSR_PLATFORM_INFO, 453 }; 454 455 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 456 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 457 static unsigned int num_msr_based_features; 458 459 /* 460 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 461 * patch, are immutable once the vCPU model is defined. 462 */ 463 static bool kvm_is_immutable_feature_msr(u32 msr) 464 { 465 int i; 466 467 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 468 return true; 469 470 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 471 if (msr == msr_based_features_all_except_vmx[i]) 472 return msr != MSR_IA32_UCODE_REV; 473 } 474 475 return false; 476 } 477 478 static bool kvm_is_advertised_msr(u32 msr_index) 479 { 480 unsigned int i; 481 482 for (i = 0; i < num_msrs_to_save; i++) { 483 if (msrs_to_save[i] == msr_index) 484 return true; 485 } 486 487 for (i = 0; i < num_emulated_msrs; i++) { 488 if (emulated_msrs[i] == msr_index) 489 return true; 490 } 491 492 return false; 493 } 494 495 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data, 496 bool host_initiated); 497 498 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr, 499 u64 *data, bool host_initiated, 500 enum kvm_msr_access rw, 501 msr_access_t msr_access_fn) 502 { 503 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr"; 504 int ret; 505 506 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W); 507 508 /* 509 * Zero the data on read failures to avoid leaking stack data to the 510 * guest and/or userspace, e.g. if the failure is ignored below. 511 */ 512 ret = msr_access_fn(vcpu, msr, data, host_initiated); 513 if (ret && rw == MSR_TYPE_R) 514 *data = 0; 515 516 if (ret != KVM_MSR_RET_UNSUPPORTED) 517 return ret; 518 519 /* 520 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM 521 * advertises to userspace, even if an MSR isn't fully supported. 522 * Simply check that @data is '0', which covers both the write '0' case 523 * and all reads (in which case @data is zeroed on failure; see above). 524 */ 525 if (host_initiated && !*data && kvm_is_advertised_msr(msr)) 526 return 0; 527 528 if (!ignore_msrs) { 529 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 530 op, msr, *data); 531 return ret; 532 } 533 534 if (report_ignored_msrs) 535 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data); 536 537 return 0; 538 } 539 540 static struct kmem_cache *kvm_alloc_emulator_cache(void) 541 { 542 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 543 unsigned int size = sizeof(struct x86_emulate_ctxt); 544 545 return kmem_cache_create_usercopy("x86_emulator", size, 546 __alignof__(struct x86_emulate_ctxt), 547 SLAB_ACCOUNT, useroffset, 548 size - useroffset, NULL); 549 } 550 551 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 552 553 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 554 { 555 int i; 556 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 557 vcpu->arch.apf.gfns[i] = ~0; 558 } 559 560 static void kvm_on_user_return(struct user_return_notifier *urn) 561 { 562 unsigned slot; 563 struct kvm_user_return_msrs *msrs 564 = container_of(urn, struct kvm_user_return_msrs, urn); 565 struct kvm_user_return_msr_values *values; 566 unsigned long flags; 567 568 /* 569 * Disabling irqs at this point since the following code could be 570 * interrupted and executed through kvm_arch_disable_virtualization_cpu() 571 */ 572 local_irq_save(flags); 573 if (msrs->registered) { 574 msrs->registered = false; 575 user_return_notifier_unregister(urn); 576 } 577 local_irq_restore(flags); 578 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 579 values = &msrs->values[slot]; 580 if (values->host != values->curr) { 581 wrmsrl(kvm_uret_msrs_list[slot], values->host); 582 values->curr = values->host; 583 } 584 } 585 } 586 587 static int kvm_probe_user_return_msr(u32 msr) 588 { 589 u64 val; 590 int ret; 591 592 preempt_disable(); 593 ret = rdmsrl_safe(msr, &val); 594 if (ret) 595 goto out; 596 ret = wrmsrl_safe(msr, val); 597 out: 598 preempt_enable(); 599 return ret; 600 } 601 602 int kvm_add_user_return_msr(u32 msr) 603 { 604 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 605 606 if (kvm_probe_user_return_msr(msr)) 607 return -1; 608 609 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 610 return kvm_nr_uret_msrs++; 611 } 612 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 613 614 int kvm_find_user_return_msr(u32 msr) 615 { 616 int i; 617 618 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 619 if (kvm_uret_msrs_list[i] == msr) 620 return i; 621 } 622 return -1; 623 } 624 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 625 626 static void kvm_user_return_msr_cpu_online(void) 627 { 628 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 629 u64 value; 630 int i; 631 632 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 633 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 634 msrs->values[i].host = value; 635 msrs->values[i].curr = value; 636 } 637 } 638 639 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 640 { 641 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 642 int err; 643 644 value = (value & mask) | (msrs->values[slot].host & ~mask); 645 if (value == msrs->values[slot].curr) 646 return 0; 647 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 648 if (err) 649 return 1; 650 651 msrs->values[slot].curr = value; 652 if (!msrs->registered) { 653 msrs->urn.on_user_return = kvm_on_user_return; 654 user_return_notifier_register(&msrs->urn); 655 msrs->registered = true; 656 } 657 return 0; 658 } 659 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 660 661 static void drop_user_return_notifiers(void) 662 { 663 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 664 665 if (msrs->registered) 666 kvm_on_user_return(&msrs->urn); 667 } 668 669 /* 670 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 671 * 672 * Hardware virtualization extension instructions may fault if a reboot turns 673 * off virtualization while processes are running. Usually after catching the 674 * fault we just panic; during reboot instead the instruction is ignored. 675 */ 676 noinstr void kvm_spurious_fault(void) 677 { 678 /* Fault while not rebooting. We want the trace. */ 679 BUG_ON(!kvm_rebooting); 680 } 681 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 682 683 #define EXCPT_BENIGN 0 684 #define EXCPT_CONTRIBUTORY 1 685 #define EXCPT_PF 2 686 687 static int exception_class(int vector) 688 { 689 switch (vector) { 690 case PF_VECTOR: 691 return EXCPT_PF; 692 case DE_VECTOR: 693 case TS_VECTOR: 694 case NP_VECTOR: 695 case SS_VECTOR: 696 case GP_VECTOR: 697 return EXCPT_CONTRIBUTORY; 698 default: 699 break; 700 } 701 return EXCPT_BENIGN; 702 } 703 704 #define EXCPT_FAULT 0 705 #define EXCPT_TRAP 1 706 #define EXCPT_ABORT 2 707 #define EXCPT_INTERRUPT 3 708 #define EXCPT_DB 4 709 710 static int exception_type(int vector) 711 { 712 unsigned int mask; 713 714 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 715 return EXCPT_INTERRUPT; 716 717 mask = 1 << vector; 718 719 /* 720 * #DBs can be trap-like or fault-like, the caller must check other CPU 721 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 722 */ 723 if (mask & (1 << DB_VECTOR)) 724 return EXCPT_DB; 725 726 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 727 return EXCPT_TRAP; 728 729 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 730 return EXCPT_ABORT; 731 732 /* Reserved exceptions will result in fault */ 733 return EXCPT_FAULT; 734 } 735 736 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 737 struct kvm_queued_exception *ex) 738 { 739 if (!ex->has_payload) 740 return; 741 742 switch (ex->vector) { 743 case DB_VECTOR: 744 /* 745 * "Certain debug exceptions may clear bit 0-3. The 746 * remaining contents of the DR6 register are never 747 * cleared by the processor". 748 */ 749 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 750 /* 751 * In order to reflect the #DB exception payload in guest 752 * dr6, three components need to be considered: active low 753 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 754 * DR6_BS and DR6_BT) 755 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 756 * In the target guest dr6: 757 * FIXED_1 bits should always be set. 758 * Active low bits should be cleared if 1-setting in payload. 759 * Active high bits should be set if 1-setting in payload. 760 * 761 * Note, the payload is compatible with the pending debug 762 * exceptions/exit qualification under VMX, that active_low bits 763 * are active high in payload. 764 * So they need to be flipped for DR6. 765 */ 766 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 767 vcpu->arch.dr6 |= ex->payload; 768 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 769 770 /* 771 * The #DB payload is defined as compatible with the 'pending 772 * debug exceptions' field under VMX, not DR6. While bit 12 is 773 * defined in the 'pending debug exceptions' field (enabled 774 * breakpoint), it is reserved and must be zero in DR6. 775 */ 776 vcpu->arch.dr6 &= ~BIT(12); 777 break; 778 case PF_VECTOR: 779 vcpu->arch.cr2 = ex->payload; 780 break; 781 } 782 783 ex->has_payload = false; 784 ex->payload = 0; 785 } 786 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 787 788 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 789 bool has_error_code, u32 error_code, 790 bool has_payload, unsigned long payload) 791 { 792 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 793 794 ex->vector = vector; 795 ex->injected = false; 796 ex->pending = true; 797 ex->has_error_code = has_error_code; 798 ex->error_code = error_code; 799 ex->has_payload = has_payload; 800 ex->payload = payload; 801 } 802 803 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr, 804 bool has_error, u32 error_code, 805 bool has_payload, unsigned long payload) 806 { 807 u32 prev_nr; 808 int class1, class2; 809 810 kvm_make_request(KVM_REQ_EVENT, vcpu); 811 812 /* 813 * If the exception is destined for L2, morph it to a VM-Exit if L1 814 * wants to intercept the exception. 815 */ 816 if (is_guest_mode(vcpu) && 817 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 818 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 819 has_payload, payload); 820 return; 821 } 822 823 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 824 queue: 825 vcpu->arch.exception.pending = true; 826 vcpu->arch.exception.injected = false; 827 828 vcpu->arch.exception.has_error_code = has_error; 829 vcpu->arch.exception.vector = nr; 830 vcpu->arch.exception.error_code = error_code; 831 vcpu->arch.exception.has_payload = has_payload; 832 vcpu->arch.exception.payload = payload; 833 if (!is_guest_mode(vcpu)) 834 kvm_deliver_exception_payload(vcpu, 835 &vcpu->arch.exception); 836 return; 837 } 838 839 /* to check exception */ 840 prev_nr = vcpu->arch.exception.vector; 841 if (prev_nr == DF_VECTOR) { 842 /* triple fault -> shutdown */ 843 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 844 return; 845 } 846 class1 = exception_class(prev_nr); 847 class2 = exception_class(nr); 848 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 849 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 850 /* 851 * Synthesize #DF. Clear the previously injected or pending 852 * exception so as not to incorrectly trigger shutdown. 853 */ 854 vcpu->arch.exception.injected = false; 855 vcpu->arch.exception.pending = false; 856 857 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 858 } else { 859 /* replace previous exception with a new one in a hope 860 that instruction re-execution will regenerate lost 861 exception */ 862 goto queue; 863 } 864 } 865 866 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 867 { 868 kvm_multiple_exception(vcpu, nr, false, 0, false, 0); 869 } 870 EXPORT_SYMBOL_GPL(kvm_queue_exception); 871 872 873 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 874 unsigned long payload) 875 { 876 kvm_multiple_exception(vcpu, nr, false, 0, true, payload); 877 } 878 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 879 880 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 881 u32 error_code, unsigned long payload) 882 { 883 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload); 884 } 885 886 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, 887 bool has_error_code, u32 error_code) 888 { 889 890 /* 891 * On VM-Entry, an exception can be pending if and only if event 892 * injection was blocked by nested_run_pending. In that case, however, 893 * vcpu_enter_guest() requests an immediate exit, and the guest 894 * shouldn't proceed far enough to need reinjection. 895 */ 896 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 897 898 /* 899 * Do not check for interception when injecting an event for L2, as the 900 * exception was checked for intercept when it was original queued, and 901 * re-checking is incorrect if _L1_ injected the exception, in which 902 * case it's exempt from interception. 903 */ 904 kvm_make_request(KVM_REQ_EVENT, vcpu); 905 906 vcpu->arch.exception.injected = true; 907 vcpu->arch.exception.has_error_code = has_error_code; 908 vcpu->arch.exception.vector = nr; 909 vcpu->arch.exception.error_code = error_code; 910 vcpu->arch.exception.has_payload = false; 911 vcpu->arch.exception.payload = 0; 912 } 913 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 914 915 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 916 { 917 if (err) 918 kvm_inject_gp(vcpu, 0); 919 else 920 return kvm_skip_emulated_instruction(vcpu); 921 922 return 1; 923 } 924 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 925 926 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 927 { 928 if (err) { 929 kvm_inject_gp(vcpu, 0); 930 return 1; 931 } 932 933 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 934 EMULTYPE_COMPLETE_USER_EXIT); 935 } 936 937 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 938 { 939 ++vcpu->stat.pf_guest; 940 941 /* 942 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 943 * whether or not L1 wants to intercept "regular" #PF. 944 */ 945 if (is_guest_mode(vcpu) && fault->async_page_fault) 946 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 947 true, fault->error_code, 948 true, fault->address); 949 else 950 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 951 fault->address); 952 } 953 954 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 955 struct x86_exception *fault) 956 { 957 struct kvm_mmu *fault_mmu; 958 WARN_ON_ONCE(fault->vector != PF_VECTOR); 959 960 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 961 vcpu->arch.walk_mmu; 962 963 /* 964 * Invalidate the TLB entry for the faulting address, if it exists, 965 * else the access will fault indefinitely (and to emulate hardware). 966 */ 967 if ((fault->error_code & PFERR_PRESENT_MASK) && 968 !(fault->error_code & PFERR_RSVD_MASK)) 969 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 970 KVM_MMU_ROOT_CURRENT); 971 972 fault_mmu->inject_page_fault(vcpu, fault); 973 } 974 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 975 976 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 977 { 978 atomic_inc(&vcpu->arch.nmi_queued); 979 kvm_make_request(KVM_REQ_NMI, vcpu); 980 } 981 982 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 983 { 984 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0); 985 } 986 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 987 988 /* 989 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 990 * a #GP and return false. 991 */ 992 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 993 { 994 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) 995 return true; 996 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 997 return false; 998 } 999 1000 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 1001 { 1002 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 1003 return true; 1004 1005 kvm_queue_exception(vcpu, UD_VECTOR); 1006 return false; 1007 } 1008 EXPORT_SYMBOL_GPL(kvm_require_dr); 1009 1010 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 1011 { 1012 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 1013 } 1014 1015 /* 1016 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 1017 */ 1018 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 1019 { 1020 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 1021 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 1022 gpa_t real_gpa; 1023 int i; 1024 int ret; 1025 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 1026 1027 /* 1028 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 1029 * to an L1 GPA. 1030 */ 1031 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 1032 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 1033 if (real_gpa == INVALID_GPA) 1034 return 0; 1035 1036 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 1037 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 1038 cr3 & GENMASK(11, 5), sizeof(pdpte)); 1039 if (ret < 0) 1040 return 0; 1041 1042 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 1043 if ((pdpte[i] & PT_PRESENT_MASK) && 1044 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 1045 return 0; 1046 } 1047 } 1048 1049 /* 1050 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 1051 * Shadow page roots need to be reconstructed instead. 1052 */ 1053 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 1054 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 1055 1056 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 1057 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 1058 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 1059 vcpu->arch.pdptrs_from_userspace = false; 1060 1061 return 1; 1062 } 1063 EXPORT_SYMBOL_GPL(load_pdptrs); 1064 1065 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1066 { 1067 #ifdef CONFIG_X86_64 1068 if (cr0 & 0xffffffff00000000UL) 1069 return false; 1070 #endif 1071 1072 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 1073 return false; 1074 1075 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 1076 return false; 1077 1078 return kvm_x86_call(is_valid_cr0)(vcpu, cr0); 1079 } 1080 1081 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 1082 { 1083 /* 1084 * CR0.WP is incorporated into the MMU role, but only for non-nested, 1085 * indirect shadow MMUs. If paging is disabled, no updates are needed 1086 * as there are no permission bits to emulate. If TDP is enabled, the 1087 * MMU's metadata needs to be updated, e.g. so that emulating guest 1088 * translations does the right thing, but there's no need to unload the 1089 * root as CR0.WP doesn't affect SPTEs. 1090 */ 1091 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 1092 if (!(cr0 & X86_CR0_PG)) 1093 return; 1094 1095 if (tdp_enabled) { 1096 kvm_init_mmu(vcpu); 1097 return; 1098 } 1099 } 1100 1101 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 1102 kvm_clear_async_pf_completion_queue(vcpu); 1103 kvm_async_pf_hash_reset(vcpu); 1104 1105 /* 1106 * Clearing CR0.PG is defined to flush the TLB from the guest's 1107 * perspective. 1108 */ 1109 if (!(cr0 & X86_CR0_PG)) 1110 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1111 } 1112 1113 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 1114 kvm_mmu_reset_context(vcpu); 1115 } 1116 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 1117 1118 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1119 { 1120 unsigned long old_cr0 = kvm_read_cr0(vcpu); 1121 1122 if (!kvm_is_valid_cr0(vcpu, cr0)) 1123 return 1; 1124 1125 cr0 |= X86_CR0_ET; 1126 1127 /* Write to CR0 reserved bits are ignored, even on Intel. */ 1128 cr0 &= ~CR0_RESERVED_BITS; 1129 1130 #ifdef CONFIG_X86_64 1131 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 1132 (cr0 & X86_CR0_PG)) { 1133 int cs_db, cs_l; 1134 1135 if (!is_pae(vcpu)) 1136 return 1; 1137 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 1138 if (cs_l) 1139 return 1; 1140 } 1141 #endif 1142 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 1143 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 1144 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1145 return 1; 1146 1147 if (!(cr0 & X86_CR0_PG) && 1148 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1149 return 1; 1150 1151 kvm_x86_call(set_cr0)(vcpu, cr0); 1152 1153 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1154 1155 return 0; 1156 } 1157 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1158 1159 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1160 { 1161 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1162 } 1163 EXPORT_SYMBOL_GPL(kvm_lmsw); 1164 1165 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1166 { 1167 if (vcpu->arch.guest_state_protected) 1168 return; 1169 1170 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1171 1172 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1173 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1174 1175 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 1176 vcpu->arch.ia32_xss != kvm_host.xss) 1177 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1178 } 1179 1180 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1181 vcpu->arch.pkru != vcpu->arch.host_pkru && 1182 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1183 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1184 wrpkru(vcpu->arch.pkru); 1185 } 1186 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1187 1188 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1189 { 1190 if (vcpu->arch.guest_state_protected) 1191 return; 1192 1193 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1194 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1195 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1196 vcpu->arch.pkru = rdpkru(); 1197 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1198 wrpkru(vcpu->arch.host_pkru); 1199 } 1200 1201 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1202 1203 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1204 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); 1205 1206 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 1207 vcpu->arch.ia32_xss != kvm_host.xss) 1208 wrmsrl(MSR_IA32_XSS, kvm_host.xss); 1209 } 1210 1211 } 1212 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1213 1214 #ifdef CONFIG_X86_64 1215 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1216 { 1217 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1218 } 1219 #endif 1220 1221 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1222 { 1223 u64 xcr0 = xcr; 1224 u64 old_xcr0 = vcpu->arch.xcr0; 1225 u64 valid_bits; 1226 1227 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1228 if (index != XCR_XFEATURE_ENABLED_MASK) 1229 return 1; 1230 if (!(xcr0 & XFEATURE_MASK_FP)) 1231 return 1; 1232 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1233 return 1; 1234 1235 /* 1236 * Do not allow the guest to set bits that we do not support 1237 * saving. However, xcr0 bit 0 is always set, even if the 1238 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1239 */ 1240 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1241 if (xcr0 & ~valid_bits) 1242 return 1; 1243 1244 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1245 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1246 return 1; 1247 1248 if (xcr0 & XFEATURE_MASK_AVX512) { 1249 if (!(xcr0 & XFEATURE_MASK_YMM)) 1250 return 1; 1251 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1252 return 1; 1253 } 1254 1255 if ((xcr0 & XFEATURE_MASK_XTILE) && 1256 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1257 return 1; 1258 1259 vcpu->arch.xcr0 = xcr0; 1260 1261 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1262 vcpu->arch.cpuid_dynamic_bits_dirty = true; 1263 return 0; 1264 } 1265 1266 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1267 { 1268 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1269 if (kvm_x86_call(get_cpl)(vcpu) != 0 || 1270 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1271 kvm_inject_gp(vcpu, 0); 1272 return 1; 1273 } 1274 1275 return kvm_skip_emulated_instruction(vcpu); 1276 } 1277 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1278 1279 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1280 { 1281 return __kvm_is_valid_cr4(vcpu, cr4) && 1282 kvm_x86_call(is_valid_cr4)(vcpu, cr4); 1283 } 1284 1285 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1286 { 1287 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1288 kvm_mmu_reset_context(vcpu); 1289 1290 /* 1291 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1292 * according to the SDM; however, stale prev_roots could be reused 1293 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1294 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1295 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1296 * so fall through. 1297 */ 1298 if (!tdp_enabled && 1299 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1300 kvm_mmu_unload(vcpu); 1301 1302 /* 1303 * The TLB has to be flushed for all PCIDs if any of the following 1304 * (architecturally required) changes happen: 1305 * - CR4.PCIDE is changed from 1 to 0 1306 * - CR4.PGE is toggled 1307 * 1308 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1309 */ 1310 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1311 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1312 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1313 1314 /* 1315 * The TLB has to be flushed for the current PCID if any of the 1316 * following (architecturally required) changes happen: 1317 * - CR4.SMEP is changed from 0 to 1 1318 * - CR4.PAE is toggled 1319 */ 1320 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1321 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1322 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1323 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1326 1327 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1328 { 1329 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1330 1331 if (!kvm_is_valid_cr4(vcpu, cr4)) 1332 return 1; 1333 1334 if (is_long_mode(vcpu)) { 1335 if (!(cr4 & X86_CR4_PAE)) 1336 return 1; 1337 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1338 return 1; 1339 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1340 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1341 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1342 return 1; 1343 1344 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1345 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1346 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1347 return 1; 1348 } 1349 1350 kvm_x86_call(set_cr4)(vcpu, cr4); 1351 1352 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1353 1354 return 0; 1355 } 1356 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1357 1358 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1359 { 1360 struct kvm_mmu *mmu = vcpu->arch.mmu; 1361 unsigned long roots_to_free = 0; 1362 int i; 1363 1364 /* 1365 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1366 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1367 * also via the emulator. KVM's TDP page tables are not in the scope of 1368 * the invalidation, but the guest's TLB entries need to be flushed as 1369 * the CPU may have cached entries in its TLB for the target PCID. 1370 */ 1371 if (unlikely(tdp_enabled)) { 1372 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1373 return; 1374 } 1375 1376 /* 1377 * If neither the current CR3 nor any of the prev_roots use the given 1378 * PCID, then nothing needs to be done here because a resync will 1379 * happen anyway before switching to any other CR3. 1380 */ 1381 if (kvm_get_active_pcid(vcpu) == pcid) { 1382 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1383 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1384 } 1385 1386 /* 1387 * If PCID is disabled, there is no need to free prev_roots even if the 1388 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1389 * with PCIDE=0. 1390 */ 1391 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1392 return; 1393 1394 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1395 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1396 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1397 1398 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1399 } 1400 1401 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1402 { 1403 bool skip_tlb_flush = false; 1404 unsigned long pcid = 0; 1405 #ifdef CONFIG_X86_64 1406 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1407 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1408 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1409 pcid = cr3 & X86_CR3_PCID_MASK; 1410 } 1411 #endif 1412 1413 /* PDPTRs are always reloaded for PAE paging. */ 1414 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1415 goto handle_tlb_flush; 1416 1417 /* 1418 * Do not condition the GPA check on long mode, this helper is used to 1419 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1420 * the current vCPU mode is accurate. 1421 */ 1422 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1423 return 1; 1424 1425 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1426 return 1; 1427 1428 if (cr3 != kvm_read_cr3(vcpu)) 1429 kvm_mmu_new_pgd(vcpu, cr3); 1430 1431 vcpu->arch.cr3 = cr3; 1432 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1433 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1434 1435 handle_tlb_flush: 1436 /* 1437 * A load of CR3 that flushes the TLB flushes only the current PCID, 1438 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1439 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1440 * and it's impossible to use a non-zero PCID when PCID is disabled, 1441 * i.e. only PCID=0 can be relevant. 1442 */ 1443 if (!skip_tlb_flush) 1444 kvm_invalidate_pcid(vcpu, pcid); 1445 1446 return 0; 1447 } 1448 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1449 1450 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1451 { 1452 if (cr8 & CR8_RESERVED_BITS) 1453 return 1; 1454 if (lapic_in_kernel(vcpu)) 1455 kvm_lapic_set_tpr(vcpu, cr8); 1456 else 1457 vcpu->arch.cr8 = cr8; 1458 return 0; 1459 } 1460 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1461 1462 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1463 { 1464 if (lapic_in_kernel(vcpu)) 1465 return kvm_lapic_get_cr8(vcpu); 1466 else 1467 return vcpu->arch.cr8; 1468 } 1469 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1470 1471 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1472 { 1473 int i; 1474 1475 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1476 for (i = 0; i < KVM_NR_DB_REGS; i++) 1477 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1478 } 1479 } 1480 1481 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1482 { 1483 unsigned long dr7; 1484 1485 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1486 dr7 = vcpu->arch.guest_debug_dr7; 1487 else 1488 dr7 = vcpu->arch.dr7; 1489 kvm_x86_call(set_dr7)(vcpu, dr7); 1490 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1491 if (dr7 & DR7_BP_EN_MASK) 1492 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1493 } 1494 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1495 1496 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1497 { 1498 u64 fixed = DR6_FIXED_1; 1499 1500 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)) 1501 fixed |= DR6_RTM; 1502 1503 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1504 fixed |= DR6_BUS_LOCK; 1505 return fixed; 1506 } 1507 1508 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1509 { 1510 size_t size = ARRAY_SIZE(vcpu->arch.db); 1511 1512 switch (dr) { 1513 case 0 ... 3: 1514 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1515 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1516 vcpu->arch.eff_db[dr] = val; 1517 break; 1518 case 4: 1519 case 6: 1520 if (!kvm_dr6_valid(val)) 1521 return 1; /* #GP */ 1522 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1523 break; 1524 case 5: 1525 default: /* 7 */ 1526 if (!kvm_dr7_valid(val)) 1527 return 1; /* #GP */ 1528 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1529 kvm_update_dr7(vcpu); 1530 break; 1531 } 1532 1533 return 0; 1534 } 1535 EXPORT_SYMBOL_GPL(kvm_set_dr); 1536 1537 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1538 { 1539 size_t size = ARRAY_SIZE(vcpu->arch.db); 1540 1541 switch (dr) { 1542 case 0 ... 3: 1543 return vcpu->arch.db[array_index_nospec(dr, size)]; 1544 case 4: 1545 case 6: 1546 return vcpu->arch.dr6; 1547 case 5: 1548 default: /* 7 */ 1549 return vcpu->arch.dr7; 1550 } 1551 } 1552 EXPORT_SYMBOL_GPL(kvm_get_dr); 1553 1554 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1555 { 1556 u32 ecx = kvm_rcx_read(vcpu); 1557 u64 data; 1558 1559 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1560 kvm_inject_gp(vcpu, 0); 1561 return 1; 1562 } 1563 1564 kvm_rax_write(vcpu, (u32)data); 1565 kvm_rdx_write(vcpu, data >> 32); 1566 return kvm_skip_emulated_instruction(vcpu); 1567 } 1568 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1569 1570 /* 1571 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1572 * does not yet virtualize. These include: 1573 * 10 - MISC_PACKAGE_CTRLS 1574 * 11 - ENERGY_FILTERING_CTL 1575 * 12 - DOITM 1576 * 18 - FB_CLEAR_CTRL 1577 * 21 - XAPIC_DISABLE_STATUS 1578 * 23 - OVERCLOCKING_STATUS 1579 */ 1580 1581 #define KVM_SUPPORTED_ARCH_CAP \ 1582 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1583 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1584 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1585 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1586 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1587 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO) 1588 1589 static u64 kvm_get_arch_capabilities(void) 1590 { 1591 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1592 1593 /* 1594 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1595 * the nested hypervisor runs with NX huge pages. If it is not, 1596 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1597 * L1 guests, so it need not worry about its own (L2) guests. 1598 */ 1599 data |= ARCH_CAP_PSCHANGE_MC_NO; 1600 1601 /* 1602 * If we're doing cache flushes (either "always" or "cond") 1603 * we will do one whenever the guest does a vmlaunch/vmresume. 1604 * If an outer hypervisor is doing the cache flush for us 1605 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1606 * capability to the guest too, and if EPT is disabled we're not 1607 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1608 * require a nested hypervisor to do a flush of its own. 1609 */ 1610 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1611 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1612 1613 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1614 data |= ARCH_CAP_RDCL_NO; 1615 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1616 data |= ARCH_CAP_SSB_NO; 1617 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1618 data |= ARCH_CAP_MDS_NO; 1619 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1620 data |= ARCH_CAP_RFDS_NO; 1621 if (!boot_cpu_has_bug(X86_BUG_ITS)) 1622 data |= ARCH_CAP_ITS_NO; 1623 1624 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1625 /* 1626 * If RTM=0 because the kernel has disabled TSX, the host might 1627 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1628 * and therefore knows that there cannot be TAA) but keep 1629 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1630 * and we want to allow migrating those guests to tsx=off hosts. 1631 */ 1632 data &= ~ARCH_CAP_TAA_NO; 1633 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1634 data |= ARCH_CAP_TAA_NO; 1635 } else { 1636 /* 1637 * Nothing to do here; we emulate TSX_CTRL if present on the 1638 * host so the guest can choose between disabling TSX or 1639 * using VERW to clear CPU buffers. 1640 */ 1641 } 1642 1643 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1644 data |= ARCH_CAP_GDS_NO; 1645 1646 return data; 1647 } 1648 1649 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1650 bool host_initiated) 1651 { 1652 WARN_ON_ONCE(!host_initiated); 1653 1654 switch (index) { 1655 case MSR_IA32_ARCH_CAPABILITIES: 1656 *data = kvm_get_arch_capabilities(); 1657 break; 1658 case MSR_IA32_PERF_CAPABILITIES: 1659 *data = kvm_caps.supported_perf_cap; 1660 break; 1661 case MSR_PLATFORM_INFO: 1662 *data = MSR_PLATFORM_INFO_CPUID_FAULT; 1663 break; 1664 case MSR_IA32_UCODE_REV: 1665 rdmsrl_safe(index, data); 1666 break; 1667 default: 1668 return kvm_x86_call(get_feature_msr)(index, data); 1669 } 1670 return 0; 1671 } 1672 1673 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1674 { 1675 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R, 1676 kvm_get_feature_msr); 1677 } 1678 1679 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1680 { 1681 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS)) 1682 return false; 1683 1684 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT)) 1685 return false; 1686 1687 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 1688 return false; 1689 1690 if (efer & (EFER_LME | EFER_LMA) && 1691 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 1692 return false; 1693 1694 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX)) 1695 return false; 1696 1697 return true; 1698 1699 } 1700 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1701 { 1702 if (efer & efer_reserved_bits) 1703 return false; 1704 1705 return __kvm_valid_efer(vcpu, efer); 1706 } 1707 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1708 1709 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1710 { 1711 u64 old_efer = vcpu->arch.efer; 1712 u64 efer = msr_info->data; 1713 int r; 1714 1715 if (efer & efer_reserved_bits) 1716 return 1; 1717 1718 if (!msr_info->host_initiated) { 1719 if (!__kvm_valid_efer(vcpu, efer)) 1720 return 1; 1721 1722 if (is_paging(vcpu) && 1723 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1724 return 1; 1725 } 1726 1727 efer &= ~EFER_LMA; 1728 efer |= vcpu->arch.efer & EFER_LMA; 1729 1730 r = kvm_x86_call(set_efer)(vcpu, efer); 1731 if (r) { 1732 WARN_ON(r > 0); 1733 return r; 1734 } 1735 1736 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1737 kvm_mmu_reset_context(vcpu); 1738 1739 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1740 (efer & EFER_SVME)) 1741 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1742 1743 return 0; 1744 } 1745 1746 void kvm_enable_efer_bits(u64 mask) 1747 { 1748 efer_reserved_bits &= ~mask; 1749 } 1750 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1751 1752 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1753 { 1754 struct kvm_x86_msr_filter *msr_filter; 1755 struct msr_bitmap_range *ranges; 1756 struct kvm *kvm = vcpu->kvm; 1757 bool allowed; 1758 int idx; 1759 u32 i; 1760 1761 /* x2APIC MSRs do not support filtering. */ 1762 if (index >= 0x800 && index <= 0x8ff) 1763 return true; 1764 1765 idx = srcu_read_lock(&kvm->srcu); 1766 1767 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1768 if (!msr_filter) { 1769 allowed = true; 1770 goto out; 1771 } 1772 1773 allowed = msr_filter->default_allow; 1774 ranges = msr_filter->ranges; 1775 1776 for (i = 0; i < msr_filter->count; i++) { 1777 u32 start = ranges[i].base; 1778 u32 end = start + ranges[i].nmsrs; 1779 u32 flags = ranges[i].flags; 1780 unsigned long *bitmap = ranges[i].bitmap; 1781 1782 if ((index >= start) && (index < end) && (flags & type)) { 1783 allowed = test_bit(index - start, bitmap); 1784 break; 1785 } 1786 } 1787 1788 out: 1789 srcu_read_unlock(&kvm->srcu, idx); 1790 1791 return allowed; 1792 } 1793 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1794 1795 /* 1796 * Write @data into the MSR specified by @index. Select MSR specific fault 1797 * checks are bypassed if @host_initiated is %true. 1798 * Returns 0 on success, non-0 otherwise. 1799 * Assumes vcpu_load() was already called. 1800 */ 1801 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1802 bool host_initiated) 1803 { 1804 struct msr_data msr; 1805 1806 switch (index) { 1807 case MSR_FS_BASE: 1808 case MSR_GS_BASE: 1809 case MSR_KERNEL_GS_BASE: 1810 case MSR_CSTAR: 1811 case MSR_LSTAR: 1812 if (is_noncanonical_msr_address(data, vcpu)) 1813 return 1; 1814 break; 1815 case MSR_IA32_SYSENTER_EIP: 1816 case MSR_IA32_SYSENTER_ESP: 1817 /* 1818 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1819 * non-canonical address is written on Intel but not on 1820 * AMD (which ignores the top 32-bits, because it does 1821 * not implement 64-bit SYSENTER). 1822 * 1823 * 64-bit code should hence be able to write a non-canonical 1824 * value on AMD. Making the address canonical ensures that 1825 * vmentry does not fail on Intel after writing a non-canonical 1826 * value, and that something deterministic happens if the guest 1827 * invokes 64-bit SYSENTER. 1828 */ 1829 data = __canonical_address(data, max_host_virt_addr_bits()); 1830 break; 1831 case MSR_TSC_AUX: 1832 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1833 return 1; 1834 1835 if (!host_initiated && 1836 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 1837 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) 1838 return 1; 1839 1840 /* 1841 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1842 * incomplete and conflicting architectural behavior. Current 1843 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1844 * reserved and always read as zeros. Enforce Intel's reserved 1845 * bits check if the guest CPU is Intel compatible, otherwise 1846 * clear the bits. This ensures cross-vendor migration will 1847 * provide consistent behavior for the guest. 1848 */ 1849 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) 1850 return 1; 1851 1852 data = (u32)data; 1853 break; 1854 } 1855 1856 msr.data = data; 1857 msr.index = index; 1858 msr.host_initiated = host_initiated; 1859 1860 return kvm_x86_call(set_msr)(vcpu, &msr); 1861 } 1862 1863 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1864 bool host_initiated) 1865 { 1866 return __kvm_set_msr(vcpu, index, *data, host_initiated); 1867 } 1868 1869 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1870 u32 index, u64 data, bool host_initiated) 1871 { 1872 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W, 1873 _kvm_set_msr); 1874 } 1875 1876 /* 1877 * Read the MSR specified by @index into @data. Select MSR specific fault 1878 * checks are bypassed if @host_initiated is %true. 1879 * Returns 0 on success, non-0 otherwise. 1880 * Assumes vcpu_load() was already called. 1881 */ 1882 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1883 bool host_initiated) 1884 { 1885 struct msr_data msr; 1886 int ret; 1887 1888 switch (index) { 1889 case MSR_TSC_AUX: 1890 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1891 return 1; 1892 1893 if (!host_initiated && 1894 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 1895 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) 1896 return 1; 1897 break; 1898 } 1899 1900 msr.index = index; 1901 msr.host_initiated = host_initiated; 1902 1903 ret = kvm_x86_call(get_msr)(vcpu, &msr); 1904 if (!ret) 1905 *data = msr.data; 1906 return ret; 1907 } 1908 1909 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1910 u32 index, u64 *data, bool host_initiated) 1911 { 1912 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R, 1913 __kvm_get_msr); 1914 } 1915 1916 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1917 { 1918 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1919 return KVM_MSR_RET_FILTERED; 1920 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1921 } 1922 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter); 1923 1924 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1925 { 1926 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1927 return KVM_MSR_RET_FILTERED; 1928 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1929 } 1930 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter); 1931 1932 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1933 { 1934 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1935 } 1936 EXPORT_SYMBOL_GPL(kvm_get_msr); 1937 1938 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1939 { 1940 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1941 } 1942 EXPORT_SYMBOL_GPL(kvm_set_msr); 1943 1944 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1945 { 1946 if (!vcpu->run->msr.error) { 1947 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1948 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1949 } 1950 } 1951 1952 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1953 { 1954 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1955 } 1956 1957 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1958 { 1959 complete_userspace_rdmsr(vcpu); 1960 return complete_emulated_msr_access(vcpu); 1961 } 1962 1963 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1964 { 1965 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1966 } 1967 1968 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1969 { 1970 complete_userspace_rdmsr(vcpu); 1971 return complete_fast_msr_access(vcpu); 1972 } 1973 1974 static u64 kvm_msr_reason(int r) 1975 { 1976 switch (r) { 1977 case KVM_MSR_RET_UNSUPPORTED: 1978 return KVM_MSR_EXIT_REASON_UNKNOWN; 1979 case KVM_MSR_RET_FILTERED: 1980 return KVM_MSR_EXIT_REASON_FILTER; 1981 default: 1982 return KVM_MSR_EXIT_REASON_INVAL; 1983 } 1984 } 1985 1986 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1987 u32 exit_reason, u64 data, 1988 int (*completion)(struct kvm_vcpu *vcpu), 1989 int r) 1990 { 1991 u64 msr_reason = kvm_msr_reason(r); 1992 1993 /* Check if the user wanted to know about this MSR fault */ 1994 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1995 return 0; 1996 1997 vcpu->run->exit_reason = exit_reason; 1998 vcpu->run->msr.error = 0; 1999 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2000 vcpu->run->msr.reason = msr_reason; 2001 vcpu->run->msr.index = index; 2002 vcpu->run->msr.data = data; 2003 vcpu->arch.complete_userspace_io = completion; 2004 2005 return 1; 2006 } 2007 2008 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2009 { 2010 u32 ecx = kvm_rcx_read(vcpu); 2011 u64 data; 2012 int r; 2013 2014 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2015 2016 if (!r) { 2017 trace_kvm_msr_read(ecx, data); 2018 2019 kvm_rax_write(vcpu, data & -1u); 2020 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2021 } else { 2022 /* MSR read failed? See if we should ask user space */ 2023 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2024 complete_fast_rdmsr, r)) 2025 return 0; 2026 trace_kvm_msr_read_ex(ecx); 2027 } 2028 2029 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2030 } 2031 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2032 2033 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2034 { 2035 u32 ecx = kvm_rcx_read(vcpu); 2036 u64 data = kvm_read_edx_eax(vcpu); 2037 int r; 2038 2039 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2040 2041 if (!r) { 2042 trace_kvm_msr_write(ecx, data); 2043 } else { 2044 /* MSR write failed? See if we should ask user space */ 2045 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2046 complete_fast_msr_access, r)) 2047 return 0; 2048 /* Signal all other negative errors to userspace */ 2049 if (r < 0) 2050 return r; 2051 trace_kvm_msr_write_ex(ecx, data); 2052 } 2053 2054 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2055 } 2056 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2057 2058 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2059 { 2060 return kvm_skip_emulated_instruction(vcpu); 2061 } 2062 2063 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2064 { 2065 /* Treat an INVD instruction as a NOP and just skip it. */ 2066 return kvm_emulate_as_nop(vcpu); 2067 } 2068 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2069 2070 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2071 { 2072 kvm_queue_exception(vcpu, UD_VECTOR); 2073 return 1; 2074 } 2075 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2076 2077 2078 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2079 { 2080 bool enabled; 2081 2082 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)) 2083 goto emulate_as_nop; 2084 2085 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) 2086 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT); 2087 else 2088 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT; 2089 2090 if (!enabled) 2091 return kvm_handle_invalid_op(vcpu); 2092 2093 emulate_as_nop: 2094 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2095 return kvm_emulate_as_nop(vcpu); 2096 } 2097 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2098 { 2099 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2100 } 2101 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2102 2103 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2104 { 2105 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2106 } 2107 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2108 2109 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2110 { 2111 xfer_to_guest_mode_prepare(); 2112 2113 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE || 2114 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending(); 2115 } 2116 2117 /* 2118 * The fast path for frequent and performance sensitive wrmsr emulation, 2119 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2120 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2121 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2122 * other cases which must be called after interrupts are enabled on the host. 2123 */ 2124 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2125 { 2126 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2127 return 1; 2128 2129 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2130 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2131 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2132 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2133 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2134 2135 return 1; 2136 } 2137 2138 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2139 { 2140 if (!kvm_can_use_hv_timer(vcpu)) 2141 return 1; 2142 2143 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2144 return 0; 2145 } 2146 2147 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2148 { 2149 u32 msr = kvm_rcx_read(vcpu); 2150 u64 data; 2151 fastpath_t ret; 2152 bool handled; 2153 2154 kvm_vcpu_srcu_read_lock(vcpu); 2155 2156 switch (msr) { 2157 case APIC_BASE_MSR + (APIC_ICR >> 4): 2158 data = kvm_read_edx_eax(vcpu); 2159 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); 2160 break; 2161 case MSR_IA32_TSC_DEADLINE: 2162 data = kvm_read_edx_eax(vcpu); 2163 handled = !handle_fastpath_set_tscdeadline(vcpu, data); 2164 break; 2165 default: 2166 handled = false; 2167 break; 2168 } 2169 2170 if (handled) { 2171 if (!kvm_skip_emulated_instruction(vcpu)) 2172 ret = EXIT_FASTPATH_EXIT_USERSPACE; 2173 else 2174 ret = EXIT_FASTPATH_REENTER_GUEST; 2175 trace_kvm_msr_write(msr, data); 2176 } else { 2177 ret = EXIT_FASTPATH_NONE; 2178 } 2179 2180 kvm_vcpu_srcu_read_unlock(vcpu); 2181 2182 return ret; 2183 } 2184 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2185 2186 /* 2187 * Adapt set_msr() to msr_io()'s calling convention 2188 */ 2189 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2190 { 2191 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2192 } 2193 2194 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2195 { 2196 u64 val; 2197 2198 /* 2199 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2200 * not support modifying the guest vCPU model on the fly, e.g. changing 2201 * the nVMX capabilities while L2 is running is nonsensical. Allow 2202 * writes of the same value, e.g. to allow userspace to blindly stuff 2203 * all MSRs when emulating RESET. 