1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 #include <linux/smp.h> 64 65 #include <trace/events/ipi.h> 66 #include <trace/events/kvm.h> 67 68 #include <asm/debugreg.h> 69 #include <asm/msr.h> 70 #include <asm/desc.h> 71 #include <asm/mce.h> 72 #include <asm/pkru.h> 73 #include <linux/kernel_stat.h> 74 #include <asm/fpu/api.h> 75 #include <asm/fpu/xcr.h> 76 #include <asm/fpu/xstate.h> 77 #include <asm/pvclock.h> 78 #include <asm/div64.h> 79 #include <asm/irq_remapping.h> 80 #include <asm/mshyperv.h> 81 #include <asm/hypervisor.h> 82 #include <asm/tlbflush.h> 83 #include <asm/intel_pt.h> 84 #include <asm/emulate_prefix.h> 85 #include <asm/sgx.h> 86 #include <clocksource/hyperv_timer.h> 87 88 #define CREATE_TRACE_POINTS 89 #include "trace.h" 90 91 #define MAX_IO_MSRS 256 92 #define KVM_MAX_MCE_BANKS 32 93 94 struct kvm_caps kvm_caps __read_mostly = { 95 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 96 }; 97 EXPORT_SYMBOL_GPL(kvm_caps); 98 99 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 100 101 #define emul_to_vcpu(ctxt) \ 102 ((struct kvm_vcpu *)(ctxt)->vcpu) 103 104 /* EFER defaults: 105 * - enable syscall per default because its emulated by KVM 106 * - enable LME and LMA per default on 64 bit KVM 107 */ 108 #ifdef CONFIG_X86_64 109 static 110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 111 #else 112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 113 #endif 114 115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 116 117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 118 119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 120 121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 122 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 123 124 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 125 static void process_nmi(struct kvm_vcpu *vcpu); 126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 127 static void store_regs(struct kvm_vcpu *vcpu); 128 static int sync_regs(struct kvm_vcpu *vcpu); 129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 130 131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 134 static DEFINE_MUTEX(vendor_module_lock); 135 struct kvm_x86_ops kvm_x86_ops __read_mostly; 136 137 #define KVM_X86_OP(func) \ 138 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 139 *(((struct kvm_x86_ops *)0)->func)); 140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 142 #include <asm/kvm-x86-ops.h> 143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 145 146 static bool __read_mostly ignore_msrs = 0; 147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 148 149 bool __read_mostly report_ignored_msrs = true; 150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 151 EXPORT_SYMBOL_GPL(report_ignored_msrs); 152 153 unsigned int min_timer_period_us = 200; 154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 155 156 static bool __read_mostly kvmclock_periodic_sync = true; 157 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 158 159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 160 static u32 __read_mostly tsc_tolerance_ppm = 250; 161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 162 163 /* 164 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 165 * adaptive tuning starting from default advancement of 1000ns. '0' disables 166 * advancement entirely. Any other value is used as-is and disables adaptive 167 * tuning, i.e. allows privileged userspace to set an exact advancement time. 168 */ 169 static int __read_mostly lapic_timer_advance_ns = -1; 170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 171 172 static bool __read_mostly vector_hashing = true; 173 module_param(vector_hashing, bool, S_IRUGO); 174 175 bool __read_mostly enable_vmware_backdoor = false; 176 module_param(enable_vmware_backdoor, bool, S_IRUGO); 177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 178 179 /* 180 * Flags to manipulate forced emulation behavior (any non-zero value will 181 * enable forced emulation). 182 */ 183 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 184 static int __read_mostly force_emulation_prefix; 185 module_param(force_emulation_prefix, int, 0644); 186 187 int __read_mostly pi_inject_timer = -1; 188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 189 190 /* Enable/disable PMU virtualization */ 191 bool __read_mostly enable_pmu = true; 192 EXPORT_SYMBOL_GPL(enable_pmu); 193 module_param(enable_pmu, bool, 0444); 194 195 bool __read_mostly eager_page_split = true; 196 module_param(eager_page_split, bool, 0644); 197 198 /* Enable/disable SMT_RSB bug mitigation */ 199 static bool __read_mostly mitigate_smt_rsb; 200 module_param(mitigate_smt_rsb, bool, 0444); 201 202 /* 203 * Restoring the host value for MSRs that are only consumed when running in 204 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 205 * returns to userspace, i.e. the kernel can run with the guest's value. 206 */ 207 #define KVM_MAX_NR_USER_RETURN_MSRS 16 208 209 struct kvm_user_return_msrs { 210 struct user_return_notifier urn; 211 bool registered; 212 struct kvm_user_return_msr_values { 213 u64 host; 214 u64 curr; 215 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 216 }; 217 218 u32 __read_mostly kvm_nr_uret_msrs; 219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 221 static struct kvm_user_return_msrs __percpu *user_return_msrs; 222 223 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 224 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 225 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 226 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 227 228 u64 __read_mostly host_efer; 229 EXPORT_SYMBOL_GPL(host_efer); 230 231 bool __read_mostly allow_smaller_maxphyaddr = 0; 232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 233 234 bool __read_mostly enable_apicv = true; 235 EXPORT_SYMBOL_GPL(enable_apicv); 236 237 u64 __read_mostly host_xss; 238 EXPORT_SYMBOL_GPL(host_xss); 239 240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 241 KVM_GENERIC_VM_STATS(), 242 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 243 STATS_DESC_COUNTER(VM, mmu_pte_write), 244 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 245 STATS_DESC_COUNTER(VM, mmu_flooded), 246 STATS_DESC_COUNTER(VM, mmu_recycled), 247 STATS_DESC_COUNTER(VM, mmu_cache_miss), 248 STATS_DESC_ICOUNTER(VM, mmu_unsync), 249 STATS_DESC_ICOUNTER(VM, pages_4k), 250 STATS_DESC_ICOUNTER(VM, pages_2m), 251 STATS_DESC_ICOUNTER(VM, pages_1g), 252 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 253 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 254 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 255 }; 256 257 const struct kvm_stats_header kvm_vm_stats_header = { 258 .name_size = KVM_STATS_NAME_SIZE, 259 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 260 .id_offset = sizeof(struct kvm_stats_header), 261 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 262 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 263 sizeof(kvm_vm_stats_desc), 264 }; 265 266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 267 KVM_GENERIC_VCPU_STATS(), 268 STATS_DESC_COUNTER(VCPU, pf_taken), 269 STATS_DESC_COUNTER(VCPU, pf_fixed), 270 STATS_DESC_COUNTER(VCPU, pf_emulate), 271 STATS_DESC_COUNTER(VCPU, pf_spurious), 272 STATS_DESC_COUNTER(VCPU, pf_fast), 273 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 274 STATS_DESC_COUNTER(VCPU, pf_guest), 275 STATS_DESC_COUNTER(VCPU, tlb_flush), 276 STATS_DESC_COUNTER(VCPU, invlpg), 277 STATS_DESC_COUNTER(VCPU, exits), 278 STATS_DESC_COUNTER(VCPU, io_exits), 279 STATS_DESC_COUNTER(VCPU, mmio_exits), 280 STATS_DESC_COUNTER(VCPU, signal_exits), 281 STATS_DESC_COUNTER(VCPU, irq_window_exits), 282 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 283 STATS_DESC_COUNTER(VCPU, l1d_flush), 284 STATS_DESC_COUNTER(VCPU, halt_exits), 285 STATS_DESC_COUNTER(VCPU, request_irq_exits), 286 STATS_DESC_COUNTER(VCPU, irq_exits), 287 STATS_DESC_COUNTER(VCPU, host_state_reload), 288 STATS_DESC_COUNTER(VCPU, fpu_reload), 289 STATS_DESC_COUNTER(VCPU, insn_emulation), 290 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 291 STATS_DESC_COUNTER(VCPU, hypercalls), 292 STATS_DESC_COUNTER(VCPU, irq_injections), 293 STATS_DESC_COUNTER(VCPU, nmi_injections), 294 STATS_DESC_COUNTER(VCPU, req_event), 295 STATS_DESC_COUNTER(VCPU, nested_run), 296 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 297 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 298 STATS_DESC_COUNTER(VCPU, preemption_reported), 299 STATS_DESC_COUNTER(VCPU, preemption_other), 300 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 301 STATS_DESC_COUNTER(VCPU, notify_window_exits), 302 }; 303 304 const struct kvm_stats_header kvm_vcpu_stats_header = { 305 .name_size = KVM_STATS_NAME_SIZE, 306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 307 .id_offset = sizeof(struct kvm_stats_header), 308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 310 sizeof(kvm_vcpu_stats_desc), 311 }; 312 313 u64 __read_mostly host_xcr0; 314 315 static struct kmem_cache *x86_emulator_cache; 316 317 /* 318 * When called, it means the previous get/set msr reached an invalid msr. 319 * Return true if we want to ignore/silent this failed msr access. 320 */ 321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 322 { 323 const char *op = write ? "wrmsr" : "rdmsr"; 324 325 if (ignore_msrs) { 326 if (report_ignored_msrs) 327 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 328 op, msr, data); 329 /* Mask the error */ 330 return true; 331 } else { 332 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 333 op, msr, data); 334 return false; 335 } 336 } 337 338 static struct kmem_cache *kvm_alloc_emulator_cache(void) 339 { 340 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 341 unsigned int size = sizeof(struct x86_emulate_ctxt); 342 343 return kmem_cache_create_usercopy("x86_emulator", size, 344 __alignof__(struct x86_emulate_ctxt), 345 SLAB_ACCOUNT, useroffset, 346 size - useroffset, NULL); 347 } 348 349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 350 351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 352 { 353 int i; 354 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 355 vcpu->arch.apf.gfns[i] = ~0; 356 } 357 358 static void kvm_on_user_return(struct user_return_notifier *urn) 359 { 360 unsigned slot; 361 struct kvm_user_return_msrs *msrs 362 = container_of(urn, struct kvm_user_return_msrs, urn); 363 struct kvm_user_return_msr_values *values; 364 unsigned long flags; 365 366 /* 367 * Disabling irqs at this point since the following code could be 368 * interrupted and executed through kvm_arch_hardware_disable() 369 */ 370 local_irq_save(flags); 371 if (msrs->registered) { 372 msrs->registered = false; 373 user_return_notifier_unregister(urn); 374 } 375 local_irq_restore(flags); 376 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 377 values = &msrs->values[slot]; 378 if (values->host != values->curr) { 379 wrmsrl(kvm_uret_msrs_list[slot], values->host); 380 values->curr = values->host; 381 } 382 } 383 } 384 385 static int kvm_probe_user_return_msr(u32 msr) 386 { 387 u64 val; 388 int ret; 389 390 preempt_disable(); 391 ret = rdmsrl_safe(msr, &val); 392 if (ret) 393 goto out; 394 ret = wrmsrl_safe(msr, val); 395 out: 396 preempt_enable(); 397 return ret; 398 } 399 400 int kvm_add_user_return_msr(u32 msr) 401 { 402 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 403 404 if (kvm_probe_user_return_msr(msr)) 405 return -1; 406 407 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 408 return kvm_nr_uret_msrs++; 409 } 410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 411 412 int kvm_find_user_return_msr(u32 msr) 413 { 414 int i; 415 416 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 417 if (kvm_uret_msrs_list[i] == msr) 418 return i; 419 } 420 return -1; 421 } 422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 423 424 static void kvm_user_return_msr_cpu_online(void) 425 { 426 unsigned int cpu = smp_processor_id(); 427 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 428 u64 value; 429 int i; 430 431 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 432 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 433 msrs->values[i].host = value; 434 msrs->values[i].curr = value; 435 } 436 } 437 438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 439 { 440 unsigned int cpu = smp_processor_id(); 441 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 442 int err; 443 444 value = (value & mask) | (msrs->values[slot].host & ~mask); 445 if (value == msrs->values[slot].curr) 446 return 0; 447 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 448 if (err) 449 return 1; 450 451 msrs->values[slot].curr = value; 452 if (!msrs->registered) { 453 msrs->urn.on_user_return = kvm_on_user_return; 454 user_return_notifier_register(&msrs->urn); 455 msrs->registered = true; 456 } 457 return 0; 458 } 459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 460 461 static void drop_user_return_notifiers(void) 462 { 463 unsigned int cpu = smp_processor_id(); 464 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 465 466 if (msrs->registered) 467 kvm_on_user_return(&msrs->urn); 468 } 469 470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 471 { 472 return vcpu->arch.apic_base; 473 } 474 475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 476 { 477 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 478 } 479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 480 481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 482 { 483 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 484 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 485 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 486 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 487 488 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 489 return 1; 490 if (!msr_info->host_initiated) { 491 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 492 return 1; 493 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 494 return 1; 495 } 496 497 kvm_lapic_set_base(vcpu, msr_info->data); 498 kvm_recalculate_apic_map(vcpu->kvm); 499 return 0; 500 } 501 502 /* 503 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 504 * 505 * Hardware virtualization extension instructions may fault if a reboot turns 506 * off virtualization while processes are running. Usually after catching the 507 * fault we just panic; during reboot instead the instruction is ignored. 508 */ 509 noinstr void kvm_spurious_fault(void) 510 { 511 /* Fault while not rebooting. We want the trace. */ 512 BUG_ON(!kvm_rebooting); 513 } 514 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 515 516 #define EXCPT_BENIGN 0 517 #define EXCPT_CONTRIBUTORY 1 518 #define EXCPT_PF 2 519 520 static int exception_class(int vector) 521 { 522 switch (vector) { 523 case PF_VECTOR: 524 return EXCPT_PF; 525 case DE_VECTOR: 526 case TS_VECTOR: 527 case NP_VECTOR: 528 case SS_VECTOR: 529 case GP_VECTOR: 530 return EXCPT_CONTRIBUTORY; 531 default: 532 break; 533 } 534 return EXCPT_BENIGN; 535 } 536 537 #define EXCPT_FAULT 0 538 #define EXCPT_TRAP 1 539 #define EXCPT_ABORT 2 540 #define EXCPT_INTERRUPT 3 541 #define EXCPT_DB 4 542 543 static int exception_type(int vector) 544 { 545 unsigned int mask; 546 547 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 548 return EXCPT_INTERRUPT; 549 550 mask = 1 << vector; 551 552 /* 553 * #DBs can be trap-like or fault-like, the caller must check other CPU 554 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 555 */ 556 if (mask & (1 << DB_VECTOR)) 557 return EXCPT_DB; 558 559 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 560 return EXCPT_TRAP; 561 562 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 563 return EXCPT_ABORT; 564 565 /* Reserved exceptions will result in fault */ 566 return EXCPT_FAULT; 567 } 568 569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 570 struct kvm_queued_exception *ex) 571 { 572 if (!ex->has_payload) 573 return; 574 575 switch (ex->vector) { 576 case DB_VECTOR: 577 /* 578 * "Certain debug exceptions may clear bit 0-3. The 579 * remaining contents of the DR6 register are never 580 * cleared by the processor". 581 */ 582 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 583 /* 584 * In order to reflect the #DB exception payload in guest 585 * dr6, three components need to be considered: active low 586 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 587 * DR6_BS and DR6_BT) 588 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 589 * In the target guest dr6: 590 * FIXED_1 bits should always be set. 591 * Active low bits should be cleared if 1-setting in payload. 592 * Active high bits should be set if 1-setting in payload. 593 * 594 * Note, the payload is compatible with the pending debug 595 * exceptions/exit qualification under VMX, that active_low bits 596 * are active high in payload. 597 * So they need to be flipped for DR6. 598 */ 599 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 600 vcpu->arch.dr6 |= ex->payload; 601 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 602 603 /* 604 * The #DB payload is defined as compatible with the 'pending 605 * debug exceptions' field under VMX, not DR6. While bit 12 is 606 * defined in the 'pending debug exceptions' field (enabled 607 * breakpoint), it is reserved and must be zero in DR6. 608 */ 609 vcpu->arch.dr6 &= ~BIT(12); 610 break; 611 case PF_VECTOR: 612 vcpu->arch.cr2 = ex->payload; 613 break; 614 } 615 616 ex->has_payload = false; 617 ex->payload = 0; 618 } 619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 620 621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 622 bool has_error_code, u32 error_code, 623 bool has_payload, unsigned long payload) 624 { 625 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 626 627 ex->vector = vector; 628 ex->injected = false; 629 ex->pending = true; 630 ex->has_error_code = has_error_code; 631 ex->error_code = error_code; 632 ex->has_payload = has_payload; 633 ex->payload = payload; 634 } 635 636 /* Forcibly leave the nested mode in cases like a vCPU reset */ 637 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 638 { 639 kvm_x86_ops.nested_ops->leave_nested(vcpu); 640 } 641 642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 643 unsigned nr, bool has_error, u32 error_code, 644 bool has_payload, unsigned long payload, bool reinject) 645 { 646 u32 prev_nr; 647 int class1, class2; 648 649 kvm_make_request(KVM_REQ_EVENT, vcpu); 650 651 /* 652 * If the exception is destined for L2 and isn't being reinjected, 653 * morph it to a VM-Exit if L1 wants to intercept the exception. A 654 * previously injected exception is not checked because it was checked 655 * when it was original queued, and re-checking is incorrect if _L1_ 656 * injected the exception, in which case it's exempt from interception. 657 */ 658 if (!reinject && is_guest_mode(vcpu) && 659 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 660 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 661 has_payload, payload); 662 return; 663 } 664 665 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 666 queue: 667 if (reinject) { 668 /* 669 * On VM-Entry, an exception can be pending if and only 670 * if event injection was blocked by nested_run_pending. 671 * In that case, however, vcpu_enter_guest() requests an 672 * immediate exit, and the guest shouldn't proceed far 673 * enough to need reinjection. 674 */ 675 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 676 vcpu->arch.exception.injected = true; 677 if (WARN_ON_ONCE(has_payload)) { 678 /* 679 * A reinjected event has already 680 * delivered its payload. 681 */ 682 has_payload = false; 683 payload = 0; 684 } 685 } else { 686 vcpu->arch.exception.pending = true; 687 vcpu->arch.exception.injected = false; 688 } 689 vcpu->arch.exception.has_error_code = has_error; 690 vcpu->arch.exception.vector = nr; 691 vcpu->arch.exception.error_code = error_code; 692 vcpu->arch.exception.has_payload = has_payload; 693 vcpu->arch.exception.payload = payload; 694 if (!is_guest_mode(vcpu)) 695 kvm_deliver_exception_payload(vcpu, 696 &vcpu->arch.exception); 697 return; 698 } 699 700 /* to check exception */ 701 prev_nr = vcpu->arch.exception.vector; 702 if (prev_nr == DF_VECTOR) { 703 /* triple fault -> shutdown */ 704 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 705 return; 706 } 707 class1 = exception_class(prev_nr); 708 class2 = exception_class(nr); 709 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 710 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 711 /* 712 * Synthesize #DF. Clear the previously injected or pending 713 * exception so as not to incorrectly trigger shutdown. 714 */ 715 vcpu->arch.exception.injected = false; 716 vcpu->arch.exception.pending = false; 717 718 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 719 } else { 720 /* replace previous exception with a new one in a hope 721 that instruction re-execution will regenerate lost 722 exception */ 723 goto queue; 724 } 725 } 726 727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 728 { 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 730 } 731 EXPORT_SYMBOL_GPL(kvm_queue_exception); 732 733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 734 { 735 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 736 } 737 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 738 739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 740 unsigned long payload) 741 { 742 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 743 } 744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 745 746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 747 u32 error_code, unsigned long payload) 748 { 749 kvm_multiple_exception(vcpu, nr, true, error_code, 750 true, payload, false); 751 } 752 753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 754 { 755 if (err) 756 kvm_inject_gp(vcpu, 0); 757 else 758 return kvm_skip_emulated_instruction(vcpu); 759 760 return 1; 761 } 762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 763 764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 765 { 766 if (err) { 767 kvm_inject_gp(vcpu, 0); 768 return 1; 769 } 770 771 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 772 EMULTYPE_COMPLETE_USER_EXIT); 773 } 774 775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 776 { 777 ++vcpu->stat.pf_guest; 778 779 /* 780 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 781 * whether or not L1 wants to intercept "regular" #PF. 782 */ 783 if (is_guest_mode(vcpu) && fault->async_page_fault) 784 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 785 true, fault->error_code, 786 true, fault->address); 787 else 788 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 789 fault->address); 790 } 791 792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 793 struct x86_exception *fault) 794 { 795 struct kvm_mmu *fault_mmu; 796 WARN_ON_ONCE(fault->vector != PF_VECTOR); 797 798 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 799 vcpu->arch.walk_mmu; 800 801 /* 802 * Invalidate the TLB entry for the faulting address, if it exists, 803 * else the access will fault indefinitely (and to emulate hardware). 804 */ 805 if ((fault->error_code & PFERR_PRESENT_MASK) && 806 !(fault->error_code & PFERR_RSVD_MASK)) 807 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 808 KVM_MMU_ROOT_CURRENT); 809 810 fault_mmu->inject_page_fault(vcpu, fault); 811 } 812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 813 814 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 815 { 816 atomic_inc(&vcpu->arch.nmi_queued); 817 kvm_make_request(KVM_REQ_NMI, vcpu); 818 } 819 820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 821 { 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 823 } 824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 825 826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 827 { 828 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 829 } 830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 831 832 /* 833 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 834 * a #GP and return false. 835 */ 836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 837 { 838 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 839 return true; 840 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 841 return false; 842 } 843 844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 845 { 846 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 847 return true; 848 849 kvm_queue_exception(vcpu, UD_VECTOR); 850 return false; 851 } 852 EXPORT_SYMBOL_GPL(kvm_require_dr); 853 854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 855 { 856 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 857 } 858 859 /* 860 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 861 */ 862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 863 { 864 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 865 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 866 gpa_t real_gpa; 867 int i; 868 int ret; 869 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 870 871 /* 872 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 873 * to an L1 GPA. 874 */ 875 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 876 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 877 if (real_gpa == INVALID_GPA) 878 return 0; 879 880 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 881 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 882 cr3 & GENMASK(11, 5), sizeof(pdpte)); 883 if (ret < 0) 884 return 0; 885 886 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 887 if ((pdpte[i] & PT_PRESENT_MASK) && 888 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 889 return 0; 890 } 891 } 892 893 /* 894 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 895 * Shadow page roots need to be reconstructed instead. 896 */ 897 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 898 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 899 900 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 901 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 902 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 903 vcpu->arch.pdptrs_from_userspace = false; 904 905 return 1; 906 } 907 EXPORT_SYMBOL_GPL(load_pdptrs); 908 909 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 910 { 911 /* 912 * CR0.WP is incorporated into the MMU role, but only for non-nested, 913 * indirect shadow MMUs. If paging is disabled, no updates are needed 914 * as there are no permission bits to emulate. If TDP is enabled, the 915 * MMU's metadata needs to be updated, e.g. so that emulating guest 916 * translations does the right thing, but there's no need to unload the 917 * root as CR0.WP doesn't affect SPTEs. 918 */ 919 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 920 if (!(cr0 & X86_CR0_PG)) 921 return; 922 923 if (tdp_enabled) { 924 kvm_init_mmu(vcpu); 925 return; 926 } 927 } 928 929 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 930 kvm_clear_async_pf_completion_queue(vcpu); 931 kvm_async_pf_hash_reset(vcpu); 932 933 /* 934 * Clearing CR0.PG is defined to flush the TLB from the guest's 935 * perspective. 936 */ 937 if (!(cr0 & X86_CR0_PG)) 938 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 939 } 940 941 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 942 kvm_mmu_reset_context(vcpu); 943 944 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 945 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 946 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 947 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 948 } 949 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 950 951 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 952 { 953 unsigned long old_cr0 = kvm_read_cr0(vcpu); 954 955 cr0 |= X86_CR0_ET; 956 957 #ifdef CONFIG_X86_64 958 if (cr0 & 0xffffffff00000000UL) 959 return 1; 960 #endif 961 962 cr0 &= ~CR0_RESERVED_BITS; 963 964 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 965 return 1; 966 967 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 968 return 1; 969 970 #ifdef CONFIG_X86_64 971 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 972 (cr0 & X86_CR0_PG)) { 973 int cs_db, cs_l; 974 975 if (!is_pae(vcpu)) 976 return 1; 977 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 978 if (cs_l) 979 return 1; 980 } 981 #endif 982 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 983 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 984 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 985 return 1; 986 987 if (!(cr0 & X86_CR0_PG) && 988 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 989 return 1; 990 991 static_call(kvm_x86_set_cr0)(vcpu, cr0); 992 993 kvm_post_set_cr0(vcpu, old_cr0, cr0); 994 995 return 0; 996 } 997 EXPORT_SYMBOL_GPL(kvm_set_cr0); 998 999 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1000 { 1001 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1002 } 1003 EXPORT_SYMBOL_GPL(kvm_lmsw); 1004 1005 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1006 { 1007 if (vcpu->arch.guest_state_protected) 1008 return; 1009 1010 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1011 1012 if (vcpu->arch.xcr0 != host_xcr0) 1013 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1014 1015 if (vcpu->arch.xsaves_enabled && 1016 vcpu->arch.ia32_xss != host_xss) 1017 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1018 } 1019 1020 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1021 if (static_cpu_has(X86_FEATURE_PKU) && 1022 vcpu->arch.pkru != vcpu->arch.host_pkru && 1023 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1024 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1025 write_pkru(vcpu->arch.pkru); 1026 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1027 } 1028 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1029 1030 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1031 { 1032 if (vcpu->arch.guest_state_protected) 1033 return; 1034 1035 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1036 if (static_cpu_has(X86_FEATURE_PKU) && 1037 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1038 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1039 vcpu->arch.pkru = rdpkru(); 1040 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1041 write_pkru(vcpu->arch.host_pkru); 1042 } 1043 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1044 1045 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1046 1047 if (vcpu->arch.xcr0 != host_xcr0) 1048 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1049 1050 if (vcpu->arch.xsaves_enabled && 1051 vcpu->arch.ia32_xss != host_xss) 1052 wrmsrl(MSR_IA32_XSS, host_xss); 1053 } 1054 1055 } 1056 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1057 1058 #ifdef CONFIG_X86_64 1059 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1060 { 1061 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1062 } 1063 #endif 1064 1065 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1066 { 1067 u64 xcr0 = xcr; 1068 u64 old_xcr0 = vcpu->arch.xcr0; 1069 u64 valid_bits; 1070 1071 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1072 if (index != XCR_XFEATURE_ENABLED_MASK) 1073 return 1; 1074 if (!(xcr0 & XFEATURE_MASK_FP)) 1075 return 1; 1076 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1077 return 1; 1078 1079 /* 1080 * Do not allow the guest to set bits that we do not support 1081 * saving. However, xcr0 bit 0 is always set, even if the 1082 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1083 */ 1084 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1085 if (xcr0 & ~valid_bits) 1086 return 1; 1087 1088 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1089 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1090 return 1; 1091 1092 if (xcr0 & XFEATURE_MASK_AVX512) { 1093 if (!(xcr0 & XFEATURE_MASK_YMM)) 1094 return 1; 1095 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1096 return 1; 1097 } 1098 1099 if ((xcr0 & XFEATURE_MASK_XTILE) && 1100 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1101 return 1; 1102 1103 vcpu->arch.xcr0 = xcr0; 1104 1105 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1106 kvm_update_cpuid_runtime(vcpu); 1107 return 0; 1108 } 1109 1110 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1111 { 1112 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1113 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1114 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1115 kvm_inject_gp(vcpu, 0); 1116 return 1; 1117 } 1118 1119 return kvm_skip_emulated_instruction(vcpu); 1120 } 1121 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1122 1123 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1124 { 1125 if (cr4 & cr4_reserved_bits) 1126 return false; 1127 1128 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1129 return false; 1130 1131 return true; 1132 } 1133 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1134 1135 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1136 { 1137 return __kvm_is_valid_cr4(vcpu, cr4) && 1138 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1139 } 1140 1141 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1142 { 1143 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1144 kvm_mmu_reset_context(vcpu); 1145 1146 /* 1147 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1148 * according to the SDM; however, stale prev_roots could be reused 1149 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1150 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1151 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1152 * so fall through. 1153 */ 1154 if (!tdp_enabled && 1155 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1156 kvm_mmu_unload(vcpu); 1157 1158 /* 1159 * The TLB has to be flushed for all PCIDs if any of the following 1160 * (architecturally required) changes happen: 1161 * - CR4.PCIDE is changed from 1 to 0 1162 * - CR4.PGE is toggled 1163 * 1164 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1165 */ 1166 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1167 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1168 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1169 1170 /* 1171 * The TLB has to be flushed for the current PCID if any of the 1172 * following (architecturally required) changes happen: 1173 * - CR4.SMEP is changed from 0 to 1 1174 * - CR4.PAE is toggled 1175 */ 1176 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1177 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1178 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1179 1180 } 1181 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1182 1183 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1184 { 1185 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1186 1187 if (!kvm_is_valid_cr4(vcpu, cr4)) 1188 return 1; 1189 1190 if (is_long_mode(vcpu)) { 1191 if (!(cr4 & X86_CR4_PAE)) 1192 return 1; 1193 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1194 return 1; 1195 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1196 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1197 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1198 return 1; 1199 1200 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1201 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1202 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1203 return 1; 1204 } 1205 1206 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1207 1208 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1209 1210 return 0; 1211 } 1212 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1213 1214 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1215 { 1216 struct kvm_mmu *mmu = vcpu->arch.mmu; 1217 unsigned long roots_to_free = 0; 1218 int i; 1219 1220 /* 1221 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1222 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1223 * also via the emulator. KVM's TDP page tables are not in the scope of 1224 * the invalidation, but the guest's TLB entries need to be flushed as 1225 * the CPU may have cached entries in its TLB for the target PCID. 1226 */ 1227 if (unlikely(tdp_enabled)) { 1228 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1229 return; 1230 } 1231 1232 /* 1233 * If neither the current CR3 nor any of the prev_roots use the given 1234 * PCID, then nothing needs to be done here because a resync will 1235 * happen anyway before switching to any other CR3. 1236 */ 1237 if (kvm_get_active_pcid(vcpu) == pcid) { 1238 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1239 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1240 } 1241 1242 /* 1243 * If PCID is disabled, there is no need to free prev_roots even if the 1244 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1245 * with PCIDE=0. 1246 */ 1247 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1248 return; 1249 1250 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1251 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1252 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1253 1254 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1255 } 1256 1257 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1258 { 1259 bool skip_tlb_flush = false; 1260 unsigned long pcid = 0; 1261 #ifdef CONFIG_X86_64 1262 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1263 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1264 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1265 pcid = cr3 & X86_CR3_PCID_MASK; 1266 } 1267 #endif 1268 1269 /* PDPTRs are always reloaded for PAE paging. */ 1270 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1271 goto handle_tlb_flush; 1272 1273 /* 1274 * Do not condition the GPA check on long mode, this helper is used to 1275 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1276 * the current vCPU mode is accurate. 1277 */ 1278 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1279 return 1; 1280 1281 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1282 return 1; 1283 1284 if (cr3 != kvm_read_cr3(vcpu)) 1285 kvm_mmu_new_pgd(vcpu, cr3); 1286 1287 vcpu->arch.cr3 = cr3; 1288 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1289 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1290 1291 handle_tlb_flush: 1292 /* 1293 * A load of CR3 that flushes the TLB flushes only the current PCID, 1294 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1295 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1296 * and it's impossible to use a non-zero PCID when PCID is disabled, 1297 * i.e. only PCID=0 can be relevant. 1298 */ 1299 if (!skip_tlb_flush) 1300 kvm_invalidate_pcid(vcpu, pcid); 1301 1302 return 0; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1305 1306 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1307 { 1308 if (cr8 & CR8_RESERVED_BITS) 1309 return 1; 1310 if (lapic_in_kernel(vcpu)) 1311 kvm_lapic_set_tpr(vcpu, cr8); 1312 else 1313 vcpu->arch.cr8 = cr8; 1314 return 0; 1315 } 1316 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1317 1318 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1319 { 1320 if (lapic_in_kernel(vcpu)) 1321 return kvm_lapic_get_cr8(vcpu); 1322 else 1323 return vcpu->arch.cr8; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1326 1327 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1328 { 1329 int i; 1330 1331 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1332 for (i = 0; i < KVM_NR_DB_REGS; i++) 1333 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1334 } 1335 } 1336 1337 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1338 { 1339 unsigned long dr7; 1340 1341 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1342 dr7 = vcpu->arch.guest_debug_dr7; 1343 else 1344 dr7 = vcpu->arch.dr7; 1345 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1346 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1347 if (dr7 & DR7_BP_EN_MASK) 1348 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1349 } 1350 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1351 1352 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1353 { 1354 u64 fixed = DR6_FIXED_1; 1355 1356 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1357 fixed |= DR6_RTM; 1358 1359 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1360 fixed |= DR6_BUS_LOCK; 1361 return fixed; 1362 } 1363 1364 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1365 { 1366 size_t size = ARRAY_SIZE(vcpu->arch.db); 1367 1368 switch (dr) { 1369 case 0 ... 3: 1370 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1371 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1372 vcpu->arch.eff_db[dr] = val; 1373 break; 1374 case 4: 1375 case 6: 1376 if (!kvm_dr6_valid(val)) 1377 return 1; /* #GP */ 1378 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1379 break; 1380 case 5: 1381 default: /* 7 */ 1382 if (!kvm_dr7_valid(val)) 1383 return 1; /* #GP */ 1384 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1385 kvm_update_dr7(vcpu); 1386 break; 1387 } 1388 1389 return 0; 1390 } 1391 EXPORT_SYMBOL_GPL(kvm_set_dr); 1392 1393 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1394 { 1395 size_t size = ARRAY_SIZE(vcpu->arch.db); 1396 1397 switch (dr) { 1398 case 0 ... 3: 1399 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1400 break; 1401 case 4: 1402 case 6: 1403 *val = vcpu->arch.dr6; 1404 break; 1405 case 5: 1406 default: /* 7 */ 1407 *val = vcpu->arch.dr7; 1408 break; 1409 } 1410 } 1411 EXPORT_SYMBOL_GPL(kvm_get_dr); 1412 1413 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1414 { 1415 u32 ecx = kvm_rcx_read(vcpu); 1416 u64 data; 1417 1418 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1419 kvm_inject_gp(vcpu, 0); 1420 return 1; 1421 } 1422 1423 kvm_rax_write(vcpu, (u32)data); 1424 kvm_rdx_write(vcpu, data >> 32); 1425 return kvm_skip_emulated_instruction(vcpu); 1426 } 1427 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1428 1429 /* 1430 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1431 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1432 * 1433 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1434 * extract the supported MSRs from the related const lists. 1435 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1436 * capabilities of the host cpu. This capabilities test skips MSRs that are 1437 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1438 * may depend on host virtualization features rather than host cpu features. 1439 */ 1440 1441 static const u32 msrs_to_save_base[] = { 1442 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1443 MSR_STAR, 1444 #ifdef CONFIG_X86_64 1445 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1446 #endif 1447 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1448 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1449 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 1450 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1451 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1452 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1453 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1454 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1455 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1456 MSR_IA32_UMWAIT_CONTROL, 1457 1458 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1459 }; 1460 1461 static const u32 msrs_to_save_pmu[] = { 1462 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1463 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1464 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1465 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1466 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1467 1468 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1469 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1470 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1471 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1472 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1473 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1474 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1475 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1476 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1477 1478 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1479 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1480 1481 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1482 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1483 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1484 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1485 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1486 }; 1487 1488 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1489 ARRAY_SIZE(msrs_to_save_pmu)]; 1490 static unsigned num_msrs_to_save; 1491 1492 static const u32 emulated_msrs_all[] = { 1493 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1494 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1495 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1496 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1497 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1498 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1499 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1500 HV_X64_MSR_RESET, 1501 HV_X64_MSR_VP_INDEX, 1502 HV_X64_MSR_VP_RUNTIME, 1503 HV_X64_MSR_SCONTROL, 1504 HV_X64_MSR_STIMER0_CONFIG, 1505 HV_X64_MSR_VP_ASSIST_PAGE, 1506 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1507 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1508 HV_X64_MSR_SYNDBG_OPTIONS, 1509 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1510 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1511 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1512 1513 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1514 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1515 1516 MSR_IA32_TSC_ADJUST, 1517 MSR_IA32_TSC_DEADLINE, 1518 MSR_IA32_ARCH_CAPABILITIES, 1519 MSR_IA32_PERF_CAPABILITIES, 1520 MSR_IA32_MISC_ENABLE, 1521 MSR_IA32_MCG_STATUS, 1522 MSR_IA32_MCG_CTL, 1523 MSR_IA32_MCG_EXT_CTL, 1524 MSR_IA32_SMBASE, 1525 MSR_SMI_COUNT, 1526 MSR_PLATFORM_INFO, 1527 MSR_MISC_FEATURES_ENABLES, 1528 MSR_AMD64_VIRT_SPEC_CTRL, 1529 MSR_AMD64_TSC_RATIO, 1530 MSR_IA32_POWER_CTL, 1531 MSR_IA32_UCODE_REV, 1532 1533 /* 1534 * The following list leaves out MSRs whose values are determined 1535 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1536 * We always support the "true" VMX control MSRs, even if the host 1537 * processor does not, so I am putting these registers here rather 1538 * than in msrs_to_save_all. 1539 */ 1540 MSR_IA32_VMX_BASIC, 1541 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1542 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1543 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1544 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1545 MSR_IA32_VMX_MISC, 1546 MSR_IA32_VMX_CR0_FIXED0, 1547 MSR_IA32_VMX_CR4_FIXED0, 1548 MSR_IA32_VMX_VMCS_ENUM, 1549 MSR_IA32_VMX_PROCBASED_CTLS2, 1550 MSR_IA32_VMX_EPT_VPID_CAP, 1551 MSR_IA32_VMX_VMFUNC, 1552 1553 MSR_K7_HWCR, 1554 MSR_KVM_POLL_CONTROL, 1555 }; 1556 1557 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1558 static unsigned num_emulated_msrs; 1559 1560 /* 1561 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1562 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1563 * feature MSRs, but are handled separately to allow expedited lookups. 1564 */ 1565 static const u32 msr_based_features_all_except_vmx[] = { 1566 MSR_AMD64_DE_CFG, 1567 MSR_IA32_UCODE_REV, 1568 MSR_IA32_ARCH_CAPABILITIES, 1569 MSR_IA32_PERF_CAPABILITIES, 1570 }; 1571 1572 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1573 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1574 static unsigned int num_msr_based_features; 1575 1576 /* 1577 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1578 * patch, are immutable once the vCPU model is defined. 1579 */ 1580 static bool kvm_is_immutable_feature_msr(u32 msr) 1581 { 1582 int i; 1583 1584 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1585 return true; 1586 1587 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1588 if (msr == msr_based_features_all_except_vmx[i]) 1589 return msr != MSR_IA32_UCODE_REV; 1590 } 1591 1592 return false; 1593 } 1594 1595 /* 1596 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1597 * does not yet virtualize. These include: 1598 * 10 - MISC_PACKAGE_CTRLS 1599 * 11 - ENERGY_FILTERING_CTL 1600 * 12 - DOITM 1601 * 18 - FB_CLEAR_CTRL 1602 * 21 - XAPIC_DISABLE_STATUS 1603 * 23 - OVERCLOCKING_STATUS 1604 */ 1605 1606 #define KVM_SUPPORTED_ARCH_CAP \ 1607 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1608 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1609 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1610 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1611 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1612 1613 static u64 kvm_get_arch_capabilities(void) 1614 { 1615 u64 data = 0; 1616 1617 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1618 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1619 data &= KVM_SUPPORTED_ARCH_CAP; 1620 } 1621 1622 /* 1623 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1624 * the nested hypervisor runs with NX huge pages. If it is not, 1625 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1626 * L1 guests, so it need not worry about its own (L2) guests. 1627 */ 1628 data |= ARCH_CAP_PSCHANGE_MC_NO; 1629 1630 /* 1631 * If we're doing cache flushes (either "always" or "cond") 1632 * we will do one whenever the guest does a vmlaunch/vmresume. 1633 * If an outer hypervisor is doing the cache flush for us 1634 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1635 * capability to the guest too, and if EPT is disabled we're not 1636 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1637 * require a nested hypervisor to do a flush of its own. 1638 */ 1639 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1640 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1641 1642 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1643 data |= ARCH_CAP_RDCL_NO; 1644 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1645 data |= ARCH_CAP_SSB_NO; 1646 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1647 data |= ARCH_CAP_MDS_NO; 1648 1649 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1650 /* 1651 * If RTM=0 because the kernel has disabled TSX, the host might 1652 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1653 * and therefore knows that there cannot be TAA) but keep 1654 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1655 * and we want to allow migrating those guests to tsx=off hosts. 1656 */ 1657 data &= ~ARCH_CAP_TAA_NO; 1658 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1659 data |= ARCH_CAP_TAA_NO; 1660 } else { 1661 /* 1662 * Nothing to do here; we emulate TSX_CTRL if present on the 1663 * host so the guest can choose between disabling TSX or 1664 * using VERW to clear CPU buffers. 