xref: /linux/arch/x86/kvm/x86.c (revision 6e17c6de3ddf3073741d9c91a796ee696914d8a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 #include "lapic.h"
33 #include "xen.h"
34 #include "smm.h"
35 
36 #include <linux/clocksource.h>
37 #include <linux/interrupt.h>
38 #include <linux/kvm.h>
39 #include <linux/fs.h>
40 #include <linux/vmalloc.h>
41 #include <linux/export.h>
42 #include <linux/moduleparam.h>
43 #include <linux/mman.h>
44 #include <linux/highmem.h>
45 #include <linux/iommu.h>
46 #include <linux/cpufreq.h>
47 #include <linux/user-return-notifier.h>
48 #include <linux/srcu.h>
49 #include <linux/slab.h>
50 #include <linux/perf_event.h>
51 #include <linux/uaccess.h>
52 #include <linux/hash.h>
53 #include <linux/pci.h>
54 #include <linux/timekeeper_internal.h>
55 #include <linux/pvclock_gtod.h>
56 #include <linux/kvm_irqfd.h>
57 #include <linux/irqbypass.h>
58 #include <linux/sched/stat.h>
59 #include <linux/sched/isolation.h>
60 #include <linux/mem_encrypt.h>
61 #include <linux/entry-kvm.h>
62 #include <linux/suspend.h>
63 #include <linux/smp.h>
64 
65 #include <trace/events/ipi.h>
66 #include <trace/events/kvm.h>
67 
68 #include <asm/debugreg.h>
69 #include <asm/msr.h>
70 #include <asm/desc.h>
71 #include <asm/mce.h>
72 #include <asm/pkru.h>
73 #include <linux/kernel_stat.h>
74 #include <asm/fpu/api.h>
75 #include <asm/fpu/xcr.h>
76 #include <asm/fpu/xstate.h>
77 #include <asm/pvclock.h>
78 #include <asm/div64.h>
79 #include <asm/irq_remapping.h>
80 #include <asm/mshyperv.h>
81 #include <asm/hypervisor.h>
82 #include <asm/tlbflush.h>
83 #include <asm/intel_pt.h>
84 #include <asm/emulate_prefix.h>
85 #include <asm/sgx.h>
86 #include <clocksource/hyperv_timer.h>
87 
88 #define CREATE_TRACE_POINTS
89 #include "trace.h"
90 
91 #define MAX_IO_MSRS 256
92 #define KVM_MAX_MCE_BANKS 32
93 
94 struct kvm_caps kvm_caps __read_mostly = {
95 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
96 };
97 EXPORT_SYMBOL_GPL(kvm_caps);
98 
99 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
100 
101 #define emul_to_vcpu(ctxt) \
102 	((struct kvm_vcpu *)(ctxt)->vcpu)
103 
104 /* EFER defaults:
105  * - enable syscall per default because its emulated by KVM
106  * - enable LME and LMA per default on 64 bit KVM
107  */
108 #ifdef CONFIG_X86_64
109 static
110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
111 #else
112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
113 #endif
114 
115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
116 
117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
118 
119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
120 
121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
122                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
123 
124 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
125 static void process_nmi(struct kvm_vcpu *vcpu);
126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
127 static void store_regs(struct kvm_vcpu *vcpu);
128 static int sync_regs(struct kvm_vcpu *vcpu);
129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
130 
131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 
134 static DEFINE_MUTEX(vendor_module_lock);
135 struct kvm_x86_ops kvm_x86_ops __read_mostly;
136 
137 #define KVM_X86_OP(func)					     \
138 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
139 				*(((struct kvm_x86_ops *)0)->func));
140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
142 #include <asm/kvm-x86-ops.h>
143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
145 
146 static bool __read_mostly ignore_msrs = 0;
147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
148 
149 bool __read_mostly report_ignored_msrs = true;
150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
151 EXPORT_SYMBOL_GPL(report_ignored_msrs);
152 
153 unsigned int min_timer_period_us = 200;
154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
155 
156 static bool __read_mostly kvmclock_periodic_sync = true;
157 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
158 
159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
160 static u32 __read_mostly tsc_tolerance_ppm = 250;
161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
162 
163 /*
164  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
165  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
166  * advancement entirely.  Any other value is used as-is and disables adaptive
167  * tuning, i.e. allows privileged userspace to set an exact advancement time.
168  */
169 static int __read_mostly lapic_timer_advance_ns = -1;
170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
171 
172 static bool __read_mostly vector_hashing = true;
173 module_param(vector_hashing, bool, S_IRUGO);
174 
175 bool __read_mostly enable_vmware_backdoor = false;
176 module_param(enable_vmware_backdoor, bool, S_IRUGO);
177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
178 
179 /*
180  * Flags to manipulate forced emulation behavior (any non-zero value will
181  * enable forced emulation).
182  */
183 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
184 static int __read_mostly force_emulation_prefix;
185 module_param(force_emulation_prefix, int, 0644);
186 
187 int __read_mostly pi_inject_timer = -1;
188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
189 
190 /* Enable/disable PMU virtualization */
191 bool __read_mostly enable_pmu = true;
192 EXPORT_SYMBOL_GPL(enable_pmu);
193 module_param(enable_pmu, bool, 0444);
194 
195 bool __read_mostly eager_page_split = true;
196 module_param(eager_page_split, bool, 0644);
197 
198 /* Enable/disable SMT_RSB bug mitigation */
199 static bool __read_mostly mitigate_smt_rsb;
200 module_param(mitigate_smt_rsb, bool, 0444);
201 
202 /*
203  * Restoring the host value for MSRs that are only consumed when running in
204  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
205  * returns to userspace, i.e. the kernel can run with the guest's value.
206  */
207 #define KVM_MAX_NR_USER_RETURN_MSRS 16
208 
209 struct kvm_user_return_msrs {
210 	struct user_return_notifier urn;
211 	bool registered;
212 	struct kvm_user_return_msr_values {
213 		u64 host;
214 		u64 curr;
215 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
216 };
217 
218 u32 __read_mostly kvm_nr_uret_msrs;
219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
221 static struct kvm_user_return_msrs __percpu *user_return_msrs;
222 
223 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
224 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
225 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
226 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
227 
228 u64 __read_mostly host_efer;
229 EXPORT_SYMBOL_GPL(host_efer);
230 
231 bool __read_mostly allow_smaller_maxphyaddr = 0;
232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
233 
234 bool __read_mostly enable_apicv = true;
235 EXPORT_SYMBOL_GPL(enable_apicv);
236 
237 u64 __read_mostly host_xss;
238 EXPORT_SYMBOL_GPL(host_xss);
239 
240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241 	KVM_GENERIC_VM_STATS(),
242 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243 	STATS_DESC_COUNTER(VM, mmu_pte_write),
244 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245 	STATS_DESC_COUNTER(VM, mmu_flooded),
246 	STATS_DESC_COUNTER(VM, mmu_recycled),
247 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
248 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
249 	STATS_DESC_ICOUNTER(VM, pages_4k),
250 	STATS_DESC_ICOUNTER(VM, pages_2m),
251 	STATS_DESC_ICOUNTER(VM, pages_1g),
252 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
253 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
255 };
256 
257 const struct kvm_stats_header kvm_vm_stats_header = {
258 	.name_size = KVM_STATS_NAME_SIZE,
259 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260 	.id_offset = sizeof(struct kvm_stats_header),
261 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263 		       sizeof(kvm_vm_stats_desc),
264 };
265 
266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267 	KVM_GENERIC_VCPU_STATS(),
268 	STATS_DESC_COUNTER(VCPU, pf_taken),
269 	STATS_DESC_COUNTER(VCPU, pf_fixed),
270 	STATS_DESC_COUNTER(VCPU, pf_emulate),
271 	STATS_DESC_COUNTER(VCPU, pf_spurious),
272 	STATS_DESC_COUNTER(VCPU, pf_fast),
273 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
274 	STATS_DESC_COUNTER(VCPU, pf_guest),
275 	STATS_DESC_COUNTER(VCPU, tlb_flush),
276 	STATS_DESC_COUNTER(VCPU, invlpg),
277 	STATS_DESC_COUNTER(VCPU, exits),
278 	STATS_DESC_COUNTER(VCPU, io_exits),
279 	STATS_DESC_COUNTER(VCPU, mmio_exits),
280 	STATS_DESC_COUNTER(VCPU, signal_exits),
281 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
282 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283 	STATS_DESC_COUNTER(VCPU, l1d_flush),
284 	STATS_DESC_COUNTER(VCPU, halt_exits),
285 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
286 	STATS_DESC_COUNTER(VCPU, irq_exits),
287 	STATS_DESC_COUNTER(VCPU, host_state_reload),
288 	STATS_DESC_COUNTER(VCPU, fpu_reload),
289 	STATS_DESC_COUNTER(VCPU, insn_emulation),
290 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291 	STATS_DESC_COUNTER(VCPU, hypercalls),
292 	STATS_DESC_COUNTER(VCPU, irq_injections),
293 	STATS_DESC_COUNTER(VCPU, nmi_injections),
294 	STATS_DESC_COUNTER(VCPU, req_event),
295 	STATS_DESC_COUNTER(VCPU, nested_run),
296 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
298 	STATS_DESC_COUNTER(VCPU, preemption_reported),
299 	STATS_DESC_COUNTER(VCPU, preemption_other),
300 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
301 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
302 };
303 
304 const struct kvm_stats_header kvm_vcpu_stats_header = {
305 	.name_size = KVM_STATS_NAME_SIZE,
306 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 	.id_offset = sizeof(struct kvm_stats_header),
308 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 		       sizeof(kvm_vcpu_stats_desc),
311 };
312 
313 u64 __read_mostly host_xcr0;
314 
315 static struct kmem_cache *x86_emulator_cache;
316 
317 /*
318  * When called, it means the previous get/set msr reached an invalid msr.
319  * Return true if we want to ignore/silent this failed msr access.
320  */
321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
322 {
323 	const char *op = write ? "wrmsr" : "rdmsr";
324 
325 	if (ignore_msrs) {
326 		if (report_ignored_msrs)
327 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
328 				      op, msr, data);
329 		/* Mask the error */
330 		return true;
331 	} else {
332 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
333 				      op, msr, data);
334 		return false;
335 	}
336 }
337 
338 static struct kmem_cache *kvm_alloc_emulator_cache(void)
339 {
340 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
341 	unsigned int size = sizeof(struct x86_emulate_ctxt);
342 
343 	return kmem_cache_create_usercopy("x86_emulator", size,
344 					  __alignof__(struct x86_emulate_ctxt),
345 					  SLAB_ACCOUNT, useroffset,
346 					  size - useroffset, NULL);
347 }
348 
349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
350 
351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
352 {
353 	int i;
354 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
355 		vcpu->arch.apf.gfns[i] = ~0;
356 }
357 
358 static void kvm_on_user_return(struct user_return_notifier *urn)
359 {
360 	unsigned slot;
361 	struct kvm_user_return_msrs *msrs
362 		= container_of(urn, struct kvm_user_return_msrs, urn);
363 	struct kvm_user_return_msr_values *values;
364 	unsigned long flags;
365 
366 	/*
367 	 * Disabling irqs at this point since the following code could be
368 	 * interrupted and executed through kvm_arch_hardware_disable()
369 	 */
370 	local_irq_save(flags);
371 	if (msrs->registered) {
372 		msrs->registered = false;
373 		user_return_notifier_unregister(urn);
374 	}
375 	local_irq_restore(flags);
376 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
377 		values = &msrs->values[slot];
378 		if (values->host != values->curr) {
379 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
380 			values->curr = values->host;
381 		}
382 	}
383 }
384 
385 static int kvm_probe_user_return_msr(u32 msr)
386 {
387 	u64 val;
388 	int ret;
389 
390 	preempt_disable();
391 	ret = rdmsrl_safe(msr, &val);
392 	if (ret)
393 		goto out;
394 	ret = wrmsrl_safe(msr, val);
395 out:
396 	preempt_enable();
397 	return ret;
398 }
399 
400 int kvm_add_user_return_msr(u32 msr)
401 {
402 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
403 
404 	if (kvm_probe_user_return_msr(msr))
405 		return -1;
406 
407 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
408 	return kvm_nr_uret_msrs++;
409 }
410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
411 
412 int kvm_find_user_return_msr(u32 msr)
413 {
414 	int i;
415 
416 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417 		if (kvm_uret_msrs_list[i] == msr)
418 			return i;
419 	}
420 	return -1;
421 }
422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
423 
424 static void kvm_user_return_msr_cpu_online(void)
425 {
426 	unsigned int cpu = smp_processor_id();
427 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
428 	u64 value;
429 	int i;
430 
431 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
432 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
433 		msrs->values[i].host = value;
434 		msrs->values[i].curr = value;
435 	}
436 }
437 
438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
439 {
440 	unsigned int cpu = smp_processor_id();
441 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
442 	int err;
443 
444 	value = (value & mask) | (msrs->values[slot].host & ~mask);
445 	if (value == msrs->values[slot].curr)
446 		return 0;
447 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
448 	if (err)
449 		return 1;
450 
451 	msrs->values[slot].curr = value;
452 	if (!msrs->registered) {
453 		msrs->urn.on_user_return = kvm_on_user_return;
454 		user_return_notifier_register(&msrs->urn);
455 		msrs->registered = true;
456 	}
457 	return 0;
458 }
459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
460 
461 static void drop_user_return_notifiers(void)
462 {
463 	unsigned int cpu = smp_processor_id();
464 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
465 
466 	if (msrs->registered)
467 		kvm_on_user_return(&msrs->urn);
468 }
469 
470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
471 {
472 	return vcpu->arch.apic_base;
473 }
474 
475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
476 {
477 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
478 }
479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
480 
481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
482 {
483 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
484 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
485 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
486 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
487 
488 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
489 		return 1;
490 	if (!msr_info->host_initiated) {
491 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
492 			return 1;
493 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
494 			return 1;
495 	}
496 
497 	kvm_lapic_set_base(vcpu, msr_info->data);
498 	kvm_recalculate_apic_map(vcpu->kvm);
499 	return 0;
500 }
501 
502 /*
503  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
504  *
505  * Hardware virtualization extension instructions may fault if a reboot turns
506  * off virtualization while processes are running.  Usually after catching the
507  * fault we just panic; during reboot instead the instruction is ignored.
508  */
509 noinstr void kvm_spurious_fault(void)
510 {
511 	/* Fault while not rebooting.  We want the trace. */
512 	BUG_ON(!kvm_rebooting);
513 }
514 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
515 
516 #define EXCPT_BENIGN		0
517 #define EXCPT_CONTRIBUTORY	1
518 #define EXCPT_PF		2
519 
520 static int exception_class(int vector)
521 {
522 	switch (vector) {
523 	case PF_VECTOR:
524 		return EXCPT_PF;
525 	case DE_VECTOR:
526 	case TS_VECTOR:
527 	case NP_VECTOR:
528 	case SS_VECTOR:
529 	case GP_VECTOR:
530 		return EXCPT_CONTRIBUTORY;
531 	default:
532 		break;
533 	}
534 	return EXCPT_BENIGN;
535 }
536 
537 #define EXCPT_FAULT		0
538 #define EXCPT_TRAP		1
539 #define EXCPT_ABORT		2
540 #define EXCPT_INTERRUPT		3
541 #define EXCPT_DB		4
542 
543 static int exception_type(int vector)
544 {
545 	unsigned int mask;
546 
547 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
548 		return EXCPT_INTERRUPT;
549 
550 	mask = 1 << vector;
551 
552 	/*
553 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
554 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
555 	 */
556 	if (mask & (1 << DB_VECTOR))
557 		return EXCPT_DB;
558 
559 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
560 		return EXCPT_TRAP;
561 
562 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
563 		return EXCPT_ABORT;
564 
565 	/* Reserved exceptions will result in fault */
566 	return EXCPT_FAULT;
567 }
568 
569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
570 				   struct kvm_queued_exception *ex)
571 {
572 	if (!ex->has_payload)
573 		return;
574 
575 	switch (ex->vector) {
576 	case DB_VECTOR:
577 		/*
578 		 * "Certain debug exceptions may clear bit 0-3.  The
579 		 * remaining contents of the DR6 register are never
580 		 * cleared by the processor".
581 		 */
582 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583 		/*
584 		 * In order to reflect the #DB exception payload in guest
585 		 * dr6, three components need to be considered: active low
586 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587 		 * DR6_BS and DR6_BT)
588 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589 		 * In the target guest dr6:
590 		 * FIXED_1 bits should always be set.
591 		 * Active low bits should be cleared if 1-setting in payload.
592 		 * Active high bits should be set if 1-setting in payload.
593 		 *
594 		 * Note, the payload is compatible with the pending debug
595 		 * exceptions/exit qualification under VMX, that active_low bits
596 		 * are active high in payload.
597 		 * So they need to be flipped for DR6.
598 		 */
599 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
600 		vcpu->arch.dr6 |= ex->payload;
601 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
602 
603 		/*
604 		 * The #DB payload is defined as compatible with the 'pending
605 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
606 		 * defined in the 'pending debug exceptions' field (enabled
607 		 * breakpoint), it is reserved and must be zero in DR6.
608 		 */
609 		vcpu->arch.dr6 &= ~BIT(12);
610 		break;
611 	case PF_VECTOR:
612 		vcpu->arch.cr2 = ex->payload;
613 		break;
614 	}
615 
616 	ex->has_payload = false;
617 	ex->payload = 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620 
621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
622 				       bool has_error_code, u32 error_code,
623 				       bool has_payload, unsigned long payload)
624 {
625 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
626 
627 	ex->vector = vector;
628 	ex->injected = false;
629 	ex->pending = true;
630 	ex->has_error_code = has_error_code;
631 	ex->error_code = error_code;
632 	ex->has_payload = has_payload;
633 	ex->payload = payload;
634 }
635 
636 /* Forcibly leave the nested mode in cases like a vCPU reset */
637 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
638 {
639 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
640 }
641 
642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
643 		unsigned nr, bool has_error, u32 error_code,
644 	        bool has_payload, unsigned long payload, bool reinject)
645 {
646 	u32 prev_nr;
647 	int class1, class2;
648 
649 	kvm_make_request(KVM_REQ_EVENT, vcpu);
650 
651 	/*
652 	 * If the exception is destined for L2 and isn't being reinjected,
653 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
654 	 * previously injected exception is not checked because it was checked
655 	 * when it was original queued, and re-checking is incorrect if _L1_
656 	 * injected the exception, in which case it's exempt from interception.
657 	 */
658 	if (!reinject && is_guest_mode(vcpu) &&
659 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
660 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
661 					   has_payload, payload);
662 		return;
663 	}
664 
665 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
666 	queue:
667 		if (reinject) {
668 			/*
669 			 * On VM-Entry, an exception can be pending if and only
670 			 * if event injection was blocked by nested_run_pending.
671 			 * In that case, however, vcpu_enter_guest() requests an
672 			 * immediate exit, and the guest shouldn't proceed far
673 			 * enough to need reinjection.
674 			 */
675 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
676 			vcpu->arch.exception.injected = true;
677 			if (WARN_ON_ONCE(has_payload)) {
678 				/*
679 				 * A reinjected event has already
680 				 * delivered its payload.
681 				 */
682 				has_payload = false;
683 				payload = 0;
684 			}
685 		} else {
686 			vcpu->arch.exception.pending = true;
687 			vcpu->arch.exception.injected = false;
688 		}
689 		vcpu->arch.exception.has_error_code = has_error;
690 		vcpu->arch.exception.vector = nr;
691 		vcpu->arch.exception.error_code = error_code;
692 		vcpu->arch.exception.has_payload = has_payload;
693 		vcpu->arch.exception.payload = payload;
694 		if (!is_guest_mode(vcpu))
695 			kvm_deliver_exception_payload(vcpu,
696 						      &vcpu->arch.exception);
697 		return;
698 	}
699 
700 	/* to check exception */
701 	prev_nr = vcpu->arch.exception.vector;
702 	if (prev_nr == DF_VECTOR) {
703 		/* triple fault -> shutdown */
704 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
705 		return;
706 	}
707 	class1 = exception_class(prev_nr);
708 	class2 = exception_class(nr);
709 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
710 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
711 		/*
712 		 * Synthesize #DF.  Clear the previously injected or pending
713 		 * exception so as not to incorrectly trigger shutdown.
714 		 */
715 		vcpu->arch.exception.injected = false;
716 		vcpu->arch.exception.pending = false;
717 
718 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
719 	} else {
720 		/* replace previous exception with a new one in a hope
721 		   that instruction re-execution will regenerate lost
722 		   exception */
723 		goto queue;
724 	}
725 }
726 
727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
728 {
729 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
730 }
731 EXPORT_SYMBOL_GPL(kvm_queue_exception);
732 
733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
734 {
735 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
736 }
737 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
738 
739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
740 			   unsigned long payload)
741 {
742 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
743 }
744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
745 
746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
747 				    u32 error_code, unsigned long payload)
748 {
749 	kvm_multiple_exception(vcpu, nr, true, error_code,
750 			       true, payload, false);
751 }
752 
753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
754 {
755 	if (err)
756 		kvm_inject_gp(vcpu, 0);
757 	else
758 		return kvm_skip_emulated_instruction(vcpu);
759 
760 	return 1;
761 }
762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
763 
764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
765 {
766 	if (err) {
767 		kvm_inject_gp(vcpu, 0);
768 		return 1;
769 	}
770 
771 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
772 				       EMULTYPE_COMPLETE_USER_EXIT);
773 }
774 
775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
776 {
777 	++vcpu->stat.pf_guest;
778 
779 	/*
780 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
781 	 * whether or not L1 wants to intercept "regular" #PF.
782 	 */
783 	if (is_guest_mode(vcpu) && fault->async_page_fault)
784 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
785 					   true, fault->error_code,
786 					   true, fault->address);
787 	else
788 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
789 					fault->address);
790 }
791 
792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
793 				    struct x86_exception *fault)
794 {
795 	struct kvm_mmu *fault_mmu;
796 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
797 
798 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
799 					       vcpu->arch.walk_mmu;
800 
801 	/*
802 	 * Invalidate the TLB entry for the faulting address, if it exists,
803 	 * else the access will fault indefinitely (and to emulate hardware).
804 	 */
805 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
806 	    !(fault->error_code & PFERR_RSVD_MASK))
807 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
808 					KVM_MMU_ROOT_CURRENT);
809 
810 	fault_mmu->inject_page_fault(vcpu, fault);
811 }
812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
813 
814 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
815 {
816 	atomic_inc(&vcpu->arch.nmi_queued);
817 	kvm_make_request(KVM_REQ_NMI, vcpu);
818 }
819 
820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
821 {
822 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
823 }
824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
825 
826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
827 {
828 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
829 }
830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
831 
832 /*
833  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
834  * a #GP and return false.
835  */
836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
837 {
838 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
839 		return true;
840 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
841 	return false;
842 }
843 
844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
845 {
846 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
847 		return true;
848 
849 	kvm_queue_exception(vcpu, UD_VECTOR);
850 	return false;
851 }
852 EXPORT_SYMBOL_GPL(kvm_require_dr);
853 
854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
855 {
856 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
857 }
858 
859 /*
860  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
861  */
862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
863 {
864 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
865 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
866 	gpa_t real_gpa;
867 	int i;
868 	int ret;
869 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
870 
871 	/*
872 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
873 	 * to an L1 GPA.
874 	 */
875 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
876 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
877 	if (real_gpa == INVALID_GPA)
878 		return 0;
879 
880 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
881 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
882 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
883 	if (ret < 0)
884 		return 0;
885 
886 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
887 		if ((pdpte[i] & PT_PRESENT_MASK) &&
888 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
889 			return 0;
890 		}
891 	}
892 
893 	/*
894 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
895 	 * Shadow page roots need to be reconstructed instead.
896 	 */
897 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
898 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
899 
900 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
901 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
902 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
903 	vcpu->arch.pdptrs_from_userspace = false;
904 
905 	return 1;
906 }
907 EXPORT_SYMBOL_GPL(load_pdptrs);
908 
909 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
910 {
911 	/*
912 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
913 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
914 	 * as there are no permission bits to emulate.  If TDP is enabled, the
915 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
916 	 * translations does the right thing, but there's no need to unload the
917 	 * root as CR0.WP doesn't affect SPTEs.
918 	 */
919 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
920 		if (!(cr0 & X86_CR0_PG))
921 			return;
922 
923 		if (tdp_enabled) {
924 			kvm_init_mmu(vcpu);
925 			return;
926 		}
927 	}
928 
929 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
930 		kvm_clear_async_pf_completion_queue(vcpu);
931 		kvm_async_pf_hash_reset(vcpu);
932 
933 		/*
934 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
935 		 * perspective.
936 		 */
937 		if (!(cr0 & X86_CR0_PG))
938 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
939 	}
940 
941 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
942 		kvm_mmu_reset_context(vcpu);
943 
944 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
945 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
946 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
947 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
948 }
949 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
950 
951 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
952 {
953 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
954 
955 	cr0 |= X86_CR0_ET;
956 
957 #ifdef CONFIG_X86_64
958 	if (cr0 & 0xffffffff00000000UL)
959 		return 1;
960 #endif
961 
962 	cr0 &= ~CR0_RESERVED_BITS;
963 
964 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
965 		return 1;
966 
967 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
968 		return 1;
969 
970 #ifdef CONFIG_X86_64
971 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
972 	    (cr0 & X86_CR0_PG)) {
973 		int cs_db, cs_l;
974 
975 		if (!is_pae(vcpu))
976 			return 1;
977 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
978 		if (cs_l)
979 			return 1;
980 	}
981 #endif
982 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
983 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
984 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
985 		return 1;
986 
987 	if (!(cr0 & X86_CR0_PG) &&
988 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
989 		return 1;
990 
991 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
992 
993 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
994 
995 	return 0;
996 }
997 EXPORT_SYMBOL_GPL(kvm_set_cr0);
998 
999 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1000 {
1001 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_lmsw);
1004 
1005 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1006 {
1007 	if (vcpu->arch.guest_state_protected)
1008 		return;
1009 
1010 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1011 
1012 		if (vcpu->arch.xcr0 != host_xcr0)
1013 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1014 
1015 		if (vcpu->arch.xsaves_enabled &&
1016 		    vcpu->arch.ia32_xss != host_xss)
1017 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1018 	}
1019 
1020 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1021 	if (static_cpu_has(X86_FEATURE_PKU) &&
1022 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1023 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1024 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1025 		write_pkru(vcpu->arch.pkru);
1026 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1027 }
1028 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1029 
1030 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1031 {
1032 	if (vcpu->arch.guest_state_protected)
1033 		return;
1034 
1035 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1036 	if (static_cpu_has(X86_FEATURE_PKU) &&
1037 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1038 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1039 		vcpu->arch.pkru = rdpkru();
1040 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1041 			write_pkru(vcpu->arch.host_pkru);
1042 	}
1043 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1044 
1045 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1046 
1047 		if (vcpu->arch.xcr0 != host_xcr0)
1048 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1049 
1050 		if (vcpu->arch.xsaves_enabled &&
1051 		    vcpu->arch.ia32_xss != host_xss)
1052 			wrmsrl(MSR_IA32_XSS, host_xss);
1053 	}
1054 
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1057 
1058 #ifdef CONFIG_X86_64
1059 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1060 {
1061 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1062 }
1063 #endif
1064 
1065 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1066 {
1067 	u64 xcr0 = xcr;
1068 	u64 old_xcr0 = vcpu->arch.xcr0;
1069 	u64 valid_bits;
1070 
1071 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1072 	if (index != XCR_XFEATURE_ENABLED_MASK)
1073 		return 1;
1074 	if (!(xcr0 & XFEATURE_MASK_FP))
1075 		return 1;
1076 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1077 		return 1;
1078 
1079 	/*
1080 	 * Do not allow the guest to set bits that we do not support
1081 	 * saving.  However, xcr0 bit 0 is always set, even if the
1082 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1083 	 */
1084 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1085 	if (xcr0 & ~valid_bits)
1086 		return 1;
1087 
1088 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1089 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1090 		return 1;
1091 
1092 	if (xcr0 & XFEATURE_MASK_AVX512) {
1093 		if (!(xcr0 & XFEATURE_MASK_YMM))
1094 			return 1;
1095 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1096 			return 1;
1097 	}
1098 
1099 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1100 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1101 		return 1;
1102 
1103 	vcpu->arch.xcr0 = xcr0;
1104 
1105 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1106 		kvm_update_cpuid_runtime(vcpu);
1107 	return 0;
1108 }
1109 
1110 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1111 {
1112 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1113 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1114 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1115 		kvm_inject_gp(vcpu, 0);
1116 		return 1;
1117 	}
1118 
1119 	return kvm_skip_emulated_instruction(vcpu);
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1122 
1123 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1124 {
1125 	if (cr4 & cr4_reserved_bits)
1126 		return false;
1127 
1128 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1129 		return false;
1130 
1131 	return true;
1132 }
1133 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1134 
1135 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1136 {
1137 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1138 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1139 }
1140 
1141 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1142 {
1143 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1144 		kvm_mmu_reset_context(vcpu);
1145 
1146 	/*
1147 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1148 	 * according to the SDM; however, stale prev_roots could be reused
1149 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1150 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1151 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1152 	 * so fall through.
1153 	 */
1154 	if (!tdp_enabled &&
1155 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1156 		kvm_mmu_unload(vcpu);
1157 
1158 	/*
1159 	 * The TLB has to be flushed for all PCIDs if any of the following
1160 	 * (architecturally required) changes happen:
1161 	 * - CR4.PCIDE is changed from 1 to 0
1162 	 * - CR4.PGE is toggled
1163 	 *
1164 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1165 	 */
1166 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1167 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1168 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1169 
1170 	/*
1171 	 * The TLB has to be flushed for the current PCID if any of the
1172 	 * following (architecturally required) changes happen:
1173 	 * - CR4.SMEP is changed from 0 to 1
1174 	 * - CR4.PAE is toggled
1175 	 */
1176 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1177 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1178 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1179 
1180 }
1181 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1182 
1183 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1184 {
1185 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1186 
1187 	if (!kvm_is_valid_cr4(vcpu, cr4))
1188 		return 1;
1189 
1190 	if (is_long_mode(vcpu)) {
1191 		if (!(cr4 & X86_CR4_PAE))
1192 			return 1;
1193 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1194 			return 1;
1195 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1196 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1197 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1198 		return 1;
1199 
1200 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1201 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1202 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1203 			return 1;
1204 	}
1205 
1206 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1207 
1208 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1209 
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1213 
1214 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1215 {
1216 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1217 	unsigned long roots_to_free = 0;
1218 	int i;
1219 
1220 	/*
1221 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1222 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1223 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1224 	 * the invalidation, but the guest's TLB entries need to be flushed as
1225 	 * the CPU may have cached entries in its TLB for the target PCID.
1226 	 */
1227 	if (unlikely(tdp_enabled)) {
1228 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1229 		return;
1230 	}
1231 
1232 	/*
1233 	 * If neither the current CR3 nor any of the prev_roots use the given
1234 	 * PCID, then nothing needs to be done here because a resync will
1235 	 * happen anyway before switching to any other CR3.
1236 	 */
1237 	if (kvm_get_active_pcid(vcpu) == pcid) {
1238 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1239 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1240 	}
1241 
1242 	/*
1243 	 * If PCID is disabled, there is no need to free prev_roots even if the
1244 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1245 	 * with PCIDE=0.
1246 	 */
1247 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1248 		return;
1249 
1250 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1251 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1252 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1253 
1254 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1255 }
1256 
1257 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1258 {
1259 	bool skip_tlb_flush = false;
1260 	unsigned long pcid = 0;
1261 #ifdef CONFIG_X86_64
1262 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1263 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1264 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1265 		pcid = cr3 & X86_CR3_PCID_MASK;
1266 	}
1267 #endif
1268 
1269 	/* PDPTRs are always reloaded for PAE paging. */
1270 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1271 		goto handle_tlb_flush;
1272 
1273 	/*
1274 	 * Do not condition the GPA check on long mode, this helper is used to
1275 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1276 	 * the current vCPU mode is accurate.
1277 	 */
1278 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1279 		return 1;
1280 
1281 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1282 		return 1;
1283 
1284 	if (cr3 != kvm_read_cr3(vcpu))
1285 		kvm_mmu_new_pgd(vcpu, cr3);
1286 
1287 	vcpu->arch.cr3 = cr3;
1288 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1289 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1290 
1291 handle_tlb_flush:
1292 	/*
1293 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1294 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1295 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1296 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1297 	 * i.e. only PCID=0 can be relevant.
1298 	 */
1299 	if (!skip_tlb_flush)
1300 		kvm_invalidate_pcid(vcpu, pcid);
1301 
1302 	return 0;
1303 }
1304 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1305 
1306 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1307 {
1308 	if (cr8 & CR8_RESERVED_BITS)
1309 		return 1;
1310 	if (lapic_in_kernel(vcpu))
1311 		kvm_lapic_set_tpr(vcpu, cr8);
1312 	else
1313 		vcpu->arch.cr8 = cr8;
1314 	return 0;
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1317 
1318 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1319 {
1320 	if (lapic_in_kernel(vcpu))
1321 		return kvm_lapic_get_cr8(vcpu);
1322 	else
1323 		return vcpu->arch.cr8;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1326 
1327 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1328 {
1329 	int i;
1330 
1331 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1332 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1333 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1334 	}
1335 }
1336 
1337 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1338 {
1339 	unsigned long dr7;
1340 
1341 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1342 		dr7 = vcpu->arch.guest_debug_dr7;
1343 	else
1344 		dr7 = vcpu->arch.dr7;
1345 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1346 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1347 	if (dr7 & DR7_BP_EN_MASK)
1348 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1349 }
1350 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1351 
1352 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1353 {
1354 	u64 fixed = DR6_FIXED_1;
1355 
1356 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1357 		fixed |= DR6_RTM;
1358 
1359 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1360 		fixed |= DR6_BUS_LOCK;
1361 	return fixed;
1362 }
1363 
1364 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1365 {
1366 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1367 
1368 	switch (dr) {
1369 	case 0 ... 3:
1370 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1371 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1372 			vcpu->arch.eff_db[dr] = val;
1373 		break;
1374 	case 4:
1375 	case 6:
1376 		if (!kvm_dr6_valid(val))
1377 			return 1; /* #GP */
1378 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1379 		break;
1380 	case 5:
1381 	default: /* 7 */
1382 		if (!kvm_dr7_valid(val))
1383 			return 1; /* #GP */
1384 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1385 		kvm_update_dr7(vcpu);
1386 		break;
1387 	}
1388 
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_set_dr);
1392 
1393 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1394 {
1395 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1396 
1397 	switch (dr) {
1398 	case 0 ... 3:
1399 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1400 		break;
1401 	case 4:
1402 	case 6:
1403 		*val = vcpu->arch.dr6;
1404 		break;
1405 	case 5:
1406 	default: /* 7 */
1407 		*val = vcpu->arch.dr7;
1408 		break;
1409 	}
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_get_dr);
1412 
1413 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1414 {
1415 	u32 ecx = kvm_rcx_read(vcpu);
1416 	u64 data;
1417 
1418 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1419 		kvm_inject_gp(vcpu, 0);
1420 		return 1;
1421 	}
1422 
1423 	kvm_rax_write(vcpu, (u32)data);
1424 	kvm_rdx_write(vcpu, data >> 32);
1425 	return kvm_skip_emulated_instruction(vcpu);
1426 }
1427 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1428 
1429 /*
1430  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1431  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1432  *
1433  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1434  * extract the supported MSRs from the related const lists.
1435  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1436  * capabilities of the host cpu. This capabilities test skips MSRs that are
1437  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1438  * may depend on host virtualization features rather than host cpu features.
1439  */
1440 
1441 static const u32 msrs_to_save_base[] = {
1442 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1443 	MSR_STAR,
1444 #ifdef CONFIG_X86_64
1445 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1446 #endif
1447 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1448 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1449 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1450 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1451 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1452 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1453 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1454 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1455 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1456 	MSR_IA32_UMWAIT_CONTROL,
1457 
1458 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1459 };
1460 
1461 static const u32 msrs_to_save_pmu[] = {
1462 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1463 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1464 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1465 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1466 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1467 
1468 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1469 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1470 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1471 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1472 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1473 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1474 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1475 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1476 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1477 
1478 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1479 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1480 
1481 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1482 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1483 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1484 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1485 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1486 };
1487 
1488 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1489 			ARRAY_SIZE(msrs_to_save_pmu)];
1490 static unsigned num_msrs_to_save;
1491 
1492 static const u32 emulated_msrs_all[] = {
1493 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1494 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1495 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1496 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1497 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1498 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1499 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1500 	HV_X64_MSR_RESET,
1501 	HV_X64_MSR_VP_INDEX,
1502 	HV_X64_MSR_VP_RUNTIME,
1503 	HV_X64_MSR_SCONTROL,
1504 	HV_X64_MSR_STIMER0_CONFIG,
1505 	HV_X64_MSR_VP_ASSIST_PAGE,
1506 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1507 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1508 	HV_X64_MSR_SYNDBG_OPTIONS,
1509 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1510 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1511 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1512 
1513 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1514 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1515 
1516 	MSR_IA32_TSC_ADJUST,
1517 	MSR_IA32_TSC_DEADLINE,
1518 	MSR_IA32_ARCH_CAPABILITIES,
1519 	MSR_IA32_PERF_CAPABILITIES,
1520 	MSR_IA32_MISC_ENABLE,
1521 	MSR_IA32_MCG_STATUS,
1522 	MSR_IA32_MCG_CTL,
1523 	MSR_IA32_MCG_EXT_CTL,
1524 	MSR_IA32_SMBASE,
1525 	MSR_SMI_COUNT,
1526 	MSR_PLATFORM_INFO,
1527 	MSR_MISC_FEATURES_ENABLES,
1528 	MSR_AMD64_VIRT_SPEC_CTRL,
1529 	MSR_AMD64_TSC_RATIO,
1530 	MSR_IA32_POWER_CTL,
1531 	MSR_IA32_UCODE_REV,
1532 
1533 	/*
1534 	 * The following list leaves out MSRs whose values are determined
1535 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1536 	 * We always support the "true" VMX control MSRs, even if the host
1537 	 * processor does not, so I am putting these registers here rather
1538 	 * than in msrs_to_save_all.
1539 	 */
1540 	MSR_IA32_VMX_BASIC,
1541 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1542 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1543 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1544 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1545 	MSR_IA32_VMX_MISC,
1546 	MSR_IA32_VMX_CR0_FIXED0,
1547 	MSR_IA32_VMX_CR4_FIXED0,
1548 	MSR_IA32_VMX_VMCS_ENUM,
1549 	MSR_IA32_VMX_PROCBASED_CTLS2,
1550 	MSR_IA32_VMX_EPT_VPID_CAP,
1551 	MSR_IA32_VMX_VMFUNC,
1552 
1553 	MSR_K7_HWCR,
1554 	MSR_KVM_POLL_CONTROL,
1555 };
1556 
1557 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1558 static unsigned num_emulated_msrs;
1559 
1560 /*
1561  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1562  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1563  * feature MSRs, but are handled separately to allow expedited lookups.
1564  */
1565 static const u32 msr_based_features_all_except_vmx[] = {
1566 	MSR_AMD64_DE_CFG,
1567 	MSR_IA32_UCODE_REV,
1568 	MSR_IA32_ARCH_CAPABILITIES,
1569 	MSR_IA32_PERF_CAPABILITIES,
1570 };
1571 
1572 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1573 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1574 static unsigned int num_msr_based_features;
1575 
1576 /*
1577  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1578  * patch, are immutable once the vCPU model is defined.
1579  */
1580 static bool kvm_is_immutable_feature_msr(u32 msr)
1581 {
1582 	int i;
1583 
1584 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1585 		return true;
1586 
1587 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1588 		if (msr == msr_based_features_all_except_vmx[i])
1589 			return msr != MSR_IA32_UCODE_REV;
1590 	}
1591 
1592 	return false;
1593 }
1594 
1595 /*
1596  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1597  * does not yet virtualize. These include:
1598  *   10 - MISC_PACKAGE_CTRLS
1599  *   11 - ENERGY_FILTERING_CTL
1600  *   12 - DOITM
1601  *   18 - FB_CLEAR_CTRL
1602  *   21 - XAPIC_DISABLE_STATUS
1603  *   23 - OVERCLOCKING_STATUS
1604  */
1605 
1606 #define KVM_SUPPORTED_ARCH_CAP \
1607 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1608 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1609 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1610 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1611 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1612 
1613 static u64 kvm_get_arch_capabilities(void)
1614 {
1615 	u64 data = 0;
1616 
1617 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1618 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1619 		data &= KVM_SUPPORTED_ARCH_CAP;
1620 	}
1621 
1622 	/*
1623 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1624 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1625 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1626 	 * L1 guests, so it need not worry about its own (L2) guests.
1627 	 */
1628 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1629 
1630 	/*
1631 	 * If we're doing cache flushes (either "always" or "cond")
1632 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1633 	 * If an outer hypervisor is doing the cache flush for us
1634 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1635 	 * capability to the guest too, and if EPT is disabled we're not
1636 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1637 	 * require a nested hypervisor to do a flush of its own.
1638 	 */
1639 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1640 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1641 
1642 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1643 		data |= ARCH_CAP_RDCL_NO;
1644 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1645 		data |= ARCH_CAP_SSB_NO;
1646 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1647 		data |= ARCH_CAP_MDS_NO;
1648 
1649 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1650 		/*
1651 		 * If RTM=0 because the kernel has disabled TSX, the host might
1652 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1653 		 * and therefore knows that there cannot be TAA) but keep
1654 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1655 		 * and we want to allow migrating those guests to tsx=off hosts.
1656 		 */
1657 		data &= ~ARCH_CAP_TAA_NO;
1658 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1659 		data |= ARCH_CAP_TAA_NO;
1660 	} else {
1661 		/*
1662 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1663 		 * host so the guest can choose between disabling TSX or
1664 		 * using VERW to clear CPU buffers.
1665 		 */
1666 	}
1667 
1668 	return data;
1669 }
1670 
1671 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1672 {
1673 	switch (msr->index) {
1674 	case MSR_IA32_ARCH_CAPABILITIES:
1675 		msr->data = kvm_get_arch_capabilities();
1676 		break;
1677 	case MSR_IA32_PERF_CAPABILITIES:
1678 		msr->data = kvm_caps.supported_perf_cap;
1679 		break;
1680 	case MSR_IA32_UCODE_REV:
1681 		rdmsrl_safe(msr->index, &msr->data);
1682 		break;
1683 	default:
1684 		return static_call(kvm_x86_get_msr_feature)(msr);
1685 	}
1686 	return 0;
1687 }
1688 
1689 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1690 {
1691 	struct kvm_msr_entry msr;
1692 	int r;
1693 
1694 	msr.index = index;
1695 	r = kvm_get_msr_feature(&msr);
1696 
1697 	if (r == KVM_MSR_RET_INVALID) {
1698 		/* Unconditionally clear the output for simplicity */
1699 		*data = 0;
1700 		if (kvm_msr_ignored_check(index, 0, false))
1701 			r = 0;
1702 	}
1703 
1704 	if (r)
1705 		return r;
1706 
1707 	*data = msr.data;
1708 
1709 	return 0;
1710 }
1711 
1712 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1713 {
1714 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1715 		return false;
1716 
1717 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1718 		return false;
1719 
1720 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1721 		return false;
1722 
1723 	if (efer & (EFER_LME | EFER_LMA) &&
1724 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1725 		return false;
1726 
1727 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1728 		return false;
1729 
1730 	return true;
1731 
1732 }
1733 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1734 {
1735 	if (efer & efer_reserved_bits)
1736 		return false;
1737 
1738 	return __kvm_valid_efer(vcpu, efer);
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1741 
1742 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1743 {
1744 	u64 old_efer = vcpu->arch.efer;
1745 	u64 efer = msr_info->data;
1746 	int r;
1747 
1748 	if (efer & efer_reserved_bits)
1749 		return 1;
1750 
1751 	if (!msr_info->host_initiated) {
1752 		if (!__kvm_valid_efer(vcpu, efer))
1753 			return 1;
1754 
1755 		if (is_paging(vcpu) &&
1756 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1757 			return 1;
1758 	}
1759 
1760 	efer &= ~EFER_LMA;
1761 	efer |= vcpu->arch.efer & EFER_LMA;
1762 
1763 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1764 	if (r) {
1765 		WARN_ON(r > 0);
1766 		return r;
1767 	}
1768 
1769 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1770 		kvm_mmu_reset_context(vcpu);
1771 
1772 	return 0;
1773 }
1774 
1775 void kvm_enable_efer_bits(u64 mask)
1776 {
1777        efer_reserved_bits &= ~mask;
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1780 
1781 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1782 {
1783 	struct kvm_x86_msr_filter *msr_filter;
1784 	struct msr_bitmap_range *ranges;
1785 	struct kvm *kvm = vcpu->kvm;
1786 	bool allowed;
1787 	int idx;
1788 	u32 i;
1789 
1790 	/* x2APIC MSRs do not support filtering. */
1791 	if (index >= 0x800 && index <= 0x8ff)
1792 		return true;
1793 
1794 	idx = srcu_read_lock(&kvm->srcu);
1795 
1796 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1797 	if (!msr_filter) {
1798 		allowed = true;
1799 		goto out;
1800 	}
1801 
1802 	allowed = msr_filter->default_allow;
1803 	ranges = msr_filter->ranges;
1804 
1805 	for (i = 0; i < msr_filter->count; i++) {
1806 		u32 start = ranges[i].base;
1807 		u32 end = start + ranges[i].nmsrs;
1808 		u32 flags = ranges[i].flags;
1809 		unsigned long *bitmap = ranges[i].bitmap;
1810 
1811 		if ((index >= start) && (index < end) && (flags & type)) {
1812 			allowed = !!test_bit(index - start, bitmap);
1813 			break;
1814 		}
1815 	}
1816 
1817 out:
1818 	srcu_read_unlock(&kvm->srcu, idx);
1819 
1820 	return allowed;
1821 }
1822 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1823 
1824 /*
1825  * Write @data into the MSR specified by @index.  Select MSR specific fault
1826  * checks are bypassed if @host_initiated is %true.
1827  * Returns 0 on success, non-0 otherwise.
1828  * Assumes vcpu_load() was already called.
1829  */
1830 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1831 			 bool host_initiated)
1832 {
1833 	struct msr_data msr;
1834 
1835 	switch (index) {
1836 	case MSR_FS_BASE:
1837 	case MSR_GS_BASE:
1838 	case MSR_KERNEL_GS_BASE:
1839 	case MSR_CSTAR:
1840 	case MSR_LSTAR:
1841 		if (is_noncanonical_address(data, vcpu))
1842 			return 1;
1843 		break;
1844 	case MSR_IA32_SYSENTER_EIP:
1845 	case MSR_IA32_SYSENTER_ESP:
1846 		/*
1847 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1848 		 * non-canonical address is written on Intel but not on
1849 		 * AMD (which ignores the top 32-bits, because it does
1850 		 * not implement 64-bit SYSENTER).
