1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/sched/isolation.h> 58 #include <linux/mem_encrypt.h> 59 #include <linux/entry-kvm.h> 60 61 #include <trace/events/kvm.h> 62 63 #include <asm/debugreg.h> 64 #include <asm/msr.h> 65 #include <asm/desc.h> 66 #include <asm/mce.h> 67 #include <linux/kernel_stat.h> 68 #include <asm/fpu/internal.h> /* Ugh! */ 69 #include <asm/pvclock.h> 70 #include <asm/div64.h> 71 #include <asm/irq_remapping.h> 72 #include <asm/mshyperv.h> 73 #include <asm/hypervisor.h> 74 #include <asm/tlbflush.h> 75 #include <asm/intel_pt.h> 76 #include <asm/emulate_prefix.h> 77 #include <clocksource/hyperv_timer.h> 78 79 #define CREATE_TRACE_POINTS 80 #include "trace.h" 81 82 #define MAX_IO_MSRS 256 83 #define KVM_MAX_MCE_BANKS 32 84 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 85 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 86 87 #define emul_to_vcpu(ctxt) \ 88 ((struct kvm_vcpu *)(ctxt)->vcpu) 89 90 /* EFER defaults: 91 * - enable syscall per default because its emulated by KVM 92 * - enable LME and LMA per default on 64 bit KVM 93 */ 94 #ifdef CONFIG_X86_64 95 static 96 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 97 #else 98 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 99 #endif 100 101 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 102 103 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 105 106 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 107 static void process_nmi(struct kvm_vcpu *vcpu); 108 static void enter_smm(struct kvm_vcpu *vcpu); 109 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 110 static void store_regs(struct kvm_vcpu *vcpu); 111 static int sync_regs(struct kvm_vcpu *vcpu); 112 113 struct kvm_x86_ops kvm_x86_ops __read_mostly; 114 EXPORT_SYMBOL_GPL(kvm_x86_ops); 115 116 static bool __read_mostly ignore_msrs = 0; 117 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 118 119 static bool __read_mostly report_ignored_msrs = true; 120 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 121 122 unsigned int min_timer_period_us = 200; 123 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 124 125 static bool __read_mostly kvmclock_periodic_sync = true; 126 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 127 128 bool __read_mostly kvm_has_tsc_control; 129 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 130 u32 __read_mostly kvm_max_guest_tsc_khz; 131 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 132 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 133 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 134 u64 __read_mostly kvm_max_tsc_scaling_ratio; 135 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 136 u64 __read_mostly kvm_default_tsc_scaling_ratio; 137 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 138 139 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 140 static u32 __read_mostly tsc_tolerance_ppm = 250; 141 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 142 143 /* 144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 145 * adaptive tuning starting from default advancment of 1000ns. '0' disables 146 * advancement entirely. Any other value is used as-is and disables adaptive 147 * tuning, i.e. allows priveleged userspace to set an exact advancement time. 148 */ 149 static int __read_mostly lapic_timer_advance_ns = -1; 150 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly vector_hashing = true; 153 module_param(vector_hashing, bool, S_IRUGO); 154 155 bool __read_mostly enable_vmware_backdoor = false; 156 module_param(enable_vmware_backdoor, bool, S_IRUGO); 157 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 158 159 static bool __read_mostly force_emulation_prefix = false; 160 module_param(force_emulation_prefix, bool, S_IRUGO); 161 162 int __read_mostly pi_inject_timer = -1; 163 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 164 165 /* 166 * Restoring the host value for MSRs that are only consumed when running in 167 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 168 * returns to userspace, i.e. the kernel can run with the guest's value. 169 */ 170 #define KVM_MAX_NR_USER_RETURN_MSRS 16 171 172 struct kvm_user_return_msrs_global { 173 int nr; 174 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS]; 175 }; 176 177 struct kvm_user_return_msrs { 178 struct user_return_notifier urn; 179 bool registered; 180 struct kvm_user_return_msr_values { 181 u64 host; 182 u64 curr; 183 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 184 }; 185 186 static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global; 187 static struct kvm_user_return_msrs __percpu *user_return_msrs; 188 189 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 190 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 191 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 192 | XFEATURE_MASK_PKRU) 193 194 u64 __read_mostly host_efer; 195 EXPORT_SYMBOL_GPL(host_efer); 196 197 bool __read_mostly allow_smaller_maxphyaddr = 0; 198 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 199 200 u64 __read_mostly host_xss; 201 EXPORT_SYMBOL_GPL(host_xss); 202 u64 __read_mostly supported_xss; 203 EXPORT_SYMBOL_GPL(supported_xss); 204 205 struct kvm_stats_debugfs_item debugfs_entries[] = { 206 VCPU_STAT("pf_fixed", pf_fixed), 207 VCPU_STAT("pf_guest", pf_guest), 208 VCPU_STAT("tlb_flush", tlb_flush), 209 VCPU_STAT("invlpg", invlpg), 210 VCPU_STAT("exits", exits), 211 VCPU_STAT("io_exits", io_exits), 212 VCPU_STAT("mmio_exits", mmio_exits), 213 VCPU_STAT("signal_exits", signal_exits), 214 VCPU_STAT("irq_window", irq_window_exits), 215 VCPU_STAT("nmi_window", nmi_window_exits), 216 VCPU_STAT("halt_exits", halt_exits), 217 VCPU_STAT("halt_successful_poll", halt_successful_poll), 218 VCPU_STAT("halt_attempted_poll", halt_attempted_poll), 219 VCPU_STAT("halt_poll_invalid", halt_poll_invalid), 220 VCPU_STAT("halt_wakeup", halt_wakeup), 221 VCPU_STAT("hypercalls", hypercalls), 222 VCPU_STAT("request_irq", request_irq_exits), 223 VCPU_STAT("irq_exits", irq_exits), 224 VCPU_STAT("host_state_reload", host_state_reload), 225 VCPU_STAT("fpu_reload", fpu_reload), 226 VCPU_STAT("insn_emulation", insn_emulation), 227 VCPU_STAT("insn_emulation_fail", insn_emulation_fail), 228 VCPU_STAT("irq_injections", irq_injections), 229 VCPU_STAT("nmi_injections", nmi_injections), 230 VCPU_STAT("req_event", req_event), 231 VCPU_STAT("l1d_flush", l1d_flush), 232 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), 233 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), 234 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), 235 VM_STAT("mmu_pte_write", mmu_pte_write), 236 VM_STAT("mmu_pte_updated", mmu_pte_updated), 237 VM_STAT("mmu_pde_zapped", mmu_pde_zapped), 238 VM_STAT("mmu_flooded", mmu_flooded), 239 VM_STAT("mmu_recycled", mmu_recycled), 240 VM_STAT("mmu_cache_miss", mmu_cache_miss), 241 VM_STAT("mmu_unsync", mmu_unsync), 242 VM_STAT("remote_tlb_flush", remote_tlb_flush), 243 VM_STAT("largepages", lpages, .mode = 0444), 244 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444), 245 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions), 246 { NULL } 247 }; 248 249 u64 __read_mostly host_xcr0; 250 u64 __read_mostly supported_xcr0; 251 EXPORT_SYMBOL_GPL(supported_xcr0); 252 253 static struct kmem_cache *x86_fpu_cache; 254 255 static struct kmem_cache *x86_emulator_cache; 256 257 /* 258 * When called, it means the previous get/set msr reached an invalid msr. 259 * Return true if we want to ignore/silent this failed msr access. 260 */ 261 static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr, 262 u64 data, bool write) 263 { 264 const char *op = write ? "wrmsr" : "rdmsr"; 265 266 if (ignore_msrs) { 267 if (report_ignored_msrs) 268 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 269 op, msr, data); 270 /* Mask the error */ 271 return true; 272 } else { 273 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 274 op, msr, data); 275 return false; 276 } 277 } 278 279 static struct kmem_cache *kvm_alloc_emulator_cache(void) 280 { 281 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 282 unsigned int size = sizeof(struct x86_emulate_ctxt); 283 284 return kmem_cache_create_usercopy("x86_emulator", size, 285 __alignof__(struct x86_emulate_ctxt), 286 SLAB_ACCOUNT, useroffset, 287 size - useroffset, NULL); 288 } 289 290 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 291 292 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 293 { 294 int i; 295 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 296 vcpu->arch.apf.gfns[i] = ~0; 297 } 298 299 static void kvm_on_user_return(struct user_return_notifier *urn) 300 { 301 unsigned slot; 302 struct kvm_user_return_msrs *msrs 303 = container_of(urn, struct kvm_user_return_msrs, urn); 304 struct kvm_user_return_msr_values *values; 305 unsigned long flags; 306 307 /* 308 * Disabling irqs at this point since the following code could be 309 * interrupted and executed through kvm_arch_hardware_disable() 310 */ 311 local_irq_save(flags); 312 if (msrs->registered) { 313 msrs->registered = false; 314 user_return_notifier_unregister(urn); 315 } 316 local_irq_restore(flags); 317 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) { 318 values = &msrs->values[slot]; 319 if (values->host != values->curr) { 320 wrmsrl(user_return_msrs_global.msrs[slot], values->host); 321 values->curr = values->host; 322 } 323 } 324 } 325 326 void kvm_define_user_return_msr(unsigned slot, u32 msr) 327 { 328 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS); 329 user_return_msrs_global.msrs[slot] = msr; 330 if (slot >= user_return_msrs_global.nr) 331 user_return_msrs_global.nr = slot + 1; 332 } 333 EXPORT_SYMBOL_GPL(kvm_define_user_return_msr); 334 335 static void kvm_user_return_msr_cpu_online(void) 336 { 337 unsigned int cpu = smp_processor_id(); 338 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 339 u64 value; 340 int i; 341 342 for (i = 0; i < user_return_msrs_global.nr; ++i) { 343 rdmsrl_safe(user_return_msrs_global.msrs[i], &value); 344 msrs->values[i].host = value; 345 msrs->values[i].curr = value; 346 } 347 } 348 349 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 350 { 351 unsigned int cpu = smp_processor_id(); 352 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 353 int err; 354 355 value = (value & mask) | (msrs->values[slot].host & ~mask); 356 if (value == msrs->values[slot].curr) 357 return 0; 358 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value); 359 if (err) 360 return 1; 361 362 msrs->values[slot].curr = value; 363 if (!msrs->registered) { 364 msrs->urn.on_user_return = kvm_on_user_return; 365 user_return_notifier_register(&msrs->urn); 366 msrs->registered = true; 367 } 368 return 0; 369 } 370 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 371 372 static void drop_user_return_notifiers(void) 373 { 374 unsigned int cpu = smp_processor_id(); 375 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 376 377 if (msrs->registered) 378 kvm_on_user_return(&msrs->urn); 379 } 380 381 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 382 { 383 return vcpu->arch.apic_base; 384 } 385 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 386 387 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 388 { 389 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 390 } 391 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 392 393 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 394 { 395 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 396 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 397 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 398 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 399 400 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 401 return 1; 402 if (!msr_info->host_initiated) { 403 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 404 return 1; 405 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 406 return 1; 407 } 408 409 kvm_lapic_set_base(vcpu, msr_info->data); 410 kvm_recalculate_apic_map(vcpu->kvm); 411 return 0; 412 } 413 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 414 415 asmlinkage __visible noinstr void kvm_spurious_fault(void) 416 { 417 /* Fault while not rebooting. We want the trace. */ 418 BUG_ON(!kvm_rebooting); 419 } 420 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 421 422 #define EXCPT_BENIGN 0 423 #define EXCPT_CONTRIBUTORY 1 424 #define EXCPT_PF 2 425 426 static int exception_class(int vector) 427 { 428 switch (vector) { 429 case PF_VECTOR: 430 return EXCPT_PF; 431 case DE_VECTOR: 432 case TS_VECTOR: 433 case NP_VECTOR: 434 case SS_VECTOR: 435 case GP_VECTOR: 436 return EXCPT_CONTRIBUTORY; 437 default: 438 break; 439 } 440 return EXCPT_BENIGN; 441 } 442 443 #define EXCPT_FAULT 0 444 #define EXCPT_TRAP 1 445 #define EXCPT_ABORT 2 446 #define EXCPT_INTERRUPT 3 447 448 static int exception_type(int vector) 449 { 450 unsigned int mask; 451 452 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 453 return EXCPT_INTERRUPT; 454 455 mask = 1 << vector; 456 457 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 458 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 459 return EXCPT_TRAP; 460 461 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 462 return EXCPT_ABORT; 463 464 /* Reserved exceptions will result in fault */ 465 return EXCPT_FAULT; 466 } 467 468 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 469 { 470 unsigned nr = vcpu->arch.exception.nr; 471 bool has_payload = vcpu->arch.exception.has_payload; 472 unsigned long payload = vcpu->arch.exception.payload; 473 474 if (!has_payload) 475 return; 476 477 switch (nr) { 478 case DB_VECTOR: 479 /* 480 * "Certain debug exceptions may clear bit 0-3. The 481 * remaining contents of the DR6 register are never 482 * cleared by the processor". 483 */ 484 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 485 /* 486 * DR6.RTM is set by all #DB exceptions that don't clear it. 487 */ 488 vcpu->arch.dr6 |= DR6_RTM; 489 vcpu->arch.dr6 |= payload; 490 /* 491 * Bit 16 should be set in the payload whenever the #DB 492 * exception should clear DR6.RTM. This makes the payload 493 * compatible with the pending debug exceptions under VMX. 494 * Though not currently documented in the SDM, this also 495 * makes the payload compatible with the exit qualification 496 * for #DB exceptions under VMX. 497 */ 498 vcpu->arch.dr6 ^= payload & DR6_RTM; 499 500 /* 501 * The #DB payload is defined as compatible with the 'pending 502 * debug exceptions' field under VMX, not DR6. While bit 12 is 503 * defined in the 'pending debug exceptions' field (enabled 504 * breakpoint), it is reserved and must be zero in DR6. 505 */ 506 vcpu->arch.dr6 &= ~BIT(12); 507 break; 508 case PF_VECTOR: 509 vcpu->arch.cr2 = payload; 510 break; 511 } 512 513 vcpu->arch.exception.has_payload = false; 514 vcpu->arch.exception.payload = 0; 515 } 516 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 517 518 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 519 unsigned nr, bool has_error, u32 error_code, 520 bool has_payload, unsigned long payload, bool reinject) 521 { 522 u32 prev_nr; 523 int class1, class2; 524 525 kvm_make_request(KVM_REQ_EVENT, vcpu); 526 527 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 528 queue: 529 if (has_error && !is_protmode(vcpu)) 530 has_error = false; 531 if (reinject) { 532 /* 533 * On vmentry, vcpu->arch.exception.pending is only 534 * true if an event injection was blocked by 535 * nested_run_pending. In that case, however, 536 * vcpu_enter_guest requests an immediate exit, 537 * and the guest shouldn't proceed far enough to 538 * need reinjection. 539 */ 540 WARN_ON_ONCE(vcpu->arch.exception.pending); 541 vcpu->arch.exception.injected = true; 542 if (WARN_ON_ONCE(has_payload)) { 543 /* 544 * A reinjected event has already 545 * delivered its payload. 546 */ 547 has_payload = false; 548 payload = 0; 549 } 550 } else { 551 vcpu->arch.exception.pending = true; 552 vcpu->arch.exception.injected = false; 553 } 554 vcpu->arch.exception.has_error_code = has_error; 555 vcpu->arch.exception.nr = nr; 556 vcpu->arch.exception.error_code = error_code; 557 vcpu->arch.exception.has_payload = has_payload; 558 vcpu->arch.exception.payload = payload; 559 if (!is_guest_mode(vcpu)) 560 kvm_deliver_exception_payload(vcpu); 561 return; 562 } 563 564 /* to check exception */ 565 prev_nr = vcpu->arch.exception.nr; 566 if (prev_nr == DF_VECTOR) { 567 /* triple fault -> shutdown */ 568 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 569 return; 570 } 571 class1 = exception_class(prev_nr); 572 class2 = exception_class(nr); 573 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 574 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 575 /* 576 * Generate double fault per SDM Table 5-5. Set 577 * exception.pending = true so that the double fault 578 * can trigger a nested vmexit. 579 */ 580 vcpu->arch.exception.pending = true; 581 vcpu->arch.exception.injected = false; 582 vcpu->arch.exception.has_error_code = true; 583 vcpu->arch.exception.nr = DF_VECTOR; 584 vcpu->arch.exception.error_code = 0; 585 vcpu->arch.exception.has_payload = false; 586 vcpu->arch.exception.payload = 0; 587 } else 588 /* replace previous exception with a new one in a hope 589 that instruction re-execution will regenerate lost 590 exception */ 591 goto queue; 592 } 593 594 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 595 { 596 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 597 } 598 EXPORT_SYMBOL_GPL(kvm_queue_exception); 599 600 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 601 { 602 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 603 } 604 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 605 606 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 607 unsigned long payload) 608 { 609 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 610 } 611 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 612 613 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 614 u32 error_code, unsigned long payload) 615 { 616 kvm_multiple_exception(vcpu, nr, true, error_code, 617 true, payload, false); 618 } 619 620 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 621 { 622 if (err) 623 kvm_inject_gp(vcpu, 0); 624 else 625 return kvm_skip_emulated_instruction(vcpu); 626 627 return 1; 628 } 629 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 630 631 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 632 { 633 ++vcpu->stat.pf_guest; 634 vcpu->arch.exception.nested_apf = 635 is_guest_mode(vcpu) && fault->async_page_fault; 636 if (vcpu->arch.exception.nested_apf) { 637 vcpu->arch.apf.nested_apf_token = fault->address; 638 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 639 } else { 640 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 641 fault->address); 642 } 643 } 644 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 645 646 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 647 struct x86_exception *fault) 648 { 649 struct kvm_mmu *fault_mmu; 650 WARN_ON_ONCE(fault->vector != PF_VECTOR); 651 652 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 653 vcpu->arch.walk_mmu; 654 655 /* 656 * Invalidate the TLB entry for the faulting address, if it exists, 657 * else the access will fault indefinitely (and to emulate hardware). 658 */ 659 if ((fault->error_code & PFERR_PRESENT_MASK) && 660 !(fault->error_code & PFERR_RSVD_MASK)) 661 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 662 fault_mmu->root_hpa); 663 664 fault_mmu->inject_page_fault(vcpu, fault); 665 return fault->nested_page_fault; 666 } 667 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 668 669 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 670 { 671 atomic_inc(&vcpu->arch.nmi_queued); 672 kvm_make_request(KVM_REQ_NMI, vcpu); 673 } 674 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 675 676 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 677 { 678 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 679 } 680 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 681 682 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 683 { 684 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 685 } 686 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 687 688 /* 689 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 690 * a #GP and return false. 691 */ 692 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 693 { 694 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl) 695 return true; 696 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 697 return false; 698 } 699 EXPORT_SYMBOL_GPL(kvm_require_cpl); 700 701 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 702 { 703 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 704 return true; 705 706 kvm_queue_exception(vcpu, UD_VECTOR); 707 return false; 708 } 709 EXPORT_SYMBOL_GPL(kvm_require_dr); 710 711 /* 712 * This function will be used to read from the physical memory of the currently 713 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 714 * can read from guest physical or from the guest's guest physical memory. 715 */ 716 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 717 gfn_t ngfn, void *data, int offset, int len, 718 u32 access) 719 { 720 struct x86_exception exception; 721 gfn_t real_gfn; 722 gpa_t ngpa; 723 724 ngpa = gfn_to_gpa(ngfn); 725 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 726 if (real_gfn == UNMAPPED_GVA) 727 return -EFAULT; 728 729 real_gfn = gpa_to_gfn(real_gfn); 730 731 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 732 } 733 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 734 735 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 736 void *data, int offset, int len, u32 access) 737 { 738 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 739 data, offset, len, access); 740 } 741 742 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 743 { 744 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) | 745 rsvd_bits(1, 2); 746 } 747 748 /* 749 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 750 */ 751 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 752 { 753 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 754 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 755 int i; 756 int ret; 757 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 758 759 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 760 offset * sizeof(u64), sizeof(pdpte), 761 PFERR_USER_MASK|PFERR_WRITE_MASK); 762 if (ret < 0) { 763 ret = 0; 764 goto out; 765 } 766 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 767 if ((pdpte[i] & PT_PRESENT_MASK) && 768 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 769 ret = 0; 770 goto out; 771 } 772 } 773 ret = 1; 774 775 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 776 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 777 778 out: 779 780 return ret; 781 } 782 EXPORT_SYMBOL_GPL(load_pdptrs); 783 784 bool pdptrs_changed(struct kvm_vcpu *vcpu) 785 { 786 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 787 int offset; 788 gfn_t gfn; 789 int r; 790 791 if (!is_pae_paging(vcpu)) 792 return false; 793 794 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR)) 795 return true; 796 797 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 798 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 799 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 800 PFERR_USER_MASK | PFERR_WRITE_MASK); 801 if (r < 0) 802 return true; 803 804 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 805 } 806 EXPORT_SYMBOL_GPL(pdptrs_changed); 807 808 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 809 { 810 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 811 812 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 813 kvm_clear_async_pf_completion_queue(vcpu); 814 kvm_async_pf_hash_reset(vcpu); 815 } 816 817 if ((cr0 ^ old_cr0) & update_bits) 818 kvm_mmu_reset_context(vcpu); 819 820 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 821 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 822 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 823 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 824 } 825 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 826 827 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 828 { 829 unsigned long old_cr0 = kvm_read_cr0(vcpu); 830 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG; 831 832 cr0 |= X86_CR0_ET; 833 834 #ifdef CONFIG_X86_64 835 if (cr0 & 0xffffffff00000000UL) 836 return 1; 837 #endif 838 839 cr0 &= ~CR0_RESERVED_BITS; 840 841 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 842 return 1; 843 844 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 845 return 1; 846 847 #ifdef CONFIG_X86_64 848 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 849 (cr0 & X86_CR0_PG)) { 850 int cs_db, cs_l; 851 852 if (!is_pae(vcpu)) 853 return 1; 854 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 855 if (cs_l) 856 return 1; 857 } 858 #endif 859 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 860 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) && 861 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) 862 return 1; 863 864 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 865 return 1; 866 867 kvm_x86_ops.set_cr0(vcpu, cr0); 868 869 kvm_post_set_cr0(vcpu, old_cr0, cr0); 870 871 return 0; 872 } 873 EXPORT_SYMBOL_GPL(kvm_set_cr0); 874 875 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 876 { 877 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 878 } 879 EXPORT_SYMBOL_GPL(kvm_lmsw); 880 881 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 882 { 883 if (vcpu->arch.guest_state_protected) 884 return; 885 886 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 887 888 if (vcpu->arch.xcr0 != host_xcr0) 889 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 890 891 if (vcpu->arch.xsaves_enabled && 892 vcpu->arch.ia32_xss != host_xss) 893 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 894 } 895 896 if (static_cpu_has(X86_FEATURE_PKU) && 897 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 898 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 899 vcpu->arch.pkru != vcpu->arch.host_pkru) 900 __write_pkru(vcpu->arch.pkru); 901 } 902 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 903 904 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 905 { 906 if (vcpu->arch.guest_state_protected) 907 return; 908 909 if (static_cpu_has(X86_FEATURE_PKU) && 910 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 911 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 912 vcpu->arch.pkru = rdpkru(); 913 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 914 __write_pkru(vcpu->arch.host_pkru); 915 } 916 917 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 918 919 if (vcpu->arch.xcr0 != host_xcr0) 920 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 921 922 if (vcpu->arch.xsaves_enabled && 923 vcpu->arch.ia32_xss != host_xss) 924 wrmsrl(MSR_IA32_XSS, host_xss); 925 } 926 927 } 928 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 929 930 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 931 { 932 u64 xcr0 = xcr; 933 u64 old_xcr0 = vcpu->arch.xcr0; 934 u64 valid_bits; 935 936 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 937 if (index != XCR_XFEATURE_ENABLED_MASK) 938 return 1; 939 if (!(xcr0 & XFEATURE_MASK_FP)) 940 return 1; 941 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 942 return 1; 943 944 /* 945 * Do not allow the guest to set bits that we do not support 946 * saving. However, xcr0 bit 0 is always set, even if the 947 * emulated CPU does not support XSAVE (see fx_init). 948 */ 949 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 950 if (xcr0 & ~valid_bits) 951 return 1; 952 953 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 954 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 955 return 1; 956 957 if (xcr0 & XFEATURE_MASK_AVX512) { 958 if (!(xcr0 & XFEATURE_MASK_YMM)) 959 return 1; 960 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 961 return 1; 962 } 963 vcpu->arch.xcr0 = xcr0; 964 965 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 966 kvm_update_cpuid_runtime(vcpu); 967 return 0; 968 } 969 970 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 971 { 972 if (kvm_x86_ops.get_cpl(vcpu) != 0 || 973 __kvm_set_xcr(vcpu, index, xcr)) { 974 kvm_inject_gp(vcpu, 0); 975 return 1; 976 } 977 return 0; 978 } 979 EXPORT_SYMBOL_GPL(kvm_set_xcr); 980 981 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 982 { 983 if (cr4 & cr4_reserved_bits) 984 return false; 985 986 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 987 return false; 988 989 return kvm_x86_ops.is_valid_cr4(vcpu, cr4); 990 } 991 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4); 992 993 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 994 { 995 unsigned long mmu_role_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 996 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 997 998 if (((cr4 ^ old_cr4) & mmu_role_bits) || 999 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1000 kvm_mmu_reset_context(vcpu); 1001 } 1002 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1003 1004 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1005 { 1006 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1007 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 1008 X86_CR4_SMEP; 1009 1010 if (!kvm_is_valid_cr4(vcpu, cr4)) 1011 return 1; 1012 1013 if (is_long_mode(vcpu)) { 1014 if (!(cr4 & X86_CR4_PAE)) 1015 return 1; 1016 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1017 return 1; 1018 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1019 && ((cr4 ^ old_cr4) & pdptr_bits) 1020 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 1021 kvm_read_cr3(vcpu))) 1022 return 1; 1023 1024 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1025 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1026 return 1; 1027 1028 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1029 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1030 return 1; 1031 } 1032 1033 kvm_x86_ops.set_cr4(vcpu, cr4); 1034 1035 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1036 1037 return 0; 1038 } 1039 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1040 1041 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1042 { 1043 bool skip_tlb_flush = false; 1044 #ifdef CONFIG_X86_64 1045 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1046 1047 if (pcid_enabled) { 1048 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1049 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1050 } 1051 #endif 1052 1053 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 1054 if (!skip_tlb_flush) { 1055 kvm_mmu_sync_roots(vcpu); 1056 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1057 } 1058 return 0; 1059 } 1060 1061 if (is_long_mode(vcpu) && 1062 (cr3 & vcpu->arch.cr3_lm_rsvd_bits)) 1063 return 1; 1064 else if (is_pae_paging(vcpu) && 1065 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1066 return 1; 1067 1068 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush); 1069 vcpu->arch.cr3 = cr3; 1070 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1071 1072 return 0; 1073 } 1074 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1075 1076 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1077 { 1078 if (cr8 & CR8_RESERVED_BITS) 1079 return 1; 1080 if (lapic_in_kernel(vcpu)) 1081 kvm_lapic_set_tpr(vcpu, cr8); 1082 else 1083 vcpu->arch.cr8 = cr8; 1084 return 0; 1085 } 1086 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1087 1088 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1089 { 1090 if (lapic_in_kernel(vcpu)) 1091 return kvm_lapic_get_cr8(vcpu); 1092 else 1093 return vcpu->arch.cr8; 1094 } 1095 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1096 1097 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1098 { 1099 int i; 1100 1101 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1102 for (i = 0; i < KVM_NR_DB_REGS; i++) 1103 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1104 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1105 } 1106 } 1107 1108 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1109 { 1110 unsigned long dr7; 1111 1112 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1113 dr7 = vcpu->arch.guest_debug_dr7; 1114 else 1115 dr7 = vcpu->arch.dr7; 1116 kvm_x86_ops.set_dr7(vcpu, dr7); 1117 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1118 if (dr7 & DR7_BP_EN_MASK) 1119 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1120 } 1121 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1122 1123 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1124 { 1125 u64 fixed = DR6_FIXED_1; 1126 1127 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1128 fixed |= DR6_RTM; 1129 return fixed; 1130 } 1131 1132 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1133 { 1134 size_t size = ARRAY_SIZE(vcpu->arch.db); 1135 1136 switch (dr) { 1137 case 0 ... 3: 1138 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1139 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1140 vcpu->arch.eff_db[dr] = val; 1141 break; 1142 case 4: 1143 case 6: 1144 if (!kvm_dr6_valid(val)) 1145 return -1; /* #GP */ 1146 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1147 break; 1148 case 5: 1149 default: /* 7 */ 1150 if (!kvm_dr7_valid(val)) 1151 return -1; /* #GP */ 1152 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1153 kvm_update_dr7(vcpu); 1154 break; 1155 } 1156 1157 return 0; 1158 } 1159 1160 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1161 { 1162 if (__kvm_set_dr(vcpu, dr, val)) { 1163 kvm_inject_gp(vcpu, 0); 1164 return 1; 1165 } 1166 return 0; 1167 } 1168 EXPORT_SYMBOL_GPL(kvm_set_dr); 1169 1170 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1171 { 1172 size_t size = ARRAY_SIZE(vcpu->arch.db); 1173 1174 switch (dr) { 1175 case 0 ... 3: 1176 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1177 break; 1178 case 4: 1179 case 6: 1180 *val = vcpu->arch.dr6; 1181 break; 1182 case 5: 1183 default: /* 7 */ 1184 *val = vcpu->arch.dr7; 1185 break; 1186 } 1187 return 0; 1188 } 1189 EXPORT_SYMBOL_GPL(kvm_get_dr); 1190 1191 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 1192 { 1193 u32 ecx = kvm_rcx_read(vcpu); 1194 u64 data; 1195 int err; 1196 1197 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 1198 if (err) 1199 return err; 1200 kvm_rax_write(vcpu, (u32)data); 1201 kvm_rdx_write(vcpu, data >> 32); 1202 return err; 1203 } 1204 EXPORT_SYMBOL_GPL(kvm_rdpmc); 1205 1206 /* 1207 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1208 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1209 * 1210 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1211 * extract the supported MSRs from the related const lists. 1212 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1213 * capabilities of the host cpu. This capabilities test skips MSRs that are 1214 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1215 * may depend on host virtualization features rather than host cpu features. 1216 */ 1217 1218 static const u32 msrs_to_save_all[] = { 1219 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1220 MSR_STAR, 1221 #ifdef CONFIG_X86_64 1222 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1223 #endif 1224 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1225 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1226 MSR_IA32_SPEC_CTRL, 1227 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1228 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1229 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1230 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1231 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1232 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1233 MSR_IA32_UMWAIT_CONTROL, 1234 1235 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1236 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1237 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1238 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1239 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1240 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1241 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1242 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1243 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1244 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1245 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1246 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1247 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1248 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1249 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1250 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1251 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1252 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1253 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1254 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1255 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1256 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1257 }; 1258 1259 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1260 static unsigned num_msrs_to_save; 1261 1262 static const u32 emulated_msrs_all[] = { 1263 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1264 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1265 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1266 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1267 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1268 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1269 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1270 HV_X64_MSR_RESET, 1271 HV_X64_MSR_VP_INDEX, 1272 HV_X64_MSR_VP_RUNTIME, 1273 HV_X64_MSR_SCONTROL, 1274 HV_X64_MSR_STIMER0_CONFIG, 1275 HV_X64_MSR_VP_ASSIST_PAGE, 1276 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1277 HV_X64_MSR_TSC_EMULATION_STATUS, 1278 HV_X64_MSR_SYNDBG_OPTIONS, 1279 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1280 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1281 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1282 1283 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1284 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1285 1286 MSR_IA32_TSC_ADJUST, 1287 MSR_IA32_TSCDEADLINE, 1288 MSR_IA32_ARCH_CAPABILITIES, 1289 MSR_IA32_PERF_CAPABILITIES, 1290 MSR_IA32_MISC_ENABLE, 1291 MSR_IA32_MCG_STATUS, 1292 MSR_IA32_MCG_CTL, 1293 MSR_IA32_MCG_EXT_CTL, 1294 MSR_IA32_SMBASE, 1295 MSR_SMI_COUNT, 1296 MSR_PLATFORM_INFO, 1297 MSR_MISC_FEATURES_ENABLES, 1298 MSR_AMD64_VIRT_SPEC_CTRL, 1299 MSR_IA32_POWER_CTL, 1300 MSR_IA32_UCODE_REV, 1301 1302 /* 1303 * The following list leaves out MSRs whose values are determined 1304 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1305 * We always support the "true" VMX control MSRs, even if the host 1306 * processor does not, so I am putting these registers here rather 1307 * than in msrs_to_save_all. 1308 */ 1309 MSR_IA32_VMX_BASIC, 1310 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1311 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1312 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1313 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1314 MSR_IA32_VMX_MISC, 1315 MSR_IA32_VMX_CR0_FIXED0, 1316 MSR_IA32_VMX_CR4_FIXED0, 1317 MSR_IA32_VMX_VMCS_ENUM, 1318 MSR_IA32_VMX_PROCBASED_CTLS2, 1319 MSR_IA32_VMX_EPT_VPID_CAP, 1320 MSR_IA32_VMX_VMFUNC, 1321 1322 MSR_K7_HWCR, 1323 MSR_KVM_POLL_CONTROL, 1324 }; 1325 1326 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1327 static unsigned num_emulated_msrs; 1328 1329 /* 1330 * List of msr numbers which are used to expose MSR-based features that 1331 * can be used by a hypervisor to validate requested CPU features. 1332 */ 1333 static const u32 msr_based_features_all[] = { 1334 MSR_IA32_VMX_BASIC, 1335 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1336 MSR_IA32_VMX_PINBASED_CTLS, 1337 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1338 MSR_IA32_VMX_PROCBASED_CTLS, 1339 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1340 MSR_IA32_VMX_EXIT_CTLS, 1341 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1342 MSR_IA32_VMX_ENTRY_CTLS, 1343 MSR_IA32_VMX_MISC, 1344 MSR_IA32_VMX_CR0_FIXED0, 1345 MSR_IA32_VMX_CR0_FIXED1, 1346 MSR_IA32_VMX_CR4_FIXED0, 1347 MSR_IA32_VMX_CR4_FIXED1, 1348 MSR_IA32_VMX_VMCS_ENUM, 1349 MSR_IA32_VMX_PROCBASED_CTLS2, 1350 MSR_IA32_VMX_EPT_VPID_CAP, 1351 MSR_IA32_VMX_VMFUNC, 1352 1353 MSR_F10H_DECFG, 1354 MSR_IA32_UCODE_REV, 1355 MSR_IA32_ARCH_CAPABILITIES, 1356 MSR_IA32_PERF_CAPABILITIES, 1357 }; 1358 1359 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1360 static unsigned int num_msr_based_features; 1361 1362 static u64 kvm_get_arch_capabilities(void) 1363 { 1364 u64 data = 0; 1365 1366 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1367 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1368 1369 /* 1370 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1371 * the nested hypervisor runs with NX huge pages. If it is not, 1372 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other 1373 * L1 guests, so it need not worry about its own (L2) guests. 1374 */ 1375 data |= ARCH_CAP_PSCHANGE_MC_NO; 1376 1377 /* 1378 * If we're doing cache flushes (either "always" or "cond") 1379 * we will do one whenever the guest does a vmlaunch/vmresume. 1380 * If an outer hypervisor is doing the cache flush for us 1381 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1382 * capability to the guest too, and if EPT is disabled we're not 1383 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1384 * require a nested hypervisor to do a flush of its own. 1385 */ 1386 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1387 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1388 1389 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1390 data |= ARCH_CAP_RDCL_NO; 1391 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1392 data |= ARCH_CAP_SSB_NO; 1393 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1394 data |= ARCH_CAP_MDS_NO; 1395 1396 /* 1397 * On TAA affected systems: 1398 * - nothing to do if TSX is disabled on the host. 1399 * - we emulate TSX_CTRL if present on the host. 1400 * This lets the guest use VERW to clear CPU buffers. 