1665 */ 1666 } 1667 1668 return data; 1669 } 1670 1671 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1672 { 1673 switch (msr->index) { 1674 case MSR_IA32_ARCH_CAPABILITIES: 1675 msr->data = kvm_get_arch_capabilities(); 1676 break; 1677 case MSR_IA32_PERF_CAPABILITIES: 1678 msr->data = kvm_caps.supported_perf_cap; 1679 break; 1680 case MSR_IA32_UCODE_REV: 1681 rdmsrl_safe(msr->index, &msr->data); 1682 break; 1683 default: 1684 return static_call(kvm_x86_get_msr_feature)(msr); 1685 } 1686 return 0; 1687 } 1688 1689 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1690 { 1691 struct kvm_msr_entry msr; 1692 int r; 1693 1694 msr.index = index; 1695 r = kvm_get_msr_feature(&msr); 1696 1697 if (r == KVM_MSR_RET_INVALID) { 1698 /* Unconditionally clear the output for simplicity */ 1699 *data = 0; 1700 if (kvm_msr_ignored_check(index, 0, false)) 1701 r = 0; 1702 } 1703 1704 if (r) 1705 return r; 1706 1707 *data = msr.data; 1708 1709 return 0; 1710 } 1711 1712 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1713 { 1714 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1715 return false; 1716 1717 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1718 return false; 1719 1720 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1721 return false; 1722 1723 if (efer & (EFER_LME | EFER_LMA) && 1724 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1725 return false; 1726 1727 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1728 return false; 1729 1730 return true; 1731 1732 } 1733 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1734 { 1735 if (efer & efer_reserved_bits) 1736 return false; 1737 1738 return __kvm_valid_efer(vcpu, efer); 1739 } 1740 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1741 1742 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1743 { 1744 u64 old_efer = vcpu->arch.efer; 1745 u64 efer = msr_info->data; 1746 int r; 1747 1748 if (efer & efer_reserved_bits) 1749 return 1; 1750 1751 if (!msr_info->host_initiated) { 1752 if (!__kvm_valid_efer(vcpu, efer)) 1753 return 1; 1754 1755 if (is_paging(vcpu) && 1756 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1757 return 1; 1758 } 1759 1760 efer &= ~EFER_LMA; 1761 efer |= vcpu->arch.efer & EFER_LMA; 1762 1763 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1764 if (r) { 1765 WARN_ON(r > 0); 1766 return r; 1767 } 1768 1769 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1770 kvm_mmu_reset_context(vcpu); 1771 1772 return 0; 1773 } 1774 1775 void kvm_enable_efer_bits(u64 mask) 1776 { 1777 efer_reserved_bits &= ~mask; 1778 } 1779 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1780 1781 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1782 { 1783 struct kvm_x86_msr_filter *msr_filter; 1784 struct msr_bitmap_range *ranges; 1785 struct kvm *kvm = vcpu->kvm; 1786 bool allowed; 1787 int idx; 1788 u32 i; 1789 1790 /* x2APIC MSRs do not support filtering. */ 1791 if (index >= 0x800 && index <= 0x8ff) 1792 return true; 1793 1794 idx = srcu_read_lock(&kvm->srcu); 1795 1796 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1797 if (!msr_filter) { 1798 allowed = true; 1799 goto out; 1800 } 1801 1802 allowed = msr_filter->default_allow; 1803 ranges = msr_filter->ranges; 1804 1805 for (i = 0; i < msr_filter->count; i++) { 1806 u32 start = ranges[i].base; 1807 u32 end = start + ranges[i].nmsrs; 1808 u32 flags = ranges[i].flags; 1809 unsigned long *bitmap = ranges[i].bitmap; 1810 1811 if ((index >= start) && (index < end) && (flags & type)) { 1812 allowed = !!test_bit(index - start, bitmap); 1813 break; 1814 } 1815 } 1816 1817 out: 1818 srcu_read_unlock(&kvm->srcu, idx); 1819 1820 return allowed; 1821 } 1822 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1823 1824 /* 1825 * Write @data into the MSR specified by @index. Select MSR specific fault 1826 * checks are bypassed if @host_initiated is %true. 1827 * Returns 0 on success, non-0 otherwise. 1828 * Assumes vcpu_load() was already called. 1829 */ 1830 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1831 bool host_initiated) 1832 { 1833 struct msr_data msr; 1834 1835 switch (index) { 1836 case MSR_FS_BASE: 1837 case MSR_GS_BASE: 1838 case MSR_KERNEL_GS_BASE: 1839 case MSR_CSTAR: 1840 case MSR_LSTAR: 1841 if (is_noncanonical_address(data, vcpu)) 1842 return 1; 1843 break; 1844 case MSR_IA32_SYSENTER_EIP: 1845 case MSR_IA32_SYSENTER_ESP: 1846 /* 1847 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1848 * non-canonical address is written on Intel but not on 1849 * AMD (which ignores the top 32-bits, because it does 1850 * not implement 64-bit SYSENTER). 1851 * 1852 * 64-bit code should hence be able to write a non-canonical 1853 * value on AMD. Making the address canonical ensures that 1854 * vmentry does not fail on Intel after writing a non-canonical 1855 * value, and that something deterministic happens if the guest 1856 * invokes 64-bit SYSENTER. 1857 */ 1858 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1859 break; 1860 case MSR_TSC_AUX: 1861 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1862 return 1; 1863 1864 if (!host_initiated && 1865 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1866 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1867 return 1; 1868 1869 /* 1870 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1871 * incomplete and conflicting architectural behavior. Current 1872 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1873 * reserved and always read as zeros. Enforce Intel's reserved 1874 * bits check if and only if the guest CPU is Intel, and clear 1875 * the bits in all other cases. This ensures cross-vendor 1876 * migration will provide consistent behavior for the guest. 1877 */ 1878 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1879 return 1; 1880 1881 data = (u32)data; 1882 break; 1883 } 1884 1885 msr.data = data; 1886 msr.index = index; 1887 msr.host_initiated = host_initiated; 1888 1889 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1890 } 1891 1892 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1893 u32 index, u64 data, bool host_initiated) 1894 { 1895 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1896 1897 if (ret == KVM_MSR_RET_INVALID) 1898 if (kvm_msr_ignored_check(index, data, true)) 1899 ret = 0; 1900 1901 return ret; 1902 } 1903 1904 /* 1905 * Read the MSR specified by @index into @data. Select MSR specific fault 1906 * checks are bypassed if @host_initiated is %true. 1907 * Returns 0 on success, non-0 otherwise. 1908 * Assumes vcpu_load() was already called. 1909 */ 1910 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1911 bool host_initiated) 1912 { 1913 struct msr_data msr; 1914 int ret; 1915 1916 switch (index) { 1917 case MSR_TSC_AUX: 1918 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1919 return 1; 1920 1921 if (!host_initiated && 1922 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1923 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1924 return 1; 1925 break; 1926 } 1927 1928 msr.index = index; 1929 msr.host_initiated = host_initiated; 1930 1931 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1932 if (!ret) 1933 *data = msr.data; 1934 return ret; 1935 } 1936 1937 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1938 u32 index, u64 *data, bool host_initiated) 1939 { 1940 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1941 1942 if (ret == KVM_MSR_RET_INVALID) { 1943 /* Unconditionally clear *data for simplicity */ 1944 *data = 0; 1945 if (kvm_msr_ignored_check(index, 0, false)) 1946 ret = 0; 1947 } 1948 1949 return ret; 1950 } 1951 1952 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1953 { 1954 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1955 return KVM_MSR_RET_FILTERED; 1956 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1957 } 1958 1959 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1960 { 1961 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1962 return KVM_MSR_RET_FILTERED; 1963 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1964 } 1965 1966 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1967 { 1968 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1969 } 1970 EXPORT_SYMBOL_GPL(kvm_get_msr); 1971 1972 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1973 { 1974 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1975 } 1976 EXPORT_SYMBOL_GPL(kvm_set_msr); 1977 1978 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1979 { 1980 if (!vcpu->run->msr.error) { 1981 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1982 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1983 } 1984 } 1985 1986 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1987 { 1988 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1989 } 1990 1991 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1992 { 1993 complete_userspace_rdmsr(vcpu); 1994 return complete_emulated_msr_access(vcpu); 1995 } 1996 1997 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1998 { 1999 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2000 } 2001 2002 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2003 { 2004 complete_userspace_rdmsr(vcpu); 2005 return complete_fast_msr_access(vcpu); 2006 } 2007 2008 static u64 kvm_msr_reason(int r) 2009 { 2010 switch (r) { 2011 case KVM_MSR_RET_INVALID: 2012 return KVM_MSR_EXIT_REASON_UNKNOWN; 2013 case KVM_MSR_RET_FILTERED: 2014 return KVM_MSR_EXIT_REASON_FILTER; 2015 default: 2016 return KVM_MSR_EXIT_REASON_INVAL; 2017 } 2018 } 2019 2020 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2021 u32 exit_reason, u64 data, 2022 int (*completion)(struct kvm_vcpu *vcpu), 2023 int r) 2024 { 2025 u64 msr_reason = kvm_msr_reason(r); 2026 2027 /* Check if the user wanted to know about this MSR fault */ 2028 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2029 return 0; 2030 2031 vcpu->run->exit_reason = exit_reason; 2032 vcpu->run->msr.error = 0; 2033 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2034 vcpu->run->msr.reason = msr_reason; 2035 vcpu->run->msr.index = index; 2036 vcpu->run->msr.data = data; 2037 vcpu->arch.complete_userspace_io = completion; 2038 2039 return 1; 2040 } 2041 2042 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2043 { 2044 u32 ecx = kvm_rcx_read(vcpu); 2045 u64 data; 2046 int r; 2047 2048 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2049 2050 if (!r) { 2051 trace_kvm_msr_read(ecx, data); 2052 2053 kvm_rax_write(vcpu, data & -1u); 2054 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2055 } else { 2056 /* MSR read failed? See if we should ask user space */ 2057 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2058 complete_fast_rdmsr, r)) 2059 return 0; 2060 trace_kvm_msr_read_ex(ecx); 2061 } 2062 2063 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2064 } 2065 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2066 2067 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2068 { 2069 u32 ecx = kvm_rcx_read(vcpu); 2070 u64 data = kvm_read_edx_eax(vcpu); 2071 int r; 2072 2073 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2074 2075 if (!r) { 2076 trace_kvm_msr_write(ecx, data); 2077 } else { 2078 /* MSR write failed? See if we should ask user space */ 2079 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2080 complete_fast_msr_access, r)) 2081 return 0; 2082 /* Signal all other negative errors to userspace */ 2083 if (r < 0) 2084 return r; 2085 trace_kvm_msr_write_ex(ecx, data); 2086 } 2087 2088 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2089 } 2090 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2091 2092 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2093 { 2094 return kvm_skip_emulated_instruction(vcpu); 2095 } 2096 2097 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2098 { 2099 /* Treat an INVD instruction as a NOP and just skip it. */ 2100 return kvm_emulate_as_nop(vcpu); 2101 } 2102 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2103 2104 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2105 { 2106 kvm_queue_exception(vcpu, UD_VECTOR); 2107 return 1; 2108 } 2109 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2110 2111 2112 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2113 { 2114 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2115 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2116 return kvm_handle_invalid_op(vcpu); 2117 2118 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2119 return kvm_emulate_as_nop(vcpu); 2120 } 2121 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2122 { 2123 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2124 } 2125 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2126 2127 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2128 { 2129 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2130 } 2131 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2132 2133 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2134 { 2135 xfer_to_guest_mode_prepare(); 2136 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2137 xfer_to_guest_mode_work_pending(); 2138 } 2139 2140 /* 2141 * The fast path for frequent and performance sensitive wrmsr emulation, 2142 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2143 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2144 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2145 * other cases which must be called after interrupts are enabled on the host. 2146 */ 2147 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2148 { 2149 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2150 return 1; 2151 2152 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2153 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2154 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2155 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2156 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2157 2158 return 1; 2159 } 2160 2161 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2162 { 2163 if (!kvm_can_use_hv_timer(vcpu)) 2164 return 1; 2165 2166 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2167 return 0; 2168 } 2169 2170 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2171 { 2172 u32 msr = kvm_rcx_read(vcpu); 2173 u64 data; 2174 fastpath_t ret = EXIT_FASTPATH_NONE; 2175 2176 switch (msr) { 2177 case APIC_BASE_MSR + (APIC_ICR >> 4): 2178 data = kvm_read_edx_eax(vcpu); 2179 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2180 kvm_skip_emulated_instruction(vcpu); 2181 ret = EXIT_FASTPATH_EXIT_HANDLED; 2182 } 2183 break; 2184 case MSR_IA32_TSC_DEADLINE: 2185 data = kvm_read_edx_eax(vcpu); 2186 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2187 kvm_skip_emulated_instruction(vcpu); 2188 ret = EXIT_FASTPATH_REENTER_GUEST; 2189 } 2190 break; 2191 default: 2192 break; 2193 } 2194 2195 if (ret != EXIT_FASTPATH_NONE) 2196 trace_kvm_msr_write(msr, data); 2197 2198 return ret; 2199 } 2200 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2201 2202 /* 2203 * Adapt set_msr() to msr_io()'s calling convention 2204 */ 2205 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2206 { 2207 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2208 } 2209 2210 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2211 { 2212 u64 val; 2213 2214 /* 2215 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2216 * not support modifying the guest vCPU model on the fly, e.g. changing 2217 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2218 * writes of the same value, e.g. to allow userspace to blindly stuff 2219 * all MSRs when emulating RESET. 2220 */ 2221 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2222 if (do_get_msr(vcpu, index, &val) || *data != val) 2223 return -EINVAL; 2224 2225 return 0; 2226 } 2227 2228 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2229 } 2230 2231 #ifdef CONFIG_X86_64 2232 struct pvclock_clock { 2233 int vclock_mode; 2234 u64 cycle_last; 2235 u64 mask; 2236 u32 mult; 2237 u32 shift; 2238 u64 base_cycles; 2239 u64 offset; 2240 }; 2241 2242 struct pvclock_gtod_data { 2243 seqcount_t seq; 2244 2245 struct pvclock_clock clock; /* extract of a clocksource struct */ 2246 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2247 2248 ktime_t offs_boot; 2249 u64 wall_time_sec; 2250 }; 2251 2252 static struct pvclock_gtod_data pvclock_gtod_data; 2253 2254 static void update_pvclock_gtod(struct timekeeper *tk) 2255 { 2256 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2257 2258 write_seqcount_begin(&vdata->seq); 2259 2260 /* copy pvclock gtod data */ 2261 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2262 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2263 vdata->clock.mask = tk->tkr_mono.mask; 2264 vdata->clock.mult = tk->tkr_mono.mult; 2265 vdata->clock.shift = tk->tkr_mono.shift; 2266 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2267 vdata->clock.offset = tk->tkr_mono.base; 2268 2269 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2270 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2271 vdata->raw_clock.mask = tk->tkr_raw.mask; 2272 vdata->raw_clock.mult = tk->tkr_raw.mult; 2273 vdata->raw_clock.shift = tk->tkr_raw.shift; 2274 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2275 vdata->raw_clock.offset = tk->tkr_raw.base; 2276 2277 vdata->wall_time_sec = tk->xtime_sec; 2278 2279 vdata->offs_boot = tk->offs_boot; 2280 2281 write_seqcount_end(&vdata->seq); 2282 } 2283 2284 static s64 get_kvmclock_base_ns(void) 2285 { 2286 /* Count up from boot time, but with the frequency of the raw clock. */ 2287 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2288 } 2289 #else 2290 static s64 get_kvmclock_base_ns(void) 2291 { 2292 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2293 return ktime_get_boottime_ns(); 2294 } 2295 #endif 2296 2297 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2298 { 2299 int version; 2300 int r; 2301 struct pvclock_wall_clock wc; 2302 u32 wc_sec_hi; 2303 u64 wall_nsec; 2304 2305 if (!wall_clock) 2306 return; 2307 2308 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2309 if (r) 2310 return; 2311 2312 if (version & 1) 2313 ++version; /* first time write, random junk */ 2314 2315 ++version; 2316 2317 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2318 return; 2319 2320 /* 2321 * The guest calculates current wall clock time by adding 2322 * system time (updated by kvm_guest_time_update below) to the 2323 * wall clock specified here. We do the reverse here. 2324 */ 2325 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2326 2327 wc.nsec = do_div(wall_nsec, 1000000000); 2328 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2329 wc.version = version; 2330 2331 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2332 2333 if (sec_hi_ofs) { 2334 wc_sec_hi = wall_nsec >> 32; 2335 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2336 &wc_sec_hi, sizeof(wc_sec_hi)); 2337 } 2338 2339 version++; 2340 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2341 } 2342 2343 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2344 bool old_msr, bool host_initiated) 2345 { 2346 struct kvm_arch *ka = &vcpu->kvm->arch; 2347 2348 if (vcpu->vcpu_id == 0 && !host_initiated) { 2349 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2350 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2351 2352 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2353 } 2354 2355 vcpu->arch.time = system_time; 2356 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2357 2358 /* we verify if the enable bit is set... */ 2359 if (system_time & 1) 2360 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2361 sizeof(struct pvclock_vcpu_time_info)); 2362 else 2363 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2364 2365 return; 2366 } 2367 2368 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2369 { 2370 do_shl32_div32(dividend, divisor); 2371 return dividend; 2372 } 2373 2374 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2375 s8 *pshift, u32 *pmultiplier) 2376 { 2377 uint64_t scaled64; 2378 int32_t shift = 0; 2379 uint64_t tps64; 2380 uint32_t tps32; 2381 2382 tps64 = base_hz; 2383 scaled64 = scaled_hz; 2384 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2385 tps64 >>= 1; 2386 shift--; 2387 } 2388 2389 tps32 = (uint32_t)tps64; 2390 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2391 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2392 scaled64 >>= 1; 2393 else 2394 tps32 <<= 1; 2395 shift++; 2396 } 2397 2398 *pshift = shift; 2399 *pmultiplier = div_frac(scaled64, tps32); 2400 } 2401 2402 #ifdef CONFIG_X86_64 2403 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2404 #endif 2405 2406 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2407 static unsigned long max_tsc_khz; 2408 2409 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2410 { 2411 u64 v = (u64)khz * (1000000 + ppm); 2412 do_div(v, 1000000); 2413 return v; 2414 } 2415 2416 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2417 2418 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2419 { 2420 u64 ratio; 2421 2422 /* Guest TSC same frequency as host TSC? */ 2423 if (!scale) { 2424 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2425 return 0; 2426 } 2427 2428 /* TSC scaling supported? */ 2429 if (!kvm_caps.has_tsc_control) { 2430 if (user_tsc_khz > tsc_khz) { 2431 vcpu->arch.tsc_catchup = 1; 2432 vcpu->arch.tsc_always_catchup = 1; 2433 return 0; 2434 } else { 2435 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2436 return -1; 2437 } 2438 } 2439 2440 /* TSC scaling required - calculate ratio */ 2441 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2442 user_tsc_khz, tsc_khz); 2443 2444 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2445 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2446 user_tsc_khz); 2447 return -1; 2448 } 2449 2450 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2451 return 0; 2452 } 2453 2454 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2455 { 2456 u32 thresh_lo, thresh_hi; 2457 int use_scaling = 0; 2458 2459 /* tsc_khz can be zero if TSC calibration fails */ 2460 if (user_tsc_khz == 0) { 2461 /* set tsc_scaling_ratio to a safe value */ 2462 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2463 return -1; 2464 } 2465 2466 /* Compute a scale to convert nanoseconds in TSC cycles */ 2467 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2468 &vcpu->arch.virtual_tsc_shift, 2469 &vcpu->arch.virtual_tsc_mult); 2470 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2471 2472 /* 2473 * Compute the variation in TSC rate which is acceptable 2474 * within the range of tolerance and decide if the 2475 * rate being applied is within that bounds of the hardware 2476 * rate. If so, no scaling or compensation need be done. 2477 */ 2478 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2479 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2480 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2481 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2482 user_tsc_khz, thresh_lo, thresh_hi); 2483 use_scaling = 1; 2484 } 2485 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2486 } 2487 2488 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2489 { 2490 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2491 vcpu->arch.virtual_tsc_mult, 2492 vcpu->arch.virtual_tsc_shift); 2493 tsc += vcpu->arch.this_tsc_write; 2494 return tsc; 2495 } 2496 2497 #ifdef CONFIG_X86_64 2498 static inline int gtod_is_based_on_tsc(int mode) 2499 { 2500 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2501 } 2502 #endif 2503 2504 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2505 { 2506 #ifdef CONFIG_X86_64 2507 bool vcpus_matched; 2508 struct kvm_arch *ka = &vcpu->kvm->arch; 2509 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2510 2511 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2512 atomic_read(&vcpu->kvm->online_vcpus)); 2513 2514 /* 2515 * Once the masterclock is enabled, always perform request in 2516 * order to update it. 2517 * 2518 * In order to enable masterclock, the host clocksource must be TSC 2519 * and the vcpus need to have matched TSCs. When that happens, 2520 * perform request to enable masterclock. 2521 */ 2522 if (ka->use_master_clock || 2523 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2524 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2525 2526 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2527 atomic_read(&vcpu->kvm->online_vcpus), 2528 ka->use_master_clock, gtod->clock.vclock_mode); 2529 #endif 2530 } 2531 2532 /* 2533 * Multiply tsc by a fixed point number represented by ratio. 2534 * 2535 * The most significant 64-N bits (mult) of ratio represent the 2536 * integral part of the fixed point number; the remaining N bits 2537 * (frac) represent the fractional part, ie. ratio represents a fixed 2538 * point number (mult + frac * 2^(-N)). 2539 * 2540 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2541 */ 2542 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2543 { 2544 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2545 } 2546 2547 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2548 { 2549 u64 _tsc = tsc; 2550 2551 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2552 _tsc = __scale_tsc(ratio, tsc); 2553 2554 return _tsc; 2555 } 2556 2557 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2558 { 2559 u64 tsc; 2560 2561 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2562 2563 return target_tsc - tsc; 2564 } 2565 2566 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2567 { 2568 return vcpu->arch.l1_tsc_offset + 2569 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2570 } 2571 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2572 2573 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2574 { 2575 u64 nested_offset; 2576 2577 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2578 nested_offset = l1_offset; 2579 else 2580 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2581 kvm_caps.tsc_scaling_ratio_frac_bits); 2582 2583 nested_offset += l2_offset; 2584 return nested_offset; 2585 } 2586 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2587 2588 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2589 { 2590 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2591 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2592 kvm_caps.tsc_scaling_ratio_frac_bits); 2593 2594 return l1_multiplier; 2595 } 2596 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2597 2598 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2599 { 2600 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2601 vcpu->arch.l1_tsc_offset, 2602 l1_offset); 2603 2604 vcpu->arch.l1_tsc_offset = l1_offset; 2605 2606 /* 2607 * If we are here because L1 chose not to trap WRMSR to TSC then 2608 * according to the spec this should set L1's TSC (as opposed to 2609 * setting L1's offset for L2). 2610 */ 2611 if (is_guest_mode(vcpu)) 2612 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2613 l1_offset, 2614 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2615 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2616 else 2617 vcpu->arch.tsc_offset = l1_offset; 2618 2619 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2620 } 2621 2622 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2623 { 2624 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2625 2626 /* Userspace is changing the multiplier while L2 is active */ 2627 if (is_guest_mode(vcpu)) 2628 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2629 l1_multiplier, 2630 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2631 else 2632 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2633 2634 if (kvm_caps.has_tsc_control) 2635 static_call(kvm_x86_write_tsc_multiplier)( 2636 vcpu, vcpu->arch.tsc_scaling_ratio); 2637 } 2638 2639 static inline bool kvm_check_tsc_unstable(void) 2640 { 2641 #ifdef CONFIG_X86_64 2642 /* 2643 * TSC is marked unstable when we're running on Hyper-V, 2644 * 'TSC page' clocksource is good. 2645 */ 2646 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2647 return false; 2648 #endif 2649 return check_tsc_unstable(); 2650 } 2651 2652 /* 2653 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2654 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2655 * participates in. 2656 */ 2657 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2658 u64 ns, bool matched) 2659 { 2660 struct kvm *kvm = vcpu->kvm; 2661 2662 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2663 2664 /* 2665 * We also track th most recent recorded KHZ, write and time to 2666 * allow the matching interval to be extended at each write. 2667 */ 2668 kvm->arch.last_tsc_nsec = ns; 2669 kvm->arch.last_tsc_write = tsc; 2670 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2671 kvm->arch.last_tsc_offset = offset; 2672 2673 vcpu->arch.last_guest_tsc = tsc; 2674 2675 kvm_vcpu_write_tsc_offset(vcpu, offset); 2676 2677 if (!matched) { 2678 /* 2679 * We split periods of matched TSC writes into generations. 2680 * For each generation, we track the original measured 2681 * nanosecond time, offset, and write, so if TSCs are in 2682 * sync, we can match exact offset, and if not, we can match 2683 * exact software computation in compute_guest_tsc() 2684 * 2685 * These values are tracked in kvm->arch.cur_xxx variables. 2686 */ 2687 kvm->arch.cur_tsc_generation++; 2688 kvm->arch.cur_tsc_nsec = ns; 2689 kvm->arch.cur_tsc_write = tsc; 2690 kvm->arch.cur_tsc_offset = offset; 2691 kvm->arch.nr_vcpus_matched_tsc = 0; 2692 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2693 kvm->arch.nr_vcpus_matched_tsc++; 2694 } 2695 2696 /* Keep track of which generation this VCPU has synchronized to */ 2697 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2698 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2699 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2700 2701 kvm_track_tsc_matching(vcpu); 2702 } 2703 2704 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2705 { 2706 struct kvm *kvm = vcpu->kvm; 2707 u64 offset, ns, elapsed; 2708 unsigned long flags; 2709 bool matched = false; 2710 bool synchronizing = false; 2711 2712 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2713 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2714 ns = get_kvmclock_base_ns(); 2715 elapsed = ns - kvm->arch.last_tsc_nsec; 2716 2717 if (vcpu->arch.virtual_tsc_khz) { 2718 if (data == 0) { 2719 /* 2720 * detection of vcpu initialization -- need to sync 2721 * with other vCPUs. This particularly helps to keep 2722 * kvm_clock stable after CPU hotplug 2723 */ 2724 synchronizing = true; 2725 } else { 2726 u64 tsc_exp = kvm->arch.last_tsc_write + 2727 nsec_to_cycles(vcpu, elapsed); 2728 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2729 /* 2730 * Special case: TSC write with a small delta (1 second) 2731 * of virtual cycle time against real time is 2732 * interpreted as an attempt to synchronize the CPU. 2733 */ 2734 synchronizing = data < tsc_exp + tsc_hz && 2735 data + tsc_hz > tsc_exp; 2736 } 2737 } 2738 2739 /* 2740 * For a reliable TSC, we can match TSC offsets, and for an unstable 2741 * TSC, we add elapsed time in this computation. We could let the 2742 * compensation code attempt to catch up if we fall behind, but 2743 * it's better to try to match offsets from the beginning. 2744 */ 2745 if (synchronizing && 2746 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2747 if (!kvm_check_tsc_unstable()) { 2748 offset = kvm->arch.cur_tsc_offset; 2749 } else { 2750 u64 delta = nsec_to_cycles(vcpu, elapsed); 2751 data += delta; 2752 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2753 } 2754 matched = true; 2755 } 2756 2757 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2758 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2759 } 2760 2761 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2762 s64 adjustment) 2763 { 2764 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2765 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2766 } 2767 2768 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2769 { 2770 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2771 WARN_ON(adjustment < 0); 2772 adjustment = kvm_scale_tsc((u64) adjustment, 2773 vcpu->arch.l1_tsc_scaling_ratio); 2774 adjust_tsc_offset_guest(vcpu, adjustment); 2775 } 2776 2777 #ifdef CONFIG_X86_64 2778 2779 static u64 read_tsc(void) 2780 { 2781 u64 ret = (u64)rdtsc_ordered(); 2782 u64 last = pvclock_gtod_data.clock.cycle_last; 2783 2784 if (likely(ret >= last)) 2785 return ret; 2786 2787 /* 2788 * GCC likes to generate cmov here, but this branch is extremely 2789 * predictable (it's just a function of time and the likely is 2790 * very likely) and there's a data dependence, so force GCC 2791 * to generate a branch instead. I don't barrier() because 2792 * we don't actually need a barrier, and if this function 2793 * ever gets inlined it will generate worse code. 2794 */ 2795 asm volatile (""); 2796 return last; 2797 } 2798 2799 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2800 int *mode) 2801 { 2802 u64 tsc_pg_val; 2803 long v; 2804 2805 switch (clock->vclock_mode) { 2806 case VDSO_CLOCKMODE_HVCLOCK: 2807 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2808 tsc_timestamp, &tsc_pg_val)) { 2809 /* TSC page valid */ 2810 *mode = VDSO_CLOCKMODE_HVCLOCK; 2811 v = (tsc_pg_val - clock->cycle_last) & 2812 clock->mask; 2813 } else { 2814 /* TSC page invalid */ 2815 *mode = VDSO_CLOCKMODE_NONE; 2816 } 2817 break; 2818 case VDSO_CLOCKMODE_TSC: 2819 *mode = VDSO_CLOCKMODE_TSC; 2820 *tsc_timestamp = read_tsc(); 2821 v = (*tsc_timestamp - clock->cycle_last) & 2822 clock->mask; 2823 break; 2824 default: 2825 *mode = VDSO_CLOCKMODE_NONE; 2826 } 2827 2828 if (*mode == VDSO_CLOCKMODE_NONE) 2829 *tsc_timestamp = v = 0; 2830 2831 return v * clock->mult; 2832 } 2833 2834 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2835 { 2836 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2837 unsigned long seq; 2838 int mode; 2839 u64 ns; 2840 2841 do { 2842 seq = read_seqcount_begin(>od->seq); 2843 ns = gtod->raw_clock.base_cycles; 2844 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2845 ns >>= gtod->raw_clock.shift; 2846 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2847 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2848 *t = ns; 2849 2850 return mode; 2851 } 2852 2853 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2854 { 2855 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2856 unsigned long seq; 2857 int mode; 2858 u64 ns; 2859 2860 do { 2861 seq = read_seqcount_begin(>od->seq); 2862 ts->tv_sec = gtod->wall_time_sec; 2863 ns = gtod->clock.base_cycles; 2864 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2865 ns >>= gtod->clock.shift; 2866 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2867 2868 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2869 ts->tv_nsec = ns; 2870 2871 return mode; 2872 } 2873 2874 /* returns true if host is using TSC based clocksource */ 2875 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2876 { 2877 /* checked again under seqlock below */ 2878 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2879 return false; 2880 2881 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2882 tsc_timestamp)); 2883 } 2884 2885 /* returns true if host is using TSC based clocksource */ 2886 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2887 u64 *tsc_timestamp) 2888 { 2889 /* checked again under seqlock below */ 2890 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2891 return false; 2892 2893 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2894 } 2895 #endif 2896 2897 /* 2898 * 2899 * Assuming a stable TSC across physical CPUS, and a stable TSC 2900 * across virtual CPUs, the following condition is possible. 2901 * Each numbered line represents an event visible to both 2902 * CPUs at the next numbered event. 2903 * 2904 * "timespecX" represents host monotonic time. "tscX" represents 2905 * RDTSC value. 2906 * 2907 * VCPU0 on CPU0 | VCPU1 on CPU1 2908 * 2909 * 1. read timespec0,tsc0 2910 * 2. | timespec1 = timespec0 + N 2911 * | tsc1 = tsc0 + M 2912 * 3. transition to guest | transition to guest 2913 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2914 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2915 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2916 * 2917 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2918 * 2919 * - ret0 < ret1 2920 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2921 * ... 2922 * - 0 < N - M => M < N 2923 * 2924 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2925 * always the case (the difference between two distinct xtime instances 2926 * might be smaller then the difference between corresponding TSC reads, 2927 * when updating guest vcpus pvclock areas). 2928 * 2929 * To avoid that problem, do not allow visibility of distinct 2930 * system_timestamp/tsc_timestamp values simultaneously: use a master 2931 * copy of host monotonic time values. Update that master copy 2932 * in lockstep. 2933 * 2934 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2935 * 2936 */ 2937 2938 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2939 { 2940 #ifdef CONFIG_X86_64 2941 struct kvm_arch *ka = &kvm->arch; 2942 int vclock_mode; 2943 bool host_tsc_clocksource, vcpus_matched; 2944 2945 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2946 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2947 atomic_read(&kvm->online_vcpus)); 2948 2949 /* 2950 * If the host uses TSC clock, then passthrough TSC as stable 2951 * to the guest. 2952 */ 2953 host_tsc_clocksource = kvm_get_time_and_clockread( 2954 &ka->master_kernel_ns, 2955 &ka->master_cycle_now); 2956 2957 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2958 && !ka->backwards_tsc_observed 2959 && !ka->boot_vcpu_runs_old_kvmclock; 2960 2961 if (ka->use_master_clock) 2962 atomic_set(&kvm_guest_has_master_clock, 1); 2963 2964 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2965 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2966 vcpus_matched); 2967 #endif 2968 } 2969 2970 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2971 { 2972 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2973 } 2974 2975 static void __kvm_start_pvclock_update(struct kvm *kvm) 2976 { 2977 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2978 write_seqcount_begin(&kvm->arch.pvclock_sc); 2979 } 2980 2981 static void kvm_start_pvclock_update(struct kvm *kvm) 2982 { 2983 kvm_make_mclock_inprogress_request(kvm); 2984 2985 /* no guest entries from this point */ 2986 __kvm_start_pvclock_update(kvm); 2987 } 2988 2989 static void kvm_end_pvclock_update(struct kvm *kvm) 2990 { 2991 struct kvm_arch *ka = &kvm->arch; 2992 struct kvm_vcpu *vcpu; 2993 unsigned long i; 2994 2995 write_seqcount_end(&ka->pvclock_sc); 2996 raw_spin_unlock_irq(&ka->tsc_write_lock); 2997 kvm_for_each_vcpu(i, vcpu, kvm) 2998 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2999 3000 /* guest entries allowed */ 3001 kvm_for_each_vcpu(i, vcpu, kvm) 3002 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3003 } 3004 3005 static void kvm_update_masterclock(struct kvm *kvm) 3006 { 3007 kvm_hv_request_tsc_page_update(kvm); 3008 kvm_start_pvclock_update(kvm); 3009 pvclock_update_vm_gtod_copy(kvm); 3010 kvm_end_pvclock_update(kvm); 3011 } 3012 3013 /* 3014 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3015 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3016 * can change during boot even if the TSC is constant, as it's possible for KVM 3017 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3018 * notification when calibration completes, but practically speaking calibration 3019 * will complete before userspace is alive enough to create VMs. 3020 */ 3021 static unsigned long get_cpu_tsc_khz(void) 3022 { 3023 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3024 return tsc_khz; 3025 else 3026 return __this_cpu_read(cpu_tsc_khz); 3027 } 3028 3029 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3030 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3031 { 3032 struct kvm_arch *ka = &kvm->arch; 3033 struct pvclock_vcpu_time_info hv_clock; 3034 3035 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3036 get_cpu(); 3037 3038 data->flags = 0; 3039 if (ka->use_master_clock && 3040 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3041 #ifdef CONFIG_X86_64 3042 struct timespec64 ts; 3043 3044 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3045 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3046 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3047 } else 3048 #endif 3049 data->host_tsc = rdtsc(); 3050 3051 data->flags |= KVM_CLOCK_TSC_STABLE; 3052 hv_clock.tsc_timestamp = ka->master_cycle_now; 3053 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3054 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3055 &hv_clock.tsc_shift, 3056 &hv_clock.tsc_to_system_mul); 3057 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3058 } else { 3059 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3060 } 3061 3062 put_cpu(); 3063 } 3064 3065 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3066 { 3067 struct kvm_arch *ka = &kvm->arch; 3068 unsigned seq; 3069 3070 do { 3071 seq = read_seqcount_begin(&ka->pvclock_sc); 3072 __get_kvmclock(kvm, data); 3073 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3074 } 3075 3076 u64 get_kvmclock_ns(struct kvm *kvm) 3077 { 3078 struct kvm_clock_data data; 3079 3080 get_kvmclock(kvm, &data); 3081 return data.clock; 3082 } 3083 3084 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3085 struct gfn_to_pfn_cache *gpc, 3086 unsigned int offset) 3087 { 3088 struct kvm_vcpu_arch *vcpu = &v->arch; 3089 struct pvclock_vcpu_time_info *guest_hv_clock; 3090 unsigned long flags; 3091 3092 read_lock_irqsave(&gpc->lock, flags); 3093 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3094 read_unlock_irqrestore(&gpc->lock, flags); 3095 3096 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3097 return; 3098 3099 read_lock_irqsave(&gpc->lock, flags); 3100 } 3101 3102 guest_hv_clock = (void *)(gpc->khva + offset); 3103 3104 /* 3105 * This VCPU is paused, but it's legal for a guest to read another 3106 * VCPU's kvmclock, so we really have to follow the specification where 3107 * it says that version is odd if data is being modified, and even after 3108 * it is consistent. 3109 */ 3110 3111 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3112 smp_wmb(); 3113 3114 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3115 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3116 3117 if (vcpu->pvclock_set_guest_stopped_request) { 3118 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3119 vcpu->pvclock_set_guest_stopped_request = false; 3120 } 3121 3122 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3123 smp_wmb(); 3124 3125 guest_hv_clock->version = ++vcpu->hv_clock.version; 3126 3127 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3128 read_unlock_irqrestore(&gpc->lock, flags); 3129 3130 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3131 } 3132 3133 static int kvm_guest_time_update(struct kvm_vcpu *v) 3134 { 3135 unsigned long flags, tgt_tsc_khz; 3136 unsigned seq; 3137 struct kvm_vcpu_arch *vcpu = &v->arch; 3138 struct kvm_arch *ka = &v->kvm->arch; 3139 s64 kernel_ns; 3140 u64 tsc_timestamp, host_tsc; 3141 u8 pvclock_flags; 3142 bool use_master_clock; 3143 3144 kernel_ns = 0; 3145 host_tsc = 0; 3146 3147 /* 3148 * If the host uses TSC clock, then passthrough TSC as stable 3149 * to the guest. 3150 */ 3151 do { 3152 seq = read_seqcount_begin(&ka->pvclock_sc); 3153 use_master_clock = ka->use_master_clock; 3154 if (use_master_clock) { 3155 host_tsc = ka->master_cycle_now; 3156 kernel_ns = ka->master_kernel_ns; 3157 } 3158 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3159 3160 /* Keep irq disabled to prevent changes to the clock */ 3161 local_irq_save(flags); 3162 tgt_tsc_khz = get_cpu_tsc_khz(); 3163 if (unlikely(tgt_tsc_khz == 0)) { 3164 local_irq_restore(flags); 3165 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3166 return 1; 3167 } 3168 if (!use_master_clock) { 3169 host_tsc = rdtsc(); 3170 kernel_ns = get_kvmclock_base_ns(); 3171 } 3172 3173 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3174 3175 /* 3176 * We may have to catch up the TSC to match elapsed wall clock 3177 * time for two reasons, even if kvmclock is used. 3178 * 1) CPU could have been running below the maximum TSC rate 3179 * 2) Broken TSC compensation resets the base at each VCPU 3180 * entry to avoid unknown leaps of TSC even when running 3181 * again on the same CPU. This may cause apparent elapsed 3182 * time to disappear, and the guest to stand still or run 3183 * very slowly. 3184 */ 3185 if (vcpu->tsc_catchup) { 3186 u64 tsc = compute_guest_tsc(v, kernel_ns); 3187 if (tsc > tsc_timestamp) { 3188 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3189 tsc_timestamp = tsc; 3190 } 3191 } 3192 3193 local_irq_restore(flags); 3194 3195 /* With all the info we got, fill in the values */ 3196 3197 if (kvm_caps.has_tsc_control) 3198 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3199 v->arch.l1_tsc_scaling_ratio); 3200 3201 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3202 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3203 &vcpu->hv_clock.tsc_shift, 3204 &vcpu->hv_clock.tsc_to_system_mul); 3205 vcpu->hw_tsc_khz = tgt_tsc_khz; 3206 kvm_xen_update_tsc_info(v); 3207 } 3208 3209 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3210 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3211 vcpu->last_guest_tsc = tsc_timestamp; 3212 3213 /* If the host uses TSC clocksource, then it is stable */ 3214 pvclock_flags = 0; 3215 if (use_master_clock) 3216 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3217 3218 vcpu->hv_clock.flags = pvclock_flags; 3219 3220 if (vcpu->pv_time.active) 3221 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3222 if (vcpu->xen.vcpu_info_cache.active) 3223 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3224 offsetof(struct compat_vcpu_info, time)); 3225 if (vcpu->xen.vcpu_time_info_cache.active) 3226 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3227 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3228 return 0; 3229 } 3230 3231 /* 3232 * kvmclock updates which are isolated to a given vcpu, such as 3233 * vcpu->cpu migration, should not allow system_timestamp from 3234 * the rest of the vcpus to remain static. Otherwise ntp frequency 3235 * correction applies to one vcpu's system_timestamp but not 3236 * the others. 3237 * 3238 * So in those cases, request a kvmclock update for all vcpus. 3239 * We need to rate-limit these requests though, as they can 3240 * considerably slow guests that have a large number of vcpus. 3241 * The time for a remote vcpu to update its kvmclock is bound 3242 * by the delay we use to rate-limit the updates. 3243 */ 3244 3245 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3246 3247 static void kvmclock_update_fn(struct work_struct *work) 3248 { 3249 unsigned long i; 3250 struct delayed_work *dwork = to_delayed_work(work); 3251 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3252 kvmclock_update_work); 3253 struct kvm *kvm = container_of(ka, struct kvm, arch); 3254 struct kvm_vcpu *vcpu; 3255 3256 kvm_for_each_vcpu(i, vcpu, kvm) { 3257 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3258 kvm_vcpu_kick(vcpu); 3259 } 3260 } 3261 3262 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3263 { 3264 struct kvm *kvm = v->kvm; 3265 3266 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3267 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3268 KVMCLOCK_UPDATE_DELAY); 3269 } 3270 3271 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3272 3273 static void kvmclock_sync_fn(struct work_struct *work) 3274 { 3275 struct delayed_work *dwork = to_delayed_work(work); 3276 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3277 kvmclock_sync_work); 3278 struct kvm *kvm = container_of(ka, struct kvm, arch); 3279 3280 if (!kvmclock_periodic_sync) 3281 return; 3282 3283 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3284 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3285 KVMCLOCK_SYNC_PERIOD); 3286 } 3287 3288 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3289 static bool is_mci_control_msr(u32 msr) 3290 { 3291 return (msr & 3) == 0; 3292 } 3293 static bool is_mci_status_msr(u32 msr) 3294 { 3295 return (msr & 3) == 1; 3296 } 3297 3298 /* 3299 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3300 */ 3301 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3302 { 3303 /* McStatusWrEn enabled? */ 3304 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3305 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3306 3307 return false; 3308 } 3309 3310 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3311 { 3312 u64 mcg_cap = vcpu->arch.mcg_cap; 3313 unsigned bank_num = mcg_cap & 0xff; 3314 u32 msr = msr_info->index; 3315 u64 data = msr_info->data; 3316 u32 offset, last_msr; 3317 3318 switch (msr) { 3319 case MSR_IA32_MCG_STATUS: 3320 vcpu->arch.mcg_status = data; 3321 break; 3322 case MSR_IA32_MCG_CTL: 3323 if (!(mcg_cap & MCG_CTL_P) && 3324 (data || !msr_info->host_initiated)) 3325 return 1; 3326 if (data != 0 && data != ~(u64)0) 3327 return 1; 3328 vcpu->arch.mcg_ctl = data; 3329 break; 3330 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3331 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3332 if (msr > last_msr) 3333 return 1; 3334 3335 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3336 return 1; 3337 /* An attempt to write a 1 to a reserved bit raises #GP */ 3338 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3339 return 1; 3340 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3341 last_msr + 1 - MSR_IA32_MC0_CTL2); 3342 vcpu->arch.mci_ctl2_banks[offset] = data; 3343 break; 3344 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3345 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3346 if (msr > last_msr) 3347 return 1; 3348 3349 /* 3350 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3351 * values are architecturally undefined. But, some Linux 3352 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3353 * issue on AMD K8s, allow bit 10 to be clear when setting all 3354 * other bits in order to avoid an uncaught #GP in the guest. 3355 * 3356 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3357 * single-bit ECC data errors. 3358 */ 3359 if (is_mci_control_msr(msr) && 3360 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3361 return 1; 3362 3363 /* 3364 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3365 * AMD-based CPUs allow non-zero values, but if and only if 3366 * HWCR[McStatusWrEn] is set. 3367 */ 3368 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3369 data != 0 && !can_set_mci_status(vcpu)) 3370 return 1; 3371 3372 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3373 last_msr + 1 - MSR_IA32_MC0_CTL); 3374 vcpu->arch.mce_banks[offset] = data; 3375 break; 3376 default: 3377 return 1; 3378 } 3379 return 0; 3380 } 3381 3382 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3383 { 3384 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3385 3386 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3387 } 3388 3389 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3390 { 3391 gpa_t gpa = data & ~0x3f; 3392 3393 /* Bits 4:5 are reserved, Should be zero */ 3394 if (data & 0x30) 3395 return 1; 3396 3397 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3398 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3399 return 1; 3400 3401 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3402 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3403 return 1; 3404 3405 if (!lapic_in_kernel(vcpu)) 3406 return data ? 