1851 		 *
1852 		 * 64-bit code should hence be able to write a non-canonical
1853 		 * value on AMD.  Making the address canonical ensures that
1854 		 * vmentry does not fail on Intel after writing a non-canonical
1855 		 * value, and that something deterministic happens if the guest
1856 		 * invokes 64-bit SYSENTER.
1857 		 */
1858 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1859 		break;
1860 	case MSR_TSC_AUX:
1861 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1862 			return 1;
1863 
1864 		if (!host_initiated &&
1865 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1866 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1867 			return 1;
1868 
1869 		/*
1870 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1871 		 * incomplete and conflicting architectural behavior.  Current
1872 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1873 		 * reserved and always read as zeros.  Enforce Intel's reserved
1874 		 * bits check if and only if the guest CPU is Intel, and clear
1875 		 * the bits in all other cases.  This ensures cross-vendor
1876 		 * migration will provide consistent behavior for the guest.
1877 		 */
1878 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1879 			return 1;
1880 
1881 		data = (u32)data;
1882 		break;
1883 	}
1884 
1885 	msr.data = data;
1886 	msr.index = index;
1887 	msr.host_initiated = host_initiated;
1888 
1889 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1890 }
1891 
1892 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1893 				     u32 index, u64 data, bool host_initiated)
1894 {
1895 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1896 
1897 	if (ret == KVM_MSR_RET_INVALID)
1898 		if (kvm_msr_ignored_check(index, data, true))
1899 			ret = 0;
1900 
1901 	return ret;
1902 }
1903 
1904 /*
1905  * Read the MSR specified by @index into @data.  Select MSR specific fault
1906  * checks are bypassed if @host_initiated is %true.
1907  * Returns 0 on success, non-0 otherwise.
1908  * Assumes vcpu_load() was already called.
1909  */
1910 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1911 		  bool host_initiated)
1912 {
1913 	struct msr_data msr;
1914 	int ret;
1915 
1916 	switch (index) {
1917 	case MSR_TSC_AUX:
1918 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1919 			return 1;
1920 
1921 		if (!host_initiated &&
1922 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1923 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1924 			return 1;
1925 		break;
1926 	}
1927 
1928 	msr.index = index;
1929 	msr.host_initiated = host_initiated;
1930 
1931 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1932 	if (!ret)
1933 		*data = msr.data;
1934 	return ret;
1935 }
1936 
1937 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1938 				     u32 index, u64 *data, bool host_initiated)
1939 {
1940 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1941 
1942 	if (ret == KVM_MSR_RET_INVALID) {
1943 		/* Unconditionally clear *data for simplicity */
1944 		*data = 0;
1945 		if (kvm_msr_ignored_check(index, 0, false))
1946 			ret = 0;
1947 	}
1948 
1949 	return ret;
1950 }
1951 
1952 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1953 {
1954 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1955 		return KVM_MSR_RET_FILTERED;
1956 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1957 }
1958 
1959 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1960 {
1961 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1962 		return KVM_MSR_RET_FILTERED;
1963 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1964 }
1965 
1966 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1967 {
1968 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_get_msr);
1971 
1972 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1973 {
1974 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_set_msr);
1977 
1978 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1979 {
1980 	if (!vcpu->run->msr.error) {
1981 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1982 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1983 	}
1984 }
1985 
1986 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1987 {
1988 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1989 }
1990 
1991 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1992 {
1993 	complete_userspace_rdmsr(vcpu);
1994 	return complete_emulated_msr_access(vcpu);
1995 }
1996 
1997 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1998 {
1999 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2000 }
2001 
2002 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2003 {
2004 	complete_userspace_rdmsr(vcpu);
2005 	return complete_fast_msr_access(vcpu);
2006 }
2007 
2008 static u64 kvm_msr_reason(int r)
2009 {
2010 	switch (r) {
2011 	case KVM_MSR_RET_INVALID:
2012 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2013 	case KVM_MSR_RET_FILTERED:
2014 		return KVM_MSR_EXIT_REASON_FILTER;
2015 	default:
2016 		return KVM_MSR_EXIT_REASON_INVAL;
2017 	}
2018 }
2019 
2020 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2021 			      u32 exit_reason, u64 data,
2022 			      int (*completion)(struct kvm_vcpu *vcpu),
2023 			      int r)
2024 {
2025 	u64 msr_reason = kvm_msr_reason(r);
2026 
2027 	/* Check if the user wanted to know about this MSR fault */
2028 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2029 		return 0;
2030 
2031 	vcpu->run->exit_reason = exit_reason;
2032 	vcpu->run->msr.error = 0;
2033 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2034 	vcpu->run->msr.reason = msr_reason;
2035 	vcpu->run->msr.index = index;
2036 	vcpu->run->msr.data = data;
2037 	vcpu->arch.complete_userspace_io = completion;
2038 
2039 	return 1;
2040 }
2041 
2042 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2043 {
2044 	u32 ecx = kvm_rcx_read(vcpu);
2045 	u64 data;
2046 	int r;
2047 
2048 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2049 
2050 	if (!r) {
2051 		trace_kvm_msr_read(ecx, data);
2052 
2053 		kvm_rax_write(vcpu, data & -1u);
2054 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2055 	} else {
2056 		/* MSR read failed? See if we should ask user space */
2057 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2058 				       complete_fast_rdmsr, r))
2059 			return 0;
2060 		trace_kvm_msr_read_ex(ecx);
2061 	}
2062 
2063 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2066 
2067 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2068 {
2069 	u32 ecx = kvm_rcx_read(vcpu);
2070 	u64 data = kvm_read_edx_eax(vcpu);
2071 	int r;
2072 
2073 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2074 
2075 	if (!r) {
2076 		trace_kvm_msr_write(ecx, data);
2077 	} else {
2078 		/* MSR write failed? See if we should ask user space */
2079 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2080 				       complete_fast_msr_access, r))
2081 			return 0;
2082 		/* Signal all other negative errors to userspace */
2083 		if (r < 0)
2084 			return r;
2085 		trace_kvm_msr_write_ex(ecx, data);
2086 	}
2087 
2088 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2089 }
2090 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2091 
2092 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2093 {
2094 	return kvm_skip_emulated_instruction(vcpu);
2095 }
2096 
2097 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2098 {
2099 	/* Treat an INVD instruction as a NOP and just skip it. */
2100 	return kvm_emulate_as_nop(vcpu);
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2103 
2104 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2105 {
2106 	kvm_queue_exception(vcpu, UD_VECTOR);
2107 	return 1;
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2110 
2111 
2112 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2113 {
2114 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2115 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2116 		return kvm_handle_invalid_op(vcpu);
2117 
2118 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2119 	return kvm_emulate_as_nop(vcpu);
2120 }
2121 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2122 {
2123 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2124 }
2125 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2126 
2127 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2128 {
2129 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2130 }
2131 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2132 
2133 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2134 {
2135 	xfer_to_guest_mode_prepare();
2136 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2137 		xfer_to_guest_mode_work_pending();
2138 }
2139 
2140 /*
2141  * The fast path for frequent and performance sensitive wrmsr emulation,
2142  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2143  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2144  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2145  * other cases which must be called after interrupts are enabled on the host.
2146  */
2147 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2148 {
2149 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2150 		return 1;
2151 
2152 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2153 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2154 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2155 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2156 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2157 
2158 	return 1;
2159 }
2160 
2161 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2162 {
2163 	if (!kvm_can_use_hv_timer(vcpu))
2164 		return 1;
2165 
2166 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2167 	return 0;
2168 }
2169 
2170 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2171 {
2172 	u32 msr = kvm_rcx_read(vcpu);
2173 	u64 data;
2174 	fastpath_t ret = EXIT_FASTPATH_NONE;
2175 
2176 	switch (msr) {
2177 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2178 		data = kvm_read_edx_eax(vcpu);
2179 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2180 			kvm_skip_emulated_instruction(vcpu);
2181 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2182 		}
2183 		break;
2184 	case MSR_IA32_TSC_DEADLINE:
2185 		data = kvm_read_edx_eax(vcpu);
2186 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2187 			kvm_skip_emulated_instruction(vcpu);
2188 			ret = EXIT_FASTPATH_REENTER_GUEST;
2189 		}
2190 		break;
2191 	default:
2192 		break;
2193 	}
2194 
2195 	if (ret != EXIT_FASTPATH_NONE)
2196 		trace_kvm_msr_write(msr, data);
2197 
2198 	return ret;
2199 }
2200 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2201 
2202 /*
2203  * Adapt set_msr() to msr_io()'s calling convention
2204  */
2205 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2206 {
2207 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2208 }
2209 
2210 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2211 {
2212 	u64 val;
2213 
2214 	/*
2215 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2216 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2217 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2218 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2219 	 * all MSRs when emulating RESET.
2220 	 */
2221 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2222 		if (do_get_msr(vcpu, index, &val) || *data != val)
2223 			return -EINVAL;
2224 
2225 		return 0;
2226 	}
2227 
2228 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2229 }
2230 
2231 #ifdef CONFIG_X86_64
2232 struct pvclock_clock {
2233 	int vclock_mode;
2234 	u64 cycle_last;
2235 	u64 mask;
2236 	u32 mult;
2237 	u32 shift;
2238 	u64 base_cycles;
2239 	u64 offset;
2240 };
2241 
2242 struct pvclock_gtod_data {
2243 	seqcount_t	seq;
2244 
2245 	struct pvclock_clock clock; /* extract of a clocksource struct */
2246 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2247 
2248 	ktime_t		offs_boot;
2249 	u64		wall_time_sec;
2250 };
2251 
2252 static struct pvclock_gtod_data pvclock_gtod_data;
2253 
2254 static void update_pvclock_gtod(struct timekeeper *tk)
2255 {
2256 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2257 
2258 	write_seqcount_begin(&vdata->seq);
2259 
2260 	/* copy pvclock gtod data */
2261 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2262 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2263 	vdata->clock.mask		= tk->tkr_mono.mask;
2264 	vdata->clock.mult		= tk->tkr_mono.mult;
2265 	vdata->clock.shift		= tk->tkr_mono.shift;
2266 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2267 	vdata->clock.offset		= tk->tkr_mono.base;
2268 
2269 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2270 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2271 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2272 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2273 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2274 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2275 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2276 
2277 	vdata->wall_time_sec            = tk->xtime_sec;
2278 
2279 	vdata->offs_boot		= tk->offs_boot;
2280 
2281 	write_seqcount_end(&vdata->seq);
2282 }
2283 
2284 static s64 get_kvmclock_base_ns(void)
2285 {
2286 	/* Count up from boot time, but with the frequency of the raw clock.  */
2287 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2288 }
2289 #else
2290 static s64 get_kvmclock_base_ns(void)
2291 {
2292 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2293 	return ktime_get_boottime_ns();
2294 }
2295 #endif
2296 
2297 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2298 {
2299 	int version;
2300 	int r;
2301 	struct pvclock_wall_clock wc;
2302 	u32 wc_sec_hi;
2303 	u64 wall_nsec;
2304 
2305 	if (!wall_clock)
2306 		return;
2307 
2308 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2309 	if (r)
2310 		return;
2311 
2312 	if (version & 1)
2313 		++version;  /* first time write, random junk */
2314 
2315 	++version;
2316 
2317 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2318 		return;
2319 
2320 	/*
2321 	 * The guest calculates current wall clock time by adding
2322 	 * system time (updated by kvm_guest_time_update below) to the
2323 	 * wall clock specified here.  We do the reverse here.
2324 	 */
2325 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2326 
2327 	wc.nsec = do_div(wall_nsec, 1000000000);
2328 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2329 	wc.version = version;
2330 
2331 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2332 
2333 	if (sec_hi_ofs) {
2334 		wc_sec_hi = wall_nsec >> 32;
2335 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2336 				&wc_sec_hi, sizeof(wc_sec_hi));
2337 	}
2338 
2339 	version++;
2340 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2341 }
2342 
2343 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2344 				  bool old_msr, bool host_initiated)
2345 {
2346 	struct kvm_arch *ka = &vcpu->kvm->arch;
2347 
2348 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2349 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2350 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2351 
2352 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2353 	}
2354 
2355 	vcpu->arch.time = system_time;
2356 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2357 
2358 	/* we verify if the enable bit is set... */
2359 	if (system_time & 1)
2360 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2361 				 sizeof(struct pvclock_vcpu_time_info));
2362 	else
2363 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2364 
2365 	return;
2366 }
2367 
2368 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2369 {
2370 	do_shl32_div32(dividend, divisor);
2371 	return dividend;
2372 }
2373 
2374 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2375 			       s8 *pshift, u32 *pmultiplier)
2376 {
2377 	uint64_t scaled64;
2378 	int32_t  shift = 0;
2379 	uint64_t tps64;
2380 	uint32_t tps32;
2381 
2382 	tps64 = base_hz;
2383 	scaled64 = scaled_hz;
2384 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2385 		tps64 >>= 1;
2386 		shift--;
2387 	}
2388 
2389 	tps32 = (uint32_t)tps64;
2390 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2391 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2392 			scaled64 >>= 1;
2393 		else
2394 			tps32 <<= 1;
2395 		shift++;
2396 	}
2397 
2398 	*pshift = shift;
2399 	*pmultiplier = div_frac(scaled64, tps32);
2400 }
2401 
2402 #ifdef CONFIG_X86_64
2403 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2404 #endif
2405 
2406 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2407 static unsigned long max_tsc_khz;
2408 
2409 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2410 {
2411 	u64 v = (u64)khz * (1000000 + ppm);
2412 	do_div(v, 1000000);
2413 	return v;
2414 }
2415 
2416 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2417 
2418 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2419 {
2420 	u64 ratio;
2421 
2422 	/* Guest TSC same frequency as host TSC? */
2423 	if (!scale) {
2424 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2425 		return 0;
2426 	}
2427 
2428 	/* TSC scaling supported? */
2429 	if (!kvm_caps.has_tsc_control) {
2430 		if (user_tsc_khz > tsc_khz) {
2431 			vcpu->arch.tsc_catchup = 1;
2432 			vcpu->arch.tsc_always_catchup = 1;
2433 			return 0;
2434 		} else {
2435 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2436 			return -1;
2437 		}
2438 	}
2439 
2440 	/* TSC scaling required  - calculate ratio */
2441 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2442 				user_tsc_khz, tsc_khz);
2443 
2444 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2445 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2446 			            user_tsc_khz);
2447 		return -1;
2448 	}
2449 
2450 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2451 	return 0;
2452 }
2453 
2454 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2455 {
2456 	u32 thresh_lo, thresh_hi;
2457 	int use_scaling = 0;
2458 
2459 	/* tsc_khz can be zero if TSC calibration fails */
2460 	if (user_tsc_khz == 0) {
2461 		/* set tsc_scaling_ratio to a safe value */
2462 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2463 		return -1;
2464 	}
2465 
2466 	/* Compute a scale to convert nanoseconds in TSC cycles */
2467 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2468 			   &vcpu->arch.virtual_tsc_shift,
2469 			   &vcpu->arch.virtual_tsc_mult);
2470 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2471 
2472 	/*
2473 	 * Compute the variation in TSC rate which is acceptable
2474 	 * within the range of tolerance and decide if the
2475 	 * rate being applied is within that bounds of the hardware
2476 	 * rate.  If so, no scaling or compensation need be done.
2477 	 */
2478 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2479 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2480 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2481 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2482 			 user_tsc_khz, thresh_lo, thresh_hi);
2483 		use_scaling = 1;
2484 	}
2485 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2486 }
2487 
2488 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2489 {
2490 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2491 				      vcpu->arch.virtual_tsc_mult,
2492 				      vcpu->arch.virtual_tsc_shift);
2493 	tsc += vcpu->arch.this_tsc_write;
2494 	return tsc;
2495 }
2496 
2497 #ifdef CONFIG_X86_64
2498 static inline int gtod_is_based_on_tsc(int mode)
2499 {
2500 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2501 }
2502 #endif
2503 
2504 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2505 {
2506 #ifdef CONFIG_X86_64
2507 	bool vcpus_matched;
2508 	struct kvm_arch *ka = &vcpu->kvm->arch;
2509 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2510 
2511 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2512 			 atomic_read(&vcpu->kvm->online_vcpus));
2513 
2514 	/*
2515 	 * Once the masterclock is enabled, always perform request in
2516 	 * order to update it.
2517 	 *
2518 	 * In order to enable masterclock, the host clocksource must be TSC
2519 	 * and the vcpus need to have matched TSCs.  When that happens,
2520 	 * perform request to enable masterclock.
2521 	 */
2522 	if (ka->use_master_clock ||
2523 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2524 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2525 
2526 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2527 			    atomic_read(&vcpu->kvm->online_vcpus),
2528 		            ka->use_master_clock, gtod->clock.vclock_mode);
2529 #endif
2530 }
2531 
2532 /*
2533  * Multiply tsc by a fixed point number represented by ratio.
2534  *
2535  * The most significant 64-N bits (mult) of ratio represent the
2536  * integral part of the fixed point number; the remaining N bits
2537  * (frac) represent the fractional part, ie. ratio represents a fixed
2538  * point number (mult + frac * 2^(-N)).
2539  *
2540  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2541  */
2542 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2543 {
2544 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2545 }
2546 
2547 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2548 {
2549 	u64 _tsc = tsc;
2550 
2551 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2552 		_tsc = __scale_tsc(ratio, tsc);
2553 
2554 	return _tsc;
2555 }
2556 
2557 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2558 {
2559 	u64 tsc;
2560 
2561 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2562 
2563 	return target_tsc - tsc;
2564 }
2565 
2566 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2567 {
2568 	return vcpu->arch.l1_tsc_offset +
2569 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2570 }
2571 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2572 
2573 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2574 {
2575 	u64 nested_offset;
2576 
2577 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2578 		nested_offset = l1_offset;
2579 	else
2580 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2581 						kvm_caps.tsc_scaling_ratio_frac_bits);
2582 
2583 	nested_offset += l2_offset;
2584 	return nested_offset;
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2587 
2588 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2589 {
2590 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2591 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2592 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2593 
2594 	return l1_multiplier;
2595 }
2596 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2597 
2598 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2599 {
2600 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2601 				   vcpu->arch.l1_tsc_offset,
2602 				   l1_offset);
2603 
2604 	vcpu->arch.l1_tsc_offset = l1_offset;
2605 
2606 	/*
2607 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2608 	 * according to the spec this should set L1's TSC (as opposed to
2609 	 * setting L1's offset for L2).
2610 	 */
2611 	if (is_guest_mode(vcpu))
2612 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2613 			l1_offset,
2614 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2615 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2616 	else
2617 		vcpu->arch.tsc_offset = l1_offset;
2618 
2619 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2620 }
2621 
2622 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2623 {
2624 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2625 
2626 	/* Userspace is changing the multiplier while L2 is active */
2627 	if (is_guest_mode(vcpu))
2628 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2629 			l1_multiplier,
2630 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2631 	else
2632 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2633 
2634 	if (kvm_caps.has_tsc_control)
2635 		static_call(kvm_x86_write_tsc_multiplier)(
2636 			vcpu, vcpu->arch.tsc_scaling_ratio);
2637 }
2638 
2639 static inline bool kvm_check_tsc_unstable(void)
2640 {
2641 #ifdef CONFIG_X86_64
2642 	/*
2643 	 * TSC is marked unstable when we're running on Hyper-V,
2644 	 * 'TSC page' clocksource is good.
2645 	 */
2646 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2647 		return false;
2648 #endif
2649 	return check_tsc_unstable();
2650 }
2651 
2652 /*
2653  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2654  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2655  * participates in.
2656  */
2657 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2658 				  u64 ns, bool matched)
2659 {
2660 	struct kvm *kvm = vcpu->kvm;
2661 
2662 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2663 
2664 	/*
2665 	 * We also track th most recent recorded KHZ, write and time to
2666 	 * allow the matching interval to be extended at each write.
2667 	 */
2668 	kvm->arch.last_tsc_nsec = ns;
2669 	kvm->arch.last_tsc_write = tsc;
2670 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2671 	kvm->arch.last_tsc_offset = offset;
2672 
2673 	vcpu->arch.last_guest_tsc = tsc;
2674 
2675 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2676 
2677 	if (!matched) {
2678 		/*
2679 		 * We split periods of matched TSC writes into generations.
2680 		 * For each generation, we track the original measured
2681 		 * nanosecond time, offset, and write, so if TSCs are in
2682 		 * sync, we can match exact offset, and if not, we can match
2683 		 * exact software computation in compute_guest_tsc()
2684 		 *
2685 		 * These values are tracked in kvm->arch.cur_xxx variables.
2686 		 */
2687 		kvm->arch.cur_tsc_generation++;
2688 		kvm->arch.cur_tsc_nsec = ns;
2689 		kvm->arch.cur_tsc_write = tsc;
2690 		kvm->arch.cur_tsc_offset = offset;
2691 		kvm->arch.nr_vcpus_matched_tsc = 0;
2692 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2693 		kvm->arch.nr_vcpus_matched_tsc++;
2694 	}
2695 
2696 	/* Keep track of which generation this VCPU has synchronized to */
2697 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2698 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2699 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2700 
2701 	kvm_track_tsc_matching(vcpu);
2702 }
2703 
2704 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2705 {
2706 	struct kvm *kvm = vcpu->kvm;
2707 	u64 offset, ns, elapsed;
2708 	unsigned long flags;
2709 	bool matched = false;
2710 	bool synchronizing = false;
2711 
2712 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2713 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2714 	ns = get_kvmclock_base_ns();
2715 	elapsed = ns - kvm->arch.last_tsc_nsec;
2716 
2717 	if (vcpu->arch.virtual_tsc_khz) {
2718 		if (data == 0) {
2719 			/*
2720 			 * detection of vcpu initialization -- need to sync
2721 			 * with other vCPUs. This particularly helps to keep
2722 			 * kvm_clock stable after CPU hotplug
2723 			 */
2724 			synchronizing = true;
2725 		} else {
2726 			u64 tsc_exp = kvm->arch.last_tsc_write +
2727 						nsec_to_cycles(vcpu, elapsed);
2728 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2729 			/*
2730 			 * Special case: TSC write with a small delta (1 second)
2731 			 * of virtual cycle time against real time is
2732 			 * interpreted as an attempt to synchronize the CPU.
2733 			 */
2734 			synchronizing = data < tsc_exp + tsc_hz &&
2735 					data + tsc_hz > tsc_exp;
2736 		}
2737 	}
2738 
2739 	/*
2740 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2741 	 * TSC, we add elapsed time in this computation.  We could let the
2742 	 * compensation code attempt to catch up if we fall behind, but
2743 	 * it's better to try to match offsets from the beginning.
2744          */
2745 	if (synchronizing &&
2746 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2747 		if (!kvm_check_tsc_unstable()) {
2748 			offset = kvm->arch.cur_tsc_offset;
2749 		} else {
2750 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2751 			data += delta;
2752 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2753 		}
2754 		matched = true;
2755 	}
2756 
2757 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2758 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2759 }
2760 
2761 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2762 					   s64 adjustment)
2763 {
2764 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2765 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2766 }
2767 
2768 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2769 {
2770 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2771 		WARN_ON(adjustment < 0);
2772 	adjustment = kvm_scale_tsc((u64) adjustment,
2773 				   vcpu->arch.l1_tsc_scaling_ratio);
2774 	adjust_tsc_offset_guest(vcpu, adjustment);
2775 }
2776 
2777 #ifdef CONFIG_X86_64
2778 
2779 static u64 read_tsc(void)
2780 {
2781 	u64 ret = (u64)rdtsc_ordered();
2782 	u64 last = pvclock_gtod_data.clock.cycle_last;
2783 
2784 	if (likely(ret >= last))
2785 		return ret;
2786 
2787 	/*
2788 	 * GCC likes to generate cmov here, but this branch is extremely
2789 	 * predictable (it's just a function of time and the likely is
2790 	 * very likely) and there's a data dependence, so force GCC
2791 	 * to generate a branch instead.  I don't barrier() because
2792 	 * we don't actually need a barrier, and if this function
2793 	 * ever gets inlined it will generate worse code.
2794 	 */
2795 	asm volatile ("");
2796 	return last;
2797 }
2798 
2799 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2800 			  int *mode)
2801 {
2802 	u64 tsc_pg_val;
2803 	long v;
2804 
2805 	switch (clock->vclock_mode) {
2806 	case VDSO_CLOCKMODE_HVCLOCK:
2807 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2808 					 tsc_timestamp, &tsc_pg_val)) {
2809 			/* TSC page valid */
2810 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2811 			v = (tsc_pg_val - clock->cycle_last) &
2812 				clock->mask;
2813 		} else {
2814 			/* TSC page invalid */
2815 			*mode = VDSO_CLOCKMODE_NONE;
2816 		}
2817 		break;
2818 	case VDSO_CLOCKMODE_TSC:
2819 		*mode = VDSO_CLOCKMODE_TSC;
2820 		*tsc_timestamp = read_tsc();
2821 		v = (*tsc_timestamp - clock->cycle_last) &
2822 			clock->mask;
2823 		break;
2824 	default:
2825 		*mode = VDSO_CLOCKMODE_NONE;
2826 	}
2827 
2828 	if (*mode == VDSO_CLOCKMODE_NONE)
2829 		*tsc_timestamp = v = 0;
2830 
2831 	return v * clock->mult;
2832 }
2833 
2834 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2835 {
2836 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2837 	unsigned long seq;
2838 	int mode;
2839 	u64 ns;
2840 
2841 	do {
2842 		seq = read_seqcount_begin(&gtod->seq);
2843 		ns = gtod->raw_clock.base_cycles;
2844 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2845 		ns >>= gtod->raw_clock.shift;
2846 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2847 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2848 	*t = ns;
2849 
2850 	return mode;
2851 }
2852 
2853 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2854 {
2855 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2856 	unsigned long seq;
2857 	int mode;
2858 	u64 ns;
2859 
2860 	do {
2861 		seq = read_seqcount_begin(&gtod->seq);
2862 		ts->tv_sec = gtod->wall_time_sec;
2863 		ns = gtod->clock.base_cycles;
2864 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2865 		ns >>= gtod->clock.shift;
2866 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2867 
2868 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2869 	ts->tv_nsec = ns;
2870 
2871 	return mode;
2872 }
2873 
2874 /* returns true if host is using TSC based clocksource */
2875 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2876 {
2877 	/* checked again under seqlock below */
2878 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2879 		return false;
2880 
2881 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2882 						      tsc_timestamp));
2883 }
2884 
2885 /* returns true if host is using TSC based clocksource */
2886 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2887 					   u64 *tsc_timestamp)
2888 {
2889 	/* checked again under seqlock below */
2890 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2891 		return false;
2892 
2893 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2894 }
2895 #endif
2896 
2897 /*
2898  *
2899  * Assuming a stable TSC across physical CPUS, and a stable TSC
2900  * across virtual CPUs, the following condition is possible.
2901  * Each numbered line represents an event visible to both
2902  * CPUs at the next numbered event.
2903  *
2904  * "timespecX" represents host monotonic time. "tscX" represents
2905  * RDTSC value.
2906  *
2907  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2908  *
2909  * 1.  read timespec0,tsc0
2910  * 2.					| timespec1 = timespec0 + N
2911  * 					| tsc1 = tsc0 + M
2912  * 3. transition to guest		| transition to guest
2913  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2914  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2915  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2916  *
2917  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2918  *
2919  * 	- ret0 < ret1
2920  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2921  *		...
2922  *	- 0 < N - M => M < N
2923  *
2924  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2925  * always the case (the difference between two distinct xtime instances
2926  * might be smaller then the difference between corresponding TSC reads,
2927  * when updating guest vcpus pvclock areas).
2928  *
2929  * To avoid that problem, do not allow visibility of distinct
2930  * system_timestamp/tsc_timestamp values simultaneously: use a master
2931  * copy of host monotonic time values. Update that master copy
2932  * in lockstep.
2933  *
2934  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2935  *
2936  */
2937 
2938 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2939 {
2940 #ifdef CONFIG_X86_64
2941 	struct kvm_arch *ka = &kvm->arch;
2942 	int vclock_mode;
2943 	bool host_tsc_clocksource, vcpus_matched;
2944 
2945 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2946 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2947 			atomic_read(&kvm->online_vcpus));
2948 
2949 	/*
2950 	 * If the host uses TSC clock, then passthrough TSC as stable
2951 	 * to the guest.
2952 	 */
2953 	host_tsc_clocksource = kvm_get_time_and_clockread(
2954 					&ka->master_kernel_ns,
2955 					&ka->master_cycle_now);
2956 
2957 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2958 				&& !ka->backwards_tsc_observed
2959 				&& !ka->boot_vcpu_runs_old_kvmclock;
2960 
2961 	if (ka->use_master_clock)
2962 		atomic_set(&kvm_guest_has_master_clock, 1);
2963 
2964 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2965 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2966 					vcpus_matched);
2967 #endif
2968 }
2969 
2970 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2971 {
2972 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2973 }
2974 
2975 static void __kvm_start_pvclock_update(struct kvm *kvm)
2976 {
2977 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2978 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2979 }
2980 
2981 static void kvm_start_pvclock_update(struct kvm *kvm)
2982 {
2983 	kvm_make_mclock_inprogress_request(kvm);
2984 
2985 	/* no guest entries from this point */
2986 	__kvm_start_pvclock_update(kvm);
2987 }
2988 
2989 static void kvm_end_pvclock_update(struct kvm *kvm)
2990 {
2991 	struct kvm_arch *ka = &kvm->arch;
2992 	struct kvm_vcpu *vcpu;
2993 	unsigned long i;
2994 
2995 	write_seqcount_end(&ka->pvclock_sc);
2996 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2997 	kvm_for_each_vcpu(i, vcpu, kvm)
2998 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2999 
3000 	/* guest entries allowed */
3001 	kvm_for_each_vcpu(i, vcpu, kvm)
3002 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3003 }
3004 
3005 static void kvm_update_masterclock(struct kvm *kvm)
3006 {
3007 	kvm_hv_request_tsc_page_update(kvm);
3008 	kvm_start_pvclock_update(kvm);
3009 	pvclock_update_vm_gtod_copy(kvm);
3010 	kvm_end_pvclock_update(kvm);
3011 }
3012 
3013 /*
3014  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3015  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3016  * can change during boot even if the TSC is constant, as it's possible for KVM
3017  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3018  * notification when calibration completes, but practically speaking calibration
3019  * will complete before userspace is alive enough to create VMs.
3020  */
3021 static unsigned long get_cpu_tsc_khz(void)
3022 {
3023 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3024 		return tsc_khz;
3025 	else
3026 		return __this_cpu_read(cpu_tsc_khz);
3027 }
3028 
3029 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3030 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3031 {
3032 	struct kvm_arch *ka = &kvm->arch;
3033 	struct pvclock_vcpu_time_info hv_clock;
3034 
3035 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3036 	get_cpu();
3037 
3038 	data->flags = 0;
3039 	if (ka->use_master_clock &&
3040 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3041 #ifdef CONFIG_X86_64
3042 		struct timespec64 ts;
3043 
3044 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3045 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3046 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3047 		} else
3048 #endif
3049 		data->host_tsc = rdtsc();
3050 
3051 		data->flags |= KVM_CLOCK_TSC_STABLE;
3052 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3053 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3054 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3055 				   &hv_clock.tsc_shift,
3056 				   &hv_clock.tsc_to_system_mul);
3057 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3058 	} else {
3059 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3060 	}
3061 
3062 	put_cpu();
3063 }
3064 
3065 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3066 {
3067 	struct kvm_arch *ka = &kvm->arch;
3068 	unsigned seq;
3069 
3070 	do {
3071 		seq = read_seqcount_begin(&ka->pvclock_sc);
3072 		__get_kvmclock(kvm, data);
3073 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3074 }
3075 
3076 u64 get_kvmclock_ns(struct kvm *kvm)
3077 {
3078 	struct kvm_clock_data data;
3079 
3080 	get_kvmclock(kvm, &data);
3081 	return data.clock;
3082 }
3083 
3084 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3085 				    struct gfn_to_pfn_cache *gpc,
3086 				    unsigned int offset)
3087 {
3088 	struct kvm_vcpu_arch *vcpu = &v->arch;
3089 	struct pvclock_vcpu_time_info *guest_hv_clock;
3090 	unsigned long flags;
3091 
3092 	read_lock_irqsave(&gpc->lock, flags);
3093 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3094 		read_unlock_irqrestore(&gpc->lock, flags);
3095 
3096 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3097 			return;
3098 
3099 		read_lock_irqsave(&gpc->lock, flags);
3100 	}
3101 
3102 	guest_hv_clock = (void *)(gpc->khva + offset);
3103 
3104 	/*
3105 	 * This VCPU is paused, but it's legal for a guest to read another
3106 	 * VCPU's kvmclock, so we really have to follow the specification where
3107 	 * it says that version is odd if data is being modified, and even after
3108 	 * it is consistent.
3109 	 */
3110 
3111 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3112 	smp_wmb();
3113 
3114 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3115 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3116 
3117 	if (vcpu->pvclock_set_guest_stopped_request) {
3118 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3119 		vcpu->pvclock_set_guest_stopped_request = false;
3120 	}
3121 
3122 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3123 	smp_wmb();
3124 
3125 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3126 
3127 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3128 	read_unlock_irqrestore(&gpc->lock, flags);
3129 
3130 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3131 }
3132 
3133 static int kvm_guest_time_update(struct kvm_vcpu *v)
3134 {
3135 	unsigned long flags, tgt_tsc_khz;
3136 	unsigned seq;
3137 	struct kvm_vcpu_arch *vcpu = &v->arch;
3138 	struct kvm_arch *ka = &v->kvm->arch;
3139 	s64 kernel_ns;
3140 	u64 tsc_timestamp, host_tsc;
3141 	u8 pvclock_flags;
3142 	bool use_master_clock;
3143 
3144 	kernel_ns = 0;
3145 	host_tsc = 0;
3146 
3147 	/*
3148 	 * If the host uses TSC clock, then passthrough TSC as stable
3149 	 * to the guest.
3150 	 */
3151 	do {
3152 		seq = read_seqcount_begin(&ka->pvclock_sc);
3153 		use_master_clock = ka->use_master_clock;
3154 		if (use_master_clock) {
3155 			host_tsc = ka->master_cycle_now;
3156 			kernel_ns = ka->master_kernel_ns;
3157 		}
3158 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3159 
3160 	/* Keep irq disabled to prevent changes to the clock */
3161 	local_irq_save(flags);
3162 	tgt_tsc_khz = get_cpu_tsc_khz();
3163 	if (unlikely(tgt_tsc_khz == 0)) {
3164 		local_irq_restore(flags);
3165 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3166 		return 1;
3167 	}
3168 	if (!use_master_clock) {
3169 		host_tsc = rdtsc();
3170 		kernel_ns = get_kvmclock_base_ns();
3171 	}
3172 
3173 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3174 
3175 	/*
3176 	 * We may have to catch up the TSC to match elapsed wall clock
3177 	 * time for two reasons, even if kvmclock is used.
3178 	 *   1) CPU could have been running below the maximum TSC rate
3179 	 *   2) Broken TSC compensation resets the base at each VCPU
3180 	 *      entry to avoid unknown leaps of TSC even when running
3181 	 *      again on the same CPU.  This may cause apparent elapsed
3182 	 *      time to disappear, and the guest to stand still or run
3183 	 *	very slowly.
3184 	 */
3185 	if (vcpu->tsc_catchup) {
3186 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3187 		if (tsc > tsc_timestamp) {
3188 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3189 			tsc_timestamp = tsc;
3190 		}
3191 	}
3192 
3193 	local_irq_restore(flags);
3194 
3195 	/* With all the info we got, fill in the values */
3196 
3197 	if (kvm_caps.has_tsc_control)
3198 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3199 					    v->arch.l1_tsc_scaling_ratio);
3200 
3201 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3202 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3203 				   &vcpu->hv_clock.tsc_shift,
3204 				   &vcpu->hv_clock.tsc_to_system_mul);
3205 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3206 		kvm_xen_update_tsc_info(v);
3207 	}
3208 
3209 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3210 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3211 	vcpu->last_guest_tsc = tsc_timestamp;
3212 
3213 	/* If the host uses TSC clocksource, then it is stable */
3214 	pvclock_flags = 0;
3215 	if (use_master_clock)
3216 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3217 
3218 	vcpu->hv_clock.flags = pvclock_flags;
3219 
3220 	if (vcpu->pv_time.active)
3221 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3222 	if (vcpu->xen.vcpu_info_cache.active)
3223 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3224 					offsetof(struct compat_vcpu_info, time));
3225 	if (vcpu->xen.vcpu_time_info_cache.active)
3226 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3227 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3228 	return 0;
3229 }
3230 
3231 /*
3232  * kvmclock updates which are isolated to a given vcpu, such as
3233  * vcpu->cpu migration, should not allow system_timestamp from
3234  * the rest of the vcpus to remain static. Otherwise ntp frequency
3235  * correction applies to one vcpu's system_timestamp but not
3236  * the others.
3237  *
3238  * So in those cases, request a kvmclock update for all vcpus.
3239  * We need to rate-limit these requests though, as they can
3240  * considerably slow guests that have a large number of vcpus.
3241  * The time for a remote vcpu to update its kvmclock is bound
3242  * by the delay we use to rate-limit the updates.
3243  */
3244 
3245 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3246 
3247 static void kvmclock_update_fn(struct work_struct *work)
3248 {
3249 	unsigned long i;
3250 	struct delayed_work *dwork = to_delayed_work(work);
3251 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3252 					   kvmclock_update_work);
3253 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3254 	struct kvm_vcpu *vcpu;
3255 
3256 	kvm_for_each_vcpu(i, vcpu, kvm) {
3257 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3258 		kvm_vcpu_kick(vcpu);
3259 	}
3260 }
3261 
3262 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3263 {
3264 	struct kvm *kvm = v->kvm;
3265 
3266 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3267 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3268 					KVMCLOCK_UPDATE_DELAY);
3269 }
3270 
3271 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3272 
3273 static void kvmclock_sync_fn(struct work_struct *work)
3274 {
3275 	struct delayed_work *dwork = to_delayed_work(work);
3276 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3277 					   kvmclock_sync_work);
3278 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3279 
3280 	if (!kvmclock_periodic_sync)
3281 		return;
3282 
3283 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3284 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3285 					KVMCLOCK_SYNC_PERIOD);
3286 }
3287 
3288 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3289 static bool is_mci_control_msr(u32 msr)
3290 {
3291 	return (msr & 3) == 0;
3292 }
3293 static bool is_mci_status_msr(u32 msr)
3294 {
3295 	return (msr & 3) == 1;
3296 }
3297 
3298 /*
3299  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3300  */
3301 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3302 {
3303 	/* McStatusWrEn enabled? */
3304 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3305 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3306 
3307 	return false;
3308 }
3309 
3310 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3311 {
3312 	u64 mcg_cap = vcpu->arch.mcg_cap;
3313 	unsigned bank_num = mcg_cap & 0xff;
3314 	u32 msr = msr_info->index;
3315 	u64 data = msr_info->data;
3316 	u32 offset, last_msr;
3317 
3318 	switch (msr) {
3319 	case MSR_IA32_MCG_STATUS:
3320 		vcpu->arch.mcg_status = data;
3321 		break;
3322 	case MSR_IA32_MCG_CTL:
3323 		if (!(mcg_cap & MCG_CTL_P) &&
3324 		    (data || !msr_info->host_initiated))
3325 			return 1;
3326 		if (data != 0 && data != ~(u64)0)
3327 			return 1;
3328 		vcpu->arch.mcg_ctl = data;
3329 		break;
3330 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3331 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3332 		if (msr > last_msr)
3333 			return 1;
3334 
3335 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3336 			return 1;
3337 		/* An attempt to write a 1 to a reserved bit raises #GP */
3338 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3339 			return 1;
3340 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3341 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3342 		vcpu->arch.mci_ctl2_banks[offset] = data;
3343 		break;
3344 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3345 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3346 		if (msr > last_msr)
3347 			return 1;
3348 
3349 		/*
3350 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3351 		 * values are architecturally undefined.  But, some Linux
3352 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3353 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3354 		 * other bits in order to avoid an uncaught #GP in the guest.
3355 		 *
3356 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3357 		 * single-bit ECC data errors.
3358 		 */
3359 		if (is_mci_control_msr(msr) &&
3360 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3361 			return 1;
3362 
3363 		/*
3364 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3365 		 * AMD-based CPUs allow non-zero values, but if and only if
3366 		 * HWCR[McStatusWrEn] is set.
3367 		 */
3368 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3369 		    data != 0 && !can_set_mci_status(vcpu))
3370 			return 1;
3371 
3372 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3373 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3374 		vcpu->arch.mce_banks[offset] = data;
3375 		break;
3376 	default:
3377 		return 1;
3378 	}
3379 	return 0;
3380 }
3381 
3382 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3383 {
3384 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3385 
3386 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3387 }
3388 
3389 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3390 {
3391 	gpa_t gpa = data & ~0x3f;
3392 
3393 	/* Bits 4:5 are reserved, Should be zero */
3394 	if (data & 0x30)
3395 		return 1;
3396 
3397 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3398 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3399 		return 1;
3400 
3401 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3402 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3403 		return 1;
3404 
3405 	if (!lapic_in_kernel(vcpu))
3406 		return data ? 1 : 0;
3407 
3408 	vcpu->arch.apf.msr_en_val = data;
3409 
3410 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3411 		kvm_clear_async_pf_completion_queue(vcpu);
3412 		kvm_async_pf_hash_reset(vcpu);
3413 		return 0;
3414 	}
3415 
3416 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3417 					sizeof(u64)))
3418 		return 1;
3419 
3420 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3421 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3422 
3423 	kvm_async_pf_wakeup_all(vcpu);
3424 
3425 	return 0;
3426 }
3427 
3428 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3429 {
3430 	/* Bits 8-63 are reserved */
3431 	if (data >> 8)
3432 		return 1;
3433 
3434 	if (!lapic_in_kernel(vcpu))
3435 		return 1;
3436 
3437 	vcpu->arch.apf.msr_int_val = data;
3438 
3439 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3440 
3441 	return 0;
3442 }
3443 
3444 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3445 {
3446 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3447 	vcpu->arch.time = 0;
3448 }
3449 
3450 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3451 {
3452 	++vcpu->stat.tlb_flush;
3453 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3454 
3455 	/* Flushing all ASIDs flushes the current ASID... */
3456 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3457 }
3458 
3459 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3460 {
3461 	++vcpu->stat.tlb_flush;
3462 
3463 	if (!tdp_enabled) {
3464 		/*
3465 		 * A TLB flush on behalf of the guest is equivalent to
3466 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3467 		 * a forced sync of the shadow page tables.  Ensure all the
3468 		 * roots are synced and the guest TLB in hardware is clean.
3469 		 */
3470 		kvm_mmu_sync_roots(vcpu);
3471 		kvm_mmu_sync_prev_roots(vcpu);
3472 	}
3473 
3474 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3475 
3476 	/*
3477 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3478 	 * grained flushing.
3479 	 */
3480 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3481 }
3482 
3483 
3484 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3485 {
3486 	++vcpu->stat.tlb_flush;
3487 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3488 }
3489 
3490 /*
3491  * Service "local" TLB flush requests, which are specific to the current MMU
3492  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3493  * TLB flushes that are targeted at an MMU context also need to be serviced
3494  * prior before nested VM-Enter/VM-Exit.
3495  */
3496 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3497 {
3498 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3499 		kvm_vcpu_flush_tlb_current(vcpu);
3500 
3501 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3502 		kvm_vcpu_flush_tlb_guest(vcpu);
3503 }
3504 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3505 
3506 static void record_steal_time(struct kvm_vcpu *vcpu)
3507 {
3508 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3509 	struct kvm_steal_time __user *st;
3510 	struct kvm_memslots *slots;
3511 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3512 	u64 steal;
3513 	u32 version;
3514 
3515 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3516 		kvm_xen_runstate_set_running(vcpu);
3517 		return;
3518 	}
3519 
3520 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3521 		return;
3522 
3523 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3524 		return;
3525 
3526 	slots = kvm_memslots(vcpu->kvm);
3527 
3528 	if (unlikely(slots->generation != ghc->generation ||
3529 		     gpa != ghc->gpa ||
3530 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3531 		/* We rely on the fact that it fits in a single page. */
3532 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3533 
3534 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3535 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3536 			return;
3537 	}
3538 
3539 	st = (struct kvm_steal_time __user *)ghc->hva;
3540 	/*
3541 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3542 	 * expensive IPIs.
3543 	 */
3544 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3545 		u8 st_preempted = 0;
3546 		int err = -EFAULT;
3547 
3548 		if (!user_access_begin(st, sizeof(*st)))
3549 			return;
3550 
3551 		asm volatile("1: xchgb %0, %2\n"
3552 			     "xor %1, %1\n"
3553 			     "2:\n"
3554 			     _ASM_EXTABLE_UA(1b, 2b)
3555 			     : "+q" (st_preempted),
3556 			       "+&r" (err),
3557 			       "+m" (st->preempted));
3558 		if (err)
3559 			goto out;
3560 
3561 		user_access_end();
3562 
3563 		vcpu->arch.st.preempted = 0;
3564 
3565 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3566 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3567 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3568 			kvm_vcpu_flush_tlb_guest(vcpu);
3569 
3570 		if (!user_access_begin(st, sizeof(*st)))
3571 			goto dirty;
3572 	} else {
3573 		if (!user_access_begin(st, sizeof(*st)))
3574 			return;
3575 
3576 		unsafe_put_user(0, &st->preempted, out);
3577 		vcpu->arch.st.preempted = 0;
3578 	}
3579 
3580 	unsafe_get_user(version, &st->version, out);
3581 	if (version & 1)
3582 		version += 1;  /* first time write, random junk */
3583 
3584 	version += 1;
3585 	unsafe_put_user(version, &st->version, out);
3586 
3587 	smp_wmb();
3588 
3589 	unsafe_get_user(steal, &st->steal, out);
3590 	steal += current->sched_info.run_delay -
3591 		vcpu->arch.st.last_steal;
3592 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3593 	unsafe_put_user(steal, &st->steal, out);
3594 
3595 	version += 1;
3596 	unsafe_put_user(version, &st->version, out);
3597 
3598  out:
3599 	user_access_end();
3600  dirty:
3601 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3602 }
3603 
3604 static bool kvm_is_msr_to_save(u32 msr_index)
3605 {
3606 	unsigned int i;
3607 
3608 	for (i = 0; i < num_msrs_to_save; i++) {
3609 		if (msrs_to_save[i] == msr_index)
3610 			return true;
3611 	}
3612 
3613 	return false;
3614 }
3615 
3616 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3617 {
3618 	u32 msr = msr_info->index;
3619 	u64 data = msr_info->data;
3620 
3621 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3622 		return kvm_xen_write_hypercall_page(vcpu, data);
3623 
3624 	switch (msr) {
3625 	case MSR_AMD64_NB_CFG:
3626 	case MSR_IA32_UCODE_WRITE:
3627 	case MSR_VM_HSAVE_PA:
3628 	case MSR_AMD64_PATCH_LOADER:
3629 	case MSR_AMD64_BU_CFG2:
3630 	case MSR_AMD64_DC_CFG:
3631 	case MSR_F15H_EX_CFG:
3632 		break;
3633 
3634 	case MSR_IA32_UCODE_REV:
3635 		if (msr_info->host_initiated)
3636 			vcpu->arch.microcode_version = data;
3637 		break;
3638 	case MSR_IA32_ARCH_CAPABILITIES:
3639 		if (!msr_info->host_initiated)
3640 			return 1;
3641 		vcpu->arch.arch_capabilities = data;
3642 		break;
3643 	case MSR_IA32_PERF_CAPABILITIES:
3644 		if (!msr_info->host_initiated)
3645 			return 1;
3646 		if (data & ~kvm_caps.supported_perf_cap)
3647 			return 1;
3648 
3649 		/*
3650 		 * Note, this is not just a performance optimization!  KVM
3651 		 * disallows changing feature MSRs after the vCPU has run; PMU
3652 		 * refresh will bug the VM if called after the vCPU has run.