1401 */ 1402 if (!boot_cpu_has(X86_FEATURE_RTM)) 1403 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR); 1404 else if (!boot_cpu_has_bug(X86_BUG_TAA)) 1405 data |= ARCH_CAP_TAA_NO; 1406 1407 return data; 1408 } 1409 1410 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1411 { 1412 switch (msr->index) { 1413 case MSR_IA32_ARCH_CAPABILITIES: 1414 msr->data = kvm_get_arch_capabilities(); 1415 break; 1416 case MSR_IA32_UCODE_REV: 1417 rdmsrl_safe(msr->index, &msr->data); 1418 break; 1419 default: 1420 return kvm_x86_ops.get_msr_feature(msr); 1421 } 1422 return 0; 1423 } 1424 1425 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1426 { 1427 struct kvm_msr_entry msr; 1428 int r; 1429 1430 msr.index = index; 1431 r = kvm_get_msr_feature(&msr); 1432 1433 if (r == KVM_MSR_RET_INVALID) { 1434 /* Unconditionally clear the output for simplicity */ 1435 *data = 0; 1436 if (kvm_msr_ignored_check(vcpu, index, 0, false)) 1437 r = 0; 1438 } 1439 1440 if (r) 1441 return r; 1442 1443 *data = msr.data; 1444 1445 return 0; 1446 } 1447 1448 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1449 { 1450 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1451 return false; 1452 1453 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1454 return false; 1455 1456 if (efer & (EFER_LME | EFER_LMA) && 1457 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1458 return false; 1459 1460 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1461 return false; 1462 1463 return true; 1464 1465 } 1466 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1467 { 1468 if (efer & efer_reserved_bits) 1469 return false; 1470 1471 return __kvm_valid_efer(vcpu, efer); 1472 } 1473 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1474 1475 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1476 { 1477 u64 old_efer = vcpu->arch.efer; 1478 u64 efer = msr_info->data; 1479 int r; 1480 1481 if (efer & efer_reserved_bits) 1482 return 1; 1483 1484 if (!msr_info->host_initiated) { 1485 if (!__kvm_valid_efer(vcpu, efer)) 1486 return 1; 1487 1488 if (is_paging(vcpu) && 1489 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1490 return 1; 1491 } 1492 1493 efer &= ~EFER_LMA; 1494 efer |= vcpu->arch.efer & EFER_LMA; 1495 1496 r = kvm_x86_ops.set_efer(vcpu, efer); 1497 if (r) { 1498 WARN_ON(r > 0); 1499 return r; 1500 } 1501 1502 /* Update reserved bits */ 1503 if ((efer ^ old_efer) & EFER_NX) 1504 kvm_mmu_reset_context(vcpu); 1505 1506 return 0; 1507 } 1508 1509 void kvm_enable_efer_bits(u64 mask) 1510 { 1511 efer_reserved_bits &= ~mask; 1512 } 1513 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1514 1515 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1516 { 1517 struct kvm *kvm = vcpu->kvm; 1518 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges; 1519 u32 count = kvm->arch.msr_filter.count; 1520 u32 i; 1521 bool r = kvm->arch.msr_filter.default_allow; 1522 int idx; 1523 1524 /* MSR filtering not set up or x2APIC enabled, allow everything */ 1525 if (!count || (index >= 0x800 && index <= 0x8ff)) 1526 return true; 1527 1528 /* Prevent collision with set_msr_filter */ 1529 idx = srcu_read_lock(&kvm->srcu); 1530 1531 for (i = 0; i < count; i++) { 1532 u32 start = ranges[i].base; 1533 u32 end = start + ranges[i].nmsrs; 1534 u32 flags = ranges[i].flags; 1535 unsigned long *bitmap = ranges[i].bitmap; 1536 1537 if ((index >= start) && (index < end) && (flags & type)) { 1538 r = !!test_bit(index - start, bitmap); 1539 break; 1540 } 1541 } 1542 1543 srcu_read_unlock(&kvm->srcu, idx); 1544 1545 return r; 1546 } 1547 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1548 1549 /* 1550 * Write @data into the MSR specified by @index. Select MSR specific fault 1551 * checks are bypassed if @host_initiated is %true. 1552 * Returns 0 on success, non-0 otherwise. 1553 * Assumes vcpu_load() was already called. 1554 */ 1555 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1556 bool host_initiated) 1557 { 1558 struct msr_data msr; 1559 1560 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1561 return KVM_MSR_RET_FILTERED; 1562 1563 switch (index) { 1564 case MSR_FS_BASE: 1565 case MSR_GS_BASE: 1566 case MSR_KERNEL_GS_BASE: 1567 case MSR_CSTAR: 1568 case MSR_LSTAR: 1569 if (is_noncanonical_address(data, vcpu)) 1570 return 1; 1571 break; 1572 case MSR_IA32_SYSENTER_EIP: 1573 case MSR_IA32_SYSENTER_ESP: 1574 /* 1575 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1576 * non-canonical address is written on Intel but not on 1577 * AMD (which ignores the top 32-bits, because it does 1578 * not implement 64-bit SYSENTER). 1579 * 1580 * 64-bit code should hence be able to write a non-canonical 1581 * value on AMD. Making the address canonical ensures that 1582 * vmentry does not fail on Intel after writing a non-canonical 1583 * value, and that something deterministic happens if the guest 1584 * invokes 64-bit SYSENTER. 1585 */ 1586 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1587 } 1588 1589 msr.data = data; 1590 msr.index = index; 1591 msr.host_initiated = host_initiated; 1592 1593 return kvm_x86_ops.set_msr(vcpu, &msr); 1594 } 1595 1596 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1597 u32 index, u64 data, bool host_initiated) 1598 { 1599 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1600 1601 if (ret == KVM_MSR_RET_INVALID) 1602 if (kvm_msr_ignored_check(vcpu, index, data, true)) 1603 ret = 0; 1604 1605 return ret; 1606 } 1607 1608 /* 1609 * Read the MSR specified by @index into @data. Select MSR specific fault 1610 * checks are bypassed if @host_initiated is %true. 1611 * Returns 0 on success, non-0 otherwise. 1612 * Assumes vcpu_load() was already called. 1613 */ 1614 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1615 bool host_initiated) 1616 { 1617 struct msr_data msr; 1618 int ret; 1619 1620 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1621 return KVM_MSR_RET_FILTERED; 1622 1623 msr.index = index; 1624 msr.host_initiated = host_initiated; 1625 1626 ret = kvm_x86_ops.get_msr(vcpu, &msr); 1627 if (!ret) 1628 *data = msr.data; 1629 return ret; 1630 } 1631 1632 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1633 u32 index, u64 *data, bool host_initiated) 1634 { 1635 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1636 1637 if (ret == KVM_MSR_RET_INVALID) { 1638 /* Unconditionally clear *data for simplicity */ 1639 *data = 0; 1640 if (kvm_msr_ignored_check(vcpu, index, 0, false)) 1641 ret = 0; 1642 } 1643 1644 return ret; 1645 } 1646 1647 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1648 { 1649 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1650 } 1651 EXPORT_SYMBOL_GPL(kvm_get_msr); 1652 1653 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1654 { 1655 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1656 } 1657 EXPORT_SYMBOL_GPL(kvm_set_msr); 1658 1659 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1660 { 1661 int err = vcpu->run->msr.error; 1662 if (!err) { 1663 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1664 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1665 } 1666 1667 return kvm_x86_ops.complete_emulated_msr(vcpu, err); 1668 } 1669 1670 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu) 1671 { 1672 return kvm_x86_ops.complete_emulated_msr(vcpu, vcpu->run->msr.error); 1673 } 1674 1675 static u64 kvm_msr_reason(int r) 1676 { 1677 switch (r) { 1678 case KVM_MSR_RET_INVALID: 1679 return KVM_MSR_EXIT_REASON_UNKNOWN; 1680 case KVM_MSR_RET_FILTERED: 1681 return KVM_MSR_EXIT_REASON_FILTER; 1682 default: 1683 return KVM_MSR_EXIT_REASON_INVAL; 1684 } 1685 } 1686 1687 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1688 u32 exit_reason, u64 data, 1689 int (*completion)(struct kvm_vcpu *vcpu), 1690 int r) 1691 { 1692 u64 msr_reason = kvm_msr_reason(r); 1693 1694 /* Check if the user wanted to know about this MSR fault */ 1695 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1696 return 0; 1697 1698 vcpu->run->exit_reason = exit_reason; 1699 vcpu->run->msr.error = 0; 1700 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1701 vcpu->run->msr.reason = msr_reason; 1702 vcpu->run->msr.index = index; 1703 vcpu->run->msr.data = data; 1704 vcpu->arch.complete_userspace_io = completion; 1705 1706 return 1; 1707 } 1708 1709 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r) 1710 { 1711 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0, 1712 complete_emulated_rdmsr, r); 1713 } 1714 1715 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r) 1716 { 1717 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data, 1718 complete_emulated_wrmsr, r); 1719 } 1720 1721 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1722 { 1723 u32 ecx = kvm_rcx_read(vcpu); 1724 u64 data; 1725 int r; 1726 1727 r = kvm_get_msr(vcpu, ecx, &data); 1728 1729 /* MSR read failed? See if we should ask user space */ 1730 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) { 1731 /* Bounce to user space */ 1732 return 0; 1733 } 1734 1735 if (!r) { 1736 trace_kvm_msr_read(ecx, data); 1737 1738 kvm_rax_write(vcpu, data & -1u); 1739 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1740 } else { 1741 trace_kvm_msr_read_ex(ecx); 1742 } 1743 1744 return kvm_x86_ops.complete_emulated_msr(vcpu, r); 1745 } 1746 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1747 1748 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1749 { 1750 u32 ecx = kvm_rcx_read(vcpu); 1751 u64 data = kvm_read_edx_eax(vcpu); 1752 int r; 1753 1754 r = kvm_set_msr(vcpu, ecx, data); 1755 1756 /* MSR write failed? See if we should ask user space */ 1757 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r)) 1758 /* Bounce to user space */ 1759 return 0; 1760 1761 /* Signal all other negative errors to userspace */ 1762 if (r < 0) 1763 return r; 1764 1765 if (!r) 1766 trace_kvm_msr_write(ecx, data); 1767 else 1768 trace_kvm_msr_write_ex(ecx, data); 1769 1770 return kvm_x86_ops.complete_emulated_msr(vcpu, r); 1771 } 1772 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1773 1774 bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1775 { 1776 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1777 xfer_to_guest_mode_work_pending(); 1778 } 1779 EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request); 1780 1781 /* 1782 * The fast path for frequent and performance sensitive wrmsr emulation, 1783 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1784 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1785 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1786 * other cases which must be called after interrupts are enabled on the host. 1787 */ 1788 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1789 { 1790 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1791 return 1; 1792 1793 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1794 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1795 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1796 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1797 1798 data &= ~(1 << 12); 1799 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1800 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1801 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1802 trace_kvm_apic_write(APIC_ICR, (u32)data); 1803 return 0; 1804 } 1805 1806 return 1; 1807 } 1808 1809 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1810 { 1811 if (!kvm_can_use_hv_timer(vcpu)) 1812 return 1; 1813 1814 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1815 return 0; 1816 } 1817 1818 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1819 { 1820 u32 msr = kvm_rcx_read(vcpu); 1821 u64 data; 1822 fastpath_t ret = EXIT_FASTPATH_NONE; 1823 1824 switch (msr) { 1825 case APIC_BASE_MSR + (APIC_ICR >> 4): 1826 data = kvm_read_edx_eax(vcpu); 1827 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1828 kvm_skip_emulated_instruction(vcpu); 1829 ret = EXIT_FASTPATH_EXIT_HANDLED; 1830 } 1831 break; 1832 case MSR_IA32_TSCDEADLINE: 1833 data = kvm_read_edx_eax(vcpu); 1834 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1835 kvm_skip_emulated_instruction(vcpu); 1836 ret = EXIT_FASTPATH_REENTER_GUEST; 1837 } 1838 break; 1839 default: 1840 break; 1841 } 1842 1843 if (ret != EXIT_FASTPATH_NONE) 1844 trace_kvm_msr_write(msr, data); 1845 1846 return ret; 1847 } 1848 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 1849 1850 /* 1851 * Adapt set_msr() to msr_io()'s calling convention 1852 */ 1853 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1854 { 1855 return kvm_get_msr_ignored_check(vcpu, index, data, true); 1856 } 1857 1858 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1859 { 1860 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 1861 } 1862 1863 #ifdef CONFIG_X86_64 1864 struct pvclock_clock { 1865 int vclock_mode; 1866 u64 cycle_last; 1867 u64 mask; 1868 u32 mult; 1869 u32 shift; 1870 u64 base_cycles; 1871 u64 offset; 1872 }; 1873 1874 struct pvclock_gtod_data { 1875 seqcount_t seq; 1876 1877 struct pvclock_clock clock; /* extract of a clocksource struct */ 1878 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 1879 1880 ktime_t offs_boot; 1881 u64 wall_time_sec; 1882 }; 1883 1884 static struct pvclock_gtod_data pvclock_gtod_data; 1885 1886 static void update_pvclock_gtod(struct timekeeper *tk) 1887 { 1888 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1889 1890 write_seqcount_begin(&vdata->seq); 1891 1892 /* copy pvclock gtod data */ 1893 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 1894 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1895 vdata->clock.mask = tk->tkr_mono.mask; 1896 vdata->clock.mult = tk->tkr_mono.mult; 1897 vdata->clock.shift = tk->tkr_mono.shift; 1898 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 1899 vdata->clock.offset = tk->tkr_mono.base; 1900 1901 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 1902 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 1903 vdata->raw_clock.mask = tk->tkr_raw.mask; 1904 vdata->raw_clock.mult = tk->tkr_raw.mult; 1905 vdata->raw_clock.shift = tk->tkr_raw.shift; 1906 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 1907 vdata->raw_clock.offset = tk->tkr_raw.base; 1908 1909 vdata->wall_time_sec = tk->xtime_sec; 1910 1911 vdata->offs_boot = tk->offs_boot; 1912 1913 write_seqcount_end(&vdata->seq); 1914 } 1915 1916 static s64 get_kvmclock_base_ns(void) 1917 { 1918 /* Count up from boot time, but with the frequency of the raw clock. */ 1919 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 1920 } 1921 #else 1922 static s64 get_kvmclock_base_ns(void) 1923 { 1924 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 1925 return ktime_get_boottime_ns(); 1926 } 1927 #endif 1928 1929 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1930 { 1931 int version; 1932 int r; 1933 struct pvclock_wall_clock wc; 1934 u64 wall_nsec; 1935 1936 kvm->arch.wall_clock = wall_clock; 1937 1938 if (!wall_clock) 1939 return; 1940 1941 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1942 if (r) 1943 return; 1944 1945 if (version & 1) 1946 ++version; /* first time write, random junk */ 1947 1948 ++version; 1949 1950 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1951 return; 1952 1953 /* 1954 * The guest calculates current wall clock time by adding 1955 * system time (updated by kvm_guest_time_update below) to the 1956 * wall clock specified here. We do the reverse here. 1957 */ 1958 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 1959 1960 wc.nsec = do_div(wall_nsec, 1000000000); 1961 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 1962 wc.version = version; 1963 1964 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1965 1966 version++; 1967 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1968 } 1969 1970 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 1971 bool old_msr, bool host_initiated) 1972 { 1973 struct kvm_arch *ka = &vcpu->kvm->arch; 1974 1975 if (vcpu->vcpu_id == 0 && !host_initiated) { 1976 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 1977 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1978 1979 ka->boot_vcpu_runs_old_kvmclock = old_msr; 1980 } 1981 1982 vcpu->arch.time = system_time; 1983 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 1984 1985 /* we verify if the enable bit is set... */ 1986 vcpu->arch.pv_time_enabled = false; 1987 if (!(system_time & 1)) 1988 return; 1989 1990 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 1991 &vcpu->arch.pv_time, system_time & ~1ULL, 1992 sizeof(struct pvclock_vcpu_time_info))) 1993 vcpu->arch.pv_time_enabled = true; 1994 1995 return; 1996 } 1997 1998 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1999 { 2000 do_shl32_div32(dividend, divisor); 2001 return dividend; 2002 } 2003 2004 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2005 s8 *pshift, u32 *pmultiplier) 2006 { 2007 uint64_t scaled64; 2008 int32_t shift = 0; 2009 uint64_t tps64; 2010 uint32_t tps32; 2011 2012 tps64 = base_hz; 2013 scaled64 = scaled_hz; 2014 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2015 tps64 >>= 1; 2016 shift--; 2017 } 2018 2019 tps32 = (uint32_t)tps64; 2020 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2021 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2022 scaled64 >>= 1; 2023 else 2024 tps32 <<= 1; 2025 shift++; 2026 } 2027 2028 *pshift = shift; 2029 *pmultiplier = div_frac(scaled64, tps32); 2030 } 2031 2032 #ifdef CONFIG_X86_64 2033 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2034 #endif 2035 2036 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2037 static unsigned long max_tsc_khz; 2038 2039 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2040 { 2041 u64 v = (u64)khz * (1000000 + ppm); 2042 do_div(v, 1000000); 2043 return v; 2044 } 2045 2046 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2047 { 2048 u64 ratio; 2049 2050 /* Guest TSC same frequency as host TSC? */ 2051 if (!scale) { 2052 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2053 return 0; 2054 } 2055 2056 /* TSC scaling supported? */ 2057 if (!kvm_has_tsc_control) { 2058 if (user_tsc_khz > tsc_khz) { 2059 vcpu->arch.tsc_catchup = 1; 2060 vcpu->arch.tsc_always_catchup = 1; 2061 return 0; 2062 } else { 2063 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2064 return -1; 2065 } 2066 } 2067 2068 /* TSC scaling required - calculate ratio */ 2069 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2070 user_tsc_khz, tsc_khz); 2071 2072 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2073 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2074 user_tsc_khz); 2075 return -1; 2076 } 2077 2078 vcpu->arch.tsc_scaling_ratio = ratio; 2079 return 0; 2080 } 2081 2082 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2083 { 2084 u32 thresh_lo, thresh_hi; 2085 int use_scaling = 0; 2086 2087 /* tsc_khz can be zero if TSC calibration fails */ 2088 if (user_tsc_khz == 0) { 2089 /* set tsc_scaling_ratio to a safe value */ 2090 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 2091 return -1; 2092 } 2093 2094 /* Compute a scale to convert nanoseconds in TSC cycles */ 2095 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2096 &vcpu->arch.virtual_tsc_shift, 2097 &vcpu->arch.virtual_tsc_mult); 2098 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2099 2100 /* 2101 * Compute the variation in TSC rate which is acceptable 2102 * within the range of tolerance and decide if the 2103 * rate being applied is within that bounds of the hardware 2104 * rate. If so, no scaling or compensation need be done. 2105 */ 2106 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2107 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2108 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2109 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2110 use_scaling = 1; 2111 } 2112 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2113 } 2114 2115 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2116 { 2117 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2118 vcpu->arch.virtual_tsc_mult, 2119 vcpu->arch.virtual_tsc_shift); 2120 tsc += vcpu->arch.this_tsc_write; 2121 return tsc; 2122 } 2123 2124 static inline int gtod_is_based_on_tsc(int mode) 2125 { 2126 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2127 } 2128 2129 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2130 { 2131 #ifdef CONFIG_X86_64 2132 bool vcpus_matched; 2133 struct kvm_arch *ka = &vcpu->kvm->arch; 2134 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2135 2136 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2137 atomic_read(&vcpu->kvm->online_vcpus)); 2138 2139 /* 2140 * Once the masterclock is enabled, always perform request in 2141 * order to update it. 2142 * 2143 * In order to enable masterclock, the host clocksource must be TSC 2144 * and the vcpus need to have matched TSCs. When that happens, 2145 * perform request to enable masterclock. 2146 */ 2147 if (ka->use_master_clock || 2148 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2149 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2150 2151 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2152 atomic_read(&vcpu->kvm->online_vcpus), 2153 ka->use_master_clock, gtod->clock.vclock_mode); 2154 #endif 2155 } 2156 2157 /* 2158 * Multiply tsc by a fixed point number represented by ratio. 2159 * 2160 * The most significant 64-N bits (mult) of ratio represent the 2161 * integral part of the fixed point number; the remaining N bits 2162 * (frac) represent the fractional part, ie. ratio represents a fixed 2163 * point number (mult + frac * 2^(-N)). 2164 * 2165 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2166 */ 2167 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2168 { 2169 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2170 } 2171 2172 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 2173 { 2174 u64 _tsc = tsc; 2175 u64 ratio = vcpu->arch.tsc_scaling_ratio; 2176 2177 if (ratio != kvm_default_tsc_scaling_ratio) 2178 _tsc = __scale_tsc(ratio, tsc); 2179 2180 return _tsc; 2181 } 2182 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2183 2184 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2185 { 2186 u64 tsc; 2187 2188 tsc = kvm_scale_tsc(vcpu, rdtsc()); 2189 2190 return target_tsc - tsc; 2191 } 2192 2193 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2194 { 2195 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 2196 } 2197 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2198 2199 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 2200 { 2201 vcpu->arch.l1_tsc_offset = offset; 2202 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset); 2203 } 2204 2205 static inline bool kvm_check_tsc_unstable(void) 2206 { 2207 #ifdef CONFIG_X86_64 2208 /* 2209 * TSC is marked unstable when we're running on Hyper-V, 2210 * 'TSC page' clocksource is good. 2211 */ 2212 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2213 return false; 2214 #endif 2215 return check_tsc_unstable(); 2216 } 2217 2218 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2219 { 2220 struct kvm *kvm = vcpu->kvm; 2221 u64 offset, ns, elapsed; 2222 unsigned long flags; 2223 bool matched; 2224 bool already_matched; 2225 bool synchronizing = false; 2226 2227 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2228 offset = kvm_compute_tsc_offset(vcpu, data); 2229 ns = get_kvmclock_base_ns(); 2230 elapsed = ns - kvm->arch.last_tsc_nsec; 2231 2232 if (vcpu->arch.virtual_tsc_khz) { 2233 if (data == 0) { 2234 /* 2235 * detection of vcpu initialization -- need to sync 2236 * with other vCPUs. This particularly helps to keep 2237 * kvm_clock stable after CPU hotplug 2238 */ 2239 synchronizing = true; 2240 } else { 2241 u64 tsc_exp = kvm->arch.last_tsc_write + 2242 nsec_to_cycles(vcpu, elapsed); 2243 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2244 /* 2245 * Special case: TSC write with a small delta (1 second) 2246 * of virtual cycle time against real time is 2247 * interpreted as an attempt to synchronize the CPU. 2248 */ 2249 synchronizing = data < tsc_exp + tsc_hz && 2250 data + tsc_hz > tsc_exp; 2251 } 2252 } 2253 2254 /* 2255 * For a reliable TSC, we can match TSC offsets, and for an unstable 2256 * TSC, we add elapsed time in this computation. We could let the 2257 * compensation code attempt to catch up if we fall behind, but 2258 * it's better to try to match offsets from the beginning. 2259 */ 2260 if (synchronizing && 2261 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2262 if (!kvm_check_tsc_unstable()) { 2263 offset = kvm->arch.cur_tsc_offset; 2264 } else { 2265 u64 delta = nsec_to_cycles(vcpu, elapsed); 2266 data += delta; 2267 offset = kvm_compute_tsc_offset(vcpu, data); 2268 } 2269 matched = true; 2270 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2271 } else { 2272 /* 2273 * We split periods of matched TSC writes into generations. 2274 * For each generation, we track the original measured 2275 * nanosecond time, offset, and write, so if TSCs are in 2276 * sync, we can match exact offset, and if not, we can match 2277 * exact software computation in compute_guest_tsc() 2278 * 2279 * These values are tracked in kvm->arch.cur_xxx variables. 2280 */ 2281 kvm->arch.cur_tsc_generation++; 2282 kvm->arch.cur_tsc_nsec = ns; 2283 kvm->arch.cur_tsc_write = data; 2284 kvm->arch.cur_tsc_offset = offset; 2285 matched = false; 2286 } 2287 2288 /* 2289 * We also track th most recent recorded KHZ, write and time to 2290 * allow the matching interval to be extended at each write. 2291 */ 2292 kvm->arch.last_tsc_nsec = ns; 2293 kvm->arch.last_tsc_write = data; 2294 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2295 2296 vcpu->arch.last_guest_tsc = data; 2297 2298 /* Keep track of which generation this VCPU has synchronized to */ 2299 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2300 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2301 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2302 2303 kvm_vcpu_write_tsc_offset(vcpu, offset); 2304 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2305 2306 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 2307 if (!matched) { 2308 kvm->arch.nr_vcpus_matched_tsc = 0; 2309 } else if (!already_matched) { 2310 kvm->arch.nr_vcpus_matched_tsc++; 2311 } 2312 2313 kvm_track_tsc_matching(vcpu); 2314 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 2315 } 2316 2317 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2318 s64 adjustment) 2319 { 2320 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2321 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2322 } 2323 2324 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2325 { 2326 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2327 WARN_ON(adjustment < 0); 2328 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 2329 adjust_tsc_offset_guest(vcpu, adjustment); 2330 } 2331 2332 #ifdef CONFIG_X86_64 2333 2334 static u64 read_tsc(void) 2335 { 2336 u64 ret = (u64)rdtsc_ordered(); 2337 u64 last = pvclock_gtod_data.clock.cycle_last; 2338 2339 if (likely(ret >= last)) 2340 return ret; 2341 2342 /* 2343 * GCC likes to generate cmov here, but this branch is extremely 2344 * predictable (it's just a function of time and the likely is 2345 * very likely) and there's a data dependence, so force GCC 2346 * to generate a branch instead. I don't barrier() because 2347 * we don't actually need a barrier, and if this function 2348 * ever gets inlined it will generate worse code. 2349 */ 2350 asm volatile (""); 2351 return last; 2352 } 2353 2354 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2355 int *mode) 2356 { 2357 long v; 2358 u64 tsc_pg_val; 2359 2360 switch (clock->vclock_mode) { 2361 case VDSO_CLOCKMODE_HVCLOCK: 2362 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2363 tsc_timestamp); 2364 if (tsc_pg_val != U64_MAX) { 2365 /* TSC page valid */ 2366 *mode = VDSO_CLOCKMODE_HVCLOCK; 2367 v = (tsc_pg_val - clock->cycle_last) & 2368 clock->mask; 2369 } else { 2370 /* TSC page invalid */ 2371 *mode = VDSO_CLOCKMODE_NONE; 2372 } 2373 break; 2374 case VDSO_CLOCKMODE_TSC: 2375 *mode = VDSO_CLOCKMODE_TSC; 2376 *tsc_timestamp = read_tsc(); 2377 v = (*tsc_timestamp - clock->cycle_last) & 2378 clock->mask; 2379 break; 2380 default: 2381 *mode = VDSO_CLOCKMODE_NONE; 2382 } 2383 2384 if (*mode == VDSO_CLOCKMODE_NONE) 2385 *tsc_timestamp = v = 0; 2386 2387 return v * clock->mult; 2388 } 2389 2390 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2391 { 2392 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2393 unsigned long seq; 2394 int mode; 2395 u64 ns; 2396 2397 do { 2398 seq = read_seqcount_begin(>od->seq); 2399 ns = gtod->raw_clock.base_cycles; 2400 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2401 ns >>= gtod->raw_clock.shift; 2402 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2403 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2404 *t = ns; 2405 2406 return mode; 2407 } 2408 2409 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2410 { 2411 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2412 unsigned long seq; 2413 int mode; 2414 u64 ns; 2415 2416 do { 2417 seq = read_seqcount_begin(>od->seq); 2418 ts->tv_sec = gtod->wall_time_sec; 2419 ns = gtod->clock.base_cycles; 2420 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2421 ns >>= gtod->clock.shift; 2422 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2423 2424 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2425 ts->tv_nsec = ns; 2426 2427 return mode; 2428 } 2429 2430 /* returns true if host is using TSC based clocksource */ 2431 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2432 { 2433 /* checked again under seqlock below */ 2434 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2435 return false; 2436 2437 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2438 tsc_timestamp)); 2439 } 2440 2441 /* returns true if host is using TSC based clocksource */ 2442 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2443 u64 *tsc_timestamp) 2444 { 2445 /* checked again under seqlock below */ 2446 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2447 return false; 2448 2449 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2450 } 2451 #endif 2452 2453 /* 2454 * 2455 * Assuming a stable TSC across physical CPUS, and a stable TSC 2456 * across virtual CPUs, the following condition is possible. 2457 * Each numbered line represents an event visible to both 2458 * CPUs at the next numbered event. 2459 * 2460 * "timespecX" represents host monotonic time. "tscX" represents 2461 * RDTSC value. 2462 * 2463 * VCPU0 on CPU0 | VCPU1 on CPU1 2464 * 2465 * 1. read timespec0,tsc0 2466 * 2. | timespec1 = timespec0 + N 2467 * | tsc1 = tsc0 + M 2468 * 3. transition to guest | transition to guest 2469 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2470 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2471 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2472 * 2473 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2474 * 2475 * - ret0 < ret1 2476 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2477 * ... 2478 * - 0 < N - M => M < N 2479 * 2480 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2481 * always the case (the difference between two distinct xtime instances 2482 * might be smaller then the difference between corresponding TSC reads, 2483 * when updating guest vcpus pvclock areas). 2484 * 2485 * To avoid that problem, do not allow visibility of distinct 2486 * system_timestamp/tsc_timestamp values simultaneously: use a master 2487 * copy of host monotonic time values. Update that master copy 2488 * in lockstep. 2489 * 2490 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2491 * 2492 */ 2493 2494 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2495 { 2496 #ifdef CONFIG_X86_64 2497 struct kvm_arch *ka = &kvm->arch; 2498 int vclock_mode; 2499 bool host_tsc_clocksource, vcpus_matched; 2500 2501 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2502 atomic_read(&kvm->online_vcpus)); 2503 2504 /* 2505 * If the host uses TSC clock, then passthrough TSC as stable 2506 * to the guest. 2507 */ 2508 host_tsc_clocksource = kvm_get_time_and_clockread( 2509 &ka->master_kernel_ns, 2510 &ka->master_cycle_now); 2511 2512 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2513 && !ka->backwards_tsc_observed 2514 && !ka->boot_vcpu_runs_old_kvmclock; 2515 2516 if (ka->use_master_clock) 2517 atomic_set(&kvm_guest_has_master_clock, 1); 2518 2519 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2520 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2521 vcpus_matched); 2522 #endif 2523 } 2524 2525 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2526 { 2527 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2528 } 2529 2530 static void kvm_gen_update_masterclock(struct kvm *kvm) 2531 { 2532 #ifdef CONFIG_X86_64 2533 int i; 2534 struct kvm_vcpu *vcpu; 2535 struct kvm_arch *ka = &kvm->arch; 2536 2537 spin_lock(&ka->pvclock_gtod_sync_lock); 2538 kvm_make_mclock_inprogress_request(kvm); 2539 /* no guest entries from this point */ 2540 pvclock_update_vm_gtod_copy(kvm); 2541 2542 kvm_for_each_vcpu(i, vcpu, kvm) 2543 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2544 2545 /* guest entries allowed */ 2546 kvm_for_each_vcpu(i, vcpu, kvm) 2547 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2548 2549 spin_unlock(&ka->pvclock_gtod_sync_lock); 2550 #endif 2551 } 2552 2553 u64 get_kvmclock_ns(struct kvm *kvm) 2554 { 2555 struct kvm_arch *ka = &kvm->arch; 2556 struct pvclock_vcpu_time_info hv_clock; 2557 u64 ret; 2558 2559 spin_lock(&ka->pvclock_gtod_sync_lock); 2560 if (!ka->use_master_clock) { 2561 spin_unlock(&ka->pvclock_gtod_sync_lock); 2562 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2563 } 2564 2565 hv_clock.tsc_timestamp = ka->master_cycle_now; 2566 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2567 spin_unlock(&ka->pvclock_gtod_sync_lock); 2568 2569 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2570 get_cpu(); 2571 2572 if (__this_cpu_read(cpu_tsc_khz)) { 2573 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2574 &hv_clock.tsc_shift, 2575 &hv_clock.tsc_to_system_mul); 2576 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2577 } else 2578 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2579 2580 put_cpu(); 2581 2582 return ret; 2583 } 2584 2585 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 2586 { 2587 struct kvm_vcpu_arch *vcpu = &v->arch; 2588 struct pvclock_vcpu_time_info guest_hv_clock; 2589 2590 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 2591 &guest_hv_clock, sizeof(guest_hv_clock)))) 2592 return; 2593 2594 /* This VCPU is paused, but it's legal for a guest to read another 2595 * VCPU's kvmclock, so we really have to follow the specification where 2596 * it says that version is odd if data is being modified, and even after 2597 * it is consistent. 2598 * 2599 * Version field updates must be kept separate. This is because 2600 * kvm_write_guest_cached might use a "rep movs" instruction, and 2601 * writes within a string instruction are weakly ordered. So there 2602 * are three writes overall. 2603 * 2604 * As a small optimization, only write the version field in the first 2605 * and third write. The vcpu->pv_time cache is still valid, because the 2606 * version field is the first in the struct. 2607 */ 2608 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2609 2610 if (guest_hv_clock.version & 1) 2611 ++guest_hv_clock.version; /* first time write, random junk */ 2612 2613 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2614 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2615 &vcpu->hv_clock, 2616 sizeof(vcpu->hv_clock.version)); 2617 2618 smp_wmb(); 2619 2620 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2621 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2622 2623 if (vcpu->pvclock_set_guest_stopped_request) { 2624 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2625 vcpu->pvclock_set_guest_stopped_request = false; 2626 } 2627 2628 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2629 2630 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2631 &vcpu->hv_clock, 2632 sizeof(vcpu->hv_clock)); 2633 2634 smp_wmb(); 2635 2636 vcpu->hv_clock.version++; 2637 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 2638 &vcpu->hv_clock, 2639 sizeof(vcpu->hv_clock.version)); 2640 } 2641 2642 static int kvm_guest_time_update(struct kvm_vcpu *v) 2643 { 2644 unsigned long flags, tgt_tsc_khz; 2645 struct kvm_vcpu_arch *vcpu = &v->arch; 2646 struct kvm_arch *ka = &v->kvm->arch; 2647 s64 kernel_ns; 2648 u64 tsc_timestamp, host_tsc; 2649 u8 pvclock_flags; 2650 bool use_master_clock; 2651 2652 kernel_ns = 0; 2653 host_tsc = 0; 2654 2655 /* 2656 * If the host uses TSC clock, then passthrough TSC as stable 2657 * to the guest. 2658 */ 2659 spin_lock(&ka->pvclock_gtod_sync_lock); 2660 use_master_clock = ka->use_master_clock; 2661 if (use_master_clock) { 2662 host_tsc = ka->master_cycle_now; 2663 kernel_ns = ka->master_kernel_ns; 2664 } 2665 spin_unlock(&ka->pvclock_gtod_sync_lock); 2666 2667 /* Keep irq disabled to prevent changes to the clock */ 2668 local_irq_save(flags); 2669 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2670 if (unlikely(tgt_tsc_khz == 0)) { 2671 local_irq_restore(flags); 2672 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2673 return 1; 2674 } 2675 if (!use_master_clock) { 2676 host_tsc = rdtsc(); 2677 kernel_ns = get_kvmclock_base_ns(); 2678 } 2679 2680 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2681 2682 /* 2683 * We may have to catch up the TSC to match elapsed wall clock 2684 * time for two reasons, even if kvmclock is used. 2685 * 1) CPU could have been running below the maximum TSC rate 2686 * 2) Broken TSC compensation resets the base at each VCPU 2687 * entry to avoid unknown leaps of TSC even when running 2688 * again on the same CPU. This may cause apparent elapsed 2689 * time to disappear, and the guest to stand still or run 2690 * very slowly. 2691 */ 2692 if (vcpu->tsc_catchup) { 2693 u64 tsc = compute_guest_tsc(v, kernel_ns); 2694 if (tsc > tsc_timestamp) { 2695 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2696 tsc_timestamp = tsc; 2697 } 2698 } 2699 2700 local_irq_restore(flags); 2701 2702 /* With all the info we got, fill in the values */ 2703 2704 if (kvm_has_tsc_control) 2705 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 2706 2707 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2708 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2709 &vcpu->hv_clock.tsc_shift, 2710 &vcpu->hv_clock.tsc_to_system_mul); 2711 vcpu->hw_tsc_khz = tgt_tsc_khz; 2712 } 2713 2714 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2715 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2716 vcpu->last_guest_tsc = tsc_timestamp; 2717 2718 /* If the host uses TSC clocksource, then it is stable */ 2719 pvclock_flags = 0; 2720 if (use_master_clock) 2721 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2722 2723 vcpu->hv_clock.flags = pvclock_flags; 2724 2725 if (vcpu->pv_time_enabled) 2726 kvm_setup_pvclock_page(v); 2727 if (v == kvm_get_vcpu(v->kvm, 0)) 2728 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2729 return 0; 2730 } 2731 2732 /* 2733 * kvmclock updates which are isolated to a given vcpu, such as 2734 * vcpu->cpu migration, should not allow system_timestamp from 2735 * the rest of the vcpus to remain static. Otherwise ntp frequency 2736 * correction applies to one vcpu's system_timestamp but not 2737 * the others. 2738 * 2739 * So in those cases, request a kvmclock update for all vcpus. 2740 * We need to rate-limit these requests though, as they can 2741 * considerably slow guests that have a large number of vcpus. 2742 * The time for a remote vcpu to update its kvmclock is bound 2743 * by the delay we use to rate-limit the updates. 2744 */ 2745 2746 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2747 2748 static void kvmclock_update_fn(struct work_struct *work) 2749 { 2750 int i; 2751 struct delayed_work *dwork = to_delayed_work(work); 2752 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2753 kvmclock_update_work); 2754 struct kvm *kvm = container_of(ka, struct kvm, arch); 2755 struct kvm_vcpu *vcpu; 2756 2757 kvm_for_each_vcpu(i, vcpu, kvm) { 2758 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2759 kvm_vcpu_kick(vcpu); 2760 } 2761 } 2762 2763 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 2764 { 2765 struct kvm *kvm = v->kvm; 2766 2767 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2768 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 2769 KVMCLOCK_UPDATE_DELAY); 2770 } 2771 2772 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2773 2774 static void kvmclock_sync_fn(struct work_struct *work) 2775 { 2776 struct delayed_work *dwork = to_delayed_work(work); 2777 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2778 kvmclock_sync_work); 2779 struct kvm *kvm = container_of(ka, struct kvm, arch); 2780 2781 if (!kvmclock_periodic_sync) 2782 return; 2783 2784 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2785 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2786 KVMCLOCK_SYNC_PERIOD); 2787 } 2788 2789 /* 2790 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 2791 */ 2792 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 2793 { 2794 /* McStatusWrEn enabled? */ 2795 if (guest_cpuid_is_amd_or_hygon(vcpu)) 2796 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 2797 2798 return false; 2799 } 2800 2801 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2802 { 2803 u64 mcg_cap = vcpu->arch.mcg_cap; 2804 unsigned bank_num = mcg_cap & 0xff; 2805 u32 msr = msr_info->index; 2806 u64 data = msr_info->data; 2807 2808 switch (msr) { 2809 case MSR_IA32_MCG_STATUS: 2810 vcpu->arch.mcg_status = data; 2811 break; 2812 case MSR_IA32_MCG_CTL: 2813 if (!(mcg_cap & MCG_CTL_P) && 2814 (data || !msr_info->host_initiated)) 2815 return 1; 2816 if (data != 0 && data != ~(u64)0) 2817 return 1; 2818 vcpu->arch.mcg_ctl = data; 2819 break; 2820 default: 2821 if (msr >= MSR_IA32_MC0_CTL && 2822 msr < MSR_IA32_MCx_CTL(bank_num)) { 2823 u32 offset = array_index_nospec( 2824 msr - MSR_IA32_MC0_CTL, 2825 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 2826 2827 /* only 0 or all 1s can be written to IA32_MCi_CTL 2828 * some Linux kernels though clear bit 10 in bank 4 to 2829 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2830 * this to avoid an uncatched #GP in the guest 2831 */ 2832 if ((offset & 0x3) == 0 && 2833 data != 0 && (data | (1 << 10)) != ~(u64)0) 2834 return -1; 2835 2836 /* MCi_STATUS */ 2837 if (!msr_info->host_initiated && 2838 (offset & 0x3) == 1 && data != 0) { 2839 if (!can_set_mci_status(vcpu)) 2840 return -1; 2841 } 2842 2843 vcpu->arch.mce_banks[offset] = data; 2844 break; 2845 } 2846 return 1; 2847 } 2848 return 0; 2849 } 2850 2851 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2852 { 2853 struct kvm *kvm = vcpu->kvm; 2854 int lm = is_long_mode(vcpu); 2855 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2856 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2857 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2858 : kvm->arch.xen_hvm_config.blob_size_32; 2859 u32 page_num = data & ~PAGE_MASK; 2860 u64 page_addr = data & PAGE_MASK; 2861 u8 *page; 2862 2863 if (page_num >= blob_size) 2864 return 1; 2865 2866 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2867 if (IS_ERR(page)) 2868 return PTR_ERR(page); 2869 2870 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) { 2871 kfree(page); 2872 return 1; 2873 } 2874 return 0; 2875 } 2876 2877 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 2878 { 2879 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 2880 2881 return (vcpu->arch.apf.msr_en_val & mask) == mask; 2882 } 2883 2884 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2885 { 2886 gpa_t gpa = data & ~0x3f; 2887 2888 /* Bits 4:5 are reserved, Should be zero */ 2889 if (data & 0x30) 2890 return 1; 2891 2892 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 2893 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 2894 return 1; 2895 2896 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 2897 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 2898 return 1; 2899 2900 if (!lapic_in_kernel(vcpu)) 2901 return data ? 