1 : 0; 3407 3408 vcpu->arch.apf.msr_en_val = data; 3409 3410 if (!kvm_pv_async_pf_enabled(vcpu)) { 3411 kvm_clear_async_pf_completion_queue(vcpu); 3412 kvm_async_pf_hash_reset(vcpu); 3413 return 0; 3414 } 3415 3416 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3417 sizeof(u64))) 3418 return 1; 3419 3420 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3421 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3422 3423 kvm_async_pf_wakeup_all(vcpu); 3424 3425 return 0; 3426 } 3427 3428 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3429 { 3430 /* Bits 8-63 are reserved */ 3431 if (data >> 8) 3432 return 1; 3433 3434 if (!lapic_in_kernel(vcpu)) 3435 return 1; 3436 3437 vcpu->arch.apf.msr_int_val = data; 3438 3439 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3440 3441 return 0; 3442 } 3443 3444 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3445 { 3446 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3447 vcpu->arch.time = 0; 3448 } 3449 3450 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3451 { 3452 ++vcpu->stat.tlb_flush; 3453 static_call(kvm_x86_flush_tlb_all)(vcpu); 3454 3455 /* Flushing all ASIDs flushes the current ASID... */ 3456 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3457 } 3458 3459 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3460 { 3461 ++vcpu->stat.tlb_flush; 3462 3463 if (!tdp_enabled) { 3464 /* 3465 * A TLB flush on behalf of the guest is equivalent to 3466 * INVPCID(all), toggling CR4.PGE, etc., which requires 3467 * a forced sync of the shadow page tables. Ensure all the 3468 * roots are synced and the guest TLB in hardware is clean. 3469 */ 3470 kvm_mmu_sync_roots(vcpu); 3471 kvm_mmu_sync_prev_roots(vcpu); 3472 } 3473 3474 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3475 3476 /* 3477 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3478 * grained flushing. 3479 */ 3480 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3481 } 3482 3483 3484 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3485 { 3486 ++vcpu->stat.tlb_flush; 3487 static_call(kvm_x86_flush_tlb_current)(vcpu); 3488 } 3489 3490 /* 3491 * Service "local" TLB flush requests, which are specific to the current MMU 3492 * context. In addition to the generic event handling in vcpu_enter_guest(), 3493 * TLB flushes that are targeted at an MMU context also need to be serviced 3494 * prior before nested VM-Enter/VM-Exit. 3495 */ 3496 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3497 { 3498 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3499 kvm_vcpu_flush_tlb_current(vcpu); 3500 3501 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3502 kvm_vcpu_flush_tlb_guest(vcpu); 3503 } 3504 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3505 3506 static void record_steal_time(struct kvm_vcpu *vcpu) 3507 { 3508 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3509 struct kvm_steal_time __user *st; 3510 struct kvm_memslots *slots; 3511 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3512 u64 steal; 3513 u32 version; 3514 3515 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3516 kvm_xen_runstate_set_running(vcpu); 3517 return; 3518 } 3519 3520 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3521 return; 3522 3523 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3524 return; 3525 3526 slots = kvm_memslots(vcpu->kvm); 3527 3528 if (unlikely(slots->generation != ghc->generation || 3529 gpa != ghc->gpa || 3530 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3531 /* We rely on the fact that it fits in a single page. */ 3532 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3533 3534 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3535 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3536 return; 3537 } 3538 3539 st = (struct kvm_steal_time __user *)ghc->hva; 3540 /* 3541 * Doing a TLB flush here, on the guest's behalf, can avoid 3542 * expensive IPIs. 3543 */ 3544 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3545 u8 st_preempted = 0; 3546 int err = -EFAULT; 3547 3548 if (!user_access_begin(st, sizeof(*st))) 3549 return; 3550 3551 asm volatile("1: xchgb %0, %2\n" 3552 "xor %1, %1\n" 3553 "2:\n" 3554 _ASM_EXTABLE_UA(1b, 2b) 3555 : "+q" (st_preempted), 3556 "+&r" (err), 3557 "+m" (st->preempted)); 3558 if (err) 3559 goto out; 3560 3561 user_access_end(); 3562 3563 vcpu->arch.st.preempted = 0; 3564 3565 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3566 st_preempted & KVM_VCPU_FLUSH_TLB); 3567 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3568 kvm_vcpu_flush_tlb_guest(vcpu); 3569 3570 if (!user_access_begin(st, sizeof(*st))) 3571 goto dirty; 3572 } else { 3573 if (!user_access_begin(st, sizeof(*st))) 3574 return; 3575 3576 unsafe_put_user(0, &st->preempted, out); 3577 vcpu->arch.st.preempted = 0; 3578 } 3579 3580 unsafe_get_user(version, &st->version, out); 3581 if (version & 1) 3582 version += 1; /* first time write, random junk */ 3583 3584 version += 1; 3585 unsafe_put_user(version, &st->version, out); 3586 3587 smp_wmb(); 3588 3589 unsafe_get_user(steal, &st->steal, out); 3590 steal += current->sched_info.run_delay - 3591 vcpu->arch.st.last_steal; 3592 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3593 unsafe_put_user(steal, &st->steal, out); 3594 3595 version += 1; 3596 unsafe_put_user(version, &st->version, out); 3597 3598 out: 3599 user_access_end(); 3600 dirty: 3601 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3602 } 3603 3604 static bool kvm_is_msr_to_save(u32 msr_index) 3605 { 3606 unsigned int i; 3607 3608 for (i = 0; i < num_msrs_to_save; i++) { 3609 if (msrs_to_save[i] == msr_index) 3610 return true; 3611 } 3612 3613 return false; 3614 } 3615 3616 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3617 { 3618 u32 msr = msr_info->index; 3619 u64 data = msr_info->data; 3620 3621 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3622 return kvm_xen_write_hypercall_page(vcpu, data); 3623 3624 switch (msr) { 3625 case MSR_AMD64_NB_CFG: 3626 case MSR_IA32_UCODE_WRITE: 3627 case MSR_VM_HSAVE_PA: 3628 case MSR_AMD64_PATCH_LOADER: 3629 case MSR_AMD64_BU_CFG2: 3630 case MSR_AMD64_DC_CFG: 3631 case MSR_F15H_EX_CFG: 3632 break; 3633 3634 case MSR_IA32_UCODE_REV: 3635 if (msr_info->host_initiated) 3636 vcpu->arch.microcode_version = data; 3637 break; 3638 case MSR_IA32_ARCH_CAPABILITIES: 3639 if (!msr_info->host_initiated) 3640 return 1; 3641 vcpu->arch.arch_capabilities = data; 3642 break; 3643 case MSR_IA32_PERF_CAPABILITIES: 3644 if (!msr_info->host_initiated) 3645 return 1; 3646 if (data & ~kvm_caps.supported_perf_cap) 3647 return 1; 3648 3649 /* 3650 * Note, this is not just a performance optimization! KVM 3651 * disallows changing feature MSRs after the vCPU has run; PMU 3652 * refresh will bug the VM if called after the vCPU has run. 3653 */ 3654 if (vcpu->arch.perf_capabilities == data) 3655 break; 3656 3657 vcpu->arch.perf_capabilities = data; 3658 kvm_pmu_refresh(vcpu); 3659 break; 3660 case MSR_IA32_PRED_CMD: 3661 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) 3662 return 1; 3663 3664 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) 3665 return 1; 3666 if (!data) 3667 break; 3668 3669 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 3670 break; 3671 case MSR_IA32_FLUSH_CMD: 3672 if (!msr_info->host_initiated && 3673 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3674 return 1; 3675 3676 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3677 return 1; 3678 if (!data) 3679 break; 3680 3681 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3682 break; 3683 case MSR_EFER: 3684 return set_efer(vcpu, msr_info); 3685 case MSR_K7_HWCR: 3686 data &= ~(u64)0x40; /* ignore flush filter disable */ 3687 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3688 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3689 3690 /* Handle McStatusWrEn */ 3691 if (data == BIT_ULL(18)) { 3692 vcpu->arch.msr_hwcr = data; 3693 } else if (data != 0) { 3694 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3695 return 1; 3696 } 3697 break; 3698 case MSR_FAM10H_MMIO_CONF_BASE: 3699 if (data != 0) { 3700 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3701 return 1; 3702 } 3703 break; 3704 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3705 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3706 return kvm_mtrr_set_msr(vcpu, msr, data); 3707 case MSR_IA32_APICBASE: 3708 return kvm_set_apic_base(vcpu, msr_info); 3709 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3710 return kvm_x2apic_msr_write(vcpu, msr, data); 3711 case MSR_IA32_TSC_DEADLINE: 3712 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3713 break; 3714 case MSR_IA32_TSC_ADJUST: 3715 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3716 if (!msr_info->host_initiated) { 3717 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3718 adjust_tsc_offset_guest(vcpu, adj); 3719 /* Before back to guest, tsc_timestamp must be adjusted 3720 * as well, otherwise guest's percpu pvclock time could jump. 3721 */ 3722 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3723 } 3724 vcpu->arch.ia32_tsc_adjust_msr = data; 3725 } 3726 break; 3727 case MSR_IA32_MISC_ENABLE: { 3728 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3729 3730 if (!msr_info->host_initiated) { 3731 /* RO bits */ 3732 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3733 return 1; 3734 3735 /* R bits, i.e. writes are ignored, but don't fault. */ 3736 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3737 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3738 } 3739 3740 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3741 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3742 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3743 return 1; 3744 vcpu->arch.ia32_misc_enable_msr = data; 3745 kvm_update_cpuid_runtime(vcpu); 3746 } else { 3747 vcpu->arch.ia32_misc_enable_msr = data; 3748 } 3749 break; 3750 } 3751 case MSR_IA32_SMBASE: 3752 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3753 return 1; 3754 vcpu->arch.smbase = data; 3755 break; 3756 case MSR_IA32_POWER_CTL: 3757 vcpu->arch.msr_ia32_power_ctl = data; 3758 break; 3759 case MSR_IA32_TSC: 3760 if (msr_info->host_initiated) { 3761 kvm_synchronize_tsc(vcpu, data); 3762 } else { 3763 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3764 adjust_tsc_offset_guest(vcpu, adj); 3765 vcpu->arch.ia32_tsc_adjust_msr += adj; 3766 } 3767 break; 3768 case MSR_IA32_XSS: 3769 if (!msr_info->host_initiated && 3770 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3771 return 1; 3772 /* 3773 * KVM supports exposing PT to the guest, but does not support 3774 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3775 * XSAVES/XRSTORS to save/restore PT MSRs. 3776 */ 3777 if (data & ~kvm_caps.supported_xss) 3778 return 1; 3779 vcpu->arch.ia32_xss = data; 3780 kvm_update_cpuid_runtime(vcpu); 3781 break; 3782 case MSR_SMI_COUNT: 3783 if (!msr_info->host_initiated) 3784 return 1; 3785 vcpu->arch.smi_count = data; 3786 break; 3787 case MSR_KVM_WALL_CLOCK_NEW: 3788 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3789 return 1; 3790 3791 vcpu->kvm->arch.wall_clock = data; 3792 kvm_write_wall_clock(vcpu->kvm, data, 0); 3793 break; 3794 case MSR_KVM_WALL_CLOCK: 3795 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3796 return 1; 3797 3798 vcpu->kvm->arch.wall_clock = data; 3799 kvm_write_wall_clock(vcpu->kvm, data, 0); 3800 break; 3801 case MSR_KVM_SYSTEM_TIME_NEW: 3802 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3803 return 1; 3804 3805 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3806 break; 3807 case MSR_KVM_SYSTEM_TIME: 3808 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3809 return 1; 3810 3811 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3812 break; 3813 case MSR_KVM_ASYNC_PF_EN: 3814 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3815 return 1; 3816 3817 if (kvm_pv_enable_async_pf(vcpu, data)) 3818 return 1; 3819 break; 3820 case MSR_KVM_ASYNC_PF_INT: 3821 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3822 return 1; 3823 3824 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3825 return 1; 3826 break; 3827 case MSR_KVM_ASYNC_PF_ACK: 3828 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3829 return 1; 3830 if (data & 0x1) { 3831 vcpu->arch.apf.pageready_pending = false; 3832 kvm_check_async_pf_completion(vcpu); 3833 } 3834 break; 3835 case MSR_KVM_STEAL_TIME: 3836 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3837 return 1; 3838 3839 if (unlikely(!sched_info_on())) 3840 return 1; 3841 3842 if (data & KVM_STEAL_RESERVED_MASK) 3843 return 1; 3844 3845 vcpu->arch.st.msr_val = data; 3846 3847 if (!(data & KVM_MSR_ENABLED)) 3848 break; 3849 3850 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3851 3852 break; 3853 case MSR_KVM_PV_EOI_EN: 3854 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3855 return 1; 3856 3857 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3858 return 1; 3859 break; 3860 3861 case MSR_KVM_POLL_CONTROL: 3862 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3863 return 1; 3864 3865 /* only enable bit supported */ 3866 if (data & (-1ULL << 1)) 3867 return 1; 3868 3869 vcpu->arch.msr_kvm_poll_control = data; 3870 break; 3871 3872 case MSR_IA32_MCG_CTL: 3873 case MSR_IA32_MCG_STATUS: 3874 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3875 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3876 return set_msr_mce(vcpu, msr_info); 3877 3878 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3879 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3880 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3881 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3882 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3883 return kvm_pmu_set_msr(vcpu, msr_info); 3884 3885 if (data) 3886 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3887 break; 3888 case MSR_K7_CLK_CTL: 3889 /* 3890 * Ignore all writes to this no longer documented MSR. 3891 * Writes are only relevant for old K7 processors, 3892 * all pre-dating SVM, but a recommended workaround from 3893 * AMD for these chips. It is possible to specify the 3894 * affected processor models on the command line, hence 3895 * the need to ignore the workaround. 3896 */ 3897 break; 3898 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3899 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3900 case HV_X64_MSR_SYNDBG_OPTIONS: 3901 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3902 case HV_X64_MSR_CRASH_CTL: 3903 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3904 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3905 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3906 case HV_X64_MSR_TSC_EMULATION_STATUS: 3907 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3908 return kvm_hv_set_msr_common(vcpu, msr, data, 3909 msr_info->host_initiated); 3910 case MSR_IA32_BBL_CR_CTL3: 3911 /* Drop writes to this legacy MSR -- see rdmsr 3912 * counterpart for further detail. 3913 */ 3914 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3915 break; 3916 case MSR_AMD64_OSVW_ID_LENGTH: 3917 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3918 return 1; 3919 vcpu->arch.osvw.length = data; 3920 break; 3921 case MSR_AMD64_OSVW_STATUS: 3922 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3923 return 1; 3924 vcpu->arch.osvw.status = data; 3925 break; 3926 case MSR_PLATFORM_INFO: 3927 if (!msr_info->host_initiated || 3928 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3929 cpuid_fault_enabled(vcpu))) 3930 return 1; 3931 vcpu->arch.msr_platform_info = data; 3932 break; 3933 case MSR_MISC_FEATURES_ENABLES: 3934 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3935 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3936 !supports_cpuid_fault(vcpu))) 3937 return 1; 3938 vcpu->arch.msr_misc_features_enables = data; 3939 break; 3940 #ifdef CONFIG_X86_64 3941 case MSR_IA32_XFD: 3942 if (!msr_info->host_initiated && 3943 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3944 return 1; 3945 3946 if (data & ~kvm_guest_supported_xfd(vcpu)) 3947 return 1; 3948 3949 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3950 break; 3951 case MSR_IA32_XFD_ERR: 3952 if (!msr_info->host_initiated && 3953 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3954 return 1; 3955 3956 if (data & ~kvm_guest_supported_xfd(vcpu)) 3957 return 1; 3958 3959 vcpu->arch.guest_fpu.xfd_err = data; 3960 break; 3961 #endif 3962 default: 3963 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3964 return kvm_pmu_set_msr(vcpu, msr_info); 3965 3966 /* 3967 * Userspace is allowed to write '0' to MSRs that KVM reports 3968 * as to-be-saved, even if an MSRs isn't fully supported. 3969 */ 3970 if (msr_info->host_initiated && !data && 3971 kvm_is_msr_to_save(msr)) 3972 break; 3973 3974 return KVM_MSR_RET_INVALID; 3975 } 3976 return 0; 3977 } 3978 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3979 3980 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3981 { 3982 u64 data; 3983 u64 mcg_cap = vcpu->arch.mcg_cap; 3984 unsigned bank_num = mcg_cap & 0xff; 3985 u32 offset, last_msr; 3986 3987 switch (msr) { 3988 case MSR_IA32_P5_MC_ADDR: 3989 case MSR_IA32_P5_MC_TYPE: 3990 data = 0; 3991 break; 3992 case MSR_IA32_MCG_CAP: 3993 data = vcpu->arch.mcg_cap; 3994 break; 3995 case MSR_IA32_MCG_CTL: 3996 if (!(mcg_cap & MCG_CTL_P) && !host) 3997 return 1; 3998 data = vcpu->arch.mcg_ctl; 3999 break; 4000 case MSR_IA32_MCG_STATUS: 4001 data = vcpu->arch.mcg_status; 4002 break; 4003 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4004 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4005 if (msr > last_msr) 4006 return 1; 4007 4008 if (!(mcg_cap & MCG_CMCI_P) && !host) 4009 return 1; 4010 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4011 last_msr + 1 - MSR_IA32_MC0_CTL2); 4012 data = vcpu->arch.mci_ctl2_banks[offset]; 4013 break; 4014 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4015 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4016 if (msr > last_msr) 4017 return 1; 4018 4019 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4020 last_msr + 1 - MSR_IA32_MC0_CTL); 4021 data = vcpu->arch.mce_banks[offset]; 4022 break; 4023 default: 4024 return 1; 4025 } 4026 *pdata = data; 4027 return 0; 4028 } 4029 4030 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4031 { 4032 switch (msr_info->index) { 4033 case MSR_IA32_PLATFORM_ID: 4034 case MSR_IA32_EBL_CR_POWERON: 4035 case MSR_IA32_LASTBRANCHFROMIP: 4036 case MSR_IA32_LASTBRANCHTOIP: 4037 case MSR_IA32_LASTINTFROMIP: 4038 case MSR_IA32_LASTINTTOIP: 4039 case MSR_AMD64_SYSCFG: 4040 case MSR_K8_TSEG_ADDR: 4041 case MSR_K8_TSEG_MASK: 4042 case MSR_VM_HSAVE_PA: 4043 case MSR_K8_INT_PENDING_MSG: 4044 case MSR_AMD64_NB_CFG: 4045 case MSR_FAM10H_MMIO_CONF_BASE: 4046 case MSR_AMD64_BU_CFG2: 4047 case MSR_IA32_PERF_CTL: 4048 case MSR_AMD64_DC_CFG: 4049 case MSR_F15H_EX_CFG: 4050 /* 4051 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4052 * limit) MSRs. Just return 0, as we do not want to expose the host 4053 * data here. Do not conditionalize this on CPUID, as KVM does not do 4054 * so for existing CPU-specific MSRs. 4055 */ 4056 case MSR_RAPL_POWER_UNIT: 4057 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4058 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4059 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4060 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4061 msr_info->data = 0; 4062 break; 4063 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4064 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4065 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4066 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4067 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4068 return kvm_pmu_get_msr(vcpu, msr_info); 4069 msr_info->data = 0; 4070 break; 4071 case MSR_IA32_UCODE_REV: 4072 msr_info->data = vcpu->arch.microcode_version; 4073 break; 4074 case MSR_IA32_ARCH_CAPABILITIES: 4075 if (!msr_info->host_initiated && 4076 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4077 return 1; 4078 msr_info->data = vcpu->arch.arch_capabilities; 4079 break; 4080 case MSR_IA32_PERF_CAPABILITIES: 4081 if (!msr_info->host_initiated && 4082 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4083 return 1; 4084 msr_info->data = vcpu->arch.perf_capabilities; 4085 break; 4086 case MSR_IA32_POWER_CTL: 4087 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4088 break; 4089 case MSR_IA32_TSC: { 4090 /* 4091 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4092 * even when not intercepted. AMD manual doesn't explicitly 4093 * state this but appears to behave the same. 4094 * 4095 * On userspace reads and writes, however, we unconditionally 4096 * return L1's TSC value to ensure backwards-compatible 4097 * behavior for migration. 4098 */ 4099 u64 offset, ratio; 4100 4101 if (msr_info->host_initiated) { 4102 offset = vcpu->arch.l1_tsc_offset; 4103 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4104 } else { 4105 offset = vcpu->arch.tsc_offset; 4106 ratio = vcpu->arch.tsc_scaling_ratio; 4107 } 4108 4109 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4110 break; 4111 } 4112 case MSR_MTRRcap: 4113 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4114 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4115 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4116 case 0xcd: /* fsb frequency */ 4117 msr_info->data = 3; 4118 break; 4119 /* 4120 * MSR_EBC_FREQUENCY_ID 4121 * Conservative value valid for even the basic CPU models. 4122 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4123 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4124 * and 266MHz for model 3, or 4. Set Core Clock 4125 * Frequency to System Bus Frequency Ratio to 1 (bits 4126 * 31:24) even though these are only valid for CPU 4127 * models > 2, however guests may end up dividing or 4128 * multiplying by zero otherwise. 4129 */ 4130 case MSR_EBC_FREQUENCY_ID: 4131 msr_info->data = 1 << 24; 4132 break; 4133 case MSR_IA32_APICBASE: 4134 msr_info->data = kvm_get_apic_base(vcpu); 4135 break; 4136 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4137 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4138 case MSR_IA32_TSC_DEADLINE: 4139 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4140 break; 4141 case MSR_IA32_TSC_ADJUST: 4142 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4143 break; 4144 case MSR_IA32_MISC_ENABLE: 4145 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4146 break; 4147 case MSR_IA32_SMBASE: 4148 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4149 return 1; 4150 msr_info->data = vcpu->arch.smbase; 4151 break; 4152 case MSR_SMI_COUNT: 4153 msr_info->data = vcpu->arch.smi_count; 4154 break; 4155 case MSR_IA32_PERF_STATUS: 4156 /* TSC increment by tick */ 4157 msr_info->data = 1000ULL; 4158 /* CPU multiplier */ 4159 msr_info->data |= (((uint64_t)4ULL) << 40); 4160 break; 4161 case MSR_EFER: 4162 msr_info->data = vcpu->arch.efer; 4163 break; 4164 case MSR_KVM_WALL_CLOCK: 4165 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4166 return 1; 4167 4168 msr_info->data = vcpu->kvm->arch.wall_clock; 4169 break; 4170 case MSR_KVM_WALL_CLOCK_NEW: 4171 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4172 return 1; 4173 4174 msr_info->data = vcpu->kvm->arch.wall_clock; 4175 break; 4176 case MSR_KVM_SYSTEM_TIME: 4177 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4178 return 1; 4179 4180 msr_info->data = vcpu->arch.time; 4181 break; 4182 case MSR_KVM_SYSTEM_TIME_NEW: 4183 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4184 return 1; 4185 4186 msr_info->data = vcpu->arch.time; 4187 break; 4188 case MSR_KVM_ASYNC_PF_EN: 4189 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4190 return 1; 4191 4192 msr_info->data = vcpu->arch.apf.msr_en_val; 4193 break; 4194 case MSR_KVM_ASYNC_PF_INT: 4195 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4196 return 1; 4197 4198 msr_info->data = vcpu->arch.apf.msr_int_val; 4199 break; 4200 case MSR_KVM_ASYNC_PF_ACK: 4201 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4202 return 1; 4203 4204 msr_info->data = 0; 4205 break; 4206 case MSR_KVM_STEAL_TIME: 4207 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4208 return 1; 4209 4210 msr_info->data = vcpu->arch.st.msr_val; 4211 break; 4212 case MSR_KVM_PV_EOI_EN: 4213 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4214 return 1; 4215 4216 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4217 break; 4218 case MSR_KVM_POLL_CONTROL: 4219 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4220 return 1; 4221 4222 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4223 break; 4224 case MSR_IA32_P5_MC_ADDR: 4225 case MSR_IA32_P5_MC_TYPE: 4226 case MSR_IA32_MCG_CAP: 4227 case MSR_IA32_MCG_CTL: 4228 case MSR_IA32_MCG_STATUS: 4229 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4230 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4231 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4232 msr_info->host_initiated); 4233 case MSR_IA32_XSS: 4234 if (!msr_info->host_initiated && 4235 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4236 return 1; 4237 msr_info->data = vcpu->arch.ia32_xss; 4238 break; 4239 case MSR_K7_CLK_CTL: 4240 /* 4241 * Provide expected ramp-up count for K7. All other 4242 * are set to zero, indicating minimum divisors for 4243 * every field. 4244 * 4245 * This prevents guest kernels on AMD host with CPU 4246 * type 6, model 8 and higher from exploding due to 4247 * the rdmsr failing. 4248 */ 4249 msr_info->data = 0x20000000; 4250 break; 4251 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4252 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4253 case HV_X64_MSR_SYNDBG_OPTIONS: 4254 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4255 case HV_X64_MSR_CRASH_CTL: 4256 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4257 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4258 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4259 case HV_X64_MSR_TSC_EMULATION_STATUS: 4260 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4261 return kvm_hv_get_msr_common(vcpu, 4262 msr_info->index, &msr_info->data, 4263 msr_info->host_initiated); 4264 case MSR_IA32_BBL_CR_CTL3: 4265 /* This legacy MSR exists but isn't fully documented in current 4266 * silicon. It is however accessed by winxp in very narrow 4267 * scenarios where it sets bit #19, itself documented as 4268 * a "reserved" bit. Best effort attempt to source coherent 4269 * read data here should the balance of the register be 4270 * interpreted by the guest: 4271 * 4272 * L2 cache control register 3: 64GB range, 256KB size, 4273 * enabled, latency 0x1, configured 4274 */ 4275 msr_info->data = 0xbe702111; 4276 break; 4277 case MSR_AMD64_OSVW_ID_LENGTH: 4278 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4279 return 1; 4280 msr_info->data = vcpu->arch.osvw.length; 4281 break; 4282 case MSR_AMD64_OSVW_STATUS: 4283 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4284 return 1; 4285 msr_info->data = vcpu->arch.osvw.status; 4286 break; 4287 case MSR_PLATFORM_INFO: 4288 if (!msr_info->host_initiated && 4289 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4290 return 1; 4291 msr_info->data = vcpu->arch.msr_platform_info; 4292 break; 4293 case MSR_MISC_FEATURES_ENABLES: 4294 msr_info->data = vcpu->arch.msr_misc_features_enables; 4295 break; 4296 case MSR_K7_HWCR: 4297 msr_info->data = vcpu->arch.msr_hwcr; 4298 break; 4299 #ifdef CONFIG_X86_64 4300 case MSR_IA32_XFD: 4301 if (!msr_info->host_initiated && 4302 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4303 return 1; 4304 4305 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4306 break; 4307 case MSR_IA32_XFD_ERR: 4308 if (!msr_info->host_initiated && 4309 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4310 return 1; 4311 4312 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4313 break; 4314 #endif 4315 default: 4316 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4317 return kvm_pmu_get_msr(vcpu, msr_info); 4318 4319 /* 4320 * Userspace is allowed to read MSRs that KVM reports as 4321 * to-be-saved, even if an MSR isn't fully supported. 4322 */ 4323 if (msr_info->host_initiated && 4324 kvm_is_msr_to_save(msr_info->index)) { 4325 msr_info->data = 0; 4326 break; 4327 } 4328 4329 return KVM_MSR_RET_INVALID; 4330 } 4331 return 0; 4332 } 4333 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4334 4335 /* 4336 * Read or write a bunch of msrs. All parameters are kernel addresses. 4337 * 4338 * @return number of msrs set successfully. 4339 */ 4340 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4341 struct kvm_msr_entry *entries, 4342 int (*do_msr)(struct kvm_vcpu *vcpu, 4343 unsigned index, u64 *data)) 4344 { 4345 int i; 4346 4347 for (i = 0; i < msrs->nmsrs; ++i) 4348 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4349 break; 4350 4351 return i; 4352 } 4353 4354 /* 4355 * Read or write a bunch of msrs. Parameters are user addresses. 4356 * 4357 * @return number of msrs set successfully. 4358 */ 4359 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4360 int (*do_msr)(struct kvm_vcpu *vcpu, 4361 unsigned index, u64 *data), 4362 int writeback) 4363 { 4364 struct kvm_msrs msrs; 4365 struct kvm_msr_entry *entries; 4366 unsigned size; 4367 int r; 4368 4369 r = -EFAULT; 4370 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4371 goto out; 4372 4373 r = -E2BIG; 4374 if (msrs.nmsrs >= MAX_IO_MSRS) 4375 goto out; 4376 4377 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4378 entries = memdup_user(user_msrs->entries, size); 4379 if (IS_ERR(entries)) { 4380 r = PTR_ERR(entries); 4381 goto out; 4382 } 4383 4384 r = __msr_io(vcpu, &msrs, entries, do_msr); 4385 4386 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4387 r = -EFAULT; 4388 4389 kfree(entries); 4390 out: 4391 return r; 4392 } 4393 4394 static inline bool kvm_can_mwait_in_guest(void) 4395 { 4396 return boot_cpu_has(X86_FEATURE_MWAIT) && 4397 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4398 boot_cpu_has(X86_FEATURE_ARAT); 4399 } 4400 4401 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4402 struct kvm_cpuid2 __user *cpuid_arg) 4403 { 4404 struct kvm_cpuid2 cpuid; 4405 int r; 4406 4407 r = -EFAULT; 4408 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4409 return r; 4410 4411 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4412 if (r) 4413 return r; 4414 4415 r = -EFAULT; 4416 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4417 return r; 4418 4419 return 0; 4420 } 4421 4422 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4423 { 4424 int r = 0; 4425 4426 switch (ext) { 4427 case KVM_CAP_IRQCHIP: 4428 case KVM_CAP_HLT: 4429 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4430 case KVM_CAP_SET_TSS_ADDR: 4431 case KVM_CAP_EXT_CPUID: 4432 case KVM_CAP_EXT_EMUL_CPUID: 4433 case KVM_CAP_CLOCKSOURCE: 4434 case KVM_CAP_PIT: 4435 case KVM_CAP_NOP_IO_DELAY: 4436 case KVM_CAP_MP_STATE: 4437 case KVM_CAP_SYNC_MMU: 4438 case KVM_CAP_USER_NMI: 4439 case KVM_CAP_REINJECT_CONTROL: 4440 case KVM_CAP_IRQ_INJECT_STATUS: 4441 case KVM_CAP_IOEVENTFD: 4442 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4443 case KVM_CAP_PIT2: 4444 case KVM_CAP_PIT_STATE2: 4445 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4446 case KVM_CAP_VCPU_EVENTS: 4447 case KVM_CAP_HYPERV: 4448 case KVM_CAP_HYPERV_VAPIC: 4449 case KVM_CAP_HYPERV_SPIN: 4450 case KVM_CAP_HYPERV_SYNIC: 4451 case KVM_CAP_HYPERV_SYNIC2: 4452 case KVM_CAP_HYPERV_VP_INDEX: 4453 case KVM_CAP_HYPERV_EVENTFD: 4454 case KVM_CAP_HYPERV_TLBFLUSH: 4455 case KVM_CAP_HYPERV_SEND_IPI: 4456 case KVM_CAP_HYPERV_CPUID: 4457 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4458 case KVM_CAP_SYS_HYPERV_CPUID: 4459 case KVM_CAP_PCI_SEGMENT: 4460 case KVM_CAP_DEBUGREGS: 4461 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4462 case KVM_CAP_XSAVE: 4463 case KVM_CAP_ASYNC_PF: 4464 case KVM_CAP_ASYNC_PF_INT: 4465 case KVM_CAP_GET_TSC_KHZ: 4466 case KVM_CAP_KVMCLOCK_CTRL: 4467 case KVM_CAP_READONLY_MEM: 4468 case KVM_CAP_HYPERV_TIME: 4469 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4470 case KVM_CAP_TSC_DEADLINE_TIMER: 4471 case KVM_CAP_DISABLE_QUIRKS: 4472 case KVM_CAP_SET_BOOT_CPU_ID: 4473 case KVM_CAP_SPLIT_IRQCHIP: 4474 case KVM_CAP_IMMEDIATE_EXIT: 4475 case KVM_CAP_PMU_EVENT_FILTER: 4476 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4477 case KVM_CAP_GET_MSR_FEATURES: 4478 case KVM_CAP_MSR_PLATFORM_INFO: 4479 case KVM_CAP_EXCEPTION_PAYLOAD: 4480 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4481 case KVM_CAP_SET_GUEST_DEBUG: 4482 case KVM_CAP_LAST_CPU: 4483 case KVM_CAP_X86_USER_SPACE_MSR: 4484 case KVM_CAP_X86_MSR_FILTER: 4485 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4486 #ifdef CONFIG_X86_SGX_KVM 4487 case KVM_CAP_SGX_ATTRIBUTE: 4488 #endif 4489 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4490 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4491 case KVM_CAP_SREGS2: 4492 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4493 case KVM_CAP_VCPU_ATTRIBUTES: 4494 case KVM_CAP_SYS_ATTRIBUTES: 4495 case KVM_CAP_VAPIC: 4496 case KVM_CAP_ENABLE_CAP: 4497 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4498 case KVM_CAP_IRQFD_RESAMPLE: 4499 r = 1; 4500 break; 4501 case KVM_CAP_EXIT_HYPERCALL: 4502 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4503 break; 4504 case KVM_CAP_SET_GUEST_DEBUG2: 4505 return KVM_GUESTDBG_VALID_MASK; 4506 #ifdef CONFIG_KVM_XEN 4507 case KVM_CAP_XEN_HVM: 4508 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4509 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4510 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4511 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4512 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4513 if (sched_info_on()) 4514 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4515 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4516 break; 4517 #endif 4518 case KVM_CAP_SYNC_REGS: 4519 r = KVM_SYNC_X86_VALID_FIELDS; 4520 break; 4521 case KVM_CAP_ADJUST_CLOCK: 4522 r = KVM_CLOCK_VALID_FLAGS; 4523 break; 4524 case KVM_CAP_X86_DISABLE_EXITS: 4525 r = KVM_X86_DISABLE_EXITS_PAUSE; 4526 4527 if (!mitigate_smt_rsb) { 4528 r |= KVM_X86_DISABLE_EXITS_HLT | 4529 KVM_X86_DISABLE_EXITS_CSTATE; 4530 4531 if (kvm_can_mwait_in_guest()) 4532 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4533 } 4534 break; 4535 case KVM_CAP_X86_SMM: 4536 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4537 break; 4538 4539 /* SMBASE is usually relocated above 1M on modern chipsets, 4540 * and SMM handlers might indeed rely on 4G segment limits, 4541 * so do not report SMM to be available if real mode is 4542 * emulated via vm86 mode. Still, do not go to great lengths 4543 * to avoid userspace's usage of the feature, because it is a 4544 * fringe case that is not enabled except via specific settings 4545 * of the module parameters. 4546 */ 4547 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4548 break; 4549 case KVM_CAP_NR_VCPUS: 4550 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4551 break; 4552 case KVM_CAP_MAX_VCPUS: 4553 r = KVM_MAX_VCPUS; 4554 break; 4555 case KVM_CAP_MAX_VCPU_ID: 4556 r = KVM_MAX_VCPU_IDS; 4557 break; 4558 case KVM_CAP_PV_MMU: /* obsolete */ 4559 r = 0; 4560 break; 4561 case KVM_CAP_MCE: 4562 r = KVM_MAX_MCE_BANKS; 4563 break; 4564 case KVM_CAP_XCRS: 4565 r = boot_cpu_has(X86_FEATURE_XSAVE); 4566 break; 4567 case KVM_CAP_TSC_CONTROL: 4568 case KVM_CAP_VM_TSC_CONTROL: 4569 r = kvm_caps.has_tsc_control; 4570 break; 4571 case KVM_CAP_X2APIC_API: 4572 r = KVM_X2APIC_API_VALID_FLAGS; 4573 break; 4574 case KVM_CAP_NESTED_STATE: 4575 r = kvm_x86_ops.nested_ops->get_state ? 4576 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4577 break; 4578 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4579 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4580 break; 4581 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4582 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4583 break; 4584 case KVM_CAP_SMALLER_MAXPHYADDR: 4585 r = (int) allow_smaller_maxphyaddr; 4586 break; 4587 case KVM_CAP_STEAL_TIME: 4588 r = sched_info_on(); 4589 break; 4590 case KVM_CAP_X86_BUS_LOCK_EXIT: 4591 if (kvm_caps.has_bus_lock_exit) 4592 r = KVM_BUS_LOCK_DETECTION_OFF | 4593 KVM_BUS_LOCK_DETECTION_EXIT; 4594 else 4595 r = 0; 4596 break; 4597 case KVM_CAP_XSAVE2: { 4598 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4599 if (r < sizeof(struct kvm_xsave)) 4600 r = sizeof(struct kvm_xsave); 4601 break; 4602 } 4603 case KVM_CAP_PMU_CAPABILITY: 4604 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4605 break; 4606 case KVM_CAP_DISABLE_QUIRKS2: 4607 r = KVM_X86_VALID_QUIRKS; 4608 break; 4609 case KVM_CAP_X86_NOTIFY_VMEXIT: 4610 r = kvm_caps.has_notify_vmexit; 4611 break; 4612 default: 4613 break; 4614 } 4615 return r; 4616 } 4617 4618 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4619 { 4620 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4621 4622 if ((u64)(unsigned long)uaddr != attr->addr) 4623 return ERR_PTR_USR(-EFAULT); 4624 return uaddr; 4625 } 4626 4627 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4628 { 4629 u64 __user *uaddr = kvm_get_attr_addr(attr); 4630 4631 if (attr->group) 4632 return -ENXIO; 4633 4634 if (IS_ERR(uaddr)) 4635 return PTR_ERR(uaddr); 4636 4637 switch (attr->attr) { 4638 case KVM_X86_XCOMP_GUEST_SUPP: 4639 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4640 return -EFAULT; 4641 return 0; 4642 default: 4643 return -ENXIO; 4644 break; 4645 } 4646 } 4647 4648 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4649 { 4650 if (attr->group) 4651 return -ENXIO; 4652 4653 switch (attr->attr) { 4654 case KVM_X86_XCOMP_GUEST_SUPP: 4655 return 0; 4656 default: 4657 return -ENXIO; 4658 } 4659 } 4660 4661 long kvm_arch_dev_ioctl(struct file *filp, 4662 unsigned int ioctl, unsigned long arg) 4663 { 4664 void __user *argp = (void __user *)arg; 4665 long r; 4666 4667 switch (ioctl) { 4668 case KVM_GET_MSR_INDEX_LIST: { 4669 struct kvm_msr_list __user *user_msr_list = argp; 4670 struct kvm_msr_list msr_list; 4671 unsigned n; 4672 4673 r = -EFAULT; 4674 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4675 goto out; 4676 n = msr_list.nmsrs; 4677 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4678 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4679 goto out; 4680 r = -E2BIG; 4681 if (n < msr_list.nmsrs) 4682 goto out; 4683 r = -EFAULT; 4684 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4685 num_msrs_to_save * sizeof(u32))) 4686 goto out; 4687 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4688 &emulated_msrs, 4689 num_emulated_msrs * sizeof(u32))) 4690 goto out; 4691 r = 0; 4692 break; 4693 } 4694 case KVM_GET_SUPPORTED_CPUID: 4695 case KVM_GET_EMULATED_CPUID: { 4696 struct kvm_cpuid2 __user *cpuid_arg = argp; 4697 struct kvm_cpuid2 cpuid; 4698 4699 r = -EFAULT; 4700 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4701 goto out; 4702 4703 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4704 ioctl); 4705 if (r) 4706 goto out; 4707 4708 r = -EFAULT; 4709 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4710 goto out; 4711 r = 0; 4712 break; 4713 } 4714 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4715 r = -EFAULT; 4716 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4717 sizeof(kvm_caps.supported_mce_cap))) 4718 goto out; 4719 r = 0; 4720 break; 4721 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4722 struct kvm_msr_list __user *user_msr_list = argp; 4723 struct kvm_msr_list msr_list; 4724 unsigned int n; 4725 4726 r = -EFAULT; 4727 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4728 goto out; 4729 n = msr_list.nmsrs; 4730 msr_list.nmsrs = num_msr_based_features; 4731 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4732 goto out; 4733 r = -E2BIG; 4734 if (n < msr_list.nmsrs) 4735 goto out; 4736 r = -EFAULT; 4737 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4738 num_msr_based_features * sizeof(u32))) 4739 goto out; 4740 r = 0; 4741 break; 4742 } 4743 case KVM_GET_MSRS: 4744 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4745 break; 4746 case KVM_GET_SUPPORTED_HV_CPUID: 4747 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4748 break; 4749 case KVM_GET_DEVICE_ATTR: { 4750 struct kvm_device_attr attr; 4751 r = -EFAULT; 4752 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4753 break; 4754 r = kvm_x86_dev_get_attr(&attr); 4755 break; 4756 } 4757 case KVM_HAS_DEVICE_ATTR: { 4758 struct kvm_device_attr attr; 4759 r = -EFAULT; 4760 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4761 break; 4762 r = kvm_x86_dev_has_attr(&attr); 4763 break; 4764 } 4765 default: 4766 r = -EINVAL; 4767 break; 4768 } 4769 out: 4770 return r; 4771 } 4772 4773 static void wbinvd_ipi(void *garbage) 4774 { 4775 wbinvd(); 4776 } 4777 4778 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4779 { 4780 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4781 } 4782 4783 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4784 { 4785 /* Address WBINVD may be executed by guest */ 4786 if (need_emulate_wbinvd(vcpu)) { 4787 if (static_call(kvm_x86_has_wbinvd_exit)()) 4788 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4789 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4790 smp_call_function_single(vcpu->cpu, 4791 wbinvd_ipi, NULL, 1); 4792 } 4793 4794 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4795 4796 /* Save host pkru register if supported */ 4797 vcpu->arch.host_pkru = read_pkru(); 4798 4799 /* Apply any externally detected TSC adjustments (due to suspend) */ 4800 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4801 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4802 vcpu->arch.tsc_offset_adjustment = 0; 4803 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4804 } 4805 4806 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4807 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4808 rdtsc() - vcpu->arch.last_host_tsc; 4809 if (tsc_delta < 0) 4810 mark_tsc_unstable("KVM discovered backwards TSC"); 4811 4812 if (kvm_check_tsc_unstable()) { 4813 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4814 vcpu->arch.last_guest_tsc); 4815 kvm_vcpu_write_tsc_offset(vcpu, offset); 4816 vcpu->arch.tsc_catchup = 1; 4817 } 4818 4819 if (kvm_lapic_hv_timer_in_use(vcpu)) 4820 kvm_lapic_restart_hv_timer(vcpu); 4821 4822 /* 4823 * On a host with synchronized TSC, there is no need to update 4824 * kvmclock on vcpu->cpu migration 4825 */ 4826 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4827 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4828 if (vcpu->cpu != cpu) 4829 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4830 vcpu->cpu = cpu; 4831 } 4832 4833 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4834 } 4835 4836 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4837 { 4838 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4839 struct kvm_steal_time __user *st; 4840 struct kvm_memslots *slots; 4841 static const u8 preempted = KVM_VCPU_PREEMPTED; 4842 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4843 4844 /* 4845 * The vCPU can be marked preempted if and only if the VM-Exit was on 4846 * an instruction boundary and will not trigger guest emulation of any 4847 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4848 * when this is true, for example allowing the vCPU to be marked 4849 * preempted if and only if the VM-Exit was due to a host interrupt. 4850 */ 4851 if (!vcpu->arch.at_instruction_boundary) { 4852 vcpu->stat.preemption_other++; 4853 return; 4854 } 4855 4856 vcpu->stat.preemption_reported++; 4857 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4858 return; 4859 4860 if (vcpu->arch.st.preempted) 4861 return; 4862 4863 /* This happens on process exit */ 4864 if (unlikely(current->mm != vcpu->kvm->mm)) 4865 return; 4866 4867 slots = kvm_memslots(vcpu->kvm); 4868 4869 if (unlikely(slots->generation != ghc->generation || 4870 gpa != ghc->gpa || 4871 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4872 return; 4873 4874 st = (struct kvm_steal_time __user *)ghc->hva; 4875 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4876 4877 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4878 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4879 4880 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4881 } 4882 4883 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4884 { 4885 int idx; 4886 4887 if (vcpu->preempted) { 4888 if (!vcpu->arch.guest_state_protected) 4889 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4890 4891 /* 4892 * Take the srcu lock as memslots will be accessed to check the gfn 4893 * cache generation against the memslots generation. 4894 */ 4895 idx = srcu_read_lock(&vcpu->kvm->srcu); 4896 if (kvm_xen_msr_enabled(vcpu->kvm)) 4897 kvm_xen_runstate_set_preempted(vcpu); 4898 else 4899 kvm_steal_time_set_preempted(vcpu); 4900 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4901 } 4902 4903 static_call(kvm_x86_vcpu_put)(vcpu); 4904 vcpu->arch.last_host_tsc = rdtsc(); 4905 } 4906 4907 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4908 struct kvm_lapic_state *s) 4909 { 4910 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4911 4912 return kvm_apic_get_state(vcpu, s); 4913 } 4914 4915 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4916 struct kvm_lapic_state *s) 4917 { 4918 int r; 4919 4920 r = kvm_apic_set_state(vcpu, s); 4921 if (r) 4922 return r; 4923 update_cr8_intercept(vcpu); 4924 4925 return 0; 4926 } 4927 4928 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4929 { 4930 /* 4931 * We can accept userspace's request for interrupt injection 4932 * as long as we have a place to store the interrupt number. 4933 * The actual injection will happen when the CPU is able to 4934 * deliver the interrupt. 4935 */ 4936 if (kvm_cpu_has_extint(vcpu)) 4937 return false; 4938 4939 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4940 return (!lapic_in_kernel(vcpu) || 4941 kvm_apic_accept_pic_intr(vcpu)); 4942 } 4943 4944 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4945 { 4946 /* 4947 * Do not cause an interrupt window exit if an exception 4948 * is pending or an event needs reinjection; userspace 4949 * might want to inject the interrupt manually using KVM_SET_REGS 4950 * or KVM_SET_SREGS. For that to work, we must be at an 4951 * instruction boundary and with no events half-injected. 4952 */ 4953 return (kvm_arch_interrupt_allowed(vcpu) && 4954 kvm_cpu_accept_dm_intr(vcpu) && 4955 !kvm_event_needs_reinjection(vcpu) && 4956 !kvm_is_exception_pending(vcpu)); 4957 } 4958 4959 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4960 struct kvm_interrupt *irq) 4961 { 4962 if (irq->irq >= KVM_NR_INTERRUPTS) 4963 return -EINVAL; 4964 4965 if (!irqchip_in_kernel(vcpu->kvm)) { 4966 kvm_queue_interrupt(vcpu, irq->irq, false); 4967 kvm_make_request(KVM_REQ_EVENT, vcpu); 4968 return 0; 4969 } 4970 4971 /* 4972 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4973 * fail for in-kernel 8259. 4974 */ 4975 if (pic_in_kernel(vcpu->kvm)) 4976 return -ENXIO; 4977 4978 if (vcpu->arch.pending_external_vector != -1) 4979 return -EEXIST; 4980 4981 vcpu->arch.pending_external_vector = irq->irq; 4982 kvm_make_request(KVM_REQ_EVENT, vcpu); 4983 return 0; 4984 } 4985 4986 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4987 { 4988 kvm_inject_nmi(vcpu); 4989 4990 return 0; 4991 } 4992 4993 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4994 struct kvm_tpr_access_ctl *tac) 4995 { 4996 if (tac->flags) 4997 return -EINVAL; 4998 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4999 return 0; 5000 } 5001 5002 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5003 u64 mcg_cap) 5004 { 5005 int r; 5006 unsigned bank_num = mcg_cap & 0xff, bank; 5007 5008 r = -EINVAL; 5009 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5010 goto out; 5011 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5012 goto out; 5013 r = 0; 5014 vcpu->arch.mcg_cap = mcg_cap; 5015 /* Init IA32_MCG_CTL to all 1s */ 5016 if (mcg_cap & MCG_CTL_P) 5017 vcpu->arch.mcg_ctl = ~(u64)0; 5018 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5019 for (bank = 0; bank < bank_num; bank++) { 5020 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5021 if (mcg_cap & MCG_CMCI_P) 5022 vcpu->arch.mci_ctl2_banks[bank] = 0; 5023 } 5024 5025 kvm_apic_after_set_mcg_cap(vcpu); 5026 5027 static_call(kvm_x86_setup_mce)(vcpu); 5028 out: 5029 return r; 5030 } 5031 5032 /* 5033 * Validate this is an UCNA (uncorrectable no action) error by checking the 5034 * MCG_STATUS and MCi_STATUS registers: 5035 * - none of the bits for Machine Check Exceptions are set 5036 * - both the VAL (valid) and UC (uncorrectable) bits are set 5037 * MCI_STATUS_PCC - Processor Context Corrupted 5038 * MCI_STATUS_S - Signaled as a Machine Check Exception 5039 * MCI_STATUS_AR - Software recoverable Action Required 5040 */ 5041 static bool is_ucna(struct kvm_x86_mce *mce) 5042 { 5043 return !mce->mcg_status && 5044 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5045 (mce->status & MCI_STATUS_VAL) && 5046 (mce->status & MCI_STATUS_UC); 5047 } 5048 5049 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5050 { 5051 u64 mcg_cap = vcpu->arch.mcg_cap; 5052 5053 banks[1] = mce->status; 5054 banks[2] = mce->addr; 5055 banks[3] = mce->misc; 5056 vcpu->arch.mcg_status = mce->mcg_status; 5057 5058 if (!(mcg_cap & MCG_CMCI_P) || 5059 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5060 return 0; 5061 5062 if (lapic_in_kernel(vcpu)) 5063 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5064 5065 return 0; 5066 } 5067 5068 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5069 struct kvm_x86_mce *mce) 5070 { 5071 u64 mcg_cap = vcpu->arch.mcg_cap; 5072 unsigned bank_num = mcg_cap & 0xff; 5073 u64 *banks = vcpu->arch.mce_banks; 5074 5075 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5076 return -EINVAL; 5077 5078 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5079 5080 if (is_ucna(mce)) 5081 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5082 5083 /* 5084 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5085 * reporting is disabled 5086 */ 5087 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5088 vcpu->arch.mcg_ctl != ~(u64)0) 5089 return 0; 5090 /* 5091 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5092 * reporting is disabled for the bank 5093 */ 5094 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5095 return 0; 5096 if (mce->status & MCI_STATUS_UC) { 5097 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5098 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5099 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5100 return 0; 5101 } 5102 if (banks[1] & MCI_STATUS_VAL) 5103 mce->status |= MCI_STATUS_OVER; 5104 banks[2] = mce->addr; 5105 banks[3] = mce->misc; 5106 vcpu->arch.mcg_status = mce->mcg_status; 5107 banks[1] = mce->status; 5108 kvm_queue_exception(vcpu, MC_VECTOR); 5109 } else if (!