1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 #include "smm.h" 34 35 #include <linux/clocksource.h> 36 #include <linux/interrupt.h> 37 #include <linux/kvm.h> 38 #include <linux/fs.h> 39 #include <linux/vmalloc.h> 40 #include <linux/export.h> 41 #include <linux/moduleparam.h> 42 #include <linux/mman.h> 43 #include <linux/highmem.h> 44 #include <linux/iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <asm/pkru.h> 70 #include <linux/kernel_stat.h> 71 #include <asm/fpu/api.h> 72 #include <asm/fpu/xcr.h> 73 #include <asm/fpu/xstate.h> 74 #include <asm/pvclock.h> 75 #include <asm/div64.h> 76 #include <asm/irq_remapping.h> 77 #include <asm/mshyperv.h> 78 #include <asm/hypervisor.h> 79 #include <asm/tlbflush.h> 80 #include <asm/intel_pt.h> 81 #include <asm/emulate_prefix.h> 82 #include <asm/sgx.h> 83 #include <clocksource/hyperv_timer.h> 84 85 #define CREATE_TRACE_POINTS 86 #include "trace.h" 87 88 #define MAX_IO_MSRS 256 89 #define KVM_MAX_MCE_BANKS 32 90 91 struct kvm_caps kvm_caps __read_mostly = { 92 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 93 }; 94 EXPORT_SYMBOL_GPL(kvm_caps); 95 96 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 97 98 #define emul_to_vcpu(ctxt) \ 99 ((struct kvm_vcpu *)(ctxt)->vcpu) 100 101 /* EFER defaults: 102 * - enable syscall per default because its emulated by KVM 103 * - enable LME and LMA per default on 64 bit KVM 104 */ 105 #ifdef CONFIG_X86_64 106 static 107 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 108 #else 109 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 110 #endif 111 112 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 113 114 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 115 116 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 117 118 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 119 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 120 121 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 122 static void process_nmi(struct kvm_vcpu *vcpu); 123 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 124 static void store_regs(struct kvm_vcpu *vcpu); 125 static int sync_regs(struct kvm_vcpu *vcpu); 126 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 127 128 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 129 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 130 131 struct kvm_x86_ops kvm_x86_ops __read_mostly; 132 133 #define KVM_X86_OP(func) \ 134 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 135 *(((struct kvm_x86_ops *)0)->func)); 136 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 137 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 138 #include <asm/kvm-x86-ops.h> 139 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 140 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 141 142 static bool __read_mostly ignore_msrs = 0; 143 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 144 145 bool __read_mostly report_ignored_msrs = true; 146 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 147 EXPORT_SYMBOL_GPL(report_ignored_msrs); 148 149 unsigned int min_timer_period_us = 200; 150 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 151 152 static bool __read_mostly kvmclock_periodic_sync = true; 153 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 154 155 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 156 static u32 __read_mostly tsc_tolerance_ppm = 250; 157 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 158 159 /* 160 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 161 * adaptive tuning starting from default advancement of 1000ns. '0' disables 162 * advancement entirely. Any other value is used as-is and disables adaptive 163 * tuning, i.e. allows privileged userspace to set an exact advancement time. 164 */ 165 static int __read_mostly lapic_timer_advance_ns = -1; 166 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 167 168 static bool __read_mostly vector_hashing = true; 169 module_param(vector_hashing, bool, S_IRUGO); 170 171 bool __read_mostly enable_vmware_backdoor = false; 172 module_param(enable_vmware_backdoor, bool, S_IRUGO); 173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 174 175 /* 176 * Flags to manipulate forced emulation behavior (any non-zero value will 177 * enable forced emulation). 178 */ 179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 180 static int __read_mostly force_emulation_prefix; 181 module_param(force_emulation_prefix, int, 0644); 182 183 int __read_mostly pi_inject_timer = -1; 184 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 185 186 /* Enable/disable PMU virtualization */ 187 bool __read_mostly enable_pmu = true; 188 EXPORT_SYMBOL_GPL(enable_pmu); 189 module_param(enable_pmu, bool, 0444); 190 191 bool __read_mostly eager_page_split = true; 192 module_param(eager_page_split, bool, 0644); 193 194 /* Enable/disable SMT_RSB bug mitigation */ 195 bool __read_mostly mitigate_smt_rsb; 196 module_param(mitigate_smt_rsb, bool, 0444); 197 198 /* 199 * Restoring the host value for MSRs that are only consumed when running in 200 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 201 * returns to userspace, i.e. the kernel can run with the guest's value. 202 */ 203 #define KVM_MAX_NR_USER_RETURN_MSRS 16 204 205 struct kvm_user_return_msrs { 206 struct user_return_notifier urn; 207 bool registered; 208 struct kvm_user_return_msr_values { 209 u64 host; 210 u64 curr; 211 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 212 }; 213 214 u32 __read_mostly kvm_nr_uret_msrs; 215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 217 static struct kvm_user_return_msrs __percpu *user_return_msrs; 218 219 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 220 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 221 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 222 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 223 224 u64 __read_mostly host_efer; 225 EXPORT_SYMBOL_GPL(host_efer); 226 227 bool __read_mostly allow_smaller_maxphyaddr = 0; 228 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 229 230 bool __read_mostly enable_apicv = true; 231 EXPORT_SYMBOL_GPL(enable_apicv); 232 233 u64 __read_mostly host_xss; 234 EXPORT_SYMBOL_GPL(host_xss); 235 236 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 237 KVM_GENERIC_VM_STATS(), 238 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 239 STATS_DESC_COUNTER(VM, mmu_pte_write), 240 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 241 STATS_DESC_COUNTER(VM, mmu_flooded), 242 STATS_DESC_COUNTER(VM, mmu_recycled), 243 STATS_DESC_COUNTER(VM, mmu_cache_miss), 244 STATS_DESC_ICOUNTER(VM, mmu_unsync), 245 STATS_DESC_ICOUNTER(VM, pages_4k), 246 STATS_DESC_ICOUNTER(VM, pages_2m), 247 STATS_DESC_ICOUNTER(VM, pages_1g), 248 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 249 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 250 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 251 }; 252 253 const struct kvm_stats_header kvm_vm_stats_header = { 254 .name_size = KVM_STATS_NAME_SIZE, 255 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 256 .id_offset = sizeof(struct kvm_stats_header), 257 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 258 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 259 sizeof(kvm_vm_stats_desc), 260 }; 261 262 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 263 KVM_GENERIC_VCPU_STATS(), 264 STATS_DESC_COUNTER(VCPU, pf_taken), 265 STATS_DESC_COUNTER(VCPU, pf_fixed), 266 STATS_DESC_COUNTER(VCPU, pf_emulate), 267 STATS_DESC_COUNTER(VCPU, pf_spurious), 268 STATS_DESC_COUNTER(VCPU, pf_fast), 269 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 270 STATS_DESC_COUNTER(VCPU, pf_guest), 271 STATS_DESC_COUNTER(VCPU, tlb_flush), 272 STATS_DESC_COUNTER(VCPU, invlpg), 273 STATS_DESC_COUNTER(VCPU, exits), 274 STATS_DESC_COUNTER(VCPU, io_exits), 275 STATS_DESC_COUNTER(VCPU, mmio_exits), 276 STATS_DESC_COUNTER(VCPU, signal_exits), 277 STATS_DESC_COUNTER(VCPU, irq_window_exits), 278 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 279 STATS_DESC_COUNTER(VCPU, l1d_flush), 280 STATS_DESC_COUNTER(VCPU, halt_exits), 281 STATS_DESC_COUNTER(VCPU, request_irq_exits), 282 STATS_DESC_COUNTER(VCPU, irq_exits), 283 STATS_DESC_COUNTER(VCPU, host_state_reload), 284 STATS_DESC_COUNTER(VCPU, fpu_reload), 285 STATS_DESC_COUNTER(VCPU, insn_emulation), 286 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 287 STATS_DESC_COUNTER(VCPU, hypercalls), 288 STATS_DESC_COUNTER(VCPU, irq_injections), 289 STATS_DESC_COUNTER(VCPU, nmi_injections), 290 STATS_DESC_COUNTER(VCPU, req_event), 291 STATS_DESC_COUNTER(VCPU, nested_run), 292 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 293 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 294 STATS_DESC_COUNTER(VCPU, preemption_reported), 295 STATS_DESC_COUNTER(VCPU, preemption_other), 296 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 297 STATS_DESC_COUNTER(VCPU, notify_window_exits), 298 }; 299 300 const struct kvm_stats_header kvm_vcpu_stats_header = { 301 .name_size = KVM_STATS_NAME_SIZE, 302 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 303 .id_offset = sizeof(struct kvm_stats_header), 304 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 305 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 306 sizeof(kvm_vcpu_stats_desc), 307 }; 308 309 u64 __read_mostly host_xcr0; 310 311 static struct kmem_cache *x86_emulator_cache; 312 313 /* 314 * When called, it means the previous get/set msr reached an invalid msr. 315 * Return true if we want to ignore/silent this failed msr access. 316 */ 317 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 318 { 319 const char *op = write ? "wrmsr" : "rdmsr"; 320 321 if (ignore_msrs) { 322 if (report_ignored_msrs) 323 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 324 op, msr, data); 325 /* Mask the error */ 326 return true; 327 } else { 328 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 329 op, msr, data); 330 return false; 331 } 332 } 333 334 static struct kmem_cache *kvm_alloc_emulator_cache(void) 335 { 336 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 337 unsigned int size = sizeof(struct x86_emulate_ctxt); 338 339 return kmem_cache_create_usercopy("x86_emulator", size, 340 __alignof__(struct x86_emulate_ctxt), 341 SLAB_ACCOUNT, useroffset, 342 size - useroffset, NULL); 343 } 344 345 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 346 347 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 348 { 349 int i; 350 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 351 vcpu->arch.apf.gfns[i] = ~0; 352 } 353 354 static void kvm_on_user_return(struct user_return_notifier *urn) 355 { 356 unsigned slot; 357 struct kvm_user_return_msrs *msrs 358 = container_of(urn, struct kvm_user_return_msrs, urn); 359 struct kvm_user_return_msr_values *values; 360 unsigned long flags; 361 362 /* 363 * Disabling irqs at this point since the following code could be 364 * interrupted and executed through kvm_arch_hardware_disable() 365 */ 366 local_irq_save(flags); 367 if (msrs->registered) { 368 msrs->registered = false; 369 user_return_notifier_unregister(urn); 370 } 371 local_irq_restore(flags); 372 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 373 values = &msrs->values[slot]; 374 if (values->host != values->curr) { 375 wrmsrl(kvm_uret_msrs_list[slot], values->host); 376 values->curr = values->host; 377 } 378 } 379 } 380 381 static int kvm_probe_user_return_msr(u32 msr) 382 { 383 u64 val; 384 int ret; 385 386 preempt_disable(); 387 ret = rdmsrl_safe(msr, &val); 388 if (ret) 389 goto out; 390 ret = wrmsrl_safe(msr, val); 391 out: 392 preempt_enable(); 393 return ret; 394 } 395 396 int kvm_add_user_return_msr(u32 msr) 397 { 398 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 399 400 if (kvm_probe_user_return_msr(msr)) 401 return -1; 402 403 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 404 return kvm_nr_uret_msrs++; 405 } 406 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 407 408 int kvm_find_user_return_msr(u32 msr) 409 { 410 int i; 411 412 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 413 if (kvm_uret_msrs_list[i] == msr) 414 return i; 415 } 416 return -1; 417 } 418 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 419 420 static void kvm_user_return_msr_cpu_online(void) 421 { 422 unsigned int cpu = smp_processor_id(); 423 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 424 u64 value; 425 int i; 426 427 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 428 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 429 msrs->values[i].host = value; 430 msrs->values[i].curr = value; 431 } 432 } 433 434 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 435 { 436 unsigned int cpu = smp_processor_id(); 437 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 438 int err; 439 440 value = (value & mask) | (msrs->values[slot].host & ~mask); 441 if (value == msrs->values[slot].curr) 442 return 0; 443 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 444 if (err) 445 return 1; 446 447 msrs->values[slot].curr = value; 448 if (!msrs->registered) { 449 msrs->urn.on_user_return = kvm_on_user_return; 450 user_return_notifier_register(&msrs->urn); 451 msrs->registered = true; 452 } 453 return 0; 454 } 455 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 456 457 static void drop_user_return_notifiers(void) 458 { 459 unsigned int cpu = smp_processor_id(); 460 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 461 462 if (msrs->registered) 463 kvm_on_user_return(&msrs->urn); 464 } 465 466 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 467 { 468 return vcpu->arch.apic_base; 469 } 470 471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 472 { 473 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 474 } 475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 476 477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 478 { 479 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 480 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 481 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 482 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 483 484 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 485 return 1; 486 if (!msr_info->host_initiated) { 487 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 488 return 1; 489 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 490 return 1; 491 } 492 493 kvm_lapic_set_base(vcpu, msr_info->data); 494 kvm_recalculate_apic_map(vcpu->kvm); 495 return 0; 496 } 497 498 /* 499 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 500 * 501 * Hardware virtualization extension instructions may fault if a reboot turns 502 * off virtualization while processes are running. Usually after catching the 503 * fault we just panic; during reboot instead the instruction is ignored. 504 */ 505 noinstr void kvm_spurious_fault(void) 506 { 507 /* Fault while not rebooting. We want the trace. */ 508 BUG_ON(!kvm_rebooting); 509 } 510 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 511 512 #define EXCPT_BENIGN 0 513 #define EXCPT_CONTRIBUTORY 1 514 #define EXCPT_PF 2 515 516 static int exception_class(int vector) 517 { 518 switch (vector) { 519 case PF_VECTOR: 520 return EXCPT_PF; 521 case DE_VECTOR: 522 case TS_VECTOR: 523 case NP_VECTOR: 524 case SS_VECTOR: 525 case GP_VECTOR: 526 return EXCPT_CONTRIBUTORY; 527 default: 528 break; 529 } 530 return EXCPT_BENIGN; 531 } 532 533 #define EXCPT_FAULT 0 534 #define EXCPT_TRAP 1 535 #define EXCPT_ABORT 2 536 #define EXCPT_INTERRUPT 3 537 #define EXCPT_DB 4 538 539 static int exception_type(int vector) 540 { 541 unsigned int mask; 542 543 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 544 return EXCPT_INTERRUPT; 545 546 mask = 1 << vector; 547 548 /* 549 * #DBs can be trap-like or fault-like, the caller must check other CPU 550 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 551 */ 552 if (mask & (1 << DB_VECTOR)) 553 return EXCPT_DB; 554 555 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 556 return EXCPT_TRAP; 557 558 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 559 return EXCPT_ABORT; 560 561 /* Reserved exceptions will result in fault */ 562 return EXCPT_FAULT; 563 } 564 565 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 566 struct kvm_queued_exception *ex) 567 { 568 if (!ex->has_payload) 569 return; 570 571 switch (ex->vector) { 572 case DB_VECTOR: 573 /* 574 * "Certain debug exceptions may clear bit 0-3. The 575 * remaining contents of the DR6 register are never 576 * cleared by the processor". 577 */ 578 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 579 /* 580 * In order to reflect the #DB exception payload in guest 581 * dr6, three components need to be considered: active low 582 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 583 * DR6_BS and DR6_BT) 584 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 585 * In the target guest dr6: 586 * FIXED_1 bits should always be set. 587 * Active low bits should be cleared if 1-setting in payload. 588 * Active high bits should be set if 1-setting in payload. 589 * 590 * Note, the payload is compatible with the pending debug 591 * exceptions/exit qualification under VMX, that active_low bits 592 * are active high in payload. 593 * So they need to be flipped for DR6. 594 */ 595 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 596 vcpu->arch.dr6 |= ex->payload; 597 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 598 599 /* 600 * The #DB payload is defined as compatible with the 'pending 601 * debug exceptions' field under VMX, not DR6. While bit 12 is 602 * defined in the 'pending debug exceptions' field (enabled 603 * breakpoint), it is reserved and must be zero in DR6. 604 */ 605 vcpu->arch.dr6 &= ~BIT(12); 606 break; 607 case PF_VECTOR: 608 vcpu->arch.cr2 = ex->payload; 609 break; 610 } 611 612 ex->has_payload = false; 613 ex->payload = 0; 614 } 615 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 616 617 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 618 bool has_error_code, u32 error_code, 619 bool has_payload, unsigned long payload) 620 { 621 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 622 623 ex->vector = vector; 624 ex->injected = false; 625 ex->pending = true; 626 ex->has_error_code = has_error_code; 627 ex->error_code = error_code; 628 ex->has_payload = has_payload; 629 ex->payload = payload; 630 } 631 632 /* Forcibly leave the nested mode in cases like a vCPU reset */ 633 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 634 { 635 kvm_x86_ops.nested_ops->leave_nested(vcpu); 636 } 637 638 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 639 unsigned nr, bool has_error, u32 error_code, 640 bool has_payload, unsigned long payload, bool reinject) 641 { 642 u32 prev_nr; 643 int class1, class2; 644 645 kvm_make_request(KVM_REQ_EVENT, vcpu); 646 647 /* 648 * If the exception is destined for L2 and isn't being reinjected, 649 * morph it to a VM-Exit if L1 wants to intercept the exception. A 650 * previously injected exception is not checked because it was checked 651 * when it was original queued, and re-checking is incorrect if _L1_ 652 * injected the exception, in which case it's exempt from interception. 653 */ 654 if (!reinject && is_guest_mode(vcpu) && 655 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 656 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 657 has_payload, payload); 658 return; 659 } 660 661 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 662 queue: 663 if (reinject) { 664 /* 665 * On VM-Entry, an exception can be pending if and only 666 * if event injection was blocked by nested_run_pending. 667 * In that case, however, vcpu_enter_guest() requests an 668 * immediate exit, and the guest shouldn't proceed far 669 * enough to need reinjection. 670 */ 671 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 672 vcpu->arch.exception.injected = true; 673 if (WARN_ON_ONCE(has_payload)) { 674 /* 675 * A reinjected event has already 676 * delivered its payload. 677 */ 678 has_payload = false; 679 payload = 0; 680 } 681 } else { 682 vcpu->arch.exception.pending = true; 683 vcpu->arch.exception.injected = false; 684 } 685 vcpu->arch.exception.has_error_code = has_error; 686 vcpu->arch.exception.vector = nr; 687 vcpu->arch.exception.error_code = error_code; 688 vcpu->arch.exception.has_payload = has_payload; 689 vcpu->arch.exception.payload = payload; 690 if (!is_guest_mode(vcpu)) 691 kvm_deliver_exception_payload(vcpu, 692 &vcpu->arch.exception); 693 return; 694 } 695 696 /* to check exception */ 697 prev_nr = vcpu->arch.exception.vector; 698 if (prev_nr == DF_VECTOR) { 699 /* triple fault -> shutdown */ 700 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 701 return; 702 } 703 class1 = exception_class(prev_nr); 704 class2 = exception_class(nr); 705 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 706 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 707 /* 708 * Synthesize #DF. Clear the previously injected or pending 709 * exception so as not to incorrectly trigger shutdown. 710 */ 711 vcpu->arch.exception.injected = false; 712 vcpu->arch.exception.pending = false; 713 714 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 715 } else { 716 /* replace previous exception with a new one in a hope 717 that instruction re-execution will regenerate lost 718 exception */ 719 goto queue; 720 } 721 } 722 723 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 724 { 725 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 726 } 727 EXPORT_SYMBOL_GPL(kvm_queue_exception); 728 729 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 730 { 731 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 732 } 733 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 734 735 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 736 unsigned long payload) 737 { 738 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 739 } 740 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 741 742 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 743 u32 error_code, unsigned long payload) 744 { 745 kvm_multiple_exception(vcpu, nr, true, error_code, 746 true, payload, false); 747 } 748 749 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 750 { 751 if (err) 752 kvm_inject_gp(vcpu, 0); 753 else 754 return kvm_skip_emulated_instruction(vcpu); 755 756 return 1; 757 } 758 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 759 760 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 761 { 762 if (err) { 763 kvm_inject_gp(vcpu, 0); 764 return 1; 765 } 766 767 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 768 EMULTYPE_COMPLETE_USER_EXIT); 769 } 770 771 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 772 { 773 ++vcpu->stat.pf_guest; 774 775 /* 776 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 777 * whether or not L1 wants to intercept "regular" #PF. 778 */ 779 if (is_guest_mode(vcpu) && fault->async_page_fault) 780 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 781 true, fault->error_code, 782 true, fault->address); 783 else 784 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 785 fault->address); 786 } 787 788 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 789 struct x86_exception *fault) 790 { 791 struct kvm_mmu *fault_mmu; 792 WARN_ON_ONCE(fault->vector != PF_VECTOR); 793 794 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 795 vcpu->arch.walk_mmu; 796 797 /* 798 * Invalidate the TLB entry for the faulting address, if it exists, 799 * else the access will fault indefinitely (and to emulate hardware). 800 */ 801 if ((fault->error_code & PFERR_PRESENT_MASK) && 802 !(fault->error_code & PFERR_RSVD_MASK)) 803 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 804 fault_mmu->root.hpa); 805 806 fault_mmu->inject_page_fault(vcpu, fault); 807 } 808 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 809 810 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 811 { 812 atomic_inc(&vcpu->arch.nmi_queued); 813 kvm_make_request(KVM_REQ_NMI, vcpu); 814 } 815 816 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 817 { 818 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 819 } 820 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 821 822 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 823 { 824 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 825 } 826 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 827 828 /* 829 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 830 * a #GP and return false. 831 */ 832 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 833 { 834 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 835 return true; 836 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 837 return false; 838 } 839 840 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 841 { 842 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 843 return true; 844 845 kvm_queue_exception(vcpu, UD_VECTOR); 846 return false; 847 } 848 EXPORT_SYMBOL_GPL(kvm_require_dr); 849 850 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 851 { 852 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 853 } 854 855 /* 856 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 857 */ 858 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 859 { 860 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 861 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 862 gpa_t real_gpa; 863 int i; 864 int ret; 865 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 866 867 /* 868 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 869 * to an L1 GPA. 870 */ 871 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 872 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 873 if (real_gpa == INVALID_GPA) 874 return 0; 875 876 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 877 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 878 cr3 & GENMASK(11, 5), sizeof(pdpte)); 879 if (ret < 0) 880 return 0; 881 882 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 883 if ((pdpte[i] & PT_PRESENT_MASK) && 884 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 885 return 0; 886 } 887 } 888 889 /* 890 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 891 * Shadow page roots need to be reconstructed instead. 892 */ 893 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 894 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 895 896 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 897 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 898 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 899 vcpu->arch.pdptrs_from_userspace = false; 900 901 return 1; 902 } 903 EXPORT_SYMBOL_GPL(load_pdptrs); 904 905 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 906 { 907 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 908 kvm_clear_async_pf_completion_queue(vcpu); 909 kvm_async_pf_hash_reset(vcpu); 910 911 /* 912 * Clearing CR0.PG is defined to flush the TLB from the guest's 913 * perspective. 914 */ 915 if (!(cr0 & X86_CR0_PG)) 916 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 917 } 918 919 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 920 kvm_mmu_reset_context(vcpu); 921 922 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 923 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 924 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 925 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 926 } 927 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 928 929 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 930 { 931 unsigned long old_cr0 = kvm_read_cr0(vcpu); 932 933 cr0 |= X86_CR0_ET; 934 935 #ifdef CONFIG_X86_64 936 if (cr0 & 0xffffffff00000000UL) 937 return 1; 938 #endif 939 940 cr0 &= ~CR0_RESERVED_BITS; 941 942 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 943 return 1; 944 945 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 946 return 1; 947 948 #ifdef CONFIG_X86_64 949 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 950 (cr0 & X86_CR0_PG)) { 951 int cs_db, cs_l; 952 953 if (!is_pae(vcpu)) 954 return 1; 955 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 956 if (cs_l) 957 return 1; 958 } 959 #endif 960 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 961 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 962 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 963 return 1; 964 965 if (!(cr0 & X86_CR0_PG) && 966 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 967 return 1; 968 969 static_call(kvm_x86_set_cr0)(vcpu, cr0); 970 971 kvm_post_set_cr0(vcpu, old_cr0, cr0); 972 973 return 0; 974 } 975 EXPORT_SYMBOL_GPL(kvm_set_cr0); 976 977 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 978 { 979 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 980 } 981 EXPORT_SYMBOL_GPL(kvm_lmsw); 982 983 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 984 { 985 if (vcpu->arch.guest_state_protected) 986 return; 987 988 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 989 990 if (vcpu->arch.xcr0 != host_xcr0) 991 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 992 993 if (vcpu->arch.xsaves_enabled && 994 vcpu->arch.ia32_xss != host_xss) 995 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 996 } 997 998 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 999 if (static_cpu_has(X86_FEATURE_PKU) && 1000 vcpu->arch.pkru != vcpu->arch.host_pkru && 1001 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1002 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 1003 write_pkru(vcpu->arch.pkru); 1004 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1005 } 1006 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1007 1008 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1009 { 1010 if (vcpu->arch.guest_state_protected) 1011 return; 1012 1013 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1014 if (static_cpu_has(X86_FEATURE_PKU) && 1015 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1016 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1017 vcpu->arch.pkru = rdpkru(); 1018 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1019 write_pkru(vcpu->arch.host_pkru); 1020 } 1021 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1022 1023 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1024 1025 if (vcpu->arch.xcr0 != host_xcr0) 1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1027 1028 if (vcpu->arch.xsaves_enabled && 1029 vcpu->arch.ia32_xss != host_xss) 1030 wrmsrl(MSR_IA32_XSS, host_xss); 1031 } 1032 1033 } 1034 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1035 1036 #ifdef CONFIG_X86_64 1037 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1038 { 1039 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1040 } 1041 #endif 1042 1043 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1044 { 1045 u64 xcr0 = xcr; 1046 u64 old_xcr0 = vcpu->arch.xcr0; 1047 u64 valid_bits; 1048 1049 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1050 if (index != XCR_XFEATURE_ENABLED_MASK) 1051 return 1; 1052 if (!(xcr0 & XFEATURE_MASK_FP)) 1053 return 1; 1054 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1055 return 1; 1056 1057 /* 1058 * Do not allow the guest to set bits that we do not support 1059 * saving. However, xcr0 bit 0 is always set, even if the 1060 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1061 */ 1062 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1063 if (xcr0 & ~valid_bits) 1064 return 1; 1065 1066 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1067 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1068 return 1; 1069 1070 if (xcr0 & XFEATURE_MASK_AVX512) { 1071 if (!(xcr0 & XFEATURE_MASK_YMM)) 1072 return 1; 1073 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1074 return 1; 1075 } 1076 1077 if ((xcr0 & XFEATURE_MASK_XTILE) && 1078 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1079 return 1; 1080 1081 vcpu->arch.xcr0 = xcr0; 1082 1083 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1084 kvm_update_cpuid_runtime(vcpu); 1085 return 0; 1086 } 1087 1088 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1089 { 1090 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1091 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1092 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1093 kvm_inject_gp(vcpu, 0); 1094 return 1; 1095 } 1096 1097 return kvm_skip_emulated_instruction(vcpu); 1098 } 1099 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1100 1101 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1102 { 1103 if (cr4 & cr4_reserved_bits) 1104 return false; 1105 1106 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1107 return false; 1108 1109 return true; 1110 } 1111 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1112 1113 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1114 { 1115 return __kvm_is_valid_cr4(vcpu, cr4) && 1116 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1117 } 1118 1119 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1120 { 1121 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1122 kvm_mmu_reset_context(vcpu); 1123 1124 /* 1125 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1126 * according to the SDM; however, stale prev_roots could be reused 1127 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1128 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1129 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1130 * so fall through. 1131 */ 1132 if (!tdp_enabled && 1133 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1134 kvm_mmu_unload(vcpu); 1135 1136 /* 1137 * The TLB has to be flushed for all PCIDs if any of the following 1138 * (architecturally required) changes happen: 1139 * - CR4.PCIDE is changed from 1 to 0 1140 * - CR4.PGE is toggled 1141 * 1142 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1143 */ 1144 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1145 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1146 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1147 1148 /* 1149 * The TLB has to be flushed for the current PCID if any of the 1150 * following (architecturally required) changes happen: 1151 * - CR4.SMEP is changed from 0 to 1 1152 * - CR4.PAE is toggled 1153 */ 1154 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1155 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1156 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1157 1158 } 1159 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1160 1161 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1162 { 1163 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1164 1165 if (!kvm_is_valid_cr4(vcpu, cr4)) 1166 return 1; 1167 1168 if (is_long_mode(vcpu)) { 1169 if (!(cr4 & X86_CR4_PAE)) 1170 return 1; 1171 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1172 return 1; 1173 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1174 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1175 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1176 return 1; 1177 1178 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1179 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1180 return 1; 1181 1182 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1183 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1184 return 1; 1185 } 1186 1187 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1188 1189 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1190 1191 return 0; 1192 } 1193 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1194 1195 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1196 { 1197 struct kvm_mmu *mmu = vcpu->arch.mmu; 1198 unsigned long roots_to_free = 0; 1199 int i; 1200 1201 /* 1202 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1203 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1204 * also via the emulator. KVM's TDP page tables are not in the scope of 1205 * the invalidation, but the guest's TLB entries need to be flushed as 1206 * the CPU may have cached entries in its TLB for the target PCID. 1207 */ 1208 if (unlikely(tdp_enabled)) { 1209 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1210 return; 1211 } 1212 1213 /* 1214 * If neither the current CR3 nor any of the prev_roots use the given 1215 * PCID, then nothing needs to be done here because a resync will 1216 * happen anyway before switching to any other CR3. 1217 */ 1218 if (kvm_get_active_pcid(vcpu) == pcid) { 1219 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1220 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1221 } 1222 1223 /* 1224 * If PCID is disabled, there is no need to free prev_roots even if the 1225 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1226 * with PCIDE=0. 1227 */ 1228 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1229 return; 1230 1231 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1232 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1233 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1234 1235 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1236 } 1237 1238 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1239 { 1240 bool skip_tlb_flush = false; 1241 unsigned long pcid = 0; 1242 #ifdef CONFIG_X86_64 1243 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1244 1245 if (pcid_enabled) { 1246 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1247 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1248 pcid = cr3 & X86_CR3_PCID_MASK; 1249 } 1250 #endif 1251 1252 /* PDPTRs are always reloaded for PAE paging. */ 1253 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1254 goto handle_tlb_flush; 1255 1256 /* 1257 * Do not condition the GPA check on long mode, this helper is used to 1258 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1259 * the current vCPU mode is accurate. 1260 */ 1261 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1262 return 1; 1263 1264 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1265 return 1; 1266 1267 if (cr3 != kvm_read_cr3(vcpu)) 1268 kvm_mmu_new_pgd(vcpu, cr3); 1269 1270 vcpu->arch.cr3 = cr3; 1271 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1272 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1273 1274 handle_tlb_flush: 1275 /* 1276 * A load of CR3 that flushes the TLB flushes only the current PCID, 1277 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1278 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1279 * and it's impossible to use a non-zero PCID when PCID is disabled, 1280 * i.e. only PCID=0 can be relevant. 1281 */ 1282 if (!skip_tlb_flush) 1283 kvm_invalidate_pcid(vcpu, pcid); 1284 1285 return 0; 1286 } 1287 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1288 1289 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1290 { 1291 if (cr8 & CR8_RESERVED_BITS) 1292 return 1; 1293 if (lapic_in_kernel(vcpu)) 1294 kvm_lapic_set_tpr(vcpu, cr8); 1295 else 1296 vcpu->arch.cr8 = cr8; 1297 return 0; 1298 } 1299 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1300 1301 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1302 { 1303 if (lapic_in_kernel(vcpu)) 1304 return kvm_lapic_get_cr8(vcpu); 1305 else 1306 return vcpu->arch.cr8; 1307 } 1308 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1309 1310 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1311 { 1312 int i; 1313 1314 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1315 for (i = 0; i < KVM_NR_DB_REGS; i++) 1316 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1317 } 1318 } 1319 1320 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1321 { 1322 unsigned long dr7; 1323 1324 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1325 dr7 = vcpu->arch.guest_debug_dr7; 1326 else 1327 dr7 = vcpu->arch.dr7; 1328 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1329 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1330 if (dr7 & DR7_BP_EN_MASK) 1331 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1332 } 1333 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1334 1335 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1336 { 1337 u64 fixed = DR6_FIXED_1; 1338 1339 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1340 fixed |= DR6_RTM; 1341 1342 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1343 fixed |= DR6_BUS_LOCK; 1344 return fixed; 1345 } 1346 1347 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1348 { 1349 size_t size = ARRAY_SIZE(vcpu->arch.db); 1350 1351 switch (dr) { 1352 case 0 ... 3: 1353 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1354 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1355 vcpu->arch.eff_db[dr] = val; 1356 break; 1357 case 4: 1358 case 6: 1359 if (!kvm_dr6_valid(val)) 1360 return 1; /* #GP */ 1361 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1362 break; 1363 case 5: 1364 default: /* 7 */ 1365 if (!kvm_dr7_valid(val)) 1366 return 1; /* #GP */ 1367 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1368 kvm_update_dr7(vcpu); 1369 break; 1370 } 1371 1372 return 0; 1373 } 1374 EXPORT_SYMBOL_GPL(kvm_set_dr); 1375 1376 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1377 { 1378 size_t size = ARRAY_SIZE(vcpu->arch.db); 1379 1380 switch (dr) { 1381 case 0 ... 3: 1382 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1383 break; 1384 case 4: 1385 case 6: 1386 *val = vcpu->arch.dr6; 1387 break; 1388 case 5: 1389 default: /* 7 */ 1390 *val = vcpu->arch.dr7; 1391 break; 1392 } 1393 } 1394 EXPORT_SYMBOL_GPL(kvm_get_dr); 1395 1396 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1397 { 1398 u32 ecx = kvm_rcx_read(vcpu); 1399 u64 data; 1400 1401 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1402 kvm_inject_gp(vcpu, 0); 1403 return 1; 1404 } 1405 1406 kvm_rax_write(vcpu, (u32)data); 1407 kvm_rdx_write(vcpu, data >> 32); 1408 return kvm_skip_emulated_instruction(vcpu); 1409 } 1410 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1411 1412 /* 1413 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1414 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1415 * 1416 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1417 * extract the supported MSRs from the related const lists. 1418 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1419 * capabilities of the host cpu. This capabilities test skips MSRs that are 1420 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1421 * may depend on host virtualization features rather than host cpu features. 1422 */ 1423 1424 static const u32 msrs_to_save_all[] = { 1425 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1426 MSR_STAR, 1427 #ifdef CONFIG_X86_64 1428 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1429 #endif 1430 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1431 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1432 MSR_IA32_SPEC_CTRL, 1433 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1434 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1435 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1436 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1437 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1438 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1439 MSR_IA32_UMWAIT_CONTROL, 1440 1441 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1442 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1443 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1444 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1445 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1446 1447 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1448 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1449 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1450 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1451 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1452 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1453 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1454 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1455 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1456 1457 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1458 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1459 1460 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1461 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1462 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1463 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1464 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1465 1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1467 }; 1468 1469 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1470 static unsigned num_msrs_to_save; 1471 1472 static const u32 emulated_msrs_all[] = { 1473 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1474 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1475 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1476 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1477 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1478 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1479 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1480 HV_X64_MSR_RESET, 1481 HV_X64_MSR_VP_INDEX, 1482 HV_X64_MSR_VP_RUNTIME, 1483 HV_X64_MSR_SCONTROL, 1484 HV_X64_MSR_STIMER0_CONFIG, 1485 HV_X64_MSR_VP_ASSIST_PAGE, 1486 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1487 HV_X64_MSR_TSC_EMULATION_STATUS, 1488 HV_X64_MSR_SYNDBG_OPTIONS, 1489 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1490 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1491 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1492 1493 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1494 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1495 1496 MSR_IA32_TSC_ADJUST, 1497 MSR_IA32_TSC_DEADLINE, 1498 MSR_IA32_ARCH_CAPABILITIES, 1499 MSR_IA32_PERF_CAPABILITIES, 1500 MSR_IA32_MISC_ENABLE, 1501 MSR_IA32_MCG_STATUS, 1502 MSR_IA32_MCG_CTL, 1503 MSR_IA32_MCG_EXT_CTL, 1504 MSR_IA32_SMBASE, 1505 MSR_SMI_COUNT, 1506 MSR_PLATFORM_INFO, 1507 MSR_MISC_FEATURES_ENABLES, 1508 MSR_AMD64_VIRT_SPEC_CTRL, 1509 MSR_AMD64_TSC_RATIO, 1510 MSR_IA32_POWER_CTL, 1511 MSR_IA32_UCODE_REV, 1512 1513 /* 1514 * The following list leaves out MSRs whose values are determined 1515 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1516 * We always support the "true" VMX control MSRs, even if the host 1517 * processor does not, so I am putting these registers here rather 1518 * than in msrs_to_save_all. 1519 */ 1520 MSR_IA32_VMX_BASIC, 1521 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1522 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1523 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1524 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1525 MSR_IA32_VMX_MISC, 1526 MSR_IA32_VMX_CR0_FIXED0, 1527 MSR_IA32_VMX_CR4_FIXED0, 1528 MSR_IA32_VMX_VMCS_ENUM, 1529 MSR_IA32_VMX_PROCBASED_CTLS2, 1530 MSR_IA32_VMX_EPT_VPID_CAP, 1531 MSR_IA32_VMX_VMFUNC, 1532 1533 MSR_K7_HWCR, 1534 MSR_KVM_POLL_CONTROL, 1535 }; 1536 1537 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1538 static unsigned num_emulated_msrs; 1539 1540 /* 1541 * List of msr numbers which are used to expose MSR-based features that 1542 * can be used by a hypervisor to validate requested CPU features. 1543 */ 1544 static const u32 msr_based_features_all[] = { 1545 MSR_IA32_VMX_BASIC, 1546 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1547 MSR_IA32_VMX_PINBASED_CTLS, 1548 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1549 MSR_IA32_VMX_PROCBASED_CTLS, 1550 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1551 MSR_IA32_VMX_EXIT_CTLS, 1552 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1553 MSR_IA32_VMX_ENTRY_CTLS, 1554 MSR_IA32_VMX_MISC, 1555 MSR_IA32_VMX_CR0_FIXED0, 1556 MSR_IA32_VMX_CR0_FIXED1, 1557 MSR_IA32_VMX_CR4_FIXED0, 1558 MSR_IA32_VMX_CR4_FIXED1, 1559 MSR_IA32_VMX_VMCS_ENUM, 1560 MSR_IA32_VMX_PROCBASED_CTLS2, 1561 MSR_IA32_VMX_EPT_VPID_CAP, 1562 MSR_IA32_VMX_VMFUNC, 1563 1564 MSR_AMD64_DE_CFG, 1565 MSR_IA32_UCODE_REV, 1566 MSR_IA32_ARCH_CAPABILITIES, 1567 MSR_IA32_PERF_CAPABILITIES, 1568 }; 1569 1570 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1571 static unsigned int num_msr_based_features; 1572 1573 /* 1574 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1575 * does not yet virtualize. These include: 1576 * 10 - MISC_PACKAGE_CTRLS 1577 * 11 - ENERGY_FILTERING_CTL 1578 * 12 - DOITM 1579 * 18 - FB_CLEAR_CTRL 1580 * 21 - XAPIC_DISABLE_STATUS 1581 * 23 - OVERCLOCKING_STATUS 1582 */ 1583 1584 #define KVM_SUPPORTED_ARCH_CAP \ 1585 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1586 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1587 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1588 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1589 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1590 1591 static u64 kvm_get_arch_capabilities(void) 1592 { 1593 u64 data = 0; 1594 1595 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1596 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1597 data &= KVM_SUPPORTED_ARCH_CAP; 1598 } 1599 1600 /* 1601 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1602 * the nested hypervisor runs with NX huge pages. If it is not, 1603 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1604 * L1 guests, so it need not worry about its own (L2) guests. 1605 */ 1606 data |= ARCH_CAP_PSCHANGE_MC_NO; 1607 1608 /* 1609 * If we're doing cache flushes (either "always" or "cond") 1610 * we will do one whenever the guest does a vmlaunch/vmresume. 1611 * If an outer hypervisor is doing the cache flush for us 1612 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1613 * capability to the guest too, and if EPT is disabled we're not 1614 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1615 * require a nested hypervisor to do a flush of its own. 1616 */ 1617 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1618 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1619 1620 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1621 data |= ARCH_CAP_RDCL_NO; 1622 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1623 data |= ARCH_CAP_SSB_NO; 1624 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1625 data |= ARCH_CAP_MDS_NO; 1626 1627 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1628 /* 1629 * If RTM=0 because the kernel has disabled TSX, the host might 1630 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1631 * and therefore knows that there cannot be TAA) but keep 1632 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1633 * and we want to allow migrating those guests to tsx=off hosts. 1634 */ 1635 data &= ~ARCH_CAP_TAA_NO; 1636 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1637 data |= ARCH_CAP_TAA_NO; 1638 } else { 1639 /* 1640 * Nothing to do here; we emulate TSX_CTRL if present on the 1641 * host so the guest can choose between disabling TSX or 1642 * using VERW to clear CPU buffers. 