1 : 0; 2902 2903 vcpu->arch.apf.msr_en_val = data; 2904 2905 if (!kvm_pv_async_pf_enabled(vcpu)) { 2906 kvm_clear_async_pf_completion_queue(vcpu); 2907 kvm_async_pf_hash_reset(vcpu); 2908 return 0; 2909 } 2910 2911 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2912 sizeof(u64))) 2913 return 1; 2914 2915 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2916 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2917 2918 kvm_async_pf_wakeup_all(vcpu); 2919 2920 return 0; 2921 } 2922 2923 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 2924 { 2925 /* Bits 8-63 are reserved */ 2926 if (data >> 8) 2927 return 1; 2928 2929 if (!lapic_in_kernel(vcpu)) 2930 return 1; 2931 2932 vcpu->arch.apf.msr_int_val = data; 2933 2934 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 2935 2936 return 0; 2937 } 2938 2939 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2940 { 2941 vcpu->arch.pv_time_enabled = false; 2942 vcpu->arch.time = 0; 2943 } 2944 2945 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 2946 { 2947 ++vcpu->stat.tlb_flush; 2948 kvm_x86_ops.tlb_flush_all(vcpu); 2949 } 2950 2951 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 2952 { 2953 ++vcpu->stat.tlb_flush; 2954 kvm_x86_ops.tlb_flush_guest(vcpu); 2955 } 2956 2957 static void record_steal_time(struct kvm_vcpu *vcpu) 2958 { 2959 struct kvm_host_map map; 2960 struct kvm_steal_time *st; 2961 2962 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2963 return; 2964 2965 /* -EAGAIN is returned in atomic context so we can just return. */ 2966 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 2967 &map, &vcpu->arch.st.cache, false)) 2968 return; 2969 2970 st = map.hva + 2971 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 2972 2973 /* 2974 * Doing a TLB flush here, on the guest's behalf, can avoid 2975 * expensive IPIs. 2976 */ 2977 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 2978 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 2979 st->preempted & KVM_VCPU_FLUSH_TLB); 2980 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB) 2981 kvm_vcpu_flush_tlb_guest(vcpu); 2982 } 2983 2984 vcpu->arch.st.preempted = 0; 2985 2986 if (st->version & 1) 2987 st->version += 1; /* first time write, random junk */ 2988 2989 st->version += 1; 2990 2991 smp_wmb(); 2992 2993 st->steal += current->sched_info.run_delay - 2994 vcpu->arch.st.last_steal; 2995 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2996 2997 smp_wmb(); 2998 2999 st->version += 1; 3000 3001 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 3002 } 3003 3004 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3005 { 3006 bool pr = false; 3007 u32 msr = msr_info->index; 3008 u64 data = msr_info->data; 3009 3010 switch (msr) { 3011 case MSR_AMD64_NB_CFG: 3012 case MSR_IA32_UCODE_WRITE: 3013 case MSR_VM_HSAVE_PA: 3014 case MSR_AMD64_PATCH_LOADER: 3015 case MSR_AMD64_BU_CFG2: 3016 case MSR_AMD64_DC_CFG: 3017 case MSR_F15H_EX_CFG: 3018 break; 3019 3020 case MSR_IA32_UCODE_REV: 3021 if (msr_info->host_initiated) 3022 vcpu->arch.microcode_version = data; 3023 break; 3024 case MSR_IA32_ARCH_CAPABILITIES: 3025 if (!msr_info->host_initiated) 3026 return 1; 3027 vcpu->arch.arch_capabilities = data; 3028 break; 3029 case MSR_IA32_PERF_CAPABILITIES: { 3030 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3031 3032 if (!msr_info->host_initiated) 3033 return 1; 3034 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent)) 3035 return 1; 3036 if (data & ~msr_ent.data) 3037 return 1; 3038 3039 vcpu->arch.perf_capabilities = data; 3040 3041 return 0; 3042 } 3043 case MSR_EFER: 3044 return set_efer(vcpu, msr_info); 3045 case MSR_K7_HWCR: 3046 data &= ~(u64)0x40; /* ignore flush filter disable */ 3047 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3048 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3049 3050 /* Handle McStatusWrEn */ 3051 if (data == BIT_ULL(18)) { 3052 vcpu->arch.msr_hwcr = data; 3053 } else if (data != 0) { 3054 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3055 data); 3056 return 1; 3057 } 3058 break; 3059 case MSR_FAM10H_MMIO_CONF_BASE: 3060 if (data != 0) { 3061 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3062 "0x%llx\n", data); 3063 return 1; 3064 } 3065 break; 3066 case MSR_IA32_DEBUGCTLMSR: 3067 if (!data) { 3068 /* We support the non-activated case already */ 3069 break; 3070 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 3071 /* Values other than LBR and BTF are vendor-specific, 3072 thus reserved and should throw a #GP */ 3073 return 1; 3074 } else if (report_ignored_msrs) 3075 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 3076 __func__, data); 3077 break; 3078 case 0x200 ... 0x2ff: 3079 return kvm_mtrr_set_msr(vcpu, msr, data); 3080 case MSR_IA32_APICBASE: 3081 return kvm_set_apic_base(vcpu, msr_info); 3082 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3083 return kvm_x2apic_msr_write(vcpu, msr, data); 3084 case MSR_IA32_TSCDEADLINE: 3085 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3086 break; 3087 case MSR_IA32_TSC_ADJUST: 3088 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3089 if (!msr_info->host_initiated) { 3090 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3091 adjust_tsc_offset_guest(vcpu, adj); 3092 } 3093 vcpu->arch.ia32_tsc_adjust_msr = data; 3094 } 3095 break; 3096 case MSR_IA32_MISC_ENABLE: 3097 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3098 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3099 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3100 return 1; 3101 vcpu->arch.ia32_misc_enable_msr = data; 3102 kvm_update_cpuid_runtime(vcpu); 3103 } else { 3104 vcpu->arch.ia32_misc_enable_msr = data; 3105 } 3106 break; 3107 case MSR_IA32_SMBASE: 3108 if (!msr_info->host_initiated) 3109 return 1; 3110 vcpu->arch.smbase = data; 3111 break; 3112 case MSR_IA32_POWER_CTL: 3113 vcpu->arch.msr_ia32_power_ctl = data; 3114 break; 3115 case MSR_IA32_TSC: 3116 if (msr_info->host_initiated) { 3117 kvm_synchronize_tsc(vcpu, data); 3118 } else { 3119 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3120 adjust_tsc_offset_guest(vcpu, adj); 3121 vcpu->arch.ia32_tsc_adjust_msr += adj; 3122 } 3123 break; 3124 case MSR_IA32_XSS: 3125 if (!msr_info->host_initiated && 3126 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3127 return 1; 3128 /* 3129 * KVM supports exposing PT to the guest, but does not support 3130 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3131 * XSAVES/XRSTORS to save/restore PT MSRs. 3132 */ 3133 if (data & ~supported_xss) 3134 return 1; 3135 vcpu->arch.ia32_xss = data; 3136 break; 3137 case MSR_SMI_COUNT: 3138 if (!msr_info->host_initiated) 3139 return 1; 3140 vcpu->arch.smi_count = data; 3141 break; 3142 case MSR_KVM_WALL_CLOCK_NEW: 3143 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3144 return 1; 3145 3146 kvm_write_wall_clock(vcpu->kvm, data); 3147 break; 3148 case MSR_KVM_WALL_CLOCK: 3149 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3150 return 1; 3151 3152 kvm_write_wall_clock(vcpu->kvm, data); 3153 break; 3154 case MSR_KVM_SYSTEM_TIME_NEW: 3155 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3156 return 1; 3157 3158 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3159 break; 3160 case MSR_KVM_SYSTEM_TIME: 3161 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3162 return 1; 3163 3164 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3165 break; 3166 case MSR_KVM_ASYNC_PF_EN: 3167 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3168 return 1; 3169 3170 if (kvm_pv_enable_async_pf(vcpu, data)) 3171 return 1; 3172 break; 3173 case MSR_KVM_ASYNC_PF_INT: 3174 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3175 return 1; 3176 3177 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3178 return 1; 3179 break; 3180 case MSR_KVM_ASYNC_PF_ACK: 3181 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3182 return 1; 3183 if (data & 0x1) { 3184 vcpu->arch.apf.pageready_pending = false; 3185 kvm_check_async_pf_completion(vcpu); 3186 } 3187 break; 3188 case MSR_KVM_STEAL_TIME: 3189 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3190 return 1; 3191 3192 if (unlikely(!sched_info_on())) 3193 return 1; 3194 3195 if (data & KVM_STEAL_RESERVED_MASK) 3196 return 1; 3197 3198 vcpu->arch.st.msr_val = data; 3199 3200 if (!(data & KVM_MSR_ENABLED)) 3201 break; 3202 3203 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3204 3205 break; 3206 case MSR_KVM_PV_EOI_EN: 3207 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3208 return 1; 3209 3210 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 3211 return 1; 3212 break; 3213 3214 case MSR_KVM_POLL_CONTROL: 3215 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3216 return 1; 3217 3218 /* only enable bit supported */ 3219 if (data & (-1ULL << 1)) 3220 return 1; 3221 3222 vcpu->arch.msr_kvm_poll_control = data; 3223 break; 3224 3225 case MSR_IA32_MCG_CTL: 3226 case MSR_IA32_MCG_STATUS: 3227 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3228 return set_msr_mce(vcpu, msr_info); 3229 3230 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3231 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3232 pr = true; 3233 fallthrough; 3234 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3235 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3236 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3237 return kvm_pmu_set_msr(vcpu, msr_info); 3238 3239 if (pr || data != 0) 3240 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3241 "0x%x data 0x%llx\n", msr, data); 3242 break; 3243 case MSR_K7_CLK_CTL: 3244 /* 3245 * Ignore all writes to this no longer documented MSR. 3246 * Writes are only relevant for old K7 processors, 3247 * all pre-dating SVM, but a recommended workaround from 3248 * AMD for these chips. It is possible to specify the 3249 * affected processor models on the command line, hence 3250 * the need to ignore the workaround. 3251 */ 3252 break; 3253 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3254 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3255 case HV_X64_MSR_SYNDBG_OPTIONS: 3256 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3257 case HV_X64_MSR_CRASH_CTL: 3258 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3259 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3260 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3261 case HV_X64_MSR_TSC_EMULATION_STATUS: 3262 return kvm_hv_set_msr_common(vcpu, msr, data, 3263 msr_info->host_initiated); 3264 case MSR_IA32_BBL_CR_CTL3: 3265 /* Drop writes to this legacy MSR -- see rdmsr 3266 * counterpart for further detail. 3267 */ 3268 if (report_ignored_msrs) 3269 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3270 msr, data); 3271 break; 3272 case MSR_AMD64_OSVW_ID_LENGTH: 3273 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3274 return 1; 3275 vcpu->arch.osvw.length = data; 3276 break; 3277 case MSR_AMD64_OSVW_STATUS: 3278 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3279 return 1; 3280 vcpu->arch.osvw.status = data; 3281 break; 3282 case MSR_PLATFORM_INFO: 3283 if (!msr_info->host_initiated || 3284 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3285 cpuid_fault_enabled(vcpu))) 3286 return 1; 3287 vcpu->arch.msr_platform_info = data; 3288 break; 3289 case MSR_MISC_FEATURES_ENABLES: 3290 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3291 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3292 !supports_cpuid_fault(vcpu))) 3293 return 1; 3294 vcpu->arch.msr_misc_features_enables = data; 3295 break; 3296 default: 3297 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 3298 return xen_hvm_config(vcpu, data); 3299 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3300 return kvm_pmu_set_msr(vcpu, msr_info); 3301 return KVM_MSR_RET_INVALID; 3302 } 3303 return 0; 3304 } 3305 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3306 3307 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3308 { 3309 u64 data; 3310 u64 mcg_cap = vcpu->arch.mcg_cap; 3311 unsigned bank_num = mcg_cap & 0xff; 3312 3313 switch (msr) { 3314 case MSR_IA32_P5_MC_ADDR: 3315 case MSR_IA32_P5_MC_TYPE: 3316 data = 0; 3317 break; 3318 case MSR_IA32_MCG_CAP: 3319 data = vcpu->arch.mcg_cap; 3320 break; 3321 case MSR_IA32_MCG_CTL: 3322 if (!(mcg_cap & MCG_CTL_P) && !host) 3323 return 1; 3324 data = vcpu->arch.mcg_ctl; 3325 break; 3326 case MSR_IA32_MCG_STATUS: 3327 data = vcpu->arch.mcg_status; 3328 break; 3329 default: 3330 if (msr >= MSR_IA32_MC0_CTL && 3331 msr < MSR_IA32_MCx_CTL(bank_num)) { 3332 u32 offset = array_index_nospec( 3333 msr - MSR_IA32_MC0_CTL, 3334 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3335 3336 data = vcpu->arch.mce_banks[offset]; 3337 break; 3338 } 3339 return 1; 3340 } 3341 *pdata = data; 3342 return 0; 3343 } 3344 3345 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3346 { 3347 switch (msr_info->index) { 3348 case MSR_IA32_PLATFORM_ID: 3349 case MSR_IA32_EBL_CR_POWERON: 3350 case MSR_IA32_DEBUGCTLMSR: 3351 case MSR_IA32_LASTBRANCHFROMIP: 3352 case MSR_IA32_LASTBRANCHTOIP: 3353 case MSR_IA32_LASTINTFROMIP: 3354 case MSR_IA32_LASTINTTOIP: 3355 case MSR_K8_SYSCFG: 3356 case MSR_K8_TSEG_ADDR: 3357 case MSR_K8_TSEG_MASK: 3358 case MSR_VM_HSAVE_PA: 3359 case MSR_K8_INT_PENDING_MSG: 3360 case MSR_AMD64_NB_CFG: 3361 case MSR_FAM10H_MMIO_CONF_BASE: 3362 case MSR_AMD64_BU_CFG2: 3363 case MSR_IA32_PERF_CTL: 3364 case MSR_AMD64_DC_CFG: 3365 case MSR_F15H_EX_CFG: 3366 /* 3367 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3368 * limit) MSRs. Just return 0, as we do not want to expose the host 3369 * data here. Do not conditionalize this on CPUID, as KVM does not do 3370 * so for existing CPU-specific MSRs. 3371 */ 3372 case MSR_RAPL_POWER_UNIT: 3373 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3374 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3375 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3376 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3377 msr_info->data = 0; 3378 break; 3379 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3380 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3381 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3382 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3383 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3384 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3385 return kvm_pmu_get_msr(vcpu, msr_info); 3386 msr_info->data = 0; 3387 break; 3388 case MSR_IA32_UCODE_REV: 3389 msr_info->data = vcpu->arch.microcode_version; 3390 break; 3391 case MSR_IA32_ARCH_CAPABILITIES: 3392 if (!msr_info->host_initiated && 3393 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3394 return 1; 3395 msr_info->data = vcpu->arch.arch_capabilities; 3396 break; 3397 case MSR_IA32_PERF_CAPABILITIES: 3398 if (!msr_info->host_initiated && 3399 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3400 return 1; 3401 msr_info->data = vcpu->arch.perf_capabilities; 3402 break; 3403 case MSR_IA32_POWER_CTL: 3404 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3405 break; 3406 case MSR_IA32_TSC: { 3407 /* 3408 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3409 * even when not intercepted. AMD manual doesn't explicitly 3410 * state this but appears to behave the same. 3411 * 3412 * On userspace reads and writes, however, we unconditionally 3413 * return L1's TSC value to ensure backwards-compatible 3414 * behavior for migration. 3415 */ 3416 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset : 3417 vcpu->arch.tsc_offset; 3418 3419 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset; 3420 break; 3421 } 3422 case MSR_MTRRcap: 3423 case 0x200 ... 0x2ff: 3424 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3425 case 0xcd: /* fsb frequency */ 3426 msr_info->data = 3; 3427 break; 3428 /* 3429 * MSR_EBC_FREQUENCY_ID 3430 * Conservative value valid for even the basic CPU models. 3431 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3432 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3433 * and 266MHz for model 3, or 4. Set Core Clock 3434 * Frequency to System Bus Frequency Ratio to 1 (bits 3435 * 31:24) even though these are only valid for CPU 3436 * models > 2, however guests may end up dividing or 3437 * multiplying by zero otherwise. 3438 */ 3439 case MSR_EBC_FREQUENCY_ID: 3440 msr_info->data = 1 << 24; 3441 break; 3442 case MSR_IA32_APICBASE: 3443 msr_info->data = kvm_get_apic_base(vcpu); 3444 break; 3445 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3446 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3447 case MSR_IA32_TSCDEADLINE: 3448 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3449 break; 3450 case MSR_IA32_TSC_ADJUST: 3451 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3452 break; 3453 case MSR_IA32_MISC_ENABLE: 3454 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3455 break; 3456 case MSR_IA32_SMBASE: 3457 if (!msr_info->host_initiated) 3458 return 1; 3459 msr_info->data = vcpu->arch.smbase; 3460 break; 3461 case MSR_SMI_COUNT: 3462 msr_info->data = vcpu->arch.smi_count; 3463 break; 3464 case MSR_IA32_PERF_STATUS: 3465 /* TSC increment by tick */ 3466 msr_info->data = 1000ULL; 3467 /* CPU multiplier */ 3468 msr_info->data |= (((uint64_t)4ULL) << 40); 3469 break; 3470 case MSR_EFER: 3471 msr_info->data = vcpu->arch.efer; 3472 break; 3473 case MSR_KVM_WALL_CLOCK: 3474 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3475 return 1; 3476 3477 msr_info->data = vcpu->kvm->arch.wall_clock; 3478 break; 3479 case MSR_KVM_WALL_CLOCK_NEW: 3480 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3481 return 1; 3482 3483 msr_info->data = vcpu->kvm->arch.wall_clock; 3484 break; 3485 case MSR_KVM_SYSTEM_TIME: 3486 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3487 return 1; 3488 3489 msr_info->data = vcpu->arch.time; 3490 break; 3491 case MSR_KVM_SYSTEM_TIME_NEW: 3492 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3493 return 1; 3494 3495 msr_info->data = vcpu->arch.time; 3496 break; 3497 case MSR_KVM_ASYNC_PF_EN: 3498 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3499 return 1; 3500 3501 msr_info->data = vcpu->arch.apf.msr_en_val; 3502 break; 3503 case MSR_KVM_ASYNC_PF_INT: 3504 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3505 return 1; 3506 3507 msr_info->data = vcpu->arch.apf.msr_int_val; 3508 break; 3509 case MSR_KVM_ASYNC_PF_ACK: 3510 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3511 return 1; 3512 3513 msr_info->data = 0; 3514 break; 3515 case MSR_KVM_STEAL_TIME: 3516 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3517 return 1; 3518 3519 msr_info->data = vcpu->arch.st.msr_val; 3520 break; 3521 case MSR_KVM_PV_EOI_EN: 3522 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3523 return 1; 3524 3525 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3526 break; 3527 case MSR_KVM_POLL_CONTROL: 3528 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3529 return 1; 3530 3531 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3532 break; 3533 case MSR_IA32_P5_MC_ADDR: 3534 case MSR_IA32_P5_MC_TYPE: 3535 case MSR_IA32_MCG_CAP: 3536 case MSR_IA32_MCG_CTL: 3537 case MSR_IA32_MCG_STATUS: 3538 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3539 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3540 msr_info->host_initiated); 3541 case MSR_IA32_XSS: 3542 if (!msr_info->host_initiated && 3543 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3544 return 1; 3545 msr_info->data = vcpu->arch.ia32_xss; 3546 break; 3547 case MSR_K7_CLK_CTL: 3548 /* 3549 * Provide expected ramp-up count for K7. All other 3550 * are set to zero, indicating minimum divisors for 3551 * every field. 3552 * 3553 * This prevents guest kernels on AMD host with CPU 3554 * type 6, model 8 and higher from exploding due to 3555 * the rdmsr failing. 3556 */ 3557 msr_info->data = 0x20000000; 3558 break; 3559 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3560 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3561 case HV_X64_MSR_SYNDBG_OPTIONS: 3562 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3563 case HV_X64_MSR_CRASH_CTL: 3564 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3565 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3566 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3567 case HV_X64_MSR_TSC_EMULATION_STATUS: 3568 return kvm_hv_get_msr_common(vcpu, 3569 msr_info->index, &msr_info->data, 3570 msr_info->host_initiated); 3571 case MSR_IA32_BBL_CR_CTL3: 3572 /* This legacy MSR exists but isn't fully documented in current 3573 * silicon. It is however accessed by winxp in very narrow 3574 * scenarios where it sets bit #19, itself documented as 3575 * a "reserved" bit. Best effort attempt to source coherent 3576 * read data here should the balance of the register be 3577 * interpreted by the guest: 3578 * 3579 * L2 cache control register 3: 64GB range, 256KB size, 3580 * enabled, latency 0x1, configured 3581 */ 3582 msr_info->data = 0xbe702111; 3583 break; 3584 case MSR_AMD64_OSVW_ID_LENGTH: 3585 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3586 return 1; 3587 msr_info->data = vcpu->arch.osvw.length; 3588 break; 3589 case MSR_AMD64_OSVW_STATUS: 3590 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3591 return 1; 3592 msr_info->data = vcpu->arch.osvw.status; 3593 break; 3594 case MSR_PLATFORM_INFO: 3595 if (!msr_info->host_initiated && 3596 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3597 return 1; 3598 msr_info->data = vcpu->arch.msr_platform_info; 3599 break; 3600 case MSR_MISC_FEATURES_ENABLES: 3601 msr_info->data = vcpu->arch.msr_misc_features_enables; 3602 break; 3603 case MSR_K7_HWCR: 3604 msr_info->data = vcpu->arch.msr_hwcr; 3605 break; 3606 default: 3607 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3608 return kvm_pmu_get_msr(vcpu, msr_info); 3609 return KVM_MSR_RET_INVALID; 3610 } 3611 return 0; 3612 } 3613 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3614 3615 /* 3616 * Read or write a bunch of msrs. All parameters are kernel addresses. 3617 * 3618 * @return number of msrs set successfully. 3619 */ 3620 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3621 struct kvm_msr_entry *entries, 3622 int (*do_msr)(struct kvm_vcpu *vcpu, 3623 unsigned index, u64 *data)) 3624 { 3625 int i; 3626 3627 for (i = 0; i < msrs->nmsrs; ++i) 3628 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3629 break; 3630 3631 return i; 3632 } 3633 3634 /* 3635 * Read or write a bunch of msrs. Parameters are user addresses. 3636 * 3637 * @return number of msrs set successfully. 3638 */ 3639 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3640 int (*do_msr)(struct kvm_vcpu *vcpu, 3641 unsigned index, u64 *data), 3642 int writeback) 3643 { 3644 struct kvm_msrs msrs; 3645 struct kvm_msr_entry *entries; 3646 int r, n; 3647 unsigned size; 3648 3649 r = -EFAULT; 3650 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3651 goto out; 3652 3653 r = -E2BIG; 3654 if (msrs.nmsrs >= MAX_IO_MSRS) 3655 goto out; 3656 3657 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3658 entries = memdup_user(user_msrs->entries, size); 3659 if (IS_ERR(entries)) { 3660 r = PTR_ERR(entries); 3661 goto out; 3662 } 3663 3664 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3665 if (r < 0) 3666 goto out_free; 3667 3668 r = -EFAULT; 3669 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3670 goto out_free; 3671 3672 r = n; 3673 3674 out_free: 3675 kfree(entries); 3676 out: 3677 return r; 3678 } 3679 3680 static inline bool kvm_can_mwait_in_guest(void) 3681 { 3682 return boot_cpu_has(X86_FEATURE_MWAIT) && 3683 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3684 boot_cpu_has(X86_FEATURE_ARAT); 3685 } 3686 3687 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 3688 struct kvm_cpuid2 __user *cpuid_arg) 3689 { 3690 struct kvm_cpuid2 cpuid; 3691 int r; 3692 3693 r = -EFAULT; 3694 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3695 return r; 3696 3697 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3698 if (r) 3699 return r; 3700 3701 r = -EFAULT; 3702 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3703 return r; 3704 3705 return 0; 3706 } 3707 3708 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3709 { 3710 int r = 0; 3711 3712 switch (ext) { 3713 case KVM_CAP_IRQCHIP: 3714 case KVM_CAP_HLT: 3715 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3716 case KVM_CAP_SET_TSS_ADDR: 3717 case KVM_CAP_EXT_CPUID: 3718 case KVM_CAP_EXT_EMUL_CPUID: 3719 case KVM_CAP_CLOCKSOURCE: 3720 case KVM_CAP_PIT: 3721 case KVM_CAP_NOP_IO_DELAY: 3722 case KVM_CAP_MP_STATE: 3723 case KVM_CAP_SYNC_MMU: 3724 case KVM_CAP_USER_NMI: 3725 case KVM_CAP_REINJECT_CONTROL: 3726 case KVM_CAP_IRQ_INJECT_STATUS: 3727 case KVM_CAP_IOEVENTFD: 3728 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3729 case KVM_CAP_PIT2: 3730 case KVM_CAP_PIT_STATE2: 3731 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3732 case KVM_CAP_XEN_HVM: 3733 case KVM_CAP_VCPU_EVENTS: 3734 case KVM_CAP_HYPERV: 3735 case KVM_CAP_HYPERV_VAPIC: 3736 case KVM_CAP_HYPERV_SPIN: 3737 case KVM_CAP_HYPERV_SYNIC: 3738 case KVM_CAP_HYPERV_SYNIC2: 3739 case KVM_CAP_HYPERV_VP_INDEX: 3740 case KVM_CAP_HYPERV_EVENTFD: 3741 case KVM_CAP_HYPERV_TLBFLUSH: 3742 case KVM_CAP_HYPERV_SEND_IPI: 3743 case KVM_CAP_HYPERV_CPUID: 3744 case KVM_CAP_SYS_HYPERV_CPUID: 3745 case KVM_CAP_PCI_SEGMENT: 3746 case KVM_CAP_DEBUGREGS: 3747 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3748 case KVM_CAP_XSAVE: 3749 case KVM_CAP_ASYNC_PF: 3750 case KVM_CAP_ASYNC_PF_INT: 3751 case KVM_CAP_GET_TSC_KHZ: 3752 case KVM_CAP_KVMCLOCK_CTRL: 3753 case KVM_CAP_READONLY_MEM: 3754 case KVM_CAP_HYPERV_TIME: 3755 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3756 case KVM_CAP_TSC_DEADLINE_TIMER: 3757 case KVM_CAP_DISABLE_QUIRKS: 3758 case KVM_CAP_SET_BOOT_CPU_ID: 3759 case KVM_CAP_SPLIT_IRQCHIP: 3760 case KVM_CAP_IMMEDIATE_EXIT: 3761 case KVM_CAP_PMU_EVENT_FILTER: 3762 case KVM_CAP_GET_MSR_FEATURES: 3763 case KVM_CAP_MSR_PLATFORM_INFO: 3764 case KVM_CAP_EXCEPTION_PAYLOAD: 3765 case KVM_CAP_SET_GUEST_DEBUG: 3766 case KVM_CAP_LAST_CPU: 3767 case KVM_CAP_X86_USER_SPACE_MSR: 3768 case KVM_CAP_X86_MSR_FILTER: 3769 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 3770 r = 1; 3771 break; 3772 case KVM_CAP_SYNC_REGS: 3773 r = KVM_SYNC_X86_VALID_FIELDS; 3774 break; 3775 case KVM_CAP_ADJUST_CLOCK: 3776 r = KVM_CLOCK_TSC_STABLE; 3777 break; 3778 case KVM_CAP_X86_DISABLE_EXITS: 3779 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 3780 KVM_X86_DISABLE_EXITS_CSTATE; 3781 if(kvm_can_mwait_in_guest()) 3782 r |= KVM_X86_DISABLE_EXITS_MWAIT; 3783 break; 3784 case KVM_CAP_X86_SMM: 3785 /* SMBASE is usually relocated above 1M on modern chipsets, 3786 * and SMM handlers might indeed rely on 4G segment limits, 3787 * so do not report SMM to be available if real mode is 3788 * emulated via vm86 mode. Still, do not go to great lengths 3789 * to avoid userspace's usage of the feature, because it is a 3790 * fringe case that is not enabled except via specific settings 3791 * of the module parameters. 3792 */ 3793 r = kvm_x86_ops.has_emulated_msr(kvm, MSR_IA32_SMBASE); 3794 break; 3795 case KVM_CAP_VAPIC: 3796 r = !kvm_x86_ops.cpu_has_accelerated_tpr(); 3797 break; 3798 case KVM_CAP_NR_VCPUS: 3799 r = KVM_SOFT_MAX_VCPUS; 3800 break; 3801 case KVM_CAP_MAX_VCPUS: 3802 r = KVM_MAX_VCPUS; 3803 break; 3804 case KVM_CAP_MAX_VCPU_ID: 3805 r = KVM_MAX_VCPU_ID; 3806 break; 3807 case KVM_CAP_PV_MMU: /* obsolete */ 3808 r = 0; 3809 break; 3810 case KVM_CAP_MCE: 3811 r = KVM_MAX_MCE_BANKS; 3812 break; 3813 case KVM_CAP_XCRS: 3814 r = boot_cpu_has(X86_FEATURE_XSAVE); 3815 break; 3816 case KVM_CAP_TSC_CONTROL: 3817 r = kvm_has_tsc_control; 3818 break; 3819 case KVM_CAP_X2APIC_API: 3820 r = KVM_X2APIC_API_VALID_FLAGS; 3821 break; 3822 case KVM_CAP_NESTED_STATE: 3823 r = kvm_x86_ops.nested_ops->get_state ? 3824 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 3825 break; 3826 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 3827 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 3828 break; 3829 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 3830 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 3831 break; 3832 case KVM_CAP_SMALLER_MAXPHYADDR: 3833 r = (int) allow_smaller_maxphyaddr; 3834 break; 3835 case KVM_CAP_STEAL_TIME: 3836 r = sched_info_on(); 3837 break; 3838 default: 3839 break; 3840 } 3841 return r; 3842 3843 } 3844 3845 long kvm_arch_dev_ioctl(struct file *filp, 3846 unsigned int ioctl, unsigned long arg) 3847 { 3848 void __user *argp = (void __user *)arg; 3849 long r; 3850 3851 switch (ioctl) { 3852 case KVM_GET_MSR_INDEX_LIST: { 3853 struct kvm_msr_list __user *user_msr_list = argp; 3854 struct kvm_msr_list msr_list; 3855 unsigned n; 3856 3857 r = -EFAULT; 3858 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3859 goto out; 3860 n = msr_list.nmsrs; 3861 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 3862 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3863 goto out; 3864 r = -E2BIG; 3865 if (n < msr_list.nmsrs) 3866 goto out; 3867 r = -EFAULT; 3868 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 3869 num_msrs_to_save * sizeof(u32))) 3870 goto out; 3871 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 3872 &emulated_msrs, 3873 num_emulated_msrs * sizeof(u32))) 3874 goto out; 3875 r = 0; 3876 break; 3877 } 3878 case KVM_GET_SUPPORTED_CPUID: 3879 case KVM_GET_EMULATED_CPUID: { 3880 struct kvm_cpuid2 __user *cpuid_arg = argp; 3881 struct kvm_cpuid2 cpuid; 3882 3883 r = -EFAULT; 3884 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3885 goto out; 3886 3887 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 3888 ioctl); 3889 if (r) 3890 goto out; 3891 3892 r = -EFAULT; 3893 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3894 goto out; 3895 r = 0; 3896 break; 3897 } 3898 case KVM_X86_GET_MCE_CAP_SUPPORTED: 3899 r = -EFAULT; 3900 if (copy_to_user(argp, &kvm_mce_cap_supported, 3901 sizeof(kvm_mce_cap_supported))) 3902 goto out; 3903 r = 0; 3904 break; 3905 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 3906 struct kvm_msr_list __user *user_msr_list = argp; 3907 struct kvm_msr_list msr_list; 3908 unsigned int n; 3909 3910 r = -EFAULT; 3911 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 3912 goto out; 3913 n = msr_list.nmsrs; 3914 msr_list.nmsrs = num_msr_based_features; 3915 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 3916 goto out; 3917 r = -E2BIG; 3918 if (n < msr_list.nmsrs) 3919 goto out; 3920 r = -EFAULT; 3921 if (copy_to_user(user_msr_list->indices, &msr_based_features, 3922 num_msr_based_features * sizeof(u32))) 3923 goto out; 3924 r = 0; 3925 break; 3926 } 3927 case KVM_GET_MSRS: 3928 r = msr_io(NULL, argp, do_get_msr_feature, 1); 3929 break; 3930 case KVM_GET_SUPPORTED_HV_CPUID: 3931 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 3932 break; 3933 default: 3934 r = -EINVAL; 3935 break; 3936 } 3937 out: 3938 return r; 3939 } 3940 3941 static void wbinvd_ipi(void *garbage) 3942 { 3943 wbinvd(); 3944 } 3945 3946 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 3947 { 3948 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 3949 } 3950 3951 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3952 { 3953 /* Address WBINVD may be executed by guest */ 3954 if (need_emulate_wbinvd(vcpu)) { 3955 if (kvm_x86_ops.has_wbinvd_exit()) 3956 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 3957 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 3958 smp_call_function_single(vcpu->cpu, 3959 wbinvd_ipi, NULL, 1); 3960 } 3961 3962 kvm_x86_ops.vcpu_load(vcpu, cpu); 3963 3964 /* Save host pkru register if supported */ 3965 vcpu->arch.host_pkru = read_pkru(); 3966 3967 /* Apply any externally detected TSC adjustments (due to suspend) */ 3968 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 3969 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 3970 vcpu->arch.tsc_offset_adjustment = 0; 3971 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3972 } 3973 3974 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 3975 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 3976 rdtsc() - vcpu->arch.last_host_tsc; 3977 if (tsc_delta < 0) 3978 mark_tsc_unstable("KVM discovered backwards TSC"); 3979 3980 if (kvm_check_tsc_unstable()) { 3981 u64 offset = kvm_compute_tsc_offset(vcpu, 3982 vcpu->arch.last_guest_tsc); 3983 kvm_vcpu_write_tsc_offset(vcpu, offset); 3984 vcpu->arch.tsc_catchup = 1; 3985 } 3986 3987 if (kvm_lapic_hv_timer_in_use(vcpu)) 3988 kvm_lapic_restart_hv_timer(vcpu); 3989 3990 /* 3991 * On a host with synchronized TSC, there is no need to update 3992 * kvmclock on vcpu->cpu migration 3993 */ 3994 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 3995 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 3996 if (vcpu->cpu != cpu) 3997 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 3998 vcpu->cpu = cpu; 3999 } 4000 4001 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4002 } 4003 4004 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4005 { 4006 struct kvm_host_map map; 4007 struct kvm_steal_time *st; 4008 4009 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4010 return; 4011 4012 if (vcpu->arch.st.preempted) 4013 return; 4014 4015 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 4016 &vcpu->arch.st.cache, true)) 4017 return; 4018 4019 st = map.hva + 4020 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 4021 4022 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4023 4024 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 4025 } 4026 4027 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4028 { 4029 int idx; 4030 4031 if (vcpu->preempted && !vcpu->arch.guest_state_protected) 4032 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu); 4033 4034 /* 4035 * Disable page faults because we're in atomic context here. 4036 * kvm_write_guest_offset_cached() would call might_fault() 4037 * that relies on pagefault_disable() to tell if there's a 4038 * bug. NOTE: the write to guest memory may not go through if 4039 * during postcopy live migration or if there's heavy guest 4040 * paging. 4041 */ 4042 pagefault_disable(); 4043 /* 4044 * kvm_memslots() will be called by 4045 * kvm_write_guest_offset_cached() so take the srcu lock. 4046 */ 4047 idx = srcu_read_lock(&vcpu->kvm->srcu); 4048 kvm_steal_time_set_preempted(vcpu); 4049 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4050 pagefault_enable(); 4051 kvm_x86_ops.vcpu_put(vcpu); 4052 vcpu->arch.last_host_tsc = rdtsc(); 4053 /* 4054 * If userspace has set any breakpoints or watchpoints, dr6 is restored 4055 * on every vmexit, but if not, we might have a stale dr6 from the 4056 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 4057 */ 4058 set_debugreg(0, 6); 4059 } 4060 4061 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4062 struct kvm_lapic_state *s) 4063 { 4064 if (vcpu->arch.apicv_active) 4065 kvm_x86_ops.sync_pir_to_irr(vcpu); 4066 4067 return kvm_apic_get_state(vcpu, s); 4068 } 4069 4070 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4071 struct kvm_lapic_state *s) 4072 { 4073 int r; 4074 4075 r = kvm_apic_set_state(vcpu, s); 4076 if (r) 4077 return r; 4078 update_cr8_intercept(vcpu); 4079 4080 return 0; 4081 } 4082 4083 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4084 { 4085 /* 4086 * We can accept userspace's request for interrupt injection 4087 * as long as we have a place to store the interrupt number. 4088 * The actual injection will happen when the CPU is able to 4089 * deliver the interrupt. 4090 */ 4091 if (kvm_cpu_has_extint(vcpu)) 4092 return false; 4093 4094 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4095 return (!lapic_in_kernel(vcpu) || 4096 kvm_apic_accept_pic_intr(vcpu)); 4097 } 4098 4099 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4100 { 4101 return kvm_arch_interrupt_allowed(vcpu) && 4102 kvm_cpu_accept_dm_intr(vcpu); 4103 } 4104 4105 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4106 struct kvm_interrupt *irq) 4107 { 4108 if (irq->irq >= KVM_NR_INTERRUPTS) 4109 return -EINVAL; 4110 4111 if (!irqchip_in_kernel(vcpu->kvm)) { 4112 kvm_queue_interrupt(vcpu, irq->irq, false); 4113 kvm_make_request(KVM_REQ_EVENT, vcpu); 4114 return 0; 4115 } 4116 4117 /* 4118 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4119 * fail for in-kernel 8259. 4120 */ 4121 if (pic_in_kernel(vcpu->kvm)) 4122 return -ENXIO; 4123 4124 if (vcpu->arch.pending_external_vector != -1) 4125 return -EEXIST; 4126 4127 vcpu->arch.pending_external_vector = irq->irq; 4128 kvm_make_request(KVM_REQ_EVENT, vcpu); 4129 return 0; 4130 } 4131 4132 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4133 { 4134 kvm_inject_nmi(vcpu); 4135 4136 return 0; 4137 } 4138 4139 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4140 { 4141 kvm_make_request(KVM_REQ_SMI, vcpu); 4142 4143 return 0; 4144 } 4145 4146 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4147 struct kvm_tpr_access_ctl *tac) 4148 { 4149 if (tac->flags) 4150 return -EINVAL; 4151 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4152 return 0; 4153 } 4154 4155 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4156 u64 mcg_cap) 4157 { 4158 int r; 4159 unsigned bank_num = mcg_cap & 0xff, bank; 4160 4161 r = -EINVAL; 4162 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4163 goto out; 4164 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4165 goto out; 4166 r = 0; 4167 vcpu->arch.mcg_cap = mcg_cap; 4168 /* Init IA32_MCG_CTL to all 1s */ 4169 if (mcg_cap & MCG_CTL_P) 4170 vcpu->arch.mcg_ctl = ~(u64)0; 4171 /* Init IA32_MCi_CTL to all 1s */ 4172 for (bank = 0; bank < bank_num; bank++) 4173 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4174 4175 kvm_x86_ops.setup_mce(vcpu); 4176 out: 4177 return r; 4178 } 4179 4180 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4181 struct kvm_x86_mce *mce) 4182 { 4183 u64 mcg_cap = vcpu->arch.mcg_cap; 4184 unsigned bank_num = mcg_cap & 0xff; 4185 u64 *banks = vcpu->arch.mce_banks; 4186 4187 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4188 return -EINVAL; 4189 /* 4190 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4191 * reporting is disabled 4192 */ 4193 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4194 vcpu->arch.mcg_ctl != ~(u64)0) 4195 return 0; 4196 banks += 4 * mce->bank; 4197 /* 4198 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4199 * reporting is disabled for the bank 4200 */ 4201 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4202 return 0; 4203 if (mce->status & MCI_STATUS_UC) { 4204 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4205 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4206 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4207 return 0; 4208 } 4209 if (banks[1] & MCI_STATUS_VAL) 4210 mce->status |= MCI_STATUS_OVER; 4211 banks[2] = mce->addr; 4212 banks[3] = mce->misc; 4213 vcpu->arch.mcg_status = mce->mcg_status; 4214 banks[1] = mce->status; 4215 kvm_queue_exception(vcpu, MC_VECTOR); 4216 } else if (!(banks[1] & MCI_STATUS_VAL) 4217 || !(banks[1] & MCI_STATUS_UC)) { 4218 if (banks[1] & MCI_STATUS_VAL) 4219 mce->status |= MCI_STATUS_OVER; 4220 banks[2] = mce->addr; 4221 banks[3] = mce->misc; 4222 banks[1] = mce->status; 4223 } else 4224 banks[1] |= MCI_STATUS_OVER; 4225 return 0; 4226 } 4227 4228 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4229 struct kvm_vcpu_events *events) 4230 { 4231 process_nmi(vcpu); 4232 4233 /* 4234 * In guest mode, payload delivery should be deferred, 4235 * so that the L1 hypervisor can intercept #PF before 4236 * CR2 is modified (or intercept #DB before DR6 is 4237 * modified under nVMX). Unless the per-VM capability, 4238 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4239 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4240 * opportunistically defer the exception payload, deliver it if the 4241 * capability hasn't been requested before processing a 4242 * KVM_GET_VCPU_EVENTS. 4243 */ 4244 if (!vcpu->kvm->arch.exception_payload_enabled && 4245 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4246 kvm_deliver_exception_payload(vcpu); 4247 4248 /* 4249 * The API doesn't provide the instruction length for software 4250 * exceptions, so don't report them. As long as the guest RIP 4251 * isn't advanced, we should expect to encounter the exception 4252 * again. 