1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 /* 96 * Note, kvm_caps fields should *never* have default values, all fields must be 97 * recomputed from scratch during vendor module load, e.g. to account for a 98 * vendor module being reloaded with different module parameters. 99 */ 100 struct kvm_caps kvm_caps __read_mostly; 101 EXPORT_SYMBOL_GPL(kvm_caps); 102 103 struct kvm_host_values kvm_host __read_mostly; 104 EXPORT_SYMBOL_GPL(kvm_host); 105 106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 107 108 #define emul_to_vcpu(ctxt) \ 109 ((struct kvm_vcpu *)(ctxt)->vcpu) 110 111 /* EFER defaults: 112 * - enable syscall per default because its emulated by KVM 113 * - enable LME and LMA per default on 64 bit KVM 114 */ 115 #ifdef CONFIG_X86_64 116 static 117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 118 #else 119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 120 #endif 121 122 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 123 124 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 125 126 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 127 128 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 129 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 130 131 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 132 static void process_nmi(struct kvm_vcpu *vcpu); 133 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 134 static void store_regs(struct kvm_vcpu *vcpu); 135 static int sync_regs(struct kvm_vcpu *vcpu); 136 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 137 138 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 139 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 140 141 static DEFINE_MUTEX(vendor_module_lock); 142 struct kvm_x86_ops kvm_x86_ops __read_mostly; 143 144 #define KVM_X86_OP(func) \ 145 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 146 *(((struct kvm_x86_ops *)0)->func)); 147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 149 #include <asm/kvm-x86-ops.h> 150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 152 153 static bool __read_mostly ignore_msrs = 0; 154 module_param(ignore_msrs, bool, 0644); 155 156 bool __read_mostly report_ignored_msrs = true; 157 module_param(report_ignored_msrs, bool, 0644); 158 EXPORT_SYMBOL_GPL(report_ignored_msrs); 159 160 unsigned int min_timer_period_us = 200; 161 module_param(min_timer_period_us, uint, 0644); 162 163 static bool __read_mostly kvmclock_periodic_sync = true; 164 module_param(kvmclock_periodic_sync, bool, 0444); 165 166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 167 static u32 __read_mostly tsc_tolerance_ppm = 250; 168 module_param(tsc_tolerance_ppm, uint, 0644); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, 0444); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, 0444); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, 0644); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* Enable/disable SMT_RSB bug mitigation */ 197 static bool __read_mostly mitigate_smt_rsb; 198 module_param(mitigate_smt_rsb, bool, 0444); 199 200 /* 201 * Restoring the host value for MSRs that are only consumed when running in 202 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 203 * returns to userspace, i.e. the kernel can run with the guest's value. 204 */ 205 #define KVM_MAX_NR_USER_RETURN_MSRS 16 206 207 struct kvm_user_return_msrs { 208 struct user_return_notifier urn; 209 bool registered; 210 struct kvm_user_return_msr_values { 211 u64 host; 212 u64 curr; 213 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 214 }; 215 216 u32 __read_mostly kvm_nr_uret_msrs; 217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 219 static struct kvm_user_return_msrs __percpu *user_return_msrs; 220 221 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 222 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 223 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 224 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 225 226 bool __read_mostly allow_smaller_maxphyaddr = 0; 227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 228 229 bool __read_mostly enable_apicv = true; 230 EXPORT_SYMBOL_GPL(enable_apicv); 231 232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 233 KVM_GENERIC_VM_STATS(), 234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 235 STATS_DESC_COUNTER(VM, mmu_pte_write), 236 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 237 STATS_DESC_COUNTER(VM, mmu_flooded), 238 STATS_DESC_COUNTER(VM, mmu_recycled), 239 STATS_DESC_COUNTER(VM, mmu_cache_miss), 240 STATS_DESC_ICOUNTER(VM, mmu_unsync), 241 STATS_DESC_ICOUNTER(VM, pages_4k), 242 STATS_DESC_ICOUNTER(VM, pages_2m), 243 STATS_DESC_ICOUNTER(VM, pages_1g), 244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 247 }; 248 249 const struct kvm_stats_header kvm_vm_stats_header = { 250 .name_size = KVM_STATS_NAME_SIZE, 251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 252 .id_offset = sizeof(struct kvm_stats_header), 253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 255 sizeof(kvm_vm_stats_desc), 256 }; 257 258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 259 KVM_GENERIC_VCPU_STATS(), 260 STATS_DESC_COUNTER(VCPU, pf_taken), 261 STATS_DESC_COUNTER(VCPU, pf_fixed), 262 STATS_DESC_COUNTER(VCPU, pf_emulate), 263 STATS_DESC_COUNTER(VCPU, pf_spurious), 264 STATS_DESC_COUNTER(VCPU, pf_fast), 265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 266 STATS_DESC_COUNTER(VCPU, pf_guest), 267 STATS_DESC_COUNTER(VCPU, tlb_flush), 268 STATS_DESC_COUNTER(VCPU, invlpg), 269 STATS_DESC_COUNTER(VCPU, exits), 270 STATS_DESC_COUNTER(VCPU, io_exits), 271 STATS_DESC_COUNTER(VCPU, mmio_exits), 272 STATS_DESC_COUNTER(VCPU, signal_exits), 273 STATS_DESC_COUNTER(VCPU, irq_window_exits), 274 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 275 STATS_DESC_COUNTER(VCPU, l1d_flush), 276 STATS_DESC_COUNTER(VCPU, halt_exits), 277 STATS_DESC_COUNTER(VCPU, request_irq_exits), 278 STATS_DESC_COUNTER(VCPU, irq_exits), 279 STATS_DESC_COUNTER(VCPU, host_state_reload), 280 STATS_DESC_COUNTER(VCPU, fpu_reload), 281 STATS_DESC_COUNTER(VCPU, insn_emulation), 282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 283 STATS_DESC_COUNTER(VCPU, hypercalls), 284 STATS_DESC_COUNTER(VCPU, irq_injections), 285 STATS_DESC_COUNTER(VCPU, nmi_injections), 286 STATS_DESC_COUNTER(VCPU, req_event), 287 STATS_DESC_COUNTER(VCPU, nested_run), 288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 289 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 290 STATS_DESC_COUNTER(VCPU, preemption_reported), 291 STATS_DESC_COUNTER(VCPU, preemption_other), 292 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 293 STATS_DESC_COUNTER(VCPU, notify_window_exits), 294 }; 295 296 const struct kvm_stats_header kvm_vcpu_stats_header = { 297 .name_size = KVM_STATS_NAME_SIZE, 298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 299 .id_offset = sizeof(struct kvm_stats_header), 300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 302 sizeof(kvm_vcpu_stats_desc), 303 }; 304 305 static struct kmem_cache *x86_emulator_cache; 306 307 /* 308 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 309 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 310 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 311 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 312 * MSRs that KVM emulates without strictly requiring host support. 313 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 314 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 315 * msrs_to_save and emulated_msrs. 316 */ 317 318 static const u32 msrs_to_save_base[] = { 319 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 320 MSR_STAR, 321 #ifdef CONFIG_X86_64 322 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 323 #endif 324 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 325 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 326 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 327 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 328 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 329 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 330 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 331 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 332 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 333 MSR_IA32_UMWAIT_CONTROL, 334 335 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 336 }; 337 338 static const u32 msrs_to_save_pmu[] = { 339 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 340 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 341 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 342 MSR_CORE_PERF_GLOBAL_CTRL, 343 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 344 345 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ 346 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 347 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 348 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 349 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 350 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 351 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 352 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 353 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 354 355 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 356 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 357 358 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ 359 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 360 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 361 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 362 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 363 364 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 365 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 366 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 367 }; 368 369 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 370 ARRAY_SIZE(msrs_to_save_pmu)]; 371 static unsigned num_msrs_to_save; 372 373 static const u32 emulated_msrs_all[] = { 374 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 375 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 376 377 #ifdef CONFIG_KVM_HYPERV 378 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 379 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 380 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 381 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 382 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 383 HV_X64_MSR_RESET, 384 HV_X64_MSR_VP_INDEX, 385 HV_X64_MSR_VP_RUNTIME, 386 HV_X64_MSR_SCONTROL, 387 HV_X64_MSR_STIMER0_CONFIG, 388 HV_X64_MSR_VP_ASSIST_PAGE, 389 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 390 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 391 HV_X64_MSR_SYNDBG_OPTIONS, 392 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 393 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 394 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 395 #endif 396 397 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 398 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 399 400 MSR_IA32_TSC_ADJUST, 401 MSR_IA32_TSC_DEADLINE, 402 MSR_IA32_ARCH_CAPABILITIES, 403 MSR_IA32_PERF_CAPABILITIES, 404 MSR_IA32_MISC_ENABLE, 405 MSR_IA32_MCG_STATUS, 406 MSR_IA32_MCG_CTL, 407 MSR_IA32_MCG_EXT_CTL, 408 MSR_IA32_SMBASE, 409 MSR_SMI_COUNT, 410 MSR_PLATFORM_INFO, 411 MSR_MISC_FEATURES_ENABLES, 412 MSR_AMD64_VIRT_SPEC_CTRL, 413 MSR_AMD64_TSC_RATIO, 414 MSR_IA32_POWER_CTL, 415 MSR_IA32_UCODE_REV, 416 417 /* 418 * KVM always supports the "true" VMX control MSRs, even if the host 419 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 420 * doesn't strictly require them to exist in the host (ignoring that 421 * KVM would refuse to load in the first place if the core set of MSRs 422 * aren't supported). 423 */ 424 MSR_IA32_VMX_BASIC, 425 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 426 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 427 MSR_IA32_VMX_TRUE_EXIT_CTLS, 428 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 429 MSR_IA32_VMX_MISC, 430 MSR_IA32_VMX_CR0_FIXED0, 431 MSR_IA32_VMX_CR4_FIXED0, 432 MSR_IA32_VMX_VMCS_ENUM, 433 MSR_IA32_VMX_PROCBASED_CTLS2, 434 MSR_IA32_VMX_EPT_VPID_CAP, 435 MSR_IA32_VMX_VMFUNC, 436 437 MSR_K7_HWCR, 438 MSR_KVM_POLL_CONTROL, 439 }; 440 441 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 442 static unsigned num_emulated_msrs; 443 444 /* 445 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 446 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 447 * feature MSRs, but are handled separately to allow expedited lookups. 448 */ 449 static const u32 msr_based_features_all_except_vmx[] = { 450 MSR_AMD64_DE_CFG, 451 MSR_IA32_UCODE_REV, 452 MSR_IA32_ARCH_CAPABILITIES, 453 MSR_IA32_PERF_CAPABILITIES, 454 }; 455 456 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 457 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 458 static unsigned int num_msr_based_features; 459 460 /* 461 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 462 * patch, are immutable once the vCPU model is defined. 463 */ 464 static bool kvm_is_immutable_feature_msr(u32 msr) 465 { 466 int i; 467 468 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 469 return true; 470 471 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 472 if (msr == msr_based_features_all_except_vmx[i]) 473 return msr != MSR_IA32_UCODE_REV; 474 } 475 476 return false; 477 } 478 479 static bool kvm_is_advertised_msr(u32 msr_index) 480 { 481 unsigned int i; 482 483 for (i = 0; i < num_msrs_to_save; i++) { 484 if (msrs_to_save[i] == msr_index) 485 return true; 486 } 487 488 for (i = 0; i < num_emulated_msrs; i++) { 489 if (emulated_msrs[i] == msr_index) 490 return true; 491 } 492 493 return false; 494 } 495 496 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data, 497 bool host_initiated); 498 499 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr, 500 u64 *data, bool host_initiated, 501 enum kvm_msr_access rw, 502 msr_access_t msr_access_fn) 503 { 504 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr"; 505 int ret; 506 507 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W); 508 509 /* 510 * Zero the data on read failures to avoid leaking stack data to the 511 * guest and/or userspace, e.g. if the failure is ignored below. 512 */ 513 ret = msr_access_fn(vcpu, msr, data, host_initiated); 514 if (ret && rw == MSR_TYPE_R) 515 *data = 0; 516 517 if (ret != KVM_MSR_RET_UNSUPPORTED) 518 return ret; 519 520 /* 521 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM 522 * advertises to userspace, even if an MSR isn't fully supported. 523 * Simply check that @data is '0', which covers both the write '0' case 524 * and all reads (in which case @data is zeroed on failure; see above). 525 */ 526 if (host_initiated && !*data && kvm_is_advertised_msr(msr)) 527 return 0; 528 529 if (!ignore_msrs) { 530 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 531 op, msr, *data); 532 return ret; 533 } 534 535 if (report_ignored_msrs) 536 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data); 537 538 return 0; 539 } 540 541 static struct kmem_cache *kvm_alloc_emulator_cache(void) 542 { 543 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 544 unsigned int size = sizeof(struct x86_emulate_ctxt); 545 546 return kmem_cache_create_usercopy("x86_emulator", size, 547 __alignof__(struct x86_emulate_ctxt), 548 SLAB_ACCOUNT, useroffset, 549 size - useroffset, NULL); 550 } 551 552 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 553 554 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 555 { 556 int i; 557 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 558 vcpu->arch.apf.gfns[i] = ~0; 559 } 560 561 static void kvm_on_user_return(struct user_return_notifier *urn) 562 { 563 unsigned slot; 564 struct kvm_user_return_msrs *msrs 565 = container_of(urn, struct kvm_user_return_msrs, urn); 566 struct kvm_user_return_msr_values *values; 567 unsigned long flags; 568 569 /* 570 * Disabling irqs at this point since the following code could be 571 * interrupted and executed through kvm_arch_hardware_disable() 572 */ 573 local_irq_save(flags); 574 if (msrs->registered) { 575 msrs->registered = false; 576 user_return_notifier_unregister(urn); 577 } 578 local_irq_restore(flags); 579 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 580 values = &msrs->values[slot]; 581 if (values->host != values->curr) { 582 wrmsrl(kvm_uret_msrs_list[slot], values->host); 583 values->curr = values->host; 584 } 585 } 586 } 587 588 static int kvm_probe_user_return_msr(u32 msr) 589 { 590 u64 val; 591 int ret; 592 593 preempt_disable(); 594 ret = rdmsrl_safe(msr, &val); 595 if (ret) 596 goto out; 597 ret = wrmsrl_safe(msr, val); 598 out: 599 preempt_enable(); 600 return ret; 601 } 602 603 int kvm_add_user_return_msr(u32 msr) 604 { 605 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 606 607 if (kvm_probe_user_return_msr(msr)) 608 return -1; 609 610 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 611 return kvm_nr_uret_msrs++; 612 } 613 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 614 615 int kvm_find_user_return_msr(u32 msr) 616 { 617 int i; 618 619 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 620 if (kvm_uret_msrs_list[i] == msr) 621 return i; 622 } 623 return -1; 624 } 625 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 626 627 static void kvm_user_return_msr_cpu_online(void) 628 { 629 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 630 u64 value; 631 int i; 632 633 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 634 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 635 msrs->values[i].host = value; 636 msrs->values[i].curr = value; 637 } 638 } 639 640 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 641 { 642 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 643 int err; 644 645 value = (value & mask) | (msrs->values[slot].host & ~mask); 646 if (value == msrs->values[slot].curr) 647 return 0; 648 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 649 if (err) 650 return 1; 651 652 msrs->values[slot].curr = value; 653 if (!msrs->registered) { 654 msrs->urn.on_user_return = kvm_on_user_return; 655 user_return_notifier_register(&msrs->urn); 656 msrs->registered = true; 657 } 658 return 0; 659 } 660 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 661 662 static void drop_user_return_notifiers(void) 663 { 664 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 665 666 if (msrs->registered) 667 kvm_on_user_return(&msrs->urn); 668 } 669 670 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 671 { 672 return vcpu->arch.apic_base; 673 } 674 675 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 676 { 677 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 678 } 679 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 680 681 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 682 { 683 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 684 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 685 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 686 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 687 688 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 689 return 1; 690 if (!msr_info->host_initiated) { 691 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 692 return 1; 693 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 694 return 1; 695 } 696 697 kvm_lapic_set_base(vcpu, msr_info->data); 698 kvm_recalculate_apic_map(vcpu->kvm); 699 return 0; 700 } 701 702 /* 703 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 704 * 705 * Hardware virtualization extension instructions may fault if a reboot turns 706 * off virtualization while processes are running. Usually after catching the 707 * fault we just panic; during reboot instead the instruction is ignored. 708 */ 709 noinstr void kvm_spurious_fault(void) 710 { 711 /* Fault while not rebooting. We want the trace. */ 712 BUG_ON(!kvm_rebooting); 713 } 714 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 715 716 #define EXCPT_BENIGN 0 717 #define EXCPT_CONTRIBUTORY 1 718 #define EXCPT_PF 2 719 720 static int exception_class(int vector) 721 { 722 switch (vector) { 723 case PF_VECTOR: 724 return EXCPT_PF; 725 case DE_VECTOR: 726 case TS_VECTOR: 727 case NP_VECTOR: 728 case SS_VECTOR: 729 case GP_VECTOR: 730 return EXCPT_CONTRIBUTORY; 731 default: 732 break; 733 } 734 return EXCPT_BENIGN; 735 } 736 737 #define EXCPT_FAULT 0 738 #define EXCPT_TRAP 1 739 #define EXCPT_ABORT 2 740 #define EXCPT_INTERRUPT 3 741 #define EXCPT_DB 4 742 743 static int exception_type(int vector) 744 { 745 unsigned int mask; 746 747 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 748 return EXCPT_INTERRUPT; 749 750 mask = 1 << vector; 751 752 /* 753 * #DBs can be trap-like or fault-like, the caller must check other CPU 754 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 755 */ 756 if (mask & (1 << DB_VECTOR)) 757 return EXCPT_DB; 758 759 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 760 return EXCPT_TRAP; 761 762 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 763 return EXCPT_ABORT; 764 765 /* Reserved exceptions will result in fault */ 766 return EXCPT_FAULT; 767 } 768 769 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 770 struct kvm_queued_exception *ex) 771 { 772 if (!ex->has_payload) 773 return; 774 775 switch (ex->vector) { 776 case DB_VECTOR: 777 /* 778 * "Certain debug exceptions may clear bit 0-3. The 779 * remaining contents of the DR6 register are never 780 * cleared by the processor". 781 */ 782 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 783 /* 784 * In order to reflect the #DB exception payload in guest 785 * dr6, three components need to be considered: active low 786 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 787 * DR6_BS and DR6_BT) 788 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 789 * In the target guest dr6: 790 * FIXED_1 bits should always be set. 791 * Active low bits should be cleared if 1-setting in payload. 792 * Active high bits should be set if 1-setting in payload. 793 * 794 * Note, the payload is compatible with the pending debug 795 * exceptions/exit qualification under VMX, that active_low bits 796 * are active high in payload. 797 * So they need to be flipped for DR6. 798 */ 799 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 800 vcpu->arch.dr6 |= ex->payload; 801 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 802 803 /* 804 * The #DB payload is defined as compatible with the 'pending 805 * debug exceptions' field under VMX, not DR6. While bit 12 is 806 * defined in the 'pending debug exceptions' field (enabled 807 * breakpoint), it is reserved and must be zero in DR6. 808 */ 809 vcpu->arch.dr6 &= ~BIT(12); 810 break; 811 case PF_VECTOR: 812 vcpu->arch.cr2 = ex->payload; 813 break; 814 } 815 816 ex->has_payload = false; 817 ex->payload = 0; 818 } 819 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 820 821 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 822 bool has_error_code, u32 error_code, 823 bool has_payload, unsigned long payload) 824 { 825 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 826 827 ex->vector = vector; 828 ex->injected = false; 829 ex->pending = true; 830 ex->has_error_code = has_error_code; 831 ex->error_code = error_code; 832 ex->has_payload = has_payload; 833 ex->payload = payload; 834 } 835 836 /* Forcibly leave the nested mode in cases like a vCPU reset */ 837 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 838 { 839 kvm_x86_ops.nested_ops->leave_nested(vcpu); 840 } 841 842 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 843 unsigned nr, bool has_error, u32 error_code, 844 bool has_payload, unsigned long payload, bool reinject) 845 { 846 u32 prev_nr; 847 int class1, class2; 848 849 kvm_make_request(KVM_REQ_EVENT, vcpu); 850 851 /* 852 * If the exception is destined for L2 and isn't being reinjected, 853 * morph it to a VM-Exit if L1 wants to intercept the exception. A 854 * previously injected exception is not checked because it was checked 855 * when it was original queued, and re-checking is incorrect if _L1_ 856 * injected the exception, in which case it's exempt from interception. 857 */ 858 if (!reinject && is_guest_mode(vcpu) && 859 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 860 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 861 has_payload, payload); 862 return; 863 } 864 865 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 866 queue: 867 if (reinject) { 868 /* 869 * On VM-Entry, an exception can be pending if and only 870 * if event injection was blocked by nested_run_pending. 871 * In that case, however, vcpu_enter_guest() requests an 872 * immediate exit, and the guest shouldn't proceed far 873 * enough to need reinjection. 874 */ 875 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 876 vcpu->arch.exception.injected = true; 877 if (WARN_ON_ONCE(has_payload)) { 878 /* 879 * A reinjected event has already 880 * delivered its payload. 881 */ 882 has_payload = false; 883 payload = 0; 884 } 885 } else { 886 vcpu->arch.exception.pending = true; 887 vcpu->arch.exception.injected = false; 888 } 889 vcpu->arch.exception.has_error_code = has_error; 890 vcpu->arch.exception.vector = nr; 891 vcpu->arch.exception.error_code = error_code; 892 vcpu->arch.exception.has_payload = has_payload; 893 vcpu->arch.exception.payload = payload; 894 if (!is_guest_mode(vcpu)) 895 kvm_deliver_exception_payload(vcpu, 896 &vcpu->arch.exception); 897 return; 898 } 899 900 /* to check exception */ 901 prev_nr = vcpu->arch.exception.vector; 902 if (prev_nr == DF_VECTOR) { 903 /* triple fault -> shutdown */ 904 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 905 return; 906 } 907 class1 = exception_class(prev_nr); 908 class2 = exception_class(nr); 909 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 910 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 911 /* 912 * Synthesize #DF. Clear the previously injected or pending 913 * exception so as not to incorrectly trigger shutdown. 914 */ 915 vcpu->arch.exception.injected = false; 916 vcpu->arch.exception.pending = false; 917 918 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 919 } else { 920 /* replace previous exception with a new one in a hope 921 that instruction re-execution will regenerate lost 922 exception */ 923 goto queue; 924 } 925 } 926 927 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 928 { 929 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 930 } 931 EXPORT_SYMBOL_GPL(kvm_queue_exception); 932 933 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 934 { 935 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 936 } 937 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 938 939 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 940 unsigned long payload) 941 { 942 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 943 } 944 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 945 946 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 947 u32 error_code, unsigned long payload) 948 { 949 kvm_multiple_exception(vcpu, nr, true, error_code, 950 true, payload, false); 951 } 952 953 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 954 { 955 if (err) 956 kvm_inject_gp(vcpu, 0); 957 else 958 return kvm_skip_emulated_instruction(vcpu); 959 960 return 1; 961 } 962 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 963 964 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 965 { 966 if (err) { 967 kvm_inject_gp(vcpu, 0); 968 return 1; 969 } 970 971 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 972 EMULTYPE_COMPLETE_USER_EXIT); 973 } 974 975 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 976 { 977 ++vcpu->stat.pf_guest; 978 979 /* 980 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 981 * whether or not L1 wants to intercept "regular" #PF. 982 */ 983 if (is_guest_mode(vcpu) && fault->async_page_fault) 984 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 985 true, fault->error_code, 986 true, fault->address); 987 else 988 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 989 fault->address); 990 } 991 992 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 993 struct x86_exception *fault) 994 { 995 struct kvm_mmu *fault_mmu; 996 WARN_ON_ONCE(fault->vector != PF_VECTOR); 997 998 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 999 vcpu->arch.walk_mmu; 1000 1001 /* 1002 * Invalidate the TLB entry for the faulting address, if it exists, 1003 * else the access will fault indefinitely (and to emulate hardware). 1004 */ 1005 if ((fault->error_code & PFERR_PRESENT_MASK) && 1006 !(fault->error_code & PFERR_RSVD_MASK)) 1007 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 1008 KVM_MMU_ROOT_CURRENT); 1009 1010 fault_mmu->inject_page_fault(vcpu, fault); 1011 } 1012 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 1013 1014 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 1015 { 1016 atomic_inc(&vcpu->arch.nmi_queued); 1017 kvm_make_request(KVM_REQ_NMI, vcpu); 1018 } 1019 1020 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 1021 { 1022 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 1023 } 1024 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 1025 1026 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 1027 { 1028 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 1029 } 1030 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 1031 1032 /* 1033 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 1034 * a #GP and return false. 1035 */ 1036 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 1037 { 1038 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) 1039 return true; 1040 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 1041 return false; 1042 } 1043 1044 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 1045 { 1046 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 1047 return true; 1048 1049 kvm_queue_exception(vcpu, UD_VECTOR); 1050 return false; 1051 } 1052 EXPORT_SYMBOL_GPL(kvm_require_dr); 1053 1054 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 1055 { 1056 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 1057 } 1058 1059 /* 1060 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 1061 */ 1062 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 1063 { 1064 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 1065 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 1066 gpa_t real_gpa; 1067 int i; 1068 int ret; 1069 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 1070 1071 /* 1072 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 1073 * to an L1 GPA. 1074 */ 1075 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 1076 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 1077 if (real_gpa == INVALID_GPA) 1078 return 0; 1079 1080 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 1081 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 1082 cr3 & GENMASK(11, 5), sizeof(pdpte)); 1083 if (ret < 0) 1084 return 0; 1085 1086 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 1087 if ((pdpte[i] & PT_PRESENT_MASK) && 1088 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 1089 return 0; 1090 } 1091 } 1092 1093 /* 1094 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 1095 * Shadow page roots need to be reconstructed instead. 1096 */ 1097 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 1098 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 1099 1100 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 1101 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 1102 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 1103 vcpu->arch.pdptrs_from_userspace = false; 1104 1105 return 1; 1106 } 1107 EXPORT_SYMBOL_GPL(load_pdptrs); 1108 1109 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1110 { 1111 #ifdef CONFIG_X86_64 1112 if (cr0 & 0xffffffff00000000UL) 1113 return false; 1114 #endif 1115 1116 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 1117 return false; 1118 1119 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 1120 return false; 1121 1122 return kvm_x86_call(is_valid_cr0)(vcpu, cr0); 1123 } 1124 1125 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 1126 { 1127 /* 1128 * CR0.WP is incorporated into the MMU role, but only for non-nested, 1129 * indirect shadow MMUs. If paging is disabled, no updates are needed 1130 * as there are no permission bits to emulate. If TDP is enabled, the 1131 * MMU's metadata needs to be updated, e.g. so that emulating guest 1132 * translations does the right thing, but there's no need to unload the 1133 * root as CR0.WP doesn't affect SPTEs. 1134 */ 1135 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 1136 if (!(cr0 & X86_CR0_PG)) 1137 return; 1138 1139 if (tdp_enabled) { 1140 kvm_init_mmu(vcpu); 1141 return; 1142 } 1143 } 1144 1145 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 1146 kvm_clear_async_pf_completion_queue(vcpu); 1147 kvm_async_pf_hash_reset(vcpu); 1148 1149 /* 1150 * Clearing CR0.PG is defined to flush the TLB from the guest's 1151 * perspective. 1152 */ 1153 if (!(cr0 & X86_CR0_PG)) 1154 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1155 } 1156 1157 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 1158 kvm_mmu_reset_context(vcpu); 1159 } 1160 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 1161 1162 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1163 { 1164 unsigned long old_cr0 = kvm_read_cr0(vcpu); 1165 1166 if (!kvm_is_valid_cr0(vcpu, cr0)) 1167 return 1; 1168 1169 cr0 |= X86_CR0_ET; 1170 1171 /* Write to CR0 reserved bits are ignored, even on Intel. */ 1172 cr0 &= ~CR0_RESERVED_BITS; 1173 1174 #ifdef CONFIG_X86_64 1175 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 1176 (cr0 & X86_CR0_PG)) { 1177 int cs_db, cs_l; 1178 1179 if (!is_pae(vcpu)) 1180 return 1; 1181 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 1182 if (cs_l) 1183 return 1; 1184 } 1185 #endif 1186 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 1187 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 1188 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1189 return 1; 1190 1191 if (!(cr0 & X86_CR0_PG) && 1192 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1193 return 1; 1194 1195 kvm_x86_call(set_cr0)(vcpu, cr0); 1196 1197 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1198 1199 return 0; 1200 } 1201 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1202 1203 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1204 { 1205 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1206 } 1207 EXPORT_SYMBOL_GPL(kvm_lmsw); 1208 1209 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1210 { 1211 if (vcpu->arch.guest_state_protected) 1212 return; 1213 1214 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1215 1216 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1217 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1218 1219 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1220 vcpu->arch.ia32_xss != kvm_host.xss) 1221 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1222 } 1223 1224 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1225 vcpu->arch.pkru != vcpu->arch.host_pkru && 1226 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1227 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1228 write_pkru(vcpu->arch.pkru); 1229 } 1230 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1231 1232 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1233 { 1234 if (vcpu->arch.guest_state_protected) 1235 return; 1236 1237 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1238 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1239 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1240 vcpu->arch.pkru = rdpkru(); 1241 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1242 write_pkru(vcpu->arch.host_pkru); 1243 } 1244 1245 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1246 1247 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1248 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); 1249 1250 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1251 vcpu->arch.ia32_xss != kvm_host.xss) 1252 wrmsrl(MSR_IA32_XSS, kvm_host.xss); 1253 } 1254 1255 } 1256 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1257 1258 #ifdef CONFIG_X86_64 1259 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1260 { 1261 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1262 } 1263 #endif 1264 1265 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1266 { 1267 u64 xcr0 = xcr; 1268 u64 old_xcr0 = vcpu->arch.xcr0; 1269 u64 valid_bits; 1270 1271 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1272 if (index != XCR_XFEATURE_ENABLED_MASK) 1273 return 1; 1274 if (!(xcr0 & XFEATURE_MASK_FP)) 1275 return 1; 1276 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1277 return 1; 1278 1279 /* 1280 * Do not allow the guest to set bits that we do not support 1281 * saving. However, xcr0 bit 0 is always set, even if the 1282 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1283 */ 1284 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1285 if (xcr0 & ~valid_bits) 1286 return 1; 1287 1288 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1289 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1290 return 1; 1291 1292 if (xcr0 & XFEATURE_MASK_AVX512) { 1293 if (!(xcr0 & XFEATURE_MASK_YMM)) 1294 return 1; 1295 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1296 return 1; 1297 } 1298 1299 if ((xcr0 & XFEATURE_MASK_XTILE) && 1300 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1301 return 1; 1302 1303 vcpu->arch.xcr0 = xcr0; 1304 1305 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1306 kvm_update_cpuid_runtime(vcpu); 1307 return 0; 1308 } 1309 1310 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1311 { 1312 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1313 if (kvm_x86_call(get_cpl)(vcpu) != 0 || 1314 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1315 kvm_inject_gp(vcpu, 0); 1316 return 1; 1317 } 1318 1319 return kvm_skip_emulated_instruction(vcpu); 1320 } 1321 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1322 1323 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1324 { 1325 if (cr4 & cr4_reserved_bits) 1326 return false; 1327 1328 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1329 return false; 1330 1331 return true; 1332 } 1333 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1334 1335 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1336 { 1337 return __kvm_is_valid_cr4(vcpu, cr4) && 1338 kvm_x86_call(is_valid_cr4)(vcpu, cr4); 1339 } 1340 1341 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1342 { 1343 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1344 kvm_mmu_reset_context(vcpu); 1345 1346 /* 1347 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1348 * according to the SDM; however, stale prev_roots could be reused 1349 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1350 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1351 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1352 * so fall through. 1353 */ 1354 if (!tdp_enabled && 1355 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1356 kvm_mmu_unload(vcpu); 1357 1358 /* 1359 * The TLB has to be flushed for all PCIDs if any of the following 1360 * (architecturally required) changes happen: 1361 * - CR4.PCIDE is changed from 1 to 0 1362 * - CR4.PGE is toggled 1363 * 1364 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1365 */ 1366 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1367 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1368 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1369 1370 /* 1371 * The TLB has to be flushed for the current PCID if any of the 1372 * following (architecturally required) changes happen: 1373 * - CR4.SMEP is changed from 0 to 1 1374 * - CR4.PAE is toggled 1375 */ 1376 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1377 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1378 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1379 1380 } 1381 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1382 1383 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1384 { 1385 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1386 1387 if (!kvm_is_valid_cr4(vcpu, cr4)) 1388 return 1; 1389 1390 if (is_long_mode(vcpu)) { 1391 if (!(cr4 & X86_CR4_PAE)) 1392 return 1; 1393 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1394 return 1; 1395 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1396 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1397 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1398 return 1; 1399 1400 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1401 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1402 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1403 return 1; 1404 } 1405 1406 kvm_x86_call(set_cr4)(vcpu, cr4); 1407 1408 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1409 1410 return 0; 1411 } 1412 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1413 1414 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1415 { 1416 struct kvm_mmu *mmu = vcpu->arch.mmu; 1417 unsigned long roots_to_free = 0; 1418 int i; 1419 1420 /* 1421 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1422 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1423 * also via the emulator. KVM's TDP page tables are not in the scope of 1424 * the invalidation, but the guest's TLB entries need to be flushed as 1425 * the CPU may have cached entries in its TLB for the target PCID. 1426 */ 1427 if (unlikely(tdp_enabled)) { 1428 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1429 return; 1430 } 1431 1432 /* 1433 * If neither the current CR3 nor any of the prev_roots use the given 1434 * PCID, then nothing needs to be done here because a resync will 1435 * happen anyway before switching to any other CR3. 1436 */ 1437 if (kvm_get_active_pcid(vcpu) == pcid) { 1438 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1439 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1440 } 1441 1442 /* 1443 * If PCID is disabled, there is no need to free prev_roots even if the 1444 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1445 * with PCIDE=0. 1446 */ 1447 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1448 return; 1449 1450 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1451 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1452 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1453 1454 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1455 } 1456 1457 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1458 { 1459 bool skip_tlb_flush = false; 1460 unsigned long pcid = 0; 1461 #ifdef CONFIG_X86_64 1462 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1463 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1464 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1465 pcid = cr3 & X86_CR3_PCID_MASK; 1466 } 1467 #endif 1468 1469 /* PDPTRs are always reloaded for PAE paging. */ 1470 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1471 goto handle_tlb_flush; 1472 1473 /* 1474 * Do not condition the GPA check on long mode, this helper is used to 1475 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1476 * the current vCPU mode is accurate. 1477 */ 1478 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1479 return 1; 1480 1481 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1482 return 1; 1483 1484 if (cr3 != kvm_read_cr3(vcpu)) 1485 kvm_mmu_new_pgd(vcpu, cr3); 1486 1487 vcpu->arch.cr3 = cr3; 1488 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1489 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1490 1491 handle_tlb_flush: 1492 /* 1493 * A load of CR3 that flushes the TLB flushes only the current PCID, 1494 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1495 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1496 * and it's impossible to use a non-zero PCID when PCID is disabled, 1497 * i.e. only PCID=0 can be relevant. 1498 */ 1499 if (!skip_tlb_flush) 1500 kvm_invalidate_pcid(vcpu, pcid); 1501 1502 return 0; 1503 } 1504 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1505 1506 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1507 { 1508 if (cr8 & CR8_RESERVED_BITS) 1509 return 1; 1510 if (lapic_in_kernel(vcpu)) 1511 kvm_lapic_set_tpr(vcpu, cr8); 1512 else 1513 vcpu->arch.cr8 = cr8; 1514 return 0; 1515 } 1516 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1517 1518 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1519 { 1520 if (lapic_in_kernel(vcpu)) 1521 return kvm_lapic_get_cr8(vcpu); 1522 else 1523 return vcpu->arch.cr8; 1524 } 1525 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1526 1527 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1528 { 1529 int i; 1530 1531 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1532 for (i = 0; i < KVM_NR_DB_REGS; i++) 1533 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1534 } 1535 } 1536 1537 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1538 { 1539 unsigned long dr7; 1540 1541 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1542 dr7 = vcpu->arch.guest_debug_dr7; 1543 else 1544 dr7 = vcpu->arch.dr7; 1545 kvm_x86_call(set_dr7)(vcpu, dr7); 1546 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1547 if (dr7 & DR7_BP_EN_MASK) 1548 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1549 } 1550 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1551 1552 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1553 { 1554 u64 fixed = DR6_FIXED_1; 1555 1556 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1557 fixed |= DR6_RTM; 1558 1559 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1560 fixed |= DR6_BUS_LOCK; 1561 return fixed; 1562 } 1563 1564 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1565 { 1566 size_t size = ARRAY_SIZE(vcpu->arch.db); 1567 1568 switch (dr) { 1569 case 0 ... 3: 1570 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1571 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1572 vcpu->arch.eff_db[dr] = val; 1573 break; 1574 case 4: 1575 case 6: 1576 if (!kvm_dr6_valid(val)) 1577 return 1; /* #GP */ 1578 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1579 break; 1580 case 5: 1581 default: /* 7 */ 1582 if (!kvm_dr7_valid(val)) 1583 return 1; /* #GP */ 1584 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1585 kvm_update_dr7(vcpu); 1586 break; 1587 } 1588 1589 return 0; 1590 } 1591 EXPORT_SYMBOL_GPL(kvm_set_dr); 1592 1593 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1594 { 1595 size_t size = ARRAY_SIZE(vcpu->arch.db); 1596 1597 switch (dr) { 1598 case 0 ... 3: 1599 return vcpu->arch.db[array_index_nospec(dr, size)]; 1600 case 4: 1601 case 6: 1602 return vcpu->arch.dr6; 1603 case 5: 1604 default: /* 7 */ 1605 return vcpu->arch.dr7; 1606 } 1607 } 1608 EXPORT_SYMBOL_GPL(kvm_get_dr); 1609 1610 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1611 { 1612 u32 ecx = kvm_rcx_read(vcpu); 1613 u64 data; 1614 1615 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1616 kvm_inject_gp(vcpu, 0); 1617 return 1; 1618 } 1619 1620 kvm_rax_write(vcpu, (u32)data); 1621 kvm_rdx_write(vcpu, data >> 32); 1622 return kvm_skip_emulated_instruction(vcpu); 1623 } 1624 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1625 1626 /* 1627 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1628 * does not yet virtualize. These include: 1629 * 10 - MISC_PACKAGE_CTRLS 1630 * 11 - ENERGY_FILTERING_CTL 1631 * 12 - DOITM 1632 * 18 - FB_CLEAR_CTRL 1633 * 21 - XAPIC_DISABLE_STATUS 1634 * 23 - OVERCLOCKING_STATUS 1635 */ 1636 1637 #define KVM_SUPPORTED_ARCH_CAP \ 1638 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1639 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1640 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1641 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1642 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1643 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO) 1644 1645 static u64 kvm_get_arch_capabilities(void) 1646 { 1647 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1648 1649 /* 1650 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1651 * the nested hypervisor runs with NX huge pages. If it is not, 1652 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1653 * L1 guests, so it need not worry about its own (L2) guests. 1654 */ 1655 data |= ARCH_CAP_PSCHANGE_MC_NO; 1656 1657 /* 1658 * If we're doing cache flushes (either "always" or "cond") 1659 * we will do one whenever the guest does a vmlaunch/vmresume. 1660 * If an outer hypervisor is doing the cache flush for us 1661 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1662 * capability to the guest too, and if EPT is disabled we're not 1663 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1664 * require a nested hypervisor to do a flush of its own. 1665 */ 1666 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1667 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1668 1669 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1670 data |= ARCH_CAP_RDCL_NO; 1671 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1672 data |= ARCH_CAP_SSB_NO; 1673 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1674 data |= ARCH_CAP_MDS_NO; 1675 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1676 data |= ARCH_CAP_RFDS_NO; 1677 1678 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1679 /* 1680 * If RTM=0 because the kernel has disabled TSX, the host might 1681 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1682 * and therefore knows that there cannot be TAA) but keep 1683 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1684 * and we want to allow migrating those guests to tsx=off hosts. 1685 */ 1686 data &= ~ARCH_CAP_TAA_NO; 1687 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1688 data |= ARCH_CAP_TAA_NO; 1689 } else { 1690 /* 1691 * Nothing to do here; we emulate TSX_CTRL if present on the 1692 * host so the guest can choose between disabling TSX or 1693 * using VERW to clear CPU buffers. 1694 */ 1695 } 1696 1697 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1698 data |= ARCH_CAP_GDS_NO; 1699 1700 return data; 1701 } 1702 1703 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1704 bool host_initiated) 1705 { 1706 WARN_ON_ONCE(!host_initiated); 1707 1708 switch (index) { 1709 case MSR_IA32_ARCH_CAPABILITIES: 1710 *data = kvm_get_arch_capabilities(); 1711 break; 1712 case MSR_IA32_PERF_CAPABILITIES: 1713 *data = kvm_caps.supported_perf_cap; 1714 break; 1715 case MSR_IA32_UCODE_REV: 1716 rdmsrl_safe(index, data); 1717 break; 1718 default: 1719 return kvm_x86_call(get_feature_msr)(index, data); 1720 } 1721 return 0; 1722 } 1723 1724 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1725 { 1726 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R, 1727 kvm_get_feature_msr); 1728 } 1729 1730 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1731 { 1732 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1733 return false; 1734 1735 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1736 return false; 1737 1738 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1739 return false; 1740 1741 if (efer & (EFER_LME | EFER_LMA) && 1742 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1743 return false; 1744 1745 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1746 return false; 1747 1748 return true; 1749 1750 } 1751 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1752 { 1753 if (efer & efer_reserved_bits) 1754 return false; 1755 1756 return __kvm_valid_efer(vcpu, efer); 1757 } 1758 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1759 1760 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1761 { 1762 u64 old_efer = vcpu->arch.efer; 1763 u64 efer = msr_info->data; 1764 int r; 1765 1766 if (efer & efer_reserved_bits) 1767 return 1; 1768 1769 if (!msr_info->host_initiated) { 1770 if (!