1643 */ 1644 } 1645 1646 return data; 1647 } 1648 1649 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1650 { 1651 switch (msr->index) { 1652 case MSR_IA32_ARCH_CAPABILITIES: 1653 msr->data = kvm_get_arch_capabilities(); 1654 break; 1655 case MSR_IA32_PERF_CAPABILITIES: 1656 msr->data = kvm_caps.supported_perf_cap; 1657 break; 1658 case MSR_IA32_UCODE_REV: 1659 rdmsrl_safe(msr->index, &msr->data); 1660 break; 1661 default: 1662 return static_call(kvm_x86_get_msr_feature)(msr); 1663 } 1664 return 0; 1665 } 1666 1667 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1668 { 1669 struct kvm_msr_entry msr; 1670 int r; 1671 1672 msr.index = index; 1673 r = kvm_get_msr_feature(&msr); 1674 1675 if (r == KVM_MSR_RET_INVALID) { 1676 /* Unconditionally clear the output for simplicity */ 1677 *data = 0; 1678 if (kvm_msr_ignored_check(index, 0, false)) 1679 r = 0; 1680 } 1681 1682 if (r) 1683 return r; 1684 1685 *data = msr.data; 1686 1687 return 0; 1688 } 1689 1690 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1691 { 1692 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1693 return false; 1694 1695 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1696 return false; 1697 1698 if (efer & (EFER_LME | EFER_LMA) && 1699 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1700 return false; 1701 1702 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1703 return false; 1704 1705 return true; 1706 1707 } 1708 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1709 { 1710 if (efer & efer_reserved_bits) 1711 return false; 1712 1713 return __kvm_valid_efer(vcpu, efer); 1714 } 1715 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1716 1717 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1718 { 1719 u64 old_efer = vcpu->arch.efer; 1720 u64 efer = msr_info->data; 1721 int r; 1722 1723 if (efer & efer_reserved_bits) 1724 return 1; 1725 1726 if (!msr_info->host_initiated) { 1727 if (!__kvm_valid_efer(vcpu, efer)) 1728 return 1; 1729 1730 if (is_paging(vcpu) && 1731 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1732 return 1; 1733 } 1734 1735 efer &= ~EFER_LMA; 1736 efer |= vcpu->arch.efer & EFER_LMA; 1737 1738 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1739 if (r) { 1740 WARN_ON(r > 0); 1741 return r; 1742 } 1743 1744 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1745 kvm_mmu_reset_context(vcpu); 1746 1747 return 0; 1748 } 1749 1750 void kvm_enable_efer_bits(u64 mask) 1751 { 1752 efer_reserved_bits &= ~mask; 1753 } 1754 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1755 1756 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1757 { 1758 struct kvm_x86_msr_filter *msr_filter; 1759 struct msr_bitmap_range *ranges; 1760 struct kvm *kvm = vcpu->kvm; 1761 bool allowed; 1762 int idx; 1763 u32 i; 1764 1765 /* x2APIC MSRs do not support filtering. */ 1766 if (index >= 0x800 && index <= 0x8ff) 1767 return true; 1768 1769 idx = srcu_read_lock(&kvm->srcu); 1770 1771 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1772 if (!msr_filter) { 1773 allowed = true; 1774 goto out; 1775 } 1776 1777 allowed = msr_filter->default_allow; 1778 ranges = msr_filter->ranges; 1779 1780 for (i = 0; i < msr_filter->count; i++) { 1781 u32 start = ranges[i].base; 1782 u32 end = start + ranges[i].nmsrs; 1783 u32 flags = ranges[i].flags; 1784 unsigned long *bitmap = ranges[i].bitmap; 1785 1786 if ((index >= start) && (index < end) && (flags & type)) { 1787 allowed = !!test_bit(index - start, bitmap); 1788 break; 1789 } 1790 } 1791 1792 out: 1793 srcu_read_unlock(&kvm->srcu, idx); 1794 1795 return allowed; 1796 } 1797 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1798 1799 /* 1800 * Write @data into the MSR specified by @index. Select MSR specific fault 1801 * checks are bypassed if @host_initiated is %true. 1802 * Returns 0 on success, non-0 otherwise. 1803 * Assumes vcpu_load() was already called. 1804 */ 1805 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1806 bool host_initiated) 1807 { 1808 struct msr_data msr; 1809 1810 switch (index) { 1811 case MSR_FS_BASE: 1812 case MSR_GS_BASE: 1813 case MSR_KERNEL_GS_BASE: 1814 case MSR_CSTAR: 1815 case MSR_LSTAR: 1816 if (is_noncanonical_address(data, vcpu)) 1817 return 1; 1818 break; 1819 case MSR_IA32_SYSENTER_EIP: 1820 case MSR_IA32_SYSENTER_ESP: 1821 /* 1822 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1823 * non-canonical address is written on Intel but not on 1824 * AMD (which ignores the top 32-bits, because it does 1825 * not implement 64-bit SYSENTER). 1826 * 1827 * 64-bit code should hence be able to write a non-canonical 1828 * value on AMD. Making the address canonical ensures that 1829 * vmentry does not fail on Intel after writing a non-canonical 1830 * value, and that something deterministic happens if the guest 1831 * invokes 64-bit SYSENTER. 1832 */ 1833 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1834 break; 1835 case MSR_TSC_AUX: 1836 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1837 return 1; 1838 1839 if (!host_initiated && 1840 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1841 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1842 return 1; 1843 1844 /* 1845 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1846 * incomplete and conflicting architectural behavior. Current 1847 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1848 * reserved and always read as zeros. Enforce Intel's reserved 1849 * bits check if and only if the guest CPU is Intel, and clear 1850 * the bits in all other cases. This ensures cross-vendor 1851 * migration will provide consistent behavior for the guest. 1852 */ 1853 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1854 return 1; 1855 1856 data = (u32)data; 1857 break; 1858 } 1859 1860 msr.data = data; 1861 msr.index = index; 1862 msr.host_initiated = host_initiated; 1863 1864 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1865 } 1866 1867 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1868 u32 index, u64 data, bool host_initiated) 1869 { 1870 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1871 1872 if (ret == KVM_MSR_RET_INVALID) 1873 if (kvm_msr_ignored_check(index, data, true)) 1874 ret = 0; 1875 1876 return ret; 1877 } 1878 1879 /* 1880 * Read the MSR specified by @index into @data. Select MSR specific fault 1881 * checks are bypassed if @host_initiated is %true. 1882 * Returns 0 on success, non-0 otherwise. 1883 * Assumes vcpu_load() was already called. 1884 */ 1885 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1886 bool host_initiated) 1887 { 1888 struct msr_data msr; 1889 int ret; 1890 1891 switch (index) { 1892 case MSR_TSC_AUX: 1893 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1894 return 1; 1895 1896 if (!host_initiated && 1897 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1898 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1899 return 1; 1900 break; 1901 } 1902 1903 msr.index = index; 1904 msr.host_initiated = host_initiated; 1905 1906 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1907 if (!ret) 1908 *data = msr.data; 1909 return ret; 1910 } 1911 1912 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1913 u32 index, u64 *data, bool host_initiated) 1914 { 1915 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1916 1917 if (ret == KVM_MSR_RET_INVALID) { 1918 /* Unconditionally clear *data for simplicity */ 1919 *data = 0; 1920 if (kvm_msr_ignored_check(index, 0, false)) 1921 ret = 0; 1922 } 1923 1924 return ret; 1925 } 1926 1927 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1928 { 1929 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1930 return KVM_MSR_RET_FILTERED; 1931 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1932 } 1933 1934 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1935 { 1936 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1937 return KVM_MSR_RET_FILTERED; 1938 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1939 } 1940 1941 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1942 { 1943 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1944 } 1945 EXPORT_SYMBOL_GPL(kvm_get_msr); 1946 1947 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1948 { 1949 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1950 } 1951 EXPORT_SYMBOL_GPL(kvm_set_msr); 1952 1953 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1954 { 1955 if (!vcpu->run->msr.error) { 1956 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1957 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1958 } 1959 } 1960 1961 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1962 { 1963 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1964 } 1965 1966 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1967 { 1968 complete_userspace_rdmsr(vcpu); 1969 return complete_emulated_msr_access(vcpu); 1970 } 1971 1972 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1973 { 1974 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1975 } 1976 1977 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1978 { 1979 complete_userspace_rdmsr(vcpu); 1980 return complete_fast_msr_access(vcpu); 1981 } 1982 1983 static u64 kvm_msr_reason(int r) 1984 { 1985 switch (r) { 1986 case KVM_MSR_RET_INVALID: 1987 return KVM_MSR_EXIT_REASON_UNKNOWN; 1988 case KVM_MSR_RET_FILTERED: 1989 return KVM_MSR_EXIT_REASON_FILTER; 1990 default: 1991 return KVM_MSR_EXIT_REASON_INVAL; 1992 } 1993 } 1994 1995 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1996 u32 exit_reason, u64 data, 1997 int (*completion)(struct kvm_vcpu *vcpu), 1998 int r) 1999 { 2000 u64 msr_reason = kvm_msr_reason(r); 2001 2002 /* Check if the user wanted to know about this MSR fault */ 2003 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2004 return 0; 2005 2006 vcpu->run->exit_reason = exit_reason; 2007 vcpu->run->msr.error = 0; 2008 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2009 vcpu->run->msr.reason = msr_reason; 2010 vcpu->run->msr.index = index; 2011 vcpu->run->msr.data = data; 2012 vcpu->arch.complete_userspace_io = completion; 2013 2014 return 1; 2015 } 2016 2017 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2018 { 2019 u32 ecx = kvm_rcx_read(vcpu); 2020 u64 data; 2021 int r; 2022 2023 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2024 2025 if (!r) { 2026 trace_kvm_msr_read(ecx, data); 2027 2028 kvm_rax_write(vcpu, data & -1u); 2029 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2030 } else { 2031 /* MSR read failed? See if we should ask user space */ 2032 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2033 complete_fast_rdmsr, r)) 2034 return 0; 2035 trace_kvm_msr_read_ex(ecx); 2036 } 2037 2038 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2039 } 2040 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2041 2042 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2043 { 2044 u32 ecx = kvm_rcx_read(vcpu); 2045 u64 data = kvm_read_edx_eax(vcpu); 2046 int r; 2047 2048 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2049 2050 if (!r) { 2051 trace_kvm_msr_write(ecx, data); 2052 } else { 2053 /* MSR write failed? See if we should ask user space */ 2054 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2055 complete_fast_msr_access, r)) 2056 return 0; 2057 /* Signal all other negative errors to userspace */ 2058 if (r < 0) 2059 return r; 2060 trace_kvm_msr_write_ex(ecx, data); 2061 } 2062 2063 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2064 } 2065 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2066 2067 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2068 { 2069 return kvm_skip_emulated_instruction(vcpu); 2070 } 2071 2072 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2073 { 2074 /* Treat an INVD instruction as a NOP and just skip it. */ 2075 return kvm_emulate_as_nop(vcpu); 2076 } 2077 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2078 2079 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2080 { 2081 kvm_queue_exception(vcpu, UD_VECTOR); 2082 return 1; 2083 } 2084 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2085 2086 2087 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2088 { 2089 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2090 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2091 return kvm_handle_invalid_op(vcpu); 2092 2093 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn); 2094 return kvm_emulate_as_nop(vcpu); 2095 } 2096 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2097 { 2098 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2099 } 2100 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2101 2102 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2103 { 2104 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2105 } 2106 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2107 2108 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2109 { 2110 xfer_to_guest_mode_prepare(); 2111 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2112 xfer_to_guest_mode_work_pending(); 2113 } 2114 2115 /* 2116 * The fast path for frequent and performance sensitive wrmsr emulation, 2117 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2118 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2119 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2120 * other cases which must be called after interrupts are enabled on the host. 2121 */ 2122 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2123 { 2124 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2125 return 1; 2126 2127 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2128 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2129 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2130 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2131 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2132 2133 return 1; 2134 } 2135 2136 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2137 { 2138 if (!kvm_can_use_hv_timer(vcpu)) 2139 return 1; 2140 2141 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2142 return 0; 2143 } 2144 2145 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2146 { 2147 u32 msr = kvm_rcx_read(vcpu); 2148 u64 data; 2149 fastpath_t ret = EXIT_FASTPATH_NONE; 2150 2151 switch (msr) { 2152 case APIC_BASE_MSR + (APIC_ICR >> 4): 2153 data = kvm_read_edx_eax(vcpu); 2154 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2155 kvm_skip_emulated_instruction(vcpu); 2156 ret = EXIT_FASTPATH_EXIT_HANDLED; 2157 } 2158 break; 2159 case MSR_IA32_TSC_DEADLINE: 2160 data = kvm_read_edx_eax(vcpu); 2161 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2162 kvm_skip_emulated_instruction(vcpu); 2163 ret = EXIT_FASTPATH_REENTER_GUEST; 2164 } 2165 break; 2166 default: 2167 break; 2168 } 2169 2170 if (ret != EXIT_FASTPATH_NONE) 2171 trace_kvm_msr_write(msr, data); 2172 2173 return ret; 2174 } 2175 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2176 2177 /* 2178 * Adapt set_msr() to msr_io()'s calling convention 2179 */ 2180 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2181 { 2182 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2183 } 2184 2185 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2186 { 2187 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2188 } 2189 2190 #ifdef CONFIG_X86_64 2191 struct pvclock_clock { 2192 int vclock_mode; 2193 u64 cycle_last; 2194 u64 mask; 2195 u32 mult; 2196 u32 shift; 2197 u64 base_cycles; 2198 u64 offset; 2199 }; 2200 2201 struct pvclock_gtod_data { 2202 seqcount_t seq; 2203 2204 struct pvclock_clock clock; /* extract of a clocksource struct */ 2205 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2206 2207 ktime_t offs_boot; 2208 u64 wall_time_sec; 2209 }; 2210 2211 static struct pvclock_gtod_data pvclock_gtod_data; 2212 2213 static void update_pvclock_gtod(struct timekeeper *tk) 2214 { 2215 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2216 2217 write_seqcount_begin(&vdata->seq); 2218 2219 /* copy pvclock gtod data */ 2220 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2221 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2222 vdata->clock.mask = tk->tkr_mono.mask; 2223 vdata->clock.mult = tk->tkr_mono.mult; 2224 vdata->clock.shift = tk->tkr_mono.shift; 2225 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2226 vdata->clock.offset = tk->tkr_mono.base; 2227 2228 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2229 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2230 vdata->raw_clock.mask = tk->tkr_raw.mask; 2231 vdata->raw_clock.mult = tk->tkr_raw.mult; 2232 vdata->raw_clock.shift = tk->tkr_raw.shift; 2233 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2234 vdata->raw_clock.offset = tk->tkr_raw.base; 2235 2236 vdata->wall_time_sec = tk->xtime_sec; 2237 2238 vdata->offs_boot = tk->offs_boot; 2239 2240 write_seqcount_end(&vdata->seq); 2241 } 2242 2243 static s64 get_kvmclock_base_ns(void) 2244 { 2245 /* Count up from boot time, but with the frequency of the raw clock. */ 2246 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2247 } 2248 #else 2249 static s64 get_kvmclock_base_ns(void) 2250 { 2251 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2252 return ktime_get_boottime_ns(); 2253 } 2254 #endif 2255 2256 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2257 { 2258 int version; 2259 int r; 2260 struct pvclock_wall_clock wc; 2261 u32 wc_sec_hi; 2262 u64 wall_nsec; 2263 2264 if (!wall_clock) 2265 return; 2266 2267 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2268 if (r) 2269 return; 2270 2271 if (version & 1) 2272 ++version; /* first time write, random junk */ 2273 2274 ++version; 2275 2276 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2277 return; 2278 2279 /* 2280 * The guest calculates current wall clock time by adding 2281 * system time (updated by kvm_guest_time_update below) to the 2282 * wall clock specified here. We do the reverse here. 2283 */ 2284 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2285 2286 wc.nsec = do_div(wall_nsec, 1000000000); 2287 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2288 wc.version = version; 2289 2290 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2291 2292 if (sec_hi_ofs) { 2293 wc_sec_hi = wall_nsec >> 32; 2294 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2295 &wc_sec_hi, sizeof(wc_sec_hi)); 2296 } 2297 2298 version++; 2299 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2300 } 2301 2302 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2303 bool old_msr, bool host_initiated) 2304 { 2305 struct kvm_arch *ka = &vcpu->kvm->arch; 2306 2307 if (vcpu->vcpu_id == 0 && !host_initiated) { 2308 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2309 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2310 2311 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2312 } 2313 2314 vcpu->arch.time = system_time; 2315 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2316 2317 /* we verify if the enable bit is set... */ 2318 if (system_time & 1) 2319 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2320 sizeof(struct pvclock_vcpu_time_info)); 2321 else 2322 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2323 2324 return; 2325 } 2326 2327 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2328 { 2329 do_shl32_div32(dividend, divisor); 2330 return dividend; 2331 } 2332 2333 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2334 s8 *pshift, u32 *pmultiplier) 2335 { 2336 uint64_t scaled64; 2337 int32_t shift = 0; 2338 uint64_t tps64; 2339 uint32_t tps32; 2340 2341 tps64 = base_hz; 2342 scaled64 = scaled_hz; 2343 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2344 tps64 >>= 1; 2345 shift--; 2346 } 2347 2348 tps32 = (uint32_t)tps64; 2349 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2350 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2351 scaled64 >>= 1; 2352 else 2353 tps32 <<= 1; 2354 shift++; 2355 } 2356 2357 *pshift = shift; 2358 *pmultiplier = div_frac(scaled64, tps32); 2359 } 2360 2361 #ifdef CONFIG_X86_64 2362 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2363 #endif 2364 2365 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2366 static unsigned long max_tsc_khz; 2367 2368 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2369 { 2370 u64 v = (u64)khz * (1000000 + ppm); 2371 do_div(v, 1000000); 2372 return v; 2373 } 2374 2375 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2376 2377 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2378 { 2379 u64 ratio; 2380 2381 /* Guest TSC same frequency as host TSC? */ 2382 if (!scale) { 2383 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2384 return 0; 2385 } 2386 2387 /* TSC scaling supported? */ 2388 if (!kvm_caps.has_tsc_control) { 2389 if (user_tsc_khz > tsc_khz) { 2390 vcpu->arch.tsc_catchup = 1; 2391 vcpu->arch.tsc_always_catchup = 1; 2392 return 0; 2393 } else { 2394 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2395 return -1; 2396 } 2397 } 2398 2399 /* TSC scaling required - calculate ratio */ 2400 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2401 user_tsc_khz, tsc_khz); 2402 2403 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2404 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2405 user_tsc_khz); 2406 return -1; 2407 } 2408 2409 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2410 return 0; 2411 } 2412 2413 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2414 { 2415 u32 thresh_lo, thresh_hi; 2416 int use_scaling = 0; 2417 2418 /* tsc_khz can be zero if TSC calibration fails */ 2419 if (user_tsc_khz == 0) { 2420 /* set tsc_scaling_ratio to a safe value */ 2421 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2422 return -1; 2423 } 2424 2425 /* Compute a scale to convert nanoseconds in TSC cycles */ 2426 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2427 &vcpu->arch.virtual_tsc_shift, 2428 &vcpu->arch.virtual_tsc_mult); 2429 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2430 2431 /* 2432 * Compute the variation in TSC rate which is acceptable 2433 * within the range of tolerance and decide if the 2434 * rate being applied is within that bounds of the hardware 2435 * rate. If so, no scaling or compensation need be done. 2436 */ 2437 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2438 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2439 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2440 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2441 use_scaling = 1; 2442 } 2443 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2444 } 2445 2446 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2447 { 2448 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2449 vcpu->arch.virtual_tsc_mult, 2450 vcpu->arch.virtual_tsc_shift); 2451 tsc += vcpu->arch.this_tsc_write; 2452 return tsc; 2453 } 2454 2455 #ifdef CONFIG_X86_64 2456 static inline int gtod_is_based_on_tsc(int mode) 2457 { 2458 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2459 } 2460 #endif 2461 2462 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2463 { 2464 #ifdef CONFIG_X86_64 2465 bool vcpus_matched; 2466 struct kvm_arch *ka = &vcpu->kvm->arch; 2467 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2468 2469 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2470 atomic_read(&vcpu->kvm->online_vcpus)); 2471 2472 /* 2473 * Once the masterclock is enabled, always perform request in 2474 * order to update it. 2475 * 2476 * In order to enable masterclock, the host clocksource must be TSC 2477 * and the vcpus need to have matched TSCs. When that happens, 2478 * perform request to enable masterclock. 2479 */ 2480 if (ka->use_master_clock || 2481 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2482 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2483 2484 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2485 atomic_read(&vcpu->kvm->online_vcpus), 2486 ka->use_master_clock, gtod->clock.vclock_mode); 2487 #endif 2488 } 2489 2490 /* 2491 * Multiply tsc by a fixed point number represented by ratio. 2492 * 2493 * The most significant 64-N bits (mult) of ratio represent the 2494 * integral part of the fixed point number; the remaining N bits 2495 * (frac) represent the fractional part, ie. ratio represents a fixed 2496 * point number (mult + frac * 2^(-N)). 2497 * 2498 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2499 */ 2500 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2501 { 2502 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2503 } 2504 2505 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2506 { 2507 u64 _tsc = tsc; 2508 2509 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2510 _tsc = __scale_tsc(ratio, tsc); 2511 2512 return _tsc; 2513 } 2514 2515 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2516 { 2517 u64 tsc; 2518 2519 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2520 2521 return target_tsc - tsc; 2522 } 2523 2524 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2525 { 2526 return vcpu->arch.l1_tsc_offset + 2527 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2528 } 2529 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2530 2531 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2532 { 2533 u64 nested_offset; 2534 2535 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2536 nested_offset = l1_offset; 2537 else 2538 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2539 kvm_caps.tsc_scaling_ratio_frac_bits); 2540 2541 nested_offset += l2_offset; 2542 return nested_offset; 2543 } 2544 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2545 2546 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2547 { 2548 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2549 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2550 kvm_caps.tsc_scaling_ratio_frac_bits); 2551 2552 return l1_multiplier; 2553 } 2554 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2555 2556 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2557 { 2558 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2559 vcpu->arch.l1_tsc_offset, 2560 l1_offset); 2561 2562 vcpu->arch.l1_tsc_offset = l1_offset; 2563 2564 /* 2565 * If we are here because L1 chose not to trap WRMSR to TSC then 2566 * according to the spec this should set L1's TSC (as opposed to 2567 * setting L1's offset for L2). 2568 */ 2569 if (is_guest_mode(vcpu)) 2570 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2571 l1_offset, 2572 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2573 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2574 else 2575 vcpu->arch.tsc_offset = l1_offset; 2576 2577 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2578 } 2579 2580 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2581 { 2582 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2583 2584 /* Userspace is changing the multiplier while L2 is active */ 2585 if (is_guest_mode(vcpu)) 2586 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2587 l1_multiplier, 2588 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2589 else 2590 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2591 2592 if (kvm_caps.has_tsc_control) 2593 static_call(kvm_x86_write_tsc_multiplier)( 2594 vcpu, vcpu->arch.tsc_scaling_ratio); 2595 } 2596 2597 static inline bool kvm_check_tsc_unstable(void) 2598 { 2599 #ifdef CONFIG_X86_64 2600 /* 2601 * TSC is marked unstable when we're running on Hyper-V, 2602 * 'TSC page' clocksource is good. 2603 */ 2604 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2605 return false; 2606 #endif 2607 return check_tsc_unstable(); 2608 } 2609 2610 /* 2611 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2612 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2613 * participates in. 2614 */ 2615 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2616 u64 ns, bool matched) 2617 { 2618 struct kvm *kvm = vcpu->kvm; 2619 2620 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2621 2622 /* 2623 * We also track th most recent recorded KHZ, write and time to 2624 * allow the matching interval to be extended at each write. 2625 */ 2626 kvm->arch.last_tsc_nsec = ns; 2627 kvm->arch.last_tsc_write = tsc; 2628 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2629 kvm->arch.last_tsc_offset = offset; 2630 2631 vcpu->arch.last_guest_tsc = tsc; 2632 2633 kvm_vcpu_write_tsc_offset(vcpu, offset); 2634 2635 if (!matched) { 2636 /* 2637 * We split periods of matched TSC writes into generations. 2638 * For each generation, we track the original measured 2639 * nanosecond time, offset, and write, so if TSCs are in 2640 * sync, we can match exact offset, and if not, we can match 2641 * exact software computation in compute_guest_tsc() 2642 * 2643 * These values are tracked in kvm->arch.cur_xxx variables. 2644 */ 2645 kvm->arch.cur_tsc_generation++; 2646 kvm->arch.cur_tsc_nsec = ns; 2647 kvm->arch.cur_tsc_write = tsc; 2648 kvm->arch.cur_tsc_offset = offset; 2649 kvm->arch.nr_vcpus_matched_tsc = 0; 2650 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2651 kvm->arch.nr_vcpus_matched_tsc++; 2652 } 2653 2654 /* Keep track of which generation this VCPU has synchronized to */ 2655 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2656 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2657 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2658 2659 kvm_track_tsc_matching(vcpu); 2660 } 2661 2662 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2663 { 2664 struct kvm *kvm = vcpu->kvm; 2665 u64 offset, ns, elapsed; 2666 unsigned long flags; 2667 bool matched = false; 2668 bool synchronizing = false; 2669 2670 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2671 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2672 ns = get_kvmclock_base_ns(); 2673 elapsed = ns - kvm->arch.last_tsc_nsec; 2674 2675 if (vcpu->arch.virtual_tsc_khz) { 2676 if (data == 0) { 2677 /* 2678 * detection of vcpu initialization -- need to sync 2679 * with other vCPUs. This particularly helps to keep 2680 * kvm_clock stable after CPU hotplug 2681 */ 2682 synchronizing = true; 2683 } else { 2684 u64 tsc_exp = kvm->arch.last_tsc_write + 2685 nsec_to_cycles(vcpu, elapsed); 2686 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2687 /* 2688 * Special case: TSC write with a small delta (1 second) 2689 * of virtual cycle time against real time is 2690 * interpreted as an attempt to synchronize the CPU. 2691 */ 2692 synchronizing = data < tsc_exp + tsc_hz && 2693 data + tsc_hz > tsc_exp; 2694 } 2695 } 2696 2697 /* 2698 * For a reliable TSC, we can match TSC offsets, and for an unstable 2699 * TSC, we add elapsed time in this computation. We could let the 2700 * compensation code attempt to catch up if we fall behind, but 2701 * it's better to try to match offsets from the beginning. 2702 */ 2703 if (synchronizing && 2704 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2705 if (!kvm_check_tsc_unstable()) { 2706 offset = kvm->arch.cur_tsc_offset; 2707 } else { 2708 u64 delta = nsec_to_cycles(vcpu, elapsed); 2709 data += delta; 2710 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2711 } 2712 matched = true; 2713 } 2714 2715 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2716 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2717 } 2718 2719 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2720 s64 adjustment) 2721 { 2722 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2723 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2724 } 2725 2726 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2727 { 2728 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2729 WARN_ON(adjustment < 0); 2730 adjustment = kvm_scale_tsc((u64) adjustment, 2731 vcpu->arch.l1_tsc_scaling_ratio); 2732 adjust_tsc_offset_guest(vcpu, adjustment); 2733 } 2734 2735 #ifdef CONFIG_X86_64 2736 2737 static u64 read_tsc(void) 2738 { 2739 u64 ret = (u64)rdtsc_ordered(); 2740 u64 last = pvclock_gtod_data.clock.cycle_last; 2741 2742 if (likely(ret >= last)) 2743 return ret; 2744 2745 /* 2746 * GCC likes to generate cmov here, but this branch is extremely 2747 * predictable (it's just a function of time and the likely is 2748 * very likely) and there's a data dependence, so force GCC 2749 * to generate a branch instead. I don't barrier() because 2750 * we don't actually need a barrier, and if this function 2751 * ever gets inlined it will generate worse code. 2752 */ 2753 asm volatile (""); 2754 return last; 2755 } 2756 2757 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2758 int *mode) 2759 { 2760 long v; 2761 u64 tsc_pg_val; 2762 2763 switch (clock->vclock_mode) { 2764 case VDSO_CLOCKMODE_HVCLOCK: 2765 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2766 tsc_timestamp); 2767 if (tsc_pg_val != U64_MAX) { 2768 /* TSC page valid */ 2769 *mode = VDSO_CLOCKMODE_HVCLOCK; 2770 v = (tsc_pg_val - clock->cycle_last) & 2771 clock->mask; 2772 } else { 2773 /* TSC page invalid */ 2774 *mode = VDSO_CLOCKMODE_NONE; 2775 } 2776 break; 2777 case VDSO_CLOCKMODE_TSC: 2778 *mode = VDSO_CLOCKMODE_TSC; 2779 *tsc_timestamp = read_tsc(); 2780 v = (*tsc_timestamp - clock->cycle_last) & 2781 clock->mask; 2782 break; 2783 default: 2784 *mode = VDSO_CLOCKMODE_NONE; 2785 } 2786 2787 if (*mode == VDSO_CLOCKMODE_NONE) 2788 *tsc_timestamp = v = 0; 2789 2790 return v * clock->mult; 2791 } 2792 2793 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2794 { 2795 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2796 unsigned long seq; 2797 int mode; 2798 u64 ns; 2799 2800 do { 2801 seq = read_seqcount_begin(>od->seq); 2802 ns = gtod->raw_clock.base_cycles; 2803 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2804 ns >>= gtod->raw_clock.shift; 2805 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2806 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2807 *t = ns; 2808 2809 return mode; 2810 } 2811 2812 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2813 { 2814 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2815 unsigned long seq; 2816 int mode; 2817 u64 ns; 2818 2819 do { 2820 seq = read_seqcount_begin(>od->seq); 2821 ts->tv_sec = gtod->wall_time_sec; 2822 ns = gtod->clock.base_cycles; 2823 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2824 ns >>= gtod->clock.shift; 2825 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2826 2827 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2828 ts->tv_nsec = ns; 2829 2830 return mode; 2831 } 2832 2833 /* returns true if host is using TSC based clocksource */ 2834 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2835 { 2836 /* checked again under seqlock below */ 2837 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2838 return false; 2839 2840 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2841 tsc_timestamp)); 2842 } 2843 2844 /* returns true if host is using TSC based clocksource */ 2845 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2846 u64 *tsc_timestamp) 2847 { 2848 /* checked again under seqlock below */ 2849 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2850 return false; 2851 2852 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2853 } 2854 #endif 2855 2856 /* 2857 * 2858 * Assuming a stable TSC across physical CPUS, and a stable TSC 2859 * across virtual CPUs, the following condition is possible. 2860 * Each numbered line represents an event visible to both 2861 * CPUs at the next numbered event. 2862 * 2863 * "timespecX" represents host monotonic time. "tscX" represents 2864 * RDTSC value. 2865 * 2866 * VCPU0 on CPU0 | VCPU1 on CPU1 2867 * 2868 * 1. read timespec0,tsc0 2869 * 2. | timespec1 = timespec0 + N 2870 * | tsc1 = tsc0 + M 2871 * 3. transition to guest | transition to guest 2872 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2873 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2874 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2875 * 2876 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2877 * 2878 * - ret0 < ret1 2879 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2880 * ... 2881 * - 0 < N - M => M < N 2882 * 2883 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2884 * always the case (the difference between two distinct xtime instances 2885 * might be smaller then the difference between corresponding TSC reads, 2886 * when updating guest vcpus pvclock areas). 2887 * 2888 * To avoid that problem, do not allow visibility of distinct 2889 * system_timestamp/tsc_timestamp values simultaneously: use a master 2890 * copy of host monotonic time values. Update that master copy 2891 * in lockstep. 2892 * 2893 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2894 * 2895 */ 2896 2897 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2898 { 2899 #ifdef CONFIG_X86_64 2900 struct kvm_arch *ka = &kvm->arch; 2901 int vclock_mode; 2902 bool host_tsc_clocksource, vcpus_matched; 2903 2904 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2905 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2906 atomic_read(&kvm->online_vcpus)); 2907 2908 /* 2909 * If the host uses TSC clock, then passthrough TSC as stable 2910 * to the guest. 2911 */ 2912 host_tsc_clocksource = kvm_get_time_and_clockread( 2913 &ka->master_kernel_ns, 2914 &ka->master_cycle_now); 2915 2916 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2917 && !ka->backwards_tsc_observed 2918 && !ka->boot_vcpu_runs_old_kvmclock; 2919 2920 if (ka->use_master_clock) 2921 atomic_set(&kvm_guest_has_master_clock, 1); 2922 2923 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2924 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2925 vcpus_matched); 2926 #endif 2927 } 2928 2929 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2930 { 2931 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2932 } 2933 2934 static void __kvm_start_pvclock_update(struct kvm *kvm) 2935 { 2936 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2937 write_seqcount_begin(&kvm->arch.pvclock_sc); 2938 } 2939 2940 static void kvm_start_pvclock_update(struct kvm *kvm) 2941 { 2942 kvm_make_mclock_inprogress_request(kvm); 2943 2944 /* no guest entries from this point */ 2945 __kvm_start_pvclock_update(kvm); 2946 } 2947 2948 static void kvm_end_pvclock_update(struct kvm *kvm) 2949 { 2950 struct kvm_arch *ka = &kvm->arch; 2951 struct kvm_vcpu *vcpu; 2952 unsigned long i; 2953 2954 write_seqcount_end(&ka->pvclock_sc); 2955 raw_spin_unlock_irq(&ka->tsc_write_lock); 2956 kvm_for_each_vcpu(i, vcpu, kvm) 2957 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2958 2959 /* guest entries allowed */ 2960 kvm_for_each_vcpu(i, vcpu, kvm) 2961 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2962 } 2963 2964 static void kvm_update_masterclock(struct kvm *kvm) 2965 { 2966 kvm_hv_request_tsc_page_update(kvm); 2967 kvm_start_pvclock_update(kvm); 2968 pvclock_update_vm_gtod_copy(kvm); 2969 kvm_end_pvclock_update(kvm); 2970 } 2971 2972 /* 2973 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 2974 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 2975 * can change during boot even if the TSC is constant, as it's possible for KVM 2976 * to be loaded before TSC calibration completes. Ideally, KVM would get a 2977 * notification when calibration completes, but practically speaking calibration 2978 * will complete before userspace is alive enough to create VMs. 2979 */ 2980 static unsigned long get_cpu_tsc_khz(void) 2981 { 2982 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 2983 return tsc_khz; 2984 else 2985 return __this_cpu_read(cpu_tsc_khz); 2986 } 2987 2988 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2989 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2990 { 2991 struct kvm_arch *ka = &kvm->arch; 2992 struct pvclock_vcpu_time_info hv_clock; 2993 2994 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2995 get_cpu(); 2996 2997 data->flags = 0; 2998 if (ka->use_master_clock && 2999 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3000 #ifdef CONFIG_X86_64 3001 struct timespec64 ts; 3002 3003 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3004 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3005 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3006 } else 3007 #endif 3008 data->host_tsc = rdtsc(); 3009 3010 data->flags |= KVM_CLOCK_TSC_STABLE; 3011 hv_clock.tsc_timestamp = ka->master_cycle_now; 3012 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3013 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3014 &hv_clock.tsc_shift, 3015 &hv_clock.tsc_to_system_mul); 3016 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3017 } else { 3018 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3019 } 3020 3021 put_cpu(); 3022 } 3023 3024 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3025 { 3026 struct kvm_arch *ka = &kvm->arch; 3027 unsigned seq; 3028 3029 do { 3030 seq = read_seqcount_begin(&ka->pvclock_sc); 3031 __get_kvmclock(kvm, data); 3032 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3033 } 3034 3035 u64 get_kvmclock_ns(struct kvm *kvm) 3036 { 3037 struct kvm_clock_data data; 3038 3039 get_kvmclock(kvm, &data); 3040 return data.clock; 3041 } 3042 3043 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3044 struct gfn_to_pfn_cache *gpc, 3045 unsigned int offset) 3046 { 3047 struct kvm_vcpu_arch *vcpu = &v->arch; 3048 struct pvclock_vcpu_time_info *guest_hv_clock; 3049 unsigned long flags; 3050 3051 read_lock_irqsave(&gpc->lock, flags); 3052 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3053 read_unlock_irqrestore(&gpc->lock, flags); 3054 3055 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3056 return; 3057 3058 read_lock_irqsave(&gpc->lock, flags); 3059 } 3060 3061 guest_hv_clock = (void *)(gpc->khva + offset); 3062 3063 /* 3064 * This VCPU is paused, but it's legal for a guest to read another 3065 * VCPU's kvmclock, so we really have to follow the specification where 3066 * it says that version is odd if data is being modified, and even after 3067 * it is consistent. 3068 */ 3069 3070 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3071 smp_wmb(); 3072 3073 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3074 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3075 3076 if (vcpu->pvclock_set_guest_stopped_request) { 3077 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3078 vcpu->pvclock_set_guest_stopped_request = false; 3079 } 3080 3081 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3082 smp_wmb(); 3083 3084 guest_hv_clock->version = ++vcpu->hv_clock.version; 3085 3086 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3087 read_unlock_irqrestore(&gpc->lock, flags); 3088 3089 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3090 } 3091 3092 static int kvm_guest_time_update(struct kvm_vcpu *v) 3093 { 3094 unsigned long flags, tgt_tsc_khz; 3095 unsigned seq; 3096 struct kvm_vcpu_arch *vcpu = &v->arch; 3097 struct kvm_arch *ka = &v->kvm->arch; 3098 s64 kernel_ns; 3099 u64 tsc_timestamp, host_tsc; 3100 u8 pvclock_flags; 3101 bool use_master_clock; 3102 3103 kernel_ns = 0; 3104 host_tsc = 0; 3105 3106 /* 3107 * If the host uses TSC clock, then passthrough TSC as stable 3108 * to the guest. 3109 */ 3110 do { 3111 seq = read_seqcount_begin(&ka->pvclock_sc); 3112 use_master_clock = ka->use_master_clock; 3113 if (use_master_clock) { 3114 host_tsc = ka->master_cycle_now; 3115 kernel_ns = ka->master_kernel_ns; 3116 } 3117 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3118 3119 /* Keep irq disabled to prevent changes to the clock */ 3120 local_irq_save(flags); 3121 tgt_tsc_khz = get_cpu_tsc_khz(); 3122 if (unlikely(tgt_tsc_khz == 0)) { 3123 local_irq_restore(flags); 3124 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3125 return 1; 3126 } 3127 if (!use_master_clock) { 3128 host_tsc = rdtsc(); 3129 kernel_ns = get_kvmclock_base_ns(); 3130 } 3131 3132 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3133 3134 /* 3135 * We may have to catch up the TSC to match elapsed wall clock 3136 * time for two reasons, even if kvmclock is used. 3137 * 1) CPU could have been running below the maximum TSC rate 3138 * 2) Broken TSC compensation resets the base at each VCPU 3139 * entry to avoid unknown leaps of TSC even when running 3140 * again on the same CPU. This may cause apparent elapsed 3141 * time to disappear, and the guest to stand still or run 3142 * very slowly. 3143 */ 3144 if (vcpu->tsc_catchup) { 3145 u64 tsc = compute_guest_tsc(v, kernel_ns); 3146 if (tsc > tsc_timestamp) { 3147 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3148 tsc_timestamp = tsc; 3149 } 3150 } 3151 3152 local_irq_restore(flags); 3153 3154 /* With all the info we got, fill in the values */ 3155 3156 if (kvm_caps.has_tsc_control) 3157 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3158 v->arch.l1_tsc_scaling_ratio); 3159 3160 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3161 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3162 &vcpu->hv_clock.tsc_shift, 3163 &vcpu->hv_clock.tsc_to_system_mul); 3164 vcpu->hw_tsc_khz = tgt_tsc_khz; 3165 } 3166 3167 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3168 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3169 vcpu->last_guest_tsc = tsc_timestamp; 3170 3171 /* If the host uses TSC clocksource, then it is stable */ 3172 pvclock_flags = 0; 3173 if (use_master_clock) 3174 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3175 3176 vcpu->hv_clock.flags = pvclock_flags; 3177 3178 if (vcpu->pv_time.active) 3179 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3180 if (vcpu->xen.vcpu_info_cache.active) 3181 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3182 offsetof(struct compat_vcpu_info, time)); 3183 if (vcpu->xen.vcpu_time_info_cache.active) 3184 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3185 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3186 return 0; 3187 } 3188 3189 /* 3190 * kvmclock updates which are isolated to a given vcpu, such as 3191 * vcpu->cpu migration, should not allow system_timestamp from 3192 * the rest of the vcpus to remain static. Otherwise ntp frequency 3193 * correction applies to one vcpu's system_timestamp but not 3194 * the others. 3195 * 3196 * So in those cases, request a kvmclock update for all vcpus. 3197 * We need to rate-limit these requests though, as they can 3198 * considerably slow guests that have a large number of vcpus. 3199 * The time for a remote vcpu to update its kvmclock is bound 3200 * by the delay we use to rate-limit the updates. 3201 */ 3202 3203 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3204 3205 static void kvmclock_update_fn(struct work_struct *work) 3206 { 3207 unsigned long i; 3208 struct delayed_work *dwork = to_delayed_work(work); 3209 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3210 kvmclock_update_work); 3211 struct kvm *kvm = container_of(ka, struct kvm, arch); 3212 struct kvm_vcpu *vcpu; 3213 3214 kvm_for_each_vcpu(i, vcpu, kvm) { 3215 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3216 kvm_vcpu_kick(vcpu); 3217 } 3218 } 3219 3220 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3221 { 3222 struct kvm *kvm = v->kvm; 3223 3224 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3225 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3226 KVMCLOCK_UPDATE_DELAY); 3227 } 3228 3229 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3230 3231 static void kvmclock_sync_fn(struct work_struct *work) 3232 { 3233 struct delayed_work *dwork = to_delayed_work(work); 3234 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3235 kvmclock_sync_work); 3236 struct kvm *kvm = container_of(ka, struct kvm, arch); 3237 3238 if (!kvmclock_periodic_sync) 3239 return; 3240 3241 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3242 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3243 KVMCLOCK_SYNC_PERIOD); 3244 } 3245 3246 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3247 static bool is_mci_control_msr(u32 msr) 3248 { 3249 return (msr & 3) == 0; 3250 } 3251 static bool is_mci_status_msr(u32 msr) 3252 { 3253 return (msr & 3) == 1; 3254 } 3255 3256 /* 3257 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3258 */ 3259 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3260 { 3261 /* McStatusWrEn enabled? */ 3262 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3263 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3264 3265 return false; 3266 } 3267 3268 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3269 { 3270 u64 mcg_cap = vcpu->arch.mcg_cap; 3271 unsigned bank_num = mcg_cap & 0xff; 3272 u32 msr = msr_info->index; 3273 u64 data = msr_info->data; 3274 u32 offset, last_msr; 3275 3276 switch (msr) { 3277 case MSR_IA32_MCG_STATUS: 3278 vcpu->arch.mcg_status = data; 3279 break; 3280 case MSR_IA32_MCG_CTL: 3281 if (!(mcg_cap & MCG_CTL_P) && 3282 (data || !msr_info->host_initiated)) 3283 return 1; 3284 if (data != 0 && data != ~(u64)0) 3285 return 1; 3286 vcpu->arch.mcg_ctl = data; 3287 break; 3288 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3289 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3290 if (msr > last_msr) 3291 return 1; 3292 3293 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3294 return 1; 3295 /* An attempt to write a 1 to a reserved bit raises #GP */ 3296 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3297 return 1; 3298 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3299 last_msr + 1 - MSR_IA32_MC0_CTL2); 3300 vcpu->arch.mci_ctl2_banks[offset] = data; 3301 break; 3302 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3303 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3304 if (msr > last_msr) 3305 return 1; 3306 3307 /* 3308 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3309 * values are architecturally undefined. But, some Linux 3310 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3311 * issue on AMD K8s, allow bit 10 to be clear when setting all 3312 * other bits in order to avoid an uncaught #GP in the guest. 3313 * 3314 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3315 * single-bit ECC data errors. 3316 */ 3317 if (is_mci_control_msr(msr) && 3318 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3319 return 1; 3320 3321 /* 3322 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3323 * AMD-based CPUs allow non-zero values, but if and only if 3324 * HWCR[McStatusWrEn] is set. 3325 */ 3326 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3327 data != 0 && !can_set_mci_status(vcpu)) 3328 return 1; 3329 3330 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3331 last_msr + 1 - MSR_IA32_MC0_CTL); 3332 vcpu->arch.mce_banks[offset] = data; 3333 break; 3334 default: 3335 return 1; 3336 } 3337 return 0; 3338 } 3339 3340 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3341 { 3342 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3343 3344 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3345 } 3346 3347 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3348 { 3349 gpa_t gpa = data & ~0x3f; 3350 3351 /* Bits 4:5 are reserved, Should be zero */ 3352 if (data & 0x30) 3353 return 1; 3354 3355 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3356 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3357 return 1; 3358 3359 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3360 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3361 return 1; 3362 3363 if (!lapic_in_kernel(vcpu)) 3364 return data ? 