1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <linux/timekeeper_internal.h> 50 #include <linux/pvclock_gtod.h> 51 #include <trace/events/kvm.h> 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 56 #include <asm/debugreg.h> 57 #include <asm/msr.h> 58 #include <asm/desc.h> 59 #include <asm/mtrr.h> 60 #include <asm/mce.h> 61 #include <asm/i387.h> 62 #include <asm/fpu-internal.h> /* Ugh! */ 63 #include <asm/xcr.h> 64 #include <asm/pvclock.h> 65 #include <asm/div64.h> 66 67 #define MAX_IO_MSRS 256 68 #define KVM_MAX_MCE_BANKS 32 69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 70 71 #define emul_to_vcpu(ctxt) \ 72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 73 74 /* EFER defaults: 75 * - enable syscall per default because its emulated by KVM 76 * - enable LME and LMA per default on 64 bit KVM 77 */ 78 #ifdef CONFIG_X86_64 79 static 80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 81 #else 82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 83 #endif 84 85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 87 88 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 89 static void process_nmi(struct kvm_vcpu *vcpu); 90 91 struct kvm_x86_ops *kvm_x86_ops; 92 EXPORT_SYMBOL_GPL(kvm_x86_ops); 93 94 static bool ignore_msrs = 0; 95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 96 97 unsigned int min_timer_period_us = 500; 98 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 99 100 bool kvm_has_tsc_control; 101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 102 u32 kvm_max_guest_tsc_khz; 103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 104 105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 106 static u32 tsc_tolerance_ppm = 250; 107 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 108 109 static bool backwards_tsc_observed = false; 110 111 #define KVM_NR_SHARED_MSRS 16 112 113 struct kvm_shared_msrs_global { 114 int nr; 115 u32 msrs[KVM_NR_SHARED_MSRS]; 116 }; 117 118 struct kvm_shared_msrs { 119 struct user_return_notifier urn; 120 bool registered; 121 struct kvm_shared_msr_values { 122 u64 host; 123 u64 curr; 124 } values[KVM_NR_SHARED_MSRS]; 125 }; 126 127 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 128 static struct kvm_shared_msrs __percpu *shared_msrs; 129 130 struct kvm_stats_debugfs_item debugfs_entries[] = { 131 { "pf_fixed", VCPU_STAT(pf_fixed) }, 132 { "pf_guest", VCPU_STAT(pf_guest) }, 133 { "tlb_flush", VCPU_STAT(tlb_flush) }, 134 { "invlpg", VCPU_STAT(invlpg) }, 135 { "exits", VCPU_STAT(exits) }, 136 { "io_exits", VCPU_STAT(io_exits) }, 137 { "mmio_exits", VCPU_STAT(mmio_exits) }, 138 { "signal_exits", VCPU_STAT(signal_exits) }, 139 { "irq_window", VCPU_STAT(irq_window_exits) }, 140 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 141 { "halt_exits", VCPU_STAT(halt_exits) }, 142 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 143 { "hypercalls", VCPU_STAT(hypercalls) }, 144 { "request_irq", VCPU_STAT(request_irq_exits) }, 145 { "irq_exits", VCPU_STAT(irq_exits) }, 146 { "host_state_reload", VCPU_STAT(host_state_reload) }, 147 { "efer_reload", VCPU_STAT(efer_reload) }, 148 { "fpu_reload", VCPU_STAT(fpu_reload) }, 149 { "insn_emulation", VCPU_STAT(insn_emulation) }, 150 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 151 { "irq_injections", VCPU_STAT(irq_injections) }, 152 { "nmi_injections", VCPU_STAT(nmi_injections) }, 153 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 154 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 155 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 156 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 157 { "mmu_flooded", VM_STAT(mmu_flooded) }, 158 { "mmu_recycled", VM_STAT(mmu_recycled) }, 159 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 160 { "mmu_unsync", VM_STAT(mmu_unsync) }, 161 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 162 { "largepages", VM_STAT(lpages) }, 163 { NULL } 164 }; 165 166 u64 __read_mostly host_xcr0; 167 168 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 169 170 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 171 { 172 int i; 173 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 174 vcpu->arch.apf.gfns[i] = ~0; 175 } 176 177 static void kvm_on_user_return(struct user_return_notifier *urn) 178 { 179 unsigned slot; 180 struct kvm_shared_msrs *locals 181 = container_of(urn, struct kvm_shared_msrs, urn); 182 struct kvm_shared_msr_values *values; 183 184 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 185 values = &locals->values[slot]; 186 if (values->host != values->curr) { 187 wrmsrl(shared_msrs_global.msrs[slot], values->host); 188 values->curr = values->host; 189 } 190 } 191 locals->registered = false; 192 user_return_notifier_unregister(urn); 193 } 194 195 static void shared_msr_update(unsigned slot, u32 msr) 196 { 197 u64 value; 198 unsigned int cpu = smp_processor_id(); 199 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 200 201 /* only read, and nobody should modify it at this time, 202 * so don't need lock */ 203 if (slot >= shared_msrs_global.nr) { 204 printk(KERN_ERR "kvm: invalid MSR slot!"); 205 return; 206 } 207 rdmsrl_safe(msr, &value); 208 smsr->values[slot].host = value; 209 smsr->values[slot].curr = value; 210 } 211 212 void kvm_define_shared_msr(unsigned slot, u32 msr) 213 { 214 if (slot >= shared_msrs_global.nr) 215 shared_msrs_global.nr = slot + 1; 216 shared_msrs_global.msrs[slot] = msr; 217 /* we need ensured the shared_msr_global have been updated */ 218 smp_wmb(); 219 } 220 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 221 222 static void kvm_shared_msr_cpu_online(void) 223 { 224 unsigned i; 225 226 for (i = 0; i < shared_msrs_global.nr; ++i) 227 shared_msr_update(i, shared_msrs_global.msrs[i]); 228 } 229 230 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 231 { 232 unsigned int cpu = smp_processor_id(); 233 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 234 235 if (((value ^ smsr->values[slot].curr) & mask) == 0) 236 return; 237 smsr->values[slot].curr = value; 238 wrmsrl(shared_msrs_global.msrs[slot], value); 239 if (!smsr->registered) { 240 smsr->urn.on_user_return = kvm_on_user_return; 241 user_return_notifier_register(&smsr->urn); 242 smsr->registered = true; 243 } 244 } 245 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 246 247 static void drop_user_return_notifiers(void *ignore) 248 { 249 unsigned int cpu = smp_processor_id(); 250 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 251 252 if (smsr->registered) 253 kvm_on_user_return(&smsr->urn); 254 } 255 256 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 257 { 258 return vcpu->arch.apic_base; 259 } 260 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 261 262 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 263 { 264 u64 old_state = vcpu->arch.apic_base & 265 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 266 u64 new_state = msr_info->data & 267 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 268 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 269 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 270 271 if (!msr_info->host_initiated && 272 ((msr_info->data & reserved_bits) != 0 || 273 new_state == X2APIC_ENABLE || 274 (new_state == MSR_IA32_APICBASE_ENABLE && 275 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 276 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 277 old_state == 0))) 278 return 1; 279 280 kvm_lapic_set_base(vcpu, msr_info->data); 281 return 0; 282 } 283 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 284 285 asmlinkage __visible void kvm_spurious_fault(void) 286 { 287 /* Fault while not rebooting. We want the trace. */ 288 BUG(); 289 } 290 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 291 292 #define EXCPT_BENIGN 0 293 #define EXCPT_CONTRIBUTORY 1 294 #define EXCPT_PF 2 295 296 static int exception_class(int vector) 297 { 298 switch (vector) { 299 case PF_VECTOR: 300 return EXCPT_PF; 301 case DE_VECTOR: 302 case TS_VECTOR: 303 case NP_VECTOR: 304 case SS_VECTOR: 305 case GP_VECTOR: 306 return EXCPT_CONTRIBUTORY; 307 default: 308 break; 309 } 310 return EXCPT_BENIGN; 311 } 312 313 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 314 unsigned nr, bool has_error, u32 error_code, 315 bool reinject) 316 { 317 u32 prev_nr; 318 int class1, class2; 319 320 kvm_make_request(KVM_REQ_EVENT, vcpu); 321 322 if (!vcpu->arch.exception.pending) { 323 queue: 324 vcpu->arch.exception.pending = true; 325 vcpu->arch.exception.has_error_code = has_error; 326 vcpu->arch.exception.nr = nr; 327 vcpu->arch.exception.error_code = error_code; 328 vcpu->arch.exception.reinject = reinject; 329 return; 330 } 331 332 /* to check exception */ 333 prev_nr = vcpu->arch.exception.nr; 334 if (prev_nr == DF_VECTOR) { 335 /* triple fault -> shutdown */ 336 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 337 return; 338 } 339 class1 = exception_class(prev_nr); 340 class2 = exception_class(nr); 341 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 342 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 343 /* generate double fault per SDM Table 5-5 */ 344 vcpu->arch.exception.pending = true; 345 vcpu->arch.exception.has_error_code = true; 346 vcpu->arch.exception.nr = DF_VECTOR; 347 vcpu->arch.exception.error_code = 0; 348 } else 349 /* replace previous exception with a new one in a hope 350 that instruction re-execution will regenerate lost 351 exception */ 352 goto queue; 353 } 354 355 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 356 { 357 kvm_multiple_exception(vcpu, nr, false, 0, false); 358 } 359 EXPORT_SYMBOL_GPL(kvm_queue_exception); 360 361 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 362 { 363 kvm_multiple_exception(vcpu, nr, false, 0, true); 364 } 365 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 366 367 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 368 { 369 if (err) 370 kvm_inject_gp(vcpu, 0); 371 else 372 kvm_x86_ops->skip_emulated_instruction(vcpu); 373 } 374 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 375 376 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 377 { 378 ++vcpu->stat.pf_guest; 379 vcpu->arch.cr2 = fault->address; 380 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 381 } 382 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 383 384 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 385 { 386 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 387 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 388 else 389 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 390 } 391 392 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 393 { 394 atomic_inc(&vcpu->arch.nmi_queued); 395 kvm_make_request(KVM_REQ_NMI, vcpu); 396 } 397 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 398 399 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 400 { 401 kvm_multiple_exception(vcpu, nr, true, error_code, false); 402 } 403 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 404 405 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 406 { 407 kvm_multiple_exception(vcpu, nr, true, error_code, true); 408 } 409 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 410 411 /* 412 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 413 * a #GP and return false. 414 */ 415 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 416 { 417 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 418 return true; 419 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 420 return false; 421 } 422 EXPORT_SYMBOL_GPL(kvm_require_cpl); 423 424 /* 425 * This function will be used to read from the physical memory of the currently 426 * running guest. The difference to kvm_read_guest_page is that this function 427 * can read from guest physical or from the guest's guest physical memory. 428 */ 429 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 430 gfn_t ngfn, void *data, int offset, int len, 431 u32 access) 432 { 433 gfn_t real_gfn; 434 gpa_t ngpa; 435 436 ngpa = gfn_to_gpa(ngfn); 437 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 438 if (real_gfn == UNMAPPED_GVA) 439 return -EFAULT; 440 441 real_gfn = gpa_to_gfn(real_gfn); 442 443 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 444 } 445 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 446 447 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 448 void *data, int offset, int len, u32 access) 449 { 450 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 451 data, offset, len, access); 452 } 453 454 /* 455 * Load the pae pdptrs. Return true is they are all valid. 456 */ 457 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 458 { 459 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 460 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 461 int i; 462 int ret; 463 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 464 465 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 466 offset * sizeof(u64), sizeof(pdpte), 467 PFERR_USER_MASK|PFERR_WRITE_MASK); 468 if (ret < 0) { 469 ret = 0; 470 goto out; 471 } 472 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 473 if (is_present_gpte(pdpte[i]) && 474 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 475 ret = 0; 476 goto out; 477 } 478 } 479 ret = 1; 480 481 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 482 __set_bit(VCPU_EXREG_PDPTR, 483 (unsigned long *)&vcpu->arch.regs_avail); 484 __set_bit(VCPU_EXREG_PDPTR, 485 (unsigned long *)&vcpu->arch.regs_dirty); 486 out: 487 488 return ret; 489 } 490 EXPORT_SYMBOL_GPL(load_pdptrs); 491 492 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 493 { 494 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 495 bool changed = true; 496 int offset; 497 gfn_t gfn; 498 int r; 499 500 if (is_long_mode(vcpu) || !is_pae(vcpu)) 501 return false; 502 503 if (!test_bit(VCPU_EXREG_PDPTR, 504 (unsigned long *)&vcpu->arch.regs_avail)) 505 return true; 506 507 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 508 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 509 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 510 PFERR_USER_MASK | PFERR_WRITE_MASK); 511 if (r < 0) 512 goto out; 513 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 514 out: 515 516 return changed; 517 } 518 519 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 520 { 521 unsigned long old_cr0 = kvm_read_cr0(vcpu); 522 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 523 X86_CR0_CD | X86_CR0_NW; 524 525 cr0 |= X86_CR0_ET; 526 527 #ifdef CONFIG_X86_64 528 if (cr0 & 0xffffffff00000000UL) 529 return 1; 530 #endif 531 532 cr0 &= ~CR0_RESERVED_BITS; 533 534 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 535 return 1; 536 537 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 538 return 1; 539 540 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 541 #ifdef CONFIG_X86_64 542 if ((vcpu->arch.efer & EFER_LME)) { 543 int cs_db, cs_l; 544 545 if (!is_pae(vcpu)) 546 return 1; 547 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 548 if (cs_l) 549 return 1; 550 } else 551 #endif 552 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 553 kvm_read_cr3(vcpu))) 554 return 1; 555 } 556 557 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 558 return 1; 559 560 kvm_x86_ops->set_cr0(vcpu, cr0); 561 562 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 563 kvm_clear_async_pf_completion_queue(vcpu); 564 kvm_async_pf_hash_reset(vcpu); 565 } 566 567 if ((cr0 ^ old_cr0) & update_bits) 568 kvm_mmu_reset_context(vcpu); 569 return 0; 570 } 571 EXPORT_SYMBOL_GPL(kvm_set_cr0); 572 573 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 574 { 575 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 576 } 577 EXPORT_SYMBOL_GPL(kvm_lmsw); 578 579 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 580 { 581 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 582 !vcpu->guest_xcr0_loaded) { 583 /* kvm_set_xcr() also depends on this */ 584 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 585 vcpu->guest_xcr0_loaded = 1; 586 } 587 } 588 589 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 590 { 591 if (vcpu->guest_xcr0_loaded) { 592 if (vcpu->arch.xcr0 != host_xcr0) 593 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 594 vcpu->guest_xcr0_loaded = 0; 595 } 596 } 597 598 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 599 { 600 u64 xcr0 = xcr; 601 u64 old_xcr0 = vcpu->arch.xcr0; 602 u64 valid_bits; 603 604 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 605 if (index != XCR_XFEATURE_ENABLED_MASK) 606 return 1; 607 if (!(xcr0 & XSTATE_FP)) 608 return 1; 609 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 610 return 1; 611 612 /* 613 * Do not allow the guest to set bits that we do not support 614 * saving. However, xcr0 bit 0 is always set, even if the 615 * emulated CPU does not support XSAVE (see fx_init). 