__kvm_valid_efer(vcpu, efer)) 1771 return 1; 1772 1773 if (is_paging(vcpu) && 1774 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1775 return 1; 1776 } 1777 1778 efer &= ~EFER_LMA; 1779 efer |= vcpu->arch.efer & EFER_LMA; 1780 1781 r = kvm_x86_call(set_efer)(vcpu, efer); 1782 if (r) { 1783 WARN_ON(r > 0); 1784 return r; 1785 } 1786 1787 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1788 kvm_mmu_reset_context(vcpu); 1789 1790 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1791 (efer & EFER_SVME)) 1792 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1793 1794 return 0; 1795 } 1796 1797 void kvm_enable_efer_bits(u64 mask) 1798 { 1799 efer_reserved_bits &= ~mask; 1800 } 1801 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1802 1803 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1804 { 1805 struct kvm_x86_msr_filter *msr_filter; 1806 struct msr_bitmap_range *ranges; 1807 struct kvm *kvm = vcpu->kvm; 1808 bool allowed; 1809 int idx; 1810 u32 i; 1811 1812 /* x2APIC MSRs do not support filtering. */ 1813 if (index >= 0x800 && index <= 0x8ff) 1814 return true; 1815 1816 idx = srcu_read_lock(&kvm->srcu); 1817 1818 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1819 if (!msr_filter) { 1820 allowed = true; 1821 goto out; 1822 } 1823 1824 allowed = msr_filter->default_allow; 1825 ranges = msr_filter->ranges; 1826 1827 for (i = 0; i < msr_filter->count; i++) { 1828 u32 start = ranges[i].base; 1829 u32 end = start + ranges[i].nmsrs; 1830 u32 flags = ranges[i].flags; 1831 unsigned long *bitmap = ranges[i].bitmap; 1832 1833 if ((index >= start) && (index < end) && (flags & type)) { 1834 allowed = test_bit(index - start, bitmap); 1835 break; 1836 } 1837 } 1838 1839 out: 1840 srcu_read_unlock(&kvm->srcu, idx); 1841 1842 return allowed; 1843 } 1844 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1845 1846 /* 1847 * Write @data into the MSR specified by @index. Select MSR specific fault 1848 * checks are bypassed if @host_initiated is %true. 1849 * Returns 0 on success, non-0 otherwise. 1850 * Assumes vcpu_load() was already called. 1851 */ 1852 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1853 bool host_initiated) 1854 { 1855 struct msr_data msr; 1856 1857 switch (index) { 1858 case MSR_FS_BASE: 1859 case MSR_GS_BASE: 1860 case MSR_KERNEL_GS_BASE: 1861 case MSR_CSTAR: 1862 case MSR_LSTAR: 1863 if (is_noncanonical_address(data, vcpu)) 1864 return 1; 1865 break; 1866 case MSR_IA32_SYSENTER_EIP: 1867 case MSR_IA32_SYSENTER_ESP: 1868 /* 1869 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1870 * non-canonical address is written on Intel but not on 1871 * AMD (which ignores the top 32-bits, because it does 1872 * not implement 64-bit SYSENTER). 1873 * 1874 * 64-bit code should hence be able to write a non-canonical 1875 * value on AMD. Making the address canonical ensures that 1876 * vmentry does not fail on Intel after writing a non-canonical 1877 * value, and that something deterministic happens if the guest 1878 * invokes 64-bit SYSENTER. 1879 */ 1880 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1881 break; 1882 case MSR_TSC_AUX: 1883 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1884 return 1; 1885 1886 if (!host_initiated && 1887 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1888 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1889 return 1; 1890 1891 /* 1892 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1893 * incomplete and conflicting architectural behavior. Current 1894 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1895 * reserved and always read as zeros. Enforce Intel's reserved 1896 * bits check if the guest CPU is Intel compatible, otherwise 1897 * clear the bits. This ensures cross-vendor migration will 1898 * provide consistent behavior for the guest. 1899 */ 1900 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) 1901 return 1; 1902 1903 data = (u32)data; 1904 break; 1905 } 1906 1907 msr.data = data; 1908 msr.index = index; 1909 msr.host_initiated = host_initiated; 1910 1911 return kvm_x86_call(set_msr)(vcpu, &msr); 1912 } 1913 1914 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1915 bool host_initiated) 1916 { 1917 return __kvm_set_msr(vcpu, index, *data, host_initiated); 1918 } 1919 1920 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1921 u32 index, u64 data, bool host_initiated) 1922 { 1923 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W, 1924 _kvm_set_msr); 1925 } 1926 1927 /* 1928 * Read the MSR specified by @index into @data. Select MSR specific fault 1929 * checks are bypassed if @host_initiated is %true. 1930 * Returns 0 on success, non-0 otherwise. 1931 * Assumes vcpu_load() was already called. 1932 */ 1933 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1934 bool host_initiated) 1935 { 1936 struct msr_data msr; 1937 int ret; 1938 1939 switch (index) { 1940 case MSR_TSC_AUX: 1941 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1942 return 1; 1943 1944 if (!host_initiated && 1945 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1946 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1947 return 1; 1948 break; 1949 } 1950 1951 msr.index = index; 1952 msr.host_initiated = host_initiated; 1953 1954 ret = kvm_x86_call(get_msr)(vcpu, &msr); 1955 if (!ret) 1956 *data = msr.data; 1957 return ret; 1958 } 1959 1960 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1961 u32 index, u64 *data, bool host_initiated) 1962 { 1963 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R, 1964 __kvm_get_msr); 1965 } 1966 1967 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1968 { 1969 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1970 return KVM_MSR_RET_FILTERED; 1971 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1972 } 1973 1974 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1975 { 1976 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1977 return KVM_MSR_RET_FILTERED; 1978 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1979 } 1980 1981 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1982 { 1983 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1984 } 1985 EXPORT_SYMBOL_GPL(kvm_get_msr); 1986 1987 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1988 { 1989 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1990 } 1991 EXPORT_SYMBOL_GPL(kvm_set_msr); 1992 1993 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1994 { 1995 if (!vcpu->run->msr.error) { 1996 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1997 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1998 } 1999 } 2000 2001 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 2002 { 2003 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2004 } 2005 2006 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2007 { 2008 complete_userspace_rdmsr(vcpu); 2009 return complete_emulated_msr_access(vcpu); 2010 } 2011 2012 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2013 { 2014 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2015 } 2016 2017 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2018 { 2019 complete_userspace_rdmsr(vcpu); 2020 return complete_fast_msr_access(vcpu); 2021 } 2022 2023 static u64 kvm_msr_reason(int r) 2024 { 2025 switch (r) { 2026 case KVM_MSR_RET_UNSUPPORTED: 2027 return KVM_MSR_EXIT_REASON_UNKNOWN; 2028 case KVM_MSR_RET_FILTERED: 2029 return KVM_MSR_EXIT_REASON_FILTER; 2030 default: 2031 return KVM_MSR_EXIT_REASON_INVAL; 2032 } 2033 } 2034 2035 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2036 u32 exit_reason, u64 data, 2037 int (*completion)(struct kvm_vcpu *vcpu), 2038 int r) 2039 { 2040 u64 msr_reason = kvm_msr_reason(r); 2041 2042 /* Check if the user wanted to know about this MSR fault */ 2043 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2044 return 0; 2045 2046 vcpu->run->exit_reason = exit_reason; 2047 vcpu->run->msr.error = 0; 2048 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2049 vcpu->run->msr.reason = msr_reason; 2050 vcpu->run->msr.index = index; 2051 vcpu->run->msr.data = data; 2052 vcpu->arch.complete_userspace_io = completion; 2053 2054 return 1; 2055 } 2056 2057 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2058 { 2059 u32 ecx = kvm_rcx_read(vcpu); 2060 u64 data; 2061 int r; 2062 2063 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2064 2065 if (!r) { 2066 trace_kvm_msr_read(ecx, data); 2067 2068 kvm_rax_write(vcpu, data & -1u); 2069 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2070 } else { 2071 /* MSR read failed? See if we should ask user space */ 2072 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2073 complete_fast_rdmsr, r)) 2074 return 0; 2075 trace_kvm_msr_read_ex(ecx); 2076 } 2077 2078 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2079 } 2080 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2081 2082 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2083 { 2084 u32 ecx = kvm_rcx_read(vcpu); 2085 u64 data = kvm_read_edx_eax(vcpu); 2086 int r; 2087 2088 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2089 2090 if (!r) { 2091 trace_kvm_msr_write(ecx, data); 2092 } else { 2093 /* MSR write failed? See if we should ask user space */ 2094 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2095 complete_fast_msr_access, r)) 2096 return 0; 2097 /* Signal all other negative errors to userspace */ 2098 if (r < 0) 2099 return r; 2100 trace_kvm_msr_write_ex(ecx, data); 2101 } 2102 2103 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2104 } 2105 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2106 2107 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2108 { 2109 return kvm_skip_emulated_instruction(vcpu); 2110 } 2111 2112 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2113 { 2114 /* Treat an INVD instruction as a NOP and just skip it. */ 2115 return kvm_emulate_as_nop(vcpu); 2116 } 2117 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2118 2119 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2120 { 2121 kvm_queue_exception(vcpu, UD_VECTOR); 2122 return 1; 2123 } 2124 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2125 2126 2127 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2128 { 2129 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2130 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2131 return kvm_handle_invalid_op(vcpu); 2132 2133 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2134 return kvm_emulate_as_nop(vcpu); 2135 } 2136 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2137 { 2138 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2139 } 2140 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2141 2142 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2143 { 2144 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2145 } 2146 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2147 2148 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2149 { 2150 xfer_to_guest_mode_prepare(); 2151 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2152 xfer_to_guest_mode_work_pending(); 2153 } 2154 2155 /* 2156 * The fast path for frequent and performance sensitive wrmsr emulation, 2157 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2158 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2159 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2160 * other cases which must be called after interrupts are enabled on the host. 2161 */ 2162 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2163 { 2164 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2165 return 1; 2166 2167 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2168 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2169 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2170 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2171 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2172 2173 return 1; 2174 } 2175 2176 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2177 { 2178 if (!kvm_can_use_hv_timer(vcpu)) 2179 return 1; 2180 2181 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2182 return 0; 2183 } 2184 2185 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2186 { 2187 u32 msr = kvm_rcx_read(vcpu); 2188 u64 data; 2189 fastpath_t ret; 2190 bool handled; 2191 2192 kvm_vcpu_srcu_read_lock(vcpu); 2193 2194 switch (msr) { 2195 case APIC_BASE_MSR + (APIC_ICR >> 4): 2196 data = kvm_read_edx_eax(vcpu); 2197 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); 2198 break; 2199 case MSR_IA32_TSC_DEADLINE: 2200 data = kvm_read_edx_eax(vcpu); 2201 handled = !handle_fastpath_set_tscdeadline(vcpu, data); 2202 break; 2203 default: 2204 handled = false; 2205 break; 2206 } 2207 2208 if (handled) { 2209 if (!kvm_skip_emulated_instruction(vcpu)) 2210 ret = EXIT_FASTPATH_EXIT_USERSPACE; 2211 else 2212 ret = EXIT_FASTPATH_REENTER_GUEST; 2213 trace_kvm_msr_write(msr, data); 2214 } else { 2215 ret = EXIT_FASTPATH_NONE; 2216 } 2217 2218 kvm_vcpu_srcu_read_unlock(vcpu); 2219 2220 return ret; 2221 } 2222 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2223 2224 /* 2225 * Adapt set_msr() to msr_io()'s calling convention 2226 */ 2227 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2228 { 2229 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2230 } 2231 2232 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2233 { 2234 u64 val; 2235 2236 /* 2237 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2238 * not support modifying the guest vCPU model on the fly, e.g. changing 2239 * the nVMX capabilities while L2 is running is nonsensical. Allow 2240 * writes of the same value, e.g. to allow userspace to blindly stuff 2241 * all MSRs when emulating RESET. 2242 */ 2243 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2244 (do_get_msr(vcpu, index, &val) || *data != val)) 2245 return -EINVAL; 2246 2247 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2248 } 2249 2250 #ifdef CONFIG_X86_64 2251 struct pvclock_clock { 2252 int vclock_mode; 2253 u64 cycle_last; 2254 u64 mask; 2255 u32 mult; 2256 u32 shift; 2257 u64 base_cycles; 2258 u64 offset; 2259 }; 2260 2261 struct pvclock_gtod_data { 2262 seqcount_t seq; 2263 2264 struct pvclock_clock clock; /* extract of a clocksource struct */ 2265 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2266 2267 ktime_t offs_boot; 2268 u64 wall_time_sec; 2269 }; 2270 2271 static struct pvclock_gtod_data pvclock_gtod_data; 2272 2273 static void update_pvclock_gtod(struct timekeeper *tk) 2274 { 2275 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2276 2277 write_seqcount_begin(&vdata->seq); 2278 2279 /* copy pvclock gtod data */ 2280 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2281 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2282 vdata->clock.mask = tk->tkr_mono.mask; 2283 vdata->clock.mult = tk->tkr_mono.mult; 2284 vdata->clock.shift = tk->tkr_mono.shift; 2285 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2286 vdata->clock.offset = tk->tkr_mono.base; 2287 2288 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2289 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2290 vdata->raw_clock.mask = tk->tkr_raw.mask; 2291 vdata->raw_clock.mult = tk->tkr_raw.mult; 2292 vdata->raw_clock.shift = tk->tkr_raw.shift; 2293 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2294 vdata->raw_clock.offset = tk->tkr_raw.base; 2295 2296 vdata->wall_time_sec = tk->xtime_sec; 2297 2298 vdata->offs_boot = tk->offs_boot; 2299 2300 write_seqcount_end(&vdata->seq); 2301 } 2302 2303 static s64 get_kvmclock_base_ns(void) 2304 { 2305 /* Count up from boot time, but with the frequency of the raw clock. */ 2306 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2307 } 2308 #else 2309 static s64 get_kvmclock_base_ns(void) 2310 { 2311 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2312 return ktime_get_boottime_ns(); 2313 } 2314 #endif 2315 2316 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2317 { 2318 int version; 2319 int r; 2320 struct pvclock_wall_clock wc; 2321 u32 wc_sec_hi; 2322 u64 wall_nsec; 2323 2324 if (!wall_clock) 2325 return; 2326 2327 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2328 if (r) 2329 return; 2330 2331 if (version & 1) 2332 ++version; /* first time write, random junk */ 2333 2334 ++version; 2335 2336 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2337 return; 2338 2339 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2340 2341 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2342 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2343 wc.version = version; 2344 2345 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2346 2347 if (sec_hi_ofs) { 2348 wc_sec_hi = wall_nsec >> 32; 2349 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2350 &wc_sec_hi, sizeof(wc_sec_hi)); 2351 } 2352 2353 version++; 2354 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2355 } 2356 2357 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2358 bool old_msr, bool host_initiated) 2359 { 2360 struct kvm_arch *ka = &vcpu->kvm->arch; 2361 2362 if (vcpu->vcpu_id == 0 && !host_initiated) { 2363 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2364 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2365 2366 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2367 } 2368 2369 vcpu->arch.time = system_time; 2370 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2371 2372 /* we verify if the enable bit is set... */ 2373 if (system_time & 1) 2374 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2375 sizeof(struct pvclock_vcpu_time_info)); 2376 else 2377 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2378 2379 return; 2380 } 2381 2382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2383 { 2384 do_shl32_div32(dividend, divisor); 2385 return dividend; 2386 } 2387 2388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2389 s8 *pshift, u32 *pmultiplier) 2390 { 2391 uint64_t scaled64; 2392 int32_t shift = 0; 2393 uint64_t tps64; 2394 uint32_t tps32; 2395 2396 tps64 = base_hz; 2397 scaled64 = scaled_hz; 2398 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2399 tps64 >>= 1; 2400 shift--; 2401 } 2402 2403 tps32 = (uint32_t)tps64; 2404 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2405 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2406 scaled64 >>= 1; 2407 else 2408 tps32 <<= 1; 2409 shift++; 2410 } 2411 2412 *pshift = shift; 2413 *pmultiplier = div_frac(scaled64, tps32); 2414 } 2415 2416 #ifdef CONFIG_X86_64 2417 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2418 #endif 2419 2420 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2421 static unsigned long max_tsc_khz; 2422 2423 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2424 { 2425 u64 v = (u64)khz * (1000000 + ppm); 2426 do_div(v, 1000000); 2427 return v; 2428 } 2429 2430 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2431 2432 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2433 { 2434 u64 ratio; 2435 2436 /* Guest TSC same frequency as host TSC? */ 2437 if (!scale) { 2438 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2439 return 0; 2440 } 2441 2442 /* TSC scaling supported? */ 2443 if (!kvm_caps.has_tsc_control) { 2444 if (user_tsc_khz > tsc_khz) { 2445 vcpu->arch.tsc_catchup = 1; 2446 vcpu->arch.tsc_always_catchup = 1; 2447 return 0; 2448 } else { 2449 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2450 return -1; 2451 } 2452 } 2453 2454 /* TSC scaling required - calculate ratio */ 2455 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2456 user_tsc_khz, tsc_khz); 2457 2458 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2459 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2460 user_tsc_khz); 2461 return -1; 2462 } 2463 2464 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2465 return 0; 2466 } 2467 2468 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2469 { 2470 u32 thresh_lo, thresh_hi; 2471 int use_scaling = 0; 2472 2473 /* tsc_khz can be zero if TSC calibration fails */ 2474 if (user_tsc_khz == 0) { 2475 /* set tsc_scaling_ratio to a safe value */ 2476 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2477 return -1; 2478 } 2479 2480 /* Compute a scale to convert nanoseconds in TSC cycles */ 2481 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2482 &vcpu->arch.virtual_tsc_shift, 2483 &vcpu->arch.virtual_tsc_mult); 2484 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2485 2486 /* 2487 * Compute the variation in TSC rate which is acceptable 2488 * within the range of tolerance and decide if the 2489 * rate being applied is within that bounds of the hardware 2490 * rate. If so, no scaling or compensation need be done. 2491 */ 2492 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2493 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2494 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2495 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2496 user_tsc_khz, thresh_lo, thresh_hi); 2497 use_scaling = 1; 2498 } 2499 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2500 } 2501 2502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2503 { 2504 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2505 vcpu->arch.virtual_tsc_mult, 2506 vcpu->arch.virtual_tsc_shift); 2507 tsc += vcpu->arch.this_tsc_write; 2508 return tsc; 2509 } 2510 2511 #ifdef CONFIG_X86_64 2512 static inline bool gtod_is_based_on_tsc(int mode) 2513 { 2514 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2515 } 2516 #endif 2517 2518 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2519 { 2520 #ifdef CONFIG_X86_64 2521 struct kvm_arch *ka = &vcpu->kvm->arch; 2522 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2523 2524 /* 2525 * To use the masterclock, the host clocksource must be based on TSC 2526 * and all vCPUs must have matching TSCs. Note, the count for matching 2527 * vCPUs doesn't include the reference vCPU, hence "+1". 2528 */ 2529 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2530 atomic_read(&vcpu->kvm->online_vcpus)) && 2531 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2532 2533 /* 2534 * Request a masterclock update if the masterclock needs to be toggled 2535 * on/off, or when starting a new generation and the masterclock is 2536 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2537 * taken _after_ the new generation is created). 2538 */ 2539 if ((ka->use_master_clock && new_generation) || 2540 (ka->use_master_clock != use_master_clock)) 2541 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2542 2543 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2544 atomic_read(&vcpu->kvm->online_vcpus), 2545 ka->use_master_clock, gtod->clock.vclock_mode); 2546 #endif 2547 } 2548 2549 /* 2550 * Multiply tsc by a fixed point number represented by ratio. 2551 * 2552 * The most significant 64-N bits (mult) of ratio represent the 2553 * integral part of the fixed point number; the remaining N bits 2554 * (frac) represent the fractional part, ie. ratio represents a fixed 2555 * point number (mult + frac * 2^(-N)). 2556 * 2557 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2558 */ 2559 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2560 { 2561 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2562 } 2563 2564 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2565 { 2566 u64 _tsc = tsc; 2567 2568 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2569 _tsc = __scale_tsc(ratio, tsc); 2570 2571 return _tsc; 2572 } 2573 2574 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2575 { 2576 u64 tsc; 2577 2578 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2579 2580 return target_tsc - tsc; 2581 } 2582 2583 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2584 { 2585 return vcpu->arch.l1_tsc_offset + 2586 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2587 } 2588 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2589 2590 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2591 { 2592 u64 nested_offset; 2593 2594 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2595 nested_offset = l1_offset; 2596 else 2597 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2598 kvm_caps.tsc_scaling_ratio_frac_bits); 2599 2600 nested_offset += l2_offset; 2601 return nested_offset; 2602 } 2603 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2604 2605 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2606 { 2607 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2608 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2609 kvm_caps.tsc_scaling_ratio_frac_bits); 2610 2611 return l1_multiplier; 2612 } 2613 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2614 2615 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2616 { 2617 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2618 vcpu->arch.l1_tsc_offset, 2619 l1_offset); 2620 2621 vcpu->arch.l1_tsc_offset = l1_offset; 2622 2623 /* 2624 * If we are here because L1 chose not to trap WRMSR to TSC then 2625 * according to the spec this should set L1's TSC (as opposed to 2626 * setting L1's offset for L2). 2627 */ 2628 if (is_guest_mode(vcpu)) 2629 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2630 l1_offset, 2631 kvm_x86_call(get_l2_tsc_offset)(vcpu), 2632 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2633 else 2634 vcpu->arch.tsc_offset = l1_offset; 2635 2636 kvm_x86_call(write_tsc_offset)(vcpu); 2637 } 2638 2639 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2640 { 2641 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2642 2643 /* Userspace is changing the multiplier while L2 is active */ 2644 if (is_guest_mode(vcpu)) 2645 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2646 l1_multiplier, 2647 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2648 else 2649 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2650 2651 if (kvm_caps.has_tsc_control) 2652 kvm_x86_call(write_tsc_multiplier)(vcpu); 2653 } 2654 2655 static inline bool kvm_check_tsc_unstable(void) 2656 { 2657 #ifdef CONFIG_X86_64 2658 /* 2659 * TSC is marked unstable when we're running on Hyper-V, 2660 * 'TSC page' clocksource is good. 2661 */ 2662 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2663 return false; 2664 #endif 2665 return check_tsc_unstable(); 2666 } 2667 2668 /* 2669 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2670 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2671 * participates in. 2672 */ 2673 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2674 u64 ns, bool matched) 2675 { 2676 struct kvm *kvm = vcpu->kvm; 2677 2678 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2679 2680 /* 2681 * We also track th most recent recorded KHZ, write and time to 2682 * allow the matching interval to be extended at each write. 2683 */ 2684 kvm->arch.last_tsc_nsec = ns; 2685 kvm->arch.last_tsc_write = tsc; 2686 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2687 kvm->arch.last_tsc_offset = offset; 2688 2689 vcpu->arch.last_guest_tsc = tsc; 2690 2691 kvm_vcpu_write_tsc_offset(vcpu, offset); 2692 2693 if (!matched) { 2694 /* 2695 * We split periods of matched TSC writes into generations. 2696 * For each generation, we track the original measured 2697 * nanosecond time, offset, and write, so if TSCs are in 2698 * sync, we can match exact offset, and if not, we can match 2699 * exact software computation in compute_guest_tsc() 2700 * 2701 * These values are tracked in kvm->arch.cur_xxx variables. 2702 */ 2703 kvm->arch.cur_tsc_generation++; 2704 kvm->arch.cur_tsc_nsec = ns; 2705 kvm->arch.cur_tsc_write = tsc; 2706 kvm->arch.cur_tsc_offset = offset; 2707 kvm->arch.nr_vcpus_matched_tsc = 0; 2708 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2709 kvm->arch.nr_vcpus_matched_tsc++; 2710 } 2711 2712 /* Keep track of which generation this VCPU has synchronized to */ 2713 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2714 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2715 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2716 2717 kvm_track_tsc_matching(vcpu, !matched); 2718 } 2719 2720 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2721 { 2722 u64 data = user_value ? *user_value : 0; 2723 struct kvm *kvm = vcpu->kvm; 2724 u64 offset, ns, elapsed; 2725 unsigned long flags; 2726 bool matched = false; 2727 bool synchronizing = false; 2728 2729 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2730 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2731 ns = get_kvmclock_base_ns(); 2732 elapsed = ns - kvm->arch.last_tsc_nsec; 2733 2734 if (vcpu->arch.virtual_tsc_khz) { 2735 if (data == 0) { 2736 /* 2737 * Force synchronization when creating a vCPU, or when 2738 * userspace explicitly writes a zero value. 2739 */ 2740 synchronizing = true; 2741 } else if (kvm->arch.user_set_tsc) { 2742 u64 tsc_exp = kvm->arch.last_tsc_write + 2743 nsec_to_cycles(vcpu, elapsed); 2744 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2745 /* 2746 * Here lies UAPI baggage: when a user-initiated TSC write has 2747 * a small delta (1 second) of virtual cycle time against the 2748 * previously set vCPU, we assume that they were intended to be 2749 * in sync and the delta was only due to the racy nature of the 2750 * legacy API. 2751 * 2752 * This trick falls down when restoring a guest which genuinely 2753 * has been running for less time than the 1 second of imprecision 2754 * which we allow for in the legacy API. In this case, the first 2755 * value written by userspace (on any vCPU) should not be subject 2756 * to this 'correction' to make it sync up with values that only 2757 * come from the kernel's default vCPU creation. Make the 1-second 2758 * slop hack only trigger if the user_set_tsc flag is already set. 2759 */ 2760 synchronizing = data < tsc_exp + tsc_hz && 2761 data + tsc_hz > tsc_exp; 2762 } 2763 } 2764 2765 if (user_value) 2766 kvm->arch.user_set_tsc = true; 2767 2768 /* 2769 * For a reliable TSC, we can match TSC offsets, and for an unstable 2770 * TSC, we add elapsed time in this computation. We could let the 2771 * compensation code attempt to catch up if we fall behind, but 2772 * it's better to try to match offsets from the beginning. 2773 */ 2774 if (synchronizing && 2775 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2776 if (!kvm_check_tsc_unstable()) { 2777 offset = kvm->arch.cur_tsc_offset; 2778 } else { 2779 u64 delta = nsec_to_cycles(vcpu, elapsed); 2780 data += delta; 2781 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2782 } 2783 matched = true; 2784 } 2785 2786 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2787 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2788 } 2789 2790 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2791 s64 adjustment) 2792 { 2793 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2794 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2795 } 2796 2797 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2798 { 2799 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2800 WARN_ON(adjustment < 0); 2801 adjustment = kvm_scale_tsc((u64) adjustment, 2802 vcpu->arch.l1_tsc_scaling_ratio); 2803 adjust_tsc_offset_guest(vcpu, adjustment); 2804 } 2805 2806 #ifdef CONFIG_X86_64 2807 2808 static u64 read_tsc(void) 2809 { 2810 u64 ret = (u64)rdtsc_ordered(); 2811 u64 last = pvclock_gtod_data.clock.cycle_last; 2812 2813 if (likely(ret >= last)) 2814 return ret; 2815 2816 /* 2817 * GCC likes to generate cmov here, but this branch is extremely 2818 * predictable (it's just a function of time and the likely is 2819 * very likely) and there's a data dependence, so force GCC 2820 * to generate a branch instead. I don't barrier() because 2821 * we don't actually need a barrier, and if this function 2822 * ever gets inlined it will generate worse code. 2823 */ 2824 asm volatile (""); 2825 return last; 2826 } 2827 2828 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2829 int *mode) 2830 { 2831 u64 tsc_pg_val; 2832 long v; 2833 2834 switch (clock->vclock_mode) { 2835 case VDSO_CLOCKMODE_HVCLOCK: 2836 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2837 tsc_timestamp, &tsc_pg_val)) { 2838 /* TSC page valid */ 2839 *mode = VDSO_CLOCKMODE_HVCLOCK; 2840 v = (tsc_pg_val - clock->cycle_last) & 2841 clock->mask; 2842 } else { 2843 /* TSC page invalid */ 2844 *mode = VDSO_CLOCKMODE_NONE; 2845 } 2846 break; 2847 case VDSO_CLOCKMODE_TSC: 2848 *mode = VDSO_CLOCKMODE_TSC; 2849 *tsc_timestamp = read_tsc(); 2850 v = (*tsc_timestamp - clock->cycle_last) & 2851 clock->mask; 2852 break; 2853 default: 2854 *mode = VDSO_CLOCKMODE_NONE; 2855 } 2856 2857 if (*mode == VDSO_CLOCKMODE_NONE) 2858 *tsc_timestamp = v = 0; 2859 2860 return v * clock->mult; 2861 } 2862 2863 /* 2864 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2865 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2866 */ 2867 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2868 { 2869 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2870 unsigned long seq; 2871 int mode; 2872 u64 ns; 2873 2874 do { 2875 seq = read_seqcount_begin(>od->seq); 2876 ns = gtod->raw_clock.base_cycles; 2877 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2878 ns >>= gtod->raw_clock.shift; 2879 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2880 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2881 *t = ns; 2882 2883 return mode; 2884 } 2885 2886 /* 2887 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2888 * no boot time offset. 2889 */ 2890 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2891 { 2892 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2893 unsigned long seq; 2894 int mode; 2895 u64 ns; 2896 2897 do { 2898 seq = read_seqcount_begin(>od->seq); 2899 ns = gtod->clock.base_cycles; 2900 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2901 ns >>= gtod->clock.shift; 2902 ns += ktime_to_ns(gtod->clock.offset); 2903 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2904 *t = ns; 2905 2906 return mode; 2907 } 2908 2909 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2910 { 2911 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2912 unsigned long seq; 2913 int mode; 2914 u64 ns; 2915 2916 do { 2917 seq = read_seqcount_begin(>od->seq); 2918 ts->tv_sec = gtod->wall_time_sec; 2919 ns = gtod->clock.base_cycles; 2920 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2921 ns >>= gtod->clock.shift; 2922 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2923 2924 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2925 ts->tv_nsec = ns; 2926 2927 return mode; 2928 } 2929 2930 /* 2931 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2932 * reports the TSC value from which it do so. Returns true if host is 2933 * using TSC based clocksource. 2934 */ 2935 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2936 { 2937 /* checked again under seqlock below */ 2938 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2939 return false; 2940 2941 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2942 tsc_timestamp)); 2943 } 2944 2945 /* 2946 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2947 * so. Returns true if host is using TSC based clocksource. 2948 */ 2949 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2950 { 2951 /* checked again under seqlock below */ 2952 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2953 return false; 2954 2955 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2956 tsc_timestamp)); 2957 } 2958 2959 /* 2960 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2961 * so. Returns true if host is using TSC based clocksource. 2962 * 2963 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2964 * for that. 2965 */ 2966 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2967 u64 *tsc_timestamp) 2968 { 2969 /* checked again under seqlock below */ 2970 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2971 return false; 2972 2973 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2974 } 2975 #endif 2976 2977 /* 2978 * 2979 * Assuming a stable TSC across physical CPUS, and a stable TSC 2980 * across virtual CPUs, the following condition is possible. 2981 * Each numbered line represents an event visible to both 2982 * CPUs at the next numbered event. 2983 * 2984 * "timespecX" represents host monotonic time. "tscX" represents 2985 * RDTSC value. 2986 * 2987 * VCPU0 on CPU0 | VCPU1 on CPU1 2988 * 2989 * 1. read timespec0,tsc0 2990 * 2. | timespec1 = timespec0 + N 2991 * | tsc1 = tsc0 + M 2992 * 3. transition to guest | transition to guest 2993 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2994 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2995 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2996 * 2997 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2998 * 2999 * - ret0 < ret1 3000 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 3001 * ... 3002 * - 0 < N - M => M < N 3003 * 3004 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 3005 * always the case (the difference between two distinct xtime instances 3006 * might be smaller then the difference between corresponding TSC reads, 3007 * when updating guest vcpus pvclock areas). 3008 * 3009 * To avoid that problem, do not allow visibility of distinct 3010 * system_timestamp/tsc_timestamp values simultaneously: use a master 3011 * copy of host monotonic time values. Update that master copy 3012 * in lockstep. 3013 * 3014 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 3015 * 3016 */ 3017 3018 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 3019 { 3020 #ifdef CONFIG_X86_64 3021 struct kvm_arch *ka = &kvm->arch; 3022 int vclock_mode; 3023 bool host_tsc_clocksource, vcpus_matched; 3024 3025 lockdep_assert_held(&kvm->arch.tsc_write_lock); 3026 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 3027 atomic_read(&kvm->online_vcpus)); 3028 3029 /* 3030 * If the host uses TSC clock, then passthrough TSC as stable 3031 * to the guest. 3032 */ 3033 host_tsc_clocksource = kvm_get_time_and_clockread( 3034 &ka->master_kernel_ns, 3035 &ka->master_cycle_now); 3036 3037 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3038 && !ka->backwards_tsc_observed 3039 && !ka->boot_vcpu_runs_old_kvmclock; 3040 3041 if (ka->use_master_clock) 3042 atomic_set(&kvm_guest_has_master_clock, 1); 3043 3044 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3045 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3046 vcpus_matched); 3047 #endif 3048 } 3049 3050 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3051 { 3052 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3053 } 3054 3055 static void __kvm_start_pvclock_update(struct kvm *kvm) 3056 { 3057 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3058 write_seqcount_begin(&kvm->arch.pvclock_sc); 3059 } 3060 3061 static void kvm_start_pvclock_update(struct kvm *kvm) 3062 { 3063 kvm_make_mclock_inprogress_request(kvm); 3064 3065 /* no guest entries from this point */ 3066 __kvm_start_pvclock_update(kvm); 3067 } 3068 3069 static void kvm_end_pvclock_update(struct kvm *kvm) 3070 { 3071 struct kvm_arch *ka = &kvm->arch; 3072 struct kvm_vcpu *vcpu; 3073 unsigned long i; 3074 3075 write_seqcount_end(&ka->pvclock_sc); 3076 raw_spin_unlock_irq(&ka->tsc_write_lock); 3077 kvm_for_each_vcpu(i, vcpu, kvm) 3078 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3079 3080 /* guest entries allowed */ 3081 kvm_for_each_vcpu(i, vcpu, kvm) 3082 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3083 } 3084 3085 static void kvm_update_masterclock(struct kvm *kvm) 3086 { 3087 kvm_hv_request_tsc_page_update(kvm); 3088 kvm_start_pvclock_update(kvm); 3089 pvclock_update_vm_gtod_copy(kvm); 3090 kvm_end_pvclock_update(kvm); 3091 } 3092 3093 /* 3094 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3095 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3096 * can change during boot even if the TSC is constant, as it's possible for KVM 3097 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3098 * notification when calibration completes, but practically speaking calibration 3099 * will complete before userspace is alive enough to create VMs. 3100 */ 3101 static unsigned long get_cpu_tsc_khz(void) 3102 { 3103 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3104 return tsc_khz; 3105 else 3106 return __this_cpu_read(cpu_tsc_khz); 3107 } 3108 3109 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3110 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3111 { 3112 struct kvm_arch *ka = &kvm->arch; 3113 struct pvclock_vcpu_time_info hv_clock; 3114 3115 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3116 get_cpu(); 3117 3118 data->flags = 0; 3119 if (ka->use_master_clock && 3120 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3121 #ifdef CONFIG_X86_64 3122 struct timespec64 ts; 3123 3124 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3125 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3126 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3127 } else 3128 #endif 3129 data->host_tsc = rdtsc(); 3130 3131 data->flags |= KVM_CLOCK_TSC_STABLE; 3132 hv_clock.tsc_timestamp = ka->master_cycle_now; 3133 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3134 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3135 &hv_clock.tsc_shift, 3136 &hv_clock.tsc_to_system_mul); 3137 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3138 } else { 3139 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3140 } 3141 3142 put_cpu(); 3143 } 3144 3145 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3146 { 3147 struct kvm_arch *ka = &kvm->arch; 3148 unsigned seq; 3149 3150 do { 3151 seq = read_seqcount_begin(&ka->pvclock_sc); 3152 __get_kvmclock(kvm, data); 3153 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3154 } 3155 3156 u64 get_kvmclock_ns(struct kvm *kvm) 3157 { 3158 struct kvm_clock_data data; 3159 3160 get_kvmclock(kvm, &data); 3161 return data.clock; 3162 } 3163 3164 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3165 struct gfn_to_pfn_cache *gpc, 3166 unsigned int offset, 3167 bool force_tsc_unstable) 3168 { 3169 struct kvm_vcpu_arch *vcpu = &v->arch; 3170 struct pvclock_vcpu_time_info *guest_hv_clock; 3171 unsigned long flags; 3172 3173 read_lock_irqsave(&gpc->lock, flags); 3174 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3175 read_unlock_irqrestore(&gpc->lock, flags); 3176 3177 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3178 return; 3179 3180 read_lock_irqsave(&gpc->lock, flags); 3181 } 3182 3183 guest_hv_clock = (void *)(gpc->khva + offset); 3184 3185 /* 3186 * This VCPU is paused, but it's legal for a guest to read another 3187 * VCPU's kvmclock, so we really have to follow the specification where 3188 * it says that version is odd if data is being modified, and even after 3189 * it is consistent. 3190 */ 3191 3192 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3193 smp_wmb(); 3194 3195 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3196 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3197 3198 if (vcpu->pvclock_set_guest_stopped_request) { 3199 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3200 vcpu->pvclock_set_guest_stopped_request = false; 3201 } 3202 3203 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3204 3205 if (force_tsc_unstable) 3206 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3207 3208 smp_wmb(); 3209 3210 guest_hv_clock->version = ++vcpu->hv_clock.version; 3211 3212 kvm_gpc_mark_dirty_in_slot(gpc); 3213 read_unlock_irqrestore(&gpc->lock, flags); 3214 3215 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3216 } 3217 3218 static int kvm_guest_time_update(struct kvm_vcpu *v) 3219 { 3220 unsigned long flags, tgt_tsc_khz; 3221 unsigned seq; 3222 struct kvm_vcpu_arch *vcpu = &v->arch; 3223 struct kvm_arch *ka = &v->kvm->arch; 3224 s64 kernel_ns; 3225 u64 tsc_timestamp, host_tsc; 3226 u8 pvclock_flags; 3227 bool use_master_clock; 3228 #ifdef CONFIG_KVM_XEN 3229 /* 3230 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3231 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3232 * This default behaviour led to bugs in some guest kernels which cause 3233 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3234 */ 3235 bool xen_pvclock_tsc_unstable = 3236 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3237 #endif 3238 3239 kernel_ns = 0; 3240 host_tsc = 0; 3241 3242 /* 3243 * If the host uses TSC clock, then passthrough TSC as stable 3244 * to the guest. 3245 */ 3246 do { 3247 seq = read_seqcount_begin(&ka->pvclock_sc); 3248 use_master_clock = ka->use_master_clock; 3249 if (use_master_clock) { 3250 host_tsc = ka->master_cycle_now; 3251 kernel_ns = ka->master_kernel_ns; 3252 } 3253 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3254 3255 /* Keep irq disabled to prevent changes to the clock */ 3256 local_irq_save(flags); 3257 tgt_tsc_khz = get_cpu_tsc_khz(); 3258 if (unlikely(tgt_tsc_khz == 0)) { 3259 local_irq_restore(flags); 3260 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3261 return 1; 3262 } 3263 if (!use_master_clock) { 3264 host_tsc = rdtsc(); 3265 kernel_ns = get_kvmclock_base_ns(); 3266 } 3267 3268 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3269 3270 /* 3271 * We may have to catch up the TSC to match elapsed wall clock 3272 * time for two reasons, even if kvmclock is used. 3273 * 1) CPU could have been running below the maximum TSC rate 3274 * 2) Broken TSC compensation resets the base at each VCPU 3275 * entry to avoid unknown leaps of TSC even when running 3276 * again on the same CPU. This may cause apparent elapsed 3277 * time to disappear, and the guest to stand still or run 3278 * very slowly. 3279 */ 3280 if (vcpu->tsc_catchup) { 3281 u64 tsc = compute_guest_tsc(v, kernel_ns); 3282 if (tsc > tsc_timestamp) { 3283 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3284 tsc_timestamp = tsc; 3285 } 3286 } 3287 3288 local_irq_restore(flags); 3289 3290 /* With all the info we got, fill in the values */ 3291 3292 if (kvm_caps.has_tsc_control) 3293 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3294 v->arch.l1_tsc_scaling_ratio); 3295 3296 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3297 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3298 &vcpu->hv_clock.tsc_shift, 3299 &vcpu->hv_clock.tsc_to_system_mul); 3300 vcpu->hw_tsc_khz = tgt_tsc_khz; 3301 kvm_xen_update_tsc_info(v); 3302 } 3303 3304 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3305 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3306 vcpu->last_guest_tsc = tsc_timestamp; 3307 3308 /* If the host uses TSC clocksource, then it is stable */ 3309 pvclock_flags = 0; 3310 if (use_master_clock) 3311 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3312 3313 vcpu->hv_clock.flags = pvclock_flags; 3314 3315 if (vcpu->pv_time.active) 3316 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3317 #ifdef CONFIG_KVM_XEN 3318 if (vcpu->xen.vcpu_info_cache.active) 3319 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3320 offsetof(struct compat_vcpu_info, time), 3321 xen_pvclock_tsc_unstable); 3322 if (vcpu->xen.vcpu_time_info_cache.active) 3323 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3324 xen_pvclock_tsc_unstable); 3325 #endif 3326 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3327 return 0; 3328 } 3329 3330 /* 3331 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3332 * which it started (i.e. its epoch, when its kvmclock was zero). 3333 * 3334 * In fact those clocks are subtly different; wall clock frequency is 3335 * adjusted by NTP and has leap seconds, while the kvmclock is a 3336 * simple function of the TSC without any such adjustment. 3337 * 3338 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3339 * that and kvmclock, but even that would be subject to change over 3340 * time. 3341 * 3342 * Attempt to calculate the epoch at a given moment using the *same* 3343 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3344 * wallclock and kvmclock times, and subtracting one from the other. 3345 * 3346 * Fall back to using their values at slightly different moments by 3347 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3348 */ 3349 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3350 { 3351 #ifdef CONFIG_X86_64 3352 struct pvclock_vcpu_time_info hv_clock; 3353 struct kvm_arch *ka = &kvm->arch; 3354 unsigned long seq, local_tsc_khz; 3355 struct timespec64 ts; 3356 uint64_t host_tsc; 3357 3358 do { 3359 seq = read_seqcount_begin(&ka->pvclock_sc); 3360 3361 local_tsc_khz = 0; 3362 if (!ka->use_master_clock) 3363 break; 3364 3365 /* 3366 * The TSC read and the call to get_cpu_tsc_khz() must happen 3367 * on the same CPU. 3368 */ 3369 get_cpu(); 3370 3371 local_tsc_khz = get_cpu_tsc_khz(); 3372 3373 if (local_tsc_khz && 3374 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3375 local_tsc_khz = 0; /* Fall back to old method */ 3376 3377 put_cpu(); 3378 3379 /* 3380 * These values must be snapshotted within the seqcount loop. 3381 * After that, it's just mathematics which can happen on any 3382 * CPU at any time. 3383 */ 3384 hv_clock.tsc_timestamp = ka->master_cycle_now; 3385 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3386 3387 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3388 3389 /* 3390 * If the conditions were right, and obtaining the wallclock+TSC was 3391 * successful, calculate the KVM clock at the corresponding time and 3392 * subtract one from the other to get the guest's epoch in nanoseconds 3393 * since 1970-01-01. 3394 */ 3395 if (local_tsc_khz) { 3396 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3397 &hv_clock.tsc_shift, 3398 &hv_clock.tsc_to_system_mul); 3399 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3400 __pvclock_read_cycles(&hv_clock, host_tsc); 3401 } 3402 #endif 3403 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3404 } 3405 3406 /* 3407 * kvmclock updates which are isolated to a given vcpu, such as 3408 * vcpu->cpu migration, should not allow system_timestamp from 3409 * the rest of the vcpus to remain static. Otherwise ntp frequency 3410 * correction applies to one vcpu's system_timestamp but not 3411 * the others. 3412 * 3413 * So in those cases, request a kvmclock update for all vcpus. 3414 * We need to rate-limit these requests though, as they can 3415 * considerably slow guests that have a large number of vcpus. 3416 * The time for a remote vcpu to update its kvmclock is bound 3417 * by the delay we use to rate-limit the updates. 3418 */ 3419 3420 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3421 3422 static void kvmclock_update_fn(struct work_struct *work) 3423 { 3424 unsigned long i; 3425 struct delayed_work *dwork = to_delayed_work(work); 3426 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3427 kvmclock_update_work); 3428 struct kvm *kvm = container_of(ka, struct kvm, arch); 3429 struct kvm_vcpu *vcpu; 3430 3431 kvm_for_each_vcpu(i, vcpu, kvm) { 3432 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3433 kvm_vcpu_kick(vcpu); 3434 } 3435 } 3436 3437 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3438 { 3439 struct kvm *kvm = v->kvm; 3440 3441 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3442 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3443 KVMCLOCK_UPDATE_DELAY); 3444 } 3445 3446 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3447 3448 static void kvmclock_sync_fn(struct work_struct *work) 3449 { 3450 struct delayed_work *dwork = to_delayed_work(work); 3451 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3452 kvmclock_sync_work); 3453 struct kvm *kvm = container_of(ka, struct kvm, arch); 3454 3455 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3456 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3457 KVMCLOCK_SYNC_PERIOD); 3458 } 3459 3460 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3461 static bool is_mci_control_msr(u32 msr) 3462 { 3463 return (msr & 3) == 0; 3464 } 3465 static bool is_mci_status_msr(u32 msr) 3466 { 3467 return (msr & 3) == 1; 3468 } 3469 3470 /* 3471 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3472 */ 3473 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3474 { 3475 /* McStatusWrEn enabled? */ 3476 if (guest_cpuid_is_amd_compatible(vcpu)) 3477 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3478 3479 return false; 3480 } 3481 3482 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3483 { 3484 u64 mcg_cap = vcpu->arch.mcg_cap; 3485 unsigned bank_num = mcg_cap & 0xff; 3486 u32 msr = msr_info->index; 3487 u64 data = msr_info->data; 3488 u32 offset, last_msr; 3489 3490 switch (msr) { 3491 case MSR_IA32_MCG_STATUS: 3492 vcpu->arch.mcg_status = data; 3493 break; 3494 case MSR_IA32_MCG_CTL: 3495 if (!(mcg_cap & MCG_CTL_P) && 3496 (data || !msr_info->host_initiated)) 3497 return 1; 3498 if (data != 0 && data != ~(u64)0) 3499 return 1; 3500 vcpu->arch.mcg_ctl = data; 3501 break; 3502 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3503 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3504 if (msr > last_msr) 3505 return 1; 3506 3507 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3508 return 1; 3509 /* An attempt to write a 1 to a reserved bit raises #GP */ 3510 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3511 return 1; 3512 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3513 last_msr + 1 - MSR_IA32_MC0_CTL2); 3514 vcpu->arch.mci_ctl2_banks[offset] = data; 3515 break; 3516 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3517 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3518 if (msr > last_msr) 3519 return 1; 3520 3521 /* 3522 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3523 * values are architecturally undefined. But, some Linux 3524 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3525 * issue on AMD K8s, allow bit 10 to be clear when setting all 3526 * other bits in order to avoid an uncaught #GP in the guest. 3527 * 3528 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3529 * single-bit ECC data errors. 