1 : 0; 3365 3366 vcpu->arch.apf.msr_en_val = data; 3367 3368 if (!kvm_pv_async_pf_enabled(vcpu)) { 3369 kvm_clear_async_pf_completion_queue(vcpu); 3370 kvm_async_pf_hash_reset(vcpu); 3371 return 0; 3372 } 3373 3374 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3375 sizeof(u64))) 3376 return 1; 3377 3378 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3379 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3380 3381 kvm_async_pf_wakeup_all(vcpu); 3382 3383 return 0; 3384 } 3385 3386 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3387 { 3388 /* Bits 8-63 are reserved */ 3389 if (data >> 8) 3390 return 1; 3391 3392 if (!lapic_in_kernel(vcpu)) 3393 return 1; 3394 3395 vcpu->arch.apf.msr_int_val = data; 3396 3397 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3398 3399 return 0; 3400 } 3401 3402 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3403 { 3404 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3405 vcpu->arch.time = 0; 3406 } 3407 3408 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3409 { 3410 ++vcpu->stat.tlb_flush; 3411 static_call(kvm_x86_flush_tlb_all)(vcpu); 3412 3413 /* Flushing all ASIDs flushes the current ASID... */ 3414 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3415 } 3416 3417 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3418 { 3419 ++vcpu->stat.tlb_flush; 3420 3421 if (!tdp_enabled) { 3422 /* 3423 * A TLB flush on behalf of the guest is equivalent to 3424 * INVPCID(all), toggling CR4.PGE, etc., which requires 3425 * a forced sync of the shadow page tables. Ensure all the 3426 * roots are synced and the guest TLB in hardware is clean. 3427 */ 3428 kvm_mmu_sync_roots(vcpu); 3429 kvm_mmu_sync_prev_roots(vcpu); 3430 } 3431 3432 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3433 3434 /* 3435 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3436 * grained flushing. 3437 */ 3438 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3439 } 3440 3441 3442 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3443 { 3444 ++vcpu->stat.tlb_flush; 3445 static_call(kvm_x86_flush_tlb_current)(vcpu); 3446 } 3447 3448 /* 3449 * Service "local" TLB flush requests, which are specific to the current MMU 3450 * context. In addition to the generic event handling in vcpu_enter_guest(), 3451 * TLB flushes that are targeted at an MMU context also need to be serviced 3452 * prior before nested VM-Enter/VM-Exit. 3453 */ 3454 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3455 { 3456 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3457 kvm_vcpu_flush_tlb_current(vcpu); 3458 3459 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3460 kvm_vcpu_flush_tlb_guest(vcpu); 3461 } 3462 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3463 3464 static void record_steal_time(struct kvm_vcpu *vcpu) 3465 { 3466 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3467 struct kvm_steal_time __user *st; 3468 struct kvm_memslots *slots; 3469 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3470 u64 steal; 3471 u32 version; 3472 3473 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3474 kvm_xen_runstate_set_running(vcpu); 3475 return; 3476 } 3477 3478 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3479 return; 3480 3481 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3482 return; 3483 3484 slots = kvm_memslots(vcpu->kvm); 3485 3486 if (unlikely(slots->generation != ghc->generation || 3487 gpa != ghc->gpa || 3488 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3489 /* We rely on the fact that it fits in a single page. */ 3490 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3491 3492 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3493 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3494 return; 3495 } 3496 3497 st = (struct kvm_steal_time __user *)ghc->hva; 3498 /* 3499 * Doing a TLB flush here, on the guest's behalf, can avoid 3500 * expensive IPIs. 3501 */ 3502 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3503 u8 st_preempted = 0; 3504 int err = -EFAULT; 3505 3506 if (!user_access_begin(st, sizeof(*st))) 3507 return; 3508 3509 asm volatile("1: xchgb %0, %2\n" 3510 "xor %1, %1\n" 3511 "2:\n" 3512 _ASM_EXTABLE_UA(1b, 2b) 3513 : "+q" (st_preempted), 3514 "+&r" (err), 3515 "+m" (st->preempted)); 3516 if (err) 3517 goto out; 3518 3519 user_access_end(); 3520 3521 vcpu->arch.st.preempted = 0; 3522 3523 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3524 st_preempted & KVM_VCPU_FLUSH_TLB); 3525 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3526 kvm_vcpu_flush_tlb_guest(vcpu); 3527 3528 if (!user_access_begin(st, sizeof(*st))) 3529 goto dirty; 3530 } else { 3531 if (!user_access_begin(st, sizeof(*st))) 3532 return; 3533 3534 unsafe_put_user(0, &st->preempted, out); 3535 vcpu->arch.st.preempted = 0; 3536 } 3537 3538 unsafe_get_user(version, &st->version, out); 3539 if (version & 1) 3540 version += 1; /* first time write, random junk */ 3541 3542 version += 1; 3543 unsafe_put_user(version, &st->version, out); 3544 3545 smp_wmb(); 3546 3547 unsafe_get_user(steal, &st->steal, out); 3548 steal += current->sched_info.run_delay - 3549 vcpu->arch.st.last_steal; 3550 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3551 unsafe_put_user(steal, &st->steal, out); 3552 3553 version += 1; 3554 unsafe_put_user(version, &st->version, out); 3555 3556 out: 3557 user_access_end(); 3558 dirty: 3559 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3560 } 3561 3562 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3563 { 3564 bool pr = false; 3565 u32 msr = msr_info->index; 3566 u64 data = msr_info->data; 3567 3568 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3569 return kvm_xen_write_hypercall_page(vcpu, data); 3570 3571 switch (msr) { 3572 case MSR_AMD64_NB_CFG: 3573 case MSR_IA32_UCODE_WRITE: 3574 case MSR_VM_HSAVE_PA: 3575 case MSR_AMD64_PATCH_LOADER: 3576 case MSR_AMD64_BU_CFG2: 3577 case MSR_AMD64_DC_CFG: 3578 case MSR_F15H_EX_CFG: 3579 break; 3580 3581 case MSR_IA32_UCODE_REV: 3582 if (msr_info->host_initiated) 3583 vcpu->arch.microcode_version = data; 3584 break; 3585 case MSR_IA32_ARCH_CAPABILITIES: 3586 if (!msr_info->host_initiated) 3587 return 1; 3588 vcpu->arch.arch_capabilities = data; 3589 break; 3590 case MSR_IA32_PERF_CAPABILITIES: 3591 if (!msr_info->host_initiated) 3592 return 1; 3593 if (data & ~kvm_caps.supported_perf_cap) 3594 return 1; 3595 3596 vcpu->arch.perf_capabilities = data; 3597 kvm_pmu_refresh(vcpu); 3598 return 0; 3599 case MSR_EFER: 3600 return set_efer(vcpu, msr_info); 3601 case MSR_K7_HWCR: 3602 data &= ~(u64)0x40; /* ignore flush filter disable */ 3603 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3604 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3605 3606 /* Handle McStatusWrEn */ 3607 if (data == BIT_ULL(18)) { 3608 vcpu->arch.msr_hwcr = data; 3609 } else if (data != 0) { 3610 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3611 data); 3612 return 1; 3613 } 3614 break; 3615 case MSR_FAM10H_MMIO_CONF_BASE: 3616 if (data != 0) { 3617 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3618 "0x%llx\n", data); 3619 return 1; 3620 } 3621 break; 3622 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3623 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3624 return kvm_mtrr_set_msr(vcpu, msr, data); 3625 case MSR_IA32_APICBASE: 3626 return kvm_set_apic_base(vcpu, msr_info); 3627 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3628 return kvm_x2apic_msr_write(vcpu, msr, data); 3629 case MSR_IA32_TSC_DEADLINE: 3630 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3631 break; 3632 case MSR_IA32_TSC_ADJUST: 3633 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3634 if (!msr_info->host_initiated) { 3635 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3636 adjust_tsc_offset_guest(vcpu, adj); 3637 /* Before back to guest, tsc_timestamp must be adjusted 3638 * as well, otherwise guest's percpu pvclock time could jump. 3639 */ 3640 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3641 } 3642 vcpu->arch.ia32_tsc_adjust_msr = data; 3643 } 3644 break; 3645 case MSR_IA32_MISC_ENABLE: { 3646 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3647 3648 if (!msr_info->host_initiated) { 3649 /* RO bits */ 3650 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3651 return 1; 3652 3653 /* R bits, i.e. writes are ignored, but don't fault. */ 3654 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3655 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3656 } 3657 3658 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3659 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3660 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3661 return 1; 3662 vcpu->arch.ia32_misc_enable_msr = data; 3663 kvm_update_cpuid_runtime(vcpu); 3664 } else { 3665 vcpu->arch.ia32_misc_enable_msr = data; 3666 } 3667 break; 3668 } 3669 case MSR_IA32_SMBASE: 3670 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3671 return 1; 3672 vcpu->arch.smbase = data; 3673 break; 3674 case MSR_IA32_POWER_CTL: 3675 vcpu->arch.msr_ia32_power_ctl = data; 3676 break; 3677 case MSR_IA32_TSC: 3678 if (msr_info->host_initiated) { 3679 kvm_synchronize_tsc(vcpu, data); 3680 } else { 3681 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3682 adjust_tsc_offset_guest(vcpu, adj); 3683 vcpu->arch.ia32_tsc_adjust_msr += adj; 3684 } 3685 break; 3686 case MSR_IA32_XSS: 3687 if (!msr_info->host_initiated && 3688 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3689 return 1; 3690 /* 3691 * KVM supports exposing PT to the guest, but does not support 3692 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3693 * XSAVES/XRSTORS to save/restore PT MSRs. 3694 */ 3695 if (data & ~kvm_caps.supported_xss) 3696 return 1; 3697 vcpu->arch.ia32_xss = data; 3698 kvm_update_cpuid_runtime(vcpu); 3699 break; 3700 case MSR_SMI_COUNT: 3701 if (!msr_info->host_initiated) 3702 return 1; 3703 vcpu->arch.smi_count = data; 3704 break; 3705 case MSR_KVM_WALL_CLOCK_NEW: 3706 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3707 return 1; 3708 3709 vcpu->kvm->arch.wall_clock = data; 3710 kvm_write_wall_clock(vcpu->kvm, data, 0); 3711 break; 3712 case MSR_KVM_WALL_CLOCK: 3713 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3714 return 1; 3715 3716 vcpu->kvm->arch.wall_clock = data; 3717 kvm_write_wall_clock(vcpu->kvm, data, 0); 3718 break; 3719 case MSR_KVM_SYSTEM_TIME_NEW: 3720 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3721 return 1; 3722 3723 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3724 break; 3725 case MSR_KVM_SYSTEM_TIME: 3726 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3727 return 1; 3728 3729 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3730 break; 3731 case MSR_KVM_ASYNC_PF_EN: 3732 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3733 return 1; 3734 3735 if (kvm_pv_enable_async_pf(vcpu, data)) 3736 return 1; 3737 break; 3738 case MSR_KVM_ASYNC_PF_INT: 3739 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3740 return 1; 3741 3742 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3743 return 1; 3744 break; 3745 case MSR_KVM_ASYNC_PF_ACK: 3746 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3747 return 1; 3748 if (data & 0x1) { 3749 vcpu->arch.apf.pageready_pending = false; 3750 kvm_check_async_pf_completion(vcpu); 3751 } 3752 break; 3753 case MSR_KVM_STEAL_TIME: 3754 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3755 return 1; 3756 3757 if (unlikely(!sched_info_on())) 3758 return 1; 3759 3760 if (data & KVM_STEAL_RESERVED_MASK) 3761 return 1; 3762 3763 vcpu->arch.st.msr_val = data; 3764 3765 if (!(data & KVM_MSR_ENABLED)) 3766 break; 3767 3768 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3769 3770 break; 3771 case MSR_KVM_PV_EOI_EN: 3772 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3773 return 1; 3774 3775 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3776 return 1; 3777 break; 3778 3779 case MSR_KVM_POLL_CONTROL: 3780 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3781 return 1; 3782 3783 /* only enable bit supported */ 3784 if (data & (-1ULL << 1)) 3785 return 1; 3786 3787 vcpu->arch.msr_kvm_poll_control = data; 3788 break; 3789 3790 case MSR_IA32_MCG_CTL: 3791 case MSR_IA32_MCG_STATUS: 3792 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3793 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3794 return set_msr_mce(vcpu, msr_info); 3795 3796 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3797 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3798 pr = true; 3799 fallthrough; 3800 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3801 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3802 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3803 return kvm_pmu_set_msr(vcpu, msr_info); 3804 3805 if (pr || data != 0) 3806 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3807 "0x%x data 0x%llx\n", msr, data); 3808 break; 3809 case MSR_K7_CLK_CTL: 3810 /* 3811 * Ignore all writes to this no longer documented MSR. 3812 * Writes are only relevant for old K7 processors, 3813 * all pre-dating SVM, but a recommended workaround from 3814 * AMD for these chips. It is possible to specify the 3815 * affected processor models on the command line, hence 3816 * the need to ignore the workaround. 3817 */ 3818 break; 3819 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3820 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3821 case HV_X64_MSR_SYNDBG_OPTIONS: 3822 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3823 case HV_X64_MSR_CRASH_CTL: 3824 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3825 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3826 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3827 case HV_X64_MSR_TSC_EMULATION_STATUS: 3828 return kvm_hv_set_msr_common(vcpu, msr, data, 3829 msr_info->host_initiated); 3830 case MSR_IA32_BBL_CR_CTL3: 3831 /* Drop writes to this legacy MSR -- see rdmsr 3832 * counterpart for further detail. 3833 */ 3834 if (report_ignored_msrs) 3835 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3836 msr, data); 3837 break; 3838 case MSR_AMD64_OSVW_ID_LENGTH: 3839 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3840 return 1; 3841 vcpu->arch.osvw.length = data; 3842 break; 3843 case MSR_AMD64_OSVW_STATUS: 3844 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3845 return 1; 3846 vcpu->arch.osvw.status = data; 3847 break; 3848 case MSR_PLATFORM_INFO: 3849 if (!msr_info->host_initiated || 3850 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3851 cpuid_fault_enabled(vcpu))) 3852 return 1; 3853 vcpu->arch.msr_platform_info = data; 3854 break; 3855 case MSR_MISC_FEATURES_ENABLES: 3856 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3857 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3858 !supports_cpuid_fault(vcpu))) 3859 return 1; 3860 vcpu->arch.msr_misc_features_enables = data; 3861 break; 3862 #ifdef CONFIG_X86_64 3863 case MSR_IA32_XFD: 3864 if (!msr_info->host_initiated && 3865 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3866 return 1; 3867 3868 if (data & ~kvm_guest_supported_xfd(vcpu)) 3869 return 1; 3870 3871 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3872 break; 3873 case MSR_IA32_XFD_ERR: 3874 if (!msr_info->host_initiated && 3875 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3876 return 1; 3877 3878 if (data & ~kvm_guest_supported_xfd(vcpu)) 3879 return 1; 3880 3881 vcpu->arch.guest_fpu.xfd_err = data; 3882 break; 3883 #endif 3884 case MSR_IA32_PEBS_ENABLE: 3885 case MSR_IA32_DS_AREA: 3886 case MSR_PEBS_DATA_CFG: 3887 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3888 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3889 return kvm_pmu_set_msr(vcpu, msr_info); 3890 /* 3891 * Userspace is allowed to write '0' to MSRs that KVM reports 3892 * as to-be-saved, even if an MSRs isn't fully supported. 3893 */ 3894 return !msr_info->host_initiated || data; 3895 default: 3896 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3897 return kvm_pmu_set_msr(vcpu, msr_info); 3898 return KVM_MSR_RET_INVALID; 3899 } 3900 return 0; 3901 } 3902 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3903 3904 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3905 { 3906 u64 data; 3907 u64 mcg_cap = vcpu->arch.mcg_cap; 3908 unsigned bank_num = mcg_cap & 0xff; 3909 u32 offset, last_msr; 3910 3911 switch (msr) { 3912 case MSR_IA32_P5_MC_ADDR: 3913 case MSR_IA32_P5_MC_TYPE: 3914 data = 0; 3915 break; 3916 case MSR_IA32_MCG_CAP: 3917 data = vcpu->arch.mcg_cap; 3918 break; 3919 case MSR_IA32_MCG_CTL: 3920 if (!(mcg_cap & MCG_CTL_P) && !host) 3921 return 1; 3922 data = vcpu->arch.mcg_ctl; 3923 break; 3924 case MSR_IA32_MCG_STATUS: 3925 data = vcpu->arch.mcg_status; 3926 break; 3927 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3928 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3929 if (msr > last_msr) 3930 return 1; 3931 3932 if (!(mcg_cap & MCG_CMCI_P) && !host) 3933 return 1; 3934 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3935 last_msr + 1 - MSR_IA32_MC0_CTL2); 3936 data = vcpu->arch.mci_ctl2_banks[offset]; 3937 break; 3938 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3939 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3940 if (msr > last_msr) 3941 return 1; 3942 3943 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3944 last_msr + 1 - MSR_IA32_MC0_CTL); 3945 data = vcpu->arch.mce_banks[offset]; 3946 break; 3947 default: 3948 return 1; 3949 } 3950 *pdata = data; 3951 return 0; 3952 } 3953 3954 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3955 { 3956 switch (msr_info->index) { 3957 case MSR_IA32_PLATFORM_ID: 3958 case MSR_IA32_EBL_CR_POWERON: 3959 case MSR_IA32_LASTBRANCHFROMIP: 3960 case MSR_IA32_LASTBRANCHTOIP: 3961 case MSR_IA32_LASTINTFROMIP: 3962 case MSR_IA32_LASTINTTOIP: 3963 case MSR_AMD64_SYSCFG: 3964 case MSR_K8_TSEG_ADDR: 3965 case MSR_K8_TSEG_MASK: 3966 case MSR_VM_HSAVE_PA: 3967 case MSR_K8_INT_PENDING_MSG: 3968 case MSR_AMD64_NB_CFG: 3969 case MSR_FAM10H_MMIO_CONF_BASE: 3970 case MSR_AMD64_BU_CFG2: 3971 case MSR_IA32_PERF_CTL: 3972 case MSR_AMD64_DC_CFG: 3973 case MSR_F15H_EX_CFG: 3974 /* 3975 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3976 * limit) MSRs. Just return 0, as we do not want to expose the host 3977 * data here. Do not conditionalize this on CPUID, as KVM does not do 3978 * so for existing CPU-specific MSRs. 3979 */ 3980 case MSR_RAPL_POWER_UNIT: 3981 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3982 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3983 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3984 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3985 msr_info->data = 0; 3986 break; 3987 case MSR_IA32_PEBS_ENABLE: 3988 case MSR_IA32_DS_AREA: 3989 case MSR_PEBS_DATA_CFG: 3990 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3991 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3992 return kvm_pmu_get_msr(vcpu, msr_info); 3993 /* 3994 * Userspace is allowed to read MSRs that KVM reports as 3995 * to-be-saved, even if an MSR isn't fully supported. 3996 */ 3997 if (!msr_info->host_initiated) 3998 return 1; 3999 msr_info->data = 0; 4000 break; 4001 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4002 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4003 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4004 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4005 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4006 return kvm_pmu_get_msr(vcpu, msr_info); 4007 msr_info->data = 0; 4008 break; 4009 case MSR_IA32_UCODE_REV: 4010 msr_info->data = vcpu->arch.microcode_version; 4011 break; 4012 case MSR_IA32_ARCH_CAPABILITIES: 4013 if (!msr_info->host_initiated && 4014 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4015 return 1; 4016 msr_info->data = vcpu->arch.arch_capabilities; 4017 break; 4018 case MSR_IA32_PERF_CAPABILITIES: 4019 if (!msr_info->host_initiated && 4020 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4021 return 1; 4022 msr_info->data = vcpu->arch.perf_capabilities; 4023 break; 4024 case MSR_IA32_POWER_CTL: 4025 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4026 break; 4027 case MSR_IA32_TSC: { 4028 /* 4029 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4030 * even when not intercepted. AMD manual doesn't explicitly 4031 * state this but appears to behave the same. 4032 * 4033 * On userspace reads and writes, however, we unconditionally 4034 * return L1's TSC value to ensure backwards-compatible 4035 * behavior for migration. 4036 */ 4037 u64 offset, ratio; 4038 4039 if (msr_info->host_initiated) { 4040 offset = vcpu->arch.l1_tsc_offset; 4041 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4042 } else { 4043 offset = vcpu->arch.tsc_offset; 4044 ratio = vcpu->arch.tsc_scaling_ratio; 4045 } 4046 4047 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4048 break; 4049 } 4050 case MSR_MTRRcap: 4051 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4052 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4053 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4054 case 0xcd: /* fsb frequency */ 4055 msr_info->data = 3; 4056 break; 4057 /* 4058 * MSR_EBC_FREQUENCY_ID 4059 * Conservative value valid for even the basic CPU models. 4060 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4061 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4062 * and 266MHz for model 3, or 4. Set Core Clock 4063 * Frequency to System Bus Frequency Ratio to 1 (bits 4064 * 31:24) even though these are only valid for CPU 4065 * models > 2, however guests may end up dividing or 4066 * multiplying by zero otherwise. 4067 */ 4068 case MSR_EBC_FREQUENCY_ID: 4069 msr_info->data = 1 << 24; 4070 break; 4071 case MSR_IA32_APICBASE: 4072 msr_info->data = kvm_get_apic_base(vcpu); 4073 break; 4074 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4075 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4076 case MSR_IA32_TSC_DEADLINE: 4077 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4078 break; 4079 case MSR_IA32_TSC_ADJUST: 4080 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4081 break; 4082 case MSR_IA32_MISC_ENABLE: 4083 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4084 break; 4085 case MSR_IA32_SMBASE: 4086 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4087 return 1; 4088 msr_info->data = vcpu->arch.smbase; 4089 break; 4090 case MSR_SMI_COUNT: 4091 msr_info->data = vcpu->arch.smi_count; 4092 break; 4093 case MSR_IA32_PERF_STATUS: 4094 /* TSC increment by tick */ 4095 msr_info->data = 1000ULL; 4096 /* CPU multiplier */ 4097 msr_info->data |= (((uint64_t)4ULL) << 40); 4098 break; 4099 case MSR_EFER: 4100 msr_info->data = vcpu->arch.efer; 4101 break; 4102 case MSR_KVM_WALL_CLOCK: 4103 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4104 return 1; 4105 4106 msr_info->data = vcpu->kvm->arch.wall_clock; 4107 break; 4108 case MSR_KVM_WALL_CLOCK_NEW: 4109 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4110 return 1; 4111 4112 msr_info->data = vcpu->kvm->arch.wall_clock; 4113 break; 4114 case MSR_KVM_SYSTEM_TIME: 4115 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4116 return 1; 4117 4118 msr_info->data = vcpu->arch.time; 4119 break; 4120 case MSR_KVM_SYSTEM_TIME_NEW: 4121 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4122 return 1; 4123 4124 msr_info->data = vcpu->arch.time; 4125 break; 4126 case MSR_KVM_ASYNC_PF_EN: 4127 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4128 return 1; 4129 4130 msr_info->data = vcpu->arch.apf.msr_en_val; 4131 break; 4132 case MSR_KVM_ASYNC_PF_INT: 4133 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4134 return 1; 4135 4136 msr_info->data = vcpu->arch.apf.msr_int_val; 4137 break; 4138 case MSR_KVM_ASYNC_PF_ACK: 4139 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4140 return 1; 4141 4142 msr_info->data = 0; 4143 break; 4144 case MSR_KVM_STEAL_TIME: 4145 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4146 return 1; 4147 4148 msr_info->data = vcpu->arch.st.msr_val; 4149 break; 4150 case MSR_KVM_PV_EOI_EN: 4151 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4152 return 1; 4153 4154 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4155 break; 4156 case MSR_KVM_POLL_CONTROL: 4157 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4158 return 1; 4159 4160 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4161 break; 4162 case MSR_IA32_P5_MC_ADDR: 4163 case MSR_IA32_P5_MC_TYPE: 4164 case MSR_IA32_MCG_CAP: 4165 case MSR_IA32_MCG_CTL: 4166 case MSR_IA32_MCG_STATUS: 4167 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4168 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4169 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4170 msr_info->host_initiated); 4171 case MSR_IA32_XSS: 4172 if (!msr_info->host_initiated && 4173 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4174 return 1; 4175 msr_info->data = vcpu->arch.ia32_xss; 4176 break; 4177 case MSR_K7_CLK_CTL: 4178 /* 4179 * Provide expected ramp-up count for K7. All other 4180 * are set to zero, indicating minimum divisors for 4181 * every field. 4182 * 4183 * This prevents guest kernels on AMD host with CPU 4184 * type 6, model 8 and higher from exploding due to 4185 * the rdmsr failing. 4186 */ 4187 msr_info->data = 0x20000000; 4188 break; 4189 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4190 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4191 case HV_X64_MSR_SYNDBG_OPTIONS: 4192 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4193 case HV_X64_MSR_CRASH_CTL: 4194 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4195 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4196 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4197 case HV_X64_MSR_TSC_EMULATION_STATUS: 4198 return kvm_hv_get_msr_common(vcpu, 4199 msr_info->index, &msr_info->data, 4200 msr_info->host_initiated); 4201 case MSR_IA32_BBL_CR_CTL3: 4202 /* This legacy MSR exists but isn't fully documented in current 4203 * silicon. It is however accessed by winxp in very narrow 4204 * scenarios where it sets bit #19, itself documented as 4205 * a "reserved" bit. Best effort attempt to source coherent 4206 * read data here should the balance of the register be 4207 * interpreted by the guest: 4208 * 4209 * L2 cache control register 3: 64GB range, 256KB size, 4210 * enabled, latency 0x1, configured 4211 */ 4212 msr_info->data = 0xbe702111; 4213 break; 4214 case MSR_AMD64_OSVW_ID_LENGTH: 4215 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4216 return 1; 4217 msr_info->data = vcpu->arch.osvw.length; 4218 break; 4219 case MSR_AMD64_OSVW_STATUS: 4220 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4221 return 1; 4222 msr_info->data = vcpu->arch.osvw.status; 4223 break; 4224 case MSR_PLATFORM_INFO: 4225 if (!msr_info->host_initiated && 4226 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4227 return 1; 4228 msr_info->data = vcpu->arch.msr_platform_info; 4229 break; 4230 case MSR_MISC_FEATURES_ENABLES: 4231 msr_info->data = vcpu->arch.msr_misc_features_enables; 4232 break; 4233 case MSR_K7_HWCR: 4234 msr_info->data = vcpu->arch.msr_hwcr; 4235 break; 4236 #ifdef CONFIG_X86_64 4237 case MSR_IA32_XFD: 4238 if (!msr_info->host_initiated && 4239 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4240 return 1; 4241 4242 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4243 break; 4244 case MSR_IA32_XFD_ERR: 4245 if (!msr_info->host_initiated && 4246 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4247 return 1; 4248 4249 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4250 break; 4251 #endif 4252 default: 4253 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4254 return kvm_pmu_get_msr(vcpu, msr_info); 4255 return KVM_MSR_RET_INVALID; 4256 } 4257 return 0; 4258 } 4259 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4260 4261 /* 4262 * Read or write a bunch of msrs. All parameters are kernel addresses. 4263 * 4264 * @return number of msrs set successfully. 4265 */ 4266 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4267 struct kvm_msr_entry *entries, 4268 int (*do_msr)(struct kvm_vcpu *vcpu, 4269 unsigned index, u64 *data)) 4270 { 4271 int i; 4272 4273 for (i = 0; i < msrs->nmsrs; ++i) 4274 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4275 break; 4276 4277 return i; 4278 } 4279 4280 /* 4281 * Read or write a bunch of msrs. Parameters are user addresses. 4282 * 4283 * @return number of msrs set successfully. 4284 */ 4285 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4286 int (*do_msr)(struct kvm_vcpu *vcpu, 4287 unsigned index, u64 *data), 4288 int writeback) 4289 { 4290 struct kvm_msrs msrs; 4291 struct kvm_msr_entry *entries; 4292 int r, n; 4293 unsigned size; 4294 4295 r = -EFAULT; 4296 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4297 goto out; 4298 4299 r = -E2BIG; 4300 if (msrs.nmsrs >= MAX_IO_MSRS) 4301 goto out; 4302 4303 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4304 entries = memdup_user(user_msrs->entries, size); 4305 if (IS_ERR(entries)) { 4306 r = PTR_ERR(entries); 4307 goto out; 4308 } 4309 4310 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4311 if (r < 0) 4312 goto out_free; 4313 4314 r = -EFAULT; 4315 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4316 goto out_free; 4317 4318 r = n; 4319 4320 out_free: 4321 kfree(entries); 4322 out: 4323 return r; 4324 } 4325 4326 static inline bool kvm_can_mwait_in_guest(void) 4327 { 4328 return boot_cpu_has(X86_FEATURE_MWAIT) && 4329 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4330 boot_cpu_has(X86_FEATURE_ARAT); 4331 } 4332 4333 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4334 struct kvm_cpuid2 __user *cpuid_arg) 4335 { 4336 struct kvm_cpuid2 cpuid; 4337 int r; 4338 4339 r = -EFAULT; 4340 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4341 return r; 4342 4343 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4344 if (r) 4345 return r; 4346 4347 r = -EFAULT; 4348 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4349 return r; 4350 4351 return 0; 4352 } 4353 4354 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4355 { 4356 int r = 0; 4357 4358 switch (ext) { 4359 case KVM_CAP_IRQCHIP: 4360 case KVM_CAP_HLT: 4361 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4362 case KVM_CAP_SET_TSS_ADDR: 4363 case KVM_CAP_EXT_CPUID: 4364 case KVM_CAP_EXT_EMUL_CPUID: 4365 case KVM_CAP_CLOCKSOURCE: 4366 case KVM_CAP_PIT: 4367 case KVM_CAP_NOP_IO_DELAY: 4368 case KVM_CAP_MP_STATE: 4369 case KVM_CAP_SYNC_MMU: 4370 case KVM_CAP_USER_NMI: 4371 case KVM_CAP_REINJECT_CONTROL: 4372 case KVM_CAP_IRQ_INJECT_STATUS: 4373 case KVM_CAP_IOEVENTFD: 4374 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4375 case KVM_CAP_PIT2: 4376 case KVM_CAP_PIT_STATE2: 4377 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4378 case KVM_CAP_VCPU_EVENTS: 4379 case KVM_CAP_HYPERV: 4380 case KVM_CAP_HYPERV_VAPIC: 4381 case KVM_CAP_HYPERV_SPIN: 4382 case KVM_CAP_HYPERV_SYNIC: 4383 case KVM_CAP_HYPERV_SYNIC2: 4384 case KVM_CAP_HYPERV_VP_INDEX: 4385 case KVM_CAP_HYPERV_EVENTFD: 4386 case KVM_CAP_HYPERV_TLBFLUSH: 4387 case KVM_CAP_HYPERV_SEND_IPI: 4388 case KVM_CAP_HYPERV_CPUID: 4389 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4390 case KVM_CAP_SYS_HYPERV_CPUID: 4391 case KVM_CAP_PCI_SEGMENT: 4392 case KVM_CAP_DEBUGREGS: 4393 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4394 case KVM_CAP_XSAVE: 4395 case KVM_CAP_ASYNC_PF: 4396 case KVM_CAP_ASYNC_PF_INT: 4397 case KVM_CAP_GET_TSC_KHZ: 4398 case KVM_CAP_KVMCLOCK_CTRL: 4399 case KVM_CAP_READONLY_MEM: 4400 case KVM_CAP_HYPERV_TIME: 4401 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4402 case KVM_CAP_TSC_DEADLINE_TIMER: 4403 case KVM_CAP_DISABLE_QUIRKS: 4404 case KVM_CAP_SET_BOOT_CPU_ID: 4405 case KVM_CAP_SPLIT_IRQCHIP: 4406 case KVM_CAP_IMMEDIATE_EXIT: 4407 case KVM_CAP_PMU_EVENT_FILTER: 4408 case KVM_CAP_GET_MSR_FEATURES: 4409 case KVM_CAP_MSR_PLATFORM_INFO: 4410 case KVM_CAP_EXCEPTION_PAYLOAD: 4411 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4412 case KVM_CAP_SET_GUEST_DEBUG: 4413 case KVM_CAP_LAST_CPU: 4414 case KVM_CAP_X86_USER_SPACE_MSR: 4415 case KVM_CAP_X86_MSR_FILTER: 4416 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4417 #ifdef CONFIG_X86_SGX_KVM 4418 case KVM_CAP_SGX_ATTRIBUTE: 4419 #endif 4420 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4421 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4422 case KVM_CAP_SREGS2: 4423 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4424 case KVM_CAP_VCPU_ATTRIBUTES: 4425 case KVM_CAP_SYS_ATTRIBUTES: 4426 case KVM_CAP_VAPIC: 4427 case KVM_CAP_ENABLE_CAP: 4428 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4429 r = 1; 4430 break; 4431 case KVM_CAP_EXIT_HYPERCALL: 4432 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4433 break; 4434 case KVM_CAP_SET_GUEST_DEBUG2: 4435 return KVM_GUESTDBG_VALID_MASK; 4436 #ifdef CONFIG_KVM_XEN 4437 case KVM_CAP_XEN_HVM: 4438 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4439 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4440 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4441 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4442 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4443 if (sched_info_on()) 4444 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4445 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4446 break; 4447 #endif 4448 case KVM_CAP_SYNC_REGS: 4449 r = KVM_SYNC_X86_VALID_FIELDS; 4450 break; 4451 case KVM_CAP_ADJUST_CLOCK: 4452 r = KVM_CLOCK_VALID_FLAGS; 4453 break; 4454 case KVM_CAP_X86_DISABLE_EXITS: 4455 r = KVM_X86_DISABLE_EXITS_PAUSE; 4456 4457 if (!mitigate_smt_rsb) { 4458 r |= KVM_X86_DISABLE_EXITS_HLT | 4459 KVM_X86_DISABLE_EXITS_CSTATE; 4460 4461 if (kvm_can_mwait_in_guest()) 4462 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4463 } 4464 break; 4465 case KVM_CAP_X86_SMM: 4466 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4467 break; 4468 4469 /* SMBASE is usually relocated above 1M on modern chipsets, 4470 * and SMM handlers might indeed rely on 4G segment limits, 4471 * so do not report SMM to be available if real mode is 4472 * emulated via vm86 mode. Still, do not go to great lengths 4473 * to avoid userspace's usage of the feature, because it is a 4474 * fringe case that is not enabled except via specific settings 4475 * of the module parameters. 4476 */ 4477 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4478 break; 4479 case KVM_CAP_NR_VCPUS: 4480 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4481 break; 4482 case KVM_CAP_MAX_VCPUS: 4483 r = KVM_MAX_VCPUS; 4484 break; 4485 case KVM_CAP_MAX_VCPU_ID: 4486 r = KVM_MAX_VCPU_IDS; 4487 break; 4488 case KVM_CAP_PV_MMU: /* obsolete */ 4489 r = 0; 4490 break; 4491 case KVM_CAP_MCE: 4492 r = KVM_MAX_MCE_BANKS; 4493 break; 4494 case KVM_CAP_XCRS: 4495 r = boot_cpu_has(X86_FEATURE_XSAVE); 4496 break; 4497 case KVM_CAP_TSC_CONTROL: 4498 case KVM_CAP_VM_TSC_CONTROL: 4499 r = kvm_caps.has_tsc_control; 4500 break; 4501 case KVM_CAP_X2APIC_API: 4502 r = KVM_X2APIC_API_VALID_FLAGS; 4503 break; 4504 case KVM_CAP_NESTED_STATE: 4505 r = kvm_x86_ops.nested_ops->get_state ? 4506 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4507 break; 4508 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4509 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4510 break; 4511 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4512 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4513 break; 4514 case KVM_CAP_SMALLER_MAXPHYADDR: 4515 r = (int) allow_smaller_maxphyaddr; 4516 break; 4517 case KVM_CAP_STEAL_TIME: 4518 r = sched_info_on(); 4519 break; 4520 case KVM_CAP_X86_BUS_LOCK_EXIT: 4521 if (kvm_caps.has_bus_lock_exit) 4522 r = KVM_BUS_LOCK_DETECTION_OFF | 4523 KVM_BUS_LOCK_DETECTION_EXIT; 4524 else 4525 r = 0; 4526 break; 4527 case KVM_CAP_XSAVE2: { 4528 u64 guest_perm = xstate_get_guest_group_perm(); 4529 4530 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false); 4531 if (r < sizeof(struct kvm_xsave)) 4532 r = sizeof(struct kvm_xsave); 4533 break; 4534 } 4535 case KVM_CAP_PMU_CAPABILITY: 4536 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4537 break; 4538 case KVM_CAP_DISABLE_QUIRKS2: 4539 r = KVM_X86_VALID_QUIRKS; 4540 break; 4541 case KVM_CAP_X86_NOTIFY_VMEXIT: 4542 r = kvm_caps.has_notify_vmexit; 4543 break; 4544 default: 4545 break; 4546 } 4547 return r; 4548 } 4549 4550 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4551 { 4552 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4553 4554 if ((u64)(unsigned long)uaddr != attr->addr) 4555 return ERR_PTR_USR(-EFAULT); 4556 return uaddr; 4557 } 4558 4559 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4560 { 4561 u64 __user *uaddr = kvm_get_attr_addr(attr); 4562 4563 if (attr->group) 4564 return -ENXIO; 4565 4566 if (IS_ERR(uaddr)) 4567 return PTR_ERR(uaddr); 4568 4569 switch (attr->attr) { 4570 case KVM_X86_XCOMP_GUEST_SUPP: 4571 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4572 return -EFAULT; 4573 return 0; 4574 default: 4575 return -ENXIO; 4576 break; 4577 } 4578 } 4579 4580 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4581 { 4582 if (attr->group) 4583 return -ENXIO; 4584 4585 switch (attr->attr) { 4586 case KVM_X86_XCOMP_GUEST_SUPP: 4587 return 0; 4588 default: 4589 return -ENXIO; 4590 } 4591 } 4592 4593 long kvm_arch_dev_ioctl(struct file *filp, 4594 unsigned int ioctl, unsigned long arg) 4595 { 4596 void __user *argp = (void __user *)arg; 4597 long r; 4598 4599 switch (ioctl) { 4600 case KVM_GET_MSR_INDEX_LIST: { 4601 struct kvm_msr_list __user *user_msr_list = argp; 4602 struct kvm_msr_list msr_list; 4603 unsigned n; 4604 4605 r = -EFAULT; 4606 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4607 goto out; 4608 n = msr_list.nmsrs; 4609 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4610 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4611 goto out; 4612 r = -E2BIG; 4613 if (n < msr_list.nmsrs) 4614 goto out; 4615 r = -EFAULT; 4616 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4617 num_msrs_to_save * sizeof(u32))) 4618 goto out; 4619 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4620 &emulated_msrs, 4621 num_emulated_msrs * sizeof(u32))) 4622 goto out; 4623 r = 0; 4624 break; 4625 } 4626 case KVM_GET_SUPPORTED_CPUID: 4627 case KVM_GET_EMULATED_CPUID: { 4628 struct kvm_cpuid2 __user *cpuid_arg = argp; 4629 struct kvm_cpuid2 cpuid; 4630 4631 r = -EFAULT; 4632 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4633 goto out; 4634 4635 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4636 ioctl); 4637 if (r) 4638 goto out; 4639 4640 r = -EFAULT; 4641 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4642 goto out; 4643 r = 0; 4644 break; 4645 } 4646 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4647 r = -EFAULT; 4648 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4649 sizeof(kvm_caps.supported_mce_cap))) 4650 goto out; 4651 r = 0; 4652 break; 4653 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4654 struct kvm_msr_list __user *user_msr_list = argp; 4655 struct kvm_msr_list msr_list; 4656 unsigned int n; 4657 4658 r = -EFAULT; 4659 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4660 goto out; 4661 n = msr_list.nmsrs; 4662 msr_list.nmsrs = num_msr_based_features; 4663 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4664 goto out; 4665 r = -E2BIG; 4666 if (n < msr_list.nmsrs) 4667 goto out; 4668 r = -EFAULT; 4669 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4670 num_msr_based_features * sizeof(u32))) 4671 goto out; 4672 r = 0; 4673 break; 4674 } 4675 case KVM_GET_MSRS: 4676 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4677 break; 4678 case KVM_GET_SUPPORTED_HV_CPUID: 4679 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4680 break; 4681 case KVM_GET_DEVICE_ATTR: { 4682 struct kvm_device_attr attr; 4683 r = -EFAULT; 4684 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4685 break; 4686 r = kvm_x86_dev_get_attr(&attr); 4687 break; 4688 } 4689 case KVM_HAS_DEVICE_ATTR: { 4690 struct kvm_device_attr attr; 4691 r = -EFAULT; 4692 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4693 break; 4694 r = kvm_x86_dev_has_attr(&attr); 4695 break; 4696 } 4697 default: 4698 r = -EINVAL; 4699 break; 4700 } 4701 out: 4702 return r; 4703 } 4704 4705 static void wbinvd_ipi(void *garbage) 4706 { 4707 wbinvd(); 4708 } 4709 4710 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4711 { 4712 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4713 } 4714 4715 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4716 { 4717 /* Address WBINVD may be executed by guest */ 4718 if (need_emulate_wbinvd(vcpu)) { 4719 if (static_call(kvm_x86_has_wbinvd_exit)()) 4720 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4721 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4722 smp_call_function_single(vcpu->cpu, 4723 wbinvd_ipi, NULL, 1); 4724 } 4725 4726 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4727 4728 /* Save host pkru register if supported */ 4729 vcpu->arch.host_pkru = read_pkru(); 4730 4731 /* Apply any externally detected TSC adjustments (due to suspend) */ 4732 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4733 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4734 vcpu->arch.tsc_offset_adjustment = 0; 4735 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4736 } 4737 4738 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4739 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4740 rdtsc() - vcpu->arch.last_host_tsc; 4741 if (tsc_delta < 0) 4742 mark_tsc_unstable("KVM discovered backwards TSC"); 4743 4744 if (kvm_check_tsc_unstable()) { 4745 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4746 vcpu->arch.last_guest_tsc); 4747 kvm_vcpu_write_tsc_offset(vcpu, offset); 4748 vcpu->arch.tsc_catchup = 1; 4749 } 4750 4751 if (kvm_lapic_hv_timer_in_use(vcpu)) 4752 kvm_lapic_restart_hv_timer(vcpu); 4753 4754 /* 4755 * On a host with synchronized TSC, there is no need to update 4756 * kvmclock on vcpu->cpu migration 4757 */ 4758 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4759 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4760 if (vcpu->cpu != cpu) 4761 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4762 vcpu->cpu = cpu; 4763 } 4764 4765 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4766 } 4767 4768 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4769 { 4770 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4771 struct kvm_steal_time __user *st; 4772 struct kvm_memslots *slots; 4773 static const u8 preempted = KVM_VCPU_PREEMPTED; 4774 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4775 4776 /* 4777 * The vCPU can be marked preempted if and only if the VM-Exit was on 4778 * an instruction boundary and will not trigger guest emulation of any 4779 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4780 * when this is true, for example allowing the vCPU to be marked 4781 * preempted if and only if the VM-Exit was due to a host interrupt. 4782 */ 4783 if (!vcpu->arch.at_instruction_boundary) { 4784 vcpu->stat.preemption_other++; 4785 return; 4786 } 4787 4788 vcpu->stat.preemption_reported++; 4789 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4790 return; 4791 4792 if (vcpu->arch.st.preempted) 4793 return; 4794 4795 /* This happens on process exit */ 4796 if (unlikely(current->mm != vcpu->kvm->mm)) 4797 return; 4798 4799 slots = kvm_memslots(vcpu->kvm); 4800 4801 if (unlikely(slots->generation != ghc->generation || 4802 gpa != ghc->gpa || 4803 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4804 return; 4805 4806 st = (struct kvm_steal_time __user *)ghc->hva; 4807 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4808 4809 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4810 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4811 4812 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4813 } 4814 4815 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4816 { 4817 int idx; 4818 4819 if (vcpu->preempted) { 4820 if (!vcpu->arch.guest_state_protected) 4821 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4822 4823 /* 4824 * Take the srcu lock as memslots will be accessed to check the gfn 4825 * cache generation against the memslots generation. 4826 */ 4827 idx = srcu_read_lock(&vcpu->kvm->srcu); 4828 if (kvm_xen_msr_enabled(vcpu->kvm)) 4829 kvm_xen_runstate_set_preempted(vcpu); 4830 else 4831 kvm_steal_time_set_preempted(vcpu); 4832 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4833 } 4834 4835 static_call(kvm_x86_vcpu_put)(vcpu); 4836 vcpu->arch.last_host_tsc = rdtsc(); 4837 } 4838 4839 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4840 struct kvm_lapic_state *s) 4841 { 4842 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4843 4844 return kvm_apic_get_state(vcpu, s); 4845 } 4846 4847 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4848 struct kvm_lapic_state *s) 4849 { 4850 int r; 4851 4852 r = kvm_apic_set_state(vcpu, s); 4853 if (r) 4854 return r; 4855 update_cr8_intercept(vcpu); 4856 4857 return 0; 4858 } 4859 4860 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4861 { 4862 /* 4863 * We can accept userspace's request for interrupt injection 4864 * as long as we have a place to store the interrupt number. 4865 * The actual injection will happen when the CPU is able to 4866 * deliver the interrupt. 4867 */ 4868 if (kvm_cpu_has_extint(vcpu)) 4869 return false; 4870 4871 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4872 return (!lapic_in_kernel(vcpu) || 4873 kvm_apic_accept_pic_intr(vcpu)); 4874 } 4875 4876 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4877 { 4878 /* 4879 * Do not cause an interrupt window exit if an exception 4880 * is pending or an event needs reinjection; userspace 4881 * might want to inject the interrupt manually using KVM_SET_REGS 4882 * or KVM_SET_SREGS. For that to work, we must be at an 4883 * instruction boundary and with no events half-injected. 4884 */ 4885 return (kvm_arch_interrupt_allowed(vcpu) && 4886 kvm_cpu_accept_dm_intr(vcpu) && 4887 !kvm_event_needs_reinjection(vcpu) && 4888 !kvm_is_exception_pending(vcpu)); 4889 } 4890 4891 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4892 struct kvm_interrupt *irq) 4893 { 4894 if (irq->irq >= KVM_NR_INTERRUPTS) 4895 return -EINVAL; 4896 4897 if (!irqchip_in_kernel(vcpu->kvm)) { 4898 kvm_queue_interrupt(vcpu, irq->irq, false); 4899 kvm_make_request(KVM_REQ_EVENT, vcpu); 4900 return 0; 4901 } 4902 4903 /* 4904 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4905 * fail for in-kernel 8259. 4906 */ 4907 if (pic_in_kernel(vcpu->kvm)) 4908 return -ENXIO; 4909 4910 if (vcpu->arch.pending_external_vector != -1) 4911 return -EEXIST; 4912 4913 vcpu->arch.pending_external_vector = irq->irq; 4914 kvm_make_request(KVM_REQ_EVENT, vcpu); 4915 return 0; 4916 } 4917 4918 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4919 { 4920 kvm_inject_nmi(vcpu); 4921 4922 return 0; 4923 } 4924 4925 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4926 struct kvm_tpr_access_ctl *tac) 4927 { 4928 if (tac->flags) 4929 return -EINVAL; 4930 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4931 return 0; 4932 } 4933 4934 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4935 u64 mcg_cap) 4936 { 4937 int r; 4938 unsigned bank_num = mcg_cap & 0xff, bank; 4939 4940 r = -EINVAL; 4941 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4942 goto out; 4943 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 4944 goto out; 4945 r = 0; 4946 vcpu->arch.mcg_cap = mcg_cap; 4947 /* Init IA32_MCG_CTL to all 1s */ 4948 if (mcg_cap & MCG_CTL_P) 4949 vcpu->arch.mcg_ctl = ~(u64)0; 4950 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 4951 for (bank = 0; bank < bank_num; bank++) { 4952 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4953 if (mcg_cap & MCG_CMCI_P) 4954 vcpu->arch.mci_ctl2_banks[bank] = 0; 4955 } 4956 4957 kvm_apic_after_set_mcg_cap(vcpu); 4958 4959 static_call(kvm_x86_setup_mce)(vcpu); 4960 out: 4961 return r; 4962 } 4963 4964 /* 4965 * Validate this is an UCNA (uncorrectable no action) error by checking the 4966 * MCG_STATUS and MCi_STATUS registers: 4967 * - none of the bits for Machine Check Exceptions are set 4968 * - both the VAL (valid) and UC (uncorrectable) bits are set 4969 * MCI_STATUS_PCC - Processor Context Corrupted 4970 * MCI_STATUS_S - Signaled as a Machine Check Exception 4971 * MCI_STATUS_AR - Software recoverable Action Required 4972 */ 4973 static bool is_ucna(struct kvm_x86_mce *mce) 4974 { 4975 return !mce->mcg_status && 4976 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 4977 (mce->status & MCI_STATUS_VAL) && 4978 (mce->status & MCI_STATUS_UC); 4979 } 4980 4981 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 4982 { 4983 u64 mcg_cap = vcpu->arch.mcg_cap; 4984 4985 banks[1] = mce->status; 4986 banks[2] = mce->addr; 4987 banks[3] = mce->misc; 4988 vcpu->arch.mcg_status = mce->mcg_status; 4989 4990 if (!(mcg_cap & MCG_CMCI_P) || 4991 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 4992 return 0; 4993 4994 if (lapic_in_kernel(vcpu)) 4995 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 4996 4997 return 0; 4998 } 4999 5000 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5001 struct kvm_x86_mce *mce) 5002 { 5003 u64 mcg_cap = vcpu->arch.mcg_cap; 5004 unsigned bank_num = mcg_cap & 0xff; 5005 u64 *banks = vcpu->arch.mce_banks; 5006 5007 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5008 return -EINVAL; 5009 5010 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5011 5012 if (is_ucna(mce)) 5013 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5014 5015 /* 5016 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5017 * reporting is disabled 5018 */ 5019 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5020 vcpu->arch.mcg_ctl != ~(u64)0) 5021 return 0; 5022 /* 5023 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5024 * reporting is disabled for the bank 5025 */ 5026 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5027 return 0; 5028 if (mce->status & MCI_STATUS_UC) { 5029 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5030 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 5031 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5032 return 0; 5033 } 5034 if (banks[1] & MCI_STATUS_VAL) 5035 mce->status |= MCI_STATUS_OVER; 5036 banks[2] = mce->addr; 5037 banks[3] = mce->misc; 5038 vcpu->arch.mcg_status = mce->mcg_status; 5039 banks[1] = mce->status; 5040 kvm_queue_exception(vcpu, MC_VECTOR); 5041 } else if (!