xref: /linux/arch/x86/kvm/x86.c (revision 6084a6e23c971ef703229ee1aec68d01688578d6)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70 
71 #define emul_to_vcpu(ctxt) \
72 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73 
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84 
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87 
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90 
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93 
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96 
97 unsigned int min_timer_period_us = 500;
98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
99 
100 bool kvm_has_tsc_control;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
102 u32  kvm_max_guest_tsc_khz;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
104 
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm = 250;
107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
108 
109 static bool backwards_tsc_observed = false;
110 
111 #define KVM_NR_SHARED_MSRS 16
112 
113 struct kvm_shared_msrs_global {
114 	int nr;
115 	u32 msrs[KVM_NR_SHARED_MSRS];
116 };
117 
118 struct kvm_shared_msrs {
119 	struct user_return_notifier urn;
120 	bool registered;
121 	struct kvm_shared_msr_values {
122 		u64 host;
123 		u64 curr;
124 	} values[KVM_NR_SHARED_MSRS];
125 };
126 
127 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
128 static struct kvm_shared_msrs __percpu *shared_msrs;
129 
130 struct kvm_stats_debugfs_item debugfs_entries[] = {
131 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
132 	{ "pf_guest", VCPU_STAT(pf_guest) },
133 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
134 	{ "invlpg", VCPU_STAT(invlpg) },
135 	{ "exits", VCPU_STAT(exits) },
136 	{ "io_exits", VCPU_STAT(io_exits) },
137 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
138 	{ "signal_exits", VCPU_STAT(signal_exits) },
139 	{ "irq_window", VCPU_STAT(irq_window_exits) },
140 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
141 	{ "halt_exits", VCPU_STAT(halt_exits) },
142 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
143 	{ "hypercalls", VCPU_STAT(hypercalls) },
144 	{ "request_irq", VCPU_STAT(request_irq_exits) },
145 	{ "irq_exits", VCPU_STAT(irq_exits) },
146 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
147 	{ "efer_reload", VCPU_STAT(efer_reload) },
148 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
149 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
150 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
151 	{ "irq_injections", VCPU_STAT(irq_injections) },
152 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
153 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
154 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
155 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
156 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
157 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
158 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
159 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
160 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
161 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
162 	{ "largepages", VM_STAT(lpages) },
163 	{ NULL }
164 };
165 
166 u64 __read_mostly host_xcr0;
167 
168 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
169 
170 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
171 {
172 	int i;
173 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
174 		vcpu->arch.apf.gfns[i] = ~0;
175 }
176 
177 static void kvm_on_user_return(struct user_return_notifier *urn)
178 {
179 	unsigned slot;
180 	struct kvm_shared_msrs *locals
181 		= container_of(urn, struct kvm_shared_msrs, urn);
182 	struct kvm_shared_msr_values *values;
183 
184 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
185 		values = &locals->values[slot];
186 		if (values->host != values->curr) {
187 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
188 			values->curr = values->host;
189 		}
190 	}
191 	locals->registered = false;
192 	user_return_notifier_unregister(urn);
193 }
194 
195 static void shared_msr_update(unsigned slot, u32 msr)
196 {
197 	u64 value;
198 	unsigned int cpu = smp_processor_id();
199 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
200 
201 	/* only read, and nobody should modify it at this time,
202 	 * so don't need lock */
203 	if (slot >= shared_msrs_global.nr) {
204 		printk(KERN_ERR "kvm: invalid MSR slot!");
205 		return;
206 	}
207 	rdmsrl_safe(msr, &value);
208 	smsr->values[slot].host = value;
209 	smsr->values[slot].curr = value;
210 }
211 
212 void kvm_define_shared_msr(unsigned slot, u32 msr)
213 {
214 	if (slot >= shared_msrs_global.nr)
215 		shared_msrs_global.nr = slot + 1;
216 	shared_msrs_global.msrs[slot] = msr;
217 	/* we need ensured the shared_msr_global have been updated */
218 	smp_wmb();
219 }
220 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
221 
222 static void kvm_shared_msr_cpu_online(void)
223 {
224 	unsigned i;
225 
226 	for (i = 0; i < shared_msrs_global.nr; ++i)
227 		shared_msr_update(i, shared_msrs_global.msrs[i]);
228 }
229 
230 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
231 {
232 	unsigned int cpu = smp_processor_id();
233 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
234 
235 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
236 		return;
237 	smsr->values[slot].curr = value;
238 	wrmsrl(shared_msrs_global.msrs[slot], value);
239 	if (!smsr->registered) {
240 		smsr->urn.on_user_return = kvm_on_user_return;
241 		user_return_notifier_register(&smsr->urn);
242 		smsr->registered = true;
243 	}
244 }
245 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
246 
247 static void drop_user_return_notifiers(void *ignore)
248 {
249 	unsigned int cpu = smp_processor_id();
250 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
251 
252 	if (smsr->registered)
253 		kvm_on_user_return(&smsr->urn);
254 }
255 
256 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
257 {
258 	return vcpu->arch.apic_base;
259 }
260 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
261 
262 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
263 {
264 	u64 old_state = vcpu->arch.apic_base &
265 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
266 	u64 new_state = msr_info->data &
267 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
268 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
269 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
270 
271 	if (!msr_info->host_initiated &&
272 	    ((msr_info->data & reserved_bits) != 0 ||
273 	     new_state == X2APIC_ENABLE ||
274 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
275 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
276 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
277 	      old_state == 0)))
278 		return 1;
279 
280 	kvm_lapic_set_base(vcpu, msr_info->data);
281 	return 0;
282 }
283 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
284 
285 asmlinkage __visible void kvm_spurious_fault(void)
286 {
287 	/* Fault while not rebooting.  We want the trace. */
288 	BUG();
289 }
290 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
291 
292 #define EXCPT_BENIGN		0
293 #define EXCPT_CONTRIBUTORY	1
294 #define EXCPT_PF		2
295 
296 static int exception_class(int vector)
297 {
298 	switch (vector) {
299 	case PF_VECTOR:
300 		return EXCPT_PF;
301 	case DE_VECTOR:
302 	case TS_VECTOR:
303 	case NP_VECTOR:
304 	case SS_VECTOR:
305 	case GP_VECTOR:
306 		return EXCPT_CONTRIBUTORY;
307 	default:
308 		break;
309 	}
310 	return EXCPT_BENIGN;
311 }
312 
313 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
314 		unsigned nr, bool has_error, u32 error_code,
315 		bool reinject)
316 {
317 	u32 prev_nr;
318 	int class1, class2;
319 
320 	kvm_make_request(KVM_REQ_EVENT, vcpu);
321 
322 	if (!vcpu->arch.exception.pending) {
323 	queue:
324 		vcpu->arch.exception.pending = true;
325 		vcpu->arch.exception.has_error_code = has_error;
326 		vcpu->arch.exception.nr = nr;
327 		vcpu->arch.exception.error_code = error_code;
328 		vcpu->arch.exception.reinject = reinject;
329 		return;
330 	}
331 
332 	/* to check exception */
333 	prev_nr = vcpu->arch.exception.nr;
334 	if (prev_nr == DF_VECTOR) {
335 		/* triple fault -> shutdown */
336 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
337 		return;
338 	}
339 	class1 = exception_class(prev_nr);
340 	class2 = exception_class(nr);
341 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
342 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
343 		/* generate double fault per SDM Table 5-5 */
344 		vcpu->arch.exception.pending = true;
345 		vcpu->arch.exception.has_error_code = true;
346 		vcpu->arch.exception.nr = DF_VECTOR;
347 		vcpu->arch.exception.error_code = 0;
348 	} else
349 		/* replace previous exception with a new one in a hope
350 		   that instruction re-execution will regenerate lost
351 		   exception */
352 		goto queue;
353 }
354 
355 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
356 {
357 	kvm_multiple_exception(vcpu, nr, false, 0, false);
358 }
359 EXPORT_SYMBOL_GPL(kvm_queue_exception);
360 
361 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
362 {
363 	kvm_multiple_exception(vcpu, nr, false, 0, true);
364 }
365 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
366 
367 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
368 {
369 	if (err)
370 		kvm_inject_gp(vcpu, 0);
371 	else
372 		kvm_x86_ops->skip_emulated_instruction(vcpu);
373 }
374 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
375 
376 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
377 {
378 	++vcpu->stat.pf_guest;
379 	vcpu->arch.cr2 = fault->address;
380 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
381 }
382 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
383 
384 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
385 {
386 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
387 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
388 	else
389 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
390 }
391 
392 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
393 {
394 	atomic_inc(&vcpu->arch.nmi_queued);
395 	kvm_make_request(KVM_REQ_NMI, vcpu);
396 }
397 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
398 
399 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
400 {
401 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
402 }
403 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
404 
405 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
406 {
407 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
408 }
409 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
410 
411 /*
412  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
413  * a #GP and return false.
414  */
415 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
416 {
417 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
418 		return true;
419 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
420 	return false;
421 }
422 EXPORT_SYMBOL_GPL(kvm_require_cpl);
423 
424 /*
425  * This function will be used to read from the physical memory of the currently
426  * running guest. The difference to kvm_read_guest_page is that this function
427  * can read from guest physical or from the guest's guest physical memory.
428  */
429 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
430 			    gfn_t ngfn, void *data, int offset, int len,
431 			    u32 access)
432 {
433 	gfn_t real_gfn;
434 	gpa_t ngpa;
435 
436 	ngpa     = gfn_to_gpa(ngfn);
437 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
438 	if (real_gfn == UNMAPPED_GVA)
439 		return -EFAULT;
440 
441 	real_gfn = gpa_to_gfn(real_gfn);
442 
443 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
444 }
445 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
446 
447 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
448 			       void *data, int offset, int len, u32 access)
449 {
450 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
451 				       data, offset, len, access);
452 }
453 
454 /*
455  * Load the pae pdptrs.  Return true is they are all valid.
456  */
457 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
458 {
459 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
460 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
461 	int i;
462 	int ret;
463 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
464 
465 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
466 				      offset * sizeof(u64), sizeof(pdpte),
467 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
468 	if (ret < 0) {
469 		ret = 0;
470 		goto out;
471 	}
472 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
473 		if (is_present_gpte(pdpte[i]) &&
474 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
475 			ret = 0;
476 			goto out;
477 		}
478 	}
479 	ret = 1;
480 
481 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
482 	__set_bit(VCPU_EXREG_PDPTR,
483 		  (unsigned long *)&vcpu->arch.regs_avail);
484 	__set_bit(VCPU_EXREG_PDPTR,
485 		  (unsigned long *)&vcpu->arch.regs_dirty);
486 out:
487 
488 	return ret;
489 }
490 EXPORT_SYMBOL_GPL(load_pdptrs);
491 
492 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
493 {
494 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
495 	bool changed = true;
496 	int offset;
497 	gfn_t gfn;
498 	int r;
499 
500 	if (is_long_mode(vcpu) || !is_pae(vcpu))
501 		return false;
502 
503 	if (!test_bit(VCPU_EXREG_PDPTR,
504 		      (unsigned long *)&vcpu->arch.regs_avail))
505 		return true;
506 
507 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
508 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
509 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
510 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
511 	if (r < 0)
512 		goto out;
513 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
514 out:
515 
516 	return changed;
517 }
518 
519 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
520 {
521 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
522 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
523 				    X86_CR0_CD | X86_CR0_NW;
524 
525 	cr0 |= X86_CR0_ET;
526 
527 #ifdef CONFIG_X86_64
528 	if (cr0 & 0xffffffff00000000UL)
529 		return 1;
530 #endif
531 
532 	cr0 &= ~CR0_RESERVED_BITS;
533 
534 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
535 		return 1;
536 
537 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
538 		return 1;
539 
540 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
541 #ifdef CONFIG_X86_64
542 		if ((vcpu->arch.efer & EFER_LME)) {
543 			int cs_db, cs_l;
544 
545 			if (!is_pae(vcpu))
546 				return 1;
547 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
548 			if (cs_l)
549 				return 1;
550 		} else
551 #endif
552 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
553 						 kvm_read_cr3(vcpu)))
554 			return 1;
555 	}
556 
557 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
558 		return 1;
559 
560 	kvm_x86_ops->set_cr0(vcpu, cr0);
561 
562 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
563 		kvm_clear_async_pf_completion_queue(vcpu);
564 		kvm_async_pf_hash_reset(vcpu);
565 	}
566 
567 	if ((cr0 ^ old_cr0) & update_bits)
568 		kvm_mmu_reset_context(vcpu);
569 	return 0;
570 }
571 EXPORT_SYMBOL_GPL(kvm_set_cr0);
572 
573 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
574 {
575 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
576 }
577 EXPORT_SYMBOL_GPL(kvm_lmsw);
578 
579 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
580 {
581 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
582 			!vcpu->guest_xcr0_loaded) {
583 		/* kvm_set_xcr() also depends on this */
584 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
585 		vcpu->guest_xcr0_loaded = 1;
586 	}
587 }
588 
589 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
590 {
591 	if (vcpu->guest_xcr0_loaded) {
592 		if (vcpu->arch.xcr0 != host_xcr0)
593 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
594 		vcpu->guest_xcr0_loaded = 0;
595 	}
596 }
597 
598 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
599 {
600 	u64 xcr0 = xcr;
601 	u64 old_xcr0 = vcpu->arch.xcr0;
602 	u64 valid_bits;
603 
604 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
605 	if (index != XCR_XFEATURE_ENABLED_MASK)
606 		return 1;
607 	if (!(xcr0 & XSTATE_FP))
608 		return 1;
609 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
610 		return 1;
611 
612 	/*
613 	 * Do not allow the guest to set bits that we do not support
614 	 * saving.  However, xcr0 bit 0 is always set, even if the
615 	 * emulated CPU does not support XSAVE (see fx_init).
616 	 */
617 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
618 	if (xcr0 & ~valid_bits)
619 		return 1;
620 
621 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
622 		return 1;
623 
624 	kvm_put_guest_xcr0(vcpu);
625 	vcpu->arch.xcr0 = xcr0;
626 
627 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
628 		kvm_update_cpuid(vcpu);
629 	return 0;
630 }
631 
632 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
633 {
634 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
635 	    __kvm_set_xcr(vcpu, index, xcr)) {
636 		kvm_inject_gp(vcpu, 0);
637 		return 1;
638 	}
639 	return 0;
640 }
641 EXPORT_SYMBOL_GPL(kvm_set_xcr);
642 
643 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
644 {
645 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
646 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
647 				   X86_CR4_PAE | X86_CR4_SMEP;
648 	if (cr4 & CR4_RESERVED_BITS)
649 		return 1;
650 
651 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
652 		return 1;
653 
654 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
655 		return 1;
656 
657 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
658 		return 1;
659 
660 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
661 		return 1;
662 
663 	if (is_long_mode(vcpu)) {
664 		if (!(cr4 & X86_CR4_PAE))
665 			return 1;
666 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
667 		   && ((cr4 ^ old_cr4) & pdptr_bits)
668 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669 				   kvm_read_cr3(vcpu)))
670 		return 1;
671 
672 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
673 		if (!guest_cpuid_has_pcid(vcpu))
674 			return 1;
675 
676 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
677 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
678 			return 1;
679 	}
680 
681 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
682 		return 1;
683 
684 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
685 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
686 		kvm_mmu_reset_context(vcpu);
687 
688 	if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
689 		update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
690 
691 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
692 		kvm_update_cpuid(vcpu);
693 
694 	return 0;
695 }
696 EXPORT_SYMBOL_GPL(kvm_set_cr4);
697 
698 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
699 {
700 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
701 		kvm_mmu_sync_roots(vcpu);
702 		kvm_mmu_flush_tlb(vcpu);
703 		return 0;
704 	}
705 
706 	if (is_long_mode(vcpu)) {
707 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
708 			return 1;
709 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
710 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
711 		return 1;
712 
713 	vcpu->arch.cr3 = cr3;
714 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
715 	kvm_mmu_new_cr3(vcpu);
716 	return 0;
717 }
718 EXPORT_SYMBOL_GPL(kvm_set_cr3);
719 
720 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
721 {
722 	if (cr8 & CR8_RESERVED_BITS)
723 		return 1;
724 	if (irqchip_in_kernel(vcpu->kvm))
725 		kvm_lapic_set_tpr(vcpu, cr8);
726 	else
727 		vcpu->arch.cr8 = cr8;
728 	return 0;
729 }
730 EXPORT_SYMBOL_GPL(kvm_set_cr8);
731 
732 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
733 {
734 	if (irqchip_in_kernel(vcpu->kvm))
735 		return kvm_lapic_get_cr8(vcpu);
736 	else
737 		return vcpu->arch.cr8;
738 }
739 EXPORT_SYMBOL_GPL(kvm_get_cr8);
740 
741 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
742 {
743 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
744 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
745 }
746 
747 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
748 {
749 	unsigned long dr7;
750 
751 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
752 		dr7 = vcpu->arch.guest_debug_dr7;
753 	else
754 		dr7 = vcpu->arch.dr7;
755 	kvm_x86_ops->set_dr7(vcpu, dr7);
756 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
757 	if (dr7 & DR7_BP_EN_MASK)
758 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
759 }
760 
761 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
762 {
763 	switch (dr) {
764 	case 0 ... 3:
765 		vcpu->arch.db[dr] = val;
766 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
767 			vcpu->arch.eff_db[dr] = val;
768 		break;
769 	case 4:
770 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
771 			return 1; /* #UD */
772 		/* fall through */
773 	case 6:
774 		if (val & 0xffffffff00000000ULL)
775 			return -1; /* #GP */
776 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
777 		kvm_update_dr6(vcpu);
778 		break;
779 	case 5:
780 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
781 			return 1; /* #UD */
782 		/* fall through */
783 	default: /* 7 */
784 		if (val & 0xffffffff00000000ULL)
785 			return -1; /* #GP */
786 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
787 		kvm_update_dr7(vcpu);
788 		break;
789 	}
790 
791 	return 0;
792 }
793 
794 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
795 {
796 	int res;
797 
798 	res = __kvm_set_dr(vcpu, dr, val);
799 	if (res > 0)
800 		kvm_queue_exception(vcpu, UD_VECTOR);
801 	else if (res < 0)
802 		kvm_inject_gp(vcpu, 0);
803 
804 	return res;
805 }
806 EXPORT_SYMBOL_GPL(kvm_set_dr);
807 
808 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
809 {
810 	switch (dr) {
811 	case 0 ... 3:
812 		*val = vcpu->arch.db[dr];
813 		break;
814 	case 4:
815 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
816 			return 1;
817 		/* fall through */
818 	case 6:
819 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
820 			*val = vcpu->arch.dr6;
821 		else
822 			*val = kvm_x86_ops->get_dr6(vcpu);
823 		break;
824 	case 5:
825 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
826 			return 1;
827 		/* fall through */
828 	default: /* 7 */
829 		*val = vcpu->arch.dr7;
830 		break;
831 	}
832 
833 	return 0;
834 }
835 
836 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
837 {
838 	if (_kvm_get_dr(vcpu, dr, val)) {
839 		kvm_queue_exception(vcpu, UD_VECTOR);
840 		return 1;
841 	}
842 	return 0;
843 }
844 EXPORT_SYMBOL_GPL(kvm_get_dr);
845 
846 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
847 {
848 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
849 	u64 data;
850 	int err;
851 
852 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
853 	if (err)
854 		return err;
855 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
856 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
857 	return err;
858 }
859 EXPORT_SYMBOL_GPL(kvm_rdpmc);
860 
861 /*
862  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
863  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
864  *
865  * This list is modified at module load time to reflect the
866  * capabilities of the host cpu. This capabilities test skips MSRs that are
867  * kvm-specific. Those are put in the beginning of the list.
868  */
869 
870 #define KVM_SAVE_MSRS_BEGIN	12
871 static u32 msrs_to_save[] = {
872 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
873 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
874 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
875 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
876 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
877 	MSR_KVM_PV_EOI_EN,
878 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
879 	MSR_STAR,
880 #ifdef CONFIG_X86_64
881 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
882 #endif
883 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
884 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
885 };
886 
887 static unsigned num_msrs_to_save;
888 
889 static const u32 emulated_msrs[] = {
890 	MSR_IA32_TSC_ADJUST,
891 	MSR_IA32_TSCDEADLINE,
892 	MSR_IA32_MISC_ENABLE,
893 	MSR_IA32_MCG_STATUS,
894 	MSR_IA32_MCG_CTL,
895 };
896 
897 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
898 {
899 	if (efer & efer_reserved_bits)
900 		return false;
901 
902 	if (efer & EFER_FFXSR) {
903 		struct kvm_cpuid_entry2 *feat;
904 
905 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
906 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
907 			return false;
908 	}
909 
910 	if (efer & EFER_SVME) {
911 		struct kvm_cpuid_entry2 *feat;
912 
913 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
914 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
915 			return false;
916 	}
917 
918 	return true;
919 }
920 EXPORT_SYMBOL_GPL(kvm_valid_efer);
921 
922 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
923 {
924 	u64 old_efer = vcpu->arch.efer;
925 
926 	if (!kvm_valid_efer(vcpu, efer))
927 		return 1;
928 
929 	if (is_paging(vcpu)
930 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
931 		return 1;
932 
933 	efer &= ~EFER_LMA;
934 	efer |= vcpu->arch.efer & EFER_LMA;
935 
936 	kvm_x86_ops->set_efer(vcpu, efer);
937 
938 	/* Update reserved bits */
939 	if ((efer ^ old_efer) & EFER_NX)
940 		kvm_mmu_reset_context(vcpu);
941 
942 	return 0;
943 }
944 
945 void kvm_enable_efer_bits(u64 mask)
946 {
947        efer_reserved_bits &= ~mask;
948 }
949 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
950 
951 
952 /*
953  * Writes msr value into into the appropriate "register".
954  * Returns 0 on success, non-0 otherwise.
955  * Assumes vcpu_load() was already called.
956  */
957 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
958 {
959 	return kvm_x86_ops->set_msr(vcpu, msr);
960 }
961 
962 /*
963  * Adapt set_msr() to msr_io()'s calling convention
964  */
965 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
966 {
967 	struct msr_data msr;
968 
969 	msr.data = *data;
970 	msr.index = index;
971 	msr.host_initiated = true;
972 	return kvm_set_msr(vcpu, &msr);
973 }
974 
975 #ifdef CONFIG_X86_64
976 struct pvclock_gtod_data {
977 	seqcount_t	seq;
978 
979 	struct { /* extract of a clocksource struct */
980 		int vclock_mode;
981 		cycle_t	cycle_last;
982 		cycle_t	mask;
983 		u32	mult;
984 		u32	shift;
985 	} clock;
986 
987 	/* open coded 'struct timespec' */
988 	u64		monotonic_time_snsec;
989 	time_t		monotonic_time_sec;
990 };
991 
992 static struct pvclock_gtod_data pvclock_gtod_data;
993 
994 static void update_pvclock_gtod(struct timekeeper *tk)
995 {
996 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
997 
998 	write_seqcount_begin(&vdata->seq);
999 
1000 	/* copy pvclock gtod data */
1001 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode;
1002 	vdata->clock.cycle_last		= tk->clock->cycle_last;
1003 	vdata->clock.mask		= tk->clock->mask;
1004 	vdata->clock.mult		= tk->mult;
1005 	vdata->clock.shift		= tk->shift;
1006 
1007 	vdata->monotonic_time_sec	= tk->xtime_sec
1008 					+ tk->wall_to_monotonic.tv_sec;
1009 	vdata->monotonic_time_snsec	= tk->xtime_nsec
1010 					+ (tk->wall_to_monotonic.tv_nsec
1011 						<< tk->shift);
1012 	while (vdata->monotonic_time_snsec >=
1013 					(((u64)NSEC_PER_SEC) << tk->shift)) {
1014 		vdata->monotonic_time_snsec -=
1015 					((u64)NSEC_PER_SEC) << tk->shift;
1016 		vdata->monotonic_time_sec++;
1017 	}
1018 
1019 	write_seqcount_end(&vdata->seq);
1020 }
1021 #endif
1022 
1023 
1024 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1025 {
1026 	int version;
1027 	int r;
1028 	struct pvclock_wall_clock wc;
1029 	struct timespec boot;
1030 
1031 	if (!wall_clock)
1032 		return;
1033 
1034 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1035 	if (r)
1036 		return;
1037 
1038 	if (version & 1)
1039 		++version;  /* first time write, random junk */
1040 
1041 	++version;
1042 
1043 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1044 
1045 	/*
1046 	 * The guest calculates current wall clock time by adding
1047 	 * system time (updated by kvm_guest_time_update below) to the
1048 	 * wall clock specified here.  guest system time equals host
1049 	 * system time for us, thus we must fill in host boot time here.
1050 	 */
1051 	getboottime(&boot);
1052 
1053 	if (kvm->arch.kvmclock_offset) {
1054 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1055 		boot = timespec_sub(boot, ts);
1056 	}
1057 	wc.sec = boot.tv_sec;
1058 	wc.nsec = boot.tv_nsec;
1059 	wc.version = version;
1060 
1061 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1062 
1063 	version++;
1064 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1065 }
1066 
1067 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1068 {
1069 	uint32_t quotient, remainder;
1070 
1071 	/* Don't try to replace with do_div(), this one calculates
1072 	 * "(dividend << 32) / divisor" */
1073 	__asm__ ( "divl %4"
1074 		  : "=a" (quotient), "=d" (remainder)
1075 		  : "0" (0), "1" (dividend), "r" (divisor) );
1076 	return quotient;
1077 }
1078 
1079 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1080 			       s8 *pshift, u32 *pmultiplier)
1081 {
1082 	uint64_t scaled64;
1083 	int32_t  shift = 0;
1084 	uint64_t tps64;
1085 	uint32_t tps32;
1086 
1087 	tps64 = base_khz * 1000LL;
1088 	scaled64 = scaled_khz * 1000LL;
1089 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1090 		tps64 >>= 1;
1091 		shift--;
1092 	}
1093 
1094 	tps32 = (uint32_t)tps64;
1095 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1096 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1097 			scaled64 >>= 1;
1098 		else
1099 			tps32 <<= 1;
1100 		shift++;
1101 	}
1102 
1103 	*pshift = shift;
1104 	*pmultiplier = div_frac(scaled64, tps32);
1105 
1106 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1107 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1108 }
1109 
1110 static inline u64 get_kernel_ns(void)
1111 {
1112 	struct timespec ts;
1113 
1114 	ktime_get_ts(&ts);
1115 	monotonic_to_bootbased(&ts);
1116 	return timespec_to_ns(&ts);
1117 }
1118 
1119 #ifdef CONFIG_X86_64
1120 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1121 #endif
1122 
1123 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1124 unsigned long max_tsc_khz;
1125 
1126 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1127 {
1128 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1129 				   vcpu->arch.virtual_tsc_shift);
1130 }
1131 
1132 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1133 {
1134 	u64 v = (u64)khz * (1000000 + ppm);
1135 	do_div(v, 1000000);
1136 	return v;
1137 }
1138 
1139 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1140 {
1141 	u32 thresh_lo, thresh_hi;
1142 	int use_scaling = 0;
1143 
1144 	/* tsc_khz can be zero if TSC calibration fails */
1145 	if (this_tsc_khz == 0)
1146 		return;
1147 
1148 	/* Compute a scale to convert nanoseconds in TSC cycles */
1149 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1150 			   &vcpu->arch.virtual_tsc_shift,
1151 			   &vcpu->arch.virtual_tsc_mult);
1152 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1153 
1154 	/*
1155 	 * Compute the variation in TSC rate which is acceptable
1156 	 * within the range of tolerance and decide if the
1157 	 * rate being applied is within that bounds of the hardware
1158 	 * rate.  If so, no scaling or compensation need be done.