4253 */ 4254 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4255 events->exception.injected = 0; 4256 events->exception.pending = 0; 4257 } else { 4258 events->exception.injected = vcpu->arch.exception.injected; 4259 events->exception.pending = vcpu->arch.exception.pending; 4260 /* 4261 * For ABI compatibility, deliberately conflate 4262 * pending and injected exceptions when 4263 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4264 */ 4265 if (!vcpu->kvm->arch.exception_payload_enabled) 4266 events->exception.injected |= 4267 vcpu->arch.exception.pending; 4268 } 4269 events->exception.nr = vcpu->arch.exception.nr; 4270 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4271 events->exception.error_code = vcpu->arch.exception.error_code; 4272 events->exception_has_payload = vcpu->arch.exception.has_payload; 4273 events->exception_payload = vcpu->arch.exception.payload; 4274 4275 events->interrupt.injected = 4276 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4277 events->interrupt.nr = vcpu->arch.interrupt.nr; 4278 events->interrupt.soft = 0; 4279 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 4280 4281 events->nmi.injected = vcpu->arch.nmi_injected; 4282 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4283 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu); 4284 events->nmi.pad = 0; 4285 4286 events->sipi_vector = 0; /* never valid when reporting to user space */ 4287 4288 events->smi.smm = is_smm(vcpu); 4289 events->smi.pending = vcpu->arch.smi_pending; 4290 events->smi.smm_inside_nmi = 4291 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4292 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4293 4294 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4295 | KVM_VCPUEVENT_VALID_SHADOW 4296 | KVM_VCPUEVENT_VALID_SMM); 4297 if (vcpu->kvm->arch.exception_payload_enabled) 4298 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4299 4300 memset(&events->reserved, 0, sizeof(events->reserved)); 4301 } 4302 4303 static void kvm_smm_changed(struct kvm_vcpu *vcpu); 4304 4305 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4306 struct kvm_vcpu_events *events) 4307 { 4308 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4309 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4310 | KVM_VCPUEVENT_VALID_SHADOW 4311 | KVM_VCPUEVENT_VALID_SMM 4312 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4313 return -EINVAL; 4314 4315 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4316 if (!vcpu->kvm->arch.exception_payload_enabled) 4317 return -EINVAL; 4318 if (events->exception.pending) 4319 events->exception.injected = 0; 4320 else 4321 events->exception_has_payload = 0; 4322 } else { 4323 events->exception.pending = 0; 4324 events->exception_has_payload = 0; 4325 } 4326 4327 if ((events->exception.injected || events->exception.pending) && 4328 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4329 return -EINVAL; 4330 4331 /* INITs are latched while in SMM */ 4332 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4333 (events->smi.smm || events->smi.pending) && 4334 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4335 return -EINVAL; 4336 4337 process_nmi(vcpu); 4338 vcpu->arch.exception.injected = events->exception.injected; 4339 vcpu->arch.exception.pending = events->exception.pending; 4340 vcpu->arch.exception.nr = events->exception.nr; 4341 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4342 vcpu->arch.exception.error_code = events->exception.error_code; 4343 vcpu->arch.exception.has_payload = events->exception_has_payload; 4344 vcpu->arch.exception.payload = events->exception_payload; 4345 4346 vcpu->arch.interrupt.injected = events->interrupt.injected; 4347 vcpu->arch.interrupt.nr = events->interrupt.nr; 4348 vcpu->arch.interrupt.soft = events->interrupt.soft; 4349 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4350 kvm_x86_ops.set_interrupt_shadow(vcpu, 4351 events->interrupt.shadow); 4352 4353 vcpu->arch.nmi_injected = events->nmi.injected; 4354 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4355 vcpu->arch.nmi_pending = events->nmi.pending; 4356 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked); 4357 4358 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4359 lapic_in_kernel(vcpu)) 4360 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4361 4362 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4363 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 4364 if (events->smi.smm) 4365 vcpu->arch.hflags |= HF_SMM_MASK; 4366 else 4367 vcpu->arch.hflags &= ~HF_SMM_MASK; 4368 kvm_smm_changed(vcpu); 4369 } 4370 4371 vcpu->arch.smi_pending = events->smi.pending; 4372 4373 if (events->smi.smm) { 4374 if (events->smi.smm_inside_nmi) 4375 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4376 else 4377 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4378 } 4379 4380 if (lapic_in_kernel(vcpu)) { 4381 if (events->smi.latched_init) 4382 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4383 else 4384 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4385 } 4386 } 4387 4388 kvm_make_request(KVM_REQ_EVENT, vcpu); 4389 4390 return 0; 4391 } 4392 4393 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4394 struct kvm_debugregs *dbgregs) 4395 { 4396 unsigned long val; 4397 4398 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4399 kvm_get_dr(vcpu, 6, &val); 4400 dbgregs->dr6 = val; 4401 dbgregs->dr7 = vcpu->arch.dr7; 4402 dbgregs->flags = 0; 4403 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4404 } 4405 4406 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4407 struct kvm_debugregs *dbgregs) 4408 { 4409 if (dbgregs->flags) 4410 return -EINVAL; 4411 4412 if (dbgregs->dr6 & ~0xffffffffull) 4413 return -EINVAL; 4414 if (dbgregs->dr7 & ~0xffffffffull) 4415 return -EINVAL; 4416 4417 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4418 kvm_update_dr0123(vcpu); 4419 vcpu->arch.dr6 = dbgregs->dr6; 4420 vcpu->arch.dr7 = dbgregs->dr7; 4421 kvm_update_dr7(vcpu); 4422 4423 return 0; 4424 } 4425 4426 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4427 4428 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4429 { 4430 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4431 u64 xstate_bv = xsave->header.xfeatures; 4432 u64 valid; 4433 4434 /* 4435 * Copy legacy XSAVE area, to avoid complications with CPUID 4436 * leaves 0 and 1 in the loop below. 4437 */ 4438 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4439 4440 /* Set XSTATE_BV */ 4441 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4442 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4443 4444 /* 4445 * Copy each region from the possibly compacted offset to the 4446 * non-compacted offset. 4447 */ 4448 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4449 while (valid) { 4450 u64 xfeature_mask = valid & -valid; 4451 int xfeature_nr = fls64(xfeature_mask) - 1; 4452 void *src = get_xsave_addr(xsave, xfeature_nr); 4453 4454 if (src) { 4455 u32 size, offset, ecx, edx; 4456 cpuid_count(XSTATE_CPUID, xfeature_nr, 4457 &size, &offset, &ecx, &edx); 4458 if (xfeature_nr == XFEATURE_PKRU) 4459 memcpy(dest + offset, &vcpu->arch.pkru, 4460 sizeof(vcpu->arch.pkru)); 4461 else 4462 memcpy(dest + offset, src, size); 4463 4464 } 4465 4466 valid -= xfeature_mask; 4467 } 4468 } 4469 4470 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4471 { 4472 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4473 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4474 u64 valid; 4475 4476 /* 4477 * Copy legacy XSAVE area, to avoid complications with CPUID 4478 * leaves 0 and 1 in the loop below. 4479 */ 4480 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4481 4482 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4483 xsave->header.xfeatures = xstate_bv; 4484 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4485 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4486 4487 /* 4488 * Copy each region from the non-compacted offset to the 4489 * possibly compacted offset. 4490 */ 4491 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4492 while (valid) { 4493 u64 xfeature_mask = valid & -valid; 4494 int xfeature_nr = fls64(xfeature_mask) - 1; 4495 void *dest = get_xsave_addr(xsave, xfeature_nr); 4496 4497 if (dest) { 4498 u32 size, offset, ecx, edx; 4499 cpuid_count(XSTATE_CPUID, xfeature_nr, 4500 &size, &offset, &ecx, &edx); 4501 if (xfeature_nr == XFEATURE_PKRU) 4502 memcpy(&vcpu->arch.pkru, src + offset, 4503 sizeof(vcpu->arch.pkru)); 4504 else 4505 memcpy(dest, src + offset, size); 4506 } 4507 4508 valid -= xfeature_mask; 4509 } 4510 } 4511 4512 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4513 struct kvm_xsave *guest_xsave) 4514 { 4515 if (!vcpu->arch.guest_fpu) 4516 return; 4517 4518 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4519 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4520 fill_xsave((u8 *) guest_xsave->region, vcpu); 4521 } else { 4522 memcpy(guest_xsave->region, 4523 &vcpu->arch.guest_fpu->state.fxsave, 4524 sizeof(struct fxregs_state)); 4525 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4526 XFEATURE_MASK_FPSSE; 4527 } 4528 } 4529 4530 #define XSAVE_MXCSR_OFFSET 24 4531 4532 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4533 struct kvm_xsave *guest_xsave) 4534 { 4535 u64 xstate_bv; 4536 u32 mxcsr; 4537 4538 if (!vcpu->arch.guest_fpu) 4539 return 0; 4540 4541 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4542 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4543 4544 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4545 /* 4546 * Here we allow setting states that are not present in 4547 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4548 * with old userspace. 4549 */ 4550 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4551 return -EINVAL; 4552 load_xsave(vcpu, (u8 *)guest_xsave->region); 4553 } else { 4554 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4555 mxcsr & ~mxcsr_feature_mask) 4556 return -EINVAL; 4557 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4558 guest_xsave->region, sizeof(struct fxregs_state)); 4559 } 4560 return 0; 4561 } 4562 4563 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4564 struct kvm_xcrs *guest_xcrs) 4565 { 4566 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4567 guest_xcrs->nr_xcrs = 0; 4568 return; 4569 } 4570 4571 guest_xcrs->nr_xcrs = 1; 4572 guest_xcrs->flags = 0; 4573 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4574 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4575 } 4576 4577 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4578 struct kvm_xcrs *guest_xcrs) 4579 { 4580 int i, r = 0; 4581 4582 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4583 return -EINVAL; 4584 4585 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4586 return -EINVAL; 4587 4588 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4589 /* Only support XCR0 currently */ 4590 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4591 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4592 guest_xcrs->xcrs[i].value); 4593 break; 4594 } 4595 if (r) 4596 r = -EINVAL; 4597 return r; 4598 } 4599 4600 /* 4601 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4602 * stopped by the hypervisor. This function will be called from the host only. 4603 * EINVAL is returned when the host attempts to set the flag for a guest that 4604 * does not support pv clocks. 4605 */ 4606 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4607 { 4608 if (!vcpu->arch.pv_time_enabled) 4609 return -EINVAL; 4610 vcpu->arch.pvclock_set_guest_stopped_request = true; 4611 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4612 return 0; 4613 } 4614 4615 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4616 struct kvm_enable_cap *cap) 4617 { 4618 int r; 4619 uint16_t vmcs_version; 4620 void __user *user_ptr; 4621 4622 if (cap->flags) 4623 return -EINVAL; 4624 4625 switch (cap->cap) { 4626 case KVM_CAP_HYPERV_SYNIC2: 4627 if (cap->args[0]) 4628 return -EINVAL; 4629 fallthrough; 4630 4631 case KVM_CAP_HYPERV_SYNIC: 4632 if (!irqchip_in_kernel(vcpu->kvm)) 4633 return -EINVAL; 4634 return kvm_hv_activate_synic(vcpu, cap->cap == 4635 KVM_CAP_HYPERV_SYNIC2); 4636 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4637 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4638 return -ENOTTY; 4639 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4640 if (!r) { 4641 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4642 if (copy_to_user(user_ptr, &vmcs_version, 4643 sizeof(vmcs_version))) 4644 r = -EFAULT; 4645 } 4646 return r; 4647 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4648 if (!kvm_x86_ops.enable_direct_tlbflush) 4649 return -ENOTTY; 4650 4651 return kvm_x86_ops.enable_direct_tlbflush(vcpu); 4652 4653 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4654 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 4655 if (vcpu->arch.pv_cpuid.enforce) 4656 kvm_update_pv_runtime(vcpu); 4657 4658 return 0; 4659 4660 default: 4661 return -EINVAL; 4662 } 4663 } 4664 4665 long kvm_arch_vcpu_ioctl(struct file *filp, 4666 unsigned int ioctl, unsigned long arg) 4667 { 4668 struct kvm_vcpu *vcpu = filp->private_data; 4669 void __user *argp = (void __user *)arg; 4670 int r; 4671 union { 4672 struct kvm_lapic_state *lapic; 4673 struct kvm_xsave *xsave; 4674 struct kvm_xcrs *xcrs; 4675 void *buffer; 4676 } u; 4677 4678 vcpu_load(vcpu); 4679 4680 u.buffer = NULL; 4681 switch (ioctl) { 4682 case KVM_GET_LAPIC: { 4683 r = -EINVAL; 4684 if (!lapic_in_kernel(vcpu)) 4685 goto out; 4686 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4687 GFP_KERNEL_ACCOUNT); 4688 4689 r = -ENOMEM; 4690 if (!u.lapic) 4691 goto out; 4692 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4693 if (r) 4694 goto out; 4695 r = -EFAULT; 4696 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4697 goto out; 4698 r = 0; 4699 break; 4700 } 4701 case KVM_SET_LAPIC: { 4702 r = -EINVAL; 4703 if (!lapic_in_kernel(vcpu)) 4704 goto out; 4705 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4706 if (IS_ERR(u.lapic)) { 4707 r = PTR_ERR(u.lapic); 4708 goto out_nofree; 4709 } 4710 4711 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4712 break; 4713 } 4714 case KVM_INTERRUPT: { 4715 struct kvm_interrupt irq; 4716 4717 r = -EFAULT; 4718 if (copy_from_user(&irq, argp, sizeof(irq))) 4719 goto out; 4720 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4721 break; 4722 } 4723 case KVM_NMI: { 4724 r = kvm_vcpu_ioctl_nmi(vcpu); 4725 break; 4726 } 4727 case KVM_SMI: { 4728 r = kvm_vcpu_ioctl_smi(vcpu); 4729 break; 4730 } 4731 case KVM_SET_CPUID: { 4732 struct kvm_cpuid __user *cpuid_arg = argp; 4733 struct kvm_cpuid cpuid; 4734 4735 r = -EFAULT; 4736 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4737 goto out; 4738 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4739 break; 4740 } 4741 case KVM_SET_CPUID2: { 4742 struct kvm_cpuid2 __user *cpuid_arg = argp; 4743 struct kvm_cpuid2 cpuid; 4744 4745 r = -EFAULT; 4746 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4747 goto out; 4748 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 4749 cpuid_arg->entries); 4750 break; 4751 } 4752 case KVM_GET_CPUID2: { 4753 struct kvm_cpuid2 __user *cpuid_arg = argp; 4754 struct kvm_cpuid2 cpuid; 4755 4756 r = -EFAULT; 4757 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4758 goto out; 4759 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 4760 cpuid_arg->entries); 4761 if (r) 4762 goto out; 4763 r = -EFAULT; 4764 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4765 goto out; 4766 r = 0; 4767 break; 4768 } 4769 case KVM_GET_MSRS: { 4770 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4771 r = msr_io(vcpu, argp, do_get_msr, 1); 4772 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4773 break; 4774 } 4775 case KVM_SET_MSRS: { 4776 int idx = srcu_read_lock(&vcpu->kvm->srcu); 4777 r = msr_io(vcpu, argp, do_set_msr, 0); 4778 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4779 break; 4780 } 4781 case KVM_TPR_ACCESS_REPORTING: { 4782 struct kvm_tpr_access_ctl tac; 4783 4784 r = -EFAULT; 4785 if (copy_from_user(&tac, argp, sizeof(tac))) 4786 goto out; 4787 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 4788 if (r) 4789 goto out; 4790 r = -EFAULT; 4791 if (copy_to_user(argp, &tac, sizeof(tac))) 4792 goto out; 4793 r = 0; 4794 break; 4795 }; 4796 case KVM_SET_VAPIC_ADDR: { 4797 struct kvm_vapic_addr va; 4798 int idx; 4799 4800 r = -EINVAL; 4801 if (!lapic_in_kernel(vcpu)) 4802 goto out; 4803 r = -EFAULT; 4804 if (copy_from_user(&va, argp, sizeof(va))) 4805 goto out; 4806 idx = srcu_read_lock(&vcpu->kvm->srcu); 4807 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 4808 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4809 break; 4810 } 4811 case KVM_X86_SETUP_MCE: { 4812 u64 mcg_cap; 4813 4814 r = -EFAULT; 4815 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 4816 goto out; 4817 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 4818 break; 4819 } 4820 case KVM_X86_SET_MCE: { 4821 struct kvm_x86_mce mce; 4822 4823 r = -EFAULT; 4824 if (copy_from_user(&mce, argp, sizeof(mce))) 4825 goto out; 4826 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 4827 break; 4828 } 4829 case KVM_GET_VCPU_EVENTS: { 4830 struct kvm_vcpu_events events; 4831 4832 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 4833 4834 r = -EFAULT; 4835 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 4836 break; 4837 r = 0; 4838 break; 4839 } 4840 case KVM_SET_VCPU_EVENTS: { 4841 struct kvm_vcpu_events events; 4842 4843 r = -EFAULT; 4844 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 4845 break; 4846 4847 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 4848 break; 4849 } 4850 case KVM_GET_DEBUGREGS: { 4851 struct kvm_debugregs dbgregs; 4852 4853 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 4854 4855 r = -EFAULT; 4856 if (copy_to_user(argp, &dbgregs, 4857 sizeof(struct kvm_debugregs))) 4858 break; 4859 r = 0; 4860 break; 4861 } 4862 case KVM_SET_DEBUGREGS: { 4863 struct kvm_debugregs dbgregs; 4864 4865 r = -EFAULT; 4866 if (copy_from_user(&dbgregs, argp, 4867 sizeof(struct kvm_debugregs))) 4868 break; 4869 4870 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 4871 break; 4872 } 4873 case KVM_GET_XSAVE: { 4874 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 4875 r = -ENOMEM; 4876 if (!u.xsave) 4877 break; 4878 4879 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 4880 4881 r = -EFAULT; 4882 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 4883 break; 4884 r = 0; 4885 break; 4886 } 4887 case KVM_SET_XSAVE: { 4888 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 4889 if (IS_ERR(u.xsave)) { 4890 r = PTR_ERR(u.xsave); 4891 goto out_nofree; 4892 } 4893 4894 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 4895 break; 4896 } 4897 case KVM_GET_XCRS: { 4898 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 4899 r = -ENOMEM; 4900 if (!u.xcrs) 4901 break; 4902 4903 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 4904 4905 r = -EFAULT; 4906 if (copy_to_user(argp, u.xcrs, 4907 sizeof(struct kvm_xcrs))) 4908 break; 4909 r = 0; 4910 break; 4911 } 4912 case KVM_SET_XCRS: { 4913 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 4914 if (IS_ERR(u.xcrs)) { 4915 r = PTR_ERR(u.xcrs); 4916 goto out_nofree; 4917 } 4918 4919 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 4920 break; 4921 } 4922 case KVM_SET_TSC_KHZ: { 4923 u32 user_tsc_khz; 4924 4925 r = -EINVAL; 4926 user_tsc_khz = (u32)arg; 4927 4928 if (kvm_has_tsc_control && 4929 user_tsc_khz >= kvm_max_guest_tsc_khz) 4930 goto out; 4931 4932 if (user_tsc_khz == 0) 4933 user_tsc_khz = tsc_khz; 4934 4935 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 4936 r = 0; 4937 4938 goto out; 4939 } 4940 case KVM_GET_TSC_KHZ: { 4941 r = vcpu->arch.virtual_tsc_khz; 4942 goto out; 4943 } 4944 case KVM_KVMCLOCK_CTRL: { 4945 r = kvm_set_guest_paused(vcpu); 4946 goto out; 4947 } 4948 case KVM_ENABLE_CAP: { 4949 struct kvm_enable_cap cap; 4950 4951 r = -EFAULT; 4952 if (copy_from_user(&cap, argp, sizeof(cap))) 4953 goto out; 4954 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4955 break; 4956 } 4957 case KVM_GET_NESTED_STATE: { 4958 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4959 u32 user_data_size; 4960 4961 r = -EINVAL; 4962 if (!kvm_x86_ops.nested_ops->get_state) 4963 break; 4964 4965 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 4966 r = -EFAULT; 4967 if (get_user(user_data_size, &user_kvm_nested_state->size)) 4968 break; 4969 4970 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 4971 user_data_size); 4972 if (r < 0) 4973 break; 4974 4975 if (r > user_data_size) { 4976 if (put_user(r, &user_kvm_nested_state->size)) 4977 r = -EFAULT; 4978 else 4979 r = -E2BIG; 4980 break; 4981 } 4982 4983 r = 0; 4984 break; 4985 } 4986 case KVM_SET_NESTED_STATE: { 4987 struct kvm_nested_state __user *user_kvm_nested_state = argp; 4988 struct kvm_nested_state kvm_state; 4989 int idx; 4990 4991 r = -EINVAL; 4992 if (!kvm_x86_ops.nested_ops->set_state) 4993 break; 4994 4995 r = -EFAULT; 4996 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 4997 break; 4998 4999 r = -EINVAL; 5000 if (kvm_state.size < sizeof(kvm_state)) 5001 break; 5002 5003 if (kvm_state.flags & 5004 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5005 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5006 | KVM_STATE_NESTED_GIF_SET)) 5007 break; 5008 5009 /* nested_run_pending implies guest_mode. */ 5010 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5011 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5012 break; 5013 5014 idx = srcu_read_lock(&vcpu->kvm->srcu); 5015 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5016 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5017 break; 5018 } 5019 case KVM_GET_SUPPORTED_HV_CPUID: 5020 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5021 break; 5022 default: 5023 r = -EINVAL; 5024 } 5025 out: 5026 kfree(u.buffer); 5027 out_nofree: 5028 vcpu_put(vcpu); 5029 return r; 5030 } 5031 5032 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5033 { 5034 return VM_FAULT_SIGBUS; 5035 } 5036 5037 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5038 { 5039 int ret; 5040 5041 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5042 return -EINVAL; 5043 ret = kvm_x86_ops.set_tss_addr(kvm, addr); 5044 return ret; 5045 } 5046 5047 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5048 u64 ident_addr) 5049 { 5050 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr); 5051 } 5052 5053 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5054 unsigned long kvm_nr_mmu_pages) 5055 { 5056 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5057 return -EINVAL; 5058 5059 mutex_lock(&kvm->slots_lock); 5060 5061 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5062 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5063 5064 mutex_unlock(&kvm->slots_lock); 5065 return 0; 5066 } 5067 5068 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5069 { 5070 return kvm->arch.n_max_mmu_pages; 5071 } 5072 5073 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5074 { 5075 struct kvm_pic *pic = kvm->arch.vpic; 5076 int r; 5077 5078 r = 0; 5079 switch (chip->chip_id) { 5080 case KVM_IRQCHIP_PIC_MASTER: 5081 memcpy(&chip->chip.pic, &pic->pics[0], 5082 sizeof(struct kvm_pic_state)); 5083 break; 5084 case KVM_IRQCHIP_PIC_SLAVE: 5085 memcpy(&chip->chip.pic, &pic->pics[1], 5086 sizeof(struct kvm_pic_state)); 5087 break; 5088 case KVM_IRQCHIP_IOAPIC: 5089 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5090 break; 5091 default: 5092 r = -EINVAL; 5093 break; 5094 } 5095 return r; 5096 } 5097 5098 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5099 { 5100 struct kvm_pic *pic = kvm->arch.vpic; 5101 int r; 5102 5103 r = 0; 5104 switch (chip->chip_id) { 5105 case KVM_IRQCHIP_PIC_MASTER: 5106 spin_lock(&pic->lock); 5107 memcpy(&pic->pics[0], &chip->chip.pic, 5108 sizeof(struct kvm_pic_state)); 5109 spin_unlock(&pic->lock); 5110 break; 5111 case KVM_IRQCHIP_PIC_SLAVE: 5112 spin_lock(&pic->lock); 5113 memcpy(&pic->pics[1], &chip->chip.pic, 5114 sizeof(struct kvm_pic_state)); 5115 spin_unlock(&pic->lock); 5116 break; 5117 case KVM_IRQCHIP_IOAPIC: 5118 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5119 break; 5120 default: 5121 r = -EINVAL; 5122 break; 5123 } 5124 kvm_pic_update_irq(pic); 5125 return r; 5126 } 5127 5128 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5129 { 5130 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5131 5132 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5133 5134 mutex_lock(&kps->lock); 5135 memcpy(ps, &kps->channels, sizeof(*ps)); 5136 mutex_unlock(&kps->lock); 5137 return 0; 5138 } 5139 5140 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5141 { 5142 int i; 5143 struct kvm_pit *pit = kvm->arch.vpit; 5144 5145 mutex_lock(&pit->pit_state.lock); 5146 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5147 for (i = 0; i < 3; i++) 5148 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5149 mutex_unlock(&pit->pit_state.lock); 5150 return 0; 5151 } 5152 5153 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5154 { 5155 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5156 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5157 sizeof(ps->channels)); 5158 ps->flags = kvm->arch.vpit->pit_state.flags; 5159 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5160 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5161 return 0; 5162 } 5163 5164 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5165 { 5166 int start = 0; 5167 int i; 5168 u32 prev_legacy, cur_legacy; 5169 struct kvm_pit *pit = kvm->arch.vpit; 5170 5171 mutex_lock(&pit->pit_state.lock); 5172 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5173 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5174 if (!prev_legacy && cur_legacy) 5175 start = 1; 5176 memcpy(&pit->pit_state.channels, &ps->channels, 5177 sizeof(pit->pit_state.channels)); 5178 pit->pit_state.flags = ps->flags; 5179 for (i = 0; i < 3; i++) 5180 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5181 start && i == 0); 5182 mutex_unlock(&pit->pit_state.lock); 5183 return 0; 5184 } 5185 5186 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5187 struct kvm_reinject_control *control) 5188 { 5189 struct kvm_pit *pit = kvm->arch.vpit; 5190 5191 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5192 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5193 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5194 */ 5195 mutex_lock(&pit->pit_state.lock); 5196 kvm_pit_set_reinject(pit, control->pit_reinject); 5197 mutex_unlock(&pit->pit_state.lock); 5198 5199 return 0; 5200 } 5201 5202 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5203 { 5204 /* 5205 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 5206 */ 5207 if (kvm_x86_ops.flush_log_dirty) 5208 kvm_x86_ops.flush_log_dirty(kvm); 5209 } 5210 5211 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5212 bool line_status) 5213 { 5214 if (!irqchip_in_kernel(kvm)) 5215 return -ENXIO; 5216 5217 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5218 irq_event->irq, irq_event->level, 5219 line_status); 5220 return 0; 5221 } 5222 5223 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5224 struct kvm_enable_cap *cap) 5225 { 5226 int r; 5227 5228 if (cap->flags) 5229 return -EINVAL; 5230 5231 switch (cap->cap) { 5232 case KVM_CAP_DISABLE_QUIRKS: 5233 kvm->arch.disabled_quirks = cap->args[0]; 5234 r = 0; 5235 break; 5236 case KVM_CAP_SPLIT_IRQCHIP: { 5237 mutex_lock(&kvm->lock); 5238 r = -EINVAL; 5239 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5240 goto split_irqchip_unlock; 5241 r = -EEXIST; 5242 if (irqchip_in_kernel(kvm)) 5243 goto split_irqchip_unlock; 5244 if (kvm->created_vcpus) 5245 goto split_irqchip_unlock; 5246 r = kvm_setup_empty_irq_routing(kvm); 5247 if (r) 5248 goto split_irqchip_unlock; 5249 /* Pairs with irqchip_in_kernel. */ 5250 smp_wmb(); 5251 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5252 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5253 r = 0; 5254 split_irqchip_unlock: 5255 mutex_unlock(&kvm->lock); 5256 break; 5257 } 5258 case KVM_CAP_X2APIC_API: 5259 r = -EINVAL; 5260 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5261 break; 5262 5263 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5264 kvm->arch.x2apic_format = true; 5265 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5266 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5267 5268 r = 0; 5269 break; 5270 case KVM_CAP_X86_DISABLE_EXITS: 5271 r = -EINVAL; 5272 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5273 break; 5274 5275 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5276 kvm_can_mwait_in_guest()) 5277 kvm->arch.mwait_in_guest = true; 5278 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5279 kvm->arch.hlt_in_guest = true; 5280 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5281 kvm->arch.pause_in_guest = true; 5282 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5283 kvm->arch.cstate_in_guest = true; 5284 r = 0; 5285 break; 5286 case KVM_CAP_MSR_PLATFORM_INFO: 5287 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5288 r = 0; 5289 break; 5290 case KVM_CAP_EXCEPTION_PAYLOAD: 5291 kvm->arch.exception_payload_enabled = cap->args[0]; 5292 r = 0; 5293 break; 5294 case KVM_CAP_X86_USER_SPACE_MSR: 5295 kvm->arch.user_space_msr_mask = cap->args[0]; 5296 r = 0; 5297 break; 5298 default: 5299 r = -EINVAL; 5300 break; 5301 } 5302 return r; 5303 } 5304 5305 static void kvm_clear_msr_filter(struct kvm *kvm) 5306 { 5307 u32 i; 5308 u32 count = kvm->arch.msr_filter.count; 5309 struct msr_bitmap_range ranges[16]; 5310 5311 mutex_lock(&kvm->lock); 5312 kvm->arch.msr_filter.count = 0; 5313 memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0])); 5314 mutex_unlock(&kvm->lock); 5315 synchronize_srcu(&kvm->srcu); 5316 5317 for (i = 0; i < count; i++) 5318 kfree(ranges[i].bitmap); 5319 } 5320 5321 static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range) 5322 { 5323 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges; 5324 struct msr_bitmap_range range; 5325 unsigned long *bitmap = NULL; 5326 size_t bitmap_size; 5327 int r; 5328 5329 if (!user_range->nmsrs) 5330 return 0; 5331 5332 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 5333 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 5334 return -EINVAL; 5335 5336 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 5337 if (IS_ERR(bitmap)) 5338 return PTR_ERR(bitmap); 5339 5340 range = (struct msr_bitmap_range) { 5341 .flags = user_range->flags, 5342 .base = user_range->base, 5343 .nmsrs = user_range->nmsrs, 5344 .bitmap = bitmap, 5345 }; 5346 5347 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) { 5348 r = -EINVAL; 5349 goto err; 5350 } 5351 5352 if (!range.flags) { 5353 r = -EINVAL; 5354 goto err; 5355 } 5356 5357 /* Everything ok, add this range identifier to our global pool */ 5358 ranges[kvm->arch.msr_filter.count] = range; 5359 /* Make sure we filled the array before we tell anyone to walk it */ 5360 smp_wmb(); 5361 kvm->arch.msr_filter.count++; 5362 5363 return 0; 5364 err: 5365 kfree(bitmap); 5366 return r; 5367 } 5368 5369 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 5370 { 5371 struct kvm_msr_filter __user *user_msr_filter = argp; 5372 struct kvm_msr_filter filter; 5373 bool default_allow; 5374 int r = 0; 5375 bool empty = true; 5376 u32 i; 5377 5378 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 5379 return -EFAULT; 5380 5381 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 5382 empty &= !filter.ranges[i].nmsrs; 5383 5384 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 5385 if (empty && !default_allow) 5386 return -EINVAL; 5387 5388 kvm_clear_msr_filter(kvm); 5389 5390 kvm->arch.msr_filter.default_allow = default_allow; 5391 5392 /* 5393 * Protect from concurrent calls to this function that could trigger 5394 * a TOCTOU violation on kvm->arch.msr_filter.count. 5395 */ 5396 mutex_lock(&kvm->lock); 5397 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 5398 r = kvm_add_msr_filter(kvm, &filter.ranges[i]); 5399 if (r) 5400 break; 5401 } 5402 5403 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 5404 mutex_unlock(&kvm->lock); 5405 5406 return r; 5407 } 5408 5409 long kvm_arch_vm_ioctl(struct file *filp, 5410 unsigned int ioctl, unsigned long arg) 5411 { 5412 struct kvm *kvm = filp->private_data; 5413 void __user *argp = (void __user *)arg; 5414 int r = -ENOTTY; 5415 /* 5416 * This union makes it completely explicit to gcc-3.x 5417 * that these two variables' stack usage should be 5418 * combined, not added together. 5419 */ 5420 union { 5421 struct kvm_pit_state ps; 5422 struct kvm_pit_state2 ps2; 5423 struct kvm_pit_config pit_config; 5424 } u; 5425 5426 switch (ioctl) { 5427 case KVM_SET_TSS_ADDR: 5428 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5429 break; 5430 case KVM_SET_IDENTITY_MAP_ADDR: { 5431 u64 ident_addr; 5432 5433 mutex_lock(&kvm->lock); 5434 r = -EINVAL; 5435 if (kvm->created_vcpus) 5436 goto set_identity_unlock; 5437 r = -EFAULT; 5438 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5439 goto set_identity_unlock; 5440 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5441 set_identity_unlock: 5442 mutex_unlock(&kvm->lock); 5443 break; 5444 } 5445 case KVM_SET_NR_MMU_PAGES: 5446 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5447 break; 5448 case KVM_GET_NR_MMU_PAGES: 5449 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5450 break; 5451 case KVM_CREATE_IRQCHIP: { 5452 mutex_lock(&kvm->lock); 5453 5454 r = -EEXIST; 5455 if (irqchip_in_kernel(kvm)) 5456 goto create_irqchip_unlock; 5457 5458 r = -EINVAL; 5459 if (kvm->created_vcpus) 5460 goto create_irqchip_unlock; 5461 5462 r = kvm_pic_init(kvm); 5463 if (r) 5464 goto create_irqchip_unlock; 5465 5466 r = kvm_ioapic_init(kvm); 5467 if (r) { 5468 kvm_pic_destroy(kvm); 5469 goto create_irqchip_unlock; 5470 } 5471 5472 r = kvm_setup_default_irq_routing(kvm); 5473 if (r) { 5474 kvm_ioapic_destroy(kvm); 5475 kvm_pic_destroy(kvm); 5476 goto create_irqchip_unlock; 5477 } 5478 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5479 smp_wmb(); 5480 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5481 create_irqchip_unlock: 5482 mutex_unlock(&kvm->lock); 5483 break; 5484 } 5485 case KVM_CREATE_PIT: 5486 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5487 goto create_pit; 5488 case KVM_CREATE_PIT2: 5489 r = -EFAULT; 5490 if (copy_from_user(&u.pit_config, argp, 5491 sizeof(struct kvm_pit_config))) 5492 goto out; 5493 create_pit: 5494 mutex_lock(&kvm->lock); 5495 r = -EEXIST; 5496 if (kvm->arch.vpit) 5497 goto create_pit_unlock; 5498 r = -ENOMEM; 5499 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5500 if (kvm->arch.vpit) 5501 r = 0; 5502 create_pit_unlock: 5503 mutex_unlock(&kvm->lock); 5504 break; 5505 case KVM_GET_IRQCHIP: { 5506 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5507 struct kvm_irqchip *chip; 5508 5509 chip = memdup_user(argp, sizeof(*chip)); 5510 if (IS_ERR(chip)) { 5511 r = PTR_ERR(chip); 5512 goto out; 5513 } 5514 5515 r = -ENXIO; 5516 if (!irqchip_kernel(kvm)) 5517 goto get_irqchip_out; 5518 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5519 if (r) 5520 goto get_irqchip_out; 5521 r = -EFAULT; 5522 if (copy_to_user(argp, chip, sizeof(*chip))) 5523 goto get_irqchip_out; 5524 r = 0; 5525 get_irqchip_out: 5526 kfree(chip); 5527 break; 5528 } 5529 case KVM_SET_IRQCHIP: { 5530 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5531 struct kvm_irqchip *chip; 5532 5533 chip = memdup_user(argp, sizeof(*chip)); 5534 if (IS_ERR(chip)) { 5535 r = PTR_ERR(chip); 5536 goto out; 5537 } 5538 5539 r = -ENXIO; 5540 if (!irqchip_kernel(kvm)) 5541 goto set_irqchip_out; 5542 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5543 set_irqchip_out: 5544 kfree(chip); 5545 break; 5546 } 5547 case KVM_GET_PIT: { 5548 r = -EFAULT; 5549 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5550 goto out; 5551 r = -ENXIO; 5552 if (!kvm->arch.vpit) 5553 goto out; 5554 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5555 if (r) 5556 goto out; 5557 r = -EFAULT; 5558 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5559 goto out; 5560 r = 0; 5561 break; 5562 } 5563 case KVM_SET_PIT: { 5564 r = -EFAULT; 5565 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5566 goto out; 5567 mutex_lock(&kvm->lock); 5568 r = -ENXIO; 5569 if (!kvm->arch.vpit) 5570 goto set_pit_out; 5571 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5572 set_pit_out: 5573 mutex_unlock(&kvm->lock); 5574 break; 5575 } 5576 case KVM_GET_PIT2: { 5577 r = -ENXIO; 5578 if (!kvm->arch.vpit) 5579 goto out; 5580 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5581 if (r) 5582 goto out; 5583 r = -EFAULT; 5584 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5585 goto out; 5586 r = 0; 5587 break; 5588 } 5589 case KVM_SET_PIT2: { 5590 r = -EFAULT; 5591 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5592 goto out; 5593 mutex_lock(&kvm->lock); 5594 r = -ENXIO; 5595 if (!kvm->arch.vpit) 5596 goto set_pit2_out; 5597 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5598 set_pit2_out: 5599 mutex_unlock(&kvm->lock); 5600 break; 5601 } 5602 case KVM_REINJECT_CONTROL: { 5603 struct kvm_reinject_control control; 5604 r = -EFAULT; 5605 if (copy_from_user(&control, argp, sizeof(control))) 5606 goto out; 5607 r = -ENXIO; 5608 if (!kvm->arch.vpit) 5609 goto out; 5610 r = kvm_vm_ioctl_reinject(kvm, &control); 5611 break; 5612 } 5613 case KVM_SET_BOOT_CPU_ID: 5614 r = 0; 5615 mutex_lock(&kvm->lock); 5616 if (kvm->created_vcpus) 5617 r = -EBUSY; 5618 else 5619 kvm->arch.bsp_vcpu_id = arg; 5620 mutex_unlock(&kvm->lock); 5621 break; 5622 case KVM_XEN_HVM_CONFIG: { 5623 struct kvm_xen_hvm_config xhc; 5624 r = -EFAULT; 5625 if (copy_from_user(&xhc, argp, sizeof(xhc))) 5626 goto out; 5627 r = -EINVAL; 5628 if (xhc.flags) 5629 goto out; 5630 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc)); 5631 r = 0; 5632 break; 5633 } 5634 case KVM_SET_CLOCK: { 5635 struct kvm_clock_data user_ns; 5636 u64 now_ns; 5637 5638 r = -EFAULT; 5639 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 5640 goto out; 5641 5642 r = -EINVAL; 5643 if (user_ns.flags) 5644 goto out; 5645 5646 r = 0; 5647 /* 5648 * TODO: userspace has to take care of races with VCPU_RUN, so 5649 * kvm_gen_update_masterclock() can be cut down to locked 5650 * pvclock_update_vm_gtod_copy(). 5651 */ 5652 kvm_gen_update_masterclock(kvm); 5653 now_ns = get_kvmclock_ns(kvm); 5654 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 5655 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 5656 break; 5657 } 5658 case KVM_GET_CLOCK: { 5659 struct kvm_clock_data user_ns; 5660 u64 now_ns; 5661 5662 now_ns = get_kvmclock_ns(kvm); 5663 user_ns.clock = now_ns; 5664 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 5665 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 5666 5667 r = -EFAULT; 5668 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 5669 goto out; 5670 r = 0; 5671 break; 5672 } 5673 case KVM_MEMORY_ENCRYPT_OP: { 5674 r = -ENOTTY; 5675 if (kvm_x86_ops.mem_enc_op) 5676 r = kvm_x86_ops.mem_enc_op(kvm, argp); 5677 break; 5678 } 5679 case KVM_MEMORY_ENCRYPT_REG_REGION: { 5680 struct kvm_enc_region region; 5681 5682 r = -EFAULT; 5683 if (copy_from_user(®ion, argp, sizeof(region))) 5684 goto out; 5685 5686 r = -ENOTTY; 5687 if (kvm_x86_ops.mem_enc_reg_region) 5688 r = kvm_x86_ops.mem_enc_reg_region(kvm, ®ion); 5689 break; 5690 } 5691 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 5692 struct kvm_enc_region region; 5693 5694 r = -EFAULT; 5695 if (copy_from_user(®ion, argp, sizeof(region))) 5696 goto out; 5697 5698 r = -ENOTTY; 5699 if (kvm_x86_ops.mem_enc_unreg_region) 5700 r = kvm_x86_ops.mem_enc_unreg_region(kvm, ®ion); 5701 break; 5702 } 5703 case KVM_HYPERV_EVENTFD: { 5704 struct kvm_hyperv_eventfd hvevfd; 5705 5706 r = -EFAULT; 5707 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 5708 goto out; 5709 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 5710 break; 5711 } 5712 case KVM_SET_PMU_EVENT_FILTER: 5713 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 5714 break; 5715 case KVM_X86_SET_MSR_FILTER: 5716 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 5717 break; 5718 default: 5719 r = -ENOTTY; 5720 } 5721 out: 5722 return r; 5723 } 5724 5725 static void kvm_init_msr_list(void) 5726 { 5727 struct x86_pmu_capability x86_pmu; 5728 u32 dummy[2]; 5729 unsigned i; 5730 5731 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 5732 "Please update the fixed PMCs in msrs_to_saved_all[]"); 5733 5734 perf_get_x86_pmu_capability(&x86_pmu); 5735 5736 num_msrs_to_save = 0; 5737 num_emulated_msrs = 0; 5738 num_msr_based_features = 0; 5739 5740 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 5741 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 5742 continue; 5743 5744 /* 5745 * Even MSRs that are valid in the host may not be exposed 5746 * to the guests in some cases. 5747 */ 5748 switch (msrs_to_save_all[i]) { 5749 case MSR_IA32_BNDCFGS: 5750 if (!kvm_mpx_supported()) 5751 continue; 5752 break; 5753 case MSR_TSC_AUX: 5754 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 5755 continue; 5756 break; 5757 case MSR_IA32_UMWAIT_CONTROL: 5758 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 5759 continue; 5760 break; 5761 case MSR_IA32_RTIT_CTL: 5762 case MSR_IA32_RTIT_STATUS: 5763 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 5764 continue; 5765 break; 5766 case MSR_IA32_RTIT_CR3_MATCH: 5767 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5768 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 5769 continue; 5770 break; 5771 case MSR_IA32_RTIT_OUTPUT_BASE: 5772 case MSR_IA32_RTIT_OUTPUT_MASK: 5773 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5774 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 5775 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 5776 continue; 5777 break; 5778 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 5779 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 5780 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 5781 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 5782 continue; 5783 break; 5784 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 5785 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 5786 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5787 continue; 5788 break; 5789 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 5790 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 5791 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 5792 continue; 5793 break; 5794 default: 5795 break; 5796 } 5797 5798 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 5799 } 5800 5801 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 5802 if (!kvm_x86_ops.has_emulated_msr(NULL, emulated_msrs_all[i])) 5803 continue; 5804 5805 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 5806 } 5807 5808 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 5809 struct kvm_msr_entry msr; 5810 5811 msr.index = msr_based_features_all[i]; 5812 if (kvm_get_msr_feature(&msr)) 5813 continue; 5814 5815 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 5816 } 5817 } 5818 5819 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 5820 const void *v) 5821 { 5822 int handled = 0; 5823 int n; 5824 5825 do { 5826 n = min(len, 8); 5827 if (!(lapic_in_kernel(vcpu) && 5828 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 5829 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 5830 break; 5831 handled += n; 5832 addr += n; 5833 len -= n; 5834 v += n; 5835 } while (len); 5836 5837 return handled; 5838 } 5839 5840 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 5841 { 5842 int handled = 0; 5843 int n; 5844 5845 do { 5846 n = min(len, 8); 5847 if (!