(banks[1] & MCI_STATUS_VAL) 5042 || !(banks[1] & MCI_STATUS_UC)) { 5043 if (banks[1] & MCI_STATUS_VAL) 5044 mce->status |= MCI_STATUS_OVER; 5045 banks[2] = mce->addr; 5046 banks[3] = mce->misc; 5047 banks[1] = mce->status; 5048 } else 5049 banks[1] |= MCI_STATUS_OVER; 5050 return 0; 5051 } 5052 5053 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5054 struct kvm_vcpu_events *events) 5055 { 5056 struct kvm_queued_exception *ex; 5057 5058 process_nmi(vcpu); 5059 5060 #ifdef CONFIG_KVM_SMM 5061 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5062 process_smi(vcpu); 5063 #endif 5064 5065 /* 5066 * KVM's ABI only allows for one exception to be migrated. Luckily, 5067 * the only time there can be two queued exceptions is if there's a 5068 * non-exiting _injected_ exception, and a pending exiting exception. 5069 * In that case, ignore the VM-Exiting exception as it's an extension 5070 * of the injected exception. 5071 */ 5072 if (vcpu->arch.exception_vmexit.pending && 5073 !vcpu->arch.exception.pending && 5074 !vcpu->arch.exception.injected) 5075 ex = &vcpu->arch.exception_vmexit; 5076 else 5077 ex = &vcpu->arch.exception; 5078 5079 /* 5080 * In guest mode, payload delivery should be deferred if the exception 5081 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5082 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5083 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5084 * propagate the payload and so it cannot be safely deferred. Deliver 5085 * the payload if the capability hasn't been requested. 5086 */ 5087 if (!vcpu->kvm->arch.exception_payload_enabled && 5088 ex->pending && ex->has_payload) 5089 kvm_deliver_exception_payload(vcpu, ex); 5090 5091 memset(events, 0, sizeof(*events)); 5092 5093 /* 5094 * The API doesn't provide the instruction length for software 5095 * exceptions, so don't report them. As long as the guest RIP 5096 * isn't advanced, we should expect to encounter the exception 5097 * again. 5098 */ 5099 if (!kvm_exception_is_soft(ex->vector)) { 5100 events->exception.injected = ex->injected; 5101 events->exception.pending = ex->pending; 5102 /* 5103 * For ABI compatibility, deliberately conflate 5104 * pending and injected exceptions when 5105 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5106 */ 5107 if (!vcpu->kvm->arch.exception_payload_enabled) 5108 events->exception.injected |= ex->pending; 5109 } 5110 events->exception.nr = ex->vector; 5111 events->exception.has_error_code = ex->has_error_code; 5112 events->exception.error_code = ex->error_code; 5113 events->exception_has_payload = ex->has_payload; 5114 events->exception_payload = ex->payload; 5115 5116 events->interrupt.injected = 5117 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5118 events->interrupt.nr = vcpu->arch.interrupt.nr; 5119 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5120 5121 events->nmi.injected = vcpu->arch.nmi_injected; 5122 events->nmi.pending = vcpu->arch.nmi_pending != 0; 5123 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5124 5125 /* events->sipi_vector is never valid when reporting to user space */ 5126 5127 #ifdef CONFIG_KVM_SMM 5128 events->smi.smm = is_smm(vcpu); 5129 events->smi.pending = vcpu->arch.smi_pending; 5130 events->smi.smm_inside_nmi = 5131 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5132 #endif 5133 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5134 5135 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5136 | KVM_VCPUEVENT_VALID_SHADOW 5137 | KVM_VCPUEVENT_VALID_SMM); 5138 if (vcpu->kvm->arch.exception_payload_enabled) 5139 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5140 if (vcpu->kvm->arch.triple_fault_event) { 5141 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5142 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5143 } 5144 } 5145 5146 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5147 struct kvm_vcpu_events *events) 5148 { 5149 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5150 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5151 | KVM_VCPUEVENT_VALID_SHADOW 5152 | KVM_VCPUEVENT_VALID_SMM 5153 | KVM_VCPUEVENT_VALID_PAYLOAD 5154 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5155 return -EINVAL; 5156 5157 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5158 if (!vcpu->kvm->arch.exception_payload_enabled) 5159 return -EINVAL; 5160 if (events->exception.pending) 5161 events->exception.injected = 0; 5162 else 5163 events->exception_has_payload = 0; 5164 } else { 5165 events->exception.pending = 0; 5166 events->exception_has_payload = 0; 5167 } 5168 5169 if ((events->exception.injected || events->exception.pending) && 5170 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5171 return -EINVAL; 5172 5173 /* INITs are latched while in SMM */ 5174 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5175 (events->smi.smm || events->smi.pending) && 5176 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5177 return -EINVAL; 5178 5179 process_nmi(vcpu); 5180 5181 /* 5182 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5183 * morph the exception to a VM-Exit if appropriate. Do this only for 5184 * pending exceptions, already-injected exceptions are not subject to 5185 * intercpetion. Note, userspace that conflates pending and injected 5186 * is hosed, and will incorrectly convert an injected exception into a 5187 * pending exception, which in turn may cause a spurious VM-Exit. 5188 */ 5189 vcpu->arch.exception_from_userspace = events->exception.pending; 5190 5191 vcpu->arch.exception_vmexit.pending = false; 5192 5193 vcpu->arch.exception.injected = events->exception.injected; 5194 vcpu->arch.exception.pending = events->exception.pending; 5195 vcpu->arch.exception.vector = events->exception.nr; 5196 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5197 vcpu->arch.exception.error_code = events->exception.error_code; 5198 vcpu->arch.exception.has_payload = events->exception_has_payload; 5199 vcpu->arch.exception.payload = events->exception_payload; 5200 5201 vcpu->arch.interrupt.injected = events->interrupt.injected; 5202 vcpu->arch.interrupt.nr = events->interrupt.nr; 5203 vcpu->arch.interrupt.soft = events->interrupt.soft; 5204 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5205 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5206 events->interrupt.shadow); 5207 5208 vcpu->arch.nmi_injected = events->nmi.injected; 5209 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5210 vcpu->arch.nmi_pending = events->nmi.pending; 5211 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5212 5213 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5214 lapic_in_kernel(vcpu)) 5215 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5216 5217 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5218 #ifdef CONFIG_KVM_SMM 5219 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5220 kvm_leave_nested(vcpu); 5221 kvm_smm_changed(vcpu, events->smi.smm); 5222 } 5223 5224 vcpu->arch.smi_pending = events->smi.pending; 5225 5226 if (events->smi.smm) { 5227 if (events->smi.smm_inside_nmi) 5228 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5229 else 5230 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5231 } 5232 5233 #else 5234 if (events->smi.smm || events->smi.pending || 5235 events->smi.smm_inside_nmi) 5236 return -EINVAL; 5237 #endif 5238 5239 if (lapic_in_kernel(vcpu)) { 5240 if (events->smi.latched_init) 5241 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5242 else 5243 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5244 } 5245 } 5246 5247 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5248 if (!vcpu->kvm->arch.triple_fault_event) 5249 return -EINVAL; 5250 if (events->triple_fault.pending) 5251 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5252 else 5253 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5254 } 5255 5256 kvm_make_request(KVM_REQ_EVENT, vcpu); 5257 5258 return 0; 5259 } 5260 5261 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5262 struct kvm_debugregs *dbgregs) 5263 { 5264 unsigned long val; 5265 5266 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5267 kvm_get_dr(vcpu, 6, &val); 5268 dbgregs->dr6 = val; 5269 dbgregs->dr7 = vcpu->arch.dr7; 5270 dbgregs->flags = 0; 5271 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5272 } 5273 5274 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5275 struct kvm_debugregs *dbgregs) 5276 { 5277 if (dbgregs->flags) 5278 return -EINVAL; 5279 5280 if (!kvm_dr6_valid(dbgregs->dr6)) 5281 return -EINVAL; 5282 if (!kvm_dr7_valid(dbgregs->dr7)) 5283 return -EINVAL; 5284 5285 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5286 kvm_update_dr0123(vcpu); 5287 vcpu->arch.dr6 = dbgregs->dr6; 5288 vcpu->arch.dr7 = dbgregs->dr7; 5289 kvm_update_dr7(vcpu); 5290 5291 return 0; 5292 } 5293 5294 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5295 struct kvm_xsave *guest_xsave) 5296 { 5297 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5298 return; 5299 5300 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5301 guest_xsave->region, 5302 sizeof(guest_xsave->region), 5303 vcpu->arch.pkru); 5304 } 5305 5306 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5307 u8 *state, unsigned int size) 5308 { 5309 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5310 return; 5311 5312 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5313 state, size, vcpu->arch.pkru); 5314 } 5315 5316 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5317 struct kvm_xsave *guest_xsave) 5318 { 5319 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5320 return 0; 5321 5322 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5323 guest_xsave->region, 5324 kvm_caps.supported_xcr0, 5325 &vcpu->arch.pkru); 5326 } 5327 5328 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5329 struct kvm_xcrs *guest_xcrs) 5330 { 5331 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5332 guest_xcrs->nr_xcrs = 0; 5333 return; 5334 } 5335 5336 guest_xcrs->nr_xcrs = 1; 5337 guest_xcrs->flags = 0; 5338 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5339 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5340 } 5341 5342 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5343 struct kvm_xcrs *guest_xcrs) 5344 { 5345 int i, r = 0; 5346 5347 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5348 return -EINVAL; 5349 5350 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5351 return -EINVAL; 5352 5353 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5354 /* Only support XCR0 currently */ 5355 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5356 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5357 guest_xcrs->xcrs[i].value); 5358 break; 5359 } 5360 if (r) 5361 r = -EINVAL; 5362 return r; 5363 } 5364 5365 /* 5366 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5367 * stopped by the hypervisor. This function will be called from the host only. 5368 * EINVAL is returned when the host attempts to set the flag for a guest that 5369 * does not support pv clocks. 5370 */ 5371 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5372 { 5373 if (!vcpu->arch.pv_time.active) 5374 return -EINVAL; 5375 vcpu->arch.pvclock_set_guest_stopped_request = true; 5376 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5377 return 0; 5378 } 5379 5380 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5381 struct kvm_device_attr *attr) 5382 { 5383 int r; 5384 5385 switch (attr->attr) { 5386 case KVM_VCPU_TSC_OFFSET: 5387 r = 0; 5388 break; 5389 default: 5390 r = -ENXIO; 5391 } 5392 5393 return r; 5394 } 5395 5396 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5397 struct kvm_device_attr *attr) 5398 { 5399 u64 __user *uaddr = kvm_get_attr_addr(attr); 5400 int r; 5401 5402 if (IS_ERR(uaddr)) 5403 return PTR_ERR(uaddr); 5404 5405 switch (attr->attr) { 5406 case KVM_VCPU_TSC_OFFSET: 5407 r = -EFAULT; 5408 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5409 break; 5410 r = 0; 5411 break; 5412 default: 5413 r = -ENXIO; 5414 } 5415 5416 return r; 5417 } 5418 5419 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5420 struct kvm_device_attr *attr) 5421 { 5422 u64 __user *uaddr = kvm_get_attr_addr(attr); 5423 struct kvm *kvm = vcpu->kvm; 5424 int r; 5425 5426 if (IS_ERR(uaddr)) 5427 return PTR_ERR(uaddr); 5428 5429 switch (attr->attr) { 5430 case KVM_VCPU_TSC_OFFSET: { 5431 u64 offset, tsc, ns; 5432 unsigned long flags; 5433 bool matched; 5434 5435 r = -EFAULT; 5436 if (get_user(offset, uaddr)) 5437 break; 5438 5439 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5440 5441 matched = (vcpu->arch.virtual_tsc_khz && 5442 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5443 kvm->arch.last_tsc_offset == offset); 5444 5445 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5446 ns = get_kvmclock_base_ns(); 5447 5448 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5449 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5450 5451 r = 0; 5452 break; 5453 } 5454 default: 5455 r = -ENXIO; 5456 } 5457 5458 return r; 5459 } 5460 5461 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5462 unsigned int ioctl, 5463 void __user *argp) 5464 { 5465 struct kvm_device_attr attr; 5466 int r; 5467 5468 if (copy_from_user(&attr, argp, sizeof(attr))) 5469 return -EFAULT; 5470 5471 if (attr.group != KVM_VCPU_TSC_CTRL) 5472 return -ENXIO; 5473 5474 switch (ioctl) { 5475 case KVM_HAS_DEVICE_ATTR: 5476 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5477 break; 5478 case KVM_GET_DEVICE_ATTR: 5479 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5480 break; 5481 case KVM_SET_DEVICE_ATTR: 5482 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5483 break; 5484 } 5485 5486 return r; 5487 } 5488 5489 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5490 struct kvm_enable_cap *cap) 5491 { 5492 int r; 5493 uint16_t vmcs_version; 5494 void __user *user_ptr; 5495 5496 if (cap->flags) 5497 return -EINVAL; 5498 5499 switch (cap->cap) { 5500 case KVM_CAP_HYPERV_SYNIC2: 5501 if (cap->args[0]) 5502 return -EINVAL; 5503 fallthrough; 5504 5505 case KVM_CAP_HYPERV_SYNIC: 5506 if (!irqchip_in_kernel(vcpu->kvm)) 5507 return -EINVAL; 5508 return kvm_hv_activate_synic(vcpu, cap->cap == 5509 KVM_CAP_HYPERV_SYNIC2); 5510 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5511 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5512 return -ENOTTY; 5513 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5514 if (!r) { 5515 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5516 if (copy_to_user(user_ptr, &vmcs_version, 5517 sizeof(vmcs_version))) 5518 r = -EFAULT; 5519 } 5520 return r; 5521 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5522 if (!kvm_x86_ops.enable_l2_tlb_flush) 5523 return -ENOTTY; 5524 5525 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5526 5527 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5528 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5529 5530 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5531 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5532 if (vcpu->arch.pv_cpuid.enforce) 5533 kvm_update_pv_runtime(vcpu); 5534 5535 return 0; 5536 default: 5537 return -EINVAL; 5538 } 5539 } 5540 5541 long kvm_arch_vcpu_ioctl(struct file *filp, 5542 unsigned int ioctl, unsigned long arg) 5543 { 5544 struct kvm_vcpu *vcpu = filp->private_data; 5545 void __user *argp = (void __user *)arg; 5546 int r; 5547 union { 5548 struct kvm_sregs2 *sregs2; 5549 struct kvm_lapic_state *lapic; 5550 struct kvm_xsave *xsave; 5551 struct kvm_xcrs *xcrs; 5552 void *buffer; 5553 } u; 5554 5555 vcpu_load(vcpu); 5556 5557 u.buffer = NULL; 5558 switch (ioctl) { 5559 case KVM_GET_LAPIC: { 5560 r = -EINVAL; 5561 if (!lapic_in_kernel(vcpu)) 5562 goto out; 5563 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5564 GFP_KERNEL_ACCOUNT); 5565 5566 r = -ENOMEM; 5567 if (!u.lapic) 5568 goto out; 5569 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5570 if (r) 5571 goto out; 5572 r = -EFAULT; 5573 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5574 goto out; 5575 r = 0; 5576 break; 5577 } 5578 case KVM_SET_LAPIC: { 5579 r = -EINVAL; 5580 if (!lapic_in_kernel(vcpu)) 5581 goto out; 5582 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5583 if (IS_ERR(u.lapic)) { 5584 r = PTR_ERR(u.lapic); 5585 goto out_nofree; 5586 } 5587 5588 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5589 break; 5590 } 5591 case KVM_INTERRUPT: { 5592 struct kvm_interrupt irq; 5593 5594 r = -EFAULT; 5595 if (copy_from_user(&irq, argp, sizeof(irq))) 5596 goto out; 5597 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5598 break; 5599 } 5600 case KVM_NMI: { 5601 r = kvm_vcpu_ioctl_nmi(vcpu); 5602 break; 5603 } 5604 case KVM_SMI: { 5605 r = kvm_inject_smi(vcpu); 5606 break; 5607 } 5608 case KVM_SET_CPUID: { 5609 struct kvm_cpuid __user *cpuid_arg = argp; 5610 struct kvm_cpuid cpuid; 5611 5612 r = -EFAULT; 5613 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5614 goto out; 5615 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5616 break; 5617 } 5618 case KVM_SET_CPUID2: { 5619 struct kvm_cpuid2 __user *cpuid_arg = argp; 5620 struct kvm_cpuid2 cpuid; 5621 5622 r = -EFAULT; 5623 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5624 goto out; 5625 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5626 cpuid_arg->entries); 5627 break; 5628 } 5629 case KVM_GET_CPUID2: { 5630 struct kvm_cpuid2 __user *cpuid_arg = argp; 5631 struct kvm_cpuid2 cpuid; 5632 5633 r = -EFAULT; 5634 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5635 goto out; 5636 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5637 cpuid_arg->entries); 5638 if (r) 5639 goto out; 5640 r = -EFAULT; 5641 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5642 goto out; 5643 r = 0; 5644 break; 5645 } 5646 case KVM_GET_MSRS: { 5647 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5648 r = msr_io(vcpu, argp, do_get_msr, 1); 5649 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5650 break; 5651 } 5652 case KVM_SET_MSRS: { 5653 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5654 r = msr_io(vcpu, argp, do_set_msr, 0); 5655 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5656 break; 5657 } 5658 case KVM_TPR_ACCESS_REPORTING: { 5659 struct kvm_tpr_access_ctl tac; 5660 5661 r = -EFAULT; 5662 if (copy_from_user(&tac, argp, sizeof(tac))) 5663 goto out; 5664 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5665 if (r) 5666 goto out; 5667 r = -EFAULT; 5668 if (copy_to_user(argp, &tac, sizeof(tac))) 5669 goto out; 5670 r = 0; 5671 break; 5672 }; 5673 case KVM_SET_VAPIC_ADDR: { 5674 struct kvm_vapic_addr va; 5675 int idx; 5676 5677 r = -EINVAL; 5678 if (!lapic_in_kernel(vcpu)) 5679 goto out; 5680 r = -EFAULT; 5681 if (copy_from_user(&va, argp, sizeof(va))) 5682 goto out; 5683 idx = srcu_read_lock(&vcpu->kvm->srcu); 5684 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5685 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5686 break; 5687 } 5688 case KVM_X86_SETUP_MCE: { 5689 u64 mcg_cap; 5690 5691 r = -EFAULT; 5692 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5693 goto out; 5694 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5695 break; 5696 } 5697 case KVM_X86_SET_MCE: { 5698 struct kvm_x86_mce mce; 5699 5700 r = -EFAULT; 5701 if (copy_from_user(&mce, argp, sizeof(mce))) 5702 goto out; 5703 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5704 break; 5705 } 5706 case KVM_GET_VCPU_EVENTS: { 5707 struct kvm_vcpu_events events; 5708 5709 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5710 5711 r = -EFAULT; 5712 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5713 break; 5714 r = 0; 5715 break; 5716 } 5717 case KVM_SET_VCPU_EVENTS: { 5718 struct kvm_vcpu_events events; 5719 5720 r = -EFAULT; 5721 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5722 break; 5723 5724 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5725 break; 5726 } 5727 case KVM_GET_DEBUGREGS: { 5728 struct kvm_debugregs dbgregs; 5729 5730 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5731 5732 r = -EFAULT; 5733 if (copy_to_user(argp, &dbgregs, 5734 sizeof(struct kvm_debugregs))) 5735 break; 5736 r = 0; 5737 break; 5738 } 5739 case KVM_SET_DEBUGREGS: { 5740 struct kvm_debugregs dbgregs; 5741 5742 r = -EFAULT; 5743 if (copy_from_user(&dbgregs, argp, 5744 sizeof(struct kvm_debugregs))) 5745 break; 5746 5747 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5748 break; 5749 } 5750 case KVM_GET_XSAVE: { 5751 r = -EINVAL; 5752 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5753 break; 5754 5755 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5756 r = -ENOMEM; 5757 if (!u.xsave) 5758 break; 5759 5760 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5761 5762 r = -EFAULT; 5763 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5764 break; 5765 r = 0; 5766 break; 5767 } 5768 case KVM_SET_XSAVE: { 5769 int size = vcpu->arch.guest_fpu.uabi_size; 5770 5771 u.xsave = memdup_user(argp, size); 5772 if (IS_ERR(u.xsave)) { 5773 r = PTR_ERR(u.xsave); 5774 goto out_nofree; 5775 } 5776 5777 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5778 break; 5779 } 5780 5781 case KVM_GET_XSAVE2: { 5782 int size = vcpu->arch.guest_fpu.uabi_size; 5783 5784 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5785 r = -ENOMEM; 5786 if (!u.xsave) 5787 break; 5788 5789 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5790 5791 r = -EFAULT; 5792 if (copy_to_user(argp, u.xsave, size)) 5793 break; 5794 5795 r = 0; 5796 break; 5797 } 5798 5799 case KVM_GET_XCRS: { 5800 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5801 r = -ENOMEM; 5802 if (!u.xcrs) 5803 break; 5804 5805 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5806 5807 r = -EFAULT; 5808 if (copy_to_user(argp, u.xcrs, 5809 sizeof(struct kvm_xcrs))) 5810 break; 5811 r = 0; 5812 break; 5813 } 5814 case KVM_SET_XCRS: { 5815 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5816 if (IS_ERR(u.xcrs)) { 5817 r = PTR_ERR(u.xcrs); 5818 goto out_nofree; 5819 } 5820 5821 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5822 break; 5823 } 5824 case KVM_SET_TSC_KHZ: { 5825 u32 user_tsc_khz; 5826 5827 r = -EINVAL; 5828 user_tsc_khz = (u32)arg; 5829 5830 if (kvm_caps.has_tsc_control && 5831 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5832 goto out; 5833 5834 if (user_tsc_khz == 0) 5835 user_tsc_khz = tsc_khz; 5836 5837 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5838 r = 0; 5839 5840 goto out; 5841 } 5842 case KVM_GET_TSC_KHZ: { 5843 r = vcpu->arch.virtual_tsc_khz; 5844 goto out; 5845 } 5846 case KVM_KVMCLOCK_CTRL: { 5847 r = kvm_set_guest_paused(vcpu); 5848 goto out; 5849 } 5850 case KVM_ENABLE_CAP: { 5851 struct kvm_enable_cap cap; 5852 5853 r = -EFAULT; 5854 if (copy_from_user(&cap, argp, sizeof(cap))) 5855 goto out; 5856 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5857 break; 5858 } 5859 case KVM_GET_NESTED_STATE: { 5860 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5861 u32 user_data_size; 5862 5863 r = -EINVAL; 5864 if (!kvm_x86_ops.nested_ops->get_state) 5865 break; 5866 5867 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5868 r = -EFAULT; 5869 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5870 break; 5871 5872 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5873 user_data_size); 5874 if (r < 0) 5875 break; 5876 5877 if (r > user_data_size) { 5878 if (put_user(r, &user_kvm_nested_state->size)) 5879 r = -EFAULT; 5880 else 5881 r = -E2BIG; 5882 break; 5883 } 5884 5885 r = 0; 5886 break; 5887 } 5888 case KVM_SET_NESTED_STATE: { 5889 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5890 struct kvm_nested_state kvm_state; 5891 int idx; 5892 5893 r = -EINVAL; 5894 if (!kvm_x86_ops.nested_ops->set_state) 5895 break; 5896 5897 r = -EFAULT; 5898 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5899 break; 5900 5901 r = -EINVAL; 5902 if (kvm_state.size < sizeof(kvm_state)) 5903 break; 5904 5905 if (kvm_state.flags & 5906 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5907 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5908 | KVM_STATE_NESTED_GIF_SET)) 5909 break; 5910 5911 /* nested_run_pending implies guest_mode. */ 5912 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5913 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5914 break; 5915 5916 idx = srcu_read_lock(&vcpu->kvm->srcu); 5917 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5918 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5919 break; 5920 } 5921 case KVM_GET_SUPPORTED_HV_CPUID: 5922 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5923 break; 5924 #ifdef CONFIG_KVM_XEN 5925 case KVM_XEN_VCPU_GET_ATTR: { 5926 struct kvm_xen_vcpu_attr xva; 5927 5928 r = -EFAULT; 5929 if (copy_from_user(&xva, argp, sizeof(xva))) 5930 goto out; 5931 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5932 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5933 r = -EFAULT; 5934 break; 5935 } 5936 case KVM_XEN_VCPU_SET_ATTR: { 5937 struct kvm_xen_vcpu_attr xva; 5938 5939 r = -EFAULT; 5940 if (copy_from_user(&xva, argp, sizeof(xva))) 5941 goto out; 5942 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5943 break; 5944 } 5945 #endif 5946 case KVM_GET_SREGS2: { 5947 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5948 r = -ENOMEM; 5949 if (!u.sregs2) 5950 goto out; 5951 __get_sregs2(vcpu, u.sregs2); 5952 r = -EFAULT; 5953 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5954 goto out; 5955 r = 0; 5956 break; 5957 } 5958 case KVM_SET_SREGS2: { 5959 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5960 if (IS_ERR(u.sregs2)) { 5961 r = PTR_ERR(u.sregs2); 5962 u.sregs2 = NULL; 5963 goto out; 5964 } 5965 r = __set_sregs2(vcpu, u.sregs2); 5966 break; 5967 } 5968 case KVM_HAS_DEVICE_ATTR: 5969 case KVM_GET_DEVICE_ATTR: 5970 case KVM_SET_DEVICE_ATTR: 5971 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5972 break; 5973 default: 5974 r = -EINVAL; 5975 } 5976 out: 5977 kfree(u.buffer); 5978 out_nofree: 5979 vcpu_put(vcpu); 5980 return r; 5981 } 5982 5983 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5984 { 5985 return VM_FAULT_SIGBUS; 5986 } 5987 5988 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5989 { 5990 int ret; 5991 5992 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5993 return -EINVAL; 5994 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5995 return ret; 5996 } 5997 5998 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5999 u64 ident_addr) 6000 { 6001 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6002 } 6003 6004 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6005 unsigned long kvm_nr_mmu_pages) 6006 { 6007 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6008 return -EINVAL; 6009 6010 mutex_lock(&kvm->slots_lock); 6011 6012 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6013 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6014 6015 mutex_unlock(&kvm->slots_lock); 6016 return 0; 6017 } 6018 6019 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 6020 { 6021 return kvm->arch.n_max_mmu_pages; 6022 } 6023 6024 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6025 { 6026 struct kvm_pic *pic = kvm->arch.vpic; 6027 int r; 6028 6029 r = 0; 6030 switch (chip->chip_id) { 6031 case KVM_IRQCHIP_PIC_MASTER: 6032 memcpy(&chip->chip.pic, &pic->pics[0], 6033 sizeof(struct kvm_pic_state)); 6034 break; 6035 case KVM_IRQCHIP_PIC_SLAVE: 6036 memcpy(&chip->chip.pic, &pic->pics[1], 6037 sizeof(struct kvm_pic_state)); 6038 break; 6039 case KVM_IRQCHIP_IOAPIC: 6040 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6041 break; 6042 default: 6043 r = -EINVAL; 6044 break; 6045 } 6046 return r; 6047 } 6048 6049 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6050 { 6051 struct kvm_pic *pic = kvm->arch.vpic; 6052 int r; 6053 6054 r = 0; 6055 switch (chip->chip_id) { 6056 case KVM_IRQCHIP_PIC_MASTER: 6057 spin_lock(&pic->lock); 6058 memcpy(&pic->pics[0], &chip->chip.pic, 6059 sizeof(struct kvm_pic_state)); 6060 spin_unlock(&pic->lock); 6061 break; 6062 case KVM_IRQCHIP_PIC_SLAVE: 6063 spin_lock(&pic->lock); 6064 memcpy(&pic->pics[1], &chip->chip.pic, 6065 sizeof(struct kvm_pic_state)); 6066 spin_unlock(&pic->lock); 6067 break; 6068 case KVM_IRQCHIP_IOAPIC: 6069 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6070 break; 6071 default: 6072 r = -EINVAL; 6073 break; 6074 } 6075 kvm_pic_update_irq(pic); 6076 return r; 6077 } 6078 6079 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6080 { 6081 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6082 6083 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6084 6085 mutex_lock(&kps->lock); 6086 memcpy(ps, &kps->channels, sizeof(*ps)); 6087 mutex_unlock(&kps->lock); 6088 return 0; 6089 } 6090 6091 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6092 { 6093 int i; 6094 struct kvm_pit *pit = kvm->arch.vpit; 6095 6096 mutex_lock(&pit->pit_state.lock); 6097 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6098 for (i = 0; i < 3; i++) 6099 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6100 mutex_unlock(&pit->pit_state.lock); 6101 return 0; 6102 } 6103 6104 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6105 { 6106 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6107 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6108 sizeof(ps->channels)); 6109 ps->flags = kvm->arch.vpit->pit_state.flags; 6110 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6111 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6112 return 0; 6113 } 6114 6115 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6116 { 6117 int start = 0; 6118 int i; 6119 u32 prev_legacy, cur_legacy; 6120 struct kvm_pit *pit = kvm->arch.vpit; 6121 6122 mutex_lock(&pit->pit_state.lock); 6123 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6124 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6125 if (!prev_legacy && cur_legacy) 6126 start = 1; 6127 memcpy(&pit->pit_state.channels, &ps->channels, 6128 sizeof(pit->pit_state.channels)); 6129 pit->pit_state.flags = ps->flags; 6130 for (i = 0; i < 3; i++) 6131 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6132 start && i == 0); 6133 mutex_unlock(&pit->pit_state.lock); 6134 return 0; 6135 } 6136 6137 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6138 struct kvm_reinject_control *control) 6139 { 6140 struct kvm_pit *pit = kvm->arch.vpit; 6141 6142 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6143 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6144 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6145 */ 6146 mutex_lock(&pit->pit_state.lock); 6147 kvm_pit_set_reinject(pit, control->pit_reinject); 6148 mutex_unlock(&pit->pit_state.lock); 6149 6150 return 0; 6151 } 6152 6153 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6154 { 6155 6156 /* 6157 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6158 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6159 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6160 * VM-Exit. 6161 */ 6162 struct kvm_vcpu *vcpu; 6163 unsigned long i; 6164 6165 kvm_for_each_vcpu(i, vcpu, kvm) 6166 kvm_vcpu_kick(vcpu); 6167 } 6168 6169 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6170 bool line_status) 6171 { 6172 if (!irqchip_in_kernel(kvm)) 6173 return -ENXIO; 6174 6175 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6176 irq_event->irq, irq_event->level, 6177 line_status); 6178 return 0; 6179 } 6180 6181 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6182 struct kvm_enable_cap *cap) 6183 { 6184 int r; 6185 6186 if (cap->flags) 6187 return -EINVAL; 6188 6189 switch (cap->cap) { 6190 case KVM_CAP_DISABLE_QUIRKS2: 6191 r = -EINVAL; 6192 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6193 break; 6194 fallthrough; 6195 case KVM_CAP_DISABLE_QUIRKS: 6196 kvm->arch.disabled_quirks = cap->args[0]; 6197 r = 0; 6198 break; 6199 case KVM_CAP_SPLIT_IRQCHIP: { 6200 mutex_lock(&kvm->lock); 6201 r = -EINVAL; 6202 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6203 goto split_irqchip_unlock; 6204 r = -EEXIST; 6205 if (irqchip_in_kernel(kvm)) 6206 goto split_irqchip_unlock; 6207 if (kvm->created_vcpus) 6208 goto split_irqchip_unlock; 6209 r = kvm_setup_empty_irq_routing(kvm); 6210 if (r) 6211 goto split_irqchip_unlock; 6212 /* Pairs with irqchip_in_kernel. */ 6213 smp_wmb(); 6214 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6215 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6216 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6217 r = 0; 6218 split_irqchip_unlock: 6219 mutex_unlock(&kvm->lock); 6220 break; 6221 } 6222 case KVM_CAP_X2APIC_API: 6223 r = -EINVAL; 6224 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6225 break; 6226 6227 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6228 kvm->arch.x2apic_format = true; 6229 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6230 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6231 6232 r = 0; 6233 break; 6234 case KVM_CAP_X86_DISABLE_EXITS: 6235 r = -EINVAL; 6236 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6237 break; 6238 6239 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6240 kvm->arch.pause_in_guest = true; 6241 6242 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6243 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6244 6245 if (!mitigate_smt_rsb) { 6246 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6247 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6248 pr_warn_once(SMT_RSB_MSG); 6249 6250 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6251 kvm_can_mwait_in_guest()) 6252 kvm->arch.mwait_in_guest = true; 6253 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6254 kvm->arch.hlt_in_guest = true; 6255 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6256 kvm->arch.cstate_in_guest = true; 6257 } 6258 6259 r = 0; 6260 break; 6261 case KVM_CAP_MSR_PLATFORM_INFO: 6262 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6263 r = 0; 6264 break; 6265 case KVM_CAP_EXCEPTION_PAYLOAD: 6266 kvm->arch.exception_payload_enabled = cap->args[0]; 6267 r = 0; 6268 break; 6269 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6270 kvm->arch.triple_fault_event = cap->args[0]; 6271 r = 0; 6272 break; 6273 case KVM_CAP_X86_USER_SPACE_MSR: 6274 r = -EINVAL; 6275 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6276 break; 6277 kvm->arch.user_space_msr_mask = cap->args[0]; 6278 r = 0; 6279 break; 6280 case KVM_CAP_X86_BUS_LOCK_EXIT: 6281 r = -EINVAL; 6282 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6283 break; 6284 6285 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6286 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6287 break; 6288 6289 if (kvm_caps.has_bus_lock_exit && 6290 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6291 kvm->arch.bus_lock_detection_enabled = true; 6292 r = 0; 6293 break; 6294 #ifdef CONFIG_X86_SGX_KVM 6295 case KVM_CAP_SGX_ATTRIBUTE: { 6296 unsigned long allowed_attributes = 0; 6297 6298 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6299 if (r) 6300 break; 6301 6302 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6303 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6304 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6305 kvm->arch.sgx_provisioning_allowed = true; 6306 else 6307 r = -EINVAL; 6308 break; 6309 } 6310 #endif 6311 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6312 r = -EINVAL; 6313 if (!kvm_x86_ops.vm_copy_enc_context_from) 6314 break; 6315 6316 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6317 break; 6318 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6319 r = -EINVAL; 6320 if (!kvm_x86_ops.vm_move_enc_context_from) 6321 break; 6322 6323 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6324 break; 6325 case KVM_CAP_EXIT_HYPERCALL: 6326 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6327 r = -EINVAL; 6328 break; 6329 } 6330 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6331 r = 0; 6332 break; 6333 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6334 r = -EINVAL; 6335 if (cap->args[0] & ~1) 6336 break; 6337 kvm->arch.exit_on_emulation_error = cap->args[0]; 6338 r = 0; 6339 break; 6340 case KVM_CAP_PMU_CAPABILITY: 6341 r = -EINVAL; 6342 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6343 break; 6344 6345 mutex_lock(&kvm->lock); 6346 if (!kvm->created_vcpus) { 6347 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6348 r = 0; 6349 } 6350 mutex_unlock(&kvm->lock); 6351 break; 6352 case KVM_CAP_MAX_VCPU_ID: 6353 r = -EINVAL; 6354 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6355 break; 6356 6357 mutex_lock(&kvm->lock); 6358 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6359 r = 0; 6360 } else if (!kvm->arch.max_vcpu_ids) { 6361 kvm->arch.max_vcpu_ids = cap->args[0]; 6362 r = 0; 6363 } 6364 mutex_unlock(&kvm->lock); 6365 break; 6366 case KVM_CAP_X86_NOTIFY_VMEXIT: 6367 r = -EINVAL; 6368 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6369 break; 6370 if (!kvm_caps.has_notify_vmexit) 6371 break; 6372 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6373 break; 6374 mutex_lock(&kvm->lock); 6375 if (!kvm->created_vcpus) { 6376 kvm->arch.notify_window = cap->args[0] >> 32; 6377 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6378 r = 0; 6379 } 6380 mutex_unlock(&kvm->lock); 6381 break; 6382 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6383 r = -EINVAL; 6384 6385 /* 6386 * Since the risk of disabling NX hugepages is a guest crashing 6387 * the system, ensure the userspace process has permission to 6388 * reboot the system. 6389 * 6390 * Note that unlike the reboot() syscall, the process must have 6391 * this capability in the root namespace because exposing 6392 * /dev/kvm into a container does not limit the scope of the 6393 * iTLB multihit bug to that container. In other words, 6394 * this must use capable(), not ns_capable(). 6395 */ 6396 if (!capable(CAP_SYS_BOOT)) { 6397 r = -EPERM; 6398 break; 6399 } 6400 6401 if (cap->args[0]) 6402 break; 6403 6404 mutex_lock(&kvm->lock); 6405 if (!kvm->created_vcpus) { 6406 kvm->arch.disable_nx_huge_pages = true; 6407 r = 0; 6408 } 6409 mutex_unlock(&kvm->lock); 6410 break; 6411 default: 6412 r = -EINVAL; 6413 break; 6414 } 6415 return r; 6416 } 6417 6418 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6419 { 6420 struct kvm_x86_msr_filter *msr_filter; 6421 6422 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6423 if (!msr_filter) 6424 return NULL; 6425 6426 msr_filter->default_allow = default_allow; 6427 return msr_filter; 6428 } 6429 6430 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6431 { 6432 u32 i; 6433 6434 if (!msr_filter) 6435 return; 6436 6437 for (i = 0; i < msr_filter->count; i++) 6438 kfree(msr_filter->ranges[i].bitmap); 6439 6440 kfree(msr_filter); 6441 } 6442 6443 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6444 struct kvm_msr_filter_range *user_range) 6445 { 6446 unsigned long *bitmap = NULL; 6447 size_t bitmap_size; 6448 6449 if (!user_range->nmsrs) 6450 return 0; 6451 6452 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6453 return -EINVAL; 6454 6455 if (!user_range->flags) 6456 return -EINVAL; 6457 6458 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6459 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6460 return -EINVAL; 6461 6462 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6463 if (IS_ERR(bitmap)) 6464 return PTR_ERR(bitmap); 6465 6466 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6467 .flags = user_range->flags, 6468 .base = user_range->base, 6469 .nmsrs = user_range->nmsrs, 6470 .bitmap = bitmap, 6471 }; 6472 6473 msr_filter->count++; 6474 return 0; 6475 } 6476 6477 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6478 struct kvm_msr_filter *filter) 6479 { 6480 struct kvm_x86_msr_filter *new_filter, *old_filter; 6481 bool default_allow; 6482 bool empty = true; 6483 int r = 0; 6484 u32 i; 6485 6486 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6487 return -EINVAL; 6488 6489 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6490 empty &= !filter->ranges[i].nmsrs; 6491 6492 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6493 if (empty && !default_allow) 6494 return -EINVAL; 6495 6496 new_filter = kvm_alloc_msr_filter(default_allow); 6497 if (!new_filter) 6498 return -ENOMEM; 6499 6500 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6501 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6502 if (r) { 6503 kvm_free_msr_filter(new_filter); 6504 return r; 6505 } 6506 } 6507 6508 mutex_lock(&kvm->lock); 6509 6510 /* The per-VM filter is protected by kvm->lock... */ 6511 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6512 6513 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6514 synchronize_srcu(&kvm->srcu); 6515 6516 kvm_free_msr_filter(old_filter); 6517 6518 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6519 mutex_unlock(&kvm->lock); 6520 6521 return 0; 6522 } 6523 6524 #ifdef CONFIG_KVM_COMPAT 6525 /* for KVM_X86_SET_MSR_FILTER */ 6526 struct kvm_msr_filter_range_compat { 6527 __u32 flags; 6528 __u32 nmsrs; 6529 __u32 base; 6530 __u32 bitmap; 6531 }; 6532 6533 struct kvm_msr_filter_compat { 6534 __u32 flags; 6535 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6536 }; 6537 6538 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6539 6540 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6541 unsigned long arg) 6542 { 6543 void __user *argp = (void __user *)arg; 6544 struct kvm *kvm = filp->private_data; 6545 long r = -ENOTTY; 6546 6547 switch (ioctl) { 6548 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6549 struct kvm_msr_filter __user *user_msr_filter = argp; 6550 struct kvm_msr_filter_compat filter_compat; 6551 struct kvm_msr_filter filter; 6552 int i; 6553 6554 if (copy_from_user(&filter_compat, user_msr_filter, 6555 sizeof(filter_compat))) 6556 return -EFAULT; 6557 6558 filter.flags = filter_compat.flags; 6559 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6560 struct kvm_msr_filter_range_compat *cr; 6561 6562 cr = &filter_compat.ranges[i]; 6563 filter.ranges[i] = (struct kvm_msr_filter_range) { 6564 .flags = cr->flags, 6565 .nmsrs = cr->nmsrs, 6566 .base = cr->base, 6567 .bitmap = (__u8 *)(ulong)cr->bitmap, 6568 }; 6569 } 6570 6571 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6572 break; 6573 } 6574 } 6575 6576 return r; 6577 } 6578 #endif 6579 6580 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6581 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6582 { 6583 struct kvm_vcpu *vcpu; 6584 unsigned long i; 6585 int ret = 0; 6586 6587 mutex_lock(&kvm->lock); 6588 kvm_for_each_vcpu(i, vcpu, kvm) { 6589 if (!vcpu->arch.pv_time.active) 6590 continue; 6591 6592 ret = kvm_set_guest_paused(vcpu); 6593 if (ret) { 6594 kvm_err("Failed to pause guest VCPU%d: %d\n", 6595 vcpu->vcpu_id, ret); 6596 break; 6597 } 6598 } 6599 mutex_unlock(&kvm->lock); 6600 6601 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6602 } 6603 6604 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6605 { 6606 switch (state) { 6607 case PM_HIBERNATION_PREPARE: 6608 case PM_SUSPEND_PREPARE: 6609 return kvm_arch_suspend_notifier(kvm); 6610 } 6611 6612 return NOTIFY_DONE; 6613 } 6614 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6615 6616 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6617 { 6618 struct kvm_clock_data data = { 0 }; 6619 6620 get_kvmclock(kvm, &data); 6621 if (copy_to_user(argp, &data, sizeof(data))) 6622 return -EFAULT; 6623 6624 return 0; 6625 } 6626 6627 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6628 { 6629 struct kvm_arch *ka = &kvm->arch; 6630 struct kvm_clock_data data; 6631 u64 now_raw_ns; 6632 6633 if (copy_from_user(&data, argp, sizeof(data))) 6634 return -EFAULT; 6635 6636 /* 6637 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6638 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6639 */ 6640 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6641 return -EINVAL; 6642 6643 kvm_hv_request_tsc_page_update(kvm); 6644 kvm_start_pvclock_update(kvm); 6645 pvclock_update_vm_gtod_copy(kvm); 6646 6647 /* 6648 * This pairs with kvm_guest_time_update(): when masterclock is 6649 * in use, we use master_kernel_ns + kvmclock_offset to set 6650 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6651 * is slightly ahead) here we risk going negative on unsigned 6652 * 'system_time' when 'data.clock' is very small. 6653 */ 6654 if (data.flags & KVM_CLOCK_REALTIME) { 6655 u64 now_real_ns = ktime_get_real_ns(); 6656 6657 /* 6658 * Avoid stepping the kvmclock backwards. 6659 */ 6660 if (now_real_ns > data.realtime) 6661 data.clock += now_real_ns - data.realtime; 6662 } 6663 6664 if (ka->use_master_clock) 6665 now_raw_ns = ka->master_kernel_ns; 6666 else 6667 now_raw_ns = get_kvmclock_base_ns(); 6668 ka->kvmclock_offset = data.clock - now_raw_ns; 6669 kvm_end_pvclock_update(kvm); 6670 return 0; 6671 } 6672 6673 long kvm_arch_vm_ioctl(struct file *filp, 6674 unsigned int ioctl, unsigned long arg) 6675 { 6676 struct kvm *kvm = filp->private_data; 6677 void __user *argp = (void __user *)arg; 6678 int r = -ENOTTY; 6679 /* 6680 * This union makes it completely explicit to gcc-3.x 6681 * that these two variables' stack usage should be 6682 * combined, not added together. 6683 */ 6684 union { 6685 struct kvm_pit_state ps; 6686 struct kvm_pit_state2 ps2; 6687 struct kvm_pit_config pit_config; 6688 } u; 6689 6690 switch (ioctl) { 6691 case KVM_SET_TSS_ADDR: 6692 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6693 break; 6694 case KVM_SET_IDENTITY_MAP_ADDR: { 6695 u64 ident_addr; 6696 6697 mutex_lock(&kvm->lock); 6698 r = -EINVAL; 6699 if (kvm->created_vcpus) 6700 goto set_identity_unlock; 6701 r = -EFAULT; 6702 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6703 goto set_identity_unlock; 6704 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6705 set_identity_unlock: 6706 mutex_unlock(&kvm->lock); 6707 break; 6708 } 6709 case KVM_SET_NR_MMU_PAGES: 6710 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6711 break; 6712 case KVM_GET_NR_MMU_PAGES: 6713 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6714 break; 6715 case KVM_CREATE_IRQCHIP: { 6716 mutex_lock(&kvm->lock); 6717 6718 r = -EEXIST; 6719 if (irqchip_in_kernel(kvm)) 6720 goto create_irqchip_unlock; 6721 6722 r = -EINVAL; 6723 if (kvm->created_vcpus) 6724 goto create_irqchip_unlock; 6725 6726 r = kvm_pic_init(kvm); 6727 if (r) 6728 goto create_irqchip_unlock; 6729 6730 r = kvm_ioapic_init(kvm); 6731 if (r) { 6732 kvm_pic_destroy(kvm); 6733 goto create_irqchip_unlock; 6734 } 6735 6736 r = kvm_setup_default_irq_routing(kvm); 6737 if (r) { 6738 kvm_ioapic_destroy(kvm); 6739 kvm_pic_destroy(kvm); 6740 goto create_irqchip_unlock; 6741 } 6742 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6743 smp_wmb(); 6744 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6745 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6746 create_irqchip_unlock: 6747 mutex_unlock(&kvm->lock); 6748 break; 6749 } 6750 case KVM_CREATE_PIT: 6751 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6752 goto create_pit; 6753 case KVM_CREATE_PIT2: 6754 r = -EFAULT; 6755 if (copy_from_user(&u.pit_config, argp, 6756 sizeof(struct kvm_pit_config))) 6757 goto out; 6758 create_pit: 6759 mutex_lock(&kvm->lock); 6760 r = -EEXIST; 6761 if (kvm->arch.vpit) 6762 goto create_pit_unlock; 6763 r = -ENOMEM; 6764 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6765 if (kvm->arch.vpit) 6766 r = 0; 6767 create_pit_unlock: 6768 mutex_unlock(&kvm->lock); 6769 break; 6770 case KVM_GET_IRQCHIP: { 6771 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6772 struct kvm_irqchip *chip; 6773 6774 chip = memdup_user(argp, sizeof(*chip)); 6775 if (IS_ERR(chip)) { 6776 r = PTR_ERR(chip); 6777 goto out; 6778 } 6779 6780 r = -ENXIO; 6781 if (!irqchip_kernel(kvm)) 6782 goto get_irqchip_out; 6783 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6784 if (r) 6785 goto get_irqchip_out; 6786 r = -EFAULT; 6787 if (copy_to_user(argp, chip, sizeof(*chip))) 6788 goto get_irqchip_out; 6789 r = 0; 6790 get_irqchip_out: 6791 kfree(chip); 6792 break; 6793 } 6794 case KVM_SET_IRQCHIP: { 6795 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6796 struct kvm_irqchip *chip; 6797 6798 chip = memdup_user(argp, sizeof(*chip)); 6799 if (IS_ERR(chip)) { 6800 r = PTR_ERR(chip); 6801 goto out; 6802 } 6803 6804 r = -ENXIO; 6805 if (!irqchip_kernel(kvm)) 6806 goto set_irqchip_out; 6807 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6808 set_irqchip_out: 6809 kfree(chip); 6810 break; 6811 } 6812 case KVM_GET_PIT: { 6813 r = -EFAULT; 6814 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6815 goto out; 6816 r = -ENXIO; 6817 if (!kvm->arch.vpit) 6818 goto out; 6819 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6820 if (r) 6821 goto out; 6822 r = -EFAULT; 6823 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6824 goto out; 6825 r = 0; 6826 break; 6827 } 6828 case KVM_SET_PIT: { 6829 r = -EFAULT; 6830 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6831 goto out; 6832 mutex_lock(&kvm->lock); 6833 r = -ENXIO; 6834 if (!kvm->arch.vpit) 6835 goto set_pit_out; 6836 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6837 set_pit_out: 6838 mutex_unlock(&kvm->lock); 6839 break; 6840 } 6841 case KVM_GET_PIT2: { 6842 r = -ENXIO; 6843 if (!kvm->arch.vpit) 6844 goto out; 6845 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6846 if (r) 6847 goto out; 6848 r = -EFAULT; 6849 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6850 goto out; 6851 r = 0; 6852 break; 6853 } 6854 case KVM_SET_PIT2: { 6855 r = -EFAULT; 6856 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6857 goto out; 6858 mutex_lock(&kvm->lock); 6859 r = -ENXIO; 6860 if (!kvm->arch.vpit) 6861 goto set_pit2_out; 6862 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6863 set_pit2_out: 6864 mutex_unlock(&kvm->lock); 6865 break; 6866 } 6867 case KVM_REINJECT_CONTROL: { 6868 struct kvm_reinject_control control; 6869 r = -EFAULT; 6870 if (copy_from_user(&control, argp, sizeof(control))) 6871 goto out; 6872 r = -ENXIO; 6873 if (!kvm->arch.vpit) 6874 goto out; 6875 r = kvm_vm_ioctl_reinject(kvm, &control); 6876 break; 6877 } 6878 case KVM_SET_BOOT_CPU_ID: 6879 r = 0; 6880 mutex_lock(&kvm->lock); 6881 if (kvm->created_vcpus) 6882 r = -EBUSY; 6883 else 6884 kvm->arch.bsp_vcpu_id = arg; 6885 mutex_unlock(&kvm->lock); 6886 break; 6887 #ifdef CONFIG_KVM_XEN 6888 case KVM_XEN_HVM_CONFIG: { 6889 struct kvm_xen_hvm_config xhc; 6890 r = -EFAULT; 6891 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6892 goto out; 6893 r = kvm_xen_hvm_config(kvm, &xhc); 6894 break; 6895 } 6896 case KVM_XEN_HVM_GET_ATTR: { 6897 struct kvm_xen_hvm_attr xha; 6898 6899 r = -EFAULT; 6900 if (copy_from_user(&xha, argp, sizeof(xha))) 6901 goto out; 6902 r = kvm_xen_hvm_get_attr(kvm, &xha); 6903 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6904 r = -EFAULT; 6905 break; 6906 } 6907 case KVM_XEN_HVM_SET_ATTR: { 6908 struct kvm_xen_hvm_attr xha; 6909 6910 r = -EFAULT; 6911 if (copy_from_user(&xha, argp, sizeof(xha))) 6912 goto out; 6913 r = kvm_xen_hvm_set_attr(kvm, &xha); 6914 break; 6915 } 6916 case KVM_XEN_HVM_EVTCHN_SEND: { 6917 struct kvm_irq_routing_xen_evtchn uxe; 6918 6919 r = -EFAULT; 6920 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6921 goto out; 6922 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6923 break; 6924 } 6925 #endif 6926 case KVM_SET_CLOCK: 6927 r = kvm_vm_ioctl_set_clock(kvm, argp); 6928 break; 6929 case KVM_GET_CLOCK: 6930 r = kvm_vm_ioctl_get_clock(kvm, argp); 6931 break; 6932 case KVM_SET_TSC_KHZ: { 6933 u32 user_tsc_khz; 6934 6935 r = -EINVAL; 6936 user_tsc_khz = (u32)arg; 6937 6938 if (kvm_caps.has_tsc_control && 6939 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6940 goto out; 6941 6942 if (user_tsc_khz == 0) 6943 user_tsc_khz = tsc_khz; 6944 6945 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6946 r = 0; 6947 6948 goto out; 6949 } 6950 case KVM_GET_TSC_KHZ: { 6951 r = READ_ONCE(kvm->arch.default_tsc_khz); 6952 goto out; 6953 } 6954 case KVM_MEMORY_ENCRYPT_OP: { 6955 r = -ENOTTY; 6956 if (!kvm_x86_ops.mem_enc_ioctl) 6957 goto out; 6958 6959 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6960 break; 6961 } 6962 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6963 struct kvm_enc_region region; 6964 6965 r = -EFAULT; 6966 if (copy_from_user(®ion, argp, sizeof(region))) 6967 goto out; 6968 6969 r = -ENOTTY; 6970 if (!kvm_x86_ops.mem_enc_register_region) 6971 goto out; 6972 6973 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6974 break; 6975 } 6976 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6977 struct kvm_enc_region region; 6978 6979 r = -EFAULT; 6980 if (copy_from_user(®ion, argp, sizeof(region))) 6981 goto out; 6982 6983 r = -ENOTTY; 6984 if (!kvm_x86_ops.mem_enc_unregister_region) 6985 goto out; 6986 6987 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6988 break; 6989 } 6990 case KVM_HYPERV_EVENTFD: { 6991 struct kvm_hyperv_eventfd hvevfd; 6992 6993 r = -EFAULT; 6994 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6995 goto out; 6996 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6997 break; 6998 } 6999 case KVM_SET_PMU_EVENT_FILTER: 7000 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7001 break; 7002 case KVM_X86_SET_MSR_FILTER: { 7003 struct kvm_msr_filter __user *user_msr_filter = argp; 7004 struct kvm_msr_filter filter; 7005 7006 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7007 return -EFAULT; 7008 7009 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7010 break; 7011 } 7012 default: 7013 r = -ENOTTY; 7014 } 7015 out: 7016 return r; 7017 } 7018 7019 static void kvm_init_msr_list(void) 7020 { 7021 u32 dummy[2]; 7022 unsigned i; 7023 7024 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7025 "Please update the fixed PMCs in msrs_to_saved_all[]"); 7026 7027 num_msrs_to_save = 0; 7028 num_emulated_msrs = 0; 7029 num_msr_based_features = 0; 7030 7031 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 7032 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 7033 continue; 7034 7035 /* 7036 * Even MSRs that are valid in the host may not be exposed 7037 * to the guests in some cases. 