3530 */ 3531 if (is_mci_control_msr(msr) && 3532 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3533 return 1; 3534 3535 /* 3536 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3537 * AMD-based CPUs allow non-zero values, but if and only if 3538 * HWCR[McStatusWrEn] is set. 3539 */ 3540 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3541 data != 0 && !can_set_mci_status(vcpu)) 3542 return 1; 3543 3544 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3545 last_msr + 1 - MSR_IA32_MC0_CTL); 3546 vcpu->arch.mce_banks[offset] = data; 3547 break; 3548 default: 3549 return 1; 3550 } 3551 return 0; 3552 } 3553 3554 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3555 { 3556 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3557 3558 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3559 } 3560 3561 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3562 { 3563 gpa_t gpa = data & ~0x3f; 3564 3565 /* Bits 4:5 are reserved, Should be zero */ 3566 if (data & 0x30) 3567 return 1; 3568 3569 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3570 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3571 return 1; 3572 3573 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3574 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3575 return 1; 3576 3577 if (!lapic_in_kernel(vcpu)) 3578 return data ? 1 : 0; 3579 3580 vcpu->arch.apf.msr_en_val = data; 3581 3582 if (!kvm_pv_async_pf_enabled(vcpu)) { 3583 kvm_clear_async_pf_completion_queue(vcpu); 3584 kvm_async_pf_hash_reset(vcpu); 3585 return 0; 3586 } 3587 3588 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3589 sizeof(u64))) 3590 return 1; 3591 3592 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3593 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3594 3595 kvm_async_pf_wakeup_all(vcpu); 3596 3597 return 0; 3598 } 3599 3600 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3601 { 3602 /* Bits 8-63 are reserved */ 3603 if (data >> 8) 3604 return 1; 3605 3606 if (!lapic_in_kernel(vcpu)) 3607 return 1; 3608 3609 vcpu->arch.apf.msr_int_val = data; 3610 3611 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3612 3613 return 0; 3614 } 3615 3616 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3617 { 3618 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3619 vcpu->arch.time = 0; 3620 } 3621 3622 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3623 { 3624 ++vcpu->stat.tlb_flush; 3625 kvm_x86_call(flush_tlb_all)(vcpu); 3626 3627 /* Flushing all ASIDs flushes the current ASID... */ 3628 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3629 } 3630 3631 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3632 { 3633 ++vcpu->stat.tlb_flush; 3634 3635 if (!tdp_enabled) { 3636 /* 3637 * A TLB flush on behalf of the guest is equivalent to 3638 * INVPCID(all), toggling CR4.PGE, etc., which requires 3639 * a forced sync of the shadow page tables. Ensure all the 3640 * roots are synced and the guest TLB in hardware is clean. 3641 */ 3642 kvm_mmu_sync_roots(vcpu); 3643 kvm_mmu_sync_prev_roots(vcpu); 3644 } 3645 3646 kvm_x86_call(flush_tlb_guest)(vcpu); 3647 3648 /* 3649 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3650 * grained flushing. 3651 */ 3652 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3653 } 3654 3655 3656 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3657 { 3658 ++vcpu->stat.tlb_flush; 3659 kvm_x86_call(flush_tlb_current)(vcpu); 3660 } 3661 3662 /* 3663 * Service "local" TLB flush requests, which are specific to the current MMU 3664 * context. In addition to the generic event handling in vcpu_enter_guest(), 3665 * TLB flushes that are targeted at an MMU context also need to be serviced 3666 * prior before nested VM-Enter/VM-Exit. 3667 */ 3668 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3669 { 3670 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3671 kvm_vcpu_flush_tlb_current(vcpu); 3672 3673 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3674 kvm_vcpu_flush_tlb_guest(vcpu); 3675 } 3676 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3677 3678 static void record_steal_time(struct kvm_vcpu *vcpu) 3679 { 3680 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3681 struct kvm_steal_time __user *st; 3682 struct kvm_memslots *slots; 3683 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3684 u64 steal; 3685 u32 version; 3686 3687 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3688 kvm_xen_runstate_set_running(vcpu); 3689 return; 3690 } 3691 3692 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3693 return; 3694 3695 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3696 return; 3697 3698 slots = kvm_memslots(vcpu->kvm); 3699 3700 if (unlikely(slots->generation != ghc->generation || 3701 gpa != ghc->gpa || 3702 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3703 /* We rely on the fact that it fits in a single page. */ 3704 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3705 3706 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3707 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3708 return; 3709 } 3710 3711 st = (struct kvm_steal_time __user *)ghc->hva; 3712 /* 3713 * Doing a TLB flush here, on the guest's behalf, can avoid 3714 * expensive IPIs. 3715 */ 3716 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3717 u8 st_preempted = 0; 3718 int err = -EFAULT; 3719 3720 if (!user_access_begin(st, sizeof(*st))) 3721 return; 3722 3723 asm volatile("1: xchgb %0, %2\n" 3724 "xor %1, %1\n" 3725 "2:\n" 3726 _ASM_EXTABLE_UA(1b, 2b) 3727 : "+q" (st_preempted), 3728 "+&r" (err), 3729 "+m" (st->preempted)); 3730 if (err) 3731 goto out; 3732 3733 user_access_end(); 3734 3735 vcpu->arch.st.preempted = 0; 3736 3737 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3738 st_preempted & KVM_VCPU_FLUSH_TLB); 3739 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3740 kvm_vcpu_flush_tlb_guest(vcpu); 3741 3742 if (!user_access_begin(st, sizeof(*st))) 3743 goto dirty; 3744 } else { 3745 if (!user_access_begin(st, sizeof(*st))) 3746 return; 3747 3748 unsafe_put_user(0, &st->preempted, out); 3749 vcpu->arch.st.preempted = 0; 3750 } 3751 3752 unsafe_get_user(version, &st->version, out); 3753 if (version & 1) 3754 version += 1; /* first time write, random junk */ 3755 3756 version += 1; 3757 unsafe_put_user(version, &st->version, out); 3758 3759 smp_wmb(); 3760 3761 unsafe_get_user(steal, &st->steal, out); 3762 steal += current->sched_info.run_delay - 3763 vcpu->arch.st.last_steal; 3764 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3765 unsafe_put_user(steal, &st->steal, out); 3766 3767 version += 1; 3768 unsafe_put_user(version, &st->version, out); 3769 3770 out: 3771 user_access_end(); 3772 dirty: 3773 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3774 } 3775 3776 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3777 { 3778 u32 msr = msr_info->index; 3779 u64 data = msr_info->data; 3780 3781 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3782 return kvm_xen_write_hypercall_page(vcpu, data); 3783 3784 switch (msr) { 3785 case MSR_AMD64_NB_CFG: 3786 case MSR_IA32_UCODE_WRITE: 3787 case MSR_VM_HSAVE_PA: 3788 case MSR_AMD64_PATCH_LOADER: 3789 case MSR_AMD64_BU_CFG2: 3790 case MSR_AMD64_DC_CFG: 3791 case MSR_AMD64_TW_CFG: 3792 case MSR_F15H_EX_CFG: 3793 break; 3794 3795 case MSR_IA32_UCODE_REV: 3796 if (msr_info->host_initiated) 3797 vcpu->arch.microcode_version = data; 3798 break; 3799 case MSR_IA32_ARCH_CAPABILITIES: 3800 if (!msr_info->host_initiated) 3801 return 1; 3802 vcpu->arch.arch_capabilities = data; 3803 break; 3804 case MSR_IA32_PERF_CAPABILITIES: 3805 if (!msr_info->host_initiated) 3806 return 1; 3807 if (data & ~kvm_caps.supported_perf_cap) 3808 return 1; 3809 3810 /* 3811 * Note, this is not just a performance optimization! KVM 3812 * disallows changing feature MSRs after the vCPU has run; PMU 3813 * refresh will bug the VM if called after the vCPU has run. 3814 */ 3815 if (vcpu->arch.perf_capabilities == data) 3816 break; 3817 3818 vcpu->arch.perf_capabilities = data; 3819 kvm_pmu_refresh(vcpu); 3820 break; 3821 case MSR_IA32_PRED_CMD: { 3822 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3823 3824 if (!msr_info->host_initiated) { 3825 if ((!guest_has_pred_cmd_msr(vcpu))) 3826 return 1; 3827 3828 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3829 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3830 reserved_bits |= PRED_CMD_IBPB; 3831 3832 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3833 reserved_bits |= PRED_CMD_SBPB; 3834 } 3835 3836 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3837 reserved_bits |= PRED_CMD_IBPB; 3838 3839 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3840 reserved_bits |= PRED_CMD_SBPB; 3841 3842 if (data & reserved_bits) 3843 return 1; 3844 3845 if (!data) 3846 break; 3847 3848 wrmsrl(MSR_IA32_PRED_CMD, data); 3849 break; 3850 } 3851 case MSR_IA32_FLUSH_CMD: 3852 if (!msr_info->host_initiated && 3853 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3854 return 1; 3855 3856 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3857 return 1; 3858 if (!data) 3859 break; 3860 3861 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3862 break; 3863 case MSR_EFER: 3864 return set_efer(vcpu, msr_info); 3865 case MSR_K7_HWCR: 3866 data &= ~(u64)0x40; /* ignore flush filter disable */ 3867 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3868 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3869 3870 /* 3871 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3872 * through at least v6.6 whine if TscFreqSel is clear, 3873 * depending on F/M/S. 3874 */ 3875 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3876 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3877 return 1; 3878 } 3879 vcpu->arch.msr_hwcr = data; 3880 break; 3881 case MSR_FAM10H_MMIO_CONF_BASE: 3882 if (data != 0) { 3883 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3884 return 1; 3885 } 3886 break; 3887 case MSR_IA32_CR_PAT: 3888 if (!kvm_pat_valid(data)) 3889 return 1; 3890 3891 vcpu->arch.pat = data; 3892 break; 3893 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3894 case MSR_MTRRdefType: 3895 return kvm_mtrr_set_msr(vcpu, msr, data); 3896 case MSR_IA32_APICBASE: 3897 return kvm_set_apic_base(vcpu, msr_info); 3898 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3899 return kvm_x2apic_msr_write(vcpu, msr, data); 3900 case MSR_IA32_TSC_DEADLINE: 3901 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3902 break; 3903 case MSR_IA32_TSC_ADJUST: 3904 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3905 if (!msr_info->host_initiated) { 3906 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3907 adjust_tsc_offset_guest(vcpu, adj); 3908 /* Before back to guest, tsc_timestamp must be adjusted 3909 * as well, otherwise guest's percpu pvclock time could jump. 3910 */ 3911 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3912 } 3913 vcpu->arch.ia32_tsc_adjust_msr = data; 3914 } 3915 break; 3916 case MSR_IA32_MISC_ENABLE: { 3917 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3918 3919 if (!msr_info->host_initiated) { 3920 /* RO bits */ 3921 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3922 return 1; 3923 3924 /* R bits, i.e. writes are ignored, but don't fault. */ 3925 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3926 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3927 } 3928 3929 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3930 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3931 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3932 return 1; 3933 vcpu->arch.ia32_misc_enable_msr = data; 3934 kvm_update_cpuid_runtime(vcpu); 3935 } else { 3936 vcpu->arch.ia32_misc_enable_msr = data; 3937 } 3938 break; 3939 } 3940 case MSR_IA32_SMBASE: 3941 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3942 return 1; 3943 vcpu->arch.smbase = data; 3944 break; 3945 case MSR_IA32_POWER_CTL: 3946 vcpu->arch.msr_ia32_power_ctl = data; 3947 break; 3948 case MSR_IA32_TSC: 3949 if (msr_info->host_initiated) { 3950 kvm_synchronize_tsc(vcpu, &data); 3951 } else { 3952 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3953 adjust_tsc_offset_guest(vcpu, adj); 3954 vcpu->arch.ia32_tsc_adjust_msr += adj; 3955 } 3956 break; 3957 case MSR_IA32_XSS: 3958 if (!msr_info->host_initiated && 3959 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3960 return 1; 3961 /* 3962 * KVM supports exposing PT to the guest, but does not support 3963 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3964 * XSAVES/XRSTORS to save/restore PT MSRs. 3965 */ 3966 if (data & ~kvm_caps.supported_xss) 3967 return 1; 3968 vcpu->arch.ia32_xss = data; 3969 kvm_update_cpuid_runtime(vcpu); 3970 break; 3971 case MSR_SMI_COUNT: 3972 if (!msr_info->host_initiated) 3973 return 1; 3974 vcpu->arch.smi_count = data; 3975 break; 3976 case MSR_KVM_WALL_CLOCK_NEW: 3977 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3978 return 1; 3979 3980 vcpu->kvm->arch.wall_clock = data; 3981 kvm_write_wall_clock(vcpu->kvm, data, 0); 3982 break; 3983 case MSR_KVM_WALL_CLOCK: 3984 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3985 return 1; 3986 3987 vcpu->kvm->arch.wall_clock = data; 3988 kvm_write_wall_clock(vcpu->kvm, data, 0); 3989 break; 3990 case MSR_KVM_SYSTEM_TIME_NEW: 3991 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3992 return 1; 3993 3994 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3995 break; 3996 case MSR_KVM_SYSTEM_TIME: 3997 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3998 return 1; 3999 4000 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 4001 break; 4002 case MSR_KVM_ASYNC_PF_EN: 4003 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4004 return 1; 4005 4006 if (kvm_pv_enable_async_pf(vcpu, data)) 4007 return 1; 4008 break; 4009 case MSR_KVM_ASYNC_PF_INT: 4010 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4011 return 1; 4012 4013 if (kvm_pv_enable_async_pf_int(vcpu, data)) 4014 return 1; 4015 break; 4016 case MSR_KVM_ASYNC_PF_ACK: 4017 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4018 return 1; 4019 if (data & 0x1) { 4020 vcpu->arch.apf.pageready_pending = false; 4021 kvm_check_async_pf_completion(vcpu); 4022 } 4023 break; 4024 case MSR_KVM_STEAL_TIME: 4025 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4026 return 1; 4027 4028 if (unlikely(!sched_info_on())) 4029 return 1; 4030 4031 if (data & KVM_STEAL_RESERVED_MASK) 4032 return 1; 4033 4034 vcpu->arch.st.msr_val = data; 4035 4036 if (!(data & KVM_MSR_ENABLED)) 4037 break; 4038 4039 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4040 4041 break; 4042 case MSR_KVM_PV_EOI_EN: 4043 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4044 return 1; 4045 4046 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4047 return 1; 4048 break; 4049 4050 case MSR_KVM_POLL_CONTROL: 4051 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4052 return 1; 4053 4054 /* only enable bit supported */ 4055 if (data & (-1ULL << 1)) 4056 return 1; 4057 4058 vcpu->arch.msr_kvm_poll_control = data; 4059 break; 4060 4061 case MSR_IA32_MCG_CTL: 4062 case MSR_IA32_MCG_STATUS: 4063 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4064 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4065 return set_msr_mce(vcpu, msr_info); 4066 4067 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4068 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4069 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4070 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4071 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4072 return kvm_pmu_set_msr(vcpu, msr_info); 4073 4074 if (data) 4075 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4076 break; 4077 case MSR_K7_CLK_CTL: 4078 /* 4079 * Ignore all writes to this no longer documented MSR. 4080 * Writes are only relevant for old K7 processors, 4081 * all pre-dating SVM, but a recommended workaround from 4082 * AMD for these chips. It is possible to specify the 4083 * affected processor models on the command line, hence 4084 * the need to ignore the workaround. 4085 */ 4086 break; 4087 #ifdef CONFIG_KVM_HYPERV 4088 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4089 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4090 case HV_X64_MSR_SYNDBG_OPTIONS: 4091 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4092 case HV_X64_MSR_CRASH_CTL: 4093 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4094 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4095 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4096 case HV_X64_MSR_TSC_EMULATION_STATUS: 4097 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4098 return kvm_hv_set_msr_common(vcpu, msr, data, 4099 msr_info->host_initiated); 4100 #endif 4101 case MSR_IA32_BBL_CR_CTL3: 4102 /* Drop writes to this legacy MSR -- see rdmsr 4103 * counterpart for further detail. 4104 */ 4105 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4106 break; 4107 case MSR_AMD64_OSVW_ID_LENGTH: 4108 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4109 return 1; 4110 vcpu->arch.osvw.length = data; 4111 break; 4112 case MSR_AMD64_OSVW_STATUS: 4113 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4114 return 1; 4115 vcpu->arch.osvw.status = data; 4116 break; 4117 case MSR_PLATFORM_INFO: 4118 if (!msr_info->host_initiated || 4119 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4120 cpuid_fault_enabled(vcpu))) 4121 return 1; 4122 vcpu->arch.msr_platform_info = data; 4123 break; 4124 case MSR_MISC_FEATURES_ENABLES: 4125 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4126 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4127 !supports_cpuid_fault(vcpu))) 4128 return 1; 4129 vcpu->arch.msr_misc_features_enables = data; 4130 break; 4131 #ifdef CONFIG_X86_64 4132 case MSR_IA32_XFD: 4133 if (!msr_info->host_initiated && 4134 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4135 return 1; 4136 4137 if (data & ~kvm_guest_supported_xfd(vcpu)) 4138 return 1; 4139 4140 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4141 break; 4142 case MSR_IA32_XFD_ERR: 4143 if (!msr_info->host_initiated && 4144 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4145 return 1; 4146 4147 if (data & ~kvm_guest_supported_xfd(vcpu)) 4148 return 1; 4149 4150 vcpu->arch.guest_fpu.xfd_err = data; 4151 break; 4152 #endif 4153 default: 4154 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4155 return kvm_pmu_set_msr(vcpu, msr_info); 4156 4157 return KVM_MSR_RET_UNSUPPORTED; 4158 } 4159 return 0; 4160 } 4161 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4162 4163 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4164 { 4165 u64 data; 4166 u64 mcg_cap = vcpu->arch.mcg_cap; 4167 unsigned bank_num = mcg_cap & 0xff; 4168 u32 offset, last_msr; 4169 4170 switch (msr) { 4171 case MSR_IA32_P5_MC_ADDR: 4172 case MSR_IA32_P5_MC_TYPE: 4173 data = 0; 4174 break; 4175 case MSR_IA32_MCG_CAP: 4176 data = vcpu->arch.mcg_cap; 4177 break; 4178 case MSR_IA32_MCG_CTL: 4179 if (!(mcg_cap & MCG_CTL_P) && !host) 4180 return 1; 4181 data = vcpu->arch.mcg_ctl; 4182 break; 4183 case MSR_IA32_MCG_STATUS: 4184 data = vcpu->arch.mcg_status; 4185 break; 4186 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4187 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4188 if (msr > last_msr) 4189 return 1; 4190 4191 if (!(mcg_cap & MCG_CMCI_P) && !host) 4192 return 1; 4193 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4194 last_msr + 1 - MSR_IA32_MC0_CTL2); 4195 data = vcpu->arch.mci_ctl2_banks[offset]; 4196 break; 4197 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4198 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4199 if (msr > last_msr) 4200 return 1; 4201 4202 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4203 last_msr + 1 - MSR_IA32_MC0_CTL); 4204 data = vcpu->arch.mce_banks[offset]; 4205 break; 4206 default: 4207 return 1; 4208 } 4209 *pdata = data; 4210 return 0; 4211 } 4212 4213 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4214 { 4215 switch (msr_info->index) { 4216 case MSR_IA32_PLATFORM_ID: 4217 case MSR_IA32_EBL_CR_POWERON: 4218 case MSR_IA32_LASTBRANCHFROMIP: 4219 case MSR_IA32_LASTBRANCHTOIP: 4220 case MSR_IA32_LASTINTFROMIP: 4221 case MSR_IA32_LASTINTTOIP: 4222 case MSR_AMD64_SYSCFG: 4223 case MSR_K8_TSEG_ADDR: 4224 case MSR_K8_TSEG_MASK: 4225 case MSR_VM_HSAVE_PA: 4226 case MSR_K8_INT_PENDING_MSG: 4227 case MSR_AMD64_NB_CFG: 4228 case MSR_FAM10H_MMIO_CONF_BASE: 4229 case MSR_AMD64_BU_CFG2: 4230 case MSR_IA32_PERF_CTL: 4231 case MSR_AMD64_DC_CFG: 4232 case MSR_AMD64_TW_CFG: 4233 case MSR_F15H_EX_CFG: 4234 /* 4235 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4236 * limit) MSRs. Just return 0, as we do not want to expose the host 4237 * data here. Do not conditionalize this on CPUID, as KVM does not do 4238 * so for existing CPU-specific MSRs. 4239 */ 4240 case MSR_RAPL_POWER_UNIT: 4241 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4242 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4243 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4244 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4245 msr_info->data = 0; 4246 break; 4247 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4248 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4249 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4250 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4251 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4252 return kvm_pmu_get_msr(vcpu, msr_info); 4253 msr_info->data = 0; 4254 break; 4255 case MSR_IA32_UCODE_REV: 4256 msr_info->data = vcpu->arch.microcode_version; 4257 break; 4258 case MSR_IA32_ARCH_CAPABILITIES: 4259 if (!msr_info->host_initiated && 4260 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4261 return 1; 4262 msr_info->data = vcpu->arch.arch_capabilities; 4263 break; 4264 case MSR_IA32_PERF_CAPABILITIES: 4265 if (!msr_info->host_initiated && 4266 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4267 return 1; 4268 msr_info->data = vcpu->arch.perf_capabilities; 4269 break; 4270 case MSR_IA32_POWER_CTL: 4271 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4272 break; 4273 case MSR_IA32_TSC: { 4274 /* 4275 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4276 * even when not intercepted. AMD manual doesn't explicitly 4277 * state this but appears to behave the same. 4278 * 4279 * On userspace reads and writes, however, we unconditionally 4280 * return L1's TSC value to ensure backwards-compatible 4281 * behavior for migration. 4282 */ 4283 u64 offset, ratio; 4284 4285 if (msr_info->host_initiated) { 4286 offset = vcpu->arch.l1_tsc_offset; 4287 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4288 } else { 4289 offset = vcpu->arch.tsc_offset; 4290 ratio = vcpu->arch.tsc_scaling_ratio; 4291 } 4292 4293 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4294 break; 4295 } 4296 case MSR_IA32_CR_PAT: 4297 msr_info->data = vcpu->arch.pat; 4298 break; 4299 case MSR_MTRRcap: 4300 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4301 case MSR_MTRRdefType: 4302 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4303 case 0xcd: /* fsb frequency */ 4304 msr_info->data = 3; 4305 break; 4306 /* 4307 * MSR_EBC_FREQUENCY_ID 4308 * Conservative value valid for even the basic CPU models. 4309 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4310 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4311 * and 266MHz for model 3, or 4. Set Core Clock 4312 * Frequency to System Bus Frequency Ratio to 1 (bits 4313 * 31:24) even though these are only valid for CPU 4314 * models > 2, however guests may end up dividing or 4315 * multiplying by zero otherwise. 4316 */ 4317 case MSR_EBC_FREQUENCY_ID: 4318 msr_info->data = 1 << 24; 4319 break; 4320 case MSR_IA32_APICBASE: 4321 msr_info->data = kvm_get_apic_base(vcpu); 4322 break; 4323 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4324 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4325 case MSR_IA32_TSC_DEADLINE: 4326 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4327 break; 4328 case MSR_IA32_TSC_ADJUST: 4329 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4330 break; 4331 case MSR_IA32_MISC_ENABLE: 4332 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4333 break; 4334 case MSR_IA32_SMBASE: 4335 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4336 return 1; 4337 msr_info->data = vcpu->arch.smbase; 4338 break; 4339 case MSR_SMI_COUNT: 4340 msr_info->data = vcpu->arch.smi_count; 4341 break; 4342 case MSR_IA32_PERF_STATUS: 4343 /* TSC increment by tick */ 4344 msr_info->data = 1000ULL; 4345 /* CPU multiplier */ 4346 msr_info->data |= (((uint64_t)4ULL) << 40); 4347 break; 4348 case MSR_EFER: 4349 msr_info->data = vcpu->arch.efer; 4350 break; 4351 case MSR_KVM_WALL_CLOCK: 4352 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4353 return 1; 4354 4355 msr_info->data = vcpu->kvm->arch.wall_clock; 4356 break; 4357 case MSR_KVM_WALL_CLOCK_NEW: 4358 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4359 return 1; 4360 4361 msr_info->data = vcpu->kvm->arch.wall_clock; 4362 break; 4363 case MSR_KVM_SYSTEM_TIME: 4364 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4365 return 1; 4366 4367 msr_info->data = vcpu->arch.time; 4368 break; 4369 case MSR_KVM_SYSTEM_TIME_NEW: 4370 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4371 return 1; 4372 4373 msr_info->data = vcpu->arch.time; 4374 break; 4375 case MSR_KVM_ASYNC_PF_EN: 4376 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4377 return 1; 4378 4379 msr_info->data = vcpu->arch.apf.msr_en_val; 4380 break; 4381 case MSR_KVM_ASYNC_PF_INT: 4382 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4383 return 1; 4384 4385 msr_info->data = vcpu->arch.apf.msr_int_val; 4386 break; 4387 case MSR_KVM_ASYNC_PF_ACK: 4388 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4389 return 1; 4390 4391 msr_info->data = 0; 4392 break; 4393 case MSR_KVM_STEAL_TIME: 4394 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4395 return 1; 4396 4397 msr_info->data = vcpu->arch.st.msr_val; 4398 break; 4399 case MSR_KVM_PV_EOI_EN: 4400 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4401 return 1; 4402 4403 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4404 break; 4405 case MSR_KVM_POLL_CONTROL: 4406 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4407 return 1; 4408 4409 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4410 break; 4411 case MSR_IA32_P5_MC_ADDR: 4412 case MSR_IA32_P5_MC_TYPE: 4413 case MSR_IA32_MCG_CAP: 4414 case MSR_IA32_MCG_CTL: 4415 case MSR_IA32_MCG_STATUS: 4416 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4417 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4418 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4419 msr_info->host_initiated); 4420 case MSR_IA32_XSS: 4421 if (!msr_info->host_initiated && 4422 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4423 return 1; 4424 msr_info->data = vcpu->arch.ia32_xss; 4425 break; 4426 case MSR_K7_CLK_CTL: 4427 /* 4428 * Provide expected ramp-up count for K7. All other 4429 * are set to zero, indicating minimum divisors for 4430 * every field. 4431 * 4432 * This prevents guest kernels on AMD host with CPU 4433 * type 6, model 8 and higher from exploding due to 4434 * the rdmsr failing. 4435 */ 4436 msr_info->data = 0x20000000; 4437 break; 4438 #ifdef CONFIG_KVM_HYPERV 4439 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4440 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4441 case HV_X64_MSR_SYNDBG_OPTIONS: 4442 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4443 case HV_X64_MSR_CRASH_CTL: 4444 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4445 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4446 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4447 case HV_X64_MSR_TSC_EMULATION_STATUS: 4448 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4449 return kvm_hv_get_msr_common(vcpu, 4450 msr_info->index, &msr_info->data, 4451 msr_info->host_initiated); 4452 #endif 4453 case MSR_IA32_BBL_CR_CTL3: 4454 /* This legacy MSR exists but isn't fully documented in current 4455 * silicon. It is however accessed by winxp in very narrow 4456 * scenarios where it sets bit #19, itself documented as 4457 * a "reserved" bit. Best effort attempt to source coherent 4458 * read data here should the balance of the register be 4459 * interpreted by the guest: 4460 * 4461 * L2 cache control register 3: 64GB range, 256KB size, 4462 * enabled, latency 0x1, configured 4463 */ 4464 msr_info->data = 0xbe702111; 4465 break; 4466 case MSR_AMD64_OSVW_ID_LENGTH: 4467 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4468 return 1; 4469 msr_info->data = vcpu->arch.osvw.length; 4470 break; 4471 case MSR_AMD64_OSVW_STATUS: 4472 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4473 return 1; 4474 msr_info->data = vcpu->arch.osvw.status; 4475 break; 4476 case MSR_PLATFORM_INFO: 4477 if (!msr_info->host_initiated && 4478 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4479 return 1; 4480 msr_info->data = vcpu->arch.msr_platform_info; 4481 break; 4482 case MSR_MISC_FEATURES_ENABLES: 4483 msr_info->data = vcpu->arch.msr_misc_features_enables; 4484 break; 4485 case MSR_K7_HWCR: 4486 msr_info->data = vcpu->arch.msr_hwcr; 4487 break; 4488 #ifdef CONFIG_X86_64 4489 case MSR_IA32_XFD: 4490 if (!msr_info->host_initiated && 4491 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4492 return 1; 4493 4494 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4495 break; 4496 case MSR_IA32_XFD_ERR: 4497 if (!msr_info->host_initiated && 4498 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4499 return 1; 4500 4501 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4502 break; 4503 #endif 4504 default: 4505 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4506 return kvm_pmu_get_msr(vcpu, msr_info); 4507 4508 return KVM_MSR_RET_UNSUPPORTED; 4509 } 4510 return 0; 4511 } 4512 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4513 4514 /* 4515 * Read or write a bunch of msrs. All parameters are kernel addresses. 4516 * 4517 * @return number of msrs set successfully. 4518 */ 4519 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4520 struct kvm_msr_entry *entries, 4521 int (*do_msr)(struct kvm_vcpu *vcpu, 4522 unsigned index, u64 *data)) 4523 { 4524 int i; 4525 4526 for (i = 0; i < msrs->nmsrs; ++i) 4527 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4528 break; 4529 4530 return i; 4531 } 4532 4533 /* 4534 * Read or write a bunch of msrs. Parameters are user addresses. 4535 * 4536 * @return number of msrs set successfully. 4537 */ 4538 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4539 int (*do_msr)(struct kvm_vcpu *vcpu, 4540 unsigned index, u64 *data), 4541 int writeback) 4542 { 4543 struct kvm_msrs msrs; 4544 struct kvm_msr_entry *entries; 4545 unsigned size; 4546 int r; 4547 4548 r = -EFAULT; 4549 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4550 goto out; 4551 4552 r = -E2BIG; 4553 if (msrs.nmsrs >= MAX_IO_MSRS) 4554 goto out; 4555 4556 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4557 entries = memdup_user(user_msrs->entries, size); 4558 if (IS_ERR(entries)) { 4559 r = PTR_ERR(entries); 4560 goto out; 4561 } 4562 4563 r = __msr_io(vcpu, &msrs, entries, do_msr); 4564 4565 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4566 r = -EFAULT; 4567 4568 kfree(entries); 4569 out: 4570 return r; 4571 } 4572 4573 static inline bool kvm_can_mwait_in_guest(void) 4574 { 4575 return boot_cpu_has(X86_FEATURE_MWAIT) && 4576 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4577 boot_cpu_has(X86_FEATURE_ARAT); 4578 } 4579 4580 #ifdef CONFIG_KVM_HYPERV 4581 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4582 struct kvm_cpuid2 __user *cpuid_arg) 4583 { 4584 struct kvm_cpuid2 cpuid; 4585 int r; 4586 4587 r = -EFAULT; 4588 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4589 return r; 4590 4591 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4592 if (r) 4593 return r; 4594 4595 r = -EFAULT; 4596 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4597 return r; 4598 4599 return 0; 4600 } 4601 #endif 4602 4603 static bool kvm_is_vm_type_supported(unsigned long type) 4604 { 4605 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4606 } 4607 4608 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4609 { 4610 int r = 0; 4611 4612 switch (ext) { 4613 case KVM_CAP_IRQCHIP: 4614 case KVM_CAP_HLT: 4615 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4616 case KVM_CAP_SET_TSS_ADDR: 4617 case KVM_CAP_EXT_CPUID: 4618 case KVM_CAP_EXT_EMUL_CPUID: 4619 case KVM_CAP_CLOCKSOURCE: 4620 case KVM_CAP_PIT: 4621 case KVM_CAP_NOP_IO_DELAY: 4622 case KVM_CAP_MP_STATE: 4623 case KVM_CAP_SYNC_MMU: 4624 case KVM_CAP_USER_NMI: 4625 case KVM_CAP_REINJECT_CONTROL: 4626 case KVM_CAP_IRQ_INJECT_STATUS: 4627 case KVM_CAP_IOEVENTFD: 4628 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4629 case KVM_CAP_PIT2: 4630 case KVM_CAP_PIT_STATE2: 4631 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4632 case KVM_CAP_VCPU_EVENTS: 4633 #ifdef CONFIG_KVM_HYPERV 4634 case KVM_CAP_HYPERV: 4635 case KVM_CAP_HYPERV_VAPIC: 4636 case KVM_CAP_HYPERV_SPIN: 4637 case KVM_CAP_HYPERV_TIME: 4638 case KVM_CAP_HYPERV_SYNIC: 4639 case KVM_CAP_HYPERV_SYNIC2: 4640 case KVM_CAP_HYPERV_VP_INDEX: 4641 case KVM_CAP_HYPERV_EVENTFD: 4642 case KVM_CAP_HYPERV_TLBFLUSH: 4643 case KVM_CAP_HYPERV_SEND_IPI: 4644 case KVM_CAP_HYPERV_CPUID: 4645 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4646 case KVM_CAP_SYS_HYPERV_CPUID: 4647 #endif 4648 case KVM_CAP_PCI_SEGMENT: 4649 case KVM_CAP_DEBUGREGS: 4650 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4651 case KVM_CAP_XSAVE: 4652 case KVM_CAP_ASYNC_PF: 4653 case KVM_CAP_ASYNC_PF_INT: 4654 case KVM_CAP_GET_TSC_KHZ: 4655 case KVM_CAP_KVMCLOCK_CTRL: 4656 case KVM_CAP_READONLY_MEM: 4657 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4658 case KVM_CAP_TSC_DEADLINE_TIMER: 4659 case KVM_CAP_DISABLE_QUIRKS: 4660 case KVM_CAP_SET_BOOT_CPU_ID: 4661 case KVM_CAP_SPLIT_IRQCHIP: 4662 case KVM_CAP_IMMEDIATE_EXIT: 4663 case KVM_CAP_PMU_EVENT_FILTER: 4664 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4665 case KVM_CAP_GET_MSR_FEATURES: 4666 case KVM_CAP_MSR_PLATFORM_INFO: 4667 case KVM_CAP_EXCEPTION_PAYLOAD: 4668 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4669 case KVM_CAP_SET_GUEST_DEBUG: 4670 case KVM_CAP_LAST_CPU: 4671 case KVM_CAP_X86_USER_SPACE_MSR: 4672 case KVM_CAP_X86_MSR_FILTER: 4673 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4674 #ifdef CONFIG_X86_SGX_KVM 4675 case KVM_CAP_SGX_ATTRIBUTE: 4676 #endif 4677 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4678 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4679 case KVM_CAP_SREGS2: 4680 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4681 case KVM_CAP_VCPU_ATTRIBUTES: 4682 case KVM_CAP_SYS_ATTRIBUTES: 4683 case KVM_CAP_VAPIC: 4684 case KVM_CAP_ENABLE_CAP: 4685 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4686 case KVM_CAP_IRQFD_RESAMPLE: 4687 case KVM_CAP_MEMORY_FAULT_INFO: 4688 case KVM_CAP_X86_GUEST_MODE: 4689 r = 1; 4690 break; 4691 case KVM_CAP_PRE_FAULT_MEMORY: 4692 r = tdp_enabled; 4693 break; 4694 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: 4695 r = APIC_BUS_CYCLE_NS_DEFAULT; 4696 break; 4697 case KVM_CAP_EXIT_HYPERCALL: 4698 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4699 break; 4700 case KVM_CAP_SET_GUEST_DEBUG2: 4701 return KVM_GUESTDBG_VALID_MASK; 4702 #ifdef CONFIG_KVM_XEN 4703 case KVM_CAP_XEN_HVM: 4704 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4705 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4706 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4707 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4708 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4709 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4710 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4711 if (sched_info_on()) 4712 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4713 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4714 break; 4715 #endif 4716 case KVM_CAP_SYNC_REGS: 4717 r = KVM_SYNC_X86_VALID_FIELDS; 4718 break; 4719 case KVM_CAP_ADJUST_CLOCK: 4720 r = KVM_CLOCK_VALID_FLAGS; 4721 break; 4722 case KVM_CAP_X86_DISABLE_EXITS: 4723 r = KVM_X86_DISABLE_EXITS_PAUSE; 4724 4725 if (!mitigate_smt_rsb) { 4726 r |= KVM_X86_DISABLE_EXITS_HLT | 4727 KVM_X86_DISABLE_EXITS_CSTATE; 4728 4729 if (kvm_can_mwait_in_guest()) 4730 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4731 } 4732 break; 4733 case KVM_CAP_X86_SMM: 4734 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4735 break; 4736 4737 /* SMBASE is usually relocated above 1M on modern chipsets, 4738 * and SMM handlers might indeed rely on 4G segment limits, 4739 * so do not report SMM to be available if real mode is 4740 * emulated via vm86 mode. Still, do not go to great lengths 4741 * to avoid userspace's usage of the feature, because it is a 4742 * fringe case that is not enabled except via specific settings 4743 * of the module parameters. 4744 */ 4745 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4746 break; 4747 case KVM_CAP_NR_VCPUS: 4748 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4749 break; 4750 case KVM_CAP_MAX_VCPUS: 4751 r = KVM_MAX_VCPUS; 4752 break; 4753 case KVM_CAP_MAX_VCPU_ID: 4754 r = KVM_MAX_VCPU_IDS; 4755 break; 4756 case KVM_CAP_PV_MMU: /* obsolete */ 4757 r = 0; 4758 break; 4759 case KVM_CAP_MCE: 4760 r = KVM_MAX_MCE_BANKS; 4761 break; 4762 case KVM_CAP_XCRS: 4763 r = boot_cpu_has(X86_FEATURE_XSAVE); 4764 break; 4765 case KVM_CAP_TSC_CONTROL: 4766 case KVM_CAP_VM_TSC_CONTROL: 4767 r = kvm_caps.has_tsc_control; 4768 break; 4769 case KVM_CAP_X2APIC_API: 4770 r = KVM_X2APIC_API_VALID_FLAGS; 4771 break; 4772 case KVM_CAP_NESTED_STATE: 4773 r = kvm_x86_ops.nested_ops->get_state ? 4774 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4775 break; 4776 #ifdef CONFIG_KVM_HYPERV 4777 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4778 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4779 break; 4780 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4781 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4782 break; 4783 #endif 4784 case KVM_CAP_SMALLER_MAXPHYADDR: 4785 r = (int) allow_smaller_maxphyaddr; 4786 break; 4787 case KVM_CAP_STEAL_TIME: 4788 r = sched_info_on(); 4789 break; 4790 case KVM_CAP_X86_BUS_LOCK_EXIT: 4791 if (kvm_caps.has_bus_lock_exit) 4792 r = KVM_BUS_LOCK_DETECTION_OFF | 4793 KVM_BUS_LOCK_DETECTION_EXIT; 4794 else 4795 r = 0; 4796 break; 4797 case KVM_CAP_XSAVE2: { 4798 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4799 if (r < sizeof(struct kvm_xsave)) 4800 r = sizeof(struct kvm_xsave); 4801 break; 4802 } 4803 case KVM_CAP_PMU_CAPABILITY: 4804 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4805 break; 4806 case KVM_CAP_DISABLE_QUIRKS2: 4807 r = KVM_X86_VALID_QUIRKS; 4808 break; 4809 case KVM_CAP_X86_NOTIFY_VMEXIT: 4810 r = kvm_caps.has_notify_vmexit; 4811 break; 4812 case KVM_CAP_VM_TYPES: 4813 r = kvm_caps.supported_vm_types; 4814 break; 4815 default: 4816 break; 4817 } 4818 return r; 4819 } 4820 4821 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 4822 { 4823 if (attr->group) { 4824 if (kvm_x86_ops.dev_get_attr) 4825 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); 4826 return -ENXIO; 4827 } 4828 4829 switch (attr->attr) { 4830 case KVM_X86_XCOMP_GUEST_SUPP: 4831 *val = kvm_caps.supported_xcr0; 4832 return 0; 4833 default: 4834 return -ENXIO; 4835 } 4836 } 4837 4838 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4839 { 4840 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 4841 int r; 4842 u64 val; 4843 4844 r = __kvm_x86_dev_get_attr(attr, &val); 4845 if (r < 0) 4846 return r; 4847 4848 if (put_user(val, uaddr)) 4849 return -EFAULT; 4850 4851 return 0; 4852 } 4853 4854 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4855 { 4856 u64 val; 4857 4858 return __kvm_x86_dev_get_attr(attr, &val); 4859 } 4860 4861 long kvm_arch_dev_ioctl(struct file *filp, 4862 unsigned int ioctl, unsigned long arg) 4863 { 4864 void __user *argp = (void __user *)arg; 4865 long r; 4866 4867 switch (ioctl) { 4868 case KVM_GET_MSR_INDEX_LIST: { 4869 struct kvm_msr_list __user *user_msr_list = argp; 4870 struct kvm_msr_list msr_list; 4871 unsigned n; 4872 4873 r = -EFAULT; 4874 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4875 goto out; 4876 n = msr_list.nmsrs; 4877 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4878 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4879 goto out; 4880 r = -E2BIG; 4881 if (n < msr_list.nmsrs) 4882 goto out; 4883 r = -EFAULT; 4884 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4885 num_msrs_to_save * sizeof(u32))) 4886 goto out; 4887 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4888 &emulated_msrs, 4889 num_emulated_msrs * sizeof(u32))) 4890 goto out; 4891 r = 0; 4892 break; 4893 } 4894 case KVM_GET_SUPPORTED_CPUID: 4895 case KVM_GET_EMULATED_CPUID: { 4896 struct kvm_cpuid2 __user *cpuid_arg = argp; 4897 struct kvm_cpuid2 cpuid; 4898 4899 r = -EFAULT; 4900 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4901 goto out; 4902 4903 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4904 ioctl); 4905 if (r) 4906 goto out; 4907 4908 r = -EFAULT; 4909 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4910 goto out; 4911 r = 0; 4912 break; 4913 } 4914 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4915 r = -EFAULT; 4916 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4917 sizeof(kvm_caps.supported_mce_cap))) 4918 goto out; 4919 r = 0; 4920 break; 4921 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4922 struct kvm_msr_list __user *user_msr_list = argp; 4923 struct kvm_msr_list msr_list; 4924 unsigned int n; 4925 4926 r = -EFAULT; 4927 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4928 goto out; 4929 n = msr_list.nmsrs; 4930 msr_list.nmsrs = num_msr_based_features; 4931 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4932 goto out; 4933 r = -E2BIG; 4934 if (n < msr_list.nmsrs) 4935 goto out; 4936 r = -EFAULT; 4937 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4938 num_msr_based_features * sizeof(u32))) 4939 goto out; 4940 r = 0; 4941 break; 4942 } 4943 case KVM_GET_MSRS: 4944 r = msr_io(NULL, argp, do_get_feature_msr, 1); 4945 break; 4946 #ifdef CONFIG_KVM_HYPERV 4947 case KVM_GET_SUPPORTED_HV_CPUID: 4948 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4949 break; 4950 #endif 4951 case KVM_GET_DEVICE_ATTR: { 4952 struct kvm_device_attr attr; 4953 r = -EFAULT; 4954 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4955 break; 4956 r = kvm_x86_dev_get_attr(&attr); 4957 break; 4958 } 4959 case KVM_HAS_DEVICE_ATTR: { 4960 struct kvm_device_attr attr; 4961 r = -EFAULT; 4962 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4963 break; 4964 r = kvm_x86_dev_has_attr(&attr); 4965 break; 4966 } 4967 default: 4968 r = -EINVAL; 4969 break; 4970 } 4971 out: 4972 return r; 4973 } 4974 4975 static void wbinvd_ipi(void *garbage) 4976 { 4977 wbinvd(); 4978 } 4979 4980 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4981 { 4982 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4983 } 4984 4985 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4986 { 4987 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 4988 4989 vcpu->arch.l1tf_flush_l1d = true; 4990 4991 if (vcpu->scheduled_out && pmu->version && pmu->event_count) { 4992 pmu->need_cleanup = true; 4993 kvm_make_request(KVM_REQ_PMU, vcpu); 4994 } 4995 4996 /* Address WBINVD may be executed by guest */ 4997 if (need_emulate_wbinvd(vcpu)) { 4998 if (kvm_x86_call(has_wbinvd_exit)()) 4999 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5000 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 5001 smp_call_function_single(vcpu->cpu, 5002 wbinvd_ipi, NULL, 1); 5003 } 5004 5005 kvm_x86_call(vcpu_load)(vcpu, cpu); 5006 5007 /* Save host pkru register if supported */ 5008 vcpu->arch.host_pkru = read_pkru(); 5009 5010 /* Apply any externally detected TSC adjustments (due to suspend) */ 5011 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5012 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5013 vcpu->arch.tsc_offset_adjustment = 0; 5014 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5015 } 5016 5017 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5018 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5019 rdtsc() - vcpu->arch.last_host_tsc; 5020 if (tsc_delta < 0) 5021 mark_tsc_unstable("KVM discovered backwards TSC"); 5022 5023 if (kvm_check_tsc_unstable()) { 5024 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5025 vcpu->arch.last_guest_tsc); 5026 kvm_vcpu_write_tsc_offset(vcpu, offset); 5027 vcpu->arch.tsc_catchup = 1; 5028 } 5029 5030 if (kvm_lapic_hv_timer_in_use(vcpu)) 5031 kvm_lapic_restart_hv_timer(vcpu); 5032 5033 /* 5034 * On a host with synchronized TSC, there is no need to update 5035 * kvmclock on vcpu->cpu migration 5036 */ 5037 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5038 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5039 if (vcpu->cpu != cpu) 5040 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5041 vcpu->cpu = cpu; 5042 } 5043 5044 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5045 } 5046 5047 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5048 { 5049 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5050 struct kvm_steal_time __user *st; 5051 struct kvm_memslots *slots; 5052 static const u8 preempted = KVM_VCPU_PREEMPTED; 5053 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5054 5055 /* 5056 * The vCPU can be marked preempted if and only if the VM-Exit was on 5057 * an instruction boundary and will not trigger guest emulation of any 5058 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5059 * when this is true, for example allowing the vCPU to be marked 5060 * preempted if and only if the VM-Exit was due to a host interrupt. 5061 */ 5062 if (!vcpu->arch.at_instruction_boundary) { 5063 vcpu->stat.preemption_other++; 5064 return; 5065 } 5066 5067 vcpu->stat.preemption_reported++; 5068 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5069 return; 5070 5071 if (vcpu->arch.st.preempted) 5072 return; 5073 5074 /* This happens on process exit */ 5075 if (unlikely(current->mm != vcpu->kvm->mm)) 5076 return; 5077 5078 slots = kvm_memslots(vcpu->kvm); 5079 5080 if (unlikely(slots->generation != ghc->generation || 5081 gpa != ghc->gpa || 5082 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5083 return; 5084 5085 st = (struct kvm_steal_time __user *)ghc->hva; 5086 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5087 5088 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5089 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5090 5091 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5092 } 5093 5094 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5095 { 5096 int idx; 5097 5098 if (vcpu->preempted) { 5099 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu); 5100 5101 /* 5102 * Take the srcu lock as memslots will be accessed to check the gfn 5103 * cache generation against the memslots generation. 5104 */ 5105 idx = srcu_read_lock(&vcpu->kvm->srcu); 5106 if (kvm_xen_msr_enabled(vcpu->kvm)) 5107 kvm_xen_runstate_set_preempted(vcpu); 5108 else 5109 kvm_steal_time_set_preempted(vcpu); 5110 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5111 } 5112 5113 kvm_x86_call(vcpu_put)(vcpu); 5114 vcpu->arch.last_host_tsc = rdtsc(); 5115 } 5116 5117 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5118 struct kvm_lapic_state *s) 5119 { 5120 kvm_x86_call(sync_pir_to_irr)(vcpu); 5121 5122 return kvm_apic_get_state(vcpu, s); 5123 } 5124 5125 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5126 struct kvm_lapic_state *s) 5127 { 5128 int r; 5129 5130 r = kvm_apic_set_state(vcpu, s); 5131 if (r) 5132 return r; 5133 update_cr8_intercept(vcpu); 5134 5135 return 0; 5136 } 5137 5138 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5139 { 5140 /* 5141 * We can accept userspace's request for interrupt injection 5142 * as long as we have a place to store the interrupt number. 5143 * The actual injection will happen when the CPU is able to 5144 * deliver the interrupt. 5145 */ 5146 if (kvm_cpu_has_extint(vcpu)) 5147 return false; 5148 5149 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5150 return (!lapic_in_kernel(vcpu) || 5151 kvm_apic_accept_pic_intr(vcpu)); 5152 } 5153 5154 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5155 { 5156 /* 5157 * Do not cause an interrupt window exit if an exception 5158 * is pending or an event needs reinjection; userspace 5159 * might want to inject the interrupt manually using KVM_SET_REGS 5160 * or KVM_SET_SREGS. For that to work, we must be at an 5161 * instruction boundary and with no events half-injected. 5162 */ 5163 return (kvm_arch_interrupt_allowed(vcpu) && 5164 kvm_cpu_accept_dm_intr(vcpu) && 5165 !kvm_event_needs_reinjection(vcpu) && 5166 !kvm_is_exception_pending(vcpu)); 5167 } 5168 5169 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5170 struct kvm_interrupt *irq) 5171 { 5172 if (irq->irq >= KVM_NR_INTERRUPTS) 5173 return -EINVAL; 5174 5175 if (!irqchip_in_kernel(vcpu->kvm)) { 5176 kvm_queue_interrupt(vcpu, irq->irq, false); 5177 kvm_make_request(KVM_REQ_EVENT, vcpu); 5178 return 0; 5179 } 5180 5181 /* 5182 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5183 * fail for in-kernel 8259. 5184 */ 5185 if (pic_in_kernel(vcpu->kvm)) 5186 return -ENXIO; 5187 5188 if (vcpu->arch.pending_external_vector != -1) 5189 return -EEXIST; 5190 5191 vcpu->arch.pending_external_vector = irq->irq; 5192 kvm_make_request(KVM_REQ_EVENT, vcpu); 5193 return 0; 5194 } 5195 5196 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5197 { 5198 kvm_inject_nmi(vcpu); 5199 5200 return 0; 5201 } 5202 5203 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5204 struct kvm_tpr_access_ctl *tac) 5205 { 5206 if (tac->flags) 5207 return -EINVAL; 5208 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5209 return 0; 5210 } 5211 5212 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5213 u64 mcg_cap) 5214 { 5215 int r; 5216 unsigned bank_num = mcg_cap & 0xff, bank; 5217 5218 r = -EINVAL; 5219 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5220 goto out; 5221 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5222 goto out; 5223 r = 0; 5224 vcpu->arch.mcg_cap = mcg_cap; 5225 /* Init IA32_MCG_CTL to all 1s */ 5226 if (mcg_cap & MCG_CTL_P) 5227 vcpu->arch.mcg_ctl = ~(u64)0; 5228 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5229 for (bank = 0; bank < bank_num; bank++) { 5230 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5231 if (mcg_cap & MCG_CMCI_P) 5232 vcpu->arch.mci_ctl2_banks[bank] = 0; 5233 } 5234 5235 kvm_apic_after_set_mcg_cap(vcpu); 5236 5237 kvm_x86_call(setup_mce)(vcpu); 5238 out: 5239 return r; 5240 } 5241 5242 /* 5243 * Validate this is an UCNA (uncorrectable no action) error by checking the 5244 * MCG_STATUS and MCi_STATUS registers: 5245 * - none of the bits for Machine Check Exceptions are set 5246 * - both the VAL (valid) and UC (uncorrectable) bits are set 5247 * MCI_STATUS_PCC - Processor Context Corrupted 5248 * MCI_STATUS_S - Signaled as a Machine Check Exception 5249 * MCI_STATUS_AR - Software recoverable Action Required 5250 */ 5251 static bool is_ucna(struct kvm_x86_mce *mce) 5252 { 5253 return !mce->mcg_status && 5254 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5255 (mce->status & MCI_STATUS_VAL) && 5256 (mce->status & MCI_STATUS_UC); 5257 } 5258 5259 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5260 { 5261 u64 mcg_cap = vcpu->arch.mcg_cap; 5262 5263 banks[1] = mce->status; 5264 banks[2] = mce->addr; 5265 banks[3] = mce->misc; 5266 vcpu->arch.mcg_status = mce->mcg_status; 5267 5268 if (!(mcg_cap & MCG_CMCI_P) || 5269 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5270 return 0; 5271 5272 if (lapic_in_kernel(vcpu)) 5273 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5274 5275 return 0; 5276 } 5277 5278 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5279 struct kvm_x86_mce *mce) 5280 { 5281 u64 mcg_cap = vcpu->arch.mcg_cap; 5282 unsigned bank_num = mcg_cap & 0xff; 5283 u64 *banks = vcpu->arch.mce_banks; 5284 5285 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5286 return -EINVAL; 5287 5288 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5289 5290 if (is_ucna(mce)) 5291 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5292 5293 /* 5294 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5295 * reporting is disabled 5296 */ 5297 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5298 vcpu->arch.mcg_ctl != ~(u64)0) 5299 return 0; 5300 /* 5301 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5302 * reporting is disabled for the bank 5303 */ 5304 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5305 return 0; 5306 if (mce->status & MCI_STATUS_UC) { 5307 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5308 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5309 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5310 return 0; 5311 } 5312 if (banks[1] & MCI_STATUS_VAL) 5313 mce->status |= MCI_STATUS_OVER; 5314 banks[2] = mce->addr; 5315 banks[3] = mce->misc; 5316 vcpu->arch.mcg_status = mce->mcg_status; 5317 banks[1] = mce->status; 5318 kvm_queue_exception(vcpu, MC_VECTOR); 5319 } else if (!