(lapic_in_kernel(vcpu) && 5848 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 5849 addr, n, v)) 5850 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 5851 break; 5852 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 5853 handled += n; 5854 addr += n; 5855 len -= n; 5856 v += n; 5857 } while (len); 5858 5859 return handled; 5860 } 5861 5862 static void kvm_set_segment(struct kvm_vcpu *vcpu, 5863 struct kvm_segment *var, int seg) 5864 { 5865 kvm_x86_ops.set_segment(vcpu, var, seg); 5866 } 5867 5868 void kvm_get_segment(struct kvm_vcpu *vcpu, 5869 struct kvm_segment *var, int seg) 5870 { 5871 kvm_x86_ops.get_segment(vcpu, var, seg); 5872 } 5873 5874 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 5875 struct x86_exception *exception) 5876 { 5877 gpa_t t_gpa; 5878 5879 BUG_ON(!mmu_is_nested(vcpu)); 5880 5881 /* NPT walks are always user-walks */ 5882 access |= PFERR_USER_MASK; 5883 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 5884 5885 return t_gpa; 5886 } 5887 5888 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 5889 struct x86_exception *exception) 5890 { 5891 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5892 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5893 } 5894 5895 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 5896 struct x86_exception *exception) 5897 { 5898 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5899 access |= PFERR_FETCH_MASK; 5900 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5901 } 5902 5903 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 5904 struct x86_exception *exception) 5905 { 5906 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5907 access |= PFERR_WRITE_MASK; 5908 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 5909 } 5910 5911 /* uses this to access any guest's mapped memory without checking CPL */ 5912 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 5913 struct x86_exception *exception) 5914 { 5915 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 5916 } 5917 5918 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 5919 struct kvm_vcpu *vcpu, u32 access, 5920 struct x86_exception *exception) 5921 { 5922 void *data = val; 5923 int r = X86EMUL_CONTINUE; 5924 5925 while (bytes) { 5926 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 5927 exception); 5928 unsigned offset = addr & (PAGE_SIZE-1); 5929 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 5930 int ret; 5931 5932 if (gpa == UNMAPPED_GVA) 5933 return X86EMUL_PROPAGATE_FAULT; 5934 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 5935 offset, toread); 5936 if (ret < 0) { 5937 r = X86EMUL_IO_NEEDED; 5938 goto out; 5939 } 5940 5941 bytes -= toread; 5942 data += toread; 5943 addr += toread; 5944 } 5945 out: 5946 return r; 5947 } 5948 5949 /* used for instruction fetching */ 5950 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 5951 gva_t addr, void *val, unsigned int bytes, 5952 struct x86_exception *exception) 5953 { 5954 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5955 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5956 unsigned offset; 5957 int ret; 5958 5959 /* Inline kvm_read_guest_virt_helper for speed. */ 5960 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 5961 exception); 5962 if (unlikely(gpa == UNMAPPED_GVA)) 5963 return X86EMUL_PROPAGATE_FAULT; 5964 5965 offset = addr & (PAGE_SIZE-1); 5966 if (WARN_ON(offset + bytes > PAGE_SIZE)) 5967 bytes = (unsigned)PAGE_SIZE - offset; 5968 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 5969 offset, bytes); 5970 if (unlikely(ret < 0)) 5971 return X86EMUL_IO_NEEDED; 5972 5973 return X86EMUL_CONTINUE; 5974 } 5975 5976 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 5977 gva_t addr, void *val, unsigned int bytes, 5978 struct x86_exception *exception) 5979 { 5980 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 5981 5982 /* 5983 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 5984 * is returned, but our callers are not ready for that and they blindly 5985 * call kvm_inject_page_fault. Ensure that they at least do not leak 5986 * uninitialized kernel stack memory into cr2 and error code. 5987 */ 5988 memset(exception, 0, sizeof(*exception)); 5989 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 5990 exception); 5991 } 5992 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 5993 5994 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 5995 gva_t addr, void *val, unsigned int bytes, 5996 struct x86_exception *exception, bool system) 5997 { 5998 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5999 u32 access = 0; 6000 6001 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 6002 access |= PFERR_USER_MASK; 6003 6004 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6005 } 6006 6007 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6008 unsigned long addr, void *val, unsigned int bytes) 6009 { 6010 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6011 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6012 6013 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6014 } 6015 6016 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6017 struct kvm_vcpu *vcpu, u32 access, 6018 struct x86_exception *exception) 6019 { 6020 void *data = val; 6021 int r = X86EMUL_CONTINUE; 6022 6023 while (bytes) { 6024 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 6025 access, 6026 exception); 6027 unsigned offset = addr & (PAGE_SIZE-1); 6028 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6029 int ret; 6030 6031 if (gpa == UNMAPPED_GVA) 6032 return X86EMUL_PROPAGATE_FAULT; 6033 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6034 if (ret < 0) { 6035 r = X86EMUL_IO_NEEDED; 6036 goto out; 6037 } 6038 6039 bytes -= towrite; 6040 data += towrite; 6041 addr += towrite; 6042 } 6043 out: 6044 return r; 6045 } 6046 6047 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6048 unsigned int bytes, struct x86_exception *exception, 6049 bool system) 6050 { 6051 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6052 u32 access = PFERR_WRITE_MASK; 6053 6054 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3) 6055 access |= PFERR_USER_MASK; 6056 6057 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6058 access, exception); 6059 } 6060 6061 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6062 unsigned int bytes, struct x86_exception *exception) 6063 { 6064 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6065 vcpu->arch.l1tf_flush_l1d = true; 6066 6067 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6068 PFERR_WRITE_MASK, exception); 6069 } 6070 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6071 6072 int handle_ud(struct kvm_vcpu *vcpu) 6073 { 6074 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6075 int emul_type = EMULTYPE_TRAP_UD; 6076 char sig[5]; /* ud2; .ascii "kvm" */ 6077 struct x86_exception e; 6078 6079 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0))) 6080 return 1; 6081 6082 if (force_emulation_prefix && 6083 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6084 sig, sizeof(sig), &e) == 0 && 6085 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6086 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6087 emul_type = EMULTYPE_TRAP_UD_FORCED; 6088 } 6089 6090 return kvm_emulate_instruction(vcpu, emul_type); 6091 } 6092 EXPORT_SYMBOL_GPL(handle_ud); 6093 6094 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6095 gpa_t gpa, bool write) 6096 { 6097 /* For APIC access vmexit */ 6098 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6099 return 1; 6100 6101 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6102 trace_vcpu_match_mmio(gva, gpa, write, true); 6103 return 1; 6104 } 6105 6106 return 0; 6107 } 6108 6109 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6110 gpa_t *gpa, struct x86_exception *exception, 6111 bool write) 6112 { 6113 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 6114 | (write ? PFERR_WRITE_MASK : 0); 6115 6116 /* 6117 * currently PKRU is only applied to ept enabled guest so 6118 * there is no pkey in EPT page table for L1 guest or EPT 6119 * shadow page table for L2 guest. 6120 */ 6121 if (vcpu_match_mmio_gva(vcpu, gva) 6122 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 6123 vcpu->arch.mmio_access, 0, access)) { 6124 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 6125 (gva & (PAGE_SIZE - 1)); 6126 trace_vcpu_match_mmio(gva, *gpa, write, false); 6127 return 1; 6128 } 6129 6130 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6131 6132 if (*gpa == UNMAPPED_GVA) 6133 return -1; 6134 6135 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 6136 } 6137 6138 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 6139 const void *val, int bytes) 6140 { 6141 int ret; 6142 6143 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 6144 if (ret < 0) 6145 return 0; 6146 kvm_page_track_write(vcpu, gpa, val, bytes); 6147 return 1; 6148 } 6149 6150 struct read_write_emulator_ops { 6151 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 6152 int bytes); 6153 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 6154 void *val, int bytes); 6155 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6156 int bytes, void *val); 6157 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6158 void *val, int bytes); 6159 bool write; 6160 }; 6161 6162 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 6163 { 6164 if (vcpu->mmio_read_completed) { 6165 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 6166 vcpu->mmio_fragments[0].gpa, val); 6167 vcpu->mmio_read_completed = 0; 6168 return 1; 6169 } 6170 6171 return 0; 6172 } 6173 6174 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6175 void *val, int bytes) 6176 { 6177 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 6178 } 6179 6180 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6181 void *val, int bytes) 6182 { 6183 return emulator_write_phys(vcpu, gpa, val, bytes); 6184 } 6185 6186 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 6187 { 6188 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 6189 return vcpu_mmio_write(vcpu, gpa, bytes, val); 6190 } 6191 6192 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6193 void *val, int bytes) 6194 { 6195 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 6196 return X86EMUL_IO_NEEDED; 6197 } 6198 6199 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6200 void *val, int bytes) 6201 { 6202 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 6203 6204 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 6205 return X86EMUL_CONTINUE; 6206 } 6207 6208 static const struct read_write_emulator_ops read_emultor = { 6209 .read_write_prepare = read_prepare, 6210 .read_write_emulate = read_emulate, 6211 .read_write_mmio = vcpu_mmio_read, 6212 .read_write_exit_mmio = read_exit_mmio, 6213 }; 6214 6215 static const struct read_write_emulator_ops write_emultor = { 6216 .read_write_emulate = write_emulate, 6217 .read_write_mmio = write_mmio, 6218 .read_write_exit_mmio = write_exit_mmio, 6219 .write = true, 6220 }; 6221 6222 static int emulator_read_write_onepage(unsigned long addr, void *val, 6223 unsigned int bytes, 6224 struct x86_exception *exception, 6225 struct kvm_vcpu *vcpu, 6226 const struct read_write_emulator_ops *ops) 6227 { 6228 gpa_t gpa; 6229 int handled, ret; 6230 bool write = ops->write; 6231 struct kvm_mmio_fragment *frag; 6232 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6233 6234 /* 6235 * If the exit was due to a NPF we may already have a GPA. 6236 * If the GPA is present, use it to avoid the GVA to GPA table walk. 6237 * Note, this cannot be used on string operations since string 6238 * operation using rep will only have the initial GPA from the NPF 6239 * occurred. 6240 */ 6241 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 6242 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 6243 gpa = ctxt->gpa_val; 6244 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 6245 } else { 6246 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 6247 if (ret < 0) 6248 return X86EMUL_PROPAGATE_FAULT; 6249 } 6250 6251 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 6252 return X86EMUL_CONTINUE; 6253 6254 /* 6255 * Is this MMIO handled locally? 6256 */ 6257 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 6258 if (handled == bytes) 6259 return X86EMUL_CONTINUE; 6260 6261 gpa += handled; 6262 bytes -= handled; 6263 val += handled; 6264 6265 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 6266 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 6267 frag->gpa = gpa; 6268 frag->data = val; 6269 frag->len = bytes; 6270 return X86EMUL_CONTINUE; 6271 } 6272 6273 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 6274 unsigned long addr, 6275 void *val, unsigned int bytes, 6276 struct x86_exception *exception, 6277 const struct read_write_emulator_ops *ops) 6278 { 6279 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6280 gpa_t gpa; 6281 int rc; 6282 6283 if (ops->read_write_prepare && 6284 ops->read_write_prepare(vcpu, val, bytes)) 6285 return X86EMUL_CONTINUE; 6286 6287 vcpu->mmio_nr_fragments = 0; 6288 6289 /* Crossing a page boundary? */ 6290 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 6291 int now; 6292 6293 now = -addr & ~PAGE_MASK; 6294 rc = emulator_read_write_onepage(addr, val, now, exception, 6295 vcpu, ops); 6296 6297 if (rc != X86EMUL_CONTINUE) 6298 return rc; 6299 addr += now; 6300 if (ctxt->mode != X86EMUL_MODE_PROT64) 6301 addr = (u32)addr; 6302 val += now; 6303 bytes -= now; 6304 } 6305 6306 rc = emulator_read_write_onepage(addr, val, bytes, exception, 6307 vcpu, ops); 6308 if (rc != X86EMUL_CONTINUE) 6309 return rc; 6310 6311 if (!vcpu->mmio_nr_fragments) 6312 return rc; 6313 6314 gpa = vcpu->mmio_fragments[0].gpa; 6315 6316 vcpu->mmio_needed = 1; 6317 vcpu->mmio_cur_fragment = 0; 6318 6319 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 6320 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 6321 vcpu->run->exit_reason = KVM_EXIT_MMIO; 6322 vcpu->run->mmio.phys_addr = gpa; 6323 6324 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 6325 } 6326 6327 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 6328 unsigned long addr, 6329 void *val, 6330 unsigned int bytes, 6331 struct x86_exception *exception) 6332 { 6333 return emulator_read_write(ctxt, addr, val, bytes, 6334 exception, &read_emultor); 6335 } 6336 6337 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 6338 unsigned long addr, 6339 const void *val, 6340 unsigned int bytes, 6341 struct x86_exception *exception) 6342 { 6343 return emulator_read_write(ctxt, addr, (void *)val, bytes, 6344 exception, &write_emultor); 6345 } 6346 6347 #define CMPXCHG_TYPE(t, ptr, old, new) \ 6348 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 6349 6350 #ifdef CONFIG_X86_64 6351 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 6352 #else 6353 # define CMPXCHG64(ptr, old, new) \ 6354 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 6355 #endif 6356 6357 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 6358 unsigned long addr, 6359 const void *old, 6360 const void *new, 6361 unsigned int bytes, 6362 struct x86_exception *exception) 6363 { 6364 struct kvm_host_map map; 6365 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6366 u64 page_line_mask; 6367 gpa_t gpa; 6368 char *kaddr; 6369 bool exchanged; 6370 6371 /* guests cmpxchg8b have to be emulated atomically */ 6372 if (bytes > 8 || (bytes & (bytes - 1))) 6373 goto emul_write; 6374 6375 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 6376 6377 if (gpa == UNMAPPED_GVA || 6378 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6379 goto emul_write; 6380 6381 /* 6382 * Emulate the atomic as a straight write to avoid #AC if SLD is 6383 * enabled in the host and the access splits a cache line. 6384 */ 6385 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 6386 page_line_mask = ~(cache_line_size() - 1); 6387 else 6388 page_line_mask = PAGE_MASK; 6389 6390 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 6391 goto emul_write; 6392 6393 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 6394 goto emul_write; 6395 6396 kaddr = map.hva + offset_in_page(gpa); 6397 6398 switch (bytes) { 6399 case 1: 6400 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 6401 break; 6402 case 2: 6403 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 6404 break; 6405 case 4: 6406 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 6407 break; 6408 case 8: 6409 exchanged = CMPXCHG64(kaddr, old, new); 6410 break; 6411 default: 6412 BUG(); 6413 } 6414 6415 kvm_vcpu_unmap(vcpu, &map, true); 6416 6417 if (!exchanged) 6418 return X86EMUL_CMPXCHG_FAILED; 6419 6420 kvm_page_track_write(vcpu, gpa, new, bytes); 6421 6422 return X86EMUL_CONTINUE; 6423 6424 emul_write: 6425 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6426 6427 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6428 } 6429 6430 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6431 { 6432 int r = 0, i; 6433 6434 for (i = 0; i < vcpu->arch.pio.count; i++) { 6435 if (vcpu->arch.pio.in) 6436 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6437 vcpu->arch.pio.size, pd); 6438 else 6439 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6440 vcpu->arch.pio.port, vcpu->arch.pio.size, 6441 pd); 6442 if (r) 6443 break; 6444 pd += vcpu->arch.pio.size; 6445 } 6446 return r; 6447 } 6448 6449 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6450 unsigned short port, void *val, 6451 unsigned int count, bool in) 6452 { 6453 vcpu->arch.pio.port = port; 6454 vcpu->arch.pio.in = in; 6455 vcpu->arch.pio.count = count; 6456 vcpu->arch.pio.size = size; 6457 6458 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6459 vcpu->arch.pio.count = 0; 6460 return 1; 6461 } 6462 6463 vcpu->run->exit_reason = KVM_EXIT_IO; 6464 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6465 vcpu->run->io.size = size; 6466 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6467 vcpu->run->io.count = count; 6468 vcpu->run->io.port = port; 6469 6470 return 0; 6471 } 6472 6473 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6474 unsigned short port, void *val, unsigned int count) 6475 { 6476 int ret; 6477 6478 if (vcpu->arch.pio.count) 6479 goto data_avail; 6480 6481 memset(vcpu->arch.pio_data, 0, size * count); 6482 6483 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6484 if (ret) { 6485 data_avail: 6486 memcpy(val, vcpu->arch.pio_data, size * count); 6487 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6488 vcpu->arch.pio.count = 0; 6489 return 1; 6490 } 6491 6492 return 0; 6493 } 6494 6495 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6496 int size, unsigned short port, void *val, 6497 unsigned int count) 6498 { 6499 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6500 6501 } 6502 6503 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6504 unsigned short port, const void *val, 6505 unsigned int count) 6506 { 6507 memcpy(vcpu->arch.pio_data, val, size * count); 6508 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6509 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6510 } 6511 6512 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6513 int size, unsigned short port, 6514 const void *val, unsigned int count) 6515 { 6516 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6517 } 6518 6519 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6520 { 6521 return kvm_x86_ops.get_segment_base(vcpu, seg); 6522 } 6523 6524 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6525 { 6526 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6527 } 6528 6529 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6530 { 6531 if (!need_emulate_wbinvd(vcpu)) 6532 return X86EMUL_CONTINUE; 6533 6534 if (kvm_x86_ops.has_wbinvd_exit()) { 6535 int cpu = get_cpu(); 6536 6537 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6538 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 6539 wbinvd_ipi, NULL, 1); 6540 put_cpu(); 6541 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6542 } else 6543 wbinvd(); 6544 return X86EMUL_CONTINUE; 6545 } 6546 6547 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6548 { 6549 kvm_emulate_wbinvd_noskip(vcpu); 6550 return kvm_skip_emulated_instruction(vcpu); 6551 } 6552 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6553 6554 6555 6556 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6557 { 6558 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6559 } 6560 6561 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6562 unsigned long *dest) 6563 { 6564 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 6565 } 6566 6567 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 6568 unsigned long value) 6569 { 6570 6571 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 6572 } 6573 6574 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 6575 { 6576 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 6577 } 6578 6579 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 6580 { 6581 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6582 unsigned long value; 6583 6584 switch (cr) { 6585 case 0: 6586 value = kvm_read_cr0(vcpu); 6587 break; 6588 case 2: 6589 value = vcpu->arch.cr2; 6590 break; 6591 case 3: 6592 value = kvm_read_cr3(vcpu); 6593 break; 6594 case 4: 6595 value = kvm_read_cr4(vcpu); 6596 break; 6597 case 8: 6598 value = kvm_get_cr8(vcpu); 6599 break; 6600 default: 6601 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6602 return 0; 6603 } 6604 6605 return value; 6606 } 6607 6608 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 6609 { 6610 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6611 int res = 0; 6612 6613 switch (cr) { 6614 case 0: 6615 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 6616 break; 6617 case 2: 6618 vcpu->arch.cr2 = val; 6619 break; 6620 case 3: 6621 res = kvm_set_cr3(vcpu, val); 6622 break; 6623 case 4: 6624 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 6625 break; 6626 case 8: 6627 res = kvm_set_cr8(vcpu, val); 6628 break; 6629 default: 6630 kvm_err("%s: unexpected cr %u\n", __func__, cr); 6631 res = -1; 6632 } 6633 6634 return res; 6635 } 6636 6637 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 6638 { 6639 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt)); 6640 } 6641 6642 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6643 { 6644 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt); 6645 } 6646 6647 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6648 { 6649 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt); 6650 } 6651 6652 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6653 { 6654 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt); 6655 } 6656 6657 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 6658 { 6659 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt); 6660 } 6661 6662 static unsigned long emulator_get_cached_segment_base( 6663 struct x86_emulate_ctxt *ctxt, int seg) 6664 { 6665 return get_segment_base(emul_to_vcpu(ctxt), seg); 6666 } 6667 6668 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 6669 struct desc_struct *desc, u32 *base3, 6670 int seg) 6671 { 6672 struct kvm_segment var; 6673 6674 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 6675 *selector = var.selector; 6676 6677 if (var.unusable) { 6678 memset(desc, 0, sizeof(*desc)); 6679 if (base3) 6680 *base3 = 0; 6681 return false; 6682 } 6683 6684 if (var.g) 6685 var.limit >>= 12; 6686 set_desc_limit(desc, var.limit); 6687 set_desc_base(desc, (unsigned long)var.base); 6688 #ifdef CONFIG_X86_64 6689 if (base3) 6690 *base3 = var.base >> 32; 6691 #endif 6692 desc->type = var.type; 6693 desc->s = var.s; 6694 desc->dpl = var.dpl; 6695 desc->p = var.present; 6696 desc->avl = var.avl; 6697 desc->l = var.l; 6698 desc->d = var.db; 6699 desc->g = var.g; 6700 6701 return true; 6702 } 6703 6704 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 6705 struct desc_struct *desc, u32 base3, 6706 int seg) 6707 { 6708 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6709 struct kvm_segment var; 6710 6711 var.selector = selector; 6712 var.base = get_desc_base(desc); 6713 #ifdef CONFIG_X86_64 6714 var.base |= ((u64)base3) << 32; 6715 #endif 6716 var.limit = get_desc_limit(desc); 6717 if (desc->g) 6718 var.limit = (var.limit << 12) | 0xfff; 6719 var.type = desc->type; 6720 var.dpl = desc->dpl; 6721 var.db = desc->d; 6722 var.s = desc->s; 6723 var.l = desc->l; 6724 var.g = desc->g; 6725 var.avl = desc->avl; 6726 var.present = desc->p; 6727 var.unusable = !var.present; 6728 var.padding = 0; 6729 6730 kvm_set_segment(vcpu, &var, seg); 6731 return; 6732 } 6733 6734 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 6735 u32 msr_index, u64 *pdata) 6736 { 6737 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6738 int r; 6739 6740 r = kvm_get_msr(vcpu, msr_index, pdata); 6741 6742 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) { 6743 /* Bounce to user space */ 6744 return X86EMUL_IO_NEEDED; 6745 } 6746 6747 return r; 6748 } 6749 6750 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 6751 u32 msr_index, u64 data) 6752 { 6753 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6754 int r; 6755 6756 r = kvm_set_msr(vcpu, msr_index, data); 6757 6758 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) { 6759 /* Bounce to user space */ 6760 return X86EMUL_IO_NEEDED; 6761 } 6762 6763 return r; 6764 } 6765 6766 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 6767 { 6768 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6769 6770 return vcpu->arch.smbase; 6771 } 6772 6773 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 6774 { 6775 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6776 6777 vcpu->arch.smbase = smbase; 6778 } 6779 6780 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 6781 u32 pmc) 6782 { 6783 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 6784 } 6785 6786 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 6787 u32 pmc, u64 *pdata) 6788 { 6789 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 6790 } 6791 6792 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 6793 { 6794 emul_to_vcpu(ctxt)->arch.halt_request = 1; 6795 } 6796 6797 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 6798 struct x86_instruction_info *info, 6799 enum x86_intercept_stage stage) 6800 { 6801 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage, 6802 &ctxt->exception); 6803 } 6804 6805 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 6806 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 6807 bool exact_only) 6808 { 6809 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 6810 } 6811 6812 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 6813 { 6814 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 6815 } 6816 6817 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 6818 { 6819 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 6820 } 6821 6822 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 6823 { 6824 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 6825 } 6826 6827 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 6828 { 6829 return kvm_register_read(emul_to_vcpu(ctxt), reg); 6830 } 6831 6832 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 6833 { 6834 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 6835 } 6836 6837 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 6838 { 6839 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked); 6840 } 6841 6842 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 6843 { 6844 return emul_to_vcpu(ctxt)->arch.hflags; 6845 } 6846 6847 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 6848 { 6849 emul_to_vcpu(ctxt)->arch.hflags = emul_flags; 6850 } 6851 6852 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, 6853 const char *smstate) 6854 { 6855 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate); 6856 } 6857 6858 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt) 6859 { 6860 kvm_smm_changed(emul_to_vcpu(ctxt)); 6861 } 6862 6863 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 6864 { 6865 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 6866 } 6867 6868 static const struct x86_emulate_ops emulate_ops = { 6869 .read_gpr = emulator_read_gpr, 6870 .write_gpr = emulator_write_gpr, 6871 .read_std = emulator_read_std, 6872 .write_std = emulator_write_std, 6873 .read_phys = kvm_read_guest_phys_system, 6874 .fetch = kvm_fetch_guest_virt, 6875 .read_emulated = emulator_read_emulated, 6876 .write_emulated = emulator_write_emulated, 6877 .cmpxchg_emulated = emulator_cmpxchg_emulated, 6878 .invlpg = emulator_invlpg, 6879 .pio_in_emulated = emulator_pio_in_emulated, 6880 .pio_out_emulated = emulator_pio_out_emulated, 6881 .get_segment = emulator_get_segment, 6882 .set_segment = emulator_set_segment, 6883 .get_cached_segment_base = emulator_get_cached_segment_base, 6884 .get_gdt = emulator_get_gdt, 6885 .get_idt = emulator_get_idt, 6886 .set_gdt = emulator_set_gdt, 6887 .set_idt = emulator_set_idt, 6888 .get_cr = emulator_get_cr, 6889 .set_cr = emulator_set_cr, 6890 .cpl = emulator_get_cpl, 6891 .get_dr = emulator_get_dr, 6892 .set_dr = emulator_set_dr, 6893 .get_smbase = emulator_get_smbase, 6894 .set_smbase = emulator_set_smbase, 6895 .set_msr = emulator_set_msr, 6896 .get_msr = emulator_get_msr, 6897 .check_pmc = emulator_check_pmc, 6898 .read_pmc = emulator_read_pmc, 6899 .halt = emulator_halt, 6900 .wbinvd = emulator_wbinvd, 6901 .fix_hypercall = emulator_fix_hypercall, 6902 .intercept = emulator_intercept, 6903 .get_cpuid = emulator_get_cpuid, 6904 .guest_has_long_mode = emulator_guest_has_long_mode, 6905 .guest_has_movbe = emulator_guest_has_movbe, 6906 .guest_has_fxsr = emulator_guest_has_fxsr, 6907 .set_nmi_mask = emulator_set_nmi_mask, 6908 .get_hflags = emulator_get_hflags, 6909 .set_hflags = emulator_set_hflags, 6910 .pre_leave_smm = emulator_pre_leave_smm, 6911 .post_leave_smm = emulator_post_leave_smm, 6912 .set_xcr = emulator_set_xcr, 6913 }; 6914 6915 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 6916 { 6917 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu); 6918 /* 6919 * an sti; sti; sequence only disable interrupts for the first 6920 * instruction. So, if the last instruction, be it emulated or 6921 * not, left the system with the INT_STI flag enabled, it 6922 * means that the last instruction is an sti. We should not 6923 * leave the flag on in this case. The same goes for mov ss 6924 */ 6925 if (int_shadow & mask) 6926 mask = 0; 6927 if (unlikely(int_shadow || mask)) { 6928 kvm_x86_ops.set_interrupt_shadow(vcpu, mask); 6929 if (!mask) 6930 kvm_make_request(KVM_REQ_EVENT, vcpu); 6931 } 6932 } 6933 6934 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 6935 { 6936 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6937 if (ctxt->exception.vector == PF_VECTOR) 6938 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 6939 6940 if (ctxt->exception.error_code_valid) 6941 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 6942 ctxt->exception.error_code); 6943 else 6944 kvm_queue_exception(vcpu, ctxt->exception.vector); 6945 return false; 6946 } 6947 6948 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 6949 { 6950 struct x86_emulate_ctxt *ctxt; 6951 6952 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 6953 if (!ctxt) { 6954 pr_err("kvm: failed to allocate vcpu's emulator\n"); 6955 return NULL; 6956 } 6957 6958 ctxt->vcpu = vcpu; 6959 ctxt->ops = &emulate_ops; 6960 vcpu->arch.emulate_ctxt = ctxt; 6961 6962 return ctxt; 6963 } 6964 6965 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 6966 { 6967 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6968 int cs_db, cs_l; 6969 6970 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 6971 6972 ctxt->gpa_available = false; 6973 ctxt->eflags = kvm_get_rflags(vcpu); 6974 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 6975 6976 ctxt->eip = kvm_rip_read(vcpu); 6977 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 6978 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 6979 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 6980 cs_db ? X86EMUL_MODE_PROT32 : 6981 X86EMUL_MODE_PROT16; 6982 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 6983 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 6984 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 6985 6986 init_decode_cache(ctxt); 6987 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 6988 } 6989 6990 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 6991 { 6992 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6993 int ret; 6994 6995 init_emulate_ctxt(vcpu); 6996 6997 ctxt->op_bytes = 2; 6998 ctxt->ad_bytes = 2; 6999 ctxt->_eip = ctxt->eip + inc_eip; 7000 ret = emulate_int_real(ctxt, irq); 7001 7002 if (ret != X86EMUL_CONTINUE) { 7003 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 7004 } else { 7005 ctxt->eip = ctxt->_eip; 7006 kvm_rip_write(vcpu, ctxt->eip); 7007 kvm_set_rflags(vcpu, ctxt->eflags); 7008 } 7009 } 7010 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 7011 7012 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 7013 { 7014 ++vcpu->stat.insn_emulation_fail; 7015 trace_kvm_emulate_insn_failed(vcpu); 7016 7017 if (emulation_type & EMULTYPE_VMWARE_GP) { 7018 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7019 return 1; 7020 } 7021 7022 if (emulation_type & EMULTYPE_SKIP) { 7023 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7024 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7025 vcpu->run->internal.ndata = 0; 7026 return 0; 7027 } 7028 7029 kvm_queue_exception(vcpu, UD_VECTOR); 7030 7031 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) { 7032 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7033 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7034 vcpu->run->internal.ndata = 0; 7035 return 0; 7036 } 7037 7038 return 1; 7039 } 7040 7041 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7042 bool write_fault_to_shadow_pgtable, 7043 int emulation_type) 7044 { 7045 gpa_t gpa = cr2_or_gpa; 7046 kvm_pfn_t pfn; 7047 7048 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7049 return false; 7050 7051 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7052 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7053 return false; 7054 7055 if (!vcpu->arch.mmu->direct_map) { 7056 /* 7057 * Write permission should be allowed since only 7058 * write access need to be emulated. 7059 */ 7060 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7061 7062 /* 7063 * If the mapping is invalid in guest, let cpu retry 7064 * it to generate fault. 7065 */ 7066 if (gpa == UNMAPPED_GVA) 7067 return true; 7068 } 7069 7070 /* 7071 * Do not retry the unhandleable instruction if it faults on the 7072 * readonly host memory, otherwise it will goto a infinite loop: 7073 * retry instruction -> write #PF -> emulation fail -> retry 7074 * instruction -> ... 7075 */ 7076 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 7077 7078 /* 7079 * If the instruction failed on the error pfn, it can not be fixed, 7080 * report the error to userspace. 7081 */ 7082 if (is_error_noslot_pfn(pfn)) 7083 return false; 7084 7085 kvm_release_pfn_clean(pfn); 7086 7087 /* The instructions are well-emulated on direct mmu. */ 7088 if (vcpu->arch.mmu->direct_map) { 7089 unsigned int indirect_shadow_pages; 7090 7091 spin_lock(&vcpu->kvm->mmu_lock); 7092 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 7093 spin_unlock(&vcpu->kvm->mmu_lock); 7094 7095 if (indirect_shadow_pages) 7096 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7097 7098 return true; 7099 } 7100 7101 /* 7102 * if emulation was due to access to shadowed page table 7103 * and it failed try to unshadow page and re-enter the 7104 * guest to let CPU execute the instruction. 7105 */ 7106 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7107 7108 /* 7109 * If the access faults on its page table, it can not 7110 * be fixed by unprotecting shadow page and it should 7111 * be reported to userspace. 7112 */ 7113 return !write_fault_to_shadow_pgtable; 7114 } 7115 7116 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 7117 gpa_t cr2_or_gpa, int emulation_type) 7118 { 7119 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7120 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 7121 7122 last_retry_eip = vcpu->arch.last_retry_eip; 7123 last_retry_addr = vcpu->arch.last_retry_addr; 7124 7125 /* 7126 * If the emulation is caused by #PF and it is non-page_table 7127 * writing instruction, it means the VM-EXIT is caused by shadow 7128 * page protected, we can zap the shadow page and retry this 7129 * instruction directly. 7130 * 7131 * Note: if the guest uses a non-page-table modifying instruction 7132 * on the PDE that points to the instruction, then we will unmap 7133 * the instruction and go to an infinite loop. So, we cache the 7134 * last retried eip and the last fault address, if we meet the eip 7135 * and the address again, we can break out of the potential infinite 7136 * loop. 7137 */ 7138 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 7139 7140 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7141 return false; 7142 7143 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7144 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7145 return false; 7146 7147 if (x86_page_table_writing_insn(ctxt)) 7148 return false; 7149 7150 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 7151 return false; 7152 7153 vcpu->arch.last_retry_eip = ctxt->eip; 7154 vcpu->arch.last_retry_addr = cr2_or_gpa; 7155 7156 if (!vcpu->arch.mmu->direct_map) 7157 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7158 7159 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7160 7161 return true; 7162 } 7163 7164 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 7165 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 7166 7167 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 7168 { 7169 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 7170 /* This is a good place to trace that we are exiting SMM. */ 7171 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 7172 7173 /* Process a latched INIT or SMI, if any. */ 7174 kvm_make_request(KVM_REQ_EVENT, vcpu); 7175 } 7176 7177 kvm_mmu_reset_context(vcpu); 7178 } 7179 7180 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 7181 unsigned long *db) 7182 { 7183 u32 dr6 = 0; 7184 int i; 7185 u32 enable, rwlen; 7186 7187 enable = dr7; 7188 rwlen = dr7 >> 16; 7189 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 7190 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 7191 dr6 |= (1 << i); 7192 return dr6; 7193 } 7194 7195 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 7196 { 7197 struct kvm_run *kvm_run = vcpu->run; 7198 7199 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 7200 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 7201 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 7202 kvm_run->debug.arch.exception = DB_VECTOR; 7203 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7204 return 0; 7205 } 7206 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 7207 return 1; 7208 } 7209 7210 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 7211 { 7212 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7213 int r; 7214 7215 r = kvm_x86_ops.skip_emulated_instruction(vcpu); 7216 if (unlikely(!r)) 7217 return 0; 7218 7219 /* 7220 * rflags is the old, "raw" value of the flags. The new value has 7221 * not been saved yet. 7222 * 7223 * This is correct even for TF set by the guest, because "the 7224 * processor will not generate this exception after the instruction 7225 * that sets the TF flag". 7226 */ 7227 if (unlikely(rflags & X86_EFLAGS_TF)) 7228 r = kvm_vcpu_do_singlestep(vcpu); 7229 return r; 7230 } 7231 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 7232 7233 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 7234 { 7235 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 7236 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 7237 struct kvm_run *kvm_run = vcpu->run; 7238 unsigned long eip = kvm_get_linear_rip(vcpu); 7239 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7240 vcpu->arch.guest_debug_dr7, 7241 vcpu->arch.eff_db); 7242 7243 if (dr6 != 0) { 7244 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 7245 kvm_run->debug.arch.pc = eip; 7246 kvm_run->debug.arch.exception = DB_VECTOR; 7247 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7248 *r = 0; 7249 return true; 7250 } 7251 } 7252 7253 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 7254 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 7255 unsigned long eip = kvm_get_linear_rip(vcpu); 7256 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7257 vcpu->arch.dr7, 7258 vcpu->arch.db); 7259 7260 if (dr6 != 0) { 7261 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 7262 *r = 1; 7263 return true; 7264 } 7265 } 7266 7267 return false; 7268 } 7269 7270 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 7271 { 7272 switch (ctxt->opcode_len) { 7273 case 1: 7274 switch (ctxt->b) { 7275 case 0xe4: /* IN */ 7276 case 0xe5: 7277 case 0xec: 7278 case 0xed: 7279 case 0xe6: /* OUT */ 7280 case 0xe7: 7281 case 0xee: 7282 case 0xef: 7283 case 0x6c: /* INS */ 7284 case 0x6d: 7285 case 0x6e: /* OUTS */ 7286 case 0x6f: 7287 return true; 7288 } 7289 break; 7290 case 2: 7291 switch (ctxt->b) { 7292 case 0x33: /* RDPMC */ 7293 return true; 7294 } 7295 break; 7296 } 7297 7298 return false; 7299 } 7300 7301 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7302 int emulation_type, void *insn, int insn_len) 7303 { 7304 int r; 7305 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7306 bool writeback = true; 7307 bool write_fault_to_spt; 7308 7309 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len))) 7310 return 1; 7311 7312 vcpu->arch.l1tf_flush_l1d = true; 7313 7314 /* 7315 * Clear write_fault_to_shadow_pgtable here to ensure it is 7316 * never reused. 7317 */ 7318 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 7319 vcpu->arch.write_fault_to_shadow_pgtable = false; 7320 kvm_clear_exception_queue(vcpu); 7321 7322 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 7323 init_emulate_ctxt(vcpu); 7324 7325 /* 7326 * We will reenter on the same instruction since 7327 * we do not set complete_userspace_io. This does not 7328 * handle watchpoints yet, those would be handled in 7329 * the emulate_ops. 7330 */ 7331 if (!(emulation_type & EMULTYPE_SKIP) && 7332 kvm_vcpu_check_breakpoint(vcpu, &r)) 7333 return r; 7334 7335 ctxt->interruptibility = 0; 7336 ctxt->have_exception = false; 7337 ctxt->exception.vector = -1; 7338 ctxt->perm_ok = false; 7339 7340 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 7341 7342 r = x86_decode_insn(ctxt, insn, insn_len); 7343 7344 trace_kvm_emulate_insn_start(vcpu); 7345 ++vcpu->stat.insn_emulation; 7346 if (r != EMULATION_OK) { 7347 if ((emulation_type & EMULTYPE_TRAP_UD) || 7348 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 7349 kvm_queue_exception(vcpu, UD_VECTOR); 7350 return 1; 7351 } 7352 if (reexecute_instruction(vcpu, cr2_or_gpa, 7353 write_fault_to_spt, 7354 emulation_type)) 7355 return 1; 7356 if (ctxt->have_exception) { 7357 /* 7358 * #UD should result in just EMULATION_FAILED, and trap-like 7359 * exception should not be encountered during decode. 