7038 */ 7039 switch (msrs_to_save_all[i]) { 7040 case MSR_IA32_BNDCFGS: 7041 if (!kvm_mpx_supported()) 7042 continue; 7043 break; 7044 case MSR_TSC_AUX: 7045 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7046 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7047 continue; 7048 break; 7049 case MSR_IA32_UMWAIT_CONTROL: 7050 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7051 continue; 7052 break; 7053 case MSR_IA32_RTIT_CTL: 7054 case MSR_IA32_RTIT_STATUS: 7055 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7056 continue; 7057 break; 7058 case MSR_IA32_RTIT_CR3_MATCH: 7059 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7060 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7061 continue; 7062 break; 7063 case MSR_IA32_RTIT_OUTPUT_BASE: 7064 case MSR_IA32_RTIT_OUTPUT_MASK: 7065 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7066 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7067 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7068 continue; 7069 break; 7070 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7071 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7072 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 7073 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 7074 continue; 7075 break; 7076 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7077 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 7078 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7079 continue; 7080 break; 7081 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7082 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 7083 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp)) 7084 continue; 7085 break; 7086 case MSR_IA32_XFD: 7087 case MSR_IA32_XFD_ERR: 7088 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7089 continue; 7090 break; 7091 default: 7092 break; 7093 } 7094 7095 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 7096 } 7097 7098 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7099 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7100 continue; 7101 7102 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7103 } 7104 7105 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 7106 struct kvm_msr_entry msr; 7107 7108 msr.index = msr_based_features_all[i]; 7109 if (kvm_get_msr_feature(&msr)) 7110 continue; 7111 7112 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 7113 } 7114 } 7115 7116 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7117 const void *v) 7118 { 7119 int handled = 0; 7120 int n; 7121 7122 do { 7123 n = min(len, 8); 7124 if (!(lapic_in_kernel(vcpu) && 7125 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7126 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7127 break; 7128 handled += n; 7129 addr += n; 7130 len -= n; 7131 v += n; 7132 } while (len); 7133 7134 return handled; 7135 } 7136 7137 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7138 { 7139 int handled = 0; 7140 int n; 7141 7142 do { 7143 n = min(len, 8); 7144 if (!(lapic_in_kernel(vcpu) && 7145 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7146 addr, n, v)) 7147 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7148 break; 7149 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7150 handled += n; 7151 addr += n; 7152 len -= n; 7153 v += n; 7154 } while (len); 7155 7156 return handled; 7157 } 7158 7159 void kvm_set_segment(struct kvm_vcpu *vcpu, 7160 struct kvm_segment *var, int seg) 7161 { 7162 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7163 } 7164 7165 void kvm_get_segment(struct kvm_vcpu *vcpu, 7166 struct kvm_segment *var, int seg) 7167 { 7168 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7169 } 7170 7171 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7172 struct x86_exception *exception) 7173 { 7174 struct kvm_mmu *mmu = vcpu->arch.mmu; 7175 gpa_t t_gpa; 7176 7177 BUG_ON(!mmu_is_nested(vcpu)); 7178 7179 /* NPT walks are always user-walks */ 7180 access |= PFERR_USER_MASK; 7181 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7182 7183 return t_gpa; 7184 } 7185 7186 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7187 struct x86_exception *exception) 7188 { 7189 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7190 7191 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7192 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7193 } 7194 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7195 7196 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7197 struct x86_exception *exception) 7198 { 7199 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7200 7201 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7202 access |= PFERR_WRITE_MASK; 7203 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7204 } 7205 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7206 7207 /* uses this to access any guest's mapped memory without checking CPL */ 7208 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7209 struct x86_exception *exception) 7210 { 7211 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7212 7213 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7214 } 7215 7216 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7217 struct kvm_vcpu *vcpu, u64 access, 7218 struct x86_exception *exception) 7219 { 7220 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7221 void *data = val; 7222 int r = X86EMUL_CONTINUE; 7223 7224 while (bytes) { 7225 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7226 unsigned offset = addr & (PAGE_SIZE-1); 7227 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7228 int ret; 7229 7230 if (gpa == INVALID_GPA) 7231 return X86EMUL_PROPAGATE_FAULT; 7232 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7233 offset, toread); 7234 if (ret < 0) { 7235 r = X86EMUL_IO_NEEDED; 7236 goto out; 7237 } 7238 7239 bytes -= toread; 7240 data += toread; 7241 addr += toread; 7242 } 7243 out: 7244 return r; 7245 } 7246 7247 /* used for instruction fetching */ 7248 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7249 gva_t addr, void *val, unsigned int bytes, 7250 struct x86_exception *exception) 7251 { 7252 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7253 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7254 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7255 unsigned offset; 7256 int ret; 7257 7258 /* Inline kvm_read_guest_virt_helper for speed. */ 7259 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7260 exception); 7261 if (unlikely(gpa == INVALID_GPA)) 7262 return X86EMUL_PROPAGATE_FAULT; 7263 7264 offset = addr & (PAGE_SIZE-1); 7265 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7266 bytes = (unsigned)PAGE_SIZE - offset; 7267 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7268 offset, bytes); 7269 if (unlikely(ret < 0)) 7270 return X86EMUL_IO_NEEDED; 7271 7272 return X86EMUL_CONTINUE; 7273 } 7274 7275 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7276 gva_t addr, void *val, unsigned int bytes, 7277 struct x86_exception *exception) 7278 { 7279 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7280 7281 /* 7282 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7283 * is returned, but our callers are not ready for that and they blindly 7284 * call kvm_inject_page_fault. Ensure that they at least do not leak 7285 * uninitialized kernel stack memory into cr2 and error code. 7286 */ 7287 memset(exception, 0, sizeof(*exception)); 7288 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7289 exception); 7290 } 7291 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7292 7293 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7294 gva_t addr, void *val, unsigned int bytes, 7295 struct x86_exception *exception, bool system) 7296 { 7297 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7298 u64 access = 0; 7299 7300 if (system) 7301 access |= PFERR_IMPLICIT_ACCESS; 7302 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7303 access |= PFERR_USER_MASK; 7304 7305 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7306 } 7307 7308 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7309 struct kvm_vcpu *vcpu, u64 access, 7310 struct x86_exception *exception) 7311 { 7312 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7313 void *data = val; 7314 int r = X86EMUL_CONTINUE; 7315 7316 while (bytes) { 7317 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7318 unsigned offset = addr & (PAGE_SIZE-1); 7319 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7320 int ret; 7321 7322 if (gpa == INVALID_GPA) 7323 return X86EMUL_PROPAGATE_FAULT; 7324 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7325 if (ret < 0) { 7326 r = X86EMUL_IO_NEEDED; 7327 goto out; 7328 } 7329 7330 bytes -= towrite; 7331 data += towrite; 7332 addr += towrite; 7333 } 7334 out: 7335 return r; 7336 } 7337 7338 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7339 unsigned int bytes, struct x86_exception *exception, 7340 bool system) 7341 { 7342 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7343 u64 access = PFERR_WRITE_MASK; 7344 7345 if (system) 7346 access |= PFERR_IMPLICIT_ACCESS; 7347 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7348 access |= PFERR_USER_MASK; 7349 7350 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7351 access, exception); 7352 } 7353 7354 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7355 unsigned int bytes, struct x86_exception *exception) 7356 { 7357 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7358 vcpu->arch.l1tf_flush_l1d = true; 7359 7360 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7361 PFERR_WRITE_MASK, exception); 7362 } 7363 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7364 7365 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7366 void *insn, int insn_len) 7367 { 7368 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7369 insn, insn_len); 7370 } 7371 7372 int handle_ud(struct kvm_vcpu *vcpu) 7373 { 7374 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7375 int fep_flags = READ_ONCE(force_emulation_prefix); 7376 int emul_type = EMULTYPE_TRAP_UD; 7377 char sig[5]; /* ud2; .ascii "kvm" */ 7378 struct x86_exception e; 7379 7380 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7381 return 1; 7382 7383 if (fep_flags && 7384 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7385 sig, sizeof(sig), &e) == 0 && 7386 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7387 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7388 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7389 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7390 emul_type = EMULTYPE_TRAP_UD_FORCED; 7391 } 7392 7393 return kvm_emulate_instruction(vcpu, emul_type); 7394 } 7395 EXPORT_SYMBOL_GPL(handle_ud); 7396 7397 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7398 gpa_t gpa, bool write) 7399 { 7400 /* For APIC access vmexit */ 7401 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7402 return 1; 7403 7404 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7405 trace_vcpu_match_mmio(gva, gpa, write, true); 7406 return 1; 7407 } 7408 7409 return 0; 7410 } 7411 7412 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7413 gpa_t *gpa, struct x86_exception *exception, 7414 bool write) 7415 { 7416 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7417 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7418 | (write ? PFERR_WRITE_MASK : 0); 7419 7420 /* 7421 * currently PKRU is only applied to ept enabled guest so 7422 * there is no pkey in EPT page table for L1 guest or EPT 7423 * shadow page table for L2 guest. 7424 */ 7425 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7426 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7427 vcpu->arch.mmio_access, 0, access))) { 7428 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7429 (gva & (PAGE_SIZE - 1)); 7430 trace_vcpu_match_mmio(gva, *gpa, write, false); 7431 return 1; 7432 } 7433 7434 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7435 7436 if (*gpa == INVALID_GPA) 7437 return -1; 7438 7439 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7440 } 7441 7442 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7443 const void *val, int bytes) 7444 { 7445 int ret; 7446 7447 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7448 if (ret < 0) 7449 return 0; 7450 kvm_page_track_write(vcpu, gpa, val, bytes); 7451 return 1; 7452 } 7453 7454 struct read_write_emulator_ops { 7455 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7456 int bytes); 7457 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7458 void *val, int bytes); 7459 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7460 int bytes, void *val); 7461 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7462 void *val, int bytes); 7463 bool write; 7464 }; 7465 7466 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7467 { 7468 if (vcpu->mmio_read_completed) { 7469 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7470 vcpu->mmio_fragments[0].gpa, val); 7471 vcpu->mmio_read_completed = 0; 7472 return 1; 7473 } 7474 7475 return 0; 7476 } 7477 7478 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7479 void *val, int bytes) 7480 { 7481 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7482 } 7483 7484 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7485 void *val, int bytes) 7486 { 7487 return emulator_write_phys(vcpu, gpa, val, bytes); 7488 } 7489 7490 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7491 { 7492 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7493 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7494 } 7495 7496 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7497 void *val, int bytes) 7498 { 7499 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7500 return X86EMUL_IO_NEEDED; 7501 } 7502 7503 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7504 void *val, int bytes) 7505 { 7506 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7507 7508 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7509 return X86EMUL_CONTINUE; 7510 } 7511 7512 static const struct read_write_emulator_ops read_emultor = { 7513 .read_write_prepare = read_prepare, 7514 .read_write_emulate = read_emulate, 7515 .read_write_mmio = vcpu_mmio_read, 7516 .read_write_exit_mmio = read_exit_mmio, 7517 }; 7518 7519 static const struct read_write_emulator_ops write_emultor = { 7520 .read_write_emulate = write_emulate, 7521 .read_write_mmio = write_mmio, 7522 .read_write_exit_mmio = write_exit_mmio, 7523 .write = true, 7524 }; 7525 7526 static int emulator_read_write_onepage(unsigned long addr, void *val, 7527 unsigned int bytes, 7528 struct x86_exception *exception, 7529 struct kvm_vcpu *vcpu, 7530 const struct read_write_emulator_ops *ops) 7531 { 7532 gpa_t gpa; 7533 int handled, ret; 7534 bool write = ops->write; 7535 struct kvm_mmio_fragment *frag; 7536 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7537 7538 /* 7539 * If the exit was due to a NPF we may already have a GPA. 7540 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7541 * Note, this cannot be used on string operations since string 7542 * operation using rep will only have the initial GPA from the NPF 7543 * occurred. 7544 */ 7545 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7546 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7547 gpa = ctxt->gpa_val; 7548 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7549 } else { 7550 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7551 if (ret < 0) 7552 return X86EMUL_PROPAGATE_FAULT; 7553 } 7554 7555 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7556 return X86EMUL_CONTINUE; 7557 7558 /* 7559 * Is this MMIO handled locally? 7560 */ 7561 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7562 if (handled == bytes) 7563 return X86EMUL_CONTINUE; 7564 7565 gpa += handled; 7566 bytes -= handled; 7567 val += handled; 7568 7569 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7570 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7571 frag->gpa = gpa; 7572 frag->data = val; 7573 frag->len = bytes; 7574 return X86EMUL_CONTINUE; 7575 } 7576 7577 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7578 unsigned long addr, 7579 void *val, unsigned int bytes, 7580 struct x86_exception *exception, 7581 const struct read_write_emulator_ops *ops) 7582 { 7583 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7584 gpa_t gpa; 7585 int rc; 7586 7587 if (ops->read_write_prepare && 7588 ops->read_write_prepare(vcpu, val, bytes)) 7589 return X86EMUL_CONTINUE; 7590 7591 vcpu->mmio_nr_fragments = 0; 7592 7593 /* Crossing a page boundary? */ 7594 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7595 int now; 7596 7597 now = -addr & ~PAGE_MASK; 7598 rc = emulator_read_write_onepage(addr, val, now, exception, 7599 vcpu, ops); 7600 7601 if (rc != X86EMUL_CONTINUE) 7602 return rc; 7603 addr += now; 7604 if (ctxt->mode != X86EMUL_MODE_PROT64) 7605 addr = (u32)addr; 7606 val += now; 7607 bytes -= now; 7608 } 7609 7610 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7611 vcpu, ops); 7612 if (rc != X86EMUL_CONTINUE) 7613 return rc; 7614 7615 if (!vcpu->mmio_nr_fragments) 7616 return rc; 7617 7618 gpa = vcpu->mmio_fragments[0].gpa; 7619 7620 vcpu->mmio_needed = 1; 7621 vcpu->mmio_cur_fragment = 0; 7622 7623 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7624 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7625 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7626 vcpu->run->mmio.phys_addr = gpa; 7627 7628 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7629 } 7630 7631 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7632 unsigned long addr, 7633 void *val, 7634 unsigned int bytes, 7635 struct x86_exception *exception) 7636 { 7637 return emulator_read_write(ctxt, addr, val, bytes, 7638 exception, &read_emultor); 7639 } 7640 7641 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7642 unsigned long addr, 7643 const void *val, 7644 unsigned int bytes, 7645 struct x86_exception *exception) 7646 { 7647 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7648 exception, &write_emultor); 7649 } 7650 7651 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7652 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7653 7654 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7655 unsigned long addr, 7656 const void *old, 7657 const void *new, 7658 unsigned int bytes, 7659 struct x86_exception *exception) 7660 { 7661 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7662 u64 page_line_mask; 7663 unsigned long hva; 7664 gpa_t gpa; 7665 int r; 7666 7667 /* guests cmpxchg8b have to be emulated atomically */ 7668 if (bytes > 8 || (bytes & (bytes - 1))) 7669 goto emul_write; 7670 7671 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7672 7673 if (gpa == INVALID_GPA || 7674 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7675 goto emul_write; 7676 7677 /* 7678 * Emulate the atomic as a straight write to avoid #AC if SLD is 7679 * enabled in the host and the access splits a cache line. 7680 */ 7681 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7682 page_line_mask = ~(cache_line_size() - 1); 7683 else 7684 page_line_mask = PAGE_MASK; 7685 7686 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7687 goto emul_write; 7688 7689 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7690 if (kvm_is_error_hva(hva)) 7691 goto emul_write; 7692 7693 hva += offset_in_page(gpa); 7694 7695 switch (bytes) { 7696 case 1: 7697 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7698 break; 7699 case 2: 7700 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7701 break; 7702 case 4: 7703 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7704 break; 7705 case 8: 7706 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7707 break; 7708 default: 7709 BUG(); 7710 } 7711 7712 if (r < 0) 7713 return X86EMUL_UNHANDLEABLE; 7714 if (r) 7715 return X86EMUL_CMPXCHG_FAILED; 7716 7717 kvm_page_track_write(vcpu, gpa, new, bytes); 7718 7719 return X86EMUL_CONTINUE; 7720 7721 emul_write: 7722 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7723 7724 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7725 } 7726 7727 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7728 unsigned short port, void *data, 7729 unsigned int count, bool in) 7730 { 7731 unsigned i; 7732 int r; 7733 7734 WARN_ON_ONCE(vcpu->arch.pio.count); 7735 for (i = 0; i < count; i++) { 7736 if (in) 7737 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7738 else 7739 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7740 7741 if (r) { 7742 if (i == 0) 7743 goto userspace_io; 7744 7745 /* 7746 * Userspace must have unregistered the device while PIO 7747 * was running. Drop writes / read as 0. 7748 */ 7749 if (in) 7750 memset(data, 0, size * (count - i)); 7751 break; 7752 } 7753 7754 data += size; 7755 } 7756 return 1; 7757 7758 userspace_io: 7759 vcpu->arch.pio.port = port; 7760 vcpu->arch.pio.in = in; 7761 vcpu->arch.pio.count = count; 7762 vcpu->arch.pio.size = size; 7763 7764 if (in) 7765 memset(vcpu->arch.pio_data, 0, size * count); 7766 else 7767 memcpy(vcpu->arch.pio_data, data, size * count); 7768 7769 vcpu->run->exit_reason = KVM_EXIT_IO; 7770 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7771 vcpu->run->io.size = size; 7772 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7773 vcpu->run->io.count = count; 7774 vcpu->run->io.port = port; 7775 return 0; 7776 } 7777 7778 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7779 unsigned short port, void *val, unsigned int count) 7780 { 7781 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7782 if (r) 7783 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7784 7785 return r; 7786 } 7787 7788 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7789 { 7790 int size = vcpu->arch.pio.size; 7791 unsigned int count = vcpu->arch.pio.count; 7792 memcpy(val, vcpu->arch.pio_data, size * count); 7793 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7794 vcpu->arch.pio.count = 0; 7795 } 7796 7797 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7798 int size, unsigned short port, void *val, 7799 unsigned int count) 7800 { 7801 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7802 if (vcpu->arch.pio.count) { 7803 /* 7804 * Complete a previous iteration that required userspace I/O. 7805 * Note, @count isn't guaranteed to match pio.count as userspace 7806 * can modify ECX before rerunning the vCPU. Ignore any such 7807 * shenanigans as KVM doesn't support modifying the rep count, 7808 * and the emulator ensures @count doesn't overflow the buffer. 7809 */ 7810 complete_emulator_pio_in(vcpu, val); 7811 return 1; 7812 } 7813 7814 return emulator_pio_in(vcpu, size, port, val, count); 7815 } 7816 7817 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7818 unsigned short port, const void *val, 7819 unsigned int count) 7820 { 7821 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7822 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7823 } 7824 7825 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7826 int size, unsigned short port, 7827 const void *val, unsigned int count) 7828 { 7829 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7830 } 7831 7832 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7833 { 7834 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7835 } 7836 7837 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7838 { 7839 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7840 } 7841 7842 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7843 { 7844 if (!need_emulate_wbinvd(vcpu)) 7845 return X86EMUL_CONTINUE; 7846 7847 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7848 int cpu = get_cpu(); 7849 7850 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7851 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7852 wbinvd_ipi, NULL, 1); 7853 put_cpu(); 7854 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7855 } else 7856 wbinvd(); 7857 return X86EMUL_CONTINUE; 7858 } 7859 7860 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7861 { 7862 kvm_emulate_wbinvd_noskip(vcpu); 7863 return kvm_skip_emulated_instruction(vcpu); 7864 } 7865 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7866 7867 7868 7869 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7870 { 7871 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7872 } 7873 7874 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7875 unsigned long *dest) 7876 { 7877 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7878 } 7879 7880 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7881 unsigned long value) 7882 { 7883 7884 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7885 } 7886 7887 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7888 { 7889 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7890 } 7891 7892 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7893 { 7894 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7895 unsigned long value; 7896 7897 switch (cr) { 7898 case 0: 7899 value = kvm_read_cr0(vcpu); 7900 break; 7901 case 2: 7902 value = vcpu->arch.cr2; 7903 break; 7904 case 3: 7905 value = kvm_read_cr3(vcpu); 7906 break; 7907 case 4: 7908 value = kvm_read_cr4(vcpu); 7909 break; 7910 case 8: 7911 value = kvm_get_cr8(vcpu); 7912 break; 7913 default: 7914 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7915 return 0; 7916 } 7917 7918 return value; 7919 } 7920 7921 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7922 { 7923 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7924 int res = 0; 7925 7926 switch (cr) { 7927 case 0: 7928 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7929 break; 7930 case 2: 7931 vcpu->arch.cr2 = val; 7932 break; 7933 case 3: 7934 res = kvm_set_cr3(vcpu, val); 7935 break; 7936 case 4: 7937 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7938 break; 7939 case 8: 7940 res = kvm_set_cr8(vcpu, val); 7941 break; 7942 default: 7943 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7944 res = -1; 7945 } 7946 7947 return res; 7948 } 7949 7950 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7951 { 7952 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7953 } 7954 7955 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7956 { 7957 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7958 } 7959 7960 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7961 { 7962 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7963 } 7964 7965 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7966 { 7967 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7968 } 7969 7970 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7971 { 7972 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7973 } 7974 7975 static unsigned long emulator_get_cached_segment_base( 7976 struct x86_emulate_ctxt *ctxt, int seg) 7977 { 7978 return get_segment_base(emul_to_vcpu(ctxt), seg); 7979 } 7980 7981 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7982 struct desc_struct *desc, u32 *base3, 7983 int seg) 7984 { 7985 struct kvm_segment var; 7986 7987 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7988 *selector = var.selector; 7989 7990 if (var.unusable) { 7991 memset(desc, 0, sizeof(*desc)); 7992 if (base3) 7993 *base3 = 0; 7994 return false; 7995 } 7996 7997 if (var.g) 7998 var.limit >>= 12; 7999 set_desc_limit(desc, var.limit); 8000 set_desc_base(desc, (unsigned long)var.base); 8001 #ifdef CONFIG_X86_64 8002 if (base3) 8003 *base3 = var.base >> 32; 8004 #endif 8005 desc->type = var.type; 8006 desc->s = var.s; 8007 desc->dpl = var.dpl; 8008 desc->p = var.present; 8009 desc->avl = var.avl; 8010 desc->l = var.l; 8011 desc->d = var.db; 8012 desc->g = var.g; 8013 8014 return true; 8015 } 8016 8017 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8018 struct desc_struct *desc, u32 base3, 8019 int seg) 8020 { 8021 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8022 struct kvm_segment var; 8023 8024 var.selector = selector; 8025 var.base = get_desc_base(desc); 8026 #ifdef CONFIG_X86_64 8027 var.base |= ((u64)base3) << 32; 8028 #endif 8029 var.limit = get_desc_limit(desc); 8030 if (desc->g) 8031 var.limit = (var.limit << 12) | 0xfff; 8032 var.type = desc->type; 8033 var.dpl = desc->dpl; 8034 var.db = desc->d; 8035 var.s = desc->s; 8036 var.l = desc->l; 8037 var.g = desc->g; 8038 var.avl = desc->avl; 8039 var.present = desc->p; 8040 var.unusable = !var.present; 8041 var.padding = 0; 8042 8043 kvm_set_segment(vcpu, &var, seg); 8044 return; 8045 } 8046 8047 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8048 u32 msr_index, u64 *pdata) 8049 { 8050 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8051 int r; 8052 8053 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8054 if (r < 0) 8055 return X86EMUL_UNHANDLEABLE; 8056 8057 if (r) { 8058 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8059 complete_emulated_rdmsr, r)) 8060 return X86EMUL_IO_NEEDED; 8061 8062 trace_kvm_msr_read_ex(msr_index); 8063 return X86EMUL_PROPAGATE_FAULT; 8064 } 8065 8066 trace_kvm_msr_read(msr_index, *pdata); 8067 return X86EMUL_CONTINUE; 8068 } 8069 8070 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8071 u32 msr_index, u64 data) 8072 { 8073 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8074 int r; 8075 8076 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8077 if (r < 0) 8078 return X86EMUL_UNHANDLEABLE; 8079 8080 if (r) { 8081 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8082 complete_emulated_msr_access, r)) 8083 return X86EMUL_IO_NEEDED; 8084 8085 trace_kvm_msr_write_ex(msr_index, data); 8086 return X86EMUL_PROPAGATE_FAULT; 8087 } 8088 8089 trace_kvm_msr_write(msr_index, data); 8090 return X86EMUL_CONTINUE; 8091 } 8092 8093 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8094 u32 msr_index, u64 *pdata) 8095 { 8096 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8097 } 8098 8099 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8100 u32 pmc) 8101 { 8102 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8103 return 0; 8104 return -EINVAL; 8105 } 8106 8107 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8108 u32 pmc, u64 *pdata) 8109 { 8110 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8111 } 8112 8113 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8114 { 8115 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8116 } 8117 8118 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8119 struct x86_instruction_info *info, 8120 enum x86_intercept_stage stage) 8121 { 8122 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8123 &ctxt->exception); 8124 } 8125 8126 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8127 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8128 bool exact_only) 8129 { 8130 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8131 } 8132 8133 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8134 { 8135 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8136 } 8137 8138 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8139 { 8140 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8141 } 8142 8143 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8144 { 8145 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8146 } 8147 8148 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8149 { 8150 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8151 } 8152 8153 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8154 { 8155 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8156 } 8157 8158 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8159 { 8160 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8161 } 8162 8163 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8164 { 8165 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8166 } 8167 8168 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 8169 { 8170 return emul_to_vcpu(ctxt)->arch.hflags; 8171 } 8172 8173 #ifndef CONFIG_KVM_SMM 8174 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8175 { 8176 WARN_ON_ONCE(1); 8177 return X86EMUL_UNHANDLEABLE; 8178 } 8179 #endif 8180 8181 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8182 { 8183 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8184 } 8185 8186 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8187 { 8188 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8189 } 8190 8191 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8192 { 8193 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8194 8195 if (!kvm->vm_bugged) 8196 kvm_vm_bugged(kvm); 8197 } 8198 8199 static const struct x86_emulate_ops emulate_ops = { 8200 .vm_bugged = emulator_vm_bugged, 8201 .read_gpr = emulator_read_gpr, 8202 .write_gpr = emulator_write_gpr, 8203 .read_std = emulator_read_std, 8204 .write_std = emulator_write_std, 8205 .fetch = kvm_fetch_guest_virt, 8206 .read_emulated = emulator_read_emulated, 8207 .write_emulated = emulator_write_emulated, 8208 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8209 .invlpg = emulator_invlpg, 8210 .pio_in_emulated = emulator_pio_in_emulated, 8211 .pio_out_emulated = emulator_pio_out_emulated, 8212 .get_segment = emulator_get_segment, 8213 .set_segment = emulator_set_segment, 8214 .get_cached_segment_base = emulator_get_cached_segment_base, 8215 .get_gdt = emulator_get_gdt, 8216 .get_idt = emulator_get_idt, 8217 .set_gdt = emulator_set_gdt, 8218 .set_idt = emulator_set_idt, 8219 .get_cr = emulator_get_cr, 8220 .set_cr = emulator_set_cr, 8221 .cpl = emulator_get_cpl, 8222 .get_dr = emulator_get_dr, 8223 .set_dr = emulator_set_dr, 8224 .set_msr_with_filter = emulator_set_msr_with_filter, 8225 .get_msr_with_filter = emulator_get_msr_with_filter, 8226 .get_msr = emulator_get_msr, 8227 .check_pmc = emulator_check_pmc, 8228 .read_pmc = emulator_read_pmc, 8229 .halt = emulator_halt, 8230 .wbinvd = emulator_wbinvd, 8231 .fix_hypercall = emulator_fix_hypercall, 8232 .intercept = emulator_intercept, 8233 .get_cpuid = emulator_get_cpuid, 8234 .guest_has_long_mode = emulator_guest_has_long_mode, 8235 .guest_has_movbe = emulator_guest_has_movbe, 8236 .guest_has_fxsr = emulator_guest_has_fxsr, 8237 .guest_has_rdpid = emulator_guest_has_rdpid, 8238 .set_nmi_mask = emulator_set_nmi_mask, 8239 .get_hflags = emulator_get_hflags, 8240 .leave_smm = emulator_leave_smm, 8241 .triple_fault = emulator_triple_fault, 8242 .set_xcr = emulator_set_xcr, 8243 }; 8244 8245 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8246 { 8247 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8248 /* 8249 * an sti; sti; sequence only disable interrupts for the first 8250 * instruction. So, if the last instruction, be it emulated or 8251 * not, left the system with the INT_STI flag enabled, it 8252 * means that the last instruction is an sti. We should not 8253 * leave the flag on in this case. The same goes for mov ss 8254 */ 8255 if (int_shadow & mask) 8256 mask = 0; 8257 if (unlikely(int_shadow || mask)) { 8258 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8259 if (!mask) 8260 kvm_make_request(KVM_REQ_EVENT, vcpu); 8261 } 8262 } 8263 8264 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8265 { 8266 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8267 8268 if (ctxt->exception.vector == PF_VECTOR) 8269 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8270 else if (ctxt->exception.error_code_valid) 8271 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8272 ctxt->exception.error_code); 8273 else 8274 kvm_queue_exception(vcpu, ctxt->exception.vector); 8275 } 8276 8277 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8278 { 8279 struct x86_emulate_ctxt *ctxt; 8280 8281 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8282 if (!ctxt) { 8283 pr_err("kvm: failed to allocate vcpu's emulator\n"); 8284 return NULL; 8285 } 8286 8287 ctxt->vcpu = vcpu; 8288 ctxt->ops = &emulate_ops; 8289 vcpu->arch.emulate_ctxt = ctxt; 8290 8291 return ctxt; 8292 } 8293 8294 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8295 { 8296 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8297 int cs_db, cs_l; 8298 8299 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8300 8301 ctxt->gpa_available = false; 8302 ctxt->eflags = kvm_get_rflags(vcpu); 8303 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8304 8305 ctxt->eip = kvm_rip_read(vcpu); 8306 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8307 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8308 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8309 cs_db ? X86EMUL_MODE_PROT32 : 8310 X86EMUL_MODE_PROT16; 8311 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 8312 8313 ctxt->interruptibility = 0; 8314 ctxt->have_exception = false; 8315 ctxt->exception.vector = -1; 8316 ctxt->perm_ok = false; 8317 8318 init_decode_cache(ctxt); 8319 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8320 } 8321 8322 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8323 { 8324 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8325 int ret; 8326 8327 init_emulate_ctxt(vcpu); 8328 8329 ctxt->op_bytes = 2; 8330 ctxt->ad_bytes = 2; 8331 ctxt->_eip = ctxt->eip + inc_eip; 8332 ret = emulate_int_real(ctxt, irq); 8333 8334 if (ret != X86EMUL_CONTINUE) { 8335 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8336 } else { 8337 ctxt->eip = ctxt->_eip; 8338 kvm_rip_write(vcpu, ctxt->eip); 8339 kvm_set_rflags(vcpu, ctxt->eflags); 8340 } 8341 } 8342 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8343 8344 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8345 u8 ndata, u8 *insn_bytes, u8 insn_size) 8346 { 8347 struct kvm_run *run = vcpu->run; 8348 u64 info[5]; 8349 u8 info_start; 8350 8351 /* 8352 * Zero the whole array used to retrieve the exit info, as casting to 8353 * u32 for select entries will leave some chunks uninitialized. 8354 */ 8355 memset(&info, 0, sizeof(info)); 8356 8357 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8358 &info[2], (u32 *)&info[3], 8359 (u32 *)&info[4]); 8360 8361 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8362 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8363 8364 /* 8365 * There's currently space for 13 entries, but 5 are used for the exit 8366 * reason and info. Restrict to 4 to reduce the maintenance burden 8367 * when expanding kvm_run.emulation_failure in the future. 8368 */ 8369 if (WARN_ON_ONCE(ndata > 4)) 8370 ndata = 4; 8371 8372 /* Always include the flags as a 'data' entry. */ 8373 info_start = 1; 8374 run->emulation_failure.flags = 0; 8375 8376 if (insn_size) { 8377 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8378 sizeof(run->emulation_failure.insn_bytes) != 16)); 8379 info_start += 2; 8380 run->emulation_failure.flags |= 8381 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8382 run->emulation_failure.insn_size = insn_size; 8383 memset(run->emulation_failure.insn_bytes, 0x90, 8384 sizeof(run->emulation_failure.insn_bytes)); 8385 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8386 } 8387 8388 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8389 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8390 ndata * sizeof(data[0])); 8391 8392 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8393 } 8394 8395 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8396 { 8397 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8398 8399 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8400 ctxt->fetch.end - ctxt->fetch.data); 8401 } 8402 8403 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8404 u8 ndata) 8405 { 8406 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8407 } 8408 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8409 8410 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8411 { 8412 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8413 } 8414 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8415 8416 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8417 { 8418 struct kvm *kvm = vcpu->kvm; 8419 8420 ++vcpu->stat.insn_emulation_fail; 8421 trace_kvm_emulate_insn_failed(vcpu); 8422 8423 if (emulation_type & EMULTYPE_VMWARE_GP) { 8424 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8425 return 1; 8426 } 8427 8428 if (kvm->arch.exit_on_emulation_error || 8429 (emulation_type & EMULTYPE_SKIP)) { 8430 prepare_emulation_ctxt_failure_exit(vcpu); 8431 return 0; 8432 } 8433 8434 kvm_queue_exception(vcpu, UD_VECTOR); 8435 8436 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8437 prepare_emulation_ctxt_failure_exit(vcpu); 8438 return 0; 8439 } 8440 8441 return 1; 8442 } 8443 8444 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8445 bool write_fault_to_shadow_pgtable, 8446 int emulation_type) 8447 { 8448 gpa_t gpa = cr2_or_gpa; 8449 kvm_pfn_t pfn; 8450 8451 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8452 return false; 8453 8454 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8455 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8456 return false; 8457 8458 if (!vcpu->arch.mmu->root_role.direct) { 8459 /* 8460 * Write permission should be allowed since only 8461 * write access need to be emulated. 8462 */ 8463 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8464 8465 /* 8466 * If the mapping is invalid in guest, let cpu retry 8467 * it to generate fault. 8468 */ 8469 if (gpa == INVALID_GPA) 8470 return true; 8471 } 8472 8473 /* 8474 * Do not retry the unhandleable instruction if it faults on the 8475 * readonly host memory, otherwise it will goto a infinite loop: 8476 * retry instruction -> write #PF -> emulation fail -> retry 8477 * instruction -> ... 8478 */ 8479 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8480 8481 /* 8482 * If the instruction failed on the error pfn, it can not be fixed, 8483 * report the error to userspace. 8484 */ 8485 if (is_error_noslot_pfn(pfn)) 8486 return false; 8487 8488 kvm_release_pfn_clean(pfn); 8489 8490 /* The instructions are well-emulated on direct mmu. */ 8491 if (vcpu->arch.mmu->root_role.direct) { 8492 unsigned int indirect_shadow_pages; 8493 8494 write_lock(&vcpu->kvm->mmu_lock); 8495 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8496 write_unlock(&vcpu->kvm->mmu_lock); 8497 8498 if (indirect_shadow_pages) 8499 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8500 8501 return true; 8502 } 8503 8504 /* 8505 * if emulation was due to access to shadowed page table 8506 * and it failed try to unshadow page and re-enter the 8507 * guest to let CPU execute the instruction. 8508 */ 8509 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8510 8511 /* 8512 * If the access faults on its page table, it can not 8513 * be fixed by unprotecting shadow page and it should 8514 * be reported to userspace. 8515 */ 8516 return !write_fault_to_shadow_pgtable; 8517 } 8518 8519 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8520 gpa_t cr2_or_gpa, int emulation_type) 8521 { 8522 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8523 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8524 8525 last_retry_eip = vcpu->arch.last_retry_eip; 8526 last_retry_addr = vcpu->arch.last_retry_addr; 8527 8528 /* 8529 * If the emulation is caused by #PF and it is non-page_table 8530 * writing instruction, it means the VM-EXIT is caused by shadow 8531 * page protected, we can zap the shadow page and retry this 8532 * instruction directly. 8533 * 8534 * Note: if the guest uses a non-page-table modifying instruction 8535 * on the PDE that points to the instruction, then we will unmap 8536 * the instruction and go to an infinite loop. So, we cache the 8537 * last retried eip and the last fault address, if we meet the eip 8538 * and the address again, we can break out of the potential infinite 8539 * loop. 8540 */ 8541 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8542 8543 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8544 return false; 8545 8546 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8547 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8548 return false; 8549 8550 if (x86_page_table_writing_insn(ctxt)) 8551 return false; 8552 8553 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8554 return false; 8555 8556 vcpu->arch.last_retry_eip = ctxt->eip; 8557 vcpu->arch.last_retry_addr = cr2_or_gpa; 8558 8559 if (!vcpu->arch.mmu->root_role.direct) 8560 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8561 8562 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8563 8564 return true; 8565 } 8566 8567 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8568 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8569 8570 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8571 unsigned long *db) 8572 { 8573 u32 dr6 = 0; 8574 int i; 8575 u32 enable, rwlen; 8576 8577 enable = dr7; 8578 rwlen = dr7 >> 16; 8579 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8580 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8581 dr6 |= (1 << i); 8582 return dr6; 8583 } 8584 8585 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8586 { 8587 struct kvm_run *kvm_run = vcpu->run; 8588 8589 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8590 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8591 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8592 kvm_run->debug.arch.exception = DB_VECTOR; 8593 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8594 return 0; 8595 } 8596 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8597 return 1; 8598 } 8599 8600 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8601 { 8602 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8603 int r; 8604 8605 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8606 if (unlikely(!r)) 8607 return 0; 8608 8609 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8610 8611 /* 8612 * rflags is the old, "raw" value of the flags. The new value has 8613 * not been saved yet. 8614 * 8615 * This is correct even for TF set by the guest, because "the 8616 * processor will not generate this exception after the instruction 8617 * that sets the TF flag". 8618 */ 8619 if (unlikely(rflags & X86_EFLAGS_TF)) 8620 r = kvm_vcpu_do_singlestep(vcpu); 8621 return r; 8622 } 8623 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8624 8625 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8626 { 8627 u32 shadow; 8628 8629 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8630 return true; 8631 8632 /* 8633 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8634 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8635 * to avoid the relatively expensive CPUID lookup. 8636 */ 8637 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8638 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8639 guest_cpuid_is_intel(vcpu); 8640 } 8641 8642 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8643 int emulation_type, int *r) 8644 { 8645 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8646 8647 /* 8648 * Do not check for code breakpoints if hardware has already done the 8649 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8650 * the instruction has passed all exception checks, and all intercepted 8651 * exceptions that trigger emulation have lower priority than code 8652 * breakpoints, i.e. the fact that the intercepted exception occurred 8653 * means any code breakpoints have already been serviced. 