616 */ 617 valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP; 618 if (xcr0 & ~valid_bits) 619 return 1; 620 621 if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR))) 622 return 1; 623 624 kvm_put_guest_xcr0(vcpu); 625 vcpu->arch.xcr0 = xcr0; 626 627 if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK) 628 kvm_update_cpuid(vcpu); 629 return 0; 630 } 631 632 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 633 { 634 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 635 __kvm_set_xcr(vcpu, index, xcr)) { 636 kvm_inject_gp(vcpu, 0); 637 return 1; 638 } 639 return 0; 640 } 641 EXPORT_SYMBOL_GPL(kvm_set_xcr); 642 643 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 644 { 645 unsigned long old_cr4 = kvm_read_cr4(vcpu); 646 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 647 X86_CR4_PAE | X86_CR4_SMEP; 648 if (cr4 & CR4_RESERVED_BITS) 649 return 1; 650 651 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 652 return 1; 653 654 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 655 return 1; 656 657 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) 658 return 1; 659 660 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 661 return 1; 662 663 if (is_long_mode(vcpu)) { 664 if (!(cr4 & X86_CR4_PAE)) 665 return 1; 666 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 667 && ((cr4 ^ old_cr4) & pdptr_bits) 668 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 669 kvm_read_cr3(vcpu))) 670 return 1; 671 672 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 673 if (!guest_cpuid_has_pcid(vcpu)) 674 return 1; 675 676 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 677 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 678 return 1; 679 } 680 681 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 682 return 1; 683 684 if (((cr4 ^ old_cr4) & pdptr_bits) || 685 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 686 kvm_mmu_reset_context(vcpu); 687 688 if ((cr4 ^ old_cr4) & X86_CR4_SMAP) 689 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false); 690 691 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 692 kvm_update_cpuid(vcpu); 693 694 return 0; 695 } 696 EXPORT_SYMBOL_GPL(kvm_set_cr4); 697 698 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 699 { 700 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 701 kvm_mmu_sync_roots(vcpu); 702 kvm_mmu_flush_tlb(vcpu); 703 return 0; 704 } 705 706 if (is_long_mode(vcpu)) { 707 if (cr3 & CR3_L_MODE_RESERVED_BITS) 708 return 1; 709 } else if (is_pae(vcpu) && is_paging(vcpu) && 710 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 711 return 1; 712 713 vcpu->arch.cr3 = cr3; 714 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 715 kvm_mmu_new_cr3(vcpu); 716 return 0; 717 } 718 EXPORT_SYMBOL_GPL(kvm_set_cr3); 719 720 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 721 { 722 if (cr8 & CR8_RESERVED_BITS) 723 return 1; 724 if (irqchip_in_kernel(vcpu->kvm)) 725 kvm_lapic_set_tpr(vcpu, cr8); 726 else 727 vcpu->arch.cr8 = cr8; 728 return 0; 729 } 730 EXPORT_SYMBOL_GPL(kvm_set_cr8); 731 732 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 733 { 734 if (irqchip_in_kernel(vcpu->kvm)) 735 return kvm_lapic_get_cr8(vcpu); 736 else 737 return vcpu->arch.cr8; 738 } 739 EXPORT_SYMBOL_GPL(kvm_get_cr8); 740 741 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 742 { 743 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 744 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 745 } 746 747 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 748 { 749 unsigned long dr7; 750 751 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 752 dr7 = vcpu->arch.guest_debug_dr7; 753 else 754 dr7 = vcpu->arch.dr7; 755 kvm_x86_ops->set_dr7(vcpu, dr7); 756 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 757 if (dr7 & DR7_BP_EN_MASK) 758 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 759 } 760 761 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 762 { 763 switch (dr) { 764 case 0 ... 3: 765 vcpu->arch.db[dr] = val; 766 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 767 vcpu->arch.eff_db[dr] = val; 768 break; 769 case 4: 770 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 771 return 1; /* #UD */ 772 /* fall through */ 773 case 6: 774 if (val & 0xffffffff00000000ULL) 775 return -1; /* #GP */ 776 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 777 kvm_update_dr6(vcpu); 778 break; 779 case 5: 780 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 781 return 1; /* #UD */ 782 /* fall through */ 783 default: /* 7 */ 784 if (val & 0xffffffff00000000ULL) 785 return -1; /* #GP */ 786 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 787 kvm_update_dr7(vcpu); 788 break; 789 } 790 791 return 0; 792 } 793 794 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 795 { 796 int res; 797 798 res = __kvm_set_dr(vcpu, dr, val); 799 if (res > 0) 800 kvm_queue_exception(vcpu, UD_VECTOR); 801 else if (res < 0) 802 kvm_inject_gp(vcpu, 0); 803 804 return res; 805 } 806 EXPORT_SYMBOL_GPL(kvm_set_dr); 807 808 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 809 { 810 switch (dr) { 811 case 0 ... 3: 812 *val = vcpu->arch.db[dr]; 813 break; 814 case 4: 815 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 816 return 1; 817 /* fall through */ 818 case 6: 819 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 820 *val = vcpu->arch.dr6; 821 else 822 *val = kvm_x86_ops->get_dr6(vcpu); 823 break; 824 case 5: 825 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 826 return 1; 827 /* fall through */ 828 default: /* 7 */ 829 *val = vcpu->arch.dr7; 830 break; 831 } 832 833 return 0; 834 } 835 836 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 837 { 838 if (_kvm_get_dr(vcpu, dr, val)) { 839 kvm_queue_exception(vcpu, UD_VECTOR); 840 return 1; 841 } 842 return 0; 843 } 844 EXPORT_SYMBOL_GPL(kvm_get_dr); 845 846 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 847 { 848 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 849 u64 data; 850 int err; 851 852 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 853 if (err) 854 return err; 855 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 856 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 857 return err; 858 } 859 EXPORT_SYMBOL_GPL(kvm_rdpmc); 860 861 /* 862 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 863 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 864 * 865 * This list is modified at module load time to reflect the 866 * capabilities of the host cpu. This capabilities test skips MSRs that are 867 * kvm-specific. Those are put in the beginning of the list. 868 */ 869 870 #define KVM_SAVE_MSRS_BEGIN 12 871 static u32 msrs_to_save[] = { 872 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 873 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 874 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 875 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 876 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 877 MSR_KVM_PV_EOI_EN, 878 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 879 MSR_STAR, 880 #ifdef CONFIG_X86_64 881 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 882 #endif 883 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 884 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS 885 }; 886 887 static unsigned num_msrs_to_save; 888 889 static const u32 emulated_msrs[] = { 890 MSR_IA32_TSC_ADJUST, 891 MSR_IA32_TSCDEADLINE, 892 MSR_IA32_MISC_ENABLE, 893 MSR_IA32_MCG_STATUS, 894 MSR_IA32_MCG_CTL, 895 }; 896 897 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 898 { 899 if (efer & efer_reserved_bits) 900 return false; 901 902 if (efer & EFER_FFXSR) { 903 struct kvm_cpuid_entry2 *feat; 904 905 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 906 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 907 return false; 908 } 909 910 if (efer & EFER_SVME) { 911 struct kvm_cpuid_entry2 *feat; 912 913 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 914 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 915 return false; 916 } 917 918 return true; 919 } 920 EXPORT_SYMBOL_GPL(kvm_valid_efer); 921 922 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 923 { 924 u64 old_efer = vcpu->arch.efer; 925 926 if (!kvm_valid_efer(vcpu, efer)) 927 return 1; 928 929 if (is_paging(vcpu) 930 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 931 return 1; 932 933 efer &= ~EFER_LMA; 934 efer |= vcpu->arch.efer & EFER_LMA; 935 936 kvm_x86_ops->set_efer(vcpu, efer); 937 938 /* Update reserved bits */ 939 if ((efer ^ old_efer) & EFER_NX) 940 kvm_mmu_reset_context(vcpu); 941 942 return 0; 943 } 944 945 void kvm_enable_efer_bits(u64 mask) 946 { 947 efer_reserved_bits &= ~mask; 948 } 949 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 950 951 952 /* 953 * Writes msr value into into the appropriate "register". 954 * Returns 0 on success, non-0 otherwise. 955 * Assumes vcpu_load() was already called. 956 */ 957 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 958 { 959 return kvm_x86_ops->set_msr(vcpu, msr); 960 } 961 962 /* 963 * Adapt set_msr() to msr_io()'s calling convention 964 */ 965 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 966 { 967 struct msr_data msr; 968 969 msr.data = *data; 970 msr.index = index; 971 msr.host_initiated = true; 972 return kvm_set_msr(vcpu, &msr); 973 } 974 975 #ifdef CONFIG_X86_64 976 struct pvclock_gtod_data { 977 seqcount_t seq; 978 979 struct { /* extract of a clocksource struct */ 980 int vclock_mode; 981 cycle_t cycle_last; 982 cycle_t mask; 983 u32 mult; 984 u32 shift; 985 } clock; 986 987 /* open coded 'struct timespec' */ 988 u64 monotonic_time_snsec; 989 time_t monotonic_time_sec; 990 }; 991 992 static struct pvclock_gtod_data pvclock_gtod_data; 993 994 static void update_pvclock_gtod(struct timekeeper *tk) 995 { 996 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 997 998 write_seqcount_begin(&vdata->seq); 999 1000 /* copy pvclock gtod data */ 1001 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode; 1002 vdata->clock.cycle_last = tk->clock->cycle_last; 1003 vdata->clock.mask = tk->clock->mask; 1004 vdata->clock.mult = tk->mult; 1005 vdata->clock.shift = tk->shift; 1006 1007 vdata->monotonic_time_sec = tk->xtime_sec 1008 + tk->wall_to_monotonic.tv_sec; 1009 vdata->monotonic_time_snsec = tk->xtime_nsec 1010 + (tk->wall_to_monotonic.tv_nsec 1011 << tk->shift); 1012 while (vdata->monotonic_time_snsec >= 1013 (((u64)NSEC_PER_SEC) << tk->shift)) { 1014 vdata->monotonic_time_snsec -= 1015 ((u64)NSEC_PER_SEC) << tk->shift; 1016 vdata->monotonic_time_sec++; 1017 } 1018 1019 write_seqcount_end(&vdata->seq); 1020 } 1021 #endif 1022 1023 1024 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1025 { 1026 int version; 1027 int r; 1028 struct pvclock_wall_clock wc; 1029 struct timespec boot; 1030 1031 if (!wall_clock) 1032 return; 1033 1034 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1035 if (r) 1036 return; 1037 1038 if (version & 1) 1039 ++version; /* first time write, random junk */ 1040 1041 ++version; 1042 1043 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1044 1045 /* 1046 * The guest calculates current wall clock time by adding 1047 * system time (updated by kvm_guest_time_update below) to the 1048 * wall clock specified here. guest system time equals host 1049 * system time for us, thus we must fill in host boot time here. 1050 */ 1051 getboottime(&boot); 1052 1053 if (kvm->arch.kvmclock_offset) { 1054 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); 1055 boot = timespec_sub(boot, ts); 1056 } 1057 wc.sec = boot.tv_sec; 1058 wc.nsec = boot.tv_nsec; 1059 wc.version = version; 1060 1061 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1062 1063 version++; 1064 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1065 } 1066 1067 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1068 { 1069 uint32_t quotient, remainder; 1070 1071 /* Don't try to replace with do_div(), this one calculates 1072 * "(dividend << 32) / divisor" */ 1073 __asm__ ( "divl %4" 1074 : "=a" (quotient), "=d" (remainder) 1075 : "0" (0), "1" (dividend), "r" (divisor) ); 1076 return quotient; 1077 } 1078 1079 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 1080 s8 *pshift, u32 *pmultiplier) 1081 { 1082 uint64_t scaled64; 1083 int32_t shift = 0; 1084 uint64_t tps64; 1085 uint32_t tps32; 1086 1087 tps64 = base_khz * 1000LL; 1088 scaled64 = scaled_khz * 1000LL; 1089 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1090 tps64 >>= 1; 1091 shift--; 1092 } 1093 1094 tps32 = (uint32_t)tps64; 1095 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1096 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1097 scaled64 >>= 1; 1098 else 1099 tps32 <<= 1; 1100 shift++; 1101 } 1102 1103 *pshift = shift; 1104 *pmultiplier = div_frac(scaled64, tps32); 1105 1106 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 1107 __func__, base_khz, scaled_khz, shift, *pmultiplier); 1108 } 1109 1110 static inline u64 get_kernel_ns(void) 1111 { 1112 struct timespec ts; 1113 1114 ktime_get_ts(&ts); 1115 monotonic_to_bootbased(&ts); 1116 return timespec_to_ns(&ts); 1117 } 1118 1119 #ifdef CONFIG_X86_64 1120 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1121 #endif 1122 1123 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1124 unsigned long max_tsc_khz; 1125 1126 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 1127 { 1128 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 1129 vcpu->arch.virtual_tsc_shift); 1130 } 1131 1132 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1133 { 1134 u64 v = (u64)khz * (1000000 + ppm); 1135 do_div(v, 1000000); 1136 return v; 1137 } 1138 1139 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1140 { 1141 u32 thresh_lo, thresh_hi; 1142 int use_scaling = 0; 1143 1144 /* tsc_khz can be zero if TSC calibration fails */ 1145 if (this_tsc_khz == 0) 1146 return; 1147 1148 /* Compute a scale to convert nanoseconds in TSC cycles */ 1149 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1150 &vcpu->arch.virtual_tsc_shift, 1151 &vcpu->arch.virtual_tsc_mult); 1152 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1153 1154 /* 1155 * Compute the variation in TSC rate which is acceptable 1156 * within the range of tolerance and decide if the 1157 * rate being applied is within that bounds of the hardware 1158 * rate. If so, no scaling or compensation need be done. 1159 */ 1160 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1161 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1162 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1163 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1164 use_scaling = 1; 1165 } 1166 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1167 } 1168 1169 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1170 { 1171 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1172 vcpu->arch.virtual_tsc_mult, 1173 vcpu->arch.virtual_tsc_shift); 1174 tsc += vcpu->arch.this_tsc_write; 1175 return tsc; 1176 } 1177 1178 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1179 { 1180 #ifdef CONFIG_X86_64 1181 bool vcpus_matched; 1182 bool do_request = false; 1183 struct kvm_arch *ka = &vcpu->kvm->arch; 1184 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1185 1186 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1187 atomic_read(&vcpu->kvm->online_vcpus)); 1188 1189 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) 1190 if (!ka->use_master_clock) 1191 do_request = 1; 1192 1193 if (!vcpus_matched && ka->use_master_clock) 1194 do_request = 1; 1195 1196 if (do_request) 1197 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1198 1199 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1200 atomic_read(&vcpu->kvm->online_vcpus), 1201 ka->use_master_clock, gtod->clock.vclock_mode); 1202 #endif 1203 } 1204 1205 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1206 { 1207 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); 1208 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1209 } 1210 1211 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1212 { 1213 struct kvm *kvm = vcpu->kvm; 1214 u64 offset, ns, elapsed; 1215 unsigned long flags; 1216 s64 usdiff; 1217 bool matched; 1218 u64 data = msr->data; 1219 1220 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1221 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1222 ns = get_kernel_ns(); 1223 elapsed = ns - kvm->arch.last_tsc_nsec; 1224 1225 if (vcpu->arch.virtual_tsc_khz) { 1226 int faulted = 0; 1227 1228 /* n.b - signed multiplication and division required */ 1229 usdiff = data - kvm->arch.last_tsc_write; 1230 #ifdef CONFIG_X86_64 1231 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1232 #else 1233 /* do_div() only does unsigned */ 1234 asm("1: idivl %[divisor]\n" 1235 "2: xor %%edx, %%edx\n" 1236 " movl $0, %[faulted]\n" 1237 "3:\n" 1238 ".section .fixup,\"ax\"\n" 1239 "4: movl $1, %[faulted]\n" 1240 " jmp 3b\n" 1241 ".previous\n" 1242 1243 _ASM_EXTABLE(1b, 4b) 1244 1245 : "=A"(usdiff), [faulted] "=r" (faulted) 1246 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz)); 1247 1248 #endif 1249 do_div(elapsed, 1000); 1250 usdiff -= elapsed; 1251 if (usdiff < 0) 1252 usdiff = -usdiff; 1253 1254 /* idivl overflow => difference is larger than USEC_PER_SEC */ 1255 if (faulted) 1256 usdiff = USEC_PER_SEC; 1257 } else 1258 usdiff = USEC_PER_SEC; /* disable TSC match window below */ 1259 1260 /* 1261 * Special case: TSC write with a small delta (1 second) of virtual 1262 * cycle time against real time is interpreted as an attempt to 1263 * synchronize the CPU. 1264 * 1265 * For a reliable TSC, we can match TSC offsets, and for an unstable 1266 * TSC, we add elapsed time in this computation. We could let the 1267 * compensation code attempt to catch up if we fall behind, but 1268 * it's better to try to match offsets from the beginning. 