(banks[1] & MCI_STATUS_VAL) 5320 || !(banks[1] & MCI_STATUS_UC)) { 5321 if (banks[1] & MCI_STATUS_VAL) 5322 mce->status |= MCI_STATUS_OVER; 5323 banks[2] = mce->addr; 5324 banks[3] = mce->misc; 5325 banks[1] = mce->status; 5326 } else 5327 banks[1] |= MCI_STATUS_OVER; 5328 return 0; 5329 } 5330 5331 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5332 struct kvm_vcpu_events *events) 5333 { 5334 struct kvm_queued_exception *ex; 5335 5336 process_nmi(vcpu); 5337 5338 #ifdef CONFIG_KVM_SMM 5339 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5340 process_smi(vcpu); 5341 #endif 5342 5343 /* 5344 * KVM's ABI only allows for one exception to be migrated. Luckily, 5345 * the only time there can be two queued exceptions is if there's a 5346 * non-exiting _injected_ exception, and a pending exiting exception. 5347 * In that case, ignore the VM-Exiting exception as it's an extension 5348 * of the injected exception. 5349 */ 5350 if (vcpu->arch.exception_vmexit.pending && 5351 !vcpu->arch.exception.pending && 5352 !vcpu->arch.exception.injected) 5353 ex = &vcpu->arch.exception_vmexit; 5354 else 5355 ex = &vcpu->arch.exception; 5356 5357 /* 5358 * In guest mode, payload delivery should be deferred if the exception 5359 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5360 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5361 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5362 * propagate the payload and so it cannot be safely deferred. Deliver 5363 * the payload if the capability hasn't been requested. 5364 */ 5365 if (!vcpu->kvm->arch.exception_payload_enabled && 5366 ex->pending && ex->has_payload) 5367 kvm_deliver_exception_payload(vcpu, ex); 5368 5369 memset(events, 0, sizeof(*events)); 5370 5371 /* 5372 * The API doesn't provide the instruction length for software 5373 * exceptions, so don't report them. As long as the guest RIP 5374 * isn't advanced, we should expect to encounter the exception 5375 * again. 5376 */ 5377 if (!kvm_exception_is_soft(ex->vector)) { 5378 events->exception.injected = ex->injected; 5379 events->exception.pending = ex->pending; 5380 /* 5381 * For ABI compatibility, deliberately conflate 5382 * pending and injected exceptions when 5383 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5384 */ 5385 if (!vcpu->kvm->arch.exception_payload_enabled) 5386 events->exception.injected |= ex->pending; 5387 } 5388 events->exception.nr = ex->vector; 5389 events->exception.has_error_code = ex->has_error_code; 5390 events->exception.error_code = ex->error_code; 5391 events->exception_has_payload = ex->has_payload; 5392 events->exception_payload = ex->payload; 5393 5394 events->interrupt.injected = 5395 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5396 events->interrupt.nr = vcpu->arch.interrupt.nr; 5397 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 5398 5399 events->nmi.injected = vcpu->arch.nmi_injected; 5400 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5401 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); 5402 5403 /* events->sipi_vector is never valid when reporting to user space */ 5404 5405 #ifdef CONFIG_KVM_SMM 5406 events->smi.smm = is_smm(vcpu); 5407 events->smi.pending = vcpu->arch.smi_pending; 5408 events->smi.smm_inside_nmi = 5409 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5410 #endif 5411 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5412 5413 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5414 | KVM_VCPUEVENT_VALID_SHADOW 5415 | KVM_VCPUEVENT_VALID_SMM); 5416 if (vcpu->kvm->arch.exception_payload_enabled) 5417 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5418 if (vcpu->kvm->arch.triple_fault_event) { 5419 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5420 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5421 } 5422 } 5423 5424 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5425 struct kvm_vcpu_events *events) 5426 { 5427 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5428 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5429 | KVM_VCPUEVENT_VALID_SHADOW 5430 | KVM_VCPUEVENT_VALID_SMM 5431 | KVM_VCPUEVENT_VALID_PAYLOAD 5432 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5433 return -EINVAL; 5434 5435 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5436 if (!vcpu->kvm->arch.exception_payload_enabled) 5437 return -EINVAL; 5438 if (events->exception.pending) 5439 events->exception.injected = 0; 5440 else 5441 events->exception_has_payload = 0; 5442 } else { 5443 events->exception.pending = 0; 5444 events->exception_has_payload = 0; 5445 } 5446 5447 if ((events->exception.injected || events->exception.pending) && 5448 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5449 return -EINVAL; 5450 5451 /* INITs are latched while in SMM */ 5452 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5453 (events->smi.smm || events->smi.pending) && 5454 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5455 return -EINVAL; 5456 5457 process_nmi(vcpu); 5458 5459 /* 5460 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5461 * morph the exception to a VM-Exit if appropriate. Do this only for 5462 * pending exceptions, already-injected exceptions are not subject to 5463 * intercpetion. Note, userspace that conflates pending and injected 5464 * is hosed, and will incorrectly convert an injected exception into a 5465 * pending exception, which in turn may cause a spurious VM-Exit. 5466 */ 5467 vcpu->arch.exception_from_userspace = events->exception.pending; 5468 5469 vcpu->arch.exception_vmexit.pending = false; 5470 5471 vcpu->arch.exception.injected = events->exception.injected; 5472 vcpu->arch.exception.pending = events->exception.pending; 5473 vcpu->arch.exception.vector = events->exception.nr; 5474 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5475 vcpu->arch.exception.error_code = events->exception.error_code; 5476 vcpu->arch.exception.has_payload = events->exception_has_payload; 5477 vcpu->arch.exception.payload = events->exception_payload; 5478 5479 vcpu->arch.interrupt.injected = events->interrupt.injected; 5480 vcpu->arch.interrupt.nr = events->interrupt.nr; 5481 vcpu->arch.interrupt.soft = events->interrupt.soft; 5482 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5483 kvm_x86_call(set_interrupt_shadow)(vcpu, 5484 events->interrupt.shadow); 5485 5486 vcpu->arch.nmi_injected = events->nmi.injected; 5487 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5488 vcpu->arch.nmi_pending = 0; 5489 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5490 if (events->nmi.pending) 5491 kvm_make_request(KVM_REQ_NMI, vcpu); 5492 } 5493 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); 5494 5495 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5496 lapic_in_kernel(vcpu)) 5497 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5498 5499 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5500 #ifdef CONFIG_KVM_SMM 5501 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5502 kvm_leave_nested(vcpu); 5503 kvm_smm_changed(vcpu, events->smi.smm); 5504 } 5505 5506 vcpu->arch.smi_pending = events->smi.pending; 5507 5508 if (events->smi.smm) { 5509 if (events->smi.smm_inside_nmi) 5510 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5511 else 5512 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5513 } 5514 5515 #else 5516 if (events->smi.smm || events->smi.pending || 5517 events->smi.smm_inside_nmi) 5518 return -EINVAL; 5519 #endif 5520 5521 if (lapic_in_kernel(vcpu)) { 5522 if (events->smi.latched_init) 5523 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5524 else 5525 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5526 } 5527 } 5528 5529 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5530 if (!vcpu->kvm->arch.triple_fault_event) 5531 return -EINVAL; 5532 if (events->triple_fault.pending) 5533 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5534 else 5535 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5536 } 5537 5538 kvm_make_request(KVM_REQ_EVENT, vcpu); 5539 5540 return 0; 5541 } 5542 5543 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5544 struct kvm_debugregs *dbgregs) 5545 { 5546 unsigned int i; 5547 5548 if (vcpu->kvm->arch.has_protected_state && 5549 vcpu->arch.guest_state_protected) 5550 return -EINVAL; 5551 5552 memset(dbgregs, 0, sizeof(*dbgregs)); 5553 5554 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5555 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5556 dbgregs->db[i] = vcpu->arch.db[i]; 5557 5558 dbgregs->dr6 = vcpu->arch.dr6; 5559 dbgregs->dr7 = vcpu->arch.dr7; 5560 return 0; 5561 } 5562 5563 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5564 struct kvm_debugregs *dbgregs) 5565 { 5566 unsigned int i; 5567 5568 if (vcpu->kvm->arch.has_protected_state && 5569 vcpu->arch.guest_state_protected) 5570 return -EINVAL; 5571 5572 if (dbgregs->flags) 5573 return -EINVAL; 5574 5575 if (!kvm_dr6_valid(dbgregs->dr6)) 5576 return -EINVAL; 5577 if (!kvm_dr7_valid(dbgregs->dr7)) 5578 return -EINVAL; 5579 5580 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5581 vcpu->arch.db[i] = dbgregs->db[i]; 5582 5583 kvm_update_dr0123(vcpu); 5584 vcpu->arch.dr6 = dbgregs->dr6; 5585 vcpu->arch.dr7 = dbgregs->dr7; 5586 kvm_update_dr7(vcpu); 5587 5588 return 0; 5589 } 5590 5591 5592 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5593 u8 *state, unsigned int size) 5594 { 5595 /* 5596 * Only copy state for features that are enabled for the guest. The 5597 * state itself isn't problematic, but setting bits in the header for 5598 * features that are supported in *this* host but not exposed to the 5599 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5600 * compatible host without the features that are NOT exposed to the 5601 * guest. 5602 * 5603 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5604 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5605 * supported by the host. 5606 */ 5607 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5608 XFEATURE_MASK_FPSSE; 5609 5610 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5611 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5612 5613 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5614 supported_xcr0, vcpu->arch.pkru); 5615 return 0; 5616 } 5617 5618 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5619 struct kvm_xsave *guest_xsave) 5620 { 5621 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5622 sizeof(guest_xsave->region)); 5623 } 5624 5625 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5626 struct kvm_xsave *guest_xsave) 5627 { 5628 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5629 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5630 5631 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5632 guest_xsave->region, 5633 kvm_caps.supported_xcr0, 5634 &vcpu->arch.pkru); 5635 } 5636 5637 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5638 struct kvm_xcrs *guest_xcrs) 5639 { 5640 if (vcpu->kvm->arch.has_protected_state && 5641 vcpu->arch.guest_state_protected) 5642 return -EINVAL; 5643 5644 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5645 guest_xcrs->nr_xcrs = 0; 5646 return 0; 5647 } 5648 5649 guest_xcrs->nr_xcrs = 1; 5650 guest_xcrs->flags = 0; 5651 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5652 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5653 return 0; 5654 } 5655 5656 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5657 struct kvm_xcrs *guest_xcrs) 5658 { 5659 int i, r = 0; 5660 5661 if (vcpu->kvm->arch.has_protected_state && 5662 vcpu->arch.guest_state_protected) 5663 return -EINVAL; 5664 5665 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5666 return -EINVAL; 5667 5668 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5669 return -EINVAL; 5670 5671 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5672 /* Only support XCR0 currently */ 5673 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5674 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5675 guest_xcrs->xcrs[i].value); 5676 break; 5677 } 5678 if (r) 5679 r = -EINVAL; 5680 return r; 5681 } 5682 5683 /* 5684 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5685 * stopped by the hypervisor. This function will be called from the host only. 5686 * EINVAL is returned when the host attempts to set the flag for a guest that 5687 * does not support pv clocks. 5688 */ 5689 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5690 { 5691 if (!vcpu->arch.pv_time.active) 5692 return -EINVAL; 5693 vcpu->arch.pvclock_set_guest_stopped_request = true; 5694 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5695 return 0; 5696 } 5697 5698 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5699 struct kvm_device_attr *attr) 5700 { 5701 int r; 5702 5703 switch (attr->attr) { 5704 case KVM_VCPU_TSC_OFFSET: 5705 r = 0; 5706 break; 5707 default: 5708 r = -ENXIO; 5709 } 5710 5711 return r; 5712 } 5713 5714 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5715 struct kvm_device_attr *attr) 5716 { 5717 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5718 int r; 5719 5720 switch (attr->attr) { 5721 case KVM_VCPU_TSC_OFFSET: 5722 r = -EFAULT; 5723 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5724 break; 5725 r = 0; 5726 break; 5727 default: 5728 r = -ENXIO; 5729 } 5730 5731 return r; 5732 } 5733 5734 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5735 struct kvm_device_attr *attr) 5736 { 5737 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5738 struct kvm *kvm = vcpu->kvm; 5739 int r; 5740 5741 switch (attr->attr) { 5742 case KVM_VCPU_TSC_OFFSET: { 5743 u64 offset, tsc, ns; 5744 unsigned long flags; 5745 bool matched; 5746 5747 r = -EFAULT; 5748 if (get_user(offset, uaddr)) 5749 break; 5750 5751 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5752 5753 matched = (vcpu->arch.virtual_tsc_khz && 5754 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5755 kvm->arch.last_tsc_offset == offset); 5756 5757 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5758 ns = get_kvmclock_base_ns(); 5759 5760 kvm->arch.user_set_tsc = true; 5761 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5762 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5763 5764 r = 0; 5765 break; 5766 } 5767 default: 5768 r = -ENXIO; 5769 } 5770 5771 return r; 5772 } 5773 5774 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5775 unsigned int ioctl, 5776 void __user *argp) 5777 { 5778 struct kvm_device_attr attr; 5779 int r; 5780 5781 if (copy_from_user(&attr, argp, sizeof(attr))) 5782 return -EFAULT; 5783 5784 if (attr.group != KVM_VCPU_TSC_CTRL) 5785 return -ENXIO; 5786 5787 switch (ioctl) { 5788 case KVM_HAS_DEVICE_ATTR: 5789 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5790 break; 5791 case KVM_GET_DEVICE_ATTR: 5792 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5793 break; 5794 case KVM_SET_DEVICE_ATTR: 5795 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5796 break; 5797 } 5798 5799 return r; 5800 } 5801 5802 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5803 struct kvm_enable_cap *cap) 5804 { 5805 if (cap->flags) 5806 return -EINVAL; 5807 5808 switch (cap->cap) { 5809 #ifdef CONFIG_KVM_HYPERV 5810 case KVM_CAP_HYPERV_SYNIC2: 5811 if (cap->args[0]) 5812 return -EINVAL; 5813 fallthrough; 5814 5815 case KVM_CAP_HYPERV_SYNIC: 5816 if (!irqchip_in_kernel(vcpu->kvm)) 5817 return -EINVAL; 5818 return kvm_hv_activate_synic(vcpu, cap->cap == 5819 KVM_CAP_HYPERV_SYNIC2); 5820 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5821 { 5822 int r; 5823 uint16_t vmcs_version; 5824 void __user *user_ptr; 5825 5826 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5827 return -ENOTTY; 5828 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5829 if (!r) { 5830 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5831 if (copy_to_user(user_ptr, &vmcs_version, 5832 sizeof(vmcs_version))) 5833 r = -EFAULT; 5834 } 5835 return r; 5836 } 5837 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5838 if (!kvm_x86_ops.enable_l2_tlb_flush) 5839 return -ENOTTY; 5840 5841 return kvm_x86_call(enable_l2_tlb_flush)(vcpu); 5842 5843 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5844 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5845 #endif 5846 5847 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5848 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5849 if (vcpu->arch.pv_cpuid.enforce) 5850 kvm_update_pv_runtime(vcpu); 5851 5852 return 0; 5853 default: 5854 return -EINVAL; 5855 } 5856 } 5857 5858 long kvm_arch_vcpu_ioctl(struct file *filp, 5859 unsigned int ioctl, unsigned long arg) 5860 { 5861 struct kvm_vcpu *vcpu = filp->private_data; 5862 void __user *argp = (void __user *)arg; 5863 int r; 5864 union { 5865 struct kvm_sregs2 *sregs2; 5866 struct kvm_lapic_state *lapic; 5867 struct kvm_xsave *xsave; 5868 struct kvm_xcrs *xcrs; 5869 void *buffer; 5870 } u; 5871 5872 vcpu_load(vcpu); 5873 5874 u.buffer = NULL; 5875 switch (ioctl) { 5876 case KVM_GET_LAPIC: { 5877 r = -EINVAL; 5878 if (!lapic_in_kernel(vcpu)) 5879 goto out; 5880 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 5881 5882 r = -ENOMEM; 5883 if (!u.lapic) 5884 goto out; 5885 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5886 if (r) 5887 goto out; 5888 r = -EFAULT; 5889 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5890 goto out; 5891 r = 0; 5892 break; 5893 } 5894 case KVM_SET_LAPIC: { 5895 r = -EINVAL; 5896 if (!lapic_in_kernel(vcpu)) 5897 goto out; 5898 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5899 if (IS_ERR(u.lapic)) { 5900 r = PTR_ERR(u.lapic); 5901 goto out_nofree; 5902 } 5903 5904 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5905 break; 5906 } 5907 case KVM_INTERRUPT: { 5908 struct kvm_interrupt irq; 5909 5910 r = -EFAULT; 5911 if (copy_from_user(&irq, argp, sizeof(irq))) 5912 goto out; 5913 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5914 break; 5915 } 5916 case KVM_NMI: { 5917 r = kvm_vcpu_ioctl_nmi(vcpu); 5918 break; 5919 } 5920 case KVM_SMI: { 5921 r = kvm_inject_smi(vcpu); 5922 break; 5923 } 5924 case KVM_SET_CPUID: { 5925 struct kvm_cpuid __user *cpuid_arg = argp; 5926 struct kvm_cpuid cpuid; 5927 5928 r = -EFAULT; 5929 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5930 goto out; 5931 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5932 break; 5933 } 5934 case KVM_SET_CPUID2: { 5935 struct kvm_cpuid2 __user *cpuid_arg = argp; 5936 struct kvm_cpuid2 cpuid; 5937 5938 r = -EFAULT; 5939 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5940 goto out; 5941 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5942 cpuid_arg->entries); 5943 break; 5944 } 5945 case KVM_GET_CPUID2: { 5946 struct kvm_cpuid2 __user *cpuid_arg = argp; 5947 struct kvm_cpuid2 cpuid; 5948 5949 r = -EFAULT; 5950 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5951 goto out; 5952 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5953 cpuid_arg->entries); 5954 if (r) 5955 goto out; 5956 r = -EFAULT; 5957 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5958 goto out; 5959 r = 0; 5960 break; 5961 } 5962 case KVM_GET_MSRS: { 5963 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5964 r = msr_io(vcpu, argp, do_get_msr, 1); 5965 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5966 break; 5967 } 5968 case KVM_SET_MSRS: { 5969 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5970 r = msr_io(vcpu, argp, do_set_msr, 0); 5971 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5972 break; 5973 } 5974 case KVM_TPR_ACCESS_REPORTING: { 5975 struct kvm_tpr_access_ctl tac; 5976 5977 r = -EFAULT; 5978 if (copy_from_user(&tac, argp, sizeof(tac))) 5979 goto out; 5980 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5981 if (r) 5982 goto out; 5983 r = -EFAULT; 5984 if (copy_to_user(argp, &tac, sizeof(tac))) 5985 goto out; 5986 r = 0; 5987 break; 5988 }; 5989 case KVM_SET_VAPIC_ADDR: { 5990 struct kvm_vapic_addr va; 5991 int idx; 5992 5993 r = -EINVAL; 5994 if (!lapic_in_kernel(vcpu)) 5995 goto out; 5996 r = -EFAULT; 5997 if (copy_from_user(&va, argp, sizeof(va))) 5998 goto out; 5999 idx = srcu_read_lock(&vcpu->kvm->srcu); 6000 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 6001 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6002 break; 6003 } 6004 case KVM_X86_SETUP_MCE: { 6005 u64 mcg_cap; 6006 6007 r = -EFAULT; 6008 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6009 goto out; 6010 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6011 break; 6012 } 6013 case KVM_X86_SET_MCE: { 6014 struct kvm_x86_mce mce; 6015 6016 r = -EFAULT; 6017 if (copy_from_user(&mce, argp, sizeof(mce))) 6018 goto out; 6019 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6020 break; 6021 } 6022 case KVM_GET_VCPU_EVENTS: { 6023 struct kvm_vcpu_events events; 6024 6025 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6026 6027 r = -EFAULT; 6028 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6029 break; 6030 r = 0; 6031 break; 6032 } 6033 case KVM_SET_VCPU_EVENTS: { 6034 struct kvm_vcpu_events events; 6035 6036 r = -EFAULT; 6037 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6038 break; 6039 6040 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6041 break; 6042 } 6043 case KVM_GET_DEBUGREGS: { 6044 struct kvm_debugregs dbgregs; 6045 6046 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6047 if (r < 0) 6048 break; 6049 6050 r = -EFAULT; 6051 if (copy_to_user(argp, &dbgregs, 6052 sizeof(struct kvm_debugregs))) 6053 break; 6054 r = 0; 6055 break; 6056 } 6057 case KVM_SET_DEBUGREGS: { 6058 struct kvm_debugregs dbgregs; 6059 6060 r = -EFAULT; 6061 if (copy_from_user(&dbgregs, argp, 6062 sizeof(struct kvm_debugregs))) 6063 break; 6064 6065 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6066 break; 6067 } 6068 case KVM_GET_XSAVE: { 6069 r = -EINVAL; 6070 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6071 break; 6072 6073 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 6074 r = -ENOMEM; 6075 if (!u.xsave) 6076 break; 6077 6078 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6079 if (r < 0) 6080 break; 6081 6082 r = -EFAULT; 6083 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6084 break; 6085 r = 0; 6086 break; 6087 } 6088 case KVM_SET_XSAVE: { 6089 int size = vcpu->arch.guest_fpu.uabi_size; 6090 6091 u.xsave = memdup_user(argp, size); 6092 if (IS_ERR(u.xsave)) { 6093 r = PTR_ERR(u.xsave); 6094 goto out_nofree; 6095 } 6096 6097 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6098 break; 6099 } 6100 6101 case KVM_GET_XSAVE2: { 6102 int size = vcpu->arch.guest_fpu.uabi_size; 6103 6104 u.xsave = kzalloc(size, GFP_KERNEL); 6105 r = -ENOMEM; 6106 if (!u.xsave) 6107 break; 6108 6109 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6110 if (r < 0) 6111 break; 6112 6113 r = -EFAULT; 6114 if (copy_to_user(argp, u.xsave, size)) 6115 break; 6116 6117 r = 0; 6118 break; 6119 } 6120 6121 case KVM_GET_XCRS: { 6122 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 6123 r = -ENOMEM; 6124 if (!u.xcrs) 6125 break; 6126 6127 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6128 if (r < 0) 6129 break; 6130 6131 r = -EFAULT; 6132 if (copy_to_user(argp, u.xcrs, 6133 sizeof(struct kvm_xcrs))) 6134 break; 6135 r = 0; 6136 break; 6137 } 6138 case KVM_SET_XCRS: { 6139 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6140 if (IS_ERR(u.xcrs)) { 6141 r = PTR_ERR(u.xcrs); 6142 goto out_nofree; 6143 } 6144 6145 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6146 break; 6147 } 6148 case KVM_SET_TSC_KHZ: { 6149 u32 user_tsc_khz; 6150 6151 r = -EINVAL; 6152 user_tsc_khz = (u32)arg; 6153 6154 if (kvm_caps.has_tsc_control && 6155 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6156 goto out; 6157 6158 if (user_tsc_khz == 0) 6159 user_tsc_khz = tsc_khz; 6160 6161 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6162 r = 0; 6163 6164 goto out; 6165 } 6166 case KVM_GET_TSC_KHZ: { 6167 r = vcpu->arch.virtual_tsc_khz; 6168 goto out; 6169 } 6170 case KVM_KVMCLOCK_CTRL: { 6171 r = kvm_set_guest_paused(vcpu); 6172 goto out; 6173 } 6174 case KVM_ENABLE_CAP: { 6175 struct kvm_enable_cap cap; 6176 6177 r = -EFAULT; 6178 if (copy_from_user(&cap, argp, sizeof(cap))) 6179 goto out; 6180 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6181 break; 6182 } 6183 case KVM_GET_NESTED_STATE: { 6184 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6185 u32 user_data_size; 6186 6187 r = -EINVAL; 6188 if (!kvm_x86_ops.nested_ops->get_state) 6189 break; 6190 6191 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6192 r = -EFAULT; 6193 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6194 break; 6195 6196 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6197 user_data_size); 6198 if (r < 0) 6199 break; 6200 6201 if (r > user_data_size) { 6202 if (put_user(r, &user_kvm_nested_state->size)) 6203 r = -EFAULT; 6204 else 6205 r = -E2BIG; 6206 break; 6207 } 6208 6209 r = 0; 6210 break; 6211 } 6212 case KVM_SET_NESTED_STATE: { 6213 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6214 struct kvm_nested_state kvm_state; 6215 int idx; 6216 6217 r = -EINVAL; 6218 if (!kvm_x86_ops.nested_ops->set_state) 6219 break; 6220 6221 r = -EFAULT; 6222 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6223 break; 6224 6225 r = -EINVAL; 6226 if (kvm_state.size < sizeof(kvm_state)) 6227 break; 6228 6229 if (kvm_state.flags & 6230 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6231 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6232 | KVM_STATE_NESTED_GIF_SET)) 6233 break; 6234 6235 /* nested_run_pending implies guest_mode. */ 6236 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6237 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6238 break; 6239 6240 idx = srcu_read_lock(&vcpu->kvm->srcu); 6241 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6242 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6243 break; 6244 } 6245 #ifdef CONFIG_KVM_HYPERV 6246 case KVM_GET_SUPPORTED_HV_CPUID: 6247 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6248 break; 6249 #endif 6250 #ifdef CONFIG_KVM_XEN 6251 case KVM_XEN_VCPU_GET_ATTR: { 6252 struct kvm_xen_vcpu_attr xva; 6253 6254 r = -EFAULT; 6255 if (copy_from_user(&xva, argp, sizeof(xva))) 6256 goto out; 6257 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6258 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6259 r = -EFAULT; 6260 break; 6261 } 6262 case KVM_XEN_VCPU_SET_ATTR: { 6263 struct kvm_xen_vcpu_attr xva; 6264 6265 r = -EFAULT; 6266 if (copy_from_user(&xva, argp, sizeof(xva))) 6267 goto out; 6268 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6269 break; 6270 } 6271 #endif 6272 case KVM_GET_SREGS2: { 6273 r = -EINVAL; 6274 if (vcpu->kvm->arch.has_protected_state && 6275 vcpu->arch.guest_state_protected) 6276 goto out; 6277 6278 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6279 r = -ENOMEM; 6280 if (!u.sregs2) 6281 goto out; 6282 __get_sregs2(vcpu, u.sregs2); 6283 r = -EFAULT; 6284 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6285 goto out; 6286 r = 0; 6287 break; 6288 } 6289 case KVM_SET_SREGS2: { 6290 r = -EINVAL; 6291 if (vcpu->kvm->arch.has_protected_state && 6292 vcpu->arch.guest_state_protected) 6293 goto out; 6294 6295 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6296 if (IS_ERR(u.sregs2)) { 6297 r = PTR_ERR(u.sregs2); 6298 u.sregs2 = NULL; 6299 goto out; 6300 } 6301 r = __set_sregs2(vcpu, u.sregs2); 6302 break; 6303 } 6304 case KVM_HAS_DEVICE_ATTR: 6305 case KVM_GET_DEVICE_ATTR: 6306 case KVM_SET_DEVICE_ATTR: 6307 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6308 break; 6309 default: 6310 r = -EINVAL; 6311 } 6312 out: 6313 kfree(u.buffer); 6314 out_nofree: 6315 vcpu_put(vcpu); 6316 return r; 6317 } 6318 6319 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6320 { 6321 return VM_FAULT_SIGBUS; 6322 } 6323 6324 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6325 { 6326 int ret; 6327 6328 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6329 return -EINVAL; 6330 ret = kvm_x86_call(set_tss_addr)(kvm, addr); 6331 return ret; 6332 } 6333 6334 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6335 u64 ident_addr) 6336 { 6337 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); 6338 } 6339 6340 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6341 unsigned long kvm_nr_mmu_pages) 6342 { 6343 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6344 return -EINVAL; 6345 6346 mutex_lock(&kvm->slots_lock); 6347 6348 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6349 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6350 6351 mutex_unlock(&kvm->slots_lock); 6352 return 0; 6353 } 6354 6355 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6356 { 6357 struct kvm_pic *pic = kvm->arch.vpic; 6358 int r; 6359 6360 r = 0; 6361 switch (chip->chip_id) { 6362 case KVM_IRQCHIP_PIC_MASTER: 6363 memcpy(&chip->chip.pic, &pic->pics[0], 6364 sizeof(struct kvm_pic_state)); 6365 break; 6366 case KVM_IRQCHIP_PIC_SLAVE: 6367 memcpy(&chip->chip.pic, &pic->pics[1], 6368 sizeof(struct kvm_pic_state)); 6369 break; 6370 case KVM_IRQCHIP_IOAPIC: 6371 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6372 break; 6373 default: 6374 r = -EINVAL; 6375 break; 6376 } 6377 return r; 6378 } 6379 6380 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6381 { 6382 struct kvm_pic *pic = kvm->arch.vpic; 6383 int r; 6384 6385 r = 0; 6386 switch (chip->chip_id) { 6387 case KVM_IRQCHIP_PIC_MASTER: 6388 spin_lock(&pic->lock); 6389 memcpy(&pic->pics[0], &chip->chip.pic, 6390 sizeof(struct kvm_pic_state)); 6391 spin_unlock(&pic->lock); 6392 break; 6393 case KVM_IRQCHIP_PIC_SLAVE: 6394 spin_lock(&pic->lock); 6395 memcpy(&pic->pics[1], &chip->chip.pic, 6396 sizeof(struct kvm_pic_state)); 6397 spin_unlock(&pic->lock); 6398 break; 6399 case KVM_IRQCHIP_IOAPIC: 6400 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6401 break; 6402 default: 6403 r = -EINVAL; 6404 break; 6405 } 6406 kvm_pic_update_irq(pic); 6407 return r; 6408 } 6409 6410 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6411 { 6412 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6413 6414 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6415 6416 mutex_lock(&kps->lock); 6417 memcpy(ps, &kps->channels, sizeof(*ps)); 6418 mutex_unlock(&kps->lock); 6419 return 0; 6420 } 6421 6422 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6423 { 6424 int i; 6425 struct kvm_pit *pit = kvm->arch.vpit; 6426 6427 mutex_lock(&pit->pit_state.lock); 6428 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6429 for (i = 0; i < 3; i++) 6430 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6431 mutex_unlock(&pit->pit_state.lock); 6432 return 0; 6433 } 6434 6435 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6436 { 6437 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6438 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6439 sizeof(ps->channels)); 6440 ps->flags = kvm->arch.vpit->pit_state.flags; 6441 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6442 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6443 return 0; 6444 } 6445 6446 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6447 { 6448 int start = 0; 6449 int i; 6450 u32 prev_legacy, cur_legacy; 6451 struct kvm_pit *pit = kvm->arch.vpit; 6452 6453 mutex_lock(&pit->pit_state.lock); 6454 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6455 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6456 if (!prev_legacy && cur_legacy) 6457 start = 1; 6458 memcpy(&pit->pit_state.channels, &ps->channels, 6459 sizeof(pit->pit_state.channels)); 6460 pit->pit_state.flags = ps->flags; 6461 for (i = 0; i < 3; i++) 6462 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6463 start && i == 0); 6464 mutex_unlock(&pit->pit_state.lock); 6465 return 0; 6466 } 6467 6468 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6469 struct kvm_reinject_control *control) 6470 { 6471 struct kvm_pit *pit = kvm->arch.vpit; 6472 6473 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6474 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6475 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6476 */ 6477 mutex_lock(&pit->pit_state.lock); 6478 kvm_pit_set_reinject(pit, control->pit_reinject); 6479 mutex_unlock(&pit->pit_state.lock); 6480 6481 return 0; 6482 } 6483 6484 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6485 { 6486 6487 /* 6488 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6489 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6490 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6491 * VM-Exit. 6492 */ 6493 struct kvm_vcpu *vcpu; 6494 unsigned long i; 6495 6496 if (!kvm_x86_ops.cpu_dirty_log_size) 6497 return; 6498 6499 kvm_for_each_vcpu(i, vcpu, kvm) 6500 kvm_vcpu_kick(vcpu); 6501 } 6502 6503 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6504 bool line_status) 6505 { 6506 if (!irqchip_in_kernel(kvm)) 6507 return -ENXIO; 6508 6509 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6510 irq_event->irq, irq_event->level, 6511 line_status); 6512 return 0; 6513 } 6514 6515 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6516 struct kvm_enable_cap *cap) 6517 { 6518 int r; 6519 6520 if (cap->flags) 6521 return -EINVAL; 6522 6523 switch (cap->cap) { 6524 case KVM_CAP_DISABLE_QUIRKS2: 6525 r = -EINVAL; 6526 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6527 break; 6528 fallthrough; 6529 case KVM_CAP_DISABLE_QUIRKS: 6530 kvm->arch.disabled_quirks = cap->args[0]; 6531 r = 0; 6532 break; 6533 case KVM_CAP_SPLIT_IRQCHIP: { 6534 mutex_lock(&kvm->lock); 6535 r = -EINVAL; 6536 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6537 goto split_irqchip_unlock; 6538 r = -EEXIST; 6539 if (irqchip_in_kernel(kvm)) 6540 goto split_irqchip_unlock; 6541 if (kvm->created_vcpus) 6542 goto split_irqchip_unlock; 6543 /* Pairs with irqchip_in_kernel. */ 6544 smp_wmb(); 6545 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6546 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6547 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6548 r = 0; 6549 split_irqchip_unlock: 6550 mutex_unlock(&kvm->lock); 6551 break; 6552 } 6553 case KVM_CAP_X2APIC_API: 6554 r = -EINVAL; 6555 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6556 break; 6557 6558 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6559 kvm->arch.x2apic_format = true; 6560 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6561 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6562 6563 r = 0; 6564 break; 6565 case KVM_CAP_X86_DISABLE_EXITS: 6566 r = -EINVAL; 6567 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6568 break; 6569 6570 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6571 kvm->arch.pause_in_guest = true; 6572 6573 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6574 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6575 6576 if (!mitigate_smt_rsb) { 6577 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6578 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6579 pr_warn_once(SMT_RSB_MSG); 6580 6581 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6582 kvm_can_mwait_in_guest()) 6583 kvm->arch.mwait_in_guest = true; 6584 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6585 kvm->arch.hlt_in_guest = true; 6586 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6587 kvm->arch.cstate_in_guest = true; 6588 } 6589 6590 r = 0; 6591 break; 6592 case KVM_CAP_MSR_PLATFORM_INFO: 6593 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6594 r = 0; 6595 break; 6596 case KVM_CAP_EXCEPTION_PAYLOAD: 6597 kvm->arch.exception_payload_enabled = cap->args[0]; 6598 r = 0; 6599 break; 6600 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6601 kvm->arch.triple_fault_event = cap->args[0]; 6602 r = 0; 6603 break; 6604 case KVM_CAP_X86_USER_SPACE_MSR: 6605 r = -EINVAL; 6606 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6607 break; 6608 kvm->arch.user_space_msr_mask = cap->args[0]; 6609 r = 0; 6610 break; 6611 case KVM_CAP_X86_BUS_LOCK_EXIT: 6612 r = -EINVAL; 6613 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6614 break; 6615 6616 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6617 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6618 break; 6619 6620 if (kvm_caps.has_bus_lock_exit && 6621 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6622 kvm->arch.bus_lock_detection_enabled = true; 6623 r = 0; 6624 break; 6625 #ifdef CONFIG_X86_SGX_KVM 6626 case KVM_CAP_SGX_ATTRIBUTE: { 6627 unsigned long allowed_attributes = 0; 6628 6629 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6630 if (r) 6631 break; 6632 6633 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6634 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6635 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6636 kvm->arch.sgx_provisioning_allowed = true; 6637 else 6638 r = -EINVAL; 6639 break; 6640 } 6641 #endif 6642 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6643 r = -EINVAL; 6644 if (!kvm_x86_ops.vm_copy_enc_context_from) 6645 break; 6646 6647 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); 6648 break; 6649 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6650 r = -EINVAL; 6651 if (!kvm_x86_ops.vm_move_enc_context_from) 6652 break; 6653 6654 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); 6655 break; 6656 case KVM_CAP_EXIT_HYPERCALL: 6657 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6658 r = -EINVAL; 6659 break; 6660 } 6661 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6662 r = 0; 6663 break; 6664 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6665 r = -EINVAL; 6666 if (cap->args[0] & ~1) 6667 break; 6668 kvm->arch.exit_on_emulation_error = cap->args[0]; 6669 r = 0; 6670 break; 6671 case KVM_CAP_PMU_CAPABILITY: 6672 r = -EINVAL; 6673 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6674 break; 6675 6676 mutex_lock(&kvm->lock); 6677 if (!kvm->created_vcpus) { 6678 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6679 r = 0; 6680 } 6681 mutex_unlock(&kvm->lock); 6682 break; 6683 case KVM_CAP_MAX_VCPU_ID: 6684 r = -EINVAL; 6685 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6686 break; 6687 6688 mutex_lock(&kvm->lock); 6689 if (kvm->arch.bsp_vcpu_id > cap->args[0]) { 6690 ; 6691 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6692 r = 0; 6693 } else if (!kvm->arch.max_vcpu_ids) { 6694 kvm->arch.max_vcpu_ids = cap->args[0]; 6695 r = 0; 6696 } 6697 mutex_unlock(&kvm->lock); 6698 break; 6699 case KVM_CAP_X86_NOTIFY_VMEXIT: 6700 r = -EINVAL; 6701 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6702 break; 6703 if (!kvm_caps.has_notify_vmexit) 6704 break; 6705 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6706 break; 6707 mutex_lock(&kvm->lock); 6708 if (!kvm->created_vcpus) { 6709 kvm->arch.notify_window = cap->args[0] >> 32; 6710 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6711 r = 0; 6712 } 6713 mutex_unlock(&kvm->lock); 6714 break; 6715 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6716 r = -EINVAL; 6717 6718 /* 6719 * Since the risk of disabling NX hugepages is a guest crashing 6720 * the system, ensure the userspace process has permission to 6721 * reboot the system. 6722 * 6723 * Note that unlike the reboot() syscall, the process must have 6724 * this capability in the root namespace because exposing 6725 * /dev/kvm into a container does not limit the scope of the 6726 * iTLB multihit bug to that container. In other words, 6727 * this must use capable(), not ns_capable(). 6728 */ 6729 if (!capable(CAP_SYS_BOOT)) { 6730 r = -EPERM; 6731 break; 6732 } 6733 6734 if (cap->args[0]) 6735 break; 6736 6737 mutex_lock(&kvm->lock); 6738 if (!kvm->created_vcpus) { 6739 kvm->arch.disable_nx_huge_pages = true; 6740 r = 0; 6741 } 6742 mutex_unlock(&kvm->lock); 6743 break; 6744 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { 6745 u64 bus_cycle_ns = cap->args[0]; 6746 u64 unused; 6747 6748 /* 6749 * Guard against overflow in tmict_to_ns(). 128 is the highest 6750 * divide value that can be programmed in APIC_TDCR. 6751 */ 6752 r = -EINVAL; 6753 if (!bus_cycle_ns || 6754 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) 6755 break; 6756 6757 r = 0; 6758 mutex_lock(&kvm->lock); 6759 if (!irqchip_in_kernel(kvm)) 6760 r = -ENXIO; 6761 else if (kvm->created_vcpus) 6762 r = -EINVAL; 6763 else 6764 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; 6765 mutex_unlock(&kvm->lock); 6766 break; 6767 } 6768 default: 6769 r = -EINVAL; 6770 break; 6771 } 6772 return r; 6773 } 6774 6775 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6776 { 6777 struct kvm_x86_msr_filter *msr_filter; 6778 6779 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6780 if (!msr_filter) 6781 return NULL; 6782 6783 msr_filter->default_allow = default_allow; 6784 return msr_filter; 6785 } 6786 6787 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6788 { 6789 u32 i; 6790 6791 if (!msr_filter) 6792 return; 6793 6794 for (i = 0; i < msr_filter->count; i++) 6795 kfree(msr_filter->ranges[i].bitmap); 6796 6797 kfree(msr_filter); 6798 } 6799 6800 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6801 struct kvm_msr_filter_range *user_range) 6802 { 6803 unsigned long *bitmap; 6804 size_t bitmap_size; 6805 6806 if (!user_range->nmsrs) 6807 return 0; 6808 6809 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6810 return -EINVAL; 6811 6812 if (!user_range->flags) 6813 return -EINVAL; 6814 6815 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6816 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6817 return -EINVAL; 6818 6819 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6820 if (IS_ERR(bitmap)) 6821 return PTR_ERR(bitmap); 6822 6823 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6824 .flags = user_range->flags, 6825 .base = user_range->base, 6826 .nmsrs = user_range->nmsrs, 6827 .bitmap = bitmap, 6828 }; 6829 6830 msr_filter->count++; 6831 return 0; 6832 } 6833 6834 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6835 struct kvm_msr_filter *filter) 6836 { 6837 struct kvm_x86_msr_filter *new_filter, *old_filter; 6838 bool default_allow; 6839 bool empty = true; 6840 int r; 6841 u32 i; 6842 6843 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6844 return -EINVAL; 6845 6846 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6847 empty &= !filter->ranges[i].nmsrs; 6848 6849 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6850 if (empty && !default_allow) 6851 return -EINVAL; 6852 6853 new_filter = kvm_alloc_msr_filter(default_allow); 6854 if (!new_filter) 6855 return -ENOMEM; 6856 6857 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6858 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6859 if (r) { 6860 kvm_free_msr_filter(new_filter); 6861 return r; 6862 } 6863 } 6864 6865 mutex_lock(&kvm->lock); 6866 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6867 mutex_is_locked(&kvm->lock)); 6868 mutex_unlock(&kvm->lock); 6869 synchronize_srcu(&kvm->srcu); 6870 6871 kvm_free_msr_filter(old_filter); 6872 6873 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6874 6875 return 0; 6876 } 6877 6878 #ifdef CONFIG_KVM_COMPAT 6879 /* for KVM_X86_SET_MSR_FILTER */ 6880 struct kvm_msr_filter_range_compat { 6881 __u32 flags; 6882 __u32 nmsrs; 6883 __u32 base; 6884 __u32 bitmap; 6885 }; 6886 6887 struct kvm_msr_filter_compat { 6888 __u32 flags; 6889 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6890 }; 6891 6892 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6893 6894 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6895 unsigned long arg) 6896 { 6897 void __user *argp = (void __user *)arg; 6898 struct kvm *kvm = filp->private_data; 6899 long r = -ENOTTY; 6900 6901 switch (ioctl) { 6902 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6903 struct kvm_msr_filter __user *user_msr_filter = argp; 6904 struct kvm_msr_filter_compat filter_compat; 6905 struct kvm_msr_filter filter; 6906 int i; 6907 6908 if (copy_from_user(&filter_compat, user_msr_filter, 6909 sizeof(filter_compat))) 6910 return -EFAULT; 6911 6912 filter.flags = filter_compat.flags; 6913 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6914 struct kvm_msr_filter_range_compat *cr; 6915 6916 cr = &filter_compat.ranges[i]; 6917 filter.ranges[i] = (struct kvm_msr_filter_range) { 6918 .flags = cr->flags, 6919 .nmsrs = cr->nmsrs, 6920 .base = cr->base, 6921 .bitmap = (__u8 *)(ulong)cr->bitmap, 6922 }; 6923 } 6924 6925 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6926 break; 6927 } 6928 } 6929 6930 return r; 6931 } 6932 #endif 6933 6934 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6935 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6936 { 6937 struct kvm_vcpu *vcpu; 6938 unsigned long i; 6939 int ret = 0; 6940 6941 mutex_lock(&kvm->lock); 6942 kvm_for_each_vcpu(i, vcpu, kvm) { 6943 if (!vcpu->arch.pv_time.active) 6944 continue; 6945 6946 ret = kvm_set_guest_paused(vcpu); 6947 if (ret) { 6948 kvm_err("Failed to pause guest VCPU%d: %d\n", 6949 vcpu->vcpu_id, ret); 6950 break; 6951 } 6952 } 6953 mutex_unlock(&kvm->lock); 6954 6955 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6956 } 6957 6958 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6959 { 6960 switch (state) { 6961 case PM_HIBERNATION_PREPARE: 6962 case PM_SUSPEND_PREPARE: 6963 return kvm_arch_suspend_notifier(kvm); 6964 } 6965 6966 return NOTIFY_DONE; 6967 } 6968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6969 6970 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6971 { 6972 struct kvm_clock_data data = { 0 }; 6973 6974 get_kvmclock(kvm, &data); 6975 if (copy_to_user(argp, &data, sizeof(data))) 6976 return -EFAULT; 6977 6978 return 0; 6979 } 6980 6981 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6982 { 6983 struct kvm_arch *ka = &kvm->arch; 6984 struct kvm_clock_data data; 6985 u64 now_raw_ns; 6986 6987 if (copy_from_user(&data, argp, sizeof(data))) 6988 return -EFAULT; 6989 6990 /* 6991 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6992 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6993 */ 6994 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6995 return -EINVAL; 6996 6997 kvm_hv_request_tsc_page_update(kvm); 6998 kvm_start_pvclock_update(kvm); 6999 pvclock_update_vm_gtod_copy(kvm); 7000 7001 /* 7002 * This pairs with kvm_guest_time_update(): when masterclock is 7003 * in use, we use master_kernel_ns + kvmclock_offset to set 7004 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 7005 * is slightly ahead) here we risk going negative on unsigned 7006 * 'system_time' when 'data.clock' is very small. 7007 */ 7008 if (data.flags & KVM_CLOCK_REALTIME) { 7009 u64 now_real_ns = ktime_get_real_ns(); 7010 7011 /* 7012 * Avoid stepping the kvmclock backwards. 7013 */ 7014 if (now_real_ns > data.realtime) 7015 data.clock += now_real_ns - data.realtime; 7016 } 7017 7018 if (ka->use_master_clock) 7019 now_raw_ns = ka->master_kernel_ns; 7020 else 7021 now_raw_ns = get_kvmclock_base_ns(); 7022 ka->kvmclock_offset = data.clock - now_raw_ns; 7023 kvm_end_pvclock_update(kvm); 7024 return 0; 7025 } 7026 7027 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 7028 { 7029 struct kvm *kvm = filp->private_data; 7030 void __user *argp = (void __user *)arg; 7031 int r = -ENOTTY; 7032 /* 7033 * This union makes it completely explicit to gcc-3.x 7034 * that these two variables' stack usage should be 7035 * combined, not added together. 7036 */ 7037 union { 7038 struct kvm_pit_state ps; 7039 struct kvm_pit_state2 ps2; 7040 struct kvm_pit_config pit_config; 7041 } u; 7042 7043 switch (ioctl) { 7044 case KVM_SET_TSS_ADDR: 7045 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 7046 break; 7047 case KVM_SET_IDENTITY_MAP_ADDR: { 7048 u64 ident_addr; 7049 7050 mutex_lock(&kvm->lock); 7051 r = -EINVAL; 7052 if (kvm->created_vcpus) 7053 goto set_identity_unlock; 7054 r = -EFAULT; 7055 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 7056 goto set_identity_unlock; 7057 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 7058 set_identity_unlock: 7059 mutex_unlock(&kvm->lock); 7060 break; 7061 } 7062 case KVM_SET_NR_MMU_PAGES: 7063 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 7064 break; 7065 case KVM_CREATE_IRQCHIP: { 7066 mutex_lock(&kvm->lock); 7067 7068 r = -EEXIST; 7069 if (irqchip_in_kernel(kvm)) 7070 goto create_irqchip_unlock; 7071 7072 r = -EINVAL; 7073 if (kvm->created_vcpus) 7074 goto create_irqchip_unlock; 7075 7076 r = kvm_pic_init(kvm); 7077 if (r) 7078 goto create_irqchip_unlock; 7079 7080 r = kvm_ioapic_init(kvm); 7081 if (r) { 7082 kvm_pic_destroy(kvm); 7083 goto create_irqchip_unlock; 7084 } 7085 7086 r = kvm_setup_default_irq_routing(kvm); 7087 if (r) { 7088 kvm_ioapic_destroy(kvm); 7089 kvm_pic_destroy(kvm); 7090 goto create_irqchip_unlock; 7091 } 7092 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7093 smp_wmb(); 7094 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7095 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7096 create_irqchip_unlock: 7097 mutex_unlock(&kvm->lock); 7098 break; 7099 } 7100 case KVM_CREATE_PIT: 7101 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7102 goto create_pit; 7103 case KVM_CREATE_PIT2: 7104 r = -EFAULT; 7105 if (copy_from_user(&u.pit_config, argp, 7106 sizeof(struct kvm_pit_config))) 7107 goto out; 7108 create_pit: 7109 mutex_lock(&kvm->lock); 7110 r = -EEXIST; 7111 if (kvm->arch.vpit) 7112 goto create_pit_unlock; 7113 r = -ENOENT; 7114 if (!pic_in_kernel(kvm)) 7115 goto create_pit_unlock; 7116 r = -ENOMEM; 7117 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7118 if (kvm->arch.vpit) 7119 r = 0; 7120 create_pit_unlock: 7121 mutex_unlock(&kvm->lock); 7122 break; 7123 case KVM_GET_IRQCHIP: { 7124 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7125 struct kvm_irqchip *chip; 7126 7127 chip = memdup_user(argp, sizeof(*chip)); 7128 if (IS_ERR(chip)) { 7129 r = PTR_ERR(chip); 7130 goto out; 7131 } 7132 7133 r = -ENXIO; 7134 if (!irqchip_kernel(kvm)) 7135 goto get_irqchip_out; 7136 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7137 if (r) 7138 goto get_irqchip_out; 7139 r = -EFAULT; 7140 if (copy_to_user(argp, chip, sizeof(*chip))) 7141 goto get_irqchip_out; 7142 r = 0; 7143 get_irqchip_out: 7144 kfree(chip); 7145 break; 7146 } 7147 case KVM_SET_IRQCHIP: { 7148 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7149 struct kvm_irqchip *chip; 7150 7151 chip = memdup_user(argp, sizeof(*chip)); 7152 if (IS_ERR(chip)) { 7153 r = PTR_ERR(chip); 7154 goto out; 7155 } 7156 7157 r = -ENXIO; 7158 if (!irqchip_kernel(kvm)) 7159 goto set_irqchip_out; 7160 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7161 set_irqchip_out: 7162 kfree(chip); 7163 break; 7164 } 7165 case KVM_GET_PIT: { 7166 r = -EFAULT; 7167 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7168 goto out; 7169 r = -ENXIO; 7170 if (!kvm->arch.vpit) 7171 goto out; 7172 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7173 if (r) 7174 goto out; 7175 r = -EFAULT; 7176 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7177 goto out; 7178 r = 0; 7179 break; 7180 } 7181 case KVM_SET_PIT: { 7182 r = -EFAULT; 7183 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7184 goto out; 7185 mutex_lock(&kvm->lock); 7186 r = -ENXIO; 7187 if (!kvm->arch.vpit) 7188 goto set_pit_out; 7189 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7190 set_pit_out: 7191 mutex_unlock(&kvm->lock); 7192 break; 7193 } 7194 case KVM_GET_PIT2: { 7195 r = -ENXIO; 7196 if (!kvm->arch.vpit) 7197 goto out; 7198 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7199 if (r) 7200 goto out; 7201 r = -EFAULT; 7202 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7203 goto out; 7204 r = 0; 7205 break; 7206 } 7207 case KVM_SET_PIT2: { 7208 r = -EFAULT; 7209 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7210 goto out; 7211 mutex_lock(&kvm->lock); 7212 r = -ENXIO; 7213 if (!kvm->arch.vpit) 7214 goto set_pit2_out; 7215 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7216 set_pit2_out: 7217 mutex_unlock(&kvm->lock); 7218 break; 7219 } 7220 case KVM_REINJECT_CONTROL: { 7221 struct kvm_reinject_control control; 7222 r = -EFAULT; 7223 if (copy_from_user(&control, argp, sizeof(control))) 7224 goto out; 7225 r = -ENXIO; 7226 if (!kvm->arch.vpit) 7227 goto out; 7228 r = kvm_vm_ioctl_reinject(kvm, &control); 7229 break; 7230 } 7231 case KVM_SET_BOOT_CPU_ID: 7232 r = 0; 7233 mutex_lock(&kvm->lock); 7234 if (kvm->created_vcpus) 7235 r = -EBUSY; 7236 else if (arg > KVM_MAX_VCPU_IDS || 7237 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) 7238 r = -EINVAL; 7239 else 7240 kvm->arch.bsp_vcpu_id = arg; 7241 mutex_unlock(&kvm->lock); 7242 break; 7243 #ifdef CONFIG_KVM_XEN 7244 case KVM_XEN_HVM_CONFIG: { 7245 struct kvm_xen_hvm_config xhc; 7246 r = -EFAULT; 7247 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7248 goto out; 7249 r = kvm_xen_hvm_config(kvm, &xhc); 7250 break; 7251 } 7252 case KVM_XEN_HVM_GET_ATTR: { 7253 struct kvm_xen_hvm_attr xha; 7254 7255 r = -EFAULT; 7256 if (copy_from_user(&xha, argp, sizeof(xha))) 7257 goto out; 7258 r = kvm_xen_hvm_get_attr(kvm, &xha); 7259 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7260 r = -EFAULT; 7261 break; 7262 } 7263 case KVM_XEN_HVM_SET_ATTR: { 7264 struct kvm_xen_hvm_attr xha; 7265 7266 r = -EFAULT; 7267 if (copy_from_user(&xha, argp, sizeof(xha))) 7268 goto out; 7269 r = kvm_xen_hvm_set_attr(kvm, &xha); 7270 break; 7271 } 7272 case KVM_XEN_HVM_EVTCHN_SEND: { 7273 struct kvm_irq_routing_xen_evtchn uxe; 7274 7275 r = -EFAULT; 7276 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7277 goto out; 7278 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7279 break; 7280 } 7281 #endif 7282 case KVM_SET_CLOCK: 7283 r = kvm_vm_ioctl_set_clock(kvm, argp); 7284 break; 7285 case KVM_GET_CLOCK: 7286 r = kvm_vm_ioctl_get_clock(kvm, argp); 7287 break; 7288 case KVM_SET_TSC_KHZ: { 7289 u32 user_tsc_khz; 7290 7291 r = -EINVAL; 7292 user_tsc_khz = (u32)arg; 7293 7294 if (kvm_caps.has_tsc_control && 7295 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7296 goto out; 7297 7298 if (user_tsc_khz == 0) 7299 user_tsc_khz = tsc_khz; 7300 7301 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7302 r = 0; 7303 7304 goto out; 7305 } 7306 case KVM_GET_TSC_KHZ: { 7307 r = READ_ONCE(kvm->arch.default_tsc_khz); 7308 goto out; 7309 } 7310 case KVM_MEMORY_ENCRYPT_OP: { 7311 r = -ENOTTY; 7312 if (!kvm_x86_ops.mem_enc_ioctl) 7313 goto out; 7314 7315 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); 7316 break; 7317 } 7318 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7319 struct kvm_enc_region region; 7320 7321 r = -EFAULT; 7322 if (copy_from_user(®ion, argp, sizeof(region))) 7323 goto out; 7324 7325 r = -ENOTTY; 7326 if (!kvm_x86_ops.mem_enc_register_region) 7327 goto out; 7328 7329 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); 7330 break; 7331 } 7332 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7333 struct kvm_enc_region region; 7334 7335 r = -EFAULT; 7336 if (copy_from_user(®ion, argp, sizeof(region))) 7337 goto out; 7338 7339 r = -ENOTTY; 7340 if (!kvm_x86_ops.mem_enc_unregister_region) 7341 goto out; 7342 7343 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); 7344 break; 7345 } 7346 #ifdef CONFIG_KVM_HYPERV 7347 case KVM_HYPERV_EVENTFD: { 7348 struct kvm_hyperv_eventfd hvevfd; 7349 7350 r = -EFAULT; 7351 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7352 goto out; 7353 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7354 break; 7355 } 7356 #endif 7357 case KVM_SET_PMU_EVENT_FILTER: 7358 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7359 break; 7360 case KVM_X86_SET_MSR_FILTER: { 7361 struct kvm_msr_filter __user *user_msr_filter = argp; 7362 struct kvm_msr_filter filter; 7363 7364 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7365 return -EFAULT; 7366 7367 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7368 break; 7369 } 7370 default: 7371 r = -ENOTTY; 7372 } 7373 out: 7374 return r; 7375 } 7376 7377 static void kvm_probe_feature_msr(u32 msr_index) 7378 { 7379 u64 data; 7380 7381 if (kvm_get_feature_msr(NULL, msr_index, &data, true)) 7382 return; 7383 7384 msr_based_features[num_msr_based_features++] = msr_index; 7385 } 7386 7387 static void kvm_probe_msr_to_save(u32 msr_index) 7388 { 7389 u32 dummy[2]; 7390 7391 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7392 return; 7393 7394 /* 7395 * Even MSRs that are valid in the host may not be exposed to guests in 7396 * some cases. 