2204 */ 2205 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2206 (do_get_msr(vcpu, index, &val) || *data != val)) 2207 return -EINVAL; 2208 2209 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2210 } 2211 2212 #ifdef CONFIG_X86_64 2213 struct pvclock_clock { 2214 int vclock_mode; 2215 u64 cycle_last; 2216 u64 mask; 2217 u32 mult; 2218 u32 shift; 2219 u64 base_cycles; 2220 u64 offset; 2221 }; 2222 2223 struct pvclock_gtod_data { 2224 seqcount_t seq; 2225 2226 struct pvclock_clock clock; /* extract of a clocksource struct */ 2227 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2228 2229 ktime_t offs_boot; 2230 u64 wall_time_sec; 2231 }; 2232 2233 static struct pvclock_gtod_data pvclock_gtod_data; 2234 2235 static void update_pvclock_gtod(struct timekeeper *tk) 2236 { 2237 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2238 2239 write_seqcount_begin(&vdata->seq); 2240 2241 /* copy pvclock gtod data */ 2242 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2243 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2244 vdata->clock.mask = tk->tkr_mono.mask; 2245 vdata->clock.mult = tk->tkr_mono.mult; 2246 vdata->clock.shift = tk->tkr_mono.shift; 2247 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2248 vdata->clock.offset = tk->tkr_mono.base; 2249 2250 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2251 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2252 vdata->raw_clock.mask = tk->tkr_raw.mask; 2253 vdata->raw_clock.mult = tk->tkr_raw.mult; 2254 vdata->raw_clock.shift = tk->tkr_raw.shift; 2255 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2256 vdata->raw_clock.offset = tk->tkr_raw.base; 2257 2258 vdata->wall_time_sec = tk->xtime_sec; 2259 2260 vdata->offs_boot = tk->offs_boot; 2261 2262 write_seqcount_end(&vdata->seq); 2263 } 2264 2265 static s64 get_kvmclock_base_ns(void) 2266 { 2267 /* Count up from boot time, but with the frequency of the raw clock. */ 2268 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2269 } 2270 #else 2271 static s64 get_kvmclock_base_ns(void) 2272 { 2273 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2274 return ktime_get_boottime_ns(); 2275 } 2276 #endif 2277 2278 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2279 { 2280 int version; 2281 int r; 2282 struct pvclock_wall_clock wc; 2283 u32 wc_sec_hi; 2284 u64 wall_nsec; 2285 2286 if (!wall_clock) 2287 return; 2288 2289 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2290 if (r) 2291 return; 2292 2293 if (version & 1) 2294 ++version; /* first time write, random junk */ 2295 2296 ++version; 2297 2298 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2299 return; 2300 2301 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2302 2303 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2304 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2305 wc.version = version; 2306 2307 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2308 2309 if (sec_hi_ofs) { 2310 wc_sec_hi = wall_nsec >> 32; 2311 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2312 &wc_sec_hi, sizeof(wc_sec_hi)); 2313 } 2314 2315 version++; 2316 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2317 } 2318 2319 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2320 bool old_msr, bool host_initiated) 2321 { 2322 struct kvm_arch *ka = &vcpu->kvm->arch; 2323 2324 if (vcpu->vcpu_id == 0 && !host_initiated) { 2325 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2326 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2327 2328 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2329 } 2330 2331 vcpu->arch.time = system_time; 2332 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2333 2334 /* we verify if the enable bit is set... */ 2335 if (system_time & 1) 2336 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2337 sizeof(struct pvclock_vcpu_time_info)); 2338 else 2339 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2340 2341 return; 2342 } 2343 2344 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2345 { 2346 do_shl32_div32(dividend, divisor); 2347 return dividend; 2348 } 2349 2350 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2351 s8 *pshift, u32 *pmultiplier) 2352 { 2353 uint64_t scaled64; 2354 int32_t shift = 0; 2355 uint64_t tps64; 2356 uint32_t tps32; 2357 2358 tps64 = base_hz; 2359 scaled64 = scaled_hz; 2360 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2361 tps64 >>= 1; 2362 shift--; 2363 } 2364 2365 tps32 = (uint32_t)tps64; 2366 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2367 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2368 scaled64 >>= 1; 2369 else 2370 tps32 <<= 1; 2371 shift++; 2372 } 2373 2374 *pshift = shift; 2375 *pmultiplier = div_frac(scaled64, tps32); 2376 } 2377 2378 #ifdef CONFIG_X86_64 2379 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2380 #endif 2381 2382 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2383 static unsigned long max_tsc_khz; 2384 2385 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2386 { 2387 u64 v = (u64)khz * (1000000 + ppm); 2388 do_div(v, 1000000); 2389 return v; 2390 } 2391 2392 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2393 2394 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2395 { 2396 u64 ratio; 2397 2398 /* Guest TSC same frequency as host TSC? */ 2399 if (!scale) { 2400 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2401 return 0; 2402 } 2403 2404 /* TSC scaling supported? */ 2405 if (!kvm_caps.has_tsc_control) { 2406 if (user_tsc_khz > tsc_khz) { 2407 vcpu->arch.tsc_catchup = 1; 2408 vcpu->arch.tsc_always_catchup = 1; 2409 return 0; 2410 } else { 2411 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2412 return -1; 2413 } 2414 } 2415 2416 /* TSC scaling required - calculate ratio */ 2417 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2418 user_tsc_khz, tsc_khz); 2419 2420 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2421 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2422 user_tsc_khz); 2423 return -1; 2424 } 2425 2426 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2427 return 0; 2428 } 2429 2430 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2431 { 2432 u32 thresh_lo, thresh_hi; 2433 int use_scaling = 0; 2434 2435 /* tsc_khz can be zero if TSC calibration fails */ 2436 if (user_tsc_khz == 0) { 2437 /* set tsc_scaling_ratio to a safe value */ 2438 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2439 return -1; 2440 } 2441 2442 /* Compute a scale to convert nanoseconds in TSC cycles */ 2443 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2444 &vcpu->arch.virtual_tsc_shift, 2445 &vcpu->arch.virtual_tsc_mult); 2446 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2447 2448 /* 2449 * Compute the variation in TSC rate which is acceptable 2450 * within the range of tolerance and decide if the 2451 * rate being applied is within that bounds of the hardware 2452 * rate. If so, no scaling or compensation need be done. 2453 */ 2454 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2455 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2456 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2457 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2458 user_tsc_khz, thresh_lo, thresh_hi); 2459 use_scaling = 1; 2460 } 2461 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2462 } 2463 2464 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2465 { 2466 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2467 vcpu->arch.virtual_tsc_mult, 2468 vcpu->arch.virtual_tsc_shift); 2469 tsc += vcpu->arch.this_tsc_write; 2470 return tsc; 2471 } 2472 2473 #ifdef CONFIG_X86_64 2474 static inline bool gtod_is_based_on_tsc(int mode) 2475 { 2476 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2477 } 2478 #endif 2479 2480 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2481 { 2482 #ifdef CONFIG_X86_64 2483 struct kvm_arch *ka = &vcpu->kvm->arch; 2484 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2485 2486 /* 2487 * To use the masterclock, the host clocksource must be based on TSC 2488 * and all vCPUs must have matching TSCs. Note, the count for matching 2489 * vCPUs doesn't include the reference vCPU, hence "+1". 2490 */ 2491 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2492 atomic_read(&vcpu->kvm->online_vcpus)) && 2493 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2494 2495 /* 2496 * Request a masterclock update if the masterclock needs to be toggled 2497 * on/off, or when starting a new generation and the masterclock is 2498 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2499 * taken _after_ the new generation is created). 2500 */ 2501 if ((ka->use_master_clock && new_generation) || 2502 (ka->use_master_clock != use_master_clock)) 2503 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2504 2505 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2506 atomic_read(&vcpu->kvm->online_vcpus), 2507 ka->use_master_clock, gtod->clock.vclock_mode); 2508 #endif 2509 } 2510 2511 /* 2512 * Multiply tsc by a fixed point number represented by ratio. 2513 * 2514 * The most significant 64-N bits (mult) of ratio represent the 2515 * integral part of the fixed point number; the remaining N bits 2516 * (frac) represent the fractional part, ie. ratio represents a fixed 2517 * point number (mult + frac * 2^(-N)). 2518 * 2519 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2520 */ 2521 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2522 { 2523 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2524 } 2525 2526 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2527 { 2528 u64 _tsc = tsc; 2529 2530 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2531 _tsc = __scale_tsc(ratio, tsc); 2532 2533 return _tsc; 2534 } 2535 2536 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2537 { 2538 u64 tsc; 2539 2540 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2541 2542 return target_tsc - tsc; 2543 } 2544 2545 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2546 { 2547 return vcpu->arch.l1_tsc_offset + 2548 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2549 } 2550 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2551 2552 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2553 { 2554 u64 nested_offset; 2555 2556 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2557 nested_offset = l1_offset; 2558 else 2559 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2560 kvm_caps.tsc_scaling_ratio_frac_bits); 2561 2562 nested_offset += l2_offset; 2563 return nested_offset; 2564 } 2565 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2566 2567 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2568 { 2569 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2570 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2571 kvm_caps.tsc_scaling_ratio_frac_bits); 2572 2573 return l1_multiplier; 2574 } 2575 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2576 2577 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2578 { 2579 if (vcpu->arch.guest_tsc_protected) 2580 return; 2581 2582 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2583 vcpu->arch.l1_tsc_offset, 2584 l1_offset); 2585 2586 vcpu->arch.l1_tsc_offset = l1_offset; 2587 2588 /* 2589 * If we are here because L1 chose not to trap WRMSR to TSC then 2590 * according to the spec this should set L1's TSC (as opposed to 2591 * setting L1's offset for L2). 2592 */ 2593 if (is_guest_mode(vcpu)) 2594 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2595 l1_offset, 2596 kvm_x86_call(get_l2_tsc_offset)(vcpu), 2597 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2598 else 2599 vcpu->arch.tsc_offset = l1_offset; 2600 2601 kvm_x86_call(write_tsc_offset)(vcpu); 2602 } 2603 2604 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2605 { 2606 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2607 2608 /* Userspace is changing the multiplier while L2 is active */ 2609 if (is_guest_mode(vcpu)) 2610 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2611 l1_multiplier, 2612 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2613 else 2614 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2615 2616 if (kvm_caps.has_tsc_control) 2617 kvm_x86_call(write_tsc_multiplier)(vcpu); 2618 } 2619 2620 static inline bool kvm_check_tsc_unstable(void) 2621 { 2622 #ifdef CONFIG_X86_64 2623 /* 2624 * TSC is marked unstable when we're running on Hyper-V, 2625 * 'TSC page' clocksource is good. 2626 */ 2627 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2628 return false; 2629 #endif 2630 return check_tsc_unstable(); 2631 } 2632 2633 /* 2634 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2635 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2636 * participates in. 2637 */ 2638 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2639 u64 ns, bool matched, bool user_set_tsc) 2640 { 2641 struct kvm *kvm = vcpu->kvm; 2642 2643 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2644 2645 if (vcpu->arch.guest_tsc_protected) 2646 return; 2647 2648 if (user_set_tsc) 2649 vcpu->kvm->arch.user_set_tsc = true; 2650 2651 /* 2652 * We also track th most recent recorded KHZ, write and time to 2653 * allow the matching interval to be extended at each write. 2654 */ 2655 kvm->arch.last_tsc_nsec = ns; 2656 kvm->arch.last_tsc_write = tsc; 2657 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2658 kvm->arch.last_tsc_offset = offset; 2659 2660 vcpu->arch.last_guest_tsc = tsc; 2661 2662 kvm_vcpu_write_tsc_offset(vcpu, offset); 2663 2664 if (!matched) { 2665 /* 2666 * We split periods of matched TSC writes into generations. 2667 * For each generation, we track the original measured 2668 * nanosecond time, offset, and write, so if TSCs are in 2669 * sync, we can match exact offset, and if not, we can match 2670 * exact software computation in compute_guest_tsc() 2671 * 2672 * These values are tracked in kvm->arch.cur_xxx variables. 2673 */ 2674 kvm->arch.cur_tsc_generation++; 2675 kvm->arch.cur_tsc_nsec = ns; 2676 kvm->arch.cur_tsc_write = tsc; 2677 kvm->arch.cur_tsc_offset = offset; 2678 kvm->arch.nr_vcpus_matched_tsc = 0; 2679 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2680 kvm->arch.nr_vcpus_matched_tsc++; 2681 } 2682 2683 /* Keep track of which generation this VCPU has synchronized to */ 2684 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2685 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2686 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2687 2688 kvm_track_tsc_matching(vcpu, !matched); 2689 } 2690 2691 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2692 { 2693 u64 data = user_value ? *user_value : 0; 2694 struct kvm *kvm = vcpu->kvm; 2695 u64 offset, ns, elapsed; 2696 unsigned long flags; 2697 bool matched = false; 2698 bool synchronizing = false; 2699 2700 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2701 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2702 ns = get_kvmclock_base_ns(); 2703 elapsed = ns - kvm->arch.last_tsc_nsec; 2704 2705 if (vcpu->arch.virtual_tsc_khz) { 2706 if (data == 0) { 2707 /* 2708 * Force synchronization when creating a vCPU, or when 2709 * userspace explicitly writes a zero value. 2710 */ 2711 synchronizing = true; 2712 } else if (kvm->arch.user_set_tsc) { 2713 u64 tsc_exp = kvm->arch.last_tsc_write + 2714 nsec_to_cycles(vcpu, elapsed); 2715 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2716 /* 2717 * Here lies UAPI baggage: when a user-initiated TSC write has 2718 * a small delta (1 second) of virtual cycle time against the 2719 * previously set vCPU, we assume that they were intended to be 2720 * in sync and the delta was only due to the racy nature of the 2721 * legacy API. 2722 * 2723 * This trick falls down when restoring a guest which genuinely 2724 * has been running for less time than the 1 second of imprecision 2725 * which we allow for in the legacy API. In this case, the first 2726 * value written by userspace (on any vCPU) should not be subject 2727 * to this 'correction' to make it sync up with values that only 2728 * come from the kernel's default vCPU creation. Make the 1-second 2729 * slop hack only trigger if the user_set_tsc flag is already set. 2730 */ 2731 synchronizing = data < tsc_exp + tsc_hz && 2732 data + tsc_hz > tsc_exp; 2733 } 2734 } 2735 2736 2737 /* 2738 * For a reliable TSC, we can match TSC offsets, and for an unstable 2739 * TSC, we add elapsed time in this computation. We could let the 2740 * compensation code attempt to catch up if we fall behind, but 2741 * it's better to try to match offsets from the beginning. 2742 */ 2743 if (synchronizing && 2744 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2745 if (!kvm_check_tsc_unstable()) { 2746 offset = kvm->arch.cur_tsc_offset; 2747 } else { 2748 u64 delta = nsec_to_cycles(vcpu, elapsed); 2749 data += delta; 2750 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2751 } 2752 matched = true; 2753 } 2754 2755 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value); 2756 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2757 } 2758 2759 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2760 s64 adjustment) 2761 { 2762 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2763 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2764 } 2765 2766 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2767 { 2768 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2769 WARN_ON(adjustment < 0); 2770 adjustment = kvm_scale_tsc((u64) adjustment, 2771 vcpu->arch.l1_tsc_scaling_ratio); 2772 adjust_tsc_offset_guest(vcpu, adjustment); 2773 } 2774 2775 #ifdef CONFIG_X86_64 2776 2777 static u64 read_tsc(void) 2778 { 2779 u64 ret = (u64)rdtsc_ordered(); 2780 u64 last = pvclock_gtod_data.clock.cycle_last; 2781 2782 if (likely(ret >= last)) 2783 return ret; 2784 2785 /* 2786 * GCC likes to generate cmov here, but this branch is extremely 2787 * predictable (it's just a function of time and the likely is 2788 * very likely) and there's a data dependence, so force GCC 2789 * to generate a branch instead. I don't barrier() because 2790 * we don't actually need a barrier, and if this function 2791 * ever gets inlined it will generate worse code. 2792 */ 2793 asm volatile (""); 2794 return last; 2795 } 2796 2797 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2798 int *mode) 2799 { 2800 u64 tsc_pg_val; 2801 long v; 2802 2803 switch (clock->vclock_mode) { 2804 case VDSO_CLOCKMODE_HVCLOCK: 2805 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2806 tsc_timestamp, &tsc_pg_val)) { 2807 /* TSC page valid */ 2808 *mode = VDSO_CLOCKMODE_HVCLOCK; 2809 v = (tsc_pg_val - clock->cycle_last) & 2810 clock->mask; 2811 } else { 2812 /* TSC page invalid */ 2813 *mode = VDSO_CLOCKMODE_NONE; 2814 } 2815 break; 2816 case VDSO_CLOCKMODE_TSC: 2817 *mode = VDSO_CLOCKMODE_TSC; 2818 *tsc_timestamp = read_tsc(); 2819 v = (*tsc_timestamp - clock->cycle_last) & 2820 clock->mask; 2821 break; 2822 default: 2823 *mode = VDSO_CLOCKMODE_NONE; 2824 } 2825 2826 if (*mode == VDSO_CLOCKMODE_NONE) 2827 *tsc_timestamp = v = 0; 2828 2829 return v * clock->mult; 2830 } 2831 2832 /* 2833 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2834 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2835 */ 2836 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2837 { 2838 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2839 unsigned long seq; 2840 int mode; 2841 u64 ns; 2842 2843 do { 2844 seq = read_seqcount_begin(>od->seq); 2845 ns = gtod->raw_clock.base_cycles; 2846 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2847 ns >>= gtod->raw_clock.shift; 2848 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2849 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2850 *t = ns; 2851 2852 return mode; 2853 } 2854 2855 /* 2856 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2857 * no boot time offset. 2858 */ 2859 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2860 { 2861 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2862 unsigned long seq; 2863 int mode; 2864 u64 ns; 2865 2866 do { 2867 seq = read_seqcount_begin(>od->seq); 2868 ns = gtod->clock.base_cycles; 2869 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2870 ns >>= gtod->clock.shift; 2871 ns += ktime_to_ns(gtod->clock.offset); 2872 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2873 *t = ns; 2874 2875 return mode; 2876 } 2877 2878 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2879 { 2880 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2881 unsigned long seq; 2882 int mode; 2883 u64 ns; 2884 2885 do { 2886 seq = read_seqcount_begin(>od->seq); 2887 ts->tv_sec = gtod->wall_time_sec; 2888 ns = gtod->clock.base_cycles; 2889 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2890 ns >>= gtod->clock.shift; 2891 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2892 2893 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2894 ts->tv_nsec = ns; 2895 2896 return mode; 2897 } 2898 2899 /* 2900 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2901 * reports the TSC value from which it do so. Returns true if host is 2902 * using TSC based clocksource. 2903 */ 2904 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2905 { 2906 /* checked again under seqlock below */ 2907 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2908 return false; 2909 2910 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2911 tsc_timestamp)); 2912 } 2913 2914 /* 2915 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2916 * so. Returns true if host is using TSC based clocksource. 2917 */ 2918 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2919 { 2920 /* checked again under seqlock below */ 2921 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2922 return false; 2923 2924 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2925 tsc_timestamp)); 2926 } 2927 2928 /* 2929 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2930 * so. Returns true if host is using TSC based clocksource. 2931 * 2932 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2933 * for that. 2934 */ 2935 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2936 u64 *tsc_timestamp) 2937 { 2938 /* checked again under seqlock below */ 2939 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2940 return false; 2941 2942 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2943 } 2944 #endif 2945 2946 /* 2947 * 2948 * Assuming a stable TSC across physical CPUS, and a stable TSC 2949 * across virtual CPUs, the following condition is possible. 2950 * Each numbered line represents an event visible to both 2951 * CPUs at the next numbered event. 2952 * 2953 * "timespecX" represents host monotonic time. "tscX" represents 2954 * RDTSC value. 2955 * 2956 * VCPU0 on CPU0 | VCPU1 on CPU1 2957 * 2958 * 1. read timespec0,tsc0 2959 * 2. | timespec1 = timespec0 + N 2960 * | tsc1 = tsc0 + M 2961 * 3. transition to guest | transition to guest 2962 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2963 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2964 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2965 * 2966 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2967 * 2968 * - ret0 < ret1 2969 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2970 * ... 2971 * - 0 < N - M => M < N 2972 * 2973 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2974 * always the case (the difference between two distinct xtime instances 2975 * might be smaller then the difference between corresponding TSC reads, 2976 * when updating guest vcpus pvclock areas). 2977 * 2978 * To avoid that problem, do not allow visibility of distinct 2979 * system_timestamp/tsc_timestamp values simultaneously: use a master 2980 * copy of host monotonic time values. Update that master copy 2981 * in lockstep. 2982 * 2983 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2984 * 2985 */ 2986 2987 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2988 { 2989 #ifdef CONFIG_X86_64 2990 struct kvm_arch *ka = &kvm->arch; 2991 int vclock_mode; 2992 bool host_tsc_clocksource, vcpus_matched; 2993 2994 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2995 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2996 atomic_read(&kvm->online_vcpus)); 2997 2998 /* 2999 * If the host uses TSC clock, then passthrough TSC as stable 3000 * to the guest. 3001 */ 3002 host_tsc_clocksource = kvm_get_time_and_clockread( 3003 &ka->master_kernel_ns, 3004 &ka->master_cycle_now); 3005 3006 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3007 && !ka->backwards_tsc_observed 3008 && !ka->boot_vcpu_runs_old_kvmclock; 3009 3010 if (ka->use_master_clock) 3011 atomic_set(&kvm_guest_has_master_clock, 1); 3012 3013 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3014 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3015 vcpus_matched); 3016 #endif 3017 } 3018 3019 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3020 { 3021 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3022 } 3023 3024 static void __kvm_start_pvclock_update(struct kvm *kvm) 3025 { 3026 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3027 write_seqcount_begin(&kvm->arch.pvclock_sc); 3028 } 3029 3030 static void kvm_start_pvclock_update(struct kvm *kvm) 3031 { 3032 kvm_make_mclock_inprogress_request(kvm); 3033 3034 /* no guest entries from this point */ 3035 __kvm_start_pvclock_update(kvm); 3036 } 3037 3038 static void kvm_end_pvclock_update(struct kvm *kvm) 3039 { 3040 struct kvm_arch *ka = &kvm->arch; 3041 struct kvm_vcpu *vcpu; 3042 unsigned long i; 3043 3044 write_seqcount_end(&ka->pvclock_sc); 3045 raw_spin_unlock_irq(&ka->tsc_write_lock); 3046 kvm_for_each_vcpu(i, vcpu, kvm) 3047 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3048 3049 /* guest entries allowed */ 3050 kvm_for_each_vcpu(i, vcpu, kvm) 3051 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3052 } 3053 3054 static void kvm_update_masterclock(struct kvm *kvm) 3055 { 3056 kvm_hv_request_tsc_page_update(kvm); 3057 kvm_start_pvclock_update(kvm); 3058 pvclock_update_vm_gtod_copy(kvm); 3059 kvm_end_pvclock_update(kvm); 3060 } 3061 3062 /* 3063 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3064 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3065 * can change during boot even if the TSC is constant, as it's possible for KVM 3066 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3067 * notification when calibration completes, but practically speaking calibration 3068 * will complete before userspace is alive enough to create VMs. 3069 */ 3070 static unsigned long get_cpu_tsc_khz(void) 3071 { 3072 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3073 return tsc_khz; 3074 else 3075 return __this_cpu_read(cpu_tsc_khz); 3076 } 3077 3078 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3079 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3080 { 3081 struct kvm_arch *ka = &kvm->arch; 3082 struct pvclock_vcpu_time_info hv_clock; 3083 3084 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3085 get_cpu(); 3086 3087 data->flags = 0; 3088 if (ka->use_master_clock && 3089 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3090 #ifdef CONFIG_X86_64 3091 struct timespec64 ts; 3092 3093 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3094 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3095 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3096 } else 3097 #endif 3098 data->host_tsc = rdtsc(); 3099 3100 data->flags |= KVM_CLOCK_TSC_STABLE; 3101 hv_clock.tsc_timestamp = ka->master_cycle_now; 3102 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3103 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3104 &hv_clock.tsc_shift, 3105 &hv_clock.tsc_to_system_mul); 3106 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3107 } else { 3108 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3109 } 3110 3111 put_cpu(); 3112 } 3113 3114 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3115 { 3116 struct kvm_arch *ka = &kvm->arch; 3117 unsigned seq; 3118 3119 do { 3120 seq = read_seqcount_begin(&ka->pvclock_sc); 3121 __get_kvmclock(kvm, data); 3122 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3123 } 3124 3125 u64 get_kvmclock_ns(struct kvm *kvm) 3126 { 3127 struct kvm_clock_data data; 3128 3129 get_kvmclock(kvm, &data); 3130 return data.clock; 3131 } 3132 3133 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock, 3134 struct kvm_vcpu *vcpu, 3135 struct gfn_to_pfn_cache *gpc, 3136 unsigned int offset) 3137 { 3138 struct pvclock_vcpu_time_info *guest_hv_clock; 3139 struct pvclock_vcpu_time_info hv_clock; 3140 unsigned long flags; 3141 3142 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock)); 3143 3144 read_lock_irqsave(&gpc->lock, flags); 3145 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3146 read_unlock_irqrestore(&gpc->lock, flags); 3147 3148 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3149 return; 3150 3151 read_lock_irqsave(&gpc->lock, flags); 3152 } 3153 3154 guest_hv_clock = (void *)(gpc->khva + offset); 3155 3156 /* 3157 * This VCPU is paused, but it's legal for a guest to read another 3158 * VCPU's kvmclock, so we really have to follow the specification where 3159 * it says that version is odd if data is being modified, and even after 3160 * it is consistent. 3161 */ 3162 3163 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1; 3164 smp_wmb(); 3165 3166 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3167 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3168 3169 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock)); 3170 3171 smp_wmb(); 3172 3173 guest_hv_clock->version = ++hv_clock.version; 3174 3175 kvm_gpc_mark_dirty_in_slot(gpc); 3176 read_unlock_irqrestore(&gpc->lock, flags); 3177 3178 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock); 3179 } 3180 3181 int kvm_guest_time_update(struct kvm_vcpu *v) 3182 { 3183 struct pvclock_vcpu_time_info hv_clock = {}; 3184 unsigned long flags, tgt_tsc_khz; 3185 unsigned seq; 3186 struct kvm_vcpu_arch *vcpu = &v->arch; 3187 struct kvm_arch *ka = &v->kvm->arch; 3188 s64 kernel_ns; 3189 u64 tsc_timestamp, host_tsc; 3190 bool use_master_clock; 3191 3192 kernel_ns = 0; 3193 host_tsc = 0; 3194 3195 /* 3196 * If the host uses TSC clock, then passthrough TSC as stable 3197 * to the guest. 3198 */ 3199 do { 3200 seq = read_seqcount_begin(&ka->pvclock_sc); 3201 use_master_clock = ka->use_master_clock; 3202 if (use_master_clock) { 3203 host_tsc = ka->master_cycle_now; 3204 kernel_ns = ka->master_kernel_ns; 3205 } 3206 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3207 3208 /* Keep irq disabled to prevent changes to the clock */ 3209 local_irq_save(flags); 3210 tgt_tsc_khz = get_cpu_tsc_khz(); 3211 if (unlikely(tgt_tsc_khz == 0)) { 3212 local_irq_restore(flags); 3213 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3214 return 1; 3215 } 3216 if (!use_master_clock) { 3217 host_tsc = rdtsc(); 3218 kernel_ns = get_kvmclock_base_ns(); 3219 } 3220 3221 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3222 3223 /* 3224 * We may have to catch up the TSC to match elapsed wall clock 3225 * time for two reasons, even if kvmclock is used. 3226 * 1) CPU could have been running below the maximum TSC rate 3227 * 2) Broken TSC compensation resets the base at each VCPU 3228 * entry to avoid unknown leaps of TSC even when running 3229 * again on the same CPU. This may cause apparent elapsed 3230 * time to disappear, and the guest to stand still or run 3231 * very slowly. 3232 */ 3233 if (vcpu->tsc_catchup) { 3234 u64 tsc = compute_guest_tsc(v, kernel_ns); 3235 if (tsc > tsc_timestamp) { 3236 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3237 tsc_timestamp = tsc; 3238 } 3239 } 3240 3241 local_irq_restore(flags); 3242 3243 /* With all the info we got, fill in the values */ 3244 3245 if (kvm_caps.has_tsc_control) 3246 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3247 v->arch.l1_tsc_scaling_ratio); 3248 3249 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3250 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3251 &vcpu->pvclock_tsc_shift, 3252 &vcpu->pvclock_tsc_mul); 3253 vcpu->hw_tsc_khz = tgt_tsc_khz; 3254 } 3255 3256 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift; 3257 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul; 3258 hv_clock.tsc_timestamp = tsc_timestamp; 3259 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3260 vcpu->last_guest_tsc = tsc_timestamp; 3261 3262 /* If the host uses TSC clocksource, then it is stable */ 3263 hv_clock.flags = 0; 3264 if (use_master_clock) 3265 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT; 3266 3267 if (vcpu->pv_time.active) { 3268 /* 3269 * GUEST_STOPPED is only supported by kvmclock, and KVM's 3270 * historic behavior is to only process the request if kvmclock 3271 * is active/enabled. 3272 */ 3273 if (vcpu->pvclock_set_guest_stopped_request) { 3274 hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3275 vcpu->pvclock_set_guest_stopped_request = false; 3276 } 3277 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0); 3278 3279 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED; 3280 } 3281 3282 kvm_hv_setup_tsc_page(v->kvm, &hv_clock); 3283 3284 #ifdef CONFIG_KVM_XEN 3285 /* 3286 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3287 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3288 * This default behaviour led to bugs in some guest kernels which cause 3289 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3290 * 3291 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters! 3292 */ 3293 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) 3294 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT; 3295 3296 if (vcpu->xen.vcpu_info_cache.active) 3297 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache, 3298 offsetof(struct compat_vcpu_info, time)); 3299 if (vcpu->xen.vcpu_time_info_cache.active) 3300 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0); 3301 #endif 3302 return 0; 3303 } 3304 3305 /* 3306 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3307 * which it started (i.e. its epoch, when its kvmclock was zero). 3308 * 3309 * In fact those clocks are subtly different; wall clock frequency is 3310 * adjusted by NTP and has leap seconds, while the kvmclock is a 3311 * simple function of the TSC without any such adjustment. 3312 * 3313 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3314 * that and kvmclock, but even that would be subject to change over 3315 * time. 3316 * 3317 * Attempt to calculate the epoch at a given moment using the *same* 3318 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3319 * wallclock and kvmclock times, and subtracting one from the other. 3320 * 3321 * Fall back to using their values at slightly different moments by 3322 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3323 */ 3324 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3325 { 3326 #ifdef CONFIG_X86_64 3327 struct pvclock_vcpu_time_info hv_clock; 3328 struct kvm_arch *ka = &kvm->arch; 3329 unsigned long seq, local_tsc_khz; 3330 struct timespec64 ts; 3331 uint64_t host_tsc; 3332 3333 do { 3334 seq = read_seqcount_begin(&ka->pvclock_sc); 3335 3336 local_tsc_khz = 0; 3337 if (!ka->use_master_clock) 3338 break; 3339 3340 /* 3341 * The TSC read and the call to get_cpu_tsc_khz() must happen 3342 * on the same CPU. 3343 */ 3344 get_cpu(); 3345 3346 local_tsc_khz = get_cpu_tsc_khz(); 3347 3348 if (local_tsc_khz && 3349 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3350 local_tsc_khz = 0; /* Fall back to old method */ 3351 3352 put_cpu(); 3353 3354 /* 3355 * These values must be snapshotted within the seqcount loop. 3356 * After that, it's just mathematics which can happen on any 3357 * CPU at any time. 3358 */ 3359 hv_clock.tsc_timestamp = ka->master_cycle_now; 3360 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3361 3362 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3363 3364 /* 3365 * If the conditions were right, and obtaining the wallclock+TSC was 3366 * successful, calculate the KVM clock at the corresponding time and 3367 * subtract one from the other to get the guest's epoch in nanoseconds 3368 * since 1970-01-01. 3369 */ 3370 if (local_tsc_khz) { 3371 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3372 &hv_clock.tsc_shift, 3373 &hv_clock.tsc_to_system_mul); 3374 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3375 __pvclock_read_cycles(&hv_clock, host_tsc); 3376 } 3377 #endif 3378 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3379 } 3380 3381 /* 3382 * kvmclock updates which are isolated to a given vcpu, such as 3383 * vcpu->cpu migration, should not allow system_timestamp from 3384 * the rest of the vcpus to remain static. Otherwise ntp frequency 3385 * correction applies to one vcpu's system_timestamp but not 3386 * the others. 3387 * 3388 * So in those cases, request a kvmclock update for all vcpus. 3389 * We need to rate-limit these requests though, as they can 3390 * considerably slow guests that have a large number of vcpus. 3391 * The time for a remote vcpu to update its kvmclock is bound 3392 * by the delay we use to rate-limit the updates. 3393 */ 3394 3395 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3396 3397 static void kvmclock_update_fn(struct work_struct *work) 3398 { 3399 unsigned long i; 3400 struct delayed_work *dwork = to_delayed_work(work); 3401 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3402 kvmclock_update_work); 3403 struct kvm *kvm = container_of(ka, struct kvm, arch); 3404 struct kvm_vcpu *vcpu; 3405 3406 kvm_for_each_vcpu(i, vcpu, kvm) { 3407 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3408 kvm_vcpu_kick(vcpu); 3409 } 3410 } 3411 3412 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3413 { 3414 struct kvm *kvm = v->kvm; 3415 3416 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3417 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3418 KVMCLOCK_UPDATE_DELAY); 3419 } 3420 3421 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3422 3423 static void kvmclock_sync_fn(struct work_struct *work) 3424 { 3425 struct delayed_work *dwork = to_delayed_work(work); 3426 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3427 kvmclock_sync_work); 3428 struct kvm *kvm = container_of(ka, struct kvm, arch); 3429 3430 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3431 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3432 KVMCLOCK_SYNC_PERIOD); 3433 } 3434 3435 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3436 static bool is_mci_control_msr(u32 msr) 3437 { 3438 return (msr & 3) == 0; 3439 } 3440 static bool is_mci_status_msr(u32 msr) 3441 { 3442 return (msr & 3) == 1; 3443 } 3444 3445 /* 3446 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3447 */ 3448 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3449 { 3450 /* McStatusWrEn enabled? */ 3451 if (guest_cpuid_is_amd_compatible(vcpu)) 3452 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3453 3454 return false; 3455 } 3456 3457 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3458 { 3459 u64 mcg_cap = vcpu->arch.mcg_cap; 3460 unsigned bank_num = mcg_cap & 0xff; 3461 u32 msr = msr_info->index; 3462 u64 data = msr_info->data; 3463 u32 offset, last_msr; 3464 3465 switch (msr) { 3466 case MSR_IA32_MCG_STATUS: 3467 vcpu->arch.mcg_status = data; 3468 break; 3469 case MSR_IA32_MCG_CTL: 3470 if (!(mcg_cap & MCG_CTL_P) && 3471 (data || !msr_info->host_initiated)) 3472 return 1; 3473 if (data != 0 && data != ~(u64)0) 3474 return 1; 3475 vcpu->arch.mcg_ctl = data; 3476 break; 3477 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3478 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3479 if (msr > last_msr) 3480 return 1; 3481 3482 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3483 return 1; 3484 /* An attempt to write a 1 to a reserved bit raises #GP */ 3485 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3486 return 1; 3487 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3488 last_msr + 1 - MSR_IA32_MC0_CTL2); 3489 vcpu->arch.mci_ctl2_banks[offset] = data; 3490 break; 3491 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3492 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3493 if (msr > last_msr) 3494 return 1; 3495 3496 /* 3497 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3498 * values are architecturally undefined. But, some Linux 3499 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3500 * issue on AMD K8s, allow bit 10 to be clear when setting all 3501 * other bits in order to avoid an uncaught #GP in the guest. 3502 * 3503 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3504 * single-bit ECC data errors. 3505 */ 3506 if (is_mci_control_msr(msr) && 3507 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3508 return 1; 3509 3510 /* 3511 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3512 * AMD-based CPUs allow non-zero values, but if and only if 3513 * HWCR[McStatusWrEn] is set. 3514 */ 3515 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3516 data != 0 && !can_set_mci_status(vcpu)) 3517 return 1; 3518 3519 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3520 last_msr + 1 - MSR_IA32_MC0_CTL); 3521 vcpu->arch.mce_banks[offset] = data; 3522 break; 3523 default: 3524 return 1; 3525 } 3526 return 0; 3527 } 3528 3529 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3530 { 3531 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3532 3533 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3534 } 3535 3536 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3537 { 3538 gpa_t gpa = data & ~0x3f; 3539 3540 /* Bits 4:5 are reserved, Should be zero */ 3541 if (data & 0x30) 3542 return 1; 3543 3544 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3545 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3546 return 1; 3547 3548 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3549 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3550 return 1; 3551 3552 if (!lapic_in_kernel(vcpu)) 3553 return data ? 1 : 0; 3554 3555 vcpu->arch.apf.msr_en_val = data; 3556 3557 if (!kvm_pv_async_pf_enabled(vcpu)) { 3558 kvm_clear_async_pf_completion_queue(vcpu); 3559 kvm_async_pf_hash_reset(vcpu); 3560 return 0; 3561 } 3562 3563 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3564 sizeof(u64))) 3565 return 1; 3566 3567 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS); 3568 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3569 3570 kvm_async_pf_wakeup_all(vcpu); 3571 3572 return 0; 3573 } 3574 3575 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3576 { 3577 /* Bits 8-63 are reserved */ 3578 if (data >> 8) 3579 return 1; 3580 3581 if (!lapic_in_kernel(vcpu)) 3582 return 1; 3583 3584 vcpu->arch.apf.msr_int_val = data; 3585 3586 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3587 3588 return 0; 3589 } 3590 3591 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3592 { 3593 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3594 vcpu->arch.time = 0; 3595 } 3596 3597 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3598 { 3599 ++vcpu->stat.tlb_flush; 3600 kvm_x86_call(flush_tlb_all)(vcpu); 3601 3602 /* Flushing all ASIDs flushes the current ASID... */ 3603 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3604 } 3605 3606 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3607 { 3608 ++vcpu->stat.tlb_flush; 3609 3610 if (!tdp_enabled) { 3611 /* 3612 * A TLB flush on behalf of the guest is equivalent to 3613 * INVPCID(all), toggling CR4.PGE, etc., which requires 3614 * a forced sync of the shadow page tables. Ensure all the 3615 * roots are synced and the guest TLB in hardware is clean. 3616 */ 3617 kvm_mmu_sync_roots(vcpu); 3618 kvm_mmu_sync_prev_roots(vcpu); 3619 } 3620 3621 kvm_x86_call(flush_tlb_guest)(vcpu); 3622 3623 /* 3624 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3625 * grained flushing. 3626 */ 3627 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3628 } 3629 3630 3631 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3632 { 3633 ++vcpu->stat.tlb_flush; 3634 kvm_x86_call(flush_tlb_current)(vcpu); 3635 } 3636 3637 /* 3638 * Service "local" TLB flush requests, which are specific to the current MMU 3639 * context. In addition to the generic event handling in vcpu_enter_guest(), 3640 * TLB flushes that are targeted at an MMU context also need to be serviced 3641 * prior before nested VM-Enter/VM-Exit. 3642 */ 3643 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3644 { 3645 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3646 kvm_vcpu_flush_tlb_current(vcpu); 3647 3648 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3649 kvm_vcpu_flush_tlb_guest(vcpu); 3650 } 3651 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3652 3653 static void record_steal_time(struct kvm_vcpu *vcpu) 3654 { 3655 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3656 struct kvm_steal_time __user *st; 3657 struct kvm_memslots *slots; 3658 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3659 u64 steal; 3660 u32 version; 3661 3662 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3663 kvm_xen_runstate_set_running(vcpu); 3664 return; 3665 } 3666 3667 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3668 return; 3669 3670 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3671 return; 3672 3673 slots = kvm_memslots(vcpu->kvm); 3674 3675 if (unlikely(slots->generation != ghc->generation || 3676 gpa != ghc->gpa || 3677 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3678 /* We rely on the fact that it fits in a single page. */ 3679 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3680 3681 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3682 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3683 return; 3684 } 3685 3686 st = (struct kvm_steal_time __user *)ghc->hva; 3687 /* 3688 * Doing a TLB flush here, on the guest's behalf, can avoid 3689 * expensive IPIs. 3690 */ 3691 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3692 u8 st_preempted = 0; 3693 int err = -EFAULT; 3694 3695 if (!user_access_begin(st, sizeof(*st))) 3696 return; 3697 3698 asm volatile("1: xchgb %0, %2\n" 3699 "xor %1, %1\n" 3700 "2:\n" 3701 _ASM_EXTABLE_UA(1b, 2b) 3702 : "+q" (st_preempted), 3703 "+&r" (err), 3704 "+m" (st->preempted)); 3705 if (err) 3706 goto out; 3707 3708 user_access_end(); 3709 3710 vcpu->arch.st.preempted = 0; 3711 3712 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3713 st_preempted & KVM_VCPU_FLUSH_TLB); 3714 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3715 kvm_vcpu_flush_tlb_guest(vcpu); 3716 3717 if (!user_access_begin(st, sizeof(*st))) 3718 goto dirty; 3719 } else { 3720 if (!user_access_begin(st, sizeof(*st))) 3721 return; 3722 3723 unsafe_put_user(0, &st->preempted, out); 3724 vcpu->arch.st.preempted = 0; 3725 } 3726 3727 unsafe_get_user(version, &st->version, out); 3728 if (version & 1) 3729 version += 1; /* first time write, random junk */ 3730 3731 version += 1; 3732 unsafe_put_user(version, &st->version, out); 3733 3734 smp_wmb(); 3735 3736 unsafe_get_user(steal, &st->steal, out); 3737 steal += current->sched_info.run_delay - 3738 vcpu->arch.st.last_steal; 3739 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3740 unsafe_put_user(steal, &st->steal, out); 3741 3742 version += 1; 3743 unsafe_put_user(version, &st->version, out); 3744 3745 out: 3746 user_access_end(); 3747 dirty: 3748 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3749 } 3750 3751 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3752 { 3753 u32 msr = msr_info->index; 3754 u64 data = msr_info->data; 3755 3756 /* 3757 * Do not allow host-initiated writes to trigger the Xen hypercall 3758 * page setup; it could incur locking paths which are not expected 3759 * if userspace sets the MSR in an unusual location. 