1269 */ 1270 if (usdiff < USEC_PER_SEC && 1271 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1272 if (!check_tsc_unstable()) { 1273 offset = kvm->arch.cur_tsc_offset; 1274 pr_debug("kvm: matched tsc offset for %llu\n", data); 1275 } else { 1276 u64 delta = nsec_to_cycles(vcpu, elapsed); 1277 data += delta; 1278 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1279 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1280 } 1281 matched = true; 1282 } else { 1283 /* 1284 * We split periods of matched TSC writes into generations. 1285 * For each generation, we track the original measured 1286 * nanosecond time, offset, and write, so if TSCs are in 1287 * sync, we can match exact offset, and if not, we can match 1288 * exact software computation in compute_guest_tsc() 1289 * 1290 * These values are tracked in kvm->arch.cur_xxx variables. 1291 */ 1292 kvm->arch.cur_tsc_generation++; 1293 kvm->arch.cur_tsc_nsec = ns; 1294 kvm->arch.cur_tsc_write = data; 1295 kvm->arch.cur_tsc_offset = offset; 1296 matched = false; 1297 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1298 kvm->arch.cur_tsc_generation, data); 1299 } 1300 1301 /* 1302 * We also track th most recent recorded KHZ, write and time to 1303 * allow the matching interval to be extended at each write. 1304 */ 1305 kvm->arch.last_tsc_nsec = ns; 1306 kvm->arch.last_tsc_write = data; 1307 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1308 1309 vcpu->arch.last_guest_tsc = data; 1310 1311 /* Keep track of which generation this VCPU has synchronized to */ 1312 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1313 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1314 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1315 1316 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1317 update_ia32_tsc_adjust_msr(vcpu, offset); 1318 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1319 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1320 1321 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1322 if (matched) 1323 kvm->arch.nr_vcpus_matched_tsc++; 1324 else 1325 kvm->arch.nr_vcpus_matched_tsc = 0; 1326 1327 kvm_track_tsc_matching(vcpu); 1328 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1329 } 1330 1331 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1332 1333 #ifdef CONFIG_X86_64 1334 1335 static cycle_t read_tsc(void) 1336 { 1337 cycle_t ret; 1338 u64 last; 1339 1340 /* 1341 * Empirically, a fence (of type that depends on the CPU) 1342 * before rdtsc is enough to ensure that rdtsc is ordered 1343 * with respect to loads. The various CPU manuals are unclear 1344 * as to whether rdtsc can be reordered with later loads, 1345 * but no one has ever seen it happen. 1346 */ 1347 rdtsc_barrier(); 1348 ret = (cycle_t)vget_cycles(); 1349 1350 last = pvclock_gtod_data.clock.cycle_last; 1351 1352 if (likely(ret >= last)) 1353 return ret; 1354 1355 /* 1356 * GCC likes to generate cmov here, but this branch is extremely 1357 * predictable (it's just a funciton of time and the likely is 1358 * very likely) and there's a data dependence, so force GCC 1359 * to generate a branch instead. I don't barrier() because 1360 * we don't actually need a barrier, and if this function 1361 * ever gets inlined it will generate worse code. 1362 */ 1363 asm volatile (""); 1364 return last; 1365 } 1366 1367 static inline u64 vgettsc(cycle_t *cycle_now) 1368 { 1369 long v; 1370 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1371 1372 *cycle_now = read_tsc(); 1373 1374 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1375 return v * gtod->clock.mult; 1376 } 1377 1378 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) 1379 { 1380 unsigned long seq; 1381 u64 ns; 1382 int mode; 1383 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1384 1385 ts->tv_nsec = 0; 1386 do { 1387 seq = read_seqcount_begin(>od->seq); 1388 mode = gtod->clock.vclock_mode; 1389 ts->tv_sec = gtod->monotonic_time_sec; 1390 ns = gtod->monotonic_time_snsec; 1391 ns += vgettsc(cycle_now); 1392 ns >>= gtod->clock.shift; 1393 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1394 timespec_add_ns(ts, ns); 1395 1396 return mode; 1397 } 1398 1399 /* returns true if host is using tsc clocksource */ 1400 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) 1401 { 1402 struct timespec ts; 1403 1404 /* checked again under seqlock below */ 1405 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1406 return false; 1407 1408 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) 1409 return false; 1410 1411 monotonic_to_bootbased(&ts); 1412 *kernel_ns = timespec_to_ns(&ts); 1413 1414 return true; 1415 } 1416 #endif 1417 1418 /* 1419 * 1420 * Assuming a stable TSC across physical CPUS, and a stable TSC 1421 * across virtual CPUs, the following condition is possible. 1422 * Each numbered line represents an event visible to both 1423 * CPUs at the next numbered event. 1424 * 1425 * "timespecX" represents host monotonic time. "tscX" represents 1426 * RDTSC value. 1427 * 1428 * VCPU0 on CPU0 | VCPU1 on CPU1 1429 * 1430 * 1. read timespec0,tsc0 1431 * 2. | timespec1 = timespec0 + N 1432 * | tsc1 = tsc0 + M 1433 * 3. transition to guest | transition to guest 1434 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1435 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1436 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1437 * 1438 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1439 * 1440 * - ret0 < ret1 1441 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1442 * ... 1443 * - 0 < N - M => M < N 1444 * 1445 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1446 * always the case (the difference between two distinct xtime instances 1447 * might be smaller then the difference between corresponding TSC reads, 1448 * when updating guest vcpus pvclock areas). 1449 * 1450 * To avoid that problem, do not allow visibility of distinct 1451 * system_timestamp/tsc_timestamp values simultaneously: use a master 1452 * copy of host monotonic time values. Update that master copy 1453 * in lockstep. 1454 * 1455 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1456 * 1457 */ 1458 1459 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1460 { 1461 #ifdef CONFIG_X86_64 1462 struct kvm_arch *ka = &kvm->arch; 1463 int vclock_mode; 1464 bool host_tsc_clocksource, vcpus_matched; 1465 1466 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1467 atomic_read(&kvm->online_vcpus)); 1468 1469 /* 1470 * If the host uses TSC clock, then passthrough TSC as stable 1471 * to the guest. 1472 */ 1473 host_tsc_clocksource = kvm_get_time_and_clockread( 1474 &ka->master_kernel_ns, 1475 &ka->master_cycle_now); 1476 1477 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1478 && !backwards_tsc_observed; 1479 1480 if (ka->use_master_clock) 1481 atomic_set(&kvm_guest_has_master_clock, 1); 1482 1483 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1484 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1485 vcpus_matched); 1486 #endif 1487 } 1488 1489 static void kvm_gen_update_masterclock(struct kvm *kvm) 1490 { 1491 #ifdef CONFIG_X86_64 1492 int i; 1493 struct kvm_vcpu *vcpu; 1494 struct kvm_arch *ka = &kvm->arch; 1495 1496 spin_lock(&ka->pvclock_gtod_sync_lock); 1497 kvm_make_mclock_inprogress_request(kvm); 1498 /* no guest entries from this point */ 1499 pvclock_update_vm_gtod_copy(kvm); 1500 1501 kvm_for_each_vcpu(i, vcpu, kvm) 1502 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1503 1504 /* guest entries allowed */ 1505 kvm_for_each_vcpu(i, vcpu, kvm) 1506 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); 1507 1508 spin_unlock(&ka->pvclock_gtod_sync_lock); 1509 #endif 1510 } 1511 1512 static int kvm_guest_time_update(struct kvm_vcpu *v) 1513 { 1514 unsigned long flags, this_tsc_khz; 1515 struct kvm_vcpu_arch *vcpu = &v->arch; 1516 struct kvm_arch *ka = &v->kvm->arch; 1517 s64 kernel_ns; 1518 u64 tsc_timestamp, host_tsc; 1519 struct pvclock_vcpu_time_info guest_hv_clock; 1520 u8 pvclock_flags; 1521 bool use_master_clock; 1522 1523 kernel_ns = 0; 1524 host_tsc = 0; 1525 1526 /* 1527 * If the host uses TSC clock, then passthrough TSC as stable 1528 * to the guest. 1529 */ 1530 spin_lock(&ka->pvclock_gtod_sync_lock); 1531 use_master_clock = ka->use_master_clock; 1532 if (use_master_clock) { 1533 host_tsc = ka->master_cycle_now; 1534 kernel_ns = ka->master_kernel_ns; 1535 } 1536 spin_unlock(&ka->pvclock_gtod_sync_lock); 1537 1538 /* Keep irq disabled to prevent changes to the clock */ 1539 local_irq_save(flags); 1540 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1541 if (unlikely(this_tsc_khz == 0)) { 1542 local_irq_restore(flags); 1543 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1544 return 1; 1545 } 1546 if (!use_master_clock) { 1547 host_tsc = native_read_tsc(); 1548 kernel_ns = get_kernel_ns(); 1549 } 1550 1551 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); 1552 1553 /* 1554 * We may have to catch up the TSC to match elapsed wall clock 1555 * time for two reasons, even if kvmclock is used. 1556 * 1) CPU could have been running below the maximum TSC rate 1557 * 2) Broken TSC compensation resets the base at each VCPU 1558 * entry to avoid unknown leaps of TSC even when running 1559 * again on the same CPU. This may cause apparent elapsed 1560 * time to disappear, and the guest to stand still or run 1561 * very slowly. 1562 */ 1563 if (vcpu->tsc_catchup) { 1564 u64 tsc = compute_guest_tsc(v, kernel_ns); 1565 if (tsc > tsc_timestamp) { 1566 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1567 tsc_timestamp = tsc; 1568 } 1569 } 1570 1571 local_irq_restore(flags); 1572 1573 if (!vcpu->pv_time_enabled) 1574 return 0; 1575 1576 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1577 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1578 &vcpu->hv_clock.tsc_shift, 1579 &vcpu->hv_clock.tsc_to_system_mul); 1580 vcpu->hw_tsc_khz = this_tsc_khz; 1581 } 1582 1583 /* With all the info we got, fill in the values */ 1584 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1585 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1586 vcpu->last_guest_tsc = tsc_timestamp; 1587 1588 /* 1589 * The interface expects us to write an even number signaling that the 1590 * update is finished. Since the guest won't see the intermediate 1591 * state, we just increase by 2 at the end. 1592 */ 1593 vcpu->hv_clock.version += 2; 1594 1595 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1596 &guest_hv_clock, sizeof(guest_hv_clock)))) 1597 return 0; 1598 1599 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1600 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1601 1602 if (vcpu->pvclock_set_guest_stopped_request) { 1603 pvclock_flags |= PVCLOCK_GUEST_STOPPED; 1604 vcpu->pvclock_set_guest_stopped_request = false; 1605 } 1606 1607 /* If the host uses TSC clocksource, then it is stable */ 1608 if (use_master_clock) 1609 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1610 1611 vcpu->hv_clock.flags = pvclock_flags; 1612 1613 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1614 &vcpu->hv_clock, 1615 sizeof(vcpu->hv_clock)); 1616 return 0; 1617 } 1618 1619 /* 1620 * kvmclock updates which are isolated to a given vcpu, such as 1621 * vcpu->cpu migration, should not allow system_timestamp from 1622 * the rest of the vcpus to remain static. Otherwise ntp frequency 1623 * correction applies to one vcpu's system_timestamp but not 1624 * the others. 1625 * 1626 * So in those cases, request a kvmclock update for all vcpus. 1627 * We need to rate-limit these requests though, as they can 1628 * considerably slow guests that have a large number of vcpus. 1629 * The time for a remote vcpu to update its kvmclock is bound 1630 * by the delay we use to rate-limit the updates. 1631 */ 1632 1633 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1634 1635 static void kvmclock_update_fn(struct work_struct *work) 1636 { 1637 int i; 1638 struct delayed_work *dwork = to_delayed_work(work); 1639 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1640 kvmclock_update_work); 1641 struct kvm *kvm = container_of(ka, struct kvm, arch); 1642 struct kvm_vcpu *vcpu; 1643 1644 kvm_for_each_vcpu(i, vcpu, kvm) { 1645 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 1646 kvm_vcpu_kick(vcpu); 1647 } 1648 } 1649 1650 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1651 { 1652 struct kvm *kvm = v->kvm; 1653 1654 set_bit(KVM_REQ_CLOCK_UPDATE, &v->requests); 1655 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1656 KVMCLOCK_UPDATE_DELAY); 1657 } 1658 1659 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 1660 1661 static void kvmclock_sync_fn(struct work_struct *work) 1662 { 1663 struct delayed_work *dwork = to_delayed_work(work); 1664 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1665 kvmclock_sync_work); 1666 struct kvm *kvm = container_of(ka, struct kvm, arch); 1667 1668 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 1669 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 1670 KVMCLOCK_SYNC_PERIOD); 1671 } 1672 1673 static bool msr_mtrr_valid(unsigned msr) 1674 { 1675 switch (msr) { 1676 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1677 case MSR_MTRRfix64K_00000: 1678 case MSR_MTRRfix16K_80000: 1679 case MSR_MTRRfix16K_A0000: 1680 case MSR_MTRRfix4K_C0000: 1681 case MSR_MTRRfix4K_C8000: 1682 case MSR_MTRRfix4K_D0000: 1683 case MSR_MTRRfix4K_D8000: 1684 case MSR_MTRRfix4K_E0000: 1685 case MSR_MTRRfix4K_E8000: 1686 case MSR_MTRRfix4K_F0000: 1687 case MSR_MTRRfix4K_F8000: 1688 case MSR_MTRRdefType: 1689 case MSR_IA32_CR_PAT: 1690 return true; 1691 case 0x2f8: 1692 return true; 1693 } 1694 return false; 1695 } 1696 1697 static bool valid_pat_type(unsigned t) 1698 { 1699 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1700 } 1701 1702 static bool valid_mtrr_type(unsigned t) 1703 { 1704 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1705 } 1706 1707 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1708 { 1709 int i; 1710 1711 if (!msr_mtrr_valid(msr)) 1712 return false; 1713 1714 if (msr == MSR_IA32_CR_PAT) { 1715 for (i = 0; i < 8; i++) 1716 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1717 return false; 1718 return true; 1719 } else if (msr == MSR_MTRRdefType) { 1720 if (data & ~0xcff) 1721 return false; 1722 return valid_mtrr_type(data & 0xff); 1723 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1724 for (i = 0; i < 8 ; i++) 1725 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1726 return false; 1727 return true; 1728 } 1729 1730 /* variable MTRRs */ 1731 return valid_mtrr_type(data & 0xff); 1732 } 1733 1734 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1735 { 1736 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1737 1738 if (!mtrr_valid(vcpu, msr, data)) 1739 return 1; 1740 1741 if (msr == MSR_MTRRdefType) { 1742 vcpu->arch.mtrr_state.def_type = data; 1743 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1744 } else if (msr == MSR_MTRRfix64K_00000) 1745 p[0] = data; 1746 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1747 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1748 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1749 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1750 else if (msr == MSR_IA32_CR_PAT) 1751 vcpu->arch.pat = data; 1752 else { /* Variable MTRRs */ 1753 int idx, is_mtrr_mask; 1754 u64 *pt; 1755 1756 idx = (msr - 0x200) / 2; 1757 is_mtrr_mask = msr - 0x200 - 2 * idx; 1758 if (!is_mtrr_mask) 1759 pt = 1760 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1761 else 1762 pt = 1763 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1764 *pt = data; 1765 } 1766 1767 kvm_mmu_reset_context(vcpu); 1768 return 0; 1769 } 1770 1771 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1772 { 1773 u64 mcg_cap = vcpu->arch.mcg_cap; 1774 unsigned bank_num = mcg_cap & 0xff; 1775 1776 switch (msr) { 1777 case MSR_IA32_MCG_STATUS: 1778 vcpu->arch.mcg_status = data; 1779 break; 1780 case MSR_IA32_MCG_CTL: 1781 if (!