3653 		 */
3654 		if (vcpu->arch.perf_capabilities == data)
3655 			break;
3656 
3657 		vcpu->arch.perf_capabilities = data;
3658 		kvm_pmu_refresh(vcpu);
3659 		break;
3660 	case MSR_IA32_PRED_CMD:
3661 		if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3662 			return 1;
3663 
3664 		if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3665 			return 1;
3666 		if (!data)
3667 			break;
3668 
3669 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3670 		break;
3671 	case MSR_IA32_FLUSH_CMD:
3672 		if (!msr_info->host_initiated &&
3673 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3674 			return 1;
3675 
3676 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3677 			return 1;
3678 		if (!data)
3679 			break;
3680 
3681 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3682 		break;
3683 	case MSR_EFER:
3684 		return set_efer(vcpu, msr_info);
3685 	case MSR_K7_HWCR:
3686 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3687 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3688 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3689 
3690 		/* Handle McStatusWrEn */
3691 		if (data == BIT_ULL(18)) {
3692 			vcpu->arch.msr_hwcr = data;
3693 		} else if (data != 0) {
3694 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3695 			return 1;
3696 		}
3697 		break;
3698 	case MSR_FAM10H_MMIO_CONF_BASE:
3699 		if (data != 0) {
3700 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3701 			return 1;
3702 		}
3703 		break;
3704 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3705 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3706 		return kvm_mtrr_set_msr(vcpu, msr, data);
3707 	case MSR_IA32_APICBASE:
3708 		return kvm_set_apic_base(vcpu, msr_info);
3709 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3710 		return kvm_x2apic_msr_write(vcpu, msr, data);
3711 	case MSR_IA32_TSC_DEADLINE:
3712 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3713 		break;
3714 	case MSR_IA32_TSC_ADJUST:
3715 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3716 			if (!msr_info->host_initiated) {
3717 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3718 				adjust_tsc_offset_guest(vcpu, adj);
3719 				/* Before back to guest, tsc_timestamp must be adjusted
3720 				 * as well, otherwise guest's percpu pvclock time could jump.
3721 				 */
3722 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3723 			}
3724 			vcpu->arch.ia32_tsc_adjust_msr = data;
3725 		}
3726 		break;
3727 	case MSR_IA32_MISC_ENABLE: {
3728 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3729 
3730 		if (!msr_info->host_initiated) {
3731 			/* RO bits */
3732 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3733 				return 1;
3734 
3735 			/* R bits, i.e. writes are ignored, but don't fault. */
3736 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3737 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3738 		}
3739 
3740 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3741 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3742 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3743 				return 1;
3744 			vcpu->arch.ia32_misc_enable_msr = data;
3745 			kvm_update_cpuid_runtime(vcpu);
3746 		} else {
3747 			vcpu->arch.ia32_misc_enable_msr = data;
3748 		}
3749 		break;
3750 	}
3751 	case MSR_IA32_SMBASE:
3752 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3753 			return 1;
3754 		vcpu->arch.smbase = data;
3755 		break;
3756 	case MSR_IA32_POWER_CTL:
3757 		vcpu->arch.msr_ia32_power_ctl = data;
3758 		break;
3759 	case MSR_IA32_TSC:
3760 		if (msr_info->host_initiated) {
3761 			kvm_synchronize_tsc(vcpu, data);
3762 		} else {
3763 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3764 			adjust_tsc_offset_guest(vcpu, adj);
3765 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3766 		}
3767 		break;
3768 	case MSR_IA32_XSS:
3769 		if (!msr_info->host_initiated &&
3770 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3771 			return 1;
3772 		/*
3773 		 * KVM supports exposing PT to the guest, but does not support
3774 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3775 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3776 		 */
3777 		if (data & ~kvm_caps.supported_xss)
3778 			return 1;
3779 		vcpu->arch.ia32_xss = data;
3780 		kvm_update_cpuid_runtime(vcpu);
3781 		break;
3782 	case MSR_SMI_COUNT:
3783 		if (!msr_info->host_initiated)
3784 			return 1;
3785 		vcpu->arch.smi_count = data;
3786 		break;
3787 	case MSR_KVM_WALL_CLOCK_NEW:
3788 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3789 			return 1;
3790 
3791 		vcpu->kvm->arch.wall_clock = data;
3792 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3793 		break;
3794 	case MSR_KVM_WALL_CLOCK:
3795 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3796 			return 1;
3797 
3798 		vcpu->kvm->arch.wall_clock = data;
3799 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3800 		break;
3801 	case MSR_KVM_SYSTEM_TIME_NEW:
3802 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3803 			return 1;
3804 
3805 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3806 		break;
3807 	case MSR_KVM_SYSTEM_TIME:
3808 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3809 			return 1;
3810 
3811 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3812 		break;
3813 	case MSR_KVM_ASYNC_PF_EN:
3814 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3815 			return 1;
3816 
3817 		if (kvm_pv_enable_async_pf(vcpu, data))
3818 			return 1;
3819 		break;
3820 	case MSR_KVM_ASYNC_PF_INT:
3821 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3822 			return 1;
3823 
3824 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3825 			return 1;
3826 		break;
3827 	case MSR_KVM_ASYNC_PF_ACK:
3828 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3829 			return 1;
3830 		if (data & 0x1) {
3831 			vcpu->arch.apf.pageready_pending = false;
3832 			kvm_check_async_pf_completion(vcpu);
3833 		}
3834 		break;
3835 	case MSR_KVM_STEAL_TIME:
3836 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3837 			return 1;
3838 
3839 		if (unlikely(!sched_info_on()))
3840 			return 1;
3841 
3842 		if (data & KVM_STEAL_RESERVED_MASK)
3843 			return 1;
3844 
3845 		vcpu->arch.st.msr_val = data;
3846 
3847 		if (!(data & KVM_MSR_ENABLED))
3848 			break;
3849 
3850 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3851 
3852 		break;
3853 	case MSR_KVM_PV_EOI_EN:
3854 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3855 			return 1;
3856 
3857 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3858 			return 1;
3859 		break;
3860 
3861 	case MSR_KVM_POLL_CONTROL:
3862 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3863 			return 1;
3864 
3865 		/* only enable bit supported */
3866 		if (data & (-1ULL << 1))
3867 			return 1;
3868 
3869 		vcpu->arch.msr_kvm_poll_control = data;
3870 		break;
3871 
3872 	case MSR_IA32_MCG_CTL:
3873 	case MSR_IA32_MCG_STATUS:
3874 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3875 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3876 		return set_msr_mce(vcpu, msr_info);
3877 
3878 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3879 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3880 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3881 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3882 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3883 			return kvm_pmu_set_msr(vcpu, msr_info);
3884 
3885 		if (data)
3886 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3887 		break;
3888 	case MSR_K7_CLK_CTL:
3889 		/*
3890 		 * Ignore all writes to this no longer documented MSR.
3891 		 * Writes are only relevant for old K7 processors,
3892 		 * all pre-dating SVM, but a recommended workaround from
3893 		 * AMD for these chips. It is possible to specify the
3894 		 * affected processor models on the command line, hence
3895 		 * the need to ignore the workaround.
3896 		 */
3897 		break;
3898 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3899 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3900 	case HV_X64_MSR_SYNDBG_OPTIONS:
3901 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3902 	case HV_X64_MSR_CRASH_CTL:
3903 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3904 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3905 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3906 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3907 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3908 		return kvm_hv_set_msr_common(vcpu, msr, data,
3909 					     msr_info->host_initiated);
3910 	case MSR_IA32_BBL_CR_CTL3:
3911 		/* Drop writes to this legacy MSR -- see rdmsr
3912 		 * counterpart for further detail.
3913 		 */
3914 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3915 		break;
3916 	case MSR_AMD64_OSVW_ID_LENGTH:
3917 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3918 			return 1;
3919 		vcpu->arch.osvw.length = data;
3920 		break;
3921 	case MSR_AMD64_OSVW_STATUS:
3922 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3923 			return 1;
3924 		vcpu->arch.osvw.status = data;
3925 		break;
3926 	case MSR_PLATFORM_INFO:
3927 		if (!msr_info->host_initiated ||
3928 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3929 		     cpuid_fault_enabled(vcpu)))
3930 			return 1;
3931 		vcpu->arch.msr_platform_info = data;
3932 		break;
3933 	case MSR_MISC_FEATURES_ENABLES:
3934 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3935 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3936 		     !supports_cpuid_fault(vcpu)))
3937 			return 1;
3938 		vcpu->arch.msr_misc_features_enables = data;
3939 		break;
3940 #ifdef CONFIG_X86_64
3941 	case MSR_IA32_XFD:
3942 		if (!msr_info->host_initiated &&
3943 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3944 			return 1;
3945 
3946 		if (data & ~kvm_guest_supported_xfd(vcpu))
3947 			return 1;
3948 
3949 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3950 		break;
3951 	case MSR_IA32_XFD_ERR:
3952 		if (!msr_info->host_initiated &&
3953 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3954 			return 1;
3955 
3956 		if (data & ~kvm_guest_supported_xfd(vcpu))
3957 			return 1;
3958 
3959 		vcpu->arch.guest_fpu.xfd_err = data;
3960 		break;
3961 #endif
3962 	default:
3963 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3964 			return kvm_pmu_set_msr(vcpu, msr_info);
3965 
3966 		/*
3967 		 * Userspace is allowed to write '0' to MSRs that KVM reports
3968 		 * as to-be-saved, even if an MSRs isn't fully supported.
3969 		 */
3970 		if (msr_info->host_initiated && !data &&
3971 		    kvm_is_msr_to_save(msr))
3972 			break;
3973 
3974 		return KVM_MSR_RET_INVALID;
3975 	}
3976 	return 0;
3977 }
3978 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3979 
3980 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3981 {
3982 	u64 data;
3983 	u64 mcg_cap = vcpu->arch.mcg_cap;
3984 	unsigned bank_num = mcg_cap & 0xff;
3985 	u32 offset, last_msr;
3986 
3987 	switch (msr) {
3988 	case MSR_IA32_P5_MC_ADDR:
3989 	case MSR_IA32_P5_MC_TYPE:
3990 		data = 0;
3991 		break;
3992 	case MSR_IA32_MCG_CAP:
3993 		data = vcpu->arch.mcg_cap;
3994 		break;
3995 	case MSR_IA32_MCG_CTL:
3996 		if (!(mcg_cap & MCG_CTL_P) && !host)
3997 			return 1;
3998 		data = vcpu->arch.mcg_ctl;
3999 		break;
4000 	case MSR_IA32_MCG_STATUS:
4001 		data = vcpu->arch.mcg_status;
4002 		break;
4003 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4004 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4005 		if (msr > last_msr)
4006 			return 1;
4007 
4008 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4009 			return 1;
4010 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4011 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4012 		data = vcpu->arch.mci_ctl2_banks[offset];
4013 		break;
4014 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4015 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4016 		if (msr > last_msr)
4017 			return 1;
4018 
4019 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4020 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4021 		data = vcpu->arch.mce_banks[offset];
4022 		break;
4023 	default:
4024 		return 1;
4025 	}
4026 	*pdata = data;
4027 	return 0;
4028 }
4029 
4030 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4031 {
4032 	switch (msr_info->index) {
4033 	case MSR_IA32_PLATFORM_ID:
4034 	case MSR_IA32_EBL_CR_POWERON:
4035 	case MSR_IA32_LASTBRANCHFROMIP:
4036 	case MSR_IA32_LASTBRANCHTOIP:
4037 	case MSR_IA32_LASTINTFROMIP:
4038 	case MSR_IA32_LASTINTTOIP:
4039 	case MSR_AMD64_SYSCFG:
4040 	case MSR_K8_TSEG_ADDR:
4041 	case MSR_K8_TSEG_MASK:
4042 	case MSR_VM_HSAVE_PA:
4043 	case MSR_K8_INT_PENDING_MSG:
4044 	case MSR_AMD64_NB_CFG:
4045 	case MSR_FAM10H_MMIO_CONF_BASE:
4046 	case MSR_AMD64_BU_CFG2:
4047 	case MSR_IA32_PERF_CTL:
4048 	case MSR_AMD64_DC_CFG:
4049 	case MSR_F15H_EX_CFG:
4050 	/*
4051 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4052 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4053 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4054 	 * so for existing CPU-specific MSRs.
4055 	 */
4056 	case MSR_RAPL_POWER_UNIT:
4057 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4058 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4059 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4060 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4061 		msr_info->data = 0;
4062 		break;
4063 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4064 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4065 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4066 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4067 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4068 			return kvm_pmu_get_msr(vcpu, msr_info);
4069 		msr_info->data = 0;
4070 		break;
4071 	case MSR_IA32_UCODE_REV:
4072 		msr_info->data = vcpu->arch.microcode_version;
4073 		break;
4074 	case MSR_IA32_ARCH_CAPABILITIES:
4075 		if (!msr_info->host_initiated &&
4076 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4077 			return 1;
4078 		msr_info->data = vcpu->arch.arch_capabilities;
4079 		break;
4080 	case MSR_IA32_PERF_CAPABILITIES:
4081 		if (!msr_info->host_initiated &&
4082 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4083 			return 1;
4084 		msr_info->data = vcpu->arch.perf_capabilities;
4085 		break;
4086 	case MSR_IA32_POWER_CTL:
4087 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4088 		break;
4089 	case MSR_IA32_TSC: {
4090 		/*
4091 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4092 		 * even when not intercepted. AMD manual doesn't explicitly
4093 		 * state this but appears to behave the same.
4094 		 *
4095 		 * On userspace reads and writes, however, we unconditionally
4096 		 * return L1's TSC value to ensure backwards-compatible
4097 		 * behavior for migration.
4098 		 */
4099 		u64 offset, ratio;
4100 
4101 		if (msr_info->host_initiated) {
4102 			offset = vcpu->arch.l1_tsc_offset;
4103 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4104 		} else {
4105 			offset = vcpu->arch.tsc_offset;
4106 			ratio = vcpu->arch.tsc_scaling_ratio;
4107 		}
4108 
4109 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4110 		break;
4111 	}
4112 	case MSR_MTRRcap:
4113 	case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4114 	case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4115 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4116 	case 0xcd: /* fsb frequency */
4117 		msr_info->data = 3;
4118 		break;
4119 		/*
4120 		 * MSR_EBC_FREQUENCY_ID
4121 		 * Conservative value valid for even the basic CPU models.
4122 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4123 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4124 		 * and 266MHz for model 3, or 4. Set Core Clock
4125 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4126 		 * 31:24) even though these are only valid for CPU
4127 		 * models > 2, however guests may end up dividing or
4128 		 * multiplying by zero otherwise.
4129 		 */
4130 	case MSR_EBC_FREQUENCY_ID:
4131 		msr_info->data = 1 << 24;
4132 		break;
4133 	case MSR_IA32_APICBASE:
4134 		msr_info->data = kvm_get_apic_base(vcpu);
4135 		break;
4136 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4137 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4138 	case MSR_IA32_TSC_DEADLINE:
4139 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4140 		break;
4141 	case MSR_IA32_TSC_ADJUST:
4142 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4143 		break;
4144 	case MSR_IA32_MISC_ENABLE:
4145 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4146 		break;
4147 	case MSR_IA32_SMBASE:
4148 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4149 			return 1;
4150 		msr_info->data = vcpu->arch.smbase;
4151 		break;
4152 	case MSR_SMI_COUNT:
4153 		msr_info->data = vcpu->arch.smi_count;
4154 		break;
4155 	case MSR_IA32_PERF_STATUS:
4156 		/* TSC increment by tick */
4157 		msr_info->data = 1000ULL;
4158 		/* CPU multiplier */
4159 		msr_info->data |= (((uint64_t)4ULL) << 40);
4160 		break;
4161 	case MSR_EFER:
4162 		msr_info->data = vcpu->arch.efer;
4163 		break;
4164 	case MSR_KVM_WALL_CLOCK:
4165 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4166 			return 1;
4167 
4168 		msr_info->data = vcpu->kvm->arch.wall_clock;
4169 		break;
4170 	case MSR_KVM_WALL_CLOCK_NEW:
4171 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4172 			return 1;
4173 
4174 		msr_info->data = vcpu->kvm->arch.wall_clock;
4175 		break;
4176 	case MSR_KVM_SYSTEM_TIME:
4177 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4178 			return 1;
4179 
4180 		msr_info->data = vcpu->arch.time;
4181 		break;
4182 	case MSR_KVM_SYSTEM_TIME_NEW:
4183 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4184 			return 1;
4185 
4186 		msr_info->data = vcpu->arch.time;
4187 		break;
4188 	case MSR_KVM_ASYNC_PF_EN:
4189 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4190 			return 1;
4191 
4192 		msr_info->data = vcpu->arch.apf.msr_en_val;
4193 		break;
4194 	case MSR_KVM_ASYNC_PF_INT:
4195 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4196 			return 1;
4197 
4198 		msr_info->data = vcpu->arch.apf.msr_int_val;
4199 		break;
4200 	case MSR_KVM_ASYNC_PF_ACK:
4201 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4202 			return 1;
4203 
4204 		msr_info->data = 0;
4205 		break;
4206 	case MSR_KVM_STEAL_TIME:
4207 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4208 			return 1;
4209 
4210 		msr_info->data = vcpu->arch.st.msr_val;
4211 		break;
4212 	case MSR_KVM_PV_EOI_EN:
4213 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4214 			return 1;
4215 
4216 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4217 		break;
4218 	case MSR_KVM_POLL_CONTROL:
4219 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4220 			return 1;
4221 
4222 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4223 		break;
4224 	case MSR_IA32_P5_MC_ADDR:
4225 	case MSR_IA32_P5_MC_TYPE:
4226 	case MSR_IA32_MCG_CAP:
4227 	case MSR_IA32_MCG_CTL:
4228 	case MSR_IA32_MCG_STATUS:
4229 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4230 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4231 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4232 				   msr_info->host_initiated);
4233 	case MSR_IA32_XSS:
4234 		if (!msr_info->host_initiated &&
4235 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4236 			return 1;
4237 		msr_info->data = vcpu->arch.ia32_xss;
4238 		break;
4239 	case MSR_K7_CLK_CTL:
4240 		/*
4241 		 * Provide expected ramp-up count for K7. All other
4242 		 * are set to zero, indicating minimum divisors for
4243 		 * every field.
4244 		 *
4245 		 * This prevents guest kernels on AMD host with CPU
4246 		 * type 6, model 8 and higher from exploding due to
4247 		 * the rdmsr failing.
4248 		 */
4249 		msr_info->data = 0x20000000;
4250 		break;
4251 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4252 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4253 	case HV_X64_MSR_SYNDBG_OPTIONS:
4254 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4255 	case HV_X64_MSR_CRASH_CTL:
4256 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4257 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4258 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4259 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4260 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4261 		return kvm_hv_get_msr_common(vcpu,
4262 					     msr_info->index, &msr_info->data,
4263 					     msr_info->host_initiated);
4264 	case MSR_IA32_BBL_CR_CTL3:
4265 		/* This legacy MSR exists but isn't fully documented in current
4266 		 * silicon.  It is however accessed by winxp in very narrow
4267 		 * scenarios where it sets bit #19, itself documented as
4268 		 * a "reserved" bit.  Best effort attempt to source coherent
4269 		 * read data here should the balance of the register be
4270 		 * interpreted by the guest:
4271 		 *
4272 		 * L2 cache control register 3: 64GB range, 256KB size,
4273 		 * enabled, latency 0x1, configured
4274 		 */
4275 		msr_info->data = 0xbe702111;
4276 		break;
4277 	case MSR_AMD64_OSVW_ID_LENGTH:
4278 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4279 			return 1;
4280 		msr_info->data = vcpu->arch.osvw.length;
4281 		break;
4282 	case MSR_AMD64_OSVW_STATUS:
4283 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4284 			return 1;
4285 		msr_info->data = vcpu->arch.osvw.status;
4286 		break;
4287 	case MSR_PLATFORM_INFO:
4288 		if (!msr_info->host_initiated &&
4289 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4290 			return 1;
4291 		msr_info->data = vcpu->arch.msr_platform_info;
4292 		break;
4293 	case MSR_MISC_FEATURES_ENABLES:
4294 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4295 		break;
4296 	case MSR_K7_HWCR:
4297 		msr_info->data = vcpu->arch.msr_hwcr;
4298 		break;
4299 #ifdef CONFIG_X86_64
4300 	case MSR_IA32_XFD:
4301 		if (!msr_info->host_initiated &&
4302 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4303 			return 1;
4304 
4305 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4306 		break;
4307 	case MSR_IA32_XFD_ERR:
4308 		if (!msr_info->host_initiated &&
4309 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4310 			return 1;
4311 
4312 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4313 		break;
4314 #endif
4315 	default:
4316 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4317 			return kvm_pmu_get_msr(vcpu, msr_info);
4318 
4319 		/*
4320 		 * Userspace is allowed to read MSRs that KVM reports as
4321 		 * to-be-saved, even if an MSR isn't fully supported.
4322 		 */
4323 		if (msr_info->host_initiated &&
4324 		    kvm_is_msr_to_save(msr_info->index)) {
4325 			msr_info->data = 0;
4326 			break;
4327 		}
4328 
4329 		return KVM_MSR_RET_INVALID;
4330 	}
4331 	return 0;
4332 }
4333 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4334 
4335 /*
4336  * Read or write a bunch of msrs. All parameters are kernel addresses.
4337  *
4338  * @return number of msrs set successfully.
4339  */
4340 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4341 		    struct kvm_msr_entry *entries,
4342 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4343 				  unsigned index, u64 *data))
4344 {
4345 	int i;
4346 
4347 	for (i = 0; i < msrs->nmsrs; ++i)
4348 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4349 			break;
4350 
4351 	return i;
4352 }
4353 
4354 /*
4355  * Read or write a bunch of msrs. Parameters are user addresses.
4356  *
4357  * @return number of msrs set successfully.
4358  */
4359 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4360 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4361 				unsigned index, u64 *data),
4362 		  int writeback)
4363 {
4364 	struct kvm_msrs msrs;
4365 	struct kvm_msr_entry *entries;
4366 	unsigned size;
4367 	int r;
4368 
4369 	r = -EFAULT;
4370 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4371 		goto out;
4372 
4373 	r = -E2BIG;
4374 	if (msrs.nmsrs >= MAX_IO_MSRS)
4375 		goto out;
4376 
4377 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4378 	entries = memdup_user(user_msrs->entries, size);
4379 	if (IS_ERR(entries)) {
4380 		r = PTR_ERR(entries);
4381 		goto out;
4382 	}
4383 
4384 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4385 
4386 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4387 		r = -EFAULT;
4388 
4389 	kfree(entries);
4390 out:
4391 	return r;
4392 }
4393 
4394 static inline bool kvm_can_mwait_in_guest(void)
4395 {
4396 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4397 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4398 		boot_cpu_has(X86_FEATURE_ARAT);
4399 }
4400 
4401 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4402 					    struct kvm_cpuid2 __user *cpuid_arg)
4403 {
4404 	struct kvm_cpuid2 cpuid;
4405 	int r;
4406 
4407 	r = -EFAULT;
4408 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4409 		return r;
4410 
4411 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4412 	if (r)
4413 		return r;
4414 
4415 	r = -EFAULT;
4416 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4417 		return r;
4418 
4419 	return 0;
4420 }
4421 
4422 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4423 {
4424 	int r = 0;
4425 
4426 	switch (ext) {
4427 	case KVM_CAP_IRQCHIP:
4428 	case KVM_CAP_HLT:
4429 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4430 	case KVM_CAP_SET_TSS_ADDR:
4431 	case KVM_CAP_EXT_CPUID:
4432 	case KVM_CAP_EXT_EMUL_CPUID:
4433 	case KVM_CAP_CLOCKSOURCE:
4434 	case KVM_CAP_PIT:
4435 	case KVM_CAP_NOP_IO_DELAY:
4436 	case KVM_CAP_MP_STATE:
4437 	case KVM_CAP_SYNC_MMU:
4438 	case KVM_CAP_USER_NMI:
4439 	case KVM_CAP_REINJECT_CONTROL:
4440 	case KVM_CAP_IRQ_INJECT_STATUS:
4441 	case KVM_CAP_IOEVENTFD:
4442 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4443 	case KVM_CAP_PIT2:
4444 	case KVM_CAP_PIT_STATE2:
4445 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4446 	case KVM_CAP_VCPU_EVENTS:
4447 	case KVM_CAP_HYPERV:
4448 	case KVM_CAP_HYPERV_VAPIC:
4449 	case KVM_CAP_HYPERV_SPIN:
4450 	case KVM_CAP_HYPERV_SYNIC:
4451 	case KVM_CAP_HYPERV_SYNIC2:
4452 	case KVM_CAP_HYPERV_VP_INDEX:
4453 	case KVM_CAP_HYPERV_EVENTFD:
4454 	case KVM_CAP_HYPERV_TLBFLUSH:
4455 	case KVM_CAP_HYPERV_SEND_IPI:
4456 	case KVM_CAP_HYPERV_CPUID:
4457 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4458 	case KVM_CAP_SYS_HYPERV_CPUID:
4459 	case KVM_CAP_PCI_SEGMENT:
4460 	case KVM_CAP_DEBUGREGS:
4461 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4462 	case KVM_CAP_XSAVE:
4463 	case KVM_CAP_ASYNC_PF:
4464 	case KVM_CAP_ASYNC_PF_INT:
4465 	case KVM_CAP_GET_TSC_KHZ:
4466 	case KVM_CAP_KVMCLOCK_CTRL:
4467 	case KVM_CAP_READONLY_MEM:
4468 	case KVM_CAP_HYPERV_TIME:
4469 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4470 	case KVM_CAP_TSC_DEADLINE_TIMER:
4471 	case KVM_CAP_DISABLE_QUIRKS:
4472 	case KVM_CAP_SET_BOOT_CPU_ID:
4473  	case KVM_CAP_SPLIT_IRQCHIP:
4474 	case KVM_CAP_IMMEDIATE_EXIT:
4475 	case KVM_CAP_PMU_EVENT_FILTER:
4476 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4477 	case KVM_CAP_GET_MSR_FEATURES:
4478 	case KVM_CAP_MSR_PLATFORM_INFO:
4479 	case KVM_CAP_EXCEPTION_PAYLOAD:
4480 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4481 	case KVM_CAP_SET_GUEST_DEBUG:
4482 	case KVM_CAP_LAST_CPU:
4483 	case KVM_CAP_X86_USER_SPACE_MSR:
4484 	case KVM_CAP_X86_MSR_FILTER:
4485 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4486 #ifdef CONFIG_X86_SGX_KVM
4487 	case KVM_CAP_SGX_ATTRIBUTE:
4488 #endif
4489 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4490 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4491 	case KVM_CAP_SREGS2:
4492 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4493 	case KVM_CAP_VCPU_ATTRIBUTES:
4494 	case KVM_CAP_SYS_ATTRIBUTES:
4495 	case KVM_CAP_VAPIC:
4496 	case KVM_CAP_ENABLE_CAP:
4497 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4498 	case KVM_CAP_IRQFD_RESAMPLE:
4499 		r = 1;
4500 		break;
4501 	case KVM_CAP_EXIT_HYPERCALL:
4502 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4503 		break;
4504 	case KVM_CAP_SET_GUEST_DEBUG2:
4505 		return KVM_GUESTDBG_VALID_MASK;
4506 #ifdef CONFIG_KVM_XEN
4507 	case KVM_CAP_XEN_HVM:
4508 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4509 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4510 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4511 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4512 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4513 		if (sched_info_on())
4514 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4515 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4516 		break;
4517 #endif
4518 	case KVM_CAP_SYNC_REGS:
4519 		r = KVM_SYNC_X86_VALID_FIELDS;
4520 		break;
4521 	case KVM_CAP_ADJUST_CLOCK:
4522 		r = KVM_CLOCK_VALID_FLAGS;
4523 		break;
4524 	case KVM_CAP_X86_DISABLE_EXITS:
4525 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4526 
4527 		if (!mitigate_smt_rsb) {
4528 			r |= KVM_X86_DISABLE_EXITS_HLT |
4529 			     KVM_X86_DISABLE_EXITS_CSTATE;
4530 
4531 			if (kvm_can_mwait_in_guest())
4532 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4533 		}
4534 		break;
4535 	case KVM_CAP_X86_SMM:
4536 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4537 			break;
4538 
4539 		/* SMBASE is usually relocated above 1M on modern chipsets,
4540 		 * and SMM handlers might indeed rely on 4G segment limits,
4541 		 * so do not report SMM to be available if real mode is
4542 		 * emulated via vm86 mode.  Still, do not go to great lengths
4543 		 * to avoid userspace's usage of the feature, because it is a
4544 		 * fringe case that is not enabled except via specific settings
4545 		 * of the module parameters.
4546 		 */
4547 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4548 		break;
4549 	case KVM_CAP_NR_VCPUS:
4550 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4551 		break;
4552 	case KVM_CAP_MAX_VCPUS:
4553 		r = KVM_MAX_VCPUS;
4554 		break;
4555 	case KVM_CAP_MAX_VCPU_ID:
4556 		r = KVM_MAX_VCPU_IDS;
4557 		break;
4558 	case KVM_CAP_PV_MMU:	/* obsolete */
4559 		r = 0;
4560 		break;
4561 	case KVM_CAP_MCE:
4562 		r = KVM_MAX_MCE_BANKS;
4563 		break;
4564 	case KVM_CAP_XCRS:
4565 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4566 		break;
4567 	case KVM_CAP_TSC_CONTROL:
4568 	case KVM_CAP_VM_TSC_CONTROL:
4569 		r = kvm_caps.has_tsc_control;
4570 		break;
4571 	case KVM_CAP_X2APIC_API:
4572 		r = KVM_X2APIC_API_VALID_FLAGS;
4573 		break;
4574 	case KVM_CAP_NESTED_STATE:
4575 		r = kvm_x86_ops.nested_ops->get_state ?
4576 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4577 		break;
4578 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4579 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4580 		break;
4581 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4582 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4583 		break;
4584 	case KVM_CAP_SMALLER_MAXPHYADDR:
4585 		r = (int) allow_smaller_maxphyaddr;
4586 		break;
4587 	case KVM_CAP_STEAL_TIME:
4588 		r = sched_info_on();
4589 		break;
4590 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4591 		if (kvm_caps.has_bus_lock_exit)
4592 			r = KVM_BUS_LOCK_DETECTION_OFF |
4593 			    KVM_BUS_LOCK_DETECTION_EXIT;
4594 		else
4595 			r = 0;
4596 		break;
4597 	case KVM_CAP_XSAVE2: {
4598 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4599 		if (r < sizeof(struct kvm_xsave))
4600 			r = sizeof(struct kvm_xsave);
4601 		break;
4602 	}
4603 	case KVM_CAP_PMU_CAPABILITY:
4604 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4605 		break;
4606 	case KVM_CAP_DISABLE_QUIRKS2:
4607 		r = KVM_X86_VALID_QUIRKS;
4608 		break;
4609 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4610 		r = kvm_caps.has_notify_vmexit;
4611 		break;
4612 	default:
4613 		break;
4614 	}
4615 	return r;
4616 }
4617 
4618 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4619 {
4620 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4621 
4622 	if ((u64)(unsigned long)uaddr != attr->addr)
4623 		return ERR_PTR_USR(-EFAULT);
4624 	return uaddr;
4625 }
4626 
4627 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4628 {
4629 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4630 
4631 	if (attr->group)
4632 		return -ENXIO;
4633 
4634 	if (IS_ERR(uaddr))
4635 		return PTR_ERR(uaddr);
4636 
4637 	switch (attr->attr) {
4638 	case KVM_X86_XCOMP_GUEST_SUPP:
4639 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4640 			return -EFAULT;
4641 		return 0;
4642 	default:
4643 		return -ENXIO;
4644 		break;
4645 	}
4646 }
4647 
4648 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4649 {
4650 	if (attr->group)
4651 		return -ENXIO;
4652 
4653 	switch (attr->attr) {
4654 	case KVM_X86_XCOMP_GUEST_SUPP:
4655 		return 0;
4656 	default:
4657 		return -ENXIO;
4658 	}
4659 }
4660 
4661 long kvm_arch_dev_ioctl(struct file *filp,
4662 			unsigned int ioctl, unsigned long arg)
4663 {
4664 	void __user *argp = (void __user *)arg;
4665 	long r;
4666 
4667 	switch (ioctl) {
4668 	case KVM_GET_MSR_INDEX_LIST: {
4669 		struct kvm_msr_list __user *user_msr_list = argp;
4670 		struct kvm_msr_list msr_list;
4671 		unsigned n;
4672 
4673 		r = -EFAULT;
4674 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4675 			goto out;
4676 		n = msr_list.nmsrs;
4677 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4678 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4679 			goto out;
4680 		r = -E2BIG;
4681 		if (n < msr_list.nmsrs)
4682 			goto out;
4683 		r = -EFAULT;
4684 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4685 				 num_msrs_to_save * sizeof(u32)))
4686 			goto out;
4687 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4688 				 &emulated_msrs,
4689 				 num_emulated_msrs * sizeof(u32)))
4690 			goto out;
4691 		r = 0;
4692 		break;
4693 	}
4694 	case KVM_GET_SUPPORTED_CPUID:
4695 	case KVM_GET_EMULATED_CPUID: {
4696 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4697 		struct kvm_cpuid2 cpuid;
4698 
4699 		r = -EFAULT;
4700 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4701 			goto out;
4702 
4703 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4704 					    ioctl);
4705 		if (r)
4706 			goto out;
4707 
4708 		r = -EFAULT;
4709 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4710 			goto out;
4711 		r = 0;
4712 		break;
4713 	}
4714 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4715 		r = -EFAULT;
4716 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4717 				 sizeof(kvm_caps.supported_mce_cap)))
4718 			goto out;
4719 		r = 0;
4720 		break;
4721 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4722 		struct kvm_msr_list __user *user_msr_list = argp;
4723 		struct kvm_msr_list msr_list;
4724 		unsigned int n;
4725 
4726 		r = -EFAULT;
4727 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4728 			goto out;
4729 		n = msr_list.nmsrs;
4730 		msr_list.nmsrs = num_msr_based_features;
4731 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4732 			goto out;
4733 		r = -E2BIG;
4734 		if (n < msr_list.nmsrs)
4735 			goto out;
4736 		r = -EFAULT;
4737 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4738 				 num_msr_based_features * sizeof(u32)))
4739 			goto out;
4740 		r = 0;
4741 		break;
4742 	}
4743 	case KVM_GET_MSRS:
4744 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4745 		break;
4746 	case KVM_GET_SUPPORTED_HV_CPUID:
4747 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4748 		break;
4749 	case KVM_GET_DEVICE_ATTR: {
4750 		struct kvm_device_attr attr;
4751 		r = -EFAULT;
4752 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4753 			break;
4754 		r = kvm_x86_dev_get_attr(&attr);
4755 		break;
4756 	}
4757 	case KVM_HAS_DEVICE_ATTR: {
4758 		struct kvm_device_attr attr;
4759 		r = -EFAULT;
4760 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4761 			break;
4762 		r = kvm_x86_dev_has_attr(&attr);
4763 		break;
4764 	}
4765 	default:
4766 		r = -EINVAL;
4767 		break;
4768 	}
4769 out:
4770 	return r;
4771 }
4772 
4773 static void wbinvd_ipi(void *garbage)
4774 {
4775 	wbinvd();
4776 }
4777 
4778 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4779 {
4780 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4781 }
4782 
4783 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4784 {
4785 	/* Address WBINVD may be executed by guest */
4786 	if (need_emulate_wbinvd(vcpu)) {
4787 		if (static_call(kvm_x86_has_wbinvd_exit)())
4788 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4789 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4790 			smp_call_function_single(vcpu->cpu,
4791 					wbinvd_ipi, NULL, 1);
4792 	}
4793 
4794 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4795 
4796 	/* Save host pkru register if supported */
4797 	vcpu->arch.host_pkru = read_pkru();
4798 
4799 	/* Apply any externally detected TSC adjustments (due to suspend) */
4800 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4801 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4802 		vcpu->arch.tsc_offset_adjustment = 0;
4803 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4804 	}
4805 
4806 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4807 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4808 				rdtsc() - vcpu->arch.last_host_tsc;
4809 		if (tsc_delta < 0)
4810 			mark_tsc_unstable("KVM discovered backwards TSC");
4811 
4812 		if (kvm_check_tsc_unstable()) {
4813 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4814 						vcpu->arch.last_guest_tsc);
4815 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4816 			vcpu->arch.tsc_catchup = 1;
4817 		}
4818 
4819 		if (kvm_lapic_hv_timer_in_use(vcpu))
4820 			kvm_lapic_restart_hv_timer(vcpu);
4821 
4822 		/*
4823 		 * On a host with synchronized TSC, there is no need to update
4824 		 * kvmclock on vcpu->cpu migration
4825 		 */
4826 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4827 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4828 		if (vcpu->cpu != cpu)
4829 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4830 		vcpu->cpu = cpu;
4831 	}
4832 
4833 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4834 }
4835 
4836 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4837 {
4838 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4839 	struct kvm_steal_time __user *st;
4840 	struct kvm_memslots *slots;
4841 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4842 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4843 
4844 	/*
4845 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4846 	 * an instruction boundary and will not trigger guest emulation of any
4847 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4848 	 * when this is true, for example allowing the vCPU to be marked
4849 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4850 	 */
4851 	if (!vcpu->arch.at_instruction_boundary) {
4852 		vcpu->stat.preemption_other++;
4853 		return;
4854 	}
4855 
4856 	vcpu->stat.preemption_reported++;
4857 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4858 		return;
4859 
4860 	if (vcpu->arch.st.preempted)
4861 		return;
4862 
4863 	/* This happens on process exit */
4864 	if (unlikely(current->mm != vcpu->kvm->mm))
4865 		return;
4866 
4867 	slots = kvm_memslots(vcpu->kvm);
4868 
4869 	if (unlikely(slots->generation != ghc->generation ||
4870 		     gpa != ghc->gpa ||
4871 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4872 		return;
4873 
4874 	st = (struct kvm_steal_time __user *)ghc->hva;
4875 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4876 
4877 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4878 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4879 
4880 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4881 }
4882 
4883 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4884 {
4885 	int idx;
4886 
4887 	if (vcpu->preempted) {
4888 		if (!vcpu->arch.guest_state_protected)
4889 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4890 
4891 		/*
4892 		 * Take the srcu lock as memslots will be accessed to check the gfn
4893 		 * cache generation against the memslots generation.
4894 		 */
4895 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4896 		if (kvm_xen_msr_enabled(vcpu->kvm))
4897 			kvm_xen_runstate_set_preempted(vcpu);
4898 		else
4899 			kvm_steal_time_set_preempted(vcpu);
4900 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4901 	}
4902 
4903 	static_call(kvm_x86_vcpu_put)(vcpu);
4904 	vcpu->arch.last_host_tsc = rdtsc();
4905 }
4906 
4907 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4908 				    struct kvm_lapic_state *s)
4909 {
4910 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4911 
4912 	return kvm_apic_get_state(vcpu, s);
4913 }
4914 
4915 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4916 				    struct kvm_lapic_state *s)
4917 {
4918 	int r;
4919 
4920 	r = kvm_apic_set_state(vcpu, s);
4921 	if (r)
4922 		return r;
4923 	update_cr8_intercept(vcpu);
4924 
4925 	return 0;
4926 }
4927 
4928 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4929 {
4930 	/*
4931 	 * We can accept userspace's request for interrupt injection
4932 	 * as long as we have a place to store the interrupt number.
4933 	 * The actual injection will happen when the CPU is able to
4934 	 * deliver the interrupt.
4935 	 */
4936 	if (kvm_cpu_has_extint(vcpu))
4937 		return false;
4938 
4939 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4940 	return (!lapic_in_kernel(vcpu) ||
4941 		kvm_apic_accept_pic_intr(vcpu));
4942 }
4943 
4944 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4945 {
4946 	/*
4947 	 * Do not cause an interrupt window exit if an exception
4948 	 * is pending or an event needs reinjection; userspace
4949 	 * might want to inject the interrupt manually using KVM_SET_REGS
4950 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4951 	 * instruction boundary and with no events half-injected.
4952 	 */
4953 	return (kvm_arch_interrupt_allowed(vcpu) &&
4954 		kvm_cpu_accept_dm_intr(vcpu) &&
4955 		!kvm_event_needs_reinjection(vcpu) &&
4956 		!kvm_is_exception_pending(vcpu));
4957 }
4958 
4959 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4960 				    struct kvm_interrupt *irq)
4961 {
4962 	if (irq->irq >= KVM_NR_INTERRUPTS)
4963 		return -EINVAL;
4964 
4965 	if (!irqchip_in_kernel(vcpu->kvm)) {
4966 		kvm_queue_interrupt(vcpu, irq->irq, false);
4967 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4968 		return 0;
4969 	}
4970 
4971 	/*
4972 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4973 	 * fail for in-kernel 8259.
4974 	 */
4975 	if (pic_in_kernel(vcpu->kvm))
4976 		return -ENXIO;
4977 
4978 	if (vcpu->arch.pending_external_vector != -1)
4979 		return -EEXIST;
4980 
4981 	vcpu->arch.pending_external_vector = irq->irq;
4982 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4983 	return 0;
4984 }
4985 
4986 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4987 {
4988 	kvm_inject_nmi(vcpu);
4989 
4990 	return 0;
4991 }
4992 
4993 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4994 					   struct kvm_tpr_access_ctl *tac)
4995 {
4996 	if (tac->flags)
4997 		return -EINVAL;
4998 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4999 	return 0;
5000 }
5001 
5002 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5003 					u64 mcg_cap)
5004 {
5005 	int r;
5006 	unsigned bank_num = mcg_cap & 0xff, bank;
5007 
5008 	r = -EINVAL;
5009 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5010 		goto out;
5011 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5012 		goto out;
5013 	r = 0;
5014 	vcpu->arch.mcg_cap = mcg_cap;
5015 	/* Init IA32_MCG_CTL to all 1s */
5016 	if (mcg_cap & MCG_CTL_P)
5017 		vcpu->arch.mcg_ctl = ~(u64)0;
5018 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5019 	for (bank = 0; bank < bank_num; bank++) {
5020 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5021 		if (mcg_cap & MCG_CMCI_P)
5022 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5023 	}
5024 
5025 	kvm_apic_after_set_mcg_cap(vcpu);
5026 
5027 	static_call(kvm_x86_setup_mce)(vcpu);
5028 out:
5029 	return r;
5030 }
5031 
5032 /*
5033  * Validate this is an UCNA (uncorrectable no action) error by checking the
5034  * MCG_STATUS and MCi_STATUS registers:
5035  * - none of the bits for Machine Check Exceptions are set
5036  * - both the VAL (valid) and UC (uncorrectable) bits are set
5037  * MCI_STATUS_PCC - Processor Context Corrupted
5038  * MCI_STATUS_S - Signaled as a Machine Check Exception
5039  * MCI_STATUS_AR - Software recoverable Action Required
5040  */
5041 static bool is_ucna(struct kvm_x86_mce *mce)
5042 {
5043 	return	!mce->mcg_status &&
5044 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5045 		(mce->status & MCI_STATUS_VAL) &&
5046 		(mce->status & MCI_STATUS_UC);
5047 }
5048 
5049 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5050 {
5051 	u64 mcg_cap = vcpu->arch.mcg_cap;
5052 
5053 	banks[1] = mce->status;
5054 	banks[2] = mce->addr;
5055 	banks[3] = mce->misc;
5056 	vcpu->arch.mcg_status = mce->mcg_status;
5057 
5058 	if (!(mcg_cap & MCG_CMCI_P) ||
5059 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5060 		return 0;
5061 
5062 	if (lapic_in_kernel(vcpu))
5063 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5064 
5065 	return 0;
5066 }
5067 
5068 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5069 				      struct kvm_x86_mce *mce)
5070 {
5071 	u64 mcg_cap = vcpu->arch.mcg_cap;
5072 	unsigned bank_num = mcg_cap & 0xff;
5073 	u64 *banks = vcpu->arch.mce_banks;
5074 
5075 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5076 		return -EINVAL;
5077 
5078 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5079 
5080 	if (is_ucna(mce))
5081 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5082 
5083 	/*
5084 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5085 	 * reporting is disabled
5086 	 */
5087 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5088 	    vcpu->arch.mcg_ctl != ~(u64)0)
5089 		return 0;
5090 	/*
5091 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5092 	 * reporting is disabled for the bank
5093 	 */
5094 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5095 		return 0;
5096 	if (mce->status & MCI_STATUS_UC) {
5097 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5098 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5099 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5100 			return 0;
5101 		}
5102 		if (banks[1] & MCI_STATUS_VAL)
5103 			mce->status |= MCI_STATUS_OVER;
5104 		banks[2] = mce->addr;
5105 		banks[3] = mce->misc;
5106 		vcpu->arch.mcg_status = mce->mcg_status;
5107 		banks[1] = mce->status;
5108 		kvm_queue_exception(vcpu, MC_VECTOR);
5109 	} else if (!(banks[1] & MCI_STATUS_VAL)
5110 		   || !(banks[1] & MCI_STATUS_UC)) {
5111 		if (banks[1] & MCI_STATUS_VAL)
5112 			mce->status |= MCI_STATUS_OVER;
5113 		banks[2] = mce->addr;
5114 		banks[3] = mce->misc;
5115 		banks[1] = mce->status;
5116 	} else
5117 		banks[1] |= MCI_STATUS_OVER;
5118 	return 0;
5119 }
5120 
5121 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5122 					       struct kvm_vcpu_events *events)
5123 {
5124 	struct kvm_queued_exception *ex;
5125 
5126 	process_nmi(vcpu);
5127 
5128 #ifdef CONFIG_KVM_SMM
5129 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5130 		process_smi(vcpu);
5131 #endif
5132 
5133 	/*
5134 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5135 	 * the only time there can be two queued exceptions is if there's a
5136 	 * non-exiting _injected_ exception, and a pending exiting exception.