7360 */ 7361 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 7362 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 7363 inject_emulated_exception(vcpu); 7364 return 1; 7365 } 7366 return handle_emulation_failure(vcpu, emulation_type); 7367 } 7368 } 7369 7370 if ((emulation_type & EMULTYPE_VMWARE_GP) && 7371 !is_vmware_backdoor_opcode(ctxt)) { 7372 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7373 return 1; 7374 } 7375 7376 /* 7377 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 7378 * for kvm_skip_emulated_instruction(). The caller is responsible for 7379 * updating interruptibility state and injecting single-step #DBs. 7380 */ 7381 if (emulation_type & EMULTYPE_SKIP) { 7382 kvm_rip_write(vcpu, ctxt->_eip); 7383 if (ctxt->eflags & X86_EFLAGS_RF) 7384 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 7385 return 1; 7386 } 7387 7388 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 7389 return 1; 7390 7391 /* this is needed for vmware backdoor interface to work since it 7392 changes registers values during IO operation */ 7393 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 7394 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7395 emulator_invalidate_register_cache(ctxt); 7396 } 7397 7398 restart: 7399 if (emulation_type & EMULTYPE_PF) { 7400 /* Save the faulting GPA (cr2) in the address field */ 7401 ctxt->exception.address = cr2_or_gpa; 7402 7403 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 7404 if (vcpu->arch.mmu->direct_map) { 7405 ctxt->gpa_available = true; 7406 ctxt->gpa_val = cr2_or_gpa; 7407 } 7408 } else { 7409 /* Sanitize the address out of an abundance of paranoia. */ 7410 ctxt->exception.address = 0; 7411 } 7412 7413 r = x86_emulate_insn(ctxt); 7414 7415 if (r == EMULATION_INTERCEPTED) 7416 return 1; 7417 7418 if (r == EMULATION_FAILED) { 7419 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 7420 emulation_type)) 7421 return 1; 7422 7423 return handle_emulation_failure(vcpu, emulation_type); 7424 } 7425 7426 if (ctxt->have_exception) { 7427 r = 1; 7428 if (inject_emulated_exception(vcpu)) 7429 return r; 7430 } else if (vcpu->arch.pio.count) { 7431 if (!vcpu->arch.pio.in) { 7432 /* FIXME: return into emulator if single-stepping. */ 7433 vcpu->arch.pio.count = 0; 7434 } else { 7435 writeback = false; 7436 vcpu->arch.complete_userspace_io = complete_emulated_pio; 7437 } 7438 r = 0; 7439 } else if (vcpu->mmio_needed) { 7440 ++vcpu->stat.mmio_exits; 7441 7442 if (!vcpu->mmio_is_write) 7443 writeback = false; 7444 r = 0; 7445 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7446 } else if (r == EMULATION_RESTART) 7447 goto restart; 7448 else 7449 r = 1; 7450 7451 if (writeback) { 7452 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu); 7453 toggle_interruptibility(vcpu, ctxt->interruptibility); 7454 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7455 if (!ctxt->have_exception || 7456 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7457 kvm_rip_write(vcpu, ctxt->eip); 7458 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7459 r = kvm_vcpu_do_singlestep(vcpu); 7460 if (kvm_x86_ops.update_emulated_instruction) 7461 kvm_x86_ops.update_emulated_instruction(vcpu); 7462 __kvm_set_rflags(vcpu, ctxt->eflags); 7463 } 7464 7465 /* 7466 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7467 * do nothing, and it will be requested again as soon as 7468 * the shadow expires. But we still need to check here, 7469 * because POPF has no interrupt shadow. 7470 */ 7471 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7472 kvm_make_request(KVM_REQ_EVENT, vcpu); 7473 } else 7474 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7475 7476 return r; 7477 } 7478 7479 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7480 { 7481 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7482 } 7483 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7484 7485 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7486 void *insn, int insn_len) 7487 { 7488 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7489 } 7490 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7491 7492 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7493 { 7494 vcpu->arch.pio.count = 0; 7495 return 1; 7496 } 7497 7498 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7499 { 7500 vcpu->arch.pio.count = 0; 7501 7502 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7503 return 1; 7504 7505 return kvm_skip_emulated_instruction(vcpu); 7506 } 7507 7508 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7509 unsigned short port) 7510 { 7511 unsigned long val = kvm_rax_read(vcpu); 7512 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7513 7514 if (ret) 7515 return ret; 7516 7517 /* 7518 * Workaround userspace that relies on old KVM behavior of %rip being 7519 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7520 */ 7521 if (port == 0x7e && 7522 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 7523 vcpu->arch.complete_userspace_io = 7524 complete_fast_pio_out_port_0x7e; 7525 kvm_skip_emulated_instruction(vcpu); 7526 } else { 7527 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7528 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 7529 } 7530 return 0; 7531 } 7532 7533 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 7534 { 7535 unsigned long val; 7536 7537 /* We should only ever be called with arch.pio.count equal to 1 */ 7538 BUG_ON(vcpu->arch.pio.count != 1); 7539 7540 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 7541 vcpu->arch.pio.count = 0; 7542 return 1; 7543 } 7544 7545 /* For size less than 4 we merge, else we zero extend */ 7546 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 7547 7548 /* 7549 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 7550 * the copy and tracing 7551 */ 7552 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 7553 kvm_rax_write(vcpu, val); 7554 7555 return kvm_skip_emulated_instruction(vcpu); 7556 } 7557 7558 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 7559 unsigned short port) 7560 { 7561 unsigned long val; 7562 int ret; 7563 7564 /* For size less than 4 we merge, else we zero extend */ 7565 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 7566 7567 ret = emulator_pio_in(vcpu, size, port, &val, 1); 7568 if (ret) { 7569 kvm_rax_write(vcpu, val); 7570 return ret; 7571 } 7572 7573 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 7574 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 7575 7576 return 0; 7577 } 7578 7579 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 7580 { 7581 int ret; 7582 7583 if (in) 7584 ret = kvm_fast_pio_in(vcpu, size, port); 7585 else 7586 ret = kvm_fast_pio_out(vcpu, size, port); 7587 return ret && kvm_skip_emulated_instruction(vcpu); 7588 } 7589 EXPORT_SYMBOL_GPL(kvm_fast_pio); 7590 7591 static int kvmclock_cpu_down_prep(unsigned int cpu) 7592 { 7593 __this_cpu_write(cpu_tsc_khz, 0); 7594 return 0; 7595 } 7596 7597 static void tsc_khz_changed(void *data) 7598 { 7599 struct cpufreq_freqs *freq = data; 7600 unsigned long khz = 0; 7601 7602 if (data) 7603 khz = freq->new; 7604 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7605 khz = cpufreq_quick_get(raw_smp_processor_id()); 7606 if (!khz) 7607 khz = tsc_khz; 7608 __this_cpu_write(cpu_tsc_khz, khz); 7609 } 7610 7611 #ifdef CONFIG_X86_64 7612 static void kvm_hyperv_tsc_notifier(void) 7613 { 7614 struct kvm *kvm; 7615 struct kvm_vcpu *vcpu; 7616 int cpu; 7617 7618 mutex_lock(&kvm_lock); 7619 list_for_each_entry(kvm, &vm_list, vm_list) 7620 kvm_make_mclock_inprogress_request(kvm); 7621 7622 hyperv_stop_tsc_emulation(); 7623 7624 /* TSC frequency always matches when on Hyper-V */ 7625 for_each_present_cpu(cpu) 7626 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 7627 kvm_max_guest_tsc_khz = tsc_khz; 7628 7629 list_for_each_entry(kvm, &vm_list, vm_list) { 7630 struct kvm_arch *ka = &kvm->arch; 7631 7632 spin_lock(&ka->pvclock_gtod_sync_lock); 7633 7634 pvclock_update_vm_gtod_copy(kvm); 7635 7636 kvm_for_each_vcpu(cpu, vcpu, kvm) 7637 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7638 7639 kvm_for_each_vcpu(cpu, vcpu, kvm) 7640 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 7641 7642 spin_unlock(&ka->pvclock_gtod_sync_lock); 7643 } 7644 mutex_unlock(&kvm_lock); 7645 } 7646 #endif 7647 7648 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 7649 { 7650 struct kvm *kvm; 7651 struct kvm_vcpu *vcpu; 7652 int i, send_ipi = 0; 7653 7654 /* 7655 * We allow guests to temporarily run on slowing clocks, 7656 * provided we notify them after, or to run on accelerating 7657 * clocks, provided we notify them before. Thus time never 7658 * goes backwards. 7659 * 7660 * However, we have a problem. We can't atomically update 7661 * the frequency of a given CPU from this function; it is 7662 * merely a notifier, which can be called from any CPU. 7663 * Changing the TSC frequency at arbitrary points in time 7664 * requires a recomputation of local variables related to 7665 * the TSC for each VCPU. We must flag these local variables 7666 * to be updated and be sure the update takes place with the 7667 * new frequency before any guests proceed. 7668 * 7669 * Unfortunately, the combination of hotplug CPU and frequency 7670 * change creates an intractable locking scenario; the order 7671 * of when these callouts happen is undefined with respect to 7672 * CPU hotplug, and they can race with each other. As such, 7673 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 7674 * undefined; you can actually have a CPU frequency change take 7675 * place in between the computation of X and the setting of the 7676 * variable. To protect against this problem, all updates of 7677 * the per_cpu tsc_khz variable are done in an interrupt 7678 * protected IPI, and all callers wishing to update the value 7679 * must wait for a synchronous IPI to complete (which is trivial 7680 * if the caller is on the CPU already). This establishes the 7681 * necessary total order on variable updates. 7682 * 7683 * Note that because a guest time update may take place 7684 * anytime after the setting of the VCPU's request bit, the 7685 * correct TSC value must be set before the request. However, 7686 * to ensure the update actually makes it to any guest which 7687 * starts running in hardware virtualization between the set 7688 * and the acquisition of the spinlock, we must also ping the 7689 * CPU after setting the request bit. 7690 * 7691 */ 7692 7693 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7694 7695 mutex_lock(&kvm_lock); 7696 list_for_each_entry(kvm, &vm_list, vm_list) { 7697 kvm_for_each_vcpu(i, vcpu, kvm) { 7698 if (vcpu->cpu != cpu) 7699 continue; 7700 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7701 if (vcpu->cpu != raw_smp_processor_id()) 7702 send_ipi = 1; 7703 } 7704 } 7705 mutex_unlock(&kvm_lock); 7706 7707 if (freq->old < freq->new && send_ipi) { 7708 /* 7709 * We upscale the frequency. Must make the guest 7710 * doesn't see old kvmclock values while running with 7711 * the new frequency, otherwise we risk the guest sees 7712 * time go backwards. 7713 * 7714 * In case we update the frequency for another cpu 7715 * (which might be in guest context) send an interrupt 7716 * to kick the cpu out of guest context. Next time 7717 * guest context is entered kvmclock will be updated, 7718 * so the guest will not see stale values. 7719 */ 7720 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 7721 } 7722 } 7723 7724 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 7725 void *data) 7726 { 7727 struct cpufreq_freqs *freq = data; 7728 int cpu; 7729 7730 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 7731 return 0; 7732 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 7733 return 0; 7734 7735 for_each_cpu(cpu, freq->policy->cpus) 7736 __kvmclock_cpufreq_notifier(freq, cpu); 7737 7738 return 0; 7739 } 7740 7741 static struct notifier_block kvmclock_cpufreq_notifier_block = { 7742 .notifier_call = kvmclock_cpufreq_notifier 7743 }; 7744 7745 static int kvmclock_cpu_online(unsigned int cpu) 7746 { 7747 tsc_khz_changed(NULL); 7748 return 0; 7749 } 7750 7751 static void kvm_timer_init(void) 7752 { 7753 max_tsc_khz = tsc_khz; 7754 7755 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 7756 #ifdef CONFIG_CPU_FREQ 7757 struct cpufreq_policy *policy; 7758 int cpu; 7759 7760 cpu = get_cpu(); 7761 policy = cpufreq_cpu_get(cpu); 7762 if (policy) { 7763 if (policy->cpuinfo.max_freq) 7764 max_tsc_khz = policy->cpuinfo.max_freq; 7765 cpufreq_cpu_put(policy); 7766 } 7767 put_cpu(); 7768 #endif 7769 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 7770 CPUFREQ_TRANSITION_NOTIFIER); 7771 } 7772 7773 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 7774 kvmclock_cpu_online, kvmclock_cpu_down_prep); 7775 } 7776 7777 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 7778 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 7779 7780 int kvm_is_in_guest(void) 7781 { 7782 return __this_cpu_read(current_vcpu) != NULL; 7783 } 7784 7785 static int kvm_is_user_mode(void) 7786 { 7787 int user_mode = 3; 7788 7789 if (__this_cpu_read(current_vcpu)) 7790 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu)); 7791 7792 return user_mode != 0; 7793 } 7794 7795 static unsigned long kvm_get_guest_ip(void) 7796 { 7797 unsigned long ip = 0; 7798 7799 if (__this_cpu_read(current_vcpu)) 7800 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 7801 7802 return ip; 7803 } 7804 7805 static void kvm_handle_intel_pt_intr(void) 7806 { 7807 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 7808 7809 kvm_make_request(KVM_REQ_PMI, vcpu); 7810 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7811 (unsigned long *)&vcpu->arch.pmu.global_status); 7812 } 7813 7814 static struct perf_guest_info_callbacks kvm_guest_cbs = { 7815 .is_in_guest = kvm_is_in_guest, 7816 .is_user_mode = kvm_is_user_mode, 7817 .get_guest_ip = kvm_get_guest_ip, 7818 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 7819 }; 7820 7821 #ifdef CONFIG_X86_64 7822 static void pvclock_gtod_update_fn(struct work_struct *work) 7823 { 7824 struct kvm *kvm; 7825 7826 struct kvm_vcpu *vcpu; 7827 int i; 7828 7829 mutex_lock(&kvm_lock); 7830 list_for_each_entry(kvm, &vm_list, vm_list) 7831 kvm_for_each_vcpu(i, vcpu, kvm) 7832 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7833 atomic_set(&kvm_guest_has_master_clock, 0); 7834 mutex_unlock(&kvm_lock); 7835 } 7836 7837 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 7838 7839 /* 7840 * Notification about pvclock gtod data update. 7841 */ 7842 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 7843 void *priv) 7844 { 7845 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 7846 struct timekeeper *tk = priv; 7847 7848 update_pvclock_gtod(tk); 7849 7850 /* disable master clock if host does not trust, or does not 7851 * use, TSC based clocksource. 7852 */ 7853 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 7854 atomic_read(&kvm_guest_has_master_clock) != 0) 7855 queue_work(system_long_wq, &pvclock_gtod_work); 7856 7857 return 0; 7858 } 7859 7860 static struct notifier_block pvclock_gtod_notifier = { 7861 .notifier_call = pvclock_gtod_notify, 7862 }; 7863 #endif 7864 7865 int kvm_arch_init(void *opaque) 7866 { 7867 struct kvm_x86_init_ops *ops = opaque; 7868 int r; 7869 7870 if (kvm_x86_ops.hardware_enable) { 7871 printk(KERN_ERR "kvm: already loaded the other module\n"); 7872 r = -EEXIST; 7873 goto out; 7874 } 7875 7876 if (!ops->cpu_has_kvm_support()) { 7877 pr_err_ratelimited("kvm: no hardware support\n"); 7878 r = -EOPNOTSUPP; 7879 goto out; 7880 } 7881 if (ops->disabled_by_bios()) { 7882 pr_err_ratelimited("kvm: disabled by bios\n"); 7883 r = -EOPNOTSUPP; 7884 goto out; 7885 } 7886 7887 /* 7888 * KVM explicitly assumes that the guest has an FPU and 7889 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 7890 * vCPU's FPU state as a fxregs_state struct. 7891 */ 7892 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 7893 printk(KERN_ERR "kvm: inadequate fpu\n"); 7894 r = -EOPNOTSUPP; 7895 goto out; 7896 } 7897 7898 r = -ENOMEM; 7899 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 7900 __alignof__(struct fpu), SLAB_ACCOUNT, 7901 NULL); 7902 if (!x86_fpu_cache) { 7903 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 7904 goto out; 7905 } 7906 7907 x86_emulator_cache = kvm_alloc_emulator_cache(); 7908 if (!x86_emulator_cache) { 7909 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 7910 goto out_free_x86_fpu_cache; 7911 } 7912 7913 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 7914 if (!user_return_msrs) { 7915 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 7916 goto out_free_x86_emulator_cache; 7917 } 7918 7919 r = kvm_mmu_module_init(); 7920 if (r) 7921 goto out_free_percpu; 7922 7923 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 7924 PT_DIRTY_MASK, PT64_NX_MASK, 0, 7925 PT_PRESENT_MASK, 0, sme_me_mask); 7926 kvm_timer_init(); 7927 7928 perf_register_guest_info_callbacks(&kvm_guest_cbs); 7929 7930 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 7931 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 7932 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 7933 } 7934 7935 kvm_lapic_init(); 7936 if (pi_inject_timer == -1) 7937 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 7938 #ifdef CONFIG_X86_64 7939 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 7940 7941 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7942 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 7943 #endif 7944 7945 return 0; 7946 7947 out_free_percpu: 7948 free_percpu(user_return_msrs); 7949 out_free_x86_emulator_cache: 7950 kmem_cache_destroy(x86_emulator_cache); 7951 out_free_x86_fpu_cache: 7952 kmem_cache_destroy(x86_fpu_cache); 7953 out: 7954 return r; 7955 } 7956 7957 void kvm_arch_exit(void) 7958 { 7959 #ifdef CONFIG_X86_64 7960 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 7961 clear_hv_tscchange_cb(); 7962 #endif 7963 kvm_lapic_exit(); 7964 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 7965 7966 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 7967 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 7968 CPUFREQ_TRANSITION_NOTIFIER); 7969 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 7970 #ifdef CONFIG_X86_64 7971 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 7972 #endif 7973 kvm_x86_ops.hardware_enable = NULL; 7974 kvm_mmu_module_exit(); 7975 free_percpu(user_return_msrs); 7976 kmem_cache_destroy(x86_fpu_cache); 7977 } 7978 7979 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 7980 { 7981 ++vcpu->stat.halt_exits; 7982 if (lapic_in_kernel(vcpu)) { 7983 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 7984 return 1; 7985 } else { 7986 vcpu->run->exit_reason = KVM_EXIT_HLT; 7987 return 0; 7988 } 7989 } 7990 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 7991 7992 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 7993 { 7994 int ret = kvm_skip_emulated_instruction(vcpu); 7995 /* 7996 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 7997 * KVM_EXIT_DEBUG here. 7998 */ 7999 return kvm_vcpu_halt(vcpu) && ret; 8000 } 8001 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 8002 8003 #ifdef CONFIG_X86_64 8004 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 8005 unsigned long clock_type) 8006 { 8007 struct kvm_clock_pairing clock_pairing; 8008 struct timespec64 ts; 8009 u64 cycle; 8010 int ret; 8011 8012 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 8013 return -KVM_EOPNOTSUPP; 8014 8015 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 8016 return -KVM_EOPNOTSUPP; 8017 8018 clock_pairing.sec = ts.tv_sec; 8019 clock_pairing.nsec = ts.tv_nsec; 8020 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 8021 clock_pairing.flags = 0; 8022 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 8023 8024 ret = 0; 8025 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 8026 sizeof(struct kvm_clock_pairing))) 8027 ret = -KVM_EFAULT; 8028 8029 return ret; 8030 } 8031 #endif 8032 8033 /* 8034 * kvm_pv_kick_cpu_op: Kick a vcpu. 8035 * 8036 * @apicid - apicid of vcpu to be kicked. 8037 */ 8038 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 8039 { 8040 struct kvm_lapic_irq lapic_irq; 8041 8042 lapic_irq.shorthand = APIC_DEST_NOSHORT; 8043 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 8044 lapic_irq.level = 0; 8045 lapic_irq.dest_id = apicid; 8046 lapic_irq.msi_redir_hint = false; 8047 8048 lapic_irq.delivery_mode = APIC_DM_REMRD; 8049 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 8050 } 8051 8052 bool kvm_apicv_activated(struct kvm *kvm) 8053 { 8054 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 8055 } 8056 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 8057 8058 void kvm_apicv_init(struct kvm *kvm, bool enable) 8059 { 8060 if (enable) 8061 clear_bit(APICV_INHIBIT_REASON_DISABLE, 8062 &kvm->arch.apicv_inhibit_reasons); 8063 else 8064 set_bit(APICV_INHIBIT_REASON_DISABLE, 8065 &kvm->arch.apicv_inhibit_reasons); 8066 } 8067 EXPORT_SYMBOL_GPL(kvm_apicv_init); 8068 8069 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id) 8070 { 8071 struct kvm_vcpu *target = NULL; 8072 struct kvm_apic_map *map; 8073 8074 rcu_read_lock(); 8075 map = rcu_dereference(kvm->arch.apic_map); 8076 8077 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 8078 target = map->phys_map[dest_id]->vcpu; 8079 8080 rcu_read_unlock(); 8081 8082 if (target && READ_ONCE(target->ready)) 8083 kvm_vcpu_yield_to(target); 8084 } 8085 8086 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 8087 { 8088 unsigned long nr, a0, a1, a2, a3, ret; 8089 int op_64_bit; 8090 8091 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 8092 return kvm_hv_hypercall(vcpu); 8093 8094 nr = kvm_rax_read(vcpu); 8095 a0 = kvm_rbx_read(vcpu); 8096 a1 = kvm_rcx_read(vcpu); 8097 a2 = kvm_rdx_read(vcpu); 8098 a3 = kvm_rsi_read(vcpu); 8099 8100 trace_kvm_hypercall(nr, a0, a1, a2, a3); 8101 8102 op_64_bit = is_64_bit_mode(vcpu); 8103 if (!op_64_bit) { 8104 nr &= 0xFFFFFFFF; 8105 a0 &= 0xFFFFFFFF; 8106 a1 &= 0xFFFFFFFF; 8107 a2 &= 0xFFFFFFFF; 8108 a3 &= 0xFFFFFFFF; 8109 } 8110 8111 if (kvm_x86_ops.get_cpl(vcpu) != 0) { 8112 ret = -KVM_EPERM; 8113 goto out; 8114 } 8115 8116 ret = -KVM_ENOSYS; 8117 8118 switch (nr) { 8119 case KVM_HC_VAPIC_POLL_IRQ: 8120 ret = 0; 8121 break; 8122 case KVM_HC_KICK_CPU: 8123 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 8124 break; 8125 8126 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 8127 kvm_sched_yield(vcpu->kvm, a1); 8128 ret = 0; 8129 break; 8130 #ifdef CONFIG_X86_64 8131 case KVM_HC_CLOCK_PAIRING: 8132 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 8133 break; 8134 #endif 8135 case KVM_HC_SEND_IPI: 8136 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 8137 break; 8138 8139 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 8140 break; 8141 case KVM_HC_SCHED_YIELD: 8142 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 8143 break; 8144 8145 kvm_sched_yield(vcpu->kvm, a0); 8146 ret = 0; 8147 break; 8148 default: 8149 ret = -KVM_ENOSYS; 8150 break; 8151 } 8152 out: 8153 if (!op_64_bit) 8154 ret = (u32)ret; 8155 kvm_rax_write(vcpu, ret); 8156 8157 ++vcpu->stat.hypercalls; 8158 return kvm_skip_emulated_instruction(vcpu); 8159 } 8160 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 8161 8162 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 8163 { 8164 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8165 char instruction[3]; 8166 unsigned long rip = kvm_rip_read(vcpu); 8167 8168 kvm_x86_ops.patch_hypercall(vcpu, instruction); 8169 8170 return emulator_write_emulated(ctxt, rip, instruction, 3, 8171 &ctxt->exception); 8172 } 8173 8174 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 8175 { 8176 return vcpu->run->request_interrupt_window && 8177 likely(!pic_in_kernel(vcpu->kvm)); 8178 } 8179 8180 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 8181 { 8182 struct kvm_run *kvm_run = vcpu->run; 8183 8184 /* 8185 * if_flag is obsolete and useless, so do not bother 8186 * setting it for SEV-ES guests. Userspace can just 8187 * use kvm_run->ready_for_interrupt_injection. 8188 */ 8189 kvm_run->if_flag = !vcpu->arch.guest_state_protected 8190 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 8191 8192 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 8193 kvm_run->cr8 = kvm_get_cr8(vcpu); 8194 kvm_run->apic_base = kvm_get_apic_base(vcpu); 8195 kvm_run->ready_for_interrupt_injection = 8196 pic_in_kernel(vcpu->kvm) || 8197 kvm_vcpu_ready_for_interrupt_injection(vcpu); 8198 } 8199 8200 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 8201 { 8202 int max_irr, tpr; 8203 8204 if (!kvm_x86_ops.update_cr8_intercept) 8205 return; 8206 8207 if (!lapic_in_kernel(vcpu)) 8208 return; 8209 8210 if (vcpu->arch.apicv_active) 8211 return; 8212 8213 if (!vcpu->arch.apic->vapic_addr) 8214 max_irr = kvm_lapic_find_highest_irr(vcpu); 8215 else 8216 max_irr = -1; 8217 8218 if (max_irr != -1) 8219 max_irr >>= 4; 8220 8221 tpr = kvm_lapic_get_cr8(vcpu); 8222 8223 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr); 8224 } 8225 8226 static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 8227 { 8228 int r; 8229 bool can_inject = true; 8230 8231 /* try to reinject previous events if any */ 8232 8233 if (vcpu->arch.exception.injected) { 8234 kvm_x86_ops.queue_exception(vcpu); 8235 can_inject = false; 8236 } 8237 /* 8238 * Do not inject an NMI or interrupt if there is a pending 8239 * exception. Exceptions and interrupts are recognized at 8240 * instruction boundaries, i.e. the start of an instruction. 8241 * Trap-like exceptions, e.g. #DB, have higher priority than 8242 * NMIs and interrupts, i.e. traps are recognized before an 8243 * NMI/interrupt that's pending on the same instruction. 8244 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 8245 * priority, but are only generated (pended) during instruction 8246 * execution, i.e. a pending fault-like exception means the 8247 * fault occurred on the *previous* instruction and must be 8248 * serviced prior to recognizing any new events in order to 8249 * fully complete the previous instruction. 8250 */ 8251 else if (!vcpu->arch.exception.pending) { 8252 if (vcpu->arch.nmi_injected) { 8253 kvm_x86_ops.set_nmi(vcpu); 8254 can_inject = false; 8255 } else if (vcpu->arch.interrupt.injected) { 8256 kvm_x86_ops.set_irq(vcpu); 8257 can_inject = false; 8258 } 8259 } 8260 8261 WARN_ON_ONCE(vcpu->arch.exception.injected && 8262 vcpu->arch.exception.pending); 8263 8264 /* 8265 * Call check_nested_events() even if we reinjected a previous event 8266 * in order for caller to determine if it should require immediate-exit 8267 * from L2 to L1 due to pending L1 events which require exit 8268 * from L2 to L1. 8269 */ 8270 if (is_guest_mode(vcpu)) { 8271 r = kvm_x86_ops.nested_ops->check_events(vcpu); 8272 if (r < 0) 8273 goto busy; 8274 } 8275 8276 /* try to inject new event if pending */ 8277 if (vcpu->arch.exception.pending) { 8278 trace_kvm_inj_exception(vcpu->arch.exception.nr, 8279 vcpu->arch.exception.has_error_code, 8280 vcpu->arch.exception.error_code); 8281 8282 vcpu->arch.exception.pending = false; 8283 vcpu->arch.exception.injected = true; 8284 8285 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 8286 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 8287 X86_EFLAGS_RF); 8288 8289 if (vcpu->arch.exception.nr == DB_VECTOR) { 8290 kvm_deliver_exception_payload(vcpu); 8291 if (vcpu->arch.dr7 & DR7_GD) { 8292 vcpu->arch.dr7 &= ~DR7_GD; 8293 kvm_update_dr7(vcpu); 8294 } 8295 } 8296 8297 kvm_x86_ops.queue_exception(vcpu); 8298 can_inject = false; 8299 } 8300 8301 /* 8302 * Finally, inject interrupt events. If an event cannot be injected 8303 * due to architectural conditions (e.g. IF=0) a window-open exit 8304 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 8305 * and can architecturally be injected, but we cannot do it right now: 8306 * an interrupt could have arrived just now and we have to inject it 8307 * as a vmexit, or there could already an event in the queue, which is 8308 * indicated by can_inject. In that case we request an immediate exit 8309 * in order to make progress and get back here for another iteration. 8310 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 8311 */ 8312 if (vcpu->arch.smi_pending) { 8313 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY; 8314 if (r < 0) 8315 goto busy; 8316 if (r) { 8317 vcpu->arch.smi_pending = false; 8318 ++vcpu->arch.smi_count; 8319 enter_smm(vcpu); 8320 can_inject = false; 8321 } else 8322 kvm_x86_ops.enable_smi_window(vcpu); 8323 } 8324 8325 if (vcpu->arch.nmi_pending) { 8326 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY; 8327 if (r < 0) 8328 goto busy; 8329 if (r) { 8330 --vcpu->arch.nmi_pending; 8331 vcpu->arch.nmi_injected = true; 8332 kvm_x86_ops.set_nmi(vcpu); 8333 can_inject = false; 8334 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0); 8335 } 8336 if (vcpu->arch.nmi_pending) 8337 kvm_x86_ops.enable_nmi_window(vcpu); 8338 } 8339 8340 if (kvm_cpu_has_injectable_intr(vcpu)) { 8341 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY; 8342 if (r < 0) 8343 goto busy; 8344 if (r) { 8345 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 8346 kvm_x86_ops.set_irq(vcpu); 8347 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0); 8348 } 8349 if (kvm_cpu_has_injectable_intr(vcpu)) 8350 kvm_x86_ops.enable_irq_window(vcpu); 8351 } 8352 8353 if (is_guest_mode(vcpu) && 8354 kvm_x86_ops.nested_ops->hv_timer_pending && 8355 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 8356 *req_immediate_exit = true; 8357 8358 WARN_ON(vcpu->arch.exception.pending); 8359 return; 8360 8361 busy: 8362 *req_immediate_exit = true; 8363 return; 8364 } 8365 8366 static void process_nmi(struct kvm_vcpu *vcpu) 8367 { 8368 unsigned limit = 2; 8369 8370 /* 8371 * x86 is limited to one NMI running, and one NMI pending after it. 8372 * If an NMI is already in progress, limit further NMIs to just one. 8373 * Otherwise, allow two (and we'll inject the first one immediately). 8374 */ 8375 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 8376 limit = 1; 8377 8378 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 8379 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 8380 kvm_make_request(KVM_REQ_EVENT, vcpu); 8381 } 8382 8383 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 8384 { 8385 u32 flags = 0; 8386 flags |= seg->g << 23; 8387 flags |= seg->db << 22; 8388 flags |= seg->l << 21; 8389 flags |= seg->avl << 20; 8390 flags |= seg->present << 15; 8391 flags |= seg->dpl << 13; 8392 flags |= seg->s << 12; 8393 flags |= seg->type << 8; 8394 return flags; 8395 } 8396 8397 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 8398 { 8399 struct kvm_segment seg; 8400 int offset; 8401 8402 kvm_get_segment(vcpu, &seg, n); 8403 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 8404 8405 if (n < 3) 8406 offset = 0x7f84 + n * 12; 8407 else 8408 offset = 0x7f2c + (n - 3) * 12; 8409 8410 put_smstate(u32, buf, offset + 8, seg.base); 8411 put_smstate(u32, buf, offset + 4, seg.limit); 8412 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 8413 } 8414 8415 #ifdef CONFIG_X86_64 8416 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 8417 { 8418 struct kvm_segment seg; 8419 int offset; 8420 u16 flags; 8421 8422 kvm_get_segment(vcpu, &seg, n); 8423 offset = 0x7e00 + n * 16; 8424 8425 flags = enter_smm_get_segment_flags(&seg) >> 8; 8426 put_smstate(u16, buf, offset, seg.selector); 8427 put_smstate(u16, buf, offset + 2, flags); 8428 put_smstate(u32, buf, offset + 4, seg.limit); 8429 put_smstate(u64, buf, offset + 8, seg.base); 8430 } 8431 #endif 8432 8433 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 8434 { 8435 struct desc_ptr dt; 8436 struct kvm_segment seg; 8437 unsigned long val; 8438 int i; 8439 8440 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 8441 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 8442 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 8443 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 8444 8445 for (i = 0; i < 8; i++) 8446 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 8447 8448 kvm_get_dr(vcpu, 6, &val); 8449 put_smstate(u32, buf, 0x7fcc, (u32)val); 8450 kvm_get_dr(vcpu, 7, &val); 8451 put_smstate(u32, buf, 0x7fc8, (u32)val); 8452 8453 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8454 put_smstate(u32, buf, 0x7fc4, seg.selector); 8455 put_smstate(u32, buf, 0x7f64, seg.base); 8456 put_smstate(u32, buf, 0x7f60, seg.limit); 8457 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 8458 8459 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8460 put_smstate(u32, buf, 0x7fc0, seg.selector); 8461 put_smstate(u32, buf, 0x7f80, seg.base); 8462 put_smstate(u32, buf, 0x7f7c, seg.limit); 8463 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 8464 8465 kvm_x86_ops.get_gdt(vcpu, &dt); 8466 put_smstate(u32, buf, 0x7f74, dt.address); 8467 put_smstate(u32, buf, 0x7f70, dt.size); 8468 8469 kvm_x86_ops.get_idt(vcpu, &dt); 8470 put_smstate(u32, buf, 0x7f58, dt.address); 8471 put_smstate(u32, buf, 0x7f54, dt.size); 8472 8473 for (i = 0; i < 6; i++) 8474 enter_smm_save_seg_32(vcpu, buf, i); 8475 8476 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 8477 8478 /* revision id */ 8479 put_smstate(u32, buf, 0x7efc, 0x00020000); 8480 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 8481 } 8482 8483 #ifdef CONFIG_X86_64 8484 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 8485 { 8486 struct desc_ptr dt; 8487 struct kvm_segment seg; 8488 unsigned long val; 8489 int i; 8490 8491 for (i = 0; i < 16; i++) 8492 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 8493 8494 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 8495 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 8496 8497 kvm_get_dr(vcpu, 6, &val); 8498 put_smstate(u64, buf, 0x7f68, val); 8499 kvm_get_dr(vcpu, 7, &val); 8500 put_smstate(u64, buf, 0x7f60, val); 8501 8502 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 8503 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 8504 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 8505 8506 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 8507 8508 /* revision id */ 8509 put_smstate(u32, buf, 0x7efc, 0x00020064); 8510 8511 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 8512 8513 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 8514 put_smstate(u16, buf, 0x7e90, seg.selector); 8515 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 8516 put_smstate(u32, buf, 0x7e94, seg.limit); 8517 put_smstate(u64, buf, 0x7e98, seg.base); 8518 8519 kvm_x86_ops.get_idt(vcpu, &dt); 8520 put_smstate(u32, buf, 0x7e84, dt.size); 8521 put_smstate(u64, buf, 0x7e88, dt.address); 8522 8523 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 8524 put_smstate(u16, buf, 0x7e70, seg.selector); 8525 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 8526 put_smstate(u32, buf, 0x7e74, seg.limit); 8527 put_smstate(u64, buf, 0x7e78, seg.base); 8528 8529 kvm_x86_ops.get_gdt(vcpu, &dt); 8530 put_smstate(u32, buf, 0x7e64, dt.size); 8531 put_smstate(u64, buf, 0x7e68, dt.address); 8532 8533 for (i = 0; i < 6; i++) 8534 enter_smm_save_seg_64(vcpu, buf, i); 8535 } 8536 #endif 8537 8538 static void enter_smm(struct kvm_vcpu *vcpu) 8539 { 8540 struct kvm_segment cs, ds; 8541 struct desc_ptr dt; 8542 char buf[512]; 8543 u32 cr0; 8544 8545 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 8546 memset(buf, 0, 512); 8547 #ifdef CONFIG_X86_64 8548 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8549 enter_smm_save_state_64(vcpu, buf); 8550 else 8551 #endif 8552 enter_smm_save_state_32(vcpu, buf); 8553 8554 /* 8555 * Give pre_enter_smm() a chance to make ISA-specific changes to the 8556 * vCPU state (e.g. leave guest mode) after we've saved the state into 8557 * the SMM state-save area. 8558 */ 8559 kvm_x86_ops.pre_enter_smm(vcpu, buf); 8560 8561 vcpu->arch.hflags |= HF_SMM_MASK; 8562 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 8563 8564 if (kvm_x86_ops.get_nmi_mask(vcpu)) 8565 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 8566 else 8567 kvm_x86_ops.set_nmi_mask(vcpu, true); 8568 8569 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 8570 kvm_rip_write(vcpu, 0x8000); 8571 8572 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 8573 kvm_x86_ops.set_cr0(vcpu, cr0); 8574 vcpu->arch.cr0 = cr0; 8575 8576 kvm_x86_ops.set_cr4(vcpu, 0); 8577 8578 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 8579 dt.address = dt.size = 0; 8580 kvm_x86_ops.set_idt(vcpu, &dt); 8581 8582 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 8583 8584 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 8585 cs.base = vcpu->arch.smbase; 8586 8587 ds.selector = 0; 8588 ds.base = 0; 8589 8590 cs.limit = ds.limit = 0xffffffff; 8591 cs.type = ds.type = 0x3; 8592 cs.dpl = ds.dpl = 0; 8593 cs.db = ds.db = 0; 8594 cs.s = ds.s = 1; 8595 cs.l = ds.l = 0; 8596 cs.g = ds.g = 1; 8597 cs.avl = ds.avl = 0; 8598 cs.present = ds.present = 1; 8599 cs.unusable = ds.unusable = 0; 8600 cs.padding = ds.padding = 0; 8601 8602 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 8603 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 8604 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 8605 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 8606 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 8607 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 8608 8609 #ifdef CONFIG_X86_64 8610 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 8611 kvm_x86_ops.set_efer(vcpu, 0); 8612 #endif 8613 8614 kvm_update_cpuid_runtime(vcpu); 8615 kvm_mmu_reset_context(vcpu); 8616 } 8617 8618 static void process_smi(struct kvm_vcpu *vcpu) 8619 { 8620 vcpu->arch.smi_pending = true; 8621 kvm_make_request(KVM_REQ_EVENT, vcpu); 8622 } 8623 8624 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 8625 unsigned long *vcpu_bitmap) 8626 { 8627 cpumask_var_t cpus; 8628 8629 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 8630 8631 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 8632 NULL, vcpu_bitmap, cpus); 8633 8634 free_cpumask_var(cpus); 8635 } 8636 8637 void kvm_make_scan_ioapic_request(struct kvm *kvm) 8638 { 8639 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 8640 } 8641 8642 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 8643 { 8644 if (!lapic_in_kernel(vcpu)) 8645 return; 8646 8647 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 8648 kvm_apic_update_apicv(vcpu); 8649 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu); 8650 } 8651 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 8652 8653 /* 8654 * NOTE: Do not hold any lock prior to calling this. 8655 * 8656 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 8657 * locked, because it calls __x86_set_memory_region() which does 8658 * synchronize_srcu(&kvm->srcu). 8659 */ 8660 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 8661 { 8662 struct kvm_vcpu *except; 8663 unsigned long old, new, expected; 8664 8665 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 8666 !kvm_x86_ops.check_apicv_inhibit_reasons(bit)) 8667 return; 8668 8669 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 8670 do { 8671 expected = new = old; 8672 if (activate) 8673 __clear_bit(bit, &new); 8674 else 8675 __set_bit(bit, &new); 8676 if (new == old) 8677 break; 8678 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 8679 } while (old != expected); 8680 8681 if (!!old == !!new) 8682 return; 8683 8684 trace_kvm_apicv_update_request(activate, bit); 8685 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 8686 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate); 8687 8688 /* 8689 * Sending request to update APICV for all other vcpus, 8690 * while update the calling vcpu immediately instead of 8691 * waiting for another #VMEXIT to handle the request. 8692 */ 8693 except = kvm_get_running_vcpu(); 8694 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 8695 except); 8696 if (except) 8697 kvm_vcpu_update_apicv(except); 8698 } 8699 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 8700 8701 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 8702 { 8703 if (!kvm_apic_present(vcpu)) 8704 return; 8705 8706 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 8707 8708 if (irqchip_split(vcpu->kvm)) 8709 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 8710 else { 8711 if (vcpu->arch.apicv_active) 8712 kvm_x86_ops.sync_pir_to_irr(vcpu); 8713 if (ioapic_in_kernel(vcpu->kvm)) 8714 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 8715 } 8716 8717 if (is_guest_mode(vcpu)) 8718 vcpu->arch.load_eoi_exitmap_pending = true; 8719 else 8720 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 8721 } 8722 8723 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 8724 { 8725 u64 eoi_exit_bitmap[4]; 8726 8727 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 8728 return; 8729 8730 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 8731 vcpu_to_synic(vcpu)->vec_bitmap, 256); 8732 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap); 8733 } 8734 8735 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 8736 unsigned long start, unsigned long end) 8737 { 8738 unsigned long apic_address; 8739 8740 /* 8741 * The physical address of apic access page is stored in the VMCS. 8742 * Update it when it becomes invalid. 8743 */ 8744 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 8745 if (start <= apic_address && apic_address < end) 8746 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 8747 } 8748 8749 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 8750 { 8751 if (!lapic_in_kernel(vcpu)) 8752 return; 8753 8754 if (!kvm_x86_ops.set_apic_access_page_addr) 8755 return; 8756 8757 kvm_x86_ops.set_apic_access_page_addr(vcpu); 8758 } 8759 8760 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 8761 { 8762 smp_send_reschedule(vcpu->cpu); 8763 } 8764 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 8765 8766 /* 8767 * Returns 1 to let vcpu_run() continue the guest execution loop without 8768 * exiting to the userspace. Otherwise, the value will be returned to the 8769 * userspace. 