(mcg_cap & MCG_CTL_P)) 1782 return 1; 1783 if (data != 0 && data != ~(u64)0) 1784 return -1; 1785 vcpu->arch.mcg_ctl = data; 1786 break; 1787 default: 1788 if (msr >= MSR_IA32_MC0_CTL && 1789 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1790 u32 offset = msr - MSR_IA32_MC0_CTL; 1791 /* only 0 or all 1s can be written to IA32_MCi_CTL 1792 * some Linux kernels though clear bit 10 in bank 4 to 1793 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1794 * this to avoid an uncatched #GP in the guest 1795 */ 1796 if ((offset & 0x3) == 0 && 1797 data != 0 && (data | (1 << 10)) != ~(u64)0) 1798 return -1; 1799 vcpu->arch.mce_banks[offset] = data; 1800 break; 1801 } 1802 return 1; 1803 } 1804 return 0; 1805 } 1806 1807 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1808 { 1809 struct kvm *kvm = vcpu->kvm; 1810 int lm = is_long_mode(vcpu); 1811 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1812 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1813 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1814 : kvm->arch.xen_hvm_config.blob_size_32; 1815 u32 page_num = data & ~PAGE_MASK; 1816 u64 page_addr = data & PAGE_MASK; 1817 u8 *page; 1818 int r; 1819 1820 r = -E2BIG; 1821 if (page_num >= blob_size) 1822 goto out; 1823 r = -ENOMEM; 1824 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1825 if (IS_ERR(page)) { 1826 r = PTR_ERR(page); 1827 goto out; 1828 } 1829 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1830 goto out_free; 1831 r = 0; 1832 out_free: 1833 kfree(page); 1834 out: 1835 return r; 1836 } 1837 1838 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1839 { 1840 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1841 } 1842 1843 static bool kvm_hv_msr_partition_wide(u32 msr) 1844 { 1845 bool r = false; 1846 switch (msr) { 1847 case HV_X64_MSR_GUEST_OS_ID: 1848 case HV_X64_MSR_HYPERCALL: 1849 case HV_X64_MSR_REFERENCE_TSC: 1850 case HV_X64_MSR_TIME_REF_COUNT: 1851 r = true; 1852 break; 1853 } 1854 1855 return r; 1856 } 1857 1858 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1859 { 1860 struct kvm *kvm = vcpu->kvm; 1861 1862 switch (msr) { 1863 case HV_X64_MSR_GUEST_OS_ID: 1864 kvm->arch.hv_guest_os_id = data; 1865 /* setting guest os id to zero disables hypercall page */ 1866 if (!kvm->arch.hv_guest_os_id) 1867 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1868 break; 1869 case HV_X64_MSR_HYPERCALL: { 1870 u64 gfn; 1871 unsigned long addr; 1872 u8 instructions[4]; 1873 1874 /* if guest os id is not set hypercall should remain disabled */ 1875 if (!kvm->arch.hv_guest_os_id) 1876 break; 1877 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1878 kvm->arch.hv_hypercall = data; 1879 break; 1880 } 1881 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1882 addr = gfn_to_hva(kvm, gfn); 1883 if (kvm_is_error_hva(addr)) 1884 return 1; 1885 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1886 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1887 if (__copy_to_user((void __user *)addr, instructions, 4)) 1888 return 1; 1889 kvm->arch.hv_hypercall = data; 1890 mark_page_dirty(kvm, gfn); 1891 break; 1892 } 1893 case HV_X64_MSR_REFERENCE_TSC: { 1894 u64 gfn; 1895 HV_REFERENCE_TSC_PAGE tsc_ref; 1896 memset(&tsc_ref, 0, sizeof(tsc_ref)); 1897 kvm->arch.hv_tsc_page = data; 1898 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 1899 break; 1900 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; 1901 if (kvm_write_guest(kvm, data, 1902 &tsc_ref, sizeof(tsc_ref))) 1903 return 1; 1904 mark_page_dirty(kvm, gfn); 1905 break; 1906 } 1907 default: 1908 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1909 "data 0x%llx\n", msr, data); 1910 return 1; 1911 } 1912 return 0; 1913 } 1914 1915 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1916 { 1917 switch (msr) { 1918 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1919 u64 gfn; 1920 unsigned long addr; 1921 1922 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1923 vcpu->arch.hv_vapic = data; 1924 if (kvm_lapic_enable_pv_eoi(vcpu, 0)) 1925 return 1; 1926 break; 1927 } 1928 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT; 1929 addr = gfn_to_hva(vcpu->kvm, gfn); 1930 if (kvm_is_error_hva(addr)) 1931 return 1; 1932 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1933 return 1; 1934 vcpu->arch.hv_vapic = data; 1935 mark_page_dirty(vcpu->kvm, gfn); 1936 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED)) 1937 return 1; 1938 break; 1939 } 1940 case HV_X64_MSR_EOI: 1941 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1942 case HV_X64_MSR_ICR: 1943 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1944 case HV_X64_MSR_TPR: 1945 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1946 default: 1947 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1948 "data 0x%llx\n", msr, data); 1949 return 1; 1950 } 1951 1952 return 0; 1953 } 1954 1955 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1956 { 1957 gpa_t gpa = data & ~0x3f; 1958 1959 /* Bits 2:5 are reserved, Should be zero */ 1960 if (data & 0x3c) 1961 return 1; 1962 1963 vcpu->arch.apf.msr_val = data; 1964 1965 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1966 kvm_clear_async_pf_completion_queue(vcpu); 1967 kvm_async_pf_hash_reset(vcpu); 1968 return 0; 1969 } 1970 1971 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 1972 sizeof(u32))) 1973 return 1; 1974 1975 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1976 kvm_async_pf_wakeup_all(vcpu); 1977 return 0; 1978 } 1979 1980 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1981 { 1982 vcpu->arch.pv_time_enabled = false; 1983 } 1984 1985 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1986 { 1987 u64 delta; 1988 1989 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1990 return; 1991 1992 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1993 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1994 vcpu->arch.st.accum_steal = delta; 1995 } 1996 1997 static void record_steal_time(struct kvm_vcpu *vcpu) 1998 { 1999 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2000 return; 2001 2002 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2003 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2004 return; 2005 2006 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 2007 vcpu->arch.st.steal.version += 2; 2008 vcpu->arch.st.accum_steal = 0; 2009 2010 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2011 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2012 } 2013 2014 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2015 { 2016 bool pr = false; 2017 u32 msr = msr_info->index; 2018 u64 data = msr_info->data; 2019 2020 switch (msr) { 2021 case MSR_AMD64_NB_CFG: 2022 case MSR_IA32_UCODE_REV: 2023 case MSR_IA32_UCODE_WRITE: 2024 case MSR_VM_HSAVE_PA: 2025 case MSR_AMD64_PATCH_LOADER: 2026 case MSR_AMD64_BU_CFG2: 2027 break; 2028 2029 case MSR_EFER: 2030 return set_efer(vcpu, data); 2031 case MSR_K7_HWCR: 2032 data &= ~(u64)0x40; /* ignore flush filter disable */ 2033 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2034 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2035 if (data != 0) { 2036 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2037 data); 2038 return 1; 2039 } 2040 break; 2041 case MSR_FAM10H_MMIO_CONF_BASE: 2042 if (data != 0) { 2043 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2044 "0x%llx\n", data); 2045 return 1; 2046 } 2047 break; 2048 case MSR_IA32_DEBUGCTLMSR: 2049 if (!data) { 2050 /* We support the non-activated case already */ 2051 break; 2052 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2053 /* Values other than LBR and BTF are vendor-specific, 2054 thus reserved and should throw a #GP */ 2055 return 1; 2056 } 2057 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2058 __func__, data); 2059 break; 2060 case 0x200 ... 0x2ff: 2061 return set_msr_mtrr(vcpu, msr, data); 2062 case MSR_IA32_APICBASE: 2063 return kvm_set_apic_base(vcpu, msr_info); 2064 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2065 return kvm_x2apic_msr_write(vcpu, msr, data); 2066 case MSR_IA32_TSCDEADLINE: 2067 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2068 break; 2069 case MSR_IA32_TSC_ADJUST: 2070 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2071 if (!msr_info->host_initiated) { 2072 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2073 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); 2074 } 2075 vcpu->arch.ia32_tsc_adjust_msr = data; 2076 } 2077 break; 2078 case MSR_IA32_MISC_ENABLE: 2079 vcpu->arch.ia32_misc_enable_msr = data; 2080 break; 2081 case MSR_KVM_WALL_CLOCK_NEW: 2082 case MSR_KVM_WALL_CLOCK: 2083 vcpu->kvm->arch.wall_clock = data; 2084 kvm_write_wall_clock(vcpu->kvm, data); 2085 break; 2086 case MSR_KVM_SYSTEM_TIME_NEW: 2087 case MSR_KVM_SYSTEM_TIME: { 2088 u64 gpa_offset; 2089 kvmclock_reset(vcpu); 2090 2091 vcpu->arch.time = data; 2092 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2093 2094 /* we verify if the enable bit is set... */ 2095 if (!(data & 1)) 2096 break; 2097 2098 gpa_offset = data & ~(PAGE_MASK | 1); 2099 2100 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2101 &vcpu->arch.pv_time, data & ~1ULL, 2102 sizeof(struct pvclock_vcpu_time_info))) 2103 vcpu->arch.pv_time_enabled = false; 2104 else 2105 vcpu->arch.pv_time_enabled = true; 2106 2107 break; 2108 } 2109 case MSR_KVM_ASYNC_PF_EN: 2110 if (kvm_pv_enable_async_pf(vcpu, data)) 2111 return 1; 2112 break; 2113 case MSR_KVM_STEAL_TIME: 2114 2115 if (unlikely(!sched_info_on())) 2116 return 1; 2117 2118 if (data & KVM_STEAL_RESERVED_MASK) 2119 return 1; 2120 2121 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2122 data & KVM_STEAL_VALID_BITS, 2123 sizeof(struct kvm_steal_time))) 2124 return 1; 2125 2126 vcpu->arch.st.msr_val = data; 2127 2128 if (!(data & KVM_MSR_ENABLED)) 2129 break; 2130 2131 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2132 2133 preempt_disable(); 2134 accumulate_steal_time(vcpu); 2135 preempt_enable(); 2136 2137 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2138 2139 break; 2140 case MSR_KVM_PV_EOI_EN: 2141 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2142 return 1; 2143 break; 2144 2145 case MSR_IA32_MCG_CTL: 2146 case MSR_IA32_MCG_STATUS: 2147 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2148 return set_msr_mce(vcpu, msr, data); 2149 2150 /* Performance counters are not protected by a CPUID bit, 2151 * so we should check all of them in the generic path for the sake of 2152 * cross vendor migration. 2153 * Writing a zero into the event select MSRs disables them, 2154 * which we perfectly emulate ;-). Any other value should be at least 2155 * reported, some guests depend on them. 2156 */ 2157 case MSR_K7_EVNTSEL0: 2158 case MSR_K7_EVNTSEL1: 2159 case MSR_K7_EVNTSEL2: 2160 case MSR_K7_EVNTSEL3: 2161 if (data != 0) 2162 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2163 "0x%x data 0x%llx\n", msr, data); 2164 break; 2165 /* at least RHEL 4 unconditionally writes to the perfctr registers, 2166 * so we ignore writes to make it happy. 2167 */ 2168 case MSR_K7_PERFCTR0: 2169 case MSR_K7_PERFCTR1: 2170 case MSR_K7_PERFCTR2: 2171 case MSR_K7_PERFCTR3: 2172 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 2173 "0x%x data 0x%llx\n", msr, data); 2174 break; 2175 case MSR_P6_PERFCTR0: 2176 case MSR_P6_PERFCTR1: 2177 pr = true; 2178 case MSR_P6_EVNTSEL0: 2179 case MSR_P6_EVNTSEL1: 2180 if (kvm_pmu_msr(vcpu, msr)) 2181 return kvm_pmu_set_msr(vcpu, msr_info); 2182 2183 if (pr || data != 0) 2184 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2185 "0x%x data 0x%llx\n", msr, data); 2186 break; 2187 case MSR_K7_CLK_CTL: 2188 /* 2189 * Ignore all writes to this no longer documented MSR. 2190 * Writes are only relevant for old K7 processors, 2191 * all pre-dating SVM, but a recommended workaround from 2192 * AMD for these chips. It is possible to specify the 2193 * affected processor models on the command line, hence 2194 * the need to ignore the workaround. 2195 */ 2196 break; 2197 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2198 if (kvm_hv_msr_partition_wide(msr)) { 2199 int r; 2200 mutex_lock(&vcpu->kvm->lock); 2201 r = set_msr_hyperv_pw(vcpu, msr, data); 2202 mutex_unlock(&vcpu->kvm->lock); 2203 return r; 2204 } else 2205 return set_msr_hyperv(vcpu, msr, data); 2206 break; 2207 case MSR_IA32_BBL_CR_CTL3: 2208 /* Drop writes to this legacy MSR -- see rdmsr 2209 * counterpart for further detail. 2210 */ 2211 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 2212 break; 2213 case MSR_AMD64_OSVW_ID_LENGTH: 2214 if (!guest_cpuid_has_osvw(vcpu)) 2215 return 1; 2216 vcpu->arch.osvw.length = data; 2217 break; 2218 case MSR_AMD64_OSVW_STATUS: 2219 if (!guest_cpuid_has_osvw(vcpu)) 2220 return 1; 2221 vcpu->arch.osvw.status = data; 2222 break; 2223 default: 2224 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2225 return xen_hvm_config(vcpu, data); 2226 if (kvm_pmu_msr(vcpu, msr)) 2227 return kvm_pmu_set_msr(vcpu, msr_info); 2228 if (!ignore_msrs) { 2229 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 2230 msr, data); 2231 return 1; 2232 } else { 2233 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 2234 msr, data); 2235 break; 2236 } 2237 } 2238 return 0; 2239 } 2240 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2241 2242 2243 /* 2244 * Reads an msr value (of 'msr_index') into 'pdata'. 2245 * Returns 0 on success, non-0 otherwise. 2246 * Assumes vcpu_load() was already called. 2247 */ 2248 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 2249 { 2250 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 2251 } 2252 2253 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2254 { 2255 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 2256 2257 if (!msr_mtrr_valid(msr)) 2258 return 1; 2259 2260 if (msr == MSR_MTRRdefType) 2261 *pdata = vcpu->arch.mtrr_state.def_type + 2262 (vcpu->arch.mtrr_state.enabled << 10); 2263 else if (msr == MSR_MTRRfix64K_00000) 2264 *pdata = p[0]; 2265 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 2266 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 2267 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 2268 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 2269 else if (msr == MSR_IA32_CR_PAT) 2270 *pdata = vcpu->arch.pat; 2271 else { /* Variable MTRRs */ 2272 int idx, is_mtrr_mask; 2273 u64 *pt; 2274 2275 idx = (msr - 0x200) / 2; 2276 is_mtrr_mask = msr - 0x200 - 2 * idx; 2277 if (!is_mtrr_mask) 2278 pt = 2279 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 2280 else 2281 pt = 2282 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 2283 *pdata = *pt; 2284 } 2285 2286 return 0; 2287 } 2288 2289 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2290 { 2291 u64 data; 2292 u64 mcg_cap = vcpu->arch.mcg_cap; 2293 unsigned bank_num = mcg_cap & 0xff; 2294 2295 switch (msr) { 2296 case MSR_IA32_P5_MC_ADDR: 2297 case MSR_IA32_P5_MC_TYPE: 2298 data = 0; 2299 break; 2300 case MSR_IA32_MCG_CAP: 2301 data = vcpu->arch.mcg_cap; 2302 break; 2303 case MSR_IA32_MCG_CTL: 2304 if (!(mcg_cap & MCG_CTL_P)) 2305 return 1; 2306 data = vcpu->arch.mcg_ctl; 2307 break; 2308 case MSR_IA32_MCG_STATUS: 2309 data = vcpu->arch.mcg_status; 2310 break; 2311 default: 2312 if (msr >= MSR_IA32_MC0_CTL && 2313 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 2314 u32 offset = msr - MSR_IA32_MC0_CTL; 2315 data = vcpu->arch.mce_banks[offset]; 2316 break; 2317 } 2318 return 1; 2319 } 2320 *pdata = data; 2321 return 0; 2322 } 2323 2324 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2325 { 2326 u64 data = 0; 2327 struct kvm *kvm = vcpu->kvm; 2328 2329 switch (msr) { 2330 case HV_X64_MSR_GUEST_OS_ID: 2331 data = kvm->arch.hv_guest_os_id; 2332 break; 2333 case HV_X64_MSR_HYPERCALL: 2334 data = kvm->arch.hv_hypercall; 2335 break; 2336 case HV_X64_MSR_TIME_REF_COUNT: { 2337 data = 2338 div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100); 2339 break; 2340 } 2341 case HV_X64_MSR_REFERENCE_TSC: 2342 data = kvm->arch.hv_tsc_page; 2343 break; 2344 default: 2345 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2346 return 1; 2347 } 2348 2349 *pdata = data; 2350 return 0; 2351 } 2352 2353 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2354 { 2355 u64 data = 0; 2356 2357 switch (msr) { 2358 case HV_X64_MSR_VP_INDEX: { 2359 int r; 2360 struct kvm_vcpu *v; 2361 kvm_for_each_vcpu(r, v, vcpu->kvm) { 2362 if (v == vcpu) { 2363 data = r; 2364 break; 2365 } 2366 } 2367 break; 2368 } 2369 case HV_X64_MSR_EOI: 2370 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 2371 case HV_X64_MSR_ICR: 2372 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 2373 case HV_X64_MSR_TPR: 2374 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 2375 case HV_X64_MSR_APIC_ASSIST_PAGE: 2376 data = vcpu->arch.hv_vapic; 2377 break; 2378 default: 2379 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 2380 return 1; 2381 } 2382 *pdata = data; 2383 return 0; 2384 } 2385 2386 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2387 { 2388 u64 data; 2389 2390 switch (msr) { 2391 case MSR_IA32_PLATFORM_ID: 2392 case MSR_IA32_EBL_CR_POWERON: 2393 case MSR_IA32_DEBUGCTLMSR: 2394 case MSR_IA32_LASTBRANCHFROMIP: 2395 case MSR_IA32_LASTBRANCHTOIP: 2396 case MSR_IA32_LASTINTFROMIP: 2397 case MSR_IA32_LASTINTTOIP: 2398 case MSR_K8_SYSCFG: 2399 case MSR_K7_HWCR: 2400 case MSR_VM_HSAVE_PA: 2401 case MSR_K7_EVNTSEL0: 2402 case MSR_K7_PERFCTR0: 2403 case MSR_K8_INT_PENDING_MSG: 2404 case MSR_AMD64_NB_CFG: 2405 case MSR_FAM10H_MMIO_CONF_BASE: 2406 case MSR_AMD64_BU_CFG2: 2407 data = 0; 2408 break; 2409 case MSR_P6_PERFCTR0: 2410 case MSR_P6_PERFCTR1: 2411 case MSR_P6_EVNTSEL0: 2412 case MSR_P6_EVNTSEL1: 2413 if (kvm_pmu_msr(vcpu, msr)) 2414 return kvm_pmu_get_msr(vcpu, msr, pdata); 2415 data = 0; 2416 break; 2417 case MSR_IA32_UCODE_REV: 2418 data = 0x100000000ULL; 2419 break; 2420 case MSR_MTRRcap: 2421 data = 0x500 | KVM_NR_VAR_MTRR; 2422 break; 2423 case 0x200 ... 0x2ff: 2424 return get_msr_mtrr(vcpu, msr, pdata); 2425 case 0xcd: /* fsb frequency */ 2426 data = 3; 2427 break; 2428 /* 2429 * MSR_EBC_FREQUENCY_ID 2430 * Conservative value valid for even the basic CPU models. 2431 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2432 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2433 * and 266MHz for model 3, or 4. Set Core Clock 2434 * Frequency to System Bus Frequency Ratio to 1 (bits 2435 * 31:24) even though these are only valid for CPU 2436 * models > 2, however guests may end up dividing or 2437 * multiplying by zero otherwise. 