1159 	 */
1160 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1161 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1162 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1163 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1164 		use_scaling = 1;
1165 	}
1166 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1167 }
1168 
1169 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1170 {
1171 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1172 				      vcpu->arch.virtual_tsc_mult,
1173 				      vcpu->arch.virtual_tsc_shift);
1174 	tsc += vcpu->arch.this_tsc_write;
1175 	return tsc;
1176 }
1177 
1178 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1179 {
1180 #ifdef CONFIG_X86_64
1181 	bool vcpus_matched;
1182 	bool do_request = false;
1183 	struct kvm_arch *ka = &vcpu->kvm->arch;
1184 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1185 
1186 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1187 			 atomic_read(&vcpu->kvm->online_vcpus));
1188 
1189 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1190 		if (!ka->use_master_clock)
1191 			do_request = 1;
1192 
1193 	if (!vcpus_matched && ka->use_master_clock)
1194 			do_request = 1;
1195 
1196 	if (do_request)
1197 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1198 
1199 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1200 			    atomic_read(&vcpu->kvm->online_vcpus),
1201 		            ka->use_master_clock, gtod->clock.vclock_mode);
1202 #endif
1203 }
1204 
1205 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1206 {
1207 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1208 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1209 }
1210 
1211 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1212 {
1213 	struct kvm *kvm = vcpu->kvm;
1214 	u64 offset, ns, elapsed;
1215 	unsigned long flags;
1216 	s64 usdiff;
1217 	bool matched;
1218 	u64 data = msr->data;
1219 
1220 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1221 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1222 	ns = get_kernel_ns();
1223 	elapsed = ns - kvm->arch.last_tsc_nsec;
1224 
1225 	if (vcpu->arch.virtual_tsc_khz) {
1226 		int faulted = 0;
1227 
1228 		/* n.b - signed multiplication and division required */
1229 		usdiff = data - kvm->arch.last_tsc_write;
1230 #ifdef CONFIG_X86_64
1231 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1232 #else
1233 		/* do_div() only does unsigned */
1234 		asm("1: idivl %[divisor]\n"
1235 		    "2: xor %%edx, %%edx\n"
1236 		    "   movl $0, %[faulted]\n"
1237 		    "3:\n"
1238 		    ".section .fixup,\"ax\"\n"
1239 		    "4: movl $1, %[faulted]\n"
1240 		    "   jmp  3b\n"
1241 		    ".previous\n"
1242 
1243 		_ASM_EXTABLE(1b, 4b)
1244 
1245 		: "=A"(usdiff), [faulted] "=r" (faulted)
1246 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1247 
1248 #endif
1249 		do_div(elapsed, 1000);
1250 		usdiff -= elapsed;
1251 		if (usdiff < 0)
1252 			usdiff = -usdiff;
1253 
1254 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1255 		if (faulted)
1256 			usdiff = USEC_PER_SEC;
1257 	} else
1258 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1259 
1260 	/*
1261 	 * Special case: TSC write with a small delta (1 second) of virtual
1262 	 * cycle time against real time is interpreted as an attempt to
1263 	 * synchronize the CPU.
1264          *
1265 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1266 	 * TSC, we add elapsed time in this computation.  We could let the
1267 	 * compensation code attempt to catch up if we fall behind, but
1268 	 * it's better to try to match offsets from the beginning.
1269          */
1270 	if (usdiff < USEC_PER_SEC &&
1271 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1272 		if (!check_tsc_unstable()) {
1273 			offset = kvm->arch.cur_tsc_offset;
1274 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1275 		} else {
1276 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1277 			data += delta;
1278 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1279 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1280 		}
1281 		matched = true;
1282 	} else {
1283 		/*
1284 		 * We split periods of matched TSC writes into generations.
1285 		 * For each generation, we track the original measured
1286 		 * nanosecond time, offset, and write, so if TSCs are in
1287 		 * sync, we can match exact offset, and if not, we can match
1288 		 * exact software computation in compute_guest_tsc()
1289 		 *
1290 		 * These values are tracked in kvm->arch.cur_xxx variables.
1291 		 */
1292 		kvm->arch.cur_tsc_generation++;
1293 		kvm->arch.cur_tsc_nsec = ns;
1294 		kvm->arch.cur_tsc_write = data;
1295 		kvm->arch.cur_tsc_offset = offset;
1296 		matched = false;
1297 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1298 			 kvm->arch.cur_tsc_generation, data);
1299 	}
1300 
1301 	/*
1302 	 * We also track th most recent recorded KHZ, write and time to
1303 	 * allow the matching interval to be extended at each write.
1304 	 */
1305 	kvm->arch.last_tsc_nsec = ns;
1306 	kvm->arch.last_tsc_write = data;
1307 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1308 
1309 	vcpu->arch.last_guest_tsc = data;
1310 
1311 	/* Keep track of which generation this VCPU has synchronized to */
1312 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1313 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1314 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1315 
1316 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1317 		update_ia32_tsc_adjust_msr(vcpu, offset);
1318 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1319 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1320 
1321 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1322 	if (matched)
1323 		kvm->arch.nr_vcpus_matched_tsc++;
1324 	else
1325 		kvm->arch.nr_vcpus_matched_tsc = 0;
1326 
1327 	kvm_track_tsc_matching(vcpu);
1328 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1329 }
1330 
1331 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1332 
1333 #ifdef CONFIG_X86_64
1334 
1335 static cycle_t read_tsc(void)
1336 {
1337 	cycle_t ret;
1338 	u64 last;
1339 
1340 	/*
1341 	 * Empirically, a fence (of type that depends on the CPU)
1342 	 * before rdtsc is enough to ensure that rdtsc is ordered
1343 	 * with respect to loads.  The various CPU manuals are unclear
1344 	 * as to whether rdtsc can be reordered with later loads,
1345 	 * but no one has ever seen it happen.
1346 	 */
1347 	rdtsc_barrier();
1348 	ret = (cycle_t)vget_cycles();
1349 
1350 	last = pvclock_gtod_data.clock.cycle_last;
1351 
1352 	if (likely(ret >= last))
1353 		return ret;
1354 
1355 	/*
1356 	 * GCC likes to generate cmov here, but this branch is extremely
1357 	 * predictable (it's just a funciton of time and the likely is
1358 	 * very likely) and there's a data dependence, so force GCC
1359 	 * to generate a branch instead.  I don't barrier() because
1360 	 * we don't actually need a barrier, and if this function
1361 	 * ever gets inlined it will generate worse code.
1362 	 */
1363 	asm volatile ("");
1364 	return last;
1365 }
1366 
1367 static inline u64 vgettsc(cycle_t *cycle_now)
1368 {
1369 	long v;
1370 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1371 
1372 	*cycle_now = read_tsc();
1373 
1374 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1375 	return v * gtod->clock.mult;
1376 }
1377 
1378 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1379 {
1380 	unsigned long seq;
1381 	u64 ns;
1382 	int mode;
1383 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1384 
1385 	ts->tv_nsec = 0;
1386 	do {
1387 		seq = read_seqcount_begin(&gtod->seq);
1388 		mode = gtod->clock.vclock_mode;
1389 		ts->tv_sec = gtod->monotonic_time_sec;
1390 		ns = gtod->monotonic_time_snsec;
1391 		ns += vgettsc(cycle_now);
1392 		ns >>= gtod->clock.shift;
1393 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1394 	timespec_add_ns(ts, ns);
1395 
1396 	return mode;
1397 }
1398 
1399 /* returns true if host is using tsc clocksource */
1400 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1401 {
1402 	struct timespec ts;
1403 
1404 	/* checked again under seqlock below */
1405 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1406 		return false;
1407 
1408 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1409 		return false;
1410 
1411 	monotonic_to_bootbased(&ts);
1412 	*kernel_ns = timespec_to_ns(&ts);
1413 
1414 	return true;
1415 }
1416 #endif
1417 
1418 /*
1419  *
1420  * Assuming a stable TSC across physical CPUS, and a stable TSC
1421  * across virtual CPUs, the following condition is possible.
1422  * Each numbered line represents an event visible to both
1423  * CPUs at the next numbered event.
1424  *
1425  * "timespecX" represents host monotonic time. "tscX" represents
1426  * RDTSC value.
1427  *
1428  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1429  *
1430  * 1.  read timespec0,tsc0
1431  * 2.					| timespec1 = timespec0 + N
1432  * 					| tsc1 = tsc0 + M
1433  * 3. transition to guest		| transition to guest
1434  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1435  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1436  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1437  *
1438  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1439  *
1440  * 	- ret0 < ret1
1441  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1442  *		...
1443  *	- 0 < N - M => M < N
1444  *
1445  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1446  * always the case (the difference between two distinct xtime instances
1447  * might be smaller then the difference between corresponding TSC reads,
1448  * when updating guest vcpus pvclock areas).
1449  *
1450  * To avoid that problem, do not allow visibility of distinct
1451  * system_timestamp/tsc_timestamp values simultaneously: use a master
1452  * copy of host monotonic time values. Update that master copy
1453  * in lockstep.
1454  *
1455  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1456  *
1457  */
1458 
1459 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1460 {
1461 #ifdef CONFIG_X86_64
1462 	struct kvm_arch *ka = &kvm->arch;
1463 	int vclock_mode;
1464 	bool host_tsc_clocksource, vcpus_matched;
1465 
1466 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1467 			atomic_read(&kvm->online_vcpus));
1468 
1469 	/*
1470 	 * If the host uses TSC clock, then passthrough TSC as stable
1471 	 * to the guest.
1472 	 */
1473 	host_tsc_clocksource = kvm_get_time_and_clockread(
1474 					&ka->master_kernel_ns,
1475 					&ka->master_cycle_now);
1476 
1477 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1478 				&& !backwards_tsc_observed;
1479 
1480 	if (ka->use_master_clock)
1481 		atomic_set(&kvm_guest_has_master_clock, 1);
1482 
1483 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1484 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1485 					vcpus_matched);
1486 #endif
1487 }
1488 
1489 static void kvm_gen_update_masterclock(struct kvm *kvm)
1490 {
1491 #ifdef CONFIG_X86_64
1492 	int i;
1493 	struct kvm_vcpu *vcpu;
1494 	struct kvm_arch *ka = &kvm->arch;
1495 
1496 	spin_lock(&ka->pvclock_gtod_sync_lock);
1497 	kvm_make_mclock_inprogress_request(kvm);
1498 	/* no guest entries from this point */
1499 	pvclock_update_vm_gtod_copy(kvm);
1500 
1501 	kvm_for_each_vcpu(i, vcpu, kvm)
1502 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1503 
1504 	/* guest entries allowed */
1505 	kvm_for_each_vcpu(i, vcpu, kvm)
1506 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1507 
1508 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1509 #endif
1510 }
1511 
1512 static int kvm_guest_time_update(struct kvm_vcpu *v)
1513 {
1514 	unsigned long flags, this_tsc_khz;
1515 	struct kvm_vcpu_arch *vcpu = &v->arch;
1516 	struct kvm_arch *ka = &v->kvm->arch;
1517 	s64 kernel_ns;
1518 	u64 tsc_timestamp, host_tsc;
1519 	struct pvclock_vcpu_time_info guest_hv_clock;
1520 	u8 pvclock_flags;
1521 	bool use_master_clock;
1522 
1523 	kernel_ns = 0;
1524 	host_tsc = 0;
1525 
1526 	/*
1527 	 * If the host uses TSC clock, then passthrough TSC as stable
1528 	 * to the guest.
1529 	 */
1530 	spin_lock(&ka->pvclock_gtod_sync_lock);
1531 	use_master_clock = ka->use_master_clock;
1532 	if (use_master_clock) {
1533 		host_tsc = ka->master_cycle_now;
1534 		kernel_ns = ka->master_kernel_ns;
1535 	}
1536 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1537 
1538 	/* Keep irq disabled to prevent changes to the clock */
1539 	local_irq_save(flags);
1540 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1541 	if (unlikely(this_tsc_khz == 0)) {
1542 		local_irq_restore(flags);
1543 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1544 		return 1;
1545 	}
1546 	if (!use_master_clock) {
1547 		host_tsc = native_read_tsc();
1548 		kernel_ns = get_kernel_ns();
1549 	}
1550 
1551 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1552 
1553 	/*
1554 	 * We may have to catch up the TSC to match elapsed wall clock
1555 	 * time for two reasons, even if kvmclock is used.
1556 	 *   1) CPU could have been running below the maximum TSC rate
1557 	 *   2) Broken TSC compensation resets the base at each VCPU
1558 	 *      entry to avoid unknown leaps of TSC even when running
1559 	 *      again on the same CPU.  This may cause apparent elapsed
1560 	 *      time to disappear, and the guest to stand still or run
1561 	 *	very slowly.
1562 	 */
1563 	if (vcpu->tsc_catchup) {
1564 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1565 		if (tsc > tsc_timestamp) {
1566 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1567 			tsc_timestamp = tsc;
1568 		}
1569 	}
1570 
1571 	local_irq_restore(flags);
1572 
1573 	if (!vcpu->pv_time_enabled)
1574 		return 0;
1575 
1576 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1577 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1578 				   &vcpu->hv_clock.tsc_shift,
1579 				   &vcpu->hv_clock.tsc_to_system_mul);
1580 		vcpu->hw_tsc_khz = this_tsc_khz;
1581 	}
1582 
1583 	/* With all the info we got, fill in the values */
1584 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1585 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1586 	vcpu->last_guest_tsc = tsc_timestamp;
1587 
1588 	/*
1589 	 * The interface expects us to write an even number signaling that the
1590 	 * update is finished. Since the guest won't see the intermediate
1591 	 * state, we just increase by 2 at the end.
1592 	 */
1593 	vcpu->hv_clock.version += 2;
1594 
1595 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1596 		&guest_hv_clock, sizeof(guest_hv_clock))))
1597 		return 0;
1598 
1599 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1600 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1601 
1602 	if (vcpu->pvclock_set_guest_stopped_request) {
1603 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1604 		vcpu->pvclock_set_guest_stopped_request = false;
1605 	}
1606 
1607 	/* If the host uses TSC clocksource, then it is stable */
1608 	if (use_master_clock)
1609 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1610 
1611 	vcpu->hv_clock.flags = pvclock_flags;
1612 
1613 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1614 				&vcpu->hv_clock,
1615 				sizeof(vcpu->hv_clock));
1616 	return 0;
1617 }
1618 
1619 /*
1620  * kvmclock updates which are isolated to a given vcpu, such as
1621  * vcpu->cpu migration, should not allow system_timestamp from
1622  * the rest of the vcpus to remain static. Otherwise ntp frequency
1623  * correction applies to one vcpu's system_timestamp but not
1624  * the others.
1625  *
1626  * So in those cases, request a kvmclock update for all vcpus.
1627  * We need to rate-limit these requests though, as they can
1628  * considerably slow guests that have a large number of vcpus.
1629  * The time for a remote vcpu to update its kvmclock is bound
1630  * by the delay we use to rate-limit the updates.
1631  */
1632 
1633 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1634 
1635 static void kvmclock_update_fn(struct work_struct *work)
1636 {
1637 	int i;
1638 	struct delayed_work *dwork = to_delayed_work(work);
1639 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1640 					   kvmclock_update_work);
1641 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1642 	struct kvm_vcpu *vcpu;
1643 
1644 	kvm_for_each_vcpu(i, vcpu, kvm) {
1645 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1646 		kvm_vcpu_kick(vcpu);
1647 	}
1648 }
1649 
1650 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1651 {
1652 	struct kvm *kvm = v->kvm;
1653 
1654 	set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests);
1655 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1656 					KVMCLOCK_UPDATE_DELAY);
1657 }
1658 
1659 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1660 
1661 static void kvmclock_sync_fn(struct work_struct *work)
1662 {
1663 	struct delayed_work *dwork = to_delayed_work(work);
1664 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1665 					   kvmclock_sync_work);
1666 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1667 
1668 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1669 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1670 					KVMCLOCK_SYNC_PERIOD);
1671 }
1672 
1673 static bool msr_mtrr_valid(unsigned msr)
1674 {
1675 	switch (msr) {
1676 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1677 	case MSR_MTRRfix64K_00000:
1678 	case MSR_MTRRfix16K_80000:
1679 	case MSR_MTRRfix16K_A0000:
1680 	case MSR_MTRRfix4K_C0000:
1681 	case MSR_MTRRfix4K_C8000:
1682 	case MSR_MTRRfix4K_D0000:
1683 	case MSR_MTRRfix4K_D8000:
1684 	case MSR_MTRRfix4K_E0000:
1685 	case MSR_MTRRfix4K_E8000:
1686 	case MSR_MTRRfix4K_F0000:
1687 	case MSR_MTRRfix4K_F8000:
1688 	case MSR_MTRRdefType:
1689 	case MSR_IA32_CR_PAT:
1690 		return true;
1691 	case 0x2f8:
1692 		return true;
1693 	}
1694 	return false;
1695 }
1696 
1697 static bool valid_pat_type(unsigned t)
1698 {
1699 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1700 }
1701 
1702 static bool valid_mtrr_type(unsigned t)
1703 {
1704 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1705 }
1706 
1707 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1708 {
1709 	int i;
1710 
1711 	if (!msr_mtrr_valid(msr))
1712 		return false;
1713 
1714 	if (msr == MSR_IA32_CR_PAT) {
1715 		for (i = 0; i < 8; i++)
1716 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1717 				return false;
1718 		return true;
1719 	} else if (msr == MSR_MTRRdefType) {
1720 		if (data & ~0xcff)
1721 			return false;
1722 		return valid_mtrr_type(data & 0xff);
1723 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1724 		for (i = 0; i < 8 ; i++)
1725 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1726 				return false;
1727 		return true;
1728 	}
1729 
1730 	/* variable MTRRs */
1731 	return valid_mtrr_type(data & 0xff);
1732 }
1733 
1734 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1735 {
1736 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1737 
1738 	if (!mtrr_valid(vcpu, msr, data))
1739 		return 1;
1740 
1741 	if (msr == MSR_MTRRdefType) {
1742 		vcpu->arch.mtrr_state.def_type = data;
1743 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1744 	} else if (msr == MSR_MTRRfix64K_00000)
1745 		p[0] = data;
1746 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1747 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1748 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1749 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1750 	else if (msr == MSR_IA32_CR_PAT)
1751 		vcpu->arch.pat = data;
1752 	else {	/* Variable MTRRs */
1753 		int idx, is_mtrr_mask;
1754 		u64 *pt;
1755 
1756 		idx = (msr - 0x200) / 2;
1757 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1758 		if (!is_mtrr_mask)
1759 			pt =
1760 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1761 		else
1762 			pt =
1763 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1764 		*pt = data;
1765 	}
1766 
1767 	kvm_mmu_reset_context(vcpu);
1768 	return 0;
1769 }
1770 
1771 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1772 {
1773 	u64 mcg_cap = vcpu->arch.mcg_cap;
1774 	unsigned bank_num = mcg_cap & 0xff;
1775 
1776 	switch (msr) {
1777 	case MSR_IA32_MCG_STATUS:
1778 		vcpu->arch.mcg_status = data;
1779 		break;
1780 	case MSR_IA32_MCG_CTL:
1781 		if (!(mcg_cap & MCG_CTL_P))
1782 			return 1;
1783 		if (data != 0 && data != ~(u64)0)
1784 			return -1;
1785 		vcpu->arch.mcg_ctl = data;
1786 		break;
1787 	default:
1788 		if (msr >= MSR_IA32_MC0_CTL &&
1789 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1790 			u32 offset = msr - MSR_IA32_MC0_CTL;
1791 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1792 			 * some Linux kernels though clear bit 10 in bank 4 to
1793 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1794 			 * this to avoid an uncatched #GP in the guest
1795 			 */
1796 			if ((offset & 0x3) == 0 &&
1797 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1798 				return -1;
1799 			vcpu->arch.mce_banks[offset] = data;
1800 			break;
1801 		}
1802 		return 1;
1803 	}
1804 	return 0;
1805 }
1806 
1807 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1808 {
1809 	struct kvm *kvm = vcpu->kvm;
1810 	int lm = is_long_mode(vcpu);
1811 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1812 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1813 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1814 		: kvm->arch.xen_hvm_config.blob_size_32;
1815 	u32 page_num = data & ~PAGE_MASK;
1816 	u64 page_addr = data & PAGE_MASK;
1817 	u8 *page;
1818 	int r;
1819 
1820 	r = -E2BIG;
1821 	if (page_num >= blob_size)
1822 		goto out;
1823 	r = -ENOMEM;
1824 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1825 	if (IS_ERR(page)) {
1826 		r = PTR_ERR(page);
1827 		goto out;
1828 	}
1829 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1830 		goto out_free;
1831 	r = 0;
1832 out_free:
1833 	kfree(page);
1834 out:
1835 	return r;
1836 }
1837 
1838 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1839 {
1840 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1841 }
1842 
1843 static bool kvm_hv_msr_partition_wide(u32 msr)
1844 {
1845 	bool r = false;
1846 	switch (msr) {
1847 	case HV_X64_MSR_GUEST_OS_ID:
1848 	case HV_X64_MSR_HYPERCALL:
1849 	case HV_X64_MSR_REFERENCE_TSC:
1850 	case HV_X64_MSR_TIME_REF_COUNT:
1851 		r = true;
1852 		break;
1853 	}
1854 
1855 	return r;
1856 }
1857 
1858 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1859 {
1860 	struct kvm *kvm = vcpu->kvm;
1861 
1862 	switch (msr) {
1863 	case HV_X64_MSR_GUEST_OS_ID:
1864 		kvm->arch.hv_guest_os_id = data;
1865 		/* setting guest os id to zero disables hypercall page */
1866 		if (!kvm->arch.hv_guest_os_id)
1867 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1868 		break;
1869 	case HV_X64_MSR_HYPERCALL: {
1870 		u64 gfn;
1871 		unsigned long addr;
1872 		u8 instructions[4];
1873 
1874 		/* if guest os id is not set hypercall should remain disabled */
1875 		if (!kvm->arch.hv_guest_os_id)
1876 			break;
1877 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1878 			kvm->arch.hv_hypercall = data;
1879 			break;
1880 		}
1881 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1882 		addr = gfn_to_hva(kvm, gfn);
1883 		if (kvm_is_error_hva(addr))
1884 			return 1;
1885 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1886 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1887 		if (__copy_to_user((void __user *)addr, instructions, 4))
1888 			return 1;
1889 		kvm->arch.hv_hypercall = data;
1890 		mark_page_dirty(kvm, gfn);
1891 		break;
1892 	}
1893 	case HV_X64_MSR_REFERENCE_TSC: {
1894 		u64 gfn;
1895 		HV_REFERENCE_TSC_PAGE tsc_ref;
1896 		memset(&tsc_ref, 0, sizeof(tsc_ref));
1897 		kvm->arch.hv_tsc_page = data;
1898 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1899 			break;
1900 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1901 		if (kvm_write_guest(kvm, data,
1902 			&tsc_ref, sizeof(tsc_ref)))
1903 			return 1;
1904 		mark_page_dirty(kvm, gfn);
1905 		break;
1906 	}
1907 	default:
1908 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1909 			    "data 0x%llx\n", msr, data);
1910 		return 1;
1911 	}
1912 	return 0;
1913 }
1914 
1915 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1916 {
1917 	switch (msr) {
1918 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1919 		u64 gfn;
1920 		unsigned long addr;
1921 
1922 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1923 			vcpu->arch.hv_vapic = data;
1924 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1925 				return 1;
1926 			break;
1927 		}
1928 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
1929 		addr = gfn_to_hva(vcpu->kvm, gfn);
1930 		if (kvm_is_error_hva(addr))
1931 			return 1;
1932 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1933 			return 1;
1934 		vcpu->arch.hv_vapic = data;
1935 		mark_page_dirty(vcpu->kvm, gfn);
1936 		if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1937 			return 1;
1938 		break;
1939 	}
1940 	case HV_X64_MSR_EOI:
1941 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1942 	case HV_X64_MSR_ICR:
1943 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1944 	case HV_X64_MSR_TPR:
1945 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1946 	default:
1947 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1948 			    "data 0x%llx\n", msr, data);
1949 		return 1;
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1956 {
1957 	gpa_t gpa = data & ~0x3f;
1958 
1959 	/* Bits 2:5 are reserved, Should be zero */
1960 	if (data & 0x3c)
1961 		return 1;
1962 
1963 	vcpu->arch.apf.msr_val = data;
1964 
1965 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1966 		kvm_clear_async_pf_completion_queue(vcpu);
1967 		kvm_async_pf_hash_reset(vcpu);
1968 		return 0;
1969 	}
1970 
1971 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1972 					sizeof(u32)))
1973 		return 1;
1974 
1975 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1976 	kvm_async_pf_wakeup_all(vcpu);
1977 	return 0;
1978 }
1979 
1980 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1981 {
1982 	vcpu->arch.pv_time_enabled = false;
1983 }
1984 
1985 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1986 {
1987 	u64 delta;
1988 
1989 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1990 		return;
1991 
1992 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1993 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1994 	vcpu->arch.st.accum_steal = delta;
1995 }
1996 
1997 static void record_steal_time(struct kvm_vcpu *vcpu)
1998 {
1999 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2000 		return;
2001 
2002 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2003 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2004 		return;
2005 
2006 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2007 	vcpu->arch.st.steal.version += 2;
2008 	vcpu->arch.st.accum_steal = 0;
2009 
2010 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2011 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2012 }
2013 
2014 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2015 {
2016 	bool pr = false;
2017 	u32 msr = msr_info->index;
2018 	u64 data = msr_info->data;
2019 
2020 	switch (msr) {
2021 	case MSR_AMD64_NB_CFG:
2022 	case MSR_IA32_UCODE_REV:
2023 	case MSR_IA32_UCODE_WRITE:
2024 	case MSR_VM_HSAVE_PA:
2025 	case MSR_AMD64_PATCH_LOADER:
2026 	case MSR_AMD64_BU_CFG2:
2027 		break;
2028 
2029 	case MSR_EFER:
2030 		return set_efer(vcpu, data);
2031 	case MSR_K7_HWCR:
2032 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2033 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2034 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2035 		if (data != 0) {
2036 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2037 				    data);
2038 			return 1;
2039 		}
2040 		break;
2041 	case MSR_FAM10H_MMIO_CONF_BASE:
2042 		if (data != 0) {
2043 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2044 				    "0x%llx\n", data);
2045 			return 1;
2046 		}
2047 		break;
2048 	case MSR_IA32_DEBUGCTLMSR:
2049 		if (!data) {
2050 			/* We support the non-activated case already */
2051 			break;
2052 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2053 			/* Values other than LBR and BTF are vendor-specific,
2054 			   thus reserved and should throw a #GP */
2055 			return 1;
2056 		}
2057 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2058 			    __func__, data);
2059 		break;
2060 	case 0x200 ... 0x2ff:
2061 		return set_msr_mtrr(vcpu, msr, data);
2062 	case MSR_IA32_APICBASE:
2063 		return kvm_set_apic_base(vcpu, msr_info);
2064 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2065 		return kvm_x2apic_msr_write(vcpu, msr, data);
2066 	case MSR_IA32_TSCDEADLINE:
2067 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2068 		break;
2069 	case MSR_IA32_TSC_ADJUST:
2070 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2071 			if (!msr_info->host_initiated) {
2072 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2073 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2074 			}
2075 			vcpu->arch.ia32_tsc_adjust_msr = data;
2076 		}
2077 		break;
2078 	case MSR_IA32_MISC_ENABLE:
2079 		vcpu->arch.ia32_misc_enable_msr = data;
2080 		break;
2081 	case MSR_KVM_WALL_CLOCK_NEW:
2082 	case MSR_KVM_WALL_CLOCK:
2083 		vcpu->kvm->arch.wall_clock = data;
2084 		kvm_write_wall_clock(vcpu->kvm, data);
2085 		break;
2086 	case MSR_KVM_SYSTEM_TIME_NEW:
2087 	case MSR_KVM_SYSTEM_TIME: {
2088 		u64 gpa_offset;
2089 		kvmclock_reset(vcpu);
2090 
2091 		vcpu->arch.time = data;
2092 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2093 
2094 		/* we verify if the enable bit is set... */
2095 		if (!(data & 1))
2096 			break;
2097 
2098 		gpa_offset = data & ~(PAGE_MASK | 1);
2099 
2100 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2101 		     &vcpu->arch.pv_time, data & ~1ULL,
2102 		     sizeof(struct pvclock_vcpu_time_info)))
2103 			vcpu->arch.pv_time_enabled = false;
2104 		else
2105 			vcpu->arch.pv_time_enabled = true;
2106 
2107 		break;
2108 	}
2109 	case MSR_KVM_ASYNC_PF_EN:
2110 		if (kvm_pv_enable_async_pf(vcpu, data))
2111 			return 1;
2112 		break;
2113 	case MSR_KVM_STEAL_TIME:
2114 
2115 		if (unlikely(!sched_info_on()))
2116 			return 1;
2117 
2118 		if (data & KVM_STEAL_RESERVED_MASK)
2119 			return 1;
2120 
2121 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2122 						data & KVM_STEAL_VALID_BITS,
2123 						sizeof(struct kvm_steal_time)))
2124 			return 1;
2125 
2126 		vcpu->arch.st.msr_val = data;
2127 
2128 		if (!(data & KVM_MSR_ENABLED))
2129 			break;
2130 
2131 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2132 
2133 		preempt_disable();
2134 		accumulate_steal_time(vcpu);
2135 		preempt_enable();
2136 
2137 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2138 
2139 		break;
2140 	case MSR_KVM_PV_EOI_EN:
2141 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2142 			return 1;
2143 		break;
2144 
2145 	case MSR_IA32_MCG_CTL:
2146 	case MSR_IA32_MCG_STATUS:
2147 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2148 		return set_msr_mce(vcpu, msr, data);
2149 
2150 	/* Performance counters are not protected by a CPUID bit,
2151 	 * so we should check all of them in the generic path for the sake of
2152 	 * cross vendor migration.