7397 */ 7398 switch (msr_index) { 7399 case MSR_IA32_BNDCFGS: 7400 if (!kvm_mpx_supported()) 7401 return; 7402 break; 7403 case MSR_TSC_AUX: 7404 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7405 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7406 return; 7407 break; 7408 case MSR_IA32_UMWAIT_CONTROL: 7409 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7410 return; 7411 break; 7412 case MSR_IA32_RTIT_CTL: 7413 case MSR_IA32_RTIT_STATUS: 7414 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7415 return; 7416 break; 7417 case MSR_IA32_RTIT_CR3_MATCH: 7418 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7419 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7420 return; 7421 break; 7422 case MSR_IA32_RTIT_OUTPUT_BASE: 7423 case MSR_IA32_RTIT_OUTPUT_MASK: 7424 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7425 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7426 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7427 return; 7428 break; 7429 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7430 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7431 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7432 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7433 return; 7434 break; 7435 case MSR_ARCH_PERFMON_PERFCTR0 ... 7436 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: 7437 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7438 kvm_pmu_cap.num_counters_gp) 7439 return; 7440 break; 7441 case MSR_ARCH_PERFMON_EVENTSEL0 ... 7442 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: 7443 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7444 kvm_pmu_cap.num_counters_gp) 7445 return; 7446 break; 7447 case MSR_ARCH_PERFMON_FIXED_CTR0 ... 7448 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: 7449 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7450 kvm_pmu_cap.num_counters_fixed) 7451 return; 7452 break; 7453 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7454 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7455 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7456 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7457 return; 7458 break; 7459 case MSR_IA32_XFD: 7460 case MSR_IA32_XFD_ERR: 7461 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7462 return; 7463 break; 7464 case MSR_IA32_TSX_CTRL: 7465 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7466 return; 7467 break; 7468 default: 7469 break; 7470 } 7471 7472 msrs_to_save[num_msrs_to_save++] = msr_index; 7473 } 7474 7475 static void kvm_init_msr_lists(void) 7476 { 7477 unsigned i; 7478 7479 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, 7480 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7481 7482 num_msrs_to_save = 0; 7483 num_emulated_msrs = 0; 7484 num_msr_based_features = 0; 7485 7486 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7487 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7488 7489 if (enable_pmu) { 7490 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7491 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7492 } 7493 7494 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7495 if (!kvm_x86_call(has_emulated_msr)(NULL, 7496 emulated_msrs_all[i])) 7497 continue; 7498 7499 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7500 } 7501 7502 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7503 kvm_probe_feature_msr(i); 7504 7505 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7506 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7507 } 7508 7509 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7510 const void *v) 7511 { 7512 int handled = 0; 7513 int n; 7514 7515 do { 7516 n = min(len, 8); 7517 if (!(lapic_in_kernel(vcpu) && 7518 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7519 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7520 break; 7521 handled += n; 7522 addr += n; 7523 len -= n; 7524 v += n; 7525 } while (len); 7526 7527 return handled; 7528 } 7529 7530 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7531 { 7532 int handled = 0; 7533 int n; 7534 7535 do { 7536 n = min(len, 8); 7537 if (!(lapic_in_kernel(vcpu) && 7538 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7539 addr, n, v)) 7540 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7541 break; 7542 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7543 handled += n; 7544 addr += n; 7545 len -= n; 7546 v += n; 7547 } while (len); 7548 7549 return handled; 7550 } 7551 7552 void kvm_set_segment(struct kvm_vcpu *vcpu, 7553 struct kvm_segment *var, int seg) 7554 { 7555 kvm_x86_call(set_segment)(vcpu, var, seg); 7556 } 7557 7558 void kvm_get_segment(struct kvm_vcpu *vcpu, 7559 struct kvm_segment *var, int seg) 7560 { 7561 kvm_x86_call(get_segment)(vcpu, var, seg); 7562 } 7563 7564 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7565 struct x86_exception *exception) 7566 { 7567 struct kvm_mmu *mmu = vcpu->arch.mmu; 7568 gpa_t t_gpa; 7569 7570 BUG_ON(!mmu_is_nested(vcpu)); 7571 7572 /* NPT walks are always user-walks */ 7573 access |= PFERR_USER_MASK; 7574 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7575 7576 return t_gpa; 7577 } 7578 7579 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7580 struct x86_exception *exception) 7581 { 7582 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7583 7584 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7585 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7586 } 7587 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7588 7589 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7590 struct x86_exception *exception) 7591 { 7592 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7593 7594 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7595 access |= PFERR_WRITE_MASK; 7596 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7597 } 7598 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7599 7600 /* uses this to access any guest's mapped memory without checking CPL */ 7601 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7602 struct x86_exception *exception) 7603 { 7604 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7605 7606 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7607 } 7608 7609 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7610 struct kvm_vcpu *vcpu, u64 access, 7611 struct x86_exception *exception) 7612 { 7613 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7614 void *data = val; 7615 int r = X86EMUL_CONTINUE; 7616 7617 while (bytes) { 7618 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7619 unsigned offset = addr & (PAGE_SIZE-1); 7620 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7621 int ret; 7622 7623 if (gpa == INVALID_GPA) 7624 return X86EMUL_PROPAGATE_FAULT; 7625 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7626 offset, toread); 7627 if (ret < 0) { 7628 r = X86EMUL_IO_NEEDED; 7629 goto out; 7630 } 7631 7632 bytes -= toread; 7633 data += toread; 7634 addr += toread; 7635 } 7636 out: 7637 return r; 7638 } 7639 7640 /* used for instruction fetching */ 7641 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7642 gva_t addr, void *val, unsigned int bytes, 7643 struct x86_exception *exception) 7644 { 7645 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7646 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7647 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7648 unsigned offset; 7649 int ret; 7650 7651 /* Inline kvm_read_guest_virt_helper for speed. */ 7652 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7653 exception); 7654 if (unlikely(gpa == INVALID_GPA)) 7655 return X86EMUL_PROPAGATE_FAULT; 7656 7657 offset = addr & (PAGE_SIZE-1); 7658 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7659 bytes = (unsigned)PAGE_SIZE - offset; 7660 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7661 offset, bytes); 7662 if (unlikely(ret < 0)) 7663 return X86EMUL_IO_NEEDED; 7664 7665 return X86EMUL_CONTINUE; 7666 } 7667 7668 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7669 gva_t addr, void *val, unsigned int bytes, 7670 struct x86_exception *exception) 7671 { 7672 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7673 7674 /* 7675 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7676 * is returned, but our callers are not ready for that and they blindly 7677 * call kvm_inject_page_fault. Ensure that they at least do not leak 7678 * uninitialized kernel stack memory into cr2 and error code. 7679 */ 7680 memset(exception, 0, sizeof(*exception)); 7681 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7682 exception); 7683 } 7684 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7685 7686 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7687 gva_t addr, void *val, unsigned int bytes, 7688 struct x86_exception *exception, bool system) 7689 { 7690 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7691 u64 access = 0; 7692 7693 if (system) 7694 access |= PFERR_IMPLICIT_ACCESS; 7695 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7696 access |= PFERR_USER_MASK; 7697 7698 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7699 } 7700 7701 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7702 struct kvm_vcpu *vcpu, u64 access, 7703 struct x86_exception *exception) 7704 { 7705 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7706 void *data = val; 7707 int r = X86EMUL_CONTINUE; 7708 7709 while (bytes) { 7710 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7711 unsigned offset = addr & (PAGE_SIZE-1); 7712 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7713 int ret; 7714 7715 if (gpa == INVALID_GPA) 7716 return X86EMUL_PROPAGATE_FAULT; 7717 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7718 if (ret < 0) { 7719 r = X86EMUL_IO_NEEDED; 7720 goto out; 7721 } 7722 7723 bytes -= towrite; 7724 data += towrite; 7725 addr += towrite; 7726 } 7727 out: 7728 return r; 7729 } 7730 7731 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7732 unsigned int bytes, struct x86_exception *exception, 7733 bool system) 7734 { 7735 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7736 u64 access = PFERR_WRITE_MASK; 7737 7738 if (system) 7739 access |= PFERR_IMPLICIT_ACCESS; 7740 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7741 access |= PFERR_USER_MASK; 7742 7743 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7744 access, exception); 7745 } 7746 7747 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7748 unsigned int bytes, struct x86_exception *exception) 7749 { 7750 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7751 vcpu->arch.l1tf_flush_l1d = true; 7752 7753 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7754 PFERR_WRITE_MASK, exception); 7755 } 7756 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7757 7758 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7759 void *insn, int insn_len) 7760 { 7761 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, 7762 insn, insn_len); 7763 } 7764 7765 int handle_ud(struct kvm_vcpu *vcpu) 7766 { 7767 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7768 int fep_flags = READ_ONCE(force_emulation_prefix); 7769 int emul_type = EMULTYPE_TRAP_UD; 7770 char sig[5]; /* ud2; .ascii "kvm" */ 7771 struct x86_exception e; 7772 int r; 7773 7774 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7775 if (r != X86EMUL_CONTINUE) 7776 return 1; 7777 7778 if (fep_flags && 7779 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7780 sig, sizeof(sig), &e) == 0 && 7781 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7782 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7783 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7784 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7785 emul_type = EMULTYPE_TRAP_UD_FORCED; 7786 } 7787 7788 return kvm_emulate_instruction(vcpu, emul_type); 7789 } 7790 EXPORT_SYMBOL_GPL(handle_ud); 7791 7792 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7793 gpa_t gpa, bool write) 7794 { 7795 /* For APIC access vmexit */ 7796 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7797 return 1; 7798 7799 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7800 trace_vcpu_match_mmio(gva, gpa, write, true); 7801 return 1; 7802 } 7803 7804 return 0; 7805 } 7806 7807 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7808 gpa_t *gpa, struct x86_exception *exception, 7809 bool write) 7810 { 7811 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7812 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7813 | (write ? PFERR_WRITE_MASK : 0); 7814 7815 /* 7816 * currently PKRU is only applied to ept enabled guest so 7817 * there is no pkey in EPT page table for L1 guest or EPT 7818 * shadow page table for L2 guest. 7819 */ 7820 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7821 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7822 vcpu->arch.mmio_access, 0, access))) { 7823 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7824 (gva & (PAGE_SIZE - 1)); 7825 trace_vcpu_match_mmio(gva, *gpa, write, false); 7826 return 1; 7827 } 7828 7829 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7830 7831 if (*gpa == INVALID_GPA) 7832 return -1; 7833 7834 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7835 } 7836 7837 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7838 const void *val, int bytes) 7839 { 7840 int ret; 7841 7842 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7843 if (ret < 0) 7844 return 0; 7845 kvm_page_track_write(vcpu, gpa, val, bytes); 7846 return 1; 7847 } 7848 7849 struct read_write_emulator_ops { 7850 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7851 int bytes); 7852 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7853 void *val, int bytes); 7854 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7855 int bytes, void *val); 7856 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7857 void *val, int bytes); 7858 bool write; 7859 }; 7860 7861 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7862 { 7863 if (vcpu->mmio_read_completed) { 7864 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7865 vcpu->mmio_fragments[0].gpa, val); 7866 vcpu->mmio_read_completed = 0; 7867 return 1; 7868 } 7869 7870 return 0; 7871 } 7872 7873 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7874 void *val, int bytes) 7875 { 7876 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7877 } 7878 7879 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7880 void *val, int bytes) 7881 { 7882 return emulator_write_phys(vcpu, gpa, val, bytes); 7883 } 7884 7885 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7886 { 7887 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7888 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7889 } 7890 7891 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7892 void *val, int bytes) 7893 { 7894 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7895 return X86EMUL_IO_NEEDED; 7896 } 7897 7898 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7899 void *val, int bytes) 7900 { 7901 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7902 7903 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7904 return X86EMUL_CONTINUE; 7905 } 7906 7907 static const struct read_write_emulator_ops read_emultor = { 7908 .read_write_prepare = read_prepare, 7909 .read_write_emulate = read_emulate, 7910 .read_write_mmio = vcpu_mmio_read, 7911 .read_write_exit_mmio = read_exit_mmio, 7912 }; 7913 7914 static const struct read_write_emulator_ops write_emultor = { 7915 .read_write_emulate = write_emulate, 7916 .read_write_mmio = write_mmio, 7917 .read_write_exit_mmio = write_exit_mmio, 7918 .write = true, 7919 }; 7920 7921 static int emulator_read_write_onepage(unsigned long addr, void *val, 7922 unsigned int bytes, 7923 struct x86_exception *exception, 7924 struct kvm_vcpu *vcpu, 7925 const struct read_write_emulator_ops *ops) 7926 { 7927 gpa_t gpa; 7928 int handled, ret; 7929 bool write = ops->write; 7930 struct kvm_mmio_fragment *frag; 7931 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7932 7933 /* 7934 * If the exit was due to a NPF we may already have a GPA. 7935 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7936 * Note, this cannot be used on string operations since string 7937 * operation using rep will only have the initial GPA from the NPF 7938 * occurred. 7939 */ 7940 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7941 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7942 gpa = ctxt->gpa_val; 7943 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7944 } else { 7945 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7946 if (ret < 0) 7947 return X86EMUL_PROPAGATE_FAULT; 7948 } 7949 7950 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7951 return X86EMUL_CONTINUE; 7952 7953 /* 7954 * Is this MMIO handled locally? 7955 */ 7956 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7957 if (handled == bytes) 7958 return X86EMUL_CONTINUE; 7959 7960 gpa += handled; 7961 bytes -= handled; 7962 val += handled; 7963 7964 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7965 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7966 frag->gpa = gpa; 7967 frag->data = val; 7968 frag->len = bytes; 7969 return X86EMUL_CONTINUE; 7970 } 7971 7972 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7973 unsigned long addr, 7974 void *val, unsigned int bytes, 7975 struct x86_exception *exception, 7976 const struct read_write_emulator_ops *ops) 7977 { 7978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7979 gpa_t gpa; 7980 int rc; 7981 7982 if (ops->read_write_prepare && 7983 ops->read_write_prepare(vcpu, val, bytes)) 7984 return X86EMUL_CONTINUE; 7985 7986 vcpu->mmio_nr_fragments = 0; 7987 7988 /* Crossing a page boundary? */ 7989 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7990 int now; 7991 7992 now = -addr & ~PAGE_MASK; 7993 rc = emulator_read_write_onepage(addr, val, now, exception, 7994 vcpu, ops); 7995 7996 if (rc != X86EMUL_CONTINUE) 7997 return rc; 7998 addr += now; 7999 if (ctxt->mode != X86EMUL_MODE_PROT64) 8000 addr = (u32)addr; 8001 val += now; 8002 bytes -= now; 8003 } 8004 8005 rc = emulator_read_write_onepage(addr, val, bytes, exception, 8006 vcpu, ops); 8007 if (rc != X86EMUL_CONTINUE) 8008 return rc; 8009 8010 if (!vcpu->mmio_nr_fragments) 8011 return rc; 8012 8013 gpa = vcpu->mmio_fragments[0].gpa; 8014 8015 vcpu->mmio_needed = 1; 8016 vcpu->mmio_cur_fragment = 0; 8017 8018 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 8019 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 8020 vcpu->run->exit_reason = KVM_EXIT_MMIO; 8021 vcpu->run->mmio.phys_addr = gpa; 8022 8023 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 8024 } 8025 8026 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 8027 unsigned long addr, 8028 void *val, 8029 unsigned int bytes, 8030 struct x86_exception *exception) 8031 { 8032 return emulator_read_write(ctxt, addr, val, bytes, 8033 exception, &read_emultor); 8034 } 8035 8036 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 8037 unsigned long addr, 8038 const void *val, 8039 unsigned int bytes, 8040 struct x86_exception *exception) 8041 { 8042 return emulator_read_write(ctxt, addr, (void *)val, bytes, 8043 exception, &write_emultor); 8044 } 8045 8046 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 8047 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 8048 8049 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 8050 unsigned long addr, 8051 const void *old, 8052 const void *new, 8053 unsigned int bytes, 8054 struct x86_exception *exception) 8055 { 8056 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8057 u64 page_line_mask; 8058 unsigned long hva; 8059 gpa_t gpa; 8060 int r; 8061 8062 /* guests cmpxchg8b have to be emulated atomically */ 8063 if (bytes > 8 || (bytes & (bytes - 1))) 8064 goto emul_write; 8065 8066 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 8067 8068 if (gpa == INVALID_GPA || 8069 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8070 goto emul_write; 8071 8072 /* 8073 * Emulate the atomic as a straight write to avoid #AC if SLD is 8074 * enabled in the host and the access splits a cache line. 8075 */ 8076 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 8077 page_line_mask = ~(cache_line_size() - 1); 8078 else 8079 page_line_mask = PAGE_MASK; 8080 8081 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 8082 goto emul_write; 8083 8084 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 8085 if (kvm_is_error_hva(hva)) 8086 goto emul_write; 8087 8088 hva += offset_in_page(gpa); 8089 8090 switch (bytes) { 8091 case 1: 8092 r = emulator_try_cmpxchg_user(u8, hva, old, new); 8093 break; 8094 case 2: 8095 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8096 break; 8097 case 4: 8098 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8099 break; 8100 case 8: 8101 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8102 break; 8103 default: 8104 BUG(); 8105 } 8106 8107 if (r < 0) 8108 return X86EMUL_UNHANDLEABLE; 8109 8110 /* 8111 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8112 * successful, as the old value is written back on failure. Note, for 8113 * live migration, this is unnecessarily conservative as CMPXCHG writes 8114 * back the original value and the access is atomic, but KVM's ABI is 8115 * that all writes are dirty logged, regardless of the value written. 8116 */ 8117 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8118 8119 if (r) 8120 return X86EMUL_CMPXCHG_FAILED; 8121 8122 kvm_page_track_write(vcpu, gpa, new, bytes); 8123 8124 return X86EMUL_CONTINUE; 8125 8126 emul_write: 8127 pr_warn_once("emulating exchange as write\n"); 8128 8129 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8130 } 8131 8132 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8133 unsigned short port, void *data, 8134 unsigned int count, bool in) 8135 { 8136 unsigned i; 8137 int r; 8138 8139 WARN_ON_ONCE(vcpu->arch.pio.count); 8140 for (i = 0; i < count; i++) { 8141 if (in) 8142 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8143 else 8144 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8145 8146 if (r) { 8147 if (i == 0) 8148 goto userspace_io; 8149 8150 /* 8151 * Userspace must have unregistered the device while PIO 8152 * was running. Drop writes / read as 0. 8153 */ 8154 if (in) 8155 memset(data, 0, size * (count - i)); 8156 break; 8157 } 8158 8159 data += size; 8160 } 8161 return 1; 8162 8163 userspace_io: 8164 vcpu->arch.pio.port = port; 8165 vcpu->arch.pio.in = in; 8166 vcpu->arch.pio.count = count; 8167 vcpu->arch.pio.size = size; 8168 8169 if (in) 8170 memset(vcpu->arch.pio_data, 0, size * count); 8171 else 8172 memcpy(vcpu->arch.pio_data, data, size * count); 8173 8174 vcpu->run->exit_reason = KVM_EXIT_IO; 8175 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8176 vcpu->run->io.size = size; 8177 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8178 vcpu->run->io.count = count; 8179 vcpu->run->io.port = port; 8180 return 0; 8181 } 8182 8183 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8184 unsigned short port, void *val, unsigned int count) 8185 { 8186 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8187 if (r) 8188 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8189 8190 return r; 8191 } 8192 8193 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8194 { 8195 int size = vcpu->arch.pio.size; 8196 unsigned int count = vcpu->arch.pio.count; 8197 memcpy(val, vcpu->arch.pio_data, size * count); 8198 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8199 vcpu->arch.pio.count = 0; 8200 } 8201 8202 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8203 int size, unsigned short port, void *val, 8204 unsigned int count) 8205 { 8206 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8207 if (vcpu->arch.pio.count) { 8208 /* 8209 * Complete a previous iteration that required userspace I/O. 8210 * Note, @count isn't guaranteed to match pio.count as userspace 8211 * can modify ECX before rerunning the vCPU. Ignore any such 8212 * shenanigans as KVM doesn't support modifying the rep count, 8213 * and the emulator ensures @count doesn't overflow the buffer. 8214 */ 8215 complete_emulator_pio_in(vcpu, val); 8216 return 1; 8217 } 8218 8219 return emulator_pio_in(vcpu, size, port, val, count); 8220 } 8221 8222 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8223 unsigned short port, const void *val, 8224 unsigned int count) 8225 { 8226 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8227 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8228 } 8229 8230 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8231 int size, unsigned short port, 8232 const void *val, unsigned int count) 8233 { 8234 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8235 } 8236 8237 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8238 { 8239 return kvm_x86_call(get_segment_base)(vcpu, seg); 8240 } 8241 8242 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8243 { 8244 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8245 } 8246 8247 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8248 { 8249 if (!need_emulate_wbinvd(vcpu)) 8250 return X86EMUL_CONTINUE; 8251 8252 if (kvm_x86_call(has_wbinvd_exit)()) { 8253 int cpu = get_cpu(); 8254 8255 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8256 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8257 wbinvd_ipi, NULL, 1); 8258 put_cpu(); 8259 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8260 } else 8261 wbinvd(); 8262 return X86EMUL_CONTINUE; 8263 } 8264 8265 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8266 { 8267 kvm_emulate_wbinvd_noskip(vcpu); 8268 return kvm_skip_emulated_instruction(vcpu); 8269 } 8270 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8271 8272 8273 8274 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8275 { 8276 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8277 } 8278 8279 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8280 { 8281 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8282 } 8283 8284 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8285 unsigned long value) 8286 { 8287 8288 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8289 } 8290 8291 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8292 { 8293 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8294 } 8295 8296 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8297 { 8298 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8299 unsigned long value; 8300 8301 switch (cr) { 8302 case 0: 8303 value = kvm_read_cr0(vcpu); 8304 break; 8305 case 2: 8306 value = vcpu->arch.cr2; 8307 break; 8308 case 3: 8309 value = kvm_read_cr3(vcpu); 8310 break; 8311 case 4: 8312 value = kvm_read_cr4(vcpu); 8313 break; 8314 case 8: 8315 value = kvm_get_cr8(vcpu); 8316 break; 8317 default: 8318 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8319 return 0; 8320 } 8321 8322 return value; 8323 } 8324 8325 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8326 { 8327 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8328 int res = 0; 8329 8330 switch (cr) { 8331 case 0: 8332 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8333 break; 8334 case 2: 8335 vcpu->arch.cr2 = val; 8336 break; 8337 case 3: 8338 res = kvm_set_cr3(vcpu, val); 8339 break; 8340 case 4: 8341 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8342 break; 8343 case 8: 8344 res = kvm_set_cr8(vcpu, val); 8345 break; 8346 default: 8347 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8348 res = -1; 8349 } 8350 8351 return res; 8352 } 8353 8354 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8355 { 8356 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); 8357 } 8358 8359 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8360 { 8361 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); 8362 } 8363 8364 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8365 { 8366 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); 8367 } 8368 8369 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8370 { 8371 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); 8372 } 8373 8374 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8375 { 8376 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); 8377 } 8378 8379 static unsigned long emulator_get_cached_segment_base( 8380 struct x86_emulate_ctxt *ctxt, int seg) 8381 { 8382 return get_segment_base(emul_to_vcpu(ctxt), seg); 8383 } 8384 8385 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8386 struct desc_struct *desc, u32 *base3, 8387 int seg) 8388 { 8389 struct kvm_segment var; 8390 8391 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8392 *selector = var.selector; 8393 8394 if (var.unusable) { 8395 memset(desc, 0, sizeof(*desc)); 8396 if (base3) 8397 *base3 = 0; 8398 return false; 8399 } 8400 8401 if (var.g) 8402 var.limit >>= 12; 8403 set_desc_limit(desc, var.limit); 8404 set_desc_base(desc, (unsigned long)var.base); 8405 #ifdef CONFIG_X86_64 8406 if (base3) 8407 *base3 = var.base >> 32; 8408 #endif 8409 desc->type = var.type; 8410 desc->s = var.s; 8411 desc->dpl = var.dpl; 8412 desc->p = var.present; 8413 desc->avl = var.avl; 8414 desc->l = var.l; 8415 desc->d = var.db; 8416 desc->g = var.g; 8417 8418 return true; 8419 } 8420 8421 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8422 struct desc_struct *desc, u32 base3, 8423 int seg) 8424 { 8425 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8426 struct kvm_segment var; 8427 8428 var.selector = selector; 8429 var.base = get_desc_base(desc); 8430 #ifdef CONFIG_X86_64 8431 var.base |= ((u64)base3) << 32; 8432 #endif 8433 var.limit = get_desc_limit(desc); 8434 if (desc->g) 8435 var.limit = (var.limit << 12) | 0xfff; 8436 var.type = desc->type; 8437 var.dpl = desc->dpl; 8438 var.db = desc->d; 8439 var.s = desc->s; 8440 var.l = desc->l; 8441 var.g = desc->g; 8442 var.avl = desc->avl; 8443 var.present = desc->p; 8444 var.unusable = !var.present; 8445 var.padding = 0; 8446 8447 kvm_set_segment(vcpu, &var, seg); 8448 return; 8449 } 8450 8451 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8452 u32 msr_index, u64 *pdata) 8453 { 8454 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8455 int r; 8456 8457 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8458 if (r < 0) 8459 return X86EMUL_UNHANDLEABLE; 8460 8461 if (r) { 8462 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8463 complete_emulated_rdmsr, r)) 8464 return X86EMUL_IO_NEEDED; 8465 8466 trace_kvm_msr_read_ex(msr_index); 8467 return X86EMUL_PROPAGATE_FAULT; 8468 } 8469 8470 trace_kvm_msr_read(msr_index, *pdata); 8471 return X86EMUL_CONTINUE; 8472 } 8473 8474 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8475 u32 msr_index, u64 data) 8476 { 8477 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8478 int r; 8479 8480 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8481 if (r < 0) 8482 return X86EMUL_UNHANDLEABLE; 8483 8484 if (r) { 8485 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8486 complete_emulated_msr_access, r)) 8487 return X86EMUL_IO_NEEDED; 8488 8489 trace_kvm_msr_write_ex(msr_index, data); 8490 return X86EMUL_PROPAGATE_FAULT; 8491 } 8492 8493 trace_kvm_msr_write(msr_index, data); 8494 return X86EMUL_CONTINUE; 8495 } 8496 8497 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8498 u32 msr_index, u64 *pdata) 8499 { 8500 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8501 } 8502 8503 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8504 { 8505 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8506 } 8507 8508 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8509 u32 pmc, u64 *pdata) 8510 { 8511 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8512 } 8513 8514 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8515 { 8516 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8517 } 8518 8519 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8520 struct x86_instruction_info *info, 8521 enum x86_intercept_stage stage) 8522 { 8523 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, 8524 &ctxt->exception); 8525 } 8526 8527 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8528 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8529 bool exact_only) 8530 { 8531 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8532 } 8533 8534 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8535 { 8536 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8537 } 8538 8539 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8540 { 8541 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8542 } 8543 8544 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8545 { 8546 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8547 } 8548 8549 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) 8550 { 8551 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); 8552 } 8553 8554 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8555 { 8556 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8557 } 8558 8559 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8560 { 8561 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8562 } 8563 8564 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8565 { 8566 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8567 } 8568 8569 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8570 { 8571 return is_smm(emul_to_vcpu(ctxt)); 8572 } 8573 8574 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8575 { 8576 return is_guest_mode(emul_to_vcpu(ctxt)); 8577 } 8578 8579 #ifndef CONFIG_KVM_SMM 8580 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8581 { 8582 WARN_ON_ONCE(1); 8583 return X86EMUL_UNHANDLEABLE; 8584 } 8585 #endif 8586 8587 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8588 { 8589 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8590 } 8591 8592 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8593 { 8594 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8595 } 8596 8597 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8598 { 8599 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8600 8601 if (!kvm->vm_bugged) 8602 kvm_vm_bugged(kvm); 8603 } 8604 8605 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8606 gva_t addr, unsigned int flags) 8607 { 8608 if (!kvm_x86_ops.get_untagged_addr) 8609 return addr; 8610 8611 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), 8612 addr, flags); 8613 } 8614 8615 static const struct x86_emulate_ops emulate_ops = { 8616 .vm_bugged = emulator_vm_bugged, 8617 .read_gpr = emulator_read_gpr, 8618 .write_gpr = emulator_write_gpr, 8619 .read_std = emulator_read_std, 8620 .write_std = emulator_write_std, 8621 .fetch = kvm_fetch_guest_virt, 8622 .read_emulated = emulator_read_emulated, 8623 .write_emulated = emulator_write_emulated, 8624 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8625 .invlpg = emulator_invlpg, 8626 .pio_in_emulated = emulator_pio_in_emulated, 8627 .pio_out_emulated = emulator_pio_out_emulated, 8628 .get_segment = emulator_get_segment, 8629 .set_segment = emulator_set_segment, 8630 .get_cached_segment_base = emulator_get_cached_segment_base, 8631 .get_gdt = emulator_get_gdt, 8632 .get_idt = emulator_get_idt, 8633 .set_gdt = emulator_set_gdt, 8634 .set_idt = emulator_set_idt, 8635 .get_cr = emulator_get_cr, 8636 .set_cr = emulator_set_cr, 8637 .cpl = emulator_get_cpl, 8638 .get_dr = emulator_get_dr, 8639 .set_dr = emulator_set_dr, 8640 .set_msr_with_filter = emulator_set_msr_with_filter, 8641 .get_msr_with_filter = emulator_get_msr_with_filter, 8642 .get_msr = emulator_get_msr, 8643 .check_rdpmc_early = emulator_check_rdpmc_early, 8644 .read_pmc = emulator_read_pmc, 8645 .halt = emulator_halt, 8646 .wbinvd = emulator_wbinvd, 8647 .fix_hypercall = emulator_fix_hypercall, 8648 .intercept = emulator_intercept, 8649 .get_cpuid = emulator_get_cpuid, 8650 .guest_has_movbe = emulator_guest_has_movbe, 8651 .guest_has_fxsr = emulator_guest_has_fxsr, 8652 .guest_has_rdpid = emulator_guest_has_rdpid, 8653 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, 8654 .set_nmi_mask = emulator_set_nmi_mask, 8655 .is_smm = emulator_is_smm, 8656 .is_guest_mode = emulator_is_guest_mode, 8657 .leave_smm = emulator_leave_smm, 8658 .triple_fault = emulator_triple_fault, 8659 .set_xcr = emulator_set_xcr, 8660 .get_untagged_addr = emulator_get_untagged_addr, 8661 }; 8662 8663 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8664 { 8665 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 8666 /* 8667 * an sti; sti; sequence only disable interrupts for the first 8668 * instruction. So, if the last instruction, be it emulated or 8669 * not, left the system with the INT_STI flag enabled, it 8670 * means that the last instruction is an sti. We should not 8671 * leave the flag on in this case. The same goes for mov ss 8672 */ 8673 if (int_shadow & mask) 8674 mask = 0; 8675 if (unlikely(int_shadow || mask)) { 8676 kvm_x86_call(set_interrupt_shadow)(vcpu, mask); 8677 if (!mask) 8678 kvm_make_request(KVM_REQ_EVENT, vcpu); 8679 } 8680 } 8681 8682 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8683 { 8684 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8685 8686 if (ctxt->exception.vector == PF_VECTOR) 8687 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8688 else if (ctxt->exception.error_code_valid) 8689 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8690 ctxt->exception.error_code); 8691 else 8692 kvm_queue_exception(vcpu, ctxt->exception.vector); 8693 } 8694 8695 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8696 { 8697 struct x86_emulate_ctxt *ctxt; 8698 8699 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8700 if (!ctxt) { 8701 pr_err("failed to allocate vcpu's emulator\n"); 8702 return NULL; 8703 } 8704 8705 ctxt->vcpu = vcpu; 8706 ctxt->ops = &emulate_ops; 8707 vcpu->arch.emulate_ctxt = ctxt; 8708 8709 return ctxt; 8710 } 8711 8712 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8713 { 8714 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8715 int cs_db, cs_l; 8716 8717 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8718 8719 ctxt->gpa_available = false; 8720 ctxt->eflags = kvm_get_rflags(vcpu); 8721 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8722 8723 ctxt->eip = kvm_rip_read(vcpu); 8724 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8725 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8726 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8727 cs_db ? X86EMUL_MODE_PROT32 : 8728 X86EMUL_MODE_PROT16; 8729 ctxt->interruptibility = 0; 8730 ctxt->have_exception = false; 8731 ctxt->exception.vector = -1; 8732 ctxt->perm_ok = false; 8733 8734 init_decode_cache(ctxt); 8735 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8736 } 8737 8738 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8739 { 8740 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8741 int ret; 8742 8743 init_emulate_ctxt(vcpu); 8744 8745 ctxt->op_bytes = 2; 8746 ctxt->ad_bytes = 2; 8747 ctxt->_eip = ctxt->eip + inc_eip; 8748 ret = emulate_int_real(ctxt, irq); 8749 8750 if (ret != X86EMUL_CONTINUE) { 8751 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8752 } else { 8753 ctxt->eip = ctxt->_eip; 8754 kvm_rip_write(vcpu, ctxt->eip); 8755 kvm_set_rflags(vcpu, ctxt->eflags); 8756 } 8757 } 8758 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8759 8760 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8761 u8 ndata, u8 *insn_bytes, u8 insn_size) 8762 { 8763 struct kvm_run *run = vcpu->run; 8764 u64 info[5]; 8765 u8 info_start; 8766 8767 /* 8768 * Zero the whole array used to retrieve the exit info, as casting to 8769 * u32 for select entries will leave some chunks uninitialized. 8770 */ 8771 memset(&info, 0, sizeof(info)); 8772 8773 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], 8774 (u32 *)&info[3], (u32 *)&info[4]); 8775 8776 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8777 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8778 8779 /* 8780 * There's currently space for 13 entries, but 5 are used for the exit 8781 * reason and info. Restrict to 4 to reduce the maintenance burden 8782 * when expanding kvm_run.emulation_failure in the future. 8783 */ 8784 if (WARN_ON_ONCE(ndata > 4)) 8785 ndata = 4; 8786 8787 /* Always include the flags as a 'data' entry. */ 8788 info_start = 1; 8789 run->emulation_failure.flags = 0; 8790 8791 if (insn_size) { 8792 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8793 sizeof(run->emulation_failure.insn_bytes) != 16)); 8794 info_start += 2; 8795 run->emulation_failure.flags |= 8796 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8797 run->emulation_failure.insn_size = insn_size; 8798 memset(run->emulation_failure.insn_bytes, 0x90, 8799 sizeof(run->emulation_failure.insn_bytes)); 8800 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8801 } 8802 8803 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8804 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8805 ndata * sizeof(data[0])); 8806 8807 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8808 } 8809 8810 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8811 { 8812 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8813 8814 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8815 ctxt->fetch.end - ctxt->fetch.data); 8816 } 8817 8818 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8819 u8 ndata) 8820 { 8821 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8822 } 8823 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8824 8825 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8826 { 8827 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8828 } 8829 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8830 8831 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8832 { 8833 struct kvm *kvm = vcpu->kvm; 8834 8835 ++vcpu->stat.insn_emulation_fail; 8836 trace_kvm_emulate_insn_failed(vcpu); 8837 8838 if (emulation_type & EMULTYPE_VMWARE_GP) { 8839 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8840 return 1; 8841 } 8842 8843 if (kvm->arch.exit_on_emulation_error || 8844 (emulation_type & EMULTYPE_SKIP)) { 8845 prepare_emulation_ctxt_failure_exit(vcpu); 8846 return 0; 8847 } 8848 8849 kvm_queue_exception(vcpu, UD_VECTOR); 8850 8851 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { 8852 prepare_emulation_ctxt_failure_exit(vcpu); 8853 return 0; 8854 } 8855 8856 return 1; 8857 } 8858 8859 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8860 int emulation_type) 8861 { 8862 gpa_t gpa = cr2_or_gpa; 8863 kvm_pfn_t pfn; 8864 8865 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8866 return false; 8867 8868 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8869 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8870 return false; 8871 8872 if (!vcpu->arch.mmu->root_role.direct) { 8873 /* 8874 * Write permission should be allowed since only 8875 * write access need to be emulated. 8876 */ 8877 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8878 8879 /* 8880 * If the mapping is invalid in guest, let cpu retry 8881 * it to generate fault. 8882 */ 8883 if (gpa == INVALID_GPA) 8884 return true; 8885 } 8886 8887 /* 8888 * Do not retry the unhandleable instruction if it faults on the 8889 * readonly host memory, otherwise it will goto a infinite loop: 8890 * retry instruction -> write #PF -> emulation fail -> retry 8891 * instruction -> ... 8892 */ 8893 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8894 8895 /* 8896 * If the instruction failed on the error pfn, it can not be fixed, 8897 * report the error to userspace. 8898 */ 8899 if (is_error_noslot_pfn(pfn)) 8900 return false; 8901 8902 kvm_release_pfn_clean(pfn); 8903 8904 /* 8905 * If emulation may have been triggered by a write to a shadowed page 8906 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8907 * guest to let the CPU re-execute the instruction in the hope that the 8908 * CPU can cleanly execute the instruction that KVM failed to emulate. 8909 */ 8910 if (vcpu->kvm->arch.indirect_shadow_pages) 8911 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8912 8913 /* 8914 * If the failed instruction faulted on an access to page tables that 8915 * are used to translate any part of the instruction, KVM can't resolve 8916 * the issue by unprotecting the gfn, as zapping the shadow page will 8917 * result in the instruction taking a !PRESENT page fault and thus put 8918 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8919 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8920 * then zap the SPTE to unprotect the gfn, and then do it all over 8921 * again. Report the error to userspace. 8922 */ 8923 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8924 } 8925 8926 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8927 gpa_t cr2_or_gpa, int emulation_type) 8928 { 8929 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8930 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8931 8932 last_retry_eip = vcpu->arch.last_retry_eip; 8933 last_retry_addr = vcpu->arch.last_retry_addr; 8934 8935 /* 8936 * If the emulation is caused by #PF and it is non-page_table 8937 * writing instruction, it means the VM-EXIT is caused by shadow 8938 * page protected, we can zap the shadow page and retry this 8939 * instruction directly. 8940 * 8941 * Note: if the guest uses a non-page-table modifying instruction 8942 * on the PDE that points to the instruction, then we will unmap 8943 * the instruction and go to an infinite loop. So, we cache the 8944 * last retried eip and the last fault address, if we meet the eip 8945 * and the address again, we can break out of the potential infinite 8946 * loop. 8947 */ 8948 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8949 8950 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8951 return false; 8952 8953 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8954 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8955 return false; 8956 8957 if (x86_page_table_writing_insn(ctxt)) 8958 return false; 8959 8960 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8961 return false; 8962 8963 vcpu->arch.last_retry_eip = ctxt->eip; 8964 vcpu->arch.last_retry_addr = cr2_or_gpa; 8965 8966 if (!vcpu->arch.mmu->root_role.direct) 8967 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8968 8969 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8970 8971 return true; 8972 } 8973 8974 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8975 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8976 8977 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8978 unsigned long *db) 8979 { 8980 u32 dr6 = 0; 8981 int i; 8982 u32 enable, rwlen; 8983 8984 enable = dr7; 8985 rwlen = dr7 >> 16; 8986 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8987 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8988 dr6 |= (1 << i); 8989 return dr6; 8990 } 8991 8992 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8993 { 8994 struct kvm_run *kvm_run = vcpu->run; 8995 8996 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8997 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8998 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8999 kvm_run->debug.arch.exception = DB_VECTOR; 9000 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9001 return 0; 9002 } 9003 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 9004 return 1; 9005 } 9006 9007 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 9008 { 9009 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9010 int r; 9011 9012 r = kvm_x86_call(skip_emulated_instruction)(vcpu); 9013 if (unlikely(!r)) 9014 return 0; 9015 9016 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9017 9018 /* 9019 * rflags is the old, "raw" value of the flags. The new value has 9020 * not been saved yet. 9021 * 9022 * This is correct even for TF set by the guest, because "the 9023 * processor will not generate this exception after the instruction 9024 * that sets the TF flag". 9025 */ 9026 if (unlikely(rflags & X86_EFLAGS_TF)) 9027 r = kvm_vcpu_do_singlestep(vcpu); 9028 return r; 9029 } 9030 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 9031 9032 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 9033 { 9034 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 9035 return true; 9036 9037 /* 9038 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is 9039 * active, but AMD compatible CPUs do not. 9040 */ 9041 if (!guest_cpuid_is_intel_compatible(vcpu)) 9042 return false; 9043 9044 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; 9045 } 9046 9047 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 9048 int emulation_type, int *r) 9049 { 9050 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 9051 9052 /* 9053 * Do not check for code breakpoints if hardware has already done the 9054 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 9055 * the instruction has passed all exception checks, and all intercepted 9056 * exceptions that trigger emulation have lower priority than code 9057 * breakpoints, i.e. the fact that the intercepted exception occurred 9058 * means any code breakpoints have already been serviced. 