8654 * 8655 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8656 * hardware has checked the RIP of the magic prefix, but not the RIP of 8657 * the instruction being emulated. The intent of forced emulation is 8658 * to behave as if KVM intercepted the instruction without an exception 8659 * and without a prefix. 8660 */ 8661 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8662 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8663 return false; 8664 8665 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8666 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8667 struct kvm_run *kvm_run = vcpu->run; 8668 unsigned long eip = kvm_get_linear_rip(vcpu); 8669 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8670 vcpu->arch.guest_debug_dr7, 8671 vcpu->arch.eff_db); 8672 8673 if (dr6 != 0) { 8674 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8675 kvm_run->debug.arch.pc = eip; 8676 kvm_run->debug.arch.exception = DB_VECTOR; 8677 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8678 *r = 0; 8679 return true; 8680 } 8681 } 8682 8683 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8684 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8685 unsigned long eip = kvm_get_linear_rip(vcpu); 8686 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8687 vcpu->arch.dr7, 8688 vcpu->arch.db); 8689 8690 if (dr6 != 0) { 8691 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8692 *r = 1; 8693 return true; 8694 } 8695 } 8696 8697 return false; 8698 } 8699 8700 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8701 { 8702 switch (ctxt->opcode_len) { 8703 case 1: 8704 switch (ctxt->b) { 8705 case 0xe4: /* IN */ 8706 case 0xe5: 8707 case 0xec: 8708 case 0xed: 8709 case 0xe6: /* OUT */ 8710 case 0xe7: 8711 case 0xee: 8712 case 0xef: 8713 case 0x6c: /* INS */ 8714 case 0x6d: 8715 case 0x6e: /* OUTS */ 8716 case 0x6f: 8717 return true; 8718 } 8719 break; 8720 case 2: 8721 switch (ctxt->b) { 8722 case 0x33: /* RDPMC */ 8723 return true; 8724 } 8725 break; 8726 } 8727 8728 return false; 8729 } 8730 8731 /* 8732 * Decode an instruction for emulation. The caller is responsible for handling 8733 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8734 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8735 * code breakpoints have higher priority and thus have already been done by 8736 * hardware. 8737 * 8738 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8739 * response to a machine check. 8740 */ 8741 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8742 void *insn, int insn_len) 8743 { 8744 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8745 int r; 8746 8747 init_emulate_ctxt(vcpu); 8748 8749 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8750 8751 trace_kvm_emulate_insn_start(vcpu); 8752 ++vcpu->stat.insn_emulation; 8753 8754 return r; 8755 } 8756 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8757 8758 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8759 int emulation_type, void *insn, int insn_len) 8760 { 8761 int r; 8762 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8763 bool writeback = true; 8764 bool write_fault_to_spt; 8765 8766 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8767 return 1; 8768 8769 vcpu->arch.l1tf_flush_l1d = true; 8770 8771 /* 8772 * Clear write_fault_to_shadow_pgtable here to ensure it is 8773 * never reused. 8774 */ 8775 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8776 vcpu->arch.write_fault_to_shadow_pgtable = false; 8777 8778 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8779 kvm_clear_exception_queue(vcpu); 8780 8781 /* 8782 * Return immediately if RIP hits a code breakpoint, such #DBs 8783 * are fault-like and are higher priority than any faults on 8784 * the code fetch itself. 8785 */ 8786 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8787 return r; 8788 8789 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8790 insn, insn_len); 8791 if (r != EMULATION_OK) { 8792 if ((emulation_type & EMULTYPE_TRAP_UD) || 8793 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8794 kvm_queue_exception(vcpu, UD_VECTOR); 8795 return 1; 8796 } 8797 if (reexecute_instruction(vcpu, cr2_or_gpa, 8798 write_fault_to_spt, 8799 emulation_type)) 8800 return 1; 8801 8802 if (ctxt->have_exception && 8803 !(emulation_type & EMULTYPE_SKIP)) { 8804 /* 8805 * #UD should result in just EMULATION_FAILED, and trap-like 8806 * exception should not be encountered during decode. 8807 */ 8808 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8809 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8810 inject_emulated_exception(vcpu); 8811 return 1; 8812 } 8813 return handle_emulation_failure(vcpu, emulation_type); 8814 } 8815 } 8816 8817 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8818 !is_vmware_backdoor_opcode(ctxt)) { 8819 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8820 return 1; 8821 } 8822 8823 /* 8824 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8825 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8826 * The caller is responsible for updating interruptibility state and 8827 * injecting single-step #DBs. 8828 */ 8829 if (emulation_type & EMULTYPE_SKIP) { 8830 if (ctxt->mode != X86EMUL_MODE_PROT64) 8831 ctxt->eip = (u32)ctxt->_eip; 8832 else 8833 ctxt->eip = ctxt->_eip; 8834 8835 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8836 r = 1; 8837 goto writeback; 8838 } 8839 8840 kvm_rip_write(vcpu, ctxt->eip); 8841 if (ctxt->eflags & X86_EFLAGS_RF) 8842 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8843 return 1; 8844 } 8845 8846 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8847 return 1; 8848 8849 /* this is needed for vmware backdoor interface to work since it 8850 changes registers values during IO operation */ 8851 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8852 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8853 emulator_invalidate_register_cache(ctxt); 8854 } 8855 8856 restart: 8857 if (emulation_type & EMULTYPE_PF) { 8858 /* Save the faulting GPA (cr2) in the address field */ 8859 ctxt->exception.address = cr2_or_gpa; 8860 8861 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8862 if (vcpu->arch.mmu->root_role.direct) { 8863 ctxt->gpa_available = true; 8864 ctxt->gpa_val = cr2_or_gpa; 8865 } 8866 } else { 8867 /* Sanitize the address out of an abundance of paranoia. */ 8868 ctxt->exception.address = 0; 8869 } 8870 8871 r = x86_emulate_insn(ctxt); 8872 8873 if (r == EMULATION_INTERCEPTED) 8874 return 1; 8875 8876 if (r == EMULATION_FAILED) { 8877 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8878 emulation_type)) 8879 return 1; 8880 8881 return handle_emulation_failure(vcpu, emulation_type); 8882 } 8883 8884 if (ctxt->have_exception) { 8885 r = 1; 8886 inject_emulated_exception(vcpu); 8887 } else if (vcpu->arch.pio.count) { 8888 if (!vcpu->arch.pio.in) { 8889 /* FIXME: return into emulator if single-stepping. */ 8890 vcpu->arch.pio.count = 0; 8891 } else { 8892 writeback = false; 8893 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8894 } 8895 r = 0; 8896 } else if (vcpu->mmio_needed) { 8897 ++vcpu->stat.mmio_exits; 8898 8899 if (!vcpu->mmio_is_write) 8900 writeback = false; 8901 r = 0; 8902 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8903 } else if (vcpu->arch.complete_userspace_io) { 8904 writeback = false; 8905 r = 0; 8906 } else if (r == EMULATION_RESTART) 8907 goto restart; 8908 else 8909 r = 1; 8910 8911 writeback: 8912 if (writeback) { 8913 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8914 toggle_interruptibility(vcpu, ctxt->interruptibility); 8915 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8916 8917 /* 8918 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8919 * only supports code breakpoints and general detect #DB, both 8920 * of which are fault-like. 8921 */ 8922 if (!ctxt->have_exception || 8923 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8924 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8925 if (ctxt->is_branch) 8926 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8927 kvm_rip_write(vcpu, ctxt->eip); 8928 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8929 r = kvm_vcpu_do_singlestep(vcpu); 8930 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8931 __kvm_set_rflags(vcpu, ctxt->eflags); 8932 } 8933 8934 /* 8935 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8936 * do nothing, and it will be requested again as soon as 8937 * the shadow expires. But we still need to check here, 8938 * because POPF has no interrupt shadow. 8939 */ 8940 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8941 kvm_make_request(KVM_REQ_EVENT, vcpu); 8942 } else 8943 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8944 8945 return r; 8946 } 8947 8948 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8949 { 8950 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8951 } 8952 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8953 8954 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8955 void *insn, int insn_len) 8956 { 8957 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8958 } 8959 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8960 8961 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8962 { 8963 vcpu->arch.pio.count = 0; 8964 return 1; 8965 } 8966 8967 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8968 { 8969 vcpu->arch.pio.count = 0; 8970 8971 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8972 return 1; 8973 8974 return kvm_skip_emulated_instruction(vcpu); 8975 } 8976 8977 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8978 unsigned short port) 8979 { 8980 unsigned long val = kvm_rax_read(vcpu); 8981 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8982 8983 if (ret) 8984 return ret; 8985 8986 /* 8987 * Workaround userspace that relies on old KVM behavior of %rip being 8988 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8989 */ 8990 if (port == 0x7e && 8991 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8992 vcpu->arch.complete_userspace_io = 8993 complete_fast_pio_out_port_0x7e; 8994 kvm_skip_emulated_instruction(vcpu); 8995 } else { 8996 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8997 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8998 } 8999 return 0; 9000 } 9001 9002 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9003 { 9004 unsigned long val; 9005 9006 /* We should only ever be called with arch.pio.count equal to 1 */ 9007 BUG_ON(vcpu->arch.pio.count != 1); 9008 9009 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9010 vcpu->arch.pio.count = 0; 9011 return 1; 9012 } 9013 9014 /* For size less than 4 we merge, else we zero extend */ 9015 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9016 9017 complete_emulator_pio_in(vcpu, &val); 9018 kvm_rax_write(vcpu, val); 9019 9020 return kvm_skip_emulated_instruction(vcpu); 9021 } 9022 9023 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9024 unsigned short port) 9025 { 9026 unsigned long val; 9027 int ret; 9028 9029 /* For size less than 4 we merge, else we zero extend */ 9030 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9031 9032 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9033 if (ret) { 9034 kvm_rax_write(vcpu, val); 9035 return ret; 9036 } 9037 9038 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9039 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9040 9041 return 0; 9042 } 9043 9044 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9045 { 9046 int ret; 9047 9048 if (in) 9049 ret = kvm_fast_pio_in(vcpu, size, port); 9050 else 9051 ret = kvm_fast_pio_out(vcpu, size, port); 9052 return ret && kvm_skip_emulated_instruction(vcpu); 9053 } 9054 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9055 9056 static int kvmclock_cpu_down_prep(unsigned int cpu) 9057 { 9058 __this_cpu_write(cpu_tsc_khz, 0); 9059 return 0; 9060 } 9061 9062 static void tsc_khz_changed(void *data) 9063 { 9064 struct cpufreq_freqs *freq = data; 9065 unsigned long khz = 0; 9066 9067 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9068 9069 if (data) 9070 khz = freq->new; 9071 else 9072 khz = cpufreq_quick_get(raw_smp_processor_id()); 9073 if (!khz) 9074 khz = tsc_khz; 9075 __this_cpu_write(cpu_tsc_khz, khz); 9076 } 9077 9078 #ifdef CONFIG_X86_64 9079 static void kvm_hyperv_tsc_notifier(void) 9080 { 9081 struct kvm *kvm; 9082 int cpu; 9083 9084 mutex_lock(&kvm_lock); 9085 list_for_each_entry(kvm, &vm_list, vm_list) 9086 kvm_make_mclock_inprogress_request(kvm); 9087 9088 /* no guest entries from this point */ 9089 hyperv_stop_tsc_emulation(); 9090 9091 /* TSC frequency always matches when on Hyper-V */ 9092 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9093 for_each_present_cpu(cpu) 9094 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9095 } 9096 kvm_caps.max_guest_tsc_khz = tsc_khz; 9097 9098 list_for_each_entry(kvm, &vm_list, vm_list) { 9099 __kvm_start_pvclock_update(kvm); 9100 pvclock_update_vm_gtod_copy(kvm); 9101 kvm_end_pvclock_update(kvm); 9102 } 9103 9104 mutex_unlock(&kvm_lock); 9105 } 9106 #endif 9107 9108 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9109 { 9110 struct kvm *kvm; 9111 struct kvm_vcpu *vcpu; 9112 int send_ipi = 0; 9113 unsigned long i; 9114 9115 /* 9116 * We allow guests to temporarily run on slowing clocks, 9117 * provided we notify them after, or to run on accelerating 9118 * clocks, provided we notify them before. Thus time never 9119 * goes backwards. 9120 * 9121 * However, we have a problem. We can't atomically update 9122 * the frequency of a given CPU from this function; it is 9123 * merely a notifier, which can be called from any CPU. 9124 * Changing the TSC frequency at arbitrary points in time 9125 * requires a recomputation of local variables related to 9126 * the TSC for each VCPU. We must flag these local variables 9127 * to be updated and be sure the update takes place with the 9128 * new frequency before any guests proceed. 9129 * 9130 * Unfortunately, the combination of hotplug CPU and frequency 9131 * change creates an intractable locking scenario; the order 9132 * of when these callouts happen is undefined with respect to 9133 * CPU hotplug, and they can race with each other. As such, 9134 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9135 * undefined; you can actually have a CPU frequency change take 9136 * place in between the computation of X and the setting of the 9137 * variable. To protect against this problem, all updates of 9138 * the per_cpu tsc_khz variable are done in an interrupt 9139 * protected IPI, and all callers wishing to update the value 9140 * must wait for a synchronous IPI to complete (which is trivial 9141 * if the caller is on the CPU already). This establishes the 9142 * necessary total order on variable updates. 9143 * 9144 * Note that because a guest time update may take place 9145 * anytime after the setting of the VCPU's request bit, the 9146 * correct TSC value must be set before the request. However, 9147 * to ensure the update actually makes it to any guest which 9148 * starts running in hardware virtualization between the set 9149 * and the acquisition of the spinlock, we must also ping the 9150 * CPU after setting the request bit. 9151 * 9152 */ 9153 9154 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9155 9156 mutex_lock(&kvm_lock); 9157 list_for_each_entry(kvm, &vm_list, vm_list) { 9158 kvm_for_each_vcpu(i, vcpu, kvm) { 9159 if (vcpu->cpu != cpu) 9160 continue; 9161 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9162 if (vcpu->cpu != raw_smp_processor_id()) 9163 send_ipi = 1; 9164 } 9165 } 9166 mutex_unlock(&kvm_lock); 9167 9168 if (freq->old < freq->new && send_ipi) { 9169 /* 9170 * We upscale the frequency. Must make the guest 9171 * doesn't see old kvmclock values while running with 9172 * the new frequency, otherwise we risk the guest sees 9173 * time go backwards. 9174 * 9175 * In case we update the frequency for another cpu 9176 * (which might be in guest context) send an interrupt 9177 * to kick the cpu out of guest context. Next time 9178 * guest context is entered kvmclock will be updated, 9179 * so the guest will not see stale values. 9180 */ 9181 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9182 } 9183 } 9184 9185 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9186 void *data) 9187 { 9188 struct cpufreq_freqs *freq = data; 9189 int cpu; 9190 9191 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9192 return 0; 9193 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9194 return 0; 9195 9196 for_each_cpu(cpu, freq->policy->cpus) 9197 __kvmclock_cpufreq_notifier(freq, cpu); 9198 9199 return 0; 9200 } 9201 9202 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9203 .notifier_call = kvmclock_cpufreq_notifier 9204 }; 9205 9206 static int kvmclock_cpu_online(unsigned int cpu) 9207 { 9208 tsc_khz_changed(NULL); 9209 return 0; 9210 } 9211 9212 static void kvm_timer_init(void) 9213 { 9214 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9215 max_tsc_khz = tsc_khz; 9216 9217 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9218 struct cpufreq_policy *policy; 9219 int cpu; 9220 9221 cpu = get_cpu(); 9222 policy = cpufreq_cpu_get(cpu); 9223 if (policy) { 9224 if (policy->cpuinfo.max_freq) 9225 max_tsc_khz = policy->cpuinfo.max_freq; 9226 cpufreq_cpu_put(policy); 9227 } 9228 put_cpu(); 9229 } 9230 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9231 CPUFREQ_TRANSITION_NOTIFIER); 9232 9233 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9234 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9235 } 9236 } 9237 9238 #ifdef CONFIG_X86_64 9239 static void pvclock_gtod_update_fn(struct work_struct *work) 9240 { 9241 struct kvm *kvm; 9242 struct kvm_vcpu *vcpu; 9243 unsigned long i; 9244 9245 mutex_lock(&kvm_lock); 9246 list_for_each_entry(kvm, &vm_list, vm_list) 9247 kvm_for_each_vcpu(i, vcpu, kvm) 9248 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9249 atomic_set(&kvm_guest_has_master_clock, 0); 9250 mutex_unlock(&kvm_lock); 9251 } 9252 9253 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9254 9255 /* 9256 * Indirection to move queue_work() out of the tk_core.seq write held 9257 * region to prevent possible deadlocks against time accessors which 9258 * are invoked with work related locks held. 9259 */ 9260 static void pvclock_irq_work_fn(struct irq_work *w) 9261 { 9262 queue_work(system_long_wq, &pvclock_gtod_work); 9263 } 9264 9265 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9266 9267 /* 9268 * Notification about pvclock gtod data update. 9269 */ 9270 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9271 void *priv) 9272 { 9273 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9274 struct timekeeper *tk = priv; 9275 9276 update_pvclock_gtod(tk); 9277 9278 /* 9279 * Disable master clock if host does not trust, or does not use, 9280 * TSC based clocksource. Delegate queue_work() to irq_work as 9281 * this is invoked with tk_core.seq write held. 9282 */ 9283 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9284 atomic_read(&kvm_guest_has_master_clock) != 0) 9285 irq_work_queue(&pvclock_irq_work); 9286 return 0; 9287 } 9288 9289 static struct notifier_block pvclock_gtod_notifier = { 9290 .notifier_call = pvclock_gtod_notify, 9291 }; 9292 #endif 9293 9294 int kvm_arch_init(void *opaque) 9295 { 9296 struct kvm_x86_init_ops *ops = opaque; 9297 u64 host_pat; 9298 int r; 9299 9300 if (kvm_x86_ops.hardware_enable) { 9301 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 9302 return -EEXIST; 9303 } 9304 9305 if (!ops->cpu_has_kvm_support()) { 9306 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 9307 ops->runtime_ops->name); 9308 return -EOPNOTSUPP; 9309 } 9310 if (ops->disabled_by_bios()) { 9311 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 9312 ops->runtime_ops->name); 9313 return -EOPNOTSUPP; 9314 } 9315 9316 /* 9317 * KVM explicitly assumes that the guest has an FPU and 9318 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9319 * vCPU's FPU state as a fxregs_state struct. 9320 */ 9321 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9322 printk(KERN_ERR "kvm: inadequate fpu\n"); 9323 return -EOPNOTSUPP; 9324 } 9325 9326 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9327 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9328 return -EOPNOTSUPP; 9329 } 9330 9331 /* 9332 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9333 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9334 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9335 * with an exception. PAT[0] is set to WB on RESET and also by the 9336 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9337 */ 9338 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9339 (host_pat & GENMASK(2, 0)) != 6) { 9340 pr_err("kvm: host PAT[0] is not WB\n"); 9341 return -EIO; 9342 } 9343 9344 x86_emulator_cache = kvm_alloc_emulator_cache(); 9345 if (!x86_emulator_cache) { 9346 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 9347 return -ENOMEM; 9348 } 9349 9350 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9351 if (!user_return_msrs) { 9352 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9353 r = -ENOMEM; 9354 goto out_free_x86_emulator_cache; 9355 } 9356 kvm_nr_uret_msrs = 0; 9357 9358 r = kvm_mmu_vendor_module_init(); 9359 if (r) 9360 goto out_free_percpu; 9361 9362 kvm_timer_init(); 9363 9364 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9365 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9366 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9367 } 9368 9369 if (pi_inject_timer == -1) 9370 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9371 #ifdef CONFIG_X86_64 9372 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9373 9374 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9375 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9376 #endif 9377 9378 return 0; 9379 9380 out_free_percpu: 9381 free_percpu(user_return_msrs); 9382 out_free_x86_emulator_cache: 9383 kmem_cache_destroy(x86_emulator_cache); 9384 return r; 9385 } 9386 9387 void kvm_arch_exit(void) 9388 { 9389 #ifdef CONFIG_X86_64 9390 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9391 clear_hv_tscchange_cb(); 9392 #endif 9393 kvm_lapic_exit(); 9394 9395 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9396 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9397 CPUFREQ_TRANSITION_NOTIFIER); 9398 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9399 } 9400 #ifdef CONFIG_X86_64 9401 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9402 irq_work_sync(&pvclock_irq_work); 9403 cancel_work_sync(&pvclock_gtod_work); 9404 #endif 9405 kvm_x86_ops.hardware_enable = NULL; 9406 kvm_mmu_vendor_module_exit(); 9407 free_percpu(user_return_msrs); 9408 kmem_cache_destroy(x86_emulator_cache); 9409 #ifdef CONFIG_KVM_XEN 9410 static_key_deferred_flush(&kvm_xen_enabled); 9411 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9412 #endif 9413 } 9414 9415 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9416 { 9417 /* 9418 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9419 * local APIC is in-kernel, the run loop will detect the non-runnable 9420 * state and halt the vCPU. Exit to userspace if the local APIC is 9421 * managed by userspace, in which case userspace is responsible for 9422 * handling wake events. 9423 */ 9424 ++vcpu->stat.halt_exits; 9425 if (lapic_in_kernel(vcpu)) { 9426 vcpu->arch.mp_state = state; 9427 return 1; 9428 } else { 9429 vcpu->run->exit_reason = reason; 9430 return 0; 9431 } 9432 } 9433 9434 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9435 { 9436 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9437 } 9438 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9439 9440 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9441 { 9442 int ret = kvm_skip_emulated_instruction(vcpu); 9443 /* 9444 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9445 * KVM_EXIT_DEBUG here. 9446 */ 9447 return kvm_emulate_halt_noskip(vcpu) && ret; 9448 } 9449 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9450 9451 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9452 { 9453 int ret = kvm_skip_emulated_instruction(vcpu); 9454 9455 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9456 KVM_EXIT_AP_RESET_HOLD) && ret; 9457 } 9458 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9459 9460 #ifdef CONFIG_X86_64 9461 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9462 unsigned long clock_type) 9463 { 9464 struct kvm_clock_pairing clock_pairing; 9465 struct timespec64 ts; 9466 u64 cycle; 9467 int ret; 9468 9469 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9470 return -KVM_EOPNOTSUPP; 9471 9472 /* 9473 * When tsc is in permanent catchup mode guests won't be able to use 9474 * pvclock_read_retry loop to get consistent view of pvclock 9475 */ 9476 if (vcpu->arch.tsc_always_catchup) 9477 return -KVM_EOPNOTSUPP; 9478 9479 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9480 return -KVM_EOPNOTSUPP; 9481 9482 clock_pairing.sec = ts.tv_sec; 9483 clock_pairing.nsec = ts.tv_nsec; 9484 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9485 clock_pairing.flags = 0; 9486 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9487 9488 ret = 0; 9489 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9490 sizeof(struct kvm_clock_pairing))) 9491 ret = -KVM_EFAULT; 9492 9493 return ret; 9494 } 9495 #endif 9496 9497 /* 9498 * kvm_pv_kick_cpu_op: Kick a vcpu. 9499 * 9500 * @apicid - apicid of vcpu to be kicked. 9501 */ 9502 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9503 { 9504 /* 9505 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9506 * common code, e.g. for tracing. Defer initialization to the compiler. 9507 */ 9508 struct kvm_lapic_irq lapic_irq = { 9509 .delivery_mode = APIC_DM_REMRD, 9510 .dest_mode = APIC_DEST_PHYSICAL, 9511 .shorthand = APIC_DEST_NOSHORT, 9512 .dest_id = apicid, 9513 }; 9514 9515 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9516 } 9517 9518 bool kvm_apicv_activated(struct kvm *kvm) 9519 { 9520 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9521 } 9522 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9523 9524 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9525 { 9526 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9527 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9528 9529 return (vm_reasons | vcpu_reasons) == 0; 9530 } 9531 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9532 9533 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9534 enum kvm_apicv_inhibit reason, bool set) 9535 { 9536 if (set) 9537 __set_bit(reason, inhibits); 9538 else 9539 __clear_bit(reason, inhibits); 9540 9541 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9542 } 9543 9544 static void kvm_apicv_init(struct kvm *kvm) 9545 { 9546 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9547 9548 init_rwsem(&kvm->arch.apicv_update_lock); 9549 9550 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9551 9552 if (!enable_apicv) 9553 set_or_clear_apicv_inhibit(inhibits, 9554 APICV_INHIBIT_REASON_DISABLE, true); 9555 } 9556 9557 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9558 { 9559 struct kvm_vcpu *target = NULL; 9560 struct kvm_apic_map *map; 9561 9562 vcpu->stat.directed_yield_attempted++; 9563 9564 if (single_task_running()) 9565 goto no_yield; 9566 9567 rcu_read_lock(); 9568 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9569 9570 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9571 target = map->phys_map[dest_id]->vcpu; 9572 9573 rcu_read_unlock(); 9574 9575 if (!target || !READ_ONCE(target->ready)) 9576 goto no_yield; 9577 9578 /* Ignore requests to yield to self */ 9579 if (vcpu == target) 9580 goto no_yield; 9581 9582 if (kvm_vcpu_yield_to(target) <= 0) 9583 goto no_yield; 9584 9585 vcpu->stat.directed_yield_successful++; 9586 9587 no_yield: 9588 return; 9589 } 9590 9591 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9592 { 9593 u64 ret = vcpu->run->hypercall.ret; 9594 9595 if (!is_64_bit_mode(vcpu)) 9596 ret = (u32)ret; 9597 kvm_rax_write(vcpu, ret); 9598 ++vcpu->stat.hypercalls; 9599 return kvm_skip_emulated_instruction(vcpu); 9600 } 9601 9602 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9603 { 9604 unsigned long nr, a0, a1, a2, a3, ret; 9605 int op_64_bit; 9606 9607 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9608 return kvm_xen_hypercall(vcpu); 9609 9610 if (kvm_hv_hypercall_enabled(vcpu)) 9611 return kvm_hv_hypercall(vcpu); 9612 9613 nr = kvm_rax_read(vcpu); 9614 a0 = kvm_rbx_read(vcpu); 9615 a1 = kvm_rcx_read(vcpu); 9616 a2 = kvm_rdx_read(vcpu); 9617 a3 = kvm_rsi_read(vcpu); 9618 9619 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9620 9621 op_64_bit = is_64_bit_hypercall(vcpu); 9622 if (!op_64_bit) { 9623 nr &= 0xFFFFFFFF; 9624 a0 &= 0xFFFFFFFF; 9625 a1 &= 0xFFFFFFFF; 9626 a2 &= 0xFFFFFFFF; 9627 a3 &= 0xFFFFFFFF; 9628 } 9629 9630 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9631 ret = -KVM_EPERM; 9632 goto out; 9633 } 9634 9635 ret = -KVM_ENOSYS; 9636 9637 switch (nr) { 9638 case KVM_HC_VAPIC_POLL_IRQ: 9639 ret = 0; 9640 break; 9641 case KVM_HC_KICK_CPU: 9642 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9643 break; 9644 9645 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9646 kvm_sched_yield(vcpu, a1); 9647 ret = 0; 9648 break; 9649 #ifdef CONFIG_X86_64 9650 case KVM_HC_CLOCK_PAIRING: 9651 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9652 break; 9653 #endif 9654 case KVM_HC_SEND_IPI: 9655 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9656 break; 9657 9658 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9659 break; 9660 case KVM_HC_SCHED_YIELD: 9661 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9662 break; 9663 9664 kvm_sched_yield(vcpu, a0); 9665 ret = 0; 9666 break; 9667 case KVM_HC_MAP_GPA_RANGE: { 9668 u64 gpa = a0, npages = a1, attrs = a2; 9669 9670 ret = -KVM_ENOSYS; 9671 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9672 break; 9673 9674 if (!PAGE_ALIGNED(gpa) || !npages || 9675 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9676 ret = -KVM_EINVAL; 9677 break; 9678 } 9679 9680 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9681 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9682 vcpu->run->hypercall.args[0] = gpa; 9683 vcpu->run->hypercall.args[1] = npages; 9684 vcpu->run->hypercall.args[2] = attrs; 9685 vcpu->run->hypercall.longmode = op_64_bit; 9686 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9687 return 0; 9688 } 9689 default: 9690 ret = -KVM_ENOSYS; 9691 break; 9692 } 9693 out: 9694 if (!op_64_bit) 9695 ret = (u32)ret; 9696 kvm_rax_write(vcpu, ret); 9697 9698 ++vcpu->stat.hypercalls; 9699 return kvm_skip_emulated_instruction(vcpu); 9700 } 9701 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9702 9703 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9704 { 9705 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9706 char instruction[3]; 9707 unsigned long rip = kvm_rip_read(vcpu); 9708 9709 /* 9710 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9711 * the pieces. 9712 */ 9713 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9714 ctxt->exception.error_code_valid = false; 9715 ctxt->exception.vector = UD_VECTOR; 9716 ctxt->have_exception = true; 9717 return X86EMUL_PROPAGATE_FAULT; 9718 } 9719 9720 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9721 9722 return emulator_write_emulated(ctxt, rip, instruction, 3, 9723 &ctxt->exception); 9724 } 9725 9726 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9727 { 9728 return vcpu->run->request_interrupt_window && 9729 likely(!pic_in_kernel(vcpu->kvm)); 9730 } 9731 9732 /* Called within kvm->srcu read side. */ 9733 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9734 { 9735 struct kvm_run *kvm_run = vcpu->run; 9736 9737 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9738 kvm_run->cr8 = kvm_get_cr8(vcpu); 9739 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9740 9741 kvm_run->ready_for_interrupt_injection = 9742 pic_in_kernel(vcpu->kvm) || 9743 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9744 9745 if (is_smm(vcpu)) 9746 kvm_run->flags |= KVM_RUN_X86_SMM; 9747 } 9748 9749 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9750 { 9751 int max_irr, tpr; 9752 9753 if (!kvm_x86_ops.update_cr8_intercept) 9754 return; 9755 9756 if (!lapic_in_kernel(vcpu)) 9757 return; 9758 9759 if (vcpu->arch.apic->apicv_active) 9760 return; 9761 9762 if (!vcpu->arch.apic->vapic_addr) 9763 max_irr = kvm_lapic_find_highest_irr(vcpu); 9764 else 9765 max_irr = -1; 9766 9767 if (max_irr != -1) 9768 max_irr >>= 4; 9769 9770 tpr = kvm_lapic_get_cr8(vcpu); 9771 9772 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9773 } 9774 9775 9776 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9777 { 9778 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9779 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9780 return 1; 9781 } 9782 9783 return kvm_x86_ops.nested_ops->check_events(vcpu); 9784 } 9785 9786 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9787 { 9788 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9789 vcpu->arch.exception.has_error_code, 9790 vcpu->arch.exception.error_code, 9791 vcpu->arch.exception.injected); 9792 9793 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9794 vcpu->arch.exception.error_code = false; 9795 static_call(kvm_x86_inject_exception)(vcpu); 9796 } 9797 9798 /* 9799 * Check for any event (interrupt or exception) that is ready to be injected, 9800 * and if there is at least one event, inject the event with the highest 9801 * priority. This handles both "pending" events, i.e. events that have never 9802 * been injected into the guest, and "injected" events, i.e. events that were 9803 * injected as part of a previous VM-Enter, but weren't successfully delivered 9804 * and need to be re-injected. 9805 * 9806 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9807 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9808 * be able to inject exceptions in the "middle" of an instruction, and so must 9809 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9810 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9811 * boundaries is necessary and correct. 9812 * 9813 * For simplicity, KVM uses a single path to inject all events (except events 9814 * that are injected directly from L1 to L2) and doesn't explicitly track 9815 * instruction boundaries for asynchronous events. However, because VM-Exits 9816 * that can occur during instruction execution typically result in KVM skipping 9817 * the instruction or injecting an exception, e.g. instruction and exception 9818 * intercepts, and because pending exceptions have higher priority than pending 9819 * interrupts, KVM still honors instruction boundaries in most scenarios. 9820 * 9821 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 9822 * the instruction or inject an exception, then KVM can incorrecty inject a new 9823 * asynchrounous event if the event became pending after the CPU fetched the 9824 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 9825 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 9826 * injected on the restarted instruction instead of being deferred until the 9827 * instruction completes. 9828 * 9829 * In practice, this virtualization hole is unlikely to be observed by the 9830 * guest, and even less likely to cause functional problems. To detect the 9831 * hole, the guest would have to trigger an event on a side effect of an early 9832 * phase of instruction execution, e.g. on the instruction fetch from memory. 9833 * And for it to be a functional problem, the guest would need to depend on the 9834 * ordering between that side effect, the instruction completing, _and_ the 9835 * delivery of the asynchronous event. 9836 */ 9837 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 9838 bool *req_immediate_exit) 9839 { 9840 bool can_inject; 9841 int r; 9842 9843 /* 9844 * Process nested events first, as nested VM-Exit supercedes event 9845 * re-injection. If there's an event queued for re-injection, it will 9846 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 9847 */ 9848 if (is_guest_mode(vcpu)) 9849 r = kvm_check_nested_events(vcpu); 9850 else 9851 r = 0; 9852 9853 /* 9854 * Re-inject exceptions and events *especially* if immediate entry+exit 9855 * to/from L2 is needed, as any event that has already been injected 9856 * into L2 needs to complete its lifecycle before injecting a new event. 9857 * 9858 * Don't re-inject an NMI or interrupt if there is a pending exception. 9859 * This collision arises if an exception occurred while vectoring the 9860 * injected event, KVM intercepted said exception, and KVM ultimately 9861 * determined the fault belongs to the guest and queues the exception 9862 * for injection back into the guest. 9863 * 9864 * "Injected" interrupts can also collide with pending exceptions if 9865 * userspace ignores the "ready for injection" flag and blindly queues 9866 * an interrupt. In that case, prioritizing the exception is correct, 9867 * as the exception "occurred" before the exit to userspace. Trap-like 9868 * exceptions, e.g. most #DBs, have higher priority than interrupts. 9869 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 9870 * priority, they're only generated (pended) during instruction 9871 * execution, and interrupts are recognized at instruction boundaries. 9872 * Thus a pending fault-like exception means the fault occurred on the 9873 * *previous* instruction and must be serviced prior to recognizing any 9874 * new events in order to fully complete the previous instruction. 9875 */ 9876 if (vcpu->arch.exception.injected) 9877 kvm_inject_exception(vcpu); 9878 else if (kvm_is_exception_pending(vcpu)) 9879 ; /* see above */ 9880 else if (vcpu->arch.nmi_injected) 9881 static_call(kvm_x86_inject_nmi)(vcpu); 9882 else if (vcpu->arch.interrupt.injected) 9883 static_call(kvm_x86_inject_irq)(vcpu, true); 9884 9885 /* 9886 * Exceptions that morph to VM-Exits are handled above, and pending 9887 * exceptions on top of injected exceptions that do not VM-Exit should 9888 * either morph to #DF or, sadly, override the injected exception. 9889 */ 9890 WARN_ON_ONCE(vcpu->arch.exception.injected && 9891 vcpu->arch.exception.pending); 9892 9893 /* 9894 * Bail if immediate entry+exit to/from the guest is needed to complete 9895 * nested VM-Enter or event re-injection so that a different pending 9896 * event can be serviced (or if KVM needs to exit to userspace). 9897 * 9898 * Otherwise, continue processing events even if VM-Exit occurred. The 9899 * VM-Exit will have cleared exceptions that were meant for L2, but 9900 * there may now be events that can be injected into L1. 9901 */ 9902 if (r < 0) 9903 goto out; 9904 9905 /* 9906 * A pending exception VM-Exit should either result in nested VM-Exit 9907 * or force an immediate re-entry and exit to/from L2, and exception 9908 * VM-Exits cannot be injected (flag should _never_ be set). 9909 */ 9910 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 9911 vcpu->arch.exception_vmexit.pending); 9912 9913 /* 9914 * New events, other than exceptions, cannot be injected if KVM needs 9915 * to re-inject a previous event. See above comments on re-injecting 9916 * for why pending exceptions get priority. 9917 */ 9918 can_inject = !kvm_event_needs_reinjection(vcpu); 9919 9920 if (vcpu->arch.exception.pending) { 9921 /* 9922 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 9923 * value pushed on the stack. Trap-like exception and all #DBs 9924 * leave RF as-is (KVM follows Intel's behavior in this regard; 9925 * AMD states that code breakpoint #DBs excplitly clear RF=0). 9926 * 9927 * Note, most versions of Intel's SDM and AMD's APM incorrectly 9928 * describe the behavior of General Detect #DBs, which are 9929 * fault-like. They do _not_ set RF, a la code breakpoints. 9930 */ 9931 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 9932 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9933 X86_EFLAGS_RF); 9934 9935 if (vcpu->arch.exception.vector == DB_VECTOR) { 9936 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 9937 if (vcpu->arch.dr7 & DR7_GD) { 9938 vcpu->arch.dr7 &= ~DR7_GD; 9939 kvm_update_dr7(vcpu); 9940 } 9941 } 9942 9943 kvm_inject_exception(vcpu); 9944 9945 vcpu->arch.exception.pending = false; 9946 vcpu->arch.exception.injected = true; 9947 9948 can_inject = false; 9949 } 9950 9951 /* Don't inject interrupts if the user asked to avoid doing so */ 9952 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9953 return 0; 9954 9955 /* 9956 * Finally, inject interrupt events. If an event cannot be injected 9957 * due to architectural conditions (e.g. IF=0) a window-open exit 9958 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9959 * and can architecturally be injected, but we cannot do it right now: 9960 * an interrupt could have arrived just now and we have to inject it 9961 * as a vmexit, or there could already an event in the queue, which is 9962 * indicated by can_inject. In that case we request an immediate exit 9963 * in order to make progress and get back here for another iteration. 9964 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9965 */ 9966 #ifdef CONFIG_KVM_SMM 9967 if (vcpu->arch.smi_pending) { 9968 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9969 if (r < 0) 9970 goto out; 9971 if (r) { 9972 vcpu->arch.smi_pending = false; 9973 ++vcpu->arch.smi_count; 9974 enter_smm(vcpu); 9975 can_inject = false; 9976 } else 9977 static_call(kvm_x86_enable_smi_window)(vcpu); 9978 } 9979 #endif 9980 9981 if (vcpu->arch.nmi_pending) { 9982 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9983 if (r < 0) 9984 goto out; 9985 if (r) { 9986 --vcpu->arch.nmi_pending; 9987 vcpu->arch.nmi_injected = true; 9988 static_call(kvm_x86_inject_nmi)(vcpu); 9989 can_inject = false; 9990 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9991 } 9992 if (vcpu->arch.nmi_pending) 9993 static_call(kvm_x86_enable_nmi_window)(vcpu); 9994 } 9995 9996 if (kvm_cpu_has_injectable_intr(vcpu)) { 9997 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9998 if (r < 0) 9999 goto out; 10000 if (r) { 10001 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10002 static_call(kvm_x86_inject_irq)(vcpu, false); 10003 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10004 } 10005 if (kvm_cpu_has_injectable_intr(vcpu)) 10006 static_call(kvm_x86_enable_irq_window)(vcpu); 10007 } 10008 10009 if (is_guest_mode(vcpu) && 10010 kvm_x86_ops.nested_ops->has_events && 10011 kvm_x86_ops.nested_ops->has_events(vcpu)) 10012 *req_immediate_exit = true; 10013 10014 /* 10015 * KVM must never queue a new exception while injecting an event; KVM 10016 * is done emulating and should only propagate the to-be-injected event 10017 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10018 * infinite loop as KVM will bail from VM-Enter to inject the pending 10019 * exception and start the cycle all over. 10020 * 10021 * Exempt triple faults as they have special handling and won't put the 10022 * vCPU into an infinite loop. Triple fault can be queued when running 10023 * VMX without unrestricted guest, as that requires KVM to emulate Real 10024 * Mode events (see kvm_inject_realmode_interrupt()). 10025 */ 10026 WARN_ON_ONCE(vcpu->arch.exception.pending || 10027 vcpu->arch.exception_vmexit.pending); 10028 return 0; 10029 10030 out: 10031 if (r == -EBUSY) { 10032 *req_immediate_exit = true; 10033 r = 0; 10034 } 10035 return r; 10036 } 10037 10038 static void process_nmi(struct kvm_vcpu *vcpu) 10039 { 10040 unsigned limit = 2; 10041 10042 /* 10043 * x86 is limited to one NMI running, and one NMI pending after it. 10044 * If an NMI is already in progress, limit further NMIs to just one. 10045 * Otherwise, allow two (and we'll inject the first one immediately). 10046 */ 10047 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10048 limit = 1; 10049 10050 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10051 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10052 kvm_make_request(KVM_REQ_EVENT, vcpu); 10053 } 10054 10055 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10056 unsigned long *vcpu_bitmap) 10057 { 10058 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10059 } 10060 10061 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10062 { 10063 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10064 } 10065 10066 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10067 { 10068 struct kvm_lapic *apic = vcpu->arch.apic; 10069 bool activate; 10070 10071 if (!lapic_in_kernel(vcpu)) 10072 return; 10073 10074 down_read(&vcpu->kvm->arch.apicv_update_lock); 10075 preempt_disable(); 10076 10077 /* Do not activate APICV when APIC is disabled */ 10078 activate = kvm_vcpu_apicv_activated(vcpu) && 10079 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10080 10081 if (apic->apicv_active == activate) 10082 goto out; 10083 10084 apic->apicv_active = activate; 10085 kvm_apic_update_apicv(vcpu); 10086 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10087 10088 /* 10089 * When APICv gets disabled, we may still have injected interrupts 10090 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10091 * still active when the interrupt got accepted. Make sure 10092 * kvm_check_and_inject_events() is called to check for that. 10093 */ 10094 if (!apic->apicv_active) 10095 kvm_make_request(KVM_REQ_EVENT, vcpu); 10096 10097 out: 10098 preempt_enable(); 10099 up_read(&vcpu->kvm->arch.apicv_update_lock); 10100 } 10101 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 10102 10103 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10104 enum kvm_apicv_inhibit reason, bool set) 10105 { 10106 unsigned long old, new; 10107 10108 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10109 10110 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 10111 return; 10112 10113 old = new = kvm->arch.apicv_inhibit_reasons; 10114 10115 set_or_clear_apicv_inhibit(&new, reason, set); 10116 10117 if (!!old != !!new) { 10118 /* 10119 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10120 * false positives in the sanity check WARN in svm_vcpu_run(). 10121 * This task will wait for all vCPUs to ack the kick IRQ before 10122 * updating apicv_inhibit_reasons, and all other vCPUs will 10123 * block on acquiring apicv_update_lock so that vCPUs can't 10124 * redo svm_vcpu_run() without seeing the new inhibit state. 10125 * 10126 * Note, holding apicv_update_lock and taking it in the read 10127 * side (handling the request) also prevents other vCPUs from 10128 * servicing the request with a stale apicv_inhibit_reasons. 10129 */ 10130 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10131 kvm->arch.apicv_inhibit_reasons = new; 10132 if (new) { 10133 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10134 int idx = srcu_read_lock(&kvm->srcu); 10135 10136 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10137 srcu_read_unlock(&kvm->srcu, idx); 10138 } 10139 } else { 10140 kvm->arch.apicv_inhibit_reasons = new; 10141 } 10142 } 10143 10144 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10145 enum kvm_apicv_inhibit reason, bool set) 10146 { 10147 if (!enable_apicv) 10148 return; 10149 10150 down_write(&kvm->arch.apicv_update_lock); 10151 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10152 up_write(&kvm->arch.apicv_update_lock); 10153 } 10154 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10155 10156 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10157 { 10158 if (!kvm_apic_present(vcpu)) 10159 return; 10160 10161 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10162 10163 if (irqchip_split(vcpu->kvm)) 10164 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10165 else { 10166 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10167 if (ioapic_in_kernel(vcpu->kvm)) 10168 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10169 } 10170 10171 if (is_guest_mode(vcpu)) 10172 vcpu->arch.load_eoi_exitmap_pending = true; 10173 else 10174 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10175 } 10176 10177 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10178 { 10179 u64 eoi_exit_bitmap[4]; 10180 10181 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10182 return; 10183 10184 if (to_hv_vcpu(vcpu)) { 10185 bitmap_or((ulong *)eoi_exit_bitmap, 10186 vcpu->arch.ioapic_handled_vectors, 10187 to_hv_synic(vcpu)->vec_bitmap, 256); 10188 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10189 return; 10190 } 10191 10192 static_call_cond(kvm_x86_load_eoi_exitmap)( 10193 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10194 } 10195 10196 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10197 unsigned long start, unsigned long end) 10198 { 10199 unsigned long apic_address; 10200 10201 /* 10202 * The physical address of apic access page is stored in the VMCS. 10203 * Update it when it becomes invalid. 10204 */ 10205 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10206 if (start <= apic_address && apic_address < end) 10207 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10208 } 10209 10210 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10211 { 10212 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10213 } 10214 10215 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10216 { 10217 if (!lapic_in_kernel(vcpu)) 10218 return; 10219 10220 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10221 } 10222 10223 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10224 { 10225 smp_send_reschedule(vcpu->cpu); 10226 } 10227 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10228 10229 /* 10230 * Called within kvm->srcu read side. 10231 * Returns 1 to let vcpu_run() continue the guest execution loop without 10232 * exiting to the userspace. Otherwise, the value will be returned to the 10233 * userspace. 