2153 	 * Writing a zero into the event select MSRs disables them,
2154 	 * which we perfectly emulate ;-). Any other value should be at least
2155 	 * reported, some guests depend on them.
2156 	 */
2157 	case MSR_K7_EVNTSEL0:
2158 	case MSR_K7_EVNTSEL1:
2159 	case MSR_K7_EVNTSEL2:
2160 	case MSR_K7_EVNTSEL3:
2161 		if (data != 0)
2162 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2163 				    "0x%x data 0x%llx\n", msr, data);
2164 		break;
2165 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2166 	 * so we ignore writes to make it happy.
2167 	 */
2168 	case MSR_K7_PERFCTR0:
2169 	case MSR_K7_PERFCTR1:
2170 	case MSR_K7_PERFCTR2:
2171 	case MSR_K7_PERFCTR3:
2172 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2173 			    "0x%x data 0x%llx\n", msr, data);
2174 		break;
2175 	case MSR_P6_PERFCTR0:
2176 	case MSR_P6_PERFCTR1:
2177 		pr = true;
2178 	case MSR_P6_EVNTSEL0:
2179 	case MSR_P6_EVNTSEL1:
2180 		if (kvm_pmu_msr(vcpu, msr))
2181 			return kvm_pmu_set_msr(vcpu, msr_info);
2182 
2183 		if (pr || data != 0)
2184 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2185 				    "0x%x data 0x%llx\n", msr, data);
2186 		break;
2187 	case MSR_K7_CLK_CTL:
2188 		/*
2189 		 * Ignore all writes to this no longer documented MSR.
2190 		 * Writes are only relevant for old K7 processors,
2191 		 * all pre-dating SVM, but a recommended workaround from
2192 		 * AMD for these chips. It is possible to specify the
2193 		 * affected processor models on the command line, hence
2194 		 * the need to ignore the workaround.
2195 		 */
2196 		break;
2197 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2198 		if (kvm_hv_msr_partition_wide(msr)) {
2199 			int r;
2200 			mutex_lock(&vcpu->kvm->lock);
2201 			r = set_msr_hyperv_pw(vcpu, msr, data);
2202 			mutex_unlock(&vcpu->kvm->lock);
2203 			return r;
2204 		} else
2205 			return set_msr_hyperv(vcpu, msr, data);
2206 		break;
2207 	case MSR_IA32_BBL_CR_CTL3:
2208 		/* Drop writes to this legacy MSR -- see rdmsr
2209 		 * counterpart for further detail.
2210 		 */
2211 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2212 		break;
2213 	case MSR_AMD64_OSVW_ID_LENGTH:
2214 		if (!guest_cpuid_has_osvw(vcpu))
2215 			return 1;
2216 		vcpu->arch.osvw.length = data;
2217 		break;
2218 	case MSR_AMD64_OSVW_STATUS:
2219 		if (!guest_cpuid_has_osvw(vcpu))
2220 			return 1;
2221 		vcpu->arch.osvw.status = data;
2222 		break;
2223 	default:
2224 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2225 			return xen_hvm_config(vcpu, data);
2226 		if (kvm_pmu_msr(vcpu, msr))
2227 			return kvm_pmu_set_msr(vcpu, msr_info);
2228 		if (!ignore_msrs) {
2229 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2230 				    msr, data);
2231 			return 1;
2232 		} else {
2233 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2234 				    msr, data);
2235 			break;
2236 		}
2237 	}
2238 	return 0;
2239 }
2240 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2241 
2242 
2243 /*
2244  * Reads an msr value (of 'msr_index') into 'pdata'.
2245  * Returns 0 on success, non-0 otherwise.
2246  * Assumes vcpu_load() was already called.
2247  */
2248 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2249 {
2250 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2251 }
2252 
2253 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2254 {
2255 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2256 
2257 	if (!msr_mtrr_valid(msr))
2258 		return 1;
2259 
2260 	if (msr == MSR_MTRRdefType)
2261 		*pdata = vcpu->arch.mtrr_state.def_type +
2262 			 (vcpu->arch.mtrr_state.enabled << 10);
2263 	else if (msr == MSR_MTRRfix64K_00000)
2264 		*pdata = p[0];
2265 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2266 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2267 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2268 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2269 	else if (msr == MSR_IA32_CR_PAT)
2270 		*pdata = vcpu->arch.pat;
2271 	else {	/* Variable MTRRs */
2272 		int idx, is_mtrr_mask;
2273 		u64 *pt;
2274 
2275 		idx = (msr - 0x200) / 2;
2276 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2277 		if (!is_mtrr_mask)
2278 			pt =
2279 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2280 		else
2281 			pt =
2282 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2283 		*pdata = *pt;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2290 {
2291 	u64 data;
2292 	u64 mcg_cap = vcpu->arch.mcg_cap;
2293 	unsigned bank_num = mcg_cap & 0xff;
2294 
2295 	switch (msr) {
2296 	case MSR_IA32_P5_MC_ADDR:
2297 	case MSR_IA32_P5_MC_TYPE:
2298 		data = 0;
2299 		break;
2300 	case MSR_IA32_MCG_CAP:
2301 		data = vcpu->arch.mcg_cap;
2302 		break;
2303 	case MSR_IA32_MCG_CTL:
2304 		if (!(mcg_cap & MCG_CTL_P))
2305 			return 1;
2306 		data = vcpu->arch.mcg_ctl;
2307 		break;
2308 	case MSR_IA32_MCG_STATUS:
2309 		data = vcpu->arch.mcg_status;
2310 		break;
2311 	default:
2312 		if (msr >= MSR_IA32_MC0_CTL &&
2313 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2314 			u32 offset = msr - MSR_IA32_MC0_CTL;
2315 			data = vcpu->arch.mce_banks[offset];
2316 			break;
2317 		}
2318 		return 1;
2319 	}
2320 	*pdata = data;
2321 	return 0;
2322 }
2323 
2324 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326 	u64 data = 0;
2327 	struct kvm *kvm = vcpu->kvm;
2328 
2329 	switch (msr) {
2330 	case HV_X64_MSR_GUEST_OS_ID:
2331 		data = kvm->arch.hv_guest_os_id;
2332 		break;
2333 	case HV_X64_MSR_HYPERCALL:
2334 		data = kvm->arch.hv_hypercall;
2335 		break;
2336 	case HV_X64_MSR_TIME_REF_COUNT: {
2337 		data =
2338 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2339 		break;
2340 	}
2341 	case HV_X64_MSR_REFERENCE_TSC:
2342 		data = kvm->arch.hv_tsc_page;
2343 		break;
2344 	default:
2345 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2346 		return 1;
2347 	}
2348 
2349 	*pdata = data;
2350 	return 0;
2351 }
2352 
2353 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2354 {
2355 	u64 data = 0;
2356 
2357 	switch (msr) {
2358 	case HV_X64_MSR_VP_INDEX: {
2359 		int r;
2360 		struct kvm_vcpu *v;
2361 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2362 			if (v == vcpu) {
2363 				data = r;
2364 				break;
2365 			}
2366 		}
2367 		break;
2368 	}
2369 	case HV_X64_MSR_EOI:
2370 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2371 	case HV_X64_MSR_ICR:
2372 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2373 	case HV_X64_MSR_TPR:
2374 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2375 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2376 		data = vcpu->arch.hv_vapic;
2377 		break;
2378 	default:
2379 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2380 		return 1;
2381 	}
2382 	*pdata = data;
2383 	return 0;
2384 }
2385 
2386 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2387 {
2388 	u64 data;
2389 
2390 	switch (msr) {
2391 	case MSR_IA32_PLATFORM_ID:
2392 	case MSR_IA32_EBL_CR_POWERON:
2393 	case MSR_IA32_DEBUGCTLMSR:
2394 	case MSR_IA32_LASTBRANCHFROMIP:
2395 	case MSR_IA32_LASTBRANCHTOIP:
2396 	case MSR_IA32_LASTINTFROMIP:
2397 	case MSR_IA32_LASTINTTOIP:
2398 	case MSR_K8_SYSCFG:
2399 	case MSR_K7_HWCR:
2400 	case MSR_VM_HSAVE_PA:
2401 	case MSR_K7_EVNTSEL0:
2402 	case MSR_K7_PERFCTR0:
2403 	case MSR_K8_INT_PENDING_MSG:
2404 	case MSR_AMD64_NB_CFG:
2405 	case MSR_FAM10H_MMIO_CONF_BASE:
2406 	case MSR_AMD64_BU_CFG2:
2407 		data = 0;
2408 		break;
2409 	case MSR_P6_PERFCTR0:
2410 	case MSR_P6_PERFCTR1:
2411 	case MSR_P6_EVNTSEL0:
2412 	case MSR_P6_EVNTSEL1:
2413 		if (kvm_pmu_msr(vcpu, msr))
2414 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2415 		data = 0;
2416 		break;
2417 	case MSR_IA32_UCODE_REV:
2418 		data = 0x100000000ULL;
2419 		break;
2420 	case MSR_MTRRcap:
2421 		data = 0x500 | KVM_NR_VAR_MTRR;
2422 		break;
2423 	case 0x200 ... 0x2ff:
2424 		return get_msr_mtrr(vcpu, msr, pdata);
2425 	case 0xcd: /* fsb frequency */
2426 		data = 3;
2427 		break;
2428 		/*
2429 		 * MSR_EBC_FREQUENCY_ID
2430 		 * Conservative value valid for even the basic CPU models.
2431 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2432 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2433 		 * and 266MHz for model 3, or 4. Set Core Clock
2434 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2435 		 * 31:24) even though these are only valid for CPU
2436 		 * models > 2, however guests may end up dividing or
2437 		 * multiplying by zero otherwise.
2438 		 */
2439 	case MSR_EBC_FREQUENCY_ID:
2440 		data = 1 << 24;
2441 		break;
2442 	case MSR_IA32_APICBASE:
2443 		data = kvm_get_apic_base(vcpu);
2444 		break;
2445 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2446 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2447 		break;
2448 	case MSR_IA32_TSCDEADLINE:
2449 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2450 		break;
2451 	case MSR_IA32_TSC_ADJUST:
2452 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2453 		break;
2454 	case MSR_IA32_MISC_ENABLE:
2455 		data = vcpu->arch.ia32_misc_enable_msr;
2456 		break;
2457 	case MSR_IA32_PERF_STATUS:
2458 		/* TSC increment by tick */
2459 		data = 1000ULL;
2460 		/* CPU multiplier */
2461 		data |= (((uint64_t)4ULL) << 40);
2462 		break;
2463 	case MSR_EFER:
2464 		data = vcpu->arch.efer;
2465 		break;
2466 	case MSR_KVM_WALL_CLOCK:
2467 	case MSR_KVM_WALL_CLOCK_NEW:
2468 		data = vcpu->kvm->arch.wall_clock;
2469 		break;
2470 	case MSR_KVM_SYSTEM_TIME:
2471 	case MSR_KVM_SYSTEM_TIME_NEW:
2472 		data = vcpu->arch.time;
2473 		break;
2474 	case MSR_KVM_ASYNC_PF_EN:
2475 		data = vcpu->arch.apf.msr_val;
2476 		break;
2477 	case MSR_KVM_STEAL_TIME:
2478 		data = vcpu->arch.st.msr_val;
2479 		break;
2480 	case MSR_KVM_PV_EOI_EN:
2481 		data = vcpu->arch.pv_eoi.msr_val;
2482 		break;
2483 	case MSR_IA32_P5_MC_ADDR:
2484 	case MSR_IA32_P5_MC_TYPE:
2485 	case MSR_IA32_MCG_CAP:
2486 	case MSR_IA32_MCG_CTL:
2487 	case MSR_IA32_MCG_STATUS:
2488 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2489 		return get_msr_mce(vcpu, msr, pdata);
2490 	case MSR_K7_CLK_CTL:
2491 		/*
2492 		 * Provide expected ramp-up count for K7. All other
2493 		 * are set to zero, indicating minimum divisors for
2494 		 * every field.
2495 		 *
2496 		 * This prevents guest kernels on AMD host with CPU
2497 		 * type 6, model 8 and higher from exploding due to
2498 		 * the rdmsr failing.
2499 		 */
2500 		data = 0x20000000;
2501 		break;
2502 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2503 		if (kvm_hv_msr_partition_wide(msr)) {
2504 			int r;
2505 			mutex_lock(&vcpu->kvm->lock);
2506 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2507 			mutex_unlock(&vcpu->kvm->lock);
2508 			return r;
2509 		} else
2510 			return get_msr_hyperv(vcpu, msr, pdata);
2511 		break;
2512 	case MSR_IA32_BBL_CR_CTL3:
2513 		/* This legacy MSR exists but isn't fully documented in current
2514 		 * silicon.  It is however accessed by winxp in very narrow
2515 		 * scenarios where it sets bit #19, itself documented as
2516 		 * a "reserved" bit.  Best effort attempt to source coherent
2517 		 * read data here should the balance of the register be
2518 		 * interpreted by the guest:
2519 		 *
2520 		 * L2 cache control register 3: 64GB range, 256KB size,
2521 		 * enabled, latency 0x1, configured
2522 		 */
2523 		data = 0xbe702111;
2524 		break;
2525 	case MSR_AMD64_OSVW_ID_LENGTH:
2526 		if (!guest_cpuid_has_osvw(vcpu))
2527 			return 1;
2528 		data = vcpu->arch.osvw.length;
2529 		break;
2530 	case MSR_AMD64_OSVW_STATUS:
2531 		if (!guest_cpuid_has_osvw(vcpu))
2532 			return 1;
2533 		data = vcpu->arch.osvw.status;
2534 		break;
2535 	default:
2536 		if (kvm_pmu_msr(vcpu, msr))
2537 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2538 		if (!ignore_msrs) {
2539 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2540 			return 1;
2541 		} else {
2542 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2543 			data = 0;
2544 		}
2545 		break;
2546 	}
2547 	*pdata = data;
2548 	return 0;
2549 }
2550 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2551 
2552 /*
2553  * Read or write a bunch of msrs. All parameters are kernel addresses.
2554  *
2555  * @return number of msrs set successfully.
2556  */
2557 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2558 		    struct kvm_msr_entry *entries,
2559 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2560 				  unsigned index, u64 *data))
2561 {
2562 	int i, idx;
2563 
2564 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2565 	for (i = 0; i < msrs->nmsrs; ++i)
2566 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2567 			break;
2568 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2569 
2570 	return i;
2571 }
2572 
2573 /*
2574  * Read or write a bunch of msrs. Parameters are user addresses.
2575  *
2576  * @return number of msrs set successfully.