(banks[1] & MCI_STATUS_VAL) 5110 || !(banks[1] & MCI_STATUS_UC)) { 5111 if (banks[1] & MCI_STATUS_VAL) 5112 mce->status |= MCI_STATUS_OVER; 5113 banks[2] = mce->addr; 5114 banks[3] = mce->misc; 5115 banks[1] = mce->status; 5116 } else 5117 banks[1] |= MCI_STATUS_OVER; 5118 return 0; 5119 } 5120 5121 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5122 struct kvm_vcpu_events *events) 5123 { 5124 struct kvm_queued_exception *ex; 5125 5126 process_nmi(vcpu); 5127 5128 #ifdef CONFIG_KVM_SMM 5129 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5130 process_smi(vcpu); 5131 #endif 5132 5133 /* 5134 * KVM's ABI only allows for one exception to be migrated. Luckily, 5135 * the only time there can be two queued exceptions is if there's a 5136 * non-exiting _injected_ exception, and a pending exiting exception. 5137 * In that case, ignore the VM-Exiting exception as it's an extension 5138 * of the injected exception. 5139 */ 5140 if (vcpu->arch.exception_vmexit.pending && 5141 !vcpu->arch.exception.pending && 5142 !vcpu->arch.exception.injected) 5143 ex = &vcpu->arch.exception_vmexit; 5144 else 5145 ex = &vcpu->arch.exception; 5146 5147 /* 5148 * In guest mode, payload delivery should be deferred if the exception 5149 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5150 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5151 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5152 * propagate the payload and so it cannot be safely deferred. Deliver 5153 * the payload if the capability hasn't been requested. 5154 */ 5155 if (!vcpu->kvm->arch.exception_payload_enabled && 5156 ex->pending && ex->has_payload) 5157 kvm_deliver_exception_payload(vcpu, ex); 5158 5159 memset(events, 0, sizeof(*events)); 5160 5161 /* 5162 * The API doesn't provide the instruction length for software 5163 * exceptions, so don't report them. As long as the guest RIP 5164 * isn't advanced, we should expect to encounter the exception 5165 * again. 5166 */ 5167 if (!kvm_exception_is_soft(ex->vector)) { 5168 events->exception.injected = ex->injected; 5169 events->exception.pending = ex->pending; 5170 /* 5171 * For ABI compatibility, deliberately conflate 5172 * pending and injected exceptions when 5173 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5174 */ 5175 if (!vcpu->kvm->arch.exception_payload_enabled) 5176 events->exception.injected |= ex->pending; 5177 } 5178 events->exception.nr = ex->vector; 5179 events->exception.has_error_code = ex->has_error_code; 5180 events->exception.error_code = ex->error_code; 5181 events->exception_has_payload = ex->has_payload; 5182 events->exception_payload = ex->payload; 5183 5184 events->interrupt.injected = 5185 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5186 events->interrupt.nr = vcpu->arch.interrupt.nr; 5187 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5188 5189 events->nmi.injected = vcpu->arch.nmi_injected; 5190 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5191 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5192 5193 /* events->sipi_vector is never valid when reporting to user space */ 5194 5195 #ifdef CONFIG_KVM_SMM 5196 events->smi.smm = is_smm(vcpu); 5197 events->smi.pending = vcpu->arch.smi_pending; 5198 events->smi.smm_inside_nmi = 5199 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5200 #endif 5201 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5202 5203 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5204 | KVM_VCPUEVENT_VALID_SHADOW 5205 | KVM_VCPUEVENT_VALID_SMM); 5206 if (vcpu->kvm->arch.exception_payload_enabled) 5207 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5208 if (vcpu->kvm->arch.triple_fault_event) { 5209 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5210 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5211 } 5212 } 5213 5214 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5215 struct kvm_vcpu_events *events) 5216 { 5217 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5218 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5219 | KVM_VCPUEVENT_VALID_SHADOW 5220 | KVM_VCPUEVENT_VALID_SMM 5221 | KVM_VCPUEVENT_VALID_PAYLOAD 5222 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5223 return -EINVAL; 5224 5225 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5226 if (!vcpu->kvm->arch.exception_payload_enabled) 5227 return -EINVAL; 5228 if (events->exception.pending) 5229 events->exception.injected = 0; 5230 else 5231 events->exception_has_payload = 0; 5232 } else { 5233 events->exception.pending = 0; 5234 events->exception_has_payload = 0; 5235 } 5236 5237 if ((events->exception.injected || events->exception.pending) && 5238 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5239 return -EINVAL; 5240 5241 /* INITs are latched while in SMM */ 5242 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5243 (events->smi.smm || events->smi.pending) && 5244 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5245 return -EINVAL; 5246 5247 process_nmi(vcpu); 5248 5249 /* 5250 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5251 * morph the exception to a VM-Exit if appropriate. Do this only for 5252 * pending exceptions, already-injected exceptions are not subject to 5253 * intercpetion. Note, userspace that conflates pending and injected 5254 * is hosed, and will incorrectly convert an injected exception into a 5255 * pending exception, which in turn may cause a spurious VM-Exit. 5256 */ 5257 vcpu->arch.exception_from_userspace = events->exception.pending; 5258 5259 vcpu->arch.exception_vmexit.pending = false; 5260 5261 vcpu->arch.exception.injected = events->exception.injected; 5262 vcpu->arch.exception.pending = events->exception.pending; 5263 vcpu->arch.exception.vector = events->exception.nr; 5264 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5265 vcpu->arch.exception.error_code = events->exception.error_code; 5266 vcpu->arch.exception.has_payload = events->exception_has_payload; 5267 vcpu->arch.exception.payload = events->exception_payload; 5268 5269 vcpu->arch.interrupt.injected = events->interrupt.injected; 5270 vcpu->arch.interrupt.nr = events->interrupt.nr; 5271 vcpu->arch.interrupt.soft = events->interrupt.soft; 5272 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5273 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5274 events->interrupt.shadow); 5275 5276 vcpu->arch.nmi_injected = events->nmi.injected; 5277 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5278 vcpu->arch.nmi_pending = 0; 5279 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5280 kvm_make_request(KVM_REQ_NMI, vcpu); 5281 } 5282 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5283 5284 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5285 lapic_in_kernel(vcpu)) 5286 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5287 5288 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5289 #ifdef CONFIG_KVM_SMM 5290 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5291 kvm_leave_nested(vcpu); 5292 kvm_smm_changed(vcpu, events->smi.smm); 5293 } 5294 5295 vcpu->arch.smi_pending = events->smi.pending; 5296 5297 if (events->smi.smm) { 5298 if (events->smi.smm_inside_nmi) 5299 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5300 else 5301 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5302 } 5303 5304 #else 5305 if (events->smi.smm || events->smi.pending || 5306 events->smi.smm_inside_nmi) 5307 return -EINVAL; 5308 #endif 5309 5310 if (lapic_in_kernel(vcpu)) { 5311 if (events->smi.latched_init) 5312 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5313 else 5314 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5315 } 5316 } 5317 5318 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5319 if (!vcpu->kvm->arch.triple_fault_event) 5320 return -EINVAL; 5321 if (events->triple_fault.pending) 5322 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5323 else 5324 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5325 } 5326 5327 kvm_make_request(KVM_REQ_EVENT, vcpu); 5328 5329 return 0; 5330 } 5331 5332 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5333 struct kvm_debugregs *dbgregs) 5334 { 5335 unsigned long val; 5336 5337 memset(dbgregs, 0, sizeof(*dbgregs)); 5338 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5339 kvm_get_dr(vcpu, 6, &val); 5340 dbgregs->dr6 = val; 5341 dbgregs->dr7 = vcpu->arch.dr7; 5342 } 5343 5344 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5345 struct kvm_debugregs *dbgregs) 5346 { 5347 if (dbgregs->flags) 5348 return -EINVAL; 5349 5350 if (!kvm_dr6_valid(dbgregs->dr6)) 5351 return -EINVAL; 5352 if (!kvm_dr7_valid(dbgregs->dr7)) 5353 return -EINVAL; 5354 5355 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5356 kvm_update_dr0123(vcpu); 5357 vcpu->arch.dr6 = dbgregs->dr6; 5358 vcpu->arch.dr7 = dbgregs->dr7; 5359 kvm_update_dr7(vcpu); 5360 5361 return 0; 5362 } 5363 5364 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5365 struct kvm_xsave *guest_xsave) 5366 { 5367 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5368 return; 5369 5370 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5371 guest_xsave->region, 5372 sizeof(guest_xsave->region), 5373 vcpu->arch.pkru); 5374 } 5375 5376 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5377 u8 *state, unsigned int size) 5378 { 5379 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5380 return; 5381 5382 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5383 state, size, vcpu->arch.pkru); 5384 } 5385 5386 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5387 struct kvm_xsave *guest_xsave) 5388 { 5389 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5390 return 0; 5391 5392 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5393 guest_xsave->region, 5394 kvm_caps.supported_xcr0, 5395 &vcpu->arch.pkru); 5396 } 5397 5398 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5399 struct kvm_xcrs *guest_xcrs) 5400 { 5401 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5402 guest_xcrs->nr_xcrs = 0; 5403 return; 5404 } 5405 5406 guest_xcrs->nr_xcrs = 1; 5407 guest_xcrs->flags = 0; 5408 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5409 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5410 } 5411 5412 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5413 struct kvm_xcrs *guest_xcrs) 5414 { 5415 int i, r = 0; 5416 5417 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5418 return -EINVAL; 5419 5420 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5421 return -EINVAL; 5422 5423 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5424 /* Only support XCR0 currently */ 5425 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5426 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5427 guest_xcrs->xcrs[i].value); 5428 break; 5429 } 5430 if (r) 5431 r = -EINVAL; 5432 return r; 5433 } 5434 5435 /* 5436 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5437 * stopped by the hypervisor. This function will be called from the host only. 5438 * EINVAL is returned when the host attempts to set the flag for a guest that 5439 * does not support pv clocks. 5440 */ 5441 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5442 { 5443 if (!vcpu->arch.pv_time.active) 5444 return -EINVAL; 5445 vcpu->arch.pvclock_set_guest_stopped_request = true; 5446 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5447 return 0; 5448 } 5449 5450 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5451 struct kvm_device_attr *attr) 5452 { 5453 int r; 5454 5455 switch (attr->attr) { 5456 case KVM_VCPU_TSC_OFFSET: 5457 r = 0; 5458 break; 5459 default: 5460 r = -ENXIO; 5461 } 5462 5463 return r; 5464 } 5465 5466 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5467 struct kvm_device_attr *attr) 5468 { 5469 u64 __user *uaddr = kvm_get_attr_addr(attr); 5470 int r; 5471 5472 if (IS_ERR(uaddr)) 5473 return PTR_ERR(uaddr); 5474 5475 switch (attr->attr) { 5476 case KVM_VCPU_TSC_OFFSET: 5477 r = -EFAULT; 5478 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5479 break; 5480 r = 0; 5481 break; 5482 default: 5483 r = -ENXIO; 5484 } 5485 5486 return r; 5487 } 5488 5489 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5490 struct kvm_device_attr *attr) 5491 { 5492 u64 __user *uaddr = kvm_get_attr_addr(attr); 5493 struct kvm *kvm = vcpu->kvm; 5494 int r; 5495 5496 if (IS_ERR(uaddr)) 5497 return PTR_ERR(uaddr); 5498 5499 switch (attr->attr) { 5500 case KVM_VCPU_TSC_OFFSET: { 5501 u64 offset, tsc, ns; 5502 unsigned long flags; 5503 bool matched; 5504 5505 r = -EFAULT; 5506 if (get_user(offset, uaddr)) 5507 break; 5508 5509 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5510 5511 matched = (vcpu->arch.virtual_tsc_khz && 5512 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5513 kvm->arch.last_tsc_offset == offset); 5514 5515 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5516 ns = get_kvmclock_base_ns(); 5517 5518 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5519 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5520 5521 r = 0; 5522 break; 5523 } 5524 default: 5525 r = -ENXIO; 5526 } 5527 5528 return r; 5529 } 5530 5531 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5532 unsigned int ioctl, 5533 void __user *argp) 5534 { 5535 struct kvm_device_attr attr; 5536 int r; 5537 5538 if (copy_from_user(&attr, argp, sizeof(attr))) 5539 return -EFAULT; 5540 5541 if (attr.group != KVM_VCPU_TSC_CTRL) 5542 return -ENXIO; 5543 5544 switch (ioctl) { 5545 case KVM_HAS_DEVICE_ATTR: 5546 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5547 break; 5548 case KVM_GET_DEVICE_ATTR: 5549 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5550 break; 5551 case KVM_SET_DEVICE_ATTR: 5552 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5553 break; 5554 } 5555 5556 return r; 5557 } 5558 5559 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5560 struct kvm_enable_cap *cap) 5561 { 5562 int r; 5563 uint16_t vmcs_version; 5564 void __user *user_ptr; 5565 5566 if (cap->flags) 5567 return -EINVAL; 5568 5569 switch (cap->cap) { 5570 case KVM_CAP_HYPERV_SYNIC2: 5571 if (cap->args[0]) 5572 return -EINVAL; 5573 fallthrough; 5574 5575 case KVM_CAP_HYPERV_SYNIC: 5576 if (!irqchip_in_kernel(vcpu->kvm)) 5577 return -EINVAL; 5578 return kvm_hv_activate_synic(vcpu, cap->cap == 5579 KVM_CAP_HYPERV_SYNIC2); 5580 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5581 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5582 return -ENOTTY; 5583 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5584 if (!r) { 5585 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5586 if (copy_to_user(user_ptr, &vmcs_version, 5587 sizeof(vmcs_version))) 5588 r = -EFAULT; 5589 } 5590 return r; 5591 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5592 if (!kvm_x86_ops.enable_l2_tlb_flush) 5593 return -ENOTTY; 5594 5595 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5596 5597 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5598 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5599 5600 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5601 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5602 if (vcpu->arch.pv_cpuid.enforce) 5603 kvm_update_pv_runtime(vcpu); 5604 5605 return 0; 5606 default: 5607 return -EINVAL; 5608 } 5609 } 5610 5611 long kvm_arch_vcpu_ioctl(struct file *filp, 5612 unsigned int ioctl, unsigned long arg) 5613 { 5614 struct kvm_vcpu *vcpu = filp->private_data; 5615 void __user *argp = (void __user *)arg; 5616 int r; 5617 union { 5618 struct kvm_sregs2 *sregs2; 5619 struct kvm_lapic_state *lapic; 5620 struct kvm_xsave *xsave; 5621 struct kvm_xcrs *xcrs; 5622 void *buffer; 5623 } u; 5624 5625 vcpu_load(vcpu); 5626 5627 u.buffer = NULL; 5628 switch (ioctl) { 5629 case KVM_GET_LAPIC: { 5630 r = -EINVAL; 5631 if (!lapic_in_kernel(vcpu)) 5632 goto out; 5633 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5634 GFP_KERNEL_ACCOUNT); 5635 5636 r = -ENOMEM; 5637 if (!u.lapic) 5638 goto out; 5639 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5640 if (r) 5641 goto out; 5642 r = -EFAULT; 5643 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5644 goto out; 5645 r = 0; 5646 break; 5647 } 5648 case KVM_SET_LAPIC: { 5649 r = -EINVAL; 5650 if (!lapic_in_kernel(vcpu)) 5651 goto out; 5652 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5653 if (IS_ERR(u.lapic)) { 5654 r = PTR_ERR(u.lapic); 5655 goto out_nofree; 5656 } 5657 5658 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5659 break; 5660 } 5661 case KVM_INTERRUPT: { 5662 struct kvm_interrupt irq; 5663 5664 r = -EFAULT; 5665 if (copy_from_user(&irq, argp, sizeof(irq))) 5666 goto out; 5667 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5668 break; 5669 } 5670 case KVM_NMI: { 5671 r = kvm_vcpu_ioctl_nmi(vcpu); 5672 break; 5673 } 5674 case KVM_SMI: { 5675 r = kvm_inject_smi(vcpu); 5676 break; 5677 } 5678 case KVM_SET_CPUID: { 5679 struct kvm_cpuid __user *cpuid_arg = argp; 5680 struct kvm_cpuid cpuid; 5681 5682 r = -EFAULT; 5683 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5684 goto out; 5685 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5686 break; 5687 } 5688 case KVM_SET_CPUID2: { 5689 struct kvm_cpuid2 __user *cpuid_arg = argp; 5690 struct kvm_cpuid2 cpuid; 5691 5692 r = -EFAULT; 5693 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5694 goto out; 5695 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5696 cpuid_arg->entries); 5697 break; 5698 } 5699 case KVM_GET_CPUID2: { 5700 struct kvm_cpuid2 __user *cpuid_arg = argp; 5701 struct kvm_cpuid2 cpuid; 5702 5703 r = -EFAULT; 5704 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5705 goto out; 5706 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5707 cpuid_arg->entries); 5708 if (r) 5709 goto out; 5710 r = -EFAULT; 5711 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5712 goto out; 5713 r = 0; 5714 break; 5715 } 5716 case KVM_GET_MSRS: { 5717 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5718 r = msr_io(vcpu, argp, do_get_msr, 1); 5719 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5720 break; 5721 } 5722 case KVM_SET_MSRS: { 5723 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5724 r = msr_io(vcpu, argp, do_set_msr, 0); 5725 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5726 break; 5727 } 5728 case KVM_TPR_ACCESS_REPORTING: { 5729 struct kvm_tpr_access_ctl tac; 5730 5731 r = -EFAULT; 5732 if (copy_from_user(&tac, argp, sizeof(tac))) 5733 goto out; 5734 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5735 if (r) 5736 goto out; 5737 r = -EFAULT; 5738 if (copy_to_user(argp, &tac, sizeof(tac))) 5739 goto out; 5740 r = 0; 5741 break; 5742 }; 5743 case KVM_SET_VAPIC_ADDR: { 5744 struct kvm_vapic_addr va; 5745 int idx; 5746 5747 r = -EINVAL; 5748 if (!lapic_in_kernel(vcpu)) 5749 goto out; 5750 r = -EFAULT; 5751 if (copy_from_user(&va, argp, sizeof(va))) 5752 goto out; 5753 idx = srcu_read_lock(&vcpu->kvm->srcu); 5754 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5755 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5756 break; 5757 } 5758 case KVM_X86_SETUP_MCE: { 5759 u64 mcg_cap; 5760 5761 r = -EFAULT; 5762 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5763 goto out; 5764 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5765 break; 5766 } 5767 case KVM_X86_SET_MCE: { 5768 struct kvm_x86_mce mce; 5769 5770 r = -EFAULT; 5771 if (copy_from_user(&mce, argp, sizeof(mce))) 5772 goto out; 5773 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5774 break; 5775 } 5776 case KVM_GET_VCPU_EVENTS: { 5777 struct kvm_vcpu_events events; 5778 5779 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5780 5781 r = -EFAULT; 5782 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5783 break; 5784 r = 0; 5785 break; 5786 } 5787 case KVM_SET_VCPU_EVENTS: { 5788 struct kvm_vcpu_events events; 5789 5790 r = -EFAULT; 5791 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5792 break; 5793 5794 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5795 break; 5796 } 5797 case KVM_GET_DEBUGREGS: { 5798 struct kvm_debugregs dbgregs; 5799 5800 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5801 5802 r = -EFAULT; 5803 if (copy_to_user(argp, &dbgregs, 5804 sizeof(struct kvm_debugregs))) 5805 break; 5806 r = 0; 5807 break; 5808 } 5809 case KVM_SET_DEBUGREGS: { 5810 struct kvm_debugregs dbgregs; 5811 5812 r = -EFAULT; 5813 if (copy_from_user(&dbgregs, argp, 5814 sizeof(struct kvm_debugregs))) 5815 break; 5816 5817 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5818 break; 5819 } 5820 case KVM_GET_XSAVE: { 5821 r = -EINVAL; 5822 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5823 break; 5824 5825 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5826 r = -ENOMEM; 5827 if (!u.xsave) 5828 break; 5829 5830 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5831 5832 r = -EFAULT; 5833 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5834 break; 5835 r = 0; 5836 break; 5837 } 5838 case KVM_SET_XSAVE: { 5839 int size = vcpu->arch.guest_fpu.uabi_size; 5840 5841 u.xsave = memdup_user(argp, size); 5842 if (IS_ERR(u.xsave)) { 5843 r = PTR_ERR(u.xsave); 5844 goto out_nofree; 5845 } 5846 5847 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5848 break; 5849 } 5850 5851 case KVM_GET_XSAVE2: { 5852 int size = vcpu->arch.guest_fpu.uabi_size; 5853 5854 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5855 r = -ENOMEM; 5856 if (!u.xsave) 5857 break; 5858 5859 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5860 5861 r = -EFAULT; 5862 if (copy_to_user(argp, u.xsave, size)) 5863 break; 5864 5865 r = 0; 5866 break; 5867 } 5868 5869 case KVM_GET_XCRS: { 5870 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5871 r = -ENOMEM; 5872 if (!u.xcrs) 5873 break; 5874 5875 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5876 5877 r = -EFAULT; 5878 if (copy_to_user(argp, u.xcrs, 5879 sizeof(struct kvm_xcrs))) 5880 break; 5881 r = 0; 5882 break; 5883 } 5884 case KVM_SET_XCRS: { 5885 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5886 if (IS_ERR(u.xcrs)) { 5887 r = PTR_ERR(u.xcrs); 5888 goto out_nofree; 5889 } 5890 5891 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5892 break; 5893 } 5894 case KVM_SET_TSC_KHZ: { 5895 u32 user_tsc_khz; 5896 5897 r = -EINVAL; 5898 user_tsc_khz = (u32)arg; 5899 5900 if (kvm_caps.has_tsc_control && 5901 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5902 goto out; 5903 5904 if (user_tsc_khz == 0) 5905 user_tsc_khz = tsc_khz; 5906 5907 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5908 r = 0; 5909 5910 goto out; 5911 } 5912 case KVM_GET_TSC_KHZ: { 5913 r = vcpu->arch.virtual_tsc_khz; 5914 goto out; 5915 } 5916 case KVM_KVMCLOCK_CTRL: { 5917 r = kvm_set_guest_paused(vcpu); 5918 goto out; 5919 } 5920 case KVM_ENABLE_CAP: { 5921 struct kvm_enable_cap cap; 5922 5923 r = -EFAULT; 5924 if (copy_from_user(&cap, argp, sizeof(cap))) 5925 goto out; 5926 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5927 break; 5928 } 5929 case KVM_GET_NESTED_STATE: { 5930 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5931 u32 user_data_size; 5932 5933 r = -EINVAL; 5934 if (!kvm_x86_ops.nested_ops->get_state) 5935 break; 5936 5937 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5938 r = -EFAULT; 5939 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5940 break; 5941 5942 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5943 user_data_size); 5944 if (r < 0) 5945 break; 5946 5947 if (r > user_data_size) { 5948 if (put_user(r, &user_kvm_nested_state->size)) 5949 r = -EFAULT; 5950 else 5951 r = -E2BIG; 5952 break; 5953 } 5954 5955 r = 0; 5956 break; 5957 } 5958 case KVM_SET_NESTED_STATE: { 5959 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5960 struct kvm_nested_state kvm_state; 5961 int idx; 5962 5963 r = -EINVAL; 5964 if (!kvm_x86_ops.nested_ops->set_state) 5965 break; 5966 5967 r = -EFAULT; 5968 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5969 break; 5970 5971 r = -EINVAL; 5972 if (kvm_state.size < sizeof(kvm_state)) 5973 break; 5974 5975 if (kvm_state.flags & 5976 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5977 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5978 | KVM_STATE_NESTED_GIF_SET)) 5979 break; 5980 5981 /* nested_run_pending implies guest_mode. */ 5982 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5983 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5984 break; 5985 5986 idx = srcu_read_lock(&vcpu->kvm->srcu); 5987 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5988 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5989 break; 5990 } 5991 case KVM_GET_SUPPORTED_HV_CPUID: 5992 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5993 break; 5994 #ifdef CONFIG_KVM_XEN 5995 case KVM_XEN_VCPU_GET_ATTR: { 5996 struct kvm_xen_vcpu_attr xva; 5997 5998 r = -EFAULT; 5999 if (copy_from_user(&xva, argp, sizeof(xva))) 6000 goto out; 6001 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6002 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6003 r = -EFAULT; 6004 break; 6005 } 6006 case KVM_XEN_VCPU_SET_ATTR: { 6007 struct kvm_xen_vcpu_attr xva; 6008 6009 r = -EFAULT; 6010 if (copy_from_user(&xva, argp, sizeof(xva))) 6011 goto out; 6012 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6013 break; 6014 } 6015 #endif 6016 case KVM_GET_SREGS2: { 6017 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6018 r = -ENOMEM; 6019 if (!u.sregs2) 6020 goto out; 6021 __get_sregs2(vcpu, u.sregs2); 6022 r = -EFAULT; 6023 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6024 goto out; 6025 r = 0; 6026 break; 6027 } 6028 case KVM_SET_SREGS2: { 6029 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6030 if (IS_ERR(u.sregs2)) { 6031 r = PTR_ERR(u.sregs2); 6032 u.sregs2 = NULL; 6033 goto out; 6034 } 6035 r = __set_sregs2(vcpu, u.sregs2); 6036 break; 6037 } 6038 case KVM_HAS_DEVICE_ATTR: 6039 case KVM_GET_DEVICE_ATTR: 6040 case KVM_SET_DEVICE_ATTR: 6041 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6042 break; 6043 default: 6044 r = -EINVAL; 6045 } 6046 out: 6047 kfree(u.buffer); 6048 out_nofree: 6049 vcpu_put(vcpu); 6050 return r; 6051 } 6052 6053 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6054 { 6055 return VM_FAULT_SIGBUS; 6056 } 6057 6058 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6059 { 6060 int ret; 6061 6062 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6063 return -EINVAL; 6064 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6065 return ret; 6066 } 6067 6068 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6069 u64 ident_addr) 6070 { 6071 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6072 } 6073 6074 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6075 unsigned long kvm_nr_mmu_pages) 6076 { 6077 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6078 return -EINVAL; 6079 6080 mutex_lock(&kvm->slots_lock); 6081 6082 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6083 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6084 6085 mutex_unlock(&kvm->slots_lock); 6086 return 0; 6087 } 6088 6089 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6090 { 6091 struct kvm_pic *pic = kvm->arch.vpic; 6092 int r; 6093 6094 r = 0; 6095 switch (chip->chip_id) { 6096 case KVM_IRQCHIP_PIC_MASTER: 6097 memcpy(&chip->chip.pic, &pic->pics[0], 6098 sizeof(struct kvm_pic_state)); 6099 break; 6100 case KVM_IRQCHIP_PIC_SLAVE: 6101 memcpy(&chip->chip.pic, &pic->pics[1], 6102 sizeof(struct kvm_pic_state)); 6103 break; 6104 case KVM_IRQCHIP_IOAPIC: 6105 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6106 break; 6107 default: 6108 r = -EINVAL; 6109 break; 6110 } 6111 return r; 6112 } 6113 6114 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6115 { 6116 struct kvm_pic *pic = kvm->arch.vpic; 6117 int r; 6118 6119 r = 0; 6120 switch (chip->chip_id) { 6121 case KVM_IRQCHIP_PIC_MASTER: 6122 spin_lock(&pic->lock); 6123 memcpy(&pic->pics[0], &chip->chip.pic, 6124 sizeof(struct kvm_pic_state)); 6125 spin_unlock(&pic->lock); 6126 break; 6127 case KVM_IRQCHIP_PIC_SLAVE: 6128 spin_lock(&pic->lock); 6129 memcpy(&pic->pics[1], &chip->chip.pic, 6130 sizeof(struct kvm_pic_state)); 6131 spin_unlock(&pic->lock); 6132 break; 6133 case KVM_IRQCHIP_IOAPIC: 6134 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6135 break; 6136 default: 6137 r = -EINVAL; 6138 break; 6139 } 6140 kvm_pic_update_irq(pic); 6141 return r; 6142 } 6143 6144 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6145 { 6146 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6147 6148 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6149 6150 mutex_lock(&kps->lock); 6151 memcpy(ps, &kps->channels, sizeof(*ps)); 6152 mutex_unlock(&kps->lock); 6153 return 0; 6154 } 6155 6156 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6157 { 6158 int i; 6159 struct kvm_pit *pit = kvm->arch.vpit; 6160 6161 mutex_lock(&pit->pit_state.lock); 6162 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6163 for (i = 0; i < 3; i++) 6164 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6165 mutex_unlock(&pit->pit_state.lock); 6166 return 0; 6167 } 6168 6169 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6170 { 6171 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6172 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6173 sizeof(ps->channels)); 6174 ps->flags = kvm->arch.vpit->pit_state.flags; 6175 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6176 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6177 return 0; 6178 } 6179 6180 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6181 { 6182 int start = 0; 6183 int i; 6184 u32 prev_legacy, cur_legacy; 6185 struct kvm_pit *pit = kvm->arch.vpit; 6186 6187 mutex_lock(&pit->pit_state.lock); 6188 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6189 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6190 if (!prev_legacy && cur_legacy) 6191 start = 1; 6192 memcpy(&pit->pit_state.channels, &ps->channels, 6193 sizeof(pit->pit_state.channels)); 6194 pit->pit_state.flags = ps->flags; 6195 for (i = 0; i < 3; i++) 6196 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6197 start && i == 0); 6198 mutex_unlock(&pit->pit_state.lock); 6199 return 0; 6200 } 6201 6202 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6203 struct kvm_reinject_control *control) 6204 { 6205 struct kvm_pit *pit = kvm->arch.vpit; 6206 6207 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6208 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6209 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6210 */ 6211 mutex_lock(&pit->pit_state.lock); 6212 kvm_pit_set_reinject(pit, control->pit_reinject); 6213 mutex_unlock(&pit->pit_state.lock); 6214 6215 return 0; 6216 } 6217 6218 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6219 { 6220 6221 /* 6222 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6223 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6224 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6225 * VM-Exit. 6226 */ 6227 struct kvm_vcpu *vcpu; 6228 unsigned long i; 6229 6230 kvm_for_each_vcpu(i, vcpu, kvm) 6231 kvm_vcpu_kick(vcpu); 6232 } 6233 6234 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6235 bool line_status) 6236 { 6237 if (!irqchip_in_kernel(kvm)) 6238 return -ENXIO; 6239 6240 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6241 irq_event->irq, irq_event->level, 6242 line_status); 6243 return 0; 6244 } 6245 6246 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6247 struct kvm_enable_cap *cap) 6248 { 6249 int r; 6250 6251 if (cap->flags) 6252 return -EINVAL; 6253 6254 switch (cap->cap) { 6255 case KVM_CAP_DISABLE_QUIRKS2: 6256 r = -EINVAL; 6257 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6258 break; 6259 fallthrough; 6260 case KVM_CAP_DISABLE_QUIRKS: 6261 kvm->arch.disabled_quirks = cap->args[0]; 6262 r = 0; 6263 break; 6264 case KVM_CAP_SPLIT_IRQCHIP: { 6265 mutex_lock(&kvm->lock); 6266 r = -EINVAL; 6267 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6268 goto split_irqchip_unlock; 6269 r = -EEXIST; 6270 if (irqchip_in_kernel(kvm)) 6271 goto split_irqchip_unlock; 6272 if (kvm->created_vcpus) 6273 goto split_irqchip_unlock; 6274 r = kvm_setup_empty_irq_routing(kvm); 6275 if (r) 6276 goto split_irqchip_unlock; 6277 /* Pairs with irqchip_in_kernel. */ 6278 smp_wmb(); 6279 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6280 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6281 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6282 r = 0; 6283 split_irqchip_unlock: 6284 mutex_unlock(&kvm->lock); 6285 break; 6286 } 6287 case KVM_CAP_X2APIC_API: 6288 r = -EINVAL; 6289 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6290 break; 6291 6292 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6293 kvm->arch.x2apic_format = true; 6294 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6295 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6296 6297 r = 0; 6298 break; 6299 case KVM_CAP_X86_DISABLE_EXITS: 6300 r = -EINVAL; 6301 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6302 break; 6303 6304 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6305 kvm->arch.pause_in_guest = true; 6306 6307 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6308 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6309 6310 if (!mitigate_smt_rsb) { 6311 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6312 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6313 pr_warn_once(SMT_RSB_MSG); 6314 6315 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6316 kvm_can_mwait_in_guest()) 6317 kvm->arch.mwait_in_guest = true; 6318 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6319 kvm->arch.hlt_in_guest = true; 6320 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6321 kvm->arch.cstate_in_guest = true; 6322 } 6323 6324 r = 0; 6325 break; 6326 case KVM_CAP_MSR_PLATFORM_INFO: 6327 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6328 r = 0; 6329 break; 6330 case KVM_CAP_EXCEPTION_PAYLOAD: 6331 kvm->arch.exception_payload_enabled = cap->args[0]; 6332 r = 0; 6333 break; 6334 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6335 kvm->arch.triple_fault_event = cap->args[0]; 6336 r = 0; 6337 break; 6338 case KVM_CAP_X86_USER_SPACE_MSR: 6339 r = -EINVAL; 6340 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6341 break; 6342 kvm->arch.user_space_msr_mask = cap->args[0]; 6343 r = 0; 6344 break; 6345 case KVM_CAP_X86_BUS_LOCK_EXIT: 6346 r = -EINVAL; 6347 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6348 break; 6349 6350 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6351 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6352 break; 6353 6354 if (kvm_caps.has_bus_lock_exit && 6355 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6356 kvm->arch.bus_lock_detection_enabled = true; 6357 r = 0; 6358 break; 6359 #ifdef CONFIG_X86_SGX_KVM 6360 case KVM_CAP_SGX_ATTRIBUTE: { 6361 unsigned long allowed_attributes = 0; 6362 6363 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6364 if (r) 6365 break; 6366 6367 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6368 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6369 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6370 kvm->arch.sgx_provisioning_allowed = true; 6371 else 6372 r = -EINVAL; 6373 break; 6374 } 6375 #endif 6376 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6377 r = -EINVAL; 6378 if (!kvm_x86_ops.vm_copy_enc_context_from) 6379 break; 6380 6381 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6382 break; 6383 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6384 r = -EINVAL; 6385 if (!kvm_x86_ops.vm_move_enc_context_from) 6386 break; 6387 6388 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6389 break; 6390 case KVM_CAP_EXIT_HYPERCALL: 6391 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6392 r = -EINVAL; 6393 break; 6394 } 6395 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6396 r = 0; 6397 break; 6398 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6399 r = -EINVAL; 6400 if (cap->args[0] & ~1) 6401 break; 6402 kvm->arch.exit_on_emulation_error = cap->args[0]; 6403 r = 0; 6404 break; 6405 case KVM_CAP_PMU_CAPABILITY: 6406 r = -EINVAL; 6407 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6408 break; 6409 6410 mutex_lock(&kvm->lock); 6411 if (!kvm->created_vcpus) { 6412 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6413 r = 0; 6414 } 6415 mutex_unlock(&kvm->lock); 6416 break; 6417 case KVM_CAP_MAX_VCPU_ID: 6418 r = -EINVAL; 6419 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6420 break; 6421 6422 mutex_lock(&kvm->lock); 6423 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6424 r = 0; 6425 } else if (!kvm->arch.max_vcpu_ids) { 6426 kvm->arch.max_vcpu_ids = cap->args[0]; 6427 r = 0; 6428 } 6429 mutex_unlock(&kvm->lock); 6430 break; 6431 case KVM_CAP_X86_NOTIFY_VMEXIT: 6432 r = -EINVAL; 6433 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6434 break; 6435 if (!kvm_caps.has_notify_vmexit) 6436 break; 6437 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6438 break; 6439 mutex_lock(&kvm->lock); 6440 if (!kvm->created_vcpus) { 6441 kvm->arch.notify_window = cap->args[0] >> 32; 6442 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6443 r = 0; 6444 } 6445 mutex_unlock(&kvm->lock); 6446 break; 6447 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6448 r = -EINVAL; 6449 6450 /* 6451 * Since the risk of disabling NX hugepages is a guest crashing 6452 * the system, ensure the userspace process has permission to 6453 * reboot the system. 6454 * 6455 * Note that unlike the reboot() syscall, the process must have 6456 * this capability in the root namespace because exposing 6457 * /dev/kvm into a container does not limit the scope of the 6458 * iTLB multihit bug to that container. In other words, 6459 * this must use capable(), not ns_capable(). 6460 */ 6461 if (!capable(CAP_SYS_BOOT)) { 6462 r = -EPERM; 6463 break; 6464 } 6465 6466 if (cap->args[0]) 6467 break; 6468 6469 mutex_lock(&kvm->lock); 6470 if (!kvm->created_vcpus) { 6471 kvm->arch.disable_nx_huge_pages = true; 6472 r = 0; 6473 } 6474 mutex_unlock(&kvm->lock); 6475 break; 6476 default: 6477 r = -EINVAL; 6478 break; 6479 } 6480 return r; 6481 } 6482 6483 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6484 { 6485 struct kvm_x86_msr_filter *msr_filter; 6486 6487 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6488 if (!msr_filter) 6489 return NULL; 6490 6491 msr_filter->default_allow = default_allow; 6492 return msr_filter; 6493 } 6494 6495 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6496 { 6497 u32 i; 6498 6499 if (!msr_filter) 6500 return; 6501 6502 for (i = 0; i < msr_filter->count; i++) 6503 kfree(msr_filter->ranges[i].bitmap); 6504 6505 kfree(msr_filter); 6506 } 6507 6508 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6509 struct kvm_msr_filter_range *user_range) 6510 { 6511 unsigned long *bitmap = NULL; 6512 size_t bitmap_size; 6513 6514 if (!user_range->nmsrs) 6515 return 0; 6516 6517 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6518 return -EINVAL; 6519 6520 if (!user_range->flags) 6521 return -EINVAL; 6522 6523 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6524 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6525 return -EINVAL; 6526 6527 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6528 if (IS_ERR(bitmap)) 6529 return PTR_ERR(bitmap); 6530 6531 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6532 .flags = user_range->flags, 6533 .base = user_range->base, 6534 .nmsrs = user_range->nmsrs, 6535 .bitmap = bitmap, 6536 }; 6537 6538 msr_filter->count++; 6539 return 0; 6540 } 6541 6542 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6543 struct kvm_msr_filter *filter) 6544 { 6545 struct kvm_x86_msr_filter *new_filter, *old_filter; 6546 bool default_allow; 6547 bool empty = true; 6548 int r; 6549 u32 i; 6550 6551 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6552 return -EINVAL; 6553 6554 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6555 empty &= !filter->ranges[i].nmsrs; 6556 6557 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6558 if (empty && !default_allow) 6559 return -EINVAL; 6560 6561 new_filter = kvm_alloc_msr_filter(default_allow); 6562 if (!new_filter) 6563 return -ENOMEM; 6564 6565 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6566 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6567 if (r) { 6568 kvm_free_msr_filter(new_filter); 6569 return r; 6570 } 6571 } 6572 6573 mutex_lock(&kvm->lock); 6574 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6575 mutex_is_locked(&kvm->lock)); 6576 mutex_unlock(&kvm->lock); 6577 synchronize_srcu(&kvm->srcu); 6578 6579 kvm_free_msr_filter(old_filter); 6580 6581 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6582 6583 return 0; 6584 } 6585 6586 #ifdef CONFIG_KVM_COMPAT 6587 /* for KVM_X86_SET_MSR_FILTER */ 6588 struct kvm_msr_filter_range_compat { 6589 __u32 flags; 6590 __u32 nmsrs; 6591 __u32 base; 6592 __u32 bitmap; 6593 }; 6594 6595 struct kvm_msr_filter_compat { 6596 __u32 flags; 6597 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6598 }; 6599 6600 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6601 6602 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6603 unsigned long arg) 6604 { 6605 void __user *argp = (void __user *)arg; 6606 struct kvm *kvm = filp->private_data; 6607 long r = -ENOTTY; 6608 6609 switch (ioctl) { 6610 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6611 struct kvm_msr_filter __user *user_msr_filter = argp; 6612 struct kvm_msr_filter_compat filter_compat; 6613 struct kvm_msr_filter filter; 6614 int i; 6615 6616 if (copy_from_user(&filter_compat, user_msr_filter, 6617 sizeof(filter_compat))) 6618 return -EFAULT; 6619 6620 filter.flags = filter_compat.flags; 6621 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6622 struct kvm_msr_filter_range_compat *cr; 6623 6624 cr = &filter_compat.ranges[i]; 6625 filter.ranges[i] = (struct kvm_msr_filter_range) { 6626 .flags = cr->flags, 6627 .nmsrs = cr->nmsrs, 6628 .base = cr->base, 6629 .bitmap = (__u8 *)(ulong)cr->bitmap, 6630 }; 6631 } 6632 6633 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6634 break; 6635 } 6636 } 6637 6638 return r; 6639 } 6640 #endif 6641 6642 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6643 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6644 { 6645 struct kvm_vcpu *vcpu; 6646 unsigned long i; 6647 int ret = 0; 6648 6649 mutex_lock(&kvm->lock); 6650 kvm_for_each_vcpu(i, vcpu, kvm) { 6651 if (!vcpu->arch.pv_time.active) 6652 continue; 6653 6654 ret = kvm_set_guest_paused(vcpu); 6655 if (ret) { 6656 kvm_err("Failed to pause guest VCPU%d: %d\n", 6657 vcpu->vcpu_id, ret); 6658 break; 6659 } 6660 } 6661 mutex_unlock(&kvm->lock); 6662 6663 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6664 } 6665 6666 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6667 { 6668 switch (state) { 6669 case PM_HIBERNATION_PREPARE: 6670 case PM_SUSPEND_PREPARE: 6671 return kvm_arch_suspend_notifier(kvm); 6672 } 6673 6674 return NOTIFY_DONE; 6675 } 6676 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6677 6678 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6679 { 6680 struct kvm_clock_data data = { 0 }; 6681 6682 get_kvmclock(kvm, &data); 6683 if (copy_to_user(argp, &data, sizeof(data))) 6684 return -EFAULT; 6685 6686 return 0; 6687 } 6688 6689 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6690 { 6691 struct kvm_arch *ka = &kvm->arch; 6692 struct kvm_clock_data data; 6693 u64 now_raw_ns; 6694 6695 if (copy_from_user(&data, argp, sizeof(data))) 6696 return -EFAULT; 6697 6698 /* 6699 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6700 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6701 */ 6702 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6703 return -EINVAL; 6704 6705 kvm_hv_request_tsc_page_update(kvm); 6706 kvm_start_pvclock_update(kvm); 6707 pvclock_update_vm_gtod_copy(kvm); 6708 6709 /* 6710 * This pairs with kvm_guest_time_update(): when masterclock is 6711 * in use, we use master_kernel_ns + kvmclock_offset to set 6712 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6713 * is slightly ahead) here we risk going negative on unsigned 6714 * 'system_time' when 'data.clock' is very small. 6715 */ 6716 if (data.flags & KVM_CLOCK_REALTIME) { 6717 u64 now_real_ns = ktime_get_real_ns(); 6718 6719 /* 6720 * Avoid stepping the kvmclock backwards. 6721 */ 6722 if (now_real_ns > data.realtime) 6723 data.clock += now_real_ns - data.realtime; 6724 } 6725 6726 if (ka->use_master_clock) 6727 now_raw_ns = ka->master_kernel_ns; 6728 else 6729 now_raw_ns = get_kvmclock_base_ns(); 6730 ka->kvmclock_offset = data.clock - now_raw_ns; 6731 kvm_end_pvclock_update(kvm); 6732 return 0; 6733 } 6734 6735 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6736 { 6737 struct kvm *kvm = filp->private_data; 6738 void __user *argp = (void __user *)arg; 6739 int r = -ENOTTY; 6740 /* 6741 * This union makes it completely explicit to gcc-3.x 6742 * that these two variables' stack usage should be 6743 * combined, not added together. 6744 */ 6745 union { 6746 struct kvm_pit_state ps; 6747 struct kvm_pit_state2 ps2; 6748 struct kvm_pit_config pit_config; 6749 } u; 6750 6751 switch (ioctl) { 6752 case KVM_SET_TSS_ADDR: 6753 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6754 break; 6755 case KVM_SET_IDENTITY_MAP_ADDR: { 6756 u64 ident_addr; 6757 6758 mutex_lock(&kvm->lock); 6759 r = -EINVAL; 6760 if (kvm->created_vcpus) 6761 goto set_identity_unlock; 6762 r = -EFAULT; 6763 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6764 goto set_identity_unlock; 6765 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6766 set_identity_unlock: 6767 mutex_unlock(&kvm->lock); 6768 break; 6769 } 6770 case KVM_SET_NR_MMU_PAGES: 6771 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6772 break; 6773 case KVM_CREATE_IRQCHIP: { 6774 mutex_lock(&kvm->lock); 6775 6776 r = -EEXIST; 6777 if (irqchip_in_kernel(kvm)) 6778 goto create_irqchip_unlock; 6779 6780 r = -EINVAL; 6781 if (kvm->created_vcpus) 6782 goto create_irqchip_unlock; 6783 6784 r = kvm_pic_init(kvm); 6785 if (r) 6786 goto create_irqchip_unlock; 6787 6788 r = kvm_ioapic_init(kvm); 6789 if (r) { 6790 kvm_pic_destroy(kvm); 6791 goto create_irqchip_unlock; 6792 } 6793 6794 r = kvm_setup_default_irq_routing(kvm); 6795 if (r) { 6796 kvm_ioapic_destroy(kvm); 6797 kvm_pic_destroy(kvm); 6798 goto create_irqchip_unlock; 6799 } 6800 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6801 smp_wmb(); 6802 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6803 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6804 create_irqchip_unlock: 6805 mutex_unlock(&kvm->lock); 6806 break; 6807 } 6808 case KVM_CREATE_PIT: 6809 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6810 goto create_pit; 6811 case KVM_CREATE_PIT2: 6812 r = -EFAULT; 6813 if (copy_from_user(&u.pit_config, argp, 6814 sizeof(struct kvm_pit_config))) 6815 goto out; 6816 create_pit: 6817 mutex_lock(&kvm->lock); 6818 r = -EEXIST; 6819 if (kvm->arch.vpit) 6820 goto create_pit_unlock; 6821 r = -ENOMEM; 6822 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6823 if (kvm->arch.vpit) 6824 r = 0; 6825 create_pit_unlock: 6826 mutex_unlock(&kvm->lock); 6827 break; 6828 case KVM_GET_IRQCHIP: { 6829 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6830 struct kvm_irqchip *chip; 6831 6832 chip = memdup_user(argp, sizeof(*chip)); 6833 if (IS_ERR(chip)) { 6834 r = PTR_ERR(chip); 6835 goto out; 6836 } 6837 6838 r = -ENXIO; 6839 if (!irqchip_kernel(kvm)) 6840 goto get_irqchip_out; 6841 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6842 if (r) 6843 goto get_irqchip_out; 6844 r = -EFAULT; 6845 if (copy_to_user(argp, chip, sizeof(*chip))) 6846 goto get_irqchip_out; 6847 r = 0; 6848 get_irqchip_out: 6849 kfree(chip); 6850 break; 6851 } 6852 case KVM_SET_IRQCHIP: { 6853 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6854 struct kvm_irqchip *chip; 6855 6856 chip = memdup_user(argp, sizeof(*chip)); 6857 if (IS_ERR(chip)) { 6858 r = PTR_ERR(chip); 6859 goto out; 6860 } 6861 6862 r = -ENXIO; 6863 if (!irqchip_kernel(kvm)) 6864 goto set_irqchip_out; 6865 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6866 set_irqchip_out: 6867 kfree(chip); 6868 break; 6869 } 6870 case KVM_GET_PIT: { 6871 r = -EFAULT; 6872 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6873 goto out; 6874 r = -ENXIO; 6875 if (!kvm->arch.vpit) 6876 goto out; 6877 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6878 if (r) 6879 goto out; 6880 r = -EFAULT; 6881 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6882 goto out; 6883 r = 0; 6884 break; 6885 } 6886 case KVM_SET_PIT: { 6887 r = -EFAULT; 6888 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6889 goto out; 6890 mutex_lock(&kvm->lock); 6891 r = -ENXIO; 6892 if (!kvm->arch.vpit) 6893 goto set_pit_out; 6894 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6895 set_pit_out: 6896 mutex_unlock(&kvm->lock); 6897 break; 6898 } 6899 case KVM_GET_PIT2: { 6900 r = -ENXIO; 6901 if (!kvm->arch.vpit) 6902 goto out; 6903 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6904 if (r) 6905 goto out; 6906 r = -EFAULT; 6907 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6908 goto out; 6909 r = 0; 6910 break; 6911 } 6912 case KVM_SET_PIT2: { 6913 r = -EFAULT; 6914 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6915 goto out; 6916 mutex_lock(&kvm->lock); 6917 r = -ENXIO; 6918 if (!kvm->arch.vpit) 6919 goto set_pit2_out; 6920 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6921 set_pit2_out: 6922 mutex_unlock(&kvm->lock); 6923 break; 6924 } 6925 case KVM_REINJECT_CONTROL: { 6926 struct kvm_reinject_control control; 6927 r = -EFAULT; 6928 if (copy_from_user(&control, argp, sizeof(control))) 6929 goto out; 6930 r = -ENXIO; 6931 if (!kvm->arch.vpit) 6932 goto out; 6933 r = kvm_vm_ioctl_reinject(kvm, &control); 6934 break; 6935 } 6936 case KVM_SET_BOOT_CPU_ID: 6937 r = 0; 6938 mutex_lock(&kvm->lock); 6939 if (kvm->created_vcpus) 6940 r = -EBUSY; 6941 else 6942 kvm->arch.bsp_vcpu_id = arg; 6943 mutex_unlock(&kvm->lock); 6944 break; 6945 #ifdef CONFIG_KVM_XEN 6946 case KVM_XEN_HVM_CONFIG: { 6947 struct kvm_xen_hvm_config xhc; 6948 r = -EFAULT; 6949 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6950 goto out; 6951 r = kvm_xen_hvm_config(kvm, &xhc); 6952 break; 6953 } 6954 case KVM_XEN_HVM_GET_ATTR: { 6955 struct kvm_xen_hvm_attr xha; 6956 6957 r = -EFAULT; 6958 if (copy_from_user(&xha, argp, sizeof(xha))) 6959 goto out; 6960 r = kvm_xen_hvm_get_attr(kvm, &xha); 6961 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6962 r = -EFAULT; 6963 break; 6964 } 6965 case KVM_XEN_HVM_SET_ATTR: { 6966 struct kvm_xen_hvm_attr xha; 6967 6968 r = -EFAULT; 6969 if (copy_from_user(&xha, argp, sizeof(xha))) 6970 goto out; 6971 r = kvm_xen_hvm_set_attr(kvm, &xha); 6972 break; 6973 } 6974 case KVM_XEN_HVM_EVTCHN_SEND: { 6975 struct kvm_irq_routing_xen_evtchn uxe; 6976 6977 r = -EFAULT; 6978 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6979 goto out; 6980 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6981 break; 6982 } 6983 #endif 6984 case KVM_SET_CLOCK: 6985 r = kvm_vm_ioctl_set_clock(kvm, argp); 6986 break; 6987 case KVM_GET_CLOCK: 6988 r = kvm_vm_ioctl_get_clock(kvm, argp); 6989 break; 6990 case KVM_SET_TSC_KHZ: { 6991 u32 user_tsc_khz; 6992 6993 r = -EINVAL; 6994 user_tsc_khz = (u32)arg; 6995 6996 if (kvm_caps.has_tsc_control && 6997 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6998 goto out; 6999 7000 if (user_tsc_khz == 0) 7001 user_tsc_khz = tsc_khz; 7002 7003 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7004 r = 0; 7005 7006 goto out; 7007 } 7008 case KVM_GET_TSC_KHZ: { 7009 r = READ_ONCE(kvm->arch.default_tsc_khz); 7010 goto out; 7011 } 7012 case KVM_MEMORY_ENCRYPT_OP: { 7013 r = -ENOTTY; 7014 if (!kvm_x86_ops.mem_enc_ioctl) 7015 goto out; 7016 7017 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7018 break; 7019 } 7020 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7021 struct kvm_enc_region region; 7022 7023 r = -EFAULT; 7024 if (copy_from_user(®ion, argp, sizeof(region))) 7025 goto out; 7026 7027 r = -ENOTTY; 7028 if (!kvm_x86_ops.mem_enc_register_region) 7029 goto out; 7030 7031 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7032 break; 7033 } 7034 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7035 struct kvm_enc_region region; 7036 7037 r = -EFAULT; 7038 if (copy_from_user(®ion, argp, sizeof(region))) 7039 goto out; 7040 7041 r = -ENOTTY; 7042 if (!kvm_x86_ops.mem_enc_unregister_region) 7043 goto out; 7044 7045 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7046 break; 7047 } 7048 case KVM_HYPERV_EVENTFD: { 7049 struct kvm_hyperv_eventfd hvevfd; 7050 7051 r = -EFAULT; 7052 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7053 goto out; 7054 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7055 break; 7056 } 7057 case KVM_SET_PMU_EVENT_FILTER: 7058 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7059 break; 7060 case KVM_X86_SET_MSR_FILTER: { 7061 struct kvm_msr_filter __user *user_msr_filter = argp; 7062 struct kvm_msr_filter filter; 7063 7064 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7065 return -EFAULT; 7066 7067 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7068 break; 7069 } 7070 default: 7071 r = -ENOTTY; 7072 } 7073 out: 7074 return r; 7075 } 7076 7077 static void kvm_probe_feature_msr(u32 msr_index) 7078 { 7079 struct kvm_msr_entry msr = { 7080 .index = msr_index, 7081 }; 7082 7083 if (kvm_get_msr_feature(&msr)) 7084 return; 7085 7086 msr_based_features[num_msr_based_features++] = msr_index; 7087 } 7088 7089 static void kvm_probe_msr_to_save(u32 msr_index) 7090 { 7091 u32 dummy[2]; 7092 7093 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7094 return; 7095 7096 /* 7097 * Even MSRs that are valid in the host may not be exposed to guests in 7098 * some cases. 