9059 * 9060 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 9061 * hardware has checked the RIP of the magic prefix, but not the RIP of 9062 * the instruction being emulated. The intent of forced emulation is 9063 * to behave as if KVM intercepted the instruction without an exception 9064 * and without a prefix. 9065 */ 9066 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 9067 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 9068 return false; 9069 9070 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 9071 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 9072 struct kvm_run *kvm_run = vcpu->run; 9073 unsigned long eip = kvm_get_linear_rip(vcpu); 9074 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9075 vcpu->arch.guest_debug_dr7, 9076 vcpu->arch.eff_db); 9077 9078 if (dr6 != 0) { 9079 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 9080 kvm_run->debug.arch.pc = eip; 9081 kvm_run->debug.arch.exception = DB_VECTOR; 9082 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9083 *r = 0; 9084 return true; 9085 } 9086 } 9087 9088 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 9089 !kvm_is_code_breakpoint_inhibited(vcpu)) { 9090 unsigned long eip = kvm_get_linear_rip(vcpu); 9091 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9092 vcpu->arch.dr7, 9093 vcpu->arch.db); 9094 9095 if (dr6 != 0) { 9096 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9097 *r = 1; 9098 return true; 9099 } 9100 } 9101 9102 return false; 9103 } 9104 9105 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9106 { 9107 switch (ctxt->opcode_len) { 9108 case 1: 9109 switch (ctxt->b) { 9110 case 0xe4: /* IN */ 9111 case 0xe5: 9112 case 0xec: 9113 case 0xed: 9114 case 0xe6: /* OUT */ 9115 case 0xe7: 9116 case 0xee: 9117 case 0xef: 9118 case 0x6c: /* INS */ 9119 case 0x6d: 9120 case 0x6e: /* OUTS */ 9121 case 0x6f: 9122 return true; 9123 } 9124 break; 9125 case 2: 9126 switch (ctxt->b) { 9127 case 0x33: /* RDPMC */ 9128 return true; 9129 } 9130 break; 9131 } 9132 9133 return false; 9134 } 9135 9136 /* 9137 * Decode an instruction for emulation. The caller is responsible for handling 9138 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9139 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9140 * code breakpoints have higher priority and thus have already been done by 9141 * hardware. 9142 * 9143 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9144 * response to a machine check. 9145 */ 9146 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9147 void *insn, int insn_len) 9148 { 9149 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9150 int r; 9151 9152 init_emulate_ctxt(vcpu); 9153 9154 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9155 9156 trace_kvm_emulate_insn_start(vcpu); 9157 ++vcpu->stat.insn_emulation; 9158 9159 return r; 9160 } 9161 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9162 9163 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9164 int emulation_type, void *insn, int insn_len) 9165 { 9166 int r; 9167 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9168 bool writeback = true; 9169 9170 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9171 if (r != X86EMUL_CONTINUE) { 9172 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9173 return 1; 9174 9175 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9176 return handle_emulation_failure(vcpu, emulation_type); 9177 } 9178 9179 vcpu->arch.l1tf_flush_l1d = true; 9180 9181 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9182 kvm_clear_exception_queue(vcpu); 9183 9184 /* 9185 * Return immediately if RIP hits a code breakpoint, such #DBs 9186 * are fault-like and are higher priority than any faults on 9187 * the code fetch itself. 9188 */ 9189 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9190 return r; 9191 9192 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9193 insn, insn_len); 9194 if (r != EMULATION_OK) { 9195 if ((emulation_type & EMULTYPE_TRAP_UD) || 9196 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9197 kvm_queue_exception(vcpu, UD_VECTOR); 9198 return 1; 9199 } 9200 if (reexecute_instruction(vcpu, cr2_or_gpa, 9201 emulation_type)) 9202 return 1; 9203 9204 if (ctxt->have_exception && 9205 !(emulation_type & EMULTYPE_SKIP)) { 9206 /* 9207 * #UD should result in just EMULATION_FAILED, and trap-like 9208 * exception should not be encountered during decode. 9209 */ 9210 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9211 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9212 inject_emulated_exception(vcpu); 9213 return 1; 9214 } 9215 return handle_emulation_failure(vcpu, emulation_type); 9216 } 9217 } 9218 9219 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9220 !is_vmware_backdoor_opcode(ctxt)) { 9221 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9222 return 1; 9223 } 9224 9225 /* 9226 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9227 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9228 * The caller is responsible for updating interruptibility state and 9229 * injecting single-step #DBs. 9230 */ 9231 if (emulation_type & EMULTYPE_SKIP) { 9232 if (ctxt->mode != X86EMUL_MODE_PROT64) 9233 ctxt->eip = (u32)ctxt->_eip; 9234 else 9235 ctxt->eip = ctxt->_eip; 9236 9237 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9238 r = 1; 9239 goto writeback; 9240 } 9241 9242 kvm_rip_write(vcpu, ctxt->eip); 9243 if (ctxt->eflags & X86_EFLAGS_RF) 9244 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9245 return 1; 9246 } 9247 9248 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 9249 return 1; 9250 9251 /* this is needed for vmware backdoor interface to work since it 9252 changes registers values during IO operation */ 9253 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9254 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9255 emulator_invalidate_register_cache(ctxt); 9256 } 9257 9258 restart: 9259 if (emulation_type & EMULTYPE_PF) { 9260 /* Save the faulting GPA (cr2) in the address field */ 9261 ctxt->exception.address = cr2_or_gpa; 9262 9263 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9264 if (vcpu->arch.mmu->root_role.direct) { 9265 ctxt->gpa_available = true; 9266 ctxt->gpa_val = cr2_or_gpa; 9267 } 9268 } else { 9269 /* Sanitize the address out of an abundance of paranoia. */ 9270 ctxt->exception.address = 0; 9271 } 9272 9273 r = x86_emulate_insn(ctxt); 9274 9275 if (r == EMULATION_INTERCEPTED) 9276 return 1; 9277 9278 if (r == EMULATION_FAILED) { 9279 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 9280 return 1; 9281 9282 return handle_emulation_failure(vcpu, emulation_type); 9283 } 9284 9285 if (ctxt->have_exception) { 9286 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9287 vcpu->mmio_needed = false; 9288 r = 1; 9289 inject_emulated_exception(vcpu); 9290 } else if (vcpu->arch.pio.count) { 9291 if (!vcpu->arch.pio.in) { 9292 /* FIXME: return into emulator if single-stepping. */ 9293 vcpu->arch.pio.count = 0; 9294 } else { 9295 writeback = false; 9296 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9297 } 9298 r = 0; 9299 } else if (vcpu->mmio_needed) { 9300 ++vcpu->stat.mmio_exits; 9301 9302 if (!vcpu->mmio_is_write) 9303 writeback = false; 9304 r = 0; 9305 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9306 } else if (vcpu->arch.complete_userspace_io) { 9307 writeback = false; 9308 r = 0; 9309 } else if (r == EMULATION_RESTART) 9310 goto restart; 9311 else 9312 r = 1; 9313 9314 writeback: 9315 if (writeback) { 9316 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9317 toggle_interruptibility(vcpu, ctxt->interruptibility); 9318 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9319 9320 /* 9321 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9322 * only supports code breakpoints and general detect #DB, both 9323 * of which are fault-like. 9324 */ 9325 if (!ctxt->have_exception || 9326 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9327 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9328 if (ctxt->is_branch) 9329 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9330 kvm_rip_write(vcpu, ctxt->eip); 9331 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9332 r = kvm_vcpu_do_singlestep(vcpu); 9333 kvm_x86_call(update_emulated_instruction)(vcpu); 9334 __kvm_set_rflags(vcpu, ctxt->eflags); 9335 } 9336 9337 /* 9338 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9339 * do nothing, and it will be requested again as soon as 9340 * the shadow expires. But we still need to check here, 9341 * because POPF has no interrupt shadow. 9342 */ 9343 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9344 kvm_make_request(KVM_REQ_EVENT, vcpu); 9345 } else 9346 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9347 9348 return r; 9349 } 9350 9351 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9352 { 9353 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9354 } 9355 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9356 9357 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9358 void *insn, int insn_len) 9359 { 9360 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9361 } 9362 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9363 9364 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9365 { 9366 vcpu->arch.pio.count = 0; 9367 return 1; 9368 } 9369 9370 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9371 { 9372 vcpu->arch.pio.count = 0; 9373 9374 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9375 return 1; 9376 9377 return kvm_skip_emulated_instruction(vcpu); 9378 } 9379 9380 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9381 unsigned short port) 9382 { 9383 unsigned long val = kvm_rax_read(vcpu); 9384 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9385 9386 if (ret) 9387 return ret; 9388 9389 /* 9390 * Workaround userspace that relies on old KVM behavior of %rip being 9391 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9392 */ 9393 if (port == 0x7e && 9394 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9395 vcpu->arch.complete_userspace_io = 9396 complete_fast_pio_out_port_0x7e; 9397 kvm_skip_emulated_instruction(vcpu); 9398 } else { 9399 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9400 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9401 } 9402 return 0; 9403 } 9404 9405 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9406 { 9407 unsigned long val; 9408 9409 /* We should only ever be called with arch.pio.count equal to 1 */ 9410 BUG_ON(vcpu->arch.pio.count != 1); 9411 9412 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9413 vcpu->arch.pio.count = 0; 9414 return 1; 9415 } 9416 9417 /* For size less than 4 we merge, else we zero extend */ 9418 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9419 9420 complete_emulator_pio_in(vcpu, &val); 9421 kvm_rax_write(vcpu, val); 9422 9423 return kvm_skip_emulated_instruction(vcpu); 9424 } 9425 9426 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9427 unsigned short port) 9428 { 9429 unsigned long val; 9430 int ret; 9431 9432 /* For size less than 4 we merge, else we zero extend */ 9433 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9434 9435 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9436 if (ret) { 9437 kvm_rax_write(vcpu, val); 9438 return ret; 9439 } 9440 9441 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9442 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9443 9444 return 0; 9445 } 9446 9447 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9448 { 9449 int ret; 9450 9451 if (in) 9452 ret = kvm_fast_pio_in(vcpu, size, port); 9453 else 9454 ret = kvm_fast_pio_out(vcpu, size, port); 9455 return ret && kvm_skip_emulated_instruction(vcpu); 9456 } 9457 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9458 9459 static int kvmclock_cpu_down_prep(unsigned int cpu) 9460 { 9461 __this_cpu_write(cpu_tsc_khz, 0); 9462 return 0; 9463 } 9464 9465 static void tsc_khz_changed(void *data) 9466 { 9467 struct cpufreq_freqs *freq = data; 9468 unsigned long khz; 9469 9470 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9471 9472 if (data) 9473 khz = freq->new; 9474 else 9475 khz = cpufreq_quick_get(raw_smp_processor_id()); 9476 if (!khz) 9477 khz = tsc_khz; 9478 __this_cpu_write(cpu_tsc_khz, khz); 9479 } 9480 9481 #ifdef CONFIG_X86_64 9482 static void kvm_hyperv_tsc_notifier(void) 9483 { 9484 struct kvm *kvm; 9485 int cpu; 9486 9487 mutex_lock(&kvm_lock); 9488 list_for_each_entry(kvm, &vm_list, vm_list) 9489 kvm_make_mclock_inprogress_request(kvm); 9490 9491 /* no guest entries from this point */ 9492 hyperv_stop_tsc_emulation(); 9493 9494 /* TSC frequency always matches when on Hyper-V */ 9495 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9496 for_each_present_cpu(cpu) 9497 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9498 } 9499 kvm_caps.max_guest_tsc_khz = tsc_khz; 9500 9501 list_for_each_entry(kvm, &vm_list, vm_list) { 9502 __kvm_start_pvclock_update(kvm); 9503 pvclock_update_vm_gtod_copy(kvm); 9504 kvm_end_pvclock_update(kvm); 9505 } 9506 9507 mutex_unlock(&kvm_lock); 9508 } 9509 #endif 9510 9511 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9512 { 9513 struct kvm *kvm; 9514 struct kvm_vcpu *vcpu; 9515 int send_ipi = 0; 9516 unsigned long i; 9517 9518 /* 9519 * We allow guests to temporarily run on slowing clocks, 9520 * provided we notify them after, or to run on accelerating 9521 * clocks, provided we notify them before. Thus time never 9522 * goes backwards. 9523 * 9524 * However, we have a problem. We can't atomically update 9525 * the frequency of a given CPU from this function; it is 9526 * merely a notifier, which can be called from any CPU. 9527 * Changing the TSC frequency at arbitrary points in time 9528 * requires a recomputation of local variables related to 9529 * the TSC for each VCPU. We must flag these local variables 9530 * to be updated and be sure the update takes place with the 9531 * new frequency before any guests proceed. 9532 * 9533 * Unfortunately, the combination of hotplug CPU and frequency 9534 * change creates an intractable locking scenario; the order 9535 * of when these callouts happen is undefined with respect to 9536 * CPU hotplug, and they can race with each other. As such, 9537 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9538 * undefined; you can actually have a CPU frequency change take 9539 * place in between the computation of X and the setting of the 9540 * variable. To protect against this problem, all updates of 9541 * the per_cpu tsc_khz variable are done in an interrupt 9542 * protected IPI, and all callers wishing to update the value 9543 * must wait for a synchronous IPI to complete (which is trivial 9544 * if the caller is on the CPU already). This establishes the 9545 * necessary total order on variable updates. 9546 * 9547 * Note that because a guest time update may take place 9548 * anytime after the setting of the VCPU's request bit, the 9549 * correct TSC value must be set before the request. However, 9550 * to ensure the update actually makes it to any guest which 9551 * starts running in hardware virtualization between the set 9552 * and the acquisition of the spinlock, we must also ping the 9553 * CPU after setting the request bit. 9554 * 9555 */ 9556 9557 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9558 9559 mutex_lock(&kvm_lock); 9560 list_for_each_entry(kvm, &vm_list, vm_list) { 9561 kvm_for_each_vcpu(i, vcpu, kvm) { 9562 if (vcpu->cpu != cpu) 9563 continue; 9564 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9565 if (vcpu->cpu != raw_smp_processor_id()) 9566 send_ipi = 1; 9567 } 9568 } 9569 mutex_unlock(&kvm_lock); 9570 9571 if (freq->old < freq->new && send_ipi) { 9572 /* 9573 * We upscale the frequency. Must make the guest 9574 * doesn't see old kvmclock values while running with 9575 * the new frequency, otherwise we risk the guest sees 9576 * time go backwards. 9577 * 9578 * In case we update the frequency for another cpu 9579 * (which might be in guest context) send an interrupt 9580 * to kick the cpu out of guest context. Next time 9581 * guest context is entered kvmclock will be updated, 9582 * so the guest will not see stale values. 9583 */ 9584 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9585 } 9586 } 9587 9588 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9589 void *data) 9590 { 9591 struct cpufreq_freqs *freq = data; 9592 int cpu; 9593 9594 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9595 return 0; 9596 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9597 return 0; 9598 9599 for_each_cpu(cpu, freq->policy->cpus) 9600 __kvmclock_cpufreq_notifier(freq, cpu); 9601 9602 return 0; 9603 } 9604 9605 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9606 .notifier_call = kvmclock_cpufreq_notifier 9607 }; 9608 9609 static int kvmclock_cpu_online(unsigned int cpu) 9610 { 9611 tsc_khz_changed(NULL); 9612 return 0; 9613 } 9614 9615 static void kvm_timer_init(void) 9616 { 9617 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9618 max_tsc_khz = tsc_khz; 9619 9620 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9621 struct cpufreq_policy *policy; 9622 int cpu; 9623 9624 cpu = get_cpu(); 9625 policy = cpufreq_cpu_get(cpu); 9626 if (policy) { 9627 if (policy->cpuinfo.max_freq) 9628 max_tsc_khz = policy->cpuinfo.max_freq; 9629 cpufreq_cpu_put(policy); 9630 } 9631 put_cpu(); 9632 } 9633 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9634 CPUFREQ_TRANSITION_NOTIFIER); 9635 9636 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9637 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9638 } 9639 } 9640 9641 #ifdef CONFIG_X86_64 9642 static void pvclock_gtod_update_fn(struct work_struct *work) 9643 { 9644 struct kvm *kvm; 9645 struct kvm_vcpu *vcpu; 9646 unsigned long i; 9647 9648 mutex_lock(&kvm_lock); 9649 list_for_each_entry(kvm, &vm_list, vm_list) 9650 kvm_for_each_vcpu(i, vcpu, kvm) 9651 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9652 atomic_set(&kvm_guest_has_master_clock, 0); 9653 mutex_unlock(&kvm_lock); 9654 } 9655 9656 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9657 9658 /* 9659 * Indirection to move queue_work() out of the tk_core.seq write held 9660 * region to prevent possible deadlocks against time accessors which 9661 * are invoked with work related locks held. 9662 */ 9663 static void pvclock_irq_work_fn(struct irq_work *w) 9664 { 9665 queue_work(system_long_wq, &pvclock_gtod_work); 9666 } 9667 9668 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9669 9670 /* 9671 * Notification about pvclock gtod data update. 9672 */ 9673 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9674 void *priv) 9675 { 9676 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9677 struct timekeeper *tk = priv; 9678 9679 update_pvclock_gtod(tk); 9680 9681 /* 9682 * Disable master clock if host does not trust, or does not use, 9683 * TSC based clocksource. Delegate queue_work() to irq_work as 9684 * this is invoked with tk_core.seq write held. 9685 */ 9686 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9687 atomic_read(&kvm_guest_has_master_clock) != 0) 9688 irq_work_queue(&pvclock_irq_work); 9689 return 0; 9690 } 9691 9692 static struct notifier_block pvclock_gtod_notifier = { 9693 .notifier_call = pvclock_gtod_notify, 9694 }; 9695 #endif 9696 9697 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9698 { 9699 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9700 9701 #define __KVM_X86_OP(func) \ 9702 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9703 #define KVM_X86_OP(func) \ 9704 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9705 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9706 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9707 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9708 (void *)__static_call_return0); 9709 #include <asm/kvm-x86-ops.h> 9710 #undef __KVM_X86_OP 9711 9712 kvm_pmu_ops_update(ops->pmu_ops); 9713 } 9714 9715 static int kvm_x86_check_processor_compatibility(void) 9716 { 9717 int cpu = smp_processor_id(); 9718 struct cpuinfo_x86 *c = &cpu_data(cpu); 9719 9720 /* 9721 * Compatibility checks are done when loading KVM and when enabling 9722 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9723 * compatible, i.e. KVM should never perform a compatibility check on 9724 * an offline CPU. 9725 */ 9726 WARN_ON(!cpu_online(cpu)); 9727 9728 if (__cr4_reserved_bits(cpu_has, c) != 9729 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9730 return -EIO; 9731 9732 return kvm_x86_call(check_processor_compatibility)(); 9733 } 9734 9735 static void kvm_x86_check_cpu_compat(void *ret) 9736 { 9737 *(int *)ret = kvm_x86_check_processor_compatibility(); 9738 } 9739 9740 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9741 { 9742 u64 host_pat; 9743 int r, cpu; 9744 9745 guard(mutex)(&vendor_module_lock); 9746 9747 if (kvm_x86_ops.hardware_enable) { 9748 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9749 return -EEXIST; 9750 } 9751 9752 /* 9753 * KVM explicitly assumes that the guest has an FPU and 9754 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9755 * vCPU's FPU state as a fxregs_state struct. 9756 */ 9757 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9758 pr_err("inadequate fpu\n"); 9759 return -EOPNOTSUPP; 9760 } 9761 9762 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9763 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9764 return -EOPNOTSUPP; 9765 } 9766 9767 /* 9768 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9769 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9770 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9771 * with an exception. PAT[0] is set to WB on RESET and also by the 9772 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9773 */ 9774 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9775 (host_pat & GENMASK(2, 0)) != 6) { 9776 pr_err("host PAT[0] is not WB\n"); 9777 return -EIO; 9778 } 9779 9780 memset(&kvm_caps, 0, sizeof(kvm_caps)); 9781 9782 x86_emulator_cache = kvm_alloc_emulator_cache(); 9783 if (!x86_emulator_cache) { 9784 pr_err("failed to allocate cache for x86 emulator\n"); 9785 return -ENOMEM; 9786 } 9787 9788 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9789 if (!user_return_msrs) { 9790 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9791 r = -ENOMEM; 9792 goto out_free_x86_emulator_cache; 9793 } 9794 kvm_nr_uret_msrs = 0; 9795 9796 r = kvm_mmu_vendor_module_init(); 9797 if (r) 9798 goto out_free_percpu; 9799 9800 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 9801 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 9802 9803 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9804 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9805 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; 9806 } 9807 9808 rdmsrl_safe(MSR_EFER, &kvm_host.efer); 9809 9810 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9811 rdmsrl(MSR_IA32_XSS, kvm_host.xss); 9812 9813 kvm_init_pmu_capability(ops->pmu_ops); 9814 9815 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9816 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); 9817 9818 r = ops->hardware_setup(); 9819 if (r != 0) 9820 goto out_mmu_exit; 9821 9822 kvm_ops_update(ops); 9823 9824 for_each_online_cpu(cpu) { 9825 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9826 if (r < 0) 9827 goto out_unwind_ops; 9828 } 9829 9830 /* 9831 * Point of no return! DO NOT add error paths below this point unless 9832 * absolutely necessary, as most operations from this point forward 9833 * require unwinding. 9834 */ 9835 kvm_timer_init(); 9836 9837 if (pi_inject_timer == -1) 9838 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9839 #ifdef CONFIG_X86_64 9840 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9841 9842 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9843 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9844 #endif 9845 9846 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9847 9848 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 9849 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 9850 9851 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9852 kvm_caps.supported_xss = 0; 9853 9854 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9855 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9856 #undef __kvm_cpu_cap_has 9857 9858 if (kvm_caps.has_tsc_control) { 9859 /* 9860 * Make sure the user can only configure tsc_khz values that 9861 * fit into a signed integer. 9862 * A min value is not calculated because it will always 9863 * be 1 on all machines. 9864 */ 9865 u64 max = min(0x7fffffffULL, 9866 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9867 kvm_caps.max_guest_tsc_khz = max; 9868 } 9869 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9870 kvm_init_msr_lists(); 9871 return 0; 9872 9873 out_unwind_ops: 9874 kvm_x86_ops.hardware_enable = NULL; 9875 kvm_x86_call(hardware_unsetup)(); 9876 out_mmu_exit: 9877 kvm_mmu_vendor_module_exit(); 9878 out_free_percpu: 9879 free_percpu(user_return_msrs); 9880 out_free_x86_emulator_cache: 9881 kmem_cache_destroy(x86_emulator_cache); 9882 return r; 9883 } 9884 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9885 9886 void kvm_x86_vendor_exit(void) 9887 { 9888 kvm_unregister_perf_callbacks(); 9889 9890 #ifdef CONFIG_X86_64 9891 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9892 clear_hv_tscchange_cb(); 9893 #endif 9894 kvm_lapic_exit(); 9895 9896 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9897 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9898 CPUFREQ_TRANSITION_NOTIFIER); 9899 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9900 } 9901 #ifdef CONFIG_X86_64 9902 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9903 irq_work_sync(&pvclock_irq_work); 9904 cancel_work_sync(&pvclock_gtod_work); 9905 #endif 9906 kvm_x86_call(hardware_unsetup)(); 9907 kvm_mmu_vendor_module_exit(); 9908 free_percpu(user_return_msrs); 9909 kmem_cache_destroy(x86_emulator_cache); 9910 #ifdef CONFIG_KVM_XEN 9911 static_key_deferred_flush(&kvm_xen_enabled); 9912 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9913 #endif 9914 mutex_lock(&vendor_module_lock); 9915 kvm_x86_ops.hardware_enable = NULL; 9916 mutex_unlock(&vendor_module_lock); 9917 } 9918 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9919 9920 #ifdef CONFIG_X86_64 9921 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9922 unsigned long clock_type) 9923 { 9924 struct kvm_clock_pairing clock_pairing; 9925 struct timespec64 ts; 9926 u64 cycle; 9927 int ret; 9928 9929 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9930 return -KVM_EOPNOTSUPP; 9931 9932 /* 9933 * When tsc is in permanent catchup mode guests won't be able to use 9934 * pvclock_read_retry loop to get consistent view of pvclock 9935 */ 9936 if (vcpu->arch.tsc_always_catchup) 9937 return -KVM_EOPNOTSUPP; 9938 9939 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9940 return -KVM_EOPNOTSUPP; 9941 9942 clock_pairing.sec = ts.tv_sec; 9943 clock_pairing.nsec = ts.tv_nsec; 9944 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9945 clock_pairing.flags = 0; 9946 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9947 9948 ret = 0; 9949 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9950 sizeof(struct kvm_clock_pairing))) 9951 ret = -KVM_EFAULT; 9952 9953 return ret; 9954 } 9955 #endif 9956 9957 /* 9958 * kvm_pv_kick_cpu_op: Kick a vcpu. 9959 * 9960 * @apicid - apicid of vcpu to be kicked. 9961 */ 9962 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9963 { 9964 /* 9965 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9966 * common code, e.g. for tracing. Defer initialization to the compiler. 9967 */ 9968 struct kvm_lapic_irq lapic_irq = { 9969 .delivery_mode = APIC_DM_REMRD, 9970 .dest_mode = APIC_DEST_PHYSICAL, 9971 .shorthand = APIC_DEST_NOSHORT, 9972 .dest_id = apicid, 9973 }; 9974 9975 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9976 } 9977 9978 bool kvm_apicv_activated(struct kvm *kvm) 9979 { 9980 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9981 } 9982 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9983 9984 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9985 { 9986 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9987 ulong vcpu_reasons = 9988 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); 9989 9990 return (vm_reasons | vcpu_reasons) == 0; 9991 } 9992 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9993 9994 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9995 enum kvm_apicv_inhibit reason, bool set) 9996 { 9997 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; 9998 9999 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); 10000 10001 if (set) 10002 __set_bit(reason, inhibits); 10003 else 10004 __clear_bit(reason, inhibits); 10005 10006 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 10007 } 10008 10009 static void kvm_apicv_init(struct kvm *kvm) 10010 { 10011 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 10012 APICV_INHIBIT_REASON_DISABLED; 10013 10014 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 10015 10016 init_rwsem(&kvm->arch.apicv_update_lock); 10017 } 10018 10019 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 10020 { 10021 struct kvm_vcpu *target = NULL; 10022 struct kvm_apic_map *map; 10023 10024 vcpu->stat.directed_yield_attempted++; 10025 10026 if (single_task_running()) 10027 goto no_yield; 10028 10029 rcu_read_lock(); 10030 map = rcu_dereference(vcpu->kvm->arch.apic_map); 10031 10032 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 10033 target = map->phys_map[dest_id]->vcpu; 10034 10035 rcu_read_unlock(); 10036 10037 if (!target || !READ_ONCE(target->ready)) 10038 goto no_yield; 10039 10040 /* Ignore requests to yield to self */ 10041 if (vcpu == target) 10042 goto no_yield; 10043 10044 if (kvm_vcpu_yield_to(target) <= 0) 10045 goto no_yield; 10046 10047 vcpu->stat.directed_yield_successful++; 10048 10049 no_yield: 10050 return; 10051 } 10052 10053 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 10054 { 10055 u64 ret = vcpu->run->hypercall.ret; 10056 10057 if (!is_64_bit_mode(vcpu)) 10058 ret = (u32)ret; 10059 kvm_rax_write(vcpu, ret); 10060 ++vcpu->stat.hypercalls; 10061 return kvm_skip_emulated_instruction(vcpu); 10062 } 10063 10064 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 10065 unsigned long a0, unsigned long a1, 10066 unsigned long a2, unsigned long a3, 10067 int op_64_bit, int cpl) 10068 { 10069 unsigned long ret; 10070 10071 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10072 10073 if (!op_64_bit) { 10074 nr &= 0xFFFFFFFF; 10075 a0 &= 0xFFFFFFFF; 10076 a1 &= 0xFFFFFFFF; 10077 a2 &= 0xFFFFFFFF; 10078 a3 &= 0xFFFFFFFF; 10079 } 10080 10081 if (cpl) { 10082 ret = -KVM_EPERM; 10083 goto out; 10084 } 10085 10086 ret = -KVM_ENOSYS; 10087 10088 switch (nr) { 10089 case KVM_HC_VAPIC_POLL_IRQ: 10090 ret = 0; 10091 break; 10092 case KVM_HC_KICK_CPU: 10093 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10094 break; 10095 10096 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10097 kvm_sched_yield(vcpu, a1); 10098 ret = 0; 10099 break; 10100 #ifdef CONFIG_X86_64 10101 case KVM_HC_CLOCK_PAIRING: 10102 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10103 break; 10104 #endif 10105 case KVM_HC_SEND_IPI: 10106 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10107 break; 10108 10109 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10110 break; 10111 case KVM_HC_SCHED_YIELD: 10112 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10113 break; 10114 10115 kvm_sched_yield(vcpu, a0); 10116 ret = 0; 10117 break; 10118 case KVM_HC_MAP_GPA_RANGE: { 10119 u64 gpa = a0, npages = a1, attrs = a2; 10120 10121 ret = -KVM_ENOSYS; 10122 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10123 break; 10124 10125 if (!PAGE_ALIGNED(gpa) || !npages || 10126 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10127 ret = -KVM_EINVAL; 10128 break; 10129 } 10130 10131 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10132 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10133 vcpu->run->hypercall.args[0] = gpa; 10134 vcpu->run->hypercall.args[1] = npages; 10135 vcpu->run->hypercall.args[2] = attrs; 10136 vcpu->run->hypercall.flags = 0; 10137 if (op_64_bit) 10138 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10139 10140 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10141 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10142 /* stat is incremented on completion. */ 10143 return 0; 10144 } 10145 default: 10146 ret = -KVM_ENOSYS; 10147 break; 10148 } 10149 10150 out: 10151 ++vcpu->stat.hypercalls; 10152 return ret; 10153 } 10154 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall); 10155 10156 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10157 { 10158 unsigned long nr, a0, a1, a2, a3, ret; 10159 int op_64_bit; 10160 int cpl; 10161 10162 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10163 return kvm_xen_hypercall(vcpu); 10164 10165 if (kvm_hv_hypercall_enabled(vcpu)) 10166 return kvm_hv_hypercall(vcpu); 10167 10168 nr = kvm_rax_read(vcpu); 10169 a0 = kvm_rbx_read(vcpu); 10170 a1 = kvm_rcx_read(vcpu); 10171 a2 = kvm_rdx_read(vcpu); 10172 a3 = kvm_rsi_read(vcpu); 10173 op_64_bit = is_64_bit_hypercall(vcpu); 10174 cpl = kvm_x86_call(get_cpl)(vcpu); 10175 10176 ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl); 10177 if (nr == KVM_HC_MAP_GPA_RANGE && !ret) 10178 /* MAP_GPA tosses the request to the user space. */ 10179 return 0; 10180 10181 if (!op_64_bit) 10182 ret = (u32)ret; 10183 kvm_rax_write(vcpu, ret); 10184 10185 return kvm_skip_emulated_instruction(vcpu); 10186 } 10187 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10188 10189 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10190 { 10191 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10192 char instruction[3]; 10193 unsigned long rip = kvm_rip_read(vcpu); 10194 10195 /* 10196 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10197 * the pieces. 10198 */ 10199 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10200 ctxt->exception.error_code_valid = false; 10201 ctxt->exception.vector = UD_VECTOR; 10202 ctxt->have_exception = true; 10203 return X86EMUL_PROPAGATE_FAULT; 10204 } 10205 10206 kvm_x86_call(patch_hypercall)(vcpu, instruction); 10207 10208 return emulator_write_emulated(ctxt, rip, instruction, 3, 10209 &ctxt->exception); 10210 } 10211 10212 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10213 { 10214 return vcpu->run->request_interrupt_window && 10215 likely(!pic_in_kernel(vcpu->kvm)); 10216 } 10217 10218 /* Called within kvm->srcu read side. */ 10219 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10220 { 10221 struct kvm_run *kvm_run = vcpu->run; 10222 10223 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); 10224 kvm_run->cr8 = kvm_get_cr8(vcpu); 10225 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10226 10227 kvm_run->ready_for_interrupt_injection = 10228 pic_in_kernel(vcpu->kvm) || 10229 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10230 10231 if (is_smm(vcpu)) 10232 kvm_run->flags |= KVM_RUN_X86_SMM; 10233 if (is_guest_mode(vcpu)) 10234 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; 10235 } 10236 10237 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10238 { 10239 int max_irr, tpr; 10240 10241 if (!kvm_x86_ops.update_cr8_intercept) 10242 return; 10243 10244 if (!lapic_in_kernel(vcpu)) 10245 return; 10246 10247 if (vcpu->arch.apic->apicv_active) 10248 return; 10249 10250 if (!vcpu->arch.apic->vapic_addr) 10251 max_irr = kvm_lapic_find_highest_irr(vcpu); 10252 else 10253 max_irr = -1; 10254 10255 if (max_irr != -1) 10256 max_irr >>= 4; 10257 10258 tpr = kvm_lapic_get_cr8(vcpu); 10259 10260 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); 10261 } 10262 10263 10264 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10265 { 10266 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10267 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10268 return 1; 10269 } 10270 10271 return kvm_x86_ops.nested_ops->check_events(vcpu); 10272 } 10273 10274 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10275 { 10276 /* 10277 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10278 * exceptions don't report error codes. The presence of an error code 10279 * is carried with the exception and only stripped when the exception 10280 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10281 * report an error code despite the CPU being in Real Mode. 10282 */ 10283 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10284 10285 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10286 vcpu->arch.exception.has_error_code, 10287 vcpu->arch.exception.error_code, 10288 vcpu->arch.exception.injected); 10289 10290 kvm_x86_call(inject_exception)(vcpu); 10291 } 10292 10293 /* 10294 * Check for any event (interrupt or exception) that is ready to be injected, 10295 * and if there is at least one event, inject the event with the highest 10296 * priority. This handles both "pending" events, i.e. events that have never 10297 * been injected into the guest, and "injected" events, i.e. events that were 10298 * injected as part of a previous VM-Enter, but weren't successfully delivered 10299 * and need to be re-injected. 10300 * 10301 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10302 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10303 * be able to inject exceptions in the "middle" of an instruction, and so must 10304 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10305 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10306 * boundaries is necessary and correct. 10307 * 10308 * For simplicity, KVM uses a single path to inject all events (except events 10309 * that are injected directly from L1 to L2) and doesn't explicitly track 10310 * instruction boundaries for asynchronous events. However, because VM-Exits 10311 * that can occur during instruction execution typically result in KVM skipping 10312 * the instruction or injecting an exception, e.g. instruction and exception 10313 * intercepts, and because pending exceptions have higher priority than pending 10314 * interrupts, KVM still honors instruction boundaries in most scenarios. 10315 * 10316 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10317 * the instruction or inject an exception, then KVM can incorrecty inject a new 10318 * asynchronous event if the event became pending after the CPU fetched the 10319 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10320 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10321 * injected on the restarted instruction instead of being deferred until the 10322 * instruction completes. 10323 * 10324 * In practice, this virtualization hole is unlikely to be observed by the 10325 * guest, and even less likely to cause functional problems. To detect the 10326 * hole, the guest would have to trigger an event on a side effect of an early 10327 * phase of instruction execution, e.g. on the instruction fetch from memory. 10328 * And for it to be a functional problem, the guest would need to depend on the 10329 * ordering between that side effect, the instruction completing, _and_ the 10330 * delivery of the asynchronous event. 10331 */ 10332 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10333 bool *req_immediate_exit) 10334 { 10335 bool can_inject; 10336 int r; 10337 10338 /* 10339 * Process nested events first, as nested VM-Exit supersedes event 10340 * re-injection. If there's an event queued for re-injection, it will 10341 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10342 */ 10343 if (is_guest_mode(vcpu)) 10344 r = kvm_check_nested_events(vcpu); 10345 else 10346 r = 0; 10347 10348 /* 10349 * Re-inject exceptions and events *especially* if immediate entry+exit 10350 * to/from L2 is needed, as any event that has already been injected 10351 * into L2 needs to complete its lifecycle before injecting a new event. 10352 * 10353 * Don't re-inject an NMI or interrupt if there is a pending exception. 10354 * This collision arises if an exception occurred while vectoring the 10355 * injected event, KVM intercepted said exception, and KVM ultimately 10356 * determined the fault belongs to the guest and queues the exception 10357 * for injection back into the guest. 10358 * 10359 * "Injected" interrupts can also collide with pending exceptions if 10360 * userspace ignores the "ready for injection" flag and blindly queues 10361 * an interrupt. In that case, prioritizing the exception is correct, 10362 * as the exception "occurred" before the exit to userspace. Trap-like 10363 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10364 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10365 * priority, they're only generated (pended) during instruction 10366 * execution, and interrupts are recognized at instruction boundaries. 10367 * Thus a pending fault-like exception means the fault occurred on the 10368 * *previous* instruction and must be serviced prior to recognizing any 10369 * new events in order to fully complete the previous instruction. 10370 */ 10371 if (vcpu->arch.exception.injected) 10372 kvm_inject_exception(vcpu); 10373 else if (kvm_is_exception_pending(vcpu)) 10374 ; /* see above */ 10375 else if (vcpu->arch.nmi_injected) 10376 kvm_x86_call(inject_nmi)(vcpu); 10377 else if (vcpu->arch.interrupt.injected) 10378 kvm_x86_call(inject_irq)(vcpu, true); 10379 10380 /* 10381 * Exceptions that morph to VM-Exits are handled above, and pending 10382 * exceptions on top of injected exceptions that do not VM-Exit should 10383 * either morph to #DF or, sadly, override the injected exception. 10384 */ 10385 WARN_ON_ONCE(vcpu->arch.exception.injected && 10386 vcpu->arch.exception.pending); 10387 10388 /* 10389 * Bail if immediate entry+exit to/from the guest is needed to complete 10390 * nested VM-Enter or event re-injection so that a different pending 10391 * event can be serviced (or if KVM needs to exit to userspace). 10392 * 10393 * Otherwise, continue processing events even if VM-Exit occurred. The 10394 * VM-Exit will have cleared exceptions that were meant for L2, but 10395 * there may now be events that can be injected into L1. 10396 */ 10397 if (r < 0) 10398 goto out; 10399 10400 /* 10401 * A pending exception VM-Exit should either result in nested VM-Exit 10402 * or force an immediate re-entry and exit to/from L2, and exception 10403 * VM-Exits cannot be injected (flag should _never_ be set). 10404 */ 10405 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10406 vcpu->arch.exception_vmexit.pending); 10407 10408 /* 10409 * New events, other than exceptions, cannot be injected if KVM needs 10410 * to re-inject a previous event. See above comments on re-injecting 10411 * for why pending exceptions get priority. 10412 */ 10413 can_inject = !kvm_event_needs_reinjection(vcpu); 10414 10415 if (vcpu->arch.exception.pending) { 10416 /* 10417 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10418 * value pushed on the stack. Trap-like exception and all #DBs 10419 * leave RF as-is (KVM follows Intel's behavior in this regard; 10420 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10421 * 10422 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10423 * describe the behavior of General Detect #DBs, which are 10424 * fault-like. They do _not_ set RF, a la code breakpoints. 10425 */ 10426 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10427 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10428 X86_EFLAGS_RF); 10429 10430 if (vcpu->arch.exception.vector == DB_VECTOR) { 10431 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10432 if (vcpu->arch.dr7 & DR7_GD) { 10433 vcpu->arch.dr7 &= ~DR7_GD; 10434 kvm_update_dr7(vcpu); 10435 } 10436 } 10437 10438 kvm_inject_exception(vcpu); 10439 10440 vcpu->arch.exception.pending = false; 10441 vcpu->arch.exception.injected = true; 10442 10443 can_inject = false; 10444 } 10445 10446 /* Don't inject interrupts if the user asked to avoid doing so */ 10447 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10448 return 0; 10449 10450 /* 10451 * Finally, inject interrupt events. If an event cannot be injected 10452 * due to architectural conditions (e.g. IF=0) a window-open exit 10453 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10454 * and can architecturally be injected, but we cannot do it right now: 10455 * an interrupt could have arrived just now and we have to inject it 10456 * as a vmexit, or there could already an event in the queue, which is 10457 * indicated by can_inject. In that case we request an immediate exit 10458 * in order to make progress and get back here for another iteration. 10459 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10460 */ 10461 #ifdef CONFIG_KVM_SMM 10462 if (vcpu->arch.smi_pending) { 10463 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : 10464 -EBUSY; 10465 if (r < 0) 10466 goto out; 10467 if (r) { 10468 vcpu->arch.smi_pending = false; 10469 ++vcpu->arch.smi_count; 10470 enter_smm(vcpu); 10471 can_inject = false; 10472 } else 10473 kvm_x86_call(enable_smi_window)(vcpu); 10474 } 10475 #endif 10476 10477 if (vcpu->arch.nmi_pending) { 10478 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : 10479 -EBUSY; 10480 if (r < 0) 10481 goto out; 10482 if (r) { 10483 --vcpu->arch.nmi_pending; 10484 vcpu->arch.nmi_injected = true; 10485 kvm_x86_call(inject_nmi)(vcpu); 10486 can_inject = false; 10487 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); 10488 } 10489 if (vcpu->arch.nmi_pending) 10490 kvm_x86_call(enable_nmi_window)(vcpu); 10491 } 10492 10493 if (kvm_cpu_has_injectable_intr(vcpu)) { 10494 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : 10495 -EBUSY; 10496 if (r < 0) 10497 goto out; 10498 if (r) { 10499 int irq = kvm_cpu_get_interrupt(vcpu); 10500 10501 if (!WARN_ON_ONCE(irq == -1)) { 10502 kvm_queue_interrupt(vcpu, irq, false); 10503 kvm_x86_call(inject_irq)(vcpu, false); 10504 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); 10505 } 10506 } 10507 if (kvm_cpu_has_injectable_intr(vcpu)) 10508 kvm_x86_call(enable_irq_window)(vcpu); 10509 } 10510 10511 if (is_guest_mode(vcpu) && 10512 kvm_x86_ops.nested_ops->has_events && 10513 kvm_x86_ops.nested_ops->has_events(vcpu, true)) 10514 *req_immediate_exit = true; 10515 10516 /* 10517 * KVM must never queue a new exception while injecting an event; KVM 10518 * is done emulating and should only propagate the to-be-injected event 10519 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10520 * infinite loop as KVM will bail from VM-Enter to inject the pending 10521 * exception and start the cycle all over. 10522 * 10523 * Exempt triple faults as they have special handling and won't put the 10524 * vCPU into an infinite loop. Triple fault can be queued when running 10525 * VMX without unrestricted guest, as that requires KVM to emulate Real 10526 * Mode events (see kvm_inject_realmode_interrupt()). 10527 */ 10528 WARN_ON_ONCE(vcpu->arch.exception.pending || 10529 vcpu->arch.exception_vmexit.pending); 10530 return 0; 10531 10532 out: 10533 if (r == -EBUSY) { 10534 *req_immediate_exit = true; 10535 r = 0; 10536 } 10537 return r; 10538 } 10539 10540 static void process_nmi(struct kvm_vcpu *vcpu) 10541 { 10542 unsigned int limit; 10543 10544 /* 10545 * x86 is limited to one NMI pending, but because KVM can't react to 10546 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10547 * scheduled out, KVM needs to play nice with two queued NMIs showing 10548 * up at the same time. To handle this scenario, allow two NMIs to be 10549 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10550 * waiting for a previous NMI injection to complete (which effectively 10551 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10552 * will request an NMI window to handle the second NMI. 10553 */ 10554 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10555 limit = 1; 10556 else 10557 limit = 2; 10558 10559 /* 10560 * Adjust the limit to account for pending virtual NMIs, which aren't 10561 * tracked in vcpu->arch.nmi_pending. 10562 */ 10563 if (kvm_x86_call(is_vnmi_pending)(vcpu)) 10564 limit--; 10565 10566 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10567 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10568 10569 if (vcpu->arch.nmi_pending && 10570 (kvm_x86_call(set_vnmi_pending)(vcpu))) 10571 vcpu->arch.nmi_pending--; 10572 10573 if (vcpu->arch.nmi_pending) 10574 kvm_make_request(KVM_REQ_EVENT, vcpu); 10575 } 10576 10577 /* Return total number of NMIs pending injection to the VM */ 10578 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10579 { 10580 return vcpu->arch.nmi_pending + 10581 kvm_x86_call(is_vnmi_pending)(vcpu); 10582 } 10583 10584 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10585 unsigned long *vcpu_bitmap) 10586 { 10587 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10588 } 10589 10590 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10591 { 10592 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10593 } 10594 10595 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10596 { 10597 struct kvm_lapic *apic = vcpu->arch.apic; 10598 bool activate; 10599 10600 if (!lapic_in_kernel(vcpu)) 10601 return; 10602 10603 down_read(&vcpu->kvm->arch.apicv_update_lock); 10604 preempt_disable(); 10605 10606 /* Do not activate APICV when APIC is disabled */ 10607 activate = kvm_vcpu_apicv_activated(vcpu) && 10608 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10609 10610 if (apic->apicv_active == activate) 10611 goto out; 10612 10613 apic->apicv_active = activate; 10614 kvm_apic_update_apicv(vcpu); 10615 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); 10616 10617 /* 10618 * When APICv gets disabled, we may still have injected interrupts 10619 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10620 * still active when the interrupt got accepted. Make sure 10621 * kvm_check_and_inject_events() is called to check for that. 10622 */ 10623 if (!apic->apicv_active) 10624 kvm_make_request(KVM_REQ_EVENT, vcpu); 10625 10626 out: 10627 preempt_enable(); 10628 up_read(&vcpu->kvm->arch.apicv_update_lock); 10629 } 10630 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10631 10632 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10633 { 10634 if (!lapic_in_kernel(vcpu)) 10635 return; 10636 10637 /* 10638 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10639 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10640 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10641 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10642 * this case so that KVM can the AVIC doorbell to inject interrupts to 10643 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10644 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10645 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10646 * access page is sticky. 10647 */ 10648 if (apic_x2apic_mode(vcpu->arch.apic) && 10649 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10650 kvm_inhibit_apic_access_page(vcpu); 10651 10652 __kvm_vcpu_update_apicv(vcpu); 10653 } 10654 10655 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10656 enum kvm_apicv_inhibit reason, bool set) 10657 { 10658 unsigned long old, new; 10659 10660 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10661 10662 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10663 return; 10664 10665 old = new = kvm->arch.apicv_inhibit_reasons; 10666 10667 set_or_clear_apicv_inhibit(&new, reason, set); 10668 10669 if (!!old != !!new) { 10670 /* 10671 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10672 * false positives in the sanity check WARN in svm_vcpu_run(). 10673 * This task will wait for all vCPUs to ack the kick IRQ before 10674 * updating apicv_inhibit_reasons, and all other vCPUs will 10675 * block on acquiring apicv_update_lock so that vCPUs can't 10676 * redo svm_vcpu_run() without seeing the new inhibit state. 10677 * 10678 * Note, holding apicv_update_lock and taking it in the read 10679 * side (handling the request) also prevents other vCPUs from 10680 * servicing the request with a stale apicv_inhibit_reasons. 