2577  */
2578 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2579 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2580 				unsigned index, u64 *data),
2581 		  int writeback)
2582 {
2583 	struct kvm_msrs msrs;
2584 	struct kvm_msr_entry *entries;
2585 	int r, n;
2586 	unsigned size;
2587 
2588 	r = -EFAULT;
2589 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2590 		goto out;
2591 
2592 	r = -E2BIG;
2593 	if (msrs.nmsrs >= MAX_IO_MSRS)
2594 		goto out;
2595 
2596 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2597 	entries = memdup_user(user_msrs->entries, size);
2598 	if (IS_ERR(entries)) {
2599 		r = PTR_ERR(entries);
2600 		goto out;
2601 	}
2602 
2603 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2604 	if (r < 0)
2605 		goto out_free;
2606 
2607 	r = -EFAULT;
2608 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2609 		goto out_free;
2610 
2611 	r = n;
2612 
2613 out_free:
2614 	kfree(entries);
2615 out:
2616 	return r;
2617 }
2618 
2619 int kvm_dev_ioctl_check_extension(long ext)
2620 {
2621 	int r;
2622 
2623 	switch (ext) {
2624 	case KVM_CAP_IRQCHIP:
2625 	case KVM_CAP_HLT:
2626 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2627 	case KVM_CAP_SET_TSS_ADDR:
2628 	case KVM_CAP_EXT_CPUID:
2629 	case KVM_CAP_EXT_EMUL_CPUID:
2630 	case KVM_CAP_CLOCKSOURCE:
2631 	case KVM_CAP_PIT:
2632 	case KVM_CAP_NOP_IO_DELAY:
2633 	case KVM_CAP_MP_STATE:
2634 	case KVM_CAP_SYNC_MMU:
2635 	case KVM_CAP_USER_NMI:
2636 	case KVM_CAP_REINJECT_CONTROL:
2637 	case KVM_CAP_IRQ_INJECT_STATUS:
2638 	case KVM_CAP_IRQFD:
2639 	case KVM_CAP_IOEVENTFD:
2640 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2641 	case KVM_CAP_PIT2:
2642 	case KVM_CAP_PIT_STATE2:
2643 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2644 	case KVM_CAP_XEN_HVM:
2645 	case KVM_CAP_ADJUST_CLOCK:
2646 	case KVM_CAP_VCPU_EVENTS:
2647 	case KVM_CAP_HYPERV:
2648 	case KVM_CAP_HYPERV_VAPIC:
2649 	case KVM_CAP_HYPERV_SPIN:
2650 	case KVM_CAP_PCI_SEGMENT:
2651 	case KVM_CAP_DEBUGREGS:
2652 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2653 	case KVM_CAP_XSAVE:
2654 	case KVM_CAP_ASYNC_PF:
2655 	case KVM_CAP_GET_TSC_KHZ:
2656 	case KVM_CAP_KVMCLOCK_CTRL:
2657 	case KVM_CAP_READONLY_MEM:
2658 	case KVM_CAP_HYPERV_TIME:
2659 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2660 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2661 	case KVM_CAP_ASSIGN_DEV_IRQ:
2662 	case KVM_CAP_PCI_2_3:
2663 #endif
2664 		r = 1;
2665 		break;
2666 	case KVM_CAP_COALESCED_MMIO:
2667 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2668 		break;
2669 	case KVM_CAP_VAPIC:
2670 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2671 		break;
2672 	case KVM_CAP_NR_VCPUS:
2673 		r = KVM_SOFT_MAX_VCPUS;
2674 		break;
2675 	case KVM_CAP_MAX_VCPUS:
2676 		r = KVM_MAX_VCPUS;
2677 		break;
2678 	case KVM_CAP_NR_MEMSLOTS:
2679 		r = KVM_USER_MEM_SLOTS;
2680 		break;
2681 	case KVM_CAP_PV_MMU:	/* obsolete */
2682 		r = 0;
2683 		break;
2684 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2685 	case KVM_CAP_IOMMU:
2686 		r = iommu_present(&pci_bus_type);
2687 		break;
2688 #endif
2689 	case KVM_CAP_MCE:
2690 		r = KVM_MAX_MCE_BANKS;
2691 		break;
2692 	case KVM_CAP_XCRS:
2693 		r = cpu_has_xsave;
2694 		break;
2695 	case KVM_CAP_TSC_CONTROL:
2696 		r = kvm_has_tsc_control;
2697 		break;
2698 	case KVM_CAP_TSC_DEADLINE_TIMER:
2699 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2700 		break;
2701 	default:
2702 		r = 0;
2703 		break;
2704 	}
2705 	return r;
2706 
2707 }
2708 
2709 long kvm_arch_dev_ioctl(struct file *filp,
2710 			unsigned int ioctl, unsigned long arg)
2711 {
2712 	void __user *argp = (void __user *)arg;
2713 	long r;
2714 
2715 	switch (ioctl) {
2716 	case KVM_GET_MSR_INDEX_LIST: {
2717 		struct kvm_msr_list __user *user_msr_list = argp;
2718 		struct kvm_msr_list msr_list;
2719 		unsigned n;
2720 
2721 		r = -EFAULT;
2722 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2723 			goto out;
2724 		n = msr_list.nmsrs;
2725 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2726 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2727 			goto out;
2728 		r = -E2BIG;
2729 		if (n < msr_list.nmsrs)
2730 			goto out;
2731 		r = -EFAULT;
2732 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2733 				 num_msrs_to_save * sizeof(u32)))
2734 			goto out;
2735 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2736 				 &emulated_msrs,
2737 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2738 			goto out;
2739 		r = 0;
2740 		break;
2741 	}
2742 	case KVM_GET_SUPPORTED_CPUID:
2743 	case KVM_GET_EMULATED_CPUID: {
2744 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2745 		struct kvm_cpuid2 cpuid;
2746 
2747 		r = -EFAULT;
2748 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2749 			goto out;
2750 
2751 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2752 					    ioctl);
2753 		if (r)
2754 			goto out;
2755 
2756 		r = -EFAULT;
2757 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2758 			goto out;
2759 		r = 0;
2760 		break;
2761 	}
2762 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2763 		u64 mce_cap;
2764 
2765 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2766 		r = -EFAULT;
2767 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2768 			goto out;
2769 		r = 0;
2770 		break;
2771 	}
2772 	default:
2773 		r = -EINVAL;
2774 	}
2775 out:
2776 	return r;
2777 }
2778 
2779 static void wbinvd_ipi(void *garbage)
2780 {
2781 	wbinvd();
2782 }
2783 
2784 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2785 {
2786 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2787 }
2788 
2789 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2790 {
2791 	/* Address WBINVD may be executed by guest */
2792 	if (need_emulate_wbinvd(vcpu)) {
2793 		if (kvm_x86_ops->has_wbinvd_exit())
2794 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2795 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2796 			smp_call_function_single(vcpu->cpu,
2797 					wbinvd_ipi, NULL, 1);
2798 	}
2799 
2800 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2801 
2802 	/* Apply any externally detected TSC adjustments (due to suspend) */
2803 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2804 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2805 		vcpu->arch.tsc_offset_adjustment = 0;
2806 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2807 	}
2808 
2809 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2810 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2811 				native_read_tsc() - vcpu->arch.last_host_tsc;
2812 		if (tsc_delta < 0)
2813 			mark_tsc_unstable("KVM discovered backwards TSC");
2814 		if (check_tsc_unstable()) {
2815 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2816 						vcpu->arch.last_guest_tsc);
2817 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2818 			vcpu->arch.tsc_catchup = 1;
2819 		}
2820 		/*
2821 		 * On a host with synchronized TSC, there is no need to update
2822 		 * kvmclock on vcpu->cpu migration
2823 		 */
2824 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2825 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2826 		if (vcpu->cpu != cpu)
2827 			kvm_migrate_timers(vcpu);
2828 		vcpu->cpu = cpu;
2829 	}
2830 
2831 	accumulate_steal_time(vcpu);
2832 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2833 }
2834 
2835 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2836 {
2837 	kvm_x86_ops->vcpu_put(vcpu);
2838 	kvm_put_guest_fpu(vcpu);
2839 	vcpu->arch.last_host_tsc = native_read_tsc();
2840 }
2841 
2842 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2843 				    struct kvm_lapic_state *s)
2844 {
2845 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2846 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2847 
2848 	return 0;
2849 }
2850 
2851 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2852 				    struct kvm_lapic_state *s)
2853 {
2854 	kvm_apic_post_state_restore(vcpu, s);
2855 	update_cr8_intercept(vcpu);
2856 
2857 	return 0;
2858 }
2859 
2860 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2861 				    struct kvm_interrupt *irq)
2862 {
2863 	if (irq->irq >= KVM_NR_INTERRUPTS)
2864 		return -EINVAL;
2865 	if (irqchip_in_kernel(vcpu->kvm))
2866 		return -ENXIO;
2867 
2868 	kvm_queue_interrupt(vcpu, irq->irq, false);
2869 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2870 
2871 	return 0;
2872 }
2873 
2874 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2875 {
2876 	kvm_inject_nmi(vcpu);
2877 
2878 	return 0;
2879 }
2880 
2881 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2882 					   struct kvm_tpr_access_ctl *tac)
2883 {
2884 	if (tac->flags)
2885 		return -EINVAL;
2886 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2887 	return 0;
2888 }
2889 
2890 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2891 					u64 mcg_cap)
2892 {
2893 	int r;
2894 	unsigned bank_num = mcg_cap & 0xff, bank;
2895 
2896 	r = -EINVAL;
2897 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2898 		goto out;
2899 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2900 		goto out;
2901 	r = 0;
2902 	vcpu->arch.mcg_cap = mcg_cap;
2903 	/* Init IA32_MCG_CTL to all 1s */
2904 	if (mcg_cap & MCG_CTL_P)
2905 		vcpu->arch.mcg_ctl = ~(u64)0;
2906 	/* Init IA32_MCi_CTL to all 1s */
2907 	for (bank = 0; bank < bank_num; bank++)
2908 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2909 out:
2910 	return r;
2911 }
2912 
2913 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2914 				      struct kvm_x86_mce *mce)
2915 {
2916 	u64 mcg_cap = vcpu->arch.mcg_cap;
2917 	unsigned bank_num = mcg_cap & 0xff;
2918 	u64 *banks = vcpu->arch.mce_banks;
2919 
2920 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2921 		return -EINVAL;
2922 	/*
2923 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2924 	 * reporting is disabled
2925 	 */
2926 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2927 	    vcpu->arch.mcg_ctl != ~(u64)0)
2928 		return 0;
2929 	banks += 4 * mce->bank;
2930 	/*
2931 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2932 	 * reporting is disabled for the bank
2933 	 */
2934 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2935 		return 0;
2936 	if (mce->status & MCI_STATUS_UC) {
2937 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2938 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2939 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2940 			return 0;
2941 		}
2942 		if (banks[1] & MCI_STATUS_VAL)
2943 			mce->status |= MCI_STATUS_OVER;
2944 		banks[2] = mce->addr;
2945 		banks[3] = mce->misc;
2946 		vcpu->arch.mcg_status = mce->mcg_status;
2947 		banks[1] = mce->status;
2948 		kvm_queue_exception(vcpu, MC_VECTOR);
2949 	} else if (!(banks[1] & MCI_STATUS_VAL)
2950 		   || !(banks[1] & MCI_STATUS_UC)) {
2951 		if (banks[1] & MCI_STATUS_VAL)
2952 			mce->status |= MCI_STATUS_OVER;
2953 		banks[2] = mce->addr;
2954 		banks[3] = mce->misc;
2955 		banks[1] = mce->status;
2956 	} else
2957 		banks[1] |= MCI_STATUS_OVER;
2958 	return 0;
2959 }
2960 
2961 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2962 					       struct kvm_vcpu_events *events)
2963 {
2964 	process_nmi(vcpu);
2965 	events->exception.injected =
2966 		vcpu->arch.exception.pending &&
2967 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2968 	events->exception.nr = vcpu->arch.exception.nr;
2969 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2970 	events->exception.pad = 0;
2971 	events->exception.error_code = vcpu->arch.exception.error_code;
2972 
2973 	events->interrupt.injected =
2974 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2975 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2976 	events->interrupt.soft = 0;
2977 	events->interrupt.shadow =
2978 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2979 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2980 
2981 	events->nmi.injected = vcpu->arch.nmi_injected;
2982 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2983 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2984 	events->nmi.pad = 0;
2985 
2986 	events->sipi_vector = 0; /* never valid when reporting to user space */
2987 
2988 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2989 			 | KVM_VCPUEVENT_VALID_SHADOW);
2990 	memset(&events->reserved, 0, sizeof(events->reserved));
2991 }
2992 
2993 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2994 					      struct kvm_vcpu_events *events)
2995 {
2996 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2997 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2998 			      | KVM_VCPUEVENT_VALID_SHADOW))
2999 		return -EINVAL;
3000 
3001 	process_nmi(vcpu);
3002 	vcpu->arch.exception.pending = events->exception.injected;
3003 	vcpu->arch.exception.nr = events->exception.nr;
3004 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3005 	vcpu->arch.exception.error_code = events->exception.error_code;
3006 
3007 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3008 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3009 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3010 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3011 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3012 						  events->interrupt.shadow);
3013 
3014 	vcpu->arch.nmi_injected = events->nmi.injected;
3015 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3016 		vcpu->arch.nmi_pending = events->nmi.pending;
3017 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3018 
3019 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3020 	    kvm_vcpu_has_lapic(vcpu))
3021 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3022 
3023 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3024 
3025 	return 0;
3026 }
3027 
3028 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3029 					     struct kvm_debugregs *dbgregs)
3030 {
3031 	unsigned long val;
3032 
3033 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3034 	_kvm_get_dr(vcpu, 6, &val);
3035 	dbgregs->dr6 = val;
3036 	dbgregs->dr7 = vcpu->arch.dr7;
3037 	dbgregs->flags = 0;
3038 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3039 }
3040 
3041 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3042 					    struct kvm_debugregs *dbgregs)
3043 {
3044 	if (dbgregs->flags)
3045 		return -EINVAL;
3046 
3047 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3048 	vcpu->arch.dr6 = dbgregs->dr6;
3049 	kvm_update_dr6(vcpu);
3050 	vcpu->arch.dr7 = dbgregs->dr7;
3051 	kvm_update_dr7(vcpu);
3052 
3053 	return 0;
3054 }
3055 
3056 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3057 					 struct kvm_xsave *guest_xsave)
3058 {
3059 	if (cpu_has_xsave) {
3060 		memcpy(guest_xsave->region,
3061 			&vcpu->arch.guest_fpu.state->xsave,
3062 			vcpu->arch.guest_xstate_size);
3063 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3064 			vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3065 	} else {
3066 		memcpy(guest_xsave->region,
3067 			&vcpu->arch.guest_fpu.state->fxsave,
3068 			sizeof(struct i387_fxsave_struct));
3069 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3070 			XSTATE_FPSSE;
3071 	}
3072 }
3073 
3074 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3075 					struct kvm_xsave *guest_xsave)
3076 {
3077 	u64 xstate_bv =
3078 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3079 
3080 	if (cpu_has_xsave) {
3081 		/*
3082 		 * Here we allow setting states that are not present in
3083 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3084 		 * with old userspace.
3085 		 */
3086 		if (xstate_bv & ~kvm_supported_xcr0())
3087 			return -EINVAL;
3088 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
3089 			guest_xsave->region, vcpu->arch.guest_xstate_size);
3090 	} else {
3091 		if (xstate_bv & ~XSTATE_FPSSE)
3092 			return -EINVAL;
3093 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3094 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3095 	}
3096 	return 0;
3097 }
3098 
3099 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3100 					struct kvm_xcrs *guest_xcrs)
3101 {
3102 	if (!cpu_has_xsave) {
3103 		guest_xcrs->nr_xcrs = 0;
3104 		return;
3105 	}
3106 
3107 	guest_xcrs->nr_xcrs = 1;
3108 	guest_xcrs->flags = 0;
3109 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3110 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3111 }
3112 
3113 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3114 				       struct kvm_xcrs *guest_xcrs)
3115 {
3116 	int i, r = 0;
3117 
3118 	if (!cpu_has_xsave)
3119 		return -EINVAL;
3120 
3121 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3122 		return -EINVAL;
3123 
3124 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3125 		/* Only support XCR0 currently */
3126 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3127 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3128 				guest_xcrs->xcrs[i].value);
3129 			break;
3130 		}
3131 	if (r)
3132 		r = -EINVAL;
3133 	return r;
3134 }
3135 
3136 /*
3137  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3138  * stopped by the hypervisor.  This function will be called from the host only.
3139  * EINVAL is returned when the host attempts to set the flag for a guest that
3140  * does not support pv clocks.
3141  */
3142 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3143 {
3144 	if (!vcpu->arch.pv_time_enabled)
3145 		return -EINVAL;
3146 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3147 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3148 	return 0;
3149 }
3150 
3151 long kvm_arch_vcpu_ioctl(struct file *filp,
3152 			 unsigned int ioctl, unsigned long arg)
3153 {
3154 	struct kvm_vcpu *vcpu = filp->private_data;
3155 	void __user *argp = (void __user *)arg;
3156 	int r;
3157 	union {
3158 		struct kvm_lapic_state *lapic;
3159 		struct kvm_xsave *xsave;
3160 		struct kvm_xcrs *xcrs;
3161 		void *buffer;
3162 	} u;
3163 
3164 	u.buffer = NULL;
3165 	switch (ioctl) {
3166 	case KVM_GET_LAPIC: {
3167 		r = -EINVAL;
3168 		if (!vcpu->arch.apic)
3169 			goto out;
3170 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3171 
3172 		r = -ENOMEM;
3173 		if (!u.lapic)
3174 			goto out;
3175 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3176 		if (r)
3177 			goto out;
3178 		r = -EFAULT;
3179 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3180 			goto out;
3181 		r = 0;
3182 		break;
3183 	}
3184 	case KVM_SET_LAPIC: {
3185 		r = -EINVAL;
3186 		if (!vcpu->arch.apic)
3187 			goto out;
3188 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3189 		if (IS_ERR(u.lapic))
3190 			return PTR_ERR(u.lapic);
3191 
3192 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3193 		break;
3194 	}
3195 	case KVM_INTERRUPT: {
3196 		struct kvm_interrupt irq;
3197 
3198 		r = -EFAULT;
3199 		if (copy_from_user(&irq, argp, sizeof irq))
3200 			goto out;
3201 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3202 		break;
3203 	}
3204 	case KVM_NMI: {
3205 		r = kvm_vcpu_ioctl_nmi(vcpu);
3206 		break;
3207 	}
3208 	case KVM_SET_CPUID: {
3209 		struct kvm_cpuid __user *cpuid_arg = argp;
3210 		struct kvm_cpuid cpuid;
3211 
3212 		r = -EFAULT;
3213 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3214 			goto out;
3215 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3216 		break;
3217 	}
3218 	case KVM_SET_CPUID2: {
3219 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3220 		struct kvm_cpuid2 cpuid;
3221 
3222 		r = -EFAULT;
3223 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3224 			goto out;
3225 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3226 					      cpuid_arg->entries);
3227 		break;
3228 	}
3229 	case KVM_GET_CPUID2: {
3230 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3231 		struct kvm_cpuid2 cpuid;
3232 
3233 		r = -EFAULT;
3234 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3235 			goto out;
3236 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3237 					      cpuid_arg->entries);
3238 		if (r)
3239 			goto out;
3240 		r = -EFAULT;
3241 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3242 			goto out;
3243 		r = 0;
3244 		break;
3245 	}
3246 	case KVM_GET_MSRS:
3247 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3248 		break;
3249 	case KVM_SET_MSRS:
3250 		r = msr_io(vcpu, argp, do_set_msr, 0);
3251 		break;
3252 	case KVM_TPR_ACCESS_REPORTING: {
3253 		struct kvm_tpr_access_ctl tac;
3254 
3255 		r = -EFAULT;
3256 		if (copy_from_user(&tac, argp, sizeof tac))
3257 			goto out;
3258 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3259 		if (r)
3260 			goto out;
3261 		r = -EFAULT;
3262 		if (copy_to_user(argp, &tac, sizeof tac))
3263 			goto out;
3264 		r = 0;
3265 		break;
3266 	};
3267 	case KVM_SET_VAPIC_ADDR: {
3268 		struct kvm_vapic_addr va;
3269 
3270 		r = -EINVAL;
3271 		if (!irqchip_in_kernel(vcpu->kvm))
3272 			goto out;
3273 		r = -EFAULT;
3274 		if (copy_from_user(&va, argp, sizeof va))
3275 			goto out;
3276 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3277 		break;
3278 	}
3279 	case KVM_X86_SETUP_MCE: {
3280 		u64 mcg_cap;
3281 
3282 		r = -EFAULT;
3283 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3284 			goto out;
3285 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3286 		break;
3287 	}
3288 	case KVM_X86_SET_MCE: {
3289 		struct kvm_x86_mce mce;
3290 
3291 		r = -EFAULT;
3292 		if (copy_from_user(&mce, argp, sizeof mce))
3293 			goto out;
3294 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3295 		break;
3296 	}
3297 	case KVM_GET_VCPU_EVENTS: {
3298 		struct kvm_vcpu_events events;
3299 
3300 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3301 
3302 		r = -EFAULT;
3303 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3304 			break;
3305 		r = 0;
3306 		break;
3307 	}
3308 	case KVM_SET_VCPU_EVENTS: {
3309 		struct kvm_vcpu_events events;
3310 
3311 		r = -EFAULT;
3312 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3313 			break;
3314 
3315 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3316 		break;
3317 	}
3318 	case KVM_GET_DEBUGREGS: {
3319 		struct kvm_debugregs dbgregs;
3320 
3321 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3322 
3323 		r = -EFAULT;
3324 		if (copy_to_user(argp, &dbgregs,
3325 				 sizeof(struct kvm_debugregs)))
3326 			break;
3327 		r = 0;
3328 		break;
3329 	}
3330 	case KVM_SET_DEBUGREGS: {
3331 		struct kvm_debugregs dbgregs;
3332 
3333 		r = -EFAULT;
3334 		if (copy_from_user(&dbgregs, argp,
3335 				   sizeof(struct kvm_debugregs)))
3336 			break;
3337 
3338 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3339 		break;
3340 	}
3341 	case KVM_GET_XSAVE: {
3342 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3343 		r = -ENOMEM;
3344 		if (!u.xsave)
3345 			break;
3346 
3347 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3348 
3349 		r = -EFAULT;
3350 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3351 			break;
3352 		r = 0;
3353 		break;
3354 	}
3355 	case KVM_SET_XSAVE: {
3356 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3357 		if (IS_ERR(u.xsave))
3358 			return PTR_ERR(u.xsave);
3359 
3360 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3361 		break;
3362 	}
3363 	case KVM_GET_XCRS: {
3364 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3365 		r = -ENOMEM;
3366 		if (!u.xcrs)
3367 			break;
3368 
3369 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3370 
3371 		r = -EFAULT;
3372 		if (copy_to_user(argp, u.xcrs,
3373 				 sizeof(struct kvm_xcrs)))
3374 			break;
3375 		r = 0;
3376 		break;
3377 	}
3378 	case KVM_SET_XCRS: {
3379 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3380 		if (IS_ERR(u.xcrs))
3381 			return PTR_ERR(u.xcrs);
3382 
3383 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3384 		break;
3385 	}
3386 	case KVM_SET_TSC_KHZ: {
3387 		u32 user_tsc_khz;
3388 
3389 		r = -EINVAL;
3390 		user_tsc_khz = (u32)arg;
3391 
3392 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3393 			goto out;
3394 
3395 		if (user_tsc_khz == 0)
3396 			user_tsc_khz = tsc_khz;
3397 
3398 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3399 
3400 		r = 0;
3401 		goto out;
3402 	}
3403 	case KVM_GET_TSC_KHZ: {
3404 		r = vcpu->arch.virtual_tsc_khz;
3405 		goto out;
3406 	}
3407 	case KVM_KVMCLOCK_CTRL: {
3408 		r = kvm_set_guest_paused(vcpu);
3409 		goto out;
3410 	}
3411 	default:
3412 		r = -EINVAL;
3413 	}
3414 out:
3415 	kfree(u.buffer);
3416 	return r;
3417 }
3418 
3419 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3420 {
3421 	return VM_FAULT_SIGBUS;
3422 }
3423 
3424 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3425 {
3426 	int ret;
3427 
3428 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3429 		return -EINVAL;
3430 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3431 	return ret;
3432 }
3433 
3434 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3435 					      u64 ident_addr)
3436 {
3437 	kvm->arch.ept_identity_map_addr = ident_addr;
3438 	return 0;
3439 }
3440 
3441 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3442 					  u32 kvm_nr_mmu_pages)
3443 {
3444 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3445 		return -EINVAL;
3446 
3447 	mutex_lock(&kvm->slots_lock);
3448 
3449 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3450 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3451 
3452 	mutex_unlock(&kvm->slots_lock);
3453 	return 0;
3454 }
3455 
3456 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3457 {
3458 	return kvm->arch.n_max_mmu_pages;
3459 }
3460 
3461 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3462 {
3463 	int r;
3464 
3465 	r = 0;
3466 	switch (chip->chip_id) {
3467 	case KVM_IRQCHIP_PIC_MASTER:
3468 		memcpy(&chip->chip.pic,
3469 			&pic_irqchip(kvm)->pics[0],
3470 			sizeof(struct kvm_pic_state));
3471 		break;
3472 	case KVM_IRQCHIP_PIC_SLAVE:
3473 		memcpy(&chip->chip.pic,
3474 			&pic_irqchip(kvm)->pics[1],
3475 			sizeof(struct kvm_pic_state));
3476 		break;
3477 	case KVM_IRQCHIP_IOAPIC:
3478 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3479 		break;
3480 	default:
3481 		r = -EINVAL;
3482 		break;
3483 	}
3484 	return r;
3485 }
3486 
3487 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3488 {
3489 	int r;
3490 
3491 	r = 0;
3492 	switch (chip->chip_id) {
3493 	case KVM_IRQCHIP_PIC_MASTER:
3494 		spin_lock(&pic_irqchip(kvm)->lock);
3495 		memcpy(&pic_irqchip(kvm)->pics[0],
3496 			&chip->chip.pic,
3497 			sizeof(struct kvm_pic_state));
3498 		spin_unlock(&pic_irqchip(kvm)->lock);
3499 		break;
3500 	case KVM_IRQCHIP_PIC_SLAVE:
3501 		spin_lock(&pic_irqchip(kvm)->lock);
3502 		memcpy(&pic_irqchip(kvm)->pics[1],
3503 			&chip->chip.pic,
3504 			sizeof(struct kvm_pic_state));
3505 		spin_unlock(&pic_irqchip(kvm)->lock);
3506 		break;
3507 	case KVM_IRQCHIP_IOAPIC:
3508 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3509 		break;
3510 	default:
3511 		r = -EINVAL;
3512 		break;
3513 	}
3514 	kvm_pic_update_irq(pic_irqchip(kvm));
3515 	return r;
3516 }
3517 
3518 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3519 {
3520 	int r = 0;
3521 
3522 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3523 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3524 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3525 	return r;
3526 }
3527 
3528 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3529 {
3530 	int r = 0;
3531 
3532 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3533 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3534 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3535 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3536 	return r;
3537 }
3538 
3539 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3540 {
3541 	int r = 0;
3542 
3543 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3544 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3545 		sizeof(ps->channels));
3546 	ps->flags = kvm->arch.vpit->pit_state.flags;
3547 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3548 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3549 	return r;
3550 }
3551 
3552 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3553 {
3554 	int r = 0, start = 0;
3555 	u32 prev_legacy, cur_legacy;
3556 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3557 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3558 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3559 	if (!prev_legacy && cur_legacy)
3560 		start = 1;
3561 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3562 	       sizeof(kvm->arch.vpit->pit_state.channels));
3563 	kvm->arch.vpit->pit_state.flags = ps->flags;
3564 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3565 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3566 	return r;
3567 }
3568 
3569 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3570 				 struct kvm_reinject_control *control)
3571 {
3572 	if (!kvm->arch.vpit)
3573 		return -ENXIO;
3574 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3575 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3576 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3577 	return 0;
3578 }
3579 
3580 /**
3581  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3582  * @kvm: kvm instance
3583  * @log: slot id and address to which we copy the log
3584  *
3585  * We need to keep it in mind that VCPU threads can write to the bitmap
3586  * concurrently.  So, to avoid losing data, we keep the following order for
3587  * each bit:
3588  *
3589  *   1. Take a snapshot of the bit and clear it if needed.
3590  *   2. Write protect the corresponding page.
3591  *   3. Flush TLB's if needed.
3592  *   4. Copy the snapshot to the userspace.
3593  *
3594  * Between 2 and 3, the guest may write to the page using the remaining TLB
3595  * entry.  This is not a problem because the page will be reported dirty at
3596  * step 4 using the snapshot taken before and step 3 ensures that successive
3597  * writes will be logged for the next call.
3598  */
3599 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3600 {
3601 	int r;
3602 	struct kvm_memory_slot *memslot;
3603 	unsigned long n, i;
3604 	unsigned long *dirty_bitmap;
3605 	unsigned long *dirty_bitmap_buffer;
3606 	bool is_dirty = false;
3607 
3608 	mutex_lock(&kvm->slots_lock);
3609 
3610 	r = -EINVAL;
3611 	if (log->slot >= KVM_USER_MEM_SLOTS)
3612 		goto out;
3613 
3614 	memslot = id_to_memslot(kvm->memslots, log->slot);
3615 
3616 	dirty_bitmap = memslot->dirty_bitmap;
3617 	r = -ENOENT;
3618 	if (!dirty_bitmap)
3619 		goto out;
3620 
3621 	n = kvm_dirty_bitmap_bytes(memslot);
3622 
3623 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3624 	memset(dirty_bitmap_buffer, 0, n);
3625 
3626 	spin_lock(&kvm->mmu_lock);
3627 
3628 	for (i = 0; i < n / sizeof(long); i++) {
3629 		unsigned long mask;
3630 		gfn_t offset;
3631 
3632 		if (!dirty_bitmap[i])
3633 			continue;
3634 
3635 		is_dirty = true;
3636 
3637 		mask = xchg(&dirty_bitmap[i], 0);
3638 		dirty_bitmap_buffer[i] = mask;
3639 
3640 		offset = i * BITS_PER_LONG;
3641 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3642 	}
3643 
3644 	spin_unlock(&kvm->mmu_lock);
3645 
3646 	/* See the comments in kvm_mmu_slot_remove_write_access(). */
3647 	lockdep_assert_held(&kvm->slots_lock);
3648 
3649 	/*
3650 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3651 	 * kvm_mmu_slot_remove_write_access().
3652 	 */
3653 	if (is_dirty)
3654 		kvm_flush_remote_tlbs(kvm);
3655 
3656 	r = -EFAULT;
3657 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3658 		goto out;
3659 
3660 	r = 0;
3661 out:
3662 	mutex_unlock(&kvm->slots_lock);
3663 	return r;
3664 }
3665 
3666 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3667 			bool line_status)
3668 {
3669 	if (!irqchip_in_kernel(kvm))
3670 		return -ENXIO;
3671 
3672 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3673 					irq_event->irq, irq_event->level,
3674 					line_status);
3675 	return 0;
3676 }
3677 
3678 long kvm_arch_vm_ioctl(struct file *filp,
3679 		       unsigned int ioctl, unsigned long arg)
3680 {
3681 	struct kvm *kvm = filp->private_data;
3682 	void __user *argp = (void __user *)arg;
3683 	int r = -ENOTTY;
3684 	/*
3685 	 * This union makes it completely explicit to gcc-3.x
3686 	 * that these two variables' stack usage should be
3687 	 * combined, not added together.