3760 */ 3761 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) && 3762 !msr_info->host_initiated) 3763 return kvm_xen_write_hypercall_page(vcpu, data); 3764 3765 switch (msr) { 3766 case MSR_AMD64_NB_CFG: 3767 case MSR_IA32_UCODE_WRITE: 3768 case MSR_VM_HSAVE_PA: 3769 case MSR_AMD64_PATCH_LOADER: 3770 case MSR_AMD64_BU_CFG2: 3771 case MSR_AMD64_DC_CFG: 3772 case MSR_AMD64_TW_CFG: 3773 case MSR_F15H_EX_CFG: 3774 break; 3775 3776 case MSR_IA32_UCODE_REV: 3777 if (msr_info->host_initiated) 3778 vcpu->arch.microcode_version = data; 3779 break; 3780 case MSR_IA32_ARCH_CAPABILITIES: 3781 if (!msr_info->host_initiated || 3782 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3783 return KVM_MSR_RET_UNSUPPORTED; 3784 vcpu->arch.arch_capabilities = data; 3785 break; 3786 case MSR_IA32_PERF_CAPABILITIES: 3787 if (!msr_info->host_initiated || 3788 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) 3789 return KVM_MSR_RET_UNSUPPORTED; 3790 3791 if (data & ~kvm_caps.supported_perf_cap) 3792 return 1; 3793 3794 /* 3795 * Note, this is not just a performance optimization! KVM 3796 * disallows changing feature MSRs after the vCPU has run; PMU 3797 * refresh will bug the VM if called after the vCPU has run. 3798 */ 3799 if (vcpu->arch.perf_capabilities == data) 3800 break; 3801 3802 vcpu->arch.perf_capabilities = data; 3803 kvm_pmu_refresh(vcpu); 3804 break; 3805 case MSR_IA32_PRED_CMD: { 3806 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3807 3808 if (!msr_info->host_initiated) { 3809 if ((!guest_has_pred_cmd_msr(vcpu))) 3810 return 1; 3811 3812 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3813 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB)) 3814 reserved_bits |= PRED_CMD_IBPB; 3815 3816 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB)) 3817 reserved_bits |= PRED_CMD_SBPB; 3818 } 3819 3820 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3821 reserved_bits |= PRED_CMD_IBPB; 3822 3823 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3824 reserved_bits |= PRED_CMD_SBPB; 3825 3826 if (data & reserved_bits) 3827 return 1; 3828 3829 if (!data) 3830 break; 3831 3832 wrmsrl(MSR_IA32_PRED_CMD, data); 3833 break; 3834 } 3835 case MSR_IA32_FLUSH_CMD: 3836 if (!msr_info->host_initiated && 3837 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3838 return 1; 3839 3840 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3841 return 1; 3842 if (!data) 3843 break; 3844 3845 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3846 break; 3847 case MSR_EFER: 3848 return set_efer(vcpu, msr_info); 3849 case MSR_K7_HWCR: 3850 data &= ~(u64)0x40; /* ignore flush filter disable */ 3851 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3852 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3853 3854 /* 3855 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3856 * through at least v6.6 whine if TscFreqSel is clear, 3857 * depending on F/M/S. 3858 */ 3859 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3860 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3861 return 1; 3862 } 3863 vcpu->arch.msr_hwcr = data; 3864 break; 3865 case MSR_FAM10H_MMIO_CONF_BASE: 3866 if (data != 0) { 3867 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3868 return 1; 3869 } 3870 break; 3871 case MSR_IA32_CR_PAT: 3872 if (!kvm_pat_valid(data)) 3873 return 1; 3874 3875 vcpu->arch.pat = data; 3876 break; 3877 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3878 case MSR_MTRRdefType: 3879 return kvm_mtrr_set_msr(vcpu, msr, data); 3880 case MSR_IA32_APICBASE: 3881 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated); 3882 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3883 return kvm_x2apic_msr_write(vcpu, msr, data); 3884 case MSR_IA32_TSC_DEADLINE: 3885 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3886 break; 3887 case MSR_IA32_TSC_ADJUST: 3888 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3889 if (!msr_info->host_initiated) { 3890 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3891 adjust_tsc_offset_guest(vcpu, adj); 3892 /* Before back to guest, tsc_timestamp must be adjusted 3893 * as well, otherwise guest's percpu pvclock time could jump. 3894 */ 3895 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3896 } 3897 vcpu->arch.ia32_tsc_adjust_msr = data; 3898 } 3899 break; 3900 case MSR_IA32_MISC_ENABLE: { 3901 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3902 3903 if (!msr_info->host_initiated) { 3904 /* RO bits */ 3905 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3906 return 1; 3907 3908 /* R bits, i.e. writes are ignored, but don't fault. */ 3909 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3910 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3911 } 3912 3913 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3914 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3915 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3)) 3916 return 1; 3917 vcpu->arch.ia32_misc_enable_msr = data; 3918 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3919 } else { 3920 vcpu->arch.ia32_misc_enable_msr = data; 3921 } 3922 break; 3923 } 3924 case MSR_IA32_SMBASE: 3925 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3926 return 1; 3927 vcpu->arch.smbase = data; 3928 break; 3929 case MSR_IA32_POWER_CTL: 3930 vcpu->arch.msr_ia32_power_ctl = data; 3931 break; 3932 case MSR_IA32_TSC: 3933 if (msr_info->host_initiated) { 3934 kvm_synchronize_tsc(vcpu, &data); 3935 } else if (!vcpu->arch.guest_tsc_protected) { 3936 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3937 adjust_tsc_offset_guest(vcpu, adj); 3938 vcpu->arch.ia32_tsc_adjust_msr += adj; 3939 } 3940 break; 3941 case MSR_IA32_XSS: 3942 if (!msr_info->host_initiated && 3943 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3944 return 1; 3945 /* 3946 * KVM supports exposing PT to the guest, but does not support 3947 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3948 * XSAVES/XRSTORS to save/restore PT MSRs. 3949 */ 3950 if (data & ~kvm_caps.supported_xss) 3951 return 1; 3952 vcpu->arch.ia32_xss = data; 3953 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3954 break; 3955 case MSR_SMI_COUNT: 3956 if (!msr_info->host_initiated) 3957 return 1; 3958 vcpu->arch.smi_count = data; 3959 break; 3960 case MSR_KVM_WALL_CLOCK_NEW: 3961 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3962 return 1; 3963 3964 vcpu->kvm->arch.wall_clock = data; 3965 kvm_write_wall_clock(vcpu->kvm, data, 0); 3966 break; 3967 case MSR_KVM_WALL_CLOCK: 3968 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3969 return 1; 3970 3971 vcpu->kvm->arch.wall_clock = data; 3972 kvm_write_wall_clock(vcpu->kvm, data, 0); 3973 break; 3974 case MSR_KVM_SYSTEM_TIME_NEW: 3975 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3976 return 1; 3977 3978 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3979 break; 3980 case MSR_KVM_SYSTEM_TIME: 3981 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3982 return 1; 3983 3984 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3985 break; 3986 case MSR_KVM_ASYNC_PF_EN: 3987 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3988 return 1; 3989 3990 if (kvm_pv_enable_async_pf(vcpu, data)) 3991 return 1; 3992 break; 3993 case MSR_KVM_ASYNC_PF_INT: 3994 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3995 return 1; 3996 3997 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3998 return 1; 3999 break; 4000 case MSR_KVM_ASYNC_PF_ACK: 4001 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4002 return 1; 4003 if (data & 0x1) { 4004 vcpu->arch.apf.pageready_pending = false; 4005 kvm_check_async_pf_completion(vcpu); 4006 } 4007 break; 4008 case MSR_KVM_STEAL_TIME: 4009 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4010 return 1; 4011 4012 if (unlikely(!sched_info_on())) 4013 return 1; 4014 4015 if (data & KVM_STEAL_RESERVED_MASK) 4016 return 1; 4017 4018 vcpu->arch.st.msr_val = data; 4019 4020 if (!(data & KVM_MSR_ENABLED)) 4021 break; 4022 4023 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4024 4025 break; 4026 case MSR_KVM_PV_EOI_EN: 4027 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4028 return 1; 4029 4030 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4031 return 1; 4032 break; 4033 4034 case MSR_KVM_POLL_CONTROL: 4035 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4036 return 1; 4037 4038 /* only enable bit supported */ 4039 if (data & (-1ULL << 1)) 4040 return 1; 4041 4042 vcpu->arch.msr_kvm_poll_control = data; 4043 break; 4044 4045 case MSR_IA32_MCG_CTL: 4046 case MSR_IA32_MCG_STATUS: 4047 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4048 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4049 return set_msr_mce(vcpu, msr_info); 4050 4051 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4052 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4053 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4054 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4055 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4056 return kvm_pmu_set_msr(vcpu, msr_info); 4057 4058 if (data) 4059 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4060 break; 4061 case MSR_K7_CLK_CTL: 4062 /* 4063 * Ignore all writes to this no longer documented MSR. 4064 * Writes are only relevant for old K7 processors, 4065 * all pre-dating SVM, but a recommended workaround from 4066 * AMD for these chips. It is possible to specify the 4067 * affected processor models on the command line, hence 4068 * the need to ignore the workaround. 4069 */ 4070 break; 4071 #ifdef CONFIG_KVM_HYPERV 4072 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4073 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4074 case HV_X64_MSR_SYNDBG_OPTIONS: 4075 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4076 case HV_X64_MSR_CRASH_CTL: 4077 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4078 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4079 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4080 case HV_X64_MSR_TSC_EMULATION_STATUS: 4081 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4082 return kvm_hv_set_msr_common(vcpu, msr, data, 4083 msr_info->host_initiated); 4084 #endif 4085 case MSR_IA32_BBL_CR_CTL3: 4086 /* Drop writes to this legacy MSR -- see rdmsr 4087 * counterpart for further detail. 4088 */ 4089 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4090 break; 4091 case MSR_AMD64_OSVW_ID_LENGTH: 4092 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4093 return 1; 4094 vcpu->arch.osvw.length = data; 4095 break; 4096 case MSR_AMD64_OSVW_STATUS: 4097 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4098 return 1; 4099 vcpu->arch.osvw.status = data; 4100 break; 4101 case MSR_PLATFORM_INFO: 4102 if (!msr_info->host_initiated) 4103 return 1; 4104 vcpu->arch.msr_platform_info = data; 4105 break; 4106 case MSR_MISC_FEATURES_ENABLES: 4107 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4108 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4109 !supports_cpuid_fault(vcpu))) 4110 return 1; 4111 vcpu->arch.msr_misc_features_enables = data; 4112 break; 4113 #ifdef CONFIG_X86_64 4114 case MSR_IA32_XFD: 4115 if (!msr_info->host_initiated && 4116 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4117 return 1; 4118 4119 if (data & ~kvm_guest_supported_xfd(vcpu)) 4120 return 1; 4121 4122 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4123 break; 4124 case MSR_IA32_XFD_ERR: 4125 if (!msr_info->host_initiated && 4126 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4127 return 1; 4128 4129 if (data & ~kvm_guest_supported_xfd(vcpu)) 4130 return 1; 4131 4132 vcpu->arch.guest_fpu.xfd_err = data; 4133 break; 4134 #endif 4135 default: 4136 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4137 return kvm_pmu_set_msr(vcpu, msr_info); 4138 4139 return KVM_MSR_RET_UNSUPPORTED; 4140 } 4141 return 0; 4142 } 4143 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4144 4145 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4146 { 4147 u64 data; 4148 u64 mcg_cap = vcpu->arch.mcg_cap; 4149 unsigned bank_num = mcg_cap & 0xff; 4150 u32 offset, last_msr; 4151 4152 switch (msr) { 4153 case MSR_IA32_P5_MC_ADDR: 4154 case MSR_IA32_P5_MC_TYPE: 4155 data = 0; 4156 break; 4157 case MSR_IA32_MCG_CAP: 4158 data = vcpu->arch.mcg_cap; 4159 break; 4160 case MSR_IA32_MCG_CTL: 4161 if (!(mcg_cap & MCG_CTL_P) && !host) 4162 return 1; 4163 data = vcpu->arch.mcg_ctl; 4164 break; 4165 case MSR_IA32_MCG_STATUS: 4166 data = vcpu->arch.mcg_status; 4167 break; 4168 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4169 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4170 if (msr > last_msr) 4171 return 1; 4172 4173 if (!(mcg_cap & MCG_CMCI_P) && !host) 4174 return 1; 4175 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4176 last_msr + 1 - MSR_IA32_MC0_CTL2); 4177 data = vcpu->arch.mci_ctl2_banks[offset]; 4178 break; 4179 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4180 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4181 if (msr > last_msr) 4182 return 1; 4183 4184 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4185 last_msr + 1 - MSR_IA32_MC0_CTL); 4186 data = vcpu->arch.mce_banks[offset]; 4187 break; 4188 default: 4189 return 1; 4190 } 4191 *pdata = data; 4192 return 0; 4193 } 4194 4195 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4196 { 4197 switch (msr_info->index) { 4198 case MSR_IA32_PLATFORM_ID: 4199 case MSR_IA32_EBL_CR_POWERON: 4200 case MSR_IA32_LASTBRANCHFROMIP: 4201 case MSR_IA32_LASTBRANCHTOIP: 4202 case MSR_IA32_LASTINTFROMIP: 4203 case MSR_IA32_LASTINTTOIP: 4204 case MSR_AMD64_SYSCFG: 4205 case MSR_K8_TSEG_ADDR: 4206 case MSR_K8_TSEG_MASK: 4207 case MSR_VM_HSAVE_PA: 4208 case MSR_K8_INT_PENDING_MSG: 4209 case MSR_AMD64_NB_CFG: 4210 case MSR_FAM10H_MMIO_CONF_BASE: 4211 case MSR_AMD64_BU_CFG2: 4212 case MSR_IA32_PERF_CTL: 4213 case MSR_AMD64_DC_CFG: 4214 case MSR_AMD64_TW_CFG: 4215 case MSR_F15H_EX_CFG: 4216 /* 4217 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4218 * limit) MSRs. Just return 0, as we do not want to expose the host 4219 * data here. Do not conditionalize this on CPUID, as KVM does not do 4220 * so for existing CPU-specific MSRs. 4221 */ 4222 case MSR_RAPL_POWER_UNIT: 4223 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4224 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4225 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4226 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4227 msr_info->data = 0; 4228 break; 4229 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4230 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4231 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4232 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4233 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4234 return kvm_pmu_get_msr(vcpu, msr_info); 4235 msr_info->data = 0; 4236 break; 4237 case MSR_IA32_UCODE_REV: 4238 msr_info->data = vcpu->arch.microcode_version; 4239 break; 4240 case MSR_IA32_ARCH_CAPABILITIES: 4241 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4242 return KVM_MSR_RET_UNSUPPORTED; 4243 msr_info->data = vcpu->arch.arch_capabilities; 4244 break; 4245 case MSR_IA32_PERF_CAPABILITIES: 4246 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) 4247 return KVM_MSR_RET_UNSUPPORTED; 4248 msr_info->data = vcpu->arch.perf_capabilities; 4249 break; 4250 case MSR_IA32_POWER_CTL: 4251 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4252 break; 4253 case MSR_IA32_TSC: { 4254 /* 4255 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4256 * even when not intercepted. AMD manual doesn't explicitly 4257 * state this but appears to behave the same. 4258 * 4259 * On userspace reads and writes, however, we unconditionally 4260 * return L1's TSC value to ensure backwards-compatible 4261 * behavior for migration. 4262 */ 4263 u64 offset, ratio; 4264 4265 if (msr_info->host_initiated) { 4266 offset = vcpu->arch.l1_tsc_offset; 4267 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4268 } else { 4269 offset = vcpu->arch.tsc_offset; 4270 ratio = vcpu->arch.tsc_scaling_ratio; 4271 } 4272 4273 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4274 break; 4275 } 4276 case MSR_IA32_CR_PAT: 4277 msr_info->data = vcpu->arch.pat; 4278 break; 4279 case MSR_MTRRcap: 4280 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4281 case MSR_MTRRdefType: 4282 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4283 case 0xcd: /* fsb frequency */ 4284 msr_info->data = 3; 4285 break; 4286 /* 4287 * MSR_EBC_FREQUENCY_ID 4288 * Conservative value valid for even the basic CPU models. 4289 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4290 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4291 * and 266MHz for model 3, or 4. Set Core Clock 4292 * Frequency to System Bus Frequency Ratio to 1 (bits 4293 * 31:24) even though these are only valid for CPU 4294 * models > 2, however guests may end up dividing or 4295 * multiplying by zero otherwise. 4296 */ 4297 case MSR_EBC_FREQUENCY_ID: 4298 msr_info->data = 1 << 24; 4299 break; 4300 case MSR_IA32_APICBASE: 4301 msr_info->data = vcpu->arch.apic_base; 4302 break; 4303 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4304 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4305 case MSR_IA32_TSC_DEADLINE: 4306 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4307 break; 4308 case MSR_IA32_TSC_ADJUST: 4309 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4310 break; 4311 case MSR_IA32_MISC_ENABLE: 4312 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4313 break; 4314 case MSR_IA32_SMBASE: 4315 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4316 return 1; 4317 msr_info->data = vcpu->arch.smbase; 4318 break; 4319 case MSR_SMI_COUNT: 4320 msr_info->data = vcpu->arch.smi_count; 4321 break; 4322 case MSR_IA32_PERF_STATUS: 4323 /* TSC increment by tick */ 4324 msr_info->data = 1000ULL; 4325 /* CPU multiplier */ 4326 msr_info->data |= (((uint64_t)4ULL) << 40); 4327 break; 4328 case MSR_EFER: 4329 msr_info->data = vcpu->arch.efer; 4330 break; 4331 case MSR_KVM_WALL_CLOCK: 4332 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4333 return 1; 4334 4335 msr_info->data = vcpu->kvm->arch.wall_clock; 4336 break; 4337 case MSR_KVM_WALL_CLOCK_NEW: 4338 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4339 return 1; 4340 4341 msr_info->data = vcpu->kvm->arch.wall_clock; 4342 break; 4343 case MSR_KVM_SYSTEM_TIME: 4344 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4345 return 1; 4346 4347 msr_info->data = vcpu->arch.time; 4348 break; 4349 case MSR_KVM_SYSTEM_TIME_NEW: 4350 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4351 return 1; 4352 4353 msr_info->data = vcpu->arch.time; 4354 break; 4355 case MSR_KVM_ASYNC_PF_EN: 4356 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4357 return 1; 4358 4359 msr_info->data = vcpu->arch.apf.msr_en_val; 4360 break; 4361 case MSR_KVM_ASYNC_PF_INT: 4362 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4363 return 1; 4364 4365 msr_info->data = vcpu->arch.apf.msr_int_val; 4366 break; 4367 case MSR_KVM_ASYNC_PF_ACK: 4368 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4369 return 1; 4370 4371 msr_info->data = 0; 4372 break; 4373 case MSR_KVM_STEAL_TIME: 4374 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4375 return 1; 4376 4377 msr_info->data = vcpu->arch.st.msr_val; 4378 break; 4379 case MSR_KVM_PV_EOI_EN: 4380 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4381 return 1; 4382 4383 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4384 break; 4385 case MSR_KVM_POLL_CONTROL: 4386 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4387 return 1; 4388 4389 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4390 break; 4391 case MSR_IA32_P5_MC_ADDR: 4392 case MSR_IA32_P5_MC_TYPE: 4393 case MSR_IA32_MCG_CAP: 4394 case MSR_IA32_MCG_CTL: 4395 case MSR_IA32_MCG_STATUS: 4396 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4397 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4398 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4399 msr_info->host_initiated); 4400 case MSR_IA32_XSS: 4401 if (!msr_info->host_initiated && 4402 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4403 return 1; 4404 msr_info->data = vcpu->arch.ia32_xss; 4405 break; 4406 case MSR_K7_CLK_CTL: 4407 /* 4408 * Provide expected ramp-up count for K7. All other 4409 * are set to zero, indicating minimum divisors for 4410 * every field. 4411 * 4412 * This prevents guest kernels on AMD host with CPU 4413 * type 6, model 8 and higher from exploding due to 4414 * the rdmsr failing. 4415 */ 4416 msr_info->data = 0x20000000; 4417 break; 4418 #ifdef CONFIG_KVM_HYPERV 4419 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4420 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4421 case HV_X64_MSR_SYNDBG_OPTIONS: 4422 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4423 case HV_X64_MSR_CRASH_CTL: 4424 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4425 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4426 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4427 case HV_X64_MSR_TSC_EMULATION_STATUS: 4428 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4429 return kvm_hv_get_msr_common(vcpu, 4430 msr_info->index, &msr_info->data, 4431 msr_info->host_initiated); 4432 #endif 4433 case MSR_IA32_BBL_CR_CTL3: 4434 /* This legacy MSR exists but isn't fully documented in current 4435 * silicon. It is however accessed by winxp in very narrow 4436 * scenarios where it sets bit #19, itself documented as 4437 * a "reserved" bit. Best effort attempt to source coherent 4438 * read data here should the balance of the register be 4439 * interpreted by the guest: 4440 * 4441 * L2 cache control register 3: 64GB range, 256KB size, 4442 * enabled, latency 0x1, configured 4443 */ 4444 msr_info->data = 0xbe702111; 4445 break; 4446 case MSR_AMD64_OSVW_ID_LENGTH: 4447 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4448 return 1; 4449 msr_info->data = vcpu->arch.osvw.length; 4450 break; 4451 case MSR_AMD64_OSVW_STATUS: 4452 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) 4453 return 1; 4454 msr_info->data = vcpu->arch.osvw.status; 4455 break; 4456 case MSR_PLATFORM_INFO: 4457 if (!msr_info->host_initiated && 4458 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4459 return 1; 4460 msr_info->data = vcpu->arch.msr_platform_info; 4461 break; 4462 case MSR_MISC_FEATURES_ENABLES: 4463 msr_info->data = vcpu->arch.msr_misc_features_enables; 4464 break; 4465 case MSR_K7_HWCR: 4466 msr_info->data = vcpu->arch.msr_hwcr; 4467 break; 4468 #ifdef CONFIG_X86_64 4469 case MSR_IA32_XFD: 4470 if (!msr_info->host_initiated && 4471 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4472 return 1; 4473 4474 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4475 break; 4476 case MSR_IA32_XFD_ERR: 4477 if (!msr_info->host_initiated && 4478 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) 4479 return 1; 4480 4481 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4482 break; 4483 #endif 4484 default: 4485 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4486 return kvm_pmu_get_msr(vcpu, msr_info); 4487 4488 return KVM_MSR_RET_UNSUPPORTED; 4489 } 4490 return 0; 4491 } 4492 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4493 4494 /* 4495 * Read or write a bunch of msrs. All parameters are kernel addresses. 4496 * 4497 * @return number of msrs set successfully. 4498 */ 4499 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4500 struct kvm_msr_entry *entries, 4501 int (*do_msr)(struct kvm_vcpu *vcpu, 4502 unsigned index, u64 *data)) 4503 { 4504 int i; 4505 4506 for (i = 0; i < msrs->nmsrs; ++i) 4507 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4508 break; 4509 4510 return i; 4511 } 4512 4513 /* 4514 * Read or write a bunch of msrs. Parameters are user addresses. 4515 * 4516 * @return number of msrs set successfully. 4517 */ 4518 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4519 int (*do_msr)(struct kvm_vcpu *vcpu, 4520 unsigned index, u64 *data), 4521 int writeback) 4522 { 4523 struct kvm_msrs msrs; 4524 struct kvm_msr_entry *entries; 4525 unsigned size; 4526 int r; 4527 4528 r = -EFAULT; 4529 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4530 goto out; 4531 4532 r = -E2BIG; 4533 if (msrs.nmsrs >= MAX_IO_MSRS) 4534 goto out; 4535 4536 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4537 entries = memdup_user(user_msrs->entries, size); 4538 if (IS_ERR(entries)) { 4539 r = PTR_ERR(entries); 4540 goto out; 4541 } 4542 4543 r = __msr_io(vcpu, &msrs, entries, do_msr); 4544 4545 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4546 r = -EFAULT; 4547 4548 kfree(entries); 4549 out: 4550 return r; 4551 } 4552 4553 static inline bool kvm_can_mwait_in_guest(void) 4554 { 4555 return boot_cpu_has(X86_FEATURE_MWAIT) && 4556 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4557 boot_cpu_has(X86_FEATURE_ARAT); 4558 } 4559 4560 static u64 kvm_get_allowed_disable_exits(void) 4561 { 4562 u64 r = KVM_X86_DISABLE_EXITS_PAUSE; 4563 4564 if (!mitigate_smt_rsb) { 4565 r |= KVM_X86_DISABLE_EXITS_HLT | 4566 KVM_X86_DISABLE_EXITS_CSTATE; 4567 4568 if (kvm_can_mwait_in_guest()) 4569 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4570 } 4571 return r; 4572 } 4573 4574 #ifdef CONFIG_KVM_HYPERV 4575 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4576 struct kvm_cpuid2 __user *cpuid_arg) 4577 { 4578 struct kvm_cpuid2 cpuid; 4579 int r; 4580 4581 r = -EFAULT; 4582 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4583 return r; 4584 4585 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4586 if (r) 4587 return r; 4588 4589 r = -EFAULT; 4590 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4591 return r; 4592 4593 return 0; 4594 } 4595 #endif 4596 4597 static bool kvm_is_vm_type_supported(unsigned long type) 4598 { 4599 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4600 } 4601 4602 static inline u32 kvm_sync_valid_fields(struct kvm *kvm) 4603 { 4604 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS; 4605 } 4606 4607 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4608 { 4609 int r = 0; 4610 4611 switch (ext) { 4612 case KVM_CAP_IRQCHIP: 4613 case KVM_CAP_HLT: 4614 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4615 case KVM_CAP_SET_TSS_ADDR: 4616 case KVM_CAP_EXT_CPUID: 4617 case KVM_CAP_EXT_EMUL_CPUID: 4618 case KVM_CAP_CLOCKSOURCE: 4619 case KVM_CAP_PIT: 4620 case KVM_CAP_NOP_IO_DELAY: 4621 case KVM_CAP_MP_STATE: 4622 case KVM_CAP_SYNC_MMU: 4623 case KVM_CAP_USER_NMI: 4624 case KVM_CAP_REINJECT_CONTROL: 4625 case KVM_CAP_IRQ_INJECT_STATUS: 4626 case KVM_CAP_IOEVENTFD: 4627 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4628 case KVM_CAP_PIT2: 4629 case KVM_CAP_PIT_STATE2: 4630 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4631 case KVM_CAP_VCPU_EVENTS: 4632 #ifdef CONFIG_KVM_HYPERV 4633 case KVM_CAP_HYPERV: 4634 case KVM_CAP_HYPERV_VAPIC: 4635 case KVM_CAP_HYPERV_SPIN: 4636 case KVM_CAP_HYPERV_TIME: 4637 case KVM_CAP_HYPERV_SYNIC: 4638 case KVM_CAP_HYPERV_SYNIC2: 4639 case KVM_CAP_HYPERV_VP_INDEX: 4640 case KVM_CAP_HYPERV_EVENTFD: 4641 case KVM_CAP_HYPERV_TLBFLUSH: 4642 case KVM_CAP_HYPERV_SEND_IPI: 4643 case KVM_CAP_HYPERV_CPUID: 4644 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4645 case KVM_CAP_SYS_HYPERV_CPUID: 4646 #endif 4647 case KVM_CAP_PCI_SEGMENT: 4648 case KVM_CAP_DEBUGREGS: 4649 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4650 case KVM_CAP_XSAVE: 4651 case KVM_CAP_ASYNC_PF: 4652 case KVM_CAP_ASYNC_PF_INT: 4653 case KVM_CAP_GET_TSC_KHZ: 4654 case KVM_CAP_KVMCLOCK_CTRL: 4655 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4656 case KVM_CAP_TSC_DEADLINE_TIMER: 4657 case KVM_CAP_DISABLE_QUIRKS: 4658 case KVM_CAP_SET_BOOT_CPU_ID: 4659 case KVM_CAP_SPLIT_IRQCHIP: 4660 case KVM_CAP_IMMEDIATE_EXIT: 4661 case KVM_CAP_PMU_EVENT_FILTER: 4662 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4663 case KVM_CAP_GET_MSR_FEATURES: 4664 case KVM_CAP_MSR_PLATFORM_INFO: 4665 case KVM_CAP_EXCEPTION_PAYLOAD: 4666 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4667 case KVM_CAP_SET_GUEST_DEBUG: 4668 case KVM_CAP_LAST_CPU: 4669 case KVM_CAP_X86_USER_SPACE_MSR: 4670 case KVM_CAP_X86_MSR_FILTER: 4671 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4672 #ifdef CONFIG_X86_SGX_KVM 4673 case KVM_CAP_SGX_ATTRIBUTE: 4674 #endif 4675 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4676 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4677 case KVM_CAP_SREGS2: 4678 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4679 case KVM_CAP_VCPU_ATTRIBUTES: 4680 case KVM_CAP_SYS_ATTRIBUTES: 4681 case KVM_CAP_VAPIC: 4682 case KVM_CAP_ENABLE_CAP: 4683 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4684 case KVM_CAP_IRQFD_RESAMPLE: 4685 case KVM_CAP_MEMORY_FAULT_INFO: 4686 case KVM_CAP_X86_GUEST_MODE: 4687 r = 1; 4688 break; 4689 case KVM_CAP_PRE_FAULT_MEMORY: 4690 r = tdp_enabled; 4691 break; 4692 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: 4693 r = APIC_BUS_CYCLE_NS_DEFAULT; 4694 break; 4695 case KVM_CAP_EXIT_HYPERCALL: 4696 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4697 break; 4698 case KVM_CAP_SET_GUEST_DEBUG2: 4699 return KVM_GUESTDBG_VALID_MASK; 4700 #ifdef CONFIG_KVM_XEN 4701 case KVM_CAP_XEN_HVM: 4702 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4703 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4704 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4705 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4706 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4707 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4708 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4709 if (sched_info_on()) 4710 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4711 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4712 break; 4713 #endif 4714 case KVM_CAP_SYNC_REGS: 4715 r = kvm_sync_valid_fields(kvm); 4716 break; 4717 case KVM_CAP_ADJUST_CLOCK: 4718 r = KVM_CLOCK_VALID_FLAGS; 4719 break; 4720 case KVM_CAP_X86_DISABLE_EXITS: 4721 r = kvm_get_allowed_disable_exits(); 4722 break; 4723 case KVM_CAP_X86_SMM: 4724 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4725 break; 4726 4727 /* SMBASE is usually relocated above 1M on modern chipsets, 4728 * and SMM handlers might indeed rely on 4G segment limits, 4729 * so do not report SMM to be available if real mode is 4730 * emulated via vm86 mode. Still, do not go to great lengths 4731 * to avoid userspace's usage of the feature, because it is a 4732 * fringe case that is not enabled except via specific settings 4733 * of the module parameters. 4734 */ 4735 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4736 break; 4737 case KVM_CAP_NR_VCPUS: 4738 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4739 break; 4740 case KVM_CAP_MAX_VCPUS: 4741 r = KVM_MAX_VCPUS; 4742 break; 4743 case KVM_CAP_MAX_VCPU_ID: 4744 r = KVM_MAX_VCPU_IDS; 4745 break; 4746 case KVM_CAP_PV_MMU: /* obsolete */ 4747 r = 0; 4748 break; 4749 case KVM_CAP_MCE: 4750 r = KVM_MAX_MCE_BANKS; 4751 break; 4752 case KVM_CAP_XCRS: 4753 r = boot_cpu_has(X86_FEATURE_XSAVE); 4754 break; 4755 case KVM_CAP_TSC_CONTROL: 4756 case KVM_CAP_VM_TSC_CONTROL: 4757 r = kvm_caps.has_tsc_control; 4758 break; 4759 case KVM_CAP_X2APIC_API: 4760 r = KVM_X2APIC_API_VALID_FLAGS; 4761 break; 4762 case KVM_CAP_NESTED_STATE: 4763 r = kvm_x86_ops.nested_ops->get_state ? 4764 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4765 break; 4766 #ifdef CONFIG_KVM_HYPERV 4767 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4768 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4769 break; 4770 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4771 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4772 break; 4773 #endif 4774 case KVM_CAP_SMALLER_MAXPHYADDR: 4775 r = (int) allow_smaller_maxphyaddr; 4776 break; 4777 case KVM_CAP_STEAL_TIME: 4778 r = sched_info_on(); 4779 break; 4780 case KVM_CAP_X86_BUS_LOCK_EXIT: 4781 if (kvm_caps.has_bus_lock_exit) 4782 r = KVM_BUS_LOCK_DETECTION_OFF | 4783 KVM_BUS_LOCK_DETECTION_EXIT; 4784 else 4785 r = 0; 4786 break; 4787 case KVM_CAP_XSAVE2: { 4788 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4789 if (r < sizeof(struct kvm_xsave)) 4790 r = sizeof(struct kvm_xsave); 4791 break; 4792 } 4793 case KVM_CAP_PMU_CAPABILITY: 4794 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4795 break; 4796 case KVM_CAP_DISABLE_QUIRKS2: 4797 r = KVM_X86_VALID_QUIRKS; 4798 break; 4799 case KVM_CAP_X86_NOTIFY_VMEXIT: 4800 r = kvm_caps.has_notify_vmexit; 4801 break; 4802 case KVM_CAP_VM_TYPES: 4803 r = kvm_caps.supported_vm_types; 4804 break; 4805 case KVM_CAP_READONLY_MEM: 4806 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1; 4807 break; 4808 default: 4809 break; 4810 } 4811 return r; 4812 } 4813 4814 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 4815 { 4816 if (attr->group) { 4817 if (kvm_x86_ops.dev_get_attr) 4818 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); 4819 return -ENXIO; 4820 } 4821 4822 switch (attr->attr) { 4823 case KVM_X86_XCOMP_GUEST_SUPP: 4824 *val = kvm_caps.supported_xcr0; 4825 return 0; 4826 default: 4827 return -ENXIO; 4828 } 4829 } 4830 4831 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4832 { 4833 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 4834 int r; 4835 u64 val; 4836 4837 r = __kvm_x86_dev_get_attr(attr, &val); 4838 if (r < 0) 4839 return r; 4840 4841 if (put_user(val, uaddr)) 4842 return -EFAULT; 4843 4844 return 0; 4845 } 4846 4847 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4848 { 4849 u64 val; 4850 4851 return __kvm_x86_dev_get_attr(attr, &val); 4852 } 4853 4854 long kvm_arch_dev_ioctl(struct file *filp, 4855 unsigned int ioctl, unsigned long arg) 4856 { 4857 void __user *argp = (void __user *)arg; 4858 long r; 4859 4860 switch (ioctl) { 4861 case KVM_GET_MSR_INDEX_LIST: { 4862 struct kvm_msr_list __user *user_msr_list = argp; 4863 struct kvm_msr_list msr_list; 4864 unsigned n; 4865 4866 r = -EFAULT; 4867 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4868 goto out; 4869 n = msr_list.nmsrs; 4870 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4871 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4872 goto out; 4873 r = -E2BIG; 4874 if (n < msr_list.nmsrs) 4875 goto out; 4876 r = -EFAULT; 4877 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4878 num_msrs_to_save * sizeof(u32))) 4879 goto out; 4880 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4881 &emulated_msrs, 4882 num_emulated_msrs * sizeof(u32))) 4883 goto out; 4884 r = 0; 4885 break; 4886 } 4887 case KVM_GET_SUPPORTED_CPUID: 4888 case KVM_GET_EMULATED_CPUID: { 4889 struct kvm_cpuid2 __user *cpuid_arg = argp; 4890 struct kvm_cpuid2 cpuid; 4891 4892 r = -EFAULT; 4893 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4894 goto out; 4895 4896 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4897 ioctl); 4898 if (r) 4899 goto out; 4900 4901 r = -EFAULT; 4902 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4903 goto out; 4904 r = 0; 4905 break; 4906 } 4907 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4908 r = -EFAULT; 4909 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4910 sizeof(kvm_caps.supported_mce_cap))) 4911 goto out; 4912 r = 0; 4913 break; 4914 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4915 struct kvm_msr_list __user *user_msr_list = argp; 4916 struct kvm_msr_list msr_list; 4917 unsigned int n; 4918 4919 r = -EFAULT; 4920 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4921 goto out; 4922 n = msr_list.nmsrs; 4923 msr_list.nmsrs = num_msr_based_features; 4924 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4925 goto out; 4926 r = -E2BIG; 4927 if (n < msr_list.nmsrs) 4928 goto out; 4929 r = -EFAULT; 4930 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4931 num_msr_based_features * sizeof(u32))) 4932 goto out; 4933 r = 0; 4934 break; 4935 } 4936 case KVM_GET_MSRS: 4937 r = msr_io(NULL, argp, do_get_feature_msr, 1); 4938 break; 4939 #ifdef CONFIG_KVM_HYPERV 4940 case KVM_GET_SUPPORTED_HV_CPUID: 4941 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4942 break; 4943 #endif 4944 case KVM_GET_DEVICE_ATTR: { 4945 struct kvm_device_attr attr; 4946 r = -EFAULT; 4947 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4948 break; 4949 r = kvm_x86_dev_get_attr(&attr); 4950 break; 4951 } 4952 case KVM_HAS_DEVICE_ATTR: { 4953 struct kvm_device_attr attr; 4954 r = -EFAULT; 4955 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4956 break; 4957 r = kvm_x86_dev_has_attr(&attr); 4958 break; 4959 } 4960 default: 4961 r = -EINVAL; 4962 break; 4963 } 4964 out: 4965 return r; 4966 } 4967 4968 static void wbinvd_ipi(void *garbage) 4969 { 4970 wbinvd(); 4971 } 4972 4973 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4974 { 4975 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4976 } 4977 4978 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4979 { 4980 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 4981 4982 vcpu->arch.l1tf_flush_l1d = true; 4983 4984 if (vcpu->scheduled_out && pmu->version && pmu->event_count) { 4985 pmu->need_cleanup = true; 4986 kvm_make_request(KVM_REQ_PMU, vcpu); 4987 } 4988 4989 /* Address WBINVD may be executed by guest */ 4990 if (need_emulate_wbinvd(vcpu)) { 4991 if (kvm_x86_call(has_wbinvd_exit)()) 4992 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4993 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4994 smp_call_function_single(vcpu->cpu, 4995 wbinvd_ipi, NULL, 1); 4996 } 4997 4998 kvm_x86_call(vcpu_load)(vcpu, cpu); 4999 5000 /* Save host pkru register if supported */ 5001 vcpu->arch.host_pkru = read_pkru(); 5002 5003 /* Apply any externally detected TSC adjustments (due to suspend) */ 5004 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5005 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5006 vcpu->arch.tsc_offset_adjustment = 0; 5007 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5008 } 5009 5010 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5011 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5012 rdtsc() - vcpu->arch.last_host_tsc; 5013 if (tsc_delta < 0) 5014 mark_tsc_unstable("KVM discovered backwards TSC"); 5015 5016 if (kvm_check_tsc_unstable()) { 5017 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5018 vcpu->arch.last_guest_tsc); 5019 kvm_vcpu_write_tsc_offset(vcpu, offset); 5020 if (!vcpu->arch.guest_tsc_protected) 5021 vcpu->arch.tsc_catchup = 1; 5022 } 5023 5024 if (kvm_lapic_hv_timer_in_use(vcpu)) 5025 kvm_lapic_restart_hv_timer(vcpu); 5026 5027 /* 5028 * On a host with synchronized TSC, there is no need to update 5029 * kvmclock on vcpu->cpu migration 5030 */ 5031 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5032 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5033 if (vcpu->cpu != cpu) 5034 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5035 vcpu->cpu = cpu; 5036 } 5037 5038 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5039 } 5040 5041 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5042 { 5043 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5044 struct kvm_steal_time __user *st; 5045 struct kvm_memslots *slots; 5046 static const u8 preempted = KVM_VCPU_PREEMPTED; 5047 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5048 5049 /* 5050 * The vCPU can be marked preempted if and only if the VM-Exit was on 5051 * an instruction boundary and will not trigger guest emulation of any 5052 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5053 * when this is true, for example allowing the vCPU to be marked 5054 * preempted if and only if the VM-Exit was due to a host interrupt. 5055 */ 5056 if (!vcpu->arch.at_instruction_boundary) { 5057 vcpu->stat.preemption_other++; 5058 return; 5059 } 5060 5061 vcpu->stat.preemption_reported++; 5062 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5063 return; 5064 5065 if (vcpu->arch.st.preempted) 5066 return; 5067 5068 /* This happens on process exit */ 5069 if (unlikely(current->mm != vcpu->kvm->mm)) 5070 return; 5071 5072 slots = kvm_memslots(vcpu->kvm); 5073 5074 if (unlikely(slots->generation != ghc->generation || 5075 gpa != ghc->gpa || 5076 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5077 return; 5078 5079 st = (struct kvm_steal_time __user *)ghc->hva; 5080 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5081 5082 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5083 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5084 5085 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5086 } 5087 5088 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5089 { 5090 int idx; 5091 5092 if (vcpu->preempted) { 5093 /* 5094 * Assume protected guests are in-kernel. Inefficient yielding 5095 * due to false positives is preferable to never yielding due 5096 * to false negatives. 5097 */ 5098 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected || 5099 !kvm_x86_call(get_cpl_no_cache)(vcpu); 5100 5101 /* 5102 * Take the srcu lock as memslots will be accessed to check the gfn 5103 * cache generation against the memslots generation. 5104 */ 5105 idx = srcu_read_lock(&vcpu->kvm->srcu); 5106 if (kvm_xen_msr_enabled(vcpu->kvm)) 5107 kvm_xen_runstate_set_preempted(vcpu); 5108 else 5109 kvm_steal_time_set_preempted(vcpu); 5110 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5111 } 5112 5113 kvm_x86_call(vcpu_put)(vcpu); 5114 vcpu->arch.last_host_tsc = rdtsc(); 5115 } 5116 5117 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5118 struct kvm_lapic_state *s) 5119 { 5120 kvm_x86_call(sync_pir_to_irr)(vcpu); 5121 5122 return kvm_apic_get_state(vcpu, s); 5123 } 5124 5125 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5126 struct kvm_lapic_state *s) 5127 { 5128 int r; 5129 5130 r = kvm_apic_set_state(vcpu, s); 5131 if (r) 5132 return r; 5133 update_cr8_intercept(vcpu); 5134 5135 return 0; 5136 } 5137 5138 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5139 { 5140 /* 5141 * We can accept userspace's request for interrupt injection 5142 * as long as we have a place to store the interrupt number. 5143 * The actual injection will happen when the CPU is able to 5144 * deliver the interrupt. 5145 */ 5146 if (kvm_cpu_has_extint(vcpu)) 5147 return false; 5148 5149 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5150 return (!lapic_in_kernel(vcpu) || 5151 kvm_apic_accept_pic_intr(vcpu)); 5152 } 5153 5154 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5155 { 5156 /* 5157 * Do not cause an interrupt window exit if an exception 5158 * is pending or an event needs reinjection; userspace 5159 * might want to inject the interrupt manually using KVM_SET_REGS 5160 * or KVM_SET_SREGS. For that to work, we must be at an 5161 * instruction boundary and with no events half-injected. 5162 */ 5163 return (kvm_arch_interrupt_allowed(vcpu) && 5164 kvm_cpu_accept_dm_intr(vcpu) && 5165 !kvm_event_needs_reinjection(vcpu) && 5166 !kvm_is_exception_pending(vcpu)); 5167 } 5168 5169 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5170 struct kvm_interrupt *irq) 5171 { 5172 if (irq->irq >= KVM_NR_INTERRUPTS) 5173 return -EINVAL; 5174 5175 if (!irqchip_in_kernel(vcpu->kvm)) { 5176 kvm_queue_interrupt(vcpu, irq->irq, false); 5177 kvm_make_request(KVM_REQ_EVENT, vcpu); 5178 return 0; 5179 } 5180 5181 /* 5182 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5183 * fail for in-kernel 8259. 5184 */ 5185 if (pic_in_kernel(vcpu->kvm)) 5186 return -ENXIO; 5187 5188 if (vcpu->arch.pending_external_vector != -1) 5189 return -EEXIST; 5190 5191 vcpu->arch.pending_external_vector = irq->irq; 5192 kvm_make_request(KVM_REQ_EVENT, vcpu); 5193 return 0; 5194 } 5195 5196 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5197 { 5198 kvm_inject_nmi(vcpu); 5199 5200 return 0; 5201 } 5202 5203 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5204 struct kvm_tpr_access_ctl *tac) 5205 { 5206 if (tac->flags) 5207 return -EINVAL; 5208 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5209 return 0; 5210 } 5211 5212 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5213 u64 mcg_cap) 5214 { 5215 int r; 5216 unsigned bank_num = mcg_cap & 0xff, bank; 5217 5218 r = -EINVAL; 5219 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5220 goto out; 5221 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5222 goto out; 5223 r = 0; 5224 vcpu->arch.mcg_cap = mcg_cap; 5225 /* Init IA32_MCG_CTL to all 1s */ 5226 if (mcg_cap & MCG_CTL_P) 5227 vcpu->arch.mcg_ctl = ~(u64)0; 5228 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5229 for (bank = 0; bank < bank_num; bank++) { 5230 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5231 if (mcg_cap & MCG_CMCI_P) 5232 vcpu->arch.mci_ctl2_banks[bank] = 0; 5233 } 5234 5235 kvm_apic_after_set_mcg_cap(vcpu); 5236 5237 kvm_x86_call(setup_mce)(vcpu); 5238 out: 5239 return r; 5240 } 5241 5242 /* 5243 * Validate this is an UCNA (uncorrectable no action) error by checking the 5244 * MCG_STATUS and MCi_STATUS registers: 5245 * - none of the bits for Machine Check Exceptions are set 5246 * - both the VAL (valid) and UC (uncorrectable) bits are set 5247 * MCI_STATUS_PCC - Processor Context Corrupted 5248 * MCI_STATUS_S - Signaled as a Machine Check Exception 5249 * MCI_STATUS_AR - Software recoverable Action Required 5250 */ 5251 static bool is_ucna(struct kvm_x86_mce *mce) 5252 { 5253 return !mce->mcg_status && 5254 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5255 (mce->status & MCI_STATUS_VAL) && 5256 (mce->status & MCI_STATUS_UC); 5257 } 5258 5259 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5260 { 5261 u64 mcg_cap = vcpu->arch.mcg_cap; 5262 5263 banks[1] = mce->status; 5264 banks[2] = mce->addr; 5265 banks[3] = mce->misc; 5266 vcpu->arch.mcg_status = mce->mcg_status; 5267 5268 if (!(mcg_cap & MCG_CMCI_P) || 5269 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5270 return 0; 5271 5272 if (lapic_in_kernel(vcpu)) 5273 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5274 5275 return 0; 5276 } 5277 5278 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5279 struct kvm_x86_mce *mce) 5280 { 5281 u64 mcg_cap = vcpu->arch.mcg_cap; 5282 unsigned bank_num = mcg_cap & 0xff; 5283 u64 *banks = vcpu->arch.mce_banks; 5284 5285 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5286 return -EINVAL; 5287 5288 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5289 5290 if (is_ucna(mce)) 5291 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5292 5293 /* 5294 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5295 * reporting is disabled 5296 */ 5297 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5298 vcpu->arch.mcg_ctl != ~(u64)0) 5299 return 0; 5300 /* 5301 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5302 * reporting is disabled for the bank 5303 */ 5304 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5305 return 0; 5306 if (mce->status & MCI_STATUS_UC) { 5307 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5308 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5309 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5310 return 0; 5311 } 5312 if (banks[1] & MCI_STATUS_VAL) 5313 mce->status |= MCI_STATUS_OVER; 5314 banks[2] = mce->addr; 5315 banks[3] = mce->misc; 5316 vcpu->arch.mcg_status = mce->mcg_status; 5317 banks[1] = mce->status; 5318 kvm_queue_exception(vcpu, MC_VECTOR); 5319 } else if (!(banks[1] & MCI_STATUS_VAL) 5320 || !(banks[1] & MCI_STATUS_UC)) { 5321 if (banks[1] & MCI_STATUS_VAL) 5322 mce->status |= MCI_STATUS_OVER; 5323 banks[2] = mce->addr; 5324 banks[3] = mce->misc; 5325 banks[1] = mce->status; 5326 } else 5327 banks[1] |= MCI_STATUS_OVER; 5328 return 0; 5329 } 5330 5331 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5332 struct kvm_vcpu_events *events) 5333 { 5334 struct kvm_queued_exception *ex; 5335 5336 process_nmi(vcpu); 5337 5338 #ifdef CONFIG_KVM_SMM 5339 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5340 process_smi(vcpu); 5341 #endif 5342 5343 /* 5344 * KVM's ABI only allows for one exception to be migrated. Luckily, 5345 * the only time there can be two queued exceptions is if there's a 5346 * non-exiting _injected_ exception, and a pending exiting exception. 5347 * In that case, ignore the VM-Exiting exception as it's an extension 5348 * of the injected exception. 5349 */ 5350 if (vcpu->arch.exception_vmexit.pending && 5351 !vcpu->arch.exception.pending && 5352 !vcpu->arch.exception.injected) 5353 ex = &vcpu->arch.exception_vmexit; 5354 else 5355 ex = &vcpu->arch.exception; 5356 5357 /* 5358 * In guest mode, payload delivery should be deferred if the exception 5359 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5360 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5361 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5362 * propagate the payload and so it cannot be safely deferred. Deliver 5363 * the payload if the capability hasn't been requested. 5364 */ 5365 if (!vcpu->kvm->arch.exception_payload_enabled && 5366 ex->pending && ex->has_payload) 5367 kvm_deliver_exception_payload(vcpu, ex); 5368 5369 memset(events, 0, sizeof(*events)); 5370 5371 /* 5372 * The API doesn't provide the instruction length for software 5373 * exceptions, so don't report them. As long as the guest RIP 5374 * isn't advanced, we should expect to encounter the exception 5375 * again. 5376 */ 5377 if (!kvm_exception_is_soft(ex->vector)) { 5378 events->exception.injected = ex->injected; 5379 events->exception.pending = ex->pending; 5380 /* 5381 * For ABI compatibility, deliberately conflate 5382 * pending and injected exceptions when 5383 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5384 */ 5385 if (!vcpu->kvm->arch.exception_payload_enabled) 5386 events->exception.injected |= ex->pending; 5387 } 5388 events->exception.nr = ex->vector; 5389 events->exception.has_error_code = ex->has_error_code; 5390 events->exception.error_code = ex->error_code; 5391 events->exception_has_payload = ex->has_payload; 5392 events->exception_payload = ex->payload; 5393 5394 events->interrupt.injected = 5395 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5396 events->interrupt.nr = vcpu->arch.interrupt.nr; 5397 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 5398 5399 events->nmi.injected = vcpu->arch.nmi_injected; 5400 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5401 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); 5402 5403 /* events->sipi_vector is never valid when reporting to user space */ 5404 5405 #ifdef CONFIG_KVM_SMM 5406 events->smi.smm = is_smm(vcpu); 5407 events->smi.pending = vcpu->arch.smi_pending; 5408 events->smi.smm_inside_nmi = 5409 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5410 #endif 5411 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5412 5413 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5414 | KVM_VCPUEVENT_VALID_SHADOW 5415 | KVM_VCPUEVENT_VALID_SMM); 5416 if (vcpu->kvm->arch.exception_payload_enabled) 5417 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5418 if (vcpu->kvm->arch.triple_fault_event) { 5419 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5420 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5421 } 5422 } 5423 5424 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5425 struct kvm_vcpu_events *events) 5426 { 5427 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5428 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5429 | KVM_VCPUEVENT_VALID_SHADOW 5430 | KVM_VCPUEVENT_VALID_SMM 5431 | KVM_VCPUEVENT_VALID_PAYLOAD 5432 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5433 return -EINVAL; 5434 5435 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5436 if (!vcpu->kvm->arch.exception_payload_enabled) 5437 return -EINVAL; 5438 if (events->exception.pending) 5439 events->exception.injected = 0; 5440 else 5441 events->exception_has_payload = 0; 5442 } else { 5443 events->exception.pending = 0; 5444 events->exception_has_payload = 0; 5445 } 5446 5447 if ((events->exception.injected || events->exception.pending) && 5448 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5449 return -EINVAL; 5450 5451 /* INITs are latched while in SMM */ 5452 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5453 (events->smi.smm || events->smi.pending) && 5454 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5455 return -EINVAL; 5456 5457 process_nmi(vcpu); 5458 5459 /* 5460 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5461 * morph the exception to a VM-Exit if appropriate. Do this only for 5462 * pending exceptions, already-injected exceptions are not subject to 5463 * intercpetion. Note, userspace that conflates pending and injected 5464 * is hosed, and will incorrectly convert an injected exception into a 5465 * pending exception, which in turn may cause a spurious VM-Exit. 5466 */ 5467 vcpu->arch.exception_from_userspace = events->exception.pending; 5468 5469 vcpu->arch.exception_vmexit.pending = false; 5470 5471 vcpu->arch.exception.injected = events->exception.injected; 5472 vcpu->arch.exception.pending = events->exception.pending; 5473 vcpu->arch.exception.vector = events->exception.nr; 5474 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5475 vcpu->arch.exception.error_code = events->exception.error_code; 5476 vcpu->arch.exception.has_payload = events->exception_has_payload; 5477 vcpu->arch.exception.payload = events->exception_payload; 5478 5479 vcpu->arch.interrupt.injected = events->interrupt.injected; 5480 vcpu->arch.interrupt.nr = events->interrupt.nr; 5481 vcpu->arch.interrupt.soft = events->interrupt.soft; 5482 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5483 kvm_x86_call(set_interrupt_shadow)(vcpu, 5484 events->interrupt.shadow); 5485 5486 vcpu->arch.nmi_injected = events->nmi.injected; 5487 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5488 vcpu->arch.nmi_pending = 0; 5489 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5490 if (events->nmi.pending) 5491 kvm_make_request(KVM_REQ_NMI, vcpu); 5492 } 5493 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); 5494 5495 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5496 lapic_in_kernel(vcpu)) 5497 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5498 5499 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5500 #ifdef CONFIG_KVM_SMM 5501 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5502 kvm_leave_nested(vcpu); 5503 kvm_smm_changed(vcpu, events->smi.smm); 5504 } 5505 5506 vcpu->arch.smi_pending = events->smi.pending; 5507 5508 if (events->smi.smm) { 5509 if (events->smi.smm_inside_nmi) 5510 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5511 else 5512 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5513 } 5514 5515 #else 5516 if (events->smi.smm || events->smi.pending || 5517 events->smi.smm_inside_nmi) 5518 return -EINVAL; 5519 #endif 5520 5521 if (lapic_in_kernel(vcpu)) { 5522 if (events->smi.latched_init) 5523 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5524 else 5525 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5526 } 5527 } 5528 5529 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5530 if (!vcpu->kvm->arch.triple_fault_event) 5531 return -EINVAL; 5532 if (events->triple_fault.pending) 5533 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5534 else 5535 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5536 } 5537 5538 kvm_make_request(KVM_REQ_EVENT, vcpu); 5539 5540 return 0; 5541 } 5542 5543 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5544 struct kvm_debugregs *dbgregs) 5545 { 5546 unsigned int i; 5547 5548 if (vcpu->kvm->arch.has_protected_state && 5549 vcpu->arch.guest_state_protected) 5550 return -EINVAL; 5551 5552 memset(dbgregs, 0, sizeof(*dbgregs)); 5553 5554 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5555 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5556 dbgregs->db[i] = vcpu->arch.db[i]; 5557 5558 dbgregs->dr6 = vcpu->arch.dr6; 5559 dbgregs->dr7 = vcpu->arch.dr7; 5560 return 0; 5561 } 5562 5563 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5564 struct kvm_debugregs *dbgregs) 5565 { 5566 unsigned int i; 5567 5568 if (vcpu->kvm->arch.has_protected_state && 5569 vcpu->arch.guest_state_protected) 5570 return -EINVAL; 5571 5572 if (dbgregs->flags) 5573 return -EINVAL; 5574 5575 if (!kvm_dr6_valid(dbgregs->dr6)) 5576 return -EINVAL; 5577 if (!kvm_dr7_valid(dbgregs->dr7)) 5578 return -EINVAL; 5579 5580 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5581 vcpu->arch.db[i] = dbgregs->db[i]; 5582 5583 kvm_update_dr0123(vcpu); 5584 vcpu->arch.dr6 = dbgregs->dr6; 5585 vcpu->arch.dr7 = dbgregs->dr7; 5586 kvm_update_dr7(vcpu); 5587 5588 return 0; 5589 } 5590 5591 5592 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5593 u8 *state, unsigned int size) 5594 { 5595 /* 5596 * Only copy state for features that are enabled for the guest. The 5597 * state itself isn't problematic, but setting bits in the header for 5598 * features that are supported in *this* host but not exposed to the 5599 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5600 * compatible host without the features that are NOT exposed to the 5601 * guest. 