5137 	 * In that case, ignore the VM-Exiting exception as it's an extension
5138 	 * of the injected exception.
5139 	 */
5140 	if (vcpu->arch.exception_vmexit.pending &&
5141 	    !vcpu->arch.exception.pending &&
5142 	    !vcpu->arch.exception.injected)
5143 		ex = &vcpu->arch.exception_vmexit;
5144 	else
5145 		ex = &vcpu->arch.exception;
5146 
5147 	/*
5148 	 * In guest mode, payload delivery should be deferred if the exception
5149 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5150 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5151 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5152 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5153 	 * the payload if the capability hasn't been requested.
5154 	 */
5155 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5156 	    ex->pending && ex->has_payload)
5157 		kvm_deliver_exception_payload(vcpu, ex);
5158 
5159 	memset(events, 0, sizeof(*events));
5160 
5161 	/*
5162 	 * The API doesn't provide the instruction length for software
5163 	 * exceptions, so don't report them. As long as the guest RIP
5164 	 * isn't advanced, we should expect to encounter the exception
5165 	 * again.
5166 	 */
5167 	if (!kvm_exception_is_soft(ex->vector)) {
5168 		events->exception.injected = ex->injected;
5169 		events->exception.pending = ex->pending;
5170 		/*
5171 		 * For ABI compatibility, deliberately conflate
5172 		 * pending and injected exceptions when
5173 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5174 		 */
5175 		if (!vcpu->kvm->arch.exception_payload_enabled)
5176 			events->exception.injected |= ex->pending;
5177 	}
5178 	events->exception.nr = ex->vector;
5179 	events->exception.has_error_code = ex->has_error_code;
5180 	events->exception.error_code = ex->error_code;
5181 	events->exception_has_payload = ex->has_payload;
5182 	events->exception_payload = ex->payload;
5183 
5184 	events->interrupt.injected =
5185 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5186 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5187 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5188 
5189 	events->nmi.injected = vcpu->arch.nmi_injected;
5190 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5191 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5192 
5193 	/* events->sipi_vector is never valid when reporting to user space */
5194 
5195 #ifdef CONFIG_KVM_SMM
5196 	events->smi.smm = is_smm(vcpu);
5197 	events->smi.pending = vcpu->arch.smi_pending;
5198 	events->smi.smm_inside_nmi =
5199 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5200 #endif
5201 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5202 
5203 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5204 			 | KVM_VCPUEVENT_VALID_SHADOW
5205 			 | KVM_VCPUEVENT_VALID_SMM);
5206 	if (vcpu->kvm->arch.exception_payload_enabled)
5207 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5208 	if (vcpu->kvm->arch.triple_fault_event) {
5209 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5210 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5211 	}
5212 }
5213 
5214 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5215 					      struct kvm_vcpu_events *events)
5216 {
5217 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5218 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5219 			      | KVM_VCPUEVENT_VALID_SHADOW
5220 			      | KVM_VCPUEVENT_VALID_SMM
5221 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5222 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5223 		return -EINVAL;
5224 
5225 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5226 		if (!vcpu->kvm->arch.exception_payload_enabled)
5227 			return -EINVAL;
5228 		if (events->exception.pending)
5229 			events->exception.injected = 0;
5230 		else
5231 			events->exception_has_payload = 0;
5232 	} else {
5233 		events->exception.pending = 0;
5234 		events->exception_has_payload = 0;
5235 	}
5236 
5237 	if ((events->exception.injected || events->exception.pending) &&
5238 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5239 		return -EINVAL;
5240 
5241 	/* INITs are latched while in SMM */
5242 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5243 	    (events->smi.smm || events->smi.pending) &&
5244 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5245 		return -EINVAL;
5246 
5247 	process_nmi(vcpu);
5248 
5249 	/*
5250 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5251 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5252 	 * pending exceptions, already-injected exceptions are not subject to
5253 	 * intercpetion.  Note, userspace that conflates pending and injected
5254 	 * is hosed, and will incorrectly convert an injected exception into a
5255 	 * pending exception, which in turn may cause a spurious VM-Exit.
5256 	 */
5257 	vcpu->arch.exception_from_userspace = events->exception.pending;
5258 
5259 	vcpu->arch.exception_vmexit.pending = false;
5260 
5261 	vcpu->arch.exception.injected = events->exception.injected;
5262 	vcpu->arch.exception.pending = events->exception.pending;
5263 	vcpu->arch.exception.vector = events->exception.nr;
5264 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5265 	vcpu->arch.exception.error_code = events->exception.error_code;
5266 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5267 	vcpu->arch.exception.payload = events->exception_payload;
5268 
5269 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5270 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5271 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5272 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5273 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5274 						events->interrupt.shadow);
5275 
5276 	vcpu->arch.nmi_injected = events->nmi.injected;
5277 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5278 		vcpu->arch.nmi_pending = 0;
5279 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5280 		kvm_make_request(KVM_REQ_NMI, vcpu);
5281 	}
5282 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5283 
5284 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5285 	    lapic_in_kernel(vcpu))
5286 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5287 
5288 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5289 #ifdef CONFIG_KVM_SMM
5290 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5291 			kvm_leave_nested(vcpu);
5292 			kvm_smm_changed(vcpu, events->smi.smm);
5293 		}
5294 
5295 		vcpu->arch.smi_pending = events->smi.pending;
5296 
5297 		if (events->smi.smm) {
5298 			if (events->smi.smm_inside_nmi)
5299 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5300 			else
5301 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5302 		}
5303 
5304 #else
5305 		if (events->smi.smm || events->smi.pending ||
5306 		    events->smi.smm_inside_nmi)
5307 			return -EINVAL;
5308 #endif
5309 
5310 		if (lapic_in_kernel(vcpu)) {
5311 			if (events->smi.latched_init)
5312 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5313 			else
5314 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5315 		}
5316 	}
5317 
5318 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5319 		if (!vcpu->kvm->arch.triple_fault_event)
5320 			return -EINVAL;
5321 		if (events->triple_fault.pending)
5322 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5323 		else
5324 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5325 	}
5326 
5327 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5328 
5329 	return 0;
5330 }
5331 
5332 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5333 					     struct kvm_debugregs *dbgregs)
5334 {
5335 	unsigned long val;
5336 
5337 	memset(dbgregs, 0, sizeof(*dbgregs));
5338 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5339 	kvm_get_dr(vcpu, 6, &val);
5340 	dbgregs->dr6 = val;
5341 	dbgregs->dr7 = vcpu->arch.dr7;
5342 }
5343 
5344 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5345 					    struct kvm_debugregs *dbgregs)
5346 {
5347 	if (dbgregs->flags)
5348 		return -EINVAL;
5349 
5350 	if (!kvm_dr6_valid(dbgregs->dr6))
5351 		return -EINVAL;
5352 	if (!kvm_dr7_valid(dbgregs->dr7))
5353 		return -EINVAL;
5354 
5355 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5356 	kvm_update_dr0123(vcpu);
5357 	vcpu->arch.dr6 = dbgregs->dr6;
5358 	vcpu->arch.dr7 = dbgregs->dr7;
5359 	kvm_update_dr7(vcpu);
5360 
5361 	return 0;
5362 }
5363 
5364 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5365 					 struct kvm_xsave *guest_xsave)
5366 {
5367 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5368 		return;
5369 
5370 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5371 				       guest_xsave->region,
5372 				       sizeof(guest_xsave->region),
5373 				       vcpu->arch.pkru);
5374 }
5375 
5376 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5377 					  u8 *state, unsigned int size)
5378 {
5379 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5380 		return;
5381 
5382 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5383 				       state, size, vcpu->arch.pkru);
5384 }
5385 
5386 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5387 					struct kvm_xsave *guest_xsave)
5388 {
5389 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5390 		return 0;
5391 
5392 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5393 					      guest_xsave->region,
5394 					      kvm_caps.supported_xcr0,
5395 					      &vcpu->arch.pkru);
5396 }
5397 
5398 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5399 					struct kvm_xcrs *guest_xcrs)
5400 {
5401 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5402 		guest_xcrs->nr_xcrs = 0;
5403 		return;
5404 	}
5405 
5406 	guest_xcrs->nr_xcrs = 1;
5407 	guest_xcrs->flags = 0;
5408 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5409 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5410 }
5411 
5412 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5413 				       struct kvm_xcrs *guest_xcrs)
5414 {
5415 	int i, r = 0;
5416 
5417 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5418 		return -EINVAL;
5419 
5420 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5421 		return -EINVAL;
5422 
5423 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5424 		/* Only support XCR0 currently */
5425 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5426 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5427 				guest_xcrs->xcrs[i].value);
5428 			break;
5429 		}
5430 	if (r)
5431 		r = -EINVAL;
5432 	return r;
5433 }
5434 
5435 /*
5436  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5437  * stopped by the hypervisor.  This function will be called from the host only.
5438  * EINVAL is returned when the host attempts to set the flag for a guest that
5439  * does not support pv clocks.
5440  */
5441 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5442 {
5443 	if (!vcpu->arch.pv_time.active)
5444 		return -EINVAL;
5445 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5446 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5447 	return 0;
5448 }
5449 
5450 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5451 				 struct kvm_device_attr *attr)
5452 {
5453 	int r;
5454 
5455 	switch (attr->attr) {
5456 	case KVM_VCPU_TSC_OFFSET:
5457 		r = 0;
5458 		break;
5459 	default:
5460 		r = -ENXIO;
5461 	}
5462 
5463 	return r;
5464 }
5465 
5466 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5467 				 struct kvm_device_attr *attr)
5468 {
5469 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5470 	int r;
5471 
5472 	if (IS_ERR(uaddr))
5473 		return PTR_ERR(uaddr);
5474 
5475 	switch (attr->attr) {
5476 	case KVM_VCPU_TSC_OFFSET:
5477 		r = -EFAULT;
5478 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5479 			break;
5480 		r = 0;
5481 		break;
5482 	default:
5483 		r = -ENXIO;
5484 	}
5485 
5486 	return r;
5487 }
5488 
5489 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5490 				 struct kvm_device_attr *attr)
5491 {
5492 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5493 	struct kvm *kvm = vcpu->kvm;
5494 	int r;
5495 
5496 	if (IS_ERR(uaddr))
5497 		return PTR_ERR(uaddr);
5498 
5499 	switch (attr->attr) {
5500 	case KVM_VCPU_TSC_OFFSET: {
5501 		u64 offset, tsc, ns;
5502 		unsigned long flags;
5503 		bool matched;
5504 
5505 		r = -EFAULT;
5506 		if (get_user(offset, uaddr))
5507 			break;
5508 
5509 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5510 
5511 		matched = (vcpu->arch.virtual_tsc_khz &&
5512 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5513 			   kvm->arch.last_tsc_offset == offset);
5514 
5515 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5516 		ns = get_kvmclock_base_ns();
5517 
5518 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5519 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5520 
5521 		r = 0;
5522 		break;
5523 	}
5524 	default:
5525 		r = -ENXIO;
5526 	}
5527 
5528 	return r;
5529 }
5530 
5531 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5532 				      unsigned int ioctl,
5533 				      void __user *argp)
5534 {
5535 	struct kvm_device_attr attr;
5536 	int r;
5537 
5538 	if (copy_from_user(&attr, argp, sizeof(attr)))
5539 		return -EFAULT;
5540 
5541 	if (attr.group != KVM_VCPU_TSC_CTRL)
5542 		return -ENXIO;
5543 
5544 	switch (ioctl) {
5545 	case KVM_HAS_DEVICE_ATTR:
5546 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5547 		break;
5548 	case KVM_GET_DEVICE_ATTR:
5549 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5550 		break;
5551 	case KVM_SET_DEVICE_ATTR:
5552 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5553 		break;
5554 	}
5555 
5556 	return r;
5557 }
5558 
5559 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5560 				     struct kvm_enable_cap *cap)
5561 {
5562 	int r;
5563 	uint16_t vmcs_version;
5564 	void __user *user_ptr;
5565 
5566 	if (cap->flags)
5567 		return -EINVAL;
5568 
5569 	switch (cap->cap) {
5570 	case KVM_CAP_HYPERV_SYNIC2:
5571 		if (cap->args[0])
5572 			return -EINVAL;
5573 		fallthrough;
5574 
5575 	case KVM_CAP_HYPERV_SYNIC:
5576 		if (!irqchip_in_kernel(vcpu->kvm))
5577 			return -EINVAL;
5578 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5579 					     KVM_CAP_HYPERV_SYNIC2);
5580 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5581 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5582 			return -ENOTTY;
5583 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5584 		if (!r) {
5585 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5586 			if (copy_to_user(user_ptr, &vmcs_version,
5587 					 sizeof(vmcs_version)))
5588 				r = -EFAULT;
5589 		}
5590 		return r;
5591 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5592 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5593 			return -ENOTTY;
5594 
5595 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5596 
5597 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5598 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5599 
5600 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5601 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5602 		if (vcpu->arch.pv_cpuid.enforce)
5603 			kvm_update_pv_runtime(vcpu);
5604 
5605 		return 0;
5606 	default:
5607 		return -EINVAL;
5608 	}
5609 }
5610 
5611 long kvm_arch_vcpu_ioctl(struct file *filp,
5612 			 unsigned int ioctl, unsigned long arg)
5613 {
5614 	struct kvm_vcpu *vcpu = filp->private_data;
5615 	void __user *argp = (void __user *)arg;
5616 	int r;
5617 	union {
5618 		struct kvm_sregs2 *sregs2;
5619 		struct kvm_lapic_state *lapic;
5620 		struct kvm_xsave *xsave;
5621 		struct kvm_xcrs *xcrs;
5622 		void *buffer;
5623 	} u;
5624 
5625 	vcpu_load(vcpu);
5626 
5627 	u.buffer = NULL;
5628 	switch (ioctl) {
5629 	case KVM_GET_LAPIC: {
5630 		r = -EINVAL;
5631 		if (!lapic_in_kernel(vcpu))
5632 			goto out;
5633 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5634 				GFP_KERNEL_ACCOUNT);
5635 
5636 		r = -ENOMEM;
5637 		if (!u.lapic)
5638 			goto out;
5639 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5640 		if (r)
5641 			goto out;
5642 		r = -EFAULT;
5643 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5644 			goto out;
5645 		r = 0;
5646 		break;
5647 	}
5648 	case KVM_SET_LAPIC: {
5649 		r = -EINVAL;
5650 		if (!lapic_in_kernel(vcpu))
5651 			goto out;
5652 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5653 		if (IS_ERR(u.lapic)) {
5654 			r = PTR_ERR(u.lapic);
5655 			goto out_nofree;
5656 		}
5657 
5658 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5659 		break;
5660 	}
5661 	case KVM_INTERRUPT: {
5662 		struct kvm_interrupt irq;
5663 
5664 		r = -EFAULT;
5665 		if (copy_from_user(&irq, argp, sizeof(irq)))
5666 			goto out;
5667 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5668 		break;
5669 	}
5670 	case KVM_NMI: {
5671 		r = kvm_vcpu_ioctl_nmi(vcpu);
5672 		break;
5673 	}
5674 	case KVM_SMI: {
5675 		r = kvm_inject_smi(vcpu);
5676 		break;
5677 	}
5678 	case KVM_SET_CPUID: {
5679 		struct kvm_cpuid __user *cpuid_arg = argp;
5680 		struct kvm_cpuid cpuid;
5681 
5682 		r = -EFAULT;
5683 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5684 			goto out;
5685 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5686 		break;
5687 	}
5688 	case KVM_SET_CPUID2: {
5689 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5690 		struct kvm_cpuid2 cpuid;
5691 
5692 		r = -EFAULT;
5693 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5694 			goto out;
5695 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5696 					      cpuid_arg->entries);
5697 		break;
5698 	}
5699 	case KVM_GET_CPUID2: {
5700 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5701 		struct kvm_cpuid2 cpuid;
5702 
5703 		r = -EFAULT;
5704 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5705 			goto out;
5706 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5707 					      cpuid_arg->entries);
5708 		if (r)
5709 			goto out;
5710 		r = -EFAULT;
5711 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5712 			goto out;
5713 		r = 0;
5714 		break;
5715 	}
5716 	case KVM_GET_MSRS: {
5717 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5718 		r = msr_io(vcpu, argp, do_get_msr, 1);
5719 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5720 		break;
5721 	}
5722 	case KVM_SET_MSRS: {
5723 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5724 		r = msr_io(vcpu, argp, do_set_msr, 0);
5725 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5726 		break;
5727 	}
5728 	case KVM_TPR_ACCESS_REPORTING: {
5729 		struct kvm_tpr_access_ctl tac;
5730 
5731 		r = -EFAULT;
5732 		if (copy_from_user(&tac, argp, sizeof(tac)))
5733 			goto out;
5734 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5735 		if (r)
5736 			goto out;
5737 		r = -EFAULT;
5738 		if (copy_to_user(argp, &tac, sizeof(tac)))
5739 			goto out;
5740 		r = 0;
5741 		break;
5742 	};
5743 	case KVM_SET_VAPIC_ADDR: {
5744 		struct kvm_vapic_addr va;
5745 		int idx;
5746 
5747 		r = -EINVAL;
5748 		if (!lapic_in_kernel(vcpu))
5749 			goto out;
5750 		r = -EFAULT;
5751 		if (copy_from_user(&va, argp, sizeof(va)))
5752 			goto out;
5753 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5754 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5755 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5756 		break;
5757 	}
5758 	case KVM_X86_SETUP_MCE: {
5759 		u64 mcg_cap;
5760 
5761 		r = -EFAULT;
5762 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5763 			goto out;
5764 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5765 		break;
5766 	}
5767 	case KVM_X86_SET_MCE: {
5768 		struct kvm_x86_mce mce;
5769 
5770 		r = -EFAULT;
5771 		if (copy_from_user(&mce, argp, sizeof(mce)))
5772 			goto out;
5773 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5774 		break;
5775 	}
5776 	case KVM_GET_VCPU_EVENTS: {
5777 		struct kvm_vcpu_events events;
5778 
5779 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5780 
5781 		r = -EFAULT;
5782 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5783 			break;
5784 		r = 0;
5785 		break;
5786 	}
5787 	case KVM_SET_VCPU_EVENTS: {
5788 		struct kvm_vcpu_events events;
5789 
5790 		r = -EFAULT;
5791 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5792 			break;
5793 
5794 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5795 		break;
5796 	}
5797 	case KVM_GET_DEBUGREGS: {
5798 		struct kvm_debugregs dbgregs;
5799 
5800 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5801 
5802 		r = -EFAULT;
5803 		if (copy_to_user(argp, &dbgregs,
5804 				 sizeof(struct kvm_debugregs)))
5805 			break;
5806 		r = 0;
5807 		break;
5808 	}
5809 	case KVM_SET_DEBUGREGS: {
5810 		struct kvm_debugregs dbgregs;
5811 
5812 		r = -EFAULT;
5813 		if (copy_from_user(&dbgregs, argp,
5814 				   sizeof(struct kvm_debugregs)))
5815 			break;
5816 
5817 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5818 		break;
5819 	}
5820 	case KVM_GET_XSAVE: {
5821 		r = -EINVAL;
5822 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5823 			break;
5824 
5825 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5826 		r = -ENOMEM;
5827 		if (!u.xsave)
5828 			break;
5829 
5830 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5831 
5832 		r = -EFAULT;
5833 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5834 			break;
5835 		r = 0;
5836 		break;
5837 	}
5838 	case KVM_SET_XSAVE: {
5839 		int size = vcpu->arch.guest_fpu.uabi_size;
5840 
5841 		u.xsave = memdup_user(argp, size);
5842 		if (IS_ERR(u.xsave)) {
5843 			r = PTR_ERR(u.xsave);
5844 			goto out_nofree;
5845 		}
5846 
5847 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5848 		break;
5849 	}
5850 
5851 	case KVM_GET_XSAVE2: {
5852 		int size = vcpu->arch.guest_fpu.uabi_size;
5853 
5854 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5855 		r = -ENOMEM;
5856 		if (!u.xsave)
5857 			break;
5858 
5859 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5860 
5861 		r = -EFAULT;
5862 		if (copy_to_user(argp, u.xsave, size))
5863 			break;
5864 
5865 		r = 0;
5866 		break;
5867 	}
5868 
5869 	case KVM_GET_XCRS: {
5870 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5871 		r = -ENOMEM;
5872 		if (!u.xcrs)
5873 			break;
5874 
5875 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5876 
5877 		r = -EFAULT;
5878 		if (copy_to_user(argp, u.xcrs,
5879 				 sizeof(struct kvm_xcrs)))
5880 			break;
5881 		r = 0;
5882 		break;
5883 	}
5884 	case KVM_SET_XCRS: {
5885 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5886 		if (IS_ERR(u.xcrs)) {
5887 			r = PTR_ERR(u.xcrs);
5888 			goto out_nofree;
5889 		}
5890 
5891 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5892 		break;
5893 	}
5894 	case KVM_SET_TSC_KHZ: {
5895 		u32 user_tsc_khz;
5896 
5897 		r = -EINVAL;
5898 		user_tsc_khz = (u32)arg;
5899 
5900 		if (kvm_caps.has_tsc_control &&
5901 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5902 			goto out;
5903 
5904 		if (user_tsc_khz == 0)
5905 			user_tsc_khz = tsc_khz;
5906 
5907 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5908 			r = 0;
5909 
5910 		goto out;
5911 	}
5912 	case KVM_GET_TSC_KHZ: {
5913 		r = vcpu->arch.virtual_tsc_khz;
5914 		goto out;
5915 	}
5916 	case KVM_KVMCLOCK_CTRL: {
5917 		r = kvm_set_guest_paused(vcpu);
5918 		goto out;
5919 	}
5920 	case KVM_ENABLE_CAP: {
5921 		struct kvm_enable_cap cap;
5922 
5923 		r = -EFAULT;
5924 		if (copy_from_user(&cap, argp, sizeof(cap)))
5925 			goto out;
5926 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5927 		break;
5928 	}
5929 	case KVM_GET_NESTED_STATE: {
5930 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5931 		u32 user_data_size;
5932 
5933 		r = -EINVAL;
5934 		if (!kvm_x86_ops.nested_ops->get_state)
5935 			break;
5936 
5937 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5938 		r = -EFAULT;
5939 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5940 			break;
5941 
5942 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5943 						     user_data_size);
5944 		if (r < 0)
5945 			break;
5946 
5947 		if (r > user_data_size) {
5948 			if (put_user(r, &user_kvm_nested_state->size))
5949 				r = -EFAULT;
5950 			else
5951 				r = -E2BIG;
5952 			break;
5953 		}
5954 
5955 		r = 0;
5956 		break;
5957 	}
5958 	case KVM_SET_NESTED_STATE: {
5959 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5960 		struct kvm_nested_state kvm_state;
5961 		int idx;
5962 
5963 		r = -EINVAL;
5964 		if (!kvm_x86_ops.nested_ops->set_state)
5965 			break;
5966 
5967 		r = -EFAULT;
5968 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5969 			break;
5970 
5971 		r = -EINVAL;
5972 		if (kvm_state.size < sizeof(kvm_state))
5973 			break;
5974 
5975 		if (kvm_state.flags &
5976 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5977 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5978 		      | KVM_STATE_NESTED_GIF_SET))
5979 			break;
5980 
5981 		/* nested_run_pending implies guest_mode.  */
5982 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5983 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5984 			break;
5985 
5986 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5987 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5988 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5989 		break;
5990 	}
5991 	case KVM_GET_SUPPORTED_HV_CPUID:
5992 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5993 		break;
5994 #ifdef CONFIG_KVM_XEN
5995 	case KVM_XEN_VCPU_GET_ATTR: {
5996 		struct kvm_xen_vcpu_attr xva;
5997 
5998 		r = -EFAULT;
5999 		if (copy_from_user(&xva, argp, sizeof(xva)))
6000 			goto out;
6001 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6002 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6003 			r = -EFAULT;
6004 		break;
6005 	}
6006 	case KVM_XEN_VCPU_SET_ATTR: {
6007 		struct kvm_xen_vcpu_attr xva;
6008 
6009 		r = -EFAULT;
6010 		if (copy_from_user(&xva, argp, sizeof(xva)))
6011 			goto out;
6012 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6013 		break;
6014 	}
6015 #endif
6016 	case KVM_GET_SREGS2: {
6017 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6018 		r = -ENOMEM;
6019 		if (!u.sregs2)
6020 			goto out;
6021 		__get_sregs2(vcpu, u.sregs2);
6022 		r = -EFAULT;
6023 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6024 			goto out;
6025 		r = 0;
6026 		break;
6027 	}
6028 	case KVM_SET_SREGS2: {
6029 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6030 		if (IS_ERR(u.sregs2)) {
6031 			r = PTR_ERR(u.sregs2);
6032 			u.sregs2 = NULL;
6033 			goto out;
6034 		}
6035 		r = __set_sregs2(vcpu, u.sregs2);
6036 		break;
6037 	}
6038 	case KVM_HAS_DEVICE_ATTR:
6039 	case KVM_GET_DEVICE_ATTR:
6040 	case KVM_SET_DEVICE_ATTR:
6041 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6042 		break;
6043 	default:
6044 		r = -EINVAL;
6045 	}
6046 out:
6047 	kfree(u.buffer);
6048 out_nofree:
6049 	vcpu_put(vcpu);
6050 	return r;
6051 }
6052 
6053 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6054 {
6055 	return VM_FAULT_SIGBUS;
6056 }
6057 
6058 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6059 {
6060 	int ret;
6061 
6062 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6063 		return -EINVAL;
6064 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6065 	return ret;
6066 }
6067 
6068 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6069 					      u64 ident_addr)
6070 {
6071 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6072 }
6073 
6074 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6075 					 unsigned long kvm_nr_mmu_pages)
6076 {
6077 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6078 		return -EINVAL;
6079 
6080 	mutex_lock(&kvm->slots_lock);
6081 
6082 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6083 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6084 
6085 	mutex_unlock(&kvm->slots_lock);
6086 	return 0;
6087 }
6088 
6089 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6090 {
6091 	struct kvm_pic *pic = kvm->arch.vpic;
6092 	int r;
6093 
6094 	r = 0;
6095 	switch (chip->chip_id) {
6096 	case KVM_IRQCHIP_PIC_MASTER:
6097 		memcpy(&chip->chip.pic, &pic->pics[0],
6098 			sizeof(struct kvm_pic_state));
6099 		break;
6100 	case KVM_IRQCHIP_PIC_SLAVE:
6101 		memcpy(&chip->chip.pic, &pic->pics[1],
6102 			sizeof(struct kvm_pic_state));
6103 		break;
6104 	case KVM_IRQCHIP_IOAPIC:
6105 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6106 		break;
6107 	default:
6108 		r = -EINVAL;
6109 		break;
6110 	}
6111 	return r;
6112 }
6113 
6114 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6115 {
6116 	struct kvm_pic *pic = kvm->arch.vpic;
6117 	int r;
6118 
6119 	r = 0;
6120 	switch (chip->chip_id) {
6121 	case KVM_IRQCHIP_PIC_MASTER:
6122 		spin_lock(&pic->lock);
6123 		memcpy(&pic->pics[0], &chip->chip.pic,
6124 			sizeof(struct kvm_pic_state));
6125 		spin_unlock(&pic->lock);
6126 		break;
6127 	case KVM_IRQCHIP_PIC_SLAVE:
6128 		spin_lock(&pic->lock);
6129 		memcpy(&pic->pics[1], &chip->chip.pic,
6130 			sizeof(struct kvm_pic_state));
6131 		spin_unlock(&pic->lock);
6132 		break;
6133 	case KVM_IRQCHIP_IOAPIC:
6134 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6135 		break;
6136 	default:
6137 		r = -EINVAL;
6138 		break;
6139 	}
6140 	kvm_pic_update_irq(pic);
6141 	return r;
6142 }
6143 
6144 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6145 {
6146 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6147 
6148 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6149 
6150 	mutex_lock(&kps->lock);
6151 	memcpy(ps, &kps->channels, sizeof(*ps));
6152 	mutex_unlock(&kps->lock);
6153 	return 0;
6154 }
6155 
6156 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6157 {
6158 	int i;
6159 	struct kvm_pit *pit = kvm->arch.vpit;
6160 
6161 	mutex_lock(&pit->pit_state.lock);
6162 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6163 	for (i = 0; i < 3; i++)
6164 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6165 	mutex_unlock(&pit->pit_state.lock);
6166 	return 0;
6167 }
6168 
6169 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6170 {
6171 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6172 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6173 		sizeof(ps->channels));
6174 	ps->flags = kvm->arch.vpit->pit_state.flags;
6175 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6176 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6177 	return 0;
6178 }
6179 
6180 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6181 {
6182 	int start = 0;
6183 	int i;
6184 	u32 prev_legacy, cur_legacy;
6185 	struct kvm_pit *pit = kvm->arch.vpit;
6186 
6187 	mutex_lock(&pit->pit_state.lock);
6188 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6189 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6190 	if (!prev_legacy && cur_legacy)
6191 		start = 1;
6192 	memcpy(&pit->pit_state.channels, &ps->channels,
6193 	       sizeof(pit->pit_state.channels));
6194 	pit->pit_state.flags = ps->flags;
6195 	for (i = 0; i < 3; i++)
6196 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6197 				   start && i == 0);
6198 	mutex_unlock(&pit->pit_state.lock);
6199 	return 0;
6200 }
6201 
6202 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6203 				 struct kvm_reinject_control *control)
6204 {
6205 	struct kvm_pit *pit = kvm->arch.vpit;
6206 
6207 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6208 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6209 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6210 	 */
6211 	mutex_lock(&pit->pit_state.lock);
6212 	kvm_pit_set_reinject(pit, control->pit_reinject);
6213 	mutex_unlock(&pit->pit_state.lock);
6214 
6215 	return 0;
6216 }
6217 
6218 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6219 {
6220 
6221 	/*
6222 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6223 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6224 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6225 	 * VM-Exit.
6226 	 */
6227 	struct kvm_vcpu *vcpu;
6228 	unsigned long i;
6229 
6230 	kvm_for_each_vcpu(i, vcpu, kvm)
6231 		kvm_vcpu_kick(vcpu);
6232 }
6233 
6234 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6235 			bool line_status)
6236 {
6237 	if (!irqchip_in_kernel(kvm))
6238 		return -ENXIO;
6239 
6240 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6241 					irq_event->irq, irq_event->level,
6242 					line_status);
6243 	return 0;
6244 }
6245 
6246 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6247 			    struct kvm_enable_cap *cap)
6248 {
6249 	int r;
6250 
6251 	if (cap->flags)
6252 		return -EINVAL;
6253 
6254 	switch (cap->cap) {
6255 	case KVM_CAP_DISABLE_QUIRKS2:
6256 		r = -EINVAL;
6257 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6258 			break;
6259 		fallthrough;
6260 	case KVM_CAP_DISABLE_QUIRKS:
6261 		kvm->arch.disabled_quirks = cap->args[0];
6262 		r = 0;
6263 		break;
6264 	case KVM_CAP_SPLIT_IRQCHIP: {
6265 		mutex_lock(&kvm->lock);
6266 		r = -EINVAL;
6267 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6268 			goto split_irqchip_unlock;
6269 		r = -EEXIST;
6270 		if (irqchip_in_kernel(kvm))
6271 			goto split_irqchip_unlock;
6272 		if (kvm->created_vcpus)
6273 			goto split_irqchip_unlock;
6274 		r = kvm_setup_empty_irq_routing(kvm);
6275 		if (r)
6276 			goto split_irqchip_unlock;
6277 		/* Pairs with irqchip_in_kernel. */
6278 		smp_wmb();
6279 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6280 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6281 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6282 		r = 0;
6283 split_irqchip_unlock:
6284 		mutex_unlock(&kvm->lock);
6285 		break;
6286 	}
6287 	case KVM_CAP_X2APIC_API:
6288 		r = -EINVAL;
6289 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6290 			break;
6291 
6292 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6293 			kvm->arch.x2apic_format = true;
6294 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6295 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6296 
6297 		r = 0;
6298 		break;
6299 	case KVM_CAP_X86_DISABLE_EXITS:
6300 		r = -EINVAL;
6301 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6302 			break;
6303 
6304 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6305 			kvm->arch.pause_in_guest = true;
6306 
6307 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6308 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6309 
6310 		if (!mitigate_smt_rsb) {
6311 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6312 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6313 				pr_warn_once(SMT_RSB_MSG);
6314 
6315 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6316 			    kvm_can_mwait_in_guest())
6317 				kvm->arch.mwait_in_guest = true;
6318 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6319 				kvm->arch.hlt_in_guest = true;
6320 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6321 				kvm->arch.cstate_in_guest = true;
6322 		}
6323 
6324 		r = 0;
6325 		break;
6326 	case KVM_CAP_MSR_PLATFORM_INFO:
6327 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6328 		r = 0;
6329 		break;
6330 	case KVM_CAP_EXCEPTION_PAYLOAD:
6331 		kvm->arch.exception_payload_enabled = cap->args[0];
6332 		r = 0;
6333 		break;
6334 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6335 		kvm->arch.triple_fault_event = cap->args[0];
6336 		r = 0;
6337 		break;
6338 	case KVM_CAP_X86_USER_SPACE_MSR:
6339 		r = -EINVAL;
6340 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6341 			break;
6342 		kvm->arch.user_space_msr_mask = cap->args[0];
6343 		r = 0;
6344 		break;
6345 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6346 		r = -EINVAL;
6347 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6348 			break;
6349 
6350 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6351 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6352 			break;
6353 
6354 		if (kvm_caps.has_bus_lock_exit &&
6355 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6356 			kvm->arch.bus_lock_detection_enabled = true;
6357 		r = 0;
6358 		break;
6359 #ifdef CONFIG_X86_SGX_KVM
6360 	case KVM_CAP_SGX_ATTRIBUTE: {
6361 		unsigned long allowed_attributes = 0;
6362 
6363 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6364 		if (r)
6365 			break;
6366 
6367 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6368 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6369 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6370 			kvm->arch.sgx_provisioning_allowed = true;
6371 		else
6372 			r = -EINVAL;
6373 		break;
6374 	}
6375 #endif
6376 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6377 		r = -EINVAL;
6378 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6379 			break;
6380 
6381 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6382 		break;
6383 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6384 		r = -EINVAL;
6385 		if (!kvm_x86_ops.vm_move_enc_context_from)
6386 			break;
6387 
6388 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6389 		break;
6390 	case KVM_CAP_EXIT_HYPERCALL:
6391 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6392 			r = -EINVAL;
6393 			break;
6394 		}
6395 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6396 		r = 0;
6397 		break;
6398 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6399 		r = -EINVAL;
6400 		if (cap->args[0] & ~1)
6401 			break;
6402 		kvm->arch.exit_on_emulation_error = cap->args[0];
6403 		r = 0;
6404 		break;
6405 	case KVM_CAP_PMU_CAPABILITY:
6406 		r = -EINVAL;
6407 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6408 			break;
6409 
6410 		mutex_lock(&kvm->lock);
6411 		if (!kvm->created_vcpus) {
6412 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6413 			r = 0;
6414 		}
6415 		mutex_unlock(&kvm->lock);
6416 		break;
6417 	case KVM_CAP_MAX_VCPU_ID:
6418 		r = -EINVAL;
6419 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6420 			break;
6421 
6422 		mutex_lock(&kvm->lock);
6423 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6424 			r = 0;
6425 		} else if (!kvm->arch.max_vcpu_ids) {
6426 			kvm->arch.max_vcpu_ids = cap->args[0];
6427 			r = 0;
6428 		}
6429 		mutex_unlock(&kvm->lock);
6430 		break;
6431 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6432 		r = -EINVAL;
6433 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6434 			break;
6435 		if (!kvm_caps.has_notify_vmexit)
6436 			break;
6437 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6438 			break;
6439 		mutex_lock(&kvm->lock);
6440 		if (!kvm->created_vcpus) {
6441 			kvm->arch.notify_window = cap->args[0] >> 32;
6442 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6443 			r = 0;
6444 		}
6445 		mutex_unlock(&kvm->lock);
6446 		break;
6447 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6448 		r = -EINVAL;
6449 
6450 		/*
6451 		 * Since the risk of disabling NX hugepages is a guest crashing
6452 		 * the system, ensure the userspace process has permission to
6453 		 * reboot the system.
6454 		 *
6455 		 * Note that unlike the reboot() syscall, the process must have
6456 		 * this capability in the root namespace because exposing
6457 		 * /dev/kvm into a container does not limit the scope of the
6458 		 * iTLB multihit bug to that container. In other words,
6459 		 * this must use capable(), not ns_capable().
6460 		 */
6461 		if (!capable(CAP_SYS_BOOT)) {
6462 			r = -EPERM;
6463 			break;
6464 		}
6465 
6466 		if (cap->args[0])
6467 			break;
6468 
6469 		mutex_lock(&kvm->lock);
6470 		if (!kvm->created_vcpus) {
6471 			kvm->arch.disable_nx_huge_pages = true;
6472 			r = 0;
6473 		}
6474 		mutex_unlock(&kvm->lock);
6475 		break;
6476 	default:
6477 		r = -EINVAL;
6478 		break;
6479 	}
6480 	return r;
6481 }
6482 
6483 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6484 {
6485 	struct kvm_x86_msr_filter *msr_filter;
6486 
6487 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6488 	if (!msr_filter)
6489 		return NULL;
6490 
6491 	msr_filter->default_allow = default_allow;
6492 	return msr_filter;
6493 }
6494 
6495 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6496 {
6497 	u32 i;
6498 
6499 	if (!msr_filter)
6500 		return;
6501 
6502 	for (i = 0; i < msr_filter->count; i++)
6503 		kfree(msr_filter->ranges[i].bitmap);
6504 
6505 	kfree(msr_filter);
6506 }
6507 
6508 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6509 			      struct kvm_msr_filter_range *user_range)
6510 {
6511 	unsigned long *bitmap = NULL;
6512 	size_t bitmap_size;
6513 
6514 	if (!user_range->nmsrs)
6515 		return 0;
6516 
6517 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6518 		return -EINVAL;
6519 
6520 	if (!user_range->flags)
6521 		return -EINVAL;
6522 
6523 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6524 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6525 		return -EINVAL;
6526 
6527 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6528 	if (IS_ERR(bitmap))
6529 		return PTR_ERR(bitmap);
6530 
6531 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6532 		.flags = user_range->flags,
6533 		.base = user_range->base,
6534 		.nmsrs = user_range->nmsrs,
6535 		.bitmap = bitmap,
6536 	};
6537 
6538 	msr_filter->count++;
6539 	return 0;
6540 }
6541 
6542 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6543 				       struct kvm_msr_filter *filter)
6544 {
6545 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6546 	bool default_allow;
6547 	bool empty = true;
6548 	int r;
6549 	u32 i;
6550 
6551 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6552 		return -EINVAL;
6553 
6554 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6555 		empty &= !filter->ranges[i].nmsrs;
6556 
6557 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6558 	if (empty && !default_allow)
6559 		return -EINVAL;
6560 
6561 	new_filter = kvm_alloc_msr_filter(default_allow);
6562 	if (!new_filter)
6563 		return -ENOMEM;
6564 
6565 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6566 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6567 		if (r) {
6568 			kvm_free_msr_filter(new_filter);
6569 			return r;
6570 		}
6571 	}
6572 
6573 	mutex_lock(&kvm->lock);
6574 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6575 					 mutex_is_locked(&kvm->lock));
6576 	mutex_unlock(&kvm->lock);
6577 	synchronize_srcu(&kvm->srcu);
6578 
6579 	kvm_free_msr_filter(old_filter);
6580 
6581 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6582 
6583 	return 0;
6584 }
6585 
6586 #ifdef CONFIG_KVM_COMPAT
6587 /* for KVM_X86_SET_MSR_FILTER */
6588 struct kvm_msr_filter_range_compat {
6589 	__u32 flags;
6590 	__u32 nmsrs;
6591 	__u32 base;
6592 	__u32 bitmap;
6593 };
6594 
6595 struct kvm_msr_filter_compat {
6596 	__u32 flags;
6597 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6598 };
6599 
6600 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6601 
6602 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6603 			      unsigned long arg)
6604 {
6605 	void __user *argp = (void __user *)arg;
6606 	struct kvm *kvm = filp->private_data;
6607 	long r = -ENOTTY;
6608 
6609 	switch (ioctl) {
6610 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6611 		struct kvm_msr_filter __user *user_msr_filter = argp;
6612 		struct kvm_msr_filter_compat filter_compat;
6613 		struct kvm_msr_filter filter;
6614 		int i;
6615 
6616 		if (copy_from_user(&filter_compat, user_msr_filter,
6617 				   sizeof(filter_compat)))
6618 			return -EFAULT;
6619 
6620 		filter.flags = filter_compat.flags;
6621 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6622 			struct kvm_msr_filter_range_compat *cr;
6623 
6624 			cr = &filter_compat.ranges[i];
6625 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6626 				.flags = cr->flags,
6627 				.nmsrs = cr->nmsrs,
6628 				.base = cr->base,
6629 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6630 			};
6631 		}
6632 
6633 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6634 		break;
6635 	}
6636 	}
6637 
6638 	return r;
6639 }
6640 #endif
6641 
6642 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6643 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6644 {
6645 	struct kvm_vcpu *vcpu;
6646 	unsigned long i;
6647 	int ret = 0;
6648 
6649 	mutex_lock(&kvm->lock);
6650 	kvm_for_each_vcpu(i, vcpu, kvm) {
6651 		if (!vcpu->arch.pv_time.active)
6652 			continue;
6653 
6654 		ret = kvm_set_guest_paused(vcpu);
6655 		if (ret) {
6656 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6657 				vcpu->vcpu_id, ret);
6658 			break;
6659 		}
6660 	}
6661 	mutex_unlock(&kvm->lock);
6662 
6663 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6664 }
6665 
6666 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6667 {
6668 	switch (state) {
6669 	case PM_HIBERNATION_PREPARE:
6670 	case PM_SUSPEND_PREPARE:
6671 		return kvm_arch_suspend_notifier(kvm);
6672 	}
6673 
6674 	return NOTIFY_DONE;
6675 }
6676 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6677 
6678 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6679 {
6680 	struct kvm_clock_data data = { 0 };
6681 
6682 	get_kvmclock(kvm, &data);
6683 	if (copy_to_user(argp, &data, sizeof(data)))
6684 		return -EFAULT;
6685 
6686 	return 0;
6687 }
6688 
6689 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6690 {
6691 	struct kvm_arch *ka = &kvm->arch;
6692 	struct kvm_clock_data data;
6693 	u64 now_raw_ns;
6694 
6695 	if (copy_from_user(&data, argp, sizeof(data)))
6696 		return -EFAULT;
6697 
6698 	/*
6699 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6700 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6701 	 */
6702 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6703 		return -EINVAL;
6704 
6705 	kvm_hv_request_tsc_page_update(kvm);
6706 	kvm_start_pvclock_update(kvm);
6707 	pvclock_update_vm_gtod_copy(kvm);
6708 
6709 	/*
6710 	 * This pairs with kvm_guest_time_update(): when masterclock is
6711 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6712 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6713 	 * is slightly ahead) here we risk going negative on unsigned
6714 	 * 'system_time' when 'data.clock' is very small.
6715 	 */
6716 	if (data.flags & KVM_CLOCK_REALTIME) {
6717 		u64 now_real_ns = ktime_get_real_ns();
6718 
6719 		/*
6720 		 * Avoid stepping the kvmclock backwards.
6721 		 */
6722 		if (now_real_ns > data.realtime)
6723 			data.clock += now_real_ns - data.realtime;
6724 	}
6725 
6726 	if (ka->use_master_clock)
6727 		now_raw_ns = ka->master_kernel_ns;
6728 	else
6729 		now_raw_ns = get_kvmclock_base_ns();
6730 	ka->kvmclock_offset = data.clock - now_raw_ns;
6731 	kvm_end_pvclock_update(kvm);
6732 	return 0;
6733 }
6734 
6735 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6736 {
6737 	struct kvm *kvm = filp->private_data;
6738 	void __user *argp = (void __user *)arg;
6739 	int r = -ENOTTY;
6740 	/*
6741 	 * This union makes it completely explicit to gcc-3.x
6742 	 * that these two variables' stack usage should be
6743 	 * combined, not added together.