8770 */ 8771 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 8772 { 8773 int r; 8774 bool req_int_win = 8775 dm_request_for_irq_injection(vcpu) && 8776 kvm_cpu_accept_dm_intr(vcpu); 8777 fastpath_t exit_fastpath; 8778 8779 bool req_immediate_exit = false; 8780 8781 /* Forbid vmenter if vcpu dirty ring is soft-full */ 8782 if (unlikely(vcpu->kvm->dirty_ring_size && 8783 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 8784 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 8785 trace_kvm_dirty_ring_exit(vcpu); 8786 r = 0; 8787 goto out; 8788 } 8789 8790 if (kvm_request_pending(vcpu)) { 8791 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 8792 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 8793 r = 0; 8794 goto out; 8795 } 8796 } 8797 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 8798 kvm_mmu_unload(vcpu); 8799 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 8800 __kvm_migrate_timers(vcpu); 8801 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 8802 kvm_gen_update_masterclock(vcpu->kvm); 8803 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 8804 kvm_gen_kvmclock_update(vcpu); 8805 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 8806 r = kvm_guest_time_update(vcpu); 8807 if (unlikely(r)) 8808 goto out; 8809 } 8810 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 8811 kvm_mmu_sync_roots(vcpu); 8812 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 8813 kvm_mmu_load_pgd(vcpu); 8814 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 8815 kvm_vcpu_flush_tlb_all(vcpu); 8816 8817 /* Flushing all ASIDs flushes the current ASID... */ 8818 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 8819 } 8820 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 8821 kvm_vcpu_flush_tlb_current(vcpu); 8822 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu)) 8823 kvm_vcpu_flush_tlb_guest(vcpu); 8824 8825 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 8826 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 8827 r = 0; 8828 goto out; 8829 } 8830 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8831 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 8832 vcpu->mmio_needed = 0; 8833 r = 0; 8834 goto out; 8835 } 8836 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 8837 /* Page is swapped out. Do synthetic halt */ 8838 vcpu->arch.apf.halted = true; 8839 r = 1; 8840 goto out; 8841 } 8842 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 8843 record_steal_time(vcpu); 8844 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 8845 process_smi(vcpu); 8846 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 8847 process_nmi(vcpu); 8848 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 8849 kvm_pmu_handle_event(vcpu); 8850 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 8851 kvm_pmu_deliver_pmi(vcpu); 8852 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 8853 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 8854 if (test_bit(vcpu->arch.pending_ioapic_eoi, 8855 vcpu->arch.ioapic_handled_vectors)) { 8856 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 8857 vcpu->run->eoi.vector = 8858 vcpu->arch.pending_ioapic_eoi; 8859 r = 0; 8860 goto out; 8861 } 8862 } 8863 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 8864 vcpu_scan_ioapic(vcpu); 8865 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 8866 vcpu_load_eoi_exitmap(vcpu); 8867 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 8868 kvm_vcpu_reload_apic_access_page(vcpu); 8869 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 8870 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8871 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 8872 r = 0; 8873 goto out; 8874 } 8875 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 8876 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 8877 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 8878 r = 0; 8879 goto out; 8880 } 8881 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 8882 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 8883 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 8884 r = 0; 8885 goto out; 8886 } 8887 8888 /* 8889 * KVM_REQ_HV_STIMER has to be processed after 8890 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 8891 * depend on the guest clock being up-to-date 8892 */ 8893 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 8894 kvm_hv_process_stimers(vcpu); 8895 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 8896 kvm_vcpu_update_apicv(vcpu); 8897 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 8898 kvm_check_async_pf_completion(vcpu); 8899 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 8900 kvm_x86_ops.msr_filter_changed(vcpu); 8901 } 8902 8903 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 8904 ++vcpu->stat.req_event; 8905 kvm_apic_accept_events(vcpu); 8906 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 8907 r = 1; 8908 goto out; 8909 } 8910 8911 inject_pending_event(vcpu, &req_immediate_exit); 8912 if (req_int_win) 8913 kvm_x86_ops.enable_irq_window(vcpu); 8914 8915 if (kvm_lapic_enabled(vcpu)) { 8916 update_cr8_intercept(vcpu); 8917 kvm_lapic_sync_to_vapic(vcpu); 8918 } 8919 } 8920 8921 r = kvm_mmu_reload(vcpu); 8922 if (unlikely(r)) { 8923 goto cancel_injection; 8924 } 8925 8926 preempt_disable(); 8927 8928 kvm_x86_ops.prepare_guest_switch(vcpu); 8929 8930 /* 8931 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 8932 * IPI are then delayed after guest entry, which ensures that they 8933 * result in virtual interrupt delivery. 8934 */ 8935 local_irq_disable(); 8936 vcpu->mode = IN_GUEST_MODE; 8937 8938 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 8939 8940 /* 8941 * 1) We should set ->mode before checking ->requests. Please see 8942 * the comment in kvm_vcpu_exiting_guest_mode(). 8943 * 8944 * 2) For APICv, we should set ->mode before checking PID.ON. This 8945 * pairs with the memory barrier implicit in pi_test_and_set_on 8946 * (see vmx_deliver_posted_interrupt). 8947 * 8948 * 3) This also orders the write to mode from any reads to the page 8949 * tables done while the VCPU is running. Please see the comment 8950 * in kvm_flush_remote_tlbs. 8951 */ 8952 smp_mb__after_srcu_read_unlock(); 8953 8954 /* 8955 * This handles the case where a posted interrupt was 8956 * notified with kvm_vcpu_kick. 8957 */ 8958 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 8959 kvm_x86_ops.sync_pir_to_irr(vcpu); 8960 8961 if (kvm_vcpu_exit_request(vcpu)) { 8962 vcpu->mode = OUTSIDE_GUEST_MODE; 8963 smp_wmb(); 8964 local_irq_enable(); 8965 preempt_enable(); 8966 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 8967 r = 1; 8968 goto cancel_injection; 8969 } 8970 8971 if (req_immediate_exit) { 8972 kvm_make_request(KVM_REQ_EVENT, vcpu); 8973 kvm_x86_ops.request_immediate_exit(vcpu); 8974 } 8975 8976 trace_kvm_entry(vcpu); 8977 8978 fpregs_assert_state_consistent(); 8979 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 8980 switch_fpu_return(); 8981 8982 if (unlikely(vcpu->arch.switch_db_regs)) { 8983 set_debugreg(0, 7); 8984 set_debugreg(vcpu->arch.eff_db[0], 0); 8985 set_debugreg(vcpu->arch.eff_db[1], 1); 8986 set_debugreg(vcpu->arch.eff_db[2], 2); 8987 set_debugreg(vcpu->arch.eff_db[3], 3); 8988 set_debugreg(vcpu->arch.dr6, 6); 8989 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 8990 } 8991 8992 exit_fastpath = kvm_x86_ops.run(vcpu); 8993 8994 /* 8995 * Do this here before restoring debug registers on the host. And 8996 * since we do this before handling the vmexit, a DR access vmexit 8997 * can (a) read the correct value of the debug registers, (b) set 8998 * KVM_DEBUGREG_WONT_EXIT again. 8999 */ 9000 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 9001 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 9002 kvm_x86_ops.sync_dirty_debug_regs(vcpu); 9003 kvm_update_dr0123(vcpu); 9004 kvm_update_dr7(vcpu); 9005 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 9006 } 9007 9008 /* 9009 * If the guest has used debug registers, at least dr7 9010 * will be disabled while returning to the host. 9011 * If we don't have active breakpoints in the host, we don't 9012 * care about the messed up debug address registers. But if 9013 * we have some of them active, restore the old state. 9014 */ 9015 if (hw_breakpoint_active()) 9016 hw_breakpoint_restore(); 9017 9018 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 9019 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 9020 9021 vcpu->mode = OUTSIDE_GUEST_MODE; 9022 smp_wmb(); 9023 9024 kvm_x86_ops.handle_exit_irqoff(vcpu); 9025 9026 /* 9027 * Consume any pending interrupts, including the possible source of 9028 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 9029 * An instruction is required after local_irq_enable() to fully unblock 9030 * interrupts on processors that implement an interrupt shadow, the 9031 * stat.exits increment will do nicely. 9032 */ 9033 kvm_before_interrupt(vcpu); 9034 local_irq_enable(); 9035 ++vcpu->stat.exits; 9036 local_irq_disable(); 9037 kvm_after_interrupt(vcpu); 9038 9039 if (lapic_in_kernel(vcpu)) { 9040 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 9041 if (delta != S64_MIN) { 9042 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 9043 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 9044 } 9045 } 9046 9047 local_irq_enable(); 9048 preempt_enable(); 9049 9050 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9051 9052 /* 9053 * Profile KVM exit RIPs: 9054 */ 9055 if (unlikely(prof_on == KVM_PROFILING)) { 9056 unsigned long rip = kvm_rip_read(vcpu); 9057 profile_hit(KVM_PROFILING, (void *)rip); 9058 } 9059 9060 if (unlikely(vcpu->arch.tsc_always_catchup)) 9061 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9062 9063 if (vcpu->arch.apic_attention) 9064 kvm_lapic_sync_from_vapic(vcpu); 9065 9066 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath); 9067 return r; 9068 9069 cancel_injection: 9070 if (req_immediate_exit) 9071 kvm_make_request(KVM_REQ_EVENT, vcpu); 9072 kvm_x86_ops.cancel_injection(vcpu); 9073 if (unlikely(vcpu->arch.apic_attention)) 9074 kvm_lapic_sync_from_vapic(vcpu); 9075 out: 9076 return r; 9077 } 9078 9079 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 9080 { 9081 if (!kvm_arch_vcpu_runnable(vcpu) && 9082 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) { 9083 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9084 kvm_vcpu_block(vcpu); 9085 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9086 9087 if (kvm_x86_ops.post_block) 9088 kvm_x86_ops.post_block(vcpu); 9089 9090 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 9091 return 1; 9092 } 9093 9094 kvm_apic_accept_events(vcpu); 9095 switch(vcpu->arch.mp_state) { 9096 case KVM_MP_STATE_HALTED: 9097 vcpu->arch.pv.pv_unhalted = false; 9098 vcpu->arch.mp_state = 9099 KVM_MP_STATE_RUNNABLE; 9100 fallthrough; 9101 case KVM_MP_STATE_RUNNABLE: 9102 vcpu->arch.apf.halted = false; 9103 break; 9104 case KVM_MP_STATE_INIT_RECEIVED: 9105 break; 9106 default: 9107 return -EINTR; 9108 } 9109 return 1; 9110 } 9111 9112 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 9113 { 9114 if (is_guest_mode(vcpu)) 9115 kvm_x86_ops.nested_ops->check_events(vcpu); 9116 9117 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 9118 !vcpu->arch.apf.halted); 9119 } 9120 9121 static int vcpu_run(struct kvm_vcpu *vcpu) 9122 { 9123 int r; 9124 struct kvm *kvm = vcpu->kvm; 9125 9126 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9127 vcpu->arch.l1tf_flush_l1d = true; 9128 9129 for (;;) { 9130 if (kvm_vcpu_running(vcpu)) { 9131 r = vcpu_enter_guest(vcpu); 9132 } else { 9133 r = vcpu_block(kvm, vcpu); 9134 } 9135 9136 if (r <= 0) 9137 break; 9138 9139 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 9140 if (kvm_cpu_has_pending_timer(vcpu)) 9141 kvm_inject_pending_timer_irqs(vcpu); 9142 9143 if (dm_request_for_irq_injection(vcpu) && 9144 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 9145 r = 0; 9146 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 9147 ++vcpu->stat.request_irq_exits; 9148 break; 9149 } 9150 9151 if (__xfer_to_guest_mode_work_pending()) { 9152 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9153 r = xfer_to_guest_mode_handle_work(vcpu); 9154 if (r) 9155 return r; 9156 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9157 } 9158 } 9159 9160 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9161 9162 return r; 9163 } 9164 9165 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 9166 { 9167 int r; 9168 9169 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9170 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 9171 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9172 return r; 9173 } 9174 9175 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 9176 { 9177 BUG_ON(!vcpu->arch.pio.count); 9178 9179 return complete_emulated_io(vcpu); 9180 } 9181 9182 /* 9183 * Implements the following, as a state machine: 9184 * 9185 * read: 9186 * for each fragment 9187 * for each mmio piece in the fragment 9188 * write gpa, len 9189 * exit 9190 * copy data 9191 * execute insn 9192 * 9193 * write: 9194 * for each fragment 9195 * for each mmio piece in the fragment 9196 * write gpa, len 9197 * copy data 9198 * exit 9199 */ 9200 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 9201 { 9202 struct kvm_run *run = vcpu->run; 9203 struct kvm_mmio_fragment *frag; 9204 unsigned len; 9205 9206 BUG_ON(!vcpu->mmio_needed); 9207 9208 /* Complete previous fragment */ 9209 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 9210 len = min(8u, frag->len); 9211 if (!vcpu->mmio_is_write) 9212 memcpy(frag->data, run->mmio.data, len); 9213 9214 if (frag->len <= 8) { 9215 /* Switch to the next fragment. */ 9216 frag++; 9217 vcpu->mmio_cur_fragment++; 9218 } else { 9219 /* Go forward to the next mmio piece. */ 9220 frag->data += len; 9221 frag->gpa += len; 9222 frag->len -= len; 9223 } 9224 9225 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 9226 vcpu->mmio_needed = 0; 9227 9228 /* FIXME: return into emulator if single-stepping. */ 9229 if (vcpu->mmio_is_write) 9230 return 1; 9231 vcpu->mmio_read_completed = 1; 9232 return complete_emulated_io(vcpu); 9233 } 9234 9235 run->exit_reason = KVM_EXIT_MMIO; 9236 run->mmio.phys_addr = frag->gpa; 9237 if (vcpu->mmio_is_write) 9238 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 9239 run->mmio.len = min(8u, frag->len); 9240 run->mmio.is_write = vcpu->mmio_is_write; 9241 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9242 return 0; 9243 } 9244 9245 static void kvm_save_current_fpu(struct fpu *fpu) 9246 { 9247 /* 9248 * If the target FPU state is not resident in the CPU registers, just 9249 * memcpy() from current, else save CPU state directly to the target. 9250 */ 9251 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 9252 memcpy(&fpu->state, ¤t->thread.fpu.state, 9253 fpu_kernel_xstate_size); 9254 else 9255 copy_fpregs_to_fpstate(fpu); 9256 } 9257 9258 /* Swap (qemu) user FPU context for the guest FPU context. */ 9259 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 9260 { 9261 fpregs_lock(); 9262 9263 kvm_save_current_fpu(vcpu->arch.user_fpu); 9264 9265 /* 9266 * Guests with protected state can't have it set by the hypervisor, 9267 * so skip trying to set it. 9268 */ 9269 if (vcpu->arch.guest_fpu) 9270 /* PKRU is separately restored in kvm_x86_ops.run. */ 9271 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 9272 ~XFEATURE_MASK_PKRU); 9273 9274 fpregs_mark_activate(); 9275 fpregs_unlock(); 9276 9277 trace_kvm_fpu(1); 9278 } 9279 9280 /* When vcpu_run ends, restore user space FPU context. */ 9281 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 9282 { 9283 fpregs_lock(); 9284 9285 /* 9286 * Guests with protected state can't have it read by the hypervisor, 9287 * so skip trying to save it. 9288 */ 9289 if (vcpu->arch.guest_fpu) 9290 kvm_save_current_fpu(vcpu->arch.guest_fpu); 9291 9292 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 9293 9294 fpregs_mark_activate(); 9295 fpregs_unlock(); 9296 9297 ++vcpu->stat.fpu_reload; 9298 trace_kvm_fpu(0); 9299 } 9300 9301 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 9302 { 9303 struct kvm_run *kvm_run = vcpu->run; 9304 int r; 9305 9306 vcpu_load(vcpu); 9307 kvm_sigset_activate(vcpu); 9308 kvm_load_guest_fpu(vcpu); 9309 9310 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 9311 if (kvm_run->immediate_exit) { 9312 r = -EINTR; 9313 goto out; 9314 } 9315 kvm_vcpu_block(vcpu); 9316 kvm_apic_accept_events(vcpu); 9317 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 9318 r = -EAGAIN; 9319 if (signal_pending(current)) { 9320 r = -EINTR; 9321 kvm_run->exit_reason = KVM_EXIT_INTR; 9322 ++vcpu->stat.signal_exits; 9323 } 9324 goto out; 9325 } 9326 9327 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 9328 r = -EINVAL; 9329 goto out; 9330 } 9331 9332 if (kvm_run->kvm_dirty_regs) { 9333 r = sync_regs(vcpu); 9334 if (r != 0) 9335 goto out; 9336 } 9337 9338 /* re-sync apic's tpr */ 9339 if (!lapic_in_kernel(vcpu)) { 9340 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 9341 r = -EINVAL; 9342 goto out; 9343 } 9344 } 9345 9346 if (unlikely(vcpu->arch.complete_userspace_io)) { 9347 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 9348 vcpu->arch.complete_userspace_io = NULL; 9349 r = cui(vcpu); 9350 if (r <= 0) 9351 goto out; 9352 } else 9353 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 9354 9355 if (kvm_run->immediate_exit) 9356 r = -EINTR; 9357 else 9358 r = vcpu_run(vcpu); 9359 9360 out: 9361 kvm_put_guest_fpu(vcpu); 9362 if (kvm_run->kvm_valid_regs) 9363 store_regs(vcpu); 9364 post_kvm_run_save(vcpu); 9365 kvm_sigset_deactivate(vcpu); 9366 9367 vcpu_put(vcpu); 9368 return r; 9369 } 9370 9371 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9372 { 9373 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 9374 /* 9375 * We are here if userspace calls get_regs() in the middle of 9376 * instruction emulation. Registers state needs to be copied 9377 * back from emulation context to vcpu. Userspace shouldn't do 9378 * that usually, but some bad designed PV devices (vmware 9379 * backdoor interface) need this to work 9380 */ 9381 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 9382 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9383 } 9384 regs->rax = kvm_rax_read(vcpu); 9385 regs->rbx = kvm_rbx_read(vcpu); 9386 regs->rcx = kvm_rcx_read(vcpu); 9387 regs->rdx = kvm_rdx_read(vcpu); 9388 regs->rsi = kvm_rsi_read(vcpu); 9389 regs->rdi = kvm_rdi_read(vcpu); 9390 regs->rsp = kvm_rsp_read(vcpu); 9391 regs->rbp = kvm_rbp_read(vcpu); 9392 #ifdef CONFIG_X86_64 9393 regs->r8 = kvm_r8_read(vcpu); 9394 regs->r9 = kvm_r9_read(vcpu); 9395 regs->r10 = kvm_r10_read(vcpu); 9396 regs->r11 = kvm_r11_read(vcpu); 9397 regs->r12 = kvm_r12_read(vcpu); 9398 regs->r13 = kvm_r13_read(vcpu); 9399 regs->r14 = kvm_r14_read(vcpu); 9400 regs->r15 = kvm_r15_read(vcpu); 9401 #endif 9402 9403 regs->rip = kvm_rip_read(vcpu); 9404 regs->rflags = kvm_get_rflags(vcpu); 9405 } 9406 9407 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9408 { 9409 vcpu_load(vcpu); 9410 __get_regs(vcpu, regs); 9411 vcpu_put(vcpu); 9412 return 0; 9413 } 9414 9415 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9416 { 9417 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 9418 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9419 9420 kvm_rax_write(vcpu, regs->rax); 9421 kvm_rbx_write(vcpu, regs->rbx); 9422 kvm_rcx_write(vcpu, regs->rcx); 9423 kvm_rdx_write(vcpu, regs->rdx); 9424 kvm_rsi_write(vcpu, regs->rsi); 9425 kvm_rdi_write(vcpu, regs->rdi); 9426 kvm_rsp_write(vcpu, regs->rsp); 9427 kvm_rbp_write(vcpu, regs->rbp); 9428 #ifdef CONFIG_X86_64 9429 kvm_r8_write(vcpu, regs->r8); 9430 kvm_r9_write(vcpu, regs->r9); 9431 kvm_r10_write(vcpu, regs->r10); 9432 kvm_r11_write(vcpu, regs->r11); 9433 kvm_r12_write(vcpu, regs->r12); 9434 kvm_r13_write(vcpu, regs->r13); 9435 kvm_r14_write(vcpu, regs->r14); 9436 kvm_r15_write(vcpu, regs->r15); 9437 #endif 9438 9439 kvm_rip_write(vcpu, regs->rip); 9440 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 9441 9442 vcpu->arch.exception.pending = false; 9443 9444 kvm_make_request(KVM_REQ_EVENT, vcpu); 9445 } 9446 9447 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 9448 { 9449 vcpu_load(vcpu); 9450 __set_regs(vcpu, regs); 9451 vcpu_put(vcpu); 9452 return 0; 9453 } 9454 9455 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 9456 { 9457 struct kvm_segment cs; 9458 9459 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 9460 *db = cs.db; 9461 *l = cs.l; 9462 } 9463 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 9464 9465 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9466 { 9467 struct desc_ptr dt; 9468 9469 if (vcpu->arch.guest_state_protected) 9470 goto skip_protected_regs; 9471 9472 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9473 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9474 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9475 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9476 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9477 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9478 9479 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9480 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9481 9482 kvm_x86_ops.get_idt(vcpu, &dt); 9483 sregs->idt.limit = dt.size; 9484 sregs->idt.base = dt.address; 9485 kvm_x86_ops.get_gdt(vcpu, &dt); 9486 sregs->gdt.limit = dt.size; 9487 sregs->gdt.base = dt.address; 9488 9489 sregs->cr2 = vcpu->arch.cr2; 9490 sregs->cr3 = kvm_read_cr3(vcpu); 9491 9492 skip_protected_regs: 9493 sregs->cr0 = kvm_read_cr0(vcpu); 9494 sregs->cr4 = kvm_read_cr4(vcpu); 9495 sregs->cr8 = kvm_get_cr8(vcpu); 9496 sregs->efer = vcpu->arch.efer; 9497 sregs->apic_base = kvm_get_apic_base(vcpu); 9498 9499 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap)); 9500 9501 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 9502 set_bit(vcpu->arch.interrupt.nr, 9503 (unsigned long *)sregs->interrupt_bitmap); 9504 } 9505 9506 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 9507 struct kvm_sregs *sregs) 9508 { 9509 vcpu_load(vcpu); 9510 __get_sregs(vcpu, sregs); 9511 vcpu_put(vcpu); 9512 return 0; 9513 } 9514 9515 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 9516 struct kvm_mp_state *mp_state) 9517 { 9518 vcpu_load(vcpu); 9519 if (kvm_mpx_supported()) 9520 kvm_load_guest_fpu(vcpu); 9521 9522 kvm_apic_accept_events(vcpu); 9523 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 9524 vcpu->arch.pv.pv_unhalted) 9525 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 9526 else 9527 mp_state->mp_state = vcpu->arch.mp_state; 9528 9529 if (kvm_mpx_supported()) 9530 kvm_put_guest_fpu(vcpu); 9531 vcpu_put(vcpu); 9532 return 0; 9533 } 9534 9535 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 9536 struct kvm_mp_state *mp_state) 9537 { 9538 int ret = -EINVAL; 9539 9540 vcpu_load(vcpu); 9541 9542 if (!lapic_in_kernel(vcpu) && 9543 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 9544 goto out; 9545 9546 /* 9547 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 9548 * INIT state; latched init should be reported using 9549 * KVM_SET_VCPU_EVENTS, so reject it here. 9550 */ 9551 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 9552 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 9553 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 9554 goto out; 9555 9556 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 9557 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 9558 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 9559 } else 9560 vcpu->arch.mp_state = mp_state->mp_state; 9561 kvm_make_request(KVM_REQ_EVENT, vcpu); 9562 9563 ret = 0; 9564 out: 9565 vcpu_put(vcpu); 9566 return ret; 9567 } 9568 9569 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 9570 int reason, bool has_error_code, u32 error_code) 9571 { 9572 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9573 int ret; 9574 9575 init_emulate_ctxt(vcpu); 9576 9577 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 9578 has_error_code, error_code); 9579 if (ret) { 9580 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 9581 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 9582 vcpu->run->internal.ndata = 0; 9583 return 0; 9584 } 9585 9586 kvm_rip_write(vcpu, ctxt->eip); 9587 kvm_set_rflags(vcpu, ctxt->eflags); 9588 return 1; 9589 } 9590 EXPORT_SYMBOL_GPL(kvm_task_switch); 9591 9592 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9593 { 9594 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 9595 /* 9596 * When EFER.LME and CR0.PG are set, the processor is in 9597 * 64-bit mode (though maybe in a 32-bit code segment). 9598 * CR4.PAE and EFER.LMA must be set. 9599 */ 9600 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 9601 return false; 9602 } else { 9603 /* 9604 * Not in 64-bit mode: EFER.LMA is clear and the code 9605 * segment cannot be 64-bit. 9606 */ 9607 if (sregs->efer & EFER_LMA || sregs->cs.l) 9608 return false; 9609 } 9610 9611 return kvm_is_valid_cr4(vcpu, sregs->cr4); 9612 } 9613 9614 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 9615 { 9616 struct msr_data apic_base_msr; 9617 int mmu_reset_needed = 0; 9618 int pending_vec, max_bits, idx; 9619 struct desc_ptr dt; 9620 int ret = -EINVAL; 9621 9622 if (!kvm_is_valid_sregs(vcpu, sregs)) 9623 goto out; 9624 9625 apic_base_msr.data = sregs->apic_base; 9626 apic_base_msr.host_initiated = true; 9627 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 9628 goto out; 9629 9630 if (vcpu->arch.guest_state_protected) 9631 goto skip_protected_regs; 9632 9633 dt.size = sregs->idt.limit; 9634 dt.address = sregs->idt.base; 9635 kvm_x86_ops.set_idt(vcpu, &dt); 9636 dt.size = sregs->gdt.limit; 9637 dt.address = sregs->gdt.base; 9638 kvm_x86_ops.set_gdt(vcpu, &dt); 9639 9640 vcpu->arch.cr2 = sregs->cr2; 9641 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 9642 vcpu->arch.cr3 = sregs->cr3; 9643 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 9644 9645 kvm_set_cr8(vcpu, sregs->cr8); 9646 9647 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 9648 kvm_x86_ops.set_efer(vcpu, sregs->efer); 9649 9650 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 9651 kvm_x86_ops.set_cr0(vcpu, sregs->cr0); 9652 vcpu->arch.cr0 = sregs->cr0; 9653 9654 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 9655 kvm_x86_ops.set_cr4(vcpu, sregs->cr4); 9656 9657 idx = srcu_read_lock(&vcpu->kvm->srcu); 9658 if (is_pae_paging(vcpu)) { 9659 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 9660 mmu_reset_needed = 1; 9661 } 9662 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9663 9664 if (mmu_reset_needed) 9665 kvm_mmu_reset_context(vcpu); 9666 9667 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 9668 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 9669 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 9670 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 9671 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 9672 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 9673 9674 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 9675 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 9676 9677 update_cr8_intercept(vcpu); 9678 9679 /* Older userspace won't unhalt the vcpu on reset. */ 9680 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 9681 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 9682 !is_protmode(vcpu)) 9683 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9684 9685 skip_protected_regs: 9686 max_bits = KVM_NR_INTERRUPTS; 9687 pending_vec = find_first_bit( 9688 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 9689 if (pending_vec < max_bits) { 9690 kvm_queue_interrupt(vcpu, pending_vec, false); 9691 pr_debug("Set back pending irq %d\n", pending_vec); 9692 } 9693 9694 kvm_make_request(KVM_REQ_EVENT, vcpu); 9695 9696 ret = 0; 9697 out: 9698 return ret; 9699 } 9700 9701 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 9702 struct kvm_sregs *sregs) 9703 { 9704 int ret; 9705 9706 vcpu_load(vcpu); 9707 ret = __set_sregs(vcpu, sregs); 9708 vcpu_put(vcpu); 9709 return ret; 9710 } 9711 9712 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 9713 struct kvm_guest_debug *dbg) 9714 { 9715 unsigned long rflags; 9716 int i, r; 9717 9718 if (vcpu->arch.guest_state_protected) 9719 return -EINVAL; 9720 9721 vcpu_load(vcpu); 9722 9723 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 9724 r = -EBUSY; 9725 if (vcpu->arch.exception.pending) 9726 goto out; 9727 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 9728 kvm_queue_exception(vcpu, DB_VECTOR); 9729 else 9730 kvm_queue_exception(vcpu, BP_VECTOR); 9731 } 9732 9733 /* 9734 * Read rflags as long as potentially injected trace flags are still 9735 * filtered out. 9736 */ 9737 rflags = kvm_get_rflags(vcpu); 9738 9739 vcpu->guest_debug = dbg->control; 9740 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 9741 vcpu->guest_debug = 0; 9742 9743 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 9744 for (i = 0; i < KVM_NR_DB_REGS; ++i) 9745 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 9746 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 9747 } else { 9748 for (i = 0; i < KVM_NR_DB_REGS; i++) 9749 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 9750 } 9751 kvm_update_dr7(vcpu); 9752 9753 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 9754 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 9755 get_segment_base(vcpu, VCPU_SREG_CS); 9756 9757 /* 9758 * Trigger an rflags update that will inject or remove the trace 9759 * flags. 9760 */ 9761 kvm_set_rflags(vcpu, rflags); 9762 9763 kvm_x86_ops.update_exception_bitmap(vcpu); 9764 9765 r = 0; 9766 9767 out: 9768 vcpu_put(vcpu); 9769 return r; 9770 } 9771 9772 /* 9773 * Translate a guest virtual address to a guest physical address. 9774 */ 9775 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 9776 struct kvm_translation *tr) 9777 { 9778 unsigned long vaddr = tr->linear_address; 9779 gpa_t gpa; 9780 int idx; 9781 9782 vcpu_load(vcpu); 9783 9784 idx = srcu_read_lock(&vcpu->kvm->srcu); 9785 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 9786 srcu_read_unlock(&vcpu->kvm->srcu, idx); 9787 tr->physical_address = gpa; 9788 tr->valid = gpa != UNMAPPED_GVA; 9789 tr->writeable = 1; 9790 tr->usermode = 0; 9791 9792 vcpu_put(vcpu); 9793 return 0; 9794 } 9795 9796 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9797 { 9798 struct fxregs_state *fxsave; 9799 9800 if (!vcpu->arch.guest_fpu) 9801 return 0; 9802 9803 vcpu_load(vcpu); 9804 9805 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9806 memcpy(fpu->fpr, fxsave->st_space, 128); 9807 fpu->fcw = fxsave->cwd; 9808 fpu->fsw = fxsave->swd; 9809 fpu->ftwx = fxsave->twd; 9810 fpu->last_opcode = fxsave->fop; 9811 fpu->last_ip = fxsave->rip; 9812 fpu->last_dp = fxsave->rdp; 9813 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 9814 9815 vcpu_put(vcpu); 9816 return 0; 9817 } 9818 9819 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 9820 { 9821 struct fxregs_state *fxsave; 9822 9823 if (!vcpu->arch.guest_fpu) 9824 return 0; 9825 9826 vcpu_load(vcpu); 9827 9828 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 9829 9830 memcpy(fxsave->st_space, fpu->fpr, 128); 9831 fxsave->cwd = fpu->fcw; 9832 fxsave->swd = fpu->fsw; 9833 fxsave->twd = fpu->ftwx; 9834 fxsave->fop = fpu->last_opcode; 9835 fxsave->rip = fpu->last_ip; 9836 fxsave->rdp = fpu->last_dp; 9837 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 9838 9839 vcpu_put(vcpu); 9840 return 0; 9841 } 9842 9843 static void store_regs(struct kvm_vcpu *vcpu) 9844 { 9845 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 9846 9847 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 9848 __get_regs(vcpu, &vcpu->run->s.regs.regs); 9849 9850 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 9851 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 9852 9853 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 9854 kvm_vcpu_ioctl_x86_get_vcpu_events( 9855 vcpu, &vcpu->run->s.regs.events); 9856 } 9857 9858 static int sync_regs(struct kvm_vcpu *vcpu) 9859 { 9860 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 9861 return -EINVAL; 9862 9863 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 9864 __set_regs(vcpu, &vcpu->run->s.regs.regs); 9865 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 9866 } 9867 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 9868 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 9869 return -EINVAL; 9870 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 9871 } 9872 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 9873 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 9874 vcpu, &vcpu->run->s.regs.events)) 9875 return -EINVAL; 9876 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 9877 } 9878 9879 return 0; 9880 } 9881 9882 static void fx_init(struct kvm_vcpu *vcpu) 9883 { 9884 if (!vcpu->arch.guest_fpu) 9885 return; 9886 9887 fpstate_init(&vcpu->arch.guest_fpu->state); 9888 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9889 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 9890 host_xcr0 | XSTATE_COMPACTION_ENABLED; 9891 9892 /* 9893 * Ensure guest xcr0 is valid for loading 9894 */ 9895 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 9896 9897 vcpu->arch.cr0 |= X86_CR0_ET; 9898 } 9899 9900 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu) 9901 { 9902 if (vcpu->arch.guest_fpu) { 9903 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 9904 vcpu->arch.guest_fpu = NULL; 9905 } 9906 } 9907 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu); 9908 9909 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 9910 { 9911 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 9912 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 9913 "guest TSC will not be reliable\n"); 9914 9915 return 0; 9916 } 9917 9918 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 9919 { 9920 struct page *page; 9921 int r; 9922 9923 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 9924 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 9925 else 9926 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 9927 9928 kvm_set_tsc_khz(vcpu, max_tsc_khz); 9929 9930 r = kvm_mmu_create(vcpu); 9931 if (r < 0) 9932 return r; 9933 9934 if (irqchip_in_kernel(vcpu->kvm)) { 9935 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 9936 if (r < 0) 9937 goto fail_mmu_destroy; 9938 if (kvm_apicv_activated(vcpu->kvm)) 9939 vcpu->arch.apicv_active = true; 9940 } else 9941 static_key_slow_inc(&kvm_no_apic_vcpu); 9942 9943 r = -ENOMEM; 9944 9945 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 9946 if (!page) 9947 goto fail_free_lapic; 9948 vcpu->arch.pio_data = page_address(page); 9949 9950 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 9951 GFP_KERNEL_ACCOUNT); 9952 if (!vcpu->arch.mce_banks) 9953 goto fail_free_pio_data; 9954 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 9955 9956 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 9957 GFP_KERNEL_ACCOUNT)) 9958 goto fail_free_mce_banks; 9959 9960 if (!alloc_emulate_ctxt(vcpu)) 9961 goto free_wbinvd_dirty_mask; 9962 9963 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 9964 GFP_KERNEL_ACCOUNT); 9965 if (!vcpu->arch.user_fpu) { 9966 pr_err("kvm: failed to allocate userspace's fpu\n"); 9967 goto free_emulate_ctxt; 9968 } 9969 9970 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 9971 GFP_KERNEL_ACCOUNT); 9972 if (!vcpu->arch.guest_fpu) { 9973 pr_err("kvm: failed to allocate vcpu's fpu\n"); 9974 goto free_user_fpu; 9975 } 9976 fx_init(vcpu); 9977 9978 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 9979 9980 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 9981 9982 kvm_async_pf_hash_reset(vcpu); 9983 kvm_pmu_init(vcpu); 9984 9985 vcpu->arch.pending_external_vector = -1; 9986 vcpu->arch.preempted_in_kernel = false; 9987 9988 kvm_hv_vcpu_init(vcpu); 9989 9990 r = kvm_x86_ops.vcpu_create(vcpu); 9991 if (r) 9992 goto free_guest_fpu; 9993 9994 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 9995 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 9996 kvm_vcpu_mtrr_init(vcpu); 9997 vcpu_load(vcpu); 9998 kvm_vcpu_reset(vcpu, false); 9999 kvm_init_mmu(vcpu, false); 10000 vcpu_put(vcpu); 10001 return 0; 10002 10003 free_guest_fpu: 10004 kvm_free_guest_fpu(vcpu); 10005 free_user_fpu: 10006 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 10007 free_emulate_ctxt: 10008 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 10009 free_wbinvd_dirty_mask: 10010 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 10011 fail_free_mce_banks: 10012 kfree(vcpu->arch.mce_banks); 10013 fail_free_pio_data: 10014 free_page((unsigned long)vcpu->arch.pio_data); 10015 fail_free_lapic: 10016 kvm_free_lapic(vcpu); 10017 fail_mmu_destroy: 10018 kvm_mmu_destroy(vcpu); 10019 return r; 10020 } 10021 10022 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 10023 { 10024 struct kvm *kvm = vcpu->kvm; 10025 10026 kvm_hv_vcpu_postcreate(vcpu); 10027 10028 if (mutex_lock_killable(&vcpu->mutex)) 10029 return; 10030 vcpu_load(vcpu); 10031 kvm_synchronize_tsc(vcpu, 0); 10032 vcpu_put(vcpu); 10033 10034 /* poll control enabled by default */ 10035 vcpu->arch.msr_kvm_poll_control = 1; 10036 10037 mutex_unlock(&vcpu->mutex); 10038 10039 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 10040 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 10041 KVMCLOCK_SYNC_PERIOD); 10042 } 10043 10044 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 10045 { 10046 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 10047 int idx; 10048 10049 kvm_release_pfn(cache->pfn, cache->dirty, cache); 10050 10051 kvmclock_reset(vcpu); 10052 10053 kvm_x86_ops.vcpu_free(vcpu); 10054 10055 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 10056 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 10057 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 10058 kvm_free_guest_fpu(vcpu); 10059 10060 kvm_hv_vcpu_uninit(vcpu); 10061 kvm_pmu_destroy(vcpu); 10062 kfree(vcpu->arch.mce_banks); 10063 kvm_free_lapic(vcpu); 10064 idx = srcu_read_lock(&vcpu->kvm->srcu); 10065 kvm_mmu_destroy(vcpu); 10066 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10067 free_page((unsigned long)vcpu->arch.pio_data); 10068 kvfree(vcpu->arch.cpuid_entries); 10069 if (!lapic_in_kernel(vcpu)) 10070 static_key_slow_dec(&kvm_no_apic_vcpu); 10071 } 10072 10073 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 10074 { 10075 kvm_lapic_reset(vcpu, init_event); 10076 10077 vcpu->arch.hflags = 0; 10078 10079 vcpu->arch.smi_pending = 0; 10080 vcpu->arch.smi_count = 0; 10081 atomic_set(&vcpu->arch.nmi_queued, 0); 10082 vcpu->arch.nmi_pending = 0; 10083 vcpu->arch.nmi_injected = false; 10084 kvm_clear_interrupt_queue(vcpu); 10085 kvm_clear_exception_queue(vcpu); 10086 10087 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 10088 kvm_update_dr0123(vcpu); 10089 vcpu->arch.dr6 = DR6_INIT; 10090 vcpu->arch.dr7 = DR7_FIXED_1; 10091 kvm_update_dr7(vcpu); 10092 10093 vcpu->arch.cr2 = 0; 10094 10095 kvm_make_request(KVM_REQ_EVENT, vcpu); 10096 vcpu->arch.apf.msr_en_val = 0; 10097 vcpu->arch.apf.msr_int_val = 0; 10098 vcpu->arch.st.msr_val = 0; 10099 10100 kvmclock_reset(vcpu); 10101 10102 kvm_clear_async_pf_completion_queue(vcpu); 10103 kvm_async_pf_hash_reset(vcpu); 10104 vcpu->arch.apf.halted = false; 10105 10106 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) { 10107 void *mpx_state_buffer; 10108 10109 /* 10110 * To avoid have the INIT path from kvm_apic_has_events() that be 10111 * called with loaded FPU and does not let userspace fix the state. 10112 */ 10113 if (init_event) 10114 kvm_put_guest_fpu(vcpu); 10115 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10116 XFEATURE_BNDREGS); 10117 if (mpx_state_buffer) 10118 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 10119 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10120 XFEATURE_BNDCSR); 10121 if (mpx_state_buffer) 10122 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 10123 if (init_event) 10124 kvm_load_guest_fpu(vcpu); 10125 } 10126 10127 if (!init_event) { 10128 kvm_pmu_reset(vcpu); 10129 vcpu->arch.smbase = 0x30000; 10130 10131 vcpu->arch.msr_misc_features_enables = 0; 10132 10133 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 10134 } 10135 10136 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 10137 vcpu->arch.regs_avail = ~0; 10138 vcpu->arch.regs_dirty = ~0; 10139 10140 vcpu->arch.ia32_xss = 0; 10141 10142 kvm_x86_ops.vcpu_reset(vcpu, init_event); 10143 } 10144 10145 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 10146 { 10147 struct kvm_segment cs; 10148 10149 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 10150 cs.selector = vector << 8; 10151 cs.base = vector << 12; 10152 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10153 kvm_rip_write(vcpu, 0); 10154 } 10155 10156 int kvm_arch_hardware_enable(void) 10157 { 10158 struct kvm *kvm; 10159 struct kvm_vcpu *vcpu; 10160 int i; 10161 int ret; 10162 u64 local_tsc; 10163 u64 max_tsc = 0; 10164 bool stable, backwards_tsc = false; 10165 10166 kvm_user_return_msr_cpu_online(); 10167 ret = kvm_x86_ops.hardware_enable(); 10168 if (ret != 0) 10169 return ret; 10170 10171 local_tsc = rdtsc(); 10172 stable = !kvm_check_tsc_unstable(); 10173 list_for_each_entry(kvm, &vm_list, vm_list) { 10174 kvm_for_each_vcpu(i, vcpu, kvm) { 10175 if (!stable && vcpu->cpu == smp_processor_id()) 10176 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10177 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 10178 backwards_tsc = true; 10179 if (vcpu->arch.last_host_tsc > max_tsc) 10180 max_tsc = vcpu->arch.last_host_tsc; 10181 } 10182 } 10183 } 10184 10185 /* 10186 * Sometimes, even reliable TSCs go backwards. This happens on 10187 * platforms that reset TSC during suspend or hibernate actions, but 10188 * maintain synchronization. We must compensate. Fortunately, we can 10189 * detect that condition here, which happens early in CPU bringup, 10190 * before any KVM threads can be running. Unfortunately, we can't 10191 * bring the TSCs fully up to date with real time, as we aren't yet far 10192 * enough into CPU bringup that we know how much real time has actually 10193 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 10194 * variables that haven't been updated yet. 10195 * 10196 * So we simply find the maximum observed TSC above, then record the 10197 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 10198 * the adjustment will be applied. Note that we accumulate 10199 * adjustments, in case multiple suspend cycles happen before some VCPU 10200 * gets a chance to run again. In the event that no KVM threads get a 10201 * chance to run, we will miss the entire elapsed period, as we'll have 10202 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 10203 * loose cycle time. This isn't too big a deal, since the loss will be 10204 * uniform across all VCPUs (not to mention the scenario is extremely 10205 * unlikely). It is possible that a second hibernate recovery happens 10206 * much faster than a first, causing the observed TSC here to be 10207 * smaller; this would require additional padding adjustment, which is 10208 * why we set last_host_tsc to the local tsc observed here. 10209 * 10210 * N.B. - this code below runs only on platforms with reliable TSC, 10211 * as that is the only way backwards_tsc is set above. Also note 10212 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 10213 * have the same delta_cyc adjustment applied if backwards_tsc 10214 * is detected. Note further, this adjustment is only done once, 10215 * as we reset last_host_tsc on all VCPUs to stop this from being 10216 * called multiple times (one for each physical CPU bringup). 