5602 * 5603 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5604 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5605 * supported by the host. 5606 */ 5607 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5608 XFEATURE_MASK_FPSSE; 5609 5610 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5611 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5612 5613 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5614 supported_xcr0, vcpu->arch.pkru); 5615 return 0; 5616 } 5617 5618 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5619 struct kvm_xsave *guest_xsave) 5620 { 5621 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5622 sizeof(guest_xsave->region)); 5623 } 5624 5625 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5626 struct kvm_xsave *guest_xsave) 5627 { 5628 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5629 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5630 5631 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5632 guest_xsave->region, 5633 kvm_caps.supported_xcr0, 5634 &vcpu->arch.pkru); 5635 } 5636 5637 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5638 struct kvm_xcrs *guest_xcrs) 5639 { 5640 if (vcpu->kvm->arch.has_protected_state && 5641 vcpu->arch.guest_state_protected) 5642 return -EINVAL; 5643 5644 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5645 guest_xcrs->nr_xcrs = 0; 5646 return 0; 5647 } 5648 5649 guest_xcrs->nr_xcrs = 1; 5650 guest_xcrs->flags = 0; 5651 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5652 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5653 return 0; 5654 } 5655 5656 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5657 struct kvm_xcrs *guest_xcrs) 5658 { 5659 int i, r = 0; 5660 5661 if (vcpu->kvm->arch.has_protected_state && 5662 vcpu->arch.guest_state_protected) 5663 return -EINVAL; 5664 5665 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5666 return -EINVAL; 5667 5668 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5669 return -EINVAL; 5670 5671 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5672 /* Only support XCR0 currently */ 5673 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5674 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5675 guest_xcrs->xcrs[i].value); 5676 break; 5677 } 5678 if (r) 5679 r = -EINVAL; 5680 return r; 5681 } 5682 5683 /* 5684 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5685 * stopped by the hypervisor. This function will be called from the host only. 5686 * EINVAL is returned when the host attempts to set the flag for a guest that 5687 * does not support pv clocks. 5688 */ 5689 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5690 { 5691 if (!vcpu->arch.pv_time.active) 5692 return -EINVAL; 5693 vcpu->arch.pvclock_set_guest_stopped_request = true; 5694 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5695 return 0; 5696 } 5697 5698 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5699 struct kvm_device_attr *attr) 5700 { 5701 int r; 5702 5703 switch (attr->attr) { 5704 case KVM_VCPU_TSC_OFFSET: 5705 r = 0; 5706 break; 5707 default: 5708 r = -ENXIO; 5709 } 5710 5711 return r; 5712 } 5713 5714 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5715 struct kvm_device_attr *attr) 5716 { 5717 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5718 int r; 5719 5720 switch (attr->attr) { 5721 case KVM_VCPU_TSC_OFFSET: 5722 r = -EFAULT; 5723 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5724 break; 5725 r = 0; 5726 break; 5727 default: 5728 r = -ENXIO; 5729 } 5730 5731 return r; 5732 } 5733 5734 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5735 struct kvm_device_attr *attr) 5736 { 5737 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5738 struct kvm *kvm = vcpu->kvm; 5739 int r; 5740 5741 switch (attr->attr) { 5742 case KVM_VCPU_TSC_OFFSET: { 5743 u64 offset, tsc, ns; 5744 unsigned long flags; 5745 bool matched; 5746 5747 r = -EFAULT; 5748 if (get_user(offset, uaddr)) 5749 break; 5750 5751 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5752 5753 matched = (vcpu->arch.virtual_tsc_khz && 5754 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5755 kvm->arch.last_tsc_offset == offset); 5756 5757 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5758 ns = get_kvmclock_base_ns(); 5759 5760 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true); 5761 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5762 5763 r = 0; 5764 break; 5765 } 5766 default: 5767 r = -ENXIO; 5768 } 5769 5770 return r; 5771 } 5772 5773 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5774 unsigned int ioctl, 5775 void __user *argp) 5776 { 5777 struct kvm_device_attr attr; 5778 int r; 5779 5780 if (copy_from_user(&attr, argp, sizeof(attr))) 5781 return -EFAULT; 5782 5783 if (attr.group != KVM_VCPU_TSC_CTRL) 5784 return -ENXIO; 5785 5786 switch (ioctl) { 5787 case KVM_HAS_DEVICE_ATTR: 5788 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5789 break; 5790 case KVM_GET_DEVICE_ATTR: 5791 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5792 break; 5793 case KVM_SET_DEVICE_ATTR: 5794 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5795 break; 5796 } 5797 5798 return r; 5799 } 5800 5801 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5802 struct kvm_enable_cap *cap) 5803 { 5804 if (cap->flags) 5805 return -EINVAL; 5806 5807 switch (cap->cap) { 5808 #ifdef CONFIG_KVM_HYPERV 5809 case KVM_CAP_HYPERV_SYNIC2: 5810 if (cap->args[0]) 5811 return -EINVAL; 5812 fallthrough; 5813 5814 case KVM_CAP_HYPERV_SYNIC: 5815 if (!irqchip_in_kernel(vcpu->kvm)) 5816 return -EINVAL; 5817 return kvm_hv_activate_synic(vcpu, cap->cap == 5818 KVM_CAP_HYPERV_SYNIC2); 5819 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5820 { 5821 int r; 5822 uint16_t vmcs_version; 5823 void __user *user_ptr; 5824 5825 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5826 return -ENOTTY; 5827 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5828 if (!r) { 5829 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5830 if (copy_to_user(user_ptr, &vmcs_version, 5831 sizeof(vmcs_version))) 5832 r = -EFAULT; 5833 } 5834 return r; 5835 } 5836 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5837 if (!kvm_x86_ops.enable_l2_tlb_flush) 5838 return -ENOTTY; 5839 5840 return kvm_x86_call(enable_l2_tlb_flush)(vcpu); 5841 5842 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5843 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5844 #endif 5845 5846 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5847 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5848 return 0; 5849 default: 5850 return -EINVAL; 5851 } 5852 } 5853 5854 long kvm_arch_vcpu_ioctl(struct file *filp, 5855 unsigned int ioctl, unsigned long arg) 5856 { 5857 struct kvm_vcpu *vcpu = filp->private_data; 5858 void __user *argp = (void __user *)arg; 5859 int r; 5860 union { 5861 struct kvm_sregs2 *sregs2; 5862 struct kvm_lapic_state *lapic; 5863 struct kvm_xsave *xsave; 5864 struct kvm_xcrs *xcrs; 5865 void *buffer; 5866 } u; 5867 5868 vcpu_load(vcpu); 5869 5870 u.buffer = NULL; 5871 switch (ioctl) { 5872 case KVM_GET_LAPIC: { 5873 r = -EINVAL; 5874 if (!lapic_in_kernel(vcpu)) 5875 goto out; 5876 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 5877 5878 r = -ENOMEM; 5879 if (!u.lapic) 5880 goto out; 5881 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5882 if (r) 5883 goto out; 5884 r = -EFAULT; 5885 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5886 goto out; 5887 r = 0; 5888 break; 5889 } 5890 case KVM_SET_LAPIC: { 5891 r = -EINVAL; 5892 if (!lapic_in_kernel(vcpu)) 5893 goto out; 5894 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5895 if (IS_ERR(u.lapic)) { 5896 r = PTR_ERR(u.lapic); 5897 goto out_nofree; 5898 } 5899 5900 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5901 break; 5902 } 5903 case KVM_INTERRUPT: { 5904 struct kvm_interrupt irq; 5905 5906 r = -EFAULT; 5907 if (copy_from_user(&irq, argp, sizeof(irq))) 5908 goto out; 5909 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5910 break; 5911 } 5912 case KVM_NMI: { 5913 r = kvm_vcpu_ioctl_nmi(vcpu); 5914 break; 5915 } 5916 case KVM_SMI: { 5917 r = kvm_inject_smi(vcpu); 5918 break; 5919 } 5920 case KVM_SET_CPUID: { 5921 struct kvm_cpuid __user *cpuid_arg = argp; 5922 struct kvm_cpuid cpuid; 5923 5924 r = -EFAULT; 5925 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5926 goto out; 5927 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5928 break; 5929 } 5930 case KVM_SET_CPUID2: { 5931 struct kvm_cpuid2 __user *cpuid_arg = argp; 5932 struct kvm_cpuid2 cpuid; 5933 5934 r = -EFAULT; 5935 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5936 goto out; 5937 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5938 cpuid_arg->entries); 5939 break; 5940 } 5941 case KVM_GET_CPUID2: { 5942 struct kvm_cpuid2 __user *cpuid_arg = argp; 5943 struct kvm_cpuid2 cpuid; 5944 5945 r = -EFAULT; 5946 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5947 goto out; 5948 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5949 cpuid_arg->entries); 5950 if (r) 5951 goto out; 5952 r = -EFAULT; 5953 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5954 goto out; 5955 r = 0; 5956 break; 5957 } 5958 case KVM_GET_MSRS: { 5959 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5960 r = msr_io(vcpu, argp, do_get_msr, 1); 5961 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5962 break; 5963 } 5964 case KVM_SET_MSRS: { 5965 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5966 r = msr_io(vcpu, argp, do_set_msr, 0); 5967 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5968 break; 5969 } 5970 case KVM_TPR_ACCESS_REPORTING: { 5971 struct kvm_tpr_access_ctl tac; 5972 5973 r = -EFAULT; 5974 if (copy_from_user(&tac, argp, sizeof(tac))) 5975 goto out; 5976 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5977 if (r) 5978 goto out; 5979 r = -EFAULT; 5980 if (copy_to_user(argp, &tac, sizeof(tac))) 5981 goto out; 5982 r = 0; 5983 break; 5984 }; 5985 case KVM_SET_VAPIC_ADDR: { 5986 struct kvm_vapic_addr va; 5987 int idx; 5988 5989 r = -EINVAL; 5990 if (!lapic_in_kernel(vcpu)) 5991 goto out; 5992 r = -EFAULT; 5993 if (copy_from_user(&va, argp, sizeof(va))) 5994 goto out; 5995 idx = srcu_read_lock(&vcpu->kvm->srcu); 5996 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5997 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5998 break; 5999 } 6000 case KVM_X86_SETUP_MCE: { 6001 u64 mcg_cap; 6002 6003 r = -EFAULT; 6004 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6005 goto out; 6006 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6007 break; 6008 } 6009 case KVM_X86_SET_MCE: { 6010 struct kvm_x86_mce mce; 6011 6012 r = -EFAULT; 6013 if (copy_from_user(&mce, argp, sizeof(mce))) 6014 goto out; 6015 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6016 break; 6017 } 6018 case KVM_GET_VCPU_EVENTS: { 6019 struct kvm_vcpu_events events; 6020 6021 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6022 6023 r = -EFAULT; 6024 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6025 break; 6026 r = 0; 6027 break; 6028 } 6029 case KVM_SET_VCPU_EVENTS: { 6030 struct kvm_vcpu_events events; 6031 6032 r = -EFAULT; 6033 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6034 break; 6035 6036 kvm_vcpu_srcu_read_lock(vcpu); 6037 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6038 kvm_vcpu_srcu_read_unlock(vcpu); 6039 break; 6040 } 6041 case KVM_GET_DEBUGREGS: { 6042 struct kvm_debugregs dbgregs; 6043 6044 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6045 if (r < 0) 6046 break; 6047 6048 r = -EFAULT; 6049 if (copy_to_user(argp, &dbgregs, 6050 sizeof(struct kvm_debugregs))) 6051 break; 6052 r = 0; 6053 break; 6054 } 6055 case KVM_SET_DEBUGREGS: { 6056 struct kvm_debugregs dbgregs; 6057 6058 r = -EFAULT; 6059 if (copy_from_user(&dbgregs, argp, 6060 sizeof(struct kvm_debugregs))) 6061 break; 6062 6063 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6064 break; 6065 } 6066 case KVM_GET_XSAVE: { 6067 r = -EINVAL; 6068 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6069 break; 6070 6071 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 6072 r = -ENOMEM; 6073 if (!u.xsave) 6074 break; 6075 6076 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6077 if (r < 0) 6078 break; 6079 6080 r = -EFAULT; 6081 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6082 break; 6083 r = 0; 6084 break; 6085 } 6086 case KVM_SET_XSAVE: { 6087 int size = vcpu->arch.guest_fpu.uabi_size; 6088 6089 u.xsave = memdup_user(argp, size); 6090 if (IS_ERR(u.xsave)) { 6091 r = PTR_ERR(u.xsave); 6092 goto out_nofree; 6093 } 6094 6095 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6096 break; 6097 } 6098 6099 case KVM_GET_XSAVE2: { 6100 int size = vcpu->arch.guest_fpu.uabi_size; 6101 6102 u.xsave = kzalloc(size, GFP_KERNEL); 6103 r = -ENOMEM; 6104 if (!u.xsave) 6105 break; 6106 6107 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6108 if (r < 0) 6109 break; 6110 6111 r = -EFAULT; 6112 if (copy_to_user(argp, u.xsave, size)) 6113 break; 6114 6115 r = 0; 6116 break; 6117 } 6118 6119 case KVM_GET_XCRS: { 6120 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 6121 r = -ENOMEM; 6122 if (!u.xcrs) 6123 break; 6124 6125 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6126 if (r < 0) 6127 break; 6128 6129 r = -EFAULT; 6130 if (copy_to_user(argp, u.xcrs, 6131 sizeof(struct kvm_xcrs))) 6132 break; 6133 r = 0; 6134 break; 6135 } 6136 case KVM_SET_XCRS: { 6137 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6138 if (IS_ERR(u.xcrs)) { 6139 r = PTR_ERR(u.xcrs); 6140 goto out_nofree; 6141 } 6142 6143 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6144 break; 6145 } 6146 case KVM_SET_TSC_KHZ: { 6147 u32 user_tsc_khz; 6148 6149 r = -EINVAL; 6150 user_tsc_khz = (u32)arg; 6151 6152 if (kvm_caps.has_tsc_control && 6153 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6154 goto out; 6155 6156 if (user_tsc_khz == 0) 6157 user_tsc_khz = tsc_khz; 6158 6159 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6160 r = 0; 6161 6162 goto out; 6163 } 6164 case KVM_GET_TSC_KHZ: { 6165 r = vcpu->arch.virtual_tsc_khz; 6166 goto out; 6167 } 6168 case KVM_KVMCLOCK_CTRL: { 6169 r = kvm_set_guest_paused(vcpu); 6170 goto out; 6171 } 6172 case KVM_ENABLE_CAP: { 6173 struct kvm_enable_cap cap; 6174 6175 r = -EFAULT; 6176 if (copy_from_user(&cap, argp, sizeof(cap))) 6177 goto out; 6178 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6179 break; 6180 } 6181 case KVM_GET_NESTED_STATE: { 6182 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6183 u32 user_data_size; 6184 6185 r = -EINVAL; 6186 if (!kvm_x86_ops.nested_ops->get_state) 6187 break; 6188 6189 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6190 r = -EFAULT; 6191 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6192 break; 6193 6194 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6195 user_data_size); 6196 if (r < 0) 6197 break; 6198 6199 if (r > user_data_size) { 6200 if (put_user(r, &user_kvm_nested_state->size)) 6201 r = -EFAULT; 6202 else 6203 r = -E2BIG; 6204 break; 6205 } 6206 6207 r = 0; 6208 break; 6209 } 6210 case KVM_SET_NESTED_STATE: { 6211 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6212 struct kvm_nested_state kvm_state; 6213 int idx; 6214 6215 r = -EINVAL; 6216 if (!kvm_x86_ops.nested_ops->set_state) 6217 break; 6218 6219 r = -EFAULT; 6220 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6221 break; 6222 6223 r = -EINVAL; 6224 if (kvm_state.size < sizeof(kvm_state)) 6225 break; 6226 6227 if (kvm_state.flags & 6228 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6229 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6230 | KVM_STATE_NESTED_GIF_SET)) 6231 break; 6232 6233 /* nested_run_pending implies guest_mode. */ 6234 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6235 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6236 break; 6237 6238 idx = srcu_read_lock(&vcpu->kvm->srcu); 6239 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6240 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6241 break; 6242 } 6243 #ifdef CONFIG_KVM_HYPERV 6244 case KVM_GET_SUPPORTED_HV_CPUID: 6245 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6246 break; 6247 #endif 6248 #ifdef CONFIG_KVM_XEN 6249 case KVM_XEN_VCPU_GET_ATTR: { 6250 struct kvm_xen_vcpu_attr xva; 6251 6252 r = -EFAULT; 6253 if (copy_from_user(&xva, argp, sizeof(xva))) 6254 goto out; 6255 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6256 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6257 r = -EFAULT; 6258 break; 6259 } 6260 case KVM_XEN_VCPU_SET_ATTR: { 6261 struct kvm_xen_vcpu_attr xva; 6262 6263 r = -EFAULT; 6264 if (copy_from_user(&xva, argp, sizeof(xva))) 6265 goto out; 6266 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6267 break; 6268 } 6269 #endif 6270 case KVM_GET_SREGS2: { 6271 r = -EINVAL; 6272 if (vcpu->kvm->arch.has_protected_state && 6273 vcpu->arch.guest_state_protected) 6274 goto out; 6275 6276 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6277 r = -ENOMEM; 6278 if (!u.sregs2) 6279 goto out; 6280 __get_sregs2(vcpu, u.sregs2); 6281 r = -EFAULT; 6282 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6283 goto out; 6284 r = 0; 6285 break; 6286 } 6287 case KVM_SET_SREGS2: { 6288 r = -EINVAL; 6289 if (vcpu->kvm->arch.has_protected_state && 6290 vcpu->arch.guest_state_protected) 6291 goto out; 6292 6293 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6294 if (IS_ERR(u.sregs2)) { 6295 r = PTR_ERR(u.sregs2); 6296 u.sregs2 = NULL; 6297 goto out; 6298 } 6299 r = __set_sregs2(vcpu, u.sregs2); 6300 break; 6301 } 6302 case KVM_HAS_DEVICE_ATTR: 6303 case KVM_GET_DEVICE_ATTR: 6304 case KVM_SET_DEVICE_ATTR: 6305 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6306 break; 6307 default: 6308 r = -EINVAL; 6309 } 6310 out: 6311 kfree(u.buffer); 6312 out_nofree: 6313 vcpu_put(vcpu); 6314 return r; 6315 } 6316 6317 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6318 { 6319 return VM_FAULT_SIGBUS; 6320 } 6321 6322 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6323 { 6324 int ret; 6325 6326 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6327 return -EINVAL; 6328 ret = kvm_x86_call(set_tss_addr)(kvm, addr); 6329 return ret; 6330 } 6331 6332 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6333 u64 ident_addr) 6334 { 6335 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); 6336 } 6337 6338 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6339 unsigned long kvm_nr_mmu_pages) 6340 { 6341 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6342 return -EINVAL; 6343 6344 mutex_lock(&kvm->slots_lock); 6345 6346 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6347 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6348 6349 mutex_unlock(&kvm->slots_lock); 6350 return 0; 6351 } 6352 6353 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6354 { 6355 struct kvm_pic *pic = kvm->arch.vpic; 6356 int r; 6357 6358 r = 0; 6359 switch (chip->chip_id) { 6360 case KVM_IRQCHIP_PIC_MASTER: 6361 memcpy(&chip->chip.pic, &pic->pics[0], 6362 sizeof(struct kvm_pic_state)); 6363 break; 6364 case KVM_IRQCHIP_PIC_SLAVE: 6365 memcpy(&chip->chip.pic, &pic->pics[1], 6366 sizeof(struct kvm_pic_state)); 6367 break; 6368 case KVM_IRQCHIP_IOAPIC: 6369 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6370 break; 6371 default: 6372 r = -EINVAL; 6373 break; 6374 } 6375 return r; 6376 } 6377 6378 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6379 { 6380 struct kvm_pic *pic = kvm->arch.vpic; 6381 int r; 6382 6383 r = 0; 6384 switch (chip->chip_id) { 6385 case KVM_IRQCHIP_PIC_MASTER: 6386 spin_lock(&pic->lock); 6387 memcpy(&pic->pics[0], &chip->chip.pic, 6388 sizeof(struct kvm_pic_state)); 6389 spin_unlock(&pic->lock); 6390 break; 6391 case KVM_IRQCHIP_PIC_SLAVE: 6392 spin_lock(&pic->lock); 6393 memcpy(&pic->pics[1], &chip->chip.pic, 6394 sizeof(struct kvm_pic_state)); 6395 spin_unlock(&pic->lock); 6396 break; 6397 case KVM_IRQCHIP_IOAPIC: 6398 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6399 break; 6400 default: 6401 r = -EINVAL; 6402 break; 6403 } 6404 kvm_pic_update_irq(pic); 6405 return r; 6406 } 6407 6408 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6409 { 6410 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6411 6412 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6413 6414 mutex_lock(&kps->lock); 6415 memcpy(ps, &kps->channels, sizeof(*ps)); 6416 mutex_unlock(&kps->lock); 6417 return 0; 6418 } 6419 6420 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6421 { 6422 int i; 6423 struct kvm_pit *pit = kvm->arch.vpit; 6424 6425 mutex_lock(&pit->pit_state.lock); 6426 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6427 for (i = 0; i < 3; i++) 6428 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6429 mutex_unlock(&pit->pit_state.lock); 6430 return 0; 6431 } 6432 6433 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6434 { 6435 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6436 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6437 sizeof(ps->channels)); 6438 ps->flags = kvm->arch.vpit->pit_state.flags; 6439 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6440 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6441 return 0; 6442 } 6443 6444 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6445 { 6446 int start = 0; 6447 int i; 6448 u32 prev_legacy, cur_legacy; 6449 struct kvm_pit *pit = kvm->arch.vpit; 6450 6451 mutex_lock(&pit->pit_state.lock); 6452 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6453 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6454 if (!prev_legacy && cur_legacy) 6455 start = 1; 6456 memcpy(&pit->pit_state.channels, &ps->channels, 6457 sizeof(pit->pit_state.channels)); 6458 pit->pit_state.flags = ps->flags; 6459 for (i = 0; i < 3; i++) 6460 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6461 start && i == 0); 6462 mutex_unlock(&pit->pit_state.lock); 6463 return 0; 6464 } 6465 6466 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6467 struct kvm_reinject_control *control) 6468 { 6469 struct kvm_pit *pit = kvm->arch.vpit; 6470 6471 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6472 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6473 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6474 */ 6475 mutex_lock(&pit->pit_state.lock); 6476 kvm_pit_set_reinject(pit, control->pit_reinject); 6477 mutex_unlock(&pit->pit_state.lock); 6478 6479 return 0; 6480 } 6481 6482 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6483 { 6484 6485 /* 6486 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6487 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6488 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6489 * VM-Exit. 6490 */ 6491 struct kvm_vcpu *vcpu; 6492 unsigned long i; 6493 6494 if (!kvm_x86_ops.cpu_dirty_log_size) 6495 return; 6496 6497 kvm_for_each_vcpu(i, vcpu, kvm) 6498 kvm_vcpu_kick(vcpu); 6499 } 6500 6501 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6502 bool line_status) 6503 { 6504 if (!irqchip_in_kernel(kvm)) 6505 return -ENXIO; 6506 6507 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6508 irq_event->irq, irq_event->level, 6509 line_status); 6510 return 0; 6511 } 6512 6513 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6514 struct kvm_enable_cap *cap) 6515 { 6516 int r; 6517 6518 if (cap->flags) 6519 return -EINVAL; 6520 6521 switch (cap->cap) { 6522 case KVM_CAP_DISABLE_QUIRKS2: 6523 r = -EINVAL; 6524 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6525 break; 6526 fallthrough; 6527 case KVM_CAP_DISABLE_QUIRKS: 6528 kvm->arch.disabled_quirks = cap->args[0]; 6529 r = 0; 6530 break; 6531 case KVM_CAP_SPLIT_IRQCHIP: { 6532 mutex_lock(&kvm->lock); 6533 r = -EINVAL; 6534 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6535 goto split_irqchip_unlock; 6536 r = -EEXIST; 6537 if (irqchip_in_kernel(kvm)) 6538 goto split_irqchip_unlock; 6539 if (kvm->created_vcpus) 6540 goto split_irqchip_unlock; 6541 /* Pairs with irqchip_in_kernel. */ 6542 smp_wmb(); 6543 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6544 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6545 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6546 r = 0; 6547 split_irqchip_unlock: 6548 mutex_unlock(&kvm->lock); 6549 break; 6550 } 6551 case KVM_CAP_X2APIC_API: 6552 r = -EINVAL; 6553 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6554 break; 6555 6556 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6557 kvm->arch.x2apic_format = true; 6558 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6559 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6560 6561 r = 0; 6562 break; 6563 case KVM_CAP_X86_DISABLE_EXITS: 6564 r = -EINVAL; 6565 if (cap->args[0] & ~kvm_get_allowed_disable_exits()) 6566 break; 6567 6568 mutex_lock(&kvm->lock); 6569 if (kvm->created_vcpus) 6570 goto disable_exits_unlock; 6571 6572 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6573 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6574 6575 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) && 6576 cpu_smt_possible() && 6577 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6578 pr_warn_once(SMT_RSB_MSG); 6579 6580 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6581 kvm->arch.pause_in_guest = true; 6582 if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) 6583 kvm->arch.mwait_in_guest = true; 6584 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6585 kvm->arch.hlt_in_guest = true; 6586 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6587 kvm->arch.cstate_in_guest = true; 6588 r = 0; 6589 disable_exits_unlock: 6590 mutex_unlock(&kvm->lock); 6591 break; 6592 case KVM_CAP_MSR_PLATFORM_INFO: 6593 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6594 r = 0; 6595 break; 6596 case KVM_CAP_EXCEPTION_PAYLOAD: 6597 kvm->arch.exception_payload_enabled = cap->args[0]; 6598 r = 0; 6599 break; 6600 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6601 kvm->arch.triple_fault_event = cap->args[0]; 6602 r = 0; 6603 break; 6604 case KVM_CAP_X86_USER_SPACE_MSR: 6605 r = -EINVAL; 6606 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6607 break; 6608 kvm->arch.user_space_msr_mask = cap->args[0]; 6609 r = 0; 6610 break; 6611 case KVM_CAP_X86_BUS_LOCK_EXIT: 6612 r = -EINVAL; 6613 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6614 break; 6615 6616 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6617 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6618 break; 6619 6620 if (kvm_caps.has_bus_lock_exit && 6621 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6622 kvm->arch.bus_lock_detection_enabled = true; 6623 r = 0; 6624 break; 6625 #ifdef CONFIG_X86_SGX_KVM 6626 case KVM_CAP_SGX_ATTRIBUTE: { 6627 unsigned long allowed_attributes = 0; 6628 6629 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6630 if (r) 6631 break; 6632 6633 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6634 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6635 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6636 kvm->arch.sgx_provisioning_allowed = true; 6637 else 6638 r = -EINVAL; 6639 break; 6640 } 6641 #endif 6642 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6643 r = -EINVAL; 6644 if (!kvm_x86_ops.vm_copy_enc_context_from) 6645 break; 6646 6647 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); 6648 break; 6649 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6650 r = -EINVAL; 6651 if (!kvm_x86_ops.vm_move_enc_context_from) 6652 break; 6653 6654 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); 6655 break; 6656 case KVM_CAP_EXIT_HYPERCALL: 6657 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6658 r = -EINVAL; 6659 break; 6660 } 6661 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6662 r = 0; 6663 break; 6664 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6665 r = -EINVAL; 6666 if (cap->args[0] & ~1) 6667 break; 6668 kvm->arch.exit_on_emulation_error = cap->args[0]; 6669 r = 0; 6670 break; 6671 case KVM_CAP_PMU_CAPABILITY: 6672 r = -EINVAL; 6673 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6674 break; 6675 6676 mutex_lock(&kvm->lock); 6677 if (!kvm->created_vcpus) { 6678 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6679 r = 0; 6680 } 6681 mutex_unlock(&kvm->lock); 6682 break; 6683 case KVM_CAP_MAX_VCPU_ID: 6684 r = -EINVAL; 6685 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6686 break; 6687 6688 mutex_lock(&kvm->lock); 6689 if (kvm->arch.bsp_vcpu_id > cap->args[0]) { 6690 ; 6691 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6692 r = 0; 6693 } else if (!kvm->arch.max_vcpu_ids) { 6694 kvm->arch.max_vcpu_ids = cap->args[0]; 6695 r = 0; 6696 } 6697 mutex_unlock(&kvm->lock); 6698 break; 6699 case KVM_CAP_X86_NOTIFY_VMEXIT: 6700 r = -EINVAL; 6701 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6702 break; 6703 if (!kvm_caps.has_notify_vmexit) 6704 break; 6705 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6706 break; 6707 mutex_lock(&kvm->lock); 6708 if (!kvm->created_vcpus) { 6709 kvm->arch.notify_window = cap->args[0] >> 32; 6710 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6711 r = 0; 6712 } 6713 mutex_unlock(&kvm->lock); 6714 break; 6715 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6716 r = -EINVAL; 6717 6718 /* 6719 * Since the risk of disabling NX hugepages is a guest crashing 6720 * the system, ensure the userspace process has permission to 6721 * reboot the system. 6722 * 6723 * Note that unlike the reboot() syscall, the process must have 6724 * this capability in the root namespace because exposing 6725 * /dev/kvm into a container does not limit the scope of the 6726 * iTLB multihit bug to that container. In other words, 6727 * this must use capable(), not ns_capable(). 6728 */ 6729 if (!capable(CAP_SYS_BOOT)) { 6730 r = -EPERM; 6731 break; 6732 } 6733 6734 if (cap->args[0]) 6735 break; 6736 6737 mutex_lock(&kvm->lock); 6738 if (!kvm->created_vcpus) { 6739 kvm->arch.disable_nx_huge_pages = true; 6740 r = 0; 6741 } 6742 mutex_unlock(&kvm->lock); 6743 break; 6744 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { 6745 u64 bus_cycle_ns = cap->args[0]; 6746 u64 unused; 6747 6748 /* 6749 * Guard against overflow in tmict_to_ns(). 128 is the highest 6750 * divide value that can be programmed in APIC_TDCR. 6751 */ 6752 r = -EINVAL; 6753 if (!bus_cycle_ns || 6754 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) 6755 break; 6756 6757 r = 0; 6758 mutex_lock(&kvm->lock); 6759 if (!irqchip_in_kernel(kvm)) 6760 r = -ENXIO; 6761 else if (kvm->created_vcpus) 6762 r = -EINVAL; 6763 else 6764 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; 6765 mutex_unlock(&kvm->lock); 6766 break; 6767 } 6768 default: 6769 r = -EINVAL; 6770 break; 6771 } 6772 return r; 6773 } 6774 6775 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6776 { 6777 struct kvm_x86_msr_filter *msr_filter; 6778 6779 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6780 if (!msr_filter) 6781 return NULL; 6782 6783 msr_filter->default_allow = default_allow; 6784 return msr_filter; 6785 } 6786 6787 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6788 { 6789 u32 i; 6790 6791 if (!msr_filter) 6792 return; 6793 6794 for (i = 0; i < msr_filter->count; i++) 6795 kfree(msr_filter->ranges[i].bitmap); 6796 6797 kfree(msr_filter); 6798 } 6799 6800 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6801 struct kvm_msr_filter_range *user_range) 6802 { 6803 unsigned long *bitmap; 6804 size_t bitmap_size; 6805 6806 if (!user_range->nmsrs) 6807 return 0; 6808 6809 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6810 return -EINVAL; 6811 6812 if (!user_range->flags) 6813 return -EINVAL; 6814 6815 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6816 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6817 return -EINVAL; 6818 6819 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6820 if (IS_ERR(bitmap)) 6821 return PTR_ERR(bitmap); 6822 6823 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6824 .flags = user_range->flags, 6825 .base = user_range->base, 6826 .nmsrs = user_range->nmsrs, 6827 .bitmap = bitmap, 6828 }; 6829 6830 msr_filter->count++; 6831 return 0; 6832 } 6833 6834 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6835 struct kvm_msr_filter *filter) 6836 { 6837 struct kvm_x86_msr_filter *new_filter, *old_filter; 6838 bool default_allow; 6839 bool empty = true; 6840 int r; 6841 u32 i; 6842 6843 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6844 return -EINVAL; 6845 6846 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6847 empty &= !filter->ranges[i].nmsrs; 6848 6849 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6850 if (empty && !default_allow) 6851 return -EINVAL; 6852 6853 new_filter = kvm_alloc_msr_filter(default_allow); 6854 if (!new_filter) 6855 return -ENOMEM; 6856 6857 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6858 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6859 if (r) { 6860 kvm_free_msr_filter(new_filter); 6861 return r; 6862 } 6863 } 6864 6865 mutex_lock(&kvm->lock); 6866 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6867 mutex_is_locked(&kvm->lock)); 6868 mutex_unlock(&kvm->lock); 6869 synchronize_srcu(&kvm->srcu); 6870 6871 kvm_free_msr_filter(old_filter); 6872 6873 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6874 6875 return 0; 6876 } 6877 6878 #ifdef CONFIG_KVM_COMPAT 6879 /* for KVM_X86_SET_MSR_FILTER */ 6880 struct kvm_msr_filter_range_compat { 6881 __u32 flags; 6882 __u32 nmsrs; 6883 __u32 base; 6884 __u32 bitmap; 6885 }; 6886 6887 struct kvm_msr_filter_compat { 6888 __u32 flags; 6889 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6890 }; 6891 6892 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6893 6894 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6895 unsigned long arg) 6896 { 6897 void __user *argp = (void __user *)arg; 6898 struct kvm *kvm = filp->private_data; 6899 long r = -ENOTTY; 6900 6901 switch (ioctl) { 6902 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6903 struct kvm_msr_filter __user *user_msr_filter = argp; 6904 struct kvm_msr_filter_compat filter_compat; 6905 struct kvm_msr_filter filter; 6906 int i; 6907 6908 if (copy_from_user(&filter_compat, user_msr_filter, 6909 sizeof(filter_compat))) 6910 return -EFAULT; 6911 6912 filter.flags = filter_compat.flags; 6913 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6914 struct kvm_msr_filter_range_compat *cr; 6915 6916 cr = &filter_compat.ranges[i]; 6917 filter.ranges[i] = (struct kvm_msr_filter_range) { 6918 .flags = cr->flags, 6919 .nmsrs = cr->nmsrs, 6920 .base = cr->base, 6921 .bitmap = (__u8 *)(ulong)cr->bitmap, 6922 }; 6923 } 6924 6925 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6926 break; 6927 } 6928 } 6929 6930 return r; 6931 } 6932 #endif 6933 6934 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6935 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6936 { 6937 struct kvm_vcpu *vcpu; 6938 unsigned long i; 6939 6940 /* 6941 * Ignore the return, marking the guest paused only "fails" if the vCPU 6942 * isn't using kvmclock; continuing on is correct and desirable. 6943 */ 6944 kvm_for_each_vcpu(i, vcpu, kvm) 6945 (void)kvm_set_guest_paused(vcpu); 6946 6947 return NOTIFY_DONE; 6948 } 6949 6950 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6951 { 6952 switch (state) { 6953 case PM_HIBERNATION_PREPARE: 6954 case PM_SUSPEND_PREPARE: 6955 return kvm_arch_suspend_notifier(kvm); 6956 } 6957 6958 return NOTIFY_DONE; 6959 } 6960 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6961 6962 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6963 { 6964 struct kvm_clock_data data = { 0 }; 6965 6966 get_kvmclock(kvm, &data); 6967 if (copy_to_user(argp, &data, sizeof(data))) 6968 return -EFAULT; 6969 6970 return 0; 6971 } 6972 6973 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6974 { 6975 struct kvm_arch *ka = &kvm->arch; 6976 struct kvm_clock_data data; 6977 u64 now_raw_ns; 6978 6979 if (copy_from_user(&data, argp, sizeof(data))) 6980 return -EFAULT; 6981 6982 /* 6983 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6984 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6985 */ 6986 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6987 return -EINVAL; 6988 6989 kvm_hv_request_tsc_page_update(kvm); 6990 kvm_start_pvclock_update(kvm); 6991 pvclock_update_vm_gtod_copy(kvm); 6992 6993 /* 6994 * This pairs with kvm_guest_time_update(): when masterclock is 6995 * in use, we use master_kernel_ns + kvmclock_offset to set 6996 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6997 * is slightly ahead) here we risk going negative on unsigned 6998 * 'system_time' when 'data.clock' is very small. 6999 */ 7000 if (data.flags & KVM_CLOCK_REALTIME) { 7001 u64 now_real_ns = ktime_get_real_ns(); 7002 7003 /* 7004 * Avoid stepping the kvmclock backwards. 7005 */ 7006 if (now_real_ns > data.realtime) 7007 data.clock += now_real_ns - data.realtime; 7008 } 7009 7010 if (ka->use_master_clock) 7011 now_raw_ns = ka->master_kernel_ns; 7012 else 7013 now_raw_ns = get_kvmclock_base_ns(); 7014 ka->kvmclock_offset = data.clock - now_raw_ns; 7015 kvm_end_pvclock_update(kvm); 7016 return 0; 7017 } 7018 7019 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 7020 { 7021 struct kvm *kvm = filp->private_data; 7022 void __user *argp = (void __user *)arg; 7023 int r = -ENOTTY; 7024 /* 7025 * This union makes it completely explicit to gcc-3.x 7026 * that these two variables' stack usage should be 7027 * combined, not added together. 7028 */ 7029 union { 7030 struct kvm_pit_state ps; 7031 struct kvm_pit_state2 ps2; 7032 struct kvm_pit_config pit_config; 7033 } u; 7034 7035 switch (ioctl) { 7036 case KVM_SET_TSS_ADDR: 7037 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 7038 break; 7039 case KVM_SET_IDENTITY_MAP_ADDR: { 7040 u64 ident_addr; 7041 7042 mutex_lock(&kvm->lock); 7043 r = -EINVAL; 7044 if (kvm->created_vcpus) 7045 goto set_identity_unlock; 7046 r = -EFAULT; 7047 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 7048 goto set_identity_unlock; 7049 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 7050 set_identity_unlock: 7051 mutex_unlock(&kvm->lock); 7052 break; 7053 } 7054 case KVM_SET_NR_MMU_PAGES: 7055 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 7056 break; 7057 case KVM_CREATE_IRQCHIP: { 7058 mutex_lock(&kvm->lock); 7059 7060 r = -EEXIST; 7061 if (irqchip_in_kernel(kvm)) 7062 goto create_irqchip_unlock; 7063 7064 r = -EINVAL; 7065 if (kvm->created_vcpus) 7066 goto create_irqchip_unlock; 7067 7068 r = kvm_pic_init(kvm); 7069 if (r) 7070 goto create_irqchip_unlock; 7071 7072 r = kvm_ioapic_init(kvm); 7073 if (r) { 7074 kvm_pic_destroy(kvm); 7075 goto create_irqchip_unlock; 7076 } 7077 7078 r = kvm_setup_default_irq_routing(kvm); 7079 if (r) { 7080 kvm_ioapic_destroy(kvm); 7081 kvm_pic_destroy(kvm); 7082 goto create_irqchip_unlock; 7083 } 7084 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7085 smp_wmb(); 7086 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7087 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7088 create_irqchip_unlock: 7089 mutex_unlock(&kvm->lock); 7090 break; 7091 } 7092 case KVM_CREATE_PIT: 7093 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7094 goto create_pit; 7095 case KVM_CREATE_PIT2: 7096 r = -EFAULT; 7097 if (copy_from_user(&u.pit_config, argp, 7098 sizeof(struct kvm_pit_config))) 7099 goto out; 7100 create_pit: 7101 mutex_lock(&kvm->lock); 7102 r = -EEXIST; 7103 if (kvm->arch.vpit) 7104 goto create_pit_unlock; 7105 r = -ENOENT; 7106 if (!pic_in_kernel(kvm)) 7107 goto create_pit_unlock; 7108 r = -ENOMEM; 7109 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7110 if (kvm->arch.vpit) 7111 r = 0; 7112 create_pit_unlock: 7113 mutex_unlock(&kvm->lock); 7114 break; 7115 case KVM_GET_IRQCHIP: { 7116 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7117 struct kvm_irqchip *chip; 7118 7119 chip = memdup_user(argp, sizeof(*chip)); 7120 if (IS_ERR(chip)) { 7121 r = PTR_ERR(chip); 7122 goto out; 7123 } 7124 7125 r = -ENXIO; 7126 if (!irqchip_kernel(kvm)) 7127 goto get_irqchip_out; 7128 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7129 if (r) 7130 goto get_irqchip_out; 7131 r = -EFAULT; 7132 if (copy_to_user(argp, chip, sizeof(*chip))) 7133 goto get_irqchip_out; 7134 r = 0; 7135 get_irqchip_out: 7136 kfree(chip); 7137 break; 7138 } 7139 case KVM_SET_IRQCHIP: { 7140 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7141 struct kvm_irqchip *chip; 7142 7143 chip = memdup_user(argp, sizeof(*chip)); 7144 if (IS_ERR(chip)) { 7145 r = PTR_ERR(chip); 7146 goto out; 7147 } 7148 7149 r = -ENXIO; 7150 if (!irqchip_kernel(kvm)) 7151 goto set_irqchip_out; 7152 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7153 set_irqchip_out: 7154 kfree(chip); 7155 break; 7156 } 7157 case KVM_GET_PIT: { 7158 r = -EFAULT; 7159 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7160 goto out; 7161 r = -ENXIO; 7162 if (!kvm->arch.vpit) 7163 goto out; 7164 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7165 if (r) 7166 goto out; 7167 r = -EFAULT; 7168 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7169 goto out; 7170 r = 0; 7171 break; 7172 } 7173 case KVM_SET_PIT: { 7174 r = -EFAULT; 7175 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7176 goto out; 7177 mutex_lock(&kvm->lock); 7178 r = -ENXIO; 7179 if (!kvm->arch.vpit) 7180 goto set_pit_out; 7181 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7182 set_pit_out: 7183 mutex_unlock(&kvm->lock); 7184 break; 7185 } 7186 case KVM_GET_PIT2: { 7187 r = -ENXIO; 7188 if (!kvm->arch.vpit) 7189 goto out; 7190 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7191 if (r) 7192 goto out; 7193 r = -EFAULT; 7194 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7195 goto out; 7196 r = 0; 7197 break; 7198 } 7199 case KVM_SET_PIT2: { 7200 r = -EFAULT; 7201 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7202 goto out; 7203 mutex_lock(&kvm->lock); 7204 r = -ENXIO; 7205 if (!kvm->arch.vpit) 7206 goto set_pit2_out; 7207 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7208 set_pit2_out: 7209 mutex_unlock(&kvm->lock); 7210 break; 7211 } 7212 case KVM_REINJECT_CONTROL: { 7213 struct kvm_reinject_control control; 7214 r = -EFAULT; 7215 if (copy_from_user(&control, argp, sizeof(control))) 7216 goto out; 7217 r = -ENXIO; 7218 if (!kvm->arch.vpit) 7219 goto out; 7220 r = kvm_vm_ioctl_reinject(kvm, &control); 7221 break; 7222 } 7223 case KVM_SET_BOOT_CPU_ID: 7224 r = 0; 7225 mutex_lock(&kvm->lock); 7226 if (kvm->created_vcpus) 7227 r = -EBUSY; 7228 else if (arg > KVM_MAX_VCPU_IDS || 7229 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) 7230 r = -EINVAL; 7231 else 7232 kvm->arch.bsp_vcpu_id = arg; 7233 mutex_unlock(&kvm->lock); 7234 break; 7235 #ifdef CONFIG_KVM_XEN 7236 case KVM_XEN_HVM_CONFIG: { 7237 struct kvm_xen_hvm_config xhc; 7238 r = -EFAULT; 7239 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7240 goto out; 7241 r = kvm_xen_hvm_config(kvm, &xhc); 7242 break; 7243 } 7244 case KVM_XEN_HVM_GET_ATTR: { 7245 struct kvm_xen_hvm_attr xha; 7246 7247 r = -EFAULT; 7248 if (copy_from_user(&xha, argp, sizeof(xha))) 7249 goto out; 7250 r = kvm_xen_hvm_get_attr(kvm, &xha); 7251 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7252 r = -EFAULT; 7253 break; 7254 } 7255 case KVM_XEN_HVM_SET_ATTR: { 7256 struct kvm_xen_hvm_attr xha; 7257 7258 r = -EFAULT; 7259 if (copy_from_user(&xha, argp, sizeof(xha))) 7260 goto out; 7261 r = kvm_xen_hvm_set_attr(kvm, &xha); 7262 break; 7263 } 7264 case KVM_XEN_HVM_EVTCHN_SEND: { 7265 struct kvm_irq_routing_xen_evtchn uxe; 7266 7267 r = -EFAULT; 7268 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7269 goto out; 7270 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7271 break; 7272 } 7273 #endif 7274 case KVM_SET_CLOCK: 7275 r = kvm_vm_ioctl_set_clock(kvm, argp); 7276 break; 7277 case KVM_GET_CLOCK: 7278 r = kvm_vm_ioctl_get_clock(kvm, argp); 7279 break; 7280 case KVM_SET_TSC_KHZ: { 7281 u32 user_tsc_khz; 7282 7283 r = -EINVAL; 7284 user_tsc_khz = (u32)arg; 7285 7286 if (kvm_caps.has_tsc_control && 7287 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7288 goto out; 7289 7290 if (user_tsc_khz == 0) 7291 user_tsc_khz = tsc_khz; 7292 7293 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7294 r = 0; 7295 7296 goto out; 7297 } 7298 case KVM_GET_TSC_KHZ: { 7299 r = READ_ONCE(kvm->arch.default_tsc_khz); 7300 goto out; 7301 } 7302 case KVM_MEMORY_ENCRYPT_OP: { 7303 r = -ENOTTY; 7304 if (!kvm_x86_ops.mem_enc_ioctl) 7305 goto out; 7306 7307 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); 7308 break; 7309 } 7310 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7311 struct kvm_enc_region region; 7312 7313 r = -EFAULT; 7314 if (copy_from_user(®ion, argp, sizeof(region))) 7315 goto out; 7316 7317 r = -ENOTTY; 7318 if (!kvm_x86_ops.mem_enc_register_region) 7319 goto out; 7320 7321 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); 7322 break; 7323 } 7324 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7325 struct kvm_enc_region region; 7326 7327 r = -EFAULT; 7328 if (copy_from_user(®ion, argp, sizeof(region))) 7329 goto out; 7330 7331 r = -ENOTTY; 7332 if (!kvm_x86_ops.mem_enc_unregister_region) 7333 goto out; 7334 7335 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); 7336 break; 7337 } 7338 #ifdef CONFIG_KVM_HYPERV 7339 case KVM_HYPERV_EVENTFD: { 7340 struct kvm_hyperv_eventfd hvevfd; 7341 7342 r = -EFAULT; 7343 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7344 goto out; 7345 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7346 break; 7347 } 7348 #endif 7349 case KVM_SET_PMU_EVENT_FILTER: 7350 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7351 break; 7352 case KVM_X86_SET_MSR_FILTER: { 7353 struct kvm_msr_filter __user *user_msr_filter = argp; 7354 struct kvm_msr_filter filter; 7355 7356 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7357 return -EFAULT; 7358 7359 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7360 break; 7361 } 7362 default: 7363 r = -ENOTTY; 7364 } 7365 out: 7366 return r; 7367 } 7368 7369 static void kvm_probe_feature_msr(u32 msr_index) 7370 { 7371 u64 data; 7372 7373 if (kvm_get_feature_msr(NULL, msr_index, &data, true)) 7374 return; 7375 7376 msr_based_features[num_msr_based_features++] = msr_index; 7377 } 7378 7379 static void kvm_probe_msr_to_save(u32 msr_index) 7380 { 7381 u32 dummy[2]; 7382 7383 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7384 return; 7385 7386 /* 7387 * Even MSRs that are valid in the host may not be exposed to guests in 7388 * some cases. 7389 */ 7390 switch (msr_index) { 7391 case MSR_IA32_BNDCFGS: 7392 if (!kvm_mpx_supported()) 7393 return; 7394 break; 7395 case MSR_TSC_AUX: 7396 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7397 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7398 return; 7399 break; 7400 case MSR_IA32_UMWAIT_CONTROL: 7401 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7402 return; 7403 break; 7404 case MSR_IA32_RTIT_CTL: 7405 case MSR_IA32_RTIT_STATUS: 7406 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7407 return; 7408 break; 7409 case MSR_IA32_RTIT_CR3_MATCH: 7410 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7411 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7412 return; 7413 break; 7414 case MSR_IA32_RTIT_OUTPUT_BASE: 7415 case MSR_IA32_RTIT_OUTPUT_MASK: 7416 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7417 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7418 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7419 return; 7420 break; 7421 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7422 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7423 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7424 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7425 return; 7426 break; 7427 case MSR_ARCH_PERFMON_PERFCTR0 ... 7428 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: 7429 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7430 kvm_pmu_cap.num_counters_gp) 7431 return; 7432 break; 7433 case MSR_ARCH_PERFMON_EVENTSEL0 ... 7434 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: 7435 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7436 kvm_pmu_cap.num_counters_gp) 7437 return; 7438 break; 7439 case MSR_ARCH_PERFMON_FIXED_CTR0 ... 