3688 	 */
3689 	union {
3690 		struct kvm_pit_state ps;
3691 		struct kvm_pit_state2 ps2;
3692 		struct kvm_pit_config pit_config;
3693 	} u;
3694 
3695 	switch (ioctl) {
3696 	case KVM_SET_TSS_ADDR:
3697 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3698 		break;
3699 	case KVM_SET_IDENTITY_MAP_ADDR: {
3700 		u64 ident_addr;
3701 
3702 		r = -EFAULT;
3703 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3704 			goto out;
3705 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3706 		break;
3707 	}
3708 	case KVM_SET_NR_MMU_PAGES:
3709 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3710 		break;
3711 	case KVM_GET_NR_MMU_PAGES:
3712 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3713 		break;
3714 	case KVM_CREATE_IRQCHIP: {
3715 		struct kvm_pic *vpic;
3716 
3717 		mutex_lock(&kvm->lock);
3718 		r = -EEXIST;
3719 		if (kvm->arch.vpic)
3720 			goto create_irqchip_unlock;
3721 		r = -EINVAL;
3722 		if (atomic_read(&kvm->online_vcpus))
3723 			goto create_irqchip_unlock;
3724 		r = -ENOMEM;
3725 		vpic = kvm_create_pic(kvm);
3726 		if (vpic) {
3727 			r = kvm_ioapic_init(kvm);
3728 			if (r) {
3729 				mutex_lock(&kvm->slots_lock);
3730 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3731 							  &vpic->dev_master);
3732 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3733 							  &vpic->dev_slave);
3734 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3735 							  &vpic->dev_eclr);
3736 				mutex_unlock(&kvm->slots_lock);
3737 				kfree(vpic);
3738 				goto create_irqchip_unlock;
3739 			}
3740 		} else
3741 			goto create_irqchip_unlock;
3742 		smp_wmb();
3743 		kvm->arch.vpic = vpic;
3744 		smp_wmb();
3745 		r = kvm_setup_default_irq_routing(kvm);
3746 		if (r) {
3747 			mutex_lock(&kvm->slots_lock);
3748 			mutex_lock(&kvm->irq_lock);
3749 			kvm_ioapic_destroy(kvm);
3750 			kvm_destroy_pic(kvm);
3751 			mutex_unlock(&kvm->irq_lock);
3752 			mutex_unlock(&kvm->slots_lock);
3753 		}
3754 	create_irqchip_unlock:
3755 		mutex_unlock(&kvm->lock);
3756 		break;
3757 	}
3758 	case KVM_CREATE_PIT:
3759 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3760 		goto create_pit;
3761 	case KVM_CREATE_PIT2:
3762 		r = -EFAULT;
3763 		if (copy_from_user(&u.pit_config, argp,
3764 				   sizeof(struct kvm_pit_config)))
3765 			goto out;
3766 	create_pit:
3767 		mutex_lock(&kvm->slots_lock);
3768 		r = -EEXIST;
3769 		if (kvm->arch.vpit)
3770 			goto create_pit_unlock;
3771 		r = -ENOMEM;
3772 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3773 		if (kvm->arch.vpit)
3774 			r = 0;
3775 	create_pit_unlock:
3776 		mutex_unlock(&kvm->slots_lock);
3777 		break;
3778 	case KVM_GET_IRQCHIP: {
3779 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3780 		struct kvm_irqchip *chip;
3781 
3782 		chip = memdup_user(argp, sizeof(*chip));
3783 		if (IS_ERR(chip)) {
3784 			r = PTR_ERR(chip);
3785 			goto out;
3786 		}
3787 
3788 		r = -ENXIO;
3789 		if (!irqchip_in_kernel(kvm))
3790 			goto get_irqchip_out;
3791 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3792 		if (r)
3793 			goto get_irqchip_out;
3794 		r = -EFAULT;
3795 		if (copy_to_user(argp, chip, sizeof *chip))
3796 			goto get_irqchip_out;
3797 		r = 0;
3798 	get_irqchip_out:
3799 		kfree(chip);
3800 		break;
3801 	}
3802 	case KVM_SET_IRQCHIP: {
3803 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3804 		struct kvm_irqchip *chip;
3805 
3806 		chip = memdup_user(argp, sizeof(*chip));
3807 		if (IS_ERR(chip)) {
3808 			r = PTR_ERR(chip);
3809 			goto out;
3810 		}
3811 
3812 		r = -ENXIO;
3813 		if (!irqchip_in_kernel(kvm))
3814 			goto set_irqchip_out;
3815 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3816 		if (r)
3817 			goto set_irqchip_out;
3818 		r = 0;
3819 	set_irqchip_out:
3820 		kfree(chip);
3821 		break;
3822 	}
3823 	case KVM_GET_PIT: {
3824 		r = -EFAULT;
3825 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3826 			goto out;
3827 		r = -ENXIO;
3828 		if (!kvm->arch.vpit)
3829 			goto out;
3830 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3831 		if (r)
3832 			goto out;
3833 		r = -EFAULT;
3834 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3835 			goto out;
3836 		r = 0;
3837 		break;
3838 	}
3839 	case KVM_SET_PIT: {
3840 		r = -EFAULT;
3841 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3842 			goto out;
3843 		r = -ENXIO;
3844 		if (!kvm->arch.vpit)
3845 			goto out;
3846 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3847 		break;
3848 	}
3849 	case KVM_GET_PIT2: {
3850 		r = -ENXIO;
3851 		if (!kvm->arch.vpit)
3852 			goto out;
3853 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3854 		if (r)
3855 			goto out;
3856 		r = -EFAULT;
3857 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3858 			goto out;
3859 		r = 0;
3860 		break;
3861 	}
3862 	case KVM_SET_PIT2: {
3863 		r = -EFAULT;
3864 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3865 			goto out;
3866 		r = -ENXIO;
3867 		if (!kvm->arch.vpit)
3868 			goto out;
3869 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3870 		break;
3871 	}
3872 	case KVM_REINJECT_CONTROL: {
3873 		struct kvm_reinject_control control;
3874 		r =  -EFAULT;
3875 		if (copy_from_user(&control, argp, sizeof(control)))
3876 			goto out;
3877 		r = kvm_vm_ioctl_reinject(kvm, &control);
3878 		break;
3879 	}
3880 	case KVM_XEN_HVM_CONFIG: {
3881 		r = -EFAULT;
3882 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3883 				   sizeof(struct kvm_xen_hvm_config)))
3884 			goto out;
3885 		r = -EINVAL;
3886 		if (kvm->arch.xen_hvm_config.flags)
3887 			goto out;
3888 		r = 0;
3889 		break;
3890 	}
3891 	case KVM_SET_CLOCK: {
3892 		struct kvm_clock_data user_ns;
3893 		u64 now_ns;
3894 		s64 delta;
3895 
3896 		r = -EFAULT;
3897 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3898 			goto out;
3899 
3900 		r = -EINVAL;
3901 		if (user_ns.flags)
3902 			goto out;
3903 
3904 		r = 0;
3905 		local_irq_disable();
3906 		now_ns = get_kernel_ns();
3907 		delta = user_ns.clock - now_ns;
3908 		local_irq_enable();
3909 		kvm->arch.kvmclock_offset = delta;
3910 		kvm_gen_update_masterclock(kvm);
3911 		break;
3912 	}
3913 	case KVM_GET_CLOCK: {
3914 		struct kvm_clock_data user_ns;
3915 		u64 now_ns;
3916 
3917 		local_irq_disable();
3918 		now_ns = get_kernel_ns();
3919 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3920 		local_irq_enable();
3921 		user_ns.flags = 0;
3922 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3923 
3924 		r = -EFAULT;
3925 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3926 			goto out;
3927 		r = 0;
3928 		break;
3929 	}
3930 
3931 	default:
3932 		;
3933 	}
3934 out:
3935 	return r;
3936 }
3937 
3938 static void kvm_init_msr_list(void)
3939 {
3940 	u32 dummy[2];
3941 	unsigned i, j;
3942 
3943 	/* skip the first msrs in the list. KVM-specific */
3944 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3945 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3946 			continue;
3947 
3948 		/*
3949 		 * Even MSRs that are valid in the host may not be exposed
3950 		 * to the guests in some cases.  We could work around this
3951 		 * in VMX with the generic MSR save/load machinery, but it
3952 		 * is not really worthwhile since it will really only
3953 		 * happen with nested virtualization.
3954 		 */
3955 		switch (msrs_to_save[i]) {
3956 		case MSR_IA32_BNDCFGS:
3957 			if (!kvm_x86_ops->mpx_supported())
3958 				continue;
3959 			break;
3960 		default:
3961 			break;
3962 		}
3963 
3964 		if (j < i)
3965 			msrs_to_save[j] = msrs_to_save[i];
3966 		j++;
3967 	}
3968 	num_msrs_to_save = j;
3969 }
3970 
3971 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3972 			   const void *v)
3973 {
3974 	int handled = 0;
3975 	int n;
3976 
3977 	do {
3978 		n = min(len, 8);
3979 		if (!(vcpu->arch.apic &&
3980 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3981 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3982 			break;
3983 		handled += n;
3984 		addr += n;
3985 		len -= n;
3986 		v += n;
3987 	} while (len);
3988 
3989 	return handled;
3990 }
3991 
3992 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3993 {
3994 	int handled = 0;
3995 	int n;
3996 
3997 	do {
3998 		n = min(len, 8);
3999 		if (!(vcpu->arch.apic &&
4000 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4001 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4002 			break;
4003 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4004 		handled += n;
4005 		addr += n;
4006 		len -= n;
4007 		v += n;
4008 	} while (len);
4009 
4010 	return handled;
4011 }
4012 
4013 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4014 			struct kvm_segment *var, int seg)
4015 {
4016 	kvm_x86_ops->set_segment(vcpu, var, seg);
4017 }
4018 
4019 void kvm_get_segment(struct kvm_vcpu *vcpu,
4020 		     struct kvm_segment *var, int seg)
4021 {
4022 	kvm_x86_ops->get_segment(vcpu, var, seg);
4023 }
4024 
4025 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
4026 {
4027 	gpa_t t_gpa;
4028 	struct x86_exception exception;
4029 
4030 	BUG_ON(!mmu_is_nested(vcpu));
4031 
4032 	/* NPT walks are always user-walks */
4033 	access |= PFERR_USER_MASK;
4034 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
4035 
4036 	return t_gpa;
4037 }
4038 
4039 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4040 			      struct x86_exception *exception)
4041 {
4042 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4043 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4044 }
4045 
4046  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4047 				struct x86_exception *exception)
4048 {
4049 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4050 	access |= PFERR_FETCH_MASK;
4051 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4052 }
4053 
4054 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4055 			       struct x86_exception *exception)
4056 {
4057 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4058 	access |= PFERR_WRITE_MASK;
4059 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4060 }
4061 
4062 /* uses this to access any guest's mapped memory without checking CPL */
4063 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4064 				struct x86_exception *exception)
4065 {
4066 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4067 }
4068 
4069 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4070 				      struct kvm_vcpu *vcpu, u32 access,
4071 				      struct x86_exception *exception)
4072 {
4073 	void *data = val;
4074 	int r = X86EMUL_CONTINUE;
4075 
4076 	while (bytes) {
4077 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4078 							    exception);
4079 		unsigned offset = addr & (PAGE_SIZE-1);
4080 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4081 		int ret;
4082 
4083 		if (gpa == UNMAPPED_GVA)
4084 			return X86EMUL_PROPAGATE_FAULT;
4085 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4086 		if (ret < 0) {
4087 			r = X86EMUL_IO_NEEDED;
4088 			goto out;
4089 		}
4090 
4091 		bytes -= toread;
4092 		data += toread;
4093 		addr += toread;
4094 	}
4095 out:
4096 	return r;
4097 }
4098 
4099 /* used for instruction fetching */
4100 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4101 				gva_t addr, void *val, unsigned int bytes,
4102 				struct x86_exception *exception)
4103 {
4104 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4105 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4106 
4107 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4108 					  access | PFERR_FETCH_MASK,
4109 					  exception);
4110 }
4111 
4112 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4113 			       gva_t addr, void *val, unsigned int bytes,
4114 			       struct x86_exception *exception)
4115 {
4116 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4117 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4118 
4119 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4120 					  exception);
4121 }
4122 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4123 
4124 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4125 				      gva_t addr, void *val, unsigned int bytes,
4126 				      struct x86_exception *exception)
4127 {
4128 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4129 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4130 }
4131 
4132 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4133 				       gva_t addr, void *val,
4134 				       unsigned int bytes,
4135 				       struct x86_exception *exception)
4136 {
4137 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4138 	void *data = val;
4139 	int r = X86EMUL_CONTINUE;
4140 
4141 	while (bytes) {
4142 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4143 							     PFERR_WRITE_MASK,
4144 							     exception);
4145 		unsigned offset = addr & (PAGE_SIZE-1);
4146 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4147 		int ret;
4148 
4149 		if (gpa == UNMAPPED_GVA)
4150 			return X86EMUL_PROPAGATE_FAULT;
4151 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4152 		if (ret < 0) {
4153 			r = X86EMUL_IO_NEEDED;
4154 			goto out;
4155 		}
4156 
4157 		bytes -= towrite;
4158 		data += towrite;
4159 		addr += towrite;
4160 	}
4161 out:
4162 	return r;
4163 }
4164 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4165 
4166 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4167 				gpa_t *gpa, struct x86_exception *exception,
4168 				bool write)
4169 {
4170 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4171 		| (write ? PFERR_WRITE_MASK : 0);
4172 
4173 	if (vcpu_match_mmio_gva(vcpu, gva)
4174 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4175 				 vcpu->arch.access, access)) {
4176 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4177 					(gva & (PAGE_SIZE - 1));
4178 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4179 		return 1;
4180 	}
4181 
4182 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4183 
4184 	if (*gpa == UNMAPPED_GVA)
4185 		return -1;
4186 
4187 	/* For APIC access vmexit */
4188 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4189 		return 1;
4190 
4191 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4192 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4193 		return 1;
4194 	}
4195 
4196 	return 0;
4197 }
4198 
4199 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4200 			const void *val, int bytes)
4201 {
4202 	int ret;
4203 
4204 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4205 	if (ret < 0)
4206 		return 0;
4207 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4208 	return 1;
4209 }
4210 
4211 struct read_write_emulator_ops {
4212 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4213 				  int bytes);
4214 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4215 				  void *val, int bytes);
4216 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4217 			       int bytes, void *val);
4218 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4219 				    void *val, int bytes);
4220 	bool write;
4221 };
4222 
4223 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4224 {
4225 	if (vcpu->mmio_read_completed) {
4226 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4227 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4228 		vcpu->mmio_read_completed = 0;
4229 		return 1;
4230 	}
4231 
4232 	return 0;
4233 }
4234 
4235 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4236 			void *val, int bytes)
4237 {
4238 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4239 }
4240 
4241 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4242 			 void *val, int bytes)
4243 {
4244 	return emulator_write_phys(vcpu, gpa, val, bytes);
4245 }
4246 
4247 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4248 {
4249 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4250 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4251 }
4252 
4253 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4254 			  void *val, int bytes)
4255 {
4256 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4257 	return X86EMUL_IO_NEEDED;
4258 }
4259 
4260 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4261 			   void *val, int bytes)
4262 {
4263 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4264 
4265 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4266 	return X86EMUL_CONTINUE;
4267 }
4268 
4269 static const struct read_write_emulator_ops read_emultor = {
4270 	.read_write_prepare = read_prepare,
4271 	.read_write_emulate = read_emulate,
4272 	.read_write_mmio = vcpu_mmio_read,
4273 	.read_write_exit_mmio = read_exit_mmio,
4274 };
4275 
4276 static const struct read_write_emulator_ops write_emultor = {
4277 	.read_write_emulate = write_emulate,
4278 	.read_write_mmio = write_mmio,
4279 	.read_write_exit_mmio = write_exit_mmio,
4280 	.write = true,
4281 };
4282 
4283 static int emulator_read_write_onepage(unsigned long addr, void *val,
4284 				       unsigned int bytes,
4285 				       struct x86_exception *exception,
4286 				       struct kvm_vcpu *vcpu,
4287 				       const struct read_write_emulator_ops *ops)
4288 {
4289 	gpa_t gpa;
4290 	int handled, ret;
4291 	bool write = ops->write;
4292 	struct kvm_mmio_fragment *frag;
4293 
4294 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4295 
4296 	if (ret < 0)
4297 		return X86EMUL_PROPAGATE_FAULT;
4298 
4299 	/* For APIC access vmexit */
4300 	if (ret)
4301 		goto mmio;
4302 
4303 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4304 		return X86EMUL_CONTINUE;
4305 
4306 mmio:
4307 	/*
4308 	 * Is this MMIO handled locally?
4309 	 */
4310 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4311 	if (handled == bytes)
4312 		return X86EMUL_CONTINUE;
4313 
4314 	gpa += handled;
4315 	bytes -= handled;
4316 	val += handled;
4317 
4318 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4319 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4320 	frag->gpa = gpa;
4321 	frag->data = val;
4322 	frag->len = bytes;
4323 	return X86EMUL_CONTINUE;
4324 }
4325 
4326 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4327 			void *val, unsigned int bytes,
4328 			struct x86_exception *exception,
4329 			const struct read_write_emulator_ops *ops)
4330 {
4331 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4332 	gpa_t gpa;
4333 	int rc;
4334 
4335 	if (ops->read_write_prepare &&
4336 		  ops->read_write_prepare(vcpu, val, bytes))
4337 		return X86EMUL_CONTINUE;
4338 
4339 	vcpu->mmio_nr_fragments = 0;
4340 
4341 	/* Crossing a page boundary? */
4342 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4343 		int now;
4344 
4345 		now = -addr & ~PAGE_MASK;
4346 		rc = emulator_read_write_onepage(addr, val, now, exception,
4347 						 vcpu, ops);
4348 
4349 		if (rc != X86EMUL_CONTINUE)
4350 			return rc;
4351 		addr += now;
4352 		val += now;
4353 		bytes -= now;
4354 	}
4355 
4356 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4357 					 vcpu, ops);
4358 	if (rc != X86EMUL_CONTINUE)
4359 		return rc;
4360 
4361 	if (!vcpu->mmio_nr_fragments)
4362 		return rc;
4363 
4364 	gpa = vcpu->mmio_fragments[0].gpa;
4365 
4366 	vcpu->mmio_needed = 1;
4367 	vcpu->mmio_cur_fragment = 0;
4368 
4369 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4370 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4371 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4372 	vcpu->run->mmio.phys_addr = gpa;
4373 
4374 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4375 }
4376 
4377 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4378 				  unsigned long addr,
4379 				  void *val,
4380 				  unsigned int bytes,
4381 				  struct x86_exception *exception)
4382 {
4383 	return emulator_read_write(ctxt, addr, val, bytes,
4384 				   exception, &read_emultor);
4385 }
4386 
4387 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4388 			    unsigned long addr,
4389 			    const void *val,
4390 			    unsigned int bytes,
4391 			    struct x86_exception *exception)
4392 {
4393 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4394 				   exception, &write_emultor);
4395 }
4396 
4397 #define CMPXCHG_TYPE(t, ptr, old, new) \
4398 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4399 
4400 #ifdef CONFIG_X86_64
4401 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4402 #else
4403 #  define CMPXCHG64(ptr, old, new) \
4404 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4405 #endif
4406 
4407 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4408 				     unsigned long addr,
4409 				     const void *old,
4410 				     const void *new,
4411 				     unsigned int bytes,
4412 				     struct x86_exception *exception)
4413 {
4414 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4415 	gpa_t gpa;
4416 	struct page *page;
4417 	char *kaddr;
4418 	bool exchanged;
4419 
4420 	/* guests cmpxchg8b have to be emulated atomically */
4421 	if (bytes > 8 || (bytes & (bytes - 1)))
4422 		goto emul_write;
4423 
4424 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4425 
4426 	if (gpa == UNMAPPED_GVA ||
4427 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4428 		goto emul_write;
4429 
4430 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4431 		goto emul_write;
4432 
4433 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4434 	if (is_error_page(page))
4435 		goto emul_write;
4436 
4437 	kaddr = kmap_atomic(page);
4438 	kaddr += offset_in_page(gpa);
4439 	switch (bytes) {
4440 	case 1:
4441 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4442 		break;
4443 	case 2:
4444 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4445 		break;
4446 	case 4:
4447 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4448 		break;
4449 	case 8:
4450 		exchanged = CMPXCHG64(kaddr, old, new);
4451 		break;
4452 	default:
4453 		BUG();
4454 	}
4455 	kunmap_atomic(kaddr);
4456 	kvm_release_page_dirty(page);
4457 
4458 	if (!exchanged)
4459 		return X86EMUL_CMPXCHG_FAILED;
4460 
4461 	mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4462 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4463 
4464 	return X86EMUL_CONTINUE;
4465 
4466 emul_write:
4467 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4468 
4469 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4470 }
4471 
4472 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4473 {
4474 	/* TODO: String I/O for in kernel device */
4475 	int r;
4476 
4477 	if (vcpu->arch.pio.in)
4478 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4479 				    vcpu->arch.pio.size, pd);
4480 	else
4481 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4482 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4483 				     pd);
4484 	return r;
4485 }
4486 
4487 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4488 			       unsigned short port, void *val,
4489 			       unsigned int count, bool in)
4490 {
4491 	vcpu->arch.pio.port = port;
4492 	vcpu->arch.pio.in = in;
4493 	vcpu->arch.pio.count  = count;
4494 	vcpu->arch.pio.size = size;
4495 
4496 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4497 		vcpu->arch.pio.count = 0;
4498 		return 1;
4499 	}
4500 
4501 	vcpu->run->exit_reason = KVM_EXIT_IO;
4502 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4503 	vcpu->run->io.size = size;
4504 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4505 	vcpu->run->io.count = count;
4506 	vcpu->run->io.port = port;
4507 
4508 	return 0;
4509 }
4510 
4511 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4512 				    int size, unsigned short port, void *val,
4513 				    unsigned int count)
4514 {
4515 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4516 	int ret;
4517 
4518 	if (vcpu->arch.pio.count)
4519 		goto data_avail;
4520 
4521 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4522 	if (ret) {
4523 data_avail:
4524 		memcpy(val, vcpu->arch.pio_data, size * count);
4525 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4526 		vcpu->arch.pio.count = 0;
4527 		return 1;
4528 	}
4529 
4530 	return 0;
4531 }
4532 
4533 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4534 				     int size, unsigned short port,
4535 				     const void *val, unsigned int count)
4536 {
4537 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4538 
4539 	memcpy(vcpu->arch.pio_data, val, size * count);
4540 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4541 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4542 }
4543 
4544 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4545 {
4546 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4547 }
4548 
4549 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4550 {
4551 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4552 }
4553 
4554 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4555 {
4556 	if (!need_emulate_wbinvd(vcpu))
4557 		return X86EMUL_CONTINUE;
4558 
4559 	if (kvm_x86_ops->has_wbinvd_exit()) {
4560 		int cpu = get_cpu();
4561 
4562 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4563 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4564 				wbinvd_ipi, NULL, 1);
4565 		put_cpu();
4566 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4567 	} else
4568 		wbinvd();
4569 	return X86EMUL_CONTINUE;
4570 }
4571 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4572 
4573 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4574 {
4575 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4576 }
4577 
4578 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4579 {
4580 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4581 }
4582 
4583 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4584 {
4585 
4586 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4587 }
4588 
4589 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4590 {
4591 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4592 }
4593 
4594 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4595 {
4596 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4597 	unsigned long value;
4598 
4599 	switch (cr) {
4600 	case 0:
4601 		value = kvm_read_cr0(vcpu);
4602 		break;
4603 	case 2:
4604 		value = vcpu->arch.cr2;
4605 		break;
4606 	case 3:
4607 		value = kvm_read_cr3(vcpu);
4608 		break;
4609 	case 4:
4610 		value = kvm_read_cr4(vcpu);
4611 		break;
4612 	case 8:
4613 		value = kvm_get_cr8(vcpu);
4614 		break;
4615 	default:
4616 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4617 		return 0;
4618 	}
4619 
4620 	return value;
4621 }
4622 
4623 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4624 {
4625 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4626 	int res = 0;
4627 
4628 	switch (cr) {
4629 	case 0:
4630 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4631 		break;
4632 	case 2:
4633 		vcpu->arch.cr2 = val;
4634 		break;
4635 	case 3:
4636 		res = kvm_set_cr3(vcpu, val);
4637 		break;
4638 	case 4:
4639 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4640 		break;
4641 	case 8:
4642 		res = kvm_set_cr8(vcpu, val);
4643 		break;
4644 	default:
4645 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4646 		res = -1;
4647 	}
4648 
4649 	return res;
4650 }
4651 
4652 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4653 {
4654 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4655 }
4656 
4657 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4658 {
4659 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4660 }
4661 
4662 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4663 {
4664 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4665 }
4666 
4667 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4668 {
4669 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4670 }
4671 
4672 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4673 {
4674 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4675 }
4676 
4677 static unsigned long emulator_get_cached_segment_base(
4678 	struct x86_emulate_ctxt *ctxt, int seg)
4679 {
4680 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4681 }
4682 
4683 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4684 				 struct desc_struct *desc, u32 *base3,
4685 				 int seg)
4686 {
4687 	struct kvm_segment var;
4688 
4689 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4690 	*selector = var.selector;
4691 
4692 	if (var.unusable) {
4693 		memset(desc, 0, sizeof(*desc));
4694 		return false;
4695 	}
4696 
4697 	if (var.g)
4698 		var.limit >>= 12;
4699 	set_desc_limit(desc, var.limit);
4700 	set_desc_base(desc, (unsigned long)var.base);
4701 #ifdef CONFIG_X86_64
4702 	if (base3)
4703 		*base3 = var.base >> 32;
4704 #endif
4705 	desc->type = var.type;
4706 	desc->s = var.s;
4707 	desc->dpl = var.dpl;
4708 	desc->p = var.present;
4709 	desc->avl = var.avl;
4710 	desc->l = var.l;
4711 	desc->d = var.db;
4712 	desc->g = var.g;
4713 
4714 	return true;
4715 }
4716 
4717 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4718 				 struct desc_struct *desc, u32 base3,
4719 				 int seg)
4720 {
4721 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4722 	struct kvm_segment var;
4723 
4724 	var.selector = selector;
4725 	var.base = get_desc_base(desc);
4726 #ifdef CONFIG_X86_64
4727 	var.base |= ((u64)base3) << 32;
4728 #endif
4729 	var.limit = get_desc_limit(desc);
4730 	if (desc->g)
4731 		var.limit = (var.limit << 12) | 0xfff;
4732 	var.type = desc->type;
4733 	var.present = desc->p;
4734 	var.dpl = desc->dpl;
4735 	var.db = desc->d;
4736 	var.s = desc->s;
4737 	var.l = desc->l;
4738 	var.g = desc->g;
4739 	var.avl = desc->avl;
4740 	var.present = desc->p;
4741 	var.unusable = !var.present;
4742 	var.padding = 0;
4743 
4744 	kvm_set_segment(vcpu, &var, seg);
4745 	return;
4746 }
4747 
4748 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4749 			    u32 msr_index, u64 *pdata)
4750 {
4751 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4752 }
4753 
4754 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4755 			    u32 msr_index, u64 data)
4756 {
4757 	struct msr_data msr;
4758 
4759 	msr.data = data;
4760 	msr.index = msr_index;
4761 	msr.host_initiated = false;
4762 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4763 }
4764 
4765 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4766 			     u32 pmc, u64 *pdata)
4767 {
4768 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4769 }
4770 
4771 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4772 {
4773 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4774 }
4775 
4776 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4777 {
4778 	preempt_disable();
4779 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4780 	/*
4781 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4782 	 * so it may be clear at this point.