6744 	 */
6745 	union {
6746 		struct kvm_pit_state ps;
6747 		struct kvm_pit_state2 ps2;
6748 		struct kvm_pit_config pit_config;
6749 	} u;
6750 
6751 	switch (ioctl) {
6752 	case KVM_SET_TSS_ADDR:
6753 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6754 		break;
6755 	case KVM_SET_IDENTITY_MAP_ADDR: {
6756 		u64 ident_addr;
6757 
6758 		mutex_lock(&kvm->lock);
6759 		r = -EINVAL;
6760 		if (kvm->created_vcpus)
6761 			goto set_identity_unlock;
6762 		r = -EFAULT;
6763 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6764 			goto set_identity_unlock;
6765 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6766 set_identity_unlock:
6767 		mutex_unlock(&kvm->lock);
6768 		break;
6769 	}
6770 	case KVM_SET_NR_MMU_PAGES:
6771 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6772 		break;
6773 	case KVM_CREATE_IRQCHIP: {
6774 		mutex_lock(&kvm->lock);
6775 
6776 		r = -EEXIST;
6777 		if (irqchip_in_kernel(kvm))
6778 			goto create_irqchip_unlock;
6779 
6780 		r = -EINVAL;
6781 		if (kvm->created_vcpus)
6782 			goto create_irqchip_unlock;
6783 
6784 		r = kvm_pic_init(kvm);
6785 		if (r)
6786 			goto create_irqchip_unlock;
6787 
6788 		r = kvm_ioapic_init(kvm);
6789 		if (r) {
6790 			kvm_pic_destroy(kvm);
6791 			goto create_irqchip_unlock;
6792 		}
6793 
6794 		r = kvm_setup_default_irq_routing(kvm);
6795 		if (r) {
6796 			kvm_ioapic_destroy(kvm);
6797 			kvm_pic_destroy(kvm);
6798 			goto create_irqchip_unlock;
6799 		}
6800 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6801 		smp_wmb();
6802 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6803 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6804 	create_irqchip_unlock:
6805 		mutex_unlock(&kvm->lock);
6806 		break;
6807 	}
6808 	case KVM_CREATE_PIT:
6809 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6810 		goto create_pit;
6811 	case KVM_CREATE_PIT2:
6812 		r = -EFAULT;
6813 		if (copy_from_user(&u.pit_config, argp,
6814 				   sizeof(struct kvm_pit_config)))
6815 			goto out;
6816 	create_pit:
6817 		mutex_lock(&kvm->lock);
6818 		r = -EEXIST;
6819 		if (kvm->arch.vpit)
6820 			goto create_pit_unlock;
6821 		r = -ENOMEM;
6822 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6823 		if (kvm->arch.vpit)
6824 			r = 0;
6825 	create_pit_unlock:
6826 		mutex_unlock(&kvm->lock);
6827 		break;
6828 	case KVM_GET_IRQCHIP: {
6829 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6830 		struct kvm_irqchip *chip;
6831 
6832 		chip = memdup_user(argp, sizeof(*chip));
6833 		if (IS_ERR(chip)) {
6834 			r = PTR_ERR(chip);
6835 			goto out;
6836 		}
6837 
6838 		r = -ENXIO;
6839 		if (!irqchip_kernel(kvm))
6840 			goto get_irqchip_out;
6841 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6842 		if (r)
6843 			goto get_irqchip_out;
6844 		r = -EFAULT;
6845 		if (copy_to_user(argp, chip, sizeof(*chip)))
6846 			goto get_irqchip_out;
6847 		r = 0;
6848 	get_irqchip_out:
6849 		kfree(chip);
6850 		break;
6851 	}
6852 	case KVM_SET_IRQCHIP: {
6853 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6854 		struct kvm_irqchip *chip;
6855 
6856 		chip = memdup_user(argp, sizeof(*chip));
6857 		if (IS_ERR(chip)) {
6858 			r = PTR_ERR(chip);
6859 			goto out;
6860 		}
6861 
6862 		r = -ENXIO;
6863 		if (!irqchip_kernel(kvm))
6864 			goto set_irqchip_out;
6865 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6866 	set_irqchip_out:
6867 		kfree(chip);
6868 		break;
6869 	}
6870 	case KVM_GET_PIT: {
6871 		r = -EFAULT;
6872 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6873 			goto out;
6874 		r = -ENXIO;
6875 		if (!kvm->arch.vpit)
6876 			goto out;
6877 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6878 		if (r)
6879 			goto out;
6880 		r = -EFAULT;
6881 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6882 			goto out;
6883 		r = 0;
6884 		break;
6885 	}
6886 	case KVM_SET_PIT: {
6887 		r = -EFAULT;
6888 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6889 			goto out;
6890 		mutex_lock(&kvm->lock);
6891 		r = -ENXIO;
6892 		if (!kvm->arch.vpit)
6893 			goto set_pit_out;
6894 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6895 set_pit_out:
6896 		mutex_unlock(&kvm->lock);
6897 		break;
6898 	}
6899 	case KVM_GET_PIT2: {
6900 		r = -ENXIO;
6901 		if (!kvm->arch.vpit)
6902 			goto out;
6903 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6904 		if (r)
6905 			goto out;
6906 		r = -EFAULT;
6907 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6908 			goto out;
6909 		r = 0;
6910 		break;
6911 	}
6912 	case KVM_SET_PIT2: {
6913 		r = -EFAULT;
6914 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6915 			goto out;
6916 		mutex_lock(&kvm->lock);
6917 		r = -ENXIO;
6918 		if (!kvm->arch.vpit)
6919 			goto set_pit2_out;
6920 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6921 set_pit2_out:
6922 		mutex_unlock(&kvm->lock);
6923 		break;
6924 	}
6925 	case KVM_REINJECT_CONTROL: {
6926 		struct kvm_reinject_control control;
6927 		r =  -EFAULT;
6928 		if (copy_from_user(&control, argp, sizeof(control)))
6929 			goto out;
6930 		r = -ENXIO;
6931 		if (!kvm->arch.vpit)
6932 			goto out;
6933 		r = kvm_vm_ioctl_reinject(kvm, &control);
6934 		break;
6935 	}
6936 	case KVM_SET_BOOT_CPU_ID:
6937 		r = 0;
6938 		mutex_lock(&kvm->lock);
6939 		if (kvm->created_vcpus)
6940 			r = -EBUSY;
6941 		else
6942 			kvm->arch.bsp_vcpu_id = arg;
6943 		mutex_unlock(&kvm->lock);
6944 		break;
6945 #ifdef CONFIG_KVM_XEN
6946 	case KVM_XEN_HVM_CONFIG: {
6947 		struct kvm_xen_hvm_config xhc;
6948 		r = -EFAULT;
6949 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6950 			goto out;
6951 		r = kvm_xen_hvm_config(kvm, &xhc);
6952 		break;
6953 	}
6954 	case KVM_XEN_HVM_GET_ATTR: {
6955 		struct kvm_xen_hvm_attr xha;
6956 
6957 		r = -EFAULT;
6958 		if (copy_from_user(&xha, argp, sizeof(xha)))
6959 			goto out;
6960 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6961 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6962 			r = -EFAULT;
6963 		break;
6964 	}
6965 	case KVM_XEN_HVM_SET_ATTR: {
6966 		struct kvm_xen_hvm_attr xha;
6967 
6968 		r = -EFAULT;
6969 		if (copy_from_user(&xha, argp, sizeof(xha)))
6970 			goto out;
6971 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6972 		break;
6973 	}
6974 	case KVM_XEN_HVM_EVTCHN_SEND: {
6975 		struct kvm_irq_routing_xen_evtchn uxe;
6976 
6977 		r = -EFAULT;
6978 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
6979 			goto out;
6980 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6981 		break;
6982 	}
6983 #endif
6984 	case KVM_SET_CLOCK:
6985 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6986 		break;
6987 	case KVM_GET_CLOCK:
6988 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6989 		break;
6990 	case KVM_SET_TSC_KHZ: {
6991 		u32 user_tsc_khz;
6992 
6993 		r = -EINVAL;
6994 		user_tsc_khz = (u32)arg;
6995 
6996 		if (kvm_caps.has_tsc_control &&
6997 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6998 			goto out;
6999 
7000 		if (user_tsc_khz == 0)
7001 			user_tsc_khz = tsc_khz;
7002 
7003 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7004 		r = 0;
7005 
7006 		goto out;
7007 	}
7008 	case KVM_GET_TSC_KHZ: {
7009 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7010 		goto out;
7011 	}
7012 	case KVM_MEMORY_ENCRYPT_OP: {
7013 		r = -ENOTTY;
7014 		if (!kvm_x86_ops.mem_enc_ioctl)
7015 			goto out;
7016 
7017 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7018 		break;
7019 	}
7020 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7021 		struct kvm_enc_region region;
7022 
7023 		r = -EFAULT;
7024 		if (copy_from_user(&region, argp, sizeof(region)))
7025 			goto out;
7026 
7027 		r = -ENOTTY;
7028 		if (!kvm_x86_ops.mem_enc_register_region)
7029 			goto out;
7030 
7031 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7032 		break;
7033 	}
7034 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7035 		struct kvm_enc_region region;
7036 
7037 		r = -EFAULT;
7038 		if (copy_from_user(&region, argp, sizeof(region)))
7039 			goto out;
7040 
7041 		r = -ENOTTY;
7042 		if (!kvm_x86_ops.mem_enc_unregister_region)
7043 			goto out;
7044 
7045 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7046 		break;
7047 	}
7048 	case KVM_HYPERV_EVENTFD: {
7049 		struct kvm_hyperv_eventfd hvevfd;
7050 
7051 		r = -EFAULT;
7052 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7053 			goto out;
7054 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7055 		break;
7056 	}
7057 	case KVM_SET_PMU_EVENT_FILTER:
7058 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7059 		break;
7060 	case KVM_X86_SET_MSR_FILTER: {
7061 		struct kvm_msr_filter __user *user_msr_filter = argp;
7062 		struct kvm_msr_filter filter;
7063 
7064 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7065 			return -EFAULT;
7066 
7067 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7068 		break;
7069 	}
7070 	default:
7071 		r = -ENOTTY;
7072 	}
7073 out:
7074 	return r;
7075 }
7076 
7077 static void kvm_probe_feature_msr(u32 msr_index)
7078 {
7079 	struct kvm_msr_entry msr = {
7080 		.index = msr_index,
7081 	};
7082 
7083 	if (kvm_get_msr_feature(&msr))
7084 		return;
7085 
7086 	msr_based_features[num_msr_based_features++] = msr_index;
7087 }
7088 
7089 static void kvm_probe_msr_to_save(u32 msr_index)
7090 {
7091 	u32 dummy[2];
7092 
7093 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7094 		return;
7095 
7096 	/*
7097 	 * Even MSRs that are valid in the host may not be exposed to guests in
7098 	 * some cases.
7099 	 */
7100 	switch (msr_index) {
7101 	case MSR_IA32_BNDCFGS:
7102 		if (!kvm_mpx_supported())
7103 			return;
7104 		break;
7105 	case MSR_TSC_AUX:
7106 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7107 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7108 			return;
7109 		break;
7110 	case MSR_IA32_UMWAIT_CONTROL:
7111 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7112 			return;
7113 		break;
7114 	case MSR_IA32_RTIT_CTL:
7115 	case MSR_IA32_RTIT_STATUS:
7116 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7117 			return;
7118 		break;
7119 	case MSR_IA32_RTIT_CR3_MATCH:
7120 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7121 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7122 			return;
7123 		break;
7124 	case MSR_IA32_RTIT_OUTPUT_BASE:
7125 	case MSR_IA32_RTIT_OUTPUT_MASK:
7126 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7127 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7128 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7129 			return;
7130 		break;
7131 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7132 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7133 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7134 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7135 			return;
7136 		break;
7137 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7138 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7139 		    kvm_pmu_cap.num_counters_gp)
7140 			return;
7141 		break;
7142 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7143 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7144 		    kvm_pmu_cap.num_counters_gp)
7145 			return;
7146 		break;
7147 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7148 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7149 		    kvm_pmu_cap.num_counters_fixed)
7150 			return;
7151 		break;
7152 	case MSR_IA32_XFD:
7153 	case MSR_IA32_XFD_ERR:
7154 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7155 			return;
7156 		break;
7157 	case MSR_IA32_TSX_CTRL:
7158 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7159 			return;
7160 		break;
7161 	default:
7162 		break;
7163 	}
7164 
7165 	msrs_to_save[num_msrs_to_save++] = msr_index;
7166 }
7167 
7168 static void kvm_init_msr_lists(void)
7169 {
7170 	unsigned i;
7171 
7172 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7173 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7174 
7175 	num_msrs_to_save = 0;
7176 	num_emulated_msrs = 0;
7177 	num_msr_based_features = 0;
7178 
7179 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7180 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7181 
7182 	if (enable_pmu) {
7183 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7184 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7185 	}
7186 
7187 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7188 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7189 			continue;
7190 
7191 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7192 	}
7193 
7194 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7195 		kvm_probe_feature_msr(i);
7196 
7197 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7198 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7199 }
7200 
7201 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7202 			   const void *v)
7203 {
7204 	int handled = 0;
7205 	int n;
7206 
7207 	do {
7208 		n = min(len, 8);
7209 		if (!(lapic_in_kernel(vcpu) &&
7210 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7211 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7212 			break;
7213 		handled += n;
7214 		addr += n;
7215 		len -= n;
7216 		v += n;
7217 	} while (len);
7218 
7219 	return handled;
7220 }
7221 
7222 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7223 {
7224 	int handled = 0;
7225 	int n;
7226 
7227 	do {
7228 		n = min(len, 8);
7229 		if (!(lapic_in_kernel(vcpu) &&
7230 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7231 					 addr, n, v))
7232 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7233 			break;
7234 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7235 		handled += n;
7236 		addr += n;
7237 		len -= n;
7238 		v += n;
7239 	} while (len);
7240 
7241 	return handled;
7242 }
7243 
7244 void kvm_set_segment(struct kvm_vcpu *vcpu,
7245 		     struct kvm_segment *var, int seg)
7246 {
7247 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7248 }
7249 
7250 void kvm_get_segment(struct kvm_vcpu *vcpu,
7251 		     struct kvm_segment *var, int seg)
7252 {
7253 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7254 }
7255 
7256 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7257 			   struct x86_exception *exception)
7258 {
7259 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7260 	gpa_t t_gpa;
7261 
7262 	BUG_ON(!mmu_is_nested(vcpu));
7263 
7264 	/* NPT walks are always user-walks */
7265 	access |= PFERR_USER_MASK;
7266 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7267 
7268 	return t_gpa;
7269 }
7270 
7271 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7272 			      struct x86_exception *exception)
7273 {
7274 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7275 
7276 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7277 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7278 }
7279 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7280 
7281 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7282 			       struct x86_exception *exception)
7283 {
7284 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7285 
7286 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7287 	access |= PFERR_WRITE_MASK;
7288 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7289 }
7290 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7291 
7292 /* uses this to access any guest's mapped memory without checking CPL */
7293 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7294 				struct x86_exception *exception)
7295 {
7296 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7297 
7298 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7299 }
7300 
7301 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7302 				      struct kvm_vcpu *vcpu, u64 access,
7303 				      struct x86_exception *exception)
7304 {
7305 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7306 	void *data = val;
7307 	int r = X86EMUL_CONTINUE;
7308 
7309 	while (bytes) {
7310 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7311 		unsigned offset = addr & (PAGE_SIZE-1);
7312 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7313 		int ret;
7314 
7315 		if (gpa == INVALID_GPA)
7316 			return X86EMUL_PROPAGATE_FAULT;
7317 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7318 					       offset, toread);
7319 		if (ret < 0) {
7320 			r = X86EMUL_IO_NEEDED;
7321 			goto out;
7322 		}
7323 
7324 		bytes -= toread;
7325 		data += toread;
7326 		addr += toread;
7327 	}
7328 out:
7329 	return r;
7330 }
7331 
7332 /* used for instruction fetching */
7333 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7334 				gva_t addr, void *val, unsigned int bytes,
7335 				struct x86_exception *exception)
7336 {
7337 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7338 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7339 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7340 	unsigned offset;
7341 	int ret;
7342 
7343 	/* Inline kvm_read_guest_virt_helper for speed.  */
7344 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7345 				    exception);
7346 	if (unlikely(gpa == INVALID_GPA))
7347 		return X86EMUL_PROPAGATE_FAULT;
7348 
7349 	offset = addr & (PAGE_SIZE-1);
7350 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7351 		bytes = (unsigned)PAGE_SIZE - offset;
7352 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7353 				       offset, bytes);
7354 	if (unlikely(ret < 0))
7355 		return X86EMUL_IO_NEEDED;
7356 
7357 	return X86EMUL_CONTINUE;
7358 }
7359 
7360 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7361 			       gva_t addr, void *val, unsigned int bytes,
7362 			       struct x86_exception *exception)
7363 {
7364 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7365 
7366 	/*
7367 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7368 	 * is returned, but our callers are not ready for that and they blindly
7369 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7370 	 * uninitialized kernel stack memory into cr2 and error code.
7371 	 */
7372 	memset(exception, 0, sizeof(*exception));
7373 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7374 					  exception);
7375 }
7376 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7377 
7378 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7379 			     gva_t addr, void *val, unsigned int bytes,
7380 			     struct x86_exception *exception, bool system)
7381 {
7382 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7383 	u64 access = 0;
7384 
7385 	if (system)
7386 		access |= PFERR_IMPLICIT_ACCESS;
7387 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7388 		access |= PFERR_USER_MASK;
7389 
7390 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7391 }
7392 
7393 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7394 				      struct kvm_vcpu *vcpu, u64 access,
7395 				      struct x86_exception *exception)
7396 {
7397 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7398 	void *data = val;
7399 	int r = X86EMUL_CONTINUE;
7400 
7401 	while (bytes) {
7402 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7403 		unsigned offset = addr & (PAGE_SIZE-1);
7404 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7405 		int ret;
7406 
7407 		if (gpa == INVALID_GPA)
7408 			return X86EMUL_PROPAGATE_FAULT;
7409 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7410 		if (ret < 0) {
7411 			r = X86EMUL_IO_NEEDED;
7412 			goto out;
7413 		}
7414 
7415 		bytes -= towrite;
7416 		data += towrite;
7417 		addr += towrite;
7418 	}
7419 out:
7420 	return r;
7421 }
7422 
7423 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7424 			      unsigned int bytes, struct x86_exception *exception,
7425 			      bool system)
7426 {
7427 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7428 	u64 access = PFERR_WRITE_MASK;
7429 
7430 	if (system)
7431 		access |= PFERR_IMPLICIT_ACCESS;
7432 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7433 		access |= PFERR_USER_MASK;
7434 
7435 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7436 					   access, exception);
7437 }
7438 
7439 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7440 				unsigned int bytes, struct x86_exception *exception)
7441 {
7442 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7443 	vcpu->arch.l1tf_flush_l1d = true;
7444 
7445 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7446 					   PFERR_WRITE_MASK, exception);
7447 }
7448 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7449 
7450 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7451 				void *insn, int insn_len)
7452 {
7453 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7454 							    insn, insn_len);
7455 }
7456 
7457 int handle_ud(struct kvm_vcpu *vcpu)
7458 {
7459 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7460 	int fep_flags = READ_ONCE(force_emulation_prefix);
7461 	int emul_type = EMULTYPE_TRAP_UD;
7462 	char sig[5]; /* ud2; .ascii "kvm" */
7463 	struct x86_exception e;
7464 
7465 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7466 		return 1;
7467 
7468 	if (fep_flags &&
7469 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7470 				sig, sizeof(sig), &e) == 0 &&
7471 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7472 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7473 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7474 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7475 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7476 	}
7477 
7478 	return kvm_emulate_instruction(vcpu, emul_type);
7479 }
7480 EXPORT_SYMBOL_GPL(handle_ud);
7481 
7482 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7483 			    gpa_t gpa, bool write)
7484 {
7485 	/* For APIC access vmexit */
7486 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7487 		return 1;
7488 
7489 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7490 		trace_vcpu_match_mmio(gva, gpa, write, true);
7491 		return 1;
7492 	}
7493 
7494 	return 0;
7495 }
7496 
7497 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7498 				gpa_t *gpa, struct x86_exception *exception,
7499 				bool write)
7500 {
7501 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7502 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7503 		| (write ? PFERR_WRITE_MASK : 0);
7504 
7505 	/*
7506 	 * currently PKRU is only applied to ept enabled guest so
7507 	 * there is no pkey in EPT page table for L1 guest or EPT
7508 	 * shadow page table for L2 guest.
7509 	 */
7510 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7511 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7512 			      vcpu->arch.mmio_access, 0, access))) {
7513 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7514 					(gva & (PAGE_SIZE - 1));
7515 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7516 		return 1;
7517 	}
7518 
7519 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7520 
7521 	if (*gpa == INVALID_GPA)
7522 		return -1;
7523 
7524 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7525 }
7526 
7527 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7528 			const void *val, int bytes)
7529 {
7530 	int ret;
7531 
7532 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7533 	if (ret < 0)
7534 		return 0;
7535 	kvm_page_track_write(vcpu, gpa, val, bytes);
7536 	return 1;
7537 }
7538 
7539 struct read_write_emulator_ops {
7540 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7541 				  int bytes);
7542 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7543 				  void *val, int bytes);
7544 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7545 			       int bytes, void *val);
7546 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7547 				    void *val, int bytes);
7548 	bool write;
7549 };
7550 
7551 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7552 {
7553 	if (vcpu->mmio_read_completed) {
7554 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7555 			       vcpu->mmio_fragments[0].gpa, val);
7556 		vcpu->mmio_read_completed = 0;
7557 		return 1;
7558 	}
7559 
7560 	return 0;
7561 }
7562 
7563 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7564 			void *val, int bytes)
7565 {
7566 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7567 }
7568 
7569 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7570 			 void *val, int bytes)
7571 {
7572 	return emulator_write_phys(vcpu, gpa, val, bytes);
7573 }
7574 
7575 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7576 {
7577 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7578 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7579 }
7580 
7581 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7582 			  void *val, int bytes)
7583 {
7584 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7585 	return X86EMUL_IO_NEEDED;
7586 }
7587 
7588 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7589 			   void *val, int bytes)
7590 {
7591 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7592 
7593 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7594 	return X86EMUL_CONTINUE;
7595 }
7596 
7597 static const struct read_write_emulator_ops read_emultor = {
7598 	.read_write_prepare = read_prepare,
7599 	.read_write_emulate = read_emulate,
7600 	.read_write_mmio = vcpu_mmio_read,
7601 	.read_write_exit_mmio = read_exit_mmio,
7602 };
7603 
7604 static const struct read_write_emulator_ops write_emultor = {
7605 	.read_write_emulate = write_emulate,
7606 	.read_write_mmio = write_mmio,
7607 	.read_write_exit_mmio = write_exit_mmio,
7608 	.write = true,
7609 };
7610 
7611 static int emulator_read_write_onepage(unsigned long addr, void *val,
7612 				       unsigned int bytes,
7613 				       struct x86_exception *exception,
7614 				       struct kvm_vcpu *vcpu,
7615 				       const struct read_write_emulator_ops *ops)
7616 {
7617 	gpa_t gpa;
7618 	int handled, ret;
7619 	bool write = ops->write;
7620 	struct kvm_mmio_fragment *frag;
7621 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7622 
7623 	/*
7624 	 * If the exit was due to a NPF we may already have a GPA.
7625 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7626 	 * Note, this cannot be used on string operations since string
7627 	 * operation using rep will only have the initial GPA from the NPF
7628 	 * occurred.
7629 	 */
7630 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7631 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7632 		gpa = ctxt->gpa_val;
7633 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7634 	} else {
7635 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7636 		if (ret < 0)
7637 			return X86EMUL_PROPAGATE_FAULT;
7638 	}
7639 
7640 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7641 		return X86EMUL_CONTINUE;
7642 
7643 	/*
7644 	 * Is this MMIO handled locally?
7645 	 */
7646 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7647 	if (handled == bytes)
7648 		return X86EMUL_CONTINUE;
7649 
7650 	gpa += handled;
7651 	bytes -= handled;
7652 	val += handled;
7653 
7654 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7655 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7656 	frag->gpa = gpa;
7657 	frag->data = val;
7658 	frag->len = bytes;
7659 	return X86EMUL_CONTINUE;
7660 }
7661 
7662 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7663 			unsigned long addr,
7664 			void *val, unsigned int bytes,
7665 			struct x86_exception *exception,
7666 			const struct read_write_emulator_ops *ops)
7667 {
7668 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7669 	gpa_t gpa;
7670 	int rc;
7671 
7672 	if (ops->read_write_prepare &&
7673 		  ops->read_write_prepare(vcpu, val, bytes))
7674 		return X86EMUL_CONTINUE;
7675 
7676 	vcpu->mmio_nr_fragments = 0;
7677 
7678 	/* Crossing a page boundary? */
7679 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7680 		int now;
7681 
7682 		now = -addr & ~PAGE_MASK;
7683 		rc = emulator_read_write_onepage(addr, val, now, exception,
7684 						 vcpu, ops);
7685 
7686 		if (rc != X86EMUL_CONTINUE)
7687 			return rc;
7688 		addr += now;
7689 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7690 			addr = (u32)addr;
7691 		val += now;
7692 		bytes -= now;
7693 	}
7694 
7695 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7696 					 vcpu, ops);
7697 	if (rc != X86EMUL_CONTINUE)
7698 		return rc;
7699 
7700 	if (!vcpu->mmio_nr_fragments)
7701 		return rc;
7702 
7703 	gpa = vcpu->mmio_fragments[0].gpa;
7704 
7705 	vcpu->mmio_needed = 1;
7706 	vcpu->mmio_cur_fragment = 0;
7707 
7708 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7709 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7710 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7711 	vcpu->run->mmio.phys_addr = gpa;
7712 
7713 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7714 }
7715 
7716 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7717 				  unsigned long addr,
7718 				  void *val,
7719 				  unsigned int bytes,
7720 				  struct x86_exception *exception)
7721 {
7722 	return emulator_read_write(ctxt, addr, val, bytes,
7723 				   exception, &read_emultor);
7724 }
7725 
7726 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7727 			    unsigned long addr,
7728 			    const void *val,
7729 			    unsigned int bytes,
7730 			    struct x86_exception *exception)
7731 {
7732 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7733 				   exception, &write_emultor);
7734 }
7735 
7736 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7737 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7738 
7739 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7740 				     unsigned long addr,
7741 				     const void *old,
7742 				     const void *new,
7743 				     unsigned int bytes,
7744 				     struct x86_exception *exception)
7745 {
7746 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7747 	u64 page_line_mask;
7748 	unsigned long hva;
7749 	gpa_t gpa;
7750 	int r;
7751 
7752 	/* guests cmpxchg8b have to be emulated atomically */
7753 	if (bytes > 8 || (bytes & (bytes - 1)))
7754 		goto emul_write;
7755 
7756 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7757 
7758 	if (gpa == INVALID_GPA ||
7759 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7760 		goto emul_write;
7761 
7762 	/*
7763 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7764 	 * enabled in the host and the access splits a cache line.
7765 	 */
7766 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7767 		page_line_mask = ~(cache_line_size() - 1);
7768 	else
7769 		page_line_mask = PAGE_MASK;
7770 
7771 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7772 		goto emul_write;
7773 
7774 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7775 	if (kvm_is_error_hva(hva))
7776 		goto emul_write;
7777 
7778 	hva += offset_in_page(gpa);
7779 
7780 	switch (bytes) {
7781 	case 1:
7782 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7783 		break;
7784 	case 2:
7785 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7786 		break;
7787 	case 4:
7788 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7789 		break;
7790 	case 8:
7791 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7792 		break;
7793 	default:
7794 		BUG();
7795 	}
7796 
7797 	if (r < 0)
7798 		return X86EMUL_UNHANDLEABLE;
7799 	if (r)
7800 		return X86EMUL_CMPXCHG_FAILED;
7801 
7802 	kvm_page_track_write(vcpu, gpa, new, bytes);
7803 
7804 	return X86EMUL_CONTINUE;
7805 
7806 emul_write:
7807 	pr_warn_once("emulating exchange as write\n");
7808 
7809 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7810 }
7811 
7812 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7813 			       unsigned short port, void *data,
7814 			       unsigned int count, bool in)
7815 {
7816 	unsigned i;
7817 	int r;
7818 
7819 	WARN_ON_ONCE(vcpu->arch.pio.count);
7820 	for (i = 0; i < count; i++) {
7821 		if (in)
7822 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7823 		else
7824 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7825 
7826 		if (r) {
7827 			if (i == 0)
7828 				goto userspace_io;
7829 
7830 			/*
7831 			 * Userspace must have unregistered the device while PIO
7832 			 * was running.  Drop writes / read as 0.
7833 			 */
7834 			if (in)
7835 				memset(data, 0, size * (count - i));
7836 			break;
7837 		}
7838 
7839 		data += size;
7840 	}
7841 	return 1;
7842 
7843 userspace_io:
7844 	vcpu->arch.pio.port = port;
7845 	vcpu->arch.pio.in = in;
7846 	vcpu->arch.pio.count = count;
7847 	vcpu->arch.pio.size = size;
7848 
7849 	if (in)
7850 		memset(vcpu->arch.pio_data, 0, size * count);
7851 	else
7852 		memcpy(vcpu->arch.pio_data, data, size * count);
7853 
7854 	vcpu->run->exit_reason = KVM_EXIT_IO;
7855 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7856 	vcpu->run->io.size = size;
7857 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7858 	vcpu->run->io.count = count;
7859 	vcpu->run->io.port = port;
7860 	return 0;
7861 }
7862 
7863 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7864       			   unsigned short port, void *val, unsigned int count)
7865 {
7866 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7867 	if (r)
7868 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7869 
7870 	return r;
7871 }
7872 
7873 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7874 {
7875 	int size = vcpu->arch.pio.size;
7876 	unsigned int count = vcpu->arch.pio.count;
7877 	memcpy(val, vcpu->arch.pio_data, size * count);
7878 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7879 	vcpu->arch.pio.count = 0;
7880 }
7881 
7882 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7883 				    int size, unsigned short port, void *val,
7884 				    unsigned int count)
7885 {
7886 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7887 	if (vcpu->arch.pio.count) {
7888 		/*
7889 		 * Complete a previous iteration that required userspace I/O.
7890 		 * Note, @count isn't guaranteed to match pio.count as userspace
7891 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7892 		 * shenanigans as KVM doesn't support modifying the rep count,
7893 		 * and the emulator ensures @count doesn't overflow the buffer.
7894 		 */
7895 		complete_emulator_pio_in(vcpu, val);
7896 		return 1;
7897 	}
7898 
7899 	return emulator_pio_in(vcpu, size, port, val, count);
7900 }
7901 
7902 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7903 			    unsigned short port, const void *val,
7904 			    unsigned int count)
7905 {
7906 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7907 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7908 }
7909 
7910 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7911 				     int size, unsigned short port,
7912 				     const void *val, unsigned int count)
7913 {
7914 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7915 }
7916 
7917 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7918 {
7919 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7920 }
7921 
7922 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7923 {
7924 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7925 }
7926 
7927 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7928 {
7929 	if (!need_emulate_wbinvd(vcpu))
7930 		return X86EMUL_CONTINUE;
7931 
7932 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7933 		int cpu = get_cpu();
7934 
7935 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7936 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7937 				wbinvd_ipi, NULL, 1);
7938 		put_cpu();
7939 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7940 	} else
7941 		wbinvd();
7942 	return X86EMUL_CONTINUE;
7943 }
7944 
7945 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7946 {
7947 	kvm_emulate_wbinvd_noskip(vcpu);
7948 	return kvm_skip_emulated_instruction(vcpu);
7949 }
7950 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7951 
7952 
7953 
7954 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7955 {
7956 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7957 }
7958 
7959 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7960 			    unsigned long *dest)
7961 {
7962 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7963 }
7964 
7965 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7966 			   unsigned long value)
7967 {
7968 
7969 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7970 }
7971 
7972 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7973 {
7974 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7975 }
7976 
7977 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7978 {
7979 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7980 	unsigned long value;
7981 
7982 	switch (cr) {
7983 	case 0:
7984 		value = kvm_read_cr0(vcpu);
7985 		break;
7986 	case 2:
7987 		value = vcpu->arch.cr2;
7988 		break;
7989 	case 3:
7990 		value = kvm_read_cr3(vcpu);
7991 		break;
7992 	case 4:
7993 		value = kvm_read_cr4(vcpu);
7994 		break;
7995 	case 8:
7996 		value = kvm_get_cr8(vcpu);
7997 		break;
7998 	default:
7999 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8000 		return 0;
8001 	}
8002 
8003 	return value;
8004 }
8005 
8006 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8007 {
8008 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8009 	int res = 0;
8010 
8011 	switch (cr) {
8012 	case 0:
8013 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8014 		break;
8015 	case 2:
8016 		vcpu->arch.cr2 = val;
8017 		break;
8018 	case 3:
8019 		res = kvm_set_cr3(vcpu, val);
8020 		break;
8021 	case 4:
8022 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8023 		break;
8024 	case 8:
8025 		res = kvm_set_cr8(vcpu, val);
8026 		break;
8027 	default:
8028 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8029 		res = -1;
8030 	}
8031 
8032 	return res;
8033 }
8034 
8035 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8036 {
8037 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8038 }
8039 
8040 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8041 {
8042 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8043 }
8044 
8045 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8046 {
8047 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8048 }
8049 
8050 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8051 {
8052 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8053 }
8054 
8055 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8056 {
8057 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8058 }
8059 
8060 static unsigned long emulator_get_cached_segment_base(
8061 	struct x86_emulate_ctxt *ctxt, int seg)
8062 {
8063 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8064 }
8065 
8066 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8067 				 struct desc_struct *desc, u32 *base3,
8068 				 int seg)
8069 {
8070 	struct kvm_segment var;
8071 
8072 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8073 	*selector = var.selector;
8074 
8075 	if (var.unusable) {
8076 		memset(desc, 0, sizeof(*desc));
8077 		if (base3)
8078 			*base3 = 0;
8079 		return false;
8080 	}
8081 
8082 	if (var.g)
8083 		var.limit >>= 12;
8084 	set_desc_limit(desc, var.limit);
8085 	set_desc_base(desc, (unsigned long)var.base);
8086 #ifdef CONFIG_X86_64
8087 	if (base3)
8088 		*base3 = var.base >> 32;
8089 #endif
8090 	desc->type = var.type;
8091 	desc->s = var.s;
8092 	desc->dpl = var.dpl;
8093 	desc->p = var.present;
8094 	desc->avl = var.avl;
8095 	desc->l = var.l;
8096 	desc->d = var.db;
8097 	desc->g = var.g;
8098 
8099 	return true;
8100 }
8101 
8102 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8103 				 struct desc_struct *desc, u32 base3,
8104 				 int seg)
8105 {
8106 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8107 	struct kvm_segment var;
8108 
8109 	var.selector = selector;
8110 	var.base = get_desc_base(desc);
8111 #ifdef CONFIG_X86_64
8112 	var.base |= ((u64)base3) << 32;
8113 #endif
8114 	var.limit = get_desc_limit(desc);
8115 	if (desc->g)
8116 		var.limit = (var.limit << 12) | 0xfff;
8117 	var.type = desc->type;
8118 	var.dpl = desc->dpl;
8119 	var.db = desc->d;
8120 	var.s = desc->s;
8121 	var.l = desc->l;
8122 	var.g = desc->g;
8123 	var.avl = desc->avl;
8124 	var.present = desc->p;
8125 	var.unusable = !var.present;
8126 	var.padding = 0;
8127 
8128 	kvm_set_segment(vcpu, &var, seg);
8129 	return;
8130 }
8131 
8132 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8133 					u32 msr_index, u64 *pdata)
8134 {
8135 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8136 	int r;
8137 
8138 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8139 	if (r < 0)
8140 		return X86EMUL_UNHANDLEABLE;
8141 
8142 	if (r) {
8143 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8144 				       complete_emulated_rdmsr, r))
8145 			return X86EMUL_IO_NEEDED;
8146 
8147 		trace_kvm_msr_read_ex(msr_index);
8148 		return X86EMUL_PROPAGATE_FAULT;
8149 	}
8150 
8151 	trace_kvm_msr_read(msr_index, *pdata);
8152 	return X86EMUL_CONTINUE;
8153 }
8154 
8155 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8156 					u32 msr_index, u64 data)
8157 {
8158 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8159 	int r;
8160 
8161 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8162 	if (r < 0)
8163 		return X86EMUL_UNHANDLEABLE;
8164 
8165 	if (r) {
8166 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8167 				       complete_emulated_msr_access, r))
8168 			return X86EMUL_IO_NEEDED;
8169 
8170 		trace_kvm_msr_write_ex(msr_index, data);
8171 		return X86EMUL_PROPAGATE_FAULT;
8172 	}
8173 
8174 	trace_kvm_msr_write(msr_index, data);
8175 	return X86EMUL_CONTINUE;
8176 }
8177 
8178 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8179 			    u32 msr_index, u64 *pdata)
8180 {
8181 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8182 }
8183 
8184 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8185 			      u32 pmc)
8186 {
8187 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8188 		return 0;
8189 	return -EINVAL;
8190 }
8191 
8192 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8193 			     u32 pmc, u64 *pdata)
8194 {
8195 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8196 }
8197 
8198 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8199 {
8200 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8201 }
8202 
8203 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8204 			      struct x86_instruction_info *info,
8205 			      enum x86_intercept_stage stage)
8206 {
8207 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8208 					    &ctxt->exception);
8209 }
8210 
8211 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8212 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8213 			      bool exact_only)
8214 {
8215 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8216 }
8217 
8218 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8219 {
8220 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8221 }
8222 
8223 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8224 {
8225 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8226 }
8227 
8228 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8229 {
8230 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8231 }
8232 
8233 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8234 {
8235 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8236 }
8237 
8238 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8239 {
8240 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8241 }
8242 
8243 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8244 {
8245 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8246 }
8247 
8248 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8249 {
8250 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8251 }
8252 
8253 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8254 {
8255 	return is_smm(emul_to_vcpu(ctxt));
8256 }
8257 
8258 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8259 {
8260 	return is_guest_mode(emul_to_vcpu(ctxt));
8261 }
8262 
8263 #ifndef CONFIG_KVM_SMM
8264 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8265 {
8266 	WARN_ON_ONCE(1);
8267 	return X86EMUL_UNHANDLEABLE;
8268 }
8269 #endif
8270 
8271 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8272 {
8273 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8274 }
8275 
8276 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8277 {
8278 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8279 }
8280 
8281 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8282 {
8283 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8284 
8285 	if (!kvm->vm_bugged)
8286 		kvm_vm_bugged(kvm);
8287 }
8288 
8289 static const struct x86_emulate_ops emulate_ops = {
8290 	.vm_bugged           = emulator_vm_bugged,
8291 	.read_gpr            = emulator_read_gpr,
8292 	.write_gpr           = emulator_write_gpr,
8293 	.read_std            = emulator_read_std,
8294 	.write_std           = emulator_write_std,
8295 	.fetch               = kvm_fetch_guest_virt,
8296 	.read_emulated       = emulator_read_emulated,
8297 	.write_emulated      = emulator_write_emulated,
8298 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8299 	.invlpg              = emulator_invlpg,
8300 	.pio_in_emulated     = emulator_pio_in_emulated,
8301 	.pio_out_emulated    = emulator_pio_out_emulated,
8302 	.get_segment         = emulator_get_segment,
8303 	.set_segment         = emulator_set_segment,
8304 	.get_cached_segment_base = emulator_get_cached_segment_base,
8305 	.get_gdt             = emulator_get_gdt,
8306 	.get_idt	     = emulator_get_idt,
8307 	.set_gdt             = emulator_set_gdt,
8308 	.set_idt	     = emulator_set_idt,
8309 	.get_cr              = emulator_get_cr,
8310 	.set_cr              = emulator_set_cr,
8311 	.cpl                 = emulator_get_cpl,
8312 	.get_dr              = emulator_get_dr,
8313 	.set_dr              = emulator_set_dr,
8314 	.set_msr_with_filter = emulator_set_msr_with_filter,
8315 	.get_msr_with_filter = emulator_get_msr_with_filter,
8316 	.get_msr             = emulator_get_msr,
8317 	.check_pmc	     = emulator_check_pmc,
8318 	.read_pmc            = emulator_read_pmc,
8319 	.halt                = emulator_halt,
8320 	.wbinvd              = emulator_wbinvd,
8321 	.fix_hypercall       = emulator_fix_hypercall,
8322 	.intercept           = emulator_intercept,
8323 	.get_cpuid           = emulator_get_cpuid,
8324 	.guest_has_long_mode = emulator_guest_has_long_mode,
8325 	.guest_has_movbe     = emulator_guest_has_movbe,
8326 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8327 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8328 	.set_nmi_mask        = emulator_set_nmi_mask,
8329 	.is_smm              = emulator_is_smm,
8330 	.is_guest_mode       = emulator_is_guest_mode,
8331 	.leave_smm           = emulator_leave_smm,
8332 	.triple_fault        = emulator_triple_fault,
8333 	.set_xcr             = emulator_set_xcr,
8334 };
8335 
8336 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8337 {
8338 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8339 	/*
8340 	 * an sti; sti; sequence only disable interrupts for the first
8341 	 * instruction. So, if the last instruction, be it emulated or
8342 	 * not, left the system with the INT_STI flag enabled, it
8343 	 * means that the last instruction is an sti. We should not
8344 	 * leave the flag on in this case. The same goes for mov ss
8345 	 */
8346 	if (int_shadow & mask)
8347 		mask = 0;
8348 	if (unlikely(int_shadow || mask)) {
8349 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8350 		if (!mask)
8351 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8352 	}
8353 }
8354 
8355 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8356 {
8357 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8358 
8359 	if (ctxt->exception.vector == PF_VECTOR)
8360 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8361 	else if (ctxt->exception.error_code_valid)
8362 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8363 				      ctxt->exception.error_code);
8364 	else
8365 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8366 }
8367 
8368 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8369 {
8370 	struct x86_emulate_ctxt *ctxt;
8371 
8372 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8373 	if (!ctxt) {
8374 		pr_err("failed to allocate vcpu's emulator\n");
8375 		return NULL;
8376 	}
8377 
8378 	ctxt->vcpu = vcpu;
8379 	ctxt->ops = &emulate_ops;
8380 	vcpu->arch.emulate_ctxt = ctxt;
8381 
8382 	return ctxt;
8383 }
8384 
8385 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8386 {
8387 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8388 	int cs_db, cs_l;
8389 
8390 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8391 
8392 	ctxt->gpa_available = false;
8393 	ctxt->eflags = kvm_get_rflags(vcpu);
8394 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8395 
8396 	ctxt->eip = kvm_rip_read(vcpu);
8397 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8398 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8399 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8400 		     cs_db				? X86EMUL_MODE_PROT32 :
8401 							  X86EMUL_MODE_PROT16;
8402 	ctxt->interruptibility = 0;
8403 	ctxt->have_exception = false;
8404 	ctxt->exception.vector = -1;
8405 	ctxt->perm_ok = false;
8406 
8407 	init_decode_cache(ctxt);
8408 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8409 }
8410 
8411 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8412 {
8413 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8414 	int ret;
8415 
8416 	init_emulate_ctxt(vcpu);
8417 
8418 	ctxt->op_bytes = 2;
8419 	ctxt->ad_bytes = 2;
8420 	ctxt->_eip = ctxt->eip + inc_eip;
8421 	ret = emulate_int_real(ctxt, irq);
8422 
8423 	if (ret != X86EMUL_CONTINUE) {
8424 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8425 	} else {
8426 		ctxt->eip = ctxt->_eip;
8427 		kvm_rip_write(vcpu, ctxt->eip);
8428 		kvm_set_rflags(vcpu, ctxt->eflags);
8429 	}
8430 }
8431 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8432 
8433 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8434 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8435 {
8436 	struct kvm_run *run = vcpu->run;
8437 	u64 info[5];
8438 	u8 info_start;
8439 
8440 	/*
8441 	 * Zero the whole array used to retrieve the exit info, as casting to
8442 	 * u32 for select entries will leave some chunks uninitialized.
8443 	 */
8444 	memset(&info, 0, sizeof(info));
8445 
8446 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8447 					   &info[2], (u32 *)&info[3],
8448 					   (u32 *)&info[4]);
8449 
8450 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8451 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8452 
8453 	/*
8454 	 * There's currently space for 13 entries, but 5 are used for the exit
8455 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8456 	 * when expanding kvm_run.emulation_failure in the future.
8457 	 */
8458 	if (WARN_ON_ONCE(ndata > 4))
8459 		ndata = 4;
8460 
8461 	/* Always include the flags as a 'data' entry. */
8462 	info_start = 1;
8463 	run->emulation_failure.flags = 0;
8464 
8465 	if (insn_size) {
8466 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8467 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8468 		info_start += 2;
8469 		run->emulation_failure.flags |=
8470 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8471 		run->emulation_failure.insn_size = insn_size;
8472 		memset(run->emulation_failure.insn_bytes, 0x90,
8473 		       sizeof(run->emulation_failure.insn_bytes));
8474 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8475 	}
8476 
8477 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8478 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8479 	       ndata * sizeof(data[0]));
8480 
8481 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8482 }
8483 
8484 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8485 {
8486 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8487 
8488 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8489 				       ctxt->fetch.end - ctxt->fetch.data);
8490 }
8491 
8492 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8493 					  u8 ndata)
8494 {
8495 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8496 }
8497 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8498 
8499 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8500 {
8501 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8502 }
8503 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8504 
8505 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8506 {
8507 	struct kvm *kvm = vcpu->kvm;
8508 
8509 	++vcpu->stat.insn_emulation_fail;
8510 	trace_kvm_emulate_insn_failed(vcpu);
8511 
8512 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8513 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8514 		return 1;
8515 	}
8516 
8517 	if (kvm->arch.exit_on_emulation_error ||
8518 	    (emulation_type & EMULTYPE_SKIP)) {
8519 		prepare_emulation_ctxt_failure_exit(vcpu);
8520 		return 0;
8521 	}
8522 
8523 	kvm_queue_exception(vcpu, UD_VECTOR);
8524 
8525 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8526 		prepare_emulation_ctxt_failure_exit(vcpu);
8527 		return 0;
8528 	}
8529 
8530 	return 1;
8531 }
8532 
8533 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8534 				  int emulation_type)
8535 {
8536 	gpa_t gpa = cr2_or_gpa;
8537 	kvm_pfn_t pfn;
8538 
8539 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8540 		return false;
8541 
8542 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8543 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8544 		return false;
8545 
8546 	if (!vcpu->arch.mmu->root_role.direct) {
8547 		/*
8548 		 * Write permission should be allowed since only
8549 		 * write access need to be emulated.
8550 		 */
8551 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8552 
8553 		/*
8554 		 * If the mapping is invalid in guest, let cpu retry
8555 		 * it to generate fault.
8556 		 */
8557 		if (gpa == INVALID_GPA)
8558 			return true;
8559 	}
8560 
8561 	/*
8562 	 * Do not retry the unhandleable instruction if it faults on the
8563 	 * readonly host memory, otherwise it will goto a infinite loop:
8564 	 * retry instruction -> write #PF -> emulation fail -> retry
8565 	 * instruction -> ...
8566 	 */
8567 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8568 
8569 	/*
8570 	 * If the instruction failed on the error pfn, it can not be fixed,
8571 	 * report the error to userspace.
8572 	 */
8573 	if (is_error_noslot_pfn(pfn))
8574 		return false;
8575 
8576 	kvm_release_pfn_clean(pfn);
8577 
8578 	/* The instructions are well-emulated on direct mmu. */
8579 	if (vcpu->arch.mmu->root_role.direct) {
8580 		unsigned int indirect_shadow_pages;
8581 
8582 		write_lock(&vcpu->kvm->mmu_lock);
8583 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8584 		write_unlock(&vcpu->kvm->mmu_lock);
8585 
8586 		if (indirect_shadow_pages)
8587 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8588 
8589 		return true;
8590 	}
8591 
8592 	/*
8593 	 * if emulation was due to access to shadowed page table
8594 	 * and it failed try to unshadow page and re-enter the
8595 	 * guest to let CPU execute the instruction.
8596 	 */
8597 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8598 
8599 	/*
8600 	 * If the access faults on its page table, it can not
8601 	 * be fixed by unprotecting shadow page and it should
8602 	 * be reported to userspace.
8603 	 */
8604 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8605 }
8606 
8607 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8608 			      gpa_t cr2_or_gpa,  int emulation_type)
8609 {
8610 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8611 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8612 
8613 	last_retry_eip = vcpu->arch.last_retry_eip;
8614 	last_retry_addr = vcpu->arch.last_retry_addr;
8615 
8616 	/*
8617 	 * If the emulation is caused by #PF and it is non-page_table
8618 	 * writing instruction, it means the VM-EXIT is caused by shadow
8619 	 * page protected, we can zap the shadow page and retry this
8620 	 * instruction directly.
8621 	 *
8622 	 * Note: if the guest uses a non-page-table modifying instruction
8623 	 * on the PDE that points to the instruction, then we will unmap
8624 	 * the instruction and go to an infinite loop. So, we cache the
8625 	 * last retried eip and the last fault address, if we meet the eip
8626 	 * and the address again, we can break out of the potential infinite
8627 	 * loop.