10217 * 10218 * Platforms with unreliable TSCs don't have to deal with this, they 10219 * will be compensated by the logic in vcpu_load, which sets the TSC to 10220 * catchup mode. This will catchup all VCPUs to real time, but cannot 10221 * guarantee that they stay in perfect synchronization. 10222 */ 10223 if (backwards_tsc) { 10224 u64 delta_cyc = max_tsc - local_tsc; 10225 list_for_each_entry(kvm, &vm_list, vm_list) { 10226 kvm->arch.backwards_tsc_observed = true; 10227 kvm_for_each_vcpu(i, vcpu, kvm) { 10228 vcpu->arch.tsc_offset_adjustment += delta_cyc; 10229 vcpu->arch.last_host_tsc = local_tsc; 10230 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 10231 } 10232 10233 /* 10234 * We have to disable TSC offset matching.. if you were 10235 * booting a VM while issuing an S4 host suspend.... 10236 * you may have some problem. Solving this issue is 10237 * left as an exercise to the reader. 10238 */ 10239 kvm->arch.last_tsc_nsec = 0; 10240 kvm->arch.last_tsc_write = 0; 10241 } 10242 10243 } 10244 return 0; 10245 } 10246 10247 void kvm_arch_hardware_disable(void) 10248 { 10249 kvm_x86_ops.hardware_disable(); 10250 drop_user_return_notifiers(); 10251 } 10252 10253 int kvm_arch_hardware_setup(void *opaque) 10254 { 10255 struct kvm_x86_init_ops *ops = opaque; 10256 int r; 10257 10258 rdmsrl_safe(MSR_EFER, &host_efer); 10259 10260 if (boot_cpu_has(X86_FEATURE_XSAVES)) 10261 rdmsrl(MSR_IA32_XSS, host_xss); 10262 10263 r = ops->hardware_setup(); 10264 if (r != 0) 10265 return r; 10266 10267 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 10268 10269 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 10270 supported_xss = 0; 10271 10272 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 10273 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 10274 #undef __kvm_cpu_cap_has 10275 10276 if (kvm_has_tsc_control) { 10277 /* 10278 * Make sure the user can only configure tsc_khz values that 10279 * fit into a signed integer. 10280 * A min value is not calculated because it will always 10281 * be 1 on all machines. 10282 */ 10283 u64 max = min(0x7fffffffULL, 10284 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 10285 kvm_max_guest_tsc_khz = max; 10286 10287 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 10288 } 10289 10290 kvm_init_msr_list(); 10291 return 0; 10292 } 10293 10294 void kvm_arch_hardware_unsetup(void) 10295 { 10296 kvm_x86_ops.hardware_unsetup(); 10297 } 10298 10299 int kvm_arch_check_processor_compat(void *opaque) 10300 { 10301 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 10302 struct kvm_x86_init_ops *ops = opaque; 10303 10304 WARN_ON(!irqs_disabled()); 10305 10306 if (__cr4_reserved_bits(cpu_has, c) != 10307 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 10308 return -EIO; 10309 10310 return ops->check_processor_compatibility(); 10311 } 10312 10313 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 10314 { 10315 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 10316 } 10317 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 10318 10319 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 10320 { 10321 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 10322 } 10323 10324 struct static_key kvm_no_apic_vcpu __read_mostly; 10325 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 10326 10327 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 10328 { 10329 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 10330 10331 vcpu->arch.l1tf_flush_l1d = true; 10332 if (pmu->version && unlikely(pmu->event_count)) { 10333 pmu->need_cleanup = true; 10334 kvm_make_request(KVM_REQ_PMU, vcpu); 10335 } 10336 kvm_x86_ops.sched_in(vcpu, cpu); 10337 } 10338 10339 void kvm_arch_free_vm(struct kvm *kvm) 10340 { 10341 kfree(kvm->arch.hyperv.hv_pa_pg); 10342 vfree(kvm); 10343 } 10344 10345 10346 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 10347 { 10348 if (type) 10349 return -EINVAL; 10350 10351 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 10352 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 10353 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 10354 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 10355 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 10356 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 10357 10358 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 10359 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 10360 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 10361 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 10362 &kvm->arch.irq_sources_bitmap); 10363 10364 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 10365 mutex_init(&kvm->arch.apic_map_lock); 10366 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 10367 10368 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 10369 pvclock_update_vm_gtod_copy(kvm); 10370 10371 kvm->arch.guest_can_read_msr_platform_info = true; 10372 10373 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 10374 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 10375 10376 kvm_hv_init_vm(kvm); 10377 kvm_page_track_init(kvm); 10378 kvm_mmu_init_vm(kvm); 10379 10380 return kvm_x86_ops.vm_init(kvm); 10381 } 10382 10383 int kvm_arch_post_init_vm(struct kvm *kvm) 10384 { 10385 return kvm_mmu_post_init_vm(kvm); 10386 } 10387 10388 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 10389 { 10390 vcpu_load(vcpu); 10391 kvm_mmu_unload(vcpu); 10392 vcpu_put(vcpu); 10393 } 10394 10395 static void kvm_free_vcpus(struct kvm *kvm) 10396 { 10397 unsigned int i; 10398 struct kvm_vcpu *vcpu; 10399 10400 /* 10401 * Unpin any mmu pages first. 10402 */ 10403 kvm_for_each_vcpu(i, vcpu, kvm) { 10404 kvm_clear_async_pf_completion_queue(vcpu); 10405 kvm_unload_vcpu_mmu(vcpu); 10406 } 10407 kvm_for_each_vcpu(i, vcpu, kvm) 10408 kvm_vcpu_destroy(vcpu); 10409 10410 mutex_lock(&kvm->lock); 10411 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 10412 kvm->vcpus[i] = NULL; 10413 10414 atomic_set(&kvm->online_vcpus, 0); 10415 mutex_unlock(&kvm->lock); 10416 } 10417 10418 void kvm_arch_sync_events(struct kvm *kvm) 10419 { 10420 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 10421 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 10422 kvm_free_pit(kvm); 10423 } 10424 10425 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 10426 10427 /** 10428 * __x86_set_memory_region: Setup KVM internal memory slot 10429 * 10430 * @kvm: the kvm pointer to the VM. 10431 * @id: the slot ID to setup. 10432 * @gpa: the GPA to install the slot (unused when @size == 0). 10433 * @size: the size of the slot. Set to zero to uninstall a slot. 10434 * 10435 * This function helps to setup a KVM internal memory slot. Specify 10436 * @size > 0 to install a new slot, while @size == 0 to uninstall a 10437 * slot. The return code can be one of the following: 10438 * 10439 * HVA: on success (uninstall will return a bogus HVA) 10440 * -errno: on error 10441 * 10442 * The caller should always use IS_ERR() to check the return value 10443 * before use. Note, the KVM internal memory slots are guaranteed to 10444 * remain valid and unchanged until the VM is destroyed, i.e., the 10445 * GPA->HVA translation will not change. However, the HVA is a user 10446 * address, i.e. its accessibility is not guaranteed, and must be 10447 * accessed via __copy_{to,from}_user(). 10448 */ 10449 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 10450 u32 size) 10451 { 10452 int i, r; 10453 unsigned long hva, old_npages; 10454 struct kvm_memslots *slots = kvm_memslots(kvm); 10455 struct kvm_memory_slot *slot; 10456 10457 /* Called with kvm->slots_lock held. */ 10458 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 10459 return ERR_PTR_USR(-EINVAL); 10460 10461 slot = id_to_memslot(slots, id); 10462 if (size) { 10463 if (slot && slot->npages) 10464 return ERR_PTR_USR(-EEXIST); 10465 10466 /* 10467 * MAP_SHARED to prevent internal slot pages from being moved 10468 * by fork()/COW. 10469 */ 10470 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 10471 MAP_SHARED | MAP_ANONYMOUS, 0); 10472 if (IS_ERR((void *)hva)) 10473 return (void __user *)hva; 10474 } else { 10475 if (!slot || !slot->npages) 10476 return 0; 10477 10478 old_npages = slot->npages; 10479 hva = 0; 10480 } 10481 10482 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 10483 struct kvm_userspace_memory_region m; 10484 10485 m.slot = id | (i << 16); 10486 m.flags = 0; 10487 m.guest_phys_addr = gpa; 10488 m.userspace_addr = hva; 10489 m.memory_size = size; 10490 r = __kvm_set_memory_region(kvm, &m); 10491 if (r < 0) 10492 return ERR_PTR_USR(r); 10493 } 10494 10495 if (!size) 10496 vm_munmap(hva, old_npages * PAGE_SIZE); 10497 10498 return (void __user *)hva; 10499 } 10500 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 10501 10502 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 10503 { 10504 kvm_mmu_pre_destroy_vm(kvm); 10505 } 10506 10507 void kvm_arch_destroy_vm(struct kvm *kvm) 10508 { 10509 u32 i; 10510 10511 if (current->mm == kvm->mm) { 10512 /* 10513 * Free memory regions allocated on behalf of userspace, 10514 * unless the the memory map has changed due to process exit 10515 * or fd copying. 10516 */ 10517 mutex_lock(&kvm->slots_lock); 10518 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 10519 0, 0); 10520 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 10521 0, 0); 10522 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 10523 mutex_unlock(&kvm->slots_lock); 10524 } 10525 if (kvm_x86_ops.vm_destroy) 10526 kvm_x86_ops.vm_destroy(kvm); 10527 for (i = 0; i < kvm->arch.msr_filter.count; i++) 10528 kfree(kvm->arch.msr_filter.ranges[i].bitmap); 10529 kvm_pic_destroy(kvm); 10530 kvm_ioapic_destroy(kvm); 10531 kvm_free_vcpus(kvm); 10532 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 10533 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 10534 kvm_mmu_uninit_vm(kvm); 10535 kvm_page_track_cleanup(kvm); 10536 kvm_hv_destroy_vm(kvm); 10537 } 10538 10539 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 10540 { 10541 int i; 10542 10543 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10544 kvfree(slot->arch.rmap[i]); 10545 slot->arch.rmap[i] = NULL; 10546 10547 if (i == 0) 10548 continue; 10549 10550 kvfree(slot->arch.lpage_info[i - 1]); 10551 slot->arch.lpage_info[i - 1] = NULL; 10552 } 10553 10554 kvm_page_track_free_memslot(slot); 10555 } 10556 10557 static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot, 10558 unsigned long npages) 10559 { 10560 int i; 10561 10562 /* 10563 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 10564 * old arrays will be freed by __kvm_set_memory_region() if installing 10565 * the new memslot is successful. 10566 */ 10567 memset(&slot->arch, 0, sizeof(slot->arch)); 10568 10569 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10570 struct kvm_lpage_info *linfo; 10571 unsigned long ugfn; 10572 int lpages; 10573 int level = i + 1; 10574 10575 lpages = gfn_to_index(slot->base_gfn + npages - 1, 10576 slot->base_gfn, level) + 1; 10577 10578 slot->arch.rmap[i] = 10579 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]), 10580 GFP_KERNEL_ACCOUNT); 10581 if (!slot->arch.rmap[i]) 10582 goto out_free; 10583 if (i == 0) 10584 continue; 10585 10586 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 10587 if (!linfo) 10588 goto out_free; 10589 10590 slot->arch.lpage_info[i - 1] = linfo; 10591 10592 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 10593 linfo[0].disallow_lpage = 1; 10594 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 10595 linfo[lpages - 1].disallow_lpage = 1; 10596 ugfn = slot->userspace_addr >> PAGE_SHIFT; 10597 /* 10598 * If the gfn and userspace address are not aligned wrt each 10599 * other, disable large page support for this slot. 10600 */ 10601 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 10602 unsigned long j; 10603 10604 for (j = 0; j < lpages; ++j) 10605 linfo[j].disallow_lpage = 1; 10606 } 10607 } 10608 10609 if (kvm_page_track_create_memslot(slot, npages)) 10610 goto out_free; 10611 10612 return 0; 10613 10614 out_free: 10615 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 10616 kvfree(slot->arch.rmap[i]); 10617 slot->arch.rmap[i] = NULL; 10618 if (i == 0) 10619 continue; 10620 10621 kvfree(slot->arch.lpage_info[i - 1]); 10622 slot->arch.lpage_info[i - 1] = NULL; 10623 } 10624 return -ENOMEM; 10625 } 10626 10627 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 10628 { 10629 struct kvm_vcpu *vcpu; 10630 int i; 10631 10632 /* 10633 * memslots->generation has been incremented. 10634 * mmio generation may have reached its maximum value. 10635 */ 10636 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 10637 10638 /* Force re-initialization of steal_time cache */ 10639 kvm_for_each_vcpu(i, vcpu, kvm) 10640 kvm_vcpu_kick(vcpu); 10641 } 10642 10643 int kvm_arch_prepare_memory_region(struct kvm *kvm, 10644 struct kvm_memory_slot *memslot, 10645 const struct kvm_userspace_memory_region *mem, 10646 enum kvm_mr_change change) 10647 { 10648 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 10649 return kvm_alloc_memslot_metadata(memslot, 10650 mem->memory_size >> PAGE_SHIFT); 10651 return 0; 10652 } 10653 10654 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 10655 struct kvm_memory_slot *old, 10656 struct kvm_memory_slot *new, 10657 enum kvm_mr_change change) 10658 { 10659 /* 10660 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot. 10661 * See comments below. 10662 */ 10663 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 10664 return; 10665 10666 /* 10667 * Dirty logging tracks sptes in 4k granularity, meaning that large 10668 * sptes have to be split. If live migration is successful, the guest 10669 * in the source machine will be destroyed and large sptes will be 10670 * created in the destination. However, if the guest continues to run 10671 * in the source machine (for example if live migration fails), small 10672 * sptes will remain around and cause bad performance. 10673 * 10674 * Scan sptes if dirty logging has been stopped, dropping those 10675 * which can be collapsed into a single large-page spte. Later 10676 * page faults will create the large-page sptes. 10677 * 10678 * There is no need to do this in any of the following cases: 10679 * CREATE: No dirty mappings will already exist. 10680 * MOVE/DELETE: The old mappings will already have been cleaned up by 10681 * kvm_arch_flush_shadow_memslot() 10682 */ 10683 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 10684 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 10685 kvm_mmu_zap_collapsible_sptes(kvm, new); 10686 10687 /* 10688 * Enable or disable dirty logging for the slot. 10689 * 10690 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old 10691 * slot have been zapped so no dirty logging updates are needed for 10692 * the old slot. 10693 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible 10694 * any mappings that might be created in it will consume the 10695 * properties of the new slot and do not need to be updated here. 10696 * 10697 * When PML is enabled, the kvm_x86_ops dirty logging hooks are 10698 * called to enable/disable dirty logging. 10699 * 10700 * When disabling dirty logging with PML enabled, the D-bit is set 10701 * for sptes in the slot in order to prevent unnecessary GPA 10702 * logging in the PML buffer (and potential PML buffer full VMEXIT). 10703 * This guarantees leaving PML enabled for the guest's lifetime 10704 * won't have any additional overhead from PML when the guest is 10705 * running with dirty logging disabled. 10706 * 10707 * When enabling dirty logging, large sptes are write-protected 10708 * so they can be split on first write. New large sptes cannot 10709 * be created for this slot until the end of the logging. 10710 * See the comments in fast_page_fault(). 10711 * For small sptes, nothing is done if the dirty log is in the 10712 * initial-all-set state. Otherwise, depending on whether pml 10713 * is enabled the D-bit or the W-bit will be cleared. 10714 */ 10715 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 10716 if (kvm_x86_ops.slot_enable_log_dirty) { 10717 kvm_x86_ops.slot_enable_log_dirty(kvm, new); 10718 } else { 10719 int level = 10720 kvm_dirty_log_manual_protect_and_init_set(kvm) ? 10721 PG_LEVEL_2M : PG_LEVEL_4K; 10722 10723 /* 10724 * If we're with initial-all-set, we don't need 10725 * to write protect any small page because 10726 * they're reported as dirty already. However 10727 * we still need to write-protect huge pages 10728 * so that the page split can happen lazily on 10729 * the first write to the huge page. 10730 */ 10731 kvm_mmu_slot_remove_write_access(kvm, new, level); 10732 } 10733 } else { 10734 if (kvm_x86_ops.slot_disable_log_dirty) 10735 kvm_x86_ops.slot_disable_log_dirty(kvm, new); 10736 } 10737 } 10738 10739 void kvm_arch_commit_memory_region(struct kvm *kvm, 10740 const struct kvm_userspace_memory_region *mem, 10741 struct kvm_memory_slot *old, 10742 const struct kvm_memory_slot *new, 10743 enum kvm_mr_change change) 10744 { 10745 if (!kvm->arch.n_requested_mmu_pages) 10746 kvm_mmu_change_mmu_pages(kvm, 10747 kvm_mmu_calculate_default_mmu_pages(kvm)); 10748 10749 /* 10750 * FIXME: const-ify all uses of struct kvm_memory_slot. 10751 */ 10752 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 10753 10754 /* Free the arrays associated with the old memslot. */ 10755 if (change == KVM_MR_MOVE) 10756 kvm_arch_free_memslot(kvm, old); 10757 } 10758 10759 void kvm_arch_flush_shadow_all(struct kvm *kvm) 10760 { 10761 kvm_mmu_zap_all(kvm); 10762 } 10763 10764 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 10765 struct kvm_memory_slot *slot) 10766 { 10767 kvm_page_track_flush_slot(kvm, slot); 10768 } 10769 10770 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 10771 { 10772 return (is_guest_mode(vcpu) && 10773 kvm_x86_ops.guest_apic_has_interrupt && 10774 kvm_x86_ops.guest_apic_has_interrupt(vcpu)); 10775 } 10776 10777 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 10778 { 10779 if (!list_empty_careful(&vcpu->async_pf.done)) 10780 return true; 10781 10782 if (kvm_apic_has_events(vcpu)) 10783 return true; 10784 10785 if (vcpu->arch.pv.pv_unhalted) 10786 return true; 10787 10788 if (vcpu->arch.exception.pending) 10789 return true; 10790 10791 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10792 (vcpu->arch.nmi_pending && 10793 kvm_x86_ops.nmi_allowed(vcpu, false))) 10794 return true; 10795 10796 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 10797 (vcpu->arch.smi_pending && 10798 kvm_x86_ops.smi_allowed(vcpu, false))) 10799 return true; 10800 10801 if (kvm_arch_interrupt_allowed(vcpu) && 10802 (kvm_cpu_has_interrupt(vcpu) || 10803 kvm_guest_apic_has_interrupt(vcpu))) 10804 return true; 10805 10806 if (kvm_hv_has_stimer_pending(vcpu)) 10807 return true; 10808 10809 if (is_guest_mode(vcpu) && 10810 kvm_x86_ops.nested_ops->hv_timer_pending && 10811 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 10812 return true; 10813 10814 return false; 10815 } 10816 10817 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 10818 { 10819 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 10820 } 10821 10822 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 10823 { 10824 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 10825 return true; 10826 10827 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 10828 kvm_test_request(KVM_REQ_SMI, vcpu) || 10829 kvm_test_request(KVM_REQ_EVENT, vcpu)) 10830 return true; 10831 10832 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu)) 10833 return true; 10834 10835 return false; 10836 } 10837 10838 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 10839 { 10840 return vcpu->arch.preempted_in_kernel; 10841 } 10842 10843 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 10844 { 10845 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 10846 } 10847 10848 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 10849 { 10850 return kvm_x86_ops.interrupt_allowed(vcpu, false); 10851 } 10852 10853 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 10854 { 10855 /* Can't read the RIP when guest state is protected, just return 0 */ 10856 if (vcpu->arch.guest_state_protected) 10857 return 0; 10858 10859 if (is_64_bit_mode(vcpu)) 10860 return kvm_rip_read(vcpu); 10861 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 10862 kvm_rip_read(vcpu)); 10863 } 10864 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 10865 10866 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 10867 { 10868 return kvm_get_linear_rip(vcpu) == linear_rip; 10869 } 10870 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 10871 10872 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 10873 { 10874 unsigned long rflags; 10875 10876 rflags = kvm_x86_ops.get_rflags(vcpu); 10877 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10878 rflags &= ~X86_EFLAGS_TF; 10879 return rflags; 10880 } 10881 EXPORT_SYMBOL_GPL(kvm_get_rflags); 10882 10883 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10884 { 10885 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 10886 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 10887 rflags |= X86_EFLAGS_TF; 10888 kvm_x86_ops.set_rflags(vcpu, rflags); 10889 } 10890 10891 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 10892 { 10893 __kvm_set_rflags(vcpu, rflags); 10894 kvm_make_request(KVM_REQ_EVENT, vcpu); 10895 } 10896 EXPORT_SYMBOL_GPL(kvm_set_rflags); 10897 10898 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 10899 { 10900 int r; 10901 10902 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 10903 work->wakeup_all) 10904 return; 10905 10906 r = kvm_mmu_reload(vcpu); 10907 if (unlikely(r)) 10908 return; 10909 10910 if (!vcpu->arch.mmu->direct_map && 10911 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 10912 return; 10913 10914 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 10915 } 10916 10917 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 10918 { 10919 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 10920 10921 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 10922 } 10923 10924 static inline u32 kvm_async_pf_next_probe(u32 key) 10925 { 10926 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 10927 } 10928 10929 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10930 { 10931 u32 key = kvm_async_pf_hash_fn(gfn); 10932 10933 while (vcpu->arch.apf.gfns[key] != ~0) 10934 key = kvm_async_pf_next_probe(key); 10935 10936 vcpu->arch.apf.gfns[key] = gfn; 10937 } 10938 10939 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 10940 { 10941 int i; 10942 u32 key = kvm_async_pf_hash_fn(gfn); 10943 10944 for (i = 0; i < ASYNC_PF_PER_VCPU && 10945 (vcpu->arch.apf.gfns[key] != gfn && 10946 vcpu->arch.apf.gfns[key] != ~0); i++) 10947 key = kvm_async_pf_next_probe(key); 10948 10949 return key; 10950 } 10951 10952 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10953 { 10954 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 10955 } 10956 10957 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 10958 { 10959 u32 i, j, k; 10960 10961 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 10962 10963 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 10964 return; 10965 10966 while (true) { 10967 vcpu->arch.apf.gfns[i] = ~0; 10968 do { 10969 j = kvm_async_pf_next_probe(j); 10970 if (vcpu->arch.apf.gfns[j] == ~0) 10971 return; 10972 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 10973 /* 10974 * k lies cyclically in ]i,j] 10975 * | i.k.j | 10976 * |....j i.k.| or |.k..j i...| 10977 */ 10978 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 10979 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 10980 i = j; 10981 } 10982 } 10983 10984 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 10985 { 10986 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 10987 10988 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 10989 sizeof(reason)); 10990 } 10991 10992 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 10993 { 10994 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 10995 10996 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 10997 &token, offset, sizeof(token)); 10998 } 10999 11000 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 11001 { 11002 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 11003 u32 val; 11004 11005 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 11006 &val, offset, sizeof(val))) 11007 return false; 11008 11009 return !val; 11010 } 11011 11012 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 11013 { 11014 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 11015 return false; 11016 11017 if (!kvm_pv_async_pf_enabled(vcpu) || 11018 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0)) 11019 return false; 11020 11021 return true; 11022 } 11023 11024 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 11025 { 11026 if (unlikely(!lapic_in_kernel(vcpu) || 11027 kvm_event_needs_reinjection(vcpu) || 11028 vcpu->arch.exception.pending)) 11029 return false; 11030 11031 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 11032 return false; 11033 11034 /* 11035 * If interrupts are off we cannot even use an artificial 11036 * halt state. 11037 */ 11038 return kvm_arch_interrupt_allowed(vcpu); 11039 } 11040 11041 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 11042 struct kvm_async_pf *work) 11043 { 11044 struct x86_exception fault; 11045 11046 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 11047 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 11048 11049 if (kvm_can_deliver_async_pf(vcpu) && 11050 !apf_put_user_notpresent(vcpu)) { 11051 fault.vector = PF_VECTOR; 11052 fault.error_code_valid = true; 11053 fault.error_code = 0; 11054 fault.nested_page_fault = false; 11055 fault.address = work->arch.token; 11056 fault.async_page_fault = true; 11057 kvm_inject_page_fault(vcpu, &fault); 11058 return true; 11059 } else { 11060 /* 11061 * It is not possible to deliver a paravirtualized asynchronous 11062 * page fault, but putting the guest in an artificial halt state 11063 * can be beneficial nevertheless: if an interrupt arrives, we 11064 * can deliver it timely and perhaps the guest will schedule 11065 * another process. When the instruction that triggered a page 11066 * fault is retried, hopefully the page will be ready in the host. 11067 */ 11068 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 11069 return false; 11070 } 11071 } 11072 11073 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 11074 struct kvm_async_pf *work) 11075 { 11076 struct kvm_lapic_irq irq = { 11077 .delivery_mode = APIC_DM_FIXED, 11078 .vector = vcpu->arch.apf.vec 11079 }; 11080 11081 if (work->wakeup_all) 11082 work->arch.token = ~0; /* broadcast wakeup */ 11083 else 11084 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 11085 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 11086 11087 if ((work->wakeup_all || work->notpresent_injected) && 11088 kvm_pv_async_pf_enabled(vcpu) && 11089 !apf_put_user_ready(vcpu, work->arch.token)) { 11090 vcpu->arch.apf.pageready_pending = true; 11091 kvm_apic_set_irq(vcpu, &irq, NULL); 11092 } 11093 11094 vcpu->arch.apf.halted = false; 11095 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11096 } 11097 11098 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 11099 { 11100 kvm_make_request(KVM_REQ_APF_READY, vcpu); 11101 if (!vcpu->arch.apf.pageready_pending) 11102 kvm_vcpu_kick(vcpu); 11103 } 11104 11105 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 11106 { 11107 if (!kvm_pv_async_pf_enabled(vcpu)) 11108 return true; 11109 else 11110 return apf_pageready_slot_free(vcpu); 11111 } 11112 11113 void kvm_arch_start_assignment(struct kvm *kvm) 11114 { 11115 atomic_inc(&kvm->arch.assigned_device_count); 11116 } 11117 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 11118 11119 void kvm_arch_end_assignment(struct kvm *kvm) 11120 { 11121 atomic_dec(&kvm->arch.assigned_device_count); 11122 } 11123 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 11124 11125 bool kvm_arch_has_assigned_device(struct kvm *kvm) 11126 { 11127 return atomic_read(&kvm->arch.assigned_device_count); 11128 } 11129 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 11130 11131 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 11132 { 11133 atomic_inc(&kvm->arch.noncoherent_dma_count); 11134 } 11135 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 11136 11137 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 11138 { 11139 atomic_dec(&kvm->arch.noncoherent_dma_count); 11140 } 11141 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 11142 11143 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 11144 { 11145 return atomic_read(&kvm->arch.noncoherent_dma_count); 11146 } 11147 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 11148 11149 bool kvm_arch_has_irq_bypass(void) 11150 { 11151 return true; 11152 } 11153 11154 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 11155 struct irq_bypass_producer *prod) 11156 { 11157 struct kvm_kernel_irqfd *irqfd = 11158 container_of(cons, struct kvm_kernel_irqfd, consumer); 11159 int ret; 11160 11161 irqfd->producer = prod; 11162 kvm_arch_start_assignment(irqfd->kvm); 11163 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, 11164 prod->irq, irqfd->gsi, 1); 11165 11166 if (ret) 11167 kvm_arch_end_assignment(irqfd->kvm); 11168 11169 return ret; 11170 } 11171 11172 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 11173 struct irq_bypass_producer *prod) 11174 { 11175 int ret; 11176 struct kvm_kernel_irqfd *irqfd = 11177 container_of(cons, struct kvm_kernel_irqfd, consumer); 11178 11179 WARN_ON(irqfd->producer != prod); 11180 irqfd->producer = NULL; 11181 11182 /* 11183 * When producer of consumer is unregistered, we change back to 11184 * remapped mode, so we can re-use the current implementation 11185 * when the irq is masked/disabled or the consumer side (KVM 11186 * int this case doesn't want to receive the interrupts. 11187 */ 11188 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 11189 if (ret) 11190 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 11191 " fails: %d\n", irqfd->consumer.token, ret); 11192 11193 kvm_arch_end_assignment(irqfd->kvm); 11194 } 11195 11196 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 11197 uint32_t guest_irq, bool set) 11198 { 11199 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set); 11200 } 11201 11202 bool kvm_vector_hashing_enabled(void) 11203 { 11204 return vector_hashing; 11205 } 11206 11207 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 11208 { 11209 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 11210 } 11211 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 11212 11213 11214 int kvm_spec_ctrl_test_value(u64 value) 11215 { 11216 /* 11217 * test that setting IA32_SPEC_CTRL to given value 11218 * is allowed by the host processor 11219 */ 11220 11221 u64 saved_value; 11222 unsigned long flags; 11223 int ret = 0; 11224 11225 local_irq_save(flags); 11226 11227 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 11228 ret = 1; 11229 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 11230 ret = 1; 11231 else 11232 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 11233 11234 local_irq_restore(flags); 11235 11236 return ret; 11237 } 11238 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 11239 11240 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 11241 { 11242 struct x86_exception fault; 11243 u32 access = error_code & 11244 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 11245 11246 if (!(error_code & PFERR_PRESENT_MASK) || 11247 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) { 11248 /* 11249 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 11250 * tables probably do not match the TLB. Just proceed 11251 * with the error code that the processor gave. 11252 */ 11253 fault.vector = PF_VECTOR; 11254 fault.error_code_valid = true; 11255 fault.error_code = error_code; 11256 fault.nested_page_fault = false; 11257 fault.address = gva; 11258 } 11259 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 11260 } 11261 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 11262 11263 /* 11264 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 11265 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 11266 * indicates whether exit to userspace is needed. 11267 */ 11268 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 11269 struct x86_exception *e) 11270 { 11271 if (r == X86EMUL_PROPAGATE_FAULT) { 11272 kvm_inject_emulated_page_fault(vcpu, e); 11273 return 1; 11274 } 11275 11276 /* 11277 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 11278 * while handling a VMX instruction KVM could've handled the request 11279 * correctly by exiting to userspace and performing I/O but there 11280 * doesn't seem to be a real use-case behind such requests, just return 11281 * KVM_EXIT_INTERNAL_ERROR for now. 11282 */ 11283 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11284 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11285 vcpu->run->internal.ndata = 0; 11286 11287 return 0; 11288 } 11289 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 11290 11291 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 11292 { 11293 bool pcid_enabled; 11294 struct x86_exception e; 11295 unsigned i; 11296 unsigned long roots_to_free = 0; 11297 struct { 11298 u64 pcid; 11299 u64 gla; 11300 } operand; 11301 int r; 11302 11303 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 11304 if (r != X86EMUL_CONTINUE) 11305 return kvm_handle_memory_failure(vcpu, r, &e); 11306 11307 if (operand.pcid >> 12 != 0) { 11308 kvm_inject_gp(vcpu, 0); 11309 return 1; 11310 } 11311 11312 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 11313 11314 switch (type) { 11315 case INVPCID_TYPE_INDIV_ADDR: 11316 if ((!pcid_enabled && (operand.pcid != 0)) || 11317 is_noncanonical_address(operand.gla, vcpu)) { 11318 kvm_inject_gp(vcpu, 0); 11319 return 1; 11320 } 11321 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 11322 return kvm_skip_emulated_instruction(vcpu); 11323 11324 case INVPCID_TYPE_SINGLE_CTXT: 11325 if (!pcid_enabled && (operand.pcid != 0)) { 11326 kvm_inject_gp(vcpu, 0); 11327 return 1; 11328 } 11329 11330 if (kvm_get_active_pcid(vcpu) == operand.pcid) { 11331 kvm_mmu_sync_roots(vcpu); 11332 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 11333 } 11334 11335 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 11336 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd) 11337 == operand.pcid) 11338 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 11339 11340 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 11341 /* 11342 * If neither the current cr3 nor any of the prev_roots use the 11343 * given PCID, then nothing needs to be done here because a 11344 * resync will happen anyway before switching to any other CR3. 11345 */ 11346 11347 return kvm_skip_emulated_instruction(vcpu); 11348 11349 case INVPCID_TYPE_ALL_NON_GLOBAL: 11350 /* 11351 * Currently, KVM doesn't mark global entries in the shadow 11352 * page tables, so a non-global flush just degenerates to a 11353 * global flush. If needed, we could optimize this later by 11354 * keeping track of global entries in shadow page tables. 11355 */ 11356 11357 fallthrough; 11358 case INVPCID_TYPE_ALL_INCL_GLOBAL: 11359 kvm_mmu_unload(vcpu); 11360 return kvm_skip_emulated_instruction(vcpu); 11361 11362 default: 11363 BUG(); /* We have already checked above that type <= 3 */ 11364 } 11365 } 11366 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 11367 11368 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 11369 { 11370 struct kvm_run *run = vcpu->run; 11371 struct kvm_mmio_fragment *frag; 11372 unsigned int len; 11373 11374 BUG_ON(!vcpu->mmio_needed); 11375 11376 /* Complete previous fragment */ 11377 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11378 len = min(8u, frag->len); 11379 if (!vcpu->mmio_is_write) 11380 memcpy(frag->data, run->mmio.data, len); 11381 11382 if (frag->len <= 8) { 11383 /* Switch to the next fragment. */ 11384 frag++; 11385 vcpu->mmio_cur_fragment++; 11386 } else { 11387 /* Go forward to the next mmio piece. */ 11388 frag->data += len; 11389 frag->gpa += len; 11390 frag->len -= len; 11391 } 11392 11393 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11394 vcpu->mmio_needed = 0; 11395 11396 // VMG change, at this point, we're always done 11397 // RIP has already been advanced 11398 return 1; 11399 } 11400 11401 // More MMIO is needed 11402 run->mmio.phys_addr = frag->gpa; 11403 run->mmio.len = min(8u, frag->len); 11404 run->mmio.is_write = vcpu->mmio_is_write; 11405 if (run->mmio.is_write) 11406 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11407 run->exit_reason = KVM_EXIT_MMIO; 11408 11409 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 11410 11411 return 0; 11412 } 11413 11414 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 11415 void *data) 11416 { 11417 int handled; 11418 struct kvm_mmio_fragment *frag; 11419 11420 if (!data) 11421 return -EINVAL; 11422 11423 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 11424 if (handled == bytes) 11425 return 1; 11426 11427 bytes -= handled; 11428 gpa += handled; 11429 data += handled; 11430 11431 /*TODO: Check if need to increment number of frags */ 11432 frag = vcpu->mmio_fragments; 11433 vcpu->mmio_nr_fragments = 1; 11434 frag->len = bytes; 11435 frag->gpa = gpa; 11436 frag->data = data; 11437 11438 vcpu->mmio_needed = 1; 11439 vcpu->mmio_cur_fragment = 0; 11440 11441 vcpu->run->mmio.phys_addr = gpa; 11442 vcpu->run->mmio.len = min(8u, frag->len); 11443 vcpu->run->mmio.is_write = 1; 11444 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 11445 vcpu->run->exit_reason = KVM_EXIT_MMIO; 11446 11447 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 11448 11449 return 0; 11450 } 11451 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 11452 11453 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 11454 void *data) 11455 { 11456 int handled; 11457 struct kvm_mmio_fragment *frag; 11458 11459 if (!data) 11460 return -EINVAL; 11461 11462 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 11463 if (handled == bytes) 11464 return 1; 11465 11466 bytes -= handled; 11467 gpa += handled; 11468 data += handled; 11469 11470 /*TODO: Check if need to increment number of frags */ 11471 frag = vcpu->mmio_fragments; 11472 vcpu->mmio_nr_fragments = 1; 11473 frag->len = bytes; 11474 frag->gpa = gpa; 11475 frag->data = data; 11476 11477 vcpu->mmio_needed = 1; 11478 vcpu->mmio_cur_fragment = 0; 11479 11480 vcpu->run->mmio.phys_addr = gpa; 11481 vcpu->run->mmio.len = min(8u, frag->len); 11482 vcpu->run->mmio.is_write = 0; 11483 vcpu->run->exit_reason = KVM_EXIT_MMIO; 11484 11485 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 11486 11487 return 0; 11488 } 11489 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 11490 11491 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 11492 { 11493 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data, 11494 vcpu->arch.pio.count * vcpu->arch.pio.size); 11495 vcpu->arch.pio.count = 0; 11496 11497 return 1; 11498 } 11499 11500 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 11501 unsigned int port, void *data, unsigned int count) 11502 { 11503 int ret; 11504 11505 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port, 11506 data, count); 11507 if (ret) 11508 return ret; 11509 11510 vcpu->arch.pio.count = 0; 11511 11512 return 0; 11513 } 11514 11515 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 11516 unsigned int port, void *data, unsigned int count) 11517 { 11518 int ret; 11519 11520 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port, 11521 data, count); 11522 if (ret) { 11523 vcpu->arch.pio.count = 0; 11524 } else { 11525 vcpu->arch.guest_ins_data = data; 11526 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 11527 } 11528 11529 return 0; 11530 } 11531 11532 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 11533 unsigned int port, void *data, unsigned int count, 11534 int in) 11535 { 11536 return in ? kvm_sev_es_ins(vcpu, size, port, data, count) 11537 : kvm_sev_es_outs(vcpu, size, port, data, count); 11538 } 11539 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 11540 11541 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 11542 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 11543 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 11544 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 11545 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 11546 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 11547 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 11548 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 11549 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 11550 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 11551 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 11552 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 11553 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 11554 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 11555 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 11556 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 11557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 11558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 11559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 11560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 11561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 11562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 11563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 11564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 11565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 11566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 11567