10234 */ 10235 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10236 { 10237 int r; 10238 bool req_int_win = 10239 dm_request_for_irq_injection(vcpu) && 10240 kvm_cpu_accept_dm_intr(vcpu); 10241 fastpath_t exit_fastpath; 10242 10243 bool req_immediate_exit = false; 10244 10245 if (kvm_request_pending(vcpu)) { 10246 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10247 r = -EIO; 10248 goto out; 10249 } 10250 10251 if (kvm_dirty_ring_check_request(vcpu)) { 10252 r = 0; 10253 goto out; 10254 } 10255 10256 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10257 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10258 r = 0; 10259 goto out; 10260 } 10261 } 10262 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10263 kvm_mmu_free_obsolete_roots(vcpu); 10264 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10265 __kvm_migrate_timers(vcpu); 10266 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10267 kvm_update_masterclock(vcpu->kvm); 10268 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10269 kvm_gen_kvmclock_update(vcpu); 10270 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10271 r = kvm_guest_time_update(vcpu); 10272 if (unlikely(r)) 10273 goto out; 10274 } 10275 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10276 kvm_mmu_sync_roots(vcpu); 10277 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10278 kvm_mmu_load_pgd(vcpu); 10279 10280 /* 10281 * Note, the order matters here, as flushing "all" TLB entries 10282 * also flushes the "current" TLB entries, i.e. servicing the 10283 * flush "all" will clear any request to flush "current". 10284 */ 10285 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10286 kvm_vcpu_flush_tlb_all(vcpu); 10287 10288 kvm_service_local_tlb_flush_requests(vcpu); 10289 10290 /* 10291 * Fall back to a "full" guest flush if Hyper-V's precise 10292 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10293 * the flushes are considered "remote" and not "local" because 10294 * the requests can be initiated from other vCPUs. 10295 */ 10296 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10297 kvm_hv_vcpu_flush_tlb(vcpu)) 10298 kvm_vcpu_flush_tlb_guest(vcpu); 10299 10300 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10301 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10302 r = 0; 10303 goto out; 10304 } 10305 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10306 if (is_guest_mode(vcpu)) 10307 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10308 10309 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10310 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10311 vcpu->mmio_needed = 0; 10312 r = 0; 10313 goto out; 10314 } 10315 } 10316 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10317 /* Page is swapped out. Do synthetic halt */ 10318 vcpu->arch.apf.halted = true; 10319 r = 1; 10320 goto out; 10321 } 10322 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10323 record_steal_time(vcpu); 10324 #ifdef CONFIG_KVM_SMM 10325 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10326 process_smi(vcpu); 10327 #endif 10328 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10329 process_nmi(vcpu); 10330 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10331 kvm_pmu_handle_event(vcpu); 10332 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10333 kvm_pmu_deliver_pmi(vcpu); 10334 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10335 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10336 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10337 vcpu->arch.ioapic_handled_vectors)) { 10338 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10339 vcpu->run->eoi.vector = 10340 vcpu->arch.pending_ioapic_eoi; 10341 r = 0; 10342 goto out; 10343 } 10344 } 10345 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10346 vcpu_scan_ioapic(vcpu); 10347 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10348 vcpu_load_eoi_exitmap(vcpu); 10349 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10350 kvm_vcpu_reload_apic_access_page(vcpu); 10351 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10352 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10353 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10354 vcpu->run->system_event.ndata = 0; 10355 r = 0; 10356 goto out; 10357 } 10358 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10359 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10360 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10361 vcpu->run->system_event.ndata = 0; 10362 r = 0; 10363 goto out; 10364 } 10365 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10366 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10367 10368 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10369 vcpu->run->hyperv = hv_vcpu->exit; 10370 r = 0; 10371 goto out; 10372 } 10373 10374 /* 10375 * KVM_REQ_HV_STIMER has to be processed after 10376 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10377 * depend on the guest clock being up-to-date 10378 */ 10379 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10380 kvm_hv_process_stimers(vcpu); 10381 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10382 kvm_vcpu_update_apicv(vcpu); 10383 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10384 kvm_check_async_pf_completion(vcpu); 10385 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10386 static_call(kvm_x86_msr_filter_changed)(vcpu); 10387 10388 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10389 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10390 } 10391 10392 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10393 kvm_xen_has_interrupt(vcpu)) { 10394 ++vcpu->stat.req_event; 10395 r = kvm_apic_accept_events(vcpu); 10396 if (r < 0) { 10397 r = 0; 10398 goto out; 10399 } 10400 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10401 r = 1; 10402 goto out; 10403 } 10404 10405 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10406 if (r < 0) { 10407 r = 0; 10408 goto out; 10409 } 10410 if (req_int_win) 10411 static_call(kvm_x86_enable_irq_window)(vcpu); 10412 10413 if (kvm_lapic_enabled(vcpu)) { 10414 update_cr8_intercept(vcpu); 10415 kvm_lapic_sync_to_vapic(vcpu); 10416 } 10417 } 10418 10419 r = kvm_mmu_reload(vcpu); 10420 if (unlikely(r)) { 10421 goto cancel_injection; 10422 } 10423 10424 preempt_disable(); 10425 10426 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10427 10428 /* 10429 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10430 * IPI are then delayed after guest entry, which ensures that they 10431 * result in virtual interrupt delivery. 10432 */ 10433 local_irq_disable(); 10434 10435 /* Store vcpu->apicv_active before vcpu->mode. */ 10436 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10437 10438 kvm_vcpu_srcu_read_unlock(vcpu); 10439 10440 /* 10441 * 1) We should set ->mode before checking ->requests. Please see 10442 * the comment in kvm_vcpu_exiting_guest_mode(). 10443 * 10444 * 2) For APICv, we should set ->mode before checking PID.ON. This 10445 * pairs with the memory barrier implicit in pi_test_and_set_on 10446 * (see vmx_deliver_posted_interrupt). 10447 * 10448 * 3) This also orders the write to mode from any reads to the page 10449 * tables done while the VCPU is running. Please see the comment 10450 * in kvm_flush_remote_tlbs. 10451 */ 10452 smp_mb__after_srcu_read_unlock(); 10453 10454 /* 10455 * Process pending posted interrupts to handle the case where the 10456 * notification IRQ arrived in the host, or was never sent (because the 10457 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10458 * status, KVM doesn't update assigned devices when APICv is inhibited, 10459 * i.e. they can post interrupts even if APICv is temporarily disabled. 10460 */ 10461 if (kvm_lapic_enabled(vcpu)) 10462 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10463 10464 if (kvm_vcpu_exit_request(vcpu)) { 10465 vcpu->mode = OUTSIDE_GUEST_MODE; 10466 smp_wmb(); 10467 local_irq_enable(); 10468 preempt_enable(); 10469 kvm_vcpu_srcu_read_lock(vcpu); 10470 r = 1; 10471 goto cancel_injection; 10472 } 10473 10474 if (req_immediate_exit) { 10475 kvm_make_request(KVM_REQ_EVENT, vcpu); 10476 static_call(kvm_x86_request_immediate_exit)(vcpu); 10477 } 10478 10479 fpregs_assert_state_consistent(); 10480 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10481 switch_fpu_return(); 10482 10483 if (vcpu->arch.guest_fpu.xfd_err) 10484 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10485 10486 if (unlikely(vcpu->arch.switch_db_regs)) { 10487 set_debugreg(0, 7); 10488 set_debugreg(vcpu->arch.eff_db[0], 0); 10489 set_debugreg(vcpu->arch.eff_db[1], 1); 10490 set_debugreg(vcpu->arch.eff_db[2], 2); 10491 set_debugreg(vcpu->arch.eff_db[3], 3); 10492 } else if (unlikely(hw_breakpoint_active())) { 10493 set_debugreg(0, 7); 10494 } 10495 10496 guest_timing_enter_irqoff(); 10497 10498 for (;;) { 10499 /* 10500 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10501 * update must kick and wait for all vCPUs before toggling the 10502 * per-VM state, and responsing vCPUs must wait for the update 10503 * to complete before servicing KVM_REQ_APICV_UPDATE. 10504 */ 10505 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10506 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10507 10508 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10509 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10510 break; 10511 10512 if (kvm_lapic_enabled(vcpu)) 10513 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10514 10515 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10516 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10517 break; 10518 } 10519 } 10520 10521 /* 10522 * Do this here before restoring debug registers on the host. And 10523 * since we do this before handling the vmexit, a DR access vmexit 10524 * can (a) read the correct value of the debug registers, (b) set 10525 * KVM_DEBUGREG_WONT_EXIT again. 10526 */ 10527 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10528 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10529 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10530 kvm_update_dr0123(vcpu); 10531 kvm_update_dr7(vcpu); 10532 } 10533 10534 /* 10535 * If the guest has used debug registers, at least dr7 10536 * will be disabled while returning to the host. 10537 * If we don't have active breakpoints in the host, we don't 10538 * care about the messed up debug address registers. But if 10539 * we have some of them active, restore the old state. 10540 */ 10541 if (hw_breakpoint_active()) 10542 hw_breakpoint_restore(); 10543 10544 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10545 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10546 10547 vcpu->mode = OUTSIDE_GUEST_MODE; 10548 smp_wmb(); 10549 10550 /* 10551 * Sync xfd before calling handle_exit_irqoff() which may 10552 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10553 * in #NM irqoff handler). 10554 */ 10555 if (vcpu->arch.xfd_no_write_intercept) 10556 fpu_sync_guest_vmexit_xfd_state(); 10557 10558 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10559 10560 if (vcpu->arch.guest_fpu.xfd_err) 10561 wrmsrl(MSR_IA32_XFD_ERR, 0); 10562 10563 /* 10564 * Consume any pending interrupts, including the possible source of 10565 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10566 * An instruction is required after local_irq_enable() to fully unblock 10567 * interrupts on processors that implement an interrupt shadow, the 10568 * stat.exits increment will do nicely. 10569 */ 10570 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10571 local_irq_enable(); 10572 ++vcpu->stat.exits; 10573 local_irq_disable(); 10574 kvm_after_interrupt(vcpu); 10575 10576 /* 10577 * Wait until after servicing IRQs to account guest time so that any 10578 * ticks that occurred while running the guest are properly accounted 10579 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10580 * of accounting via context tracking, but the loss of accuracy is 10581 * acceptable for all known use cases. 10582 */ 10583 guest_timing_exit_irqoff(); 10584 10585 local_irq_enable(); 10586 preempt_enable(); 10587 10588 kvm_vcpu_srcu_read_lock(vcpu); 10589 10590 /* 10591 * Profile KVM exit RIPs: 10592 */ 10593 if (unlikely(prof_on == KVM_PROFILING)) { 10594 unsigned long rip = kvm_rip_read(vcpu); 10595 profile_hit(KVM_PROFILING, (void *)rip); 10596 } 10597 10598 if (unlikely(vcpu->arch.tsc_always_catchup)) 10599 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10600 10601 if (vcpu->arch.apic_attention) 10602 kvm_lapic_sync_from_vapic(vcpu); 10603 10604 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10605 return r; 10606 10607 cancel_injection: 10608 if (req_immediate_exit) 10609 kvm_make_request(KVM_REQ_EVENT, vcpu); 10610 static_call(kvm_x86_cancel_injection)(vcpu); 10611 if (unlikely(vcpu->arch.apic_attention)) 10612 kvm_lapic_sync_from_vapic(vcpu); 10613 out: 10614 return r; 10615 } 10616 10617 /* Called within kvm->srcu read side. */ 10618 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10619 { 10620 bool hv_timer; 10621 10622 if (!kvm_arch_vcpu_runnable(vcpu)) { 10623 /* 10624 * Switch to the software timer before halt-polling/blocking as 10625 * the guest's timer may be a break event for the vCPU, and the 10626 * hypervisor timer runs only when the CPU is in guest mode. 10627 * Switch before halt-polling so that KVM recognizes an expired 10628 * timer before blocking. 10629 */ 10630 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10631 if (hv_timer) 10632 kvm_lapic_switch_to_sw_timer(vcpu); 10633 10634 kvm_vcpu_srcu_read_unlock(vcpu); 10635 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10636 kvm_vcpu_halt(vcpu); 10637 else 10638 kvm_vcpu_block(vcpu); 10639 kvm_vcpu_srcu_read_lock(vcpu); 10640 10641 if (hv_timer) 10642 kvm_lapic_switch_to_hv_timer(vcpu); 10643 10644 /* 10645 * If the vCPU is not runnable, a signal or another host event 10646 * of some kind is pending; service it without changing the 10647 * vCPU's activity state. 10648 */ 10649 if (!kvm_arch_vcpu_runnable(vcpu)) 10650 return 1; 10651 } 10652 10653 /* 10654 * Evaluate nested events before exiting the halted state. This allows 10655 * the halt state to be recorded properly in the VMCS12's activity 10656 * state field (AMD does not have a similar field and a VM-Exit always 10657 * causes a spurious wakeup from HLT). 10658 */ 10659 if (is_guest_mode(vcpu)) { 10660 if (kvm_check_nested_events(vcpu) < 0) 10661 return 0; 10662 } 10663 10664 if (kvm_apic_accept_events(vcpu) < 0) 10665 return 0; 10666 switch(vcpu->arch.mp_state) { 10667 case KVM_MP_STATE_HALTED: 10668 case KVM_MP_STATE_AP_RESET_HOLD: 10669 vcpu->arch.pv.pv_unhalted = false; 10670 vcpu->arch.mp_state = 10671 KVM_MP_STATE_RUNNABLE; 10672 fallthrough; 10673 case KVM_MP_STATE_RUNNABLE: 10674 vcpu->arch.apf.halted = false; 10675 break; 10676 case KVM_MP_STATE_INIT_RECEIVED: 10677 break; 10678 default: 10679 WARN_ON_ONCE(1); 10680 break; 10681 } 10682 return 1; 10683 } 10684 10685 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10686 { 10687 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10688 !vcpu->arch.apf.halted); 10689 } 10690 10691 /* Called within kvm->srcu read side. */ 10692 static int vcpu_run(struct kvm_vcpu *vcpu) 10693 { 10694 int r; 10695 10696 vcpu->arch.l1tf_flush_l1d = true; 10697 10698 for (;;) { 10699 /* 10700 * If another guest vCPU requests a PV TLB flush in the middle 10701 * of instruction emulation, the rest of the emulation could 10702 * use a stale page translation. Assume that any code after 10703 * this point can start executing an instruction. 10704 */ 10705 vcpu->arch.at_instruction_boundary = false; 10706 if (kvm_vcpu_running(vcpu)) { 10707 r = vcpu_enter_guest(vcpu); 10708 } else { 10709 r = vcpu_block(vcpu); 10710 } 10711 10712 if (r <= 0) 10713 break; 10714 10715 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10716 if (kvm_xen_has_pending_events(vcpu)) 10717 kvm_xen_inject_pending_events(vcpu); 10718 10719 if (kvm_cpu_has_pending_timer(vcpu)) 10720 kvm_inject_pending_timer_irqs(vcpu); 10721 10722 if (dm_request_for_irq_injection(vcpu) && 10723 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10724 r = 0; 10725 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10726 ++vcpu->stat.request_irq_exits; 10727 break; 10728 } 10729 10730 if (__xfer_to_guest_mode_work_pending()) { 10731 kvm_vcpu_srcu_read_unlock(vcpu); 10732 r = xfer_to_guest_mode_handle_work(vcpu); 10733 kvm_vcpu_srcu_read_lock(vcpu); 10734 if (r) 10735 return r; 10736 } 10737 } 10738 10739 return r; 10740 } 10741 10742 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10743 { 10744 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10745 } 10746 10747 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10748 { 10749 BUG_ON(!vcpu->arch.pio.count); 10750 10751 return complete_emulated_io(vcpu); 10752 } 10753 10754 /* 10755 * Implements the following, as a state machine: 10756 * 10757 * read: 10758 * for each fragment 10759 * for each mmio piece in the fragment 10760 * write gpa, len 10761 * exit 10762 * copy data 10763 * execute insn 10764 * 10765 * write: 10766 * for each fragment 10767 * for each mmio piece in the fragment 10768 * write gpa, len 10769 * copy data 10770 * exit 10771 */ 10772 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10773 { 10774 struct kvm_run *run = vcpu->run; 10775 struct kvm_mmio_fragment *frag; 10776 unsigned len; 10777 10778 BUG_ON(!vcpu->mmio_needed); 10779 10780 /* Complete previous fragment */ 10781 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10782 len = min(8u, frag->len); 10783 if (!vcpu->mmio_is_write) 10784 memcpy(frag->data, run->mmio.data, len); 10785 10786 if (frag->len <= 8) { 10787 /* Switch to the next fragment. */ 10788 frag++; 10789 vcpu->mmio_cur_fragment++; 10790 } else { 10791 /* Go forward to the next mmio piece. */ 10792 frag->data += len; 10793 frag->gpa += len; 10794 frag->len -= len; 10795 } 10796 10797 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10798 vcpu->mmio_needed = 0; 10799 10800 /* FIXME: return into emulator if single-stepping. */ 10801 if (vcpu->mmio_is_write) 10802 return 1; 10803 vcpu->mmio_read_completed = 1; 10804 return complete_emulated_io(vcpu); 10805 } 10806 10807 run->exit_reason = KVM_EXIT_MMIO; 10808 run->mmio.phys_addr = frag->gpa; 10809 if (vcpu->mmio_is_write) 10810 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10811 run->mmio.len = min(8u, frag->len); 10812 run->mmio.is_write = vcpu->mmio_is_write; 10813 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10814 return 0; 10815 } 10816 10817 /* Swap (qemu) user FPU context for the guest FPU context. */ 10818 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10819 { 10820 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10821 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10822 trace_kvm_fpu(1); 10823 } 10824 10825 /* When vcpu_run ends, restore user space FPU context. */ 10826 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10827 { 10828 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10829 ++vcpu->stat.fpu_reload; 10830 trace_kvm_fpu(0); 10831 } 10832 10833 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10834 { 10835 struct kvm_queued_exception *ex = &vcpu->arch.exception; 10836 struct kvm_run *kvm_run = vcpu->run; 10837 int r; 10838 10839 vcpu_load(vcpu); 10840 kvm_sigset_activate(vcpu); 10841 kvm_run->flags = 0; 10842 kvm_load_guest_fpu(vcpu); 10843 10844 kvm_vcpu_srcu_read_lock(vcpu); 10845 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10846 if (kvm_run->immediate_exit) { 10847 r = -EINTR; 10848 goto out; 10849 } 10850 /* 10851 * It should be impossible for the hypervisor timer to be in 10852 * use before KVM has ever run the vCPU. 10853 */ 10854 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10855 10856 kvm_vcpu_srcu_read_unlock(vcpu); 10857 kvm_vcpu_block(vcpu); 10858 kvm_vcpu_srcu_read_lock(vcpu); 10859 10860 if (kvm_apic_accept_events(vcpu) < 0) { 10861 r = 0; 10862 goto out; 10863 } 10864 r = -EAGAIN; 10865 if (signal_pending(current)) { 10866 r = -EINTR; 10867 kvm_run->exit_reason = KVM_EXIT_INTR; 10868 ++vcpu->stat.signal_exits; 10869 } 10870 goto out; 10871 } 10872 10873 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10874 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10875 r = -EINVAL; 10876 goto out; 10877 } 10878 10879 if (kvm_run->kvm_dirty_regs) { 10880 r = sync_regs(vcpu); 10881 if (r != 0) 10882 goto out; 10883 } 10884 10885 /* re-sync apic's tpr */ 10886 if (!lapic_in_kernel(vcpu)) { 10887 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10888 r = -EINVAL; 10889 goto out; 10890 } 10891 } 10892 10893 /* 10894 * If userspace set a pending exception and L2 is active, convert it to 10895 * a pending VM-Exit if L1 wants to intercept the exception. 10896 */ 10897 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 10898 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 10899 ex->error_code)) { 10900 kvm_queue_exception_vmexit(vcpu, ex->vector, 10901 ex->has_error_code, ex->error_code, 10902 ex->has_payload, ex->payload); 10903 ex->injected = false; 10904 ex->pending = false; 10905 } 10906 vcpu->arch.exception_from_userspace = false; 10907 10908 if (unlikely(vcpu->arch.complete_userspace_io)) { 10909 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10910 vcpu->arch.complete_userspace_io = NULL; 10911 r = cui(vcpu); 10912 if (r <= 0) 10913 goto out; 10914 } else { 10915 WARN_ON_ONCE(vcpu->arch.pio.count); 10916 WARN_ON_ONCE(vcpu->mmio_needed); 10917 } 10918 10919 if (kvm_run->immediate_exit) { 10920 r = -EINTR; 10921 goto out; 10922 } 10923 10924 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10925 if (r <= 0) 10926 goto out; 10927 10928 r = vcpu_run(vcpu); 10929 10930 out: 10931 kvm_put_guest_fpu(vcpu); 10932 if (kvm_run->kvm_valid_regs) 10933 store_regs(vcpu); 10934 post_kvm_run_save(vcpu); 10935 kvm_vcpu_srcu_read_unlock(vcpu); 10936 10937 kvm_sigset_deactivate(vcpu); 10938 vcpu_put(vcpu); 10939 return r; 10940 } 10941 10942 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10943 { 10944 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10945 /* 10946 * We are here if userspace calls get_regs() in the middle of 10947 * instruction emulation. Registers state needs to be copied 10948 * back from emulation context to vcpu. Userspace shouldn't do 10949 * that usually, but some bad designed PV devices (vmware 10950 * backdoor interface) need this to work 10951 */ 10952 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10953 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10954 } 10955 regs->rax = kvm_rax_read(vcpu); 10956 regs->rbx = kvm_rbx_read(vcpu); 10957 regs->rcx = kvm_rcx_read(vcpu); 10958 regs->rdx = kvm_rdx_read(vcpu); 10959 regs->rsi = kvm_rsi_read(vcpu); 10960 regs->rdi = kvm_rdi_read(vcpu); 10961 regs->rsp = kvm_rsp_read(vcpu); 10962 regs->rbp = kvm_rbp_read(vcpu); 10963 #ifdef CONFIG_X86_64 10964 regs->r8 = kvm_r8_read(vcpu); 10965 regs->r9 = kvm_r9_read(vcpu); 10966 regs->r10 = kvm_r10_read(vcpu); 10967 regs->r11 = kvm_r11_read(vcpu); 10968 regs->r12 = kvm_r12_read(vcpu); 10969 regs->r13 = kvm_r13_read(vcpu); 10970 regs->r14 = kvm_r14_read(vcpu); 10971 regs->r15 = kvm_r15_read(vcpu); 10972 #endif 10973 10974 regs->rip = kvm_rip_read(vcpu); 10975 regs->rflags = kvm_get_rflags(vcpu); 10976 } 10977 10978 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10979 { 10980 vcpu_load(vcpu); 10981 __get_regs(vcpu, regs); 10982 vcpu_put(vcpu); 10983 return 0; 10984 } 10985 10986 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10987 { 10988 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10989 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10990 10991 kvm_rax_write(vcpu, regs->rax); 10992 kvm_rbx_write(vcpu, regs->rbx); 10993 kvm_rcx_write(vcpu, regs->rcx); 10994 kvm_rdx_write(vcpu, regs->rdx); 10995 kvm_rsi_write(vcpu, regs->rsi); 10996 kvm_rdi_write(vcpu, regs->rdi); 10997 kvm_rsp_write(vcpu, regs->rsp); 10998 kvm_rbp_write(vcpu, regs->rbp); 10999 #ifdef CONFIG_X86_64 11000 kvm_r8_write(vcpu, regs->r8); 11001 kvm_r9_write(vcpu, regs->r9); 11002 kvm_r10_write(vcpu, regs->r10); 11003 kvm_r11_write(vcpu, regs->r11); 11004 kvm_r12_write(vcpu, regs->r12); 11005 kvm_r13_write(vcpu, regs->r13); 11006 kvm_r14_write(vcpu, regs->r14); 11007 kvm_r15_write(vcpu, regs->r15); 11008 #endif 11009 11010 kvm_rip_write(vcpu, regs->rip); 11011 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11012 11013 vcpu->arch.exception.pending = false; 11014 vcpu->arch.exception_vmexit.pending = false; 11015 11016 kvm_make_request(KVM_REQ_EVENT, vcpu); 11017 } 11018 11019 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11020 { 11021 vcpu_load(vcpu); 11022 __set_regs(vcpu, regs); 11023 vcpu_put(vcpu); 11024 return 0; 11025 } 11026 11027 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11028 { 11029 struct desc_ptr dt; 11030 11031 if (vcpu->arch.guest_state_protected) 11032 goto skip_protected_regs; 11033 11034 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11035 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11036 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11037 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11038 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11039 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11040 11041 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11042 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11043 11044 static_call(kvm_x86_get_idt)(vcpu, &dt); 11045 sregs->idt.limit = dt.size; 11046 sregs->idt.base = dt.address; 11047 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11048 sregs->gdt.limit = dt.size; 11049 sregs->gdt.base = dt.address; 11050 11051 sregs->cr2 = vcpu->arch.cr2; 11052 sregs->cr3 = kvm_read_cr3(vcpu); 11053 11054 skip_protected_regs: 11055 sregs->cr0 = kvm_read_cr0(vcpu); 11056 sregs->cr4 = kvm_read_cr4(vcpu); 11057 sregs->cr8 = kvm_get_cr8(vcpu); 11058 sregs->efer = vcpu->arch.efer; 11059 sregs->apic_base = kvm_get_apic_base(vcpu); 11060 } 11061 11062 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11063 { 11064 __get_sregs_common(vcpu, sregs); 11065 11066 if (vcpu->arch.guest_state_protected) 11067 return; 11068 11069 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11070 set_bit(vcpu->arch.interrupt.nr, 11071 (unsigned long *)sregs->interrupt_bitmap); 11072 } 11073 11074 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11075 { 11076 int i; 11077 11078 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11079 11080 if (vcpu->arch.guest_state_protected) 11081 return; 11082 11083 if (is_pae_paging(vcpu)) { 11084 for (i = 0 ; i < 4 ; i++) 11085 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11086 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11087 } 11088 } 11089 11090 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11091 struct kvm_sregs *sregs) 11092 { 11093 vcpu_load(vcpu); 11094 __get_sregs(vcpu, sregs); 11095 vcpu_put(vcpu); 11096 return 0; 11097 } 11098 11099 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11100 struct kvm_mp_state *mp_state) 11101 { 11102 int r; 11103 11104 vcpu_load(vcpu); 11105 if (kvm_mpx_supported()) 11106 kvm_load_guest_fpu(vcpu); 11107 11108 r = kvm_apic_accept_events(vcpu); 11109 if (r < 0) 11110 goto out; 11111 r = 0; 11112 11113 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11114 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11115 vcpu->arch.pv.pv_unhalted) 11116 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11117 else 11118 mp_state->mp_state = vcpu->arch.mp_state; 11119 11120 out: 11121 if (kvm_mpx_supported()) 11122 kvm_put_guest_fpu(vcpu); 11123 vcpu_put(vcpu); 11124 return r; 11125 } 11126 11127 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11128 struct kvm_mp_state *mp_state) 11129 { 11130 int ret = -EINVAL; 11131 11132 vcpu_load(vcpu); 11133 11134 switch (mp_state->mp_state) { 11135 case KVM_MP_STATE_UNINITIALIZED: 11136 case KVM_MP_STATE_HALTED: 11137 case KVM_MP_STATE_AP_RESET_HOLD: 11138 case KVM_MP_STATE_INIT_RECEIVED: 11139 case KVM_MP_STATE_SIPI_RECEIVED: 11140 if (!lapic_in_kernel(vcpu)) 11141 goto out; 11142 break; 11143 11144 case KVM_MP_STATE_RUNNABLE: 11145 break; 11146 11147 default: 11148 goto out; 11149 } 11150 11151 /* 11152 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11153 * forcing the guest into INIT/SIPI if those events are supposed to be 11154 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11155 * if an SMI is pending as well. 11156 */ 11157 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11158 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11159 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11160 goto out; 11161 11162 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11163 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11164 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11165 } else 11166 vcpu->arch.mp_state = mp_state->mp_state; 11167 kvm_make_request(KVM_REQ_EVENT, vcpu); 11168 11169 ret = 0; 11170 out: 11171 vcpu_put(vcpu); 11172 return ret; 11173 } 11174 11175 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11176 int reason, bool has_error_code, u32 error_code) 11177 { 11178 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11179 int ret; 11180 11181 init_emulate_ctxt(vcpu); 11182 11183 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11184 has_error_code, error_code); 11185 if (ret) { 11186 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11187 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11188 vcpu->run->internal.ndata = 0; 11189 return 0; 11190 } 11191 11192 kvm_rip_write(vcpu, ctxt->eip); 11193 kvm_set_rflags(vcpu, ctxt->eflags); 11194 return 1; 11195 } 11196 EXPORT_SYMBOL_GPL(kvm_task_switch); 11197 11198 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11199 { 11200 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11201 /* 11202 * When EFER.LME and CR0.PG are set, the processor is in 11203 * 64-bit mode (though maybe in a 32-bit code segment). 11204 * CR4.PAE and EFER.LMA must be set. 11205 */ 11206 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11207 return false; 11208 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11209 return false; 11210 } else { 11211 /* 11212 * Not in 64-bit mode: EFER.LMA is clear and the code 11213 * segment cannot be 64-bit. 11214 */ 11215 if (sregs->efer & EFER_LMA || sregs->cs.l) 11216 return false; 11217 } 11218 11219 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11220 } 11221 11222 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11223 int *mmu_reset_needed, bool update_pdptrs) 11224 { 11225 struct msr_data apic_base_msr; 11226 int idx; 11227 struct desc_ptr dt; 11228 11229 if (!kvm_is_valid_sregs(vcpu, sregs)) 11230 return -EINVAL; 11231 11232 apic_base_msr.data = sregs->apic_base; 11233 apic_base_msr.host_initiated = true; 11234 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11235 return -EINVAL; 11236 11237 if (vcpu->arch.guest_state_protected) 11238 return 0; 11239 11240 dt.size = sregs->idt.limit; 11241 dt.address = sregs->idt.base; 11242 static_call(kvm_x86_set_idt)(vcpu, &dt); 11243 dt.size = sregs->gdt.limit; 11244 dt.address = sregs->gdt.base; 11245 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11246 11247 vcpu->arch.cr2 = sregs->cr2; 11248 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11249 vcpu->arch.cr3 = sregs->cr3; 11250 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11251 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11252 11253 kvm_set_cr8(vcpu, sregs->cr8); 11254 11255 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11256 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11257 11258 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11259 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11260 vcpu->arch.cr0 = sregs->cr0; 11261 11262 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11263 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11264 11265 if (update_pdptrs) { 11266 idx = srcu_read_lock(&vcpu->kvm->srcu); 11267 if (is_pae_paging(vcpu)) { 11268 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11269 *mmu_reset_needed = 1; 11270 } 11271 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11272 } 11273 11274 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11275 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11276 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11277 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11278 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11279 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11280 11281 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11282 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11283 11284 update_cr8_intercept(vcpu); 11285 11286 /* Older userspace won't unhalt the vcpu on reset. */ 11287 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11288 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11289 !is_protmode(vcpu)) 11290 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11291 11292 return 0; 11293 } 11294 11295 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11296 { 11297 int pending_vec, max_bits; 11298 int mmu_reset_needed = 0; 11299 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11300 11301 if (ret) 11302 return ret; 11303 11304 if (mmu_reset_needed) 11305 kvm_mmu_reset_context(vcpu); 11306 11307 max_bits = KVM_NR_INTERRUPTS; 11308 pending_vec = find_first_bit( 11309 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11310 11311 if (pending_vec < max_bits) { 11312 kvm_queue_interrupt(vcpu, pending_vec, false); 11313 pr_debug("Set back pending irq %d\n", pending_vec); 11314 kvm_make_request(KVM_REQ_EVENT, vcpu); 11315 } 11316 return 0; 11317 } 11318 11319 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11320 { 11321 int mmu_reset_needed = 0; 11322 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11323 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11324 !(sregs2->efer & EFER_LMA); 11325 int i, ret; 11326 11327 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11328 return -EINVAL; 11329 11330 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11331 return -EINVAL; 11332 11333 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11334 &mmu_reset_needed, !valid_pdptrs); 11335 if (ret) 11336 return ret; 11337 11338 if (valid_pdptrs) { 11339 for (i = 0; i < 4 ; i++) 11340 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11341 11342 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11343 mmu_reset_needed = 1; 11344 vcpu->arch.pdptrs_from_userspace = true; 11345 } 11346 if (mmu_reset_needed) 11347 kvm_mmu_reset_context(vcpu); 11348 return 0; 11349 } 11350 11351 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11352 struct kvm_sregs *sregs) 11353 { 11354 int ret; 11355 11356 vcpu_load(vcpu); 11357 ret = __set_sregs(vcpu, sregs); 11358 vcpu_put(vcpu); 11359 return ret; 11360 } 11361 11362 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11363 { 11364 bool set = false; 11365 struct kvm_vcpu *vcpu; 11366 unsigned long i; 11367 11368 if (!enable_apicv) 11369 return; 11370 11371 down_write(&kvm->arch.apicv_update_lock); 11372 11373 kvm_for_each_vcpu(i, vcpu, kvm) { 11374 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11375 set = true; 11376 break; 11377 } 11378 } 11379 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11380 up_write(&kvm->arch.apicv_update_lock); 11381 } 11382 11383 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11384 struct kvm_guest_debug *dbg) 11385 { 11386 unsigned long rflags; 11387 int i, r; 11388 11389 if (vcpu->arch.guest_state_protected) 11390 return -EINVAL; 11391 11392 vcpu_load(vcpu); 11393 11394 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11395 r = -EBUSY; 11396 if (kvm_is_exception_pending(vcpu)) 11397 goto out; 11398 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11399 kvm_queue_exception(vcpu, DB_VECTOR); 11400 else 11401 kvm_queue_exception(vcpu, BP_VECTOR); 11402 } 11403 11404 /* 11405 * Read rflags as long as potentially injected trace flags are still 11406 * filtered out. 11407 */ 11408 rflags = kvm_get_rflags(vcpu); 11409 11410 vcpu->guest_debug = dbg->control; 11411 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11412 vcpu->guest_debug = 0; 11413 11414 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11415 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11416 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11417 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11418 } else { 11419 for (i = 0; i < KVM_NR_DB_REGS; i++) 11420 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11421 } 11422 kvm_update_dr7(vcpu); 11423 11424 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11425 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11426 11427 /* 11428 * Trigger an rflags update that will inject or remove the trace 11429 * flags. 11430 */ 11431 kvm_set_rflags(vcpu, rflags); 11432 11433 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11434 11435 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11436 11437 r = 0; 11438 11439 out: 11440 vcpu_put(vcpu); 11441 return r; 11442 } 11443 11444 /* 11445 * Translate a guest virtual address to a guest physical address. 11446 */ 11447 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11448 struct kvm_translation *tr) 11449 { 11450 unsigned long vaddr = tr->linear_address; 11451 gpa_t gpa; 11452 int idx; 11453 11454 vcpu_load(vcpu); 11455 11456 idx = srcu_read_lock(&vcpu->kvm->srcu); 11457 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11458 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11459 tr->physical_address = gpa; 11460 tr->valid = gpa != INVALID_GPA; 11461 tr->writeable = 1; 11462 tr->usermode = 0; 11463 11464 vcpu_put(vcpu); 11465 return 0; 11466 } 11467 11468 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11469 { 11470 struct fxregs_state *fxsave; 11471 11472 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11473 return 0; 11474 11475 vcpu_load(vcpu); 11476 11477 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11478 memcpy(fpu->fpr, fxsave->st_space, 128); 11479 fpu->fcw = fxsave->cwd; 11480 fpu->fsw = fxsave->swd; 11481 fpu->ftwx = fxsave->twd; 11482 fpu->last_opcode = fxsave->fop; 11483 fpu->last_ip = fxsave->rip; 11484 fpu->last_dp = fxsave->rdp; 11485 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11486 11487 vcpu_put(vcpu); 11488 return 0; 11489 } 11490 11491 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11492 { 11493 struct fxregs_state *fxsave; 11494 11495 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11496 return 0; 11497 11498 vcpu_load(vcpu); 11499 11500 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11501 11502 memcpy(fxsave->st_space, fpu->fpr, 128); 11503 fxsave->cwd = fpu->fcw; 11504 fxsave->swd = fpu->fsw; 11505 fxsave->twd = fpu->ftwx; 11506 fxsave->fop = fpu->last_opcode; 11507 fxsave->rip = fpu->last_ip; 11508 fxsave->rdp = fpu->last_dp; 11509 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11510 11511 vcpu_put(vcpu); 11512 return 0; 11513 } 11514 11515 static void store_regs(struct kvm_vcpu *vcpu) 11516 { 11517 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11518 11519 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11520 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11521 11522 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11523 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11524 11525 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11526 kvm_vcpu_ioctl_x86_get_vcpu_events( 11527 vcpu, &vcpu->run->s.regs.events); 11528 } 11529 11530 static int sync_regs(struct kvm_vcpu *vcpu) 11531 { 11532 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11533 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11534 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11535 } 11536 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11537 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11538 return -EINVAL; 11539 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11540 } 11541 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11542 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11543 vcpu, &vcpu->run->s.regs.events)) 11544 return -EINVAL; 11545 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11546 } 11547 11548 return 0; 11549 } 11550 11551 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11552 { 11553 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11554 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11555 "guest TSC will not be reliable\n"); 11556 11557 if (!kvm->arch.max_vcpu_ids) 11558 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11559 11560 if (id >= kvm->arch.max_vcpu_ids) 11561 return -EINVAL; 11562 11563 return static_call(kvm_x86_vcpu_precreate)(kvm); 11564 } 11565 11566 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11567 { 11568 struct page *page; 11569 int r; 11570 11571 vcpu->arch.last_vmentry_cpu = -1; 11572 vcpu->arch.regs_avail = ~0; 11573 vcpu->arch.regs_dirty = ~0; 11574 11575 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11576 11577 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11578 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11579 else 11580 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11581 11582 r = kvm_mmu_create(vcpu); 11583 if (r < 0) 11584 return r; 11585 11586 if (irqchip_in_kernel(vcpu->kvm)) { 11587 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11588 if (r < 0) 11589 goto fail_mmu_destroy; 11590 11591 /* 11592 * Defer evaluating inhibits until the vCPU is first run, as 11593 * this vCPU will not get notified of any changes until this 11594 * vCPU is visible to other vCPUs (marked online and added to 11595 * the set of vCPUs). Opportunistically mark APICv active as 11596 * VMX in particularly is highly unlikely to have inhibits. 11597 * Ignore the current per-VM APICv state so that vCPU creation 11598 * is guaranteed to run with a deterministic value, the request 11599 * will ensure the vCPU gets the correct state before VM-Entry. 11600 */ 11601 if (enable_apicv) { 11602 vcpu->arch.apic->apicv_active = true; 11603 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11604 } 11605 } else 11606 static_branch_inc(&kvm_has_noapic_vcpu); 11607 11608 r = -ENOMEM; 11609 11610 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11611 if (!page) 11612 goto fail_free_lapic; 11613 vcpu->arch.pio_data = page_address(page); 11614 11615 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11616 GFP_KERNEL_ACCOUNT); 11617 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11618 GFP_KERNEL_ACCOUNT); 11619 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11620 goto fail_free_mce_banks; 11621 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11622 11623 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11624 GFP_KERNEL_ACCOUNT)) 11625 goto fail_free_mce_banks; 11626 11627 if (!alloc_emulate_ctxt(vcpu)) 11628 goto free_wbinvd_dirty_mask; 11629 11630 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11631 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11632 goto free_emulate_ctxt; 11633 } 11634 11635 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11636 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11637 11638 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11639 11640 kvm_async_pf_hash_reset(vcpu); 11641 11642 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11643 kvm_pmu_init(vcpu); 11644 11645 vcpu->arch.pending_external_vector = -1; 11646 vcpu->arch.preempted_in_kernel = false; 11647 11648 #if IS_ENABLED(CONFIG_HYPERV) 11649 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11650 #endif 11651 11652 r = static_call(kvm_x86_vcpu_create)(vcpu); 11653 if (r) 11654 goto free_guest_fpu; 11655 11656 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11657 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11658 kvm_xen_init_vcpu(vcpu); 11659 kvm_vcpu_mtrr_init(vcpu); 11660 vcpu_load(vcpu); 11661 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11662 kvm_vcpu_reset(vcpu, false); 11663 kvm_init_mmu(vcpu); 11664 vcpu_put(vcpu); 11665 return 0; 11666 11667 free_guest_fpu: 11668 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11669 free_emulate_ctxt: 11670 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11671 free_wbinvd_dirty_mask: 11672 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11673 fail_free_mce_banks: 11674 kfree(vcpu->arch.mce_banks); 11675 kfree(vcpu->arch.mci_ctl2_banks); 11676 free_page((unsigned long)vcpu->arch.pio_data); 11677 fail_free_lapic: 11678 kvm_free_lapic(vcpu); 11679 fail_mmu_destroy: 11680 kvm_mmu_destroy(vcpu); 11681 return r; 11682 } 11683 11684 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11685 { 11686 struct kvm *kvm = vcpu->kvm; 11687 11688 if (mutex_lock_killable(&vcpu->mutex)) 11689 return; 11690 vcpu_load(vcpu); 11691 kvm_synchronize_tsc(vcpu, 0); 11692 vcpu_put(vcpu); 11693 11694 /* poll control enabled by default */ 11695 vcpu->arch.msr_kvm_poll_control = 1; 11696 11697 mutex_unlock(&vcpu->mutex); 11698 11699 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11700 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11701 KVMCLOCK_SYNC_PERIOD); 11702 } 11703 11704 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11705 { 11706 int idx; 11707 11708 kvmclock_reset(vcpu); 11709 11710 static_call(kvm_x86_vcpu_free)(vcpu); 11711 11712 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11713 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11714 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11715 11716 kvm_xen_destroy_vcpu(vcpu); 11717 kvm_hv_vcpu_uninit(vcpu); 11718 kvm_pmu_destroy(vcpu); 11719 kfree(vcpu->arch.mce_banks); 11720 kfree(vcpu->arch.mci_ctl2_banks); 11721 kvm_free_lapic(vcpu); 11722 idx = srcu_read_lock(&vcpu->kvm->srcu); 11723 kvm_mmu_destroy(vcpu); 11724 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11725 free_page((unsigned long)vcpu->arch.pio_data); 11726 kvfree(vcpu->arch.cpuid_entries); 11727 if (!lapic_in_kernel(vcpu)) 11728 static_branch_dec(&kvm_has_noapic_vcpu); 11729 } 11730 11731 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11732 { 11733 struct kvm_cpuid_entry2 *cpuid_0x1; 11734 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11735 unsigned long new_cr0; 11736 11737 /* 11738 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11739 * to handle side effects. RESET emulation hits those flows and relies 11740 * on emulated/virtualized registers, including those that are loaded 11741 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11742 * to detect improper or missing initialization. 11743 */ 11744 WARN_ON_ONCE(!init_event && 11745 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11746 11747 /* 11748 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11749 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11750 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11751 * bits), i.e. virtualization is disabled. 11752 */ 11753 if (is_guest_mode(vcpu)) 11754 kvm_leave_nested(vcpu); 11755 11756 kvm_lapic_reset(vcpu, init_event); 11757 11758 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11759 vcpu->arch.hflags = 0; 11760 11761 vcpu->arch.smi_pending = 0; 11762 vcpu->arch.smi_count = 0; 11763 atomic_set(&vcpu->arch.nmi_queued, 0); 11764 vcpu->arch.nmi_pending = 0; 11765 vcpu->arch.nmi_injected = false; 11766 kvm_clear_interrupt_queue(vcpu); 11767 kvm_clear_exception_queue(vcpu); 11768 11769 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11770 kvm_update_dr0123(vcpu); 11771 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11772 vcpu->arch.dr7 = DR7_FIXED_1; 11773 kvm_update_dr7(vcpu); 11774 11775 vcpu->arch.cr2 = 0; 11776 11777 kvm_make_request(KVM_REQ_EVENT, vcpu); 11778 vcpu->arch.apf.msr_en_val = 0; 11779 vcpu->arch.apf.msr_int_val = 0; 11780 vcpu->arch.st.msr_val = 0; 11781 11782 kvmclock_reset(vcpu); 11783 11784 kvm_clear_async_pf_completion_queue(vcpu); 11785 kvm_async_pf_hash_reset(vcpu); 11786 vcpu->arch.apf.halted = false; 11787 11788 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11789 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11790 11791 /* 11792 * All paths that lead to INIT are required to load the guest's 11793 * FPU state (because most paths are buried in KVM_RUN). 11794 */ 11795 if (init_event) 11796 kvm_put_guest_fpu(vcpu); 11797 11798 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11799 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11800 11801 if (init_event) 11802 kvm_load_guest_fpu(vcpu); 11803 } 11804 11805 if (!init_event) { 11806 kvm_pmu_reset(vcpu); 11807 vcpu->arch.smbase = 0x30000; 11808 11809 vcpu->arch.msr_misc_features_enables = 0; 11810 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 11811 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 11812 11813 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11814 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11815 } 11816 11817 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11818 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11819 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11820 11821 /* 11822 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11823 * if no CPUID match is found. Note, it's impossible to get a match at 11824 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11825 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11826 * on RESET. But, go through the motions in case that's ever remedied. 11827 */ 11828 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 11829 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11830 11831 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11832 11833 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11834 kvm_rip_write(vcpu, 0xfff0); 11835 11836 vcpu->arch.cr3 = 0; 11837 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11838 11839 /* 11840 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11841 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11842 * (or qualify) that with a footnote stating that CD/NW are preserved. 11843 */ 11844 new_cr0 = X86_CR0_ET; 11845 if (init_event) 11846 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11847 else 11848 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11849 11850 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11851 static_call(kvm_x86_set_cr4)(vcpu, 0); 11852 static_call(kvm_x86_set_efer)(vcpu, 0); 11853 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11854 11855 /* 11856 * On the standard CR0/CR4/EFER modification paths, there are several 11857 * complex conditions determining whether the MMU has to be reset and/or 11858 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11859 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11860 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11861 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11862 */ 11863 if (old_cr0 & X86_CR0_PG) { 11864 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11865 kvm_mmu_reset_context(vcpu); 11866 } 11867 11868 /* 11869 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11870 * APM states the TLBs are untouched by INIT, but it also states that 11871 * the TLBs are flushed on "External initialization of the processor." 