7440 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: 7441 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7442 kvm_pmu_cap.num_counters_fixed) 7443 return; 7444 break; 7445 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7446 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7447 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7448 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7449 return; 7450 break; 7451 case MSR_IA32_XFD: 7452 case MSR_IA32_XFD_ERR: 7453 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7454 return; 7455 break; 7456 case MSR_IA32_TSX_CTRL: 7457 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7458 return; 7459 break; 7460 default: 7461 break; 7462 } 7463 7464 msrs_to_save[num_msrs_to_save++] = msr_index; 7465 } 7466 7467 static void kvm_init_msr_lists(void) 7468 { 7469 unsigned i; 7470 7471 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, 7472 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7473 7474 num_msrs_to_save = 0; 7475 num_emulated_msrs = 0; 7476 num_msr_based_features = 0; 7477 7478 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7479 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7480 7481 if (enable_pmu) { 7482 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7483 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7484 } 7485 7486 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7487 if (!kvm_x86_call(has_emulated_msr)(NULL, 7488 emulated_msrs_all[i])) 7489 continue; 7490 7491 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7492 } 7493 7494 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7495 kvm_probe_feature_msr(i); 7496 7497 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7498 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7499 } 7500 7501 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7502 const void *v) 7503 { 7504 int handled = 0; 7505 int n; 7506 7507 do { 7508 n = min(len, 8); 7509 if (!(lapic_in_kernel(vcpu) && 7510 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7511 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7512 break; 7513 handled += n; 7514 addr += n; 7515 len -= n; 7516 v += n; 7517 } while (len); 7518 7519 return handled; 7520 } 7521 7522 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7523 { 7524 int handled = 0; 7525 int n; 7526 7527 do { 7528 n = min(len, 8); 7529 if (!(lapic_in_kernel(vcpu) && 7530 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7531 addr, n, v)) 7532 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7533 break; 7534 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7535 handled += n; 7536 addr += n; 7537 len -= n; 7538 v += n; 7539 } while (len); 7540 7541 return handled; 7542 } 7543 7544 void kvm_set_segment(struct kvm_vcpu *vcpu, 7545 struct kvm_segment *var, int seg) 7546 { 7547 kvm_x86_call(set_segment)(vcpu, var, seg); 7548 } 7549 7550 void kvm_get_segment(struct kvm_vcpu *vcpu, 7551 struct kvm_segment *var, int seg) 7552 { 7553 kvm_x86_call(get_segment)(vcpu, var, seg); 7554 } 7555 7556 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7557 struct x86_exception *exception) 7558 { 7559 struct kvm_mmu *mmu = vcpu->arch.mmu; 7560 gpa_t t_gpa; 7561 7562 BUG_ON(!mmu_is_nested(vcpu)); 7563 7564 /* NPT walks are always user-walks */ 7565 access |= PFERR_USER_MASK; 7566 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7567 7568 return t_gpa; 7569 } 7570 7571 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7572 struct x86_exception *exception) 7573 { 7574 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7575 7576 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7577 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7578 } 7579 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7580 7581 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7582 struct x86_exception *exception) 7583 { 7584 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7585 7586 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7587 access |= PFERR_WRITE_MASK; 7588 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7589 } 7590 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7591 7592 /* uses this to access any guest's mapped memory without checking CPL */ 7593 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7594 struct x86_exception *exception) 7595 { 7596 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7597 7598 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7599 } 7600 7601 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7602 struct kvm_vcpu *vcpu, u64 access, 7603 struct x86_exception *exception) 7604 { 7605 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7606 void *data = val; 7607 int r = X86EMUL_CONTINUE; 7608 7609 while (bytes) { 7610 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7611 unsigned offset = addr & (PAGE_SIZE-1); 7612 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7613 int ret; 7614 7615 if (gpa == INVALID_GPA) 7616 return X86EMUL_PROPAGATE_FAULT; 7617 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7618 offset, toread); 7619 if (ret < 0) { 7620 r = X86EMUL_IO_NEEDED; 7621 goto out; 7622 } 7623 7624 bytes -= toread; 7625 data += toread; 7626 addr += toread; 7627 } 7628 out: 7629 return r; 7630 } 7631 7632 /* used for instruction fetching */ 7633 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7634 gva_t addr, void *val, unsigned int bytes, 7635 struct x86_exception *exception) 7636 { 7637 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7638 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7639 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7640 unsigned offset; 7641 int ret; 7642 7643 /* Inline kvm_read_guest_virt_helper for speed. */ 7644 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7645 exception); 7646 if (unlikely(gpa == INVALID_GPA)) 7647 return X86EMUL_PROPAGATE_FAULT; 7648 7649 offset = addr & (PAGE_SIZE-1); 7650 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7651 bytes = (unsigned)PAGE_SIZE - offset; 7652 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7653 offset, bytes); 7654 if (unlikely(ret < 0)) 7655 return X86EMUL_IO_NEEDED; 7656 7657 return X86EMUL_CONTINUE; 7658 } 7659 7660 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7661 gva_t addr, void *val, unsigned int bytes, 7662 struct x86_exception *exception) 7663 { 7664 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7665 7666 /* 7667 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7668 * is returned, but our callers are not ready for that and they blindly 7669 * call kvm_inject_page_fault. Ensure that they at least do not leak 7670 * uninitialized kernel stack memory into cr2 and error code. 7671 */ 7672 memset(exception, 0, sizeof(*exception)); 7673 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7674 exception); 7675 } 7676 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7677 7678 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7679 gva_t addr, void *val, unsigned int bytes, 7680 struct x86_exception *exception, bool system) 7681 { 7682 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7683 u64 access = 0; 7684 7685 if (system) 7686 access |= PFERR_IMPLICIT_ACCESS; 7687 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7688 access |= PFERR_USER_MASK; 7689 7690 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7691 } 7692 7693 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7694 struct kvm_vcpu *vcpu, u64 access, 7695 struct x86_exception *exception) 7696 { 7697 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7698 void *data = val; 7699 int r = X86EMUL_CONTINUE; 7700 7701 while (bytes) { 7702 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7703 unsigned offset = addr & (PAGE_SIZE-1); 7704 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7705 int ret; 7706 7707 if (gpa == INVALID_GPA) 7708 return X86EMUL_PROPAGATE_FAULT; 7709 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7710 if (ret < 0) { 7711 r = X86EMUL_IO_NEEDED; 7712 goto out; 7713 } 7714 7715 bytes -= towrite; 7716 data += towrite; 7717 addr += towrite; 7718 } 7719 out: 7720 return r; 7721 } 7722 7723 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7724 unsigned int bytes, struct x86_exception *exception, 7725 bool system) 7726 { 7727 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7728 u64 access = PFERR_WRITE_MASK; 7729 7730 if (system) 7731 access |= PFERR_IMPLICIT_ACCESS; 7732 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7733 access |= PFERR_USER_MASK; 7734 7735 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7736 access, exception); 7737 } 7738 7739 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7740 unsigned int bytes, struct x86_exception *exception) 7741 { 7742 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7743 vcpu->arch.l1tf_flush_l1d = true; 7744 7745 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7746 PFERR_WRITE_MASK, exception); 7747 } 7748 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7749 7750 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7751 void *insn, int insn_len) 7752 { 7753 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, 7754 insn, insn_len); 7755 } 7756 7757 int handle_ud(struct kvm_vcpu *vcpu) 7758 { 7759 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7760 int fep_flags = READ_ONCE(force_emulation_prefix); 7761 int emul_type = EMULTYPE_TRAP_UD; 7762 char sig[5]; /* ud2; .ascii "kvm" */ 7763 struct x86_exception e; 7764 int r; 7765 7766 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7767 if (r != X86EMUL_CONTINUE) 7768 return 1; 7769 7770 if (fep_flags && 7771 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7772 sig, sizeof(sig), &e) == 0 && 7773 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7774 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7775 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7776 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7777 emul_type = EMULTYPE_TRAP_UD_FORCED; 7778 } 7779 7780 return kvm_emulate_instruction(vcpu, emul_type); 7781 } 7782 EXPORT_SYMBOL_GPL(handle_ud); 7783 7784 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7785 gpa_t gpa, bool write) 7786 { 7787 /* For APIC access vmexit */ 7788 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7789 return 1; 7790 7791 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7792 trace_vcpu_match_mmio(gva, gpa, write, true); 7793 return 1; 7794 } 7795 7796 return 0; 7797 } 7798 7799 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7800 gpa_t *gpa, struct x86_exception *exception, 7801 bool write) 7802 { 7803 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7804 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7805 | (write ? PFERR_WRITE_MASK : 0); 7806 7807 /* 7808 * currently PKRU is only applied to ept enabled guest so 7809 * there is no pkey in EPT page table for L1 guest or EPT 7810 * shadow page table for L2 guest. 7811 */ 7812 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7813 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7814 vcpu->arch.mmio_access, 0, access))) { 7815 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7816 (gva & (PAGE_SIZE - 1)); 7817 trace_vcpu_match_mmio(gva, *gpa, write, false); 7818 return 1; 7819 } 7820 7821 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7822 7823 if (*gpa == INVALID_GPA) 7824 return -1; 7825 7826 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7827 } 7828 7829 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7830 const void *val, int bytes) 7831 { 7832 int ret; 7833 7834 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7835 if (ret < 0) 7836 return 0; 7837 kvm_page_track_write(vcpu, gpa, val, bytes); 7838 return 1; 7839 } 7840 7841 struct read_write_emulator_ops { 7842 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7843 int bytes); 7844 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7845 void *val, int bytes); 7846 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7847 int bytes, void *val); 7848 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7849 void *val, int bytes); 7850 bool write; 7851 }; 7852 7853 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7854 { 7855 if (vcpu->mmio_read_completed) { 7856 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7857 vcpu->mmio_fragments[0].gpa, val); 7858 vcpu->mmio_read_completed = 0; 7859 return 1; 7860 } 7861 7862 return 0; 7863 } 7864 7865 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7866 void *val, int bytes) 7867 { 7868 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7869 } 7870 7871 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7872 void *val, int bytes) 7873 { 7874 return emulator_write_phys(vcpu, gpa, val, bytes); 7875 } 7876 7877 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7878 { 7879 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7880 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7881 } 7882 7883 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7884 void *val, int bytes) 7885 { 7886 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7887 return X86EMUL_IO_NEEDED; 7888 } 7889 7890 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7891 void *val, int bytes) 7892 { 7893 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7894 7895 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7896 return X86EMUL_CONTINUE; 7897 } 7898 7899 static const struct read_write_emulator_ops read_emultor = { 7900 .read_write_prepare = read_prepare, 7901 .read_write_emulate = read_emulate, 7902 .read_write_mmio = vcpu_mmio_read, 7903 .read_write_exit_mmio = read_exit_mmio, 7904 }; 7905 7906 static const struct read_write_emulator_ops write_emultor = { 7907 .read_write_emulate = write_emulate, 7908 .read_write_mmio = write_mmio, 7909 .read_write_exit_mmio = write_exit_mmio, 7910 .write = true, 7911 }; 7912 7913 static int emulator_read_write_onepage(unsigned long addr, void *val, 7914 unsigned int bytes, 7915 struct x86_exception *exception, 7916 struct kvm_vcpu *vcpu, 7917 const struct read_write_emulator_ops *ops) 7918 { 7919 gpa_t gpa; 7920 int handled, ret; 7921 bool write = ops->write; 7922 struct kvm_mmio_fragment *frag; 7923 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7924 7925 /* 7926 * If the exit was due to a NPF we may already have a GPA. 7927 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7928 * Note, this cannot be used on string operations since string 7929 * operation using rep will only have the initial GPA from the NPF 7930 * occurred. 7931 */ 7932 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7933 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7934 gpa = ctxt->gpa_val; 7935 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7936 } else { 7937 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7938 if (ret < 0) 7939 return X86EMUL_PROPAGATE_FAULT; 7940 } 7941 7942 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7943 return X86EMUL_CONTINUE; 7944 7945 /* 7946 * Is this MMIO handled locally? 7947 */ 7948 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7949 if (handled == bytes) 7950 return X86EMUL_CONTINUE; 7951 7952 gpa += handled; 7953 bytes -= handled; 7954 val += handled; 7955 7956 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7957 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7958 frag->gpa = gpa; 7959 frag->data = val; 7960 frag->len = bytes; 7961 return X86EMUL_CONTINUE; 7962 } 7963 7964 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7965 unsigned long addr, 7966 void *val, unsigned int bytes, 7967 struct x86_exception *exception, 7968 const struct read_write_emulator_ops *ops) 7969 { 7970 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7971 gpa_t gpa; 7972 int rc; 7973 7974 if (ops->read_write_prepare && 7975 ops->read_write_prepare(vcpu, val, bytes)) 7976 return X86EMUL_CONTINUE; 7977 7978 vcpu->mmio_nr_fragments = 0; 7979 7980 /* Crossing a page boundary? */ 7981 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7982 int now; 7983 7984 now = -addr & ~PAGE_MASK; 7985 rc = emulator_read_write_onepage(addr, val, now, exception, 7986 vcpu, ops); 7987 7988 if (rc != X86EMUL_CONTINUE) 7989 return rc; 7990 addr += now; 7991 if (ctxt->mode != X86EMUL_MODE_PROT64) 7992 addr = (u32)addr; 7993 val += now; 7994 bytes -= now; 7995 } 7996 7997 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7998 vcpu, ops); 7999 if (rc != X86EMUL_CONTINUE) 8000 return rc; 8001 8002 if (!vcpu->mmio_nr_fragments) 8003 return rc; 8004 8005 gpa = vcpu->mmio_fragments[0].gpa; 8006 8007 vcpu->mmio_needed = 1; 8008 vcpu->mmio_cur_fragment = 0; 8009 8010 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 8011 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 8012 vcpu->run->exit_reason = KVM_EXIT_MMIO; 8013 vcpu->run->mmio.phys_addr = gpa; 8014 8015 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 8016 } 8017 8018 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 8019 unsigned long addr, 8020 void *val, 8021 unsigned int bytes, 8022 struct x86_exception *exception) 8023 { 8024 return emulator_read_write(ctxt, addr, val, bytes, 8025 exception, &read_emultor); 8026 } 8027 8028 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 8029 unsigned long addr, 8030 const void *val, 8031 unsigned int bytes, 8032 struct x86_exception *exception) 8033 { 8034 return emulator_read_write(ctxt, addr, (void *)val, bytes, 8035 exception, &write_emultor); 8036 } 8037 8038 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 8039 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 8040 8041 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 8042 unsigned long addr, 8043 const void *old, 8044 const void *new, 8045 unsigned int bytes, 8046 struct x86_exception *exception) 8047 { 8048 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8049 u64 page_line_mask; 8050 unsigned long hva; 8051 gpa_t gpa; 8052 int r; 8053 8054 /* guests cmpxchg8b have to be emulated atomically */ 8055 if (bytes > 8 || (bytes & (bytes - 1))) 8056 goto emul_write; 8057 8058 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 8059 8060 if (gpa == INVALID_GPA || 8061 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8062 goto emul_write; 8063 8064 /* 8065 * Emulate the atomic as a straight write to avoid #AC if SLD is 8066 * enabled in the host and the access splits a cache line. 8067 */ 8068 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 8069 page_line_mask = ~(cache_line_size() - 1); 8070 else 8071 page_line_mask = PAGE_MASK; 8072 8073 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 8074 goto emul_write; 8075 8076 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 8077 if (kvm_is_error_hva(hva)) 8078 goto emul_write; 8079 8080 hva += offset_in_page(gpa); 8081 8082 switch (bytes) { 8083 case 1: 8084 r = emulator_try_cmpxchg_user(u8, hva, old, new); 8085 break; 8086 case 2: 8087 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8088 break; 8089 case 4: 8090 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8091 break; 8092 case 8: 8093 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8094 break; 8095 default: 8096 BUG(); 8097 } 8098 8099 if (r < 0) 8100 return X86EMUL_UNHANDLEABLE; 8101 8102 /* 8103 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8104 * successful, as the old value is written back on failure. Note, for 8105 * live migration, this is unnecessarily conservative as CMPXCHG writes 8106 * back the original value and the access is atomic, but KVM's ABI is 8107 * that all writes are dirty logged, regardless of the value written. 8108 */ 8109 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8110 8111 if (r) 8112 return X86EMUL_CMPXCHG_FAILED; 8113 8114 kvm_page_track_write(vcpu, gpa, new, bytes); 8115 8116 return X86EMUL_CONTINUE; 8117 8118 emul_write: 8119 pr_warn_once("emulating exchange as write\n"); 8120 8121 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8122 } 8123 8124 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8125 unsigned short port, void *data, 8126 unsigned int count, bool in) 8127 { 8128 unsigned i; 8129 int r; 8130 8131 WARN_ON_ONCE(vcpu->arch.pio.count); 8132 for (i = 0; i < count; i++) { 8133 if (in) 8134 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8135 else 8136 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8137 8138 if (r) { 8139 if (i == 0) 8140 goto userspace_io; 8141 8142 /* 8143 * Userspace must have unregistered the device while PIO 8144 * was running. Drop writes / read as 0. 8145 */ 8146 if (in) 8147 memset(data, 0, size * (count - i)); 8148 break; 8149 } 8150 8151 data += size; 8152 } 8153 return 1; 8154 8155 userspace_io: 8156 vcpu->arch.pio.port = port; 8157 vcpu->arch.pio.in = in; 8158 vcpu->arch.pio.count = count; 8159 vcpu->arch.pio.size = size; 8160 8161 if (in) 8162 memset(vcpu->arch.pio_data, 0, size * count); 8163 else 8164 memcpy(vcpu->arch.pio_data, data, size * count); 8165 8166 vcpu->run->exit_reason = KVM_EXIT_IO; 8167 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8168 vcpu->run->io.size = size; 8169 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8170 vcpu->run->io.count = count; 8171 vcpu->run->io.port = port; 8172 return 0; 8173 } 8174 8175 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8176 unsigned short port, void *val, unsigned int count) 8177 { 8178 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8179 if (r) 8180 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8181 8182 return r; 8183 } 8184 8185 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8186 { 8187 int size = vcpu->arch.pio.size; 8188 unsigned int count = vcpu->arch.pio.count; 8189 memcpy(val, vcpu->arch.pio_data, size * count); 8190 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8191 vcpu->arch.pio.count = 0; 8192 } 8193 8194 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8195 int size, unsigned short port, void *val, 8196 unsigned int count) 8197 { 8198 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8199 if (vcpu->arch.pio.count) { 8200 /* 8201 * Complete a previous iteration that required userspace I/O. 8202 * Note, @count isn't guaranteed to match pio.count as userspace 8203 * can modify ECX before rerunning the vCPU. Ignore any such 8204 * shenanigans as KVM doesn't support modifying the rep count, 8205 * and the emulator ensures @count doesn't overflow the buffer. 8206 */ 8207 complete_emulator_pio_in(vcpu, val); 8208 return 1; 8209 } 8210 8211 return emulator_pio_in(vcpu, size, port, val, count); 8212 } 8213 8214 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8215 unsigned short port, const void *val, 8216 unsigned int count) 8217 { 8218 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8219 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8220 } 8221 8222 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8223 int size, unsigned short port, 8224 const void *val, unsigned int count) 8225 { 8226 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8227 } 8228 8229 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8230 { 8231 return kvm_x86_call(get_segment_base)(vcpu, seg); 8232 } 8233 8234 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8235 { 8236 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8237 } 8238 8239 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8240 { 8241 if (!need_emulate_wbinvd(vcpu)) 8242 return X86EMUL_CONTINUE; 8243 8244 if (kvm_x86_call(has_wbinvd_exit)()) { 8245 int cpu = get_cpu(); 8246 8247 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8248 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8249 wbinvd_ipi, NULL, 1); 8250 put_cpu(); 8251 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8252 } else 8253 wbinvd(); 8254 return X86EMUL_CONTINUE; 8255 } 8256 8257 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8258 { 8259 kvm_emulate_wbinvd_noskip(vcpu); 8260 return kvm_skip_emulated_instruction(vcpu); 8261 } 8262 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8263 8264 8265 8266 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8267 { 8268 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8269 } 8270 8271 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8272 { 8273 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8274 } 8275 8276 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8277 unsigned long value) 8278 { 8279 8280 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8281 } 8282 8283 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8284 { 8285 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8286 } 8287 8288 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8289 { 8290 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8291 unsigned long value; 8292 8293 switch (cr) { 8294 case 0: 8295 value = kvm_read_cr0(vcpu); 8296 break; 8297 case 2: 8298 value = vcpu->arch.cr2; 8299 break; 8300 case 3: 8301 value = kvm_read_cr3(vcpu); 8302 break; 8303 case 4: 8304 value = kvm_read_cr4(vcpu); 8305 break; 8306 case 8: 8307 value = kvm_get_cr8(vcpu); 8308 break; 8309 default: 8310 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8311 return 0; 8312 } 8313 8314 return value; 8315 } 8316 8317 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8318 { 8319 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8320 int res = 0; 8321 8322 switch (cr) { 8323 case 0: 8324 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8325 break; 8326 case 2: 8327 vcpu->arch.cr2 = val; 8328 break; 8329 case 3: 8330 res = kvm_set_cr3(vcpu, val); 8331 break; 8332 case 4: 8333 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8334 break; 8335 case 8: 8336 res = kvm_set_cr8(vcpu, val); 8337 break; 8338 default: 8339 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8340 res = -1; 8341 } 8342 8343 return res; 8344 } 8345 8346 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8347 { 8348 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); 8349 } 8350 8351 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8352 { 8353 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); 8354 } 8355 8356 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8357 { 8358 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); 8359 } 8360 8361 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8362 { 8363 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); 8364 } 8365 8366 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8367 { 8368 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); 8369 } 8370 8371 static unsigned long emulator_get_cached_segment_base( 8372 struct x86_emulate_ctxt *ctxt, int seg) 8373 { 8374 return get_segment_base(emul_to_vcpu(ctxt), seg); 8375 } 8376 8377 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8378 struct desc_struct *desc, u32 *base3, 8379 int seg) 8380 { 8381 struct kvm_segment var; 8382 8383 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8384 *selector = var.selector; 8385 8386 if (var.unusable) { 8387 memset(desc, 0, sizeof(*desc)); 8388 if (base3) 8389 *base3 = 0; 8390 return false; 8391 } 8392 8393 if (var.g) 8394 var.limit >>= 12; 8395 set_desc_limit(desc, var.limit); 8396 set_desc_base(desc, (unsigned long)var.base); 8397 #ifdef CONFIG_X86_64 8398 if (base3) 8399 *base3 = var.base >> 32; 8400 #endif 8401 desc->type = var.type; 8402 desc->s = var.s; 8403 desc->dpl = var.dpl; 8404 desc->p = var.present; 8405 desc->avl = var.avl; 8406 desc->l = var.l; 8407 desc->d = var.db; 8408 desc->g = var.g; 8409 8410 return true; 8411 } 8412 8413 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8414 struct desc_struct *desc, u32 base3, 8415 int seg) 8416 { 8417 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8418 struct kvm_segment var; 8419 8420 var.selector = selector; 8421 var.base = get_desc_base(desc); 8422 #ifdef CONFIG_X86_64 8423 var.base |= ((u64)base3) << 32; 8424 #endif 8425 var.limit = get_desc_limit(desc); 8426 if (desc->g) 8427 var.limit = (var.limit << 12) | 0xfff; 8428 var.type = desc->type; 8429 var.dpl = desc->dpl; 8430 var.db = desc->d; 8431 var.s = desc->s; 8432 var.l = desc->l; 8433 var.g = desc->g; 8434 var.avl = desc->avl; 8435 var.present = desc->p; 8436 var.unusable = !var.present; 8437 var.padding = 0; 8438 8439 kvm_set_segment(vcpu, &var, seg); 8440 return; 8441 } 8442 8443 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8444 u32 msr_index, u64 *pdata) 8445 { 8446 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8447 int r; 8448 8449 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8450 if (r < 0) 8451 return X86EMUL_UNHANDLEABLE; 8452 8453 if (r) { 8454 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8455 complete_emulated_rdmsr, r)) 8456 return X86EMUL_IO_NEEDED; 8457 8458 trace_kvm_msr_read_ex(msr_index); 8459 return X86EMUL_PROPAGATE_FAULT; 8460 } 8461 8462 trace_kvm_msr_read(msr_index, *pdata); 8463 return X86EMUL_CONTINUE; 8464 } 8465 8466 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8467 u32 msr_index, u64 data) 8468 { 8469 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8470 int r; 8471 8472 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8473 if (r < 0) 8474 return X86EMUL_UNHANDLEABLE; 8475 8476 if (r) { 8477 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8478 complete_emulated_msr_access, r)) 8479 return X86EMUL_IO_NEEDED; 8480 8481 trace_kvm_msr_write_ex(msr_index, data); 8482 return X86EMUL_PROPAGATE_FAULT; 8483 } 8484 8485 trace_kvm_msr_write(msr_index, data); 8486 return X86EMUL_CONTINUE; 8487 } 8488 8489 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8490 u32 msr_index, u64 *pdata) 8491 { 8492 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8493 } 8494 8495 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8496 { 8497 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8498 } 8499 8500 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8501 u32 pmc, u64 *pdata) 8502 { 8503 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8504 } 8505 8506 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8507 { 8508 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8509 } 8510 8511 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8512 struct x86_instruction_info *info, 8513 enum x86_intercept_stage stage) 8514 { 8515 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, 8516 &ctxt->exception); 8517 } 8518 8519 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8520 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8521 bool exact_only) 8522 { 8523 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8524 } 8525 8526 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8527 { 8528 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8529 } 8530 8531 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8532 { 8533 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8534 } 8535 8536 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8537 { 8538 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8539 } 8540 8541 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) 8542 { 8543 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); 8544 } 8545 8546 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8547 { 8548 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8549 } 8550 8551 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8552 { 8553 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8554 } 8555 8556 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8557 { 8558 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8559 } 8560 8561 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8562 { 8563 return is_smm(emul_to_vcpu(ctxt)); 8564 } 8565 8566 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8567 { 8568 return is_guest_mode(emul_to_vcpu(ctxt)); 8569 } 8570 8571 #ifndef CONFIG_KVM_SMM 8572 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8573 { 8574 WARN_ON_ONCE(1); 8575 return X86EMUL_UNHANDLEABLE; 8576 } 8577 #endif 8578 8579 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8580 { 8581 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8582 } 8583 8584 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8585 { 8586 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8587 } 8588 8589 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8590 { 8591 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8592 8593 if (!kvm->vm_bugged) 8594 kvm_vm_bugged(kvm); 8595 } 8596 8597 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8598 gva_t addr, unsigned int flags) 8599 { 8600 if (!kvm_x86_ops.get_untagged_addr) 8601 return addr; 8602 8603 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), 8604 addr, flags); 8605 } 8606 8607 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt, 8608 gva_t addr, unsigned int flags) 8609 { 8610 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags); 8611 } 8612 8613 static const struct x86_emulate_ops emulate_ops = { 8614 .vm_bugged = emulator_vm_bugged, 8615 .read_gpr = emulator_read_gpr, 8616 .write_gpr = emulator_write_gpr, 8617 .read_std = emulator_read_std, 8618 .write_std = emulator_write_std, 8619 .fetch = kvm_fetch_guest_virt, 8620 .read_emulated = emulator_read_emulated, 8621 .write_emulated = emulator_write_emulated, 8622 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8623 .invlpg = emulator_invlpg, 8624 .pio_in_emulated = emulator_pio_in_emulated, 8625 .pio_out_emulated = emulator_pio_out_emulated, 8626 .get_segment = emulator_get_segment, 8627 .set_segment = emulator_set_segment, 8628 .get_cached_segment_base = emulator_get_cached_segment_base, 8629 .get_gdt = emulator_get_gdt, 8630 .get_idt = emulator_get_idt, 8631 .set_gdt = emulator_set_gdt, 8632 .set_idt = emulator_set_idt, 8633 .get_cr = emulator_get_cr, 8634 .set_cr = emulator_set_cr, 8635 .cpl = emulator_get_cpl, 8636 .get_dr = emulator_get_dr, 8637 .set_dr = emulator_set_dr, 8638 .set_msr_with_filter = emulator_set_msr_with_filter, 8639 .get_msr_with_filter = emulator_get_msr_with_filter, 8640 .get_msr = emulator_get_msr, 8641 .check_rdpmc_early = emulator_check_rdpmc_early, 8642 .read_pmc = emulator_read_pmc, 8643 .halt = emulator_halt, 8644 .wbinvd = emulator_wbinvd, 8645 .fix_hypercall = emulator_fix_hypercall, 8646 .intercept = emulator_intercept, 8647 .get_cpuid = emulator_get_cpuid, 8648 .guest_has_movbe = emulator_guest_has_movbe, 8649 .guest_has_fxsr = emulator_guest_has_fxsr, 8650 .guest_has_rdpid = emulator_guest_has_rdpid, 8651 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, 8652 .set_nmi_mask = emulator_set_nmi_mask, 8653 .is_smm = emulator_is_smm, 8654 .is_guest_mode = emulator_is_guest_mode, 8655 .leave_smm = emulator_leave_smm, 8656 .triple_fault = emulator_triple_fault, 8657 .set_xcr = emulator_set_xcr, 8658 .get_untagged_addr = emulator_get_untagged_addr, 8659 .is_canonical_addr = emulator_is_canonical_addr, 8660 }; 8661 8662 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8663 { 8664 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 8665 /* 8666 * an sti; sti; sequence only disable interrupts for the first 8667 * instruction. So, if the last instruction, be it emulated or 8668 * not, left the system with the INT_STI flag enabled, it 8669 * means that the last instruction is an sti. We should not 8670 * leave the flag on in this case. The same goes for mov ss 8671 */ 8672 if (int_shadow & mask) 8673 mask = 0; 8674 if (unlikely(int_shadow || mask)) { 8675 kvm_x86_call(set_interrupt_shadow)(vcpu, mask); 8676 if (!mask) 8677 kvm_make_request(KVM_REQ_EVENT, vcpu); 8678 } 8679 } 8680 8681 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8682 { 8683 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8684 8685 if (ctxt->exception.vector == PF_VECTOR) 8686 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8687 else if (ctxt->exception.error_code_valid) 8688 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8689 ctxt->exception.error_code); 8690 else 8691 kvm_queue_exception(vcpu, ctxt->exception.vector); 8692 } 8693 8694 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8695 { 8696 struct x86_emulate_ctxt *ctxt; 8697 8698 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8699 if (!ctxt) { 8700 pr_err("failed to allocate vcpu's emulator\n"); 8701 return NULL; 8702 } 8703 8704 ctxt->vcpu = vcpu; 8705 ctxt->ops = &emulate_ops; 8706 vcpu->arch.emulate_ctxt = ctxt; 8707 8708 return ctxt; 8709 } 8710 8711 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8712 { 8713 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8714 int cs_db, cs_l; 8715 8716 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8717 8718 ctxt->gpa_available = false; 8719 ctxt->eflags = kvm_get_rflags(vcpu); 8720 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8721 8722 ctxt->eip = kvm_rip_read(vcpu); 8723 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8724 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8725 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8726 cs_db ? X86EMUL_MODE_PROT32 : 8727 X86EMUL_MODE_PROT16; 8728 ctxt->interruptibility = 0; 8729 ctxt->have_exception = false; 8730 ctxt->exception.vector = -1; 8731 ctxt->perm_ok = false; 8732 8733 init_decode_cache(ctxt); 8734 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8735 } 8736 8737 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8738 { 8739 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8740 int ret; 8741 8742 init_emulate_ctxt(vcpu); 8743 8744 ctxt->op_bytes = 2; 8745 ctxt->ad_bytes = 2; 8746 ctxt->_eip = ctxt->eip + inc_eip; 8747 ret = emulate_int_real(ctxt, irq); 8748 8749 if (ret != X86EMUL_CONTINUE) { 8750 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8751 } else { 8752 ctxt->eip = ctxt->_eip; 8753 kvm_rip_write(vcpu, ctxt->eip); 8754 kvm_set_rflags(vcpu, ctxt->eflags); 8755 } 8756 } 8757 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8758 8759 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8760 u8 ndata, u8 *insn_bytes, u8 insn_size) 8761 { 8762 struct kvm_run *run = vcpu->run; 8763 u64 info[5]; 8764 u8 info_start; 8765 8766 /* 8767 * Zero the whole array used to retrieve the exit info, as casting to 8768 * u32 for select entries will leave some chunks uninitialized. 8769 */ 8770 memset(&info, 0, sizeof(info)); 8771 8772 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], 8773 (u32 *)&info[3], (u32 *)&info[4]); 8774 8775 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8776 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8777 8778 /* 8779 * There's currently space for 13 entries, but 5 are used for the exit 8780 * reason and info. Restrict to 4 to reduce the maintenance burden 8781 * when expanding kvm_run.emulation_failure in the future. 8782 */ 8783 if (WARN_ON_ONCE(ndata > 4)) 8784 ndata = 4; 8785 8786 /* Always include the flags as a 'data' entry. */ 8787 info_start = 1; 8788 run->emulation_failure.flags = 0; 8789 8790 if (insn_size) { 8791 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8792 sizeof(run->emulation_failure.insn_bytes) != 16)); 8793 info_start += 2; 8794 run->emulation_failure.flags |= 8795 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8796 run->emulation_failure.insn_size = insn_size; 8797 memset(run->emulation_failure.insn_bytes, 0x90, 8798 sizeof(run->emulation_failure.insn_bytes)); 8799 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8800 } 8801 8802 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8803 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8804 ndata * sizeof(data[0])); 8805 8806 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8807 } 8808 8809 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8810 { 8811 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8812 8813 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8814 ctxt->fetch.end - ctxt->fetch.data); 8815 } 8816 8817 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8818 u8 ndata) 8819 { 8820 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8821 } 8822 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8823 8824 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8825 { 8826 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8827 } 8828 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8829 8830 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa) 8831 { 8832 u32 reason, intr_info, error_code; 8833 struct kvm_run *run = vcpu->run; 8834 u64 info1, info2; 8835 int ndata = 0; 8836 8837 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2, 8838 &intr_info, &error_code); 8839 8840 run->internal.data[ndata++] = info2; 8841 run->internal.data[ndata++] = reason; 8842 run->internal.data[ndata++] = info1; 8843 run->internal.data[ndata++] = gpa; 8844 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 8845 8846 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8847 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 8848 run->internal.ndata = ndata; 8849 } 8850 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit); 8851 8852 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8853 { 8854 struct kvm *kvm = vcpu->kvm; 8855 8856 ++vcpu->stat.insn_emulation_fail; 8857 trace_kvm_emulate_insn_failed(vcpu); 8858 8859 if (emulation_type & EMULTYPE_VMWARE_GP) { 8860 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8861 return 1; 8862 } 8863 8864 if (kvm->arch.exit_on_emulation_error || 8865 (emulation_type & EMULTYPE_SKIP)) { 8866 prepare_emulation_ctxt_failure_exit(vcpu); 8867 return 0; 8868 } 8869 8870 kvm_queue_exception(vcpu, UD_VECTOR); 8871 8872 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { 8873 prepare_emulation_ctxt_failure_exit(vcpu); 8874 return 0; 8875 } 8876 8877 return 1; 8878 } 8879 8880 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu, 8881 gpa_t cr2_or_gpa, 8882 int emulation_type) 8883 { 8884 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8885 return false; 8886 8887 /* 8888 * If the failed instruction faulted on an access to page tables that 8889 * are used to translate any part of the instruction, KVM can't resolve 8890 * the issue by unprotecting the gfn, as zapping the shadow page will 8891 * result in the instruction taking a !PRESENT page fault and thus put 8892 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8893 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8894 * then zap the SPTE to unprotect the gfn, and then do it all over 8895 * again. Report the error to userspace. 8896 */ 8897 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP) 8898 return false; 8899 8900 /* 8901 * If emulation may have been triggered by a write to a shadowed page 8902 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8903 * guest to let the CPU re-execute the instruction in the hope that the 8904 * CPU can cleanly execute the instruction that KVM failed to emulate. 8905 */ 8906 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true); 8907 8908 /* 8909 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible 8910 * all SPTEs were already zapped by a different task. The alternative 8911 * is to report the error to userspace and likely terminate the guest, 8912 * and the last_retry_{eip,addr} checks will prevent retrying the page 8913 * fault indefinitely, i.e. there's nothing to lose by retrying. 8914 */ 8915 return true; 8916 } 8917 8918 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8919 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8920 8921 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8922 unsigned long *db) 8923 { 8924 u32 dr6 = 0; 8925 int i; 8926 u32 enable, rwlen; 8927 8928 enable = dr7; 8929 rwlen = dr7 >> 16; 8930 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8931 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8932 dr6 |= (1 << i); 8933 return dr6; 8934 } 8935 8936 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8937 { 8938 struct kvm_run *kvm_run = vcpu->run; 8939 8940 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8941 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8942 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8943 kvm_run->debug.arch.exception = DB_VECTOR; 8944 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8945 return 0; 8946 } 8947 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8948 return 1; 8949 } 8950 8951 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8952 { 8953 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 8954 int r; 8955 8956 r = kvm_x86_call(skip_emulated_instruction)(vcpu); 8957 if (unlikely(!r)) 8958 return 0; 8959 8960 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 8961 8962 /* 8963 * rflags is the old, "raw" value of the flags. The new value has 8964 * not been saved yet. 8965 * 8966 * This is correct even for TF set by the guest, because "the 8967 * processor will not generate this exception after the instruction 8968 * that sets the TF flag". 8969 */ 8970 if (unlikely(rflags & X86_EFLAGS_TF)) 8971 r = kvm_vcpu_do_singlestep(vcpu); 8972 return r; 8973 } 8974 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8975 8976 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8977 { 8978 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8979 return true; 8980 8981 /* 8982 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is 8983 * active, but AMD compatible CPUs do not. 8984 */ 8985 if (!guest_cpuid_is_intel_compatible(vcpu)) 8986 return false; 8987 8988 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; 8989 } 8990 8991 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8992 int emulation_type, int *r) 8993 { 8994 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8995 8996 /* 8997 * Do not check for code breakpoints if hardware has already done the 8998 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8999 * the instruction has passed all exception checks, and all intercepted 9000 * exceptions that trigger emulation have lower priority than code 9001 * breakpoints, i.e. the fact that the intercepted exception occurred 9002 * means any code breakpoints have already been serviced. 9003 * 9004 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 9005 * hardware has checked the RIP of the magic prefix, but not the RIP of 9006 * the instruction being emulated. The intent of forced emulation is 9007 * to behave as if KVM intercepted the instruction without an exception 9008 * and without a prefix. 9009 */ 9010 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 9011 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 9012 return false; 9013 9014 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 9015 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 9016 struct kvm_run *kvm_run = vcpu->run; 9017 unsigned long eip = kvm_get_linear_rip(vcpu); 9018 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9019 vcpu->arch.guest_debug_dr7, 9020 vcpu->arch.eff_db); 9021 9022 if (dr6 != 0) { 9023 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 9024 kvm_run->debug.arch.pc = eip; 9025 kvm_run->debug.arch.exception = DB_VECTOR; 9026 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9027 *r = 0; 9028 return true; 9029 } 9030 } 9031 9032 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 9033 !kvm_is_code_breakpoint_inhibited(vcpu)) { 9034 unsigned long eip = kvm_get_linear_rip(vcpu); 9035 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9036 vcpu->arch.dr7, 9037 vcpu->arch.db); 9038 9039 if (dr6 != 0) { 9040 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9041 *r = 1; 9042 return true; 9043 } 9044 } 9045 9046 return false; 9047 } 9048 9049 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9050 { 9051 switch (ctxt->opcode_len) { 9052 case 1: 9053 switch (ctxt->b) { 9054 case 0xe4: /* IN */ 9055 case 0xe5: 9056 case 0xec: 9057 case 0xed: 9058 case 0xe6: /* OUT */ 9059 case 0xe7: 9060 case 0xee: 9061 case 0xef: 9062 case 0x6c: /* INS */ 9063 case 0x6d: 9064 case 0x6e: /* OUTS */ 9065 case 0x6f: 9066 return true; 9067 } 9068 break; 9069 case 2: 9070 switch (ctxt->b) { 9071 case 0x33: /* RDPMC */ 9072 return true; 9073 } 9074 break; 9075 } 9076 9077 return false; 9078 } 9079 9080 /* 9081 * Decode an instruction for emulation. The caller is responsible for handling 9082 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9083 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9084 * code breakpoints have higher priority and thus have already been done by 9085 * hardware. 9086 * 9087 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9088 * response to a machine check. 9089 */ 9090 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9091 void *insn, int insn_len) 9092 { 9093 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9094 int r; 9095 9096 init_emulate_ctxt(vcpu); 9097 9098 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9099 9100 trace_kvm_emulate_insn_start(vcpu); 9101 ++vcpu->stat.insn_emulation; 9102 9103 return r; 9104 } 9105 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9106 9107 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9108 int emulation_type, void *insn, int insn_len) 9109 { 9110 int r; 9111 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9112 bool writeback = true; 9113 9114 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9115 (WARN_ON_ONCE(is_guest_mode(vcpu)) || 9116 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))) 9117 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF; 9118 9119 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9120 if (r != X86EMUL_CONTINUE) { 9121 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9122 return 1; 9123 9124 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9125 emulation_type)) 9126 return 1; 9127 9128 if (r == X86EMUL_UNHANDLEABLE_VECTORING) { 9129 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa); 9130 return 0; 9131 } 9132 9133 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9134 return handle_emulation_failure(vcpu, emulation_type); 9135 } 9136 9137 vcpu->arch.l1tf_flush_l1d = true; 9138 9139 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9140 kvm_clear_exception_queue(vcpu); 9141 9142 /* 9143 * Return immediately if RIP hits a code breakpoint, such #DBs 9144 * are fault-like and are higher priority than any faults on 9145 * the code fetch itself. 9146 */ 9147 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9148 return r; 9149 9150 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9151 insn, insn_len); 9152 if (r != EMULATION_OK) { 9153 if ((emulation_type & EMULTYPE_TRAP_UD) || 9154 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9155 kvm_queue_exception(vcpu, UD_VECTOR); 9156 return 1; 9157 } 9158 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9159 emulation_type)) 9160 return 1; 9161 9162 if (ctxt->have_exception && 9163 !(emulation_type & EMULTYPE_SKIP)) { 9164 /* 9165 * #UD should result in just EMULATION_FAILED, and trap-like 9166 * exception should not be encountered during decode. 9167 */ 9168 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9169 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9170 inject_emulated_exception(vcpu); 9171 return 1; 9172 } 9173 return handle_emulation_failure(vcpu, emulation_type); 9174 } 9175 } 9176 9177 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9178 !is_vmware_backdoor_opcode(ctxt)) { 9179 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9180 return 1; 9181 } 9182 9183 /* 9184 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9185 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9186 * The caller is responsible for updating interruptibility state and 9187 * injecting single-step #DBs. 9188 */ 9189 if (emulation_type & EMULTYPE_SKIP) { 9190 if (ctxt->mode != X86EMUL_MODE_PROT64) 9191 ctxt->eip = (u32)ctxt->_eip; 9192 else 9193 ctxt->eip = ctxt->_eip; 9194 9195 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9196 r = 1; 9197 goto writeback; 9198 } 9199 9200 kvm_rip_write(vcpu, ctxt->eip); 9201 if (ctxt->eflags & X86_EFLAGS_RF) 9202 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9203 return 1; 9204 } 9205 9206 /* 9207 * If emulation was caused by a write-protection #PF on a non-page_table 9208 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages, 9209 * and retry the instruction, as the vCPU is likely no longer using the 9210 * gfn as a page table. 