4783 	 */
4784 	clts();
4785 }
4786 
4787 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4788 {
4789 	preempt_enable();
4790 }
4791 
4792 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4793 			      struct x86_instruction_info *info,
4794 			      enum x86_intercept_stage stage)
4795 {
4796 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4797 }
4798 
4799 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4800 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4801 {
4802 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4803 }
4804 
4805 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4806 {
4807 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4808 }
4809 
4810 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4811 {
4812 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4813 }
4814 
4815 static const struct x86_emulate_ops emulate_ops = {
4816 	.read_gpr            = emulator_read_gpr,
4817 	.write_gpr           = emulator_write_gpr,
4818 	.read_std            = kvm_read_guest_virt_system,
4819 	.write_std           = kvm_write_guest_virt_system,
4820 	.fetch               = kvm_fetch_guest_virt,
4821 	.read_emulated       = emulator_read_emulated,
4822 	.write_emulated      = emulator_write_emulated,
4823 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4824 	.invlpg              = emulator_invlpg,
4825 	.pio_in_emulated     = emulator_pio_in_emulated,
4826 	.pio_out_emulated    = emulator_pio_out_emulated,
4827 	.get_segment         = emulator_get_segment,
4828 	.set_segment         = emulator_set_segment,
4829 	.get_cached_segment_base = emulator_get_cached_segment_base,
4830 	.get_gdt             = emulator_get_gdt,
4831 	.get_idt	     = emulator_get_idt,
4832 	.set_gdt             = emulator_set_gdt,
4833 	.set_idt	     = emulator_set_idt,
4834 	.get_cr              = emulator_get_cr,
4835 	.set_cr              = emulator_set_cr,
4836 	.cpl                 = emulator_get_cpl,
4837 	.get_dr              = emulator_get_dr,
4838 	.set_dr              = emulator_set_dr,
4839 	.set_msr             = emulator_set_msr,
4840 	.get_msr             = emulator_get_msr,
4841 	.read_pmc            = emulator_read_pmc,
4842 	.halt                = emulator_halt,
4843 	.wbinvd              = emulator_wbinvd,
4844 	.fix_hypercall       = emulator_fix_hypercall,
4845 	.get_fpu             = emulator_get_fpu,
4846 	.put_fpu             = emulator_put_fpu,
4847 	.intercept           = emulator_intercept,
4848 	.get_cpuid           = emulator_get_cpuid,
4849 };
4850 
4851 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4852 {
4853 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4854 	/*
4855 	 * an sti; sti; sequence only disable interrupts for the first
4856 	 * instruction. So, if the last instruction, be it emulated or
4857 	 * not, left the system with the INT_STI flag enabled, it
4858 	 * means that the last instruction is an sti. We should not
4859 	 * leave the flag on in this case. The same goes for mov ss
4860 	 */
4861 	if (!(int_shadow & mask))
4862 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4863 }
4864 
4865 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4866 {
4867 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4868 	if (ctxt->exception.vector == PF_VECTOR)
4869 		kvm_propagate_fault(vcpu, &ctxt->exception);
4870 	else if (ctxt->exception.error_code_valid)
4871 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4872 				      ctxt->exception.error_code);
4873 	else
4874 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4875 }
4876 
4877 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4878 {
4879 	memset(&ctxt->opcode_len, 0,
4880 	       (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4881 
4882 	ctxt->fetch.start = 0;
4883 	ctxt->fetch.end = 0;
4884 	ctxt->io_read.pos = 0;
4885 	ctxt->io_read.end = 0;
4886 	ctxt->mem_read.pos = 0;
4887 	ctxt->mem_read.end = 0;
4888 }
4889 
4890 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4891 {
4892 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4893 	int cs_db, cs_l;
4894 
4895 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4896 
4897 	ctxt->eflags = kvm_get_rflags(vcpu);
4898 	ctxt->eip = kvm_rip_read(vcpu);
4899 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4900 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4901 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
4902 		     cs_db				? X86EMUL_MODE_PROT32 :
4903 							  X86EMUL_MODE_PROT16;
4904 	ctxt->guest_mode = is_guest_mode(vcpu);
4905 
4906 	init_decode_cache(ctxt);
4907 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4908 }
4909 
4910 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4911 {
4912 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4913 	int ret;
4914 
4915 	init_emulate_ctxt(vcpu);
4916 
4917 	ctxt->op_bytes = 2;
4918 	ctxt->ad_bytes = 2;
4919 	ctxt->_eip = ctxt->eip + inc_eip;
4920 	ret = emulate_int_real(ctxt, irq);
4921 
4922 	if (ret != X86EMUL_CONTINUE)
4923 		return EMULATE_FAIL;
4924 
4925 	ctxt->eip = ctxt->_eip;
4926 	kvm_rip_write(vcpu, ctxt->eip);
4927 	kvm_set_rflags(vcpu, ctxt->eflags);
4928 
4929 	if (irq == NMI_VECTOR)
4930 		vcpu->arch.nmi_pending = 0;
4931 	else
4932 		vcpu->arch.interrupt.pending = false;
4933 
4934 	return EMULATE_DONE;
4935 }
4936 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4937 
4938 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4939 {
4940 	int r = EMULATE_DONE;
4941 
4942 	++vcpu->stat.insn_emulation_fail;
4943 	trace_kvm_emulate_insn_failed(vcpu);
4944 	if (!is_guest_mode(vcpu)) {
4945 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4946 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4947 		vcpu->run->internal.ndata = 0;
4948 		r = EMULATE_FAIL;
4949 	}
4950 	kvm_queue_exception(vcpu, UD_VECTOR);
4951 
4952 	return r;
4953 }
4954 
4955 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4956 				  bool write_fault_to_shadow_pgtable,
4957 				  int emulation_type)
4958 {
4959 	gpa_t gpa = cr2;
4960 	pfn_t pfn;
4961 
4962 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
4963 		return false;
4964 
4965 	if (!vcpu->arch.mmu.direct_map) {
4966 		/*
4967 		 * Write permission should be allowed since only
4968 		 * write access need to be emulated.
4969 		 */
4970 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4971 
4972 		/*
4973 		 * If the mapping is invalid in guest, let cpu retry
4974 		 * it to generate fault.
4975 		 */
4976 		if (gpa == UNMAPPED_GVA)
4977 			return true;
4978 	}
4979 
4980 	/*
4981 	 * Do not retry the unhandleable instruction if it faults on the
4982 	 * readonly host memory, otherwise it will goto a infinite loop:
4983 	 * retry instruction -> write #PF -> emulation fail -> retry
4984 	 * instruction -> ...
4985 	 */
4986 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4987 
4988 	/*
4989 	 * If the instruction failed on the error pfn, it can not be fixed,
4990 	 * report the error to userspace.
4991 	 */
4992 	if (is_error_noslot_pfn(pfn))
4993 		return false;
4994 
4995 	kvm_release_pfn_clean(pfn);
4996 
4997 	/* The instructions are well-emulated on direct mmu. */
4998 	if (vcpu->arch.mmu.direct_map) {
4999 		unsigned int indirect_shadow_pages;
5000 
5001 		spin_lock(&vcpu->kvm->mmu_lock);
5002 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5003 		spin_unlock(&vcpu->kvm->mmu_lock);
5004 
5005 		if (indirect_shadow_pages)
5006 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5007 
5008 		return true;
5009 	}
5010 
5011 	/*
5012 	 * if emulation was due to access to shadowed page table
5013 	 * and it failed try to unshadow page and re-enter the
5014 	 * guest to let CPU execute the instruction.
5015 	 */
5016 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5017 
5018 	/*
5019 	 * If the access faults on its page table, it can not
5020 	 * be fixed by unprotecting shadow page and it should
5021 	 * be reported to userspace.
5022 	 */
5023 	return !write_fault_to_shadow_pgtable;
5024 }
5025 
5026 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5027 			      unsigned long cr2,  int emulation_type)
5028 {
5029 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5030 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5031 
5032 	last_retry_eip = vcpu->arch.last_retry_eip;
5033 	last_retry_addr = vcpu->arch.last_retry_addr;
5034 
5035 	/*
5036 	 * If the emulation is caused by #PF and it is non-page_table
5037 	 * writing instruction, it means the VM-EXIT is caused by shadow
5038 	 * page protected, we can zap the shadow page and retry this
5039 	 * instruction directly.
5040 	 *
5041 	 * Note: if the guest uses a non-page-table modifying instruction
5042 	 * on the PDE that points to the instruction, then we will unmap
5043 	 * the instruction and go to an infinite loop. So, we cache the
5044 	 * last retried eip and the last fault address, if we meet the eip
5045 	 * and the address again, we can break out of the potential infinite
5046 	 * loop.
5047 	 */
5048 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5049 
5050 	if (!(emulation_type & EMULTYPE_RETRY))
5051 		return false;
5052 
5053 	if (x86_page_table_writing_insn(ctxt))
5054 		return false;
5055 
5056 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5057 		return false;
5058 
5059 	vcpu->arch.last_retry_eip = ctxt->eip;
5060 	vcpu->arch.last_retry_addr = cr2;
5061 
5062 	if (!vcpu->arch.mmu.direct_map)
5063 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5064 
5065 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5066 
5067 	return true;
5068 }
5069 
5070 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5071 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5072 
5073 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5074 				unsigned long *db)
5075 {
5076 	u32 dr6 = 0;
5077 	int i;
5078 	u32 enable, rwlen;
5079 
5080 	enable = dr7;
5081 	rwlen = dr7 >> 16;
5082 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5083 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5084 			dr6 |= (1 << i);
5085 	return dr6;
5086 }
5087 
5088 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5089 {
5090 	struct kvm_run *kvm_run = vcpu->run;
5091 
5092 	/*
5093 	 * Use the "raw" value to see if TF was passed to the processor.
5094 	 * Note that the new value of the flags has not been saved yet.
5095 	 *
5096 	 * This is correct even for TF set by the guest, because "the
5097 	 * processor will not generate this exception after the instruction
5098 	 * that sets the TF flag".
5099 	 */
5100 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5101 
5102 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5103 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5104 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5105 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5106 			kvm_run->debug.arch.exception = DB_VECTOR;
5107 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5108 			*r = EMULATE_USER_EXIT;
5109 		} else {
5110 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5111 			/*
5112 			 * "Certain debug exceptions may clear bit 0-3.  The
5113 			 * remaining contents of the DR6 register are never
5114 			 * cleared by the processor".
5115 			 */
5116 			vcpu->arch.dr6 &= ~15;
5117 			vcpu->arch.dr6 |= DR6_BS;
5118 			kvm_queue_exception(vcpu, DB_VECTOR);
5119 		}
5120 	}
5121 }
5122 
5123 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5124 {
5125 	struct kvm_run *kvm_run = vcpu->run;
5126 	unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5127 	u32 dr6 = 0;
5128 
5129 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5130 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5131 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5132 					   vcpu->arch.guest_debug_dr7,
5133 					   vcpu->arch.eff_db);
5134 
5135 		if (dr6 != 0) {
5136 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5137 			kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5138 				get_segment_base(vcpu, VCPU_SREG_CS);
5139 
5140 			kvm_run->debug.arch.exception = DB_VECTOR;
5141 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5142 			*r = EMULATE_USER_EXIT;
5143 			return true;
5144 		}
5145 	}
5146 
5147 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5148 		dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5149 					   vcpu->arch.dr7,
5150 					   vcpu->arch.db);
5151 
5152 		if (dr6 != 0) {
5153 			vcpu->arch.dr6 &= ~15;
5154 			vcpu->arch.dr6 |= dr6;
5155 			kvm_queue_exception(vcpu, DB_VECTOR);
5156 			*r = EMULATE_DONE;
5157 			return true;
5158 		}
5159 	}
5160 
5161 	return false;
5162 }
5163 
5164 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5165 			    unsigned long cr2,
5166 			    int emulation_type,
5167 			    void *insn,
5168 			    int insn_len)
5169 {
5170 	int r;
5171 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5172 	bool writeback = true;
5173 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5174 
5175 	/*
5176 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5177 	 * never reused.
5178 	 */
5179 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5180 	kvm_clear_exception_queue(vcpu);
5181 
5182 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5183 		init_emulate_ctxt(vcpu);
5184 
5185 		/*
5186 		 * We will reenter on the same instruction since
5187 		 * we do not set complete_userspace_io.  This does not
5188 		 * handle watchpoints yet, those would be handled in
5189 		 * the emulate_ops.
5190 		 */
5191 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5192 			return r;
5193 
5194 		ctxt->interruptibility = 0;
5195 		ctxt->have_exception = false;
5196 		ctxt->perm_ok = false;
5197 
5198 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5199 
5200 		r = x86_decode_insn(ctxt, insn, insn_len);
5201 
5202 		trace_kvm_emulate_insn_start(vcpu);
5203 		++vcpu->stat.insn_emulation;
5204 		if (r != EMULATION_OK)  {
5205 			if (emulation_type & EMULTYPE_TRAP_UD)
5206 				return EMULATE_FAIL;
5207 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5208 						emulation_type))
5209 				return EMULATE_DONE;
5210 			if (emulation_type & EMULTYPE_SKIP)
5211 				return EMULATE_FAIL;
5212 			return handle_emulation_failure(vcpu);
5213 		}
5214 	}
5215 
5216 	if (emulation_type & EMULTYPE_SKIP) {
5217 		kvm_rip_write(vcpu, ctxt->_eip);
5218 		return EMULATE_DONE;
5219 	}
5220 
5221 	if (retry_instruction(ctxt, cr2, emulation_type))
5222 		return EMULATE_DONE;
5223 
5224 	/* this is needed for vmware backdoor interface to work since it
5225 	   changes registers values  during IO operation */
5226 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5227 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5228 		emulator_invalidate_register_cache(ctxt);
5229 	}
5230 
5231 restart:
5232 	r = x86_emulate_insn(ctxt);
5233 
5234 	if (r == EMULATION_INTERCEPTED)
5235 		return EMULATE_DONE;
5236 
5237 	if (r == EMULATION_FAILED) {
5238 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5239 					emulation_type))
5240 			return EMULATE_DONE;
5241 
5242 		return handle_emulation_failure(vcpu);
5243 	}
5244 
5245 	if (ctxt->have_exception) {
5246 		inject_emulated_exception(vcpu);
5247 		r = EMULATE_DONE;
5248 	} else if (vcpu->arch.pio.count) {
5249 		if (!vcpu->arch.pio.in) {
5250 			/* FIXME: return into emulator if single-stepping.  */
5251 			vcpu->arch.pio.count = 0;
5252 		} else {
5253 			writeback = false;
5254 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5255 		}
5256 		r = EMULATE_USER_EXIT;
5257 	} else if (vcpu->mmio_needed) {
5258 		if (!vcpu->mmio_is_write)
5259 			writeback = false;
5260 		r = EMULATE_USER_EXIT;
5261 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5262 	} else if (r == EMULATION_RESTART)
5263 		goto restart;
5264 	else
5265 		r = EMULATE_DONE;
5266 
5267 	if (writeback) {
5268 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5269 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5270 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5271 		kvm_rip_write(vcpu, ctxt->eip);
5272 		if (r == EMULATE_DONE)
5273 			kvm_vcpu_check_singlestep(vcpu, &r);
5274 		kvm_set_rflags(vcpu, ctxt->eflags);
5275 	} else
5276 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5277 
5278 	return r;
5279 }
5280 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5281 
5282 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5283 {
5284 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5285 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5286 					    size, port, &val, 1);
5287 	/* do not return to emulator after return from userspace */
5288 	vcpu->arch.pio.count = 0;
5289 	return ret;
5290 }
5291 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5292 
5293 static void tsc_bad(void *info)
5294 {
5295 	__this_cpu_write(cpu_tsc_khz, 0);
5296 }
5297 
5298 static void tsc_khz_changed(void *data)
5299 {
5300 	struct cpufreq_freqs *freq = data;
5301 	unsigned long khz = 0;
5302 
5303 	if (data)
5304 		khz = freq->new;
5305 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5306 		khz = cpufreq_quick_get(raw_smp_processor_id());
5307 	if (!khz)
5308 		khz = tsc_khz;
5309 	__this_cpu_write(cpu_tsc_khz, khz);
5310 }
5311 
5312 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5313 				     void *data)
5314 {
5315 	struct cpufreq_freqs *freq = data;
5316 	struct kvm *kvm;
5317 	struct kvm_vcpu *vcpu;
5318 	int i, send_ipi = 0;
5319 
5320 	/*
5321 	 * We allow guests to temporarily run on slowing clocks,
5322 	 * provided we notify them after, or to run on accelerating
5323 	 * clocks, provided we notify them before.  Thus time never
5324 	 * goes backwards.
5325 	 *
5326 	 * However, we have a problem.  We can't atomically update
5327 	 * the frequency of a given CPU from this function; it is
5328 	 * merely a notifier, which can be called from any CPU.
5329 	 * Changing the TSC frequency at arbitrary points in time
5330 	 * requires a recomputation of local variables related to
5331 	 * the TSC for each VCPU.  We must flag these local variables
5332 	 * to be updated and be sure the update takes place with the
5333 	 * new frequency before any guests proceed.
5334 	 *
5335 	 * Unfortunately, the combination of hotplug CPU and frequency
5336 	 * change creates an intractable locking scenario; the order
5337 	 * of when these callouts happen is undefined with respect to
5338 	 * CPU hotplug, and they can race with each other.  As such,
5339 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5340 	 * undefined; you can actually have a CPU frequency change take
5341 	 * place in between the computation of X and the setting of the
5342 	 * variable.  To protect against this problem, all updates of
5343 	 * the per_cpu tsc_khz variable are done in an interrupt
5344 	 * protected IPI, and all callers wishing to update the value
5345 	 * must wait for a synchronous IPI to complete (which is trivial
5346 	 * if the caller is on the CPU already).  This establishes the
5347 	 * necessary total order on variable updates.
5348 	 *
5349 	 * Note that because a guest time update may take place
5350 	 * anytime after the setting of the VCPU's request bit, the
5351 	 * correct TSC value must be set before the request.  However,
5352 	 * to ensure the update actually makes it to any guest which
5353 	 * starts running in hardware virtualization between the set
5354 	 * and the acquisition of the spinlock, we must also ping the
5355 	 * CPU after setting the request bit.
5356 	 *
5357 	 */
5358 
5359 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5360 		return 0;
5361 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5362 		return 0;
5363 
5364 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5365 
5366 	spin_lock(&kvm_lock);
5367 	list_for_each_entry(kvm, &vm_list, vm_list) {
5368 		kvm_for_each_vcpu(i, vcpu, kvm) {
5369 			if (vcpu->cpu != freq->cpu)
5370 				continue;
5371 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5372 			if (vcpu->cpu != smp_processor_id())
5373 				send_ipi = 1;
5374 		}
5375 	}
5376 	spin_unlock(&kvm_lock);
5377 
5378 	if (freq->old < freq->new && send_ipi) {
5379 		/*
5380 		 * We upscale the frequency.  Must make the guest
5381 		 * doesn't see old kvmclock values while running with
5382 		 * the new frequency, otherwise we risk the guest sees
5383 		 * time go backwards.
5384 		 *
5385 		 * In case we update the frequency for another cpu
5386 		 * (which might be in guest context) send an interrupt
5387 		 * to kick the cpu out of guest context.  Next time
5388 		 * guest context is entered kvmclock will be updated,
5389 		 * so the guest will not see stale values.
5390 		 */
5391 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5392 	}
5393 	return 0;
5394 }
5395 
5396 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5397 	.notifier_call  = kvmclock_cpufreq_notifier
5398 };
5399 
5400 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5401 					unsigned long action, void *hcpu)
5402 {
5403 	unsigned int cpu = (unsigned long)hcpu;
5404 
5405 	switch (action) {
5406 		case CPU_ONLINE:
5407 		case CPU_DOWN_FAILED:
5408 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5409 			break;
5410 		case CPU_DOWN_PREPARE:
5411 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5412 			break;
5413 	}
5414 	return NOTIFY_OK;
5415 }
5416 
5417 static struct notifier_block kvmclock_cpu_notifier_block = {
5418 	.notifier_call  = kvmclock_cpu_notifier,
5419 	.priority = -INT_MAX
5420 };
5421 
5422 static void kvm_timer_init(void)
5423 {
5424 	int cpu;
5425 
5426 	max_tsc_khz = tsc_khz;
5427 
5428 	cpu_notifier_register_begin();
5429 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5430 #ifdef CONFIG_CPU_FREQ
5431 		struct cpufreq_policy policy;
5432 		memset(&policy, 0, sizeof(policy));
5433 		cpu = get_cpu();
5434 		cpufreq_get_policy(&policy, cpu);
5435 		if (policy.cpuinfo.max_freq)
5436 			max_tsc_khz = policy.cpuinfo.max_freq;
5437 		put_cpu();
5438 #endif
5439 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5440 					  CPUFREQ_TRANSITION_NOTIFIER);
5441 	}
5442 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5443 	for_each_online_cpu(cpu)
5444 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5445 
5446 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5447 	cpu_notifier_register_done();
5448 
5449 }
5450 
5451 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5452 
5453 int kvm_is_in_guest(void)
5454 {
5455 	return __this_cpu_read(current_vcpu) != NULL;
5456 }
5457 
5458 static int kvm_is_user_mode(void)
5459 {
5460 	int user_mode = 3;
5461 
5462 	if (__this_cpu_read(current_vcpu))
5463 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5464 
5465 	return user_mode != 0;
5466 }
5467 
5468 static unsigned long kvm_get_guest_ip(void)
5469 {
5470 	unsigned long ip = 0;
5471 
5472 	if (__this_cpu_read(current_vcpu))
5473 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5474 
5475 	return ip;
5476 }
5477 
5478 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5479 	.is_in_guest		= kvm_is_in_guest,
5480 	.is_user_mode		= kvm_is_user_mode,
5481 	.get_guest_ip		= kvm_get_guest_ip,
5482 };
5483 
5484 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5485 {
5486 	__this_cpu_write(current_vcpu, vcpu);
5487 }
5488 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5489 
5490 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5491 {
5492 	__this_cpu_write(current_vcpu, NULL);
5493 }
5494 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5495 
5496 static void kvm_set_mmio_spte_mask(void)
5497 {
5498 	u64 mask;
5499 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5500 
5501 	/*
5502 	 * Set the reserved bits and the present bit of an paging-structure
5503 	 * entry to generate page fault with PFER.RSV = 1.
5504 	 */
5505 	 /* Mask the reserved physical address bits. */
5506 	mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5507 
5508 	/* Bit 62 is always reserved for 32bit host. */
5509 	mask |= 0x3ull << 62;
5510 
5511 	/* Set the present bit. */
5512 	mask |= 1ull;
5513 
5514 #ifdef CONFIG_X86_64
5515 	/*
5516 	 * If reserved bit is not supported, clear the present bit to disable
5517 	 * mmio page fault.
5518 	 */
5519 	if (maxphyaddr == 52)
5520 		mask &= ~1ull;
5521 #endif
5522 
5523 	kvm_mmu_set_mmio_spte_mask(mask);
5524 }
5525 
5526 #ifdef CONFIG_X86_64
5527 static void pvclock_gtod_update_fn(struct work_struct *work)
5528 {
5529 	struct kvm *kvm;
5530 
5531 	struct kvm_vcpu *vcpu;
5532 	int i;
5533 
5534 	spin_lock(&kvm_lock);
5535 	list_for_each_entry(kvm, &vm_list, vm_list)
5536 		kvm_for_each_vcpu(i, vcpu, kvm)
5537 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5538 	atomic_set(&kvm_guest_has_master_clock, 0);
5539 	spin_unlock(&kvm_lock);
5540 }
5541 
5542 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5543 
5544 /*
5545  * Notification about pvclock gtod data update.
5546  */
5547 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5548 			       void *priv)
5549 {
5550 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5551 	struct timekeeper *tk = priv;
5552 
5553 	update_pvclock_gtod(tk);
5554 
5555 	/* disable master clock if host does not trust, or does not
5556 	 * use, TSC clocksource
5557 	 */
5558 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5559 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5560 		queue_work(system_long_wq, &pvclock_gtod_work);
5561 
5562 	return 0;
5563 }
5564 
5565 static struct notifier_block pvclock_gtod_notifier = {
5566 	.notifier_call = pvclock_gtod_notify,
5567 };
5568 #endif
5569 
5570 int kvm_arch_init(void *opaque)
5571 {
5572 	int r;
5573 	struct kvm_x86_ops *ops = opaque;
5574 
5575 	if (kvm_x86_ops) {
5576 		printk(KERN_ERR "kvm: already loaded the other module\n");
5577 		r = -EEXIST;
5578 		goto out;
5579 	}
5580 
5581 	if (!ops->cpu_has_kvm_support()) {
5582 		printk(KERN_ERR "kvm: no hardware support\n");
5583 		r = -EOPNOTSUPP;
5584 		goto out;
5585 	}
5586 	if (ops->disabled_by_bios()) {
5587 		printk(KERN_ERR "kvm: disabled by bios\n");
5588 		r = -EOPNOTSUPP;
5589 		goto out;
5590 	}
5591 
5592 	r = -ENOMEM;
5593 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5594 	if (!shared_msrs) {
5595 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5596 		goto out;
5597 	}
5598 
5599 	r = kvm_mmu_module_init();
5600 	if (r)
5601 		goto out_free_percpu;
5602 
5603 	kvm_set_mmio_spte_mask();
5604 
5605 	kvm_x86_ops = ops;
5606 	kvm_init_msr_list();
5607 
5608 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5609 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5610 
5611 	kvm_timer_init();
5612 
5613 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5614 
5615 	if (cpu_has_xsave)
5616 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5617 
5618 	kvm_lapic_init();
5619 #ifdef CONFIG_X86_64
5620 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5621 #endif
5622 
5623 	return 0;
5624 
5625 out_free_percpu:
5626 	free_percpu(shared_msrs);
5627 out:
5628 	return r;
5629 }
5630 
5631 void kvm_arch_exit(void)
5632 {
5633 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5634 
5635 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5636 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5637 					    CPUFREQ_TRANSITION_NOTIFIER);
5638 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5639 #ifdef CONFIG_X86_64
5640 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5641 #endif
5642 	kvm_x86_ops = NULL;
5643 	kvm_mmu_module_exit();
5644 	free_percpu(shared_msrs);
5645 }
5646 
5647 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5648 {
5649 	++vcpu->stat.halt_exits;
5650 	if (irqchip_in_kernel(vcpu->kvm)) {
5651 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5652 		return 1;
5653 	} else {
5654 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5655 		return 0;
5656 	}
5657 }
5658 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5659 
5660 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5661 {
5662 	u64 param, ingpa, outgpa, ret;
5663 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5664 	bool fast, longmode;
5665 	int cs_db, cs_l;
5666 
5667 	/*
5668 	 * hypercall generates UD from non zero cpl and real mode
5669 	 * per HYPER-V spec
5670 	 */
5671 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5672 		kvm_queue_exception(vcpu, UD_VECTOR);
5673 		return 0;
5674 	}
5675 
5676 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5677 	longmode = is_long_mode(vcpu) && cs_l == 1;
5678 
5679 	if (!longmode) {
5680 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5681 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5682 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5683 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5684 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5685 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5686 	}
5687 #ifdef CONFIG_X86_64
5688 	else {
5689 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5690 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5691 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5692 	}
5693 #endif
5694 
5695 	code = param & 0xffff;
5696 	fast = (param >> 16) & 0x1;
5697 	rep_cnt = (param >> 32) & 0xfff;
5698 	rep_idx = (param >> 48) & 0xfff;
5699 
5700 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5701 
5702 	switch (code) {
5703 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5704 		kvm_vcpu_on_spin(vcpu);
5705 		break;
5706 	default:
5707 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5708 		break;
5709 	}
5710 
5711 	ret = res | (((u64)rep_done & 0xfff) << 32);
5712 	if (longmode) {
5713 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5714 	} else {
5715 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5716 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5717 	}
5718 
5719 	return 1;
5720 }
5721 
5722 /*
5723  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5724  *
5725  * @apicid - apicid of vcpu to be kicked.