8628 	 */
8629 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8630 
8631 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8632 		return false;
8633 
8634 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8635 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8636 		return false;
8637 
8638 	if (x86_page_table_writing_insn(ctxt))
8639 		return false;
8640 
8641 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8642 		return false;
8643 
8644 	vcpu->arch.last_retry_eip = ctxt->eip;
8645 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8646 
8647 	if (!vcpu->arch.mmu->root_role.direct)
8648 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8649 
8650 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8651 
8652 	return true;
8653 }
8654 
8655 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8656 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8657 
8658 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8659 				unsigned long *db)
8660 {
8661 	u32 dr6 = 0;
8662 	int i;
8663 	u32 enable, rwlen;
8664 
8665 	enable = dr7;
8666 	rwlen = dr7 >> 16;
8667 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8668 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8669 			dr6 |= (1 << i);
8670 	return dr6;
8671 }
8672 
8673 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8674 {
8675 	struct kvm_run *kvm_run = vcpu->run;
8676 
8677 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8678 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8679 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8680 		kvm_run->debug.arch.exception = DB_VECTOR;
8681 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8682 		return 0;
8683 	}
8684 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8685 	return 1;
8686 }
8687 
8688 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8689 {
8690 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8691 	int r;
8692 
8693 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8694 	if (unlikely(!r))
8695 		return 0;
8696 
8697 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8698 
8699 	/*
8700 	 * rflags is the old, "raw" value of the flags.  The new value has
8701 	 * not been saved yet.
8702 	 *
8703 	 * This is correct even for TF set by the guest, because "the
8704 	 * processor will not generate this exception after the instruction
8705 	 * that sets the TF flag".
8706 	 */
8707 	if (unlikely(rflags & X86_EFLAGS_TF))
8708 		r = kvm_vcpu_do_singlestep(vcpu);
8709 	return r;
8710 }
8711 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8712 
8713 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8714 {
8715 	u32 shadow;
8716 
8717 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8718 		return true;
8719 
8720 	/*
8721 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8722 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8723 	 * to avoid the relatively expensive CPUID lookup.
8724 	 */
8725 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8726 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8727 	       guest_cpuid_is_intel(vcpu);
8728 }
8729 
8730 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8731 					   int emulation_type, int *r)
8732 {
8733 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8734 
8735 	/*
8736 	 * Do not check for code breakpoints if hardware has already done the
8737 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8738 	 * the instruction has passed all exception checks, and all intercepted
8739 	 * exceptions that trigger emulation have lower priority than code
8740 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8741 	 * means any code breakpoints have already been serviced.
8742 	 *
8743 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8744 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8745 	 * the instruction being emulated.  The intent of forced emulation is
8746 	 * to behave as if KVM intercepted the instruction without an exception
8747 	 * and without a prefix.
8748 	 */
8749 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8750 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8751 		return false;
8752 
8753 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8754 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8755 		struct kvm_run *kvm_run = vcpu->run;
8756 		unsigned long eip = kvm_get_linear_rip(vcpu);
8757 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8758 					   vcpu->arch.guest_debug_dr7,
8759 					   vcpu->arch.eff_db);
8760 
8761 		if (dr6 != 0) {
8762 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8763 			kvm_run->debug.arch.pc = eip;
8764 			kvm_run->debug.arch.exception = DB_VECTOR;
8765 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8766 			*r = 0;
8767 			return true;
8768 		}
8769 	}
8770 
8771 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8772 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8773 		unsigned long eip = kvm_get_linear_rip(vcpu);
8774 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8775 					   vcpu->arch.dr7,
8776 					   vcpu->arch.db);
8777 
8778 		if (dr6 != 0) {
8779 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8780 			*r = 1;
8781 			return true;
8782 		}
8783 	}
8784 
8785 	return false;
8786 }
8787 
8788 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8789 {
8790 	switch (ctxt->opcode_len) {
8791 	case 1:
8792 		switch (ctxt->b) {
8793 		case 0xe4:	/* IN */
8794 		case 0xe5:
8795 		case 0xec:
8796 		case 0xed:
8797 		case 0xe6:	/* OUT */
8798 		case 0xe7:
8799 		case 0xee:
8800 		case 0xef:
8801 		case 0x6c:	/* INS */
8802 		case 0x6d:
8803 		case 0x6e:	/* OUTS */
8804 		case 0x6f:
8805 			return true;
8806 		}
8807 		break;
8808 	case 2:
8809 		switch (ctxt->b) {
8810 		case 0x33:	/* RDPMC */
8811 			return true;
8812 		}
8813 		break;
8814 	}
8815 
8816 	return false;
8817 }
8818 
8819 /*
8820  * Decode an instruction for emulation.  The caller is responsible for handling
8821  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8822  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8823  * code breakpoints have higher priority and thus have already been done by
8824  * hardware.
8825  *
8826  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8827  *     response to a machine check.
8828  */
8829 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8830 				    void *insn, int insn_len)
8831 {
8832 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8833 	int r;
8834 
8835 	init_emulate_ctxt(vcpu);
8836 
8837 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8838 
8839 	trace_kvm_emulate_insn_start(vcpu);
8840 	++vcpu->stat.insn_emulation;
8841 
8842 	return r;
8843 }
8844 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8845 
8846 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8847 			    int emulation_type, void *insn, int insn_len)
8848 {
8849 	int r;
8850 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8851 	bool writeback = true;
8852 
8853 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8854 		return 1;
8855 
8856 	vcpu->arch.l1tf_flush_l1d = true;
8857 
8858 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8859 		kvm_clear_exception_queue(vcpu);
8860 
8861 		/*
8862 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8863 		 * are fault-like and are higher priority than any faults on
8864 		 * the code fetch itself.
8865 		 */
8866 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8867 			return r;
8868 
8869 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8870 						    insn, insn_len);
8871 		if (r != EMULATION_OK)  {
8872 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8873 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8874 				kvm_queue_exception(vcpu, UD_VECTOR);
8875 				return 1;
8876 			}
8877 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8878 						  emulation_type))
8879 				return 1;
8880 
8881 			if (ctxt->have_exception &&
8882 			    !(emulation_type & EMULTYPE_SKIP)) {
8883 				/*
8884 				 * #UD should result in just EMULATION_FAILED, and trap-like
8885 				 * exception should not be encountered during decode.
8886 				 */
8887 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8888 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8889 				inject_emulated_exception(vcpu);
8890 				return 1;
8891 			}
8892 			return handle_emulation_failure(vcpu, emulation_type);
8893 		}
8894 	}
8895 
8896 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8897 	    !is_vmware_backdoor_opcode(ctxt)) {
8898 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8899 		return 1;
8900 	}
8901 
8902 	/*
8903 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8904 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8905 	 * The caller is responsible for updating interruptibility state and
8906 	 * injecting single-step #DBs.
8907 	 */
8908 	if (emulation_type & EMULTYPE_SKIP) {
8909 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8910 			ctxt->eip = (u32)ctxt->_eip;
8911 		else
8912 			ctxt->eip = ctxt->_eip;
8913 
8914 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8915 			r = 1;
8916 			goto writeback;
8917 		}
8918 
8919 		kvm_rip_write(vcpu, ctxt->eip);
8920 		if (ctxt->eflags & X86_EFLAGS_RF)
8921 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8922 		return 1;
8923 	}
8924 
8925 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8926 		return 1;
8927 
8928 	/* this is needed for vmware backdoor interface to work since it
8929 	   changes registers values  during IO operation */
8930 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8931 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8932 		emulator_invalidate_register_cache(ctxt);
8933 	}
8934 
8935 restart:
8936 	if (emulation_type & EMULTYPE_PF) {
8937 		/* Save the faulting GPA (cr2) in the address field */
8938 		ctxt->exception.address = cr2_or_gpa;
8939 
8940 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8941 		if (vcpu->arch.mmu->root_role.direct) {
8942 			ctxt->gpa_available = true;
8943 			ctxt->gpa_val = cr2_or_gpa;
8944 		}
8945 	} else {
8946 		/* Sanitize the address out of an abundance of paranoia. */
8947 		ctxt->exception.address = 0;
8948 	}
8949 
8950 	r = x86_emulate_insn(ctxt);
8951 
8952 	if (r == EMULATION_INTERCEPTED)
8953 		return 1;
8954 
8955 	if (r == EMULATION_FAILED) {
8956 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8957 			return 1;
8958 
8959 		return handle_emulation_failure(vcpu, emulation_type);
8960 	}
8961 
8962 	if (ctxt->have_exception) {
8963 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8964 		vcpu->mmio_needed = false;
8965 		r = 1;
8966 		inject_emulated_exception(vcpu);
8967 	} else if (vcpu->arch.pio.count) {
8968 		if (!vcpu->arch.pio.in) {
8969 			/* FIXME: return into emulator if single-stepping.  */
8970 			vcpu->arch.pio.count = 0;
8971 		} else {
8972 			writeback = false;
8973 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8974 		}
8975 		r = 0;
8976 	} else if (vcpu->mmio_needed) {
8977 		++vcpu->stat.mmio_exits;
8978 
8979 		if (!vcpu->mmio_is_write)
8980 			writeback = false;
8981 		r = 0;
8982 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8983 	} else if (vcpu->arch.complete_userspace_io) {
8984 		writeback = false;
8985 		r = 0;
8986 	} else if (r == EMULATION_RESTART)
8987 		goto restart;
8988 	else
8989 		r = 1;
8990 
8991 writeback:
8992 	if (writeback) {
8993 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8994 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8995 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8996 
8997 		/*
8998 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8999 		 * only supports code breakpoints and general detect #DB, both
9000 		 * of which are fault-like.
9001 		 */
9002 		if (!ctxt->have_exception ||
9003 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9004 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9005 			if (ctxt->is_branch)
9006 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9007 			kvm_rip_write(vcpu, ctxt->eip);
9008 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9009 				r = kvm_vcpu_do_singlestep(vcpu);
9010 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9011 			__kvm_set_rflags(vcpu, ctxt->eflags);
9012 		}
9013 
9014 		/*
9015 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9016 		 * do nothing, and it will be requested again as soon as
9017 		 * the shadow expires.  But we still need to check here,
9018 		 * because POPF has no interrupt shadow.
9019 		 */
9020 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9021 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9022 	} else
9023 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9024 
9025 	return r;
9026 }
9027 
9028 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9029 {
9030 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9031 }
9032 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9033 
9034 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9035 					void *insn, int insn_len)
9036 {
9037 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9038 }
9039 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9040 
9041 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9042 {
9043 	vcpu->arch.pio.count = 0;
9044 	return 1;
9045 }
9046 
9047 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9048 {
9049 	vcpu->arch.pio.count = 0;
9050 
9051 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9052 		return 1;
9053 
9054 	return kvm_skip_emulated_instruction(vcpu);
9055 }
9056 
9057 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9058 			    unsigned short port)
9059 {
9060 	unsigned long val = kvm_rax_read(vcpu);
9061 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9062 
9063 	if (ret)
9064 		return ret;
9065 
9066 	/*
9067 	 * Workaround userspace that relies on old KVM behavior of %rip being
9068 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9069 	 */
9070 	if (port == 0x7e &&
9071 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9072 		vcpu->arch.complete_userspace_io =
9073 			complete_fast_pio_out_port_0x7e;
9074 		kvm_skip_emulated_instruction(vcpu);
9075 	} else {
9076 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9077 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9078 	}
9079 	return 0;
9080 }
9081 
9082 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9083 {
9084 	unsigned long val;
9085 
9086 	/* We should only ever be called with arch.pio.count equal to 1 */
9087 	BUG_ON(vcpu->arch.pio.count != 1);
9088 
9089 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9090 		vcpu->arch.pio.count = 0;
9091 		return 1;
9092 	}
9093 
9094 	/* For size less than 4 we merge, else we zero extend */
9095 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9096 
9097 	complete_emulator_pio_in(vcpu, &val);
9098 	kvm_rax_write(vcpu, val);
9099 
9100 	return kvm_skip_emulated_instruction(vcpu);
9101 }
9102 
9103 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9104 			   unsigned short port)
9105 {
9106 	unsigned long val;
9107 	int ret;
9108 
9109 	/* For size less than 4 we merge, else we zero extend */
9110 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9111 
9112 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9113 	if (ret) {
9114 		kvm_rax_write(vcpu, val);
9115 		return ret;
9116 	}
9117 
9118 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9119 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9120 
9121 	return 0;
9122 }
9123 
9124 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9125 {
9126 	int ret;
9127 
9128 	if (in)
9129 		ret = kvm_fast_pio_in(vcpu, size, port);
9130 	else
9131 		ret = kvm_fast_pio_out(vcpu, size, port);
9132 	return ret && kvm_skip_emulated_instruction(vcpu);
9133 }
9134 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9135 
9136 static int kvmclock_cpu_down_prep(unsigned int cpu)
9137 {
9138 	__this_cpu_write(cpu_tsc_khz, 0);
9139 	return 0;
9140 }
9141 
9142 static void tsc_khz_changed(void *data)
9143 {
9144 	struct cpufreq_freqs *freq = data;
9145 	unsigned long khz = 0;
9146 
9147 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9148 
9149 	if (data)
9150 		khz = freq->new;
9151 	else
9152 		khz = cpufreq_quick_get(raw_smp_processor_id());
9153 	if (!khz)
9154 		khz = tsc_khz;
9155 	__this_cpu_write(cpu_tsc_khz, khz);
9156 }
9157 
9158 #ifdef CONFIG_X86_64
9159 static void kvm_hyperv_tsc_notifier(void)
9160 {
9161 	struct kvm *kvm;
9162 	int cpu;
9163 
9164 	mutex_lock(&kvm_lock);
9165 	list_for_each_entry(kvm, &vm_list, vm_list)
9166 		kvm_make_mclock_inprogress_request(kvm);
9167 
9168 	/* no guest entries from this point */
9169 	hyperv_stop_tsc_emulation();
9170 
9171 	/* TSC frequency always matches when on Hyper-V */
9172 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9173 		for_each_present_cpu(cpu)
9174 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9175 	}
9176 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9177 
9178 	list_for_each_entry(kvm, &vm_list, vm_list) {
9179 		__kvm_start_pvclock_update(kvm);
9180 		pvclock_update_vm_gtod_copy(kvm);
9181 		kvm_end_pvclock_update(kvm);
9182 	}
9183 
9184 	mutex_unlock(&kvm_lock);
9185 }
9186 #endif
9187 
9188 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9189 {
9190 	struct kvm *kvm;
9191 	struct kvm_vcpu *vcpu;
9192 	int send_ipi = 0;
9193 	unsigned long i;
9194 
9195 	/*
9196 	 * We allow guests to temporarily run on slowing clocks,
9197 	 * provided we notify them after, or to run on accelerating
9198 	 * clocks, provided we notify them before.  Thus time never
9199 	 * goes backwards.
9200 	 *
9201 	 * However, we have a problem.  We can't atomically update
9202 	 * the frequency of a given CPU from this function; it is
9203 	 * merely a notifier, which can be called from any CPU.
9204 	 * Changing the TSC frequency at arbitrary points in time
9205 	 * requires a recomputation of local variables related to
9206 	 * the TSC for each VCPU.  We must flag these local variables
9207 	 * to be updated and be sure the update takes place with the
9208 	 * new frequency before any guests proceed.
9209 	 *
9210 	 * Unfortunately, the combination of hotplug CPU and frequency
9211 	 * change creates an intractable locking scenario; the order
9212 	 * of when these callouts happen is undefined with respect to
9213 	 * CPU hotplug, and they can race with each other.  As such,
9214 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9215 	 * undefined; you can actually have a CPU frequency change take
9216 	 * place in between the computation of X and the setting of the
9217 	 * variable.  To protect against this problem, all updates of
9218 	 * the per_cpu tsc_khz variable are done in an interrupt
9219 	 * protected IPI, and all callers wishing to update the value
9220 	 * must wait for a synchronous IPI to complete (which is trivial
9221 	 * if the caller is on the CPU already).  This establishes the
9222 	 * necessary total order on variable updates.
9223 	 *
9224 	 * Note that because a guest time update may take place
9225 	 * anytime after the setting of the VCPU's request bit, the
9226 	 * correct TSC value must be set before the request.  However,
9227 	 * to ensure the update actually makes it to any guest which
9228 	 * starts running in hardware virtualization between the set
9229 	 * and the acquisition of the spinlock, we must also ping the
9230 	 * CPU after setting the request bit.
9231 	 *
9232 	 */
9233 
9234 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9235 
9236 	mutex_lock(&kvm_lock);
9237 	list_for_each_entry(kvm, &vm_list, vm_list) {
9238 		kvm_for_each_vcpu(i, vcpu, kvm) {
9239 			if (vcpu->cpu != cpu)
9240 				continue;
9241 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9242 			if (vcpu->cpu != raw_smp_processor_id())
9243 				send_ipi = 1;
9244 		}
9245 	}
9246 	mutex_unlock(&kvm_lock);
9247 
9248 	if (freq->old < freq->new && send_ipi) {
9249 		/*
9250 		 * We upscale the frequency.  Must make the guest
9251 		 * doesn't see old kvmclock values while running with
9252 		 * the new frequency, otherwise we risk the guest sees
9253 		 * time go backwards.
9254 		 *
9255 		 * In case we update the frequency for another cpu
9256 		 * (which might be in guest context) send an interrupt
9257 		 * to kick the cpu out of guest context.  Next time
9258 		 * guest context is entered kvmclock will be updated,
9259 		 * so the guest will not see stale values.
9260 		 */
9261 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9262 	}
9263 }
9264 
9265 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9266 				     void *data)
9267 {
9268 	struct cpufreq_freqs *freq = data;
9269 	int cpu;
9270 
9271 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9272 		return 0;
9273 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9274 		return 0;
9275 
9276 	for_each_cpu(cpu, freq->policy->cpus)
9277 		__kvmclock_cpufreq_notifier(freq, cpu);
9278 
9279 	return 0;
9280 }
9281 
9282 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9283 	.notifier_call  = kvmclock_cpufreq_notifier
9284 };
9285 
9286 static int kvmclock_cpu_online(unsigned int cpu)
9287 {
9288 	tsc_khz_changed(NULL);
9289 	return 0;
9290 }
9291 
9292 static void kvm_timer_init(void)
9293 {
9294 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9295 		max_tsc_khz = tsc_khz;
9296 
9297 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9298 			struct cpufreq_policy *policy;
9299 			int cpu;
9300 
9301 			cpu = get_cpu();
9302 			policy = cpufreq_cpu_get(cpu);
9303 			if (policy) {
9304 				if (policy->cpuinfo.max_freq)
9305 					max_tsc_khz = policy->cpuinfo.max_freq;
9306 				cpufreq_cpu_put(policy);
9307 			}
9308 			put_cpu();
9309 		}
9310 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9311 					  CPUFREQ_TRANSITION_NOTIFIER);
9312 
9313 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9314 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9315 	}
9316 }
9317 
9318 #ifdef CONFIG_X86_64
9319 static void pvclock_gtod_update_fn(struct work_struct *work)
9320 {
9321 	struct kvm *kvm;
9322 	struct kvm_vcpu *vcpu;
9323 	unsigned long i;
9324 
9325 	mutex_lock(&kvm_lock);
9326 	list_for_each_entry(kvm, &vm_list, vm_list)
9327 		kvm_for_each_vcpu(i, vcpu, kvm)
9328 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9329 	atomic_set(&kvm_guest_has_master_clock, 0);
9330 	mutex_unlock(&kvm_lock);
9331 }
9332 
9333 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9334 
9335 /*
9336  * Indirection to move queue_work() out of the tk_core.seq write held
9337  * region to prevent possible deadlocks against time accessors which
9338  * are invoked with work related locks held.
9339  */
9340 static void pvclock_irq_work_fn(struct irq_work *w)
9341 {
9342 	queue_work(system_long_wq, &pvclock_gtod_work);
9343 }
9344 
9345 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9346 
9347 /*
9348  * Notification about pvclock gtod data update.
9349  */
9350 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9351 			       void *priv)
9352 {
9353 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9354 	struct timekeeper *tk = priv;
9355 
9356 	update_pvclock_gtod(tk);
9357 
9358 	/*
9359 	 * Disable master clock if host does not trust, or does not use,
9360 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9361 	 * this is invoked with tk_core.seq write held.
9362 	 */
9363 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9364 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9365 		irq_work_queue(&pvclock_irq_work);
9366 	return 0;
9367 }
9368 
9369 static struct notifier_block pvclock_gtod_notifier = {
9370 	.notifier_call = pvclock_gtod_notify,
9371 };
9372 #endif
9373 
9374 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9375 {
9376 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9377 
9378 #define __KVM_X86_OP(func) \
9379 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9380 #define KVM_X86_OP(func) \
9381 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9382 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9383 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9384 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9385 					   (void *)__static_call_return0);
9386 #include <asm/kvm-x86-ops.h>
9387 #undef __KVM_X86_OP
9388 
9389 	kvm_pmu_ops_update(ops->pmu_ops);
9390 }
9391 
9392 static int kvm_x86_check_processor_compatibility(void)
9393 {
9394 	int cpu = smp_processor_id();
9395 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9396 
9397 	/*
9398 	 * Compatibility checks are done when loading KVM and when enabling
9399 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9400 	 * compatible, i.e. KVM should never perform a compatibility check on
9401 	 * an offline CPU.
9402 	 */
9403 	WARN_ON(!cpu_online(cpu));
9404 
9405 	if (__cr4_reserved_bits(cpu_has, c) !=
9406 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9407 		return -EIO;
9408 
9409 	return static_call(kvm_x86_check_processor_compatibility)();
9410 }
9411 
9412 static void kvm_x86_check_cpu_compat(void *ret)
9413 {
9414 	*(int *)ret = kvm_x86_check_processor_compatibility();
9415 }
9416 
9417 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9418 {
9419 	u64 host_pat;
9420 	int r, cpu;
9421 
9422 	if (kvm_x86_ops.hardware_enable) {
9423 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9424 		return -EEXIST;
9425 	}
9426 
9427 	/*
9428 	 * KVM explicitly assumes that the guest has an FPU and
9429 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9430 	 * vCPU's FPU state as a fxregs_state struct.
9431 	 */
9432 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9433 		pr_err("inadequate fpu\n");
9434 		return -EOPNOTSUPP;
9435 	}
9436 
9437 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9438 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9439 		return -EOPNOTSUPP;
9440 	}
9441 
9442 	/*
9443 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9444 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9445 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9446 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9447 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9448 	 */
9449 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9450 	    (host_pat & GENMASK(2, 0)) != 6) {
9451 		pr_err("host PAT[0] is not WB\n");
9452 		return -EIO;
9453 	}
9454 
9455 	x86_emulator_cache = kvm_alloc_emulator_cache();
9456 	if (!x86_emulator_cache) {
9457 		pr_err("failed to allocate cache for x86 emulator\n");
9458 		return -ENOMEM;
9459 	}
9460 
9461 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9462 	if (!user_return_msrs) {
9463 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9464 		r = -ENOMEM;
9465 		goto out_free_x86_emulator_cache;
9466 	}
9467 	kvm_nr_uret_msrs = 0;
9468 
9469 	r = kvm_mmu_vendor_module_init();
9470 	if (r)
9471 		goto out_free_percpu;
9472 
9473 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9474 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9475 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9476 	}
9477 
9478 	rdmsrl_safe(MSR_EFER, &host_efer);
9479 
9480 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9481 		rdmsrl(MSR_IA32_XSS, host_xss);
9482 
9483 	kvm_init_pmu_capability(ops->pmu_ops);
9484 
9485 	r = ops->hardware_setup();
9486 	if (r != 0)
9487 		goto out_mmu_exit;
9488 
9489 	kvm_ops_update(ops);
9490 
9491 	for_each_online_cpu(cpu) {
9492 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9493 		if (r < 0)
9494 			goto out_unwind_ops;
9495 	}
9496 
9497 	/*
9498 	 * Point of no return!  DO NOT add error paths below this point unless
9499 	 * absolutely necessary, as most operations from this point forward
9500 	 * require unwinding.
9501 	 */
9502 	kvm_timer_init();
9503 
9504 	if (pi_inject_timer == -1)
9505 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9506 #ifdef CONFIG_X86_64
9507 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9508 
9509 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9510 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9511 #endif
9512 
9513 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9514 
9515 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9516 		kvm_caps.supported_xss = 0;
9517 
9518 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9519 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9520 #undef __kvm_cpu_cap_has
9521 
9522 	if (kvm_caps.has_tsc_control) {
9523 		/*
9524 		 * Make sure the user can only configure tsc_khz values that
9525 		 * fit into a signed integer.
9526 		 * A min value is not calculated because it will always
9527 		 * be 1 on all machines.
9528 		 */
9529 		u64 max = min(0x7fffffffULL,
9530 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9531 		kvm_caps.max_guest_tsc_khz = max;
9532 	}
9533 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9534 	kvm_init_msr_lists();
9535 	return 0;
9536 
9537 out_unwind_ops:
9538 	kvm_x86_ops.hardware_enable = NULL;
9539 	static_call(kvm_x86_hardware_unsetup)();
9540 out_mmu_exit:
9541 	kvm_mmu_vendor_module_exit();
9542 out_free_percpu:
9543 	free_percpu(user_return_msrs);
9544 out_free_x86_emulator_cache:
9545 	kmem_cache_destroy(x86_emulator_cache);
9546 	return r;
9547 }
9548 
9549 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9550 {
9551 	int r;
9552 
9553 	mutex_lock(&vendor_module_lock);
9554 	r = __kvm_x86_vendor_init(ops);
9555 	mutex_unlock(&vendor_module_lock);
9556 
9557 	return r;
9558 }
9559 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9560 
9561 void kvm_x86_vendor_exit(void)
9562 {
9563 	kvm_unregister_perf_callbacks();
9564 
9565 #ifdef CONFIG_X86_64
9566 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9567 		clear_hv_tscchange_cb();
9568 #endif
9569 	kvm_lapic_exit();
9570 
9571 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9572 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9573 					    CPUFREQ_TRANSITION_NOTIFIER);
9574 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9575 	}
9576 #ifdef CONFIG_X86_64
9577 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9578 	irq_work_sync(&pvclock_irq_work);
9579 	cancel_work_sync(&pvclock_gtod_work);
9580 #endif
9581 	static_call(kvm_x86_hardware_unsetup)();
9582 	kvm_mmu_vendor_module_exit();
9583 	free_percpu(user_return_msrs);
9584 	kmem_cache_destroy(x86_emulator_cache);
9585 #ifdef CONFIG_KVM_XEN
9586 	static_key_deferred_flush(&kvm_xen_enabled);
9587 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9588 #endif
9589 	mutex_lock(&vendor_module_lock);
9590 	kvm_x86_ops.hardware_enable = NULL;
9591 	mutex_unlock(&vendor_module_lock);
9592 }
9593 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9594 
9595 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9596 {
9597 	/*
9598 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9599 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9600 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9601 	 * managed by userspace, in which case userspace is responsible for
9602 	 * handling wake events.
9603 	 */
9604 	++vcpu->stat.halt_exits;
9605 	if (lapic_in_kernel(vcpu)) {
9606 		vcpu->arch.mp_state = state;
9607 		return 1;
9608 	} else {
9609 		vcpu->run->exit_reason = reason;
9610 		return 0;
9611 	}
9612 }
9613 
9614 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9615 {
9616 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9617 }
9618 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9619 
9620 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9621 {
9622 	int ret = kvm_skip_emulated_instruction(vcpu);
9623 	/*
9624 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9625 	 * KVM_EXIT_DEBUG here.
9626 	 */
9627 	return kvm_emulate_halt_noskip(vcpu) && ret;
9628 }
9629 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9630 
9631 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9632 {
9633 	int ret = kvm_skip_emulated_instruction(vcpu);
9634 
9635 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9636 					KVM_EXIT_AP_RESET_HOLD) && ret;
9637 }
9638 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9639 
9640 #ifdef CONFIG_X86_64
9641 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9642 			        unsigned long clock_type)
9643 {
9644 	struct kvm_clock_pairing clock_pairing;
9645 	struct timespec64 ts;
9646 	u64 cycle;
9647 	int ret;
9648 
9649 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9650 		return -KVM_EOPNOTSUPP;
9651 
9652 	/*
9653 	 * When tsc is in permanent catchup mode guests won't be able to use
9654 	 * pvclock_read_retry loop to get consistent view of pvclock
9655 	 */
9656 	if (vcpu->arch.tsc_always_catchup)
9657 		return -KVM_EOPNOTSUPP;
9658 
9659 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9660 		return -KVM_EOPNOTSUPP;
9661 
9662 	clock_pairing.sec = ts.tv_sec;
9663 	clock_pairing.nsec = ts.tv_nsec;
9664 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9665 	clock_pairing.flags = 0;
9666 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9667 
9668 	ret = 0;
9669 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9670 			    sizeof(struct kvm_clock_pairing)))
9671 		ret = -KVM_EFAULT;
9672 
9673 	return ret;
9674 }
9675 #endif
9676 
9677 /*
9678  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9679  *
9680  * @apicid - apicid of vcpu to be kicked.
9681  */
9682 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9683 {
9684 	/*
9685 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9686 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9687 	 */
9688 	struct kvm_lapic_irq lapic_irq = {
9689 		.delivery_mode = APIC_DM_REMRD,
9690 		.dest_mode = APIC_DEST_PHYSICAL,
9691 		.shorthand = APIC_DEST_NOSHORT,
9692 		.dest_id = apicid,
9693 	};
9694 
9695 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9696 }
9697 
9698 bool kvm_apicv_activated(struct kvm *kvm)
9699 {
9700 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9701 }
9702 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9703 
9704 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9705 {
9706 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9707 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9708 
9709 	return (vm_reasons | vcpu_reasons) == 0;
9710 }
9711 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9712 
9713 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9714 				       enum kvm_apicv_inhibit reason, bool set)
9715 {
9716 	if (set)
9717 		__set_bit(reason, inhibits);
9718 	else
9719 		__clear_bit(reason, inhibits);
9720 
9721 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9722 }
9723 
9724 static void kvm_apicv_init(struct kvm *kvm)
9725 {
9726 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9727 
9728 	init_rwsem(&kvm->arch.apicv_update_lock);
9729 
9730 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9731 
9732 	if (!enable_apicv)
9733 		set_or_clear_apicv_inhibit(inhibits,
9734 					   APICV_INHIBIT_REASON_DISABLE, true);
9735 }
9736 
9737 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9738 {
9739 	struct kvm_vcpu *target = NULL;
9740 	struct kvm_apic_map *map;
9741 
9742 	vcpu->stat.directed_yield_attempted++;
9743 
9744 	if (single_task_running())
9745 		goto no_yield;
9746 
9747 	rcu_read_lock();
9748 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9749 
9750 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9751 		target = map->phys_map[dest_id]->vcpu;
9752 
9753 	rcu_read_unlock();
9754 
9755 	if (!target || !READ_ONCE(target->ready))
9756 		goto no_yield;
9757 
9758 	/* Ignore requests to yield to self */
9759 	if (vcpu == target)
9760 		goto no_yield;
9761 
9762 	if (kvm_vcpu_yield_to(target) <= 0)
9763 		goto no_yield;
9764 
9765 	vcpu->stat.directed_yield_successful++;
9766 
9767 no_yield:
9768 	return;
9769 }
9770 
9771 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9772 {
9773 	u64 ret = vcpu->run->hypercall.ret;
9774 
9775 	if (!is_64_bit_mode(vcpu))
9776 		ret = (u32)ret;
9777 	kvm_rax_write(vcpu, ret);
9778 	++vcpu->stat.hypercalls;
9779 	return kvm_skip_emulated_instruction(vcpu);
9780 }
9781 
9782 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9783 {
9784 	unsigned long nr, a0, a1, a2, a3, ret;
9785 	int op_64_bit;
9786 
9787 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9788 		return kvm_xen_hypercall(vcpu);
9789 
9790 	if (kvm_hv_hypercall_enabled(vcpu))
9791 		return kvm_hv_hypercall(vcpu);
9792 
9793 	nr = kvm_rax_read(vcpu);
9794 	a0 = kvm_rbx_read(vcpu);
9795 	a1 = kvm_rcx_read(vcpu);
9796 	a2 = kvm_rdx_read(vcpu);
9797 	a3 = kvm_rsi_read(vcpu);
9798 
9799 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9800 
9801 	op_64_bit = is_64_bit_hypercall(vcpu);
9802 	if (!op_64_bit) {
9803 		nr &= 0xFFFFFFFF;
9804 		a0 &= 0xFFFFFFFF;
9805 		a1 &= 0xFFFFFFFF;
9806 		a2 &= 0xFFFFFFFF;
9807 		a3 &= 0xFFFFFFFF;
9808 	}
9809 
9810 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9811 		ret = -KVM_EPERM;
9812 		goto out;
9813 	}
9814 
9815 	ret = -KVM_ENOSYS;
9816 
9817 	switch (nr) {
9818 	case KVM_HC_VAPIC_POLL_IRQ:
9819 		ret = 0;
9820 		break;
9821 	case KVM_HC_KICK_CPU:
9822 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9823 			break;
9824 
9825 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9826 		kvm_sched_yield(vcpu, a1);
9827 		ret = 0;
9828 		break;
9829 #ifdef CONFIG_X86_64
9830 	case KVM_HC_CLOCK_PAIRING:
9831 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9832 		break;
9833 #endif
9834 	case KVM_HC_SEND_IPI:
9835 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9836 			break;
9837 
9838 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9839 		break;
9840 	case KVM_HC_SCHED_YIELD:
9841 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9842 			break;
9843 
9844 		kvm_sched_yield(vcpu, a0);
9845 		ret = 0;
9846 		break;
9847 	case KVM_HC_MAP_GPA_RANGE: {
9848 		u64 gpa = a0, npages = a1, attrs = a2;
9849 
9850 		ret = -KVM_ENOSYS;
9851 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9852 			break;
9853 
9854 		if (!PAGE_ALIGNED(gpa) || !npages ||
9855 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9856 			ret = -KVM_EINVAL;
9857 			break;
9858 		}
9859 
9860 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9861 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9862 		vcpu->run->hypercall.args[0]  = gpa;
9863 		vcpu->run->hypercall.args[1]  = npages;
9864 		vcpu->run->hypercall.args[2]  = attrs;
9865 		vcpu->run->hypercall.flags    = 0;
9866 		if (op_64_bit)
9867 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9868 
9869 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9870 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9871 		return 0;
9872 	}
9873 	default:
9874 		ret = -KVM_ENOSYS;
9875 		break;
9876 	}
9877 out:
9878 	if (!op_64_bit)
9879 		ret = (u32)ret;
9880 	kvm_rax_write(vcpu, ret);
9881 
9882 	++vcpu->stat.hypercalls;
9883 	return kvm_skip_emulated_instruction(vcpu);
9884 }
9885 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9886 
9887 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9888 {
9889 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9890 	char instruction[3];
9891 	unsigned long rip = kvm_rip_read(vcpu);
9892 
9893 	/*
9894 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9895 	 * the pieces.
9896 	 */
9897 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9898 		ctxt->exception.error_code_valid = false;
9899 		ctxt->exception.vector = UD_VECTOR;
9900 		ctxt->have_exception = true;
9901 		return X86EMUL_PROPAGATE_FAULT;
9902 	}
9903 
9904 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9905 
9906 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9907 		&ctxt->exception);
9908 }
9909 
9910 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9911 {
9912 	return vcpu->run->request_interrupt_window &&
9913 		likely(!pic_in_kernel(vcpu->kvm));
9914 }
9915 
9916 /* Called within kvm->srcu read side.  */
9917 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9918 {
9919 	struct kvm_run *kvm_run = vcpu->run;
9920 
9921 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9922 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9923 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9924 
9925 	kvm_run->ready_for_interrupt_injection =
9926 		pic_in_kernel(vcpu->kvm) ||
9927 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9928 
9929 	if (is_smm(vcpu))
9930 		kvm_run->flags |= KVM_RUN_X86_SMM;
9931 }
9932 
9933 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9934 {
9935 	int max_irr, tpr;
9936 
9937 	if (!kvm_x86_ops.update_cr8_intercept)
9938 		return;
9939 
9940 	if (!lapic_in_kernel(vcpu))
9941 		return;
9942 
9943 	if (vcpu->arch.apic->apicv_active)
9944 		return;
9945 
9946 	if (!vcpu->arch.apic->vapic_addr)
9947 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9948 	else
9949 		max_irr = -1;
9950 
9951 	if (max_irr != -1)
9952 		max_irr >>= 4;
9953 
9954 	tpr = kvm_lapic_get_cr8(vcpu);
9955 
9956 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9957 }
9958 
9959 
9960 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9961 {
9962 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9963 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9964 		return 1;
9965 	}
9966 
9967 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9968 }
9969 
9970 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9971 {
9972 	/*
9973 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
9974 	 * exceptions don't report error codes.  The presence of an error code
9975 	 * is carried with the exception and only stripped when the exception
9976 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
9977 	 * report an error code despite the CPU being in Real Mode.
9978 	 */
9979 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
9980 
9981 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
9982 				vcpu->arch.exception.has_error_code,
9983 				vcpu->arch.exception.error_code,
9984 				vcpu->arch.exception.injected);
9985 
9986 	static_call(kvm_x86_inject_exception)(vcpu);
9987 }
9988 
9989 /*
9990  * Check for any event (interrupt or exception) that is ready to be injected,
9991  * and if there is at least one event, inject the event with the highest
9992  * priority.  This handles both "pending" events, i.e. events that have never
9993  * been injected into the guest, and "injected" events, i.e. events that were
9994  * injected as part of a previous VM-Enter, but weren't successfully delivered
9995  * and need to be re-injected.
9996  *
9997  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9998  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
9999  * be able to inject exceptions in the "middle" of an instruction, and so must
10000  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10001  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10002  * boundaries is necessary and correct.
10003  *
10004  * For simplicity, KVM uses a single path to inject all events (except events
10005  * that are injected directly from L1 to L2) and doesn't explicitly track
10006  * instruction boundaries for asynchronous events.  However, because VM-Exits
10007  * that can occur during instruction execution typically result in KVM skipping
10008  * the instruction or injecting an exception, e.g. instruction and exception
10009  * intercepts, and because pending exceptions have higher priority than pending
10010  * interrupts, KVM still honors instruction boundaries in most scenarios.
10011  *
10012  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10013  * the instruction or inject an exception, then KVM can incorrecty inject a new
10014  * asynchrounous event if the event became pending after the CPU fetched the
10015  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10016  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10017  * injected on the restarted instruction instead of being deferred until the
10018  * instruction completes.
10019  *
10020  * In practice, this virtualization hole is unlikely to be observed by the
10021  * guest, and even less likely to cause functional problems.  To detect the
10022  * hole, the guest would have to trigger an event on a side effect of an early
10023  * phase of instruction execution, e.g. on the instruction fetch from memory.
10024  * And for it to be a functional problem, the guest would need to depend on the
10025  * ordering between that side effect, the instruction completing, _and_ the
10026  * delivery of the asynchronous event.
10027  */
10028 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10029 				       bool *req_immediate_exit)
10030 {
10031 	bool can_inject;
10032 	int r;
10033 
10034 	/*
10035 	 * Process nested events first, as nested VM-Exit supercedes event
10036 	 * re-injection.  If there's an event queued for re-injection, it will
10037 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10038 	 */
10039 	if (is_guest_mode(vcpu))
10040 		r = kvm_check_nested_events(vcpu);
10041 	else
10042 		r = 0;
10043 
10044 	/*
10045 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10046 	 * to/from L2 is needed, as any event that has already been injected
10047 	 * into L2 needs to complete its lifecycle before injecting a new event.
10048 	 *
10049 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10050 	 * This collision arises if an exception occurred while vectoring the
10051 	 * injected event, KVM intercepted said exception, and KVM ultimately
10052 	 * determined the fault belongs to the guest and queues the exception
10053 	 * for injection back into the guest.
10054 	 *
10055 	 * "Injected" interrupts can also collide with pending exceptions if
10056 	 * userspace ignores the "ready for injection" flag and blindly queues
10057 	 * an interrupt.  In that case, prioritizing the exception is correct,
10058 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10059 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10060 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10061 	 * priority, they're only generated (pended) during instruction
10062 	 * execution, and interrupts are recognized at instruction boundaries.
10063 	 * Thus a pending fault-like exception means the fault occurred on the
10064 	 * *previous* instruction and must be serviced prior to recognizing any
10065 	 * new events in order to fully complete the previous instruction.
10066 	 */
10067 	if (vcpu->arch.exception.injected)
10068 		kvm_inject_exception(vcpu);
10069 	else if (kvm_is_exception_pending(vcpu))
10070 		; /* see above */
10071 	else if (vcpu->arch.nmi_injected)
10072 		static_call(kvm_x86_inject_nmi)(vcpu);
10073 	else if (vcpu->arch.interrupt.injected)
10074 		static_call(kvm_x86_inject_irq)(vcpu, true);
10075 
10076 	/*
10077 	 * Exceptions that morph to VM-Exits are handled above, and pending
10078 	 * exceptions on top of injected exceptions that do not VM-Exit should
10079 	 * either morph to #DF or, sadly, override the injected exception.
10080 	 */
10081 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10082 		     vcpu->arch.exception.pending);
10083 
10084 	/*
10085 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10086 	 * nested VM-Enter or event re-injection so that a different pending
10087 	 * event can be serviced (or if KVM needs to exit to userspace).
10088 	 *
10089 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10090 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10091 	 * there may now be events that can be injected into L1.
10092 	 */
10093 	if (r < 0)
10094 		goto out;
10095 
10096 	/*
10097 	 * A pending exception VM-Exit should either result in nested VM-Exit
10098 	 * or force an immediate re-entry and exit to/from L2, and exception
10099 	 * VM-Exits cannot be injected (flag should _never_ be set).
10100 	 */
10101 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10102 		     vcpu->arch.exception_vmexit.pending);
10103 
10104 	/*
10105 	 * New events, other than exceptions, cannot be injected if KVM needs
10106 	 * to re-inject a previous event.  See above comments on re-injecting
10107 	 * for why pending exceptions get priority.
10108 	 */
10109 	can_inject = !kvm_event_needs_reinjection(vcpu);
10110 
10111 	if (vcpu->arch.exception.pending) {
10112 		/*
10113 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10114 		 * value pushed on the stack.  Trap-like exception and all #DBs
10115 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10116 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10117 		 *
10118 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10119 		 * describe the behavior of General Detect #DBs, which are
10120 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10121 		 */
10122 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10123 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10124 					     X86_EFLAGS_RF);
10125 
10126 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10127 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10128 			if (vcpu->arch.dr7 & DR7_GD) {
10129 				vcpu->arch.dr7 &= ~DR7_GD;
10130 				kvm_update_dr7(vcpu);
10131 			}
10132 		}
10133 
10134 		kvm_inject_exception(vcpu);
10135 
10136 		vcpu->arch.exception.pending = false;
10137 		vcpu->arch.exception.injected = true;
10138 
10139 		can_inject = false;
10140 	}
10141 
10142 	/* Don't inject interrupts if the user asked to avoid doing so */
10143 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10144 		return 0;
10145 
10146 	/*
10147 	 * Finally, inject interrupt events.  If an event cannot be injected
10148 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10149 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10150 	 * and can architecturally be injected, but we cannot do it right now:
10151 	 * an interrupt could have arrived just now and we have to inject it
10152 	 * as a vmexit, or there could already an event in the queue, which is
10153 	 * indicated by can_inject.  In that case we request an immediate exit
10154 	 * in order to make progress and get back here for another iteration.
10155 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10156 	 */
10157 #ifdef CONFIG_KVM_SMM
10158 	if (vcpu->arch.smi_pending) {
10159 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10160 		if (r < 0)
10161 			goto out;
10162 		if (r) {
10163 			vcpu->arch.smi_pending = false;
10164 			++vcpu->arch.smi_count;
10165 			enter_smm(vcpu);
10166 			can_inject = false;
10167 		} else
10168 			static_call(kvm_x86_enable_smi_window)(vcpu);
10169 	}
10170 #endif
10171 
10172 	if (vcpu->arch.nmi_pending) {
10173 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10174 		if (r < 0)
10175 			goto out;
10176 		if (r) {
10177 			--vcpu->arch.nmi_pending;
10178 			vcpu->arch.nmi_injected = true;
10179 			static_call(kvm_x86_inject_nmi)(vcpu);
10180 			can_inject = false;
10181 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10182 		}
10183 		if (vcpu->arch.nmi_pending)
10184 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10185 	}
10186 
10187 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10188 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10189 		if (r < 0)
10190 			goto out;
10191 		if (r) {
10192 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10193 			static_call(kvm_x86_inject_irq)(vcpu, false);
10194 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10195 		}
10196 		if (kvm_cpu_has_injectable_intr(vcpu))
10197 			static_call(kvm_x86_enable_irq_window)(vcpu);
10198 	}
10199 
10200 	if (is_guest_mode(vcpu) &&
10201 	    kvm_x86_ops.nested_ops->has_events &&
10202 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10203 		*req_immediate_exit = true;
10204 
10205 	/*
10206 	 * KVM must never queue a new exception while injecting an event; KVM
10207 	 * is done emulating and should only propagate the to-be-injected event
10208 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10209 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10210 	 * exception and start the cycle all over.
10211 	 *
10212 	 * Exempt triple faults as they have special handling and won't put the
10213 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10214 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10215 	 * Mode events (see kvm_inject_realmode_interrupt()).
10216 	 */
10217 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10218 		     vcpu->arch.exception_vmexit.pending);
10219 	return 0;
10220 
10221 out:
10222 	if (r == -EBUSY) {
10223 		*req_immediate_exit = true;
10224 		r = 0;
10225 	}
10226 	return r;
10227 }
10228 
10229 static void process_nmi(struct kvm_vcpu *vcpu)
10230 {
10231 	unsigned int limit;
10232 
10233 	/*
10234 	 * x86 is limited to one NMI pending, but because KVM can't react to
10235 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10236 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10237 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10238 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10239 	 * waiting for a previous NMI injection to complete (which effectively
10240 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10241 	 * will request an NMI window to handle the second NMI.
10242 	 */
10243 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10244 		limit = 1;
10245 	else
10246 		limit = 2;
10247 
10248 	/*
10249 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10250 	 * tracked in vcpu->arch.nmi_pending.