7099 */ 7100 switch (msr_index) { 7101 case MSR_IA32_BNDCFGS: 7102 if (!kvm_mpx_supported()) 7103 return; 7104 break; 7105 case MSR_TSC_AUX: 7106 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7107 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7108 return; 7109 break; 7110 case MSR_IA32_UMWAIT_CONTROL: 7111 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7112 return; 7113 break; 7114 case MSR_IA32_RTIT_CTL: 7115 case MSR_IA32_RTIT_STATUS: 7116 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7117 return; 7118 break; 7119 case MSR_IA32_RTIT_CR3_MATCH: 7120 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7121 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7122 return; 7123 break; 7124 case MSR_IA32_RTIT_OUTPUT_BASE: 7125 case MSR_IA32_RTIT_OUTPUT_MASK: 7126 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7127 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7128 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7129 return; 7130 break; 7131 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7132 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7133 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7134 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7135 return; 7136 break; 7137 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7138 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7139 kvm_pmu_cap.num_counters_gp) 7140 return; 7141 break; 7142 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7143 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7144 kvm_pmu_cap.num_counters_gp) 7145 return; 7146 break; 7147 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7148 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7149 kvm_pmu_cap.num_counters_fixed) 7150 return; 7151 break; 7152 case MSR_IA32_XFD: 7153 case MSR_IA32_XFD_ERR: 7154 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7155 return; 7156 break; 7157 case MSR_IA32_TSX_CTRL: 7158 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7159 return; 7160 break; 7161 default: 7162 break; 7163 } 7164 7165 msrs_to_save[num_msrs_to_save++] = msr_index; 7166 } 7167 7168 static void kvm_init_msr_lists(void) 7169 { 7170 unsigned i; 7171 7172 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7173 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7174 7175 num_msrs_to_save = 0; 7176 num_emulated_msrs = 0; 7177 num_msr_based_features = 0; 7178 7179 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7180 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7181 7182 if (enable_pmu) { 7183 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7184 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7185 } 7186 7187 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7188 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7189 continue; 7190 7191 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7192 } 7193 7194 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7195 kvm_probe_feature_msr(i); 7196 7197 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7198 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7199 } 7200 7201 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7202 const void *v) 7203 { 7204 int handled = 0; 7205 int n; 7206 7207 do { 7208 n = min(len, 8); 7209 if (!(lapic_in_kernel(vcpu) && 7210 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7211 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7212 break; 7213 handled += n; 7214 addr += n; 7215 len -= n; 7216 v += n; 7217 } while (len); 7218 7219 return handled; 7220 } 7221 7222 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7223 { 7224 int handled = 0; 7225 int n; 7226 7227 do { 7228 n = min(len, 8); 7229 if (!(lapic_in_kernel(vcpu) && 7230 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7231 addr, n, v)) 7232 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7233 break; 7234 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7235 handled += n; 7236 addr += n; 7237 len -= n; 7238 v += n; 7239 } while (len); 7240 7241 return handled; 7242 } 7243 7244 void kvm_set_segment(struct kvm_vcpu *vcpu, 7245 struct kvm_segment *var, int seg) 7246 { 7247 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7248 } 7249 7250 void kvm_get_segment(struct kvm_vcpu *vcpu, 7251 struct kvm_segment *var, int seg) 7252 { 7253 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7254 } 7255 7256 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7257 struct x86_exception *exception) 7258 { 7259 struct kvm_mmu *mmu = vcpu->arch.mmu; 7260 gpa_t t_gpa; 7261 7262 BUG_ON(!mmu_is_nested(vcpu)); 7263 7264 /* NPT walks are always user-walks */ 7265 access |= PFERR_USER_MASK; 7266 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7267 7268 return t_gpa; 7269 } 7270 7271 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7272 struct x86_exception *exception) 7273 { 7274 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7275 7276 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7277 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7278 } 7279 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7280 7281 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7282 struct x86_exception *exception) 7283 { 7284 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7285 7286 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7287 access |= PFERR_WRITE_MASK; 7288 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7289 } 7290 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7291 7292 /* uses this to access any guest's mapped memory without checking CPL */ 7293 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7294 struct x86_exception *exception) 7295 { 7296 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7297 7298 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7299 } 7300 7301 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7302 struct kvm_vcpu *vcpu, u64 access, 7303 struct x86_exception *exception) 7304 { 7305 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7306 void *data = val; 7307 int r = X86EMUL_CONTINUE; 7308 7309 while (bytes) { 7310 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7311 unsigned offset = addr & (PAGE_SIZE-1); 7312 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7313 int ret; 7314 7315 if (gpa == INVALID_GPA) 7316 return X86EMUL_PROPAGATE_FAULT; 7317 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7318 offset, toread); 7319 if (ret < 0) { 7320 r = X86EMUL_IO_NEEDED; 7321 goto out; 7322 } 7323 7324 bytes -= toread; 7325 data += toread; 7326 addr += toread; 7327 } 7328 out: 7329 return r; 7330 } 7331 7332 /* used for instruction fetching */ 7333 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7334 gva_t addr, void *val, unsigned int bytes, 7335 struct x86_exception *exception) 7336 { 7337 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7338 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7339 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7340 unsigned offset; 7341 int ret; 7342 7343 /* Inline kvm_read_guest_virt_helper for speed. */ 7344 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7345 exception); 7346 if (unlikely(gpa == INVALID_GPA)) 7347 return X86EMUL_PROPAGATE_FAULT; 7348 7349 offset = addr & (PAGE_SIZE-1); 7350 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7351 bytes = (unsigned)PAGE_SIZE - offset; 7352 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7353 offset, bytes); 7354 if (unlikely(ret < 0)) 7355 return X86EMUL_IO_NEEDED; 7356 7357 return X86EMUL_CONTINUE; 7358 } 7359 7360 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7361 gva_t addr, void *val, unsigned int bytes, 7362 struct x86_exception *exception) 7363 { 7364 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7365 7366 /* 7367 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7368 * is returned, but our callers are not ready for that and they blindly 7369 * call kvm_inject_page_fault. Ensure that they at least do not leak 7370 * uninitialized kernel stack memory into cr2 and error code. 7371 */ 7372 memset(exception, 0, sizeof(*exception)); 7373 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7374 exception); 7375 } 7376 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7377 7378 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7379 gva_t addr, void *val, unsigned int bytes, 7380 struct x86_exception *exception, bool system) 7381 { 7382 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7383 u64 access = 0; 7384 7385 if (system) 7386 access |= PFERR_IMPLICIT_ACCESS; 7387 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7388 access |= PFERR_USER_MASK; 7389 7390 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7391 } 7392 7393 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7394 struct kvm_vcpu *vcpu, u64 access, 7395 struct x86_exception *exception) 7396 { 7397 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7398 void *data = val; 7399 int r = X86EMUL_CONTINUE; 7400 7401 while (bytes) { 7402 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7403 unsigned offset = addr & (PAGE_SIZE-1); 7404 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7405 int ret; 7406 7407 if (gpa == INVALID_GPA) 7408 return X86EMUL_PROPAGATE_FAULT; 7409 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7410 if (ret < 0) { 7411 r = X86EMUL_IO_NEEDED; 7412 goto out; 7413 } 7414 7415 bytes -= towrite; 7416 data += towrite; 7417 addr += towrite; 7418 } 7419 out: 7420 return r; 7421 } 7422 7423 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7424 unsigned int bytes, struct x86_exception *exception, 7425 bool system) 7426 { 7427 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7428 u64 access = PFERR_WRITE_MASK; 7429 7430 if (system) 7431 access |= PFERR_IMPLICIT_ACCESS; 7432 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7433 access |= PFERR_USER_MASK; 7434 7435 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7436 access, exception); 7437 } 7438 7439 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7440 unsigned int bytes, struct x86_exception *exception) 7441 { 7442 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7443 vcpu->arch.l1tf_flush_l1d = true; 7444 7445 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7446 PFERR_WRITE_MASK, exception); 7447 } 7448 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7449 7450 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7451 void *insn, int insn_len) 7452 { 7453 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7454 insn, insn_len); 7455 } 7456 7457 int handle_ud(struct kvm_vcpu *vcpu) 7458 { 7459 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7460 int fep_flags = READ_ONCE(force_emulation_prefix); 7461 int emul_type = EMULTYPE_TRAP_UD; 7462 char sig[5]; /* ud2; .ascii "kvm" */ 7463 struct x86_exception e; 7464 7465 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7466 return 1; 7467 7468 if (fep_flags && 7469 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7470 sig, sizeof(sig), &e) == 0 && 7471 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7472 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7473 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7474 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7475 emul_type = EMULTYPE_TRAP_UD_FORCED; 7476 } 7477 7478 return kvm_emulate_instruction(vcpu, emul_type); 7479 } 7480 EXPORT_SYMBOL_GPL(handle_ud); 7481 7482 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7483 gpa_t gpa, bool write) 7484 { 7485 /* For APIC access vmexit */ 7486 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7487 return 1; 7488 7489 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7490 trace_vcpu_match_mmio(gva, gpa, write, true); 7491 return 1; 7492 } 7493 7494 return 0; 7495 } 7496 7497 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7498 gpa_t *gpa, struct x86_exception *exception, 7499 bool write) 7500 { 7501 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7502 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7503 | (write ? PFERR_WRITE_MASK : 0); 7504 7505 /* 7506 * currently PKRU is only applied to ept enabled guest so 7507 * there is no pkey in EPT page table for L1 guest or EPT 7508 * shadow page table for L2 guest. 7509 */ 7510 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7511 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7512 vcpu->arch.mmio_access, 0, access))) { 7513 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7514 (gva & (PAGE_SIZE - 1)); 7515 trace_vcpu_match_mmio(gva, *gpa, write, false); 7516 return 1; 7517 } 7518 7519 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7520 7521 if (*gpa == INVALID_GPA) 7522 return -1; 7523 7524 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7525 } 7526 7527 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7528 const void *val, int bytes) 7529 { 7530 int ret; 7531 7532 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7533 if (ret < 0) 7534 return 0; 7535 kvm_page_track_write(vcpu, gpa, val, bytes); 7536 return 1; 7537 } 7538 7539 struct read_write_emulator_ops { 7540 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7541 int bytes); 7542 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7543 void *val, int bytes); 7544 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7545 int bytes, void *val); 7546 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7547 void *val, int bytes); 7548 bool write; 7549 }; 7550 7551 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7552 { 7553 if (vcpu->mmio_read_completed) { 7554 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7555 vcpu->mmio_fragments[0].gpa, val); 7556 vcpu->mmio_read_completed = 0; 7557 return 1; 7558 } 7559 7560 return 0; 7561 } 7562 7563 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7564 void *val, int bytes) 7565 { 7566 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7567 } 7568 7569 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7570 void *val, int bytes) 7571 { 7572 return emulator_write_phys(vcpu, gpa, val, bytes); 7573 } 7574 7575 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7576 { 7577 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7578 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7579 } 7580 7581 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7582 void *val, int bytes) 7583 { 7584 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7585 return X86EMUL_IO_NEEDED; 7586 } 7587 7588 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7589 void *val, int bytes) 7590 { 7591 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7592 7593 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7594 return X86EMUL_CONTINUE; 7595 } 7596 7597 static const struct read_write_emulator_ops read_emultor = { 7598 .read_write_prepare = read_prepare, 7599 .read_write_emulate = read_emulate, 7600 .read_write_mmio = vcpu_mmio_read, 7601 .read_write_exit_mmio = read_exit_mmio, 7602 }; 7603 7604 static const struct read_write_emulator_ops write_emultor = { 7605 .read_write_emulate = write_emulate, 7606 .read_write_mmio = write_mmio, 7607 .read_write_exit_mmio = write_exit_mmio, 7608 .write = true, 7609 }; 7610 7611 static int emulator_read_write_onepage(unsigned long addr, void *val, 7612 unsigned int bytes, 7613 struct x86_exception *exception, 7614 struct kvm_vcpu *vcpu, 7615 const struct read_write_emulator_ops *ops) 7616 { 7617 gpa_t gpa; 7618 int handled, ret; 7619 bool write = ops->write; 7620 struct kvm_mmio_fragment *frag; 7621 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7622 7623 /* 7624 * If the exit was due to a NPF we may already have a GPA. 7625 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7626 * Note, this cannot be used on string operations since string 7627 * operation using rep will only have the initial GPA from the NPF 7628 * occurred. 7629 */ 7630 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7631 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7632 gpa = ctxt->gpa_val; 7633 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7634 } else { 7635 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7636 if (ret < 0) 7637 return X86EMUL_PROPAGATE_FAULT; 7638 } 7639 7640 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7641 return X86EMUL_CONTINUE; 7642 7643 /* 7644 * Is this MMIO handled locally? 7645 */ 7646 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7647 if (handled == bytes) 7648 return X86EMUL_CONTINUE; 7649 7650 gpa += handled; 7651 bytes -= handled; 7652 val += handled; 7653 7654 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7655 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7656 frag->gpa = gpa; 7657 frag->data = val; 7658 frag->len = bytes; 7659 return X86EMUL_CONTINUE; 7660 } 7661 7662 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7663 unsigned long addr, 7664 void *val, unsigned int bytes, 7665 struct x86_exception *exception, 7666 const struct read_write_emulator_ops *ops) 7667 { 7668 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7669 gpa_t gpa; 7670 int rc; 7671 7672 if (ops->read_write_prepare && 7673 ops->read_write_prepare(vcpu, val, bytes)) 7674 return X86EMUL_CONTINUE; 7675 7676 vcpu->mmio_nr_fragments = 0; 7677 7678 /* Crossing a page boundary? */ 7679 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7680 int now; 7681 7682 now = -addr & ~PAGE_MASK; 7683 rc = emulator_read_write_onepage(addr, val, now, exception, 7684 vcpu, ops); 7685 7686 if (rc != X86EMUL_CONTINUE) 7687 return rc; 7688 addr += now; 7689 if (ctxt->mode != X86EMUL_MODE_PROT64) 7690 addr = (u32)addr; 7691 val += now; 7692 bytes -= now; 7693 } 7694 7695 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7696 vcpu, ops); 7697 if (rc != X86EMUL_CONTINUE) 7698 return rc; 7699 7700 if (!vcpu->mmio_nr_fragments) 7701 return rc; 7702 7703 gpa = vcpu->mmio_fragments[0].gpa; 7704 7705 vcpu->mmio_needed = 1; 7706 vcpu->mmio_cur_fragment = 0; 7707 7708 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7709 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7710 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7711 vcpu->run->mmio.phys_addr = gpa; 7712 7713 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7714 } 7715 7716 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7717 unsigned long addr, 7718 void *val, 7719 unsigned int bytes, 7720 struct x86_exception *exception) 7721 { 7722 return emulator_read_write(ctxt, addr, val, bytes, 7723 exception, &read_emultor); 7724 } 7725 7726 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7727 unsigned long addr, 7728 const void *val, 7729 unsigned int bytes, 7730 struct x86_exception *exception) 7731 { 7732 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7733 exception, &write_emultor); 7734 } 7735 7736 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7737 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7738 7739 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7740 unsigned long addr, 7741 const void *old, 7742 const void *new, 7743 unsigned int bytes, 7744 struct x86_exception *exception) 7745 { 7746 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7747 u64 page_line_mask; 7748 unsigned long hva; 7749 gpa_t gpa; 7750 int r; 7751 7752 /* guests cmpxchg8b have to be emulated atomically */ 7753 if (bytes > 8 || (bytes & (bytes - 1))) 7754 goto emul_write; 7755 7756 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7757 7758 if (gpa == INVALID_GPA || 7759 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7760 goto emul_write; 7761 7762 /* 7763 * Emulate the atomic as a straight write to avoid #AC if SLD is 7764 * enabled in the host and the access splits a cache line. 7765 */ 7766 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7767 page_line_mask = ~(cache_line_size() - 1); 7768 else 7769 page_line_mask = PAGE_MASK; 7770 7771 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7772 goto emul_write; 7773 7774 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7775 if (kvm_is_error_hva(hva)) 7776 goto emul_write; 7777 7778 hva += offset_in_page(gpa); 7779 7780 switch (bytes) { 7781 case 1: 7782 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7783 break; 7784 case 2: 7785 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7786 break; 7787 case 4: 7788 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7789 break; 7790 case 8: 7791 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7792 break; 7793 default: 7794 BUG(); 7795 } 7796 7797 if (r < 0) 7798 return X86EMUL_UNHANDLEABLE; 7799 if (r) 7800 return X86EMUL_CMPXCHG_FAILED; 7801 7802 kvm_page_track_write(vcpu, gpa, new, bytes); 7803 7804 return X86EMUL_CONTINUE; 7805 7806 emul_write: 7807 pr_warn_once("emulating exchange as write\n"); 7808 7809 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7810 } 7811 7812 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7813 unsigned short port, void *data, 7814 unsigned int count, bool in) 7815 { 7816 unsigned i; 7817 int r; 7818 7819 WARN_ON_ONCE(vcpu->arch.pio.count); 7820 for (i = 0; i < count; i++) { 7821 if (in) 7822 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7823 else 7824 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7825 7826 if (r) { 7827 if (i == 0) 7828 goto userspace_io; 7829 7830 /* 7831 * Userspace must have unregistered the device while PIO 7832 * was running. Drop writes / read as 0. 7833 */ 7834 if (in) 7835 memset(data, 0, size * (count - i)); 7836 break; 7837 } 7838 7839 data += size; 7840 } 7841 return 1; 7842 7843 userspace_io: 7844 vcpu->arch.pio.port = port; 7845 vcpu->arch.pio.in = in; 7846 vcpu->arch.pio.count = count; 7847 vcpu->arch.pio.size = size; 7848 7849 if (in) 7850 memset(vcpu->arch.pio_data, 0, size * count); 7851 else 7852 memcpy(vcpu->arch.pio_data, data, size * count); 7853 7854 vcpu->run->exit_reason = KVM_EXIT_IO; 7855 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7856 vcpu->run->io.size = size; 7857 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7858 vcpu->run->io.count = count; 7859 vcpu->run->io.port = port; 7860 return 0; 7861 } 7862 7863 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7864 unsigned short port, void *val, unsigned int count) 7865 { 7866 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7867 if (r) 7868 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7869 7870 return r; 7871 } 7872 7873 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7874 { 7875 int size = vcpu->arch.pio.size; 7876 unsigned int count = vcpu->arch.pio.count; 7877 memcpy(val, vcpu->arch.pio_data, size * count); 7878 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7879 vcpu->arch.pio.count = 0; 7880 } 7881 7882 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7883 int size, unsigned short port, void *val, 7884 unsigned int count) 7885 { 7886 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7887 if (vcpu->arch.pio.count) { 7888 /* 7889 * Complete a previous iteration that required userspace I/O. 7890 * Note, @count isn't guaranteed to match pio.count as userspace 7891 * can modify ECX before rerunning the vCPU. Ignore any such 7892 * shenanigans as KVM doesn't support modifying the rep count, 7893 * and the emulator ensures @count doesn't overflow the buffer. 7894 */ 7895 complete_emulator_pio_in(vcpu, val); 7896 return 1; 7897 } 7898 7899 return emulator_pio_in(vcpu, size, port, val, count); 7900 } 7901 7902 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7903 unsigned short port, const void *val, 7904 unsigned int count) 7905 { 7906 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7907 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7908 } 7909 7910 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7911 int size, unsigned short port, 7912 const void *val, unsigned int count) 7913 { 7914 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7915 } 7916 7917 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7918 { 7919 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7920 } 7921 7922 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7923 { 7924 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7925 } 7926 7927 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7928 { 7929 if (!need_emulate_wbinvd(vcpu)) 7930 return X86EMUL_CONTINUE; 7931 7932 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7933 int cpu = get_cpu(); 7934 7935 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7936 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7937 wbinvd_ipi, NULL, 1); 7938 put_cpu(); 7939 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7940 } else 7941 wbinvd(); 7942 return X86EMUL_CONTINUE; 7943 } 7944 7945 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7946 { 7947 kvm_emulate_wbinvd_noskip(vcpu); 7948 return kvm_skip_emulated_instruction(vcpu); 7949 } 7950 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7951 7952 7953 7954 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7955 { 7956 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7957 } 7958 7959 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7960 unsigned long *dest) 7961 { 7962 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7963 } 7964 7965 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7966 unsigned long value) 7967 { 7968 7969 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7970 } 7971 7972 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7973 { 7974 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7975 } 7976 7977 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7978 { 7979 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7980 unsigned long value; 7981 7982 switch (cr) { 7983 case 0: 7984 value = kvm_read_cr0(vcpu); 7985 break; 7986 case 2: 7987 value = vcpu->arch.cr2; 7988 break; 7989 case 3: 7990 value = kvm_read_cr3(vcpu); 7991 break; 7992 case 4: 7993 value = kvm_read_cr4(vcpu); 7994 break; 7995 case 8: 7996 value = kvm_get_cr8(vcpu); 7997 break; 7998 default: 7999 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8000 return 0; 8001 } 8002 8003 return value; 8004 } 8005 8006 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8007 { 8008 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8009 int res = 0; 8010 8011 switch (cr) { 8012 case 0: 8013 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8014 break; 8015 case 2: 8016 vcpu->arch.cr2 = val; 8017 break; 8018 case 3: 8019 res = kvm_set_cr3(vcpu, val); 8020 break; 8021 case 4: 8022 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8023 break; 8024 case 8: 8025 res = kvm_set_cr8(vcpu, val); 8026 break; 8027 default: 8028 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8029 res = -1; 8030 } 8031 8032 return res; 8033 } 8034 8035 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8036 { 8037 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8038 } 8039 8040 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8041 { 8042 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8043 } 8044 8045 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8046 { 8047 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8048 } 8049 8050 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8051 { 8052 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8053 } 8054 8055 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8056 { 8057 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8058 } 8059 8060 static unsigned long emulator_get_cached_segment_base( 8061 struct x86_emulate_ctxt *ctxt, int seg) 8062 { 8063 return get_segment_base(emul_to_vcpu(ctxt), seg); 8064 } 8065 8066 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8067 struct desc_struct *desc, u32 *base3, 8068 int seg) 8069 { 8070 struct kvm_segment var; 8071 8072 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8073 *selector = var.selector; 8074 8075 if (var.unusable) { 8076 memset(desc, 0, sizeof(*desc)); 8077 if (base3) 8078 *base3 = 0; 8079 return false; 8080 } 8081 8082 if (var.g) 8083 var.limit >>= 12; 8084 set_desc_limit(desc, var.limit); 8085 set_desc_base(desc, (unsigned long)var.base); 8086 #ifdef CONFIG_X86_64 8087 if (base3) 8088 *base3 = var.base >> 32; 8089 #endif 8090 desc->type = var.type; 8091 desc->s = var.s; 8092 desc->dpl = var.dpl; 8093 desc->p = var.present; 8094 desc->avl = var.avl; 8095 desc->l = var.l; 8096 desc->d = var.db; 8097 desc->g = var.g; 8098 8099 return true; 8100 } 8101 8102 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8103 struct desc_struct *desc, u32 base3, 8104 int seg) 8105 { 8106 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8107 struct kvm_segment var; 8108 8109 var.selector = selector; 8110 var.base = get_desc_base(desc); 8111 #ifdef CONFIG_X86_64 8112 var.base |= ((u64)base3) << 32; 8113 #endif 8114 var.limit = get_desc_limit(desc); 8115 if (desc->g) 8116 var.limit = (var.limit << 12) | 0xfff; 8117 var.type = desc->type; 8118 var.dpl = desc->dpl; 8119 var.db = desc->d; 8120 var.s = desc->s; 8121 var.l = desc->l; 8122 var.g = desc->g; 8123 var.avl = desc->avl; 8124 var.present = desc->p; 8125 var.unusable = !var.present; 8126 var.padding = 0; 8127 8128 kvm_set_segment(vcpu, &var, seg); 8129 return; 8130 } 8131 8132 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8133 u32 msr_index, u64 *pdata) 8134 { 8135 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8136 int r; 8137 8138 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8139 if (r < 0) 8140 return X86EMUL_UNHANDLEABLE; 8141 8142 if (r) { 8143 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8144 complete_emulated_rdmsr, r)) 8145 return X86EMUL_IO_NEEDED; 8146 8147 trace_kvm_msr_read_ex(msr_index); 8148 return X86EMUL_PROPAGATE_FAULT; 8149 } 8150 8151 trace_kvm_msr_read(msr_index, *pdata); 8152 return X86EMUL_CONTINUE; 8153 } 8154 8155 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8156 u32 msr_index, u64 data) 8157 { 8158 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8159 int r; 8160 8161 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8162 if (r < 0) 8163 return X86EMUL_UNHANDLEABLE; 8164 8165 if (r) { 8166 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8167 complete_emulated_msr_access, r)) 8168 return X86EMUL_IO_NEEDED; 8169 8170 trace_kvm_msr_write_ex(msr_index, data); 8171 return X86EMUL_PROPAGATE_FAULT; 8172 } 8173 8174 trace_kvm_msr_write(msr_index, data); 8175 return X86EMUL_CONTINUE; 8176 } 8177 8178 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8179 u32 msr_index, u64 *pdata) 8180 { 8181 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8182 } 8183 8184 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8185 u32 pmc) 8186 { 8187 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8188 return 0; 8189 return -EINVAL; 8190 } 8191 8192 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8193 u32 pmc, u64 *pdata) 8194 { 8195 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8196 } 8197 8198 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8199 { 8200 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8201 } 8202 8203 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8204 struct x86_instruction_info *info, 8205 enum x86_intercept_stage stage) 8206 { 8207 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8208 &ctxt->exception); 8209 } 8210 8211 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8212 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8213 bool exact_only) 8214 { 8215 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8216 } 8217 8218 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8219 { 8220 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8221 } 8222 8223 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8224 { 8225 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8226 } 8227 8228 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8229 { 8230 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8231 } 8232 8233 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8234 { 8235 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8236 } 8237 8238 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8239 { 8240 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8241 } 8242 8243 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8244 { 8245 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8246 } 8247 8248 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8249 { 8250 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8251 } 8252 8253 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8254 { 8255 return is_smm(emul_to_vcpu(ctxt)); 8256 } 8257 8258 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8259 { 8260 return is_guest_mode(emul_to_vcpu(ctxt)); 8261 } 8262 8263 #ifndef CONFIG_KVM_SMM 8264 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8265 { 8266 WARN_ON_ONCE(1); 8267 return X86EMUL_UNHANDLEABLE; 8268 } 8269 #endif 8270 8271 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8272 { 8273 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8274 } 8275 8276 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8277 { 8278 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8279 } 8280 8281 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8282 { 8283 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8284 8285 if (!kvm->vm_bugged) 8286 kvm_vm_bugged(kvm); 8287 } 8288 8289 static const struct x86_emulate_ops emulate_ops = { 8290 .vm_bugged = emulator_vm_bugged, 8291 .read_gpr = emulator_read_gpr, 8292 .write_gpr = emulator_write_gpr, 8293 .read_std = emulator_read_std, 8294 .write_std = emulator_write_std, 8295 .fetch = kvm_fetch_guest_virt, 8296 .read_emulated = emulator_read_emulated, 8297 .write_emulated = emulator_write_emulated, 8298 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8299 .invlpg = emulator_invlpg, 8300 .pio_in_emulated = emulator_pio_in_emulated, 8301 .pio_out_emulated = emulator_pio_out_emulated, 8302 .get_segment = emulator_get_segment, 8303 .set_segment = emulator_set_segment, 8304 .get_cached_segment_base = emulator_get_cached_segment_base, 8305 .get_gdt = emulator_get_gdt, 8306 .get_idt = emulator_get_idt, 8307 .set_gdt = emulator_set_gdt, 8308 .set_idt = emulator_set_idt, 8309 .get_cr = emulator_get_cr, 8310 .set_cr = emulator_set_cr, 8311 .cpl = emulator_get_cpl, 8312 .get_dr = emulator_get_dr, 8313 .set_dr = emulator_set_dr, 8314 .set_msr_with_filter = emulator_set_msr_with_filter, 8315 .get_msr_with_filter = emulator_get_msr_with_filter, 8316 .get_msr = emulator_get_msr, 8317 .check_pmc = emulator_check_pmc, 8318 .read_pmc = emulator_read_pmc, 8319 .halt = emulator_halt, 8320 .wbinvd = emulator_wbinvd, 8321 .fix_hypercall = emulator_fix_hypercall, 8322 .intercept = emulator_intercept, 8323 .get_cpuid = emulator_get_cpuid, 8324 .guest_has_long_mode = emulator_guest_has_long_mode, 8325 .guest_has_movbe = emulator_guest_has_movbe, 8326 .guest_has_fxsr = emulator_guest_has_fxsr, 8327 .guest_has_rdpid = emulator_guest_has_rdpid, 8328 .set_nmi_mask = emulator_set_nmi_mask, 8329 .is_smm = emulator_is_smm, 8330 .is_guest_mode = emulator_is_guest_mode, 8331 .leave_smm = emulator_leave_smm, 8332 .triple_fault = emulator_triple_fault, 8333 .set_xcr = emulator_set_xcr, 8334 }; 8335 8336 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8337 { 8338 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8339 /* 8340 * an sti; sti; sequence only disable interrupts for the first 8341 * instruction. So, if the last instruction, be it emulated or 8342 * not, left the system with the INT_STI flag enabled, it 8343 * means that the last instruction is an sti. We should not 8344 * leave the flag on in this case. The same goes for mov ss 8345 */ 8346 if (int_shadow & mask) 8347 mask = 0; 8348 if (unlikely(int_shadow || mask)) { 8349 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8350 if (!mask) 8351 kvm_make_request(KVM_REQ_EVENT, vcpu); 8352 } 8353 } 8354 8355 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8356 { 8357 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8358 8359 if (ctxt->exception.vector == PF_VECTOR) 8360 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8361 else if (ctxt->exception.error_code_valid) 8362 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8363 ctxt->exception.error_code); 8364 else 8365 kvm_queue_exception(vcpu, ctxt->exception.vector); 8366 } 8367 8368 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8369 { 8370 struct x86_emulate_ctxt *ctxt; 8371 8372 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8373 if (!ctxt) { 8374 pr_err("failed to allocate vcpu's emulator\n"); 8375 return NULL; 8376 } 8377 8378 ctxt->vcpu = vcpu; 8379 ctxt->ops = &emulate_ops; 8380 vcpu->arch.emulate_ctxt = ctxt; 8381 8382 return ctxt; 8383 } 8384 8385 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8386 { 8387 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8388 int cs_db, cs_l; 8389 8390 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8391 8392 ctxt->gpa_available = false; 8393 ctxt->eflags = kvm_get_rflags(vcpu); 8394 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8395 8396 ctxt->eip = kvm_rip_read(vcpu); 8397 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8398 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8399 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8400 cs_db ? X86EMUL_MODE_PROT32 : 8401 X86EMUL_MODE_PROT16; 8402 ctxt->interruptibility = 0; 8403 ctxt->have_exception = false; 8404 ctxt->exception.vector = -1; 8405 ctxt->perm_ok = false; 8406 8407 init_decode_cache(ctxt); 8408 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8409 } 8410 8411 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8412 { 8413 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8414 int ret; 8415 8416 init_emulate_ctxt(vcpu); 8417 8418 ctxt->op_bytes = 2; 8419 ctxt->ad_bytes = 2; 8420 ctxt->_eip = ctxt->eip + inc_eip; 8421 ret = emulate_int_real(ctxt, irq); 8422 8423 if (ret != X86EMUL_CONTINUE) { 8424 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8425 } else { 8426 ctxt->eip = ctxt->_eip; 8427 kvm_rip_write(vcpu, ctxt->eip); 8428 kvm_set_rflags(vcpu, ctxt->eflags); 8429 } 8430 } 8431 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8432 8433 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8434 u8 ndata, u8 *insn_bytes, u8 insn_size) 8435 { 8436 struct kvm_run *run = vcpu->run; 8437 u64 info[5]; 8438 u8 info_start; 8439 8440 /* 8441 * Zero the whole array used to retrieve the exit info, as casting to 8442 * u32 for select entries will leave some chunks uninitialized. 8443 */ 8444 memset(&info, 0, sizeof(info)); 8445 8446 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8447 &info[2], (u32 *)&info[3], 8448 (u32 *)&info[4]); 8449 8450 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8451 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8452 8453 /* 8454 * There's currently space for 13 entries, but 5 are used for the exit 8455 * reason and info. Restrict to 4 to reduce the maintenance burden 8456 * when expanding kvm_run.emulation_failure in the future. 8457 */ 8458 if (WARN_ON_ONCE(ndata > 4)) 8459 ndata = 4; 8460 8461 /* Always include the flags as a 'data' entry. */ 8462 info_start = 1; 8463 run->emulation_failure.flags = 0; 8464 8465 if (insn_size) { 8466 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8467 sizeof(run->emulation_failure.insn_bytes) != 16)); 8468 info_start += 2; 8469 run->emulation_failure.flags |= 8470 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8471 run->emulation_failure.insn_size = insn_size; 8472 memset(run->emulation_failure.insn_bytes, 0x90, 8473 sizeof(run->emulation_failure.insn_bytes)); 8474 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8475 } 8476 8477 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8478 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8479 ndata * sizeof(data[0])); 8480 8481 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8482 } 8483 8484 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8485 { 8486 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8487 8488 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8489 ctxt->fetch.end - ctxt->fetch.data); 8490 } 8491 8492 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8493 u8 ndata) 8494 { 8495 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8496 } 8497 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8498 8499 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8500 { 8501 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8502 } 8503 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8504 8505 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8506 { 8507 struct kvm *kvm = vcpu->kvm; 8508 8509 ++vcpu->stat.insn_emulation_fail; 8510 trace_kvm_emulate_insn_failed(vcpu); 8511 8512 if (emulation_type & EMULTYPE_VMWARE_GP) { 8513 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8514 return 1; 8515 } 8516 8517 if (kvm->arch.exit_on_emulation_error || 8518 (emulation_type & EMULTYPE_SKIP)) { 8519 prepare_emulation_ctxt_failure_exit(vcpu); 8520 return 0; 8521 } 8522 8523 kvm_queue_exception(vcpu, UD_VECTOR); 8524 8525 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8526 prepare_emulation_ctxt_failure_exit(vcpu); 8527 return 0; 8528 } 8529 8530 return 1; 8531 } 8532 8533 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8534 int emulation_type) 8535 { 8536 gpa_t gpa = cr2_or_gpa; 8537 kvm_pfn_t pfn; 8538 8539 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8540 return false; 8541 8542 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8543 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8544 return false; 8545 8546 if (!vcpu->arch.mmu->root_role.direct) { 8547 /* 8548 * Write permission should be allowed since only 8549 * write access need to be emulated. 8550 */ 8551 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8552 8553 /* 8554 * If the mapping is invalid in guest, let cpu retry 8555 * it to generate fault. 8556 */ 8557 if (gpa == INVALID_GPA) 8558 return true; 8559 } 8560 8561 /* 8562 * Do not retry the unhandleable instruction if it faults on the 8563 * readonly host memory, otherwise it will goto a infinite loop: 8564 * retry instruction -> write #PF -> emulation fail -> retry 8565 * instruction -> ... 8566 */ 8567 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8568 8569 /* 8570 * If the instruction failed on the error pfn, it can not be fixed, 8571 * report the error to userspace. 8572 */ 8573 if (is_error_noslot_pfn(pfn)) 8574 return false; 8575 8576 kvm_release_pfn_clean(pfn); 8577 8578 /* The instructions are well-emulated on direct mmu. */ 8579 if (vcpu->arch.mmu->root_role.direct) { 8580 unsigned int indirect_shadow_pages; 8581 8582 write_lock(&vcpu->kvm->mmu_lock); 8583 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8584 write_unlock(&vcpu->kvm->mmu_lock); 8585 8586 if (indirect_shadow_pages) 8587 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8588 8589 return true; 8590 } 8591 8592 /* 8593 * if emulation was due to access to shadowed page table 8594 * and it failed try to unshadow page and re-enter the 8595 * guest to let CPU execute the instruction. 8596 */ 8597 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8598 8599 /* 8600 * If the access faults on its page table, it can not 8601 * be fixed by unprotecting shadow page and it should 8602 * be reported to userspace. 8603 */ 8604 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8605 } 8606 8607 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8608 gpa_t cr2_or_gpa, int emulation_type) 8609 { 8610 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8611 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8612 8613 last_retry_eip = vcpu->arch.last_retry_eip; 8614 last_retry_addr = vcpu->arch.last_retry_addr; 8615 8616 /* 8617 * If the emulation is caused by #PF and it is non-page_table 8618 * writing instruction, it means the VM-EXIT is caused by shadow 8619 * page protected, we can zap the shadow page and retry this 8620 * instruction directly. 8621 * 8622 * Note: if the guest uses a non-page-table modifying instruction 8623 * on the PDE that points to the instruction, then we will unmap 8624 * the instruction and go to an infinite loop. So, we cache the 8625 * last retried eip and the last fault address, if we meet the eip 8626 * and the address again, we can break out of the potential infinite 8627 * loop. 8628 */ 8629 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8630 8631 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8632 return false; 8633 8634 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8635 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8636 return false; 8637 8638 if (x86_page_table_writing_insn(ctxt)) 8639 return false; 8640 8641 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8642 return false; 8643 8644 vcpu->arch.last_retry_eip = ctxt->eip; 8645 vcpu->arch.last_retry_addr = cr2_or_gpa; 8646 8647 if (!vcpu->arch.mmu->root_role.direct) 8648 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8649 8650 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8651 8652 return true; 8653 } 8654 8655 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8656 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8657 8658 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8659 unsigned long *db) 8660 { 8661 u32 dr6 = 0; 8662 int i; 8663 u32 enable, rwlen; 8664 8665 enable = dr7; 8666 rwlen = dr7 >> 16; 8667 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8668 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8669 dr6 |= (1 << i); 8670 return dr6; 8671 } 8672 8673 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8674 { 8675 struct kvm_run *kvm_run = vcpu->run; 8676 8677 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8678 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8679 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8680 kvm_run->debug.arch.exception = DB_VECTOR; 8681 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8682 return 0; 8683 } 8684 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8685 return 1; 8686 } 8687 8688 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8689 { 8690 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8691 int r; 8692 8693 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8694 if (unlikely(!r)) 8695 return 0; 8696 8697 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8698 8699 /* 8700 * rflags is the old, "raw" value of the flags. The new value has 8701 * not been saved yet. 8702 * 8703 * This is correct even for TF set by the guest, because "the 8704 * processor will not generate this exception after the instruction 8705 * that sets the TF flag". 8706 */ 8707 if (unlikely(rflags & X86_EFLAGS_TF)) 8708 r = kvm_vcpu_do_singlestep(vcpu); 8709 return r; 8710 } 8711 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8712 8713 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8714 { 8715 u32 shadow; 8716 8717 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8718 return true; 8719 8720 /* 8721 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8722 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8723 * to avoid the relatively expensive CPUID lookup. 8724 */ 8725 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8726 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8727 guest_cpuid_is_intel(vcpu); 8728 } 8729 8730 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8731 int emulation_type, int *r) 8732 { 8733 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8734 8735 /* 8736 * Do not check for code breakpoints if hardware has already done the 8737 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8738 * the instruction has passed all exception checks, and all intercepted 8739 * exceptions that trigger emulation have lower priority than code 8740 * breakpoints, i.e. the fact that the intercepted exception occurred 8741 * means any code breakpoints have already been serviced. 8742 * 8743 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8744 * hardware has checked the RIP of the magic prefix, but not the RIP of 8745 * the instruction being emulated. The intent of forced emulation is 8746 * to behave as if KVM intercepted the instruction without an exception 8747 * and without a prefix. 