9211 */ 9212 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9213 !x86_page_table_writing_insn(ctxt) && 9214 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 9215 return 1; 9216 9217 /* this is needed for vmware backdoor interface to work since it 9218 changes registers values during IO operation */ 9219 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9220 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9221 emulator_invalidate_register_cache(ctxt); 9222 } 9223 9224 restart: 9225 if (emulation_type & EMULTYPE_PF) { 9226 /* Save the faulting GPA (cr2) in the address field */ 9227 ctxt->exception.address = cr2_or_gpa; 9228 9229 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9230 if (vcpu->arch.mmu->root_role.direct) { 9231 ctxt->gpa_available = true; 9232 ctxt->gpa_val = cr2_or_gpa; 9233 } 9234 } else { 9235 /* Sanitize the address out of an abundance of paranoia. */ 9236 ctxt->exception.address = 0; 9237 } 9238 9239 r = x86_emulate_insn(ctxt); 9240 9241 if (r == EMULATION_INTERCEPTED) 9242 return 1; 9243 9244 if (r == EMULATION_FAILED) { 9245 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9246 emulation_type)) 9247 return 1; 9248 9249 return handle_emulation_failure(vcpu, emulation_type); 9250 } 9251 9252 if (ctxt->have_exception) { 9253 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9254 vcpu->mmio_needed = false; 9255 r = 1; 9256 inject_emulated_exception(vcpu); 9257 } else if (vcpu->arch.pio.count) { 9258 if (!vcpu->arch.pio.in) { 9259 /* FIXME: return into emulator if single-stepping. */ 9260 vcpu->arch.pio.count = 0; 9261 } else { 9262 writeback = false; 9263 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9264 } 9265 r = 0; 9266 } else if (vcpu->mmio_needed) { 9267 ++vcpu->stat.mmio_exits; 9268 9269 if (!vcpu->mmio_is_write) 9270 writeback = false; 9271 r = 0; 9272 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9273 } else if (vcpu->arch.complete_userspace_io) { 9274 writeback = false; 9275 r = 0; 9276 } else if (r == EMULATION_RESTART) 9277 goto restart; 9278 else 9279 r = 1; 9280 9281 writeback: 9282 if (writeback) { 9283 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9284 toggle_interruptibility(vcpu, ctxt->interruptibility); 9285 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9286 9287 /* 9288 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9289 * only supports code breakpoints and general detect #DB, both 9290 * of which are fault-like. 9291 */ 9292 if (!ctxt->have_exception || 9293 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9294 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9295 if (ctxt->is_branch) 9296 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9297 kvm_rip_write(vcpu, ctxt->eip); 9298 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9299 r = kvm_vcpu_do_singlestep(vcpu); 9300 kvm_x86_call(update_emulated_instruction)(vcpu); 9301 __kvm_set_rflags(vcpu, ctxt->eflags); 9302 } 9303 9304 /* 9305 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9306 * do nothing, and it will be requested again as soon as 9307 * the shadow expires. But we still need to check here, 9308 * because POPF has no interrupt shadow. 9309 */ 9310 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9311 kvm_make_request(KVM_REQ_EVENT, vcpu); 9312 } else 9313 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9314 9315 return r; 9316 } 9317 9318 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9319 { 9320 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9321 } 9322 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9323 9324 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9325 void *insn, int insn_len) 9326 { 9327 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9328 } 9329 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9330 9331 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9332 { 9333 vcpu->arch.pio.count = 0; 9334 return 1; 9335 } 9336 9337 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9338 { 9339 vcpu->arch.pio.count = 0; 9340 9341 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9342 return 1; 9343 9344 return kvm_skip_emulated_instruction(vcpu); 9345 } 9346 9347 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9348 unsigned short port) 9349 { 9350 unsigned long val = kvm_rax_read(vcpu); 9351 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9352 9353 if (ret) 9354 return ret; 9355 9356 /* 9357 * Workaround userspace that relies on old KVM behavior of %rip being 9358 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9359 */ 9360 if (port == 0x7e && 9361 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9362 vcpu->arch.complete_userspace_io = 9363 complete_fast_pio_out_port_0x7e; 9364 kvm_skip_emulated_instruction(vcpu); 9365 } else { 9366 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9367 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9368 } 9369 return 0; 9370 } 9371 9372 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9373 { 9374 unsigned long val; 9375 9376 /* We should only ever be called with arch.pio.count equal to 1 */ 9377 BUG_ON(vcpu->arch.pio.count != 1); 9378 9379 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9380 vcpu->arch.pio.count = 0; 9381 return 1; 9382 } 9383 9384 /* For size less than 4 we merge, else we zero extend */ 9385 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9386 9387 complete_emulator_pio_in(vcpu, &val); 9388 kvm_rax_write(vcpu, val); 9389 9390 return kvm_skip_emulated_instruction(vcpu); 9391 } 9392 9393 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9394 unsigned short port) 9395 { 9396 unsigned long val; 9397 int ret; 9398 9399 /* For size less than 4 we merge, else we zero extend */ 9400 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9401 9402 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9403 if (ret) { 9404 kvm_rax_write(vcpu, val); 9405 return ret; 9406 } 9407 9408 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9409 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9410 9411 return 0; 9412 } 9413 9414 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9415 { 9416 int ret; 9417 9418 if (in) 9419 ret = kvm_fast_pio_in(vcpu, size, port); 9420 else 9421 ret = kvm_fast_pio_out(vcpu, size, port); 9422 return ret && kvm_skip_emulated_instruction(vcpu); 9423 } 9424 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9425 9426 static int kvmclock_cpu_down_prep(unsigned int cpu) 9427 { 9428 __this_cpu_write(cpu_tsc_khz, 0); 9429 return 0; 9430 } 9431 9432 static void tsc_khz_changed(void *data) 9433 { 9434 struct cpufreq_freqs *freq = data; 9435 unsigned long khz; 9436 9437 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9438 9439 if (data) 9440 khz = freq->new; 9441 else 9442 khz = cpufreq_quick_get(raw_smp_processor_id()); 9443 if (!khz) 9444 khz = tsc_khz; 9445 __this_cpu_write(cpu_tsc_khz, khz); 9446 } 9447 9448 #ifdef CONFIG_X86_64 9449 static void kvm_hyperv_tsc_notifier(void) 9450 { 9451 struct kvm *kvm; 9452 int cpu; 9453 9454 mutex_lock(&kvm_lock); 9455 list_for_each_entry(kvm, &vm_list, vm_list) 9456 kvm_make_mclock_inprogress_request(kvm); 9457 9458 /* no guest entries from this point */ 9459 hyperv_stop_tsc_emulation(); 9460 9461 /* TSC frequency always matches when on Hyper-V */ 9462 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9463 for_each_present_cpu(cpu) 9464 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9465 } 9466 kvm_caps.max_guest_tsc_khz = tsc_khz; 9467 9468 list_for_each_entry(kvm, &vm_list, vm_list) { 9469 __kvm_start_pvclock_update(kvm); 9470 pvclock_update_vm_gtod_copy(kvm); 9471 kvm_end_pvclock_update(kvm); 9472 } 9473 9474 mutex_unlock(&kvm_lock); 9475 } 9476 #endif 9477 9478 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9479 { 9480 struct kvm *kvm; 9481 struct kvm_vcpu *vcpu; 9482 int send_ipi = 0; 9483 unsigned long i; 9484 9485 /* 9486 * We allow guests to temporarily run on slowing clocks, 9487 * provided we notify them after, or to run on accelerating 9488 * clocks, provided we notify them before. Thus time never 9489 * goes backwards. 9490 * 9491 * However, we have a problem. We can't atomically update 9492 * the frequency of a given CPU from this function; it is 9493 * merely a notifier, which can be called from any CPU. 9494 * Changing the TSC frequency at arbitrary points in time 9495 * requires a recomputation of local variables related to 9496 * the TSC for each VCPU. We must flag these local variables 9497 * to be updated and be sure the update takes place with the 9498 * new frequency before any guests proceed. 9499 * 9500 * Unfortunately, the combination of hotplug CPU and frequency 9501 * change creates an intractable locking scenario; the order 9502 * of when these callouts happen is undefined with respect to 9503 * CPU hotplug, and they can race with each other. As such, 9504 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9505 * undefined; you can actually have a CPU frequency change take 9506 * place in between the computation of X and the setting of the 9507 * variable. To protect against this problem, all updates of 9508 * the per_cpu tsc_khz variable are done in an interrupt 9509 * protected IPI, and all callers wishing to update the value 9510 * must wait for a synchronous IPI to complete (which is trivial 9511 * if the caller is on the CPU already). This establishes the 9512 * necessary total order on variable updates. 9513 * 9514 * Note that because a guest time update may take place 9515 * anytime after the setting of the VCPU's request bit, the 9516 * correct TSC value must be set before the request. However, 9517 * to ensure the update actually makes it to any guest which 9518 * starts running in hardware virtualization between the set 9519 * and the acquisition of the spinlock, we must also ping the 9520 * CPU after setting the request bit. 9521 * 9522 */ 9523 9524 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9525 9526 mutex_lock(&kvm_lock); 9527 list_for_each_entry(kvm, &vm_list, vm_list) { 9528 kvm_for_each_vcpu(i, vcpu, kvm) { 9529 if (vcpu->cpu != cpu) 9530 continue; 9531 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9532 if (vcpu->cpu != raw_smp_processor_id()) 9533 send_ipi = 1; 9534 } 9535 } 9536 mutex_unlock(&kvm_lock); 9537 9538 if (freq->old < freq->new && send_ipi) { 9539 /* 9540 * We upscale the frequency. Must make the guest 9541 * doesn't see old kvmclock values while running with 9542 * the new frequency, otherwise we risk the guest sees 9543 * time go backwards. 9544 * 9545 * In case we update the frequency for another cpu 9546 * (which might be in guest context) send an interrupt 9547 * to kick the cpu out of guest context. Next time 9548 * guest context is entered kvmclock will be updated, 9549 * so the guest will not see stale values. 9550 */ 9551 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9552 } 9553 } 9554 9555 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9556 void *data) 9557 { 9558 struct cpufreq_freqs *freq = data; 9559 int cpu; 9560 9561 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9562 return 0; 9563 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9564 return 0; 9565 9566 for_each_cpu(cpu, freq->policy->cpus) 9567 __kvmclock_cpufreq_notifier(freq, cpu); 9568 9569 return 0; 9570 } 9571 9572 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9573 .notifier_call = kvmclock_cpufreq_notifier 9574 }; 9575 9576 static int kvmclock_cpu_online(unsigned int cpu) 9577 { 9578 tsc_khz_changed(NULL); 9579 return 0; 9580 } 9581 9582 static void kvm_timer_init(void) 9583 { 9584 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9585 max_tsc_khz = tsc_khz; 9586 9587 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9588 struct cpufreq_policy *policy; 9589 int cpu; 9590 9591 cpu = get_cpu(); 9592 policy = cpufreq_cpu_get(cpu); 9593 if (policy) { 9594 if (policy->cpuinfo.max_freq) 9595 max_tsc_khz = policy->cpuinfo.max_freq; 9596 cpufreq_cpu_put(policy); 9597 } 9598 put_cpu(); 9599 } 9600 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9601 CPUFREQ_TRANSITION_NOTIFIER); 9602 9603 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9604 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9605 } 9606 } 9607 9608 #ifdef CONFIG_X86_64 9609 static void pvclock_gtod_update_fn(struct work_struct *work) 9610 { 9611 struct kvm *kvm; 9612 struct kvm_vcpu *vcpu; 9613 unsigned long i; 9614 9615 mutex_lock(&kvm_lock); 9616 list_for_each_entry(kvm, &vm_list, vm_list) 9617 kvm_for_each_vcpu(i, vcpu, kvm) 9618 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9619 atomic_set(&kvm_guest_has_master_clock, 0); 9620 mutex_unlock(&kvm_lock); 9621 } 9622 9623 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9624 9625 /* 9626 * Indirection to move queue_work() out of the tk_core.seq write held 9627 * region to prevent possible deadlocks against time accessors which 9628 * are invoked with work related locks held. 9629 */ 9630 static void pvclock_irq_work_fn(struct irq_work *w) 9631 { 9632 queue_work(system_long_wq, &pvclock_gtod_work); 9633 } 9634 9635 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9636 9637 /* 9638 * Notification about pvclock gtod data update. 9639 */ 9640 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9641 void *priv) 9642 { 9643 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9644 struct timekeeper *tk = priv; 9645 9646 update_pvclock_gtod(tk); 9647 9648 /* 9649 * Disable master clock if host does not trust, or does not use, 9650 * TSC based clocksource. Delegate queue_work() to irq_work as 9651 * this is invoked with tk_core.seq write held. 9652 */ 9653 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9654 atomic_read(&kvm_guest_has_master_clock) != 0) 9655 irq_work_queue(&pvclock_irq_work); 9656 return 0; 9657 } 9658 9659 static struct notifier_block pvclock_gtod_notifier = { 9660 .notifier_call = pvclock_gtod_notify, 9661 }; 9662 #endif 9663 9664 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9665 { 9666 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9667 9668 #define __KVM_X86_OP(func) \ 9669 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9670 #define KVM_X86_OP(func) \ 9671 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9672 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9673 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9674 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9675 (void *)__static_call_return0); 9676 #include <asm/kvm-x86-ops.h> 9677 #undef __KVM_X86_OP 9678 9679 kvm_pmu_ops_update(ops->pmu_ops); 9680 } 9681 9682 static int kvm_x86_check_processor_compatibility(void) 9683 { 9684 int cpu = smp_processor_id(); 9685 struct cpuinfo_x86 *c = &cpu_data(cpu); 9686 9687 /* 9688 * Compatibility checks are done when loading KVM and when enabling 9689 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9690 * compatible, i.e. KVM should never perform a compatibility check on 9691 * an offline CPU. 9692 */ 9693 WARN_ON(!cpu_online(cpu)); 9694 9695 if (__cr4_reserved_bits(cpu_has, c) != 9696 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9697 return -EIO; 9698 9699 return kvm_x86_call(check_processor_compatibility)(); 9700 } 9701 9702 static void kvm_x86_check_cpu_compat(void *ret) 9703 { 9704 *(int *)ret = kvm_x86_check_processor_compatibility(); 9705 } 9706 9707 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9708 { 9709 u64 host_pat; 9710 int r, cpu; 9711 9712 guard(mutex)(&vendor_module_lock); 9713 9714 if (kvm_x86_ops.enable_virtualization_cpu) { 9715 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9716 return -EEXIST; 9717 } 9718 9719 /* 9720 * KVM explicitly assumes that the guest has an FPU and 9721 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9722 * vCPU's FPU state as a fxregs_state struct. 9723 */ 9724 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9725 pr_err("inadequate fpu\n"); 9726 return -EOPNOTSUPP; 9727 } 9728 9729 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9730 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9731 return -EOPNOTSUPP; 9732 } 9733 9734 /* 9735 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9736 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9737 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9738 * with an exception. PAT[0] is set to WB on RESET and also by the 9739 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9740 */ 9741 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9742 (host_pat & GENMASK(2, 0)) != 6) { 9743 pr_err("host PAT[0] is not WB\n"); 9744 return -EIO; 9745 } 9746 9747 memset(&kvm_caps, 0, sizeof(kvm_caps)); 9748 9749 x86_emulator_cache = kvm_alloc_emulator_cache(); 9750 if (!x86_emulator_cache) { 9751 pr_err("failed to allocate cache for x86 emulator\n"); 9752 return -ENOMEM; 9753 } 9754 9755 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9756 if (!user_return_msrs) { 9757 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9758 r = -ENOMEM; 9759 goto out_free_x86_emulator_cache; 9760 } 9761 kvm_nr_uret_msrs = 0; 9762 9763 r = kvm_mmu_vendor_module_init(); 9764 if (r) 9765 goto out_free_percpu; 9766 9767 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 9768 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 9769 9770 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9771 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9772 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; 9773 } 9774 9775 rdmsrl_safe(MSR_EFER, &kvm_host.efer); 9776 9777 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9778 rdmsrl(MSR_IA32_XSS, kvm_host.xss); 9779 9780 kvm_init_pmu_capability(ops->pmu_ops); 9781 9782 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9783 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); 9784 9785 r = ops->hardware_setup(); 9786 if (r != 0) 9787 goto out_mmu_exit; 9788 9789 kvm_ops_update(ops); 9790 9791 for_each_online_cpu(cpu) { 9792 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9793 if (r < 0) 9794 goto out_unwind_ops; 9795 } 9796 9797 /* 9798 * Point of no return! DO NOT add error paths below this point unless 9799 * absolutely necessary, as most operations from this point forward 9800 * require unwinding. 9801 */ 9802 kvm_timer_init(); 9803 9804 if (pi_inject_timer == -1) 9805 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9806 #ifdef CONFIG_X86_64 9807 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9808 9809 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9810 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9811 #endif 9812 9813 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9814 9815 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 9816 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 9817 9818 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9819 kvm_caps.supported_xss = 0; 9820 9821 if (kvm_caps.has_tsc_control) { 9822 /* 9823 * Make sure the user can only configure tsc_khz values that 9824 * fit into a signed integer. 9825 * A min value is not calculated because it will always 9826 * be 1 on all machines. 9827 */ 9828 u64 max = min(0x7fffffffULL, 9829 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9830 kvm_caps.max_guest_tsc_khz = max; 9831 } 9832 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9833 kvm_init_msr_lists(); 9834 return 0; 9835 9836 out_unwind_ops: 9837 kvm_x86_ops.enable_virtualization_cpu = NULL; 9838 kvm_x86_call(hardware_unsetup)(); 9839 out_mmu_exit: 9840 kvm_mmu_vendor_module_exit(); 9841 out_free_percpu: 9842 free_percpu(user_return_msrs); 9843 out_free_x86_emulator_cache: 9844 kmem_cache_destroy(x86_emulator_cache); 9845 return r; 9846 } 9847 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9848 9849 void kvm_x86_vendor_exit(void) 9850 { 9851 kvm_unregister_perf_callbacks(); 9852 9853 #ifdef CONFIG_X86_64 9854 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9855 clear_hv_tscchange_cb(); 9856 #endif 9857 kvm_lapic_exit(); 9858 9859 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9860 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9861 CPUFREQ_TRANSITION_NOTIFIER); 9862 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9863 } 9864 #ifdef CONFIG_X86_64 9865 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9866 irq_work_sync(&pvclock_irq_work); 9867 cancel_work_sync(&pvclock_gtod_work); 9868 #endif 9869 kvm_x86_call(hardware_unsetup)(); 9870 kvm_mmu_vendor_module_exit(); 9871 free_percpu(user_return_msrs); 9872 kmem_cache_destroy(x86_emulator_cache); 9873 #ifdef CONFIG_KVM_XEN 9874 static_key_deferred_flush(&kvm_xen_enabled); 9875 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9876 #endif 9877 mutex_lock(&vendor_module_lock); 9878 kvm_x86_ops.enable_virtualization_cpu = NULL; 9879 mutex_unlock(&vendor_module_lock); 9880 } 9881 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9882 9883 #ifdef CONFIG_X86_64 9884 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9885 unsigned long clock_type) 9886 { 9887 struct kvm_clock_pairing clock_pairing; 9888 struct timespec64 ts; 9889 u64 cycle; 9890 int ret; 9891 9892 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9893 return -KVM_EOPNOTSUPP; 9894 9895 /* 9896 * When tsc is in permanent catchup mode guests won't be able to use 9897 * pvclock_read_retry loop to get consistent view of pvclock 9898 */ 9899 if (vcpu->arch.tsc_always_catchup) 9900 return -KVM_EOPNOTSUPP; 9901 9902 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9903 return -KVM_EOPNOTSUPP; 9904 9905 clock_pairing.sec = ts.tv_sec; 9906 clock_pairing.nsec = ts.tv_nsec; 9907 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9908 clock_pairing.flags = 0; 9909 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9910 9911 ret = 0; 9912 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9913 sizeof(struct kvm_clock_pairing))) 9914 ret = -KVM_EFAULT; 9915 9916 return ret; 9917 } 9918 #endif 9919 9920 /* 9921 * kvm_pv_kick_cpu_op: Kick a vcpu. 9922 * 9923 * @apicid - apicid of vcpu to be kicked. 9924 */ 9925 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9926 { 9927 /* 9928 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9929 * common code, e.g. for tracing. Defer initialization to the compiler. 9930 */ 9931 struct kvm_lapic_irq lapic_irq = { 9932 .delivery_mode = APIC_DM_REMRD, 9933 .dest_mode = APIC_DEST_PHYSICAL, 9934 .shorthand = APIC_DEST_NOSHORT, 9935 .dest_id = apicid, 9936 }; 9937 9938 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9939 } 9940 9941 bool kvm_apicv_activated(struct kvm *kvm) 9942 { 9943 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9944 } 9945 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9946 9947 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9948 { 9949 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9950 ulong vcpu_reasons = 9951 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); 9952 9953 return (vm_reasons | vcpu_reasons) == 0; 9954 } 9955 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9956 9957 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9958 enum kvm_apicv_inhibit reason, bool set) 9959 { 9960 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; 9961 9962 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); 9963 9964 if (set) 9965 __set_bit(reason, inhibits); 9966 else 9967 __clear_bit(reason, inhibits); 9968 9969 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9970 } 9971 9972 static void kvm_apicv_init(struct kvm *kvm) 9973 { 9974 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 9975 APICV_INHIBIT_REASON_DISABLED; 9976 9977 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 9978 9979 init_rwsem(&kvm->arch.apicv_update_lock); 9980 } 9981 9982 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9983 { 9984 struct kvm_vcpu *target = NULL; 9985 struct kvm_apic_map *map; 9986 9987 vcpu->stat.directed_yield_attempted++; 9988 9989 if (single_task_running()) 9990 goto no_yield; 9991 9992 rcu_read_lock(); 9993 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9994 9995 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9996 target = map->phys_map[dest_id]->vcpu; 9997 9998 rcu_read_unlock(); 9999 10000 if (!target || !READ_ONCE(target->ready)) 10001 goto no_yield; 10002 10003 /* Ignore requests to yield to self */ 10004 if (vcpu == target) 10005 goto no_yield; 10006 10007 if (kvm_vcpu_yield_to(target) <= 0) 10008 goto no_yield; 10009 10010 vcpu->stat.directed_yield_successful++; 10011 10012 no_yield: 10013 return; 10014 } 10015 10016 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10017 { 10018 u64 ret = vcpu->run->hypercall.ret; 10019 10020 if (!is_64_bit_hypercall(vcpu)) 10021 ret = (u32)ret; 10022 kvm_rax_write(vcpu, ret); 10023 return kvm_skip_emulated_instruction(vcpu); 10024 } 10025 10026 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 10027 unsigned long a0, unsigned long a1, 10028 unsigned long a2, unsigned long a3, 10029 int op_64_bit, int cpl, 10030 int (*complete_hypercall)(struct kvm_vcpu *)) 10031 { 10032 unsigned long ret; 10033 10034 ++vcpu->stat.hypercalls; 10035 10036 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10037 10038 if (!op_64_bit) { 10039 nr &= 0xFFFFFFFF; 10040 a0 &= 0xFFFFFFFF; 10041 a1 &= 0xFFFFFFFF; 10042 a2 &= 0xFFFFFFFF; 10043 a3 &= 0xFFFFFFFF; 10044 } 10045 10046 if (cpl) { 10047 ret = -KVM_EPERM; 10048 goto out; 10049 } 10050 10051 ret = -KVM_ENOSYS; 10052 10053 switch (nr) { 10054 case KVM_HC_VAPIC_POLL_IRQ: 10055 ret = 0; 10056 break; 10057 case KVM_HC_KICK_CPU: 10058 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10059 break; 10060 10061 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10062 kvm_sched_yield(vcpu, a1); 10063 ret = 0; 10064 break; 10065 #ifdef CONFIG_X86_64 10066 case KVM_HC_CLOCK_PAIRING: 10067 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10068 break; 10069 #endif 10070 case KVM_HC_SEND_IPI: 10071 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10072 break; 10073 10074 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10075 break; 10076 case KVM_HC_SCHED_YIELD: 10077 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10078 break; 10079 10080 kvm_sched_yield(vcpu, a0); 10081 ret = 0; 10082 break; 10083 case KVM_HC_MAP_GPA_RANGE: { 10084 u64 gpa = a0, npages = a1, attrs = a2; 10085 10086 ret = -KVM_ENOSYS; 10087 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) 10088 break; 10089 10090 if (!PAGE_ALIGNED(gpa) || !npages || 10091 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10092 ret = -KVM_EINVAL; 10093 break; 10094 } 10095 10096 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10097 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10098 /* 10099 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 10100 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 10101 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 10102 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 10103 */ 10104 vcpu->run->hypercall.ret = 0; 10105 vcpu->run->hypercall.args[0] = gpa; 10106 vcpu->run->hypercall.args[1] = npages; 10107 vcpu->run->hypercall.args[2] = attrs; 10108 vcpu->run->hypercall.flags = 0; 10109 if (op_64_bit) 10110 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10111 10112 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10113 vcpu->arch.complete_userspace_io = complete_hypercall; 10114 return 0; 10115 } 10116 default: 10117 ret = -KVM_ENOSYS; 10118 break; 10119 } 10120 10121 out: 10122 vcpu->run->hypercall.ret = ret; 10123 return 1; 10124 } 10125 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall); 10126 10127 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10128 { 10129 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10130 return kvm_xen_hypercall(vcpu); 10131 10132 if (kvm_hv_hypercall_enabled(vcpu)) 10133 return kvm_hv_hypercall(vcpu); 10134 10135 return __kvm_emulate_hypercall(vcpu, rax, rbx, rcx, rdx, rsi, 10136 is_64_bit_hypercall(vcpu), 10137 kvm_x86_call(get_cpl)(vcpu), 10138 complete_hypercall_exit); 10139 } 10140 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10141 10142 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10143 { 10144 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10145 char instruction[3]; 10146 unsigned long rip = kvm_rip_read(vcpu); 10147 10148 /* 10149 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10150 * the pieces. 10151 */ 10152 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10153 ctxt->exception.error_code_valid = false; 10154 ctxt->exception.vector = UD_VECTOR; 10155 ctxt->have_exception = true; 10156 return X86EMUL_PROPAGATE_FAULT; 10157 } 10158 10159 kvm_x86_call(patch_hypercall)(vcpu, instruction); 10160 10161 return emulator_write_emulated(ctxt, rip, instruction, 3, 10162 &ctxt->exception); 10163 } 10164 10165 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10166 { 10167 return vcpu->run->request_interrupt_window && 10168 likely(!pic_in_kernel(vcpu->kvm)); 10169 } 10170 10171 /* Called within kvm->srcu read side. */ 10172 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10173 { 10174 struct kvm_run *kvm_run = vcpu->run; 10175 10176 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); 10177 kvm_run->cr8 = kvm_get_cr8(vcpu); 10178 kvm_run->apic_base = vcpu->arch.apic_base; 10179 10180 kvm_run->ready_for_interrupt_injection = 10181 pic_in_kernel(vcpu->kvm) || 10182 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10183 10184 if (is_smm(vcpu)) 10185 kvm_run->flags |= KVM_RUN_X86_SMM; 10186 if (is_guest_mode(vcpu)) 10187 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; 10188 } 10189 10190 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10191 { 10192 int max_irr, tpr; 10193 10194 if (!kvm_x86_ops.update_cr8_intercept) 10195 return; 10196 10197 if (!lapic_in_kernel(vcpu)) 10198 return; 10199 10200 if (vcpu->arch.apic->apicv_active) 10201 return; 10202 10203 if (!vcpu->arch.apic->vapic_addr) 10204 max_irr = kvm_lapic_find_highest_irr(vcpu); 10205 else 10206 max_irr = -1; 10207 10208 if (max_irr != -1) 10209 max_irr >>= 4; 10210 10211 tpr = kvm_lapic_get_cr8(vcpu); 10212 10213 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); 10214 } 10215 10216 10217 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10218 { 10219 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10220 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10221 return 1; 10222 } 10223 10224 return kvm_x86_ops.nested_ops->check_events(vcpu); 10225 } 10226 10227 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10228 { 10229 /* 10230 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10231 * exceptions don't report error codes. The presence of an error code 10232 * is carried with the exception and only stripped when the exception 10233 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10234 * report an error code despite the CPU being in Real Mode. 10235 */ 10236 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10237 10238 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10239 vcpu->arch.exception.has_error_code, 10240 vcpu->arch.exception.error_code, 10241 vcpu->arch.exception.injected); 10242 10243 kvm_x86_call(inject_exception)(vcpu); 10244 } 10245 10246 /* 10247 * Check for any event (interrupt or exception) that is ready to be injected, 10248 * and if there is at least one event, inject the event with the highest 10249 * priority. This handles both "pending" events, i.e. events that have never 10250 * been injected into the guest, and "injected" events, i.e. events that were 10251 * injected as part of a previous VM-Enter, but weren't successfully delivered 10252 * and need to be re-injected. 10253 * 10254 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10255 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10256 * be able to inject exceptions in the "middle" of an instruction, and so must 10257 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10258 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10259 * boundaries is necessary and correct. 10260 * 10261 * For simplicity, KVM uses a single path to inject all events (except events 10262 * that are injected directly from L1 to L2) and doesn't explicitly track 10263 * instruction boundaries for asynchronous events. However, because VM-Exits 10264 * that can occur during instruction execution typically result in KVM skipping 10265 * the instruction or injecting an exception, e.g. instruction and exception 10266 * intercepts, and because pending exceptions have higher priority than pending 10267 * interrupts, KVM still honors instruction boundaries in most scenarios. 10268 * 10269 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10270 * the instruction or inject an exception, then KVM can incorrecty inject a new 10271 * asynchronous event if the event became pending after the CPU fetched the 10272 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10273 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10274 * injected on the restarted instruction instead of being deferred until the 10275 * instruction completes. 10276 * 10277 * In practice, this virtualization hole is unlikely to be observed by the 10278 * guest, and even less likely to cause functional problems. To detect the 10279 * hole, the guest would have to trigger an event on a side effect of an early 10280 * phase of instruction execution, e.g. on the instruction fetch from memory. 10281 * And for it to be a functional problem, the guest would need to depend on the 10282 * ordering between that side effect, the instruction completing, _and_ the 10283 * delivery of the asynchronous event. 10284 */ 10285 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10286 bool *req_immediate_exit) 10287 { 10288 bool can_inject; 10289 int r; 10290 10291 /* 10292 * Process nested events first, as nested VM-Exit supersedes event 10293 * re-injection. If there's an event queued for re-injection, it will 10294 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10295 */ 10296 if (is_guest_mode(vcpu)) 10297 r = kvm_check_nested_events(vcpu); 10298 else 10299 r = 0; 10300 10301 /* 10302 * Re-inject exceptions and events *especially* if immediate entry+exit 10303 * to/from L2 is needed, as any event that has already been injected 10304 * into L2 needs to complete its lifecycle before injecting a new event. 10305 * 10306 * Don't re-inject an NMI or interrupt if there is a pending exception. 10307 * This collision arises if an exception occurred while vectoring the 10308 * injected event, KVM intercepted said exception, and KVM ultimately 10309 * determined the fault belongs to the guest and queues the exception 10310 * for injection back into the guest. 10311 * 10312 * "Injected" interrupts can also collide with pending exceptions if 10313 * userspace ignores the "ready for injection" flag and blindly queues 10314 * an interrupt. In that case, prioritizing the exception is correct, 10315 * as the exception "occurred" before the exit to userspace. Trap-like 10316 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10317 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10318 * priority, they're only generated (pended) during instruction 10319 * execution, and interrupts are recognized at instruction boundaries. 10320 * Thus a pending fault-like exception means the fault occurred on the 10321 * *previous* instruction and must be serviced prior to recognizing any 10322 * new events in order to fully complete the previous instruction. 10323 */ 10324 if (vcpu->arch.exception.injected) 10325 kvm_inject_exception(vcpu); 10326 else if (kvm_is_exception_pending(vcpu)) 10327 ; /* see above */ 10328 else if (vcpu->arch.nmi_injected) 10329 kvm_x86_call(inject_nmi)(vcpu); 10330 else if (vcpu->arch.interrupt.injected) 10331 kvm_x86_call(inject_irq)(vcpu, true); 10332 10333 /* 10334 * Exceptions that morph to VM-Exits are handled above, and pending 10335 * exceptions on top of injected exceptions that do not VM-Exit should 10336 * either morph to #DF or, sadly, override the injected exception. 10337 */ 10338 WARN_ON_ONCE(vcpu->arch.exception.injected && 10339 vcpu->arch.exception.pending); 10340 10341 /* 10342 * Bail if immediate entry+exit to/from the guest is needed to complete 10343 * nested VM-Enter or event re-injection so that a different pending 10344 * event can be serviced (or if KVM needs to exit to userspace). 10345 * 10346 * Otherwise, continue processing events even if VM-Exit occurred. The 10347 * VM-Exit will have cleared exceptions that were meant for L2, but 10348 * there may now be events that can be injected into L1. 10349 */ 10350 if (r < 0) 10351 goto out; 10352 10353 /* 10354 * A pending exception VM-Exit should either result in nested VM-Exit 10355 * or force an immediate re-entry and exit to/from L2, and exception 10356 * VM-Exits cannot be injected (flag should _never_ be set). 10357 */ 10358 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10359 vcpu->arch.exception_vmexit.pending); 10360 10361 /* 10362 * New events, other than exceptions, cannot be injected if KVM needs 10363 * to re-inject a previous event. See above comments on re-injecting 10364 * for why pending exceptions get priority. 10365 */ 10366 can_inject = !kvm_event_needs_reinjection(vcpu); 10367 10368 if (vcpu->arch.exception.pending) { 10369 /* 10370 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10371 * value pushed on the stack. Trap-like exception and all #DBs 10372 * leave RF as-is (KVM follows Intel's behavior in this regard; 10373 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10374 * 10375 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10376 * describe the behavior of General Detect #DBs, which are 10377 * fault-like. They do _not_ set RF, a la code breakpoints. 10378 */ 10379 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10380 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10381 X86_EFLAGS_RF); 10382 10383 if (vcpu->arch.exception.vector == DB_VECTOR) { 10384 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10385 if (vcpu->arch.dr7 & DR7_GD) { 10386 vcpu->arch.dr7 &= ~DR7_GD; 10387 kvm_update_dr7(vcpu); 10388 } 10389 } 10390 10391 kvm_inject_exception(vcpu); 10392 10393 vcpu->arch.exception.pending = false; 10394 vcpu->arch.exception.injected = true; 10395 10396 can_inject = false; 10397 } 10398 10399 /* Don't inject interrupts if the user asked to avoid doing so */ 10400 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10401 return 0; 10402 10403 /* 10404 * Finally, inject interrupt events. If an event cannot be injected 10405 * due to architectural conditions (e.g. IF=0) a window-open exit 10406 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10407 * and can architecturally be injected, but we cannot do it right now: 10408 * an interrupt could have arrived just now and we have to inject it 10409 * as a vmexit, or there could already an event in the queue, which is 10410 * indicated by can_inject. In that case we request an immediate exit 10411 * in order to make progress and get back here for another iteration. 10412 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10413 */ 10414 #ifdef CONFIG_KVM_SMM 10415 if (vcpu->arch.smi_pending) { 10416 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : 10417 -EBUSY; 10418 if (r < 0) 10419 goto out; 10420 if (r) { 10421 vcpu->arch.smi_pending = false; 10422 ++vcpu->arch.smi_count; 10423 enter_smm(vcpu); 10424 can_inject = false; 10425 } else 10426 kvm_x86_call(enable_smi_window)(vcpu); 10427 } 10428 #endif 10429 10430 if (vcpu->arch.nmi_pending) { 10431 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : 10432 -EBUSY; 10433 if (r < 0) 10434 goto out; 10435 if (r) { 10436 --vcpu->arch.nmi_pending; 10437 vcpu->arch.nmi_injected = true; 10438 kvm_x86_call(inject_nmi)(vcpu); 10439 can_inject = false; 10440 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); 10441 } 10442 if (vcpu->arch.nmi_pending) 10443 kvm_x86_call(enable_nmi_window)(vcpu); 10444 } 10445 10446 if (kvm_cpu_has_injectable_intr(vcpu)) { 10447 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : 10448 -EBUSY; 10449 if (r < 0) 10450 goto out; 10451 if (r) { 10452 int irq = kvm_cpu_get_interrupt(vcpu); 10453 10454 if (!WARN_ON_ONCE(irq == -1)) { 10455 kvm_queue_interrupt(vcpu, irq, false); 10456 kvm_x86_call(inject_irq)(vcpu, false); 10457 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); 10458 } 10459 } 10460 if (kvm_cpu_has_injectable_intr(vcpu)) 10461 kvm_x86_call(enable_irq_window)(vcpu); 10462 } 10463 10464 if (is_guest_mode(vcpu) && 10465 kvm_x86_ops.nested_ops->has_events && 10466 kvm_x86_ops.nested_ops->has_events(vcpu, true)) 10467 *req_immediate_exit = true; 10468 10469 /* 10470 * KVM must never queue a new exception while injecting an event; KVM 10471 * is done emulating and should only propagate the to-be-injected event 10472 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10473 * infinite loop as KVM will bail from VM-Enter to inject the pending 10474 * exception and start the cycle all over. 10475 * 10476 * Exempt triple faults as they have special handling and won't put the 10477 * vCPU into an infinite loop. Triple fault can be queued when running 10478 * VMX without unrestricted guest, as that requires KVM to emulate Real 10479 * Mode events (see kvm_inject_realmode_interrupt()). 10480 */ 10481 WARN_ON_ONCE(vcpu->arch.exception.pending || 10482 vcpu->arch.exception_vmexit.pending); 10483 return 0; 10484 10485 out: 10486 if (r == -EBUSY) { 10487 *req_immediate_exit = true; 10488 r = 0; 10489 } 10490 return r; 10491 } 10492 10493 static void process_nmi(struct kvm_vcpu *vcpu) 10494 { 10495 unsigned int limit; 10496 10497 /* 10498 * x86 is limited to one NMI pending, but because KVM can't react to 10499 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10500 * scheduled out, KVM needs to play nice with two queued NMIs showing 10501 * up at the same time. To handle this scenario, allow two NMIs to be 10502 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10503 * waiting for a previous NMI injection to complete (which effectively 10504 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10505 * will request an NMI window to handle the second NMI. 10506 */ 10507 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10508 limit = 1; 10509 else 10510 limit = 2; 10511 10512 /* 10513 * Adjust the limit to account for pending virtual NMIs, which aren't 10514 * tracked in vcpu->arch.nmi_pending. 10515 */ 10516 if (kvm_x86_call(is_vnmi_pending)(vcpu)) 10517 limit--; 10518 10519 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10520 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10521 10522 if (vcpu->arch.nmi_pending && 10523 (kvm_x86_call(set_vnmi_pending)(vcpu))) 10524 vcpu->arch.nmi_pending--; 10525 10526 if (vcpu->arch.nmi_pending) 10527 kvm_make_request(KVM_REQ_EVENT, vcpu); 10528 } 10529 10530 /* Return total number of NMIs pending injection to the VM */ 10531 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10532 { 10533 return vcpu->arch.nmi_pending + 10534 kvm_x86_call(is_vnmi_pending)(vcpu); 10535 } 10536 10537 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10538 unsigned long *vcpu_bitmap) 10539 { 10540 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10541 } 10542 10543 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10544 { 10545 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10546 } 10547 10548 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10549 { 10550 struct kvm_lapic *apic = vcpu->arch.apic; 10551 bool activate; 10552 10553 if (!lapic_in_kernel(vcpu)) 10554 return; 10555 10556 down_read(&vcpu->kvm->arch.apicv_update_lock); 10557 preempt_disable(); 10558 10559 /* Do not activate APICV when APIC is disabled */ 10560 activate = kvm_vcpu_apicv_activated(vcpu) && 10561 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10562 10563 if (apic->apicv_active == activate) 10564 goto out; 10565 10566 apic->apicv_active = activate; 10567 kvm_apic_update_apicv(vcpu); 10568 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); 10569 10570 /* 10571 * When APICv gets disabled, we may still have injected interrupts 10572 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10573 * still active when the interrupt got accepted. Make sure 10574 * kvm_check_and_inject_events() is called to check for that. 10575 */ 10576 if (!apic->apicv_active) 10577 kvm_make_request(KVM_REQ_EVENT, vcpu); 10578 10579 out: 10580 preempt_enable(); 10581 up_read(&vcpu->kvm->arch.apicv_update_lock); 10582 } 10583 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10584 10585 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10586 { 10587 if (!lapic_in_kernel(vcpu)) 10588 return; 10589 10590 /* 10591 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10592 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10593 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10594 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10595 * this case so that KVM can use the AVIC doorbell to inject interrupts 10596 * to running vCPUs, but KVM must not create SPTEs for the APIC base as 10597 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10598 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10599 * access page is sticky. 10600 */ 10601 if (apic_x2apic_mode(vcpu->arch.apic) && 10602 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10603 kvm_inhibit_apic_access_page(vcpu); 10604 10605 __kvm_vcpu_update_apicv(vcpu); 10606 } 10607 10608 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10609 enum kvm_apicv_inhibit reason, bool set) 10610 { 10611 unsigned long old, new; 10612 10613 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10614 10615 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10616 return; 10617 10618 old = new = kvm->arch.apicv_inhibit_reasons; 10619 10620 set_or_clear_apicv_inhibit(&new, reason, set); 10621 10622 if (!!old != !!new) { 10623 /* 10624 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10625 * false positives in the sanity check WARN in vcpu_enter_guest(). 10626 * This task will wait for all vCPUs to ack the kick IRQ before 10627 * updating apicv_inhibit_reasons, and all other vCPUs will 10628 * block on acquiring apicv_update_lock so that vCPUs can't 10629 * redo vcpu_enter_guest() without seeing the new inhibit state. 10630 * 10631 * Note, holding apicv_update_lock and taking it in the read 10632 * side (handling the request) also prevents other vCPUs from 10633 * servicing the request with a stale apicv_inhibit_reasons. 10634 */ 10635 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10636 kvm->arch.apicv_inhibit_reasons = new; 10637 if (new) { 10638 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10639 int idx = srcu_read_lock(&kvm->srcu); 10640 10641 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10642 srcu_read_unlock(&kvm->srcu, idx); 10643 } 10644 } else { 10645 kvm->arch.apicv_inhibit_reasons = new; 10646 } 10647 } 10648 10649 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10650 enum kvm_apicv_inhibit reason, bool set) 10651 { 10652 if (!enable_apicv) 10653 return; 10654 10655 down_write(&kvm->arch.apicv_update_lock); 10656 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10657 up_write(&kvm->arch.apicv_update_lock); 10658 } 10659 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10660 10661 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10662 { 10663 if (!kvm_apic_present(vcpu)) 10664 return; 10665 10666 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10667 10668 kvm_x86_call(sync_pir_to_irr)(vcpu); 10669 10670 if (irqchip_split(vcpu->kvm)) 10671 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10672 else if (ioapic_in_kernel(vcpu->kvm)) 10673 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10674 10675 if (is_guest_mode(vcpu)) 10676 vcpu->arch.load_eoi_exitmap_pending = true; 10677 else 10678 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10679 } 10680 10681 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10682 { 10683 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10684 return; 10685 10686 #ifdef CONFIG_KVM_HYPERV 10687 if (to_hv_vcpu(vcpu)) { 10688 u64 eoi_exit_bitmap[4]; 10689 10690 bitmap_or((ulong *)eoi_exit_bitmap, 10691 vcpu->arch.ioapic_handled_vectors, 10692 to_hv_synic(vcpu)->vec_bitmap, 256); 10693 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10694 return; 10695 } 10696 #endif 10697 kvm_x86_call(load_eoi_exitmap)( 10698 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10699 } 10700 10701 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10702 { 10703 kvm_x86_call(guest_memory_reclaimed)(kvm); 10704 } 10705 10706 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10707 { 10708 if (!lapic_in_kernel(vcpu)) 10709 return; 10710 10711 kvm_x86_call(set_apic_access_page_addr)(vcpu); 10712 } 10713 10714 /* 10715 * Called within kvm->srcu read side. 10716 * Returns 1 to let vcpu_run() continue the guest execution loop without 10717 * exiting to the userspace. Otherwise, the value will be returned to the 10718 * userspace. 10719 */ 10720 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10721 { 10722 int r; 10723 bool req_int_win = 10724 dm_request_for_irq_injection(vcpu) && 10725 kvm_cpu_accept_dm_intr(vcpu); 10726 fastpath_t exit_fastpath; 10727 10728 bool req_immediate_exit = false; 10729 10730 if (kvm_request_pending(vcpu)) { 10731 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10732 r = -EIO; 10733 goto out; 10734 } 10735 10736 if (kvm_dirty_ring_check_request(vcpu)) { 10737 r = 0; 10738 goto out; 10739 } 10740 10741 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10742 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10743 r = 0; 10744 goto out; 10745 } 10746 } 10747 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10748 kvm_mmu_free_obsolete_roots(vcpu); 10749 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10750 __kvm_migrate_timers(vcpu); 10751 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10752 kvm_update_masterclock(vcpu->kvm); 10753 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10754 kvm_gen_kvmclock_update(vcpu); 10755 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10756 r = kvm_guest_time_update(vcpu); 10757 if (unlikely(r)) 10758 goto out; 10759 } 10760 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10761 kvm_mmu_sync_roots(vcpu); 10762 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10763 kvm_mmu_load_pgd(vcpu); 10764 10765 /* 10766 * Note, the order matters here, as flushing "all" TLB entries 10767 * also flushes the "current" TLB entries, i.e. servicing the 10768 * flush "all" will clear any request to flush "current". 10769 */ 10770 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10771 kvm_vcpu_flush_tlb_all(vcpu); 10772 10773 kvm_service_local_tlb_flush_requests(vcpu); 10774 10775 /* 10776 * Fall back to a "full" guest flush if Hyper-V's precise 10777 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10778 * the flushes are considered "remote" and not "local" because 10779 * the requests can be initiated from other vCPUs. 