5726  */
5727 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5728 {
5729 	struct kvm_lapic_irq lapic_irq;
5730 
5731 	lapic_irq.shorthand = 0;
5732 	lapic_irq.dest_mode = 0;
5733 	lapic_irq.dest_id = apicid;
5734 
5735 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5736 	kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5737 }
5738 
5739 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5740 {
5741 	unsigned long nr, a0, a1, a2, a3, ret;
5742 	int r = 1;
5743 
5744 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5745 		return kvm_hv_hypercall(vcpu);
5746 
5747 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5748 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5749 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5750 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5751 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5752 
5753 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5754 
5755 	if (!is_long_mode(vcpu)) {
5756 		nr &= 0xFFFFFFFF;
5757 		a0 &= 0xFFFFFFFF;
5758 		a1 &= 0xFFFFFFFF;
5759 		a2 &= 0xFFFFFFFF;
5760 		a3 &= 0xFFFFFFFF;
5761 	}
5762 
5763 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5764 		ret = -KVM_EPERM;
5765 		goto out;
5766 	}
5767 
5768 	switch (nr) {
5769 	case KVM_HC_VAPIC_POLL_IRQ:
5770 		ret = 0;
5771 		break;
5772 	case KVM_HC_KICK_CPU:
5773 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5774 		ret = 0;
5775 		break;
5776 	default:
5777 		ret = -KVM_ENOSYS;
5778 		break;
5779 	}
5780 out:
5781 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5782 	++vcpu->stat.hypercalls;
5783 	return r;
5784 }
5785 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5786 
5787 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5788 {
5789 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5790 	char instruction[3];
5791 	unsigned long rip = kvm_rip_read(vcpu);
5792 
5793 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5794 
5795 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5796 }
5797 
5798 /*
5799  * Check if userspace requested an interrupt window, and that the
5800  * interrupt window is open.
5801  *
5802  * No need to exit to userspace if we already have an interrupt queued.
5803  */
5804 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5805 {
5806 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5807 		vcpu->run->request_interrupt_window &&
5808 		kvm_arch_interrupt_allowed(vcpu));
5809 }
5810 
5811 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5812 {
5813 	struct kvm_run *kvm_run = vcpu->run;
5814 
5815 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5816 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5817 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5818 	if (irqchip_in_kernel(vcpu->kvm))
5819 		kvm_run->ready_for_interrupt_injection = 1;
5820 	else
5821 		kvm_run->ready_for_interrupt_injection =
5822 			kvm_arch_interrupt_allowed(vcpu) &&
5823 			!kvm_cpu_has_interrupt(vcpu) &&
5824 			!kvm_event_needs_reinjection(vcpu);
5825 }
5826 
5827 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5828 {
5829 	int max_irr, tpr;
5830 
5831 	if (!kvm_x86_ops->update_cr8_intercept)
5832 		return;
5833 
5834 	if (!vcpu->arch.apic)
5835 		return;
5836 
5837 	if (!vcpu->arch.apic->vapic_addr)
5838 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5839 	else
5840 		max_irr = -1;
5841 
5842 	if (max_irr != -1)
5843 		max_irr >>= 4;
5844 
5845 	tpr = kvm_lapic_get_cr8(vcpu);
5846 
5847 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5848 }
5849 
5850 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5851 {
5852 	int r;
5853 
5854 	/* try to reinject previous events if any */
5855 	if (vcpu->arch.exception.pending) {
5856 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5857 					vcpu->arch.exception.has_error_code,
5858 					vcpu->arch.exception.error_code);
5859 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5860 					  vcpu->arch.exception.has_error_code,
5861 					  vcpu->arch.exception.error_code,
5862 					  vcpu->arch.exception.reinject);
5863 		return 0;
5864 	}
5865 
5866 	if (vcpu->arch.nmi_injected) {
5867 		kvm_x86_ops->set_nmi(vcpu);
5868 		return 0;
5869 	}
5870 
5871 	if (vcpu->arch.interrupt.pending) {
5872 		kvm_x86_ops->set_irq(vcpu);
5873 		return 0;
5874 	}
5875 
5876 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5877 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5878 		if (r != 0)
5879 			return r;
5880 	}
5881 
5882 	/* try to inject new event if pending */
5883 	if (vcpu->arch.nmi_pending) {
5884 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5885 			--vcpu->arch.nmi_pending;
5886 			vcpu->arch.nmi_injected = true;
5887 			kvm_x86_ops->set_nmi(vcpu);
5888 		}
5889 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
5890 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5891 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5892 					    false);
5893 			kvm_x86_ops->set_irq(vcpu);
5894 		}
5895 	}
5896 	return 0;
5897 }
5898 
5899 static void process_nmi(struct kvm_vcpu *vcpu)
5900 {
5901 	unsigned limit = 2;
5902 
5903 	/*
5904 	 * x86 is limited to one NMI running, and one NMI pending after it.
5905 	 * If an NMI is already in progress, limit further NMIs to just one.
5906 	 * Otherwise, allow two (and we'll inject the first one immediately).
5907 	 */
5908 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5909 		limit = 1;
5910 
5911 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5912 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5913 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5914 }
5915 
5916 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5917 {
5918 	u64 eoi_exit_bitmap[4];
5919 	u32 tmr[8];
5920 
5921 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5922 		return;
5923 
5924 	memset(eoi_exit_bitmap, 0, 32);
5925 	memset(tmr, 0, 32);
5926 
5927 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5928 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5929 	kvm_apic_update_tmr(vcpu, tmr);
5930 }
5931 
5932 /*
5933  * Returns 1 to let __vcpu_run() continue the guest execution loop without
5934  * exiting to the userspace.  Otherwise, the value will be returned to the
5935  * userspace.
5936  */
5937 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5938 {
5939 	int r;
5940 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5941 		vcpu->run->request_interrupt_window;
5942 	bool req_immediate_exit = false;
5943 
5944 	if (vcpu->requests) {
5945 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5946 			kvm_mmu_unload(vcpu);
5947 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5948 			__kvm_migrate_timers(vcpu);
5949 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5950 			kvm_gen_update_masterclock(vcpu->kvm);
5951 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5952 			kvm_gen_kvmclock_update(vcpu);
5953 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5954 			r = kvm_guest_time_update(vcpu);
5955 			if (unlikely(r))
5956 				goto out;
5957 		}
5958 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5959 			kvm_mmu_sync_roots(vcpu);
5960 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5961 			kvm_x86_ops->tlb_flush(vcpu);
5962 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5963 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5964 			r = 0;
5965 			goto out;
5966 		}
5967 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5968 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5969 			r = 0;
5970 			goto out;
5971 		}
5972 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5973 			vcpu->fpu_active = 0;
5974 			kvm_x86_ops->fpu_deactivate(vcpu);
5975 		}
5976 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5977 			/* Page is swapped out. Do synthetic halt */
5978 			vcpu->arch.apf.halted = true;
5979 			r = 1;
5980 			goto out;
5981 		}
5982 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5983 			record_steal_time(vcpu);
5984 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5985 			process_nmi(vcpu);
5986 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5987 			kvm_handle_pmu_event(vcpu);
5988 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5989 			kvm_deliver_pmi(vcpu);
5990 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5991 			vcpu_scan_ioapic(vcpu);
5992 	}
5993 
5994 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5995 		kvm_apic_accept_events(vcpu);
5996 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5997 			r = 1;
5998 			goto out;
5999 		}
6000 
6001 		if (inject_pending_event(vcpu, req_int_win) != 0)
6002 			req_immediate_exit = true;
6003 		/* enable NMI/IRQ window open exits if needed */
6004 		else if (vcpu->arch.nmi_pending)
6005 			kvm_x86_ops->enable_nmi_window(vcpu);
6006 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6007 			kvm_x86_ops->enable_irq_window(vcpu);
6008 
6009 		if (kvm_lapic_enabled(vcpu)) {
6010 			/*
6011 			 * Update architecture specific hints for APIC
6012 			 * virtual interrupt delivery.
6013 			 */
6014 			if (kvm_x86_ops->hwapic_irr_update)
6015 				kvm_x86_ops->hwapic_irr_update(vcpu,
6016 					kvm_lapic_find_highest_irr(vcpu));
6017 			update_cr8_intercept(vcpu);
6018 			kvm_lapic_sync_to_vapic(vcpu);
6019 		}
6020 	}
6021 
6022 	r = kvm_mmu_reload(vcpu);
6023 	if (unlikely(r)) {
6024 		goto cancel_injection;
6025 	}
6026 
6027 	preempt_disable();
6028 
6029 	kvm_x86_ops->prepare_guest_switch(vcpu);
6030 	if (vcpu->fpu_active)
6031 		kvm_load_guest_fpu(vcpu);
6032 	kvm_load_guest_xcr0(vcpu);
6033 
6034 	vcpu->mode = IN_GUEST_MODE;
6035 
6036 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6037 
6038 	/* We should set ->mode before check ->requests,
6039 	 * see the comment in make_all_cpus_request.
6040 	 */
6041 	smp_mb__after_srcu_read_unlock();
6042 
6043 	local_irq_disable();
6044 
6045 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6046 	    || need_resched() || signal_pending(current)) {
6047 		vcpu->mode = OUTSIDE_GUEST_MODE;
6048 		smp_wmb();
6049 		local_irq_enable();
6050 		preempt_enable();
6051 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6052 		r = 1;
6053 		goto cancel_injection;
6054 	}
6055 
6056 	if (req_immediate_exit)
6057 		smp_send_reschedule(vcpu->cpu);
6058 
6059 	kvm_guest_enter();
6060 
6061 	if (unlikely(vcpu->arch.switch_db_regs)) {
6062 		set_debugreg(0, 7);
6063 		set_debugreg(vcpu->arch.eff_db[0], 0);
6064 		set_debugreg(vcpu->arch.eff_db[1], 1);
6065 		set_debugreg(vcpu->arch.eff_db[2], 2);
6066 		set_debugreg(vcpu->arch.eff_db[3], 3);
6067 		set_debugreg(vcpu->arch.dr6, 6);
6068 	}
6069 
6070 	trace_kvm_entry(vcpu->vcpu_id);
6071 	kvm_x86_ops->run(vcpu);
6072 
6073 	/*
6074 	 * Do this here before restoring debug registers on the host.  And
6075 	 * since we do this before handling the vmexit, a DR access vmexit
6076 	 * can (a) read the correct value of the debug registers, (b) set
6077 	 * KVM_DEBUGREG_WONT_EXIT again.
6078 	 */
6079 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6080 		int i;
6081 
6082 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6083 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6084 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6085 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6086 	}
6087 
6088 	/*
6089 	 * If the guest has used debug registers, at least dr7
6090 	 * will be disabled while returning to the host.
6091 	 * If we don't have active breakpoints in the host, we don't
6092 	 * care about the messed up debug address registers. But if
6093 	 * we have some of them active, restore the old state.
6094 	 */
6095 	if (hw_breakpoint_active())
6096 		hw_breakpoint_restore();
6097 
6098 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6099 							   native_read_tsc());
6100 
6101 	vcpu->mode = OUTSIDE_GUEST_MODE;
6102 	smp_wmb();
6103 
6104 	/* Interrupt is enabled by handle_external_intr() */
6105 	kvm_x86_ops->handle_external_intr(vcpu);
6106 
6107 	++vcpu->stat.exits;
6108 
6109 	/*
6110 	 * We must have an instruction between local_irq_enable() and
6111 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6112 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6113 	 * But we need to prevent reordering, hence this barrier():
6114 	 */
6115 	barrier();
6116 
6117 	kvm_guest_exit();
6118 
6119 	preempt_enable();
6120 
6121 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6122 
6123 	/*
6124 	 * Profile KVM exit RIPs:
6125 	 */
6126 	if (unlikely(prof_on == KVM_PROFILING)) {
6127 		unsigned long rip = kvm_rip_read(vcpu);
6128 		profile_hit(KVM_PROFILING, (void *)rip);
6129 	}
6130 
6131 	if (unlikely(vcpu->arch.tsc_always_catchup))
6132 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6133 
6134 	if (vcpu->arch.apic_attention)
6135 		kvm_lapic_sync_from_vapic(vcpu);
6136 
6137 	r = kvm_x86_ops->handle_exit(vcpu);
6138 	return r;
6139 
6140 cancel_injection:
6141 	kvm_x86_ops->cancel_injection(vcpu);
6142 	if (unlikely(vcpu->arch.apic_attention))
6143 		kvm_lapic_sync_from_vapic(vcpu);
6144 out:
6145 	return r;
6146 }
6147 
6148 
6149 static int __vcpu_run(struct kvm_vcpu *vcpu)
6150 {
6151 	int r;
6152 	struct kvm *kvm = vcpu->kvm;
6153 
6154 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6155 
6156 	r = 1;
6157 	while (r > 0) {
6158 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6159 		    !vcpu->arch.apf.halted)
6160 			r = vcpu_enter_guest(vcpu);
6161 		else {
6162 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6163 			kvm_vcpu_block(vcpu);
6164 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6165 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6166 				kvm_apic_accept_events(vcpu);
6167 				switch(vcpu->arch.mp_state) {
6168 				case KVM_MP_STATE_HALTED:
6169 					vcpu->arch.pv.pv_unhalted = false;
6170 					vcpu->arch.mp_state =
6171 						KVM_MP_STATE_RUNNABLE;
6172 				case KVM_MP_STATE_RUNNABLE:
6173 					vcpu->arch.apf.halted = false;
6174 					break;
6175 				case KVM_MP_STATE_INIT_RECEIVED:
6176 					break;
6177 				default:
6178 					r = -EINTR;
6179 					break;
6180 				}
6181 			}
6182 		}
6183 
6184 		if (r <= 0)
6185 			break;
6186 
6187 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6188 		if (kvm_cpu_has_pending_timer(vcpu))
6189 			kvm_inject_pending_timer_irqs(vcpu);
6190 
6191 		if (dm_request_for_irq_injection(vcpu)) {
6192 			r = -EINTR;
6193 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6194 			++vcpu->stat.request_irq_exits;
6195 		}
6196 
6197 		kvm_check_async_pf_completion(vcpu);
6198 
6199 		if (signal_pending(current)) {
6200 			r = -EINTR;
6201 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6202 			++vcpu->stat.signal_exits;
6203 		}
6204 		if (need_resched()) {
6205 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6206 			cond_resched();
6207 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6208 		}
6209 	}
6210 
6211 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6212 
6213 	return r;
6214 }
6215 
6216 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6217 {
6218 	int r;
6219 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6220 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6221 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6222 	if (r != EMULATE_DONE)
6223 		return 0;
6224 	return 1;
6225 }
6226 
6227 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6228 {
6229 	BUG_ON(!vcpu->arch.pio.count);
6230 
6231 	return complete_emulated_io(vcpu);
6232 }
6233 
6234 /*
6235  * Implements the following, as a state machine:
6236  *
6237  * read:
6238  *   for each fragment
6239  *     for each mmio piece in the fragment
6240  *       write gpa, len
6241  *       exit
6242  *       copy data
6243  *   execute insn
6244  *
6245  * write:
6246  *   for each fragment
6247  *     for each mmio piece in the fragment
6248  *       write gpa, len
6249  *       copy data
6250  *       exit
6251  */
6252 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6253 {
6254 	struct kvm_run *run = vcpu->run;
6255 	struct kvm_mmio_fragment *frag;
6256 	unsigned len;
6257 
6258 	BUG_ON(!vcpu->mmio_needed);
6259 
6260 	/* Complete previous fragment */
6261 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6262 	len = min(8u, frag->len);
6263 	if (!vcpu->mmio_is_write)
6264 		memcpy(frag->data, run->mmio.data, len);
6265 
6266 	if (frag->len <= 8) {
6267 		/* Switch to the next fragment. */
6268 		frag++;
6269 		vcpu->mmio_cur_fragment++;
6270 	} else {
6271 		/* Go forward to the next mmio piece. */
6272 		frag->data += len;
6273 		frag->gpa += len;
6274 		frag->len -= len;
6275 	}
6276 
6277 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6278 		vcpu->mmio_needed = 0;
6279 
6280 		/* FIXME: return into emulator if single-stepping.  */
6281 		if (vcpu->mmio_is_write)
6282 			return 1;
6283 		vcpu->mmio_read_completed = 1;
6284 		return complete_emulated_io(vcpu);
6285 	}
6286 
6287 	run->exit_reason = KVM_EXIT_MMIO;
6288 	run->mmio.phys_addr = frag->gpa;
6289 	if (vcpu->mmio_is_write)
6290 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6291 	run->mmio.len = min(8u, frag->len);
6292 	run->mmio.is_write = vcpu->mmio_is_write;
6293 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6294 	return 0;
6295 }
6296 
6297 
6298 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6299 {
6300 	int r;
6301 	sigset_t sigsaved;
6302 
6303 	if (!tsk_used_math(current) && init_fpu(current))
6304 		return -ENOMEM;
6305 
6306 	if (vcpu->sigset_active)
6307 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6308 
6309 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6310 		kvm_vcpu_block(vcpu);
6311 		kvm_apic_accept_events(vcpu);
6312 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6313 		r = -EAGAIN;
6314 		goto out;
6315 	}
6316 
6317 	/* re-sync apic's tpr */
6318 	if (!irqchip_in_kernel(vcpu->kvm)) {
6319 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6320 			r = -EINVAL;
6321 			goto out;
6322 		}
6323 	}
6324 
6325 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6326 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6327 		vcpu->arch.complete_userspace_io = NULL;
6328 		r = cui(vcpu);
6329 		if (r <= 0)
6330 			goto out;
6331 	} else
6332 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6333 
6334 	r = __vcpu_run(vcpu);
6335 
6336 out:
6337 	post_kvm_run_save(vcpu);
6338 	if (vcpu->sigset_active)
6339 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6340 
6341 	return r;
6342 }
6343 
6344 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6345 {
6346 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6347 		/*
6348 		 * We are here if userspace calls get_regs() in the middle of
6349 		 * instruction emulation. Registers state needs to be copied
6350 		 * back from emulation context to vcpu. Userspace shouldn't do
6351 		 * that usually, but some bad designed PV devices (vmware
6352 		 * backdoor interface) need this to work
6353 		 */
6354 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6355 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6356 	}
6357 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6358 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6359 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6360 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6361 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6362 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6363 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6364 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6365 #ifdef CONFIG_X86_64
6366 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6367 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6368 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6369 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6370 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6371 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6372 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6373 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6374 #endif
6375 
6376 	regs->rip = kvm_rip_read(vcpu);
6377 	regs->rflags = kvm_get_rflags(vcpu);
6378 
6379 	return 0;
6380 }
6381 
6382 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6383 {
6384 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6385 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6386 
6387 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6388 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6389 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6390 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6391 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6392 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6393 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6394 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6395 #ifdef CONFIG_X86_64
6396 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6397 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6398 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6399 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6400 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6401 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6402 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6403 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6404 #endif
6405 
6406 	kvm_rip_write(vcpu, regs->rip);
6407 	kvm_set_rflags(vcpu, regs->rflags);
6408 
6409 	vcpu->arch.exception.pending = false;
6410 
6411 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6412 
6413 	return 0;
6414 }
6415 
6416 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6417 {
6418 	struct kvm_segment cs;
6419 
6420 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6421 	*db = cs.db;
6422 	*l = cs.l;
6423 }
6424 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6425 
6426 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6427 				  struct kvm_sregs *sregs)
6428 {
6429 	struct desc_ptr dt;
6430 
6431 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6432 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6433 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6434 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6435 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6436 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6437 
6438 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6439 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6440 
6441 	kvm_x86_ops->get_idt(vcpu, &dt);
6442 	sregs->idt.limit = dt.size;
6443 	sregs->idt.base = dt.address;
6444 	kvm_x86_ops->get_gdt(vcpu, &dt);
6445 	sregs->gdt.limit = dt.size;
6446 	sregs->gdt.base = dt.address;
6447 
6448 	sregs->cr0 = kvm_read_cr0(vcpu);
6449 	sregs->cr2 = vcpu->arch.cr2;
6450 	sregs->cr3 = kvm_read_cr3(vcpu);
6451 	sregs->cr4 = kvm_read_cr4(vcpu);
6452 	sregs->cr8 = kvm_get_cr8(vcpu);
6453 	sregs->efer = vcpu->arch.efer;
6454 	sregs->apic_base = kvm_get_apic_base(vcpu);
6455 
6456 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6457 
6458 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6459 		set_bit(vcpu->arch.interrupt.nr,
6460 			(unsigned long *)sregs->interrupt_bitmap);
6461 
6462 	return 0;
6463 }
6464 
6465 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6466 				    struct kvm_mp_state *mp_state)
6467 {
6468 	kvm_apic_accept_events(vcpu);
6469 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6470 					vcpu->arch.pv.pv_unhalted)
6471 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6472 	else
6473 		mp_state->mp_state = vcpu->arch.mp_state;
6474 
6475 	return 0;
6476 }
6477 
6478 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6479 				    struct kvm_mp_state *mp_state)
6480 {
6481 	if (!kvm_vcpu_has_lapic(vcpu) &&
6482 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6483 		return -EINVAL;
6484 
6485 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6486 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6487 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6488 	} else
6489 		vcpu->arch.mp_state = mp_state->mp_state;
6490 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6491 	return 0;
6492 }
6493 
6494 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6495 		    int reason, bool has_error_code, u32 error_code)
6496 {
6497 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6498 	int ret;
6499 
6500 	init_emulate_ctxt(vcpu);
6501 
6502 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6503 				   has_error_code, error_code);
6504 
6505 	if (ret)
6506 		return EMULATE_FAIL;
6507 
6508 	kvm_rip_write(vcpu, ctxt->eip);
6509 	kvm_set_rflags(vcpu, ctxt->eflags);
6510 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6511 	return EMULATE_DONE;
6512 }
6513 EXPORT_SYMBOL_GPL(kvm_task_switch);
6514 
6515 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6516 				  struct kvm_sregs *sregs)
6517 {
6518 	struct msr_data apic_base_msr;
6519 	int mmu_reset_needed = 0;
6520 	int pending_vec, max_bits, idx;
6521 	struct desc_ptr dt;
6522 
6523 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6524 		return -EINVAL;
6525 
6526 	dt.size = sregs->idt.limit;
6527 	dt.address = sregs->idt.base;
6528 	kvm_x86_ops->set_idt(vcpu, &dt);
6529 	dt.size = sregs->gdt.limit;
6530 	dt.address = sregs->gdt.base;
6531 	kvm_x86_ops->set_gdt(vcpu, &dt);
6532 
6533 	vcpu->arch.cr2 = sregs->cr2;
6534 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6535 	vcpu->arch.cr3 = sregs->cr3;
6536 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6537 
6538 	kvm_set_cr8(vcpu, sregs->cr8);
6539 
6540 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6541 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6542 	apic_base_msr.data = sregs->apic_base;
6543 	apic_base_msr.host_initiated = true;
6544 	kvm_set_apic_base(vcpu, &apic_base_msr);
6545 
6546 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6547 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6548 	vcpu->arch.cr0 = sregs->cr0;
6549 
6550 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6551 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6552 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6553 		kvm_update_cpuid(vcpu);
6554 
6555 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6556 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6557 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6558 		mmu_reset_needed = 1;
6559 	}
6560 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6561 
6562 	if (mmu_reset_needed)
6563 		kvm_mmu_reset_context(vcpu);
6564 
6565 	max_bits = KVM_NR_INTERRUPTS;
6566 	pending_vec = find_first_bit(
6567 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6568 	if (pending_vec < max_bits) {
6569 		kvm_queue_interrupt(vcpu, pending_vec, false);
6570 		pr_debug("Set back pending irq %d\n", pending_vec);
6571 	}
6572 
6573 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6574 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6575 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6576 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6577 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6578 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6579 
6580 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6581 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6582 
6583 	update_cr8_intercept(vcpu);
6584 
6585 	/* Older userspace won't unhalt the vcpu on reset. */
6586 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6587 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6588 	    !is_protmode(vcpu))
6589 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6590 
6591 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6592 
6593 	return 0;
6594 }
6595 
6596 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6597 					struct kvm_guest_debug *dbg)
6598 {
6599 	unsigned long rflags;
6600 	int i, r;
6601 
6602 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6603 		r = -EBUSY;
6604 		if (vcpu->arch.exception.pending)
6605 			goto out;
6606 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6607 			kvm_queue_exception(vcpu, DB_VECTOR);
6608 		else
6609 			kvm_queue_exception(vcpu, BP_VECTOR);
6610 	}
6611 
6612 	/*
6613 	 * Read rflags as long as potentially injected trace flags are still
6614 	 * filtered out.
6615 	 */
6616 	rflags = kvm_get_rflags(vcpu);
6617 
6618 	vcpu->guest_debug = dbg->control;
6619 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6620 		vcpu->guest_debug = 0;
6621 
6622 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6623 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6624 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6625 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6626 	} else {
6627 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6628 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6629 	}
6630 	kvm_update_dr7(vcpu);
6631 
6632 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6633 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6634 			get_segment_base(vcpu, VCPU_SREG_CS);
6635 
6636 	/*
6637 	 * Trigger an rflags update that will inject or remove the trace
6638 	 * flags.
6639 	 */
6640 	kvm_set_rflags(vcpu, rflags);
6641 
6642 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6643 
6644 	r = 0;
6645 
6646 out:
6647 
6648 	return r;
6649 }
6650 
6651 /*
6652  * Translate a guest virtual address to a guest physical address.