11872 * Flush the guest TLB regardless of vendor, there is no meaningful 11873 * benefit in relying on the guest to flush the TLB immediately after 11874 * INIT. A spurious TLB flush is benign and likely negligible from a 11875 * performance perspective. 11876 */ 11877 if (init_event) 11878 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11879 } 11880 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11881 11882 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11883 { 11884 struct kvm_segment cs; 11885 11886 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11887 cs.selector = vector << 8; 11888 cs.base = vector << 12; 11889 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11890 kvm_rip_write(vcpu, 0); 11891 } 11892 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11893 11894 int kvm_arch_hardware_enable(void) 11895 { 11896 struct kvm *kvm; 11897 struct kvm_vcpu *vcpu; 11898 unsigned long i; 11899 int ret; 11900 u64 local_tsc; 11901 u64 max_tsc = 0; 11902 bool stable, backwards_tsc = false; 11903 11904 kvm_user_return_msr_cpu_online(); 11905 ret = static_call(kvm_x86_hardware_enable)(); 11906 if (ret != 0) 11907 return ret; 11908 11909 local_tsc = rdtsc(); 11910 stable = !kvm_check_tsc_unstable(); 11911 list_for_each_entry(kvm, &vm_list, vm_list) { 11912 kvm_for_each_vcpu(i, vcpu, kvm) { 11913 if (!stable && vcpu->cpu == smp_processor_id()) 11914 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11915 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11916 backwards_tsc = true; 11917 if (vcpu->arch.last_host_tsc > max_tsc) 11918 max_tsc = vcpu->arch.last_host_tsc; 11919 } 11920 } 11921 } 11922 11923 /* 11924 * Sometimes, even reliable TSCs go backwards. This happens on 11925 * platforms that reset TSC during suspend or hibernate actions, but 11926 * maintain synchronization. We must compensate. Fortunately, we can 11927 * detect that condition here, which happens early in CPU bringup, 11928 * before any KVM threads can be running. Unfortunately, we can't 11929 * bring the TSCs fully up to date with real time, as we aren't yet far 11930 * enough into CPU bringup that we know how much real time has actually 11931 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11932 * variables that haven't been updated yet. 11933 * 11934 * So we simply find the maximum observed TSC above, then record the 11935 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11936 * the adjustment will be applied. Note that we accumulate 11937 * adjustments, in case multiple suspend cycles happen before some VCPU 11938 * gets a chance to run again. In the event that no KVM threads get a 11939 * chance to run, we will miss the entire elapsed period, as we'll have 11940 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11941 * loose cycle time. This isn't too big a deal, since the loss will be 11942 * uniform across all VCPUs (not to mention the scenario is extremely 11943 * unlikely). It is possible that a second hibernate recovery happens 11944 * much faster than a first, causing the observed TSC here to be 11945 * smaller; this would require additional padding adjustment, which is 11946 * why we set last_host_tsc to the local tsc observed here. 11947 * 11948 * N.B. - this code below runs only on platforms with reliable TSC, 11949 * as that is the only way backwards_tsc is set above. Also note 11950 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11951 * have the same delta_cyc adjustment applied if backwards_tsc 11952 * is detected. Note further, this adjustment is only done once, 11953 * as we reset last_host_tsc on all VCPUs to stop this from being 11954 * called multiple times (one for each physical CPU bringup). 11955 * 11956 * Platforms with unreliable TSCs don't have to deal with this, they 11957 * will be compensated by the logic in vcpu_load, which sets the TSC to 11958 * catchup mode. This will catchup all VCPUs to real time, but cannot 11959 * guarantee that they stay in perfect synchronization. 11960 */ 11961 if (backwards_tsc) { 11962 u64 delta_cyc = max_tsc - local_tsc; 11963 list_for_each_entry(kvm, &vm_list, vm_list) { 11964 kvm->arch.backwards_tsc_observed = true; 11965 kvm_for_each_vcpu(i, vcpu, kvm) { 11966 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11967 vcpu->arch.last_host_tsc = local_tsc; 11968 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11969 } 11970 11971 /* 11972 * We have to disable TSC offset matching.. if you were 11973 * booting a VM while issuing an S4 host suspend.... 11974 * you may have some problem. Solving this issue is 11975 * left as an exercise to the reader. 11976 */ 11977 kvm->arch.last_tsc_nsec = 0; 11978 kvm->arch.last_tsc_write = 0; 11979 } 11980 11981 } 11982 return 0; 11983 } 11984 11985 void kvm_arch_hardware_disable(void) 11986 { 11987 static_call(kvm_x86_hardware_disable)(); 11988 drop_user_return_notifiers(); 11989 } 11990 11991 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 11992 { 11993 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11994 11995 #define __KVM_X86_OP(func) \ 11996 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 11997 #define KVM_X86_OP(func) \ 11998 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 11999 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 12000 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 12001 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 12002 (void *)__static_call_return0); 12003 #include <asm/kvm-x86-ops.h> 12004 #undef __KVM_X86_OP 12005 12006 kvm_pmu_ops_update(ops->pmu_ops); 12007 } 12008 12009 int kvm_arch_hardware_setup(void *opaque) 12010 { 12011 struct kvm_x86_init_ops *ops = opaque; 12012 int r; 12013 12014 rdmsrl_safe(MSR_EFER, &host_efer); 12015 12016 if (boot_cpu_has(X86_FEATURE_XSAVES)) 12017 rdmsrl(MSR_IA32_XSS, host_xss); 12018 12019 kvm_init_pmu_capability(); 12020 12021 r = ops->hardware_setup(); 12022 if (r != 0) 12023 return r; 12024 12025 kvm_ops_update(ops); 12026 12027 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 12028 12029 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 12030 kvm_caps.supported_xss = 0; 12031 12032 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 12033 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 12034 #undef __kvm_cpu_cap_has 12035 12036 if (kvm_caps.has_tsc_control) { 12037 /* 12038 * Make sure the user can only configure tsc_khz values that 12039 * fit into a signed integer. 12040 * A min value is not calculated because it will always 12041 * be 1 on all machines. 12042 */ 12043 u64 max = min(0x7fffffffULL, 12044 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 12045 kvm_caps.max_guest_tsc_khz = max; 12046 } 12047 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 12048 kvm_init_msr_list(); 12049 return 0; 12050 } 12051 12052 void kvm_arch_hardware_unsetup(void) 12053 { 12054 kvm_unregister_perf_callbacks(); 12055 12056 static_call(kvm_x86_hardware_unsetup)(); 12057 } 12058 12059 int kvm_arch_check_processor_compat(void *opaque) 12060 { 12061 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 12062 struct kvm_x86_init_ops *ops = opaque; 12063 12064 WARN_ON(!irqs_disabled()); 12065 12066 if (__cr4_reserved_bits(cpu_has, c) != 12067 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 12068 return -EIO; 12069 12070 return ops->check_processor_compatibility(); 12071 } 12072 12073 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12074 { 12075 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12076 } 12077 12078 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12079 { 12080 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12081 } 12082 12083 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12084 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12085 12086 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12087 { 12088 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12089 12090 vcpu->arch.l1tf_flush_l1d = true; 12091 if (pmu->version && unlikely(pmu->event_count)) { 12092 pmu->need_cleanup = true; 12093 kvm_make_request(KVM_REQ_PMU, vcpu); 12094 } 12095 static_call(kvm_x86_sched_in)(vcpu, cpu); 12096 } 12097 12098 void kvm_arch_free_vm(struct kvm *kvm) 12099 { 12100 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12101 __kvm_arch_free_vm(kvm); 12102 } 12103 12104 12105 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12106 { 12107 int ret; 12108 unsigned long flags; 12109 12110 if (type) 12111 return -EINVAL; 12112 12113 ret = kvm_page_track_init(kvm); 12114 if (ret) 12115 goto out; 12116 12117 ret = kvm_mmu_init_vm(kvm); 12118 if (ret) 12119 goto out_page_track; 12120 12121 ret = static_call(kvm_x86_vm_init)(kvm); 12122 if (ret) 12123 goto out_uninit_mmu; 12124 12125 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12126 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12127 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12128 12129 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12130 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12131 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12132 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12133 &kvm->arch.irq_sources_bitmap); 12134 12135 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12136 mutex_init(&kvm->arch.apic_map_lock); 12137 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12138 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12139 12140 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12141 pvclock_update_vm_gtod_copy(kvm); 12142 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12143 12144 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12145 kvm->arch.guest_can_read_msr_platform_info = true; 12146 kvm->arch.enable_pmu = enable_pmu; 12147 12148 #if IS_ENABLED(CONFIG_HYPERV) 12149 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12150 kvm->arch.hv_root_tdp = INVALID_PAGE; 12151 #endif 12152 12153 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12154 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12155 12156 kvm_apicv_init(kvm); 12157 kvm_hv_init_vm(kvm); 12158 kvm_xen_init_vm(kvm); 12159 12160 return 0; 12161 12162 out_uninit_mmu: 12163 kvm_mmu_uninit_vm(kvm); 12164 out_page_track: 12165 kvm_page_track_cleanup(kvm); 12166 out: 12167 return ret; 12168 } 12169 12170 int kvm_arch_post_init_vm(struct kvm *kvm) 12171 { 12172 return kvm_mmu_post_init_vm(kvm); 12173 } 12174 12175 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12176 { 12177 vcpu_load(vcpu); 12178 kvm_mmu_unload(vcpu); 12179 vcpu_put(vcpu); 12180 } 12181 12182 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12183 { 12184 unsigned long i; 12185 struct kvm_vcpu *vcpu; 12186 12187 kvm_for_each_vcpu(i, vcpu, kvm) { 12188 kvm_clear_async_pf_completion_queue(vcpu); 12189 kvm_unload_vcpu_mmu(vcpu); 12190 } 12191 } 12192 12193 void kvm_arch_sync_events(struct kvm *kvm) 12194 { 12195 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12196 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12197 kvm_free_pit(kvm); 12198 } 12199 12200 /** 12201 * __x86_set_memory_region: Setup KVM internal memory slot 12202 * 12203 * @kvm: the kvm pointer to the VM. 12204 * @id: the slot ID to setup. 12205 * @gpa: the GPA to install the slot (unused when @size == 0). 12206 * @size: the size of the slot. Set to zero to uninstall a slot. 12207 * 12208 * This function helps to setup a KVM internal memory slot. Specify 12209 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12210 * slot. The return code can be one of the following: 12211 * 12212 * HVA: on success (uninstall will return a bogus HVA) 12213 * -errno: on error 12214 * 12215 * The caller should always use IS_ERR() to check the return value 12216 * before use. Note, the KVM internal memory slots are guaranteed to 12217 * remain valid and unchanged until the VM is destroyed, i.e., the 12218 * GPA->HVA translation will not change. However, the HVA is a user 12219 * address, i.e. its accessibility is not guaranteed, and must be 12220 * accessed via __copy_{to,from}_user(). 12221 */ 12222 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12223 u32 size) 12224 { 12225 int i, r; 12226 unsigned long hva, old_npages; 12227 struct kvm_memslots *slots = kvm_memslots(kvm); 12228 struct kvm_memory_slot *slot; 12229 12230 /* Called with kvm->slots_lock held. */ 12231 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12232 return ERR_PTR_USR(-EINVAL); 12233 12234 slot = id_to_memslot(slots, id); 12235 if (size) { 12236 if (slot && slot->npages) 12237 return ERR_PTR_USR(-EEXIST); 12238 12239 /* 12240 * MAP_SHARED to prevent internal slot pages from being moved 12241 * by fork()/COW. 12242 */ 12243 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12244 MAP_SHARED | MAP_ANONYMOUS, 0); 12245 if (IS_ERR((void *)hva)) 12246 return (void __user *)hva; 12247 } else { 12248 if (!slot || !slot->npages) 12249 return NULL; 12250 12251 old_npages = slot->npages; 12252 hva = slot->userspace_addr; 12253 } 12254 12255 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12256 struct kvm_userspace_memory_region m; 12257 12258 m.slot = id | (i << 16); 12259 m.flags = 0; 12260 m.guest_phys_addr = gpa; 12261 m.userspace_addr = hva; 12262 m.memory_size = size; 12263 r = __kvm_set_memory_region(kvm, &m); 12264 if (r < 0) 12265 return ERR_PTR_USR(r); 12266 } 12267 12268 if (!size) 12269 vm_munmap(hva, old_npages * PAGE_SIZE); 12270 12271 return (void __user *)hva; 12272 } 12273 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12274 12275 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12276 { 12277 kvm_mmu_pre_destroy_vm(kvm); 12278 } 12279 12280 void kvm_arch_destroy_vm(struct kvm *kvm) 12281 { 12282 if (current->mm == kvm->mm) { 12283 /* 12284 * Free memory regions allocated on behalf of userspace, 12285 * unless the memory map has changed due to process exit 12286 * or fd copying. 12287 */ 12288 mutex_lock(&kvm->slots_lock); 12289 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12290 0, 0); 12291 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12292 0, 0); 12293 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12294 mutex_unlock(&kvm->slots_lock); 12295 } 12296 kvm_unload_vcpu_mmus(kvm); 12297 static_call_cond(kvm_x86_vm_destroy)(kvm); 12298 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12299 kvm_pic_destroy(kvm); 12300 kvm_ioapic_destroy(kvm); 12301 kvm_destroy_vcpus(kvm); 12302 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12303 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12304 kvm_mmu_uninit_vm(kvm); 12305 kvm_page_track_cleanup(kvm); 12306 kvm_xen_destroy_vm(kvm); 12307 kvm_hv_destroy_vm(kvm); 12308 } 12309 12310 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12311 { 12312 int i; 12313 12314 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12315 kvfree(slot->arch.rmap[i]); 12316 slot->arch.rmap[i] = NULL; 12317 } 12318 } 12319 12320 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12321 { 12322 int i; 12323 12324 memslot_rmap_free(slot); 12325 12326 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12327 kvfree(slot->arch.lpage_info[i - 1]); 12328 slot->arch.lpage_info[i - 1] = NULL; 12329 } 12330 12331 kvm_page_track_free_memslot(slot); 12332 } 12333 12334 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12335 { 12336 const int sz = sizeof(*slot->arch.rmap[0]); 12337 int i; 12338 12339 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12340 int level = i + 1; 12341 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12342 12343 if (slot->arch.rmap[i]) 12344 continue; 12345 12346 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12347 if (!slot->arch.rmap[i]) { 12348 memslot_rmap_free(slot); 12349 return -ENOMEM; 12350 } 12351 } 12352 12353 return 0; 12354 } 12355 12356 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12357 struct kvm_memory_slot *slot) 12358 { 12359 unsigned long npages = slot->npages; 12360 int i, r; 12361 12362 /* 12363 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12364 * old arrays will be freed by __kvm_set_memory_region() if installing 12365 * the new memslot is successful. 12366 */ 12367 memset(&slot->arch, 0, sizeof(slot->arch)); 12368 12369 if (kvm_memslots_have_rmaps(kvm)) { 12370 r = memslot_rmap_alloc(slot, npages); 12371 if (r) 12372 return r; 12373 } 12374 12375 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12376 struct kvm_lpage_info *linfo; 12377 unsigned long ugfn; 12378 int lpages; 12379 int level = i + 1; 12380 12381 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12382 12383 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12384 if (!linfo) 12385 goto out_free; 12386 12387 slot->arch.lpage_info[i - 1] = linfo; 12388 12389 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12390 linfo[0].disallow_lpage = 1; 12391 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12392 linfo[lpages - 1].disallow_lpage = 1; 12393 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12394 /* 12395 * If the gfn and userspace address are not aligned wrt each 12396 * other, disable large page support for this slot. 12397 */ 12398 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12399 unsigned long j; 12400 12401 for (j = 0; j < lpages; ++j) 12402 linfo[j].disallow_lpage = 1; 12403 } 12404 } 12405 12406 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12407 goto out_free; 12408 12409 return 0; 12410 12411 out_free: 12412 memslot_rmap_free(slot); 12413 12414 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12415 kvfree(slot->arch.lpage_info[i - 1]); 12416 slot->arch.lpage_info[i - 1] = NULL; 12417 } 12418 return -ENOMEM; 12419 } 12420 12421 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12422 { 12423 struct kvm_vcpu *vcpu; 12424 unsigned long i; 12425 12426 /* 12427 * memslots->generation has been incremented. 12428 * mmio generation may have reached its maximum value. 12429 */ 12430 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12431 12432 /* Force re-initialization of steal_time cache */ 12433 kvm_for_each_vcpu(i, vcpu, kvm) 12434 kvm_vcpu_kick(vcpu); 12435 } 12436 12437 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12438 const struct kvm_memory_slot *old, 12439 struct kvm_memory_slot *new, 12440 enum kvm_mr_change change) 12441 { 12442 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12443 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12444 return -EINVAL; 12445 12446 return kvm_alloc_memslot_metadata(kvm, new); 12447 } 12448 12449 if (change == KVM_MR_FLAGS_ONLY) 12450 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12451 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12452 return -EIO; 12453 12454 return 0; 12455 } 12456 12457 12458 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12459 { 12460 struct kvm_arch *ka = &kvm->arch; 12461 12462 if (!kvm_x86_ops.cpu_dirty_log_size) 12463 return; 12464 12465 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12466 (!enable && --ka->cpu_dirty_logging_count == 0)) 12467 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12468 12469 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12470 } 12471 12472 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12473 struct kvm_memory_slot *old, 12474 const struct kvm_memory_slot *new, 12475 enum kvm_mr_change change) 12476 { 12477 u32 old_flags = old ? old->flags : 0; 12478 u32 new_flags = new ? new->flags : 0; 12479 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12480 12481 /* 12482 * Update CPU dirty logging if dirty logging is being toggled. This 12483 * applies to all operations. 12484 */ 12485 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12486 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12487 12488 /* 12489 * Nothing more to do for RO slots (which can't be dirtied and can't be 12490 * made writable) or CREATE/MOVE/DELETE of a slot. 12491 * 12492 * For a memslot with dirty logging disabled: 12493 * CREATE: No dirty mappings will already exist. 12494 * MOVE/DELETE: The old mappings will already have been cleaned up by 12495 * kvm_arch_flush_shadow_memslot() 12496 * 12497 * For a memslot with dirty logging enabled: 12498 * CREATE: No shadow pages exist, thus nothing to write-protect 12499 * and no dirty bits to clear. 12500 * MOVE/DELETE: The old mappings will already have been cleaned up by 12501 * kvm_arch_flush_shadow_memslot(). 12502 */ 12503 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12504 return; 12505 12506 /* 12507 * READONLY and non-flags changes were filtered out above, and the only 12508 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12509 * logging isn't being toggled on or off. 12510 */ 12511 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12512 return; 12513 12514 if (!log_dirty_pages) { 12515 /* 12516 * Dirty logging tracks sptes in 4k granularity, meaning that 12517 * large sptes have to be split. If live migration succeeds, 12518 * the guest in the source machine will be destroyed and large 12519 * sptes will be created in the destination. However, if the 12520 * guest continues to run in the source machine (for example if 12521 * live migration fails), small sptes will remain around and 12522 * cause bad performance. 12523 * 12524 * Scan sptes if dirty logging has been stopped, dropping those 12525 * which can be collapsed into a single large-page spte. Later 12526 * page faults will create the large-page sptes. 12527 */ 12528 kvm_mmu_zap_collapsible_sptes(kvm, new); 12529 } else { 12530 /* 12531 * Initially-all-set does not require write protecting any page, 12532 * because they're all assumed to be dirty. 12533 */ 12534 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12535 return; 12536 12537 if (READ_ONCE(eager_page_split)) 12538 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12539 12540 if (kvm_x86_ops.cpu_dirty_log_size) { 12541 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12542 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12543 } else { 12544 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12545 } 12546 12547 /* 12548 * Unconditionally flush the TLBs after enabling dirty logging. 12549 * A flush is almost always going to be necessary (see below), 12550 * and unconditionally flushing allows the helpers to omit 12551 * the subtly complex checks when removing write access. 12552 * 12553 * Do the flush outside of mmu_lock to reduce the amount of 12554 * time mmu_lock is held. Flushing after dropping mmu_lock is 12555 * safe as KVM only needs to guarantee the slot is fully 12556 * write-protected before returning to userspace, i.e. before 12557 * userspace can consume the dirty status. 12558 * 12559 * Flushing outside of mmu_lock requires KVM to be careful when 12560 * making decisions based on writable status of an SPTE, e.g. a 12561 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12562 * 12563 * Specifically, KVM also write-protects guest page tables to 12564 * monitor changes when using shadow paging, and must guarantee 12565 * no CPUs can write to those page before mmu_lock is dropped. 12566 * Because CPUs may have stale TLB entries at this point, a 12567 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12568 * 12569 * KVM also allows making SPTES writable outside of mmu_lock, 12570 * e.g. to allow dirty logging without taking mmu_lock. 12571 * 12572 * To handle these scenarios, KVM uses a separate software-only 12573 * bit (MMU-writable) to track if a SPTE is !writable due to 12574 * a guest page table being write-protected (KVM clears the 12575 * MMU-writable flag when write-protecting for shadow paging). 12576 * 12577 * The use of MMU-writable is also the primary motivation for 12578 * the unconditional flush. Because KVM must guarantee that a 12579 * CPU doesn't contain stale, writable TLB entries for a 12580 * !MMU-writable SPTE, KVM must flush if it encounters any 12581 * MMU-writable SPTE regardless of whether the actual hardware 12582 * writable bit was set. I.e. KVM is almost guaranteed to need 12583 * to flush, while unconditionally flushing allows the "remove 12584 * write access" helpers to ignore MMU-writable entirely. 12585 * 12586 * See is_writable_pte() for more details (the case involving 12587 * access-tracked SPTEs is particularly relevant). 12588 */ 12589 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12590 } 12591 } 12592 12593 void kvm_arch_commit_memory_region(struct kvm *kvm, 12594 struct kvm_memory_slot *old, 12595 const struct kvm_memory_slot *new, 12596 enum kvm_mr_change change) 12597 { 12598 if (!kvm->arch.n_requested_mmu_pages && 12599 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12600 unsigned long nr_mmu_pages; 12601 12602 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12603 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12604 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12605 } 12606 12607 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12608 12609 /* Free the arrays associated with the old memslot. */ 12610 if (change == KVM_MR_MOVE) 12611 kvm_arch_free_memslot(kvm, old); 12612 } 12613 12614 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12615 { 12616 kvm_mmu_zap_all(kvm); 12617 } 12618 12619 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12620 struct kvm_memory_slot *slot) 12621 { 12622 kvm_page_track_flush_slot(kvm, slot); 12623 } 12624 12625 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12626 { 12627 return (is_guest_mode(vcpu) && 12628 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12629 } 12630 12631 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12632 { 12633 if (!list_empty_careful(&vcpu->async_pf.done)) 12634 return true; 12635 12636 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12637 kvm_apic_init_sipi_allowed(vcpu)) 12638 return true; 12639 12640 if (vcpu->arch.pv.pv_unhalted) 12641 return true; 12642 12643 if (kvm_is_exception_pending(vcpu)) 12644 return true; 12645 12646 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12647 (vcpu->arch.nmi_pending && 12648 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12649 return true; 12650 12651 #ifdef CONFIG_KVM_SMM 12652 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12653 (vcpu->arch.smi_pending && 12654 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12655 return true; 12656 #endif 12657 12658 if (kvm_arch_interrupt_allowed(vcpu) && 12659 (kvm_cpu_has_interrupt(vcpu) || 12660 kvm_guest_apic_has_interrupt(vcpu))) 12661 return true; 12662 12663 if (kvm_hv_has_stimer_pending(vcpu)) 12664 return true; 12665 12666 if (is_guest_mode(vcpu) && 12667 kvm_x86_ops.nested_ops->has_events && 12668 kvm_x86_ops.nested_ops->has_events(vcpu)) 12669 return true; 12670 12671 if (kvm_xen_has_pending_events(vcpu)) 12672 return true; 12673 12674 return false; 12675 } 12676 12677 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12678 { 12679 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12680 } 12681 12682 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12683 { 12684 if (kvm_vcpu_apicv_active(vcpu) && 12685 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12686 return true; 12687 12688 return false; 12689 } 12690 12691 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12692 { 12693 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12694 return true; 12695 12696 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12697 #ifdef CONFIG_KVM_SMM 12698 kvm_test_request(KVM_REQ_SMI, vcpu) || 12699 #endif 12700 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12701 return true; 12702 12703 return kvm_arch_dy_has_pending_interrupt(vcpu); 12704 } 12705 12706 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12707 { 12708 if (vcpu->arch.guest_state_protected) 12709 return true; 12710 12711 return vcpu->arch.preempted_in_kernel; 12712 } 12713 12714 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12715 { 12716 return kvm_rip_read(vcpu); 12717 } 12718 12719 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12720 { 12721 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12722 } 12723 12724 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12725 { 12726 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12727 } 12728 12729 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12730 { 12731 /* Can't read the RIP when guest state is protected, just return 0 */ 12732 if (vcpu->arch.guest_state_protected) 12733 return 0; 12734 12735 if (is_64_bit_mode(vcpu)) 12736 return kvm_rip_read(vcpu); 12737 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12738 kvm_rip_read(vcpu)); 12739 } 12740 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12741 12742 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12743 { 12744 return kvm_get_linear_rip(vcpu) == linear_rip; 12745 } 12746 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12747 12748 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12749 { 12750 unsigned long rflags; 12751 12752 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12753 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12754 rflags &= ~X86_EFLAGS_TF; 12755 return rflags; 12756 } 12757 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12758 12759 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12760 { 12761 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12762 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12763 rflags |= X86_EFLAGS_TF; 12764 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12765 } 12766 12767 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12768 { 12769 __kvm_set_rflags(vcpu, rflags); 12770 kvm_make_request(KVM_REQ_EVENT, vcpu); 12771 } 12772 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12773 12774 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12775 { 12776 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12777 12778 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12779 } 12780 12781 static inline u32 kvm_async_pf_next_probe(u32 key) 12782 { 12783 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12784 } 12785 12786 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12787 { 12788 u32 key = kvm_async_pf_hash_fn(gfn); 12789 12790 while (vcpu->arch.apf.gfns[key] != ~0) 12791 key = kvm_async_pf_next_probe(key); 12792 12793 vcpu->arch.apf.gfns[key] = gfn; 12794 } 12795 12796 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12797 { 12798 int i; 12799 u32 key = kvm_async_pf_hash_fn(gfn); 12800 12801 for (i = 0; i < ASYNC_PF_PER_VCPU && 12802 (vcpu->arch.apf.gfns[key] != gfn && 12803 vcpu->arch.apf.gfns[key] != ~0); i++) 12804 key = kvm_async_pf_next_probe(key); 12805 12806 return key; 12807 } 12808 12809 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12810 { 12811 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12812 } 12813 12814 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12815 { 12816 u32 i, j, k; 12817 12818 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12819 12820 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12821 return; 12822 12823 while (true) { 12824 vcpu->arch.apf.gfns[i] = ~0; 12825 do { 12826 j = kvm_async_pf_next_probe(j); 12827 if (vcpu->arch.apf.gfns[j] == ~0) 12828 return; 12829 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12830 /* 12831 * k lies cyclically in ]i,j] 12832 * | i.k.j | 12833 * |....j i.k.| or |.k..j i...| 12834 */ 12835 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12836 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12837 i = j; 12838 } 12839 } 12840 12841 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12842 { 12843 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12844 12845 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12846 sizeof(reason)); 12847 } 12848 12849 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12850 { 12851 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12852 12853 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12854 &token, offset, sizeof(token)); 12855 } 12856 12857 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12858 { 12859 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12860 u32 val; 12861 12862 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12863 &val, offset, sizeof(val))) 12864 return false; 12865 12866 return !val; 12867 } 12868 12869 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12870 { 12871 12872 if (!kvm_pv_async_pf_enabled(vcpu)) 12873 return false; 12874 12875 if (vcpu->arch.apf.send_user_only && 12876 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12877 return false; 12878 12879 if (is_guest_mode(vcpu)) { 12880 /* 12881 * L1 needs to opt into the special #PF vmexits that are 12882 * used to deliver async page faults. 12883 */ 12884 return vcpu->arch.apf.delivery_as_pf_vmexit; 12885 } else { 12886 /* 12887 * Play it safe in case the guest temporarily disables paging. 12888 * The real mode IDT in particular is unlikely to have a #PF 12889 * exception setup. 12890 */ 12891 return is_paging(vcpu); 12892 } 12893 } 12894 12895 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12896 { 12897 if (unlikely(!lapic_in_kernel(vcpu) || 12898 kvm_event_needs_reinjection(vcpu) || 12899 kvm_is_exception_pending(vcpu))) 12900 return false; 12901 12902 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12903 return false; 12904 12905 /* 12906 * If interrupts are off we cannot even use an artificial 12907 * halt state. 12908 */ 12909 return kvm_arch_interrupt_allowed(vcpu); 12910 } 12911 12912 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12913 struct kvm_async_pf *work) 12914 { 12915 struct x86_exception fault; 12916 12917 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12918 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12919 12920 if (kvm_can_deliver_async_pf(vcpu) && 12921 !apf_put_user_notpresent(vcpu)) { 12922 fault.vector = PF_VECTOR; 12923 fault.error_code_valid = true; 12924 fault.error_code = 0; 12925 fault.nested_page_fault = false; 12926 fault.address = work->arch.token; 12927 fault.async_page_fault = true; 12928 kvm_inject_page_fault(vcpu, &fault); 12929 return true; 12930 } else { 12931 /* 12932 * It is not possible to deliver a paravirtualized asynchronous 12933 * page fault, but putting the guest in an artificial halt state 12934 * can be beneficial nevertheless: if an interrupt arrives, we 12935 * can deliver it timely and perhaps the guest will schedule 12936 * another process. When the instruction that triggered a page 12937 * fault is retried, hopefully the page will be ready in the host. 12938 */ 12939 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12940 return false; 12941 } 12942 } 12943 12944 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12945 struct kvm_async_pf *work) 12946 { 12947 struct kvm_lapic_irq irq = { 12948 .delivery_mode = APIC_DM_FIXED, 12949 .vector = vcpu->arch.apf.vec 12950 }; 12951 12952 if (work->wakeup_all) 12953 work->arch.token = ~0; /* broadcast wakeup */ 12954 else 12955 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12956 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12957 12958 if ((work->wakeup_all || work->notpresent_injected) && 12959 kvm_pv_async_pf_enabled(vcpu) && 12960 !apf_put_user_ready(vcpu, work->arch.token)) { 12961 vcpu->arch.apf.pageready_pending = true; 12962 kvm_apic_set_irq(vcpu, &irq, NULL); 12963 } 12964 12965 vcpu->arch.apf.halted = false; 12966 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12967 } 12968 12969 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12970 { 12971 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12972 if (!vcpu->arch.apf.pageready_pending) 12973 kvm_vcpu_kick(vcpu); 12974 } 12975 12976 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12977 { 12978 if (!kvm_pv_async_pf_enabled(vcpu)) 12979 return true; 12980 else 12981 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12982 } 12983 12984 void kvm_arch_start_assignment(struct kvm *kvm) 12985 { 12986 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12987 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12988 } 12989 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12990 12991 void kvm_arch_end_assignment(struct kvm *kvm) 12992 { 12993 atomic_dec(&kvm->arch.assigned_device_count); 12994 } 12995 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12996 12997 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 12998 { 12999 return arch_atomic_read(&kvm->arch.assigned_device_count); 13000 } 13001 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13002 13003 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13004 { 13005 atomic_inc(&kvm->arch.noncoherent_dma_count); 13006 } 13007 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13008 13009 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13010 { 13011 atomic_dec(&kvm->arch.noncoherent_dma_count); 13012 } 13013 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13014 13015 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13016 { 13017 return atomic_read(&kvm->arch.noncoherent_dma_count); 13018 } 13019 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13020 13021 bool kvm_arch_has_irq_bypass(void) 13022 { 13023 return true; 13024 } 13025 13026 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13027 struct irq_bypass_producer *prod) 13028 { 13029 struct kvm_kernel_irqfd *irqfd = 13030 container_of(cons, struct kvm_kernel_irqfd, consumer); 13031 int ret; 13032 13033 irqfd->producer = prod; 13034 kvm_arch_start_assignment(irqfd->kvm); 13035 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13036 prod->irq, irqfd->gsi, 1); 13037 13038 if (ret) 13039 kvm_arch_end_assignment(irqfd->kvm); 13040 13041 return ret; 13042 } 13043 13044 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13045 struct irq_bypass_producer *prod) 13046 { 13047 int ret; 13048 struct kvm_kernel_irqfd *irqfd = 13049 container_of(cons, struct kvm_kernel_irqfd, consumer); 13050 13051 WARN_ON(irqfd->producer != prod); 13052 irqfd->producer = NULL; 13053 13054 /* 13055 * When producer of consumer is unregistered, we change back to 13056 * remapped mode, so we can re-use the current implementation 13057 * when the irq is masked/disabled or the consumer side (KVM 13058 * int this case doesn't want to receive the interrupts. 13059 */ 13060 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13061 if (ret) 13062 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13063 " fails: %d\n", irqfd->consumer.token, ret); 13064 13065 kvm_arch_end_assignment(irqfd->kvm); 13066 } 13067 13068 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13069 uint32_t guest_irq, bool set) 13070 { 13071 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13072 } 13073 13074 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13075 struct kvm_kernel_irq_routing_entry *new) 13076 { 13077 if (new->type != KVM_IRQ_ROUTING_MSI) 13078 return true; 13079 13080 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13081 } 13082 13083 bool kvm_vector_hashing_enabled(void) 13084 { 13085 return vector_hashing; 13086 } 13087 13088 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13089 { 13090 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13091 } 13092 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13093 13094 13095 int kvm_spec_ctrl_test_value(u64 value) 13096 { 13097 /* 13098 * test that setting IA32_SPEC_CTRL to given value 13099 * is allowed by the host processor 13100 */ 13101 13102 u64 saved_value; 13103 unsigned long flags; 13104 int ret = 0; 13105 13106 local_irq_save(flags); 13107 13108 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13109 ret = 1; 13110 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13111 ret = 1; 13112 else 13113 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13114 13115 local_irq_restore(flags); 13116 13117 return ret; 13118 } 13119 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13120 13121 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13122 { 13123 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13124 struct x86_exception fault; 13125 u64 access = error_code & 13126 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13127 13128 if (!(error_code & PFERR_PRESENT_MASK) || 13129 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13130 /* 13131 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13132 * tables probably do not match the TLB. Just proceed 13133 * with the error code that the processor gave. 13134 */ 13135 fault.vector = PF_VECTOR; 13136 fault.error_code_valid = true; 13137 fault.error_code = error_code; 13138 fault.nested_page_fault = false; 13139 fault.address = gva; 13140 fault.async_page_fault = false; 13141 } 13142 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13143 } 13144 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13145 13146 /* 13147 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13148 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13149 * indicates whether exit to userspace is needed. 13150 */ 13151 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13152 struct x86_exception *e) 13153 { 13154 if (r == X86EMUL_PROPAGATE_FAULT) { 13155 if (KVM_BUG_ON(!e, vcpu->kvm)) 13156 return -EIO; 13157 13158 kvm_inject_emulated_page_fault(vcpu, e); 13159 return 1; 13160 } 13161 13162 /* 13163 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13164 * while handling a VMX instruction KVM could've handled the request 13165 * correctly by exiting to userspace and performing I/O but there 13166 * doesn't seem to be a real use-case behind such requests, just return 13167 * KVM_EXIT_INTERNAL_ERROR for now. 13168 */ 13169 kvm_prepare_emulation_failure_exit(vcpu); 13170 13171 return 0; 13172 } 13173 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13174 13175 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13176 { 13177 bool pcid_enabled; 13178 struct x86_exception e; 13179 struct { 13180 u64 pcid; 13181 u64 gla; 13182 } operand; 13183 int r; 13184 13185 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13186 if (r != X86EMUL_CONTINUE) 13187 return kvm_handle_memory_failure(vcpu, r, &e); 13188 13189 if (operand.pcid >> 12 != 0) { 13190 kvm_inject_gp(vcpu, 0); 13191 return 1; 13192 } 13193 13194 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 13195 13196 switch (type) { 13197 case INVPCID_TYPE_INDIV_ADDR: 13198 if ((!pcid_enabled && (operand.pcid != 0)) || 13199 is_noncanonical_address(operand.gla, vcpu)) { 13200 kvm_inject_gp(vcpu, 0); 13201 return 1; 13202 } 13203 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13204 return kvm_skip_emulated_instruction(vcpu); 13205 13206 case INVPCID_TYPE_SINGLE_CTXT: 13207 if (!pcid_enabled && (operand.pcid != 0)) { 13208 kvm_inject_gp(vcpu, 0); 13209 return 1; 13210 } 13211 13212 kvm_invalidate_pcid(vcpu, operand.pcid); 13213 return kvm_skip_emulated_instruction(vcpu); 13214 13215 case INVPCID_TYPE_ALL_NON_GLOBAL: 13216 /* 13217 * Currently, KVM doesn't mark global entries in the shadow 13218 * page tables, so a non-global flush just degenerates to a 13219 * global flush. If needed, we could optimize this later by 13220 * keeping track of global entries in shadow page tables. 13221 */ 13222 13223 fallthrough; 13224 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13225 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13226 return kvm_skip_emulated_instruction(vcpu); 13227 13228 default: 13229 kvm_inject_gp(vcpu, 0); 13230 return 1; 13231 } 13232 } 13233 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13234 13235 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13236 { 13237 struct kvm_run *run = vcpu->run; 13238 struct kvm_mmio_fragment *frag; 13239 unsigned int len; 13240 13241 BUG_ON(!vcpu->mmio_needed); 13242 13243 /* Complete previous fragment */ 13244 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13245 len = min(8u, frag->len); 13246 if (!vcpu->mmio_is_write) 13247 memcpy(frag->data, run->mmio.data, len); 13248 13249 if (frag->len <= 8) { 13250 /* Switch to the next fragment. */ 13251 frag++; 13252 vcpu->mmio_cur_fragment++; 13253 } else { 13254 /* Go forward to the next mmio piece. */ 13255 frag->data += len; 13256 frag->gpa += len; 13257 frag->len -= len; 13258 } 13259 13260 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13261 vcpu->mmio_needed = 0; 13262 13263 // VMG change, at this point, we're always done 13264 // RIP has already been advanced 13265 return 1; 13266 } 13267 13268 // More MMIO is needed 13269 run->mmio.phys_addr = frag->gpa; 13270 run->mmio.len = min(8u, frag->len); 13271 run->mmio.is_write = vcpu->mmio_is_write; 13272 if (run->mmio.is_write) 13273 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13274 run->exit_reason = KVM_EXIT_MMIO; 13275 13276 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13277 13278 return 0; 13279 } 13280 13281 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13282 void *data) 13283 { 13284 int handled; 13285 struct kvm_mmio_fragment *frag; 13286 13287 if (!data) 13288 return -EINVAL; 13289 13290 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13291 if (handled == bytes) 13292 return 1; 13293 13294 bytes -= handled; 13295 gpa += handled; 13296 data += handled; 13297 13298 /*TODO: Check if need to increment number of frags */ 13299 frag = vcpu->mmio_fragments; 13300 vcpu->mmio_nr_fragments = 1; 13301 frag->len = bytes; 13302 frag->gpa = gpa; 13303 frag->data = data; 13304 13305 vcpu->mmio_needed = 1; 13306 vcpu->mmio_cur_fragment = 0; 13307 13308 vcpu->run->mmio.phys_addr = gpa; 13309 vcpu->run->mmio.len = min(8u, frag->len); 13310 vcpu->run->mmio.is_write = 1; 13311 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13312 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13313 13314 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13315 13316 return 0; 13317 } 13318 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13319 13320 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13321 void *data) 13322 { 13323 int handled; 13324 struct kvm_mmio_fragment *frag; 13325 13326 if (!data) 13327 return -EINVAL; 13328 13329 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13330 if (handled == bytes) 13331 return 1; 13332 13333 bytes -= handled; 13334 gpa += handled; 13335 data += handled; 13336 13337 /*TODO: Check if need to increment number of frags */ 13338 frag = vcpu->mmio_fragments; 13339 vcpu->mmio_nr_fragments = 1; 13340 frag->len = bytes; 13341 frag->gpa = gpa; 13342 frag->data = data; 13343 13344 vcpu->mmio_needed = 1; 13345 vcpu->mmio_cur_fragment = 0; 13346 13347 vcpu->run->mmio.phys_addr = gpa; 13348 vcpu->run->mmio.len = min(8u, frag->len); 13349 vcpu->run->mmio.is_write = 0; 13350 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13351 13352 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13353 13354 return 0; 13355 } 13356 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13357 13358 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13359 { 13360 vcpu->arch.sev_pio_count -= count; 13361 vcpu->arch.sev_pio_data += count * size; 13362 } 13363 13364 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13365 unsigned int port); 13366 13367 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13368 { 13369 int size = vcpu->arch.pio.size; 13370 int port = vcpu->arch.pio.port; 13371 13372 vcpu->arch.pio.count = 0; 13373 if (vcpu->arch.sev_pio_count) 13374 return kvm_sev_es_outs(vcpu, size, port); 13375 return 1; 13376 } 13377 13378 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13379 unsigned int port) 13380 { 13381 for (;;) { 13382 unsigned int count = 13383 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13384 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13385 13386 /* memcpy done already by emulator_pio_out. */ 13387 advance_sev_es_emulated_pio(vcpu, count, size); 13388 if (!ret) 13389 break; 13390 13391 /* Emulation done by the kernel. */ 13392 if (!vcpu->arch.sev_pio_count) 13393 return 1; 13394 } 13395 13396 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13397 return 0; 13398 } 13399 13400 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13401 unsigned int port); 13402 13403 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13404 { 13405 unsigned count = vcpu->arch.pio.count; 13406 int size = vcpu->arch.pio.size; 13407 int port = vcpu->arch.pio.port; 13408 13409 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13410 advance_sev_es_emulated_pio(vcpu, count, size); 13411 if (vcpu->arch.sev_pio_count) 13412 return kvm_sev_es_ins(vcpu, size, port); 13413 return 1; 13414 } 13415 13416 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13417 unsigned int port) 13418 { 13419 for (;;) { 13420 unsigned int count = 13421 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13422 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13423 break; 13424 13425 /* Emulation done by the kernel. */ 13426 advance_sev_es_emulated_pio(vcpu, count, size); 13427 if (!vcpu->arch.sev_pio_count) 13428 return 1; 13429 } 13430 13431 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13432 return 0; 13433 } 13434 13435 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13436 unsigned int port, void *data, unsigned int count, 13437 int in) 13438 { 13439 vcpu->arch.sev_pio_data = data; 13440 vcpu->arch.sev_pio_count = count; 13441 return in ? kvm_sev_es_ins(vcpu, size, port) 13442 : kvm_sev_es_outs(vcpu, size, port); 13443 } 13444 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13445 13446 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13447 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13448 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13449 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13450 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13451 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13452 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13453 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13454 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13455 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13456 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13457 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13458 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13459 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13464 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13465 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13466 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13474 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13475 13476 static int __init kvm_x86_init(void) 13477 { 13478 kvm_mmu_x86_module_init(); 13479 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13480 return 0; 13481 } 13482 module_init(kvm_x86_init); 13483 13484 static void __exit kvm_x86_exit(void) 13485 { 13486 /* 13487 * If module_init() is implemented, module_exit() must also be 13488 * implemented to allow module unload. 13489 */ 13490 } 13491 module_exit(kvm_x86_exit); 13492