8748 */ 8749 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8750 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8751 return false; 8752 8753 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8754 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8755 struct kvm_run *kvm_run = vcpu->run; 8756 unsigned long eip = kvm_get_linear_rip(vcpu); 8757 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8758 vcpu->arch.guest_debug_dr7, 8759 vcpu->arch.eff_db); 8760 8761 if (dr6 != 0) { 8762 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8763 kvm_run->debug.arch.pc = eip; 8764 kvm_run->debug.arch.exception = DB_VECTOR; 8765 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8766 *r = 0; 8767 return true; 8768 } 8769 } 8770 8771 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8772 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8773 unsigned long eip = kvm_get_linear_rip(vcpu); 8774 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8775 vcpu->arch.dr7, 8776 vcpu->arch.db); 8777 8778 if (dr6 != 0) { 8779 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8780 *r = 1; 8781 return true; 8782 } 8783 } 8784 8785 return false; 8786 } 8787 8788 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8789 { 8790 switch (ctxt->opcode_len) { 8791 case 1: 8792 switch (ctxt->b) { 8793 case 0xe4: /* IN */ 8794 case 0xe5: 8795 case 0xec: 8796 case 0xed: 8797 case 0xe6: /* OUT */ 8798 case 0xe7: 8799 case 0xee: 8800 case 0xef: 8801 case 0x6c: /* INS */ 8802 case 0x6d: 8803 case 0x6e: /* OUTS */ 8804 case 0x6f: 8805 return true; 8806 } 8807 break; 8808 case 2: 8809 switch (ctxt->b) { 8810 case 0x33: /* RDPMC */ 8811 return true; 8812 } 8813 break; 8814 } 8815 8816 return false; 8817 } 8818 8819 /* 8820 * Decode an instruction for emulation. The caller is responsible for handling 8821 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8822 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8823 * code breakpoints have higher priority and thus have already been done by 8824 * hardware. 8825 * 8826 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8827 * response to a machine check. 8828 */ 8829 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8830 void *insn, int insn_len) 8831 { 8832 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8833 int r; 8834 8835 init_emulate_ctxt(vcpu); 8836 8837 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8838 8839 trace_kvm_emulate_insn_start(vcpu); 8840 ++vcpu->stat.insn_emulation; 8841 8842 return r; 8843 } 8844 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8845 8846 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8847 int emulation_type, void *insn, int insn_len) 8848 { 8849 int r; 8850 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8851 bool writeback = true; 8852 8853 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8854 return 1; 8855 8856 vcpu->arch.l1tf_flush_l1d = true; 8857 8858 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8859 kvm_clear_exception_queue(vcpu); 8860 8861 /* 8862 * Return immediately if RIP hits a code breakpoint, such #DBs 8863 * are fault-like and are higher priority than any faults on 8864 * the code fetch itself. 8865 */ 8866 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8867 return r; 8868 8869 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8870 insn, insn_len); 8871 if (r != EMULATION_OK) { 8872 if ((emulation_type & EMULTYPE_TRAP_UD) || 8873 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8874 kvm_queue_exception(vcpu, UD_VECTOR); 8875 return 1; 8876 } 8877 if (reexecute_instruction(vcpu, cr2_or_gpa, 8878 emulation_type)) 8879 return 1; 8880 8881 if (ctxt->have_exception && 8882 !(emulation_type & EMULTYPE_SKIP)) { 8883 /* 8884 * #UD should result in just EMULATION_FAILED, and trap-like 8885 * exception should not be encountered during decode. 8886 */ 8887 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8888 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8889 inject_emulated_exception(vcpu); 8890 return 1; 8891 } 8892 return handle_emulation_failure(vcpu, emulation_type); 8893 } 8894 } 8895 8896 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8897 !is_vmware_backdoor_opcode(ctxt)) { 8898 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8899 return 1; 8900 } 8901 8902 /* 8903 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8904 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8905 * The caller is responsible for updating interruptibility state and 8906 * injecting single-step #DBs. 8907 */ 8908 if (emulation_type & EMULTYPE_SKIP) { 8909 if (ctxt->mode != X86EMUL_MODE_PROT64) 8910 ctxt->eip = (u32)ctxt->_eip; 8911 else 8912 ctxt->eip = ctxt->_eip; 8913 8914 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8915 r = 1; 8916 goto writeback; 8917 } 8918 8919 kvm_rip_write(vcpu, ctxt->eip); 8920 if (ctxt->eflags & X86_EFLAGS_RF) 8921 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8922 return 1; 8923 } 8924 8925 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8926 return 1; 8927 8928 /* this is needed for vmware backdoor interface to work since it 8929 changes registers values during IO operation */ 8930 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8931 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8932 emulator_invalidate_register_cache(ctxt); 8933 } 8934 8935 restart: 8936 if (emulation_type & EMULTYPE_PF) { 8937 /* Save the faulting GPA (cr2) in the address field */ 8938 ctxt->exception.address = cr2_or_gpa; 8939 8940 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8941 if (vcpu->arch.mmu->root_role.direct) { 8942 ctxt->gpa_available = true; 8943 ctxt->gpa_val = cr2_or_gpa; 8944 } 8945 } else { 8946 /* Sanitize the address out of an abundance of paranoia. */ 8947 ctxt->exception.address = 0; 8948 } 8949 8950 r = x86_emulate_insn(ctxt); 8951 8952 if (r == EMULATION_INTERCEPTED) 8953 return 1; 8954 8955 if (r == EMULATION_FAILED) { 8956 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 8957 return 1; 8958 8959 return handle_emulation_failure(vcpu, emulation_type); 8960 } 8961 8962 if (ctxt->have_exception) { 8963 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 8964 vcpu->mmio_needed = false; 8965 r = 1; 8966 inject_emulated_exception(vcpu); 8967 } else if (vcpu->arch.pio.count) { 8968 if (!vcpu->arch.pio.in) { 8969 /* FIXME: return into emulator if single-stepping. */ 8970 vcpu->arch.pio.count = 0; 8971 } else { 8972 writeback = false; 8973 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8974 } 8975 r = 0; 8976 } else if (vcpu->mmio_needed) { 8977 ++vcpu->stat.mmio_exits; 8978 8979 if (!vcpu->mmio_is_write) 8980 writeback = false; 8981 r = 0; 8982 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8983 } else if (vcpu->arch.complete_userspace_io) { 8984 writeback = false; 8985 r = 0; 8986 } else if (r == EMULATION_RESTART) 8987 goto restart; 8988 else 8989 r = 1; 8990 8991 writeback: 8992 if (writeback) { 8993 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8994 toggle_interruptibility(vcpu, ctxt->interruptibility); 8995 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8996 8997 /* 8998 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8999 * only supports code breakpoints and general detect #DB, both 9000 * of which are fault-like. 9001 */ 9002 if (!ctxt->have_exception || 9003 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9004 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9005 if (ctxt->is_branch) 9006 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9007 kvm_rip_write(vcpu, ctxt->eip); 9008 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9009 r = kvm_vcpu_do_singlestep(vcpu); 9010 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9011 __kvm_set_rflags(vcpu, ctxt->eflags); 9012 } 9013 9014 /* 9015 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9016 * do nothing, and it will be requested again as soon as 9017 * the shadow expires. But we still need to check here, 9018 * because POPF has no interrupt shadow. 9019 */ 9020 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9021 kvm_make_request(KVM_REQ_EVENT, vcpu); 9022 } else 9023 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9024 9025 return r; 9026 } 9027 9028 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9029 { 9030 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9031 } 9032 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9033 9034 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9035 void *insn, int insn_len) 9036 { 9037 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9038 } 9039 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9040 9041 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9042 { 9043 vcpu->arch.pio.count = 0; 9044 return 1; 9045 } 9046 9047 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9048 { 9049 vcpu->arch.pio.count = 0; 9050 9051 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9052 return 1; 9053 9054 return kvm_skip_emulated_instruction(vcpu); 9055 } 9056 9057 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9058 unsigned short port) 9059 { 9060 unsigned long val = kvm_rax_read(vcpu); 9061 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9062 9063 if (ret) 9064 return ret; 9065 9066 /* 9067 * Workaround userspace that relies on old KVM behavior of %rip being 9068 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9069 */ 9070 if (port == 0x7e && 9071 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9072 vcpu->arch.complete_userspace_io = 9073 complete_fast_pio_out_port_0x7e; 9074 kvm_skip_emulated_instruction(vcpu); 9075 } else { 9076 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9077 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9078 } 9079 return 0; 9080 } 9081 9082 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9083 { 9084 unsigned long val; 9085 9086 /* We should only ever be called with arch.pio.count equal to 1 */ 9087 BUG_ON(vcpu->arch.pio.count != 1); 9088 9089 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9090 vcpu->arch.pio.count = 0; 9091 return 1; 9092 } 9093 9094 /* For size less than 4 we merge, else we zero extend */ 9095 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9096 9097 complete_emulator_pio_in(vcpu, &val); 9098 kvm_rax_write(vcpu, val); 9099 9100 return kvm_skip_emulated_instruction(vcpu); 9101 } 9102 9103 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9104 unsigned short port) 9105 { 9106 unsigned long val; 9107 int ret; 9108 9109 /* For size less than 4 we merge, else we zero extend */ 9110 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9111 9112 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9113 if (ret) { 9114 kvm_rax_write(vcpu, val); 9115 return ret; 9116 } 9117 9118 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9119 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9120 9121 return 0; 9122 } 9123 9124 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9125 { 9126 int ret; 9127 9128 if (in) 9129 ret = kvm_fast_pio_in(vcpu, size, port); 9130 else 9131 ret = kvm_fast_pio_out(vcpu, size, port); 9132 return ret && kvm_skip_emulated_instruction(vcpu); 9133 } 9134 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9135 9136 static int kvmclock_cpu_down_prep(unsigned int cpu) 9137 { 9138 __this_cpu_write(cpu_tsc_khz, 0); 9139 return 0; 9140 } 9141 9142 static void tsc_khz_changed(void *data) 9143 { 9144 struct cpufreq_freqs *freq = data; 9145 unsigned long khz = 0; 9146 9147 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9148 9149 if (data) 9150 khz = freq->new; 9151 else 9152 khz = cpufreq_quick_get(raw_smp_processor_id()); 9153 if (!khz) 9154 khz = tsc_khz; 9155 __this_cpu_write(cpu_tsc_khz, khz); 9156 } 9157 9158 #ifdef CONFIG_X86_64 9159 static void kvm_hyperv_tsc_notifier(void) 9160 { 9161 struct kvm *kvm; 9162 int cpu; 9163 9164 mutex_lock(&kvm_lock); 9165 list_for_each_entry(kvm, &vm_list, vm_list) 9166 kvm_make_mclock_inprogress_request(kvm); 9167 9168 /* no guest entries from this point */ 9169 hyperv_stop_tsc_emulation(); 9170 9171 /* TSC frequency always matches when on Hyper-V */ 9172 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9173 for_each_present_cpu(cpu) 9174 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9175 } 9176 kvm_caps.max_guest_tsc_khz = tsc_khz; 9177 9178 list_for_each_entry(kvm, &vm_list, vm_list) { 9179 __kvm_start_pvclock_update(kvm); 9180 pvclock_update_vm_gtod_copy(kvm); 9181 kvm_end_pvclock_update(kvm); 9182 } 9183 9184 mutex_unlock(&kvm_lock); 9185 } 9186 #endif 9187 9188 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9189 { 9190 struct kvm *kvm; 9191 struct kvm_vcpu *vcpu; 9192 int send_ipi = 0; 9193 unsigned long i; 9194 9195 /* 9196 * We allow guests to temporarily run on slowing clocks, 9197 * provided we notify them after, or to run on accelerating 9198 * clocks, provided we notify them before. Thus time never 9199 * goes backwards. 9200 * 9201 * However, we have a problem. We can't atomically update 9202 * the frequency of a given CPU from this function; it is 9203 * merely a notifier, which can be called from any CPU. 9204 * Changing the TSC frequency at arbitrary points in time 9205 * requires a recomputation of local variables related to 9206 * the TSC for each VCPU. We must flag these local variables 9207 * to be updated and be sure the update takes place with the 9208 * new frequency before any guests proceed. 9209 * 9210 * Unfortunately, the combination of hotplug CPU and frequency 9211 * change creates an intractable locking scenario; the order 9212 * of when these callouts happen is undefined with respect to 9213 * CPU hotplug, and they can race with each other. As such, 9214 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9215 * undefined; you can actually have a CPU frequency change take 9216 * place in between the computation of X and the setting of the 9217 * variable. To protect against this problem, all updates of 9218 * the per_cpu tsc_khz variable are done in an interrupt 9219 * protected IPI, and all callers wishing to update the value 9220 * must wait for a synchronous IPI to complete (which is trivial 9221 * if the caller is on the CPU already). This establishes the 9222 * necessary total order on variable updates. 9223 * 9224 * Note that because a guest time update may take place 9225 * anytime after the setting of the VCPU's request bit, the 9226 * correct TSC value must be set before the request. However, 9227 * to ensure the update actually makes it to any guest which 9228 * starts running in hardware virtualization between the set 9229 * and the acquisition of the spinlock, we must also ping the 9230 * CPU after setting the request bit. 9231 * 9232 */ 9233 9234 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9235 9236 mutex_lock(&kvm_lock); 9237 list_for_each_entry(kvm, &vm_list, vm_list) { 9238 kvm_for_each_vcpu(i, vcpu, kvm) { 9239 if (vcpu->cpu != cpu) 9240 continue; 9241 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9242 if (vcpu->cpu != raw_smp_processor_id()) 9243 send_ipi = 1; 9244 } 9245 } 9246 mutex_unlock(&kvm_lock); 9247 9248 if (freq->old < freq->new && send_ipi) { 9249 /* 9250 * We upscale the frequency. Must make the guest 9251 * doesn't see old kvmclock values while running with 9252 * the new frequency, otherwise we risk the guest sees 9253 * time go backwards. 9254 * 9255 * In case we update the frequency for another cpu 9256 * (which might be in guest context) send an interrupt 9257 * to kick the cpu out of guest context. Next time 9258 * guest context is entered kvmclock will be updated, 9259 * so the guest will not see stale values. 9260 */ 9261 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9262 } 9263 } 9264 9265 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9266 void *data) 9267 { 9268 struct cpufreq_freqs *freq = data; 9269 int cpu; 9270 9271 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9272 return 0; 9273 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9274 return 0; 9275 9276 for_each_cpu(cpu, freq->policy->cpus) 9277 __kvmclock_cpufreq_notifier(freq, cpu); 9278 9279 return 0; 9280 } 9281 9282 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9283 .notifier_call = kvmclock_cpufreq_notifier 9284 }; 9285 9286 static int kvmclock_cpu_online(unsigned int cpu) 9287 { 9288 tsc_khz_changed(NULL); 9289 return 0; 9290 } 9291 9292 static void kvm_timer_init(void) 9293 { 9294 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9295 max_tsc_khz = tsc_khz; 9296 9297 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9298 struct cpufreq_policy *policy; 9299 int cpu; 9300 9301 cpu = get_cpu(); 9302 policy = cpufreq_cpu_get(cpu); 9303 if (policy) { 9304 if (policy->cpuinfo.max_freq) 9305 max_tsc_khz = policy->cpuinfo.max_freq; 9306 cpufreq_cpu_put(policy); 9307 } 9308 put_cpu(); 9309 } 9310 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9311 CPUFREQ_TRANSITION_NOTIFIER); 9312 9313 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9314 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9315 } 9316 } 9317 9318 #ifdef CONFIG_X86_64 9319 static void pvclock_gtod_update_fn(struct work_struct *work) 9320 { 9321 struct kvm *kvm; 9322 struct kvm_vcpu *vcpu; 9323 unsigned long i; 9324 9325 mutex_lock(&kvm_lock); 9326 list_for_each_entry(kvm, &vm_list, vm_list) 9327 kvm_for_each_vcpu(i, vcpu, kvm) 9328 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9329 atomic_set(&kvm_guest_has_master_clock, 0); 9330 mutex_unlock(&kvm_lock); 9331 } 9332 9333 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9334 9335 /* 9336 * Indirection to move queue_work() out of the tk_core.seq write held 9337 * region to prevent possible deadlocks against time accessors which 9338 * are invoked with work related locks held. 9339 */ 9340 static void pvclock_irq_work_fn(struct irq_work *w) 9341 { 9342 queue_work(system_long_wq, &pvclock_gtod_work); 9343 } 9344 9345 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9346 9347 /* 9348 * Notification about pvclock gtod data update. 9349 */ 9350 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9351 void *priv) 9352 { 9353 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9354 struct timekeeper *tk = priv; 9355 9356 update_pvclock_gtod(tk); 9357 9358 /* 9359 * Disable master clock if host does not trust, or does not use, 9360 * TSC based clocksource. Delegate queue_work() to irq_work as 9361 * this is invoked with tk_core.seq write held. 9362 */ 9363 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9364 atomic_read(&kvm_guest_has_master_clock) != 0) 9365 irq_work_queue(&pvclock_irq_work); 9366 return 0; 9367 } 9368 9369 static struct notifier_block pvclock_gtod_notifier = { 9370 .notifier_call = pvclock_gtod_notify, 9371 }; 9372 #endif 9373 9374 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9375 { 9376 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9377 9378 #define __KVM_X86_OP(func) \ 9379 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9380 #define KVM_X86_OP(func) \ 9381 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9382 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9383 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9384 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9385 (void *)__static_call_return0); 9386 #include <asm/kvm-x86-ops.h> 9387 #undef __KVM_X86_OP 9388 9389 kvm_pmu_ops_update(ops->pmu_ops); 9390 } 9391 9392 static int kvm_x86_check_processor_compatibility(void) 9393 { 9394 int cpu = smp_processor_id(); 9395 struct cpuinfo_x86 *c = &cpu_data(cpu); 9396 9397 /* 9398 * Compatibility checks are done when loading KVM and when enabling 9399 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9400 * compatible, i.e. KVM should never perform a compatibility check on 9401 * an offline CPU. 9402 */ 9403 WARN_ON(!cpu_online(cpu)); 9404 9405 if (__cr4_reserved_bits(cpu_has, c) != 9406 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9407 return -EIO; 9408 9409 return static_call(kvm_x86_check_processor_compatibility)(); 9410 } 9411 9412 static void kvm_x86_check_cpu_compat(void *ret) 9413 { 9414 *(int *)ret = kvm_x86_check_processor_compatibility(); 9415 } 9416 9417 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9418 { 9419 u64 host_pat; 9420 int r, cpu; 9421 9422 if (kvm_x86_ops.hardware_enable) { 9423 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9424 return -EEXIST; 9425 } 9426 9427 /* 9428 * KVM explicitly assumes that the guest has an FPU and 9429 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9430 * vCPU's FPU state as a fxregs_state struct. 9431 */ 9432 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9433 pr_err("inadequate fpu\n"); 9434 return -EOPNOTSUPP; 9435 } 9436 9437 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9438 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9439 return -EOPNOTSUPP; 9440 } 9441 9442 /* 9443 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9444 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9445 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9446 * with an exception. PAT[0] is set to WB on RESET and also by the 9447 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9448 */ 9449 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9450 (host_pat & GENMASK(2, 0)) != 6) { 9451 pr_err("host PAT[0] is not WB\n"); 9452 return -EIO; 9453 } 9454 9455 x86_emulator_cache = kvm_alloc_emulator_cache(); 9456 if (!x86_emulator_cache) { 9457 pr_err("failed to allocate cache for x86 emulator\n"); 9458 return -ENOMEM; 9459 } 9460 9461 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9462 if (!user_return_msrs) { 9463 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9464 r = -ENOMEM; 9465 goto out_free_x86_emulator_cache; 9466 } 9467 kvm_nr_uret_msrs = 0; 9468 9469 r = kvm_mmu_vendor_module_init(); 9470 if (r) 9471 goto out_free_percpu; 9472 9473 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9474 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9475 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9476 } 9477 9478 rdmsrl_safe(MSR_EFER, &host_efer); 9479 9480 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9481 rdmsrl(MSR_IA32_XSS, host_xss); 9482 9483 kvm_init_pmu_capability(ops->pmu_ops); 9484 9485 r = ops->hardware_setup(); 9486 if (r != 0) 9487 goto out_mmu_exit; 9488 9489 kvm_ops_update(ops); 9490 9491 for_each_online_cpu(cpu) { 9492 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9493 if (r < 0) 9494 goto out_unwind_ops; 9495 } 9496 9497 /* 9498 * Point of no return! DO NOT add error paths below this point unless 9499 * absolutely necessary, as most operations from this point forward 9500 * require unwinding. 9501 */ 9502 kvm_timer_init(); 9503 9504 if (pi_inject_timer == -1) 9505 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9506 #ifdef CONFIG_X86_64 9507 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9508 9509 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9510 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9511 #endif 9512 9513 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9514 9515 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9516 kvm_caps.supported_xss = 0; 9517 9518 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9519 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9520 #undef __kvm_cpu_cap_has 9521 9522 if (kvm_caps.has_tsc_control) { 9523 /* 9524 * Make sure the user can only configure tsc_khz values that 9525 * fit into a signed integer. 9526 * A min value is not calculated because it will always 9527 * be 1 on all machines. 9528 */ 9529 u64 max = min(0x7fffffffULL, 9530 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9531 kvm_caps.max_guest_tsc_khz = max; 9532 } 9533 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9534 kvm_init_msr_lists(); 9535 return 0; 9536 9537 out_unwind_ops: 9538 kvm_x86_ops.hardware_enable = NULL; 9539 static_call(kvm_x86_hardware_unsetup)(); 9540 out_mmu_exit: 9541 kvm_mmu_vendor_module_exit(); 9542 out_free_percpu: 9543 free_percpu(user_return_msrs); 9544 out_free_x86_emulator_cache: 9545 kmem_cache_destroy(x86_emulator_cache); 9546 return r; 9547 } 9548 9549 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9550 { 9551 int r; 9552 9553 mutex_lock(&vendor_module_lock); 9554 r = __kvm_x86_vendor_init(ops); 9555 mutex_unlock(&vendor_module_lock); 9556 9557 return r; 9558 } 9559 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9560 9561 void kvm_x86_vendor_exit(void) 9562 { 9563 kvm_unregister_perf_callbacks(); 9564 9565 #ifdef CONFIG_X86_64 9566 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9567 clear_hv_tscchange_cb(); 9568 #endif 9569 kvm_lapic_exit(); 9570 9571 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9572 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9573 CPUFREQ_TRANSITION_NOTIFIER); 9574 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9575 } 9576 #ifdef CONFIG_X86_64 9577 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9578 irq_work_sync(&pvclock_irq_work); 9579 cancel_work_sync(&pvclock_gtod_work); 9580 #endif 9581 static_call(kvm_x86_hardware_unsetup)(); 9582 kvm_mmu_vendor_module_exit(); 9583 free_percpu(user_return_msrs); 9584 kmem_cache_destroy(x86_emulator_cache); 9585 #ifdef CONFIG_KVM_XEN 9586 static_key_deferred_flush(&kvm_xen_enabled); 9587 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9588 #endif 9589 mutex_lock(&vendor_module_lock); 9590 kvm_x86_ops.hardware_enable = NULL; 9591 mutex_unlock(&vendor_module_lock); 9592 } 9593 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9594 9595 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9596 { 9597 /* 9598 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9599 * local APIC is in-kernel, the run loop will detect the non-runnable 9600 * state and halt the vCPU. Exit to userspace if the local APIC is 9601 * managed by userspace, in which case userspace is responsible for 9602 * handling wake events. 9603 */ 9604 ++vcpu->stat.halt_exits; 9605 if (lapic_in_kernel(vcpu)) { 9606 vcpu->arch.mp_state = state; 9607 return 1; 9608 } else { 9609 vcpu->run->exit_reason = reason; 9610 return 0; 9611 } 9612 } 9613 9614 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9615 { 9616 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9617 } 9618 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9619 9620 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9621 { 9622 int ret = kvm_skip_emulated_instruction(vcpu); 9623 /* 9624 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9625 * KVM_EXIT_DEBUG here. 9626 */ 9627 return kvm_emulate_halt_noskip(vcpu) && ret; 9628 } 9629 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9630 9631 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9632 { 9633 int ret = kvm_skip_emulated_instruction(vcpu); 9634 9635 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9636 KVM_EXIT_AP_RESET_HOLD) && ret; 9637 } 9638 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9639 9640 #ifdef CONFIG_X86_64 9641 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9642 unsigned long clock_type) 9643 { 9644 struct kvm_clock_pairing clock_pairing; 9645 struct timespec64 ts; 9646 u64 cycle; 9647 int ret; 9648 9649 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9650 return -KVM_EOPNOTSUPP; 9651 9652 /* 9653 * When tsc is in permanent catchup mode guests won't be able to use 9654 * pvclock_read_retry loop to get consistent view of pvclock 9655 */ 9656 if (vcpu->arch.tsc_always_catchup) 9657 return -KVM_EOPNOTSUPP; 9658 9659 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9660 return -KVM_EOPNOTSUPP; 9661 9662 clock_pairing.sec = ts.tv_sec; 9663 clock_pairing.nsec = ts.tv_nsec; 9664 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9665 clock_pairing.flags = 0; 9666 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9667 9668 ret = 0; 9669 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9670 sizeof(struct kvm_clock_pairing))) 9671 ret = -KVM_EFAULT; 9672 9673 return ret; 9674 } 9675 #endif 9676 9677 /* 9678 * kvm_pv_kick_cpu_op: Kick a vcpu. 9679 * 9680 * @apicid - apicid of vcpu to be kicked. 9681 */ 9682 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9683 { 9684 /* 9685 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9686 * common code, e.g. for tracing. Defer initialization to the compiler. 9687 */ 9688 struct kvm_lapic_irq lapic_irq = { 9689 .delivery_mode = APIC_DM_REMRD, 9690 .dest_mode = APIC_DEST_PHYSICAL, 9691 .shorthand = APIC_DEST_NOSHORT, 9692 .dest_id = apicid, 9693 }; 9694 9695 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9696 } 9697 9698 bool kvm_apicv_activated(struct kvm *kvm) 9699 { 9700 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9701 } 9702 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9703 9704 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9705 { 9706 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9707 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9708 9709 return (vm_reasons | vcpu_reasons) == 0; 9710 } 9711 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9712 9713 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9714 enum kvm_apicv_inhibit reason, bool set) 9715 { 9716 if (set) 9717 __set_bit(reason, inhibits); 9718 else 9719 __clear_bit(reason, inhibits); 9720 9721 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9722 } 9723 9724 static void kvm_apicv_init(struct kvm *kvm) 9725 { 9726 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9727 9728 init_rwsem(&kvm->arch.apicv_update_lock); 9729 9730 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9731 9732 if (!enable_apicv) 9733 set_or_clear_apicv_inhibit(inhibits, 9734 APICV_INHIBIT_REASON_DISABLE, true); 9735 } 9736 9737 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9738 { 9739 struct kvm_vcpu *target = NULL; 9740 struct kvm_apic_map *map; 9741 9742 vcpu->stat.directed_yield_attempted++; 9743 9744 if (single_task_running()) 9745 goto no_yield; 9746 9747 rcu_read_lock(); 9748 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9749 9750 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9751 target = map->phys_map[dest_id]->vcpu; 9752 9753 rcu_read_unlock(); 9754 9755 if (!target || !READ_ONCE(target->ready)) 9756 goto no_yield; 9757 9758 /* Ignore requests to yield to self */ 9759 if (vcpu == target) 9760 goto no_yield; 9761 9762 if (kvm_vcpu_yield_to(target) <= 0) 9763 goto no_yield; 9764 9765 vcpu->stat.directed_yield_successful++; 9766 9767 no_yield: 9768 return; 9769 } 9770 9771 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9772 { 9773 u64 ret = vcpu->run->hypercall.ret; 9774 9775 if (!is_64_bit_mode(vcpu)) 9776 ret = (u32)ret; 9777 kvm_rax_write(vcpu, ret); 9778 ++vcpu->stat.hypercalls; 9779 return kvm_skip_emulated_instruction(vcpu); 9780 } 9781 9782 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9783 { 9784 unsigned long nr, a0, a1, a2, a3, ret; 9785 int op_64_bit; 9786 9787 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9788 return kvm_xen_hypercall(vcpu); 9789 9790 if (kvm_hv_hypercall_enabled(vcpu)) 9791 return kvm_hv_hypercall(vcpu); 9792 9793 nr = kvm_rax_read(vcpu); 9794 a0 = kvm_rbx_read(vcpu); 9795 a1 = kvm_rcx_read(vcpu); 9796 a2 = kvm_rdx_read(vcpu); 9797 a3 = kvm_rsi_read(vcpu); 9798 9799 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9800 9801 op_64_bit = is_64_bit_hypercall(vcpu); 9802 if (!op_64_bit) { 9803 nr &= 0xFFFFFFFF; 9804 a0 &= 0xFFFFFFFF; 9805 a1 &= 0xFFFFFFFF; 9806 a2 &= 0xFFFFFFFF; 9807 a3 &= 0xFFFFFFFF; 9808 } 9809 9810 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9811 ret = -KVM_EPERM; 9812 goto out; 9813 } 9814 9815 ret = -KVM_ENOSYS; 9816 9817 switch (nr) { 9818 case KVM_HC_VAPIC_POLL_IRQ: 9819 ret = 0; 9820 break; 9821 case KVM_HC_KICK_CPU: 9822 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9823 break; 9824 9825 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9826 kvm_sched_yield(vcpu, a1); 9827 ret = 0; 9828 break; 9829 #ifdef CONFIG_X86_64 9830 case KVM_HC_CLOCK_PAIRING: 9831 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9832 break; 9833 #endif 9834 case KVM_HC_SEND_IPI: 9835 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9836 break; 9837 9838 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9839 break; 9840 case KVM_HC_SCHED_YIELD: 9841 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9842 break; 9843 9844 kvm_sched_yield(vcpu, a0); 9845 ret = 0; 9846 break; 9847 case KVM_HC_MAP_GPA_RANGE: { 9848 u64 gpa = a0, npages = a1, attrs = a2; 9849 9850 ret = -KVM_ENOSYS; 9851 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9852 break; 9853 9854 if (!PAGE_ALIGNED(gpa) || !npages || 9855 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9856 ret = -KVM_EINVAL; 9857 break; 9858 } 9859 9860 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9861 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9862 vcpu->run->hypercall.args[0] = gpa; 9863 vcpu->run->hypercall.args[1] = npages; 9864 vcpu->run->hypercall.args[2] = attrs; 9865 vcpu->run->hypercall.flags = 0; 9866 if (op_64_bit) 9867 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 9868 9869 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 9870 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9871 return 0; 9872 } 9873 default: 9874 ret = -KVM_ENOSYS; 9875 break; 9876 } 9877 out: 9878 if (!op_64_bit) 9879 ret = (u32)ret; 9880 kvm_rax_write(vcpu, ret); 9881 9882 ++vcpu->stat.hypercalls; 9883 return kvm_skip_emulated_instruction(vcpu); 9884 } 9885 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9886 9887 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9888 { 9889 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9890 char instruction[3]; 9891 unsigned long rip = kvm_rip_read(vcpu); 9892 9893 /* 9894 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9895 * the pieces. 9896 */ 9897 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9898 ctxt->exception.error_code_valid = false; 9899 ctxt->exception.vector = UD_VECTOR; 9900 ctxt->have_exception = true; 9901 return X86EMUL_PROPAGATE_FAULT; 9902 } 9903 9904 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9905 9906 return emulator_write_emulated(ctxt, rip, instruction, 3, 9907 &ctxt->exception); 9908 } 9909 9910 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9911 { 9912 return vcpu->run->request_interrupt_window && 9913 likely(!pic_in_kernel(vcpu->kvm)); 9914 } 9915 9916 /* Called within kvm->srcu read side. */ 9917 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9918 { 9919 struct kvm_run *kvm_run = vcpu->run; 9920 9921 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9922 kvm_run->cr8 = kvm_get_cr8(vcpu); 9923 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9924 9925 kvm_run->ready_for_interrupt_injection = 9926 pic_in_kernel(vcpu->kvm) || 9927 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9928 9929 if (is_smm(vcpu)) 9930 kvm_run->flags |= KVM_RUN_X86_SMM; 9931 } 9932 9933 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9934 { 9935 int max_irr, tpr; 9936 9937 if (!kvm_x86_ops.update_cr8_intercept) 9938 return; 9939 9940 if (!lapic_in_kernel(vcpu)) 9941 return; 9942 9943 if (vcpu->arch.apic->apicv_active) 9944 return; 9945 9946 if (!vcpu->arch.apic->vapic_addr) 9947 max_irr = kvm_lapic_find_highest_irr(vcpu); 9948 else 9949 max_irr = -1; 9950 9951 if (max_irr != -1) 9952 max_irr >>= 4; 9953 9954 tpr = kvm_lapic_get_cr8(vcpu); 9955 9956 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9957 } 9958 9959 9960 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9961 { 9962 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9963 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9964 return 1; 9965 } 9966 9967 return kvm_x86_ops.nested_ops->check_events(vcpu); 9968 } 9969 9970 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9971 { 9972 /* 9973 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 9974 * exceptions don't report error codes. The presence of an error code 9975 * is carried with the exception and only stripped when the exception 9976 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 9977 * report an error code despite the CPU being in Real Mode. 9978 */ 9979 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 9980 9981 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9982 vcpu->arch.exception.has_error_code, 9983 vcpu->arch.exception.error_code, 9984 vcpu->arch.exception.injected); 9985 9986 static_call(kvm_x86_inject_exception)(vcpu); 9987 } 9988 9989 /* 9990 * Check for any event (interrupt or exception) that is ready to be injected, 9991 * and if there is at least one event, inject the event with the highest 9992 * priority. This handles both "pending" events, i.e. events that have never 9993 * been injected into the guest, and "injected" events, i.e. events that were 9994 * injected as part of a previous VM-Enter, but weren't successfully delivered 9995 * and need to be re-injected. 9996 * 9997 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9998 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9999 * be able to inject exceptions in the "middle" of an instruction, and so must 10000 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10001 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10002 * boundaries is necessary and correct. 10003 * 10004 * For simplicity, KVM uses a single path to inject all events (except events 10005 * that are injected directly from L1 to L2) and doesn't explicitly track 10006 * instruction boundaries for asynchronous events. However, because VM-Exits 10007 * that can occur during instruction execution typically result in KVM skipping 10008 * the instruction or injecting an exception, e.g. instruction and exception 10009 * intercepts, and because pending exceptions have higher priority than pending 10010 * interrupts, KVM still honors instruction boundaries in most scenarios. 10011 * 10012 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10013 * the instruction or inject an exception, then KVM can incorrecty inject a new 10014 * asynchrounous event if the event became pending after the CPU fetched the 10015 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10016 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10017 * injected on the restarted instruction instead of being deferred until the 10018 * instruction completes. 10019 * 10020 * In practice, this virtualization hole is unlikely to be observed by the 10021 * guest, and even less likely to cause functional problems. To detect the 10022 * hole, the guest would have to trigger an event on a side effect of an early 10023 * phase of instruction execution, e.g. on the instruction fetch from memory. 10024 * And for it to be a functional problem, the guest would need to depend on the 10025 * ordering between that side effect, the instruction completing, _and_ the 10026 * delivery of the asynchronous event. 10027 */ 10028 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10029 bool *req_immediate_exit) 10030 { 10031 bool can_inject; 10032 int r; 10033 10034 /* 10035 * Process nested events first, as nested VM-Exit supercedes event 10036 * re-injection. If there's an event queued for re-injection, it will 10037 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10038 */ 10039 if (is_guest_mode(vcpu)) 10040 r = kvm_check_nested_events(vcpu); 10041 else 10042 r = 0; 10043 10044 /* 10045 * Re-inject exceptions and events *especially* if immediate entry+exit 10046 * to/from L2 is needed, as any event that has already been injected 10047 * into L2 needs to complete its lifecycle before injecting a new event. 10048 * 10049 * Don't re-inject an NMI or interrupt if there is a pending exception. 10050 * This collision arises if an exception occurred while vectoring the 10051 * injected event, KVM intercepted said exception, and KVM ultimately 10052 * determined the fault belongs to the guest and queues the exception 10053 * for injection back into the guest. 10054 * 10055 * "Injected" interrupts can also collide with pending exceptions if 10056 * userspace ignores the "ready for injection" flag and blindly queues 10057 * an interrupt. In that case, prioritizing the exception is correct, 10058 * as the exception "occurred" before the exit to userspace. Trap-like 10059 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10060 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10061 * priority, they're only generated (pended) during instruction 10062 * execution, and interrupts are recognized at instruction boundaries. 10063 * Thus a pending fault-like exception means the fault occurred on the 10064 * *previous* instruction and must be serviced prior to recognizing any 10065 * new events in order to fully complete the previous instruction. 10066 */ 10067 if (vcpu->arch.exception.injected) 10068 kvm_inject_exception(vcpu); 10069 else if (kvm_is_exception_pending(vcpu)) 10070 ; /* see above */ 10071 else if (vcpu->arch.nmi_injected) 10072 static_call(kvm_x86_inject_nmi)(vcpu); 10073 else if (vcpu->arch.interrupt.injected) 10074 static_call(kvm_x86_inject_irq)(vcpu, true); 10075 10076 /* 10077 * Exceptions that morph to VM-Exits are handled above, and pending 10078 * exceptions on top of injected exceptions that do not VM-Exit should 10079 * either morph to #DF or, sadly, override the injected exception. 10080 */ 10081 WARN_ON_ONCE(vcpu->arch.exception.injected && 10082 vcpu->arch.exception.pending); 10083 10084 /* 10085 * Bail if immediate entry+exit to/from the guest is needed to complete 10086 * nested VM-Enter or event re-injection so that a different pending 10087 * event can be serviced (or if KVM needs to exit to userspace). 10088 * 10089 * Otherwise, continue processing events even if VM-Exit occurred. The 10090 * VM-Exit will have cleared exceptions that were meant for L2, but 10091 * there may now be events that can be injected into L1. 10092 */ 10093 if (r < 0) 10094 goto out; 10095 10096 /* 10097 * A pending exception VM-Exit should either result in nested VM-Exit 10098 * or force an immediate re-entry and exit to/from L2, and exception 10099 * VM-Exits cannot be injected (flag should _never_ be set). 10100 */ 10101 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10102 vcpu->arch.exception_vmexit.pending); 10103 10104 /* 10105 * New events, other than exceptions, cannot be injected if KVM needs 10106 * to re-inject a previous event. See above comments on re-injecting 10107 * for why pending exceptions get priority. 10108 */ 10109 can_inject = !kvm_event_needs_reinjection(vcpu); 10110 10111 if (vcpu->arch.exception.pending) { 10112 /* 10113 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10114 * value pushed on the stack. Trap-like exception and all #DBs 10115 * leave RF as-is (KVM follows Intel's behavior in this regard; 10116 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10117 * 10118 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10119 * describe the behavior of General Detect #DBs, which are 10120 * fault-like. They do _not_ set RF, a la code breakpoints. 10121 */ 10122 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10123 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10124 X86_EFLAGS_RF); 10125 10126 if (vcpu->arch.exception.vector == DB_VECTOR) { 10127 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10128 if (vcpu->arch.dr7 & DR7_GD) { 10129 vcpu->arch.dr7 &= ~DR7_GD; 10130 kvm_update_dr7(vcpu); 10131 } 10132 } 10133 10134 kvm_inject_exception(vcpu); 10135 10136 vcpu->arch.exception.pending = false; 10137 vcpu->arch.exception.injected = true; 10138 10139 can_inject = false; 10140 } 10141 10142 /* Don't inject interrupts if the user asked to avoid doing so */ 10143 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10144 return 0; 10145 10146 /* 10147 * Finally, inject interrupt events. If an event cannot be injected 10148 * due to architectural conditions (e.g. IF=0) a window-open exit 10149 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10150 * and can architecturally be injected, but we cannot do it right now: 10151 * an interrupt could have arrived just now and we have to inject it 10152 * as a vmexit, or there could already an event in the queue, which is 10153 * indicated by can_inject. In that case we request an immediate exit 10154 * in order to make progress and get back here for another iteration. 10155 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10156 */ 10157 #ifdef CONFIG_KVM_SMM 10158 if (vcpu->arch.smi_pending) { 10159 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10160 if (r < 0) 10161 goto out; 10162 if (r) { 10163 vcpu->arch.smi_pending = false; 10164 ++vcpu->arch.smi_count; 10165 enter_smm(vcpu); 10166 can_inject = false; 10167 } else 10168 static_call(kvm_x86_enable_smi_window)(vcpu); 10169 } 10170 #endif 10171 10172 if (vcpu->arch.nmi_pending) { 10173 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10174 if (r < 0) 10175 goto out; 10176 if (r) { 10177 --vcpu->arch.nmi_pending; 10178 vcpu->arch.nmi_injected = true; 10179 static_call(kvm_x86_inject_nmi)(vcpu); 10180 can_inject = false; 10181 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10182 } 10183 if (vcpu->arch.nmi_pending) 10184 static_call(kvm_x86_enable_nmi_window)(vcpu); 10185 } 10186 10187 if (kvm_cpu_has_injectable_intr(vcpu)) { 10188 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10189 if (r < 0) 10190 goto out; 10191 if (r) { 10192 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10193 static_call(kvm_x86_inject_irq)(vcpu, false); 10194 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10195 } 10196 if (kvm_cpu_has_injectable_intr(vcpu)) 10197 static_call(kvm_x86_enable_irq_window)(vcpu); 10198 } 10199 10200 if (is_guest_mode(vcpu) && 10201 kvm_x86_ops.nested_ops->has_events && 10202 kvm_x86_ops.nested_ops->has_events(vcpu)) 10203 *req_immediate_exit = true; 10204 10205 /* 10206 * KVM must never queue a new exception while injecting an event; KVM 10207 * is done emulating and should only propagate the to-be-injected event 10208 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10209 * infinite loop as KVM will bail from VM-Enter to inject the pending 10210 * exception and start the cycle all over. 10211 * 10212 * Exempt triple faults as they have special handling and won't put the 10213 * vCPU into an infinite loop. Triple fault can be queued when running 10214 * VMX without unrestricted guest, as that requires KVM to emulate Real 10215 * Mode events (see kvm_inject_realmode_interrupt()). 10216 */ 10217 WARN_ON_ONCE(vcpu->arch.exception.pending || 10218 vcpu->arch.exception_vmexit.pending); 10219 return 0; 10220 10221 out: 10222 if (r == -EBUSY) { 10223 *req_immediate_exit = true; 10224 r = 0; 10225 } 10226 return r; 10227 } 10228 10229 static void process_nmi(struct kvm_vcpu *vcpu) 10230 { 10231 unsigned int limit; 10232 10233 /* 10234 * x86 is limited to one NMI pending, but because KVM can't react to 10235 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10236 * scheduled out, KVM needs to play nice with two queued NMIs showing 10237 * up at the same time. To handle this scenario, allow two NMIs to be 10238 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10239 * waiting for a previous NMI injection to complete (which effectively 10240 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10241 * will request an NMI window to handle the second NMI. 10242 */ 10243 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10244 limit = 1; 10245 else 10246 limit = 2; 10247 10248 /* 10249 * Adjust the limit to account for pending virtual NMIs, which aren't 10250 * tracked in vcpu->arch.nmi_pending. 10251 */ 10252 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10253 limit--; 10254 10255 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10256 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10257 10258 if (vcpu->arch.nmi_pending && 10259 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10260 vcpu->arch.nmi_pending--; 10261 10262 if (vcpu->arch.nmi_pending) 10263 kvm_make_request(KVM_REQ_EVENT, vcpu); 10264 } 10265 10266 /* Return total number of NMIs pending injection to the VM */ 10267 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10268 { 10269 return vcpu->arch.nmi_pending + 10270 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10271 } 10272 10273 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10274 unsigned long *vcpu_bitmap) 10275 { 10276 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10277 } 10278 10279 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10280 { 10281 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10282 } 10283 10284 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10285 { 10286 struct kvm_lapic *apic = vcpu->arch.apic; 10287 bool activate; 10288 10289 if (!lapic_in_kernel(vcpu)) 10290 return; 10291 10292 down_read(&vcpu->kvm->arch.apicv_update_lock); 10293 preempt_disable(); 10294 10295 /* Do not activate APICV when APIC is disabled */ 10296 activate = kvm_vcpu_apicv_activated(vcpu) && 10297 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10298 10299 if (apic->apicv_active == activate) 10300 goto out; 10301 10302 apic->apicv_active = activate; 10303 kvm_apic_update_apicv(vcpu); 10304 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10305 10306 /* 10307 * When APICv gets disabled, we may still have injected interrupts 10308 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10309 * still active when the interrupt got accepted. Make sure 10310 * kvm_check_and_inject_events() is called to check for that. 10311 */ 10312 if (!apic->apicv_active) 10313 kvm_make_request(KVM_REQ_EVENT, vcpu); 10314 10315 out: 10316 preempt_enable(); 10317 up_read(&vcpu->kvm->arch.apicv_update_lock); 10318 } 10319 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10320 10321 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10322 { 10323 if (!lapic_in_kernel(vcpu)) 10324 return; 10325 10326 /* 10327 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10328 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10329 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10330 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10331 * this case so that KVM can the AVIC doorbell to inject interrupts to 10332 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10333 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10334 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10335 * access page is sticky. 10336 */ 10337 if (apic_x2apic_mode(vcpu->arch.apic) && 10338 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10339 kvm_inhibit_apic_access_page(vcpu); 10340 10341 __kvm_vcpu_update_apicv(vcpu); 10342 } 10343 10344 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10345 enum kvm_apicv_inhibit reason, bool set) 10346 { 10347 unsigned long old, new; 10348 10349 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10350 10351 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10352 return; 10353 10354 old = new = kvm->arch.apicv_inhibit_reasons; 10355 10356 set_or_clear_apicv_inhibit(&new, reason, set); 10357 10358 if (!!old != !!new) { 10359 /* 10360 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10361 * false positives in the sanity check WARN in svm_vcpu_run(). 