2438 */ 2439 case MSR_EBC_FREQUENCY_ID: 2440 data = 1 << 24; 2441 break; 2442 case MSR_IA32_APICBASE: 2443 data = kvm_get_apic_base(vcpu); 2444 break; 2445 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2446 return kvm_x2apic_msr_read(vcpu, msr, pdata); 2447 break; 2448 case MSR_IA32_TSCDEADLINE: 2449 data = kvm_get_lapic_tscdeadline_msr(vcpu); 2450 break; 2451 case MSR_IA32_TSC_ADJUST: 2452 data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2453 break; 2454 case MSR_IA32_MISC_ENABLE: 2455 data = vcpu->arch.ia32_misc_enable_msr; 2456 break; 2457 case MSR_IA32_PERF_STATUS: 2458 /* TSC increment by tick */ 2459 data = 1000ULL; 2460 /* CPU multiplier */ 2461 data |= (((uint64_t)4ULL) << 40); 2462 break; 2463 case MSR_EFER: 2464 data = vcpu->arch.efer; 2465 break; 2466 case MSR_KVM_WALL_CLOCK: 2467 case MSR_KVM_WALL_CLOCK_NEW: 2468 data = vcpu->kvm->arch.wall_clock; 2469 break; 2470 case MSR_KVM_SYSTEM_TIME: 2471 case MSR_KVM_SYSTEM_TIME_NEW: 2472 data = vcpu->arch.time; 2473 break; 2474 case MSR_KVM_ASYNC_PF_EN: 2475 data = vcpu->arch.apf.msr_val; 2476 break; 2477 case MSR_KVM_STEAL_TIME: 2478 data = vcpu->arch.st.msr_val; 2479 break; 2480 case MSR_KVM_PV_EOI_EN: 2481 data = vcpu->arch.pv_eoi.msr_val; 2482 break; 2483 case MSR_IA32_P5_MC_ADDR: 2484 case MSR_IA32_P5_MC_TYPE: 2485 case MSR_IA32_MCG_CAP: 2486 case MSR_IA32_MCG_CTL: 2487 case MSR_IA32_MCG_STATUS: 2488 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2489 return get_msr_mce(vcpu, msr, pdata); 2490 case MSR_K7_CLK_CTL: 2491 /* 2492 * Provide expected ramp-up count for K7. All other 2493 * are set to zero, indicating minimum divisors for 2494 * every field. 2495 * 2496 * This prevents guest kernels on AMD host with CPU 2497 * type 6, model 8 and higher from exploding due to 2498 * the rdmsr failing. 2499 */ 2500 data = 0x20000000; 2501 break; 2502 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2503 if (kvm_hv_msr_partition_wide(msr)) { 2504 int r; 2505 mutex_lock(&vcpu->kvm->lock); 2506 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2507 mutex_unlock(&vcpu->kvm->lock); 2508 return r; 2509 } else 2510 return get_msr_hyperv(vcpu, msr, pdata); 2511 break; 2512 case MSR_IA32_BBL_CR_CTL3: 2513 /* This legacy MSR exists but isn't fully documented in current 2514 * silicon. It is however accessed by winxp in very narrow 2515 * scenarios where it sets bit #19, itself documented as 2516 * a "reserved" bit. Best effort attempt to source coherent 2517 * read data here should the balance of the register be 2518 * interpreted by the guest: 2519 * 2520 * L2 cache control register 3: 64GB range, 256KB size, 2521 * enabled, latency 0x1, configured 2522 */ 2523 data = 0xbe702111; 2524 break; 2525 case MSR_AMD64_OSVW_ID_LENGTH: 2526 if (!guest_cpuid_has_osvw(vcpu)) 2527 return 1; 2528 data = vcpu->arch.osvw.length; 2529 break; 2530 case MSR_AMD64_OSVW_STATUS: 2531 if (!guest_cpuid_has_osvw(vcpu)) 2532 return 1; 2533 data = vcpu->arch.osvw.status; 2534 break; 2535 default: 2536 if (kvm_pmu_msr(vcpu, msr)) 2537 return kvm_pmu_get_msr(vcpu, msr, pdata); 2538 if (!ignore_msrs) { 2539 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2540 return 1; 2541 } else { 2542 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2543 data = 0; 2544 } 2545 break; 2546 } 2547 *pdata = data; 2548 return 0; 2549 } 2550 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2551 2552 /* 2553 * Read or write a bunch of msrs. All parameters are kernel addresses. 2554 * 2555 * @return number of msrs set successfully. 2556 */ 2557 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2558 struct kvm_msr_entry *entries, 2559 int (*do_msr)(struct kvm_vcpu *vcpu, 2560 unsigned index, u64 *data)) 2561 { 2562 int i, idx; 2563 2564 idx = srcu_read_lock(&vcpu->kvm->srcu); 2565 for (i = 0; i < msrs->nmsrs; ++i) 2566 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2567 break; 2568 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2569 2570 return i; 2571 } 2572 2573 /* 2574 * Read or write a bunch of msrs. Parameters are user addresses. 2575 * 2576 * @return number of msrs set successfully. 2577 */ 2578 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2579 int (*do_msr)(struct kvm_vcpu *vcpu, 2580 unsigned index, u64 *data), 2581 int writeback) 2582 { 2583 struct kvm_msrs msrs; 2584 struct kvm_msr_entry *entries; 2585 int r, n; 2586 unsigned size; 2587 2588 r = -EFAULT; 2589 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2590 goto out; 2591 2592 r = -E2BIG; 2593 if (msrs.nmsrs >= MAX_IO_MSRS) 2594 goto out; 2595 2596 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2597 entries = memdup_user(user_msrs->entries, size); 2598 if (IS_ERR(entries)) { 2599 r = PTR_ERR(entries); 2600 goto out; 2601 } 2602 2603 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2604 if (r < 0) 2605 goto out_free; 2606 2607 r = -EFAULT; 2608 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2609 goto out_free; 2610 2611 r = n; 2612 2613 out_free: 2614 kfree(entries); 2615 out: 2616 return r; 2617 } 2618 2619 int kvm_dev_ioctl_check_extension(long ext) 2620 { 2621 int r; 2622 2623 switch (ext) { 2624 case KVM_CAP_IRQCHIP: 2625 case KVM_CAP_HLT: 2626 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2627 case KVM_CAP_SET_TSS_ADDR: 2628 case KVM_CAP_EXT_CPUID: 2629 case KVM_CAP_EXT_EMUL_CPUID: 2630 case KVM_CAP_CLOCKSOURCE: 2631 case KVM_CAP_PIT: 2632 case KVM_CAP_NOP_IO_DELAY: 2633 case KVM_CAP_MP_STATE: 2634 case KVM_CAP_SYNC_MMU: 2635 case KVM_CAP_USER_NMI: 2636 case KVM_CAP_REINJECT_CONTROL: 2637 case KVM_CAP_IRQ_INJECT_STATUS: 2638 case KVM_CAP_IRQFD: 2639 case KVM_CAP_IOEVENTFD: 2640 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2641 case KVM_CAP_PIT2: 2642 case KVM_CAP_PIT_STATE2: 2643 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2644 case KVM_CAP_XEN_HVM: 2645 case KVM_CAP_ADJUST_CLOCK: 2646 case KVM_CAP_VCPU_EVENTS: 2647 case KVM_CAP_HYPERV: 2648 case KVM_CAP_HYPERV_VAPIC: 2649 case KVM_CAP_HYPERV_SPIN: 2650 case KVM_CAP_PCI_SEGMENT: 2651 case KVM_CAP_DEBUGREGS: 2652 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2653 case KVM_CAP_XSAVE: 2654 case KVM_CAP_ASYNC_PF: 2655 case KVM_CAP_GET_TSC_KHZ: 2656 case KVM_CAP_KVMCLOCK_CTRL: 2657 case KVM_CAP_READONLY_MEM: 2658 case KVM_CAP_HYPERV_TIME: 2659 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2660 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2661 case KVM_CAP_ASSIGN_DEV_IRQ: 2662 case KVM_CAP_PCI_2_3: 2663 #endif 2664 r = 1; 2665 break; 2666 case KVM_CAP_COALESCED_MMIO: 2667 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2668 break; 2669 case KVM_CAP_VAPIC: 2670 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2671 break; 2672 case KVM_CAP_NR_VCPUS: 2673 r = KVM_SOFT_MAX_VCPUS; 2674 break; 2675 case KVM_CAP_MAX_VCPUS: 2676 r = KVM_MAX_VCPUS; 2677 break; 2678 case KVM_CAP_NR_MEMSLOTS: 2679 r = KVM_USER_MEM_SLOTS; 2680 break; 2681 case KVM_CAP_PV_MMU: /* obsolete */ 2682 r = 0; 2683 break; 2684 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT 2685 case KVM_CAP_IOMMU: 2686 r = iommu_present(&pci_bus_type); 2687 break; 2688 #endif 2689 case KVM_CAP_MCE: 2690 r = KVM_MAX_MCE_BANKS; 2691 break; 2692 case KVM_CAP_XCRS: 2693 r = cpu_has_xsave; 2694 break; 2695 case KVM_CAP_TSC_CONTROL: 2696 r = kvm_has_tsc_control; 2697 break; 2698 case KVM_CAP_TSC_DEADLINE_TIMER: 2699 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2700 break; 2701 default: 2702 r = 0; 2703 break; 2704 } 2705 return r; 2706 2707 } 2708 2709 long kvm_arch_dev_ioctl(struct file *filp, 2710 unsigned int ioctl, unsigned long arg) 2711 { 2712 void __user *argp = (void __user *)arg; 2713 long r; 2714 2715 switch (ioctl) { 2716 case KVM_GET_MSR_INDEX_LIST: { 2717 struct kvm_msr_list __user *user_msr_list = argp; 2718 struct kvm_msr_list msr_list; 2719 unsigned n; 2720 2721 r = -EFAULT; 2722 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2723 goto out; 2724 n = msr_list.nmsrs; 2725 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2726 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2727 goto out; 2728 r = -E2BIG; 2729 if (n < msr_list.nmsrs) 2730 goto out; 2731 r = -EFAULT; 2732 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2733 num_msrs_to_save * sizeof(u32))) 2734 goto out; 2735 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2736 &emulated_msrs, 2737 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2738 goto out; 2739 r = 0; 2740 break; 2741 } 2742 case KVM_GET_SUPPORTED_CPUID: 2743 case KVM_GET_EMULATED_CPUID: { 2744 struct kvm_cpuid2 __user *cpuid_arg = argp; 2745 struct kvm_cpuid2 cpuid; 2746 2747 r = -EFAULT; 2748 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2749 goto out; 2750 2751 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2752 ioctl); 2753 if (r) 2754 goto out; 2755 2756 r = -EFAULT; 2757 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2758 goto out; 2759 r = 0; 2760 break; 2761 } 2762 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2763 u64 mce_cap; 2764 2765 mce_cap = KVM_MCE_CAP_SUPPORTED; 2766 r = -EFAULT; 2767 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2768 goto out; 2769 r = 0; 2770 break; 2771 } 2772 default: 2773 r = -EINVAL; 2774 } 2775 out: 2776 return r; 2777 } 2778 2779 static void wbinvd_ipi(void *garbage) 2780 { 2781 wbinvd(); 2782 } 2783 2784 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2785 { 2786 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2787 } 2788 2789 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2790 { 2791 /* Address WBINVD may be executed by guest */ 2792 if (need_emulate_wbinvd(vcpu)) { 2793 if (kvm_x86_ops->has_wbinvd_exit()) 2794 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2795 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2796 smp_call_function_single(vcpu->cpu, 2797 wbinvd_ipi, NULL, 1); 2798 } 2799 2800 kvm_x86_ops->vcpu_load(vcpu, cpu); 2801 2802 /* Apply any externally detected TSC adjustments (due to suspend) */ 2803 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2804 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2805 vcpu->arch.tsc_offset_adjustment = 0; 2806 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2807 } 2808 2809 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2810 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2811 native_read_tsc() - vcpu->arch.last_host_tsc; 2812 if (tsc_delta < 0) 2813 mark_tsc_unstable("KVM discovered backwards TSC"); 2814 if (check_tsc_unstable()) { 2815 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2816 vcpu->arch.last_guest_tsc); 2817 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2818 vcpu->arch.tsc_catchup = 1; 2819 } 2820 /* 2821 * On a host with synchronized TSC, there is no need to update 2822 * kvmclock on vcpu->cpu migration 2823 */ 2824 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2825 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2826 if (vcpu->cpu != cpu) 2827 kvm_migrate_timers(vcpu); 2828 vcpu->cpu = cpu; 2829 } 2830 2831 accumulate_steal_time(vcpu); 2832 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2833 } 2834 2835 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2836 { 2837 kvm_x86_ops->vcpu_put(vcpu); 2838 kvm_put_guest_fpu(vcpu); 2839 vcpu->arch.last_host_tsc = native_read_tsc(); 2840 } 2841 2842 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2843 struct kvm_lapic_state *s) 2844 { 2845 kvm_x86_ops->sync_pir_to_irr(vcpu); 2846 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2847 2848 return 0; 2849 } 2850 2851 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2852 struct kvm_lapic_state *s) 2853 { 2854 kvm_apic_post_state_restore(vcpu, s); 2855 update_cr8_intercept(vcpu); 2856 2857 return 0; 2858 } 2859 2860 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2861 struct kvm_interrupt *irq) 2862 { 2863 if (irq->irq >= KVM_NR_INTERRUPTS) 2864 return -EINVAL; 2865 if (irqchip_in_kernel(vcpu->kvm)) 2866 return -ENXIO; 2867 2868 kvm_queue_interrupt(vcpu, irq->irq, false); 2869 kvm_make_request(KVM_REQ_EVENT, vcpu); 2870 2871 return 0; 2872 } 2873 2874 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2875 { 2876 kvm_inject_nmi(vcpu); 2877 2878 return 0; 2879 } 2880 2881 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2882 struct kvm_tpr_access_ctl *tac) 2883 { 2884 if (tac->flags) 2885 return -EINVAL; 2886 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2887 return 0; 2888 } 2889 2890 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2891 u64 mcg_cap) 2892 { 2893 int r; 2894 unsigned bank_num = mcg_cap & 0xff, bank; 2895 2896 r = -EINVAL; 2897 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2898 goto out; 2899 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2900 goto out; 2901 r = 0; 2902 vcpu->arch.mcg_cap = mcg_cap; 2903 /* Init IA32_MCG_CTL to all 1s */ 2904 if (mcg_cap & MCG_CTL_P) 2905 vcpu->arch.mcg_ctl = ~(u64)0; 2906 /* Init IA32_MCi_CTL to all 1s */ 2907 for (bank = 0; bank < bank_num; bank++) 2908 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2909 out: 2910 return r; 2911 } 2912 2913 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2914 struct kvm_x86_mce *mce) 2915 { 2916 u64 mcg_cap = vcpu->arch.mcg_cap; 2917 unsigned bank_num = mcg_cap & 0xff; 2918 u64 *banks = vcpu->arch.mce_banks; 2919 2920 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2921 return -EINVAL; 2922 /* 2923 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2924 * reporting is disabled 2925 */ 2926 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2927 vcpu->arch.mcg_ctl != ~(u64)0) 2928 return 0; 2929 banks += 4 * mce->bank; 2930 /* 2931 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2932 * reporting is disabled for the bank 2933 */ 2934 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2935 return 0; 2936 if (mce->status & MCI_STATUS_UC) { 2937 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2938 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2939 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2940 return 0; 2941 } 2942 if (banks[1] & MCI_STATUS_VAL) 2943 mce->status |= MCI_STATUS_OVER; 2944 banks[2] = mce->addr; 2945 banks[3] = mce->misc; 2946 vcpu->arch.mcg_status = mce->mcg_status; 2947 banks[1] = mce->status; 2948 kvm_queue_exception(vcpu, MC_VECTOR); 2949 } else if (!(banks[1] & MCI_STATUS_VAL) 2950 || !(banks[1] & MCI_STATUS_UC)) { 2951 if (banks[1] & MCI_STATUS_VAL) 2952 mce->status |= MCI_STATUS_OVER; 2953 banks[2] = mce->addr; 2954 banks[3] = mce->misc; 2955 banks[1] = mce->status; 2956 } else 2957 banks[1] |= MCI_STATUS_OVER; 2958 return 0; 2959 } 2960 2961 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2962 struct kvm_vcpu_events *events) 2963 { 2964 process_nmi(vcpu); 2965 events->exception.injected = 2966 vcpu->arch.exception.pending && 2967 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2968 events->exception.nr = vcpu->arch.exception.nr; 2969 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2970 events->exception.pad = 0; 2971 events->exception.error_code = vcpu->arch.exception.error_code; 2972 2973 events->interrupt.injected = 2974 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2975 events->interrupt.nr = vcpu->arch.interrupt.nr; 2976 events->interrupt.soft = 0; 2977 events->interrupt.shadow = 2978 kvm_x86_ops->get_interrupt_shadow(vcpu, 2979 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2980 2981 events->nmi.injected = vcpu->arch.nmi_injected; 2982 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2983 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2984 events->nmi.pad = 0; 2985 2986 events->sipi_vector = 0; /* never valid when reporting to user space */ 2987 2988 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2989 | KVM_VCPUEVENT_VALID_SHADOW); 2990 memset(&events->reserved, 0, sizeof(events->reserved)); 2991 } 2992 2993 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2994 struct kvm_vcpu_events *events) 2995 { 2996 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2997 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2998 | KVM_VCPUEVENT_VALID_SHADOW)) 2999 return -EINVAL; 3000 3001 process_nmi(vcpu); 3002 vcpu->arch.exception.pending = events->exception.injected; 3003 vcpu->arch.exception.nr = events->exception.nr; 3004 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3005 vcpu->arch.exception.error_code = events->exception.error_code; 3006 3007 vcpu->arch.interrupt.pending = events->interrupt.injected; 3008 vcpu->arch.interrupt.nr = events->interrupt.nr; 3009 vcpu->arch.interrupt.soft = events->interrupt.soft; 3010 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3011 kvm_x86_ops->set_interrupt_shadow(vcpu, 3012 events->interrupt.shadow); 3013 3014 vcpu->arch.nmi_injected = events->nmi.injected; 3015 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3016 vcpu->arch.nmi_pending = events->nmi.pending; 3017 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3018 3019 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3020 kvm_vcpu_has_lapic(vcpu)) 3021 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3022 3023 kvm_make_request(KVM_REQ_EVENT, vcpu); 3024 3025 return 0; 3026 } 3027 3028 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3029 struct kvm_debugregs *dbgregs) 3030 { 3031 unsigned long val; 3032 3033 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3034 _kvm_get_dr(vcpu, 6, &val); 3035 dbgregs->dr6 = val; 3036 dbgregs->dr7 = vcpu->arch.dr7; 3037 dbgregs->flags = 0; 3038 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3039 } 3040 3041 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3042 struct kvm_debugregs *dbgregs) 3043 { 3044 if (dbgregs->flags) 3045 return -EINVAL; 3046 3047 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3048 vcpu->arch.dr6 = dbgregs->dr6; 3049 kvm_update_dr6(vcpu); 3050 vcpu->arch.dr7 = dbgregs->dr7; 3051 kvm_update_dr7(vcpu); 3052 3053 return 0; 3054 } 3055 3056 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3057 struct kvm_xsave *guest_xsave) 3058 { 3059 if (cpu_has_xsave) { 3060 memcpy(guest_xsave->region, 3061 &vcpu->arch.guest_fpu.state->xsave, 3062 vcpu->arch.guest_xstate_size); 3063 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &= 3064 vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE; 3065 } else { 3066 memcpy(guest_xsave->region, 3067 &vcpu->arch.guest_fpu.state->fxsave, 3068 sizeof(struct i387_fxsave_struct)); 3069 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3070 XSTATE_FPSSE; 3071 } 3072 } 3073 3074 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3075 struct kvm_xsave *guest_xsave) 3076 { 3077 u64 xstate_bv = 3078 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3079 3080 if (cpu_has_xsave) { 3081 /* 3082 * Here we allow setting states that are not present in 3083 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3084 * with old userspace. 