10251 	 */
10252 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10253 		limit--;
10254 
10255 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10256 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10257 
10258 	if (vcpu->arch.nmi_pending &&
10259 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10260 		vcpu->arch.nmi_pending--;
10261 
10262 	if (vcpu->arch.nmi_pending)
10263 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10264 }
10265 
10266 /* Return total number of NMIs pending injection to the VM */
10267 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10268 {
10269 	return vcpu->arch.nmi_pending +
10270 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10271 }
10272 
10273 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10274 				       unsigned long *vcpu_bitmap)
10275 {
10276 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10277 }
10278 
10279 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10280 {
10281 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10282 }
10283 
10284 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10285 {
10286 	struct kvm_lapic *apic = vcpu->arch.apic;
10287 	bool activate;
10288 
10289 	if (!lapic_in_kernel(vcpu))
10290 		return;
10291 
10292 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10293 	preempt_disable();
10294 
10295 	/* Do not activate APICV when APIC is disabled */
10296 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10297 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10298 
10299 	if (apic->apicv_active == activate)
10300 		goto out;
10301 
10302 	apic->apicv_active = activate;
10303 	kvm_apic_update_apicv(vcpu);
10304 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10305 
10306 	/*
10307 	 * When APICv gets disabled, we may still have injected interrupts
10308 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10309 	 * still active when the interrupt got accepted. Make sure
10310 	 * kvm_check_and_inject_events() is called to check for that.
10311 	 */
10312 	if (!apic->apicv_active)
10313 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10314 
10315 out:
10316 	preempt_enable();
10317 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10318 }
10319 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10320 
10321 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10322 {
10323 	if (!lapic_in_kernel(vcpu))
10324 		return;
10325 
10326 	/*
10327 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10328 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10329 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10330 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10331 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10332 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10333 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10334 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10335 	 * access page is sticky.
10336 	 */
10337 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10338 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10339 		kvm_inhibit_apic_access_page(vcpu);
10340 
10341 	__kvm_vcpu_update_apicv(vcpu);
10342 }
10343 
10344 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10345 				      enum kvm_apicv_inhibit reason, bool set)
10346 {
10347 	unsigned long old, new;
10348 
10349 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10350 
10351 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10352 		return;
10353 
10354 	old = new = kvm->arch.apicv_inhibit_reasons;
10355 
10356 	set_or_clear_apicv_inhibit(&new, reason, set);
10357 
10358 	if (!!old != !!new) {
10359 		/*
10360 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10361 		 * false positives in the sanity check WARN in svm_vcpu_run().
10362 		 * This task will wait for all vCPUs to ack the kick IRQ before
10363 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10364 		 * block on acquiring apicv_update_lock so that vCPUs can't
10365 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10366 		 *
10367 		 * Note, holding apicv_update_lock and taking it in the read
10368 		 * side (handling the request) also prevents other vCPUs from
10369 		 * servicing the request with a stale apicv_inhibit_reasons.
10370 		 */
10371 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10372 		kvm->arch.apicv_inhibit_reasons = new;
10373 		if (new) {
10374 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10375 			int idx = srcu_read_lock(&kvm->srcu);
10376 
10377 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10378 			srcu_read_unlock(&kvm->srcu, idx);
10379 		}
10380 	} else {
10381 		kvm->arch.apicv_inhibit_reasons = new;
10382 	}
10383 }
10384 
10385 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10386 				    enum kvm_apicv_inhibit reason, bool set)
10387 {
10388 	if (!enable_apicv)
10389 		return;
10390 
10391 	down_write(&kvm->arch.apicv_update_lock);
10392 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10393 	up_write(&kvm->arch.apicv_update_lock);
10394 }
10395 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10396 
10397 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10398 {
10399 	if (!kvm_apic_present(vcpu))
10400 		return;
10401 
10402 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10403 
10404 	if (irqchip_split(vcpu->kvm))
10405 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10406 	else {
10407 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10408 		if (ioapic_in_kernel(vcpu->kvm))
10409 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10410 	}
10411 
10412 	if (is_guest_mode(vcpu))
10413 		vcpu->arch.load_eoi_exitmap_pending = true;
10414 	else
10415 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10416 }
10417 
10418 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10419 {
10420 	u64 eoi_exit_bitmap[4];
10421 
10422 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10423 		return;
10424 
10425 	if (to_hv_vcpu(vcpu)) {
10426 		bitmap_or((ulong *)eoi_exit_bitmap,
10427 			  vcpu->arch.ioapic_handled_vectors,
10428 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10429 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10430 		return;
10431 	}
10432 
10433 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10434 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10435 }
10436 
10437 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10438 					    unsigned long start, unsigned long end)
10439 {
10440 	unsigned long apic_address;
10441 
10442 	/*
10443 	 * The physical address of apic access page is stored in the VMCS.
10444 	 * Update it when it becomes invalid.
10445 	 */
10446 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10447 	if (start <= apic_address && apic_address < end)
10448 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10449 }
10450 
10451 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10452 {
10453 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10454 }
10455 
10456 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10457 {
10458 	if (!lapic_in_kernel(vcpu))
10459 		return;
10460 
10461 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10462 }
10463 
10464 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10465 {
10466 	smp_send_reschedule(vcpu->cpu);
10467 }
10468 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10469 
10470 /*
10471  * Called within kvm->srcu read side.
10472  * Returns 1 to let vcpu_run() continue the guest execution loop without
10473  * exiting to the userspace.  Otherwise, the value will be returned to the
10474  * userspace.
10475  */
10476 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10477 {
10478 	int r;
10479 	bool req_int_win =
10480 		dm_request_for_irq_injection(vcpu) &&
10481 		kvm_cpu_accept_dm_intr(vcpu);
10482 	fastpath_t exit_fastpath;
10483 
10484 	bool req_immediate_exit = false;
10485 
10486 	if (kvm_request_pending(vcpu)) {
10487 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10488 			r = -EIO;
10489 			goto out;
10490 		}
10491 
10492 		if (kvm_dirty_ring_check_request(vcpu)) {
10493 			r = 0;
10494 			goto out;
10495 		}
10496 
10497 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10498 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10499 				r = 0;
10500 				goto out;
10501 			}
10502 		}
10503 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10504 			kvm_mmu_free_obsolete_roots(vcpu);
10505 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10506 			__kvm_migrate_timers(vcpu);
10507 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10508 			kvm_update_masterclock(vcpu->kvm);
10509 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10510 			kvm_gen_kvmclock_update(vcpu);
10511 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10512 			r = kvm_guest_time_update(vcpu);
10513 			if (unlikely(r))
10514 				goto out;
10515 		}
10516 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10517 			kvm_mmu_sync_roots(vcpu);
10518 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10519 			kvm_mmu_load_pgd(vcpu);
10520 
10521 		/*
10522 		 * Note, the order matters here, as flushing "all" TLB entries
10523 		 * also flushes the "current" TLB entries, i.e. servicing the
10524 		 * flush "all" will clear any request to flush "current".
10525 		 */
10526 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10527 			kvm_vcpu_flush_tlb_all(vcpu);
10528 
10529 		kvm_service_local_tlb_flush_requests(vcpu);
10530 
10531 		/*
10532 		 * Fall back to a "full" guest flush if Hyper-V's precise
10533 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10534 		 * the flushes are considered "remote" and not "local" because
10535 		 * the requests can be initiated from other vCPUs.
10536 		 */
10537 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10538 		    kvm_hv_vcpu_flush_tlb(vcpu))
10539 			kvm_vcpu_flush_tlb_guest(vcpu);
10540 
10541 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10542 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10543 			r = 0;
10544 			goto out;
10545 		}
10546 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10547 			if (is_guest_mode(vcpu))
10548 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10549 
10550 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10551 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10552 				vcpu->mmio_needed = 0;
10553 				r = 0;
10554 				goto out;
10555 			}
10556 		}
10557 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10558 			/* Page is swapped out. Do synthetic halt */
10559 			vcpu->arch.apf.halted = true;
10560 			r = 1;
10561 			goto out;
10562 		}
10563 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10564 			record_steal_time(vcpu);
10565 #ifdef CONFIG_KVM_SMM
10566 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10567 			process_smi(vcpu);
10568 #endif
10569 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10570 			process_nmi(vcpu);
10571 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10572 			kvm_pmu_handle_event(vcpu);
10573 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10574 			kvm_pmu_deliver_pmi(vcpu);
10575 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10576 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10577 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10578 				     vcpu->arch.ioapic_handled_vectors)) {
10579 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10580 				vcpu->run->eoi.vector =
10581 						vcpu->arch.pending_ioapic_eoi;
10582 				r = 0;
10583 				goto out;
10584 			}
10585 		}
10586 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10587 			vcpu_scan_ioapic(vcpu);
10588 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10589 			vcpu_load_eoi_exitmap(vcpu);
10590 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10591 			kvm_vcpu_reload_apic_access_page(vcpu);
10592 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10593 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10594 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10595 			vcpu->run->system_event.ndata = 0;
10596 			r = 0;
10597 			goto out;
10598 		}
10599 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10600 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10601 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10602 			vcpu->run->system_event.ndata = 0;
10603 			r = 0;
10604 			goto out;
10605 		}
10606 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10607 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10608 
10609 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10610 			vcpu->run->hyperv = hv_vcpu->exit;
10611 			r = 0;
10612 			goto out;
10613 		}
10614 
10615 		/*
10616 		 * KVM_REQ_HV_STIMER has to be processed after
10617 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10618 		 * depend on the guest clock being up-to-date
10619 		 */
10620 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10621 			kvm_hv_process_stimers(vcpu);
10622 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10623 			kvm_vcpu_update_apicv(vcpu);
10624 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10625 			kvm_check_async_pf_completion(vcpu);
10626 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10627 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10628 
10629 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10630 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10631 	}
10632 
10633 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10634 	    kvm_xen_has_interrupt(vcpu)) {
10635 		++vcpu->stat.req_event;
10636 		r = kvm_apic_accept_events(vcpu);
10637 		if (r < 0) {
10638 			r = 0;
10639 			goto out;
10640 		}
10641 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10642 			r = 1;
10643 			goto out;
10644 		}
10645 
10646 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10647 		if (r < 0) {
10648 			r = 0;
10649 			goto out;
10650 		}
10651 		if (req_int_win)
10652 			static_call(kvm_x86_enable_irq_window)(vcpu);
10653 
10654 		if (kvm_lapic_enabled(vcpu)) {
10655 			update_cr8_intercept(vcpu);
10656 			kvm_lapic_sync_to_vapic(vcpu);
10657 		}
10658 	}
10659 
10660 	r = kvm_mmu_reload(vcpu);
10661 	if (unlikely(r)) {
10662 		goto cancel_injection;
10663 	}
10664 
10665 	preempt_disable();
10666 
10667 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10668 
10669 	/*
10670 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10671 	 * IPI are then delayed after guest entry, which ensures that they
10672 	 * result in virtual interrupt delivery.
10673 	 */
10674 	local_irq_disable();
10675 
10676 	/* Store vcpu->apicv_active before vcpu->mode.  */
10677 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10678 
10679 	kvm_vcpu_srcu_read_unlock(vcpu);
10680 
10681 	/*
10682 	 * 1) We should set ->mode before checking ->requests.  Please see
10683 	 * the comment in kvm_vcpu_exiting_guest_mode().
10684 	 *
10685 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10686 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10687 	 * (see vmx_deliver_posted_interrupt).
10688 	 *
10689 	 * 3) This also orders the write to mode from any reads to the page
10690 	 * tables done while the VCPU is running.  Please see the comment
10691 	 * in kvm_flush_remote_tlbs.
10692 	 */
10693 	smp_mb__after_srcu_read_unlock();
10694 
10695 	/*
10696 	 * Process pending posted interrupts to handle the case where the
10697 	 * notification IRQ arrived in the host, or was never sent (because the
10698 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10699 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10700 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10701 	 */
10702 	if (kvm_lapic_enabled(vcpu))
10703 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10704 
10705 	if (kvm_vcpu_exit_request(vcpu)) {
10706 		vcpu->mode = OUTSIDE_GUEST_MODE;
10707 		smp_wmb();
10708 		local_irq_enable();
10709 		preempt_enable();
10710 		kvm_vcpu_srcu_read_lock(vcpu);
10711 		r = 1;
10712 		goto cancel_injection;
10713 	}
10714 
10715 	if (req_immediate_exit) {
10716 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10717 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10718 	}
10719 
10720 	fpregs_assert_state_consistent();
10721 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10722 		switch_fpu_return();
10723 
10724 	if (vcpu->arch.guest_fpu.xfd_err)
10725 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10726 
10727 	if (unlikely(vcpu->arch.switch_db_regs)) {
10728 		set_debugreg(0, 7);
10729 		set_debugreg(vcpu->arch.eff_db[0], 0);
10730 		set_debugreg(vcpu->arch.eff_db[1], 1);
10731 		set_debugreg(vcpu->arch.eff_db[2], 2);
10732 		set_debugreg(vcpu->arch.eff_db[3], 3);
10733 	} else if (unlikely(hw_breakpoint_active())) {
10734 		set_debugreg(0, 7);
10735 	}
10736 
10737 	guest_timing_enter_irqoff();
10738 
10739 	for (;;) {
10740 		/*
10741 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10742 		 * update must kick and wait for all vCPUs before toggling the
10743 		 * per-VM state, and responsing vCPUs must wait for the update
10744 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10745 		 */
10746 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10747 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10748 
10749 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10750 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10751 			break;
10752 
10753 		if (kvm_lapic_enabled(vcpu))
10754 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10755 
10756 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10757 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10758 			break;
10759 		}
10760 
10761 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10762 		++vcpu->stat.exits;
10763 	}
10764 
10765 	/*
10766 	 * Do this here before restoring debug registers on the host.  And
10767 	 * since we do this before handling the vmexit, a DR access vmexit
10768 	 * can (a) read the correct value of the debug registers, (b) set
10769 	 * KVM_DEBUGREG_WONT_EXIT again.
10770 	 */
10771 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10772 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10773 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10774 		kvm_update_dr0123(vcpu);
10775 		kvm_update_dr7(vcpu);
10776 	}
10777 
10778 	/*
10779 	 * If the guest has used debug registers, at least dr7
10780 	 * will be disabled while returning to the host.
10781 	 * If we don't have active breakpoints in the host, we don't
10782 	 * care about the messed up debug address registers. But if
10783 	 * we have some of them active, restore the old state.
10784 	 */
10785 	if (hw_breakpoint_active())
10786 		hw_breakpoint_restore();
10787 
10788 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10789 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10790 
10791 	vcpu->mode = OUTSIDE_GUEST_MODE;
10792 	smp_wmb();
10793 
10794 	/*
10795 	 * Sync xfd before calling handle_exit_irqoff() which may
10796 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10797 	 * in #NM irqoff handler).
10798 	 */
10799 	if (vcpu->arch.xfd_no_write_intercept)
10800 		fpu_sync_guest_vmexit_xfd_state();
10801 
10802 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10803 
10804 	if (vcpu->arch.guest_fpu.xfd_err)
10805 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10806 
10807 	/*
10808 	 * Consume any pending interrupts, including the possible source of
10809 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10810 	 * An instruction is required after local_irq_enable() to fully unblock
10811 	 * interrupts on processors that implement an interrupt shadow, the
10812 	 * stat.exits increment will do nicely.
10813 	 */
10814 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10815 	local_irq_enable();
10816 	++vcpu->stat.exits;
10817 	local_irq_disable();
10818 	kvm_after_interrupt(vcpu);
10819 
10820 	/*
10821 	 * Wait until after servicing IRQs to account guest time so that any
10822 	 * ticks that occurred while running the guest are properly accounted
10823 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10824 	 * of accounting via context tracking, but the loss of accuracy is
10825 	 * acceptable for all known use cases.
10826 	 */
10827 	guest_timing_exit_irqoff();
10828 
10829 	local_irq_enable();
10830 	preempt_enable();
10831 
10832 	kvm_vcpu_srcu_read_lock(vcpu);
10833 
10834 	/*
10835 	 * Profile KVM exit RIPs:
10836 	 */
10837 	if (unlikely(prof_on == KVM_PROFILING)) {
10838 		unsigned long rip = kvm_rip_read(vcpu);
10839 		profile_hit(KVM_PROFILING, (void *)rip);
10840 	}
10841 
10842 	if (unlikely(vcpu->arch.tsc_always_catchup))
10843 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10844 
10845 	if (vcpu->arch.apic_attention)
10846 		kvm_lapic_sync_from_vapic(vcpu);
10847 
10848 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10849 	return r;
10850 
10851 cancel_injection:
10852 	if (req_immediate_exit)
10853 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10854 	static_call(kvm_x86_cancel_injection)(vcpu);
10855 	if (unlikely(vcpu->arch.apic_attention))
10856 		kvm_lapic_sync_from_vapic(vcpu);
10857 out:
10858 	return r;
10859 }
10860 
10861 /* Called within kvm->srcu read side.  */
10862 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10863 {
10864 	bool hv_timer;
10865 
10866 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10867 		/*
10868 		 * Switch to the software timer before halt-polling/blocking as
10869 		 * the guest's timer may be a break event for the vCPU, and the
10870 		 * hypervisor timer runs only when the CPU is in guest mode.
10871 		 * Switch before halt-polling so that KVM recognizes an expired
10872 		 * timer before blocking.
10873 		 */
10874 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10875 		if (hv_timer)
10876 			kvm_lapic_switch_to_sw_timer(vcpu);
10877 
10878 		kvm_vcpu_srcu_read_unlock(vcpu);
10879 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10880 			kvm_vcpu_halt(vcpu);
10881 		else
10882 			kvm_vcpu_block(vcpu);
10883 		kvm_vcpu_srcu_read_lock(vcpu);
10884 
10885 		if (hv_timer)
10886 			kvm_lapic_switch_to_hv_timer(vcpu);
10887 
10888 		/*
10889 		 * If the vCPU is not runnable, a signal or another host event
10890 		 * of some kind is pending; service it without changing the
10891 		 * vCPU's activity state.
10892 		 */
10893 		if (!kvm_arch_vcpu_runnable(vcpu))
10894 			return 1;
10895 	}
10896 
10897 	/*
10898 	 * Evaluate nested events before exiting the halted state.  This allows
10899 	 * the halt state to be recorded properly in the VMCS12's activity
10900 	 * state field (AMD does not have a similar field and a VM-Exit always
10901 	 * causes a spurious wakeup from HLT).
10902 	 */
10903 	if (is_guest_mode(vcpu)) {
10904 		if (kvm_check_nested_events(vcpu) < 0)
10905 			return 0;
10906 	}
10907 
10908 	if (kvm_apic_accept_events(vcpu) < 0)
10909 		return 0;
10910 	switch(vcpu->arch.mp_state) {
10911 	case KVM_MP_STATE_HALTED:
10912 	case KVM_MP_STATE_AP_RESET_HOLD:
10913 		vcpu->arch.pv.pv_unhalted = false;
10914 		vcpu->arch.mp_state =
10915 			KVM_MP_STATE_RUNNABLE;
10916 		fallthrough;
10917 	case KVM_MP_STATE_RUNNABLE:
10918 		vcpu->arch.apf.halted = false;
10919 		break;
10920 	case KVM_MP_STATE_INIT_RECEIVED:
10921 		break;
10922 	default:
10923 		WARN_ON_ONCE(1);
10924 		break;
10925 	}
10926 	return 1;
10927 }
10928 
10929 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10930 {
10931 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10932 		!vcpu->arch.apf.halted);
10933 }
10934 
10935 /* Called within kvm->srcu read side.  */
10936 static int vcpu_run(struct kvm_vcpu *vcpu)
10937 {
10938 	int r;
10939 
10940 	vcpu->arch.l1tf_flush_l1d = true;
10941 
10942 	for (;;) {
10943 		/*
10944 		 * If another guest vCPU requests a PV TLB flush in the middle
10945 		 * of instruction emulation, the rest of the emulation could
10946 		 * use a stale page translation. Assume that any code after
10947 		 * this point can start executing an instruction.
10948 		 */
10949 		vcpu->arch.at_instruction_boundary = false;
10950 		if (kvm_vcpu_running(vcpu)) {
10951 			r = vcpu_enter_guest(vcpu);
10952 		} else {
10953 			r = vcpu_block(vcpu);
10954 		}
10955 
10956 		if (r <= 0)
10957 			break;
10958 
10959 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10960 		if (kvm_xen_has_pending_events(vcpu))
10961 			kvm_xen_inject_pending_events(vcpu);
10962 
10963 		if (kvm_cpu_has_pending_timer(vcpu))
10964 			kvm_inject_pending_timer_irqs(vcpu);
10965 
10966 		if (dm_request_for_irq_injection(vcpu) &&
10967 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10968 			r = 0;
10969 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10970 			++vcpu->stat.request_irq_exits;
10971 			break;
10972 		}
10973 
10974 		if (__xfer_to_guest_mode_work_pending()) {
10975 			kvm_vcpu_srcu_read_unlock(vcpu);
10976 			r = xfer_to_guest_mode_handle_work(vcpu);
10977 			kvm_vcpu_srcu_read_lock(vcpu);
10978 			if (r)
10979 				return r;
10980 		}
10981 	}
10982 
10983 	return r;
10984 }
10985 
10986 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10987 {
10988 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10989 }
10990 
10991 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10992 {
10993 	BUG_ON(!vcpu->arch.pio.count);
10994 
10995 	return complete_emulated_io(vcpu);
10996 }
10997 
10998 /*
10999  * Implements the following, as a state machine:
11000  *
11001  * read:
11002  *   for each fragment
11003  *     for each mmio piece in the fragment
11004  *       write gpa, len
11005  *       exit
11006  *       copy data
11007  *   execute insn
11008  *
11009  * write:
11010  *   for each fragment
11011  *     for each mmio piece in the fragment
11012  *       write gpa, len
11013  *       copy data
11014  *       exit
11015  */
11016 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11017 {
11018 	struct kvm_run *run = vcpu->run;
11019 	struct kvm_mmio_fragment *frag;
11020 	unsigned len;
11021 
11022 	BUG_ON(!vcpu->mmio_needed);
11023 
11024 	/* Complete previous fragment */
11025 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11026 	len = min(8u, frag->len);
11027 	if (!vcpu->mmio_is_write)
11028 		memcpy(frag->data, run->mmio.data, len);
11029 
11030 	if (frag->len <= 8) {
11031 		/* Switch to the next fragment. */
11032 		frag++;
11033 		vcpu->mmio_cur_fragment++;
11034 	} else {
11035 		/* Go forward to the next mmio piece. */
11036 		frag->data += len;
11037 		frag->gpa += len;
11038 		frag->len -= len;
11039 	}
11040 
11041 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11042 		vcpu->mmio_needed = 0;
11043 
11044 		/* FIXME: return into emulator if single-stepping.  */
11045 		if (vcpu->mmio_is_write)
11046 			return 1;
11047 		vcpu->mmio_read_completed = 1;
11048 		return complete_emulated_io(vcpu);
11049 	}
11050 
11051 	run->exit_reason = KVM_EXIT_MMIO;
11052 	run->mmio.phys_addr = frag->gpa;
11053 	if (vcpu->mmio_is_write)
11054 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11055 	run->mmio.len = min(8u, frag->len);
11056 	run->mmio.is_write = vcpu->mmio_is_write;
11057 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11058 	return 0;
11059 }
11060 
11061 /* Swap (qemu) user FPU context for the guest FPU context. */
11062 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11063 {
11064 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11065 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11066 	trace_kvm_fpu(1);
11067 }
11068 
11069 /* When vcpu_run ends, restore user space FPU context. */
11070 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11071 {
11072 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11073 	++vcpu->stat.fpu_reload;
11074 	trace_kvm_fpu(0);
11075 }
11076 
11077 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11078 {
11079 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11080 	struct kvm_run *kvm_run = vcpu->run;
11081 	int r;
11082 
11083 	vcpu_load(vcpu);
11084 	kvm_sigset_activate(vcpu);
11085 	kvm_run->flags = 0;
11086 	kvm_load_guest_fpu(vcpu);
11087 
11088 	kvm_vcpu_srcu_read_lock(vcpu);
11089 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11090 		if (kvm_run->immediate_exit) {
11091 			r = -EINTR;
11092 			goto out;
11093 		}
11094 		/*
11095 		 * It should be impossible for the hypervisor timer to be in
11096 		 * use before KVM has ever run the vCPU.
11097 		 */
11098 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11099 
11100 		kvm_vcpu_srcu_read_unlock(vcpu);
11101 		kvm_vcpu_block(vcpu);
11102 		kvm_vcpu_srcu_read_lock(vcpu);
11103 
11104 		if (kvm_apic_accept_events(vcpu) < 0) {
11105 			r = 0;
11106 			goto out;
11107 		}
11108 		r = -EAGAIN;
11109 		if (signal_pending(current)) {
11110 			r = -EINTR;
11111 			kvm_run->exit_reason = KVM_EXIT_INTR;
11112 			++vcpu->stat.signal_exits;
11113 		}
11114 		goto out;
11115 	}
11116 
11117 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11118 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11119 		r = -EINVAL;
11120 		goto out;
11121 	}
11122 
11123 	if (kvm_run->kvm_dirty_regs) {
11124 		r = sync_regs(vcpu);
11125 		if (r != 0)
11126 			goto out;
11127 	}
11128 
11129 	/* re-sync apic's tpr */
11130 	if (!lapic_in_kernel(vcpu)) {
11131 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11132 			r = -EINVAL;
11133 			goto out;
11134 		}
11135 	}
11136 
11137 	/*
11138 	 * If userspace set a pending exception and L2 is active, convert it to
11139 	 * a pending VM-Exit if L1 wants to intercept the exception.
11140 	 */
11141 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11142 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11143 							ex->error_code)) {
11144 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11145 					   ex->has_error_code, ex->error_code,
11146 					   ex->has_payload, ex->payload);
11147 		ex->injected = false;
11148 		ex->pending = false;
11149 	}
11150 	vcpu->arch.exception_from_userspace = false;
11151 
11152 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11153 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11154 		vcpu->arch.complete_userspace_io = NULL;
11155 		r = cui(vcpu);
11156 		if (r <= 0)
11157 			goto out;
11158 	} else {
11159 		WARN_ON_ONCE(vcpu->arch.pio.count);
11160 		WARN_ON_ONCE(vcpu->mmio_needed);
11161 	}
11162 
11163 	if (kvm_run->immediate_exit) {
11164 		r = -EINTR;
11165 		goto out;
11166 	}
11167 
11168 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11169 	if (r <= 0)
11170 		goto out;
11171 
11172 	r = vcpu_run(vcpu);
11173 
11174 out:
11175 	kvm_put_guest_fpu(vcpu);
11176 	if (kvm_run->kvm_valid_regs)
11177 		store_regs(vcpu);
11178 	post_kvm_run_save(vcpu);
11179 	kvm_vcpu_srcu_read_unlock(vcpu);
11180 
11181 	kvm_sigset_deactivate(vcpu);
11182 	vcpu_put(vcpu);
11183 	return r;
11184 }
11185 
11186 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11187 {
11188 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11189 		/*
11190 		 * We are here if userspace calls get_regs() in the middle of
11191 		 * instruction emulation. Registers state needs to be copied
11192 		 * back from emulation context to vcpu. Userspace shouldn't do
11193 		 * that usually, but some bad designed PV devices (vmware
11194 		 * backdoor interface) need this to work
11195 		 */
11196 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11197 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11198 	}
11199 	regs->rax = kvm_rax_read(vcpu);
11200 	regs->rbx = kvm_rbx_read(vcpu);
11201 	regs->rcx = kvm_rcx_read(vcpu);
11202 	regs->rdx = kvm_rdx_read(vcpu);
11203 	regs->rsi = kvm_rsi_read(vcpu);
11204 	regs->rdi = kvm_rdi_read(vcpu);
11205 	regs->rsp = kvm_rsp_read(vcpu);
11206 	regs->rbp = kvm_rbp_read(vcpu);
11207 #ifdef CONFIG_X86_64
11208 	regs->r8 = kvm_r8_read(vcpu);
11209 	regs->r9 = kvm_r9_read(vcpu);
11210 	regs->r10 = kvm_r10_read(vcpu);
11211 	regs->r11 = kvm_r11_read(vcpu);
11212 	regs->r12 = kvm_r12_read(vcpu);
11213 	regs->r13 = kvm_r13_read(vcpu);
11214 	regs->r14 = kvm_r14_read(vcpu);
11215 	regs->r15 = kvm_r15_read(vcpu);
11216 #endif
11217 
11218 	regs->rip = kvm_rip_read(vcpu);
11219 	regs->rflags = kvm_get_rflags(vcpu);
11220 }
11221 
11222 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11223 {
11224 	vcpu_load(vcpu);
11225 	__get_regs(vcpu, regs);
11226 	vcpu_put(vcpu);
11227 	return 0;
11228 }
11229 
11230 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11231 {
11232 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11233 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11234 
11235 	kvm_rax_write(vcpu, regs->rax);
11236 	kvm_rbx_write(vcpu, regs->rbx);
11237 	kvm_rcx_write(vcpu, regs->rcx);
11238 	kvm_rdx_write(vcpu, regs->rdx);
11239 	kvm_rsi_write(vcpu, regs->rsi);
11240 	kvm_rdi_write(vcpu, regs->rdi);
11241 	kvm_rsp_write(vcpu, regs->rsp);
11242 	kvm_rbp_write(vcpu, regs->rbp);
11243 #ifdef CONFIG_X86_64
11244 	kvm_r8_write(vcpu, regs->r8);
11245 	kvm_r9_write(vcpu, regs->r9);
11246 	kvm_r10_write(vcpu, regs->r10);
11247 	kvm_r11_write(vcpu, regs->r11);
11248 	kvm_r12_write(vcpu, regs->r12);
11249 	kvm_r13_write(vcpu, regs->r13);
11250 	kvm_r14_write(vcpu, regs->r14);
11251 	kvm_r15_write(vcpu, regs->r15);
11252 #endif
11253 
11254 	kvm_rip_write(vcpu, regs->rip);
11255 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11256 
11257 	vcpu->arch.exception.pending = false;
11258 	vcpu->arch.exception_vmexit.pending = false;
11259 
11260 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11261 }
11262 
11263 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11264 {
11265 	vcpu_load(vcpu);
11266 	__set_regs(vcpu, regs);
11267 	vcpu_put(vcpu);
11268 	return 0;
11269 }
11270 
11271 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11272 {
11273 	struct desc_ptr dt;
11274 
11275 	if (vcpu->arch.guest_state_protected)
11276 		goto skip_protected_regs;
11277 
11278 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11279 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11280 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11281 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11282 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11283 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11284 
11285 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11286 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11287 
11288 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11289 	sregs->idt.limit = dt.size;
11290 	sregs->idt.base = dt.address;
11291 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11292 	sregs->gdt.limit = dt.size;
11293 	sregs->gdt.base = dt.address;
11294 
11295 	sregs->cr2 = vcpu->arch.cr2;
11296 	sregs->cr3 = kvm_read_cr3(vcpu);
11297 
11298 skip_protected_regs:
11299 	sregs->cr0 = kvm_read_cr0(vcpu);
11300 	sregs->cr4 = kvm_read_cr4(vcpu);
11301 	sregs->cr8 = kvm_get_cr8(vcpu);
11302 	sregs->efer = vcpu->arch.efer;
11303 	sregs->apic_base = kvm_get_apic_base(vcpu);
11304 }
11305 
11306 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11307 {
11308 	__get_sregs_common(vcpu, sregs);
11309 
11310 	if (vcpu->arch.guest_state_protected)
11311 		return;
11312 
11313 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11314 		set_bit(vcpu->arch.interrupt.nr,
11315 			(unsigned long *)sregs->interrupt_bitmap);
11316 }
11317 
11318 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11319 {
11320 	int i;
11321 
11322 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11323 
11324 	if (vcpu->arch.guest_state_protected)
11325 		return;
11326 
11327 	if (is_pae_paging(vcpu)) {
11328 		for (i = 0 ; i < 4 ; i++)
11329 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11330 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11331 	}
11332 }
11333 
11334 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11335 				  struct kvm_sregs *sregs)
11336 {
11337 	vcpu_load(vcpu);
11338 	__get_sregs(vcpu, sregs);
11339 	vcpu_put(vcpu);
11340 	return 0;
11341 }
11342 
11343 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11344 				    struct kvm_mp_state *mp_state)
11345 {
11346 	int r;
11347 
11348 	vcpu_load(vcpu);
11349 	if (kvm_mpx_supported())
11350 		kvm_load_guest_fpu(vcpu);
11351 
11352 	r = kvm_apic_accept_events(vcpu);
11353 	if (r < 0)
11354 		goto out;
11355 	r = 0;
11356 
11357 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11358 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11359 	    vcpu->arch.pv.pv_unhalted)
11360 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11361 	else
11362 		mp_state->mp_state = vcpu->arch.mp_state;
11363 
11364 out:
11365 	if (kvm_mpx_supported())
11366 		kvm_put_guest_fpu(vcpu);
11367 	vcpu_put(vcpu);
11368 	return r;
11369 }
11370 
11371 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11372 				    struct kvm_mp_state *mp_state)
11373 {
11374 	int ret = -EINVAL;
11375 
11376 	vcpu_load(vcpu);
11377 
11378 	switch (mp_state->mp_state) {
11379 	case KVM_MP_STATE_UNINITIALIZED:
11380 	case KVM_MP_STATE_HALTED:
11381 	case KVM_MP_STATE_AP_RESET_HOLD:
11382 	case KVM_MP_STATE_INIT_RECEIVED:
11383 	case KVM_MP_STATE_SIPI_RECEIVED:
11384 		if (!lapic_in_kernel(vcpu))
11385 			goto out;
11386 		break;
11387 
11388 	case KVM_MP_STATE_RUNNABLE:
11389 		break;
11390 
11391 	default:
11392 		goto out;
11393 	}
11394 
11395 	/*
11396 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11397 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11398 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11399 	 * if an SMI is pending as well.
11400 	 */
11401 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11402 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11403 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11404 		goto out;
11405 
11406 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11407 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11408 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11409 	} else
11410 		vcpu->arch.mp_state = mp_state->mp_state;
11411 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11412 
11413 	ret = 0;
11414 out:
11415 	vcpu_put(vcpu);
11416 	return ret;
11417 }
11418 
11419 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11420 		    int reason, bool has_error_code, u32 error_code)
11421 {
11422 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11423 	int ret;
11424 
11425 	init_emulate_ctxt(vcpu);
11426 
11427 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11428 				   has_error_code, error_code);
11429 	if (ret) {
11430 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11431 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11432 		vcpu->run->internal.ndata = 0;
11433 		return 0;
11434 	}
11435 
11436 	kvm_rip_write(vcpu, ctxt->eip);
11437 	kvm_set_rflags(vcpu, ctxt->eflags);
11438 	return 1;
11439 }
11440 EXPORT_SYMBOL_GPL(kvm_task_switch);
11441 
11442 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11443 {
11444 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11445 		/*
11446 		 * When EFER.LME and CR0.PG are set, the processor is in
11447 		 * 64-bit mode (though maybe in a 32-bit code segment).
11448 		 * CR4.PAE and EFER.LMA must be set.
11449 		 */
11450 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11451 			return false;
11452 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11453 			return false;
11454 	} else {
11455 		/*
11456 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11457 		 * segment cannot be 64-bit.
11458 		 */
11459 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11460 			return false;
11461 	}
11462 
11463 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
11464 }
11465 
11466 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11467 		int *mmu_reset_needed, bool update_pdptrs)
11468 {
11469 	struct msr_data apic_base_msr;
11470 	int idx;
11471 	struct desc_ptr dt;
11472 
11473 	if (!kvm_is_valid_sregs(vcpu, sregs))
11474 		return -EINVAL;
11475 
11476 	apic_base_msr.data = sregs->apic_base;
11477 	apic_base_msr.host_initiated = true;
11478 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11479 		return -EINVAL;
11480 
11481 	if (vcpu->arch.guest_state_protected)
11482 		return 0;
11483 
11484 	dt.size = sregs->idt.limit;
11485 	dt.address = sregs->idt.base;
11486 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11487 	dt.size = sregs->gdt.limit;
11488 	dt.address = sregs->gdt.base;
11489 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11490 
11491 	vcpu->arch.cr2 = sregs->cr2;
11492 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11493 	vcpu->arch.cr3 = sregs->cr3;
11494 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11495 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11496 
11497 	kvm_set_cr8(vcpu, sregs->cr8);
11498 
11499 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11500 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11501 
11502 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11503 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11504 	vcpu->arch.cr0 = sregs->cr0;
11505 
11506 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11507 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11508 
11509 	if (update_pdptrs) {
11510 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11511 		if (is_pae_paging(vcpu)) {
11512 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11513 			*mmu_reset_needed = 1;
11514 		}
11515 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11516 	}
11517 
11518 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11519 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11520 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11521 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11522 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11523 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11524 
11525 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11526 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11527 
11528 	update_cr8_intercept(vcpu);
11529 
11530 	/* Older userspace won't unhalt the vcpu on reset. */
11531 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11532 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11533 	    !is_protmode(vcpu))
11534 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11535 
11536 	return 0;
11537 }
11538 
11539 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11540 {
11541 	int pending_vec, max_bits;
11542 	int mmu_reset_needed = 0;
11543 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11544 
11545 	if (ret)
11546 		return ret;
11547 
11548 	if (mmu_reset_needed)
11549 		kvm_mmu_reset_context(vcpu);
11550 
11551 	max_bits = KVM_NR_INTERRUPTS;
11552 	pending_vec = find_first_bit(
11553 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11554 
11555 	if (pending_vec < max_bits) {
11556 		kvm_queue_interrupt(vcpu, pending_vec, false);
11557 		pr_debug("Set back pending irq %d\n", pending_vec);
11558 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11559 	}
11560 	return 0;
11561 }
11562 
11563 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11564 {
11565 	int mmu_reset_needed = 0;
11566 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11567 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11568 		!(sregs2->efer & EFER_LMA);
11569 	int i, ret;
11570 
11571 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11572 		return -EINVAL;
11573 
11574 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11575 		return -EINVAL;
11576 
11577 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11578 				 &mmu_reset_needed, !valid_pdptrs);
11579 	if (ret)
11580 		return ret;
11581 
11582 	if (valid_pdptrs) {
11583 		for (i = 0; i < 4 ; i++)
11584 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11585 
11586 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11587 		mmu_reset_needed = 1;
11588 		vcpu->arch.pdptrs_from_userspace = true;
11589 	}
11590 	if (mmu_reset_needed)
11591 		kvm_mmu_reset_context(vcpu);
11592 	return 0;
11593 }
11594 
11595 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11596 				  struct kvm_sregs *sregs)
11597 {
11598 	int ret;
11599 
11600 	vcpu_load(vcpu);
11601 	ret = __set_sregs(vcpu, sregs);
11602 	vcpu_put(vcpu);
11603 	return ret;
11604 }
11605 
11606 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11607 {
11608 	bool set = false;
11609 	struct kvm_vcpu *vcpu;
11610 	unsigned long i;
11611 
11612 	if (!enable_apicv)
11613 		return;
11614 
11615 	down_write(&kvm->arch.apicv_update_lock);
11616 
11617 	kvm_for_each_vcpu(i, vcpu, kvm) {
11618 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11619 			set = true;
11620 			break;
11621 		}
11622 	}
11623 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11624 	up_write(&kvm->arch.apicv_update_lock);
11625 }
11626 
11627 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11628 					struct kvm_guest_debug *dbg)
11629 {
11630 	unsigned long rflags;
11631 	int i, r;
11632 
11633 	if (vcpu->arch.guest_state_protected)
11634 		return -EINVAL;
11635 
11636 	vcpu_load(vcpu);
11637 
11638 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11639 		r = -EBUSY;
11640 		if (kvm_is_exception_pending(vcpu))
11641 			goto out;
11642 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11643 			kvm_queue_exception(vcpu, DB_VECTOR);
11644 		else
11645 			kvm_queue_exception(vcpu, BP_VECTOR);
11646 	}
11647 
11648 	/*
11649 	 * Read rflags as long as potentially injected trace flags are still
11650 	 * filtered out.
11651 	 */
11652 	rflags = kvm_get_rflags(vcpu);
11653 
11654 	vcpu->guest_debug = dbg->control;
11655 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11656 		vcpu->guest_debug = 0;
11657 
11658 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11659 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11660 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11661 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11662 	} else {
11663 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11664 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11665 	}
11666 	kvm_update_dr7(vcpu);
11667 
11668 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11669 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11670 
11671 	/*
11672 	 * Trigger an rflags update that will inject or remove the trace
11673 	 * flags.
11674 	 */
11675 	kvm_set_rflags(vcpu, rflags);
11676 
11677 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11678 
11679 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11680 
11681 	r = 0;
11682 
11683 out:
11684 	vcpu_put(vcpu);
11685 	return r;
11686 }
11687 
11688 /*
11689  * Translate a guest virtual address to a guest physical address.
11690  */
11691 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11692 				    struct kvm_translation *tr)
11693 {
11694 	unsigned long vaddr = tr->linear_address;
11695 	gpa_t gpa;
11696 	int idx;
11697 
11698 	vcpu_load(vcpu);
11699 
11700 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11701 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11702 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11703 	tr->physical_address = gpa;
11704 	tr->valid = gpa != INVALID_GPA;
11705 	tr->writeable = 1;
11706 	tr->usermode = 0;
11707 
11708 	vcpu_put(vcpu);
11709 	return 0;
11710 }
11711 
11712 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11713 {
11714 	struct fxregs_state *fxsave;
11715 
11716 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11717 		return 0;
11718 
11719 	vcpu_load(vcpu);
11720 
11721 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11722 	memcpy(fpu->fpr, fxsave->st_space, 128);
11723 	fpu->fcw = fxsave->cwd;
11724 	fpu->fsw = fxsave->swd;
11725 	fpu->ftwx = fxsave->twd;
11726 	fpu->last_opcode = fxsave->fop;
11727 	fpu->last_ip = fxsave->rip;
11728 	fpu->last_dp = fxsave->rdp;
11729 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11730 
11731 	vcpu_put(vcpu);
11732 	return 0;
11733 }
11734 
11735 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11736 {
11737 	struct fxregs_state *fxsave;
11738 
11739 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11740 		return 0;
11741 
11742 	vcpu_load(vcpu);
11743 
11744 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11745 
11746 	memcpy(fxsave->st_space, fpu->fpr, 128);
11747 	fxsave->cwd = fpu->fcw;
11748 	fxsave->swd = fpu->fsw;
11749 	fxsave->twd = fpu->ftwx;
11750 	fxsave->fop = fpu->last_opcode;
11751 	fxsave->rip = fpu->last_ip;
11752 	fxsave->rdp = fpu->last_dp;
11753 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11754 
11755 	vcpu_put(vcpu);
11756 	return 0;
11757 }
11758 
11759 static void store_regs(struct kvm_vcpu *vcpu)
11760 {
11761 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11762 
11763 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11764 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11765 
11766 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11767 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11768 
11769 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11770 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11771 				vcpu, &vcpu->run->s.regs.events);
11772 }
11773 
11774 static int sync_regs(struct kvm_vcpu *vcpu)
11775 {
11776 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11777 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11778 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11779 	}
11780 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11781 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11782 			return -EINVAL;
11783 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11784 	}
11785 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11786 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11787 				vcpu, &vcpu->run->s.regs.events))
11788 			return -EINVAL;
11789 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11790 	}
11791 
11792 	return 0;
11793 }
11794 
11795 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11796 {
11797 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11798 		pr_warn_once("SMP vm created on host with unstable TSC; "
11799 			     "guest TSC will not be reliable\n");
11800 
11801 	if (!kvm->arch.max_vcpu_ids)
11802 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11803 
11804 	if (id >= kvm->arch.max_vcpu_ids)
11805 		return -EINVAL;
11806 
11807 	return static_call(kvm_x86_vcpu_precreate)(kvm);
11808 }
11809 
11810 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11811 {
11812 	struct page *page;
11813 	int r;
11814 
11815 	vcpu->arch.last_vmentry_cpu = -1;
11816 	vcpu->arch.regs_avail = ~0;
11817 	vcpu->arch.regs_dirty = ~0;
11818 
11819 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11820 
11821 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11822 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11823 	else
11824 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11825 
11826 	r = kvm_mmu_create(vcpu);
11827 	if (r < 0)
11828 		return r;
11829 
11830 	if (irqchip_in_kernel(vcpu->kvm)) {
11831 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11832 		if (r < 0)
11833 			goto fail_mmu_destroy;
11834 
11835 		/*
11836 		 * Defer evaluating inhibits until the vCPU is first run, as
11837 		 * this vCPU will not get notified of any changes until this
11838 		 * vCPU is visible to other vCPUs (marked online and added to
11839 		 * the set of vCPUs).  Opportunistically mark APICv active as
11840 		 * VMX in particularly is highly unlikely to have inhibits.
11841 		 * Ignore the current per-VM APICv state so that vCPU creation
11842 		 * is guaranteed to run with a deterministic value, the request
11843 		 * will ensure the vCPU gets the correct state before VM-Entry.
11844 		 */
11845 		if (enable_apicv) {
11846 			vcpu->arch.apic->apicv_active = true;
11847 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11848 		}
11849 	} else
11850 		static_branch_inc(&kvm_has_noapic_vcpu);
11851 
11852 	r = -ENOMEM;
11853 
11854 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11855 	if (!page)
11856 		goto fail_free_lapic;
11857 	vcpu->arch.pio_data = page_address(page);
11858 
11859 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11860 				       GFP_KERNEL_ACCOUNT);
11861 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11862 					    GFP_KERNEL_ACCOUNT);
11863 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11864 		goto fail_free_mce_banks;
11865 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11866 
11867 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11868 				GFP_KERNEL_ACCOUNT))
11869 		goto fail_free_mce_banks;
11870 
11871 	if (!alloc_emulate_ctxt(vcpu))
11872 		goto free_wbinvd_dirty_mask;
11873 
11874 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11875 		pr_err("failed to allocate vcpu's fpu\n");
11876 		goto free_emulate_ctxt;
11877 	}
11878 
11879 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11880 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11881 
11882 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11883 
11884 	kvm_async_pf_hash_reset(vcpu);
11885 
11886 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11887 	kvm_pmu_init(vcpu);
11888 
11889 	vcpu->arch.pending_external_vector = -1;
11890 	vcpu->arch.preempted_in_kernel = false;
11891 
11892 #if IS_ENABLED(CONFIG_HYPERV)
11893 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11894 #endif
11895 
11896 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11897 	if (r)
11898 		goto free_guest_fpu;
11899 
11900 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11901 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11902 	kvm_xen_init_vcpu(vcpu);
11903 	kvm_vcpu_mtrr_init(vcpu);
11904 	vcpu_load(vcpu);
11905 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11906 	kvm_vcpu_reset(vcpu, false);
11907 	kvm_init_mmu(vcpu);
11908 	vcpu_put(vcpu);
11909 	return 0;
11910 
11911 free_guest_fpu:
11912 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11913 free_emulate_ctxt:
11914 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11915 free_wbinvd_dirty_mask:
11916 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11917 fail_free_mce_banks:
11918 	kfree(vcpu->arch.mce_banks);
11919 	kfree(vcpu->arch.mci_ctl2_banks);
11920 	free_page((unsigned long)vcpu->arch.pio_data);
11921 fail_free_lapic:
11922 	kvm_free_lapic(vcpu);
11923 fail_mmu_destroy:
11924 	kvm_mmu_destroy(vcpu);
11925 	return r;
11926 }
11927 
11928 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11929 {
11930 	struct kvm *kvm = vcpu->kvm;
11931 
11932 	if (mutex_lock_killable(&vcpu->mutex))
11933 		return;
11934 	vcpu_load(vcpu);
11935 	kvm_synchronize_tsc(vcpu, 0);
11936 	vcpu_put(vcpu);
11937 
11938 	/* poll control enabled by default */
11939 	vcpu->arch.msr_kvm_poll_control = 1;
11940 
11941 	mutex_unlock(&vcpu->mutex);
11942 
11943 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11944 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11945 						KVMCLOCK_SYNC_PERIOD);
11946 }
11947 
11948 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11949 {
11950 	int idx;
11951 
11952 	kvmclock_reset(vcpu);
11953 
11954 	static_call(kvm_x86_vcpu_free)(vcpu);
11955 
11956 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11957 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11958 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11959 
11960 	kvm_xen_destroy_vcpu(vcpu);
11961 	kvm_hv_vcpu_uninit(vcpu);
11962 	kvm_pmu_destroy(vcpu);
11963 	kfree(vcpu->arch.mce_banks);
11964 	kfree(vcpu->arch.mci_ctl2_banks);
11965 	kvm_free_lapic(vcpu);
11966 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11967 	kvm_mmu_destroy(vcpu);
11968 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11969 	free_page((unsigned long)vcpu->arch.pio_data);
11970 	kvfree(vcpu->arch.cpuid_entries);
11971 	if (!lapic_in_kernel(vcpu))
11972 		static_branch_dec(&kvm_has_noapic_vcpu);
11973 }
11974 
11975 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11976 {
11977 	struct kvm_cpuid_entry2 *cpuid_0x1;
11978 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11979 	unsigned long new_cr0;
11980 
11981 	/*
11982 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11983 	 * to handle side effects.  RESET emulation hits those flows and relies
11984 	 * on emulated/virtualized registers, including those that are loaded
11985 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11986 	 * to detect improper or missing initialization.