10362 * This task will wait for all vCPUs to ack the kick IRQ before 10363 * updating apicv_inhibit_reasons, and all other vCPUs will 10364 * block on acquiring apicv_update_lock so that vCPUs can't 10365 * redo svm_vcpu_run() without seeing the new inhibit state. 10366 * 10367 * Note, holding apicv_update_lock and taking it in the read 10368 * side (handling the request) also prevents other vCPUs from 10369 * servicing the request with a stale apicv_inhibit_reasons. 10370 */ 10371 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10372 kvm->arch.apicv_inhibit_reasons = new; 10373 if (new) { 10374 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10375 int idx = srcu_read_lock(&kvm->srcu); 10376 10377 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10378 srcu_read_unlock(&kvm->srcu, idx); 10379 } 10380 } else { 10381 kvm->arch.apicv_inhibit_reasons = new; 10382 } 10383 } 10384 10385 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10386 enum kvm_apicv_inhibit reason, bool set) 10387 { 10388 if (!enable_apicv) 10389 return; 10390 10391 down_write(&kvm->arch.apicv_update_lock); 10392 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10393 up_write(&kvm->arch.apicv_update_lock); 10394 } 10395 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10396 10397 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10398 { 10399 if (!kvm_apic_present(vcpu)) 10400 return; 10401 10402 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10403 10404 if (irqchip_split(vcpu->kvm)) 10405 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10406 else { 10407 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10408 if (ioapic_in_kernel(vcpu->kvm)) 10409 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10410 } 10411 10412 if (is_guest_mode(vcpu)) 10413 vcpu->arch.load_eoi_exitmap_pending = true; 10414 else 10415 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10416 } 10417 10418 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10419 { 10420 u64 eoi_exit_bitmap[4]; 10421 10422 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10423 return; 10424 10425 if (to_hv_vcpu(vcpu)) { 10426 bitmap_or((ulong *)eoi_exit_bitmap, 10427 vcpu->arch.ioapic_handled_vectors, 10428 to_hv_synic(vcpu)->vec_bitmap, 256); 10429 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10430 return; 10431 } 10432 10433 static_call_cond(kvm_x86_load_eoi_exitmap)( 10434 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10435 } 10436 10437 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10438 unsigned long start, unsigned long end) 10439 { 10440 unsigned long apic_address; 10441 10442 /* 10443 * The physical address of apic access page is stored in the VMCS. 10444 * Update it when it becomes invalid. 10445 */ 10446 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10447 if (start <= apic_address && apic_address < end) 10448 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10449 } 10450 10451 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10452 { 10453 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10454 } 10455 10456 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10457 { 10458 if (!lapic_in_kernel(vcpu)) 10459 return; 10460 10461 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10462 } 10463 10464 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10465 { 10466 smp_send_reschedule(vcpu->cpu); 10467 } 10468 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10469 10470 /* 10471 * Called within kvm->srcu read side. 10472 * Returns 1 to let vcpu_run() continue the guest execution loop without 10473 * exiting to the userspace. Otherwise, the value will be returned to the 10474 * userspace. 10475 */ 10476 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10477 { 10478 int r; 10479 bool req_int_win = 10480 dm_request_for_irq_injection(vcpu) && 10481 kvm_cpu_accept_dm_intr(vcpu); 10482 fastpath_t exit_fastpath; 10483 10484 bool req_immediate_exit = false; 10485 10486 if (kvm_request_pending(vcpu)) { 10487 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10488 r = -EIO; 10489 goto out; 10490 } 10491 10492 if (kvm_dirty_ring_check_request(vcpu)) { 10493 r = 0; 10494 goto out; 10495 } 10496 10497 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10498 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10499 r = 0; 10500 goto out; 10501 } 10502 } 10503 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10504 kvm_mmu_free_obsolete_roots(vcpu); 10505 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10506 __kvm_migrate_timers(vcpu); 10507 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10508 kvm_update_masterclock(vcpu->kvm); 10509 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10510 kvm_gen_kvmclock_update(vcpu); 10511 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10512 r = kvm_guest_time_update(vcpu); 10513 if (unlikely(r)) 10514 goto out; 10515 } 10516 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10517 kvm_mmu_sync_roots(vcpu); 10518 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10519 kvm_mmu_load_pgd(vcpu); 10520 10521 /* 10522 * Note, the order matters here, as flushing "all" TLB entries 10523 * also flushes the "current" TLB entries, i.e. servicing the 10524 * flush "all" will clear any request to flush "current". 10525 */ 10526 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10527 kvm_vcpu_flush_tlb_all(vcpu); 10528 10529 kvm_service_local_tlb_flush_requests(vcpu); 10530 10531 /* 10532 * Fall back to a "full" guest flush if Hyper-V's precise 10533 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10534 * the flushes are considered "remote" and not "local" because 10535 * the requests can be initiated from other vCPUs. 10536 */ 10537 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10538 kvm_hv_vcpu_flush_tlb(vcpu)) 10539 kvm_vcpu_flush_tlb_guest(vcpu); 10540 10541 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10542 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10543 r = 0; 10544 goto out; 10545 } 10546 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10547 if (is_guest_mode(vcpu)) 10548 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10549 10550 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10551 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10552 vcpu->mmio_needed = 0; 10553 r = 0; 10554 goto out; 10555 } 10556 } 10557 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10558 /* Page is swapped out. Do synthetic halt */ 10559 vcpu->arch.apf.halted = true; 10560 r = 1; 10561 goto out; 10562 } 10563 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10564 record_steal_time(vcpu); 10565 #ifdef CONFIG_KVM_SMM 10566 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10567 process_smi(vcpu); 10568 #endif 10569 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10570 process_nmi(vcpu); 10571 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10572 kvm_pmu_handle_event(vcpu); 10573 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10574 kvm_pmu_deliver_pmi(vcpu); 10575 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10576 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10577 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10578 vcpu->arch.ioapic_handled_vectors)) { 10579 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10580 vcpu->run->eoi.vector = 10581 vcpu->arch.pending_ioapic_eoi; 10582 r = 0; 10583 goto out; 10584 } 10585 } 10586 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10587 vcpu_scan_ioapic(vcpu); 10588 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10589 vcpu_load_eoi_exitmap(vcpu); 10590 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10591 kvm_vcpu_reload_apic_access_page(vcpu); 10592 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10593 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10594 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10595 vcpu->run->system_event.ndata = 0; 10596 r = 0; 10597 goto out; 10598 } 10599 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10600 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10601 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10602 vcpu->run->system_event.ndata = 0; 10603 r = 0; 10604 goto out; 10605 } 10606 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10607 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10608 10609 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10610 vcpu->run->hyperv = hv_vcpu->exit; 10611 r = 0; 10612 goto out; 10613 } 10614 10615 /* 10616 * KVM_REQ_HV_STIMER has to be processed after 10617 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10618 * depend on the guest clock being up-to-date 10619 */ 10620 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10621 kvm_hv_process_stimers(vcpu); 10622 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10623 kvm_vcpu_update_apicv(vcpu); 10624 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10625 kvm_check_async_pf_completion(vcpu); 10626 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10627 static_call(kvm_x86_msr_filter_changed)(vcpu); 10628 10629 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10630 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10631 } 10632 10633 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10634 kvm_xen_has_interrupt(vcpu)) { 10635 ++vcpu->stat.req_event; 10636 r = kvm_apic_accept_events(vcpu); 10637 if (r < 0) { 10638 r = 0; 10639 goto out; 10640 } 10641 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10642 r = 1; 10643 goto out; 10644 } 10645 10646 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10647 if (r < 0) { 10648 r = 0; 10649 goto out; 10650 } 10651 if (req_int_win) 10652 static_call(kvm_x86_enable_irq_window)(vcpu); 10653 10654 if (kvm_lapic_enabled(vcpu)) { 10655 update_cr8_intercept(vcpu); 10656 kvm_lapic_sync_to_vapic(vcpu); 10657 } 10658 } 10659 10660 r = kvm_mmu_reload(vcpu); 10661 if (unlikely(r)) { 10662 goto cancel_injection; 10663 } 10664 10665 preempt_disable(); 10666 10667 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10668 10669 /* 10670 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10671 * IPI are then delayed after guest entry, which ensures that they 10672 * result in virtual interrupt delivery. 10673 */ 10674 local_irq_disable(); 10675 10676 /* Store vcpu->apicv_active before vcpu->mode. */ 10677 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10678 10679 kvm_vcpu_srcu_read_unlock(vcpu); 10680 10681 /* 10682 * 1) We should set ->mode before checking ->requests. Please see 10683 * the comment in kvm_vcpu_exiting_guest_mode(). 10684 * 10685 * 2) For APICv, we should set ->mode before checking PID.ON. This 10686 * pairs with the memory barrier implicit in pi_test_and_set_on 10687 * (see vmx_deliver_posted_interrupt). 10688 * 10689 * 3) This also orders the write to mode from any reads to the page 10690 * tables done while the VCPU is running. Please see the comment 10691 * in kvm_flush_remote_tlbs. 10692 */ 10693 smp_mb__after_srcu_read_unlock(); 10694 10695 /* 10696 * Process pending posted interrupts to handle the case where the 10697 * notification IRQ arrived in the host, or was never sent (because the 10698 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10699 * status, KVM doesn't update assigned devices when APICv is inhibited, 10700 * i.e. they can post interrupts even if APICv is temporarily disabled. 10701 */ 10702 if (kvm_lapic_enabled(vcpu)) 10703 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10704 10705 if (kvm_vcpu_exit_request(vcpu)) { 10706 vcpu->mode = OUTSIDE_GUEST_MODE; 10707 smp_wmb(); 10708 local_irq_enable(); 10709 preempt_enable(); 10710 kvm_vcpu_srcu_read_lock(vcpu); 10711 r = 1; 10712 goto cancel_injection; 10713 } 10714 10715 if (req_immediate_exit) { 10716 kvm_make_request(KVM_REQ_EVENT, vcpu); 10717 static_call(kvm_x86_request_immediate_exit)(vcpu); 10718 } 10719 10720 fpregs_assert_state_consistent(); 10721 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10722 switch_fpu_return(); 10723 10724 if (vcpu->arch.guest_fpu.xfd_err) 10725 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10726 10727 if (unlikely(vcpu->arch.switch_db_regs)) { 10728 set_debugreg(0, 7); 10729 set_debugreg(vcpu->arch.eff_db[0], 0); 10730 set_debugreg(vcpu->arch.eff_db[1], 1); 10731 set_debugreg(vcpu->arch.eff_db[2], 2); 10732 set_debugreg(vcpu->arch.eff_db[3], 3); 10733 } else if (unlikely(hw_breakpoint_active())) { 10734 set_debugreg(0, 7); 10735 } 10736 10737 guest_timing_enter_irqoff(); 10738 10739 for (;;) { 10740 /* 10741 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10742 * update must kick and wait for all vCPUs before toggling the 10743 * per-VM state, and responsing vCPUs must wait for the update 10744 * to complete before servicing KVM_REQ_APICV_UPDATE. 10745 */ 10746 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10747 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10748 10749 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10750 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10751 break; 10752 10753 if (kvm_lapic_enabled(vcpu)) 10754 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10755 10756 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10757 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10758 break; 10759 } 10760 10761 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 10762 ++vcpu->stat.exits; 10763 } 10764 10765 /* 10766 * Do this here before restoring debug registers on the host. And 10767 * since we do this before handling the vmexit, a DR access vmexit 10768 * can (a) read the correct value of the debug registers, (b) set 10769 * KVM_DEBUGREG_WONT_EXIT again. 10770 */ 10771 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10772 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10773 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10774 kvm_update_dr0123(vcpu); 10775 kvm_update_dr7(vcpu); 10776 } 10777 10778 /* 10779 * If the guest has used debug registers, at least dr7 10780 * will be disabled while returning to the host. 10781 * If we don't have active breakpoints in the host, we don't 10782 * care about the messed up debug address registers. But if 10783 * we have some of them active, restore the old state. 10784 */ 10785 if (hw_breakpoint_active()) 10786 hw_breakpoint_restore(); 10787 10788 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10789 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10790 10791 vcpu->mode = OUTSIDE_GUEST_MODE; 10792 smp_wmb(); 10793 10794 /* 10795 * Sync xfd before calling handle_exit_irqoff() which may 10796 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10797 * in #NM irqoff handler). 10798 */ 10799 if (vcpu->arch.xfd_no_write_intercept) 10800 fpu_sync_guest_vmexit_xfd_state(); 10801 10802 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10803 10804 if (vcpu->arch.guest_fpu.xfd_err) 10805 wrmsrl(MSR_IA32_XFD_ERR, 0); 10806 10807 /* 10808 * Consume any pending interrupts, including the possible source of 10809 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10810 * An instruction is required after local_irq_enable() to fully unblock 10811 * interrupts on processors that implement an interrupt shadow, the 10812 * stat.exits increment will do nicely. 10813 */ 10814 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10815 local_irq_enable(); 10816 ++vcpu->stat.exits; 10817 local_irq_disable(); 10818 kvm_after_interrupt(vcpu); 10819 10820 /* 10821 * Wait until after servicing IRQs to account guest time so that any 10822 * ticks that occurred while running the guest are properly accounted 10823 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10824 * of accounting via context tracking, but the loss of accuracy is 10825 * acceptable for all known use cases. 10826 */ 10827 guest_timing_exit_irqoff(); 10828 10829 local_irq_enable(); 10830 preempt_enable(); 10831 10832 kvm_vcpu_srcu_read_lock(vcpu); 10833 10834 /* 10835 * Profile KVM exit RIPs: 10836 */ 10837 if (unlikely(prof_on == KVM_PROFILING)) { 10838 unsigned long rip = kvm_rip_read(vcpu); 10839 profile_hit(KVM_PROFILING, (void *)rip); 10840 } 10841 10842 if (unlikely(vcpu->arch.tsc_always_catchup)) 10843 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10844 10845 if (vcpu->arch.apic_attention) 10846 kvm_lapic_sync_from_vapic(vcpu); 10847 10848 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10849 return r; 10850 10851 cancel_injection: 10852 if (req_immediate_exit) 10853 kvm_make_request(KVM_REQ_EVENT, vcpu); 10854 static_call(kvm_x86_cancel_injection)(vcpu); 10855 if (unlikely(vcpu->arch.apic_attention)) 10856 kvm_lapic_sync_from_vapic(vcpu); 10857 out: 10858 return r; 10859 } 10860 10861 /* Called within kvm->srcu read side. */ 10862 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10863 { 10864 bool hv_timer; 10865 10866 if (!kvm_arch_vcpu_runnable(vcpu)) { 10867 /* 10868 * Switch to the software timer before halt-polling/blocking as 10869 * the guest's timer may be a break event for the vCPU, and the 10870 * hypervisor timer runs only when the CPU is in guest mode. 10871 * Switch before halt-polling so that KVM recognizes an expired 10872 * timer before blocking. 10873 */ 10874 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10875 if (hv_timer) 10876 kvm_lapic_switch_to_sw_timer(vcpu); 10877 10878 kvm_vcpu_srcu_read_unlock(vcpu); 10879 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10880 kvm_vcpu_halt(vcpu); 10881 else 10882 kvm_vcpu_block(vcpu); 10883 kvm_vcpu_srcu_read_lock(vcpu); 10884 10885 if (hv_timer) 10886 kvm_lapic_switch_to_hv_timer(vcpu); 10887 10888 /* 10889 * If the vCPU is not runnable, a signal or another host event 10890 * of some kind is pending; service it without changing the 10891 * vCPU's activity state. 10892 */ 10893 if (!kvm_arch_vcpu_runnable(vcpu)) 10894 return 1; 10895 } 10896 10897 /* 10898 * Evaluate nested events before exiting the halted state. This allows 10899 * the halt state to be recorded properly in the VMCS12's activity 10900 * state field (AMD does not have a similar field and a VM-Exit always 10901 * causes a spurious wakeup from HLT). 10902 */ 10903 if (is_guest_mode(vcpu)) { 10904 if (kvm_check_nested_events(vcpu) < 0) 10905 return 0; 10906 } 10907 10908 if (kvm_apic_accept_events(vcpu) < 0) 10909 return 0; 10910 switch(vcpu->arch.mp_state) { 10911 case KVM_MP_STATE_HALTED: 10912 case KVM_MP_STATE_AP_RESET_HOLD: 10913 vcpu->arch.pv.pv_unhalted = false; 10914 vcpu->arch.mp_state = 10915 KVM_MP_STATE_RUNNABLE; 10916 fallthrough; 10917 case KVM_MP_STATE_RUNNABLE: 10918 vcpu->arch.apf.halted = false; 10919 break; 10920 case KVM_MP_STATE_INIT_RECEIVED: 10921 break; 10922 default: 10923 WARN_ON_ONCE(1); 10924 break; 10925 } 10926 return 1; 10927 } 10928 10929 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10930 { 10931 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10932 !vcpu->arch.apf.halted); 10933 } 10934 10935 /* Called within kvm->srcu read side. */ 10936 static int vcpu_run(struct kvm_vcpu *vcpu) 10937 { 10938 int r; 10939 10940 vcpu->arch.l1tf_flush_l1d = true; 10941 10942 for (;;) { 10943 /* 10944 * If another guest vCPU requests a PV TLB flush in the middle 10945 * of instruction emulation, the rest of the emulation could 10946 * use a stale page translation. Assume that any code after 10947 * this point can start executing an instruction. 10948 */ 10949 vcpu->arch.at_instruction_boundary = false; 10950 if (kvm_vcpu_running(vcpu)) { 10951 r = vcpu_enter_guest(vcpu); 10952 } else { 10953 r = vcpu_block(vcpu); 10954 } 10955 10956 if (r <= 0) 10957 break; 10958 10959 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10960 if (kvm_xen_has_pending_events(vcpu)) 10961 kvm_xen_inject_pending_events(vcpu); 10962 10963 if (kvm_cpu_has_pending_timer(vcpu)) 10964 kvm_inject_pending_timer_irqs(vcpu); 10965 10966 if (dm_request_for_irq_injection(vcpu) && 10967 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10968 r = 0; 10969 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10970 ++vcpu->stat.request_irq_exits; 10971 break; 10972 } 10973 10974 if (__xfer_to_guest_mode_work_pending()) { 10975 kvm_vcpu_srcu_read_unlock(vcpu); 10976 r = xfer_to_guest_mode_handle_work(vcpu); 10977 kvm_vcpu_srcu_read_lock(vcpu); 10978 if (r) 10979 return r; 10980 } 10981 } 10982 10983 return r; 10984 } 10985 10986 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10987 { 10988 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10989 } 10990 10991 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10992 { 10993 BUG_ON(!vcpu->arch.pio.count); 10994 10995 return complete_emulated_io(vcpu); 10996 } 10997 10998 /* 10999 * Implements the following, as a state machine: 11000 * 11001 * read: 11002 * for each fragment 11003 * for each mmio piece in the fragment 11004 * write gpa, len 11005 * exit 11006 * copy data 11007 * execute insn 11008 * 11009 * write: 11010 * for each fragment 11011 * for each mmio piece in the fragment 11012 * write gpa, len 11013 * copy data 11014 * exit 11015 */ 11016 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11017 { 11018 struct kvm_run *run = vcpu->run; 11019 struct kvm_mmio_fragment *frag; 11020 unsigned len; 11021 11022 BUG_ON(!vcpu->mmio_needed); 11023 11024 /* Complete previous fragment */ 11025 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11026 len = min(8u, frag->len); 11027 if (!vcpu->mmio_is_write) 11028 memcpy(frag->data, run->mmio.data, len); 11029 11030 if (frag->len <= 8) { 11031 /* Switch to the next fragment. */ 11032 frag++; 11033 vcpu->mmio_cur_fragment++; 11034 } else { 11035 /* Go forward to the next mmio piece. */ 11036 frag->data += len; 11037 frag->gpa += len; 11038 frag->len -= len; 11039 } 11040 11041 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11042 vcpu->mmio_needed = 0; 11043 11044 /* FIXME: return into emulator if single-stepping. */ 11045 if (vcpu->mmio_is_write) 11046 return 1; 11047 vcpu->mmio_read_completed = 1; 11048 return complete_emulated_io(vcpu); 11049 } 11050 11051 run->exit_reason = KVM_EXIT_MMIO; 11052 run->mmio.phys_addr = frag->gpa; 11053 if (vcpu->mmio_is_write) 11054 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11055 run->mmio.len = min(8u, frag->len); 11056 run->mmio.is_write = vcpu->mmio_is_write; 11057 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11058 return 0; 11059 } 11060 11061 /* Swap (qemu) user FPU context for the guest FPU context. */ 11062 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11063 { 11064 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11065 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11066 trace_kvm_fpu(1); 11067 } 11068 11069 /* When vcpu_run ends, restore user space FPU context. */ 11070 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11071 { 11072 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11073 ++vcpu->stat.fpu_reload; 11074 trace_kvm_fpu(0); 11075 } 11076 11077 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11078 { 11079 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11080 struct kvm_run *kvm_run = vcpu->run; 11081 int r; 11082 11083 vcpu_load(vcpu); 11084 kvm_sigset_activate(vcpu); 11085 kvm_run->flags = 0; 11086 kvm_load_guest_fpu(vcpu); 11087 11088 kvm_vcpu_srcu_read_lock(vcpu); 11089 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11090 if (kvm_run->immediate_exit) { 11091 r = -EINTR; 11092 goto out; 11093 } 11094 /* 11095 * It should be impossible for the hypervisor timer to be in 11096 * use before KVM has ever run the vCPU. 11097 */ 11098 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 11099 11100 kvm_vcpu_srcu_read_unlock(vcpu); 11101 kvm_vcpu_block(vcpu); 11102 kvm_vcpu_srcu_read_lock(vcpu); 11103 11104 if (kvm_apic_accept_events(vcpu) < 0) { 11105 r = 0; 11106 goto out; 11107 } 11108 r = -EAGAIN; 11109 if (signal_pending(current)) { 11110 r = -EINTR; 11111 kvm_run->exit_reason = KVM_EXIT_INTR; 11112 ++vcpu->stat.signal_exits; 11113 } 11114 goto out; 11115 } 11116 11117 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11118 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11119 r = -EINVAL; 11120 goto out; 11121 } 11122 11123 if (kvm_run->kvm_dirty_regs) { 11124 r = sync_regs(vcpu); 11125 if (r != 0) 11126 goto out; 11127 } 11128 11129 /* re-sync apic's tpr */ 11130 if (!lapic_in_kernel(vcpu)) { 11131 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11132 r = -EINVAL; 11133 goto out; 11134 } 11135 } 11136 11137 /* 11138 * If userspace set a pending exception and L2 is active, convert it to 11139 * a pending VM-Exit if L1 wants to intercept the exception. 11140 */ 11141 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11142 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11143 ex->error_code)) { 11144 kvm_queue_exception_vmexit(vcpu, ex->vector, 11145 ex->has_error_code, ex->error_code, 11146 ex->has_payload, ex->payload); 11147 ex->injected = false; 11148 ex->pending = false; 11149 } 11150 vcpu->arch.exception_from_userspace = false; 11151 11152 if (unlikely(vcpu->arch.complete_userspace_io)) { 11153 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11154 vcpu->arch.complete_userspace_io = NULL; 11155 r = cui(vcpu); 11156 if (r <= 0) 11157 goto out; 11158 } else { 11159 WARN_ON_ONCE(vcpu->arch.pio.count); 11160 WARN_ON_ONCE(vcpu->mmio_needed); 11161 } 11162 11163 if (kvm_run->immediate_exit) { 11164 r = -EINTR; 11165 goto out; 11166 } 11167 11168 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11169 if (r <= 0) 11170 goto out; 11171 11172 r = vcpu_run(vcpu); 11173 11174 out: 11175 kvm_put_guest_fpu(vcpu); 11176 if (kvm_run->kvm_valid_regs) 11177 store_regs(vcpu); 11178 post_kvm_run_save(vcpu); 11179 kvm_vcpu_srcu_read_unlock(vcpu); 11180 11181 kvm_sigset_deactivate(vcpu); 11182 vcpu_put(vcpu); 11183 return r; 11184 } 11185 11186 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11187 { 11188 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11189 /* 11190 * We are here if userspace calls get_regs() in the middle of 11191 * instruction emulation. Registers state needs to be copied 11192 * back from emulation context to vcpu. Userspace shouldn't do 11193 * that usually, but some bad designed PV devices (vmware 11194 * backdoor interface) need this to work 11195 */ 11196 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11197 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11198 } 11199 regs->rax = kvm_rax_read(vcpu); 11200 regs->rbx = kvm_rbx_read(vcpu); 11201 regs->rcx = kvm_rcx_read(vcpu); 11202 regs->rdx = kvm_rdx_read(vcpu); 11203 regs->rsi = kvm_rsi_read(vcpu); 11204 regs->rdi = kvm_rdi_read(vcpu); 11205 regs->rsp = kvm_rsp_read(vcpu); 11206 regs->rbp = kvm_rbp_read(vcpu); 11207 #ifdef CONFIG_X86_64 11208 regs->r8 = kvm_r8_read(vcpu); 11209 regs->r9 = kvm_r9_read(vcpu); 11210 regs->r10 = kvm_r10_read(vcpu); 11211 regs->r11 = kvm_r11_read(vcpu); 11212 regs->r12 = kvm_r12_read(vcpu); 11213 regs->r13 = kvm_r13_read(vcpu); 11214 regs->r14 = kvm_r14_read(vcpu); 11215 regs->r15 = kvm_r15_read(vcpu); 11216 #endif 11217 11218 regs->rip = kvm_rip_read(vcpu); 11219 regs->rflags = kvm_get_rflags(vcpu); 11220 } 11221 11222 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11223 { 11224 vcpu_load(vcpu); 11225 __get_regs(vcpu, regs); 11226 vcpu_put(vcpu); 11227 return 0; 11228 } 11229 11230 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11231 { 11232 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11233 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11234 11235 kvm_rax_write(vcpu, regs->rax); 11236 kvm_rbx_write(vcpu, regs->rbx); 11237 kvm_rcx_write(vcpu, regs->rcx); 11238 kvm_rdx_write(vcpu, regs->rdx); 11239 kvm_rsi_write(vcpu, regs->rsi); 11240 kvm_rdi_write(vcpu, regs->rdi); 11241 kvm_rsp_write(vcpu, regs->rsp); 11242 kvm_rbp_write(vcpu, regs->rbp); 11243 #ifdef CONFIG_X86_64 11244 kvm_r8_write(vcpu, regs->r8); 11245 kvm_r9_write(vcpu, regs->r9); 11246 kvm_r10_write(vcpu, regs->r10); 11247 kvm_r11_write(vcpu, regs->r11); 11248 kvm_r12_write(vcpu, regs->r12); 11249 kvm_r13_write(vcpu, regs->r13); 11250 kvm_r14_write(vcpu, regs->r14); 11251 kvm_r15_write(vcpu, regs->r15); 11252 #endif 11253 11254 kvm_rip_write(vcpu, regs->rip); 11255 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11256 11257 vcpu->arch.exception.pending = false; 11258 vcpu->arch.exception_vmexit.pending = false; 11259 11260 kvm_make_request(KVM_REQ_EVENT, vcpu); 11261 } 11262 11263 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11264 { 11265 vcpu_load(vcpu); 11266 __set_regs(vcpu, regs); 11267 vcpu_put(vcpu); 11268 return 0; 11269 } 11270 11271 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11272 { 11273 struct desc_ptr dt; 11274 11275 if (vcpu->arch.guest_state_protected) 11276 goto skip_protected_regs; 11277 11278 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11279 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11280 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11281 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11282 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11283 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11284 11285 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11286 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11287 11288 static_call(kvm_x86_get_idt)(vcpu, &dt); 11289 sregs->idt.limit = dt.size; 11290 sregs->idt.base = dt.address; 11291 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11292 sregs->gdt.limit = dt.size; 11293 sregs->gdt.base = dt.address; 11294 11295 sregs->cr2 = vcpu->arch.cr2; 11296 sregs->cr3 = kvm_read_cr3(vcpu); 11297 11298 skip_protected_regs: 11299 sregs->cr0 = kvm_read_cr0(vcpu); 11300 sregs->cr4 = kvm_read_cr4(vcpu); 11301 sregs->cr8 = kvm_get_cr8(vcpu); 11302 sregs->efer = vcpu->arch.efer; 11303 sregs->apic_base = kvm_get_apic_base(vcpu); 11304 } 11305 11306 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11307 { 11308 __get_sregs_common(vcpu, sregs); 11309 11310 if (vcpu->arch.guest_state_protected) 11311 return; 11312 11313 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11314 set_bit(vcpu->arch.interrupt.nr, 11315 (unsigned long *)sregs->interrupt_bitmap); 11316 } 11317 11318 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11319 { 11320 int i; 11321 11322 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11323 11324 if (vcpu->arch.guest_state_protected) 11325 return; 11326 11327 if (is_pae_paging(vcpu)) { 11328 for (i = 0 ; i < 4 ; i++) 11329 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11330 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11331 } 11332 } 11333 11334 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11335 struct kvm_sregs *sregs) 11336 { 11337 vcpu_load(vcpu); 11338 __get_sregs(vcpu, sregs); 11339 vcpu_put(vcpu); 11340 return 0; 11341 } 11342 11343 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11344 struct kvm_mp_state *mp_state) 11345 { 11346 int r; 11347 11348 vcpu_load(vcpu); 11349 if (kvm_mpx_supported()) 11350 kvm_load_guest_fpu(vcpu); 11351 11352 r = kvm_apic_accept_events(vcpu); 11353 if (r < 0) 11354 goto out; 11355 r = 0; 11356 11357 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11358 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11359 vcpu->arch.pv.pv_unhalted) 11360 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11361 else 11362 mp_state->mp_state = vcpu->arch.mp_state; 11363 11364 out: 11365 if (kvm_mpx_supported()) 11366 kvm_put_guest_fpu(vcpu); 11367 vcpu_put(vcpu); 11368 return r; 11369 } 11370 11371 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11372 struct kvm_mp_state *mp_state) 11373 { 11374 int ret = -EINVAL; 11375 11376 vcpu_load(vcpu); 11377 11378 switch (mp_state->mp_state) { 11379 case KVM_MP_STATE_UNINITIALIZED: 11380 case KVM_MP_STATE_HALTED: 11381 case KVM_MP_STATE_AP_RESET_HOLD: 11382 case KVM_MP_STATE_INIT_RECEIVED: 11383 case KVM_MP_STATE_SIPI_RECEIVED: 11384 if (!lapic_in_kernel(vcpu)) 11385 goto out; 11386 break; 11387 11388 case KVM_MP_STATE_RUNNABLE: 11389 break; 11390 11391 default: 11392 goto out; 11393 } 11394 11395 /* 11396 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11397 * forcing the guest into INIT/SIPI if those events are supposed to be 11398 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11399 * if an SMI is pending as well. 11400 */ 11401 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11402 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11403 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11404 goto out; 11405 11406 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11407 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11408 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11409 } else 11410 vcpu->arch.mp_state = mp_state->mp_state; 11411 kvm_make_request(KVM_REQ_EVENT, vcpu); 11412 11413 ret = 0; 11414 out: 11415 vcpu_put(vcpu); 11416 return ret; 11417 } 11418 11419 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11420 int reason, bool has_error_code, u32 error_code) 11421 { 11422 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11423 int ret; 11424 11425 init_emulate_ctxt(vcpu); 11426 11427 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11428 has_error_code, error_code); 11429 if (ret) { 11430 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11431 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11432 vcpu->run->internal.ndata = 0; 11433 return 0; 11434 } 11435 11436 kvm_rip_write(vcpu, ctxt->eip); 11437 kvm_set_rflags(vcpu, ctxt->eflags); 11438 return 1; 11439 } 11440 EXPORT_SYMBOL_GPL(kvm_task_switch); 11441 11442 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11443 { 11444 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11445 /* 11446 * When EFER.LME and CR0.PG are set, the processor is in 11447 * 64-bit mode (though maybe in a 32-bit code segment). 11448 * CR4.PAE and EFER.LMA must be set. 11449 */ 11450 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11451 return false; 11452 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11453 return false; 11454 } else { 11455 /* 11456 * Not in 64-bit mode: EFER.LMA is clear and the code 11457 * segment cannot be 64-bit. 11458 */ 11459 if (sregs->efer & EFER_LMA || sregs->cs.l) 11460 return false; 11461 } 11462 11463 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11464 } 11465 11466 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11467 int *mmu_reset_needed, bool update_pdptrs) 11468 { 11469 struct msr_data apic_base_msr; 11470 int idx; 11471 struct desc_ptr dt; 11472 11473 if (!kvm_is_valid_sregs(vcpu, sregs)) 11474 return -EINVAL; 11475 11476 apic_base_msr.data = sregs->apic_base; 11477 apic_base_msr.host_initiated = true; 11478 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11479 return -EINVAL; 11480 11481 if (vcpu->arch.guest_state_protected) 11482 return 0; 11483 11484 dt.size = sregs->idt.limit; 11485 dt.address = sregs->idt.base; 11486 static_call(kvm_x86_set_idt)(vcpu, &dt); 11487 dt.size = sregs->gdt.limit; 11488 dt.address = sregs->gdt.base; 11489 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11490 11491 vcpu->arch.cr2 = sregs->cr2; 11492 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11493 vcpu->arch.cr3 = sregs->cr3; 11494 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11495 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11496 11497 kvm_set_cr8(vcpu, sregs->cr8); 11498 11499 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11500 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11501 11502 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11503 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11504 vcpu->arch.cr0 = sregs->cr0; 11505 11506 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11507 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11508 11509 if (update_pdptrs) { 11510 idx = srcu_read_lock(&vcpu->kvm->srcu); 11511 if (is_pae_paging(vcpu)) { 11512 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11513 *mmu_reset_needed = 1; 11514 } 11515 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11516 } 11517 11518 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11519 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11520 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11521 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11522 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11523 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11524 11525 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11526 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11527 11528 update_cr8_intercept(vcpu); 11529 11530 /* Older userspace won't unhalt the vcpu on reset. */ 11531 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11532 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11533 !is_protmode(vcpu)) 11534 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11535 11536 return 0; 11537 } 11538 11539 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11540 { 11541 int pending_vec, max_bits; 11542 int mmu_reset_needed = 0; 11543 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11544 11545 if (ret) 11546 return ret; 11547 11548 if (mmu_reset_needed) 11549 kvm_mmu_reset_context(vcpu); 11550 11551 max_bits = KVM_NR_INTERRUPTS; 11552 pending_vec = find_first_bit( 11553 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11554 11555 if (pending_vec < max_bits) { 11556 kvm_queue_interrupt(vcpu, pending_vec, false); 11557 pr_debug("Set back pending irq %d\n", pending_vec); 11558 kvm_make_request(KVM_REQ_EVENT, vcpu); 11559 } 11560 return 0; 11561 } 11562 11563 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11564 { 11565 int mmu_reset_needed = 0; 11566 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11567 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11568 !(sregs2->efer & EFER_LMA); 11569 int i, ret; 11570 11571 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11572 return -EINVAL; 11573 11574 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11575 return -EINVAL; 11576 11577 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11578 &mmu_reset_needed, !valid_pdptrs); 11579 if (ret) 11580 return ret; 11581 11582 if (valid_pdptrs) { 11583 for (i = 0; i < 4 ; i++) 11584 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11585 11586 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11587 mmu_reset_needed = 1; 11588 vcpu->arch.pdptrs_from_userspace = true; 11589 } 11590 if (mmu_reset_needed) 11591 kvm_mmu_reset_context(vcpu); 11592 return 0; 11593 } 11594 11595 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11596 struct kvm_sregs *sregs) 11597 { 11598 int ret; 11599 11600 vcpu_load(vcpu); 11601 ret = __set_sregs(vcpu, sregs); 11602 vcpu_put(vcpu); 11603 return ret; 11604 } 11605 11606 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11607 { 11608 bool set = false; 11609 struct kvm_vcpu *vcpu; 11610 unsigned long i; 11611 11612 if (!enable_apicv) 11613 return; 11614 11615 down_write(&kvm->arch.apicv_update_lock); 11616 11617 kvm_for_each_vcpu(i, vcpu, kvm) { 11618 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11619 set = true; 11620 break; 11621 } 11622 } 11623 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11624 up_write(&kvm->arch.apicv_update_lock); 11625 } 11626 11627 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11628 struct kvm_guest_debug *dbg) 11629 { 11630 unsigned long rflags; 11631 int i, r; 11632 11633 if (vcpu->arch.guest_state_protected) 11634 return -EINVAL; 11635 11636 vcpu_load(vcpu); 11637 11638 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11639 r = -EBUSY; 11640 if (kvm_is_exception_pending(vcpu)) 11641 goto out; 11642 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11643 kvm_queue_exception(vcpu, DB_VECTOR); 11644 else 11645 kvm_queue_exception(vcpu, BP_VECTOR); 11646 } 11647 11648 /* 11649 * Read rflags as long as potentially injected trace flags are still 11650 * filtered out. 11651 */ 11652 rflags = kvm_get_rflags(vcpu); 11653 11654 vcpu->guest_debug = dbg->control; 11655 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11656 vcpu->guest_debug = 0; 11657 11658 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11659 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11660 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11661 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11662 } else { 11663 for (i = 0; i < KVM_NR_DB_REGS; i++) 11664 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11665 } 11666 kvm_update_dr7(vcpu); 11667 11668 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11669 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11670 11671 /* 11672 * Trigger an rflags update that will inject or remove the trace 11673 * flags. 11674 */ 11675 kvm_set_rflags(vcpu, rflags); 11676 11677 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11678 11679 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11680 11681 r = 0; 11682 11683 out: 11684 vcpu_put(vcpu); 11685 return r; 11686 } 11687 11688 /* 11689 * Translate a guest virtual address to a guest physical address. 11690 */ 11691 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11692 struct kvm_translation *tr) 11693 { 11694 unsigned long vaddr = tr->linear_address; 11695 gpa_t gpa; 11696 int idx; 11697 11698 vcpu_load(vcpu); 11699 11700 idx = srcu_read_lock(&vcpu->kvm->srcu); 11701 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11702 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11703 tr->physical_address = gpa; 11704 tr->valid = gpa != INVALID_GPA; 11705 tr->writeable = 1; 11706 tr->usermode = 0; 11707 11708 vcpu_put(vcpu); 11709 return 0; 11710 } 11711 11712 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11713 { 11714 struct fxregs_state *fxsave; 11715 11716 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11717 return 0; 11718 11719 vcpu_load(vcpu); 11720 11721 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11722 memcpy(fpu->fpr, fxsave->st_space, 128); 11723 fpu->fcw = fxsave->cwd; 11724 fpu->fsw = fxsave->swd; 11725 fpu->ftwx = fxsave->twd; 11726 fpu->last_opcode = fxsave->fop; 11727 fpu->last_ip = fxsave->rip; 11728 fpu->last_dp = fxsave->rdp; 11729 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11730 11731 vcpu_put(vcpu); 11732 return 0; 11733 } 11734 11735 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11736 { 11737 struct fxregs_state *fxsave; 11738 11739 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11740 return 0; 11741 11742 vcpu_load(vcpu); 11743 11744 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11745 11746 memcpy(fxsave->st_space, fpu->fpr, 128); 11747 fxsave->cwd = fpu->fcw; 11748 fxsave->swd = fpu->fsw; 11749 fxsave->twd = fpu->ftwx; 11750 fxsave->fop = fpu->last_opcode; 11751 fxsave->rip = fpu->last_ip; 11752 fxsave->rdp = fpu->last_dp; 11753 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11754 11755 vcpu_put(vcpu); 11756 return 0; 11757 } 11758 11759 static void store_regs(struct kvm_vcpu *vcpu) 11760 { 11761 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11762 11763 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11764 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11765 11766 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11767 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11768 11769 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11770 kvm_vcpu_ioctl_x86_get_vcpu_events( 11771 vcpu, &vcpu->run->s.regs.events); 11772 } 11773 11774 static int sync_regs(struct kvm_vcpu *vcpu) 11775 { 11776 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11777 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11778 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11779 } 11780 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11781 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11782 return -EINVAL; 11783 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11784 } 11785 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11786 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11787 vcpu, &vcpu->run->s.regs.events)) 11788 return -EINVAL; 11789 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11790 } 11791 11792 return 0; 11793 } 11794 11795 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11796 { 11797 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11798 pr_warn_once("SMP vm created on host with unstable TSC; " 11799 "guest TSC will not be reliable\n"); 11800 11801 if (!kvm->arch.max_vcpu_ids) 11802 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11803 11804 if (id >= kvm->arch.max_vcpu_ids) 11805 return -EINVAL; 11806 11807 return static_call(kvm_x86_vcpu_precreate)(kvm); 11808 } 11809 11810 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11811 { 11812 struct page *page; 11813 int r; 11814 11815 vcpu->arch.last_vmentry_cpu = -1; 11816 vcpu->arch.regs_avail = ~0; 11817 vcpu->arch.regs_dirty = ~0; 11818 11819 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11820 11821 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11822 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11823 else 11824 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11825 11826 r = kvm_mmu_create(vcpu); 11827 if (r < 0) 11828 return r; 11829 11830 if (irqchip_in_kernel(vcpu->kvm)) { 11831 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11832 if (r < 0) 11833 goto fail_mmu_destroy; 11834 11835 /* 11836 * Defer evaluating inhibits until the vCPU is first run, as 11837 * this vCPU will not get notified of any changes until this 11838 * vCPU is visible to other vCPUs (marked online and added to 11839 * the set of vCPUs). Opportunistically mark APICv active as 11840 * VMX in particularly is highly unlikely to have inhibits. 11841 * Ignore the current per-VM APICv state so that vCPU creation 11842 * is guaranteed to run with a deterministic value, the request 11843 * will ensure the vCPU gets the correct state before VM-Entry. 11844 */ 11845 if (enable_apicv) { 11846 vcpu->arch.apic->apicv_active = true; 11847 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11848 } 11849 } else 11850 static_branch_inc(&kvm_has_noapic_vcpu); 11851 11852 r = -ENOMEM; 11853 11854 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11855 if (!page) 11856 goto fail_free_lapic; 11857 vcpu->arch.pio_data = page_address(page); 11858 11859 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11860 GFP_KERNEL_ACCOUNT); 11861 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11862 GFP_KERNEL_ACCOUNT); 11863 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11864 goto fail_free_mce_banks; 11865 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11866 11867 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11868 GFP_KERNEL_ACCOUNT)) 11869 goto fail_free_mce_banks; 11870 11871 if (!alloc_emulate_ctxt(vcpu)) 11872 goto free_wbinvd_dirty_mask; 11873 11874 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11875 pr_err("failed to allocate vcpu's fpu\n"); 11876 goto free_emulate_ctxt; 11877 } 11878 11879 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11880 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11881 11882 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11883 11884 kvm_async_pf_hash_reset(vcpu); 11885 11886 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11887 kvm_pmu_init(vcpu); 11888 11889 vcpu->arch.pending_external_vector = -1; 11890 vcpu->arch.preempted_in_kernel = false; 11891 11892 #if IS_ENABLED(CONFIG_HYPERV) 11893 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11894 #endif 11895 11896 r = static_call(kvm_x86_vcpu_create)(vcpu); 11897 if (r) 11898 goto free_guest_fpu; 11899 11900 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11901 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11902 kvm_xen_init_vcpu(vcpu); 11903 kvm_vcpu_mtrr_init(vcpu); 11904 vcpu_load(vcpu); 11905 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11906 kvm_vcpu_reset(vcpu, false); 11907 kvm_init_mmu(vcpu); 11908 vcpu_put(vcpu); 11909 return 0; 11910 11911 free_guest_fpu: 11912 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11913 free_emulate_ctxt: 11914 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11915 free_wbinvd_dirty_mask: 11916 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11917 fail_free_mce_banks: 11918 kfree(vcpu->arch.mce_banks); 11919 kfree(vcpu->arch.mci_ctl2_banks); 11920 free_page((unsigned long)vcpu->arch.pio_data); 11921 fail_free_lapic: 11922 kvm_free_lapic(vcpu); 11923 fail_mmu_destroy: 11924 kvm_mmu_destroy(vcpu); 11925 return r; 11926 } 11927 11928 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11929 { 11930 struct kvm *kvm = vcpu->kvm; 11931 11932 if (mutex_lock_killable(&vcpu->mutex)) 11933 return; 11934 vcpu_load(vcpu); 11935 kvm_synchronize_tsc(vcpu, 0); 11936 vcpu_put(vcpu); 11937 11938 /* poll control enabled by default */ 11939 vcpu->arch.msr_kvm_poll_control = 1; 11940 11941 mutex_unlock(&vcpu->mutex); 11942 11943 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11944 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11945 KVMCLOCK_SYNC_PERIOD); 11946 } 11947 11948 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11949 { 11950 int idx; 11951 11952 kvmclock_reset(vcpu); 11953 11954 static_call(kvm_x86_vcpu_free)(vcpu); 11955 11956 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11957 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11958 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11959 11960 kvm_xen_destroy_vcpu(vcpu); 11961 kvm_hv_vcpu_uninit(vcpu); 11962 kvm_pmu_destroy(vcpu); 11963 kfree(vcpu->arch.mce_banks); 11964 kfree(vcpu->arch.mci_ctl2_banks); 11965 kvm_free_lapic(vcpu); 11966 idx = srcu_read_lock(&vcpu->kvm->srcu); 11967 kvm_mmu_destroy(vcpu); 11968 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11969 free_page((unsigned long)vcpu->arch.pio_data); 11970 kvfree(vcpu->arch.cpuid_entries); 11971 if (!lapic_in_kernel(vcpu)) 11972 static_branch_dec(&kvm_has_noapic_vcpu); 11973 } 11974 11975 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11976 { 11977 struct kvm_cpuid_entry2 *cpuid_0x1; 11978 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11979 unsigned long new_cr0; 11980 11981 /* 11982 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11983 * to handle side effects. RESET emulation hits those flows and relies 11984 * on emulated/virtualized registers, including those that are loaded 11985 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11986 * to detect improper or missing initialization. 11987 */ 11988 WARN_ON_ONCE(!init_event && 11989 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11990 11991 /* 11992 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11993 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11994 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11995 * bits), i.e. virtualization is disabled. 