3085 */ 3086 if (xstate_bv & ~kvm_supported_xcr0()) 3087 return -EINVAL; 3088 memcpy(&vcpu->arch.guest_fpu.state->xsave, 3089 guest_xsave->region, vcpu->arch.guest_xstate_size); 3090 } else { 3091 if (xstate_bv & ~XSTATE_FPSSE) 3092 return -EINVAL; 3093 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 3094 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 3095 } 3096 return 0; 3097 } 3098 3099 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3100 struct kvm_xcrs *guest_xcrs) 3101 { 3102 if (!cpu_has_xsave) { 3103 guest_xcrs->nr_xcrs = 0; 3104 return; 3105 } 3106 3107 guest_xcrs->nr_xcrs = 1; 3108 guest_xcrs->flags = 0; 3109 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3110 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3111 } 3112 3113 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3114 struct kvm_xcrs *guest_xcrs) 3115 { 3116 int i, r = 0; 3117 3118 if (!cpu_has_xsave) 3119 return -EINVAL; 3120 3121 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3122 return -EINVAL; 3123 3124 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3125 /* Only support XCR0 currently */ 3126 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3127 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3128 guest_xcrs->xcrs[i].value); 3129 break; 3130 } 3131 if (r) 3132 r = -EINVAL; 3133 return r; 3134 } 3135 3136 /* 3137 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3138 * stopped by the hypervisor. This function will be called from the host only. 3139 * EINVAL is returned when the host attempts to set the flag for a guest that 3140 * does not support pv clocks. 3141 */ 3142 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3143 { 3144 if (!vcpu->arch.pv_time_enabled) 3145 return -EINVAL; 3146 vcpu->arch.pvclock_set_guest_stopped_request = true; 3147 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3148 return 0; 3149 } 3150 3151 long kvm_arch_vcpu_ioctl(struct file *filp, 3152 unsigned int ioctl, unsigned long arg) 3153 { 3154 struct kvm_vcpu *vcpu = filp->private_data; 3155 void __user *argp = (void __user *)arg; 3156 int r; 3157 union { 3158 struct kvm_lapic_state *lapic; 3159 struct kvm_xsave *xsave; 3160 struct kvm_xcrs *xcrs; 3161 void *buffer; 3162 } u; 3163 3164 u.buffer = NULL; 3165 switch (ioctl) { 3166 case KVM_GET_LAPIC: { 3167 r = -EINVAL; 3168 if (!vcpu->arch.apic) 3169 goto out; 3170 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3171 3172 r = -ENOMEM; 3173 if (!u.lapic) 3174 goto out; 3175 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3176 if (r) 3177 goto out; 3178 r = -EFAULT; 3179 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3180 goto out; 3181 r = 0; 3182 break; 3183 } 3184 case KVM_SET_LAPIC: { 3185 r = -EINVAL; 3186 if (!vcpu->arch.apic) 3187 goto out; 3188 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3189 if (IS_ERR(u.lapic)) 3190 return PTR_ERR(u.lapic); 3191 3192 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3193 break; 3194 } 3195 case KVM_INTERRUPT: { 3196 struct kvm_interrupt irq; 3197 3198 r = -EFAULT; 3199 if (copy_from_user(&irq, argp, sizeof irq)) 3200 goto out; 3201 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3202 break; 3203 } 3204 case KVM_NMI: { 3205 r = kvm_vcpu_ioctl_nmi(vcpu); 3206 break; 3207 } 3208 case KVM_SET_CPUID: { 3209 struct kvm_cpuid __user *cpuid_arg = argp; 3210 struct kvm_cpuid cpuid; 3211 3212 r = -EFAULT; 3213 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3214 goto out; 3215 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3216 break; 3217 } 3218 case KVM_SET_CPUID2: { 3219 struct kvm_cpuid2 __user *cpuid_arg = argp; 3220 struct kvm_cpuid2 cpuid; 3221 3222 r = -EFAULT; 3223 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3224 goto out; 3225 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3226 cpuid_arg->entries); 3227 break; 3228 } 3229 case KVM_GET_CPUID2: { 3230 struct kvm_cpuid2 __user *cpuid_arg = argp; 3231 struct kvm_cpuid2 cpuid; 3232 3233 r = -EFAULT; 3234 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3235 goto out; 3236 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3237 cpuid_arg->entries); 3238 if (r) 3239 goto out; 3240 r = -EFAULT; 3241 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3242 goto out; 3243 r = 0; 3244 break; 3245 } 3246 case KVM_GET_MSRS: 3247 r = msr_io(vcpu, argp, kvm_get_msr, 1); 3248 break; 3249 case KVM_SET_MSRS: 3250 r = msr_io(vcpu, argp, do_set_msr, 0); 3251 break; 3252 case KVM_TPR_ACCESS_REPORTING: { 3253 struct kvm_tpr_access_ctl tac; 3254 3255 r = -EFAULT; 3256 if (copy_from_user(&tac, argp, sizeof tac)) 3257 goto out; 3258 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3259 if (r) 3260 goto out; 3261 r = -EFAULT; 3262 if (copy_to_user(argp, &tac, sizeof tac)) 3263 goto out; 3264 r = 0; 3265 break; 3266 }; 3267 case KVM_SET_VAPIC_ADDR: { 3268 struct kvm_vapic_addr va; 3269 3270 r = -EINVAL; 3271 if (!irqchip_in_kernel(vcpu->kvm)) 3272 goto out; 3273 r = -EFAULT; 3274 if (copy_from_user(&va, argp, sizeof va)) 3275 goto out; 3276 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3277 break; 3278 } 3279 case KVM_X86_SETUP_MCE: { 3280 u64 mcg_cap; 3281 3282 r = -EFAULT; 3283 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3284 goto out; 3285 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3286 break; 3287 } 3288 case KVM_X86_SET_MCE: { 3289 struct kvm_x86_mce mce; 3290 3291 r = -EFAULT; 3292 if (copy_from_user(&mce, argp, sizeof mce)) 3293 goto out; 3294 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3295 break; 3296 } 3297 case KVM_GET_VCPU_EVENTS: { 3298 struct kvm_vcpu_events events; 3299 3300 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3301 3302 r = -EFAULT; 3303 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3304 break; 3305 r = 0; 3306 break; 3307 } 3308 case KVM_SET_VCPU_EVENTS: { 3309 struct kvm_vcpu_events events; 3310 3311 r = -EFAULT; 3312 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3313 break; 3314 3315 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3316 break; 3317 } 3318 case KVM_GET_DEBUGREGS: { 3319 struct kvm_debugregs dbgregs; 3320 3321 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3322 3323 r = -EFAULT; 3324 if (copy_to_user(argp, &dbgregs, 3325 sizeof(struct kvm_debugregs))) 3326 break; 3327 r = 0; 3328 break; 3329 } 3330 case KVM_SET_DEBUGREGS: { 3331 struct kvm_debugregs dbgregs; 3332 3333 r = -EFAULT; 3334 if (copy_from_user(&dbgregs, argp, 3335 sizeof(struct kvm_debugregs))) 3336 break; 3337 3338 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3339 break; 3340 } 3341 case KVM_GET_XSAVE: { 3342 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3343 r = -ENOMEM; 3344 if (!u.xsave) 3345 break; 3346 3347 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3348 3349 r = -EFAULT; 3350 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3351 break; 3352 r = 0; 3353 break; 3354 } 3355 case KVM_SET_XSAVE: { 3356 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3357 if (IS_ERR(u.xsave)) 3358 return PTR_ERR(u.xsave); 3359 3360 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3361 break; 3362 } 3363 case KVM_GET_XCRS: { 3364 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3365 r = -ENOMEM; 3366 if (!u.xcrs) 3367 break; 3368 3369 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3370 3371 r = -EFAULT; 3372 if (copy_to_user(argp, u.xcrs, 3373 sizeof(struct kvm_xcrs))) 3374 break; 3375 r = 0; 3376 break; 3377 } 3378 case KVM_SET_XCRS: { 3379 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3380 if (IS_ERR(u.xcrs)) 3381 return PTR_ERR(u.xcrs); 3382 3383 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3384 break; 3385 } 3386 case KVM_SET_TSC_KHZ: { 3387 u32 user_tsc_khz; 3388 3389 r = -EINVAL; 3390 user_tsc_khz = (u32)arg; 3391 3392 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3393 goto out; 3394 3395 if (user_tsc_khz == 0) 3396 user_tsc_khz = tsc_khz; 3397 3398 kvm_set_tsc_khz(vcpu, user_tsc_khz); 3399 3400 r = 0; 3401 goto out; 3402 } 3403 case KVM_GET_TSC_KHZ: { 3404 r = vcpu->arch.virtual_tsc_khz; 3405 goto out; 3406 } 3407 case KVM_KVMCLOCK_CTRL: { 3408 r = kvm_set_guest_paused(vcpu); 3409 goto out; 3410 } 3411 default: 3412 r = -EINVAL; 3413 } 3414 out: 3415 kfree(u.buffer); 3416 return r; 3417 } 3418 3419 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3420 { 3421 return VM_FAULT_SIGBUS; 3422 } 3423 3424 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3425 { 3426 int ret; 3427 3428 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3429 return -EINVAL; 3430 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3431 return ret; 3432 } 3433 3434 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3435 u64 ident_addr) 3436 { 3437 kvm->arch.ept_identity_map_addr = ident_addr; 3438 return 0; 3439 } 3440 3441 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3442 u32 kvm_nr_mmu_pages) 3443 { 3444 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3445 return -EINVAL; 3446 3447 mutex_lock(&kvm->slots_lock); 3448 3449 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3450 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3451 3452 mutex_unlock(&kvm->slots_lock); 3453 return 0; 3454 } 3455 3456 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3457 { 3458 return kvm->arch.n_max_mmu_pages; 3459 } 3460 3461 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3462 { 3463 int r; 3464 3465 r = 0; 3466 switch (chip->chip_id) { 3467 case KVM_IRQCHIP_PIC_MASTER: 3468 memcpy(&chip->chip.pic, 3469 &pic_irqchip(kvm)->pics[0], 3470 sizeof(struct kvm_pic_state)); 3471 break; 3472 case KVM_IRQCHIP_PIC_SLAVE: 3473 memcpy(&chip->chip.pic, 3474 &pic_irqchip(kvm)->pics[1], 3475 sizeof(struct kvm_pic_state)); 3476 break; 3477 case KVM_IRQCHIP_IOAPIC: 3478 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 3479 break; 3480 default: 3481 r = -EINVAL; 3482 break; 3483 } 3484 return r; 3485 } 3486 3487 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3488 { 3489 int r; 3490 3491 r = 0; 3492 switch (chip->chip_id) { 3493 case KVM_IRQCHIP_PIC_MASTER: 3494 spin_lock(&pic_irqchip(kvm)->lock); 3495 memcpy(&pic_irqchip(kvm)->pics[0], 3496 &chip->chip.pic, 3497 sizeof(struct kvm_pic_state)); 3498 spin_unlock(&pic_irqchip(kvm)->lock); 3499 break; 3500 case KVM_IRQCHIP_PIC_SLAVE: 3501 spin_lock(&pic_irqchip(kvm)->lock); 3502 memcpy(&pic_irqchip(kvm)->pics[1], 3503 &chip->chip.pic, 3504 sizeof(struct kvm_pic_state)); 3505 spin_unlock(&pic_irqchip(kvm)->lock); 3506 break; 3507 case KVM_IRQCHIP_IOAPIC: 3508 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3509 break; 3510 default: 3511 r = -EINVAL; 3512 break; 3513 } 3514 kvm_pic_update_irq(pic_irqchip(kvm)); 3515 return r; 3516 } 3517 3518 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3519 { 3520 int r = 0; 3521 3522 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3523 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3524 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3525 return r; 3526 } 3527 3528 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3529 { 3530 int r = 0; 3531 3532 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3533 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3534 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3535 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3536 return r; 3537 } 3538 3539 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3540 { 3541 int r = 0; 3542 3543 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3544 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3545 sizeof(ps->channels)); 3546 ps->flags = kvm->arch.vpit->pit_state.flags; 3547 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3548 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3549 return r; 3550 } 3551 3552 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3553 { 3554 int r = 0, start = 0; 3555 u32 prev_legacy, cur_legacy; 3556 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3557 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3558 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3559 if (!prev_legacy && cur_legacy) 3560 start = 1; 3561 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3562 sizeof(kvm->arch.vpit->pit_state.channels)); 3563 kvm->arch.vpit->pit_state.flags = ps->flags; 3564 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3565 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3566 return r; 3567 } 3568 3569 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3570 struct kvm_reinject_control *control) 3571 { 3572 if (!kvm->arch.vpit) 3573 return -ENXIO; 3574 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3575 kvm->arch.vpit->pit_state.reinject = control->pit_reinject; 3576 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3577 return 0; 3578 } 3579 3580 /** 3581 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3582 * @kvm: kvm instance 3583 * @log: slot id and address to which we copy the log 3584 * 3585 * We need to keep it in mind that VCPU threads can write to the bitmap 3586 * concurrently. So, to avoid losing data, we keep the following order for 3587 * each bit: 3588 * 3589 * 1. Take a snapshot of the bit and clear it if needed. 3590 * 2. Write protect the corresponding page. 3591 * 3. Flush TLB's if needed. 3592 * 4. Copy the snapshot to the userspace. 3593 * 3594 * Between 2 and 3, the guest may write to the page using the remaining TLB 3595 * entry. This is not a problem because the page will be reported dirty at 3596 * step 4 using the snapshot taken before and step 3 ensures that successive 3597 * writes will be logged for the next call. 3598 */ 3599 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3600 { 3601 int r; 3602 struct kvm_memory_slot *memslot; 3603 unsigned long n, i; 3604 unsigned long *dirty_bitmap; 3605 unsigned long *dirty_bitmap_buffer; 3606 bool is_dirty = false; 3607 3608 mutex_lock(&kvm->slots_lock); 3609 3610 r = -EINVAL; 3611 if (log->slot >= KVM_USER_MEM_SLOTS) 3612 goto out; 3613 3614 memslot = id_to_memslot(kvm->memslots, log->slot); 3615 3616 dirty_bitmap = memslot->dirty_bitmap; 3617 r = -ENOENT; 3618 if (!dirty_bitmap) 3619 goto out; 3620 3621 n = kvm_dirty_bitmap_bytes(memslot); 3622 3623 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3624 memset(dirty_bitmap_buffer, 0, n); 3625 3626 spin_lock(&kvm->mmu_lock); 3627 3628 for (i = 0; i < n / sizeof(long); i++) { 3629 unsigned long mask; 3630 gfn_t offset; 3631 3632 if (!dirty_bitmap[i]) 3633 continue; 3634 3635 is_dirty = true; 3636 3637 mask = xchg(&dirty_bitmap[i], 0); 3638 dirty_bitmap_buffer[i] = mask; 3639 3640 offset = i * BITS_PER_LONG; 3641 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3642 } 3643 3644 spin_unlock(&kvm->mmu_lock); 3645 3646 /* See the comments in kvm_mmu_slot_remove_write_access(). */ 3647 lockdep_assert_held(&kvm->slots_lock); 3648 3649 /* 3650 * All the TLBs can be flushed out of mmu lock, see the comments in 3651 * kvm_mmu_slot_remove_write_access(). 3652 */ 3653 if (is_dirty) 3654 kvm_flush_remote_tlbs(kvm); 3655 3656 r = -EFAULT; 3657 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3658 goto out; 3659 3660 r = 0; 3661 out: 3662 mutex_unlock(&kvm->slots_lock); 3663 return r; 3664 } 3665 3666 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3667 bool line_status) 3668 { 3669 if (!irqchip_in_kernel(kvm)) 3670 return -ENXIO; 3671 3672 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3673 irq_event->irq, irq_event->level, 3674 line_status); 3675 return 0; 3676 } 3677 3678 long kvm_arch_vm_ioctl(struct file *filp, 3679 unsigned int ioctl, unsigned long arg) 3680 { 3681 struct kvm *kvm = filp->private_data; 3682 void __user *argp = (void __user *)arg; 3683 int r = -ENOTTY; 3684 /* 3685 * This union makes it completely explicit to gcc-3.x 3686 * that these two variables' stack usage should be 3687 * combined, not added together. 