11987 	 */
11988 	WARN_ON_ONCE(!init_event &&
11989 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11990 
11991 	/*
11992 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11993 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11994 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11995 	 * bits), i.e. virtualization is disabled.
11996 	 */
11997 	if (is_guest_mode(vcpu))
11998 		kvm_leave_nested(vcpu);
11999 
12000 	kvm_lapic_reset(vcpu, init_event);
12001 
12002 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12003 	vcpu->arch.hflags = 0;
12004 
12005 	vcpu->arch.smi_pending = 0;
12006 	vcpu->arch.smi_count = 0;
12007 	atomic_set(&vcpu->arch.nmi_queued, 0);
12008 	vcpu->arch.nmi_pending = 0;
12009 	vcpu->arch.nmi_injected = false;
12010 	kvm_clear_interrupt_queue(vcpu);
12011 	kvm_clear_exception_queue(vcpu);
12012 
12013 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12014 	kvm_update_dr0123(vcpu);
12015 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12016 	vcpu->arch.dr7 = DR7_FIXED_1;
12017 	kvm_update_dr7(vcpu);
12018 
12019 	vcpu->arch.cr2 = 0;
12020 
12021 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12022 	vcpu->arch.apf.msr_en_val = 0;
12023 	vcpu->arch.apf.msr_int_val = 0;
12024 	vcpu->arch.st.msr_val = 0;
12025 
12026 	kvmclock_reset(vcpu);
12027 
12028 	kvm_clear_async_pf_completion_queue(vcpu);
12029 	kvm_async_pf_hash_reset(vcpu);
12030 	vcpu->arch.apf.halted = false;
12031 
12032 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12033 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12034 
12035 		/*
12036 		 * All paths that lead to INIT are required to load the guest's
12037 		 * FPU state (because most paths are buried in KVM_RUN).
12038 		 */
12039 		if (init_event)
12040 			kvm_put_guest_fpu(vcpu);
12041 
12042 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12043 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12044 
12045 		if (init_event)
12046 			kvm_load_guest_fpu(vcpu);
12047 	}
12048 
12049 	if (!init_event) {
12050 		kvm_pmu_reset(vcpu);
12051 		vcpu->arch.smbase = 0x30000;
12052 
12053 		vcpu->arch.msr_misc_features_enables = 0;
12054 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12055 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12056 
12057 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12058 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12059 	}
12060 
12061 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12062 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12063 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12064 
12065 	/*
12066 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12067 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12068 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12069 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12070 	 * on RESET.  But, go through the motions in case that's ever remedied.
12071 	 */
12072 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12073 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12074 
12075 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12076 
12077 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12078 	kvm_rip_write(vcpu, 0xfff0);
12079 
12080 	vcpu->arch.cr3 = 0;
12081 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12082 
12083 	/*
12084 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12085 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12086 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12087 	 */
12088 	new_cr0 = X86_CR0_ET;
12089 	if (init_event)
12090 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12091 	else
12092 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12093 
12094 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12095 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12096 	static_call(kvm_x86_set_efer)(vcpu, 0);
12097 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12098 
12099 	/*
12100 	 * On the standard CR0/CR4/EFER modification paths, there are several
12101 	 * complex conditions determining whether the MMU has to be reset and/or
12102 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12103 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12104 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12105 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12106 	 */
12107 	if (old_cr0 & X86_CR0_PG) {
12108 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12109 		kvm_mmu_reset_context(vcpu);
12110 	}
12111 
12112 	/*
12113 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12114 	 * APM states the TLBs are untouched by INIT, but it also states that
12115 	 * the TLBs are flushed on "External initialization of the processor."
12116 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12117 	 * benefit in relying on the guest to flush the TLB immediately after
12118 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12119 	 * performance perspective.
12120 	 */
12121 	if (init_event)
12122 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12123 }
12124 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12125 
12126 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12127 {
12128 	struct kvm_segment cs;
12129 
12130 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12131 	cs.selector = vector << 8;
12132 	cs.base = vector << 12;
12133 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12134 	kvm_rip_write(vcpu, 0);
12135 }
12136 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12137 
12138 int kvm_arch_hardware_enable(void)
12139 {
12140 	struct kvm *kvm;
12141 	struct kvm_vcpu *vcpu;
12142 	unsigned long i;
12143 	int ret;
12144 	u64 local_tsc;
12145 	u64 max_tsc = 0;
12146 	bool stable, backwards_tsc = false;
12147 
12148 	kvm_user_return_msr_cpu_online();
12149 
12150 	ret = kvm_x86_check_processor_compatibility();
12151 	if (ret)
12152 		return ret;
12153 
12154 	ret = static_call(kvm_x86_hardware_enable)();
12155 	if (ret != 0)
12156 		return ret;
12157 
12158 	local_tsc = rdtsc();
12159 	stable = !kvm_check_tsc_unstable();
12160 	list_for_each_entry(kvm, &vm_list, vm_list) {
12161 		kvm_for_each_vcpu(i, vcpu, kvm) {
12162 			if (!stable && vcpu->cpu == smp_processor_id())
12163 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12164 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12165 				backwards_tsc = true;
12166 				if (vcpu->arch.last_host_tsc > max_tsc)
12167 					max_tsc = vcpu->arch.last_host_tsc;
12168 			}
12169 		}
12170 	}
12171 
12172 	/*
12173 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12174 	 * platforms that reset TSC during suspend or hibernate actions, but
12175 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12176 	 * detect that condition here, which happens early in CPU bringup,
12177 	 * before any KVM threads can be running.  Unfortunately, we can't
12178 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12179 	 * enough into CPU bringup that we know how much real time has actually
12180 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12181 	 * variables that haven't been updated yet.
12182 	 *
12183 	 * So we simply find the maximum observed TSC above, then record the
12184 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12185 	 * the adjustment will be applied.  Note that we accumulate
12186 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12187 	 * gets a chance to run again.  In the event that no KVM threads get a
12188 	 * chance to run, we will miss the entire elapsed period, as we'll have
12189 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12190 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12191 	 * uniform across all VCPUs (not to mention the scenario is extremely
12192 	 * unlikely). It is possible that a second hibernate recovery happens
12193 	 * much faster than a first, causing the observed TSC here to be
12194 	 * smaller; this would require additional padding adjustment, which is
12195 	 * why we set last_host_tsc to the local tsc observed here.
12196 	 *
12197 	 * N.B. - this code below runs only on platforms with reliable TSC,
12198 	 * as that is the only way backwards_tsc is set above.  Also note
12199 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12200 	 * have the same delta_cyc adjustment applied if backwards_tsc
12201 	 * is detected.  Note further, this adjustment is only done once,
12202 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12203 	 * called multiple times (one for each physical CPU bringup).
12204 	 *
12205 	 * Platforms with unreliable TSCs don't have to deal with this, they
12206 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12207 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12208 	 * guarantee that they stay in perfect synchronization.
12209 	 */
12210 	if (backwards_tsc) {
12211 		u64 delta_cyc = max_tsc - local_tsc;
12212 		list_for_each_entry(kvm, &vm_list, vm_list) {
12213 			kvm->arch.backwards_tsc_observed = true;
12214 			kvm_for_each_vcpu(i, vcpu, kvm) {
12215 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12216 				vcpu->arch.last_host_tsc = local_tsc;
12217 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12218 			}
12219 
12220 			/*
12221 			 * We have to disable TSC offset matching.. if you were
12222 			 * booting a VM while issuing an S4 host suspend....
12223 			 * you may have some problem.  Solving this issue is
12224 			 * left as an exercise to the reader.
12225 			 */
12226 			kvm->arch.last_tsc_nsec = 0;
12227 			kvm->arch.last_tsc_write = 0;
12228 		}
12229 
12230 	}
12231 	return 0;
12232 }
12233 
12234 void kvm_arch_hardware_disable(void)
12235 {
12236 	static_call(kvm_x86_hardware_disable)();
12237 	drop_user_return_notifiers();
12238 }
12239 
12240 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12241 {
12242 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12243 }
12244 
12245 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12246 {
12247 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12248 }
12249 
12250 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12251 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12252 
12253 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12254 {
12255 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12256 
12257 	vcpu->arch.l1tf_flush_l1d = true;
12258 	if (pmu->version && unlikely(pmu->event_count)) {
12259 		pmu->need_cleanup = true;
12260 		kvm_make_request(KVM_REQ_PMU, vcpu);
12261 	}
12262 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12263 }
12264 
12265 void kvm_arch_free_vm(struct kvm *kvm)
12266 {
12267 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12268 	__kvm_arch_free_vm(kvm);
12269 }
12270 
12271 
12272 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12273 {
12274 	int ret;
12275 	unsigned long flags;
12276 
12277 	if (type)
12278 		return -EINVAL;
12279 
12280 	ret = kvm_page_track_init(kvm);
12281 	if (ret)
12282 		goto out;
12283 
12284 	ret = kvm_mmu_init_vm(kvm);
12285 	if (ret)
12286 		goto out_page_track;
12287 
12288 	ret = static_call(kvm_x86_vm_init)(kvm);
12289 	if (ret)
12290 		goto out_uninit_mmu;
12291 
12292 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12293 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12294 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12295 
12296 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12297 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12298 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12299 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12300 		&kvm->arch.irq_sources_bitmap);
12301 
12302 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12303 	mutex_init(&kvm->arch.apic_map_lock);
12304 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12305 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12306 
12307 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12308 	pvclock_update_vm_gtod_copy(kvm);
12309 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12310 
12311 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12312 	kvm->arch.guest_can_read_msr_platform_info = true;
12313 	kvm->arch.enable_pmu = enable_pmu;
12314 
12315 #if IS_ENABLED(CONFIG_HYPERV)
12316 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12317 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12318 #endif
12319 
12320 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12321 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12322 
12323 	kvm_apicv_init(kvm);
12324 	kvm_hv_init_vm(kvm);
12325 	kvm_xen_init_vm(kvm);
12326 
12327 	return 0;
12328 
12329 out_uninit_mmu:
12330 	kvm_mmu_uninit_vm(kvm);
12331 out_page_track:
12332 	kvm_page_track_cleanup(kvm);
12333 out:
12334 	return ret;
12335 }
12336 
12337 int kvm_arch_post_init_vm(struct kvm *kvm)
12338 {
12339 	return kvm_mmu_post_init_vm(kvm);
12340 }
12341 
12342 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12343 {
12344 	vcpu_load(vcpu);
12345 	kvm_mmu_unload(vcpu);
12346 	vcpu_put(vcpu);
12347 }
12348 
12349 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12350 {
12351 	unsigned long i;
12352 	struct kvm_vcpu *vcpu;
12353 
12354 	kvm_for_each_vcpu(i, vcpu, kvm) {
12355 		kvm_clear_async_pf_completion_queue(vcpu);
12356 		kvm_unload_vcpu_mmu(vcpu);
12357 	}
12358 }
12359 
12360 void kvm_arch_sync_events(struct kvm *kvm)
12361 {
12362 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12363 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12364 	kvm_free_pit(kvm);
12365 }
12366 
12367 /**
12368  * __x86_set_memory_region: Setup KVM internal memory slot
12369  *
12370  * @kvm: the kvm pointer to the VM.
12371  * @id: the slot ID to setup.
12372  * @gpa: the GPA to install the slot (unused when @size == 0).
12373  * @size: the size of the slot. Set to zero to uninstall a slot.
12374  *
12375  * This function helps to setup a KVM internal memory slot.  Specify
12376  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12377  * slot.  The return code can be one of the following:
12378  *
12379  *   HVA:           on success (uninstall will return a bogus HVA)
12380  *   -errno:        on error
12381  *
12382  * The caller should always use IS_ERR() to check the return value
12383  * before use.  Note, the KVM internal memory slots are guaranteed to
12384  * remain valid and unchanged until the VM is destroyed, i.e., the
12385  * GPA->HVA translation will not change.  However, the HVA is a user
12386  * address, i.e. its accessibility is not guaranteed, and must be
12387  * accessed via __copy_{to,from}_user().
12388  */
12389 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12390 				      u32 size)
12391 {
12392 	int i, r;
12393 	unsigned long hva, old_npages;
12394 	struct kvm_memslots *slots = kvm_memslots(kvm);
12395 	struct kvm_memory_slot *slot;
12396 
12397 	/* Called with kvm->slots_lock held.  */
12398 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12399 		return ERR_PTR_USR(-EINVAL);
12400 
12401 	slot = id_to_memslot(slots, id);
12402 	if (size) {
12403 		if (slot && slot->npages)
12404 			return ERR_PTR_USR(-EEXIST);
12405 
12406 		/*
12407 		 * MAP_SHARED to prevent internal slot pages from being moved
12408 		 * by fork()/COW.
12409 		 */
12410 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12411 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12412 		if (IS_ERR_VALUE(hva))
12413 			return (void __user *)hva;
12414 	} else {
12415 		if (!slot || !slot->npages)
12416 			return NULL;
12417 
12418 		old_npages = slot->npages;
12419 		hva = slot->userspace_addr;
12420 	}
12421 
12422 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12423 		struct kvm_userspace_memory_region m;
12424 
12425 		m.slot = id | (i << 16);
12426 		m.flags = 0;
12427 		m.guest_phys_addr = gpa;
12428 		m.userspace_addr = hva;
12429 		m.memory_size = size;
12430 		r = __kvm_set_memory_region(kvm, &m);
12431 		if (r < 0)
12432 			return ERR_PTR_USR(r);
12433 	}
12434 
12435 	if (!size)
12436 		vm_munmap(hva, old_npages * PAGE_SIZE);
12437 
12438 	return (void __user *)hva;
12439 }
12440 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12441 
12442 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12443 {
12444 	kvm_mmu_pre_destroy_vm(kvm);
12445 }
12446 
12447 void kvm_arch_destroy_vm(struct kvm *kvm)
12448 {
12449 	if (current->mm == kvm->mm) {
12450 		/*
12451 		 * Free memory regions allocated on behalf of userspace,
12452 		 * unless the memory map has changed due to process exit
12453 		 * or fd copying.
12454 		 */
12455 		mutex_lock(&kvm->slots_lock);
12456 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12457 					0, 0);
12458 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12459 					0, 0);
12460 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12461 		mutex_unlock(&kvm->slots_lock);
12462 	}
12463 	kvm_unload_vcpu_mmus(kvm);
12464 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12465 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12466 	kvm_pic_destroy(kvm);
12467 	kvm_ioapic_destroy(kvm);
12468 	kvm_destroy_vcpus(kvm);
12469 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12470 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12471 	kvm_mmu_uninit_vm(kvm);
12472 	kvm_page_track_cleanup(kvm);
12473 	kvm_xen_destroy_vm(kvm);
12474 	kvm_hv_destroy_vm(kvm);
12475 }
12476 
12477 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12478 {
12479 	int i;
12480 
12481 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12482 		kvfree(slot->arch.rmap[i]);
12483 		slot->arch.rmap[i] = NULL;
12484 	}
12485 }
12486 
12487 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12488 {
12489 	int i;
12490 
12491 	memslot_rmap_free(slot);
12492 
12493 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12494 		kvfree(slot->arch.lpage_info[i - 1]);
12495 		slot->arch.lpage_info[i - 1] = NULL;
12496 	}
12497 
12498 	kvm_page_track_free_memslot(slot);
12499 }
12500 
12501 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12502 {
12503 	const int sz = sizeof(*slot->arch.rmap[0]);
12504 	int i;
12505 
12506 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12507 		int level = i + 1;
12508 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12509 
12510 		if (slot->arch.rmap[i])
12511 			continue;
12512 
12513 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12514 		if (!slot->arch.rmap[i]) {
12515 			memslot_rmap_free(slot);
12516 			return -ENOMEM;
12517 		}
12518 	}
12519 
12520 	return 0;
12521 }
12522 
12523 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12524 				      struct kvm_memory_slot *slot)
12525 {
12526 	unsigned long npages = slot->npages;
12527 	int i, r;
12528 
12529 	/*
12530 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12531 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12532 	 * the new memslot is successful.
12533 	 */
12534 	memset(&slot->arch, 0, sizeof(slot->arch));
12535 
12536 	if (kvm_memslots_have_rmaps(kvm)) {
12537 		r = memslot_rmap_alloc(slot, npages);
12538 		if (r)
12539 			return r;
12540 	}
12541 
12542 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12543 		struct kvm_lpage_info *linfo;
12544 		unsigned long ugfn;
12545 		int lpages;
12546 		int level = i + 1;
12547 
12548 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12549 
12550 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12551 		if (!linfo)
12552 			goto out_free;
12553 
12554 		slot->arch.lpage_info[i - 1] = linfo;
12555 
12556 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12557 			linfo[0].disallow_lpage = 1;
12558 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12559 			linfo[lpages - 1].disallow_lpage = 1;
12560 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12561 		/*
12562 		 * If the gfn and userspace address are not aligned wrt each
12563 		 * other, disable large page support for this slot.
12564 		 */
12565 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12566 			unsigned long j;
12567 
12568 			for (j = 0; j < lpages; ++j)
12569 				linfo[j].disallow_lpage = 1;
12570 		}
12571 	}
12572 
12573 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12574 		goto out_free;
12575 
12576 	return 0;
12577 
12578 out_free:
12579 	memslot_rmap_free(slot);
12580 
12581 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12582 		kvfree(slot->arch.lpage_info[i - 1]);
12583 		slot->arch.lpage_info[i - 1] = NULL;
12584 	}
12585 	return -ENOMEM;
12586 }
12587 
12588 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12589 {
12590 	struct kvm_vcpu *vcpu;
12591 	unsigned long i;
12592 
12593 	/*
12594 	 * memslots->generation has been incremented.
12595 	 * mmio generation may have reached its maximum value.
12596 	 */
12597 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12598 
12599 	/* Force re-initialization of steal_time cache */
12600 	kvm_for_each_vcpu(i, vcpu, kvm)
12601 		kvm_vcpu_kick(vcpu);
12602 }
12603 
12604 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12605 				   const struct kvm_memory_slot *old,
12606 				   struct kvm_memory_slot *new,
12607 				   enum kvm_mr_change change)
12608 {
12609 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12610 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12611 			return -EINVAL;
12612 
12613 		return kvm_alloc_memslot_metadata(kvm, new);
12614 	}
12615 
12616 	if (change == KVM_MR_FLAGS_ONLY)
12617 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12618 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12619 		return -EIO;
12620 
12621 	return 0;
12622 }
12623 
12624 
12625 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12626 {
12627 	int nr_slots;
12628 
12629 	if (!kvm_x86_ops.cpu_dirty_log_size)
12630 		return;
12631 
12632 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12633 	if ((enable && nr_slots == 1) || !nr_slots)
12634 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12635 }
12636 
12637 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12638 				     struct kvm_memory_slot *old,
12639 				     const struct kvm_memory_slot *new,
12640 				     enum kvm_mr_change change)
12641 {
12642 	u32 old_flags = old ? old->flags : 0;
12643 	u32 new_flags = new ? new->flags : 0;
12644 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12645 
12646 	/*
12647 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12648 	 * applies to all operations.
12649 	 */
12650 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12651 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12652 
12653 	/*
12654 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12655 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12656 	 *
12657 	 * For a memslot with dirty logging disabled:
12658 	 * CREATE:      No dirty mappings will already exist.
12659 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12660 	 *		kvm_arch_flush_shadow_memslot()
12661 	 *
12662 	 * For a memslot with dirty logging enabled:
12663 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12664 	 *		and no dirty bits to clear.
12665 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12666 	 *		kvm_arch_flush_shadow_memslot().
12667 	 */
12668 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12669 		return;
12670 
12671 	/*
12672 	 * READONLY and non-flags changes were filtered out above, and the only
12673 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12674 	 * logging isn't being toggled on or off.
12675 	 */
12676 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12677 		return;
12678 
12679 	if (!log_dirty_pages) {
12680 		/*
12681 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12682 		 * large sptes have to be split.  If live migration succeeds,
12683 		 * the guest in the source machine will be destroyed and large
12684 		 * sptes will be created in the destination.  However, if the
12685 		 * guest continues to run in the source machine (for example if
12686 		 * live migration fails), small sptes will remain around and
12687 		 * cause bad performance.
12688 		 *
12689 		 * Scan sptes if dirty logging has been stopped, dropping those
12690 		 * which can be collapsed into a single large-page spte.  Later
12691 		 * page faults will create the large-page sptes.
12692 		 */
12693 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12694 	} else {
12695 		/*
12696 		 * Initially-all-set does not require write protecting any page,
12697 		 * because they're all assumed to be dirty.
12698 		 */
12699 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12700 			return;
12701 
12702 		if (READ_ONCE(eager_page_split))
12703 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12704 
12705 		if (kvm_x86_ops.cpu_dirty_log_size) {
12706 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12707 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12708 		} else {
12709 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12710 		}
12711 
12712 		/*
12713 		 * Unconditionally flush the TLBs after enabling dirty logging.
12714 		 * A flush is almost always going to be necessary (see below),
12715 		 * and unconditionally flushing allows the helpers to omit
12716 		 * the subtly complex checks when removing write access.
12717 		 *
12718 		 * Do the flush outside of mmu_lock to reduce the amount of
12719 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12720 		 * safe as KVM only needs to guarantee the slot is fully
12721 		 * write-protected before returning to userspace, i.e. before
12722 		 * userspace can consume the dirty status.
12723 		 *
12724 		 * Flushing outside of mmu_lock requires KVM to be careful when
12725 		 * making decisions based on writable status of an SPTE, e.g. a
12726 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12727 		 *
12728 		 * Specifically, KVM also write-protects guest page tables to
12729 		 * monitor changes when using shadow paging, and must guarantee
12730 		 * no CPUs can write to those page before mmu_lock is dropped.
12731 		 * Because CPUs may have stale TLB entries at this point, a
12732 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12733 		 *
12734 		 * KVM also allows making SPTES writable outside of mmu_lock,
12735 		 * e.g. to allow dirty logging without taking mmu_lock.
12736 		 *
12737 		 * To handle these scenarios, KVM uses a separate software-only
12738 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12739 		 * a guest page table being write-protected (KVM clears the
12740 		 * MMU-writable flag when write-protecting for shadow paging).
12741 		 *
12742 		 * The use of MMU-writable is also the primary motivation for
12743 		 * the unconditional flush.  Because KVM must guarantee that a
12744 		 * CPU doesn't contain stale, writable TLB entries for a
12745 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12746 		 * MMU-writable SPTE regardless of whether the actual hardware
12747 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12748 		 * to flush, while unconditionally flushing allows the "remove
12749 		 * write access" helpers to ignore MMU-writable entirely.
12750 		 *
12751 		 * See is_writable_pte() for more details (the case involving
12752 		 * access-tracked SPTEs is particularly relevant).
12753 		 */
12754 		kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12755 	}
12756 }
12757 
12758 void kvm_arch_commit_memory_region(struct kvm *kvm,
12759 				struct kvm_memory_slot *old,
12760 				const struct kvm_memory_slot *new,
12761 				enum kvm_mr_change change)
12762 {
12763 	if (!kvm->arch.n_requested_mmu_pages &&
12764 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12765 		unsigned long nr_mmu_pages;
12766 
12767 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12768 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12769 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12770 	}
12771 
12772 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12773 
12774 	/* Free the arrays associated with the old memslot. */
12775 	if (change == KVM_MR_MOVE)
12776 		kvm_arch_free_memslot(kvm, old);
12777 }
12778 
12779 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12780 {
12781 	kvm_mmu_zap_all(kvm);
12782 }
12783 
12784 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12785 				   struct kvm_memory_slot *slot)
12786 {
12787 	kvm_page_track_flush_slot(kvm, slot);
12788 }
12789 
12790 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12791 {
12792 	return (is_guest_mode(vcpu) &&
12793 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12794 }
12795 
12796 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12797 {
12798 	if (!list_empty_careful(&vcpu->async_pf.done))
12799 		return true;
12800 
12801 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12802 	    kvm_apic_init_sipi_allowed(vcpu))
12803 		return true;
12804 
12805 	if (vcpu->arch.pv.pv_unhalted)
12806 		return true;
12807 
12808 	if (kvm_is_exception_pending(vcpu))
12809 		return true;
12810 
12811 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12812 	    (vcpu->arch.nmi_pending &&
12813 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12814 		return true;
12815 
12816 #ifdef CONFIG_KVM_SMM
12817 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12818 	    (vcpu->arch.smi_pending &&
12819 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12820 		return true;
12821 #endif
12822 
12823 	if (kvm_arch_interrupt_allowed(vcpu) &&
12824 	    (kvm_cpu_has_interrupt(vcpu) ||
12825 	    kvm_guest_apic_has_interrupt(vcpu)))
12826 		return true;
12827 
12828 	if (kvm_hv_has_stimer_pending(vcpu))
12829 		return true;
12830 
12831 	if (is_guest_mode(vcpu) &&
12832 	    kvm_x86_ops.nested_ops->has_events &&
12833 	    kvm_x86_ops.nested_ops->has_events(vcpu))
12834 		return true;
12835 
12836 	if (kvm_xen_has_pending_events(vcpu))
12837 		return true;
12838 
12839 	return false;
12840 }
12841 
12842 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12843 {
12844 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12845 }
12846 
12847 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12848 {
12849 	if (kvm_vcpu_apicv_active(vcpu) &&
12850 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12851 		return true;
12852 
12853 	return false;
12854 }
12855 
12856 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12857 {
12858 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12859 		return true;
12860 
12861 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12862 #ifdef CONFIG_KVM_SMM
12863 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12864 #endif
12865 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12866 		return true;
12867 
12868 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12869 }
12870 
12871 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12872 {
12873 	if (vcpu->arch.guest_state_protected)
12874 		return true;
12875 
12876 	return vcpu->arch.preempted_in_kernel;
12877 }
12878 
12879 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12880 {
12881 	return kvm_rip_read(vcpu);
12882 }
12883 
12884 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12885 {
12886 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12887 }
12888 
12889 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12890 {
12891 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12892 }
12893 
12894 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12895 {
12896 	/* Can't read the RIP when guest state is protected, just return 0 */
12897 	if (vcpu->arch.guest_state_protected)
12898 		return 0;
12899 
12900 	if (is_64_bit_mode(vcpu))
12901 		return kvm_rip_read(vcpu);
12902 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12903 		     kvm_rip_read(vcpu));
12904 }
12905 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12906 
12907 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12908 {
12909 	return kvm_get_linear_rip(vcpu) == linear_rip;
12910 }
12911 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12912 
12913 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12914 {
12915 	unsigned long rflags;
12916 
12917 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12918 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12919 		rflags &= ~X86_EFLAGS_TF;
12920 	return rflags;
12921 }
12922 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12923 
12924 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12925 {
12926 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12927 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12928 		rflags |= X86_EFLAGS_TF;
12929 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12930 }
12931 
12932 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12933 {
12934 	__kvm_set_rflags(vcpu, rflags);
12935 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12936 }
12937 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12938 
12939 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12940 {
12941 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12942 
12943 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12944 }
12945 
12946 static inline u32 kvm_async_pf_next_probe(u32 key)
12947 {
12948 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12949 }
12950 
12951 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12952 {
12953 	u32 key = kvm_async_pf_hash_fn(gfn);
12954 
12955 	while (vcpu->arch.apf.gfns[key] != ~0)
12956 		key = kvm_async_pf_next_probe(key);
12957 
12958 	vcpu->arch.apf.gfns[key] = gfn;
12959 }
12960 
12961 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12962 {
12963 	int i;
12964 	u32 key = kvm_async_pf_hash_fn(gfn);
12965 
12966 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12967 		     (vcpu->arch.apf.gfns[key] != gfn &&
12968 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12969 		key = kvm_async_pf_next_probe(key);
12970 
12971 	return key;
12972 }
12973 
12974 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12975 {
12976 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12977 }
12978 
12979 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12980 {
12981 	u32 i, j, k;
12982 
12983 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12984 
12985 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12986 		return;
12987 
12988 	while (true) {
12989 		vcpu->arch.apf.gfns[i] = ~0;
12990 		do {
12991 			j = kvm_async_pf_next_probe(j);
12992 			if (vcpu->arch.apf.gfns[j] == ~0)
12993 				return;
12994 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12995 			/*
12996 			 * k lies cyclically in ]i,j]
12997 			 * |    i.k.j |
12998 			 * |....j i.k.| or  |.k..j i...|
12999 			 */
13000 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13001 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13002 		i = j;
13003 	}
13004 }
13005 
13006 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13007 {
13008 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13009 
13010 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13011 				      sizeof(reason));
13012 }
13013 
13014 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13015 {
13016 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13017 
13018 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13019 					     &token, offset, sizeof(token));
13020 }
13021 
13022 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13023 {
13024 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13025 	u32 val;
13026 
13027 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13028 					 &val, offset, sizeof(val)))
13029 		return false;
13030 
13031 	return !val;
13032 }
13033 
13034 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13035 {
13036 
13037 	if (!kvm_pv_async_pf_enabled(vcpu))
13038 		return false;
13039 
13040 	if (vcpu->arch.apf.send_user_only &&
13041 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13042 		return false;
13043 
13044 	if (is_guest_mode(vcpu)) {
13045 		/*
13046 		 * L1 needs to opt into the special #PF vmexits that are
13047 		 * used to deliver async page faults.
13048 		 */
13049 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13050 	} else {
13051 		/*
13052 		 * Play it safe in case the guest temporarily disables paging.
13053 		 * The real mode IDT in particular is unlikely to have a #PF
13054 		 * exception setup.
13055 		 */
13056 		return is_paging(vcpu);
13057 	}
13058 }
13059 
13060 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13061 {
13062 	if (unlikely(!lapic_in_kernel(vcpu) ||
13063 		     kvm_event_needs_reinjection(vcpu) ||
13064 		     kvm_is_exception_pending(vcpu)))
13065 		return false;
13066 
13067 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13068 		return false;
13069 
13070 	/*
13071 	 * If interrupts are off we cannot even use an artificial
13072 	 * halt state.
13073 	 */
13074 	return kvm_arch_interrupt_allowed(vcpu);
13075 }
13076 
13077 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13078 				     struct kvm_async_pf *work)
13079 {
13080 	struct x86_exception fault;
13081 
13082 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13083 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13084 
13085 	if (kvm_can_deliver_async_pf(vcpu) &&
13086 	    !apf_put_user_notpresent(vcpu)) {
13087 		fault.vector = PF_VECTOR;
13088 		fault.error_code_valid = true;
13089 		fault.error_code = 0;
13090 		fault.nested_page_fault = false;
13091 		fault.address = work->arch.token;
13092 		fault.async_page_fault = true;
13093 		kvm_inject_page_fault(vcpu, &fault);
13094 		return true;
13095 	} else {
13096 		/*
13097 		 * It is not possible to deliver a paravirtualized asynchronous
13098 		 * page fault, but putting the guest in an artificial halt state
13099 		 * can be beneficial nevertheless: if an interrupt arrives, we
13100 		 * can deliver it timely and perhaps the guest will schedule
13101 		 * another process.  When the instruction that triggered a page
13102 		 * fault is retried, hopefully the page will be ready in the host.
13103 		 */
13104 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13105 		return false;
13106 	}
13107 }
13108 
13109 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13110 				 struct kvm_async_pf *work)
13111 {
13112 	struct kvm_lapic_irq irq = {
13113 		.delivery_mode = APIC_DM_FIXED,
13114 		.vector = vcpu->arch.apf.vec
13115 	};
13116 
13117 	if (work->wakeup_all)
13118 		work->arch.token = ~0; /* broadcast wakeup */
13119 	else
13120 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13121 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13122 
13123 	if ((work->wakeup_all || work->notpresent_injected) &&
13124 	    kvm_pv_async_pf_enabled(vcpu) &&
13125 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13126 		vcpu->arch.apf.pageready_pending = true;
13127 		kvm_apic_set_irq(vcpu, &irq, NULL);
13128 	}
13129 
13130 	vcpu->arch.apf.halted = false;
13131 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13132 }
13133 
13134 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13135 {
13136 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13137 	if (!vcpu->arch.apf.pageready_pending)
13138 		kvm_vcpu_kick(vcpu);
13139 }
13140 
13141 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13142 {
13143 	if (!kvm_pv_async_pf_enabled(vcpu))
13144 		return true;
13145 	else
13146 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13147 }
13148 
13149 void kvm_arch_start_assignment(struct kvm *kvm)
13150 {
13151 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13152 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13153 }
13154 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13155 
13156 void kvm_arch_end_assignment(struct kvm *kvm)
13157 {
13158 	atomic_dec(&kvm->arch.assigned_device_count);
13159 }
13160 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13161 
13162 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13163 {
13164 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13165 }
13166 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13167 
13168 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13169 {
13170 	atomic_inc(&kvm->arch.noncoherent_dma_count);
13171 }
13172 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13173 
13174 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13175 {
13176 	atomic_dec(&kvm->arch.noncoherent_dma_count);
13177 }
13178 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13179 
13180 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13181 {
13182 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13183 }
13184 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13185 
13186 bool kvm_arch_has_irq_bypass(void)
13187 {
13188 	return true;
13189 }
13190 
13191 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13192 				      struct irq_bypass_producer *prod)
13193 {
13194 	struct kvm_kernel_irqfd *irqfd =
13195 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13196 	int ret;
13197 
13198 	irqfd->producer = prod;
13199 	kvm_arch_start_assignment(irqfd->kvm);
13200 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13201 					 prod->irq, irqfd->gsi, 1);
13202 
13203 	if (ret)
13204 		kvm_arch_end_assignment(irqfd->kvm);
13205 
13206 	return ret;
13207 }
13208 
13209 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13210 				      struct irq_bypass_producer *prod)
13211 {
13212 	int ret;
13213 	struct kvm_kernel_irqfd *irqfd =
13214 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13215 
13216 	WARN_ON(irqfd->producer != prod);
13217 	irqfd->producer = NULL;
13218 
13219 	/*
13220 	 * When producer of consumer is unregistered, we change back to
13221 	 * remapped mode, so we can re-use the current implementation
13222 	 * when the irq is masked/disabled or the consumer side (KVM
13223 	 * int this case doesn't want to receive the interrupts.
13224 	*/
13225 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13226 	if (ret)
13227 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13228 		       " fails: %d\n", irqfd->consumer.token, ret);
13229 
13230 	kvm_arch_end_assignment(irqfd->kvm);
13231 }
13232 
13233 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13234 				   uint32_t guest_irq, bool set)
13235 {
13236 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13237 }
13238 
13239 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13240 				  struct kvm_kernel_irq_routing_entry *new)
13241 {
13242 	if (new->type != KVM_IRQ_ROUTING_MSI)
13243 		return true;
13244 
13245 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13246 }
13247 
13248 bool kvm_vector_hashing_enabled(void)
13249 {
13250 	return vector_hashing;
13251 }
13252 
13253 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13254 {
13255 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13256 }
13257 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13258 
13259 
13260 int kvm_spec_ctrl_test_value(u64 value)
13261 {
13262 	/*
13263 	 * test that setting IA32_SPEC_CTRL to given value
13264 	 * is allowed by the host processor
13265 	 */
13266 
13267 	u64 saved_value;
13268 	unsigned long flags;
13269 	int ret = 0;
13270 
13271 	local_irq_save(flags);
13272 
13273 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13274 		ret = 1;
13275 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13276 		ret = 1;
13277 	else
13278 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13279 
13280 	local_irq_restore(flags);
13281 
13282 	return ret;
13283 }
13284 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13285 
13286 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13287 {
13288 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13289 	struct x86_exception fault;
13290 	u64 access = error_code &
13291 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13292 
13293 	if (!(error_code & PFERR_PRESENT_MASK) ||
13294 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13295 		/*
13296 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13297 		 * tables probably do not match the TLB.  Just proceed
13298 		 * with the error code that the processor gave.
13299 		 */
13300 		fault.vector = PF_VECTOR;
13301 		fault.error_code_valid = true;
13302 		fault.error_code = error_code;
13303 		fault.nested_page_fault = false;
13304 		fault.address = gva;
13305 		fault.async_page_fault = false;
13306 	}
13307 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13308 }
13309 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13310 
13311 /*
13312  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13313  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13314  * indicates whether exit to userspace is needed.
13315  */
13316 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13317 			      struct x86_exception *e)
13318 {
13319 	if (r == X86EMUL_PROPAGATE_FAULT) {
13320 		if (KVM_BUG_ON(!e, vcpu->kvm))
13321 			return -EIO;
13322 
13323 		kvm_inject_emulated_page_fault(vcpu, e);
13324 		return 1;
13325 	}
13326 
13327 	/*
13328 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13329 	 * while handling a VMX instruction KVM could've handled the request
13330 	 * correctly by exiting to userspace and performing I/O but there
13331 	 * doesn't seem to be a real use-case behind such requests, just return
13332 	 * KVM_EXIT_INTERNAL_ERROR for now.
13333 	 */
13334 	kvm_prepare_emulation_failure_exit(vcpu);
13335 
13336 	return 0;
13337 }
13338 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13339 
13340 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13341 {
13342 	bool pcid_enabled;
13343 	struct x86_exception e;
13344 	struct {
13345 		u64 pcid;
13346 		u64 gla;
13347 	} operand;
13348 	int r;
13349 
13350 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13351 	if (r != X86EMUL_CONTINUE)
13352 		return kvm_handle_memory_failure(vcpu, r, &e);
13353 
13354 	if (operand.pcid >> 12 != 0) {
13355 		kvm_inject_gp(vcpu, 0);
13356 		return 1;
13357 	}
13358 
13359 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13360 
13361 	switch (type) {
13362 	case INVPCID_TYPE_INDIV_ADDR:
13363 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13364 		    is_noncanonical_address(operand.gla, vcpu)) {
13365 			kvm_inject_gp(vcpu, 0);
13366 			return 1;
13367 		}
13368 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13369 		return kvm_skip_emulated_instruction(vcpu);
13370 
13371 	case INVPCID_TYPE_SINGLE_CTXT:
13372 		if (!pcid_enabled && (operand.pcid != 0)) {
13373 			kvm_inject_gp(vcpu, 0);
13374 			return 1;
13375 		}
13376 
13377 		kvm_invalidate_pcid(vcpu, operand.pcid);
13378 		return kvm_skip_emulated_instruction(vcpu);
13379 
13380 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13381 		/*
13382 		 * Currently, KVM doesn't mark global entries in the shadow
13383 		 * page tables, so a non-global flush just degenerates to a
13384 		 * global flush. If needed, we could optimize this later by
13385 		 * keeping track of global entries in shadow page tables.
13386 		 */
13387 
13388 		fallthrough;
13389 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13390 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13391 		return kvm_skip_emulated_instruction(vcpu);
13392 
13393 	default:
13394 		kvm_inject_gp(vcpu, 0);
13395 		return 1;
13396 	}
13397 }
13398 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13399 
13400 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13401 {
13402 	struct kvm_run *run = vcpu->run;
13403 	struct kvm_mmio_fragment *frag;
13404 	unsigned int len;
13405 
13406 	BUG_ON(!vcpu->mmio_needed);
13407 
13408 	/* Complete previous fragment */
13409 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13410 	len = min(8u, frag->len);
13411 	if (!vcpu->mmio_is_write)
13412 		memcpy(frag->data, run->mmio.data, len);
13413 
13414 	if (frag->len <= 8) {
13415 		/* Switch to the next fragment. */
13416 		frag++;
13417 		vcpu->mmio_cur_fragment++;
13418 	} else {
13419 		/* Go forward to the next mmio piece. */
13420 		frag->data += len;
13421 		frag->gpa += len;
13422 		frag->len -= len;
13423 	}
13424 
13425 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13426 		vcpu->mmio_needed = 0;
13427 
13428 		// VMG change, at this point, we're always done
13429 		// RIP has already been advanced
13430 		return 1;
13431 	}
13432 
13433 	// More MMIO is needed
13434 	run->mmio.phys_addr = frag->gpa;
13435 	run->mmio.len = min(8u, frag->len);
13436 	run->mmio.is_write = vcpu->mmio_is_write;
13437 	if (run->mmio.is_write)
13438 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13439 	run->exit_reason = KVM_EXIT_MMIO;
13440 
13441 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13442 
13443 	return 0;
13444 }
13445 
13446 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13447 			  void *data)
13448 {
13449 	int handled;
13450 	struct kvm_mmio_fragment *frag;
13451 
13452 	if (!data)
13453 		return -EINVAL;
13454 
13455 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13456 	if (handled == bytes)
13457 		return 1;
13458 
13459 	bytes -= handled;
13460 	gpa += handled;
13461 	data += handled;
13462 
13463 	/*TODO: Check if need to increment number of frags */
13464 	frag = vcpu->mmio_fragments;
13465 	vcpu->mmio_nr_fragments = 1;
13466 	frag->len = bytes;
13467 	frag->gpa = gpa;
13468 	frag->data = data;
13469 
13470 	vcpu->mmio_needed = 1;
13471 	vcpu->mmio_cur_fragment = 0;
13472 
13473 	vcpu->run->mmio.phys_addr = gpa;
13474 	vcpu->run->mmio.len = min(8u, frag->len);
13475 	vcpu->run->mmio.is_write = 1;
13476 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13477 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13478 
13479 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13480 
13481 	return 0;
13482 }
13483 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13484 
13485 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13486 			 void *data)
13487 {
13488 	int handled;
13489 	struct kvm_mmio_fragment *frag;
13490 
13491 	if (!data)
13492 		return -EINVAL;
13493 
13494 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13495 	if (handled == bytes)
13496 		return 1;
13497 
13498 	bytes -= handled;
13499 	gpa += handled;
13500 	data += handled;
13501 
13502 	/*TODO: Check if need to increment number of frags */
13503 	frag = vcpu->mmio_fragments;
13504 	vcpu->mmio_nr_fragments = 1;
13505 	frag->len = bytes;
13506 	frag->gpa = gpa;
13507 	frag->data = data;
13508 
13509 	vcpu->mmio_needed = 1;
13510 	vcpu->mmio_cur_fragment = 0;
13511 
13512 	vcpu->run->mmio.phys_addr = gpa;
13513 	vcpu->run->mmio.len = min(8u, frag->len);
13514 	vcpu->run->mmio.is_write = 0;
13515 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13516 
13517 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13518 
13519 	return 0;
13520 }
13521 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13522 
13523 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13524 {
13525 	vcpu->arch.sev_pio_count -= count;
13526 	vcpu->arch.sev_pio_data += count * size;
13527 }
13528 
13529 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13530 			   unsigned int port);
13531 
13532 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13533 {
13534 	int size = vcpu->arch.pio.size;
13535 	int port = vcpu->arch.pio.port;
13536 
13537 	vcpu->arch.pio.count = 0;
13538 	if (vcpu->arch.sev_pio_count)
13539 		return kvm_sev_es_outs(vcpu, size, port);
13540 	return 1;
13541 }
13542 
13543 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13544 			   unsigned int port)
13545 {
13546 	for (;;) {
13547 		unsigned int count =
13548 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13549 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13550 
13551 		/* memcpy done already by emulator_pio_out.  */
13552 		advance_sev_es_emulated_pio(vcpu, count, size);
13553 		if (!ret)
13554 			break;
13555 
13556 		/* Emulation done by the kernel.  */
13557 		if (!vcpu->arch.sev_pio_count)
13558 			return 1;
13559 	}
13560 
13561 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13562 	return 0;
13563 }
13564 
13565 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13566 			  unsigned int port);
13567 
13568 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13569 {
13570 	unsigned count = vcpu->arch.pio.count;
13571 	int size = vcpu->arch.pio.size;
13572 	int port = vcpu->arch.pio.port;
13573 
13574 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13575 	advance_sev_es_emulated_pio(vcpu, count, size);
13576 	if (vcpu->arch.sev_pio_count)
13577 		return kvm_sev_es_ins(vcpu, size, port);
13578 	return 1;
13579 }
13580 
13581 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13582 			  unsigned int port)
13583 {
13584 	for (;;) {
13585 		unsigned int count =
13586 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13587 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13588 			break;
13589 
13590 		/* Emulation done by the kernel.  */
13591 		advance_sev_es_emulated_pio(vcpu, count, size);
13592 		if (!vcpu->arch.sev_pio_count)
13593 			return 1;
13594 	}
13595 
13596 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13597 	return 0;
13598 }
13599 
13600 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13601 			 unsigned int port, void *data,  unsigned int count,
13602 			 int in)
13603 {
13604 	vcpu->arch.sev_pio_data = data;
13605 	vcpu->arch.sev_pio_count = count;
13606 	return in ? kvm_sev_es_ins(vcpu, size, port)
13607 		  : kvm_sev_es_outs(vcpu, size, port);
13608 }
13609 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13610 
13611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13640 
13641 static int __init kvm_x86_init(void)
13642 {
13643 	kvm_mmu_x86_module_init();
13644 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13645 	return 0;
13646 }
13647 module_init(kvm_x86_init);
13648 
13649 static void __exit kvm_x86_exit(void)
13650 {
13651 	/*
13652 	 * If module_init() is implemented, module_exit() must also be
13653 	 * implemented to allow module unload.
13654 	 */
13655 }
13656 module_exit(kvm_x86_exit);
13657