11996 */ 11997 if (is_guest_mode(vcpu)) 11998 kvm_leave_nested(vcpu); 11999 12000 kvm_lapic_reset(vcpu, init_event); 12001 12002 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12003 vcpu->arch.hflags = 0; 12004 12005 vcpu->arch.smi_pending = 0; 12006 vcpu->arch.smi_count = 0; 12007 atomic_set(&vcpu->arch.nmi_queued, 0); 12008 vcpu->arch.nmi_pending = 0; 12009 vcpu->arch.nmi_injected = false; 12010 kvm_clear_interrupt_queue(vcpu); 12011 kvm_clear_exception_queue(vcpu); 12012 12013 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12014 kvm_update_dr0123(vcpu); 12015 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12016 vcpu->arch.dr7 = DR7_FIXED_1; 12017 kvm_update_dr7(vcpu); 12018 12019 vcpu->arch.cr2 = 0; 12020 12021 kvm_make_request(KVM_REQ_EVENT, vcpu); 12022 vcpu->arch.apf.msr_en_val = 0; 12023 vcpu->arch.apf.msr_int_val = 0; 12024 vcpu->arch.st.msr_val = 0; 12025 12026 kvmclock_reset(vcpu); 12027 12028 kvm_clear_async_pf_completion_queue(vcpu); 12029 kvm_async_pf_hash_reset(vcpu); 12030 vcpu->arch.apf.halted = false; 12031 12032 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12033 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12034 12035 /* 12036 * All paths that lead to INIT are required to load the guest's 12037 * FPU state (because most paths are buried in KVM_RUN). 12038 */ 12039 if (init_event) 12040 kvm_put_guest_fpu(vcpu); 12041 12042 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12043 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12044 12045 if (init_event) 12046 kvm_load_guest_fpu(vcpu); 12047 } 12048 12049 if (!init_event) { 12050 kvm_pmu_reset(vcpu); 12051 vcpu->arch.smbase = 0x30000; 12052 12053 vcpu->arch.msr_misc_features_enables = 0; 12054 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12055 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12056 12057 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12058 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12059 } 12060 12061 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12062 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12063 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12064 12065 /* 12066 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12067 * if no CPUID match is found. Note, it's impossible to get a match at 12068 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12069 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12070 * on RESET. But, go through the motions in case that's ever remedied. 12071 */ 12072 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12073 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12074 12075 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12076 12077 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12078 kvm_rip_write(vcpu, 0xfff0); 12079 12080 vcpu->arch.cr3 = 0; 12081 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12082 12083 /* 12084 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12085 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12086 * (or qualify) that with a footnote stating that CD/NW are preserved. 12087 */ 12088 new_cr0 = X86_CR0_ET; 12089 if (init_event) 12090 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12091 else 12092 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12093 12094 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12095 static_call(kvm_x86_set_cr4)(vcpu, 0); 12096 static_call(kvm_x86_set_efer)(vcpu, 0); 12097 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12098 12099 /* 12100 * On the standard CR0/CR4/EFER modification paths, there are several 12101 * complex conditions determining whether the MMU has to be reset and/or 12102 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12103 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12104 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12105 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12106 */ 12107 if (old_cr0 & X86_CR0_PG) { 12108 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12109 kvm_mmu_reset_context(vcpu); 12110 } 12111 12112 /* 12113 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12114 * APM states the TLBs are untouched by INIT, but it also states that 12115 * the TLBs are flushed on "External initialization of the processor." 12116 * Flush the guest TLB regardless of vendor, there is no meaningful 12117 * benefit in relying on the guest to flush the TLB immediately after 12118 * INIT. A spurious TLB flush is benign and likely negligible from a 12119 * performance perspective. 12120 */ 12121 if (init_event) 12122 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12123 } 12124 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12125 12126 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12127 { 12128 struct kvm_segment cs; 12129 12130 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12131 cs.selector = vector << 8; 12132 cs.base = vector << 12; 12133 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12134 kvm_rip_write(vcpu, 0); 12135 } 12136 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12137 12138 int kvm_arch_hardware_enable(void) 12139 { 12140 struct kvm *kvm; 12141 struct kvm_vcpu *vcpu; 12142 unsigned long i; 12143 int ret; 12144 u64 local_tsc; 12145 u64 max_tsc = 0; 12146 bool stable, backwards_tsc = false; 12147 12148 kvm_user_return_msr_cpu_online(); 12149 12150 ret = kvm_x86_check_processor_compatibility(); 12151 if (ret) 12152 return ret; 12153 12154 ret = static_call(kvm_x86_hardware_enable)(); 12155 if (ret != 0) 12156 return ret; 12157 12158 local_tsc = rdtsc(); 12159 stable = !kvm_check_tsc_unstable(); 12160 list_for_each_entry(kvm, &vm_list, vm_list) { 12161 kvm_for_each_vcpu(i, vcpu, kvm) { 12162 if (!stable && vcpu->cpu == smp_processor_id()) 12163 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12164 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12165 backwards_tsc = true; 12166 if (vcpu->arch.last_host_tsc > max_tsc) 12167 max_tsc = vcpu->arch.last_host_tsc; 12168 } 12169 } 12170 } 12171 12172 /* 12173 * Sometimes, even reliable TSCs go backwards. This happens on 12174 * platforms that reset TSC during suspend or hibernate actions, but 12175 * maintain synchronization. We must compensate. Fortunately, we can 12176 * detect that condition here, which happens early in CPU bringup, 12177 * before any KVM threads can be running. Unfortunately, we can't 12178 * bring the TSCs fully up to date with real time, as we aren't yet far 12179 * enough into CPU bringup that we know how much real time has actually 12180 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12181 * variables that haven't been updated yet. 12182 * 12183 * So we simply find the maximum observed TSC above, then record the 12184 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12185 * the adjustment will be applied. Note that we accumulate 12186 * adjustments, in case multiple suspend cycles happen before some VCPU 12187 * gets a chance to run again. In the event that no KVM threads get a 12188 * chance to run, we will miss the entire elapsed period, as we'll have 12189 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12190 * loose cycle time. This isn't too big a deal, since the loss will be 12191 * uniform across all VCPUs (not to mention the scenario is extremely 12192 * unlikely). It is possible that a second hibernate recovery happens 12193 * much faster than a first, causing the observed TSC here to be 12194 * smaller; this would require additional padding adjustment, which is 12195 * why we set last_host_tsc to the local tsc observed here. 12196 * 12197 * N.B. - this code below runs only on platforms with reliable TSC, 12198 * as that is the only way backwards_tsc is set above. Also note 12199 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12200 * have the same delta_cyc adjustment applied if backwards_tsc 12201 * is detected. Note further, this adjustment is only done once, 12202 * as we reset last_host_tsc on all VCPUs to stop this from being 12203 * called multiple times (one for each physical CPU bringup). 12204 * 12205 * Platforms with unreliable TSCs don't have to deal with this, they 12206 * will be compensated by the logic in vcpu_load, which sets the TSC to 12207 * catchup mode. This will catchup all VCPUs to real time, but cannot 12208 * guarantee that they stay in perfect synchronization. 12209 */ 12210 if (backwards_tsc) { 12211 u64 delta_cyc = max_tsc - local_tsc; 12212 list_for_each_entry(kvm, &vm_list, vm_list) { 12213 kvm->arch.backwards_tsc_observed = true; 12214 kvm_for_each_vcpu(i, vcpu, kvm) { 12215 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12216 vcpu->arch.last_host_tsc = local_tsc; 12217 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12218 } 12219 12220 /* 12221 * We have to disable TSC offset matching.. if you were 12222 * booting a VM while issuing an S4 host suspend.... 12223 * you may have some problem. Solving this issue is 12224 * left as an exercise to the reader. 12225 */ 12226 kvm->arch.last_tsc_nsec = 0; 12227 kvm->arch.last_tsc_write = 0; 12228 } 12229 12230 } 12231 return 0; 12232 } 12233 12234 void kvm_arch_hardware_disable(void) 12235 { 12236 static_call(kvm_x86_hardware_disable)(); 12237 drop_user_return_notifiers(); 12238 } 12239 12240 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12241 { 12242 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12243 } 12244 12245 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12246 { 12247 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12248 } 12249 12250 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12251 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12252 12253 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12254 { 12255 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12256 12257 vcpu->arch.l1tf_flush_l1d = true; 12258 if (pmu->version && unlikely(pmu->event_count)) { 12259 pmu->need_cleanup = true; 12260 kvm_make_request(KVM_REQ_PMU, vcpu); 12261 } 12262 static_call(kvm_x86_sched_in)(vcpu, cpu); 12263 } 12264 12265 void kvm_arch_free_vm(struct kvm *kvm) 12266 { 12267 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12268 __kvm_arch_free_vm(kvm); 12269 } 12270 12271 12272 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12273 { 12274 int ret; 12275 unsigned long flags; 12276 12277 if (type) 12278 return -EINVAL; 12279 12280 ret = kvm_page_track_init(kvm); 12281 if (ret) 12282 goto out; 12283 12284 ret = kvm_mmu_init_vm(kvm); 12285 if (ret) 12286 goto out_page_track; 12287 12288 ret = static_call(kvm_x86_vm_init)(kvm); 12289 if (ret) 12290 goto out_uninit_mmu; 12291 12292 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12293 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12294 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12295 12296 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12297 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12298 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12299 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12300 &kvm->arch.irq_sources_bitmap); 12301 12302 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12303 mutex_init(&kvm->arch.apic_map_lock); 12304 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12305 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12306 12307 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12308 pvclock_update_vm_gtod_copy(kvm); 12309 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12310 12311 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12312 kvm->arch.guest_can_read_msr_platform_info = true; 12313 kvm->arch.enable_pmu = enable_pmu; 12314 12315 #if IS_ENABLED(CONFIG_HYPERV) 12316 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12317 kvm->arch.hv_root_tdp = INVALID_PAGE; 12318 #endif 12319 12320 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12321 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12322 12323 kvm_apicv_init(kvm); 12324 kvm_hv_init_vm(kvm); 12325 kvm_xen_init_vm(kvm); 12326 12327 return 0; 12328 12329 out_uninit_mmu: 12330 kvm_mmu_uninit_vm(kvm); 12331 out_page_track: 12332 kvm_page_track_cleanup(kvm); 12333 out: 12334 return ret; 12335 } 12336 12337 int kvm_arch_post_init_vm(struct kvm *kvm) 12338 { 12339 return kvm_mmu_post_init_vm(kvm); 12340 } 12341 12342 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12343 { 12344 vcpu_load(vcpu); 12345 kvm_mmu_unload(vcpu); 12346 vcpu_put(vcpu); 12347 } 12348 12349 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12350 { 12351 unsigned long i; 12352 struct kvm_vcpu *vcpu; 12353 12354 kvm_for_each_vcpu(i, vcpu, kvm) { 12355 kvm_clear_async_pf_completion_queue(vcpu); 12356 kvm_unload_vcpu_mmu(vcpu); 12357 } 12358 } 12359 12360 void kvm_arch_sync_events(struct kvm *kvm) 12361 { 12362 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12363 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12364 kvm_free_pit(kvm); 12365 } 12366 12367 /** 12368 * __x86_set_memory_region: Setup KVM internal memory slot 12369 * 12370 * @kvm: the kvm pointer to the VM. 12371 * @id: the slot ID to setup. 12372 * @gpa: the GPA to install the slot (unused when @size == 0). 12373 * @size: the size of the slot. Set to zero to uninstall a slot. 12374 * 12375 * This function helps to setup a KVM internal memory slot. Specify 12376 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12377 * slot. The return code can be one of the following: 12378 * 12379 * HVA: on success (uninstall will return a bogus HVA) 12380 * -errno: on error 12381 * 12382 * The caller should always use IS_ERR() to check the return value 12383 * before use. Note, the KVM internal memory slots are guaranteed to 12384 * remain valid and unchanged until the VM is destroyed, i.e., the 12385 * GPA->HVA translation will not change. However, the HVA is a user 12386 * address, i.e. its accessibility is not guaranteed, and must be 12387 * accessed via __copy_{to,from}_user(). 12388 */ 12389 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12390 u32 size) 12391 { 12392 int i, r; 12393 unsigned long hva, old_npages; 12394 struct kvm_memslots *slots = kvm_memslots(kvm); 12395 struct kvm_memory_slot *slot; 12396 12397 /* Called with kvm->slots_lock held. */ 12398 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12399 return ERR_PTR_USR(-EINVAL); 12400 12401 slot = id_to_memslot(slots, id); 12402 if (size) { 12403 if (slot && slot->npages) 12404 return ERR_PTR_USR(-EEXIST); 12405 12406 /* 12407 * MAP_SHARED to prevent internal slot pages from being moved 12408 * by fork()/COW. 12409 */ 12410 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12411 MAP_SHARED | MAP_ANONYMOUS, 0); 12412 if (IS_ERR_VALUE(hva)) 12413 return (void __user *)hva; 12414 } else { 12415 if (!slot || !slot->npages) 12416 return NULL; 12417 12418 old_npages = slot->npages; 12419 hva = slot->userspace_addr; 12420 } 12421 12422 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12423 struct kvm_userspace_memory_region m; 12424 12425 m.slot = id | (i << 16); 12426 m.flags = 0; 12427 m.guest_phys_addr = gpa; 12428 m.userspace_addr = hva; 12429 m.memory_size = size; 12430 r = __kvm_set_memory_region(kvm, &m); 12431 if (r < 0) 12432 return ERR_PTR_USR(r); 12433 } 12434 12435 if (!size) 12436 vm_munmap(hva, old_npages * PAGE_SIZE); 12437 12438 return (void __user *)hva; 12439 } 12440 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12441 12442 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12443 { 12444 kvm_mmu_pre_destroy_vm(kvm); 12445 } 12446 12447 void kvm_arch_destroy_vm(struct kvm *kvm) 12448 { 12449 if (current->mm == kvm->mm) { 12450 /* 12451 * Free memory regions allocated on behalf of userspace, 12452 * unless the memory map has changed due to process exit 12453 * or fd copying. 12454 */ 12455 mutex_lock(&kvm->slots_lock); 12456 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12457 0, 0); 12458 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12459 0, 0); 12460 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12461 mutex_unlock(&kvm->slots_lock); 12462 } 12463 kvm_unload_vcpu_mmus(kvm); 12464 static_call_cond(kvm_x86_vm_destroy)(kvm); 12465 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12466 kvm_pic_destroy(kvm); 12467 kvm_ioapic_destroy(kvm); 12468 kvm_destroy_vcpus(kvm); 12469 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12470 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12471 kvm_mmu_uninit_vm(kvm); 12472 kvm_page_track_cleanup(kvm); 12473 kvm_xen_destroy_vm(kvm); 12474 kvm_hv_destroy_vm(kvm); 12475 } 12476 12477 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12478 { 12479 int i; 12480 12481 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12482 kvfree(slot->arch.rmap[i]); 12483 slot->arch.rmap[i] = NULL; 12484 } 12485 } 12486 12487 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12488 { 12489 int i; 12490 12491 memslot_rmap_free(slot); 12492 12493 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12494 kvfree(slot->arch.lpage_info[i - 1]); 12495 slot->arch.lpage_info[i - 1] = NULL; 12496 } 12497 12498 kvm_page_track_free_memslot(slot); 12499 } 12500 12501 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12502 { 12503 const int sz = sizeof(*slot->arch.rmap[0]); 12504 int i; 12505 12506 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12507 int level = i + 1; 12508 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12509 12510 if (slot->arch.rmap[i]) 12511 continue; 12512 12513 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12514 if (!slot->arch.rmap[i]) { 12515 memslot_rmap_free(slot); 12516 return -ENOMEM; 12517 } 12518 } 12519 12520 return 0; 12521 } 12522 12523 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12524 struct kvm_memory_slot *slot) 12525 { 12526 unsigned long npages = slot->npages; 12527 int i, r; 12528 12529 /* 12530 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12531 * old arrays will be freed by __kvm_set_memory_region() if installing 12532 * the new memslot is successful. 12533 */ 12534 memset(&slot->arch, 0, sizeof(slot->arch)); 12535 12536 if (kvm_memslots_have_rmaps(kvm)) { 12537 r = memslot_rmap_alloc(slot, npages); 12538 if (r) 12539 return r; 12540 } 12541 12542 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12543 struct kvm_lpage_info *linfo; 12544 unsigned long ugfn; 12545 int lpages; 12546 int level = i + 1; 12547 12548 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12549 12550 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12551 if (!linfo) 12552 goto out_free; 12553 12554 slot->arch.lpage_info[i - 1] = linfo; 12555 12556 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12557 linfo[0].disallow_lpage = 1; 12558 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12559 linfo[lpages - 1].disallow_lpage = 1; 12560 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12561 /* 12562 * If the gfn and userspace address are not aligned wrt each 12563 * other, disable large page support for this slot. 12564 */ 12565 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12566 unsigned long j; 12567 12568 for (j = 0; j < lpages; ++j) 12569 linfo[j].disallow_lpage = 1; 12570 } 12571 } 12572 12573 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12574 goto out_free; 12575 12576 return 0; 12577 12578 out_free: 12579 memslot_rmap_free(slot); 12580 12581 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12582 kvfree(slot->arch.lpage_info[i - 1]); 12583 slot->arch.lpage_info[i - 1] = NULL; 12584 } 12585 return -ENOMEM; 12586 } 12587 12588 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12589 { 12590 struct kvm_vcpu *vcpu; 12591 unsigned long i; 12592 12593 /* 12594 * memslots->generation has been incremented. 12595 * mmio generation may have reached its maximum value. 12596 */ 12597 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12598 12599 /* Force re-initialization of steal_time cache */ 12600 kvm_for_each_vcpu(i, vcpu, kvm) 12601 kvm_vcpu_kick(vcpu); 12602 } 12603 12604 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12605 const struct kvm_memory_slot *old, 12606 struct kvm_memory_slot *new, 12607 enum kvm_mr_change change) 12608 { 12609 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12610 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12611 return -EINVAL; 12612 12613 return kvm_alloc_memslot_metadata(kvm, new); 12614 } 12615 12616 if (change == KVM_MR_FLAGS_ONLY) 12617 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12618 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12619 return -EIO; 12620 12621 return 0; 12622 } 12623 12624 12625 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12626 { 12627 int nr_slots; 12628 12629 if (!kvm_x86_ops.cpu_dirty_log_size) 12630 return; 12631 12632 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12633 if ((enable && nr_slots == 1) || !nr_slots) 12634 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12635 } 12636 12637 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12638 struct kvm_memory_slot *old, 12639 const struct kvm_memory_slot *new, 12640 enum kvm_mr_change change) 12641 { 12642 u32 old_flags = old ? old->flags : 0; 12643 u32 new_flags = new ? new->flags : 0; 12644 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12645 12646 /* 12647 * Update CPU dirty logging if dirty logging is being toggled. This 12648 * applies to all operations. 12649 */ 12650 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12651 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12652 12653 /* 12654 * Nothing more to do for RO slots (which can't be dirtied and can't be 12655 * made writable) or CREATE/MOVE/DELETE of a slot. 12656 * 12657 * For a memslot with dirty logging disabled: 12658 * CREATE: No dirty mappings will already exist. 12659 * MOVE/DELETE: The old mappings will already have been cleaned up by 12660 * kvm_arch_flush_shadow_memslot() 12661 * 12662 * For a memslot with dirty logging enabled: 12663 * CREATE: No shadow pages exist, thus nothing to write-protect 12664 * and no dirty bits to clear. 12665 * MOVE/DELETE: The old mappings will already have been cleaned up by 12666 * kvm_arch_flush_shadow_memslot(). 12667 */ 12668 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12669 return; 12670 12671 /* 12672 * READONLY and non-flags changes were filtered out above, and the only 12673 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12674 * logging isn't being toggled on or off. 12675 */ 12676 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12677 return; 12678 12679 if (!log_dirty_pages) { 12680 /* 12681 * Dirty logging tracks sptes in 4k granularity, meaning that 12682 * large sptes have to be split. If live migration succeeds, 12683 * the guest in the source machine will be destroyed and large 12684 * sptes will be created in the destination. However, if the 12685 * guest continues to run in the source machine (for example if 12686 * live migration fails), small sptes will remain around and 12687 * cause bad performance. 12688 * 12689 * Scan sptes if dirty logging has been stopped, dropping those 12690 * which can be collapsed into a single large-page spte. Later 12691 * page faults will create the large-page sptes. 12692 */ 12693 kvm_mmu_zap_collapsible_sptes(kvm, new); 12694 } else { 12695 /* 12696 * Initially-all-set does not require write protecting any page, 12697 * because they're all assumed to be dirty. 12698 */ 12699 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12700 return; 12701 12702 if (READ_ONCE(eager_page_split)) 12703 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12704 12705 if (kvm_x86_ops.cpu_dirty_log_size) { 12706 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12707 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12708 } else { 12709 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12710 } 12711 12712 /* 12713 * Unconditionally flush the TLBs after enabling dirty logging. 12714 * A flush is almost always going to be necessary (see below), 12715 * and unconditionally flushing allows the helpers to omit 12716 * the subtly complex checks when removing write access. 12717 * 12718 * Do the flush outside of mmu_lock to reduce the amount of 12719 * time mmu_lock is held. Flushing after dropping mmu_lock is 12720 * safe as KVM only needs to guarantee the slot is fully 12721 * write-protected before returning to userspace, i.e. before 12722 * userspace can consume the dirty status. 12723 * 12724 * Flushing outside of mmu_lock requires KVM to be careful when 12725 * making decisions based on writable status of an SPTE, e.g. a 12726 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12727 * 12728 * Specifically, KVM also write-protects guest page tables to 12729 * monitor changes when using shadow paging, and must guarantee 12730 * no CPUs can write to those page before mmu_lock is dropped. 12731 * Because CPUs may have stale TLB entries at this point, a 12732 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12733 * 12734 * KVM also allows making SPTES writable outside of mmu_lock, 12735 * e.g. to allow dirty logging without taking mmu_lock. 12736 * 12737 * To handle these scenarios, KVM uses a separate software-only 12738 * bit (MMU-writable) to track if a SPTE is !writable due to 12739 * a guest page table being write-protected (KVM clears the 12740 * MMU-writable flag when write-protecting for shadow paging). 12741 * 12742 * The use of MMU-writable is also the primary motivation for 12743 * the unconditional flush. Because KVM must guarantee that a 12744 * CPU doesn't contain stale, writable TLB entries for a 12745 * !MMU-writable SPTE, KVM must flush if it encounters any 12746 * MMU-writable SPTE regardless of whether the actual hardware 12747 * writable bit was set. I.e. KVM is almost guaranteed to need 12748 * to flush, while unconditionally flushing allows the "remove 12749 * write access" helpers to ignore MMU-writable entirely. 12750 * 12751 * See is_writable_pte() for more details (the case involving 12752 * access-tracked SPTEs is particularly relevant). 12753 */ 12754 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12755 } 12756 } 12757 12758 void kvm_arch_commit_memory_region(struct kvm *kvm, 12759 struct kvm_memory_slot *old, 12760 const struct kvm_memory_slot *new, 12761 enum kvm_mr_change change) 12762 { 12763 if (!kvm->arch.n_requested_mmu_pages && 12764 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12765 unsigned long nr_mmu_pages; 12766 12767 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12768 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12769 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12770 } 12771 12772 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12773 12774 /* Free the arrays associated with the old memslot. */ 12775 if (change == KVM_MR_MOVE) 12776 kvm_arch_free_memslot(kvm, old); 12777 } 12778 12779 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12780 { 12781 kvm_mmu_zap_all(kvm); 12782 } 12783 12784 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12785 struct kvm_memory_slot *slot) 12786 { 12787 kvm_page_track_flush_slot(kvm, slot); 12788 } 12789 12790 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12791 { 12792 return (is_guest_mode(vcpu) && 12793 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12794 } 12795 12796 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12797 { 12798 if (!list_empty_careful(&vcpu->async_pf.done)) 12799 return true; 12800 12801 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12802 kvm_apic_init_sipi_allowed(vcpu)) 12803 return true; 12804 12805 if (vcpu->arch.pv.pv_unhalted) 12806 return true; 12807 12808 if (kvm_is_exception_pending(vcpu)) 12809 return true; 12810 12811 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12812 (vcpu->arch.nmi_pending && 12813 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12814 return true; 12815 12816 #ifdef CONFIG_KVM_SMM 12817 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12818 (vcpu->arch.smi_pending && 12819 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12820 return true; 12821 #endif 12822 12823 if (kvm_arch_interrupt_allowed(vcpu) && 12824 (kvm_cpu_has_interrupt(vcpu) || 12825 kvm_guest_apic_has_interrupt(vcpu))) 12826 return true; 12827 12828 if (kvm_hv_has_stimer_pending(vcpu)) 12829 return true; 12830 12831 if (is_guest_mode(vcpu) && 12832 kvm_x86_ops.nested_ops->has_events && 12833 kvm_x86_ops.nested_ops->has_events(vcpu)) 12834 return true; 12835 12836 if (kvm_xen_has_pending_events(vcpu)) 12837 return true; 12838 12839 return false; 12840 } 12841 12842 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12843 { 12844 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12845 } 12846 12847 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12848 { 12849 if (kvm_vcpu_apicv_active(vcpu) && 12850 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12851 return true; 12852 12853 return false; 12854 } 12855 12856 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12857 { 12858 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12859 return true; 12860 12861 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12862 #ifdef CONFIG_KVM_SMM 12863 kvm_test_request(KVM_REQ_SMI, vcpu) || 12864 #endif 12865 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12866 return true; 12867 12868 return kvm_arch_dy_has_pending_interrupt(vcpu); 12869 } 12870 12871 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12872 { 12873 if (vcpu->arch.guest_state_protected) 12874 return true; 12875 12876 return vcpu->arch.preempted_in_kernel; 12877 } 12878 12879 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12880 { 12881 return kvm_rip_read(vcpu); 12882 } 12883 12884 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12885 { 12886 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12887 } 12888 12889 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12890 { 12891 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12892 } 12893 12894 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12895 { 12896 /* Can't read the RIP when guest state is protected, just return 0 */ 12897 if (vcpu->arch.guest_state_protected) 12898 return 0; 12899 12900 if (is_64_bit_mode(vcpu)) 12901 return kvm_rip_read(vcpu); 12902 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12903 kvm_rip_read(vcpu)); 12904 } 12905 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12906 12907 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12908 { 12909 return kvm_get_linear_rip(vcpu) == linear_rip; 12910 } 12911 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12912 12913 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12914 { 12915 unsigned long rflags; 12916 12917 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12918 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12919 rflags &= ~X86_EFLAGS_TF; 12920 return rflags; 12921 } 12922 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12923 12924 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12925 { 12926 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12927 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12928 rflags |= X86_EFLAGS_TF; 12929 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12930 } 12931 12932 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12933 { 12934 __kvm_set_rflags(vcpu, rflags); 12935 kvm_make_request(KVM_REQ_EVENT, vcpu); 12936 } 12937 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12938 12939 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12940 { 12941 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12942 12943 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12944 } 12945 12946 static inline u32 kvm_async_pf_next_probe(u32 key) 12947 { 12948 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12949 } 12950 12951 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12952 { 12953 u32 key = kvm_async_pf_hash_fn(gfn); 12954 12955 while (vcpu->arch.apf.gfns[key] != ~0) 12956 key = kvm_async_pf_next_probe(key); 12957 12958 vcpu->arch.apf.gfns[key] = gfn; 12959 } 12960 12961 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12962 { 12963 int i; 12964 u32 key = kvm_async_pf_hash_fn(gfn); 12965 12966 for (i = 0; i < ASYNC_PF_PER_VCPU && 12967 (vcpu->arch.apf.gfns[key] != gfn && 12968 vcpu->arch.apf.gfns[key] != ~0); i++) 12969 key = kvm_async_pf_next_probe(key); 12970 12971 return key; 12972 } 12973 12974 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12975 { 12976 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12977 } 12978 12979 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12980 { 12981 u32 i, j, k; 12982 12983 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12984 12985 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12986 return; 12987 12988 while (true) { 12989 vcpu->arch.apf.gfns[i] = ~0; 12990 do { 12991 j = kvm_async_pf_next_probe(j); 12992 if (vcpu->arch.apf.gfns[j] == ~0) 12993 return; 12994 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12995 /* 12996 * k lies cyclically in ]i,j] 12997 * | i.k.j | 12998 * |....j i.k.| or |.k..j i...| 12999 */ 13000 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13001 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13002 i = j; 13003 } 13004 } 13005 13006 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13007 { 13008 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13009 13010 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13011 sizeof(reason)); 13012 } 13013 13014 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13015 { 13016 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13017 13018 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13019 &token, offset, sizeof(token)); 13020 } 13021 13022 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13023 { 13024 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13025 u32 val; 13026 13027 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13028 &val, offset, sizeof(val))) 13029 return false; 13030 13031 return !val; 13032 } 13033 13034 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13035 { 13036 13037 if (!kvm_pv_async_pf_enabled(vcpu)) 13038 return false; 13039 13040 if (vcpu->arch.apf.send_user_only && 13041 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13042 return false; 13043 13044 if (is_guest_mode(vcpu)) { 13045 /* 13046 * L1 needs to opt into the special #PF vmexits that are 13047 * used to deliver async page faults. 13048 */ 13049 return vcpu->arch.apf.delivery_as_pf_vmexit; 13050 } else { 13051 /* 13052 * Play it safe in case the guest temporarily disables paging. 13053 * The real mode IDT in particular is unlikely to have a #PF 13054 * exception setup. 13055 */ 13056 return is_paging(vcpu); 13057 } 13058 } 13059 13060 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13061 { 13062 if (unlikely(!lapic_in_kernel(vcpu) || 13063 kvm_event_needs_reinjection(vcpu) || 13064 kvm_is_exception_pending(vcpu))) 13065 return false; 13066 13067 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13068 return false; 13069 13070 /* 13071 * If interrupts are off we cannot even use an artificial 13072 * halt state. 13073 */ 13074 return kvm_arch_interrupt_allowed(vcpu); 13075 } 13076 13077 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13078 struct kvm_async_pf *work) 13079 { 13080 struct x86_exception fault; 13081 13082 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13083 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13084 13085 if (kvm_can_deliver_async_pf(vcpu) && 13086 !apf_put_user_notpresent(vcpu)) { 13087 fault.vector = PF_VECTOR; 13088 fault.error_code_valid = true; 13089 fault.error_code = 0; 13090 fault.nested_page_fault = false; 13091 fault.address = work->arch.token; 13092 fault.async_page_fault = true; 13093 kvm_inject_page_fault(vcpu, &fault); 13094 return true; 13095 } else { 13096 /* 13097 * It is not possible to deliver a paravirtualized asynchronous 13098 * page fault, but putting the guest in an artificial halt state 13099 * can be beneficial nevertheless: if an interrupt arrives, we 13100 * can deliver it timely and perhaps the guest will schedule 13101 * another process. When the instruction that triggered a page 13102 * fault is retried, hopefully the page will be ready in the host. 13103 */ 13104 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13105 return false; 13106 } 13107 } 13108 13109 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13110 struct kvm_async_pf *work) 13111 { 13112 struct kvm_lapic_irq irq = { 13113 .delivery_mode = APIC_DM_FIXED, 13114 .vector = vcpu->arch.apf.vec 13115 }; 13116 13117 if (work->wakeup_all) 13118 work->arch.token = ~0; /* broadcast wakeup */ 13119 else 13120 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13121 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13122 13123 if ((work->wakeup_all || work->notpresent_injected) && 13124 kvm_pv_async_pf_enabled(vcpu) && 13125 !apf_put_user_ready(vcpu, work->arch.token)) { 13126 vcpu->arch.apf.pageready_pending = true; 13127 kvm_apic_set_irq(vcpu, &irq, NULL); 13128 } 13129 13130 vcpu->arch.apf.halted = false; 13131 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13132 } 13133 13134 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13135 { 13136 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13137 if (!vcpu->arch.apf.pageready_pending) 13138 kvm_vcpu_kick(vcpu); 13139 } 13140 13141 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13142 { 13143 if (!kvm_pv_async_pf_enabled(vcpu)) 13144 return true; 13145 else 13146 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13147 } 13148 13149 void kvm_arch_start_assignment(struct kvm *kvm) 13150 { 13151 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13152 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13153 } 13154 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13155 13156 void kvm_arch_end_assignment(struct kvm *kvm) 13157 { 13158 atomic_dec(&kvm->arch.assigned_device_count); 13159 } 13160 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13161 13162 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13163 { 13164 return raw_atomic_read(&kvm->arch.assigned_device_count); 13165 } 13166 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13167 13168 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13169 { 13170 atomic_inc(&kvm->arch.noncoherent_dma_count); 13171 } 13172 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13173 13174 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13175 { 13176 atomic_dec(&kvm->arch.noncoherent_dma_count); 13177 } 13178 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13179 13180 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13181 { 13182 return atomic_read(&kvm->arch.noncoherent_dma_count); 13183 } 13184 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13185 13186 bool kvm_arch_has_irq_bypass(void) 13187 { 13188 return true; 13189 } 13190 13191 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13192 struct irq_bypass_producer *prod) 13193 { 13194 struct kvm_kernel_irqfd *irqfd = 13195 container_of(cons, struct kvm_kernel_irqfd, consumer); 13196 int ret; 13197 13198 irqfd->producer = prod; 13199 kvm_arch_start_assignment(irqfd->kvm); 13200 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13201 prod->irq, irqfd->gsi, 1); 13202 13203 if (ret) 13204 kvm_arch_end_assignment(irqfd->kvm); 13205 13206 return ret; 13207 } 13208 13209 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13210 struct irq_bypass_producer *prod) 13211 { 13212 int ret; 13213 struct kvm_kernel_irqfd *irqfd = 13214 container_of(cons, struct kvm_kernel_irqfd, consumer); 13215 13216 WARN_ON(irqfd->producer != prod); 13217 irqfd->producer = NULL; 13218 13219 /* 13220 * When producer of consumer is unregistered, we change back to 13221 * remapped mode, so we can re-use the current implementation 13222 * when the irq is masked/disabled or the consumer side (KVM 13223 * int this case doesn't want to receive the interrupts. 13224 */ 13225 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13226 if (ret) 13227 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13228 " fails: %d\n", irqfd->consumer.token, ret); 13229 13230 kvm_arch_end_assignment(irqfd->kvm); 13231 } 13232 13233 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13234 uint32_t guest_irq, bool set) 13235 { 13236 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13237 } 13238 13239 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13240 struct kvm_kernel_irq_routing_entry *new) 13241 { 13242 if (new->type != KVM_IRQ_ROUTING_MSI) 13243 return true; 13244 13245 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13246 } 13247 13248 bool kvm_vector_hashing_enabled(void) 13249 { 13250 return vector_hashing; 13251 } 13252 13253 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13254 { 13255 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13256 } 13257 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13258 13259 13260 int kvm_spec_ctrl_test_value(u64 value) 13261 { 13262 /* 13263 * test that setting IA32_SPEC_CTRL to given value 13264 * is allowed by the host processor 13265 */ 13266 13267 u64 saved_value; 13268 unsigned long flags; 13269 int ret = 0; 13270 13271 local_irq_save(flags); 13272 13273 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13274 ret = 1; 13275 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13276 ret = 1; 13277 else 13278 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13279 13280 local_irq_restore(flags); 13281 13282 return ret; 13283 } 13284 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13285 13286 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13287 { 13288 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13289 struct x86_exception fault; 13290 u64 access = error_code & 13291 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13292 13293 if (!(error_code & PFERR_PRESENT_MASK) || 13294 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13295 /* 13296 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13297 * tables probably do not match the TLB. Just proceed 13298 * with the error code that the processor gave. 13299 */ 13300 fault.vector = PF_VECTOR; 13301 fault.error_code_valid = true; 13302 fault.error_code = error_code; 13303 fault.nested_page_fault = false; 13304 fault.address = gva; 13305 fault.async_page_fault = false; 13306 } 13307 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13308 } 13309 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13310 13311 /* 13312 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13313 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13314 * indicates whether exit to userspace is needed. 13315 */ 13316 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13317 struct x86_exception *e) 13318 { 13319 if (r == X86EMUL_PROPAGATE_FAULT) { 13320 if (KVM_BUG_ON(!e, vcpu->kvm)) 13321 return -EIO; 13322 13323 kvm_inject_emulated_page_fault(vcpu, e); 13324 return 1; 13325 } 13326 13327 /* 13328 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13329 * while handling a VMX instruction KVM could've handled the request 13330 * correctly by exiting to userspace and performing I/O but there 13331 * doesn't seem to be a real use-case behind such requests, just return 13332 * KVM_EXIT_INTERNAL_ERROR for now. 13333 */ 13334 kvm_prepare_emulation_failure_exit(vcpu); 13335 13336 return 0; 13337 } 13338 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13339 13340 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13341 { 13342 bool pcid_enabled; 13343 struct x86_exception e; 13344 struct { 13345 u64 pcid; 13346 u64 gla; 13347 } operand; 13348 int r; 13349 13350 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13351 if (r != X86EMUL_CONTINUE) 13352 return kvm_handle_memory_failure(vcpu, r, &e); 13353 13354 if (operand.pcid >> 12 != 0) { 13355 kvm_inject_gp(vcpu, 0); 13356 return 1; 13357 } 13358 13359 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13360 13361 switch (type) { 13362 case INVPCID_TYPE_INDIV_ADDR: 13363 if ((!pcid_enabled && (operand.pcid != 0)) || 13364 is_noncanonical_address(operand.gla, vcpu)) { 13365 kvm_inject_gp(vcpu, 0); 13366 return 1; 13367 } 13368 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13369 return kvm_skip_emulated_instruction(vcpu); 13370 13371 case INVPCID_TYPE_SINGLE_CTXT: 13372 if (!pcid_enabled && (operand.pcid != 0)) { 13373 kvm_inject_gp(vcpu, 0); 13374 return 1; 13375 } 13376 13377 kvm_invalidate_pcid(vcpu, operand.pcid); 13378 return kvm_skip_emulated_instruction(vcpu); 13379 13380 case INVPCID_TYPE_ALL_NON_GLOBAL: 13381 /* 13382 * Currently, KVM doesn't mark global entries in the shadow 13383 * page tables, so a non-global flush just degenerates to a 13384 * global flush. If needed, we could optimize this later by 13385 * keeping track of global entries in shadow page tables. 13386 */ 13387 13388 fallthrough; 13389 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13390 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13391 return kvm_skip_emulated_instruction(vcpu); 13392 13393 default: 13394 kvm_inject_gp(vcpu, 0); 13395 return 1; 13396 } 13397 } 13398 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13399 13400 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13401 { 13402 struct kvm_run *run = vcpu->run; 13403 struct kvm_mmio_fragment *frag; 13404 unsigned int len; 13405 13406 BUG_ON(!vcpu->mmio_needed); 13407 13408 /* Complete previous fragment */ 13409 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13410 len = min(8u, frag->len); 13411 if (!vcpu->mmio_is_write) 13412 memcpy(frag->data, run->mmio.data, len); 13413 13414 if (frag->len <= 8) { 13415 /* Switch to the next fragment. */ 13416 frag++; 13417 vcpu->mmio_cur_fragment++; 13418 } else { 13419 /* Go forward to the next mmio piece. */ 13420 frag->data += len; 13421 frag->gpa += len; 13422 frag->len -= len; 13423 } 13424 13425 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13426 vcpu->mmio_needed = 0; 13427 13428 // VMG change, at this point, we're always done 13429 // RIP has already been advanced 13430 return 1; 13431 } 13432 13433 // More MMIO is needed 13434 run->mmio.phys_addr = frag->gpa; 13435 run->mmio.len = min(8u, frag->len); 13436 run->mmio.is_write = vcpu->mmio_is_write; 13437 if (run->mmio.is_write) 13438 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13439 run->exit_reason = KVM_EXIT_MMIO; 13440 13441 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13442 13443 return 0; 13444 } 13445 13446 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13447 void *data) 13448 { 13449 int handled; 13450 struct kvm_mmio_fragment *frag; 13451 13452 if (!data) 13453 return -EINVAL; 13454 13455 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13456 if (handled == bytes) 13457 return 1; 13458 13459 bytes -= handled; 13460 gpa += handled; 13461 data += handled; 13462 13463 /*TODO: Check if need to increment number of frags */ 13464 frag = vcpu->mmio_fragments; 13465 vcpu->mmio_nr_fragments = 1; 13466 frag->len = bytes; 13467 frag->gpa = gpa; 13468 frag->data = data; 13469 13470 vcpu->mmio_needed = 1; 13471 vcpu->mmio_cur_fragment = 0; 13472 13473 vcpu->run->mmio.phys_addr = gpa; 13474 vcpu->run->mmio.len = min(8u, frag->len); 13475 vcpu->run->mmio.is_write = 1; 13476 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13477 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13478 13479 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13480 13481 return 0; 13482 } 13483 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13484 13485 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13486 void *data) 13487 { 13488 int handled; 13489 struct kvm_mmio_fragment *frag; 13490 13491 if (!data) 13492 return -EINVAL; 13493 13494 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13495 if (handled == bytes) 13496 return 1; 13497 13498 bytes -= handled; 13499 gpa += handled; 13500 data += handled; 13501 13502 /*TODO: Check if need to increment number of frags */ 13503 frag = vcpu->mmio_fragments; 13504 vcpu->mmio_nr_fragments = 1; 13505 frag->len = bytes; 13506 frag->gpa = gpa; 13507 frag->data = data; 13508 13509 vcpu->mmio_needed = 1; 13510 vcpu->mmio_cur_fragment = 0; 13511 13512 vcpu->run->mmio.phys_addr = gpa; 13513 vcpu->run->mmio.len = min(8u, frag->len); 13514 vcpu->run->mmio.is_write = 0; 13515 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13516 13517 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13518 13519 return 0; 13520 } 13521 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13522 13523 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13524 { 13525 vcpu->arch.sev_pio_count -= count; 13526 vcpu->arch.sev_pio_data += count * size; 13527 } 13528 13529 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13530 unsigned int port); 13531 13532 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13533 { 13534 int size = vcpu->arch.pio.size; 13535 int port = vcpu->arch.pio.port; 13536 13537 vcpu->arch.pio.count = 0; 13538 if (vcpu->arch.sev_pio_count) 13539 return kvm_sev_es_outs(vcpu, size, port); 13540 return 1; 13541 } 13542 13543 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13544 unsigned int port) 13545 { 13546 for (;;) { 13547 unsigned int count = 13548 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13549 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13550 13551 /* memcpy done already by emulator_pio_out. */ 13552 advance_sev_es_emulated_pio(vcpu, count, size); 13553 if (!ret) 13554 break; 13555 13556 /* Emulation done by the kernel. */ 13557 if (!vcpu->arch.sev_pio_count) 13558 return 1; 13559 } 13560 13561 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13562 return 0; 13563 } 13564 13565 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13566 unsigned int port); 13567 13568 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13569 { 13570 unsigned count = vcpu->arch.pio.count; 13571 int size = vcpu->arch.pio.size; 13572 int port = vcpu->arch.pio.port; 13573 13574 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13575 advance_sev_es_emulated_pio(vcpu, count, size); 13576 if (vcpu->arch.sev_pio_count) 13577 return kvm_sev_es_ins(vcpu, size, port); 13578 return 1; 13579 } 13580 13581 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13582 unsigned int port) 13583 { 13584 for (;;) { 13585 unsigned int count = 13586 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13587 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13588 break; 13589 13590 /* Emulation done by the kernel. */ 13591 advance_sev_es_emulated_pio(vcpu, count, size); 13592 if (!vcpu->arch.sev_pio_count) 13593 return 1; 13594 } 13595 13596 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13597 return 0; 13598 } 13599 13600 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13601 unsigned int port, void *data, unsigned int count, 13602 int in) 13603 { 13604 vcpu->arch.sev_pio_data = data; 13605 vcpu->arch.sev_pio_count = count; 13606 return in ? kvm_sev_es_ins(vcpu, size, port) 13607 : kvm_sev_es_outs(vcpu, size, port); 13608 } 13609 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13610 13611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13640 13641 static int __init kvm_x86_init(void) 13642 { 13643 kvm_mmu_x86_module_init(); 13644 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13645 return 0; 13646 } 13647 module_init(kvm_x86_init); 13648 13649 static void __exit kvm_x86_exit(void) 13650 { 13651 /* 13652 * If module_init() is implemented, module_exit() must also be 13653 * implemented to allow module unload. 13654 */ 13655 } 13656 module_exit(kvm_x86_exit); 13657