10681 */ 10682 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10683 kvm->arch.apicv_inhibit_reasons = new; 10684 if (new) { 10685 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10686 int idx = srcu_read_lock(&kvm->srcu); 10687 10688 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10689 srcu_read_unlock(&kvm->srcu, idx); 10690 } 10691 } else { 10692 kvm->arch.apicv_inhibit_reasons = new; 10693 } 10694 } 10695 10696 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10697 enum kvm_apicv_inhibit reason, bool set) 10698 { 10699 if (!enable_apicv) 10700 return; 10701 10702 down_write(&kvm->arch.apicv_update_lock); 10703 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10704 up_write(&kvm->arch.apicv_update_lock); 10705 } 10706 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10707 10708 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10709 { 10710 if (!kvm_apic_present(vcpu)) 10711 return; 10712 10713 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10714 10715 kvm_x86_call(sync_pir_to_irr)(vcpu); 10716 10717 if (irqchip_split(vcpu->kvm)) 10718 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10719 else if (ioapic_in_kernel(vcpu->kvm)) 10720 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10721 10722 if (is_guest_mode(vcpu)) 10723 vcpu->arch.load_eoi_exitmap_pending = true; 10724 else 10725 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10726 } 10727 10728 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10729 { 10730 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10731 return; 10732 10733 #ifdef CONFIG_KVM_HYPERV 10734 if (to_hv_vcpu(vcpu)) { 10735 u64 eoi_exit_bitmap[4]; 10736 10737 bitmap_or((ulong *)eoi_exit_bitmap, 10738 vcpu->arch.ioapic_handled_vectors, 10739 to_hv_synic(vcpu)->vec_bitmap, 256); 10740 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10741 return; 10742 } 10743 #endif 10744 kvm_x86_call(load_eoi_exitmap)( 10745 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10746 } 10747 10748 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10749 { 10750 kvm_x86_call(guest_memory_reclaimed)(kvm); 10751 } 10752 10753 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10754 { 10755 if (!lapic_in_kernel(vcpu)) 10756 return; 10757 10758 kvm_x86_call(set_apic_access_page_addr)(vcpu); 10759 } 10760 10761 /* 10762 * Called within kvm->srcu read side. 10763 * Returns 1 to let vcpu_run() continue the guest execution loop without 10764 * exiting to the userspace. Otherwise, the value will be returned to the 10765 * userspace. 10766 */ 10767 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10768 { 10769 int r; 10770 bool req_int_win = 10771 dm_request_for_irq_injection(vcpu) && 10772 kvm_cpu_accept_dm_intr(vcpu); 10773 fastpath_t exit_fastpath; 10774 10775 bool req_immediate_exit = false; 10776 10777 if (kvm_request_pending(vcpu)) { 10778 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10779 r = -EIO; 10780 goto out; 10781 } 10782 10783 if (kvm_dirty_ring_check_request(vcpu)) { 10784 r = 0; 10785 goto out; 10786 } 10787 10788 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10789 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10790 r = 0; 10791 goto out; 10792 } 10793 } 10794 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10795 kvm_mmu_free_obsolete_roots(vcpu); 10796 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10797 __kvm_migrate_timers(vcpu); 10798 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10799 kvm_update_masterclock(vcpu->kvm); 10800 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10801 kvm_gen_kvmclock_update(vcpu); 10802 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10803 r = kvm_guest_time_update(vcpu); 10804 if (unlikely(r)) 10805 goto out; 10806 } 10807 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10808 kvm_mmu_sync_roots(vcpu); 10809 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10810 kvm_mmu_load_pgd(vcpu); 10811 10812 /* 10813 * Note, the order matters here, as flushing "all" TLB entries 10814 * also flushes the "current" TLB entries, i.e. servicing the 10815 * flush "all" will clear any request to flush "current". 10816 */ 10817 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10818 kvm_vcpu_flush_tlb_all(vcpu); 10819 10820 kvm_service_local_tlb_flush_requests(vcpu); 10821 10822 /* 10823 * Fall back to a "full" guest flush if Hyper-V's precise 10824 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10825 * the flushes are considered "remote" and not "local" because 10826 * the requests can be initiated from other vCPUs. 10827 */ 10828 #ifdef CONFIG_KVM_HYPERV 10829 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10830 kvm_hv_vcpu_flush_tlb(vcpu)) 10831 kvm_vcpu_flush_tlb_guest(vcpu); 10832 #endif 10833 10834 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10835 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10836 r = 0; 10837 goto out; 10838 } 10839 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10840 if (is_guest_mode(vcpu)) 10841 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10842 10843 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10844 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10845 vcpu->mmio_needed = 0; 10846 r = 0; 10847 goto out; 10848 } 10849 } 10850 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10851 /* Page is swapped out. Do synthetic halt */ 10852 vcpu->arch.apf.halted = true; 10853 r = 1; 10854 goto out; 10855 } 10856 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10857 record_steal_time(vcpu); 10858 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10859 kvm_pmu_handle_event(vcpu); 10860 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10861 kvm_pmu_deliver_pmi(vcpu); 10862 #ifdef CONFIG_KVM_SMM 10863 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10864 process_smi(vcpu); 10865 #endif 10866 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10867 process_nmi(vcpu); 10868 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10869 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10870 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10871 vcpu->arch.ioapic_handled_vectors)) { 10872 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10873 vcpu->run->eoi.vector = 10874 vcpu->arch.pending_ioapic_eoi; 10875 r = 0; 10876 goto out; 10877 } 10878 } 10879 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10880 vcpu_scan_ioapic(vcpu); 10881 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10882 vcpu_load_eoi_exitmap(vcpu); 10883 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10884 kvm_vcpu_reload_apic_access_page(vcpu); 10885 #ifdef CONFIG_KVM_HYPERV 10886 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10887 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10888 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10889 vcpu->run->system_event.ndata = 0; 10890 r = 0; 10891 goto out; 10892 } 10893 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10894 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10895 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10896 vcpu->run->system_event.ndata = 0; 10897 r = 0; 10898 goto out; 10899 } 10900 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10901 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10902 10903 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10904 vcpu->run->hyperv = hv_vcpu->exit; 10905 r = 0; 10906 goto out; 10907 } 10908 10909 /* 10910 * KVM_REQ_HV_STIMER has to be processed after 10911 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10912 * depend on the guest clock being up-to-date 10913 */ 10914 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10915 kvm_hv_process_stimers(vcpu); 10916 #endif 10917 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10918 kvm_vcpu_update_apicv(vcpu); 10919 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10920 kvm_check_async_pf_completion(vcpu); 10921 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10922 kvm_x86_call(msr_filter_changed)(vcpu); 10923 10924 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10925 kvm_x86_call(update_cpu_dirty_logging)(vcpu); 10926 10927 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { 10928 kvm_vcpu_reset(vcpu, true); 10929 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { 10930 r = 1; 10931 goto out; 10932 } 10933 } 10934 } 10935 10936 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10937 kvm_xen_has_interrupt(vcpu)) { 10938 ++vcpu->stat.req_event; 10939 r = kvm_apic_accept_events(vcpu); 10940 if (r < 0) { 10941 r = 0; 10942 goto out; 10943 } 10944 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10945 r = 1; 10946 goto out; 10947 } 10948 10949 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10950 if (r < 0) { 10951 r = 0; 10952 goto out; 10953 } 10954 if (req_int_win) 10955 kvm_x86_call(enable_irq_window)(vcpu); 10956 10957 if (kvm_lapic_enabled(vcpu)) { 10958 update_cr8_intercept(vcpu); 10959 kvm_lapic_sync_to_vapic(vcpu); 10960 } 10961 } 10962 10963 r = kvm_mmu_reload(vcpu); 10964 if (unlikely(r)) { 10965 goto cancel_injection; 10966 } 10967 10968 preempt_disable(); 10969 10970 kvm_x86_call(prepare_switch_to_guest)(vcpu); 10971 10972 /* 10973 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10974 * IPI are then delayed after guest entry, which ensures that they 10975 * result in virtual interrupt delivery. 10976 */ 10977 local_irq_disable(); 10978 10979 /* Store vcpu->apicv_active before vcpu->mode. */ 10980 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10981 10982 kvm_vcpu_srcu_read_unlock(vcpu); 10983 10984 /* 10985 * 1) We should set ->mode before checking ->requests. Please see 10986 * the comment in kvm_vcpu_exiting_guest_mode(). 10987 * 10988 * 2) For APICv, we should set ->mode before checking PID.ON. This 10989 * pairs with the memory barrier implicit in pi_test_and_set_on 10990 * (see vmx_deliver_posted_interrupt). 10991 * 10992 * 3) This also orders the write to mode from any reads to the page 10993 * tables done while the VCPU is running. Please see the comment 10994 * in kvm_flush_remote_tlbs. 10995 */ 10996 smp_mb__after_srcu_read_unlock(); 10997 10998 /* 10999 * Process pending posted interrupts to handle the case where the 11000 * notification IRQ arrived in the host, or was never sent (because the 11001 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 11002 * status, KVM doesn't update assigned devices when APICv is inhibited, 11003 * i.e. they can post interrupts even if APICv is temporarily disabled. 11004 */ 11005 if (kvm_lapic_enabled(vcpu)) 11006 kvm_x86_call(sync_pir_to_irr)(vcpu); 11007 11008 if (kvm_vcpu_exit_request(vcpu)) { 11009 vcpu->mode = OUTSIDE_GUEST_MODE; 11010 smp_wmb(); 11011 local_irq_enable(); 11012 preempt_enable(); 11013 kvm_vcpu_srcu_read_lock(vcpu); 11014 r = 1; 11015 goto cancel_injection; 11016 } 11017 11018 if (req_immediate_exit) 11019 kvm_make_request(KVM_REQ_EVENT, vcpu); 11020 11021 fpregs_assert_state_consistent(); 11022 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 11023 switch_fpu_return(); 11024 11025 if (vcpu->arch.guest_fpu.xfd_err) 11026 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 11027 11028 if (unlikely(vcpu->arch.switch_db_regs)) { 11029 set_debugreg(0, 7); 11030 set_debugreg(vcpu->arch.eff_db[0], 0); 11031 set_debugreg(vcpu->arch.eff_db[1], 1); 11032 set_debugreg(vcpu->arch.eff_db[2], 2); 11033 set_debugreg(vcpu->arch.eff_db[3], 3); 11034 } else if (unlikely(hw_breakpoint_active())) { 11035 set_debugreg(0, 7); 11036 } 11037 11038 guest_timing_enter_irqoff(); 11039 11040 for (;;) { 11041 /* 11042 * Assert that vCPU vs. VM APICv state is consistent. An APICv 11043 * update must kick and wait for all vCPUs before toggling the 11044 * per-VM state, and responding vCPUs must wait for the update 11045 * to complete before servicing KVM_REQ_APICV_UPDATE. 11046 */ 11047 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 11048 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 11049 11050 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, 11051 req_immediate_exit); 11052 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 11053 break; 11054 11055 if (kvm_lapic_enabled(vcpu)) 11056 kvm_x86_call(sync_pir_to_irr)(vcpu); 11057 11058 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 11059 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 11060 break; 11061 } 11062 11063 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 11064 ++vcpu->stat.exits; 11065 } 11066 11067 /* 11068 * Do this here before restoring debug registers on the host. And 11069 * since we do this before handling the vmexit, a DR access vmexit 11070 * can (a) read the correct value of the debug registers, (b) set 11071 * KVM_DEBUGREG_WONT_EXIT again. 11072 */ 11073 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11074 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11075 kvm_x86_call(sync_dirty_debug_regs)(vcpu); 11076 kvm_update_dr0123(vcpu); 11077 kvm_update_dr7(vcpu); 11078 } 11079 11080 /* 11081 * If the guest has used debug registers, at least dr7 11082 * will be disabled while returning to the host. 11083 * If we don't have active breakpoints in the host, we don't 11084 * care about the messed up debug address registers. But if 11085 * we have some of them active, restore the old state. 11086 */ 11087 if (hw_breakpoint_active()) 11088 hw_breakpoint_restore(); 11089 11090 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11091 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11092 11093 vcpu->mode = OUTSIDE_GUEST_MODE; 11094 smp_wmb(); 11095 11096 /* 11097 * Sync xfd before calling handle_exit_irqoff() which may 11098 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11099 * in #NM irqoff handler). 11100 */ 11101 if (vcpu->arch.xfd_no_write_intercept) 11102 fpu_sync_guest_vmexit_xfd_state(); 11103 11104 kvm_x86_call(handle_exit_irqoff)(vcpu); 11105 11106 if (vcpu->arch.guest_fpu.xfd_err) 11107 wrmsrl(MSR_IA32_XFD_ERR, 0); 11108 11109 /* 11110 * Consume any pending interrupts, including the possible source of 11111 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11112 * An instruction is required after local_irq_enable() to fully unblock 11113 * interrupts on processors that implement an interrupt shadow, the 11114 * stat.exits increment will do nicely. 11115 */ 11116 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11117 local_irq_enable(); 11118 ++vcpu->stat.exits; 11119 local_irq_disable(); 11120 kvm_after_interrupt(vcpu); 11121 11122 /* 11123 * Wait until after servicing IRQs to account guest time so that any 11124 * ticks that occurred while running the guest are properly accounted 11125 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11126 * of accounting via context tracking, but the loss of accuracy is 11127 * acceptable for all known use cases. 11128 */ 11129 guest_timing_exit_irqoff(); 11130 11131 local_irq_enable(); 11132 preempt_enable(); 11133 11134 kvm_vcpu_srcu_read_lock(vcpu); 11135 11136 /* 11137 * Call this to ensure WC buffers in guest are evicted after each VM 11138 * Exit, so that the evicted WC writes can be snooped across all cpus 11139 */ 11140 smp_mb__after_srcu_read_lock(); 11141 11142 /* 11143 * Profile KVM exit RIPs: 11144 */ 11145 if (unlikely(prof_on == KVM_PROFILING)) { 11146 unsigned long rip = kvm_rip_read(vcpu); 11147 profile_hit(KVM_PROFILING, (void *)rip); 11148 } 11149 11150 if (unlikely(vcpu->arch.tsc_always_catchup)) 11151 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11152 11153 if (vcpu->arch.apic_attention) 11154 kvm_lapic_sync_from_vapic(vcpu); 11155 11156 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE)) 11157 return 0; 11158 11159 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); 11160 return r; 11161 11162 cancel_injection: 11163 if (req_immediate_exit) 11164 kvm_make_request(KVM_REQ_EVENT, vcpu); 11165 kvm_x86_call(cancel_injection)(vcpu); 11166 if (unlikely(vcpu->arch.apic_attention)) 11167 kvm_lapic_sync_from_vapic(vcpu); 11168 out: 11169 return r; 11170 } 11171 11172 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11173 { 11174 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11175 !vcpu->arch.apf.halted); 11176 } 11177 11178 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 11179 { 11180 if (!list_empty_careful(&vcpu->async_pf.done)) 11181 return true; 11182 11183 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 11184 kvm_apic_init_sipi_allowed(vcpu)) 11185 return true; 11186 11187 if (vcpu->arch.pv.pv_unhalted) 11188 return true; 11189 11190 if (kvm_is_exception_pending(vcpu)) 11191 return true; 11192 11193 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11194 (vcpu->arch.nmi_pending && 11195 kvm_x86_call(nmi_allowed)(vcpu, false))) 11196 return true; 11197 11198 #ifdef CONFIG_KVM_SMM 11199 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 11200 (vcpu->arch.smi_pending && 11201 kvm_x86_call(smi_allowed)(vcpu, false))) 11202 return true; 11203 #endif 11204 11205 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 11206 return true; 11207 11208 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) 11209 return true; 11210 11211 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) 11212 return true; 11213 11214 if (kvm_hv_has_stimer_pending(vcpu)) 11215 return true; 11216 11217 if (is_guest_mode(vcpu) && 11218 kvm_x86_ops.nested_ops->has_events && 11219 kvm_x86_ops.nested_ops->has_events(vcpu, false)) 11220 return true; 11221 11222 if (kvm_xen_has_pending_events(vcpu)) 11223 return true; 11224 11225 return false; 11226 } 11227 11228 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 11229 { 11230 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 11231 } 11232 11233 /* Called within kvm->srcu read side. */ 11234 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11235 { 11236 bool hv_timer; 11237 11238 if (!kvm_arch_vcpu_runnable(vcpu)) { 11239 /* 11240 * Switch to the software timer before halt-polling/blocking as 11241 * the guest's timer may be a break event for the vCPU, and the 11242 * hypervisor timer runs only when the CPU is in guest mode. 11243 * Switch before halt-polling so that KVM recognizes an expired 11244 * timer before blocking. 11245 */ 11246 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11247 if (hv_timer) 11248 kvm_lapic_switch_to_sw_timer(vcpu); 11249 11250 kvm_vcpu_srcu_read_unlock(vcpu); 11251 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11252 kvm_vcpu_halt(vcpu); 11253 else 11254 kvm_vcpu_block(vcpu); 11255 kvm_vcpu_srcu_read_lock(vcpu); 11256 11257 if (hv_timer) 11258 kvm_lapic_switch_to_hv_timer(vcpu); 11259 11260 /* 11261 * If the vCPU is not runnable, a signal or another host event 11262 * of some kind is pending; service it without changing the 11263 * vCPU's activity state. 11264 */ 11265 if (!kvm_arch_vcpu_runnable(vcpu)) 11266 return 1; 11267 } 11268 11269 /* 11270 * Evaluate nested events before exiting the halted state. This allows 11271 * the halt state to be recorded properly in the VMCS12's activity 11272 * state field (AMD does not have a similar field and a VM-Exit always 11273 * causes a spurious wakeup from HLT). 11274 */ 11275 if (is_guest_mode(vcpu)) { 11276 int r = kvm_check_nested_events(vcpu); 11277 11278 WARN_ON_ONCE(r == -EBUSY); 11279 if (r < 0) 11280 return 0; 11281 } 11282 11283 if (kvm_apic_accept_events(vcpu) < 0) 11284 return 0; 11285 switch(vcpu->arch.mp_state) { 11286 case KVM_MP_STATE_HALTED: 11287 case KVM_MP_STATE_AP_RESET_HOLD: 11288 vcpu->arch.pv.pv_unhalted = false; 11289 vcpu->arch.mp_state = 11290 KVM_MP_STATE_RUNNABLE; 11291 fallthrough; 11292 case KVM_MP_STATE_RUNNABLE: 11293 vcpu->arch.apf.halted = false; 11294 break; 11295 case KVM_MP_STATE_INIT_RECEIVED: 11296 break; 11297 default: 11298 WARN_ON_ONCE(1); 11299 break; 11300 } 11301 return 1; 11302 } 11303 11304 /* Called within kvm->srcu read side. */ 11305 static int vcpu_run(struct kvm_vcpu *vcpu) 11306 { 11307 int r; 11308 11309 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11310 11311 for (;;) { 11312 /* 11313 * If another guest vCPU requests a PV TLB flush in the middle 11314 * of instruction emulation, the rest of the emulation could 11315 * use a stale page translation. Assume that any code after 11316 * this point can start executing an instruction. 11317 */ 11318 vcpu->arch.at_instruction_boundary = false; 11319 if (kvm_vcpu_running(vcpu)) { 11320 r = vcpu_enter_guest(vcpu); 11321 } else { 11322 r = vcpu_block(vcpu); 11323 } 11324 11325 if (r <= 0) 11326 break; 11327 11328 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11329 if (kvm_xen_has_pending_events(vcpu)) 11330 kvm_xen_inject_pending_events(vcpu); 11331 11332 if (kvm_cpu_has_pending_timer(vcpu)) 11333 kvm_inject_pending_timer_irqs(vcpu); 11334 11335 if (dm_request_for_irq_injection(vcpu) && 11336 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11337 r = 0; 11338 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11339 ++vcpu->stat.request_irq_exits; 11340 break; 11341 } 11342 11343 if (__xfer_to_guest_mode_work_pending()) { 11344 kvm_vcpu_srcu_read_unlock(vcpu); 11345 r = xfer_to_guest_mode_handle_work(vcpu); 11346 kvm_vcpu_srcu_read_lock(vcpu); 11347 if (r) 11348 return r; 11349 } 11350 } 11351 11352 return r; 11353 } 11354 11355 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 11356 { 11357 /* 11358 * The vCPU has halted, e.g. executed HLT. Update the run state if the 11359 * local APIC is in-kernel, the run loop will detect the non-runnable 11360 * state and halt the vCPU. Exit to userspace if the local APIC is 11361 * managed by userspace, in which case userspace is responsible for 11362 * handling wake events. 11363 */ 11364 ++vcpu->stat.halt_exits; 11365 if (lapic_in_kernel(vcpu)) { 11366 vcpu->arch.mp_state = state; 11367 return 1; 11368 } else { 11369 vcpu->run->exit_reason = reason; 11370 return 0; 11371 } 11372 } 11373 11374 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 11375 { 11376 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 11377 } 11378 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 11379 11380 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 11381 { 11382 int ret = kvm_skip_emulated_instruction(vcpu); 11383 /* 11384 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 11385 * KVM_EXIT_DEBUG here. 11386 */ 11387 return kvm_emulate_halt_noskip(vcpu) && ret; 11388 } 11389 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 11390 11391 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 11392 { 11393 int ret = kvm_skip_emulated_instruction(vcpu); 11394 11395 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 11396 KVM_EXIT_AP_RESET_HOLD) && ret; 11397 } 11398 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 11399 11400 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 11401 { 11402 return kvm_vcpu_apicv_active(vcpu) && 11403 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); 11404 } 11405 11406 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 11407 { 11408 return vcpu->arch.preempted_in_kernel; 11409 } 11410 11411 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 11412 { 11413 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 11414 return true; 11415 11416 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11417 #ifdef CONFIG_KVM_SMM 11418 kvm_test_request(KVM_REQ_SMI, vcpu) || 11419 #endif 11420 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11421 return true; 11422 11423 return kvm_arch_dy_has_pending_interrupt(vcpu); 11424 } 11425 11426 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11427 { 11428 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11429 } 11430 11431 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11432 { 11433 BUG_ON(!vcpu->arch.pio.count); 11434 11435 return complete_emulated_io(vcpu); 11436 } 11437 11438 /* 11439 * Implements the following, as a state machine: 11440 * 11441 * read: 11442 * for each fragment 11443 * for each mmio piece in the fragment 11444 * write gpa, len 11445 * exit 11446 * copy data 11447 * execute insn 11448 * 11449 * write: 11450 * for each fragment 11451 * for each mmio piece in the fragment 11452 * write gpa, len 11453 * copy data 11454 * exit 11455 */ 11456 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11457 { 11458 struct kvm_run *run = vcpu->run; 11459 struct kvm_mmio_fragment *frag; 11460 unsigned len; 11461 11462 BUG_ON(!vcpu->mmio_needed); 11463 11464 /* Complete previous fragment */ 11465 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11466 len = min(8u, frag->len); 11467 if (!vcpu->mmio_is_write) 11468 memcpy(frag->data, run->mmio.data, len); 11469 11470 if (frag->len <= 8) { 11471 /* Switch to the next fragment. */ 11472 frag++; 11473 vcpu->mmio_cur_fragment++; 11474 } else { 11475 /* Go forward to the next mmio piece. */ 11476 frag->data += len; 11477 frag->gpa += len; 11478 frag->len -= len; 11479 } 11480 11481 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11482 vcpu->mmio_needed = 0; 11483 11484 /* FIXME: return into emulator if single-stepping. */ 11485 if (vcpu->mmio_is_write) 11486 return 1; 11487 vcpu->mmio_read_completed = 1; 11488 return complete_emulated_io(vcpu); 11489 } 11490 11491 run->exit_reason = KVM_EXIT_MMIO; 11492 run->mmio.phys_addr = frag->gpa; 11493 if (vcpu->mmio_is_write) 11494 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11495 run->mmio.len = min(8u, frag->len); 11496 run->mmio.is_write = vcpu->mmio_is_write; 11497 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11498 return 0; 11499 } 11500 11501 /* Swap (qemu) user FPU context for the guest FPU context. */ 11502 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11503 { 11504 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11505 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11506 trace_kvm_fpu(1); 11507 } 11508 11509 /* When vcpu_run ends, restore user space FPU context. */ 11510 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11511 { 11512 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11513 ++vcpu->stat.fpu_reload; 11514 trace_kvm_fpu(0); 11515 } 11516 11517 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11518 { 11519 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11520 struct kvm_run *kvm_run = vcpu->run; 11521 int r; 11522 11523 vcpu_load(vcpu); 11524 kvm_sigset_activate(vcpu); 11525 kvm_run->flags = 0; 11526 kvm_load_guest_fpu(vcpu); 11527 11528 kvm_vcpu_srcu_read_lock(vcpu); 11529 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11530 if (!vcpu->wants_to_run) { 11531 r = -EINTR; 11532 goto out; 11533 } 11534 11535 /* 11536 * Don't bother switching APIC timer emulation from the 11537 * hypervisor timer to the software timer, the only way for the 11538 * APIC timer to be active is if userspace stuffed vCPU state, 11539 * i.e. put the vCPU into a nonsensical state. Only an INIT 11540 * will transition the vCPU out of UNINITIALIZED (without more 11541 * state stuffing from userspace), which will reset the local 11542 * APIC and thus cancel the timer or drop the IRQ (if the timer 11543 * already expired). 11544 */ 11545 kvm_vcpu_srcu_read_unlock(vcpu); 11546 kvm_vcpu_block(vcpu); 11547 kvm_vcpu_srcu_read_lock(vcpu); 11548 11549 if (kvm_apic_accept_events(vcpu) < 0) { 11550 r = 0; 11551 goto out; 11552 } 11553 r = -EAGAIN; 11554 if (signal_pending(current)) { 11555 r = -EINTR; 11556 kvm_run->exit_reason = KVM_EXIT_INTR; 11557 ++vcpu->stat.signal_exits; 11558 } 11559 goto out; 11560 } 11561 11562 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11563 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11564 r = -EINVAL; 11565 goto out; 11566 } 11567 11568 if (kvm_run->kvm_dirty_regs) { 11569 r = sync_regs(vcpu); 11570 if (r != 0) 11571 goto out; 11572 } 11573 11574 /* re-sync apic's tpr */ 11575 if (!lapic_in_kernel(vcpu)) { 11576 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11577 r = -EINVAL; 11578 goto out; 11579 } 11580 } 11581 11582 /* 11583 * If userspace set a pending exception and L2 is active, convert it to 11584 * a pending VM-Exit if L1 wants to intercept the exception. 11585 */ 11586 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11587 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11588 ex->error_code)) { 11589 kvm_queue_exception_vmexit(vcpu, ex->vector, 11590 ex->has_error_code, ex->error_code, 11591 ex->has_payload, ex->payload); 11592 ex->injected = false; 11593 ex->pending = false; 11594 } 11595 vcpu->arch.exception_from_userspace = false; 11596 11597 if (unlikely(vcpu->arch.complete_userspace_io)) { 11598 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11599 vcpu->arch.complete_userspace_io = NULL; 11600 r = cui(vcpu); 11601 if (r <= 0) 11602 goto out; 11603 } else { 11604 WARN_ON_ONCE(vcpu->arch.pio.count); 11605 WARN_ON_ONCE(vcpu->mmio_needed); 11606 } 11607 11608 if (!vcpu->wants_to_run) { 11609 r = -EINTR; 11610 goto out; 11611 } 11612 11613 r = kvm_x86_call(vcpu_pre_run)(vcpu); 11614 if (r <= 0) 11615 goto out; 11616 11617 r = vcpu_run(vcpu); 11618 11619 out: 11620 kvm_put_guest_fpu(vcpu); 11621 if (kvm_run->kvm_valid_regs) 11622 store_regs(vcpu); 11623 post_kvm_run_save(vcpu); 11624 kvm_vcpu_srcu_read_unlock(vcpu); 11625 11626 kvm_sigset_deactivate(vcpu); 11627 vcpu_put(vcpu); 11628 return r; 11629 } 11630 11631 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11632 { 11633 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11634 /* 11635 * We are here if userspace calls get_regs() in the middle of 11636 * instruction emulation. Registers state needs to be copied 11637 * back from emulation context to vcpu. Userspace shouldn't do 11638 * that usually, but some bad designed PV devices (vmware 11639 * backdoor interface) need this to work 11640 */ 11641 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11642 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11643 } 11644 regs->rax = kvm_rax_read(vcpu); 11645 regs->rbx = kvm_rbx_read(vcpu); 11646 regs->rcx = kvm_rcx_read(vcpu); 11647 regs->rdx = kvm_rdx_read(vcpu); 11648 regs->rsi = kvm_rsi_read(vcpu); 11649 regs->rdi = kvm_rdi_read(vcpu); 11650 regs->rsp = kvm_rsp_read(vcpu); 11651 regs->rbp = kvm_rbp_read(vcpu); 11652 #ifdef CONFIG_X86_64 11653 regs->r8 = kvm_r8_read(vcpu); 11654 regs->r9 = kvm_r9_read(vcpu); 11655 regs->r10 = kvm_r10_read(vcpu); 11656 regs->r11 = kvm_r11_read(vcpu); 11657 regs->r12 = kvm_r12_read(vcpu); 11658 regs->r13 = kvm_r13_read(vcpu); 11659 regs->r14 = kvm_r14_read(vcpu); 11660 regs->r15 = kvm_r15_read(vcpu); 11661 #endif 11662 11663 regs->rip = kvm_rip_read(vcpu); 11664 regs->rflags = kvm_get_rflags(vcpu); 11665 } 11666 11667 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11668 { 11669 if (vcpu->kvm->arch.has_protected_state && 11670 vcpu->arch.guest_state_protected) 11671 return -EINVAL; 11672 11673 vcpu_load(vcpu); 11674 __get_regs(vcpu, regs); 11675 vcpu_put(vcpu); 11676 return 0; 11677 } 11678 11679 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11680 { 11681 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11682 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11683 11684 kvm_rax_write(vcpu, regs->rax); 11685 kvm_rbx_write(vcpu, regs->rbx); 11686 kvm_rcx_write(vcpu, regs->rcx); 11687 kvm_rdx_write(vcpu, regs->rdx); 11688 kvm_rsi_write(vcpu, regs->rsi); 11689 kvm_rdi_write(vcpu, regs->rdi); 11690 kvm_rsp_write(vcpu, regs->rsp); 11691 kvm_rbp_write(vcpu, regs->rbp); 11692 #ifdef CONFIG_X86_64 11693 kvm_r8_write(vcpu, regs->r8); 11694 kvm_r9_write(vcpu, regs->r9); 11695 kvm_r10_write(vcpu, regs->r10); 11696 kvm_r11_write(vcpu, regs->r11); 11697 kvm_r12_write(vcpu, regs->r12); 11698 kvm_r13_write(vcpu, regs->r13); 11699 kvm_r14_write(vcpu, regs->r14); 11700 kvm_r15_write(vcpu, regs->r15); 11701 #endif 11702 11703 kvm_rip_write(vcpu, regs->rip); 11704 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11705 11706 vcpu->arch.exception.pending = false; 11707 vcpu->arch.exception_vmexit.pending = false; 11708 11709 kvm_make_request(KVM_REQ_EVENT, vcpu); 11710 } 11711 11712 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11713 { 11714 if (vcpu->kvm->arch.has_protected_state && 11715 vcpu->arch.guest_state_protected) 11716 return -EINVAL; 11717 11718 vcpu_load(vcpu); 11719 __set_regs(vcpu, regs); 11720 vcpu_put(vcpu); 11721 return 0; 11722 } 11723 11724 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11725 { 11726 struct desc_ptr dt; 11727 11728 if (vcpu->arch.guest_state_protected) 11729 goto skip_protected_regs; 11730 11731 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11732 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11733 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11734 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11735 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11736 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11737 11738 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11739 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11740 11741 kvm_x86_call(get_idt)(vcpu, &dt); 11742 sregs->idt.limit = dt.size; 11743 sregs->idt.base = dt.address; 11744 kvm_x86_call(get_gdt)(vcpu, &dt); 11745 sregs->gdt.limit = dt.size; 11746 sregs->gdt.base = dt.address; 11747 11748 sregs->cr2 = vcpu->arch.cr2; 11749 sregs->cr3 = kvm_read_cr3(vcpu); 11750 11751 skip_protected_regs: 11752 sregs->cr0 = kvm_read_cr0(vcpu); 11753 sregs->cr4 = kvm_read_cr4(vcpu); 11754 sregs->cr8 = kvm_get_cr8(vcpu); 11755 sregs->efer = vcpu->arch.efer; 11756 sregs->apic_base = kvm_get_apic_base(vcpu); 11757 } 11758 11759 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11760 { 11761 __get_sregs_common(vcpu, sregs); 11762 11763 if (vcpu->arch.guest_state_protected) 11764 return; 11765 11766 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11767 set_bit(vcpu->arch.interrupt.nr, 11768 (unsigned long *)sregs->interrupt_bitmap); 11769 } 11770 11771 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11772 { 11773 int i; 11774 11775 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11776 11777 if (vcpu->arch.guest_state_protected) 11778 return; 11779 11780 if (is_pae_paging(vcpu)) { 11781 for (i = 0 ; i < 4 ; i++) 11782 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11783 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11784 } 11785 } 11786 11787 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11788 struct kvm_sregs *sregs) 11789 { 11790 if (vcpu->kvm->arch.has_protected_state && 11791 vcpu->arch.guest_state_protected) 11792 return -EINVAL; 11793 11794 vcpu_load(vcpu); 11795 __get_sregs(vcpu, sregs); 11796 vcpu_put(vcpu); 11797 return 0; 11798 } 11799 11800 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11801 struct kvm_mp_state *mp_state) 11802 { 11803 int r; 11804 11805 vcpu_load(vcpu); 11806 if (kvm_mpx_supported()) 11807 kvm_load_guest_fpu(vcpu); 11808 11809 r = kvm_apic_accept_events(vcpu); 11810 if (r < 0) 11811 goto out; 11812 r = 0; 11813 11814 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11815 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11816 vcpu->arch.pv.pv_unhalted) 11817 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11818 else 11819 mp_state->mp_state = vcpu->arch.mp_state; 11820 11821 out: 11822 if (kvm_mpx_supported()) 11823 kvm_put_guest_fpu(vcpu); 11824 vcpu_put(vcpu); 11825 return r; 11826 } 11827 11828 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11829 struct kvm_mp_state *mp_state) 11830 { 11831 int ret = -EINVAL; 11832 11833 vcpu_load(vcpu); 11834 11835 switch (mp_state->mp_state) { 11836 case KVM_MP_STATE_UNINITIALIZED: 11837 case KVM_MP_STATE_HALTED: 11838 case KVM_MP_STATE_AP_RESET_HOLD: 11839 case KVM_MP_STATE_INIT_RECEIVED: 11840 case KVM_MP_STATE_SIPI_RECEIVED: 11841 if (!lapic_in_kernel(vcpu)) 11842 goto out; 11843 break; 11844 11845 case KVM_MP_STATE_RUNNABLE: 11846 break; 11847 11848 default: 11849 goto out; 11850 } 11851 11852 /* 11853 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11854 * forcing the guest into INIT/SIPI if those events are supposed to be 11855 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11856 * if an SMI is pending as well. 11857 */ 11858 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11859 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11860 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11861 goto out; 11862 11863 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11864 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11865 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11866 } else 11867 vcpu->arch.mp_state = mp_state->mp_state; 11868 kvm_make_request(KVM_REQ_EVENT, vcpu); 11869 11870 ret = 0; 11871 out: 11872 vcpu_put(vcpu); 11873 return ret; 11874 } 11875 11876 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11877 int reason, bool has_error_code, u32 error_code) 11878 { 11879 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11880 int ret; 11881 11882 init_emulate_ctxt(vcpu); 11883 11884 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11885 has_error_code, error_code); 11886 11887 /* 11888 * Report an error userspace if MMIO is needed, as KVM doesn't support 11889 * MMIO during a task switch (or any other complex operation). 11890 */ 11891 if (ret || vcpu->mmio_needed) { 11892 vcpu->mmio_needed = false; 11893 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11894 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11895 vcpu->run->internal.ndata = 0; 11896 return 0; 11897 } 11898 11899 kvm_rip_write(vcpu, ctxt->eip); 11900 kvm_set_rflags(vcpu, ctxt->eflags); 11901 return 1; 11902 } 11903 EXPORT_SYMBOL_GPL(kvm_task_switch); 11904 11905 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11906 { 11907 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11908 /* 11909 * When EFER.LME and CR0.PG are set, the processor is in 11910 * 64-bit mode (though maybe in a 32-bit code segment). 11911 * CR4.PAE and EFER.LMA must be set. 11912 */ 11913 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11914 return false; 11915 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11916 return false; 11917 } else { 11918 /* 11919 * Not in 64-bit mode: EFER.LMA is clear and the code 11920 * segment cannot be 64-bit. 11921 */ 11922 if (sregs->efer & EFER_LMA || sregs->cs.l) 11923 return false; 11924 } 11925 11926 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11927 kvm_is_valid_cr0(vcpu, sregs->cr0); 11928 } 11929 11930 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11931 int *mmu_reset_needed, bool update_pdptrs) 11932 { 11933 struct msr_data apic_base_msr; 11934 int idx; 11935 struct desc_ptr dt; 11936 11937 if (!kvm_is_valid_sregs(vcpu, sregs)) 11938 return -EINVAL; 11939 11940 apic_base_msr.data = sregs->apic_base; 11941 apic_base_msr.host_initiated = true; 11942 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11943 return -EINVAL; 11944 11945 if (vcpu->arch.guest_state_protected) 11946 return 0; 11947 11948 dt.size = sregs->idt.limit; 11949 dt.address = sregs->idt.base; 11950 kvm_x86_call(set_idt)(vcpu, &dt); 11951 dt.size = sregs->gdt.limit; 11952 dt.address = sregs->gdt.base; 11953 kvm_x86_call(set_gdt)(vcpu, &dt); 11954 11955 vcpu->arch.cr2 = sregs->cr2; 11956 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11957 vcpu->arch.cr3 = sregs->cr3; 11958 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11959 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); 11960 11961 kvm_set_cr8(vcpu, sregs->cr8); 11962 11963 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11964 kvm_x86_call(set_efer)(vcpu, sregs->efer); 11965 11966 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11967 kvm_x86_call(set_cr0)(vcpu, sregs->cr0); 11968 11969 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11970 kvm_x86_call(set_cr4)(vcpu, sregs->cr4); 11971 11972 if (update_pdptrs) { 11973 idx = srcu_read_lock(&vcpu->kvm->srcu); 11974 if (is_pae_paging(vcpu)) { 11975 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11976 *mmu_reset_needed = 1; 11977 } 11978 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11979 } 11980 11981 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11982 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11983 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11984 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11985 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11986 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11987 11988 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11989 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11990 11991 update_cr8_intercept(vcpu); 11992 11993 /* Older userspace won't unhalt the vcpu on reset. */ 11994 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11995 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11996 !is_protmode(vcpu)) 11997 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11998 11999 return 0; 12000 } 12001 12002 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 12003 { 12004 int pending_vec, max_bits; 12005 int mmu_reset_needed = 0; 12006 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 12007 12008 if (ret) 12009 return ret; 12010 12011 if (mmu_reset_needed) { 12012 kvm_mmu_reset_context(vcpu); 12013 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12014 } 12015 12016 max_bits = KVM_NR_INTERRUPTS; 12017 pending_vec = find_first_bit( 12018 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 12019 12020 if (pending_vec < max_bits) { 12021 kvm_queue_interrupt(vcpu, pending_vec, false); 12022 pr_debug("Set back pending irq %d\n", pending_vec); 12023 kvm_make_request(KVM_REQ_EVENT, vcpu); 12024 } 12025 return 0; 12026 } 12027 12028 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 12029 { 12030 int mmu_reset_needed = 0; 12031 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 12032 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 12033 !(sregs2->efer & EFER_LMA); 12034 int i, ret; 12035 12036 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 12037 return -EINVAL; 12038 12039 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 12040 return -EINVAL; 12041 12042 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 12043 &mmu_reset_needed, !valid_pdptrs); 12044 if (ret) 12045 return ret; 12046 12047 if (valid_pdptrs) { 12048 for (i = 0; i < 4 ; i++) 12049 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 12050 12051 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 12052 mmu_reset_needed = 1; 12053 vcpu->arch.pdptrs_from_userspace = true; 12054 } 12055 if (mmu_reset_needed) { 12056 kvm_mmu_reset_context(vcpu); 12057 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12058 } 12059 return 0; 12060 } 12061 12062 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 12063 struct kvm_sregs *sregs) 12064 { 12065 int ret; 12066 12067 if (vcpu->kvm->arch.has_protected_state && 12068 vcpu->arch.guest_state_protected) 12069 return -EINVAL; 12070 12071 vcpu_load(vcpu); 12072 ret = __set_sregs(vcpu, sregs); 12073 vcpu_put(vcpu); 12074 return ret; 12075 } 12076 12077 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 12078 { 12079 bool set = false; 12080 struct kvm_vcpu *vcpu; 12081 unsigned long i; 12082 12083 if (!enable_apicv) 12084 return; 12085 12086 down_write(&kvm->arch.apicv_update_lock); 12087 12088 kvm_for_each_vcpu(i, vcpu, kvm) { 12089 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 12090 set = true; 12091 break; 12092 } 12093 } 12094 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 12095 up_write(&kvm->arch.apicv_update_lock); 12096 } 12097 12098 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 12099 struct kvm_guest_debug *dbg) 12100 { 12101 unsigned long rflags; 12102 int i, r; 12103 12104 if (vcpu->arch.guest_state_protected) 12105 return -EINVAL; 12106 12107 vcpu_load(vcpu); 12108 12109 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 12110 r = -EBUSY; 12111 if (kvm_is_exception_pending(vcpu)) 12112 goto out; 12113 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 12114 kvm_queue_exception(vcpu, DB_VECTOR); 12115 else 12116 kvm_queue_exception(vcpu, BP_VECTOR); 12117 } 12118 12119 /* 12120 * Read rflags as long as potentially injected trace flags are still 12121 * filtered out. 12122 */ 12123 rflags = kvm_get_rflags(vcpu); 12124 12125 vcpu->guest_debug = dbg->control; 12126 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 12127 vcpu->guest_debug = 0; 12128 12129 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 12130 for (i = 0; i < KVM_NR_DB_REGS; ++i) 12131 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 12132 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 12133 } else { 12134 for (i = 0; i < KVM_NR_DB_REGS; i++) 12135 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 12136 } 12137 kvm_update_dr7(vcpu); 12138 12139 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12140 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 12141 12142 /* 12143 * Trigger an rflags update that will inject or remove the trace 12144 * flags. 12145 */ 12146 kvm_set_rflags(vcpu, rflags); 12147 12148 kvm_x86_call(update_exception_bitmap)(vcpu); 12149 12150 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12151 12152 r = 0; 12153 12154 out: 12155 vcpu_put(vcpu); 12156 return r; 12157 } 12158 12159 /* 12160 * Translate a guest virtual address to a guest physical address. 12161 */ 12162 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12163 struct kvm_translation *tr) 12164 { 12165 unsigned long vaddr = tr->linear_address; 12166 gpa_t gpa; 12167 int idx; 12168 12169 vcpu_load(vcpu); 12170 12171 idx = srcu_read_lock(&vcpu->kvm->srcu); 12172 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12173 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12174 tr->physical_address = gpa; 12175 tr->valid = gpa != INVALID_GPA; 12176 tr->writeable = 1; 12177 tr->usermode = 0; 12178 12179 vcpu_put(vcpu); 12180 return 0; 12181 } 12182 12183 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12184 { 12185 struct fxregs_state *fxsave; 12186 12187 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12188 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12189 12190 vcpu_load(vcpu); 12191 12192 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12193 memcpy(fpu->fpr, fxsave->st_space, 128); 12194 fpu->fcw = fxsave->cwd; 12195 fpu->fsw = fxsave->swd; 12196 fpu->ftwx = fxsave->twd; 12197 fpu->last_opcode = fxsave->fop; 12198 fpu->last_ip = fxsave->rip; 12199 fpu->last_dp = fxsave->rdp; 12200 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12201 12202 vcpu_put(vcpu); 12203 return 0; 12204 } 12205 12206 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12207 { 12208 struct fxregs_state *fxsave; 12209 12210 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12211 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12212 12213 vcpu_load(vcpu); 12214 12215 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12216 12217 memcpy(fxsave->st_space, fpu->fpr, 128); 12218 fxsave->cwd = fpu->fcw; 12219 fxsave->swd = fpu->fsw; 12220 fxsave->twd = fpu->ftwx; 12221 fxsave->fop = fpu->last_opcode; 12222 fxsave->rip = fpu->last_ip; 12223 fxsave->rdp = fpu->last_dp; 12224 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12225 12226 vcpu_put(vcpu); 12227 return 0; 12228 } 12229 12230 static void store_regs(struct kvm_vcpu *vcpu) 12231 { 12232 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12233 12234 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12235 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12236 12237 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12238 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12239 12240 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12241 kvm_vcpu_ioctl_x86_get_vcpu_events( 12242 vcpu, &vcpu->run->s.regs.events); 12243 } 12244 12245 static int sync_regs(struct kvm_vcpu *vcpu) 12246 { 12247 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12248 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12249 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12250 } 12251 12252 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12253 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12254 12255 if (__set_sregs(vcpu, &sregs)) 12256 return -EINVAL; 12257 12258 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12259 } 12260 12261 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12262 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12263 12264 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12265 return -EINVAL; 12266 12267 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12268 } 12269 12270 return 0; 12271 } 12272 12273 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12274 { 12275 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12276 pr_warn_once("SMP vm created on host with unstable TSC; " 12277 "guest TSC will not be reliable\n"); 12278 12279 if (!kvm->arch.max_vcpu_ids) 12280 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12281 12282 if (id >= kvm->arch.max_vcpu_ids) 12283 return -EINVAL; 12284 12285 return kvm_x86_call(vcpu_precreate)(kvm); 12286 } 12287 12288 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12289 { 12290 struct page *page; 12291 int r; 12292 12293 vcpu->arch.last_vmentry_cpu = -1; 12294 vcpu->arch.regs_avail = ~0; 12295 vcpu->arch.regs_dirty = ~0; 12296 12297 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12298 12299 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12300 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12301 else 12302 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12303 12304 r = kvm_mmu_create(vcpu); 12305 if (r < 0) 12306 return r; 12307 12308 r = kvm_create_lapic(vcpu); 12309 if (r < 0) 12310 goto fail_mmu_destroy; 12311 12312 r = -ENOMEM; 12313 12314 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12315 if (!page) 12316 goto fail_free_lapic; 12317 vcpu->arch.pio_data = page_address(page); 12318 12319 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12320 GFP_KERNEL_ACCOUNT); 12321 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12322 GFP_KERNEL_ACCOUNT); 12323 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12324 goto fail_free_mce_banks; 12325 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12326 12327 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12328 GFP_KERNEL_ACCOUNT)) 12329 goto fail_free_mce_banks; 12330 12331 if (!alloc_emulate_ctxt(vcpu)) 12332 goto free_wbinvd_dirty_mask; 12333 12334 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12335 pr_err("failed to allocate vcpu's fpu\n"); 12336 goto free_emulate_ctxt; 12337 } 12338 12339 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12340 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12341 12342 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12343 12344 kvm_async_pf_hash_reset(vcpu); 12345 12346 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12347 kvm_pmu_init(vcpu); 12348 12349 vcpu->arch.pending_external_vector = -1; 12350 vcpu->arch.preempted_in_kernel = false; 12351 12352 #if IS_ENABLED(CONFIG_HYPERV) 12353 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12354 #endif 12355 12356 r = kvm_x86_call(vcpu_create)(vcpu); 12357 if (r) 12358 goto free_guest_fpu; 12359 12360 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12361 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12362 kvm_xen_init_vcpu(vcpu); 12363 vcpu_load(vcpu); 12364 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12365 kvm_vcpu_reset(vcpu, false); 12366 kvm_init_mmu(vcpu); 12367 vcpu_put(vcpu); 12368 return 0; 12369 12370 free_guest_fpu: 12371 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12372 free_emulate_ctxt: 12373 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12374 free_wbinvd_dirty_mask: 12375 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12376 fail_free_mce_banks: 12377 kfree(vcpu->arch.mce_banks); 12378 kfree(vcpu->arch.mci_ctl2_banks); 12379 free_page((unsigned long)vcpu->arch.pio_data); 12380 fail_free_lapic: 12381 kvm_free_lapic(vcpu); 12382 fail_mmu_destroy: 12383 kvm_mmu_destroy(vcpu); 12384 return r; 12385 } 12386 12387 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12388 { 12389 struct kvm *kvm = vcpu->kvm; 12390 12391 if (mutex_lock_killable(&vcpu->mutex)) 12392 return; 12393 vcpu_load(vcpu); 12394 kvm_synchronize_tsc(vcpu, NULL); 12395 vcpu_put(vcpu); 12396 12397 /* poll control enabled by default */ 12398 vcpu->arch.msr_kvm_poll_control = 1; 12399 12400 mutex_unlock(&vcpu->mutex); 12401 12402 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12403 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12404 KVMCLOCK_SYNC_PERIOD); 12405 } 12406 12407 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12408 { 12409 int idx; 12410 12411 kvmclock_reset(vcpu); 12412 12413 kvm_x86_call(vcpu_free)(vcpu); 12414 12415 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12416 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12417 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12418 12419 kvm_xen_destroy_vcpu(vcpu); 12420 kvm_hv_vcpu_uninit(vcpu); 12421 kvm_pmu_destroy(vcpu); 12422 kfree(vcpu->arch.mce_banks); 12423 kfree(vcpu->arch.mci_ctl2_banks); 12424 kvm_free_lapic(vcpu); 12425 idx = srcu_read_lock(&vcpu->kvm->srcu); 12426 kvm_mmu_destroy(vcpu); 12427 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12428 free_page((unsigned long)vcpu->arch.pio_data); 12429 kvfree(vcpu->arch.cpuid_entries); 12430 } 12431 12432 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12433 { 12434 struct kvm_cpuid_entry2 *cpuid_0x1; 12435 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12436 unsigned long new_cr0; 12437 12438 /* 12439 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12440 * to handle side effects. RESET emulation hits those flows and relies 12441 * on emulated/virtualized registers, including those that are loaded 12442 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12443 * to detect improper or missing initialization. 