3688 */ 3689 union { 3690 struct kvm_pit_state ps; 3691 struct kvm_pit_state2 ps2; 3692 struct kvm_pit_config pit_config; 3693 } u; 3694 3695 switch (ioctl) { 3696 case KVM_SET_TSS_ADDR: 3697 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3698 break; 3699 case KVM_SET_IDENTITY_MAP_ADDR: { 3700 u64 ident_addr; 3701 3702 r = -EFAULT; 3703 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3704 goto out; 3705 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3706 break; 3707 } 3708 case KVM_SET_NR_MMU_PAGES: 3709 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3710 break; 3711 case KVM_GET_NR_MMU_PAGES: 3712 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3713 break; 3714 case KVM_CREATE_IRQCHIP: { 3715 struct kvm_pic *vpic; 3716 3717 mutex_lock(&kvm->lock); 3718 r = -EEXIST; 3719 if (kvm->arch.vpic) 3720 goto create_irqchip_unlock; 3721 r = -EINVAL; 3722 if (atomic_read(&kvm->online_vcpus)) 3723 goto create_irqchip_unlock; 3724 r = -ENOMEM; 3725 vpic = kvm_create_pic(kvm); 3726 if (vpic) { 3727 r = kvm_ioapic_init(kvm); 3728 if (r) { 3729 mutex_lock(&kvm->slots_lock); 3730 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3731 &vpic->dev_master); 3732 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3733 &vpic->dev_slave); 3734 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3735 &vpic->dev_eclr); 3736 mutex_unlock(&kvm->slots_lock); 3737 kfree(vpic); 3738 goto create_irqchip_unlock; 3739 } 3740 } else 3741 goto create_irqchip_unlock; 3742 smp_wmb(); 3743 kvm->arch.vpic = vpic; 3744 smp_wmb(); 3745 r = kvm_setup_default_irq_routing(kvm); 3746 if (r) { 3747 mutex_lock(&kvm->slots_lock); 3748 mutex_lock(&kvm->irq_lock); 3749 kvm_ioapic_destroy(kvm); 3750 kvm_destroy_pic(kvm); 3751 mutex_unlock(&kvm->irq_lock); 3752 mutex_unlock(&kvm->slots_lock); 3753 } 3754 create_irqchip_unlock: 3755 mutex_unlock(&kvm->lock); 3756 break; 3757 } 3758 case KVM_CREATE_PIT: 3759 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3760 goto create_pit; 3761 case KVM_CREATE_PIT2: 3762 r = -EFAULT; 3763 if (copy_from_user(&u.pit_config, argp, 3764 sizeof(struct kvm_pit_config))) 3765 goto out; 3766 create_pit: 3767 mutex_lock(&kvm->slots_lock); 3768 r = -EEXIST; 3769 if (kvm->arch.vpit) 3770 goto create_pit_unlock; 3771 r = -ENOMEM; 3772 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3773 if (kvm->arch.vpit) 3774 r = 0; 3775 create_pit_unlock: 3776 mutex_unlock(&kvm->slots_lock); 3777 break; 3778 case KVM_GET_IRQCHIP: { 3779 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3780 struct kvm_irqchip *chip; 3781 3782 chip = memdup_user(argp, sizeof(*chip)); 3783 if (IS_ERR(chip)) { 3784 r = PTR_ERR(chip); 3785 goto out; 3786 } 3787 3788 r = -ENXIO; 3789 if (!irqchip_in_kernel(kvm)) 3790 goto get_irqchip_out; 3791 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3792 if (r) 3793 goto get_irqchip_out; 3794 r = -EFAULT; 3795 if (copy_to_user(argp, chip, sizeof *chip)) 3796 goto get_irqchip_out; 3797 r = 0; 3798 get_irqchip_out: 3799 kfree(chip); 3800 break; 3801 } 3802 case KVM_SET_IRQCHIP: { 3803 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3804 struct kvm_irqchip *chip; 3805 3806 chip = memdup_user(argp, sizeof(*chip)); 3807 if (IS_ERR(chip)) { 3808 r = PTR_ERR(chip); 3809 goto out; 3810 } 3811 3812 r = -ENXIO; 3813 if (!irqchip_in_kernel(kvm)) 3814 goto set_irqchip_out; 3815 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3816 if (r) 3817 goto set_irqchip_out; 3818 r = 0; 3819 set_irqchip_out: 3820 kfree(chip); 3821 break; 3822 } 3823 case KVM_GET_PIT: { 3824 r = -EFAULT; 3825 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3826 goto out; 3827 r = -ENXIO; 3828 if (!kvm->arch.vpit) 3829 goto out; 3830 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3831 if (r) 3832 goto out; 3833 r = -EFAULT; 3834 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3835 goto out; 3836 r = 0; 3837 break; 3838 } 3839 case KVM_SET_PIT: { 3840 r = -EFAULT; 3841 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3842 goto out; 3843 r = -ENXIO; 3844 if (!kvm->arch.vpit) 3845 goto out; 3846 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3847 break; 3848 } 3849 case KVM_GET_PIT2: { 3850 r = -ENXIO; 3851 if (!kvm->arch.vpit) 3852 goto out; 3853 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3854 if (r) 3855 goto out; 3856 r = -EFAULT; 3857 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3858 goto out; 3859 r = 0; 3860 break; 3861 } 3862 case KVM_SET_PIT2: { 3863 r = -EFAULT; 3864 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3865 goto out; 3866 r = -ENXIO; 3867 if (!kvm->arch.vpit) 3868 goto out; 3869 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3870 break; 3871 } 3872 case KVM_REINJECT_CONTROL: { 3873 struct kvm_reinject_control control; 3874 r = -EFAULT; 3875 if (copy_from_user(&control, argp, sizeof(control))) 3876 goto out; 3877 r = kvm_vm_ioctl_reinject(kvm, &control); 3878 break; 3879 } 3880 case KVM_XEN_HVM_CONFIG: { 3881 r = -EFAULT; 3882 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3883 sizeof(struct kvm_xen_hvm_config))) 3884 goto out; 3885 r = -EINVAL; 3886 if (kvm->arch.xen_hvm_config.flags) 3887 goto out; 3888 r = 0; 3889 break; 3890 } 3891 case KVM_SET_CLOCK: { 3892 struct kvm_clock_data user_ns; 3893 u64 now_ns; 3894 s64 delta; 3895 3896 r = -EFAULT; 3897 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3898 goto out; 3899 3900 r = -EINVAL; 3901 if (user_ns.flags) 3902 goto out; 3903 3904 r = 0; 3905 local_irq_disable(); 3906 now_ns = get_kernel_ns(); 3907 delta = user_ns.clock - now_ns; 3908 local_irq_enable(); 3909 kvm->arch.kvmclock_offset = delta; 3910 kvm_gen_update_masterclock(kvm); 3911 break; 3912 } 3913 case KVM_GET_CLOCK: { 3914 struct kvm_clock_data user_ns; 3915 u64 now_ns; 3916 3917 local_irq_disable(); 3918 now_ns = get_kernel_ns(); 3919 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3920 local_irq_enable(); 3921 user_ns.flags = 0; 3922 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3923 3924 r = -EFAULT; 3925 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3926 goto out; 3927 r = 0; 3928 break; 3929 } 3930 3931 default: 3932 ; 3933 } 3934 out: 3935 return r; 3936 } 3937 3938 static void kvm_init_msr_list(void) 3939 { 3940 u32 dummy[2]; 3941 unsigned i, j; 3942 3943 /* skip the first msrs in the list. KVM-specific */ 3944 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3945 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3946 continue; 3947 3948 /* 3949 * Even MSRs that are valid in the host may not be exposed 3950 * to the guests in some cases. We could work around this 3951 * in VMX with the generic MSR save/load machinery, but it 3952 * is not really worthwhile since it will really only 3953 * happen with nested virtualization. 3954 */ 3955 switch (msrs_to_save[i]) { 3956 case MSR_IA32_BNDCFGS: 3957 if (!kvm_x86_ops->mpx_supported()) 3958 continue; 3959 break; 3960 default: 3961 break; 3962 } 3963 3964 if (j < i) 3965 msrs_to_save[j] = msrs_to_save[i]; 3966 j++; 3967 } 3968 num_msrs_to_save = j; 3969 } 3970 3971 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3972 const void *v) 3973 { 3974 int handled = 0; 3975 int n; 3976 3977 do { 3978 n = min(len, 8); 3979 if (!(vcpu->arch.apic && 3980 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3981 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3982 break; 3983 handled += n; 3984 addr += n; 3985 len -= n; 3986 v += n; 3987 } while (len); 3988 3989 return handled; 3990 } 3991 3992 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3993 { 3994 int handled = 0; 3995 int n; 3996 3997 do { 3998 n = min(len, 8); 3999 if (!(vcpu->arch.apic && 4000 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 4001 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 4002 break; 4003 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 4004 handled += n; 4005 addr += n; 4006 len -= n; 4007 v += n; 4008 } while (len); 4009 4010 return handled; 4011 } 4012 4013 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4014 struct kvm_segment *var, int seg) 4015 { 4016 kvm_x86_ops->set_segment(vcpu, var, seg); 4017 } 4018 4019 void kvm_get_segment(struct kvm_vcpu *vcpu, 4020 struct kvm_segment *var, int seg) 4021 { 4022 kvm_x86_ops->get_segment(vcpu, var, seg); 4023 } 4024 4025 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 4026 { 4027 gpa_t t_gpa; 4028 struct x86_exception exception; 4029 4030 BUG_ON(!mmu_is_nested(vcpu)); 4031 4032 /* NPT walks are always user-walks */ 4033 access |= PFERR_USER_MASK; 4034 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 4035 4036 return t_gpa; 4037 } 4038 4039 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4040 struct x86_exception *exception) 4041 { 4042 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4043 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4044 } 4045 4046 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4047 struct x86_exception *exception) 4048 { 4049 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4050 access |= PFERR_FETCH_MASK; 4051 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4052 } 4053 4054 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4055 struct x86_exception *exception) 4056 { 4057 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4058 access |= PFERR_WRITE_MASK; 4059 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4060 } 4061 4062 /* uses this to access any guest's mapped memory without checking CPL */ 4063 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4064 struct x86_exception *exception) 4065 { 4066 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4067 } 4068 4069 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4070 struct kvm_vcpu *vcpu, u32 access, 4071 struct x86_exception *exception) 4072 { 4073 void *data = val; 4074 int r = X86EMUL_CONTINUE; 4075 4076 while (bytes) { 4077 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4078 exception); 4079 unsigned offset = addr & (PAGE_SIZE-1); 4080 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4081 int ret; 4082 4083 if (gpa == UNMAPPED_GVA) 4084 return X86EMUL_PROPAGATE_FAULT; 4085 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 4086 if (ret < 0) { 4087 r = X86EMUL_IO_NEEDED; 4088 goto out; 4089 } 4090 4091 bytes -= toread; 4092 data += toread; 4093 addr += toread; 4094 } 4095 out: 4096 return r; 4097 } 4098 4099 /* used for instruction fetching */ 4100 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4101 gva_t addr, void *val, unsigned int bytes, 4102 struct x86_exception *exception) 4103 { 4104 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4105 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4106 4107 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 4108 access | PFERR_FETCH_MASK, 4109 exception); 4110 } 4111 4112 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4113 gva_t addr, void *val, unsigned int bytes, 4114 struct x86_exception *exception) 4115 { 4116 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4117 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4118 4119 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4120 exception); 4121 } 4122 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4123 4124 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4125 gva_t addr, void *val, unsigned int bytes, 4126 struct x86_exception *exception) 4127 { 4128 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4129 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4130 } 4131 4132 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4133 gva_t addr, void *val, 4134 unsigned int bytes, 4135 struct x86_exception *exception) 4136 { 4137 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4138 void *data = val; 4139 int r = X86EMUL_CONTINUE; 4140 4141 while (bytes) { 4142 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4143 PFERR_WRITE_MASK, 4144 exception); 4145 unsigned offset = addr & (PAGE_SIZE-1); 4146 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4147 int ret; 4148 4149 if (gpa == UNMAPPED_GVA) 4150 return X86EMUL_PROPAGATE_FAULT; 4151 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 4152 if (ret < 0) { 4153 r = X86EMUL_IO_NEEDED; 4154 goto out; 4155 } 4156 4157 bytes -= towrite; 4158 data += towrite; 4159 addr += towrite; 4160 } 4161 out: 4162 return r; 4163 } 4164 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4165 4166 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4167 gpa_t *gpa, struct x86_exception *exception, 4168 bool write) 4169 { 4170 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4171 | (write ? PFERR_WRITE_MASK : 0); 4172 4173 if (vcpu_match_mmio_gva(vcpu, gva) 4174 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4175 vcpu->arch.access, access)) { 4176 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4177 (gva & (PAGE_SIZE - 1)); 4178 trace_vcpu_match_mmio(gva, *gpa, write, false); 4179 return 1; 4180 } 4181 4182 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4183 4184 if (*gpa == UNMAPPED_GVA) 4185 return -1; 4186 4187 /* For APIC access vmexit */ 4188 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4189 return 1; 4190 4191 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 4192 trace_vcpu_match_mmio(gva, *gpa, write, true); 4193 return 1; 4194 } 4195 4196 return 0; 4197 } 4198 4199 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4200 const void *val, int bytes) 4201 { 4202 int ret; 4203 4204 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 4205 if (ret < 0) 4206 return 0; 4207 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 4208 return 1; 4209 } 4210 4211 struct read_write_emulator_ops { 4212 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4213 int bytes); 4214 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4215 void *val, int bytes); 4216 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4217 int bytes, void *val); 4218 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4219 void *val, int bytes); 4220 bool write; 4221 }; 4222 4223 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4224 { 4225 if (vcpu->mmio_read_completed) { 4226 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4227 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4228 vcpu->mmio_read_completed = 0; 4229 return 1; 4230 } 4231 4232 return 0; 4233 } 4234 4235 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4236 void *val, int bytes) 4237 { 4238 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 4239 } 4240 4241 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4242 void *val, int bytes) 4243 { 4244 return emulator_write_phys(vcpu, gpa, val, bytes); 4245 } 4246 4247 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4248 { 4249 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4250 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4251 } 4252 4253 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4254 void *val, int bytes) 4255 { 4256 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4257 return X86EMUL_IO_NEEDED; 4258 } 4259 4260 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4261 void *val, int bytes) 4262 { 4263 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4264 4265 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4266 return X86EMUL_CONTINUE; 4267 } 4268 4269 static const struct read_write_emulator_ops read_emultor = { 4270 .read_write_prepare = read_prepare, 4271 .read_write_emulate = read_emulate, 4272 .read_write_mmio = vcpu_mmio_read, 4273 .read_write_exit_mmio = read_exit_mmio, 4274 }; 4275 4276 static const struct read_write_emulator_ops write_emultor = { 4277 .read_write_emulate = write_emulate, 4278 .read_write_mmio = write_mmio, 4279 .read_write_exit_mmio = write_exit_mmio, 4280 .write = true, 4281 }; 4282 4283 static int emulator_read_write_onepage(unsigned long addr, void *val, 4284 unsigned int bytes, 4285 struct x86_exception *exception, 4286 struct kvm_vcpu *vcpu, 4287 const struct read_write_emulator_ops *ops) 4288 { 4289 gpa_t gpa; 4290 int handled, ret; 4291 bool write = ops->write; 4292 struct kvm_mmio_fragment *frag; 4293 4294 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4295 4296 if (ret < 0) 4297 return X86EMUL_PROPAGATE_FAULT; 4298 4299 /* For APIC access vmexit */ 4300 if (ret) 4301 goto mmio; 4302 4303 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4304 return X86EMUL_CONTINUE; 4305 4306 mmio: 4307 /* 4308 * Is this MMIO handled locally? 