6653  */
6654 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6655 				    struct kvm_translation *tr)
6656 {
6657 	unsigned long vaddr = tr->linear_address;
6658 	gpa_t gpa;
6659 	int idx;
6660 
6661 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6662 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6663 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6664 	tr->physical_address = gpa;
6665 	tr->valid = gpa != UNMAPPED_GVA;
6666 	tr->writeable = 1;
6667 	tr->usermode = 0;
6668 
6669 	return 0;
6670 }
6671 
6672 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6673 {
6674 	struct i387_fxsave_struct *fxsave =
6675 			&vcpu->arch.guest_fpu.state->fxsave;
6676 
6677 	memcpy(fpu->fpr, fxsave->st_space, 128);
6678 	fpu->fcw = fxsave->cwd;
6679 	fpu->fsw = fxsave->swd;
6680 	fpu->ftwx = fxsave->twd;
6681 	fpu->last_opcode = fxsave->fop;
6682 	fpu->last_ip = fxsave->rip;
6683 	fpu->last_dp = fxsave->rdp;
6684 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6685 
6686 	return 0;
6687 }
6688 
6689 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6690 {
6691 	struct i387_fxsave_struct *fxsave =
6692 			&vcpu->arch.guest_fpu.state->fxsave;
6693 
6694 	memcpy(fxsave->st_space, fpu->fpr, 128);
6695 	fxsave->cwd = fpu->fcw;
6696 	fxsave->swd = fpu->fsw;
6697 	fxsave->twd = fpu->ftwx;
6698 	fxsave->fop = fpu->last_opcode;
6699 	fxsave->rip = fpu->last_ip;
6700 	fxsave->rdp = fpu->last_dp;
6701 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6702 
6703 	return 0;
6704 }
6705 
6706 int fx_init(struct kvm_vcpu *vcpu)
6707 {
6708 	int err;
6709 
6710 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6711 	if (err)
6712 		return err;
6713 
6714 	fpu_finit(&vcpu->arch.guest_fpu);
6715 
6716 	/*
6717 	 * Ensure guest xcr0 is valid for loading
6718 	 */
6719 	vcpu->arch.xcr0 = XSTATE_FP;
6720 
6721 	vcpu->arch.cr0 |= X86_CR0_ET;
6722 
6723 	return 0;
6724 }
6725 EXPORT_SYMBOL_GPL(fx_init);
6726 
6727 static void fx_free(struct kvm_vcpu *vcpu)
6728 {
6729 	fpu_free(&vcpu->arch.guest_fpu);
6730 }
6731 
6732 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6733 {
6734 	if (vcpu->guest_fpu_loaded)
6735 		return;
6736 
6737 	/*
6738 	 * Restore all possible states in the guest,
6739 	 * and assume host would use all available bits.
6740 	 * Guest xcr0 would be loaded later.
6741 	 */
6742 	kvm_put_guest_xcr0(vcpu);
6743 	vcpu->guest_fpu_loaded = 1;
6744 	__kernel_fpu_begin();
6745 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6746 	trace_kvm_fpu(1);
6747 }
6748 
6749 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6750 {
6751 	kvm_put_guest_xcr0(vcpu);
6752 
6753 	if (!vcpu->guest_fpu_loaded)
6754 		return;
6755 
6756 	vcpu->guest_fpu_loaded = 0;
6757 	fpu_save_init(&vcpu->arch.guest_fpu);
6758 	__kernel_fpu_end();
6759 	++vcpu->stat.fpu_reload;
6760 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6761 	trace_kvm_fpu(0);
6762 }
6763 
6764 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6765 {
6766 	kvmclock_reset(vcpu);
6767 
6768 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6769 	fx_free(vcpu);
6770 	kvm_x86_ops->vcpu_free(vcpu);
6771 }
6772 
6773 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6774 						unsigned int id)
6775 {
6776 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6777 		printk_once(KERN_WARNING
6778 		"kvm: SMP vm created on host with unstable TSC; "
6779 		"guest TSC will not be reliable\n");
6780 	return kvm_x86_ops->vcpu_create(kvm, id);
6781 }
6782 
6783 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6784 {
6785 	int r;
6786 
6787 	vcpu->arch.mtrr_state.have_fixed = 1;
6788 	r = vcpu_load(vcpu);
6789 	if (r)
6790 		return r;
6791 	kvm_vcpu_reset(vcpu);
6792 	kvm_mmu_setup(vcpu);
6793 	vcpu_put(vcpu);
6794 
6795 	return r;
6796 }
6797 
6798 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6799 {
6800 	int r;
6801 	struct msr_data msr;
6802 	struct kvm *kvm = vcpu->kvm;
6803 
6804 	r = vcpu_load(vcpu);
6805 	if (r)
6806 		return r;
6807 	msr.data = 0x0;
6808 	msr.index = MSR_IA32_TSC;
6809 	msr.host_initiated = true;
6810 	kvm_write_tsc(vcpu, &msr);
6811 	vcpu_put(vcpu);
6812 
6813 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
6814 					KVMCLOCK_SYNC_PERIOD);
6815 
6816 	return r;
6817 }
6818 
6819 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6820 {
6821 	int r;
6822 	vcpu->arch.apf.msr_val = 0;
6823 
6824 	r = vcpu_load(vcpu);
6825 	BUG_ON(r);
6826 	kvm_mmu_unload(vcpu);
6827 	vcpu_put(vcpu);
6828 
6829 	fx_free(vcpu);
6830 	kvm_x86_ops->vcpu_free(vcpu);
6831 }
6832 
6833 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6834 {
6835 	atomic_set(&vcpu->arch.nmi_queued, 0);
6836 	vcpu->arch.nmi_pending = 0;
6837 	vcpu->arch.nmi_injected = false;
6838 
6839 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6840 	vcpu->arch.dr6 = DR6_FIXED_1;
6841 	kvm_update_dr6(vcpu);
6842 	vcpu->arch.dr7 = DR7_FIXED_1;
6843 	kvm_update_dr7(vcpu);
6844 
6845 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6846 	vcpu->arch.apf.msr_val = 0;
6847 	vcpu->arch.st.msr_val = 0;
6848 
6849 	kvmclock_reset(vcpu);
6850 
6851 	kvm_clear_async_pf_completion_queue(vcpu);
6852 	kvm_async_pf_hash_reset(vcpu);
6853 	vcpu->arch.apf.halted = false;
6854 
6855 	kvm_pmu_reset(vcpu);
6856 
6857 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6858 	vcpu->arch.regs_avail = ~0;
6859 	vcpu->arch.regs_dirty = ~0;
6860 
6861 	kvm_x86_ops->vcpu_reset(vcpu);
6862 }
6863 
6864 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6865 {
6866 	struct kvm_segment cs;
6867 
6868 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6869 	cs.selector = vector << 8;
6870 	cs.base = vector << 12;
6871 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6872 	kvm_rip_write(vcpu, 0);
6873 }
6874 
6875 int kvm_arch_hardware_enable(void *garbage)
6876 {
6877 	struct kvm *kvm;
6878 	struct kvm_vcpu *vcpu;
6879 	int i;
6880 	int ret;
6881 	u64 local_tsc;
6882 	u64 max_tsc = 0;
6883 	bool stable, backwards_tsc = false;
6884 
6885 	kvm_shared_msr_cpu_online();
6886 	ret = kvm_x86_ops->hardware_enable(garbage);
6887 	if (ret != 0)
6888 		return ret;
6889 
6890 	local_tsc = native_read_tsc();
6891 	stable = !check_tsc_unstable();
6892 	list_for_each_entry(kvm, &vm_list, vm_list) {
6893 		kvm_for_each_vcpu(i, vcpu, kvm) {
6894 			if (!stable && vcpu->cpu == smp_processor_id())
6895 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6896 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6897 				backwards_tsc = true;
6898 				if (vcpu->arch.last_host_tsc > max_tsc)
6899 					max_tsc = vcpu->arch.last_host_tsc;
6900 			}
6901 		}
6902 	}
6903 
6904 	/*
6905 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6906 	 * platforms that reset TSC during suspend or hibernate actions, but
6907 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6908 	 * detect that condition here, which happens early in CPU bringup,
6909 	 * before any KVM threads can be running.  Unfortunately, we can't
6910 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6911 	 * enough into CPU bringup that we know how much real time has actually
6912 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6913 	 * variables that haven't been updated yet.
6914 	 *
6915 	 * So we simply find the maximum observed TSC above, then record the
6916 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6917 	 * the adjustment will be applied.  Note that we accumulate
6918 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6919 	 * gets a chance to run again.  In the event that no KVM threads get a
6920 	 * chance to run, we will miss the entire elapsed period, as we'll have
6921 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6922 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6923 	 * uniform across all VCPUs (not to mention the scenario is extremely
6924 	 * unlikely). It is possible that a second hibernate recovery happens
6925 	 * much faster than a first, causing the observed TSC here to be
6926 	 * smaller; this would require additional padding adjustment, which is
6927 	 * why we set last_host_tsc to the local tsc observed here.
6928 	 *
6929 	 * N.B. - this code below runs only on platforms with reliable TSC,
6930 	 * as that is the only way backwards_tsc is set above.  Also note
6931 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6932 	 * have the same delta_cyc adjustment applied if backwards_tsc
6933 	 * is detected.  Note further, this adjustment is only done once,
6934 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6935 	 * called multiple times (one for each physical CPU bringup).
6936 	 *
6937 	 * Platforms with unreliable TSCs don't have to deal with this, they
6938 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6939 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6940 	 * guarantee that they stay in perfect synchronization.
6941 	 */
6942 	if (backwards_tsc) {
6943 		u64 delta_cyc = max_tsc - local_tsc;
6944 		backwards_tsc_observed = true;
6945 		list_for_each_entry(kvm, &vm_list, vm_list) {
6946 			kvm_for_each_vcpu(i, vcpu, kvm) {
6947 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6948 				vcpu->arch.last_host_tsc = local_tsc;
6949 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6950 					&vcpu->requests);
6951 			}
6952 
6953 			/*
6954 			 * We have to disable TSC offset matching.. if you were
6955 			 * booting a VM while issuing an S4 host suspend....
6956 			 * you may have some problem.  Solving this issue is
6957 			 * left as an exercise to the reader.
6958 			 */
6959 			kvm->arch.last_tsc_nsec = 0;
6960 			kvm->arch.last_tsc_write = 0;
6961 		}
6962 
6963 	}
6964 	return 0;
6965 }
6966 
6967 void kvm_arch_hardware_disable(void *garbage)
6968 {
6969 	kvm_x86_ops->hardware_disable(garbage);
6970 	drop_user_return_notifiers(garbage);
6971 }
6972 
6973 int kvm_arch_hardware_setup(void)
6974 {
6975 	return kvm_x86_ops->hardware_setup();
6976 }
6977 
6978 void kvm_arch_hardware_unsetup(void)
6979 {
6980 	kvm_x86_ops->hardware_unsetup();
6981 }
6982 
6983 void kvm_arch_check_processor_compat(void *rtn)
6984 {
6985 	kvm_x86_ops->check_processor_compatibility(rtn);
6986 }
6987 
6988 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6989 {
6990 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6991 }
6992 
6993 struct static_key kvm_no_apic_vcpu __read_mostly;
6994 
6995 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6996 {
6997 	struct page *page;
6998 	struct kvm *kvm;
6999 	int r;
7000 
7001 	BUG_ON(vcpu->kvm == NULL);
7002 	kvm = vcpu->kvm;
7003 
7004 	vcpu->arch.pv.pv_unhalted = false;
7005 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7006 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7007 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7008 	else
7009 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7010 
7011 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7012 	if (!page) {
7013 		r = -ENOMEM;
7014 		goto fail;
7015 	}
7016 	vcpu->arch.pio_data = page_address(page);
7017 
7018 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7019 
7020 	r = kvm_mmu_create(vcpu);
7021 	if (r < 0)
7022 		goto fail_free_pio_data;
7023 
7024 	if (irqchip_in_kernel(kvm)) {
7025 		r = kvm_create_lapic(vcpu);
7026 		if (r < 0)
7027 			goto fail_mmu_destroy;
7028 	} else
7029 		static_key_slow_inc(&kvm_no_apic_vcpu);
7030 
7031 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7032 				       GFP_KERNEL);
7033 	if (!vcpu->arch.mce_banks) {
7034 		r = -ENOMEM;
7035 		goto fail_free_lapic;
7036 	}
7037 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7038 
7039 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7040 		r = -ENOMEM;
7041 		goto fail_free_mce_banks;
7042 	}
7043 
7044 	r = fx_init(vcpu);
7045 	if (r)
7046 		goto fail_free_wbinvd_dirty_mask;
7047 
7048 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7049 	vcpu->arch.pv_time_enabled = false;
7050 
7051 	vcpu->arch.guest_supported_xcr0 = 0;
7052 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7053 
7054 	kvm_async_pf_hash_reset(vcpu);
7055 	kvm_pmu_init(vcpu);
7056 
7057 	return 0;
7058 fail_free_wbinvd_dirty_mask:
7059 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7060 fail_free_mce_banks:
7061 	kfree(vcpu->arch.mce_banks);
7062 fail_free_lapic:
7063 	kvm_free_lapic(vcpu);
7064 fail_mmu_destroy:
7065 	kvm_mmu_destroy(vcpu);
7066 fail_free_pio_data:
7067 	free_page((unsigned long)vcpu->arch.pio_data);
7068 fail:
7069 	return r;
7070 }
7071 
7072 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7073 {
7074 	int idx;
7075 
7076 	kvm_pmu_destroy(vcpu);
7077 	kfree(vcpu->arch.mce_banks);
7078 	kvm_free_lapic(vcpu);
7079 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7080 	kvm_mmu_destroy(vcpu);
7081 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7082 	free_page((unsigned long)vcpu->arch.pio_data);
7083 	if (!irqchip_in_kernel(vcpu->kvm))
7084 		static_key_slow_dec(&kvm_no_apic_vcpu);
7085 }
7086 
7087 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7088 {
7089 	if (type)
7090 		return -EINVAL;
7091 
7092 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7093 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7094 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7095 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7096 
7097 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7098 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7099 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7100 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7101 		&kvm->arch.irq_sources_bitmap);
7102 
7103 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7104 	mutex_init(&kvm->arch.apic_map_lock);
7105 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7106 
7107 	pvclock_update_vm_gtod_copy(kvm);
7108 
7109 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7110 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7111 
7112 	return 0;
7113 }
7114 
7115 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7116 {
7117 	int r;
7118 	r = vcpu_load(vcpu);
7119 	BUG_ON(r);
7120 	kvm_mmu_unload(vcpu);
7121 	vcpu_put(vcpu);
7122 }
7123 
7124 static void kvm_free_vcpus(struct kvm *kvm)
7125 {
7126 	unsigned int i;
7127 	struct kvm_vcpu *vcpu;
7128 
7129 	/*
7130 	 * Unpin any mmu pages first.
7131 	 */
7132 	kvm_for_each_vcpu(i, vcpu, kvm) {
7133 		kvm_clear_async_pf_completion_queue(vcpu);
7134 		kvm_unload_vcpu_mmu(vcpu);
7135 	}
7136 	kvm_for_each_vcpu(i, vcpu, kvm)
7137 		kvm_arch_vcpu_free(vcpu);
7138 
7139 	mutex_lock(&kvm->lock);
7140 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7141 		kvm->vcpus[i] = NULL;
7142 
7143 	atomic_set(&kvm->online_vcpus, 0);
7144 	mutex_unlock(&kvm->lock);
7145 }
7146 
7147 void kvm_arch_sync_events(struct kvm *kvm)
7148 {
7149 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7150 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7151 	kvm_free_all_assigned_devices(kvm);
7152 	kvm_free_pit(kvm);
7153 }
7154 
7155 void kvm_arch_destroy_vm(struct kvm *kvm)
7156 {
7157 	if (current->mm == kvm->mm) {
7158 		/*
7159 		 * Free memory regions allocated on behalf of userspace,
7160 		 * unless the the memory map has changed due to process exit
7161 		 * or fd copying.
7162 		 */
7163 		struct kvm_userspace_memory_region mem;
7164 		memset(&mem, 0, sizeof(mem));
7165 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7166 		kvm_set_memory_region(kvm, &mem);
7167 
7168 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7169 		kvm_set_memory_region(kvm, &mem);
7170 
7171 		mem.slot = TSS_PRIVATE_MEMSLOT;
7172 		kvm_set_memory_region(kvm, &mem);
7173 	}
7174 	kvm_iommu_unmap_guest(kvm);
7175 	kfree(kvm->arch.vpic);
7176 	kfree(kvm->arch.vioapic);
7177 	kvm_free_vcpus(kvm);
7178 	if (kvm->arch.apic_access_page)
7179 		put_page(kvm->arch.apic_access_page);
7180 	if (kvm->arch.ept_identity_pagetable)
7181 		put_page(kvm->arch.ept_identity_pagetable);
7182 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7183 }
7184 
7185 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7186 			   struct kvm_memory_slot *dont)
7187 {
7188 	int i;
7189 
7190 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7191 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7192 			kvm_kvfree(free->arch.rmap[i]);
7193 			free->arch.rmap[i] = NULL;
7194 		}
7195 		if (i == 0)
7196 			continue;
7197 
7198 		if (!dont || free->arch.lpage_info[i - 1] !=
7199 			     dont->arch.lpage_info[i - 1]) {
7200 			kvm_kvfree(free->arch.lpage_info[i - 1]);
7201 			free->arch.lpage_info[i - 1] = NULL;
7202 		}
7203 	}
7204 }
7205 
7206 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7207 			    unsigned long npages)
7208 {
7209 	int i;
7210 
7211 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7212 		unsigned long ugfn;
7213 		int lpages;
7214 		int level = i + 1;
7215 
7216 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7217 				      slot->base_gfn, level) + 1;
7218 
7219 		slot->arch.rmap[i] =
7220 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7221 		if (!slot->arch.rmap[i])
7222 			goto out_free;
7223 		if (i == 0)
7224 			continue;
7225 
7226 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7227 					sizeof(*slot->arch.lpage_info[i - 1]));
7228 		if (!slot->arch.lpage_info[i - 1])
7229 			goto out_free;
7230 
7231 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7232 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7233 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7234 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7235 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7236 		/*
7237 		 * If the gfn and userspace address are not aligned wrt each
7238 		 * other, or if explicitly asked to, disable large page
7239 		 * support for this slot
7240 		 */
7241 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7242 		    !kvm_largepages_enabled()) {
7243 			unsigned long j;
7244 
7245 			for (j = 0; j < lpages; ++j)
7246 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7247 		}
7248 	}
7249 
7250 	return 0;
7251 
7252 out_free:
7253 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7254 		kvm_kvfree(slot->arch.rmap[i]);
7255 		slot->arch.rmap[i] = NULL;
7256 		if (i == 0)
7257 			continue;
7258 
7259 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
7260 		slot->arch.lpage_info[i - 1] = NULL;
7261 	}
7262 	return -ENOMEM;
7263 }
7264 
7265 void kvm_arch_memslots_updated(struct kvm *kvm)
7266 {
7267 	/*
7268 	 * memslots->generation has been incremented.
7269 	 * mmio generation may have reached its maximum value.
7270 	 */
7271 	kvm_mmu_invalidate_mmio_sptes(kvm);
7272 }
7273 
7274 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7275 				struct kvm_memory_slot *memslot,
7276 				struct kvm_userspace_memory_region *mem,
7277 				enum kvm_mr_change change)
7278 {
7279 	/*
7280 	 * Only private memory slots need to be mapped here since
7281 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7282 	 */
7283 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7284 		unsigned long userspace_addr;
7285 
7286 		/*
7287 		 * MAP_SHARED to prevent internal slot pages from being moved
7288 		 * by fork()/COW.
7289 		 */
7290 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7291 					 PROT_READ | PROT_WRITE,
7292 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7293 
7294 		if (IS_ERR((void *)userspace_addr))
7295 			return PTR_ERR((void *)userspace_addr);
7296 
7297 		memslot->userspace_addr = userspace_addr;
7298 	}
7299 
7300 	return 0;
7301 }
7302 
7303 void kvm_arch_commit_memory_region(struct kvm *kvm,
7304 				struct kvm_userspace_memory_region *mem,
7305 				const struct kvm_memory_slot *old,
7306 				enum kvm_mr_change change)
7307 {
7308 
7309 	int nr_mmu_pages = 0;
7310 
7311 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7312 		int ret;
7313 
7314 		ret = vm_munmap(old->userspace_addr,
7315 				old->npages * PAGE_SIZE);
7316 		if (ret < 0)
7317 			printk(KERN_WARNING
7318 			       "kvm_vm_ioctl_set_memory_region: "
7319 			       "failed to munmap memory\n");
7320 	}
7321 
7322 	if (!kvm->arch.n_requested_mmu_pages)
7323 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7324 
7325 	if (nr_mmu_pages)
7326 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7327 	/*
7328 	 * Write protect all pages for dirty logging.
7329 	 *
7330 	 * All the sptes including the large sptes which point to this
7331 	 * slot are set to readonly. We can not create any new large
7332 	 * spte on this slot until the end of the logging.
7333 	 *
7334 	 * See the comments in fast_page_fault().
7335 	 */
7336 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7337 		kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7338 }
7339 
7340 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7341 {
7342 	kvm_mmu_invalidate_zap_all_pages(kvm);
7343 }
7344 
7345 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7346 				   struct kvm_memory_slot *slot)
7347 {
7348 	kvm_mmu_invalidate_zap_all_pages(kvm);
7349 }
7350 
7351 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7352 {
7353 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7354 		kvm_x86_ops->check_nested_events(vcpu, false);
7355 
7356 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7357 		!vcpu->arch.apf.halted)
7358 		|| !list_empty_careful(&vcpu->async_pf.done)
7359 		|| kvm_apic_has_events(vcpu)
7360 		|| vcpu->arch.pv.pv_unhalted
7361 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7362 		(kvm_arch_interrupt_allowed(vcpu) &&
7363 		 kvm_cpu_has_interrupt(vcpu));
7364 }
7365 
7366 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7367 {
7368 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7369 }
7370 
7371 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7372 {
7373 	return kvm_x86_ops->interrupt_allowed(vcpu);
7374 }
7375 
7376 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7377 {
7378 	unsigned long current_rip = kvm_rip_read(vcpu) +
7379 		get_segment_base(vcpu, VCPU_SREG_CS);
7380 
7381 	return current_rip == linear_rip;
7382 }
7383 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7384 
7385 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7386 {
7387 	unsigned long rflags;
7388 
7389 	rflags = kvm_x86_ops->get_rflags(vcpu);
7390 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7391 		rflags &= ~X86_EFLAGS_TF;
7392 	return rflags;
7393 }
7394 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7395 
7396 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7397 {
7398 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7399 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7400 		rflags |= X86_EFLAGS_TF;
7401 	kvm_x86_ops->set_rflags(vcpu, rflags);
7402 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7403 }
7404 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7405 
7406 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7407 {
7408 	int r;
7409 
7410 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7411 	      work->wakeup_all)
7412 		return;
7413 
7414 	r = kvm_mmu_reload(vcpu);
7415 	if (unlikely(r))
7416 		return;
7417 
7418 	if (!vcpu->arch.mmu.direct_map &&
7419 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7420 		return;
7421 
7422 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7423 }
7424 
7425 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7426 {
7427 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7428 }
7429 
7430 static inline u32 kvm_async_pf_next_probe(u32 key)
7431 {
7432 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7433 }
7434 
7435 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7436 {
7437 	u32 key = kvm_async_pf_hash_fn(gfn);
7438 
7439 	while (vcpu->arch.apf.gfns[key] != ~0)
7440 		key = kvm_async_pf_next_probe(key);
7441 
7442 	vcpu->arch.apf.gfns[key] = gfn;
7443 }
7444 
7445 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7446 {
7447 	int i;
7448 	u32 key = kvm_async_pf_hash_fn(gfn);
7449 
7450 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7451 		     (vcpu->arch.apf.gfns[key] != gfn &&
7452 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7453 		key = kvm_async_pf_next_probe(key);
7454 
7455 	return key;
7456 }
7457 
7458 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7459 {
7460 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7461 }
7462 
7463 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7464 {
7465 	u32 i, j, k;
7466 
7467 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7468 	while (true) {
7469 		vcpu->arch.apf.gfns[i] = ~0;
7470 		do {
7471 			j = kvm_async_pf_next_probe(j);
7472 			if (vcpu->arch.apf.gfns[j] == ~0)
7473 				return;
7474 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7475 			/*
7476 			 * k lies cyclically in ]i,j]
7477 			 * |    i.k.j |
7478 			 * |....j i.k.| or  |.k..j i...|
7479 			 */
7480 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7481 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7482 		i = j;
7483 	}
7484 }
7485 
7486 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7487 {
7488 
7489 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7490 				      sizeof(val));
7491 }
7492 
7493 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7494 				     struct kvm_async_pf *work)
7495 {
7496 	struct x86_exception fault;
7497 
7498 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7499 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7500 
7501 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7502 	    (vcpu->arch.apf.send_user_only &&
7503 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7504 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7505 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7506 		fault.vector = PF_VECTOR;
7507 		fault.error_code_valid = true;
7508 		fault.error_code = 0;
7509 		fault.nested_page_fault = false;
7510 		fault.address = work->arch.token;
7511 		kvm_inject_page_fault(vcpu, &fault);
7512 	}
7513 }
7514 
7515 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7516 				 struct kvm_async_pf *work)
7517 {
7518 	struct x86_exception fault;
7519 
7520 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7521 	if (work->wakeup_all)
7522 		work->arch.token = ~0; /* broadcast wakeup */
7523 	else
7524 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7525 
7526 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7527 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7528 		fault.vector = PF_VECTOR;
7529 		fault.error_code_valid = true;
7530 		fault.error_code = 0;
7531 		fault.nested_page_fault = false;
7532 		fault.address = work->arch.token;
7533 		kvm_inject_page_fault(vcpu, &fault);
7534 	}
7535 	vcpu->arch.apf.halted = false;
7536 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7537 }
7538 
7539 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7540 {
7541 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7542 		return true;
7543 	else
7544 		return !kvm_event_needs_reinjection(vcpu) &&
7545 			kvm_x86_ops->interrupt_allowed(vcpu);
7546 }
7547 
7548 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7549 {
7550 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7551 }
7552 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7553 
7554 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7555 {
7556 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7557 }
7558 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7559 
7560 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7561 {
7562 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7563 }
7564 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7565 
7566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7579