12444 */ 12445 WARN_ON_ONCE(!init_event && 12446 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12447 12448 /* 12449 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12450 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12451 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12452 * bits), i.e. virtualization is disabled. 12453 */ 12454 if (is_guest_mode(vcpu)) 12455 kvm_leave_nested(vcpu); 12456 12457 kvm_lapic_reset(vcpu, init_event); 12458 12459 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12460 vcpu->arch.hflags = 0; 12461 12462 vcpu->arch.smi_pending = 0; 12463 vcpu->arch.smi_count = 0; 12464 atomic_set(&vcpu->arch.nmi_queued, 0); 12465 vcpu->arch.nmi_pending = 0; 12466 vcpu->arch.nmi_injected = false; 12467 kvm_clear_interrupt_queue(vcpu); 12468 kvm_clear_exception_queue(vcpu); 12469 12470 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12471 kvm_update_dr0123(vcpu); 12472 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12473 vcpu->arch.dr7 = DR7_FIXED_1; 12474 kvm_update_dr7(vcpu); 12475 12476 vcpu->arch.cr2 = 0; 12477 12478 kvm_make_request(KVM_REQ_EVENT, vcpu); 12479 vcpu->arch.apf.msr_en_val = 0; 12480 vcpu->arch.apf.msr_int_val = 0; 12481 vcpu->arch.st.msr_val = 0; 12482 12483 kvmclock_reset(vcpu); 12484 12485 kvm_clear_async_pf_completion_queue(vcpu); 12486 kvm_async_pf_hash_reset(vcpu); 12487 vcpu->arch.apf.halted = false; 12488 12489 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12490 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12491 12492 /* 12493 * All paths that lead to INIT are required to load the guest's 12494 * FPU state (because most paths are buried in KVM_RUN). 12495 */ 12496 if (init_event) 12497 kvm_put_guest_fpu(vcpu); 12498 12499 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12500 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12501 12502 if (init_event) 12503 kvm_load_guest_fpu(vcpu); 12504 } 12505 12506 if (!init_event) { 12507 vcpu->arch.smbase = 0x30000; 12508 12509 vcpu->arch.msr_misc_features_enables = 0; 12510 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12511 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12512 12513 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12514 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12515 } 12516 12517 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12518 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12519 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12520 12521 /* 12522 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12523 * if no CPUID match is found. Note, it's impossible to get a match at 12524 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12525 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12526 * on RESET. But, go through the motions in case that's ever remedied. 12527 */ 12528 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12529 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12530 12531 kvm_x86_call(vcpu_reset)(vcpu, init_event); 12532 12533 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12534 kvm_rip_write(vcpu, 0xfff0); 12535 12536 vcpu->arch.cr3 = 0; 12537 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12538 12539 /* 12540 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12541 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12542 * (or qualify) that with a footnote stating that CD/NW are preserved. 12543 */ 12544 new_cr0 = X86_CR0_ET; 12545 if (init_event) 12546 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12547 else 12548 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12549 12550 kvm_x86_call(set_cr0)(vcpu, new_cr0); 12551 kvm_x86_call(set_cr4)(vcpu, 0); 12552 kvm_x86_call(set_efer)(vcpu, 0); 12553 kvm_x86_call(update_exception_bitmap)(vcpu); 12554 12555 /* 12556 * On the standard CR0/CR4/EFER modification paths, there are several 12557 * complex conditions determining whether the MMU has to be reset and/or 12558 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12559 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12560 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12561 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12562 */ 12563 if (old_cr0 & X86_CR0_PG) { 12564 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12565 kvm_mmu_reset_context(vcpu); 12566 } 12567 12568 /* 12569 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12570 * APM states the TLBs are untouched by INIT, but it also states that 12571 * the TLBs are flushed on "External initialization of the processor." 12572 * Flush the guest TLB regardless of vendor, there is no meaningful 12573 * benefit in relying on the guest to flush the TLB immediately after 12574 * INIT. A spurious TLB flush is benign and likely negligible from a 12575 * performance perspective. 12576 */ 12577 if (init_event) 12578 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12579 } 12580 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12581 12582 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12583 { 12584 struct kvm_segment cs; 12585 12586 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12587 cs.selector = vector << 8; 12588 cs.base = vector << 12; 12589 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12590 kvm_rip_write(vcpu, 0); 12591 } 12592 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12593 12594 int kvm_arch_hardware_enable(void) 12595 { 12596 struct kvm *kvm; 12597 struct kvm_vcpu *vcpu; 12598 unsigned long i; 12599 int ret; 12600 u64 local_tsc; 12601 u64 max_tsc = 0; 12602 bool stable, backwards_tsc = false; 12603 12604 kvm_user_return_msr_cpu_online(); 12605 12606 ret = kvm_x86_check_processor_compatibility(); 12607 if (ret) 12608 return ret; 12609 12610 ret = kvm_x86_call(hardware_enable)(); 12611 if (ret != 0) 12612 return ret; 12613 12614 local_tsc = rdtsc(); 12615 stable = !kvm_check_tsc_unstable(); 12616 list_for_each_entry(kvm, &vm_list, vm_list) { 12617 kvm_for_each_vcpu(i, vcpu, kvm) { 12618 if (!stable && vcpu->cpu == smp_processor_id()) 12619 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12620 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12621 backwards_tsc = true; 12622 if (vcpu->arch.last_host_tsc > max_tsc) 12623 max_tsc = vcpu->arch.last_host_tsc; 12624 } 12625 } 12626 } 12627 12628 /* 12629 * Sometimes, even reliable TSCs go backwards. This happens on 12630 * platforms that reset TSC during suspend or hibernate actions, but 12631 * maintain synchronization. We must compensate. Fortunately, we can 12632 * detect that condition here, which happens early in CPU bringup, 12633 * before any KVM threads can be running. Unfortunately, we can't 12634 * bring the TSCs fully up to date with real time, as we aren't yet far 12635 * enough into CPU bringup that we know how much real time has actually 12636 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12637 * variables that haven't been updated yet. 12638 * 12639 * So we simply find the maximum observed TSC above, then record the 12640 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12641 * the adjustment will be applied. Note that we accumulate 12642 * adjustments, in case multiple suspend cycles happen before some VCPU 12643 * gets a chance to run again. In the event that no KVM threads get a 12644 * chance to run, we will miss the entire elapsed period, as we'll have 12645 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12646 * loose cycle time. This isn't too big a deal, since the loss will be 12647 * uniform across all VCPUs (not to mention the scenario is extremely 12648 * unlikely). It is possible that a second hibernate recovery happens 12649 * much faster than a first, causing the observed TSC here to be 12650 * smaller; this would require additional padding adjustment, which is 12651 * why we set last_host_tsc to the local tsc observed here. 12652 * 12653 * N.B. - this code below runs only on platforms with reliable TSC, 12654 * as that is the only way backwards_tsc is set above. Also note 12655 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12656 * have the same delta_cyc adjustment applied if backwards_tsc 12657 * is detected. Note further, this adjustment is only done once, 12658 * as we reset last_host_tsc on all VCPUs to stop this from being 12659 * called multiple times (one for each physical CPU bringup). 12660 * 12661 * Platforms with unreliable TSCs don't have to deal with this, they 12662 * will be compensated by the logic in vcpu_load, which sets the TSC to 12663 * catchup mode. This will catchup all VCPUs to real time, but cannot 12664 * guarantee that they stay in perfect synchronization. 12665 */ 12666 if (backwards_tsc) { 12667 u64 delta_cyc = max_tsc - local_tsc; 12668 list_for_each_entry(kvm, &vm_list, vm_list) { 12669 kvm->arch.backwards_tsc_observed = true; 12670 kvm_for_each_vcpu(i, vcpu, kvm) { 12671 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12672 vcpu->arch.last_host_tsc = local_tsc; 12673 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12674 } 12675 12676 /* 12677 * We have to disable TSC offset matching.. if you were 12678 * booting a VM while issuing an S4 host suspend.... 12679 * you may have some problem. Solving this issue is 12680 * left as an exercise to the reader. 12681 */ 12682 kvm->arch.last_tsc_nsec = 0; 12683 kvm->arch.last_tsc_write = 0; 12684 } 12685 12686 } 12687 return 0; 12688 } 12689 12690 void kvm_arch_hardware_disable(void) 12691 { 12692 kvm_x86_call(hardware_disable)(); 12693 drop_user_return_notifiers(); 12694 } 12695 12696 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12697 { 12698 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12699 } 12700 12701 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12702 { 12703 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12704 } 12705 12706 void kvm_arch_free_vm(struct kvm *kvm) 12707 { 12708 #if IS_ENABLED(CONFIG_HYPERV) 12709 kfree(kvm->arch.hv_pa_pg); 12710 #endif 12711 __kvm_arch_free_vm(kvm); 12712 } 12713 12714 12715 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12716 { 12717 int ret; 12718 unsigned long flags; 12719 12720 if (!kvm_is_vm_type_supported(type)) 12721 return -EINVAL; 12722 12723 kvm->arch.vm_type = type; 12724 kvm->arch.has_private_mem = 12725 (type == KVM_X86_SW_PROTECTED_VM); 12726 /* Decided by the vendor code for other VM types. */ 12727 kvm->arch.pre_fault_allowed = 12728 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; 12729 12730 ret = kvm_page_track_init(kvm); 12731 if (ret) 12732 goto out; 12733 12734 kvm_mmu_init_vm(kvm); 12735 12736 ret = kvm_x86_call(vm_init)(kvm); 12737 if (ret) 12738 goto out_uninit_mmu; 12739 12740 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12741 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12742 12743 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12744 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12745 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12746 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12747 &kvm->arch.irq_sources_bitmap); 12748 12749 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12750 mutex_init(&kvm->arch.apic_map_lock); 12751 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12752 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12753 12754 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12755 pvclock_update_vm_gtod_copy(kvm); 12756 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12757 12758 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12759 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; 12760 kvm->arch.guest_can_read_msr_platform_info = true; 12761 kvm->arch.enable_pmu = enable_pmu; 12762 12763 #if IS_ENABLED(CONFIG_HYPERV) 12764 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12765 kvm->arch.hv_root_tdp = INVALID_PAGE; 12766 #endif 12767 12768 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12769 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12770 12771 kvm_apicv_init(kvm); 12772 kvm_hv_init_vm(kvm); 12773 kvm_xen_init_vm(kvm); 12774 12775 return 0; 12776 12777 out_uninit_mmu: 12778 kvm_mmu_uninit_vm(kvm); 12779 kvm_page_track_cleanup(kvm); 12780 out: 12781 return ret; 12782 } 12783 12784 int kvm_arch_post_init_vm(struct kvm *kvm) 12785 { 12786 return kvm_mmu_post_init_vm(kvm); 12787 } 12788 12789 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12790 { 12791 vcpu_load(vcpu); 12792 kvm_mmu_unload(vcpu); 12793 vcpu_put(vcpu); 12794 } 12795 12796 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12797 { 12798 unsigned long i; 12799 struct kvm_vcpu *vcpu; 12800 12801 kvm_for_each_vcpu(i, vcpu, kvm) { 12802 kvm_clear_async_pf_completion_queue(vcpu); 12803 kvm_unload_vcpu_mmu(vcpu); 12804 } 12805 } 12806 12807 void kvm_arch_sync_events(struct kvm *kvm) 12808 { 12809 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12810 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12811 kvm_free_pit(kvm); 12812 } 12813 12814 /** 12815 * __x86_set_memory_region: Setup KVM internal memory slot 12816 * 12817 * @kvm: the kvm pointer to the VM. 12818 * @id: the slot ID to setup. 12819 * @gpa: the GPA to install the slot (unused when @size == 0). 12820 * @size: the size of the slot. Set to zero to uninstall a slot. 12821 * 12822 * This function helps to setup a KVM internal memory slot. Specify 12823 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12824 * slot. The return code can be one of the following: 12825 * 12826 * HVA: on success (uninstall will return a bogus HVA) 12827 * -errno: on error 12828 * 12829 * The caller should always use IS_ERR() to check the return value 12830 * before use. Note, the KVM internal memory slots are guaranteed to 12831 * remain valid and unchanged until the VM is destroyed, i.e., the 12832 * GPA->HVA translation will not change. However, the HVA is a user 12833 * address, i.e. its accessibility is not guaranteed, and must be 12834 * accessed via __copy_{to,from}_user(). 12835 */ 12836 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12837 u32 size) 12838 { 12839 int i, r; 12840 unsigned long hva, old_npages; 12841 struct kvm_memslots *slots = kvm_memslots(kvm); 12842 struct kvm_memory_slot *slot; 12843 12844 /* Called with kvm->slots_lock held. */ 12845 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12846 return ERR_PTR_USR(-EINVAL); 12847 12848 slot = id_to_memslot(slots, id); 12849 if (size) { 12850 if (slot && slot->npages) 12851 return ERR_PTR_USR(-EEXIST); 12852 12853 /* 12854 * MAP_SHARED to prevent internal slot pages from being moved 12855 * by fork()/COW. 12856 */ 12857 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12858 MAP_SHARED | MAP_ANONYMOUS, 0); 12859 if (IS_ERR_VALUE(hva)) 12860 return (void __user *)hva; 12861 } else { 12862 if (!slot || !slot->npages) 12863 return NULL; 12864 12865 old_npages = slot->npages; 12866 hva = slot->userspace_addr; 12867 } 12868 12869 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12870 struct kvm_userspace_memory_region2 m; 12871 12872 m.slot = id | (i << 16); 12873 m.flags = 0; 12874 m.guest_phys_addr = gpa; 12875 m.userspace_addr = hva; 12876 m.memory_size = size; 12877 r = __kvm_set_memory_region(kvm, &m); 12878 if (r < 0) 12879 return ERR_PTR_USR(r); 12880 } 12881 12882 if (!size) 12883 vm_munmap(hva, old_npages * PAGE_SIZE); 12884 12885 return (void __user *)hva; 12886 } 12887 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12888 12889 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12890 { 12891 kvm_mmu_pre_destroy_vm(kvm); 12892 } 12893 12894 void kvm_arch_destroy_vm(struct kvm *kvm) 12895 { 12896 if (current->mm == kvm->mm) { 12897 /* 12898 * Free memory regions allocated on behalf of userspace, 12899 * unless the memory map has changed due to process exit 12900 * or fd copying. 12901 */ 12902 mutex_lock(&kvm->slots_lock); 12903 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12904 0, 0); 12905 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12906 0, 0); 12907 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12908 mutex_unlock(&kvm->slots_lock); 12909 } 12910 kvm_unload_vcpu_mmus(kvm); 12911 kvm_x86_call(vm_destroy)(kvm); 12912 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12913 kvm_pic_destroy(kvm); 12914 kvm_ioapic_destroy(kvm); 12915 kvm_destroy_vcpus(kvm); 12916 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12917 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12918 kvm_mmu_uninit_vm(kvm); 12919 kvm_page_track_cleanup(kvm); 12920 kvm_xen_destroy_vm(kvm); 12921 kvm_hv_destroy_vm(kvm); 12922 } 12923 12924 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12925 { 12926 int i; 12927 12928 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12929 vfree(slot->arch.rmap[i]); 12930 slot->arch.rmap[i] = NULL; 12931 } 12932 } 12933 12934 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12935 { 12936 int i; 12937 12938 memslot_rmap_free(slot); 12939 12940 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12941 vfree(slot->arch.lpage_info[i - 1]); 12942 slot->arch.lpage_info[i - 1] = NULL; 12943 } 12944 12945 kvm_page_track_free_memslot(slot); 12946 } 12947 12948 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12949 { 12950 const int sz = sizeof(*slot->arch.rmap[0]); 12951 int i; 12952 12953 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12954 int level = i + 1; 12955 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12956 12957 if (slot->arch.rmap[i]) 12958 continue; 12959 12960 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12961 if (!slot->arch.rmap[i]) { 12962 memslot_rmap_free(slot); 12963 return -ENOMEM; 12964 } 12965 } 12966 12967 return 0; 12968 } 12969 12970 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12971 struct kvm_memory_slot *slot) 12972 { 12973 unsigned long npages = slot->npages; 12974 int i, r; 12975 12976 /* 12977 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12978 * old arrays will be freed by __kvm_set_memory_region() if installing 12979 * the new memslot is successful. 12980 */ 12981 memset(&slot->arch, 0, sizeof(slot->arch)); 12982 12983 if (kvm_memslots_have_rmaps(kvm)) { 12984 r = memslot_rmap_alloc(slot, npages); 12985 if (r) 12986 return r; 12987 } 12988 12989 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12990 struct kvm_lpage_info *linfo; 12991 unsigned long ugfn; 12992 int lpages; 12993 int level = i + 1; 12994 12995 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12996 12997 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12998 if (!linfo) 12999 goto out_free; 13000 13001 slot->arch.lpage_info[i - 1] = linfo; 13002 13003 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 13004 linfo[0].disallow_lpage = 1; 13005 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 13006 linfo[lpages - 1].disallow_lpage = 1; 13007 ugfn = slot->userspace_addr >> PAGE_SHIFT; 13008 /* 13009 * If the gfn and userspace address are not aligned wrt each 13010 * other, disable large page support for this slot. 13011 */ 13012 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 13013 unsigned long j; 13014 13015 for (j = 0; j < lpages; ++j) 13016 linfo[j].disallow_lpage = 1; 13017 } 13018 } 13019 13020 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 13021 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 13022 #endif 13023 13024 if (kvm_page_track_create_memslot(kvm, slot, npages)) 13025 goto out_free; 13026 13027 return 0; 13028 13029 out_free: 13030 memslot_rmap_free(slot); 13031 13032 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 13033 vfree(slot->arch.lpage_info[i - 1]); 13034 slot->arch.lpage_info[i - 1] = NULL; 13035 } 13036 return -ENOMEM; 13037 } 13038 13039 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 13040 { 13041 struct kvm_vcpu *vcpu; 13042 unsigned long i; 13043 13044 /* 13045 * memslots->generation has been incremented. 13046 * mmio generation may have reached its maximum value. 13047 */ 13048 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 13049 13050 /* Force re-initialization of steal_time cache */ 13051 kvm_for_each_vcpu(i, vcpu, kvm) 13052 kvm_vcpu_kick(vcpu); 13053 } 13054 13055 int kvm_arch_prepare_memory_region(struct kvm *kvm, 13056 const struct kvm_memory_slot *old, 13057 struct kvm_memory_slot *new, 13058 enum kvm_mr_change change) 13059 { 13060 /* 13061 * KVM doesn't support moving memslots when there are external page 13062 * trackers attached to the VM, i.e. if KVMGT is in use. 13063 */ 13064 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 13065 return -EINVAL; 13066 13067 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 13068 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 13069 return -EINVAL; 13070 13071 return kvm_alloc_memslot_metadata(kvm, new); 13072 } 13073 13074 if (change == KVM_MR_FLAGS_ONLY) 13075 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 13076 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 13077 return -EIO; 13078 13079 return 0; 13080 } 13081 13082 13083 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 13084 { 13085 int nr_slots; 13086 13087 if (!kvm_x86_ops.cpu_dirty_log_size) 13088 return; 13089 13090 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 13091 if ((enable && nr_slots == 1) || !nr_slots) 13092 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 13093 } 13094 13095 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 13096 struct kvm_memory_slot *old, 13097 const struct kvm_memory_slot *new, 13098 enum kvm_mr_change change) 13099 { 13100 u32 old_flags = old ? old->flags : 0; 13101 u32 new_flags = new ? new->flags : 0; 13102 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 13103 13104 /* 13105 * Update CPU dirty logging if dirty logging is being toggled. This 13106 * applies to all operations. 13107 */ 13108 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 13109 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 13110 13111 /* 13112 * Nothing more to do for RO slots (which can't be dirtied and can't be 13113 * made writable) or CREATE/MOVE/DELETE of a slot. 13114 * 13115 * For a memslot with dirty logging disabled: 13116 * CREATE: No dirty mappings will already exist. 13117 * MOVE/DELETE: The old mappings will already have been cleaned up by 13118 * kvm_arch_flush_shadow_memslot() 13119 * 13120 * For a memslot with dirty logging enabled: 13121 * CREATE: No shadow pages exist, thus nothing to write-protect 13122 * and no dirty bits to clear. 13123 * MOVE/DELETE: The old mappings will already have been cleaned up by 13124 * kvm_arch_flush_shadow_memslot(). 13125 */ 13126 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 13127 return; 13128 13129 /* 13130 * READONLY and non-flags changes were filtered out above, and the only 13131 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 13132 * logging isn't being toggled on or off. 13133 */ 13134 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 13135 return; 13136 13137 if (!log_dirty_pages) { 13138 /* 13139 * Dirty logging tracks sptes in 4k granularity, meaning that 13140 * large sptes have to be split. If live migration succeeds, 13141 * the guest in the source machine will be destroyed and large 13142 * sptes will be created in the destination. However, if the 13143 * guest continues to run in the source machine (for example if 13144 * live migration fails), small sptes will remain around and 13145 * cause bad performance. 13146 * 13147 * Scan sptes if dirty logging has been stopped, dropping those 13148 * which can be collapsed into a single large-page spte. Later 13149 * page faults will create the large-page sptes. 13150 */ 13151 kvm_mmu_zap_collapsible_sptes(kvm, new); 13152 } else { 13153 /* 13154 * Initially-all-set does not require write protecting any page, 13155 * because they're all assumed to be dirty. 13156 */ 13157 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13158 return; 13159 13160 if (READ_ONCE(eager_page_split)) 13161 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13162 13163 if (kvm_x86_ops.cpu_dirty_log_size) { 13164 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13165 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13166 } else { 13167 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13168 } 13169 13170 /* 13171 * Unconditionally flush the TLBs after enabling dirty logging. 13172 * A flush is almost always going to be necessary (see below), 13173 * and unconditionally flushing allows the helpers to omit 13174 * the subtly complex checks when removing write access. 13175 * 13176 * Do the flush outside of mmu_lock to reduce the amount of 13177 * time mmu_lock is held. Flushing after dropping mmu_lock is 13178 * safe as KVM only needs to guarantee the slot is fully 13179 * write-protected before returning to userspace, i.e. before 13180 * userspace can consume the dirty status. 13181 * 13182 * Flushing outside of mmu_lock requires KVM to be careful when 13183 * making decisions based on writable status of an SPTE, e.g. a 13184 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13185 * 13186 * Specifically, KVM also write-protects guest page tables to 13187 * monitor changes when using shadow paging, and must guarantee 13188 * no CPUs can write to those page before mmu_lock is dropped. 13189 * Because CPUs may have stale TLB entries at this point, a 13190 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13191 * 13192 * KVM also allows making SPTES writable outside of mmu_lock, 13193 * e.g. to allow dirty logging without taking mmu_lock. 13194 * 13195 * To handle these scenarios, KVM uses a separate software-only 13196 * bit (MMU-writable) to track if a SPTE is !writable due to 13197 * a guest page table being write-protected (KVM clears the 13198 * MMU-writable flag when write-protecting for shadow paging). 13199 * 13200 * The use of MMU-writable is also the primary motivation for 13201 * the unconditional flush. Because KVM must guarantee that a 13202 * CPU doesn't contain stale, writable TLB entries for a 13203 * !MMU-writable SPTE, KVM must flush if it encounters any 13204 * MMU-writable SPTE regardless of whether the actual hardware 13205 * writable bit was set. I.e. KVM is almost guaranteed to need 13206 * to flush, while unconditionally flushing allows the "remove 13207 * write access" helpers to ignore MMU-writable entirely. 13208 * 13209 * See is_writable_pte() for more details (the case involving 13210 * access-tracked SPTEs is particularly relevant). 13211 */ 13212 kvm_flush_remote_tlbs_memslot(kvm, new); 13213 } 13214 } 13215 13216 void kvm_arch_commit_memory_region(struct kvm *kvm, 13217 struct kvm_memory_slot *old, 13218 const struct kvm_memory_slot *new, 13219 enum kvm_mr_change change) 13220 { 13221 if (change == KVM_MR_DELETE) 13222 kvm_page_track_delete_slot(kvm, old); 13223 13224 if (!kvm->arch.n_requested_mmu_pages && 13225 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13226 unsigned long nr_mmu_pages; 13227 13228 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13229 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13230 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13231 } 13232 13233 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13234 13235 /* Free the arrays associated with the old memslot. */ 13236 if (change == KVM_MR_MOVE) 13237 kvm_arch_free_memslot(kvm, old); 13238 } 13239 13240 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13241 { 13242 if (vcpu->arch.guest_state_protected) 13243 return true; 13244 13245 return kvm_x86_call(get_cpl)(vcpu) == 0; 13246 } 13247 13248 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13249 { 13250 return kvm_rip_read(vcpu); 13251 } 13252 13253 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13254 { 13255 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13256 } 13257 13258 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13259 { 13260 return kvm_x86_call(interrupt_allowed)(vcpu, false); 13261 } 13262 13263 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13264 { 13265 /* Can't read the RIP when guest state is protected, just return 0 */ 13266 if (vcpu->arch.guest_state_protected) 13267 return 0; 13268 13269 if (is_64_bit_mode(vcpu)) 13270 return kvm_rip_read(vcpu); 13271 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13272 kvm_rip_read(vcpu)); 13273 } 13274 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13275 13276 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13277 { 13278 return kvm_get_linear_rip(vcpu) == linear_rip; 13279 } 13280 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13281 13282 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13283 { 13284 unsigned long rflags; 13285 13286 rflags = kvm_x86_call(get_rflags)(vcpu); 13287 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13288 rflags &= ~X86_EFLAGS_TF; 13289 return rflags; 13290 } 13291 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13292 13293 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13294 { 13295 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13296 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13297 rflags |= X86_EFLAGS_TF; 13298 kvm_x86_call(set_rflags)(vcpu, rflags); 13299 } 13300 13301 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13302 { 13303 __kvm_set_rflags(vcpu, rflags); 13304 kvm_make_request(KVM_REQ_EVENT, vcpu); 13305 } 13306 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13307 13308 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13309 { 13310 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13311 13312 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13313 } 13314 13315 static inline u32 kvm_async_pf_next_probe(u32 key) 13316 { 13317 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13318 } 13319 13320 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13321 { 13322 u32 key = kvm_async_pf_hash_fn(gfn); 13323 13324 while (vcpu->arch.apf.gfns[key] != ~0) 13325 key = kvm_async_pf_next_probe(key); 13326 13327 vcpu->arch.apf.gfns[key] = gfn; 13328 } 13329 13330 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13331 { 13332 int i; 13333 u32 key = kvm_async_pf_hash_fn(gfn); 13334 13335 for (i = 0; i < ASYNC_PF_PER_VCPU && 13336 (vcpu->arch.apf.gfns[key] != gfn && 13337 vcpu->arch.apf.gfns[key] != ~0); i++) 13338 key = kvm_async_pf_next_probe(key); 13339 13340 return key; 13341 } 13342 13343 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13344 { 13345 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13346 } 13347 13348 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13349 { 13350 u32 i, j, k; 13351 13352 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13353 13354 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13355 return; 13356 13357 while (true) { 13358 vcpu->arch.apf.gfns[i] = ~0; 13359 do { 13360 j = kvm_async_pf_next_probe(j); 13361 if (vcpu->arch.apf.gfns[j] == ~0) 13362 return; 13363 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13364 /* 13365 * k lies cyclically in ]i,j] 13366 * | i.k.j | 13367 * |....j i.k.| or |.k..j i...| 13368 */ 13369 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13370 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13371 i = j; 13372 } 13373 } 13374 13375 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13376 { 13377 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13378 13379 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13380 sizeof(reason)); 13381 } 13382 13383 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13384 { 13385 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13386 13387 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13388 &token, offset, sizeof(token)); 13389 } 13390 13391 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13392 { 13393 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13394 u32 val; 13395 13396 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13397 &val, offset, sizeof(val))) 13398 return false; 13399 13400 return !val; 13401 } 13402 13403 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13404 { 13405 13406 if (!kvm_pv_async_pf_enabled(vcpu)) 13407 return false; 13408 13409 if (vcpu->arch.apf.send_user_only && 13410 kvm_x86_call(get_cpl)(vcpu) == 0) 13411 return false; 13412 13413 if (is_guest_mode(vcpu)) { 13414 /* 13415 * L1 needs to opt into the special #PF vmexits that are 13416 * used to deliver async page faults. 13417 */ 13418 return vcpu->arch.apf.delivery_as_pf_vmexit; 13419 } else { 13420 /* 13421 * Play it safe in case the guest temporarily disables paging. 13422 * The real mode IDT in particular is unlikely to have a #PF 13423 * exception setup. 13424 */ 13425 return is_paging(vcpu); 13426 } 13427 } 13428 13429 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13430 { 13431 if (unlikely(!lapic_in_kernel(vcpu) || 13432 kvm_event_needs_reinjection(vcpu) || 13433 kvm_is_exception_pending(vcpu))) 13434 return false; 13435 13436 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13437 return false; 13438 13439 /* 13440 * If interrupts are off we cannot even use an artificial 13441 * halt state. 13442 */ 13443 return kvm_arch_interrupt_allowed(vcpu); 13444 } 13445 13446 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13447 struct kvm_async_pf *work) 13448 { 13449 struct x86_exception fault; 13450 13451 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13452 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13453 13454 if (kvm_can_deliver_async_pf(vcpu) && 13455 !apf_put_user_notpresent(vcpu)) { 13456 fault.vector = PF_VECTOR; 13457 fault.error_code_valid = true; 13458 fault.error_code = 0; 13459 fault.nested_page_fault = false; 13460 fault.address = work->arch.token; 13461 fault.async_page_fault = true; 13462 kvm_inject_page_fault(vcpu, &fault); 13463 return true; 13464 } else { 13465 /* 13466 * It is not possible to deliver a paravirtualized asynchronous 13467 * page fault, but putting the guest in an artificial halt state 13468 * can be beneficial nevertheless: if an interrupt arrives, we 13469 * can deliver it timely and perhaps the guest will schedule 13470 * another process. When the instruction that triggered a page 13471 * fault is retried, hopefully the page will be ready in the host. 13472 */ 13473 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13474 return false; 13475 } 13476 } 13477 13478 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13479 struct kvm_async_pf *work) 13480 { 13481 struct kvm_lapic_irq irq = { 13482 .delivery_mode = APIC_DM_FIXED, 13483 .vector = vcpu->arch.apf.vec 13484 }; 13485 13486 if (work->wakeup_all) 13487 work->arch.token = ~0; /* broadcast wakeup */ 13488 else 13489 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13490 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13491 13492 if ((work->wakeup_all || work->notpresent_injected) && 13493 kvm_pv_async_pf_enabled(vcpu) && 13494 !apf_put_user_ready(vcpu, work->arch.token)) { 13495 vcpu->arch.apf.pageready_pending = true; 13496 kvm_apic_set_irq(vcpu, &irq, NULL); 13497 } 13498 13499 vcpu->arch.apf.halted = false; 13500 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13501 } 13502 13503 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13504 { 13505 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13506 if (!vcpu->arch.apf.pageready_pending) 13507 kvm_vcpu_kick(vcpu); 13508 } 13509 13510 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13511 { 13512 if (!kvm_pv_async_pf_enabled(vcpu)) 13513 return true; 13514 else 13515 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13516 } 13517 13518 void kvm_arch_start_assignment(struct kvm *kvm) 13519 { 13520 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13521 kvm_x86_call(pi_start_assignment)(kvm); 13522 } 13523 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13524 13525 void kvm_arch_end_assignment(struct kvm *kvm) 13526 { 13527 atomic_dec(&kvm->arch.assigned_device_count); 13528 } 13529 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13530 13531 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13532 { 13533 return raw_atomic_read(&kvm->arch.assigned_device_count); 13534 } 13535 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13536 13537 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13538 { 13539 /* 13540 * Non-coherent DMA assignment and de-assignment may affect whether or 13541 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs 13542 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first 13543 * (or last) non-coherent device is (un)registered to so that new SPTEs 13544 * with the correct "ignore guest PAT" setting are created. 13545 */ 13546 if (kvm_mmu_may_ignore_guest_pat()) 13547 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13548 } 13549 13550 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13551 { 13552 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13553 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13554 } 13555 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13556 13557 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13558 { 13559 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13560 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13561 } 13562 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13563 13564 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13565 { 13566 return atomic_read(&kvm->arch.noncoherent_dma_count); 13567 } 13568 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13569 13570 bool kvm_arch_has_irq_bypass(void) 13571 { 13572 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13573 } 13574 13575 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13576 struct irq_bypass_producer *prod) 13577 { 13578 struct kvm_kernel_irqfd *irqfd = 13579 container_of(cons, struct kvm_kernel_irqfd, consumer); 13580 int ret; 13581 13582 irqfd->producer = prod; 13583 kvm_arch_start_assignment(irqfd->kvm); 13584 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13585 prod->irq, irqfd->gsi, 1); 13586 if (ret) 13587 kvm_arch_end_assignment(irqfd->kvm); 13588 13589 return ret; 13590 } 13591 13592 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13593 struct irq_bypass_producer *prod) 13594 { 13595 int ret; 13596 struct kvm_kernel_irqfd *irqfd = 13597 container_of(cons, struct kvm_kernel_irqfd, consumer); 13598 13599 WARN_ON(irqfd->producer != prod); 13600 irqfd->producer = NULL; 13601 13602 /* 13603 * When producer of consumer is unregistered, we change back to 13604 * remapped mode, so we can re-use the current implementation 13605 * when the irq is masked/disabled or the consumer side (KVM 13606 * int this case doesn't want to receive the interrupts. 13607 */ 13608 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13609 prod->irq, irqfd->gsi, 0); 13610 if (ret) 13611 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13612 " fails: %d\n", irqfd->consumer.token, ret); 13613 13614 kvm_arch_end_assignment(irqfd->kvm); 13615 } 13616 13617 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13618 uint32_t guest_irq, bool set) 13619 { 13620 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set); 13621 } 13622 13623 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13624 struct kvm_kernel_irq_routing_entry *new) 13625 { 13626 if (new->type != KVM_IRQ_ROUTING_MSI) 13627 return true; 13628 13629 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13630 } 13631 13632 bool kvm_vector_hashing_enabled(void) 13633 { 13634 return vector_hashing; 13635 } 13636 13637 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13638 { 13639 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13640 } 13641 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13642 13643 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 13644 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) 13645 { 13646 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); 13647 } 13648 #endif 13649 13650 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 13651 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 13652 { 13653 kvm_x86_call(gmem_invalidate)(start, end); 13654 } 13655 #endif 13656 13657 int kvm_spec_ctrl_test_value(u64 value) 13658 { 13659 /* 13660 * test that setting IA32_SPEC_CTRL to given value 13661 * is allowed by the host processor 13662 */ 13663 13664 u64 saved_value; 13665 unsigned long flags; 13666 int ret = 0; 13667 13668 local_irq_save(flags); 13669 13670 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13671 ret = 1; 13672 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13673 ret = 1; 13674 else 13675 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13676 13677 local_irq_restore(flags); 13678 13679 return ret; 13680 } 13681 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13682 13683 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13684 { 13685 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13686 struct x86_exception fault; 13687 u64 access = error_code & 13688 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13689 13690 if (!(error_code & PFERR_PRESENT_MASK) || 13691 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13692 /* 13693 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13694 * tables probably do not match the TLB. Just proceed 13695 * with the error code that the processor gave. 13696 */ 13697 fault.vector = PF_VECTOR; 13698 fault.error_code_valid = true; 13699 fault.error_code = error_code; 13700 fault.nested_page_fault = false; 13701 fault.address = gva; 13702 fault.async_page_fault = false; 13703 } 13704 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13705 } 13706 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13707 13708 /* 13709 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13710 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13711 * indicates whether exit to userspace is needed. 13712 */ 13713 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13714 struct x86_exception *e) 13715 { 13716 if (r == X86EMUL_PROPAGATE_FAULT) { 13717 if (KVM_BUG_ON(!e, vcpu->kvm)) 13718 return -EIO; 13719 13720 kvm_inject_emulated_page_fault(vcpu, e); 13721 return 1; 13722 } 13723 13724 /* 13725 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13726 * while handling a VMX instruction KVM could've handled the request 13727 * correctly by exiting to userspace and performing I/O but there 13728 * doesn't seem to be a real use-case behind such requests, just return 13729 * KVM_EXIT_INTERNAL_ERROR for now. 13730 */ 13731 kvm_prepare_emulation_failure_exit(vcpu); 13732 13733 return 0; 13734 } 13735 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13736 13737 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13738 { 13739 bool pcid_enabled; 13740 struct x86_exception e; 13741 struct { 13742 u64 pcid; 13743 u64 gla; 13744 } operand; 13745 int r; 13746 13747 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13748 if (r != X86EMUL_CONTINUE) 13749 return kvm_handle_memory_failure(vcpu, r, &e); 13750 13751 if (operand.pcid >> 12 != 0) { 13752 kvm_inject_gp(vcpu, 0); 13753 return 1; 13754 } 13755 13756 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13757 13758 switch (type) { 13759 case INVPCID_TYPE_INDIV_ADDR: 13760 /* 13761 * LAM doesn't apply to addresses that are inputs to TLB 13762 * invalidation. 13763 */ 13764 if ((!pcid_enabled && (operand.pcid != 0)) || 13765 is_noncanonical_address(operand.gla, vcpu)) { 13766 kvm_inject_gp(vcpu, 0); 13767 return 1; 13768 } 13769 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13770 return kvm_skip_emulated_instruction(vcpu); 13771 13772 case INVPCID_TYPE_SINGLE_CTXT: 13773 if (!pcid_enabled && (operand.pcid != 0)) { 13774 kvm_inject_gp(vcpu, 0); 13775 return 1; 13776 } 13777 13778 kvm_invalidate_pcid(vcpu, operand.pcid); 13779 return kvm_skip_emulated_instruction(vcpu); 13780 13781 case INVPCID_TYPE_ALL_NON_GLOBAL: 13782 /* 13783 * Currently, KVM doesn't mark global entries in the shadow 13784 * page tables, so a non-global flush just degenerates to a 13785 * global flush. If needed, we could optimize this later by 13786 * keeping track of global entries in shadow page tables. 13787 */ 13788 13789 fallthrough; 13790 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13791 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13792 return kvm_skip_emulated_instruction(vcpu); 13793 13794 default: 13795 kvm_inject_gp(vcpu, 0); 13796 return 1; 13797 } 13798 } 13799 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13800 13801 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13802 { 13803 struct kvm_run *run = vcpu->run; 13804 struct kvm_mmio_fragment *frag; 13805 unsigned int len; 13806 13807 BUG_ON(!vcpu->mmio_needed); 13808 13809 /* Complete previous fragment */ 13810 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13811 len = min(8u, frag->len); 13812 if (!vcpu->mmio_is_write) 13813 memcpy(frag->data, run->mmio.data, len); 13814 13815 if (frag->len <= 8) { 13816 /* Switch to the next fragment. */ 13817 frag++; 13818 vcpu->mmio_cur_fragment++; 13819 } else { 13820 /* Go forward to the next mmio piece. */ 13821 frag->data += len; 13822 frag->gpa += len; 13823 frag->len -= len; 13824 } 13825 13826 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13827 vcpu->mmio_needed = 0; 13828 13829 // VMG change, at this point, we're always done 13830 // RIP has already been advanced 13831 return 1; 13832 } 13833 13834 // More MMIO is needed 13835 run->mmio.phys_addr = frag->gpa; 13836 run->mmio.len = min(8u, frag->len); 13837 run->mmio.is_write = vcpu->mmio_is_write; 13838 if (run->mmio.is_write) 13839 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13840 run->exit_reason = KVM_EXIT_MMIO; 13841 13842 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13843 13844 return 0; 13845 } 13846 13847 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13848 void *data) 13849 { 13850 int handled; 13851 struct kvm_mmio_fragment *frag; 13852 13853 if (!data) 13854 return -EINVAL; 13855 13856 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13857 if (handled == bytes) 13858 return 1; 13859 13860 bytes -= handled; 13861 gpa += handled; 13862 data += handled; 13863 13864 /*TODO: Check if need to increment number of frags */ 13865 frag = vcpu->mmio_fragments; 13866 vcpu->mmio_nr_fragments = 1; 13867 frag->len = bytes; 13868 frag->gpa = gpa; 13869 frag->data = data; 13870 13871 vcpu->mmio_needed = 1; 13872 vcpu->mmio_cur_fragment = 0; 13873 13874 vcpu->run->mmio.phys_addr = gpa; 13875 vcpu->run->mmio.len = min(8u, frag->len); 13876 vcpu->run->mmio.is_write = 1; 13877 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13878 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13879 13880 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13881 13882 return 0; 13883 } 13884 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13885 13886 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13887 void *data) 13888 { 13889 int handled; 13890 struct kvm_mmio_fragment *frag; 13891 13892 if (!data) 13893 return -EINVAL; 13894 13895 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13896 if (handled == bytes) 13897 return 1; 13898 13899 bytes -= handled; 13900 gpa += handled; 13901 data += handled; 13902 13903 /*TODO: Check if need to increment number of frags */ 13904 frag = vcpu->mmio_fragments; 13905 vcpu->mmio_nr_fragments = 1; 13906 frag->len = bytes; 13907 frag->gpa = gpa; 13908 frag->data = data; 13909 13910 vcpu->mmio_needed = 1; 13911 vcpu->mmio_cur_fragment = 0; 13912 13913 vcpu->run->mmio.phys_addr = gpa; 13914 vcpu->run->mmio.len = min(8u, frag->len); 13915 vcpu->run->mmio.is_write = 0; 13916 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13917 13918 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13919 13920 return 0; 13921 } 13922 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13923 13924 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13925 { 13926 vcpu->arch.sev_pio_count -= count; 13927 vcpu->arch.sev_pio_data += count * size; 13928 } 13929 13930 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13931 unsigned int port); 13932 13933 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13934 { 13935 int size = vcpu->arch.pio.size; 13936 int port = vcpu->arch.pio.port; 13937 13938 vcpu->arch.pio.count = 0; 13939 if (vcpu->arch.sev_pio_count) 13940 return kvm_sev_es_outs(vcpu, size, port); 13941 return 1; 13942 } 13943 13944 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13945 unsigned int port) 13946 { 13947 for (;;) { 13948 unsigned int count = 13949 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13950 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13951 13952 /* memcpy done already by emulator_pio_out. */ 13953 advance_sev_es_emulated_pio(vcpu, count, size); 13954 if (!ret) 13955 break; 13956 13957 /* Emulation done by the kernel. */ 13958 if (!vcpu->arch.sev_pio_count) 13959 return 1; 13960 } 13961 13962 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13963 return 0; 13964 } 13965 13966 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13967 unsigned int port); 13968 13969 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13970 { 13971 unsigned count = vcpu->arch.pio.count; 13972 int size = vcpu->arch.pio.size; 13973 int port = vcpu->arch.pio.port; 13974 13975 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13976 advance_sev_es_emulated_pio(vcpu, count, size); 13977 if (vcpu->arch.sev_pio_count) 13978 return kvm_sev_es_ins(vcpu, size, port); 13979 return 1; 13980 } 13981 13982 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13983 unsigned int port) 13984 { 13985 for (;;) { 13986 unsigned int count = 13987 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13988 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13989 break; 13990 13991 /* Emulation done by the kernel. */ 13992 advance_sev_es_emulated_pio(vcpu, count, size); 13993 if (!vcpu->arch.sev_pio_count) 13994 return 1; 13995 } 13996 13997 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13998 return 0; 13999 } 14000 14001 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 14002 unsigned int port, void *data, unsigned int count, 14003 int in) 14004 { 14005 vcpu->arch.sev_pio_data = data; 14006 vcpu->arch.sev_pio_count = count; 14007 return in ? kvm_sev_es_ins(vcpu, size, port) 14008 : kvm_sev_es_outs(vcpu, size, port); 14009 } 14010 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 14011 14012 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 14013 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 14014 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 14015 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 14016 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 14017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 14019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 14020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 14021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 14022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 14023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 14024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 14025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 14026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 14027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 14028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 14029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 14030 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 14031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 14032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 14033 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 14034 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 14035 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 14036 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 14037 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 14038 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 14039 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 14040 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 14041 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); 14042 14043 static int __init kvm_x86_init(void) 14044 { 14045 kvm_mmu_x86_module_init(); 14046 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 14047 return 0; 14048 } 14049 module_init(kvm_x86_init); 14050 14051 static void __exit kvm_x86_exit(void) 14052 { 14053 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 14054 } 14055 module_exit(kvm_x86_exit); 14056