10780 */ 10781 #ifdef CONFIG_KVM_HYPERV 10782 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10783 kvm_hv_vcpu_flush_tlb(vcpu)) 10784 kvm_vcpu_flush_tlb_guest(vcpu); 10785 #endif 10786 10787 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10788 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10789 r = 0; 10790 goto out; 10791 } 10792 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10793 if (is_guest_mode(vcpu)) 10794 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10795 10796 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10797 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10798 vcpu->mmio_needed = 0; 10799 r = 0; 10800 goto out; 10801 } 10802 } 10803 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10804 /* Page is swapped out. Do synthetic halt */ 10805 vcpu->arch.apf.halted = true; 10806 r = 1; 10807 goto out; 10808 } 10809 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10810 record_steal_time(vcpu); 10811 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10812 kvm_pmu_handle_event(vcpu); 10813 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10814 kvm_pmu_deliver_pmi(vcpu); 10815 #ifdef CONFIG_KVM_SMM 10816 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10817 process_smi(vcpu); 10818 #endif 10819 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10820 process_nmi(vcpu); 10821 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10822 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10823 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10824 vcpu->arch.ioapic_handled_vectors)) { 10825 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10826 vcpu->run->eoi.vector = 10827 vcpu->arch.pending_ioapic_eoi; 10828 r = 0; 10829 goto out; 10830 } 10831 } 10832 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10833 vcpu_scan_ioapic(vcpu); 10834 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10835 vcpu_load_eoi_exitmap(vcpu); 10836 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10837 kvm_vcpu_reload_apic_access_page(vcpu); 10838 #ifdef CONFIG_KVM_HYPERV 10839 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10840 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10841 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10842 vcpu->run->system_event.ndata = 0; 10843 r = 0; 10844 goto out; 10845 } 10846 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10847 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10848 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10849 vcpu->run->system_event.ndata = 0; 10850 r = 0; 10851 goto out; 10852 } 10853 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10854 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10855 10856 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10857 vcpu->run->hyperv = hv_vcpu->exit; 10858 r = 0; 10859 goto out; 10860 } 10861 10862 /* 10863 * KVM_REQ_HV_STIMER has to be processed after 10864 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10865 * depend on the guest clock being up-to-date 10866 */ 10867 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10868 kvm_hv_process_stimers(vcpu); 10869 #endif 10870 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10871 kvm_vcpu_update_apicv(vcpu); 10872 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10873 kvm_check_async_pf_completion(vcpu); 10874 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10875 kvm_x86_call(msr_filter_changed)(vcpu); 10876 10877 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10878 kvm_x86_call(update_cpu_dirty_logging)(vcpu); 10879 10880 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { 10881 kvm_vcpu_reset(vcpu, true); 10882 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { 10883 r = 1; 10884 goto out; 10885 } 10886 } 10887 } 10888 10889 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10890 kvm_xen_has_interrupt(vcpu)) { 10891 ++vcpu->stat.req_event; 10892 r = kvm_apic_accept_events(vcpu); 10893 if (r < 0) { 10894 r = 0; 10895 goto out; 10896 } 10897 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10898 r = 1; 10899 goto out; 10900 } 10901 10902 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10903 if (r < 0) { 10904 r = 0; 10905 goto out; 10906 } 10907 if (req_int_win) 10908 kvm_x86_call(enable_irq_window)(vcpu); 10909 10910 if (kvm_lapic_enabled(vcpu)) { 10911 update_cr8_intercept(vcpu); 10912 kvm_lapic_sync_to_vapic(vcpu); 10913 } 10914 } 10915 10916 r = kvm_mmu_reload(vcpu); 10917 if (unlikely(r)) { 10918 goto cancel_injection; 10919 } 10920 10921 preempt_disable(); 10922 10923 kvm_x86_call(prepare_switch_to_guest)(vcpu); 10924 10925 /* 10926 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10927 * IPI are then delayed after guest entry, which ensures that they 10928 * result in virtual interrupt delivery. 10929 */ 10930 local_irq_disable(); 10931 10932 /* Store vcpu->apicv_active before vcpu->mode. */ 10933 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10934 10935 kvm_vcpu_srcu_read_unlock(vcpu); 10936 10937 /* 10938 * 1) We should set ->mode before checking ->requests. Please see 10939 * the comment in kvm_vcpu_exiting_guest_mode(). 10940 * 10941 * 2) For APICv, we should set ->mode before checking PID.ON. This 10942 * pairs with the memory barrier implicit in pi_test_and_set_on 10943 * (see vmx_deliver_posted_interrupt). 10944 * 10945 * 3) This also orders the write to mode from any reads to the page 10946 * tables done while the VCPU is running. Please see the comment 10947 * in kvm_flush_remote_tlbs. 10948 */ 10949 smp_mb__after_srcu_read_unlock(); 10950 10951 /* 10952 * Process pending posted interrupts to handle the case where the 10953 * notification IRQ arrived in the host, or was never sent (because the 10954 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10955 * status, KVM doesn't update assigned devices when APICv is inhibited, 10956 * i.e. they can post interrupts even if APICv is temporarily disabled. 10957 */ 10958 if (kvm_lapic_enabled(vcpu)) 10959 kvm_x86_call(sync_pir_to_irr)(vcpu); 10960 10961 if (kvm_vcpu_exit_request(vcpu)) { 10962 vcpu->mode = OUTSIDE_GUEST_MODE; 10963 smp_wmb(); 10964 local_irq_enable(); 10965 preempt_enable(); 10966 kvm_vcpu_srcu_read_lock(vcpu); 10967 r = 1; 10968 goto cancel_injection; 10969 } 10970 10971 if (req_immediate_exit) 10972 kvm_make_request(KVM_REQ_EVENT, vcpu); 10973 10974 fpregs_assert_state_consistent(); 10975 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10976 switch_fpu_return(); 10977 10978 if (vcpu->arch.guest_fpu.xfd_err) 10979 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10980 10981 if (unlikely(vcpu->arch.switch_db_regs)) { 10982 set_debugreg(0, 7); 10983 set_debugreg(vcpu->arch.eff_db[0], 0); 10984 set_debugreg(vcpu->arch.eff_db[1], 1); 10985 set_debugreg(vcpu->arch.eff_db[2], 2); 10986 set_debugreg(vcpu->arch.eff_db[3], 3); 10987 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 10988 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 10989 kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6); 10990 } else if (unlikely(hw_breakpoint_active())) { 10991 set_debugreg(0, 7); 10992 } 10993 10994 vcpu->arch.host_debugctl = get_debugctlmsr(); 10995 10996 guest_timing_enter_irqoff(); 10997 10998 for (;;) { 10999 /* 11000 * Assert that vCPU vs. VM APICv state is consistent. An APICv 11001 * update must kick and wait for all vCPUs before toggling the 11002 * per-VM state, and responding vCPUs must wait for the update 11003 * to complete before servicing KVM_REQ_APICV_UPDATE. 11004 */ 11005 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 11006 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 11007 11008 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, 11009 req_immediate_exit); 11010 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 11011 break; 11012 11013 if (kvm_lapic_enabled(vcpu)) 11014 kvm_x86_call(sync_pir_to_irr)(vcpu); 11015 11016 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 11017 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 11018 break; 11019 } 11020 11021 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 11022 ++vcpu->stat.exits; 11023 } 11024 11025 /* 11026 * Do this here before restoring debug registers on the host. And 11027 * since we do this before handling the vmexit, a DR access vmexit 11028 * can (a) read the correct value of the debug registers, (b) set 11029 * KVM_DEBUGREG_WONT_EXIT again. 11030 */ 11031 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11032 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11033 kvm_x86_call(sync_dirty_debug_regs)(vcpu); 11034 kvm_update_dr0123(vcpu); 11035 kvm_update_dr7(vcpu); 11036 } 11037 11038 /* 11039 * If the guest has used debug registers, at least dr7 11040 * will be disabled while returning to the host. 11041 * If we don't have active breakpoints in the host, we don't 11042 * care about the messed up debug address registers. But if 11043 * we have some of them active, restore the old state. 11044 */ 11045 if (hw_breakpoint_active()) 11046 hw_breakpoint_restore(); 11047 11048 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11049 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11050 11051 vcpu->mode = OUTSIDE_GUEST_MODE; 11052 smp_wmb(); 11053 11054 /* 11055 * Sync xfd before calling handle_exit_irqoff() which may 11056 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11057 * in #NM irqoff handler). 11058 */ 11059 if (vcpu->arch.xfd_no_write_intercept) 11060 fpu_sync_guest_vmexit_xfd_state(); 11061 11062 kvm_x86_call(handle_exit_irqoff)(vcpu); 11063 11064 if (vcpu->arch.guest_fpu.xfd_err) 11065 wrmsrl(MSR_IA32_XFD_ERR, 0); 11066 11067 /* 11068 * Consume any pending interrupts, including the possible source of 11069 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11070 * An instruction is required after local_irq_enable() to fully unblock 11071 * interrupts on processors that implement an interrupt shadow, the 11072 * stat.exits increment will do nicely. 11073 */ 11074 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11075 local_irq_enable(); 11076 ++vcpu->stat.exits; 11077 local_irq_disable(); 11078 kvm_after_interrupt(vcpu); 11079 11080 /* 11081 * Wait until after servicing IRQs to account guest time so that any 11082 * ticks that occurred while running the guest are properly accounted 11083 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11084 * of accounting via context tracking, but the loss of accuracy is 11085 * acceptable for all known use cases. 11086 */ 11087 guest_timing_exit_irqoff(); 11088 11089 local_irq_enable(); 11090 preempt_enable(); 11091 11092 kvm_vcpu_srcu_read_lock(vcpu); 11093 11094 /* 11095 * Call this to ensure WC buffers in guest are evicted after each VM 11096 * Exit, so that the evicted WC writes can be snooped across all cpus 11097 */ 11098 smp_mb__after_srcu_read_lock(); 11099 11100 /* 11101 * Profile KVM exit RIPs: 11102 */ 11103 if (unlikely(prof_on == KVM_PROFILING && 11104 !vcpu->arch.guest_state_protected)) { 11105 unsigned long rip = kvm_rip_read(vcpu); 11106 profile_hit(KVM_PROFILING, (void *)rip); 11107 } 11108 11109 if (unlikely(vcpu->arch.tsc_always_catchup)) 11110 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11111 11112 if (vcpu->arch.apic_attention) 11113 kvm_lapic_sync_from_vapic(vcpu); 11114 11115 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE)) 11116 return 0; 11117 11118 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); 11119 return r; 11120 11121 cancel_injection: 11122 if (req_immediate_exit) 11123 kvm_make_request(KVM_REQ_EVENT, vcpu); 11124 kvm_x86_call(cancel_injection)(vcpu); 11125 if (unlikely(vcpu->arch.apic_attention)) 11126 kvm_lapic_sync_from_vapic(vcpu); 11127 out: 11128 return r; 11129 } 11130 11131 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11132 { 11133 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11134 !vcpu->arch.apf.halted); 11135 } 11136 11137 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 11138 { 11139 if (!list_empty_careful(&vcpu->async_pf.done)) 11140 return true; 11141 11142 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 11143 kvm_apic_init_sipi_allowed(vcpu)) 11144 return true; 11145 11146 if (vcpu->arch.pv.pv_unhalted) 11147 return true; 11148 11149 if (kvm_is_exception_pending(vcpu)) 11150 return true; 11151 11152 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11153 (vcpu->arch.nmi_pending && 11154 kvm_x86_call(nmi_allowed)(vcpu, false))) 11155 return true; 11156 11157 #ifdef CONFIG_KVM_SMM 11158 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 11159 (vcpu->arch.smi_pending && 11160 kvm_x86_call(smi_allowed)(vcpu, false))) 11161 return true; 11162 #endif 11163 11164 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 11165 return true; 11166 11167 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) 11168 return true; 11169 11170 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) 11171 return true; 11172 11173 if (kvm_hv_has_stimer_pending(vcpu)) 11174 return true; 11175 11176 if (is_guest_mode(vcpu) && 11177 kvm_x86_ops.nested_ops->has_events && 11178 kvm_x86_ops.nested_ops->has_events(vcpu, false)) 11179 return true; 11180 11181 if (kvm_xen_has_pending_events(vcpu)) 11182 return true; 11183 11184 return false; 11185 } 11186 11187 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 11188 { 11189 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 11190 } 11191 11192 /* Called within kvm->srcu read side. */ 11193 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11194 { 11195 bool hv_timer; 11196 11197 if (!kvm_arch_vcpu_runnable(vcpu)) { 11198 /* 11199 * Switch to the software timer before halt-polling/blocking as 11200 * the guest's timer may be a break event for the vCPU, and the 11201 * hypervisor timer runs only when the CPU is in guest mode. 11202 * Switch before halt-polling so that KVM recognizes an expired 11203 * timer before blocking. 11204 */ 11205 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11206 if (hv_timer) 11207 kvm_lapic_switch_to_sw_timer(vcpu); 11208 11209 kvm_vcpu_srcu_read_unlock(vcpu); 11210 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11211 kvm_vcpu_halt(vcpu); 11212 else 11213 kvm_vcpu_block(vcpu); 11214 kvm_vcpu_srcu_read_lock(vcpu); 11215 11216 if (hv_timer) 11217 kvm_lapic_switch_to_hv_timer(vcpu); 11218 11219 /* 11220 * If the vCPU is not runnable, a signal or another host event 11221 * of some kind is pending; service it without changing the 11222 * vCPU's activity state. 11223 */ 11224 if (!kvm_arch_vcpu_runnable(vcpu)) 11225 return 1; 11226 } 11227 11228 /* 11229 * Evaluate nested events before exiting the halted state. This allows 11230 * the halt state to be recorded properly in the VMCS12's activity 11231 * state field (AMD does not have a similar field and a VM-Exit always 11232 * causes a spurious wakeup from HLT). 11233 */ 11234 if (is_guest_mode(vcpu)) { 11235 int r = kvm_check_nested_events(vcpu); 11236 11237 WARN_ON_ONCE(r == -EBUSY); 11238 if (r < 0) 11239 return 0; 11240 } 11241 11242 if (kvm_apic_accept_events(vcpu) < 0) 11243 return 0; 11244 switch(vcpu->arch.mp_state) { 11245 case KVM_MP_STATE_HALTED: 11246 case KVM_MP_STATE_AP_RESET_HOLD: 11247 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 11248 fallthrough; 11249 case KVM_MP_STATE_RUNNABLE: 11250 vcpu->arch.apf.halted = false; 11251 break; 11252 case KVM_MP_STATE_INIT_RECEIVED: 11253 break; 11254 default: 11255 WARN_ON_ONCE(1); 11256 break; 11257 } 11258 return 1; 11259 } 11260 11261 /* Called within kvm->srcu read side. */ 11262 static int vcpu_run(struct kvm_vcpu *vcpu) 11263 { 11264 int r; 11265 11266 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11267 11268 for (;;) { 11269 /* 11270 * If another guest vCPU requests a PV TLB flush in the middle 11271 * of instruction emulation, the rest of the emulation could 11272 * use a stale page translation. Assume that any code after 11273 * this point can start executing an instruction. 11274 */ 11275 vcpu->arch.at_instruction_boundary = false; 11276 if (kvm_vcpu_running(vcpu)) { 11277 r = vcpu_enter_guest(vcpu); 11278 } else { 11279 r = vcpu_block(vcpu); 11280 } 11281 11282 if (r <= 0) 11283 break; 11284 11285 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11286 if (kvm_xen_has_pending_events(vcpu)) 11287 kvm_xen_inject_pending_events(vcpu); 11288 11289 if (kvm_cpu_has_pending_timer(vcpu)) 11290 kvm_inject_pending_timer_irqs(vcpu); 11291 11292 if (dm_request_for_irq_injection(vcpu) && 11293 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11294 r = 0; 11295 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11296 ++vcpu->stat.request_irq_exits; 11297 break; 11298 } 11299 11300 if (__xfer_to_guest_mode_work_pending()) { 11301 kvm_vcpu_srcu_read_unlock(vcpu); 11302 r = xfer_to_guest_mode_handle_work(vcpu); 11303 kvm_vcpu_srcu_read_lock(vcpu); 11304 if (r) 11305 return r; 11306 } 11307 } 11308 11309 return r; 11310 } 11311 11312 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 11313 { 11314 /* 11315 * The vCPU has halted, e.g. executed HLT. Update the run state if the 11316 * local APIC is in-kernel, the run loop will detect the non-runnable 11317 * state and halt the vCPU. Exit to userspace if the local APIC is 11318 * managed by userspace, in which case userspace is responsible for 11319 * handling wake events. 11320 */ 11321 ++vcpu->stat.halt_exits; 11322 if (lapic_in_kernel(vcpu)) { 11323 if (kvm_vcpu_has_events(vcpu)) 11324 state = KVM_MP_STATE_RUNNABLE; 11325 kvm_set_mp_state(vcpu, state); 11326 return 1; 11327 } else { 11328 vcpu->run->exit_reason = reason; 11329 return 0; 11330 } 11331 } 11332 11333 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 11334 { 11335 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 11336 } 11337 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 11338 11339 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 11340 { 11341 int ret = kvm_skip_emulated_instruction(vcpu); 11342 /* 11343 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 11344 * KVM_EXIT_DEBUG here. 11345 */ 11346 return kvm_emulate_halt_noskip(vcpu) && ret; 11347 } 11348 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 11349 11350 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu) 11351 { 11352 int ret; 11353 11354 kvm_vcpu_srcu_read_lock(vcpu); 11355 ret = kvm_emulate_halt(vcpu); 11356 kvm_vcpu_srcu_read_unlock(vcpu); 11357 11358 if (!ret) 11359 return EXIT_FASTPATH_EXIT_USERSPACE; 11360 11361 if (kvm_vcpu_running(vcpu)) 11362 return EXIT_FASTPATH_REENTER_GUEST; 11363 11364 return EXIT_FASTPATH_EXIT_HANDLED; 11365 } 11366 EXPORT_SYMBOL_GPL(handle_fastpath_hlt); 11367 11368 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 11369 { 11370 int ret = kvm_skip_emulated_instruction(vcpu); 11371 11372 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 11373 KVM_EXIT_AP_RESET_HOLD) && ret; 11374 } 11375 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 11376 11377 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 11378 { 11379 return kvm_vcpu_apicv_active(vcpu) && 11380 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); 11381 } 11382 11383 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 11384 { 11385 return vcpu->arch.preempted_in_kernel; 11386 } 11387 11388 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 11389 { 11390 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 11391 return true; 11392 11393 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11394 #ifdef CONFIG_KVM_SMM 11395 kvm_test_request(KVM_REQ_SMI, vcpu) || 11396 #endif 11397 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11398 return true; 11399 11400 return kvm_arch_dy_has_pending_interrupt(vcpu); 11401 } 11402 11403 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11404 { 11405 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11406 } 11407 11408 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11409 { 11410 BUG_ON(!vcpu->arch.pio.count); 11411 11412 return complete_emulated_io(vcpu); 11413 } 11414 11415 /* 11416 * Implements the following, as a state machine: 11417 * 11418 * read: 11419 * for each fragment 11420 * for each mmio piece in the fragment 11421 * write gpa, len 11422 * exit 11423 * copy data 11424 * execute insn 11425 * 11426 * write: 11427 * for each fragment 11428 * for each mmio piece in the fragment 11429 * write gpa, len 11430 * copy data 11431 * exit 11432 */ 11433 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11434 { 11435 struct kvm_run *run = vcpu->run; 11436 struct kvm_mmio_fragment *frag; 11437 unsigned len; 11438 11439 BUG_ON(!vcpu->mmio_needed); 11440 11441 /* Complete previous fragment */ 11442 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11443 len = min(8u, frag->len); 11444 if (!vcpu->mmio_is_write) 11445 memcpy(frag->data, run->mmio.data, len); 11446 11447 if (frag->len <= 8) { 11448 /* Switch to the next fragment. */ 11449 frag++; 11450 vcpu->mmio_cur_fragment++; 11451 } else { 11452 /* Go forward to the next mmio piece. */ 11453 frag->data += len; 11454 frag->gpa += len; 11455 frag->len -= len; 11456 } 11457 11458 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11459 vcpu->mmio_needed = 0; 11460 11461 /* FIXME: return into emulator if single-stepping. */ 11462 if (vcpu->mmio_is_write) 11463 return 1; 11464 vcpu->mmio_read_completed = 1; 11465 return complete_emulated_io(vcpu); 11466 } 11467 11468 run->exit_reason = KVM_EXIT_MMIO; 11469 run->mmio.phys_addr = frag->gpa; 11470 if (vcpu->mmio_is_write) 11471 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11472 run->mmio.len = min(8u, frag->len); 11473 run->mmio.is_write = vcpu->mmio_is_write; 11474 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11475 return 0; 11476 } 11477 11478 /* Swap (qemu) user FPU context for the guest FPU context. */ 11479 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11480 { 11481 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11482 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11483 trace_kvm_fpu(1); 11484 } 11485 11486 /* When vcpu_run ends, restore user space FPU context. */ 11487 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11488 { 11489 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11490 ++vcpu->stat.fpu_reload; 11491 trace_kvm_fpu(0); 11492 } 11493 11494 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11495 { 11496 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11497 struct kvm_run *kvm_run = vcpu->run; 11498 u32 sync_valid_fields; 11499 int r; 11500 11501 r = kvm_mmu_post_init_vm(vcpu->kvm); 11502 if (r) 11503 return r; 11504 11505 vcpu_load(vcpu); 11506 kvm_sigset_activate(vcpu); 11507 kvm_run->flags = 0; 11508 kvm_load_guest_fpu(vcpu); 11509 11510 kvm_vcpu_srcu_read_lock(vcpu); 11511 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11512 if (!vcpu->wants_to_run) { 11513 r = -EINTR; 11514 goto out; 11515 } 11516 11517 /* 11518 * Don't bother switching APIC timer emulation from the 11519 * hypervisor timer to the software timer, the only way for the 11520 * APIC timer to be active is if userspace stuffed vCPU state, 11521 * i.e. put the vCPU into a nonsensical state. Only an INIT 11522 * will transition the vCPU out of UNINITIALIZED (without more 11523 * state stuffing from userspace), which will reset the local 11524 * APIC and thus cancel the timer or drop the IRQ (if the timer 11525 * already expired). 11526 */ 11527 kvm_vcpu_srcu_read_unlock(vcpu); 11528 kvm_vcpu_block(vcpu); 11529 kvm_vcpu_srcu_read_lock(vcpu); 11530 11531 if (kvm_apic_accept_events(vcpu) < 0) { 11532 r = 0; 11533 goto out; 11534 } 11535 r = -EAGAIN; 11536 if (signal_pending(current)) { 11537 r = -EINTR; 11538 kvm_run->exit_reason = KVM_EXIT_INTR; 11539 ++vcpu->stat.signal_exits; 11540 } 11541 goto out; 11542 } 11543 11544 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm); 11545 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) || 11546 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) { 11547 r = -EINVAL; 11548 goto out; 11549 } 11550 11551 if (kvm_run->kvm_dirty_regs) { 11552 r = sync_regs(vcpu); 11553 if (r != 0) 11554 goto out; 11555 } 11556 11557 /* re-sync apic's tpr */ 11558 if (!lapic_in_kernel(vcpu)) { 11559 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11560 r = -EINVAL; 11561 goto out; 11562 } 11563 } 11564 11565 /* 11566 * If userspace set a pending exception and L2 is active, convert it to 11567 * a pending VM-Exit if L1 wants to intercept the exception. 11568 */ 11569 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11570 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11571 ex->error_code)) { 11572 kvm_queue_exception_vmexit(vcpu, ex->vector, 11573 ex->has_error_code, ex->error_code, 11574 ex->has_payload, ex->payload); 11575 ex->injected = false; 11576 ex->pending = false; 11577 } 11578 vcpu->arch.exception_from_userspace = false; 11579 11580 if (unlikely(vcpu->arch.complete_userspace_io)) { 11581 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11582 vcpu->arch.complete_userspace_io = NULL; 11583 r = cui(vcpu); 11584 if (r <= 0) 11585 goto out; 11586 } else { 11587 WARN_ON_ONCE(vcpu->arch.pio.count); 11588 WARN_ON_ONCE(vcpu->mmio_needed); 11589 } 11590 11591 if (!vcpu->wants_to_run) { 11592 r = -EINTR; 11593 goto out; 11594 } 11595 11596 r = kvm_x86_call(vcpu_pre_run)(vcpu); 11597 if (r <= 0) 11598 goto out; 11599 11600 r = vcpu_run(vcpu); 11601 11602 out: 11603 kvm_put_guest_fpu(vcpu); 11604 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected)) 11605 store_regs(vcpu); 11606 post_kvm_run_save(vcpu); 11607 kvm_vcpu_srcu_read_unlock(vcpu); 11608 11609 kvm_sigset_deactivate(vcpu); 11610 vcpu_put(vcpu); 11611 return r; 11612 } 11613 11614 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11615 { 11616 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11617 /* 11618 * We are here if userspace calls get_regs() in the middle of 11619 * instruction emulation. Registers state needs to be copied 11620 * back from emulation context to vcpu. Userspace shouldn't do 11621 * that usually, but some bad designed PV devices (vmware 11622 * backdoor interface) need this to work 11623 */ 11624 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11625 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11626 } 11627 regs->rax = kvm_rax_read(vcpu); 11628 regs->rbx = kvm_rbx_read(vcpu); 11629 regs->rcx = kvm_rcx_read(vcpu); 11630 regs->rdx = kvm_rdx_read(vcpu); 11631 regs->rsi = kvm_rsi_read(vcpu); 11632 regs->rdi = kvm_rdi_read(vcpu); 11633 regs->rsp = kvm_rsp_read(vcpu); 11634 regs->rbp = kvm_rbp_read(vcpu); 11635 #ifdef CONFIG_X86_64 11636 regs->r8 = kvm_r8_read(vcpu); 11637 regs->r9 = kvm_r9_read(vcpu); 11638 regs->r10 = kvm_r10_read(vcpu); 11639 regs->r11 = kvm_r11_read(vcpu); 11640 regs->r12 = kvm_r12_read(vcpu); 11641 regs->r13 = kvm_r13_read(vcpu); 11642 regs->r14 = kvm_r14_read(vcpu); 11643 regs->r15 = kvm_r15_read(vcpu); 11644 #endif 11645 11646 regs->rip = kvm_rip_read(vcpu); 11647 regs->rflags = kvm_get_rflags(vcpu); 11648 } 11649 11650 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11651 { 11652 if (vcpu->kvm->arch.has_protected_state && 11653 vcpu->arch.guest_state_protected) 11654 return -EINVAL; 11655 11656 vcpu_load(vcpu); 11657 __get_regs(vcpu, regs); 11658 vcpu_put(vcpu); 11659 return 0; 11660 } 11661 11662 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11663 { 11664 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11665 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11666 11667 kvm_rax_write(vcpu, regs->rax); 11668 kvm_rbx_write(vcpu, regs->rbx); 11669 kvm_rcx_write(vcpu, regs->rcx); 11670 kvm_rdx_write(vcpu, regs->rdx); 11671 kvm_rsi_write(vcpu, regs->rsi); 11672 kvm_rdi_write(vcpu, regs->rdi); 11673 kvm_rsp_write(vcpu, regs->rsp); 11674 kvm_rbp_write(vcpu, regs->rbp); 11675 #ifdef CONFIG_X86_64 11676 kvm_r8_write(vcpu, regs->r8); 11677 kvm_r9_write(vcpu, regs->r9); 11678 kvm_r10_write(vcpu, regs->r10); 11679 kvm_r11_write(vcpu, regs->r11); 11680 kvm_r12_write(vcpu, regs->r12); 11681 kvm_r13_write(vcpu, regs->r13); 11682 kvm_r14_write(vcpu, regs->r14); 11683 kvm_r15_write(vcpu, regs->r15); 11684 #endif 11685 11686 kvm_rip_write(vcpu, regs->rip); 11687 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11688 11689 vcpu->arch.exception.pending = false; 11690 vcpu->arch.exception_vmexit.pending = false; 11691 11692 kvm_make_request(KVM_REQ_EVENT, vcpu); 11693 } 11694 11695 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11696 { 11697 if (vcpu->kvm->arch.has_protected_state && 11698 vcpu->arch.guest_state_protected) 11699 return -EINVAL; 11700 11701 vcpu_load(vcpu); 11702 __set_regs(vcpu, regs); 11703 vcpu_put(vcpu); 11704 return 0; 11705 } 11706 11707 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11708 { 11709 struct desc_ptr dt; 11710 11711 if (vcpu->arch.guest_state_protected) 11712 goto skip_protected_regs; 11713 11714 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11715 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11716 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11717 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11718 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11719 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11720 11721 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11722 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11723 11724 kvm_x86_call(get_idt)(vcpu, &dt); 11725 sregs->idt.limit = dt.size; 11726 sregs->idt.base = dt.address; 11727 kvm_x86_call(get_gdt)(vcpu, &dt); 11728 sregs->gdt.limit = dt.size; 11729 sregs->gdt.base = dt.address; 11730 11731 sregs->cr2 = vcpu->arch.cr2; 11732 sregs->cr3 = kvm_read_cr3(vcpu); 11733 11734 skip_protected_regs: 11735 sregs->cr0 = kvm_read_cr0(vcpu); 11736 sregs->cr4 = kvm_read_cr4(vcpu); 11737 sregs->cr8 = kvm_get_cr8(vcpu); 11738 sregs->efer = vcpu->arch.efer; 11739 sregs->apic_base = vcpu->arch.apic_base; 11740 } 11741 11742 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11743 { 11744 __get_sregs_common(vcpu, sregs); 11745 11746 if (vcpu->arch.guest_state_protected) 11747 return; 11748 11749 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11750 set_bit(vcpu->arch.interrupt.nr, 11751 (unsigned long *)sregs->interrupt_bitmap); 11752 } 11753 11754 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11755 { 11756 int i; 11757 11758 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11759 11760 if (vcpu->arch.guest_state_protected) 11761 return; 11762 11763 if (is_pae_paging(vcpu)) { 11764 for (i = 0 ; i < 4 ; i++) 11765 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11766 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11767 } 11768 } 11769 11770 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11771 struct kvm_sregs *sregs) 11772 { 11773 if (vcpu->kvm->arch.has_protected_state && 11774 vcpu->arch.guest_state_protected) 11775 return -EINVAL; 11776 11777 vcpu_load(vcpu); 11778 __get_sregs(vcpu, sregs); 11779 vcpu_put(vcpu); 11780 return 0; 11781 } 11782 11783 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11784 struct kvm_mp_state *mp_state) 11785 { 11786 int r; 11787 11788 vcpu_load(vcpu); 11789 if (kvm_mpx_supported()) 11790 kvm_load_guest_fpu(vcpu); 11791 11792 kvm_vcpu_srcu_read_lock(vcpu); 11793 11794 r = kvm_apic_accept_events(vcpu); 11795 if (r < 0) 11796 goto out; 11797 r = 0; 11798 11799 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11800 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11801 vcpu->arch.pv.pv_unhalted) 11802 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11803 else 11804 mp_state->mp_state = vcpu->arch.mp_state; 11805 11806 out: 11807 kvm_vcpu_srcu_read_unlock(vcpu); 11808 11809 if (kvm_mpx_supported()) 11810 kvm_put_guest_fpu(vcpu); 11811 vcpu_put(vcpu); 11812 return r; 11813 } 11814 11815 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11816 struct kvm_mp_state *mp_state) 11817 { 11818 int ret = -EINVAL; 11819 11820 vcpu_load(vcpu); 11821 11822 switch (mp_state->mp_state) { 11823 case KVM_MP_STATE_UNINITIALIZED: 11824 case KVM_MP_STATE_HALTED: 11825 case KVM_MP_STATE_AP_RESET_HOLD: 11826 case KVM_MP_STATE_INIT_RECEIVED: 11827 case KVM_MP_STATE_SIPI_RECEIVED: 11828 if (!lapic_in_kernel(vcpu)) 11829 goto out; 11830 break; 11831 11832 case KVM_MP_STATE_RUNNABLE: 11833 break; 11834 11835 default: 11836 goto out; 11837 } 11838 11839 /* 11840 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11841 * forcing the guest into INIT/SIPI if those events are supposed to be 11842 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11843 * if an SMI is pending as well. 11844 */ 11845 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11846 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11847 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11848 goto out; 11849 11850 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11851 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); 11852 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11853 } else 11854 kvm_set_mp_state(vcpu, mp_state->mp_state); 11855 kvm_make_request(KVM_REQ_EVENT, vcpu); 11856 11857 ret = 0; 11858 out: 11859 vcpu_put(vcpu); 11860 return ret; 11861 } 11862 11863 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11864 int reason, bool has_error_code, u32 error_code) 11865 { 11866 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11867 int ret; 11868 11869 init_emulate_ctxt(vcpu); 11870 11871 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11872 has_error_code, error_code); 11873 11874 /* 11875 * Report an error userspace if MMIO is needed, as KVM doesn't support 11876 * MMIO during a task switch (or any other complex operation). 11877 */ 11878 if (ret || vcpu->mmio_needed) { 11879 vcpu->mmio_needed = false; 11880 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11881 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11882 vcpu->run->internal.ndata = 0; 11883 return 0; 11884 } 11885 11886 kvm_rip_write(vcpu, ctxt->eip); 11887 kvm_set_rflags(vcpu, ctxt->eflags); 11888 return 1; 11889 } 11890 EXPORT_SYMBOL_GPL(kvm_task_switch); 11891 11892 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11893 { 11894 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11895 /* 11896 * When EFER.LME and CR0.PG are set, the processor is in 11897 * 64-bit mode (though maybe in a 32-bit code segment). 11898 * CR4.PAE and EFER.LMA must be set. 11899 */ 11900 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11901 return false; 11902 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11903 return false; 11904 } else { 11905 /* 11906 * Not in 64-bit mode: EFER.LMA is clear and the code 11907 * segment cannot be 64-bit. 11908 */ 11909 if (sregs->efer & EFER_LMA || sregs->cs.l) 11910 return false; 11911 } 11912 11913 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11914 kvm_is_valid_cr0(vcpu, sregs->cr0); 11915 } 11916 11917 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11918 int *mmu_reset_needed, bool update_pdptrs) 11919 { 11920 int idx; 11921 struct desc_ptr dt; 11922 11923 if (!kvm_is_valid_sregs(vcpu, sregs)) 11924 return -EINVAL; 11925 11926 if (kvm_apic_set_base(vcpu, sregs->apic_base, true)) 11927 return -EINVAL; 11928 11929 if (vcpu->arch.guest_state_protected) 11930 return 0; 11931 11932 dt.size = sregs->idt.limit; 11933 dt.address = sregs->idt.base; 11934 kvm_x86_call(set_idt)(vcpu, &dt); 11935 dt.size = sregs->gdt.limit; 11936 dt.address = sregs->gdt.base; 11937 kvm_x86_call(set_gdt)(vcpu, &dt); 11938 11939 vcpu->arch.cr2 = sregs->cr2; 11940 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11941 vcpu->arch.cr3 = sregs->cr3; 11942 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11943 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); 11944 11945 kvm_set_cr8(vcpu, sregs->cr8); 11946 11947 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11948 kvm_x86_call(set_efer)(vcpu, sregs->efer); 11949 11950 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11951 kvm_x86_call(set_cr0)(vcpu, sregs->cr0); 11952 11953 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11954 kvm_x86_call(set_cr4)(vcpu, sregs->cr4); 11955 11956 if (update_pdptrs) { 11957 idx = srcu_read_lock(&vcpu->kvm->srcu); 11958 if (is_pae_paging(vcpu)) { 11959 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11960 *mmu_reset_needed = 1; 11961 } 11962 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11963 } 11964 11965 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11966 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11967 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11968 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11969 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11970 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11971 11972 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11973 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11974 11975 update_cr8_intercept(vcpu); 11976 11977 /* Older userspace won't unhalt the vcpu on reset. */ 11978 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11979 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11980 !is_protmode(vcpu)) 11981 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 11982 11983 return 0; 11984 } 11985 11986 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11987 { 11988 int pending_vec, max_bits; 11989 int mmu_reset_needed = 0; 11990 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11991 11992 if (ret) 11993 return ret; 11994 11995 if (mmu_reset_needed) { 11996 kvm_mmu_reset_context(vcpu); 11997 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11998 } 11999 12000 max_bits = KVM_NR_INTERRUPTS; 12001 pending_vec = find_first_bit( 12002 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 12003 12004 if (pending_vec < max_bits) { 12005 kvm_queue_interrupt(vcpu, pending_vec, false); 12006 pr_debug("Set back pending irq %d\n", pending_vec); 12007 kvm_make_request(KVM_REQ_EVENT, vcpu); 12008 } 12009 return 0; 12010 } 12011 12012 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 12013 { 12014 int mmu_reset_needed = 0; 12015 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 12016 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 12017 !(sregs2->efer & EFER_LMA); 12018 int i, ret; 12019 12020 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 12021 return -EINVAL; 12022 12023 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 12024 return -EINVAL; 12025 12026 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 12027 &mmu_reset_needed, !valid_pdptrs); 12028 if (ret) 12029 return ret; 12030 12031 if (valid_pdptrs) { 12032 for (i = 0; i < 4 ; i++) 12033 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 12034 12035 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 12036 mmu_reset_needed = 1; 12037 vcpu->arch.pdptrs_from_userspace = true; 12038 } 12039 if (mmu_reset_needed) { 12040 kvm_mmu_reset_context(vcpu); 12041 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12042 } 12043 return 0; 12044 } 12045 12046 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 12047 struct kvm_sregs *sregs) 12048 { 12049 int ret; 12050 12051 if (vcpu->kvm->arch.has_protected_state && 12052 vcpu->arch.guest_state_protected) 12053 return -EINVAL; 12054 12055 vcpu_load(vcpu); 12056 ret = __set_sregs(vcpu, sregs); 12057 vcpu_put(vcpu); 12058 return ret; 12059 } 12060 12061 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 12062 { 12063 bool set = false; 12064 struct kvm_vcpu *vcpu; 12065 unsigned long i; 12066 12067 if (!enable_apicv) 12068 return; 12069 12070 down_write(&kvm->arch.apicv_update_lock); 12071 12072 kvm_for_each_vcpu(i, vcpu, kvm) { 12073 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 12074 set = true; 12075 break; 12076 } 12077 } 12078 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 12079 up_write(&kvm->arch.apicv_update_lock); 12080 } 12081 12082 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 12083 struct kvm_guest_debug *dbg) 12084 { 12085 unsigned long rflags; 12086 int i, r; 12087 12088 if (vcpu->arch.guest_state_protected) 12089 return -EINVAL; 12090 12091 vcpu_load(vcpu); 12092 12093 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 12094 r = -EBUSY; 12095 if (kvm_is_exception_pending(vcpu)) 12096 goto out; 12097 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 12098 kvm_queue_exception(vcpu, DB_VECTOR); 12099 else 12100 kvm_queue_exception(vcpu, BP_VECTOR); 12101 } 12102 12103 /* 12104 * Read rflags as long as potentially injected trace flags are still 12105 * filtered out. 12106 */ 12107 rflags = kvm_get_rflags(vcpu); 12108 12109 vcpu->guest_debug = dbg->control; 12110 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 12111 vcpu->guest_debug = 0; 12112 12113 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 12114 for (i = 0; i < KVM_NR_DB_REGS; ++i) 12115 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 12116 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 12117 } else { 12118 for (i = 0; i < KVM_NR_DB_REGS; i++) 12119 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 12120 } 12121 kvm_update_dr7(vcpu); 12122 12123 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12124 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 12125 12126 /* 12127 * Trigger an rflags update that will inject or remove the trace 12128 * flags. 12129 */ 12130 kvm_set_rflags(vcpu, rflags); 12131 12132 kvm_x86_call(update_exception_bitmap)(vcpu); 12133 12134 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12135 12136 r = 0; 12137 12138 out: 12139 vcpu_put(vcpu); 12140 return r; 12141 } 12142 12143 /* 12144 * Translate a guest virtual address to a guest physical address. 12145 */ 12146 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12147 struct kvm_translation *tr) 12148 { 12149 unsigned long vaddr = tr->linear_address; 12150 gpa_t gpa; 12151 int idx; 12152 12153 vcpu_load(vcpu); 12154 12155 idx = srcu_read_lock(&vcpu->kvm->srcu); 12156 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12157 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12158 tr->physical_address = gpa; 12159 tr->valid = gpa != INVALID_GPA; 12160 tr->writeable = 1; 12161 tr->usermode = 0; 12162 12163 vcpu_put(vcpu); 12164 return 0; 12165 } 12166 12167 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12168 { 12169 struct fxregs_state *fxsave; 12170 12171 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12172 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12173 12174 vcpu_load(vcpu); 12175 12176 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12177 memcpy(fpu->fpr, fxsave->st_space, 128); 12178 fpu->fcw = fxsave->cwd; 12179 fpu->fsw = fxsave->swd; 12180 fpu->ftwx = fxsave->twd; 12181 fpu->last_opcode = fxsave->fop; 12182 fpu->last_ip = fxsave->rip; 12183 fpu->last_dp = fxsave->rdp; 12184 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12185 12186 vcpu_put(vcpu); 12187 return 0; 12188 } 12189 12190 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12191 { 12192 struct fxregs_state *fxsave; 12193 12194 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12195 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12196 12197 vcpu_load(vcpu); 12198 12199 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12200 12201 memcpy(fxsave->st_space, fpu->fpr, 128); 12202 fxsave->cwd = fpu->fcw; 12203 fxsave->swd = fpu->fsw; 12204 fxsave->twd = fpu->ftwx; 12205 fxsave->fop = fpu->last_opcode; 12206 fxsave->rip = fpu->last_ip; 12207 fxsave->rdp = fpu->last_dp; 12208 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12209 12210 vcpu_put(vcpu); 12211 return 0; 12212 } 12213 12214 static void store_regs(struct kvm_vcpu *vcpu) 12215 { 12216 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12217 12218 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12219 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12220 12221 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12222 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12223 12224 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12225 kvm_vcpu_ioctl_x86_get_vcpu_events( 12226 vcpu, &vcpu->run->s.regs.events); 12227 } 12228 12229 static int sync_regs(struct kvm_vcpu *vcpu) 12230 { 12231 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12232 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12233 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12234 } 12235 12236 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12237 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12238 12239 if (__set_sregs(vcpu, &sregs)) 12240 return -EINVAL; 12241 12242 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12243 } 12244 12245 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12246 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12247 12248 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12249 return -EINVAL; 12250 12251 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12252 } 12253 12254 return 0; 12255 } 12256 12257 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12258 { 12259 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12260 pr_warn_once("SMP vm created on host with unstable TSC; " 12261 "guest TSC will not be reliable\n"); 12262 12263 if (!kvm->arch.max_vcpu_ids) 12264 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12265 12266 if (id >= kvm->arch.max_vcpu_ids) 12267 return -EINVAL; 12268 12269 return kvm_x86_call(vcpu_precreate)(kvm); 12270 } 12271 12272 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12273 { 12274 struct page *page; 12275 int r; 12276 12277 vcpu->arch.last_vmentry_cpu = -1; 12278 vcpu->arch.regs_avail = ~0; 12279 vcpu->arch.regs_dirty = ~0; 12280 12281 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12282 12283 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12284 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 12285 else 12286 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED); 12287 12288 r = kvm_mmu_create(vcpu); 12289 if (r < 0) 12290 return r; 12291 12292 r = kvm_create_lapic(vcpu); 12293 if (r < 0) 12294 goto fail_mmu_destroy; 12295 12296 r = -ENOMEM; 12297 12298 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12299 if (!page) 12300 goto fail_free_lapic; 12301 vcpu->arch.pio_data = page_address(page); 12302 12303 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12304 GFP_KERNEL_ACCOUNT); 12305 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12306 GFP_KERNEL_ACCOUNT); 12307 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12308 goto fail_free_mce_banks; 12309 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12310 12311 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12312 GFP_KERNEL_ACCOUNT)) 12313 goto fail_free_mce_banks; 12314 12315 if (!alloc_emulate_ctxt(vcpu)) 12316 goto free_wbinvd_dirty_mask; 12317 12318 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12319 pr_err("failed to allocate vcpu's fpu\n"); 12320 goto free_emulate_ctxt; 12321 } 12322 12323 kvm_async_pf_hash_reset(vcpu); 12324 12325 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { 12326 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12327 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12328 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12329 } 12330 kvm_pmu_init(vcpu); 12331 12332 vcpu->arch.pending_external_vector = -1; 12333 vcpu->arch.preempted_in_kernel = false; 12334 12335 #if IS_ENABLED(CONFIG_HYPERV) 12336 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12337 #endif 12338 12339 r = kvm_x86_call(vcpu_create)(vcpu); 12340 if (r) 12341 goto free_guest_fpu; 12342 12343 kvm_xen_init_vcpu(vcpu); 12344 vcpu_load(vcpu); 12345 kvm_vcpu_after_set_cpuid(vcpu); 12346 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12347 kvm_vcpu_reset(vcpu, false); 12348 kvm_init_mmu(vcpu); 12349 vcpu_put(vcpu); 12350 return 0; 12351 12352 free_guest_fpu: 12353 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12354 free_emulate_ctxt: 12355 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12356 free_wbinvd_dirty_mask: 12357 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12358 fail_free_mce_banks: 12359 kfree(vcpu->arch.mce_banks); 12360 kfree(vcpu->arch.mci_ctl2_banks); 12361 free_page((unsigned long)vcpu->arch.pio_data); 12362 fail_free_lapic: 12363 kvm_free_lapic(vcpu); 12364 fail_mmu_destroy: 12365 kvm_mmu_destroy(vcpu); 12366 return r; 12367 } 12368 12369 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12370 { 12371 struct kvm *kvm = vcpu->kvm; 12372 12373 if (mutex_lock_killable(&vcpu->mutex)) 12374 return; 12375 vcpu_load(vcpu); 12376 kvm_synchronize_tsc(vcpu, NULL); 12377 vcpu_put(vcpu); 12378 12379 /* poll control enabled by default */ 12380 vcpu->arch.msr_kvm_poll_control = 1; 12381 12382 mutex_unlock(&vcpu->mutex); 12383 12384 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12385 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12386 KVMCLOCK_SYNC_PERIOD); 12387 } 12388 12389 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12390 { 12391 int idx; 12392 12393 kvm_clear_async_pf_completion_queue(vcpu); 12394 kvm_mmu_unload(vcpu); 12395 12396 kvmclock_reset(vcpu); 12397 12398 kvm_x86_call(vcpu_free)(vcpu); 12399 12400 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12401 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12402 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12403 12404 kvm_xen_destroy_vcpu(vcpu); 12405 kvm_hv_vcpu_uninit(vcpu); 12406 kvm_pmu_destroy(vcpu); 12407 kfree(vcpu->arch.mce_banks); 12408 kfree(vcpu->arch.mci_ctl2_banks); 12409 kvm_free_lapic(vcpu); 12410 idx = srcu_read_lock(&vcpu->kvm->srcu); 12411 kvm_mmu_destroy(vcpu); 12412 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12413 free_page((unsigned long)vcpu->arch.pio_data); 12414 kvfree(vcpu->arch.cpuid_entries); 12415 } 12416 12417 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12418 { 12419 struct kvm_cpuid_entry2 *cpuid_0x1; 12420 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12421 unsigned long new_cr0; 12422 12423 /* 12424 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12425 * to handle side effects. RESET emulation hits those flows and relies 12426 * on emulated/virtualized registers, including those that are loaded 12427 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12428 * to detect improper or missing initialization. 12429 */ 12430 WARN_ON_ONCE(!init_event && 12431 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12432 12433 /* 12434 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12435 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12436 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12437 * bits), i.e. virtualization is disabled. 12438 */ 12439 if (is_guest_mode(vcpu)) 12440 kvm_leave_nested(vcpu); 12441 12442 kvm_lapic_reset(vcpu, init_event); 12443 12444 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12445 vcpu->arch.hflags = 0; 12446 12447 vcpu->arch.smi_pending = 0; 12448 vcpu->arch.smi_count = 0; 12449 atomic_set(&vcpu->arch.nmi_queued, 0); 12450 vcpu->arch.nmi_pending = 0; 12451 vcpu->arch.nmi_injected = false; 12452 kvm_clear_interrupt_queue(vcpu); 12453 kvm_clear_exception_queue(vcpu); 12454 12455 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12456 kvm_update_dr0123(vcpu); 12457 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12458 vcpu->arch.dr7 = DR7_FIXED_1; 12459 kvm_update_dr7(vcpu); 12460 12461 vcpu->arch.cr2 = 0; 12462 12463 kvm_make_request(KVM_REQ_EVENT, vcpu); 12464 vcpu->arch.apf.msr_en_val = 0; 12465 vcpu->arch.apf.msr_int_val = 0; 12466 vcpu->arch.st.msr_val = 0; 12467 12468 kvmclock_reset(vcpu); 12469 12470 kvm_clear_async_pf_completion_queue(vcpu); 12471 kvm_async_pf_hash_reset(vcpu); 12472 vcpu->arch.apf.halted = false; 12473 12474 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12475 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12476 12477 /* 12478 * All paths that lead to INIT are required to load the guest's 12479 * FPU state (because most paths are buried in KVM_RUN). 12480 */ 12481 if (init_event) 12482 kvm_put_guest_fpu(vcpu); 12483 12484 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12485 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12486 12487 if (init_event) 12488 kvm_load_guest_fpu(vcpu); 12489 } 12490 12491 if (!init_event) { 12492 vcpu->arch.smbase = 0x30000; 12493 12494 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12495 12496 vcpu->arch.msr_misc_features_enables = 0; 12497 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12498 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12499 12500 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12501 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12502 } 12503 12504 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12505 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12506 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12507 12508 /* 12509 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12510 * if no CPUID match is found. Note, it's impossible to get a match at 12511 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12512 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12513 * on RESET. But, go through the motions in case that's ever remedied. 12514 */ 12515 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12516 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12517 12518 kvm_x86_call(vcpu_reset)(vcpu, init_event); 12519 12520 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12521 kvm_rip_write(vcpu, 0xfff0); 12522 12523 vcpu->arch.cr3 = 0; 12524 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12525 12526 /* 12527 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12528 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12529 * (or qualify) that with a footnote stating that CD/NW are preserved. 12530 */ 12531 new_cr0 = X86_CR0_ET; 12532 if (init_event) 12533 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12534 else 12535 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12536 12537 kvm_x86_call(set_cr0)(vcpu, new_cr0); 12538 kvm_x86_call(set_cr4)(vcpu, 0); 12539 kvm_x86_call(set_efer)(vcpu, 0); 12540 kvm_x86_call(update_exception_bitmap)(vcpu); 12541 12542 /* 12543 * On the standard CR0/CR4/EFER modification paths, there are several 12544 * complex conditions determining whether the MMU has to be reset and/or 12545 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12546 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12547 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12548 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12549 */ 12550 if (old_cr0 & X86_CR0_PG) { 12551 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12552 kvm_mmu_reset_context(vcpu); 12553 } 12554 12555 /* 12556 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12557 * APM states the TLBs are untouched by INIT, but it also states that 12558 * the TLBs are flushed on "External initialization of the processor." 12559 * Flush the guest TLB regardless of vendor, there is no meaningful 12560 * benefit in relying on the guest to flush the TLB immediately after 12561 * INIT. A spurious TLB flush is benign and likely negligible from a 12562 * performance perspective. 12563 */ 12564 if (init_event) 12565 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12566 } 12567 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12568 12569 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12570 { 12571 struct kvm_segment cs; 12572 12573 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12574 cs.selector = vector << 8; 12575 cs.base = vector << 12; 12576 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12577 kvm_rip_write(vcpu, 0); 12578 } 12579 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12580 12581 void kvm_arch_enable_virtualization(void) 12582 { 12583 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12584 } 12585 12586 void kvm_arch_disable_virtualization(void) 12587 { 12588 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12589 } 12590 12591 int kvm_arch_enable_virtualization_cpu(void) 12592 { 12593 struct kvm *kvm; 12594 struct kvm_vcpu *vcpu; 12595 unsigned long i; 12596 int ret; 12597 u64 local_tsc; 12598 u64 max_tsc = 0; 12599 bool stable, backwards_tsc = false; 12600 12601 kvm_user_return_msr_cpu_online(); 12602 12603 ret = kvm_x86_check_processor_compatibility(); 12604 if (ret) 12605 return ret; 12606 12607 ret = kvm_x86_call(enable_virtualization_cpu)(); 12608 if (ret != 0) 12609 return ret; 12610 12611 local_tsc = rdtsc(); 12612 stable = !kvm_check_tsc_unstable(); 12613 list_for_each_entry(kvm, &vm_list, vm_list) { 12614 kvm_for_each_vcpu(i, vcpu, kvm) { 12615 if (!stable && vcpu->cpu == smp_processor_id()) 12616 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12617 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12618 backwards_tsc = true; 12619 if (vcpu->arch.last_host_tsc > max_tsc) 12620 max_tsc = vcpu->arch.last_host_tsc; 12621 } 12622 } 12623 } 12624 12625 /* 12626 * Sometimes, even reliable TSCs go backwards. This happens on 12627 * platforms that reset TSC during suspend or hibernate actions, but 12628 * maintain synchronization. We must compensate. Fortunately, we can 12629 * detect that condition here, which happens early in CPU bringup, 12630 * before any KVM threads can be running. Unfortunately, we can't 12631 * bring the TSCs fully up to date with real time, as we aren't yet far 12632 * enough into CPU bringup that we know how much real time has actually 12633 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12634 * variables that haven't been updated yet. 12635 * 12636 * So we simply find the maximum observed TSC above, then record the 12637 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12638 * the adjustment will be applied. Note that we accumulate 12639 * adjustments, in case multiple suspend cycles happen before some VCPU 12640 * gets a chance to run again. In the event that no KVM threads get a 12641 * chance to run, we will miss the entire elapsed period, as we'll have 12642 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12643 * loose cycle time. This isn't too big a deal, since the loss will be 12644 * uniform across all VCPUs (not to mention the scenario is extremely 12645 * unlikely). It is possible that a second hibernate recovery happens 12646 * much faster than a first, causing the observed TSC here to be 12647 * smaller; this would require additional padding adjustment, which is 12648 * why we set last_host_tsc to the local tsc observed here. 12649 * 12650 * N.B. - this code below runs only on platforms with reliable TSC, 12651 * as that is the only way backwards_tsc is set above. Also note 12652 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12653 * have the same delta_cyc adjustment applied if backwards_tsc 12654 * is detected. Note further, this adjustment is only done once, 12655 * as we reset last_host_tsc on all VCPUs to stop this from being 12656 * called multiple times (one for each physical CPU bringup). 12657 * 12658 * Platforms with unreliable TSCs don't have to deal with this, they 12659 * will be compensated by the logic in vcpu_load, which sets the TSC to 12660 * catchup mode. This will catchup all VCPUs to real time, but cannot 12661 * guarantee that they stay in perfect synchronization. 12662 */ 12663 if (backwards_tsc) { 12664 u64 delta_cyc = max_tsc - local_tsc; 12665 list_for_each_entry(kvm, &vm_list, vm_list) { 12666 kvm->arch.backwards_tsc_observed = true; 12667 kvm_for_each_vcpu(i, vcpu, kvm) { 12668 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12669 vcpu->arch.last_host_tsc = local_tsc; 12670 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12671 } 12672 12673 /* 12674 * We have to disable TSC offset matching.. if you were 12675 * booting a VM while issuing an S4 host suspend.... 12676 * you may have some problem. Solving this issue is 12677 * left as an exercise to the reader. 12678 */ 12679 kvm->arch.last_tsc_nsec = 0; 12680 kvm->arch.last_tsc_write = 0; 12681 } 12682 12683 } 12684 return 0; 12685 } 12686 12687 void kvm_arch_disable_virtualization_cpu(void) 12688 { 12689 kvm_x86_call(disable_virtualization_cpu)(); 12690 drop_user_return_notifiers(); 12691 } 12692 12693 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12694 { 12695 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12696 } 12697 12698 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12699 { 12700 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12701 } 12702 12703 void kvm_arch_free_vm(struct kvm *kvm) 12704 { 12705 #if IS_ENABLED(CONFIG_HYPERV) 12706 kfree(kvm->arch.hv_pa_pg); 12707 #endif 12708 __kvm_arch_free_vm(kvm); 12709 } 12710 12711 12712 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12713 { 12714 int ret; 12715 unsigned long flags; 12716 12717 if (!kvm_is_vm_type_supported(type)) 12718 return -EINVAL; 12719 12720 kvm->arch.vm_type = type; 12721 kvm->arch.has_private_mem = 12722 (type == KVM_X86_SW_PROTECTED_VM); 12723 /* Decided by the vendor code for other VM types. */ 12724 kvm->arch.pre_fault_allowed = 12725 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; 12726 12727 ret = kvm_page_track_init(kvm); 12728 if (ret) 12729 goto out; 12730 12731 kvm_mmu_init_vm(kvm); 12732 12733 ret = kvm_x86_call(vm_init)(kvm); 12734 if (ret) 12735 goto out_uninit_mmu; 12736 12737 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12738 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12739 12740 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12741 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12742 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12743 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12744 &kvm->arch.irq_sources_bitmap); 12745 12746 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12747 mutex_init(&kvm->arch.apic_map_lock); 12748 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12749 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12750 12751 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12752 pvclock_update_vm_gtod_copy(kvm); 12753 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12754 12755 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12756 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; 12757 kvm->arch.guest_can_read_msr_platform_info = true; 12758 kvm->arch.enable_pmu = enable_pmu; 12759 12760 #if IS_ENABLED(CONFIG_HYPERV) 12761 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12762 kvm->arch.hv_root_tdp = INVALID_PAGE; 12763 #endif 12764 12765 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12766 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12767 12768 kvm_apicv_init(kvm); 12769 kvm_hv_init_vm(kvm); 12770 kvm_xen_init_vm(kvm); 12771 12772 if (ignore_msrs && !report_ignored_msrs) { 12773 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n" 12774 "a supported configuration. Lying to the guest about the existence of MSRs\n" 12775 "may cause the guest operating system to hang or produce errors. If a guest\n" 12776 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n"); 12777 } 12778 12779 once_init(&kvm->arch.nx_once); 12780 return 0; 12781 12782 out_uninit_mmu: 12783 kvm_mmu_uninit_vm(kvm); 12784 kvm_page_track_cleanup(kvm); 12785 out: 12786 return ret; 12787 } 12788 12789 /** 12790 * __x86_set_memory_region: Setup KVM internal memory slot 12791 * 12792 * @kvm: the kvm pointer to the VM. 12793 * @id: the slot ID to setup. 12794 * @gpa: the GPA to install the slot (unused when @size == 0). 12795 * @size: the size of the slot. Set to zero to uninstall a slot. 12796 * 12797 * This function helps to setup a KVM internal memory slot. Specify 12798 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12799 * slot. The return code can be one of the following: 12800 * 12801 * HVA: on success (uninstall will return a bogus HVA) 12802 * -errno: on error 12803 * 12804 * The caller should always use IS_ERR() to check the return value 12805 * before use. Note, the KVM internal memory slots are guaranteed to 12806 * remain valid and unchanged until the VM is destroyed, i.e., the 12807 * GPA->HVA translation will not change. However, the HVA is a user 12808 * address, i.e. its accessibility is not guaranteed, and must be 12809 * accessed via __copy_{to,from}_user(). 12810 */ 12811 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12812 u32 size) 12813 { 12814 int i, r; 12815 unsigned long hva, old_npages; 12816 struct kvm_memslots *slots = kvm_memslots(kvm); 12817 struct kvm_memory_slot *slot; 12818 12819 lockdep_assert_held(&kvm->slots_lock); 12820 12821 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12822 return ERR_PTR_USR(-EINVAL); 12823 12824 slot = id_to_memslot(slots, id); 12825 if (size) { 12826 if (slot && slot->npages) 12827 return ERR_PTR_USR(-EEXIST); 12828 12829 /* 12830 * MAP_SHARED to prevent internal slot pages from being moved 12831 * by fork()/COW. 12832 */ 12833 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12834 MAP_SHARED | MAP_ANONYMOUS, 0); 12835 if (IS_ERR_VALUE(hva)) 12836 return (void __user *)hva; 12837 } else { 12838 if (!slot || !slot->npages) 12839 return NULL; 12840 12841 old_npages = slot->npages; 12842 hva = slot->userspace_addr; 12843 } 12844 12845 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12846 struct kvm_userspace_memory_region2 m; 12847 12848 m.slot = id | (i << 16); 12849 m.flags = 0; 12850 m.guest_phys_addr = gpa; 12851 m.userspace_addr = hva; 12852 m.memory_size = size; 12853 r = kvm_set_internal_memslot(kvm, &m); 12854 if (r < 0) 12855 return ERR_PTR_USR(r); 12856 } 12857 12858 if (!size) 12859 vm_munmap(hva, old_npages * PAGE_SIZE); 12860 12861 return (void __user *)hva; 12862 } 12863 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12864 12865 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12866 { 12867 /* 12868 * Stop all background workers and kthreads before destroying vCPUs, as 12869 * iterating over vCPUs in a different task while vCPUs are being freed 12870 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to 12871 * be stopped before IRQ routing is freed. 12872 */ 12873 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12874 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12875 12876 kvm_free_pit(kvm); 12877 12878 kvm_mmu_pre_destroy_vm(kvm); 12879 } 12880 12881 void kvm_arch_destroy_vm(struct kvm *kvm) 12882 { 12883 if (current->mm == kvm->mm) { 12884 /* 12885 * Free memory regions allocated on behalf of userspace, 12886 * unless the memory map has changed due to process exit 12887 * or fd copying. 12888 */ 12889 mutex_lock(&kvm->slots_lock); 12890 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12891 0, 0); 12892 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12893 0, 0); 12894 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12895 mutex_unlock(&kvm->slots_lock); 12896 } 12897 kvm_destroy_vcpus(kvm); 12898 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12899 kvm_pic_destroy(kvm); 12900 kvm_ioapic_destroy(kvm); 12901 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12902 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12903 kvm_mmu_uninit_vm(kvm); 12904 kvm_page_track_cleanup(kvm); 12905 kvm_xen_destroy_vm(kvm); 12906 kvm_hv_destroy_vm(kvm); 12907 kvm_x86_call(vm_destroy)(kvm); 12908 } 12909 12910 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12911 { 12912 int i; 12913 12914 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12915 vfree(slot->arch.rmap[i]); 12916 slot->arch.rmap[i] = NULL; 12917 } 12918 } 12919 12920 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12921 { 12922 int i; 12923 12924 memslot_rmap_free(slot); 12925 12926 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12927 vfree(slot->arch.lpage_info[i - 1]); 12928 slot->arch.lpage_info[i - 1] = NULL; 12929 } 12930 12931 kvm_page_track_free_memslot(slot); 12932 } 12933 12934 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12935 { 12936 const int sz = sizeof(*slot->arch.rmap[0]); 12937 int i; 12938 12939 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12940 int level = i + 1; 12941 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12942 12943 if (slot->arch.rmap[i]) 12944 continue; 12945 12946 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12947 if (!slot->arch.rmap[i]) { 12948 memslot_rmap_free(slot); 12949 return -ENOMEM; 12950 } 12951 } 12952 12953 return 0; 12954 } 12955 12956 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12957 struct kvm_memory_slot *slot) 12958 { 12959 unsigned long npages = slot->npages; 12960 int i, r; 12961 12962 /* 12963 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12964 * old arrays will be freed by kvm_set_memory_region() if installing 12965 * the new memslot is successful. 12966 */ 12967 memset(&slot->arch, 0, sizeof(slot->arch)); 12968 12969 if (kvm_memslots_have_rmaps(kvm)) { 12970 r = memslot_rmap_alloc(slot, npages); 12971 if (r) 12972 return r; 12973 } 12974 12975 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12976 struct kvm_lpage_info *linfo; 12977 unsigned long ugfn; 12978 int lpages; 12979 int level = i + 1; 12980 12981 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12982 12983 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12984 if (!linfo) 12985 goto out_free; 12986 12987 slot->arch.lpage_info[i - 1] = linfo; 12988 12989 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12990 linfo[0].disallow_lpage = 1; 12991 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12992 linfo[lpages - 1].disallow_lpage = 1; 12993 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12994 /* 12995 * If the gfn and userspace address are not aligned wrt each 12996 * other, disable large page support for this slot. 12997 */ 12998 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12999 unsigned long j; 13000 13001 for (j = 0; j < lpages; ++j) 13002 linfo[j].disallow_lpage = 1; 13003 } 13004 } 13005 13006 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 13007 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 13008 #endif 13009 13010 if (kvm_page_track_create_memslot(kvm, slot, npages)) 13011 goto out_free; 13012 13013 return 0; 13014 13015 out_free: 13016 memslot_rmap_free(slot); 13017 13018 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 13019 vfree(slot->arch.lpage_info[i - 1]); 13020 slot->arch.lpage_info[i - 1] = NULL; 13021 } 13022 return -ENOMEM; 13023 } 13024 13025 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 13026 { 13027 struct kvm_vcpu *vcpu; 13028 unsigned long i; 13029 13030 /* 13031 * memslots->generation has been incremented. 13032 * mmio generation may have reached its maximum value. 13033 */ 13034 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 13035 13036 /* Force re-initialization of steal_time cache */ 13037 kvm_for_each_vcpu(i, vcpu, kvm) 13038 kvm_vcpu_kick(vcpu); 13039 } 13040 13041 int kvm_arch_prepare_memory_region(struct kvm *kvm, 13042 const struct kvm_memory_slot *old, 13043 struct kvm_memory_slot *new, 13044 enum kvm_mr_change change) 13045 { 13046 /* 13047 * KVM doesn't support moving memslots when there are external page 13048 * trackers attached to the VM, i.e. if KVMGT is in use. 13049 */ 13050 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 13051 return -EINVAL; 13052 13053 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 13054 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 13055 return -EINVAL; 13056 13057 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1)) 13058 return -EINVAL; 13059 13060 return kvm_alloc_memslot_metadata(kvm, new); 13061 } 13062 13063 if (change == KVM_MR_FLAGS_ONLY) 13064 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 13065 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 13066 return -EIO; 13067 13068 return 0; 13069 } 13070 13071 13072 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 13073 { 13074 int nr_slots; 13075 13076 if (!kvm_x86_ops.cpu_dirty_log_size) 13077 return; 13078 13079 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 13080 if ((enable && nr_slots == 1) || !nr_slots) 13081 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 13082 } 13083 13084 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 13085 struct kvm_memory_slot *old, 13086 const struct kvm_memory_slot *new, 13087 enum kvm_mr_change change) 13088 { 13089 u32 old_flags = old ? old->flags : 0; 13090 u32 new_flags = new ? new->flags : 0; 13091 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 13092 13093 /* 13094 * Update CPU dirty logging if dirty logging is being toggled. This 13095 * applies to all operations. 13096 */ 13097 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 13098 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 13099 13100 /* 13101 * Nothing more to do for RO slots (which can't be dirtied and can't be 13102 * made writable) or CREATE/MOVE/DELETE of a slot. 13103 * 13104 * For a memslot with dirty logging disabled: 13105 * CREATE: No dirty mappings will already exist. 13106 * MOVE/DELETE: The old mappings will already have been cleaned up by 13107 * kvm_arch_flush_shadow_memslot() 13108 * 13109 * For a memslot with dirty logging enabled: 13110 * CREATE: No shadow pages exist, thus nothing to write-protect 13111 * and no dirty bits to clear. 13112 * MOVE/DELETE: The old mappings will already have been cleaned up by 13113 * kvm_arch_flush_shadow_memslot(). 13114 */ 13115 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 13116 return; 13117 13118 /* 13119 * READONLY and non-flags changes were filtered out above, and the only 13120 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 13121 * logging isn't being toggled on or off. 13122 */ 13123 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 13124 return; 13125 13126 if (!log_dirty_pages) { 13127 /* 13128 * Recover huge page mappings in the slot now that dirty logging 13129 * is disabled, i.e. now that KVM does not have to track guest 13130 * writes at 4KiB granularity. 13131 * 13132 * Dirty logging might be disabled by userspace if an ongoing VM 13133 * live migration is cancelled and the VM must continue running 13134 * on the source. 13135 */ 13136 kvm_mmu_recover_huge_pages(kvm, new); 13137 } else { 13138 /* 13139 * Initially-all-set does not require write protecting any page, 13140 * because they're all assumed to be dirty. 13141 */ 13142 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13143 return; 13144 13145 if (READ_ONCE(eager_page_split)) 13146 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13147 13148 if (kvm_x86_ops.cpu_dirty_log_size) { 13149 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13150 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13151 } else { 13152 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13153 } 13154 13155 /* 13156 * Unconditionally flush the TLBs after enabling dirty logging. 13157 * A flush is almost always going to be necessary (see below), 13158 * and unconditionally flushing allows the helpers to omit 13159 * the subtly complex checks when removing write access. 13160 * 13161 * Do the flush outside of mmu_lock to reduce the amount of 13162 * time mmu_lock is held. Flushing after dropping mmu_lock is 13163 * safe as KVM only needs to guarantee the slot is fully 13164 * write-protected before returning to userspace, i.e. before 13165 * userspace can consume the dirty status. 13166 * 13167 * Flushing outside of mmu_lock requires KVM to be careful when 13168 * making decisions based on writable status of an SPTE, e.g. a 13169 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13170 * 13171 * Specifically, KVM also write-protects guest page tables to 13172 * monitor changes when using shadow paging, and must guarantee 13173 * no CPUs can write to those page before mmu_lock is dropped. 13174 * Because CPUs may have stale TLB entries at this point, a 13175 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13176 * 13177 * KVM also allows making SPTES writable outside of mmu_lock, 13178 * e.g. to allow dirty logging without taking mmu_lock. 13179 * 13180 * To handle these scenarios, KVM uses a separate software-only 13181 * bit (MMU-writable) to track if a SPTE is !writable due to 13182 * a guest page table being write-protected (KVM clears the 13183 * MMU-writable flag when write-protecting for shadow paging). 13184 * 13185 * The use of MMU-writable is also the primary motivation for 13186 * the unconditional flush. Because KVM must guarantee that a 13187 * CPU doesn't contain stale, writable TLB entries for a 13188 * !MMU-writable SPTE, KVM must flush if it encounters any 13189 * MMU-writable SPTE regardless of whether the actual hardware 13190 * writable bit was set. I.e. KVM is almost guaranteed to need 13191 * to flush, while unconditionally flushing allows the "remove 13192 * write access" helpers to ignore MMU-writable entirely. 13193 * 13194 * See is_writable_pte() for more details (the case involving 13195 * access-tracked SPTEs is particularly relevant). 13196 */ 13197 kvm_flush_remote_tlbs_memslot(kvm, new); 13198 } 13199 } 13200 13201 void kvm_arch_commit_memory_region(struct kvm *kvm, 13202 struct kvm_memory_slot *old, 13203 const struct kvm_memory_slot *new, 13204 enum kvm_mr_change change) 13205 { 13206 if (change == KVM_MR_DELETE) 13207 kvm_page_track_delete_slot(kvm, old); 13208 13209 if (!kvm->arch.n_requested_mmu_pages && 13210 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13211 unsigned long nr_mmu_pages; 13212 13213 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13214 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13215 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13216 } 13217 13218 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13219 13220 /* Free the arrays associated with the old memslot. */ 13221 if (change == KVM_MR_MOVE) 13222 kvm_arch_free_memslot(kvm, old); 13223 } 13224 13225 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13226 { 13227 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13228 13229 if (vcpu->arch.guest_state_protected) 13230 return true; 13231 13232 return kvm_x86_call(get_cpl)(vcpu) == 0; 13233 } 13234 13235 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13236 { 13237 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); 13238 13239 if (vcpu->arch.guest_state_protected) 13240 return 0; 13241 13242 return kvm_rip_read(vcpu); 13243 } 13244 13245 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13246 { 13247 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13248 } 13249 13250 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13251 { 13252 return kvm_x86_call(interrupt_allowed)(vcpu, false); 13253 } 13254 13255 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13256 { 13257 /* Can't read the RIP when guest state is protected, just return 0 */ 13258 if (vcpu->arch.guest_state_protected) 13259 return 0; 13260 13261 if (is_64_bit_mode(vcpu)) 13262 return kvm_rip_read(vcpu); 13263 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13264 kvm_rip_read(vcpu)); 13265 } 13266 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13267 13268 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13269 { 13270 return kvm_get_linear_rip(vcpu) == linear_rip; 13271 } 13272 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13273 13274 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13275 { 13276 unsigned long rflags; 13277 13278 rflags = kvm_x86_call(get_rflags)(vcpu); 13279 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13280 rflags &= ~X86_EFLAGS_TF; 13281 return rflags; 13282 } 13283 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13284 13285 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13286 { 13287 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13288 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13289 rflags |= X86_EFLAGS_TF; 13290 kvm_x86_call(set_rflags)(vcpu, rflags); 13291 } 13292 13293 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13294 { 13295 __kvm_set_rflags(vcpu, rflags); 13296 kvm_make_request(KVM_REQ_EVENT, vcpu); 13297 } 13298 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13299 13300 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13301 { 13302 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13303 13304 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13305 } 13306 13307 static inline u32 kvm_async_pf_next_probe(u32 key) 13308 { 13309 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13310 } 13311 13312 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13313 { 13314 u32 key = kvm_async_pf_hash_fn(gfn); 13315 13316 while (vcpu->arch.apf.gfns[key] != ~0) 13317 key = kvm_async_pf_next_probe(key); 13318 13319 vcpu->arch.apf.gfns[key] = gfn; 13320 } 13321 13322 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13323 { 13324 int i; 13325 u32 key = kvm_async_pf_hash_fn(gfn); 13326 13327 for (i = 0; i < ASYNC_PF_PER_VCPU && 13328 (vcpu->arch.apf.gfns[key] != gfn && 13329 vcpu->arch.apf.gfns[key] != ~0); i++) 13330 key = kvm_async_pf_next_probe(key); 13331 13332 return key; 13333 } 13334 13335 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13336 { 13337 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13338 } 13339 13340 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13341 { 13342 u32 i, j, k; 13343 13344 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13345 13346 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13347 return; 13348 13349 while (true) { 13350 vcpu->arch.apf.gfns[i] = ~0; 13351 do { 13352 j = kvm_async_pf_next_probe(j); 13353 if (vcpu->arch.apf.gfns[j] == ~0) 13354 return; 13355 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13356 /* 13357 * k lies cyclically in ]i,j] 13358 * | i.k.j | 13359 * |....j i.k.| or |.k..j i...| 13360 */ 13361 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13362 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13363 i = j; 13364 } 13365 } 13366 13367 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13368 { 13369 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13370 13371 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13372 sizeof(reason)); 13373 } 13374 13375 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13376 { 13377 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13378 13379 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13380 &token, offset, sizeof(token)); 13381 } 13382 13383 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13384 { 13385 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13386 u32 val; 13387 13388 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13389 &val, offset, sizeof(val))) 13390 return false; 13391 13392 return !val; 13393 } 13394 13395 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13396 { 13397 13398 if (!kvm_pv_async_pf_enabled(vcpu)) 13399 return false; 13400 13401 if (!vcpu->arch.apf.send_always && 13402 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu))) 13403 return false; 13404 13405 if (is_guest_mode(vcpu)) { 13406 /* 13407 * L1 needs to opt into the special #PF vmexits that are 13408 * used to deliver async page faults. 13409 */ 13410 return vcpu->arch.apf.delivery_as_pf_vmexit; 13411 } else { 13412 /* 13413 * Play it safe in case the guest temporarily disables paging. 13414 * The real mode IDT in particular is unlikely to have a #PF 13415 * exception setup. 13416 */ 13417 return is_paging(vcpu); 13418 } 13419 } 13420 13421 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13422 { 13423 if (unlikely(!lapic_in_kernel(vcpu) || 13424 kvm_event_needs_reinjection(vcpu) || 13425 kvm_is_exception_pending(vcpu))) 13426 return false; 13427 13428 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13429 return false; 13430 13431 /* 13432 * If interrupts are off we cannot even use an artificial 13433 * halt state. 13434 */ 13435 return kvm_arch_interrupt_allowed(vcpu); 13436 } 13437 13438 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13439 struct kvm_async_pf *work) 13440 { 13441 struct x86_exception fault; 13442 13443 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13444 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13445 13446 if (kvm_can_deliver_async_pf(vcpu) && 13447 !apf_put_user_notpresent(vcpu)) { 13448 fault.vector = PF_VECTOR; 13449 fault.error_code_valid = true; 13450 fault.error_code = 0; 13451 fault.nested_page_fault = false; 13452 fault.address = work->arch.token; 13453 fault.async_page_fault = true; 13454 kvm_inject_page_fault(vcpu, &fault); 13455 return true; 13456 } else { 13457 /* 13458 * It is not possible to deliver a paravirtualized asynchronous 13459 * page fault, but putting the guest in an artificial halt state 13460 * can be beneficial nevertheless: if an interrupt arrives, we 13461 * can deliver it timely and perhaps the guest will schedule 13462 * another process. When the instruction that triggered a page 13463 * fault is retried, hopefully the page will be ready in the host. 13464 */ 13465 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13466 return false; 13467 } 13468 } 13469 13470 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13471 struct kvm_async_pf *work) 13472 { 13473 struct kvm_lapic_irq irq = { 13474 .delivery_mode = APIC_DM_FIXED, 13475 .vector = vcpu->arch.apf.vec 13476 }; 13477 13478 if (work->wakeup_all) 13479 work->arch.token = ~0; /* broadcast wakeup */ 13480 else 13481 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13482 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13483 13484 if ((work->wakeup_all || work->notpresent_injected) && 13485 kvm_pv_async_pf_enabled(vcpu) && 13486 !apf_put_user_ready(vcpu, work->arch.token)) { 13487 vcpu->arch.apf.pageready_pending = true; 13488 kvm_apic_set_irq(vcpu, &irq, NULL); 13489 } 13490 13491 vcpu->arch.apf.halted = false; 13492 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 13493 } 13494 13495 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13496 { 13497 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13498 if (!vcpu->arch.apf.pageready_pending) 13499 kvm_vcpu_kick(vcpu); 13500 } 13501 13502 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13503 { 13504 if (!kvm_pv_async_pf_enabled(vcpu)) 13505 return true; 13506 else 13507 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13508 } 13509 13510 void kvm_arch_start_assignment(struct kvm *kvm) 13511 { 13512 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13513 kvm_x86_call(pi_start_assignment)(kvm); 13514 } 13515 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13516 13517 void kvm_arch_end_assignment(struct kvm *kvm) 13518 { 13519 atomic_dec(&kvm->arch.assigned_device_count); 13520 } 13521 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13522 13523 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13524 { 13525 return raw_atomic_read(&kvm->arch.assigned_device_count); 13526 } 13527 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13528 13529 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13530 { 13531 /* 13532 * Non-coherent DMA assignment and de-assignment may affect whether or 13533 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs 13534 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first 13535 * (or last) non-coherent device is (un)registered to so that new SPTEs 13536 * with the correct "ignore guest PAT" setting are created. 13537 */ 13538 if (kvm_mmu_may_ignore_guest_pat()) 13539 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13540 } 13541 13542 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13543 { 13544 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13545 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13546 } 13547 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13548 13549 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13550 { 13551 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13552 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13553 } 13554 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13555 13556 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13557 { 13558 return atomic_read(&kvm->arch.noncoherent_dma_count); 13559 } 13560 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13561 13562 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13563 struct irq_bypass_producer *prod) 13564 { 13565 struct kvm_kernel_irqfd *irqfd = 13566 container_of(cons, struct kvm_kernel_irqfd, consumer); 13567 struct kvm *kvm = irqfd->kvm; 13568 int ret; 13569 13570 kvm_arch_start_assignment(irqfd->kvm); 13571 13572 spin_lock_irq(&kvm->irqfds.lock); 13573 irqfd->producer = prod; 13574 13575 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13576 prod->irq, irqfd->gsi, 1); 13577 if (ret) 13578 kvm_arch_end_assignment(irqfd->kvm); 13579 13580 spin_unlock_irq(&kvm->irqfds.lock); 13581 13582 13583 return ret; 13584 } 13585 13586 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13587 struct irq_bypass_producer *prod) 13588 { 13589 int ret; 13590 struct kvm_kernel_irqfd *irqfd = 13591 container_of(cons, struct kvm_kernel_irqfd, consumer); 13592 struct kvm *kvm = irqfd->kvm; 13593 13594 WARN_ON(irqfd->producer != prod); 13595 13596 /* 13597 * When producer of consumer is unregistered, we change back to 13598 * remapped mode, so we can re-use the current implementation 13599 * when the irq is masked/disabled or the consumer side (KVM 13600 * int this case doesn't want to receive the interrupts. 13601 */ 13602 spin_lock_irq(&kvm->irqfds.lock); 13603 irqfd->producer = NULL; 13604 13605 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13606 prod->irq, irqfd->gsi, 0); 13607 if (ret) 13608 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13609 " fails: %d\n", irqfd->consumer.token, ret); 13610 13611 spin_unlock_irq(&kvm->irqfds.lock); 13612 13613 13614 kvm_arch_end_assignment(irqfd->kvm); 13615 } 13616 13617 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13618 uint32_t guest_irq, bool set) 13619 { 13620 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set); 13621 } 13622 13623 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13624 struct kvm_kernel_irq_routing_entry *new) 13625 { 13626 if (old->type != KVM_IRQ_ROUTING_MSI || 13627 new->type != KVM_IRQ_ROUTING_MSI) 13628 return true; 13629 13630 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13631 } 13632 13633 bool kvm_vector_hashing_enabled(void) 13634 { 13635 return vector_hashing; 13636 } 13637 13638 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13639 { 13640 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13641 } 13642 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13643 13644 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 13645 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) 13646 { 13647 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); 13648 } 13649 #endif 13650 13651 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 13652 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 13653 { 13654 kvm_x86_call(gmem_invalidate)(start, end); 13655 } 13656 #endif 13657 13658 int kvm_spec_ctrl_test_value(u64 value) 13659 { 13660 /* 13661 * test that setting IA32_SPEC_CTRL to given value 13662 * is allowed by the host processor 13663 */ 13664 13665 u64 saved_value; 13666 unsigned long flags; 13667 int ret = 0; 13668 13669 local_irq_save(flags); 13670 13671 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13672 ret = 1; 13673 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13674 ret = 1; 13675 else 13676 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13677 13678 local_irq_restore(flags); 13679 13680 return ret; 13681 } 13682 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13683 13684 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13685 { 13686 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13687 struct x86_exception fault; 13688 u64 access = error_code & 13689 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13690 13691 if (!(error_code & PFERR_PRESENT_MASK) || 13692 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13693 /* 13694 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13695 * tables probably do not match the TLB. Just proceed 13696 * with the error code that the processor gave. 13697 */ 13698 fault.vector = PF_VECTOR; 13699 fault.error_code_valid = true; 13700 fault.error_code = error_code; 13701 fault.nested_page_fault = false; 13702 fault.address = gva; 13703 fault.async_page_fault = false; 13704 } 13705 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13706 } 13707 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13708 13709 /* 13710 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13711 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13712 * indicates whether exit to userspace is needed. 13713 */ 13714 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13715 struct x86_exception *e) 13716 { 13717 if (r == X86EMUL_PROPAGATE_FAULT) { 13718 if (KVM_BUG_ON(!e, vcpu->kvm)) 13719 return -EIO; 13720 13721 kvm_inject_emulated_page_fault(vcpu, e); 13722 return 1; 13723 } 13724 13725 /* 13726 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13727 * while handling a VMX instruction KVM could've handled the request 13728 * correctly by exiting to userspace and performing I/O but there 13729 * doesn't seem to be a real use-case behind such requests, just return 13730 * KVM_EXIT_INTERNAL_ERROR for now. 13731 */ 13732 kvm_prepare_emulation_failure_exit(vcpu); 13733 13734 return 0; 13735 } 13736 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13737 13738 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13739 { 13740 bool pcid_enabled; 13741 struct x86_exception e; 13742 struct { 13743 u64 pcid; 13744 u64 gla; 13745 } operand; 13746 int r; 13747 13748 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13749 if (r != X86EMUL_CONTINUE) 13750 return kvm_handle_memory_failure(vcpu, r, &e); 13751 13752 if (operand.pcid >> 12 != 0) { 13753 kvm_inject_gp(vcpu, 0); 13754 return 1; 13755 } 13756 13757 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13758 13759 switch (type) { 13760 case INVPCID_TYPE_INDIV_ADDR: 13761 /* 13762 * LAM doesn't apply to addresses that are inputs to TLB 13763 * invalidation. 13764 */ 13765 if ((!pcid_enabled && (operand.pcid != 0)) || 13766 is_noncanonical_invlpg_address(operand.gla, vcpu)) { 13767 kvm_inject_gp(vcpu, 0); 13768 return 1; 13769 } 13770 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13771 return kvm_skip_emulated_instruction(vcpu); 13772 13773 case INVPCID_TYPE_SINGLE_CTXT: 13774 if (!pcid_enabled && (operand.pcid != 0)) { 13775 kvm_inject_gp(vcpu, 0); 13776 return 1; 13777 } 13778 13779 kvm_invalidate_pcid(vcpu, operand.pcid); 13780 return kvm_skip_emulated_instruction(vcpu); 13781 13782 case INVPCID_TYPE_ALL_NON_GLOBAL: 13783 /* 13784 * Currently, KVM doesn't mark global entries in the shadow 13785 * page tables, so a non-global flush just degenerates to a 13786 * global flush. If needed, we could optimize this later by 13787 * keeping track of global entries in shadow page tables. 13788 */ 13789 13790 fallthrough; 13791 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13792 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13793 return kvm_skip_emulated_instruction(vcpu); 13794 13795 default: 13796 kvm_inject_gp(vcpu, 0); 13797 return 1; 13798 } 13799 } 13800 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13801 13802 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13803 { 13804 struct kvm_run *run = vcpu->run; 13805 struct kvm_mmio_fragment *frag; 13806 unsigned int len; 13807 13808 BUG_ON(!vcpu->mmio_needed); 13809 13810 /* Complete previous fragment */ 13811 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13812 len = min(8u, frag->len); 13813 if (!vcpu->mmio_is_write) 13814 memcpy(frag->data, run->mmio.data, len); 13815 13816 if (frag->len <= 8) { 13817 /* Switch to the next fragment. */ 13818 frag++; 13819 vcpu->mmio_cur_fragment++; 13820 } else { 13821 /* Go forward to the next mmio piece. */ 13822 frag->data += len; 13823 frag->gpa += len; 13824 frag->len -= len; 13825 } 13826 13827 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13828 vcpu->mmio_needed = 0; 13829 13830 // VMG change, at this point, we're always done 13831 // RIP has already been advanced 13832 return 1; 13833 } 13834 13835 // More MMIO is needed 13836 run->mmio.phys_addr = frag->gpa; 13837 run->mmio.len = min(8u, frag->len); 13838 run->mmio.is_write = vcpu->mmio_is_write; 13839 if (run->mmio.is_write) 13840 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13841 run->exit_reason = KVM_EXIT_MMIO; 13842 13843 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13844 13845 return 0; 13846 } 13847 13848 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13849 void *data) 13850 { 13851 int handled; 13852 struct kvm_mmio_fragment *frag; 13853 13854 if (!data) 13855 return -EINVAL; 13856 13857 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13858 if (handled == bytes) 13859 return 1; 13860 13861 bytes -= handled; 13862 gpa += handled; 13863 data += handled; 13864 13865 /*TODO: Check if need to increment number of frags */ 13866 frag = vcpu->mmio_fragments; 13867 vcpu->mmio_nr_fragments = 1; 13868 frag->len = bytes; 13869 frag->gpa = gpa; 13870 frag->data = data; 13871 13872 vcpu->mmio_needed = 1; 13873 vcpu->mmio_cur_fragment = 0; 13874 13875 vcpu->run->mmio.phys_addr = gpa; 13876 vcpu->run->mmio.len = min(8u, frag->len); 13877 vcpu->run->mmio.is_write = 1; 13878 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13879 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13880 13881 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13882 13883 return 0; 13884 } 13885 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13886 13887 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13888 void *data) 13889 { 13890 int handled; 13891 struct kvm_mmio_fragment *frag; 13892 13893 if (!data) 13894 return -EINVAL; 13895 13896 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13897 if (handled == bytes) 13898 return 1; 13899 13900 bytes -= handled; 13901 gpa += handled; 13902 data += handled; 13903 13904 /*TODO: Check if need to increment number of frags */ 13905 frag = vcpu->mmio_fragments; 13906 vcpu->mmio_nr_fragments = 1; 13907 frag->len = bytes; 13908 frag->gpa = gpa; 13909 frag->data = data; 13910 13911 vcpu->mmio_needed = 1; 13912 vcpu->mmio_cur_fragment = 0; 13913 13914 vcpu->run->mmio.phys_addr = gpa; 13915 vcpu->run->mmio.len = min(8u, frag->len); 13916 vcpu->run->mmio.is_write = 0; 13917 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13918 13919 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13920 13921 return 0; 13922 } 13923 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13924 13925 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13926 { 13927 vcpu->arch.sev_pio_count -= count; 13928 vcpu->arch.sev_pio_data += count * size; 13929 } 13930 13931 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13932 unsigned int port); 13933 13934 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13935 { 13936 int size = vcpu->arch.pio.size; 13937 int port = vcpu->arch.pio.port; 13938 13939 vcpu->arch.pio.count = 0; 13940 if (vcpu->arch.sev_pio_count) 13941 return kvm_sev_es_outs(vcpu, size, port); 13942 return 1; 13943 } 13944 13945 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13946 unsigned int port) 13947 { 13948 for (;;) { 13949 unsigned int count = 13950 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13951 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13952 13953 /* memcpy done already by emulator_pio_out. */ 13954 advance_sev_es_emulated_pio(vcpu, count, size); 13955 if (!ret) 13956 break; 13957 13958 /* Emulation done by the kernel. */ 13959 if (!vcpu->arch.sev_pio_count) 13960 return 1; 13961 } 13962 13963 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13964 return 0; 13965 } 13966 13967 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13968 unsigned int port); 13969 13970 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13971 { 13972 unsigned count = vcpu->arch.pio.count; 13973 int size = vcpu->arch.pio.size; 13974 int port = vcpu->arch.pio.port; 13975 13976 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13977 advance_sev_es_emulated_pio(vcpu, count, size); 13978 if (vcpu->arch.sev_pio_count) 13979 return kvm_sev_es_ins(vcpu, size, port); 13980 return 1; 13981 } 13982 13983 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13984 unsigned int port) 13985 { 13986 for (;;) { 13987 unsigned int count = 13988 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13989 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13990 break; 13991 13992 /* Emulation done by the kernel. */ 13993 advance_sev_es_emulated_pio(vcpu, count, size); 13994 if (!vcpu->arch.sev_pio_count) 13995 return 1; 13996 } 13997 13998 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13999 return 0; 14000 } 14001 14002 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 14003 unsigned int port, void *data, unsigned int count, 14004 int in) 14005 { 14006 vcpu->arch.sev_pio_data = data; 14007 vcpu->arch.sev_pio_count = count; 14008 return in ? kvm_sev_es_ins(vcpu, size, port) 14009 : kvm_sev_es_outs(vcpu, size, port); 14010 } 14011 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 14012 14013 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 14014 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 14015 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 14016 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 14017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 14019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 14020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 14021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 14022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 14023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 14024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 14025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 14026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 14027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 14028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 14029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 14030 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 14031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 14032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 14033 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 14034 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 14035 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 14036 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 14037 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 14038 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 14039 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 14040 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 14041 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 14042 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); 14043 14044 static int __init kvm_x86_init(void) 14045 { 14046 kvm_init_xstate_sizes(); 14047 14048 kvm_mmu_x86_module_init(); 14049 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 14050 return 0; 14051 } 14052 module_init(kvm_x86_init); 14053 14054 static void __exit kvm_x86_exit(void) 14055 { 14056 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 14057 } 14058 module_exit(kvm_x86_exit); 14059