4309 */ 4310 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4311 if (handled == bytes) 4312 return X86EMUL_CONTINUE; 4313 4314 gpa += handled; 4315 bytes -= handled; 4316 val += handled; 4317 4318 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4319 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4320 frag->gpa = gpa; 4321 frag->data = val; 4322 frag->len = bytes; 4323 return X86EMUL_CONTINUE; 4324 } 4325 4326 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 4327 void *val, unsigned int bytes, 4328 struct x86_exception *exception, 4329 const struct read_write_emulator_ops *ops) 4330 { 4331 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4332 gpa_t gpa; 4333 int rc; 4334 4335 if (ops->read_write_prepare && 4336 ops->read_write_prepare(vcpu, val, bytes)) 4337 return X86EMUL_CONTINUE; 4338 4339 vcpu->mmio_nr_fragments = 0; 4340 4341 /* Crossing a page boundary? */ 4342 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4343 int now; 4344 4345 now = -addr & ~PAGE_MASK; 4346 rc = emulator_read_write_onepage(addr, val, now, exception, 4347 vcpu, ops); 4348 4349 if (rc != X86EMUL_CONTINUE) 4350 return rc; 4351 addr += now; 4352 val += now; 4353 bytes -= now; 4354 } 4355 4356 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4357 vcpu, ops); 4358 if (rc != X86EMUL_CONTINUE) 4359 return rc; 4360 4361 if (!vcpu->mmio_nr_fragments) 4362 return rc; 4363 4364 gpa = vcpu->mmio_fragments[0].gpa; 4365 4366 vcpu->mmio_needed = 1; 4367 vcpu->mmio_cur_fragment = 0; 4368 4369 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4370 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4371 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4372 vcpu->run->mmio.phys_addr = gpa; 4373 4374 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4375 } 4376 4377 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4378 unsigned long addr, 4379 void *val, 4380 unsigned int bytes, 4381 struct x86_exception *exception) 4382 { 4383 return emulator_read_write(ctxt, addr, val, bytes, 4384 exception, &read_emultor); 4385 } 4386 4387 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4388 unsigned long addr, 4389 const void *val, 4390 unsigned int bytes, 4391 struct x86_exception *exception) 4392 { 4393 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4394 exception, &write_emultor); 4395 } 4396 4397 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4398 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4399 4400 #ifdef CONFIG_X86_64 4401 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4402 #else 4403 # define CMPXCHG64(ptr, old, new) \ 4404 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4405 #endif 4406 4407 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4408 unsigned long addr, 4409 const void *old, 4410 const void *new, 4411 unsigned int bytes, 4412 struct x86_exception *exception) 4413 { 4414 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4415 gpa_t gpa; 4416 struct page *page; 4417 char *kaddr; 4418 bool exchanged; 4419 4420 /* guests cmpxchg8b have to be emulated atomically */ 4421 if (bytes > 8 || (bytes & (bytes - 1))) 4422 goto emul_write; 4423 4424 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4425 4426 if (gpa == UNMAPPED_GVA || 4427 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4428 goto emul_write; 4429 4430 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4431 goto emul_write; 4432 4433 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4434 if (is_error_page(page)) 4435 goto emul_write; 4436 4437 kaddr = kmap_atomic(page); 4438 kaddr += offset_in_page(gpa); 4439 switch (bytes) { 4440 case 1: 4441 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4442 break; 4443 case 2: 4444 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4445 break; 4446 case 4: 4447 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4448 break; 4449 case 8: 4450 exchanged = CMPXCHG64(kaddr, old, new); 4451 break; 4452 default: 4453 BUG(); 4454 } 4455 kunmap_atomic(kaddr); 4456 kvm_release_page_dirty(page); 4457 4458 if (!exchanged) 4459 return X86EMUL_CMPXCHG_FAILED; 4460 4461 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT); 4462 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 4463 4464 return X86EMUL_CONTINUE; 4465 4466 emul_write: 4467 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4468 4469 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4470 } 4471 4472 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4473 { 4474 /* TODO: String I/O for in kernel device */ 4475 int r; 4476 4477 if (vcpu->arch.pio.in) 4478 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4479 vcpu->arch.pio.size, pd); 4480 else 4481 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4482 vcpu->arch.pio.port, vcpu->arch.pio.size, 4483 pd); 4484 return r; 4485 } 4486 4487 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4488 unsigned short port, void *val, 4489 unsigned int count, bool in) 4490 { 4491 vcpu->arch.pio.port = port; 4492 vcpu->arch.pio.in = in; 4493 vcpu->arch.pio.count = count; 4494 vcpu->arch.pio.size = size; 4495 4496 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4497 vcpu->arch.pio.count = 0; 4498 return 1; 4499 } 4500 4501 vcpu->run->exit_reason = KVM_EXIT_IO; 4502 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4503 vcpu->run->io.size = size; 4504 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4505 vcpu->run->io.count = count; 4506 vcpu->run->io.port = port; 4507 4508 return 0; 4509 } 4510 4511 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4512 int size, unsigned short port, void *val, 4513 unsigned int count) 4514 { 4515 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4516 int ret; 4517 4518 if (vcpu->arch.pio.count) 4519 goto data_avail; 4520 4521 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4522 if (ret) { 4523 data_avail: 4524 memcpy(val, vcpu->arch.pio_data, size * count); 4525 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 4526 vcpu->arch.pio.count = 0; 4527 return 1; 4528 } 4529 4530 return 0; 4531 } 4532 4533 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4534 int size, unsigned short port, 4535 const void *val, unsigned int count) 4536 { 4537 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4538 4539 memcpy(vcpu->arch.pio_data, val, size * count); 4540 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 4541 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4542 } 4543 4544 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4545 { 4546 return kvm_x86_ops->get_segment_base(vcpu, seg); 4547 } 4548 4549 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4550 { 4551 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4552 } 4553 4554 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4555 { 4556 if (!need_emulate_wbinvd(vcpu)) 4557 return X86EMUL_CONTINUE; 4558 4559 if (kvm_x86_ops->has_wbinvd_exit()) { 4560 int cpu = get_cpu(); 4561 4562 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4563 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4564 wbinvd_ipi, NULL, 1); 4565 put_cpu(); 4566 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4567 } else 4568 wbinvd(); 4569 return X86EMUL_CONTINUE; 4570 } 4571 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4572 4573 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4574 { 4575 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4576 } 4577 4578 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4579 { 4580 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4581 } 4582 4583 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4584 { 4585 4586 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4587 } 4588 4589 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4590 { 4591 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4592 } 4593 4594 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4595 { 4596 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4597 unsigned long value; 4598 4599 switch (cr) { 4600 case 0: 4601 value = kvm_read_cr0(vcpu); 4602 break; 4603 case 2: 4604 value = vcpu->arch.cr2; 4605 break; 4606 case 3: 4607 value = kvm_read_cr3(vcpu); 4608 break; 4609 case 4: 4610 value = kvm_read_cr4(vcpu); 4611 break; 4612 case 8: 4613 value = kvm_get_cr8(vcpu); 4614 break; 4615 default: 4616 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4617 return 0; 4618 } 4619 4620 return value; 4621 } 4622 4623 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4624 { 4625 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4626 int res = 0; 4627 4628 switch (cr) { 4629 case 0: 4630 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4631 break; 4632 case 2: 4633 vcpu->arch.cr2 = val; 4634 break; 4635 case 3: 4636 res = kvm_set_cr3(vcpu, val); 4637 break; 4638 case 4: 4639 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4640 break; 4641 case 8: 4642 res = kvm_set_cr8(vcpu, val); 4643 break; 4644 default: 4645 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4646 res = -1; 4647 } 4648 4649 return res; 4650 } 4651 4652 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4653 { 4654 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4655 } 4656 4657 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4658 { 4659 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4660 } 4661 4662 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4663 { 4664 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4665 } 4666 4667 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4668 { 4669 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4670 } 4671 4672 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4673 { 4674 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4675 } 4676 4677 static unsigned long emulator_get_cached_segment_base( 4678 struct x86_emulate_ctxt *ctxt, int seg) 4679 { 4680 return get_segment_base(emul_to_vcpu(ctxt), seg); 4681 } 4682 4683 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4684 struct desc_struct *desc, u32 *base3, 4685 int seg) 4686 { 4687 struct kvm_segment var; 4688 4689 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4690 *selector = var.selector; 4691 4692 if (var.unusable) { 4693 memset(desc, 0, sizeof(*desc)); 4694 return false; 4695 } 4696 4697 if (var.g) 4698 var.limit >>= 12; 4699 set_desc_limit(desc, var.limit); 4700 set_desc_base(desc, (unsigned long)var.base); 4701 #ifdef CONFIG_X86_64 4702 if (base3) 4703 *base3 = var.base >> 32; 4704 #endif 4705 desc->type = var.type; 4706 desc->s = var.s; 4707 desc->dpl = var.dpl; 4708 desc->p = var.present; 4709 desc->avl = var.avl; 4710 desc->l = var.l; 4711 desc->d = var.db; 4712 desc->g = var.g; 4713 4714 return true; 4715 } 4716 4717 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4718 struct desc_struct *desc, u32 base3, 4719 int seg) 4720 { 4721 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4722 struct kvm_segment var; 4723 4724 var.selector = selector; 4725 var.base = get_desc_base(desc); 4726 #ifdef CONFIG_X86_64 4727 var.base |= ((u64)base3) << 32; 4728 #endif 4729 var.limit = get_desc_limit(desc); 4730 if (desc->g) 4731 var.limit = (var.limit << 12) | 0xfff; 4732 var.type = desc->type; 4733 var.present = desc->p; 4734 var.dpl = desc->dpl; 4735 var.db = desc->d; 4736 var.s = desc->s; 4737 var.l = desc->l; 4738 var.g = desc->g; 4739 var.avl = desc->avl; 4740 var.present = desc->p; 4741 var.unusable = !var.present; 4742 var.padding = 0; 4743 4744 kvm_set_segment(vcpu, &var, seg); 4745 return; 4746 } 4747 4748 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4749 u32 msr_index, u64 *pdata) 4750 { 4751 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4752 } 4753 4754 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4755 u32 msr_index, u64 data) 4756 { 4757 struct msr_data msr; 4758 4759 msr.data = data; 4760 msr.index = msr_index; 4761 msr.host_initiated = false; 4762 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 4763 } 4764 4765 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4766 u32 pmc, u64 *pdata) 4767 { 4768 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4769 } 4770 4771 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4772 { 4773 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4774 } 4775 4776 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4777 { 4778 preempt_disable(); 4779 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4780 /* 4781 * CR0.TS may reference the host fpu state, not the guest fpu state, 4782 * so it may be clear at this point. 4783 */ 4784 clts(); 4785 } 4786 4787 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4788 { 4789 preempt_enable(); 4790 } 4791 4792 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4793 struct x86_instruction_info *info, 4794 enum x86_intercept_stage stage) 4795 { 4796 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4797 } 4798 4799 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4800 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4801 { 4802 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4803 } 4804 4805 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 4806 { 4807 return kvm_register_read(emul_to_vcpu(ctxt), reg); 4808 } 4809 4810 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 4811 { 4812 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 4813 } 4814 4815 static const struct x86_emulate_ops emulate_ops = { 4816 .read_gpr = emulator_read_gpr, 4817 .write_gpr = emulator_write_gpr, 4818 .read_std = kvm_read_guest_virt_system, 4819 .write_std = kvm_write_guest_virt_system, 4820 .fetch = kvm_fetch_guest_virt, 4821 .read_emulated = emulator_read_emulated, 4822 .write_emulated = emulator_write_emulated, 4823 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4824 .invlpg = emulator_invlpg, 4825 .pio_in_emulated = emulator_pio_in_emulated, 4826 .pio_out_emulated = emulator_pio_out_emulated, 4827 .get_segment = emulator_get_segment, 4828 .set_segment = emulator_set_segment, 4829 .get_cached_segment_base = emulator_get_cached_segment_base, 4830 .get_gdt = emulator_get_gdt, 4831 .get_idt = emulator_get_idt, 4832 .set_gdt = emulator_set_gdt, 4833 .set_idt = emulator_set_idt, 4834 .get_cr = emulator_get_cr, 4835 .set_cr = emulator_set_cr, 4836 .cpl = emulator_get_cpl, 4837 .get_dr = emulator_get_dr, 4838 .set_dr = emulator_set_dr, 4839 .set_msr = emulator_set_msr, 4840 .get_msr = emulator_get_msr, 4841 .read_pmc = emulator_read_pmc, 4842 .halt = emulator_halt, 4843 .wbinvd = emulator_wbinvd, 4844 .fix_hypercall = emulator_fix_hypercall, 4845 .get_fpu = emulator_get_fpu, 4846 .put_fpu = emulator_put_fpu, 4847 .intercept = emulator_intercept, 4848 .get_cpuid = emulator_get_cpuid, 4849 }; 4850 4851 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4852 { 4853 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4854 /* 4855 * an sti; sti; sequence only disable interrupts for the first 4856 * instruction. So, if the last instruction, be it emulated or 4857 * not, left the system with the INT_STI flag enabled, it 4858 * means that the last instruction is an sti. We should not 4859 * leave the flag on in this case. The same goes for mov ss 4860 */ 4861 if (!(int_shadow & mask)) 4862 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4863 } 4864 4865 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4866 { 4867 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4868 if (ctxt->exception.vector == PF_VECTOR) 4869 kvm_propagate_fault(vcpu, &ctxt->exception); 4870 else if (ctxt->exception.error_code_valid) 4871 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4872 ctxt->exception.error_code); 4873 else 4874 kvm_queue_exception(vcpu, ctxt->exception.vector); 4875 } 4876 4877 static void init_decode_cache(struct x86_emulate_ctxt *ctxt) 4878 { 4879 memset(&ctxt->opcode_len, 0, 4880 (void *)&ctxt->_regs - (void *)&ctxt->opcode_len); 4881 4882 ctxt->fetch.start = 0; 4883 ctxt->fetch.end = 0; 4884 ctxt->io_read.pos = 0; 4885 ctxt->io_read.end = 0; 4886 ctxt->mem_read.pos = 0; 4887 ctxt->mem_read.end = 0; 4888 } 4889 4890 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4891 { 4892 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4893 int cs_db, cs_l; 4894 4895 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4896 4897 ctxt->eflags = kvm_get_rflags(vcpu); 4898 ctxt->eip = kvm_rip_read(vcpu); 4899 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4900 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4901 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 4902 cs_db ? X86EMUL_MODE_PROT32 : 4903 X86EMUL_MODE_PROT16; 4904 ctxt->guest_mode = is_guest_mode(vcpu); 4905 4906 init_decode_cache(ctxt); 4907 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4908 } 4909 4910 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4911 { 4912 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4913 int ret; 4914 4915 init_emulate_ctxt(vcpu); 4916 4917 ctxt->op_bytes = 2; 4918 ctxt->ad_bytes = 2; 4919 ctxt->_eip = ctxt->eip + inc_eip; 4920 ret = emulate_int_real(ctxt, irq); 4921 4922 if (ret != X86EMUL_CONTINUE) 4923 return EMULATE_FAIL; 4924 4925 ctxt->eip = ctxt->_eip; 4926 kvm_rip_write(vcpu, ctxt->eip); 4927 kvm_set_rflags(vcpu, ctxt->eflags); 4928 4929 if (irq == NMI_VECTOR) 4930 vcpu->arch.nmi_pending = 0; 4931 else 4932 vcpu->arch.interrupt.pending = false; 4933 4934 return EMULATE_DONE; 4935 } 4936 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4937 4938 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4939 { 4940 int r = EMULATE_DONE; 4941 4942 ++vcpu->stat.insn_emulation_fail; 4943 trace_kvm_emulate_insn_failed(vcpu); 4944 if (!is_guest_mode(vcpu)) { 4945 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4946 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4947 vcpu->run->internal.ndata = 0; 4948 r = EMULATE_FAIL; 4949 } 4950 kvm_queue_exception(vcpu, UD_VECTOR); 4951 4952 return r; 4953 } 4954 4955 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 4956 bool write_fault_to_shadow_pgtable, 4957 int emulation_type) 4958 { 4959 gpa_t gpa = cr2; 4960 pfn_t pfn; 4961 4962 if (emulation_type & EMULTYPE_NO_REEXECUTE) 4963 return false; 4964 4965 if (!vcpu->arch.mmu.direct_map) { 4966 /* 4967 * Write permission should be allowed since only 4968 * write access need to be emulated. 4969 */ 4970 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4971 4972 /* 4973 * If the mapping is invalid in guest, let cpu retry 4974 * it to generate fault. 4975 */ 4976 if (gpa == UNMAPPED_GVA) 4977 return true; 4978 } 4979 4980 /* 4981 * Do not retry the unhandleable instruction if it faults on the 4982 * readonly host memory, otherwise it will goto a infinite loop: 4983 * retry instruction -> write #PF -> emulation fail -> retry 4984 * instruction -> ... 4985 */ 4986 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 4987 4988 /* 4989 * If the instruction failed on the error pfn, it can not be fixed, 4990 * report the error to userspace. 4991 */ 4992 if (is_error_noslot_pfn(pfn)) 4993 return false; 4994 4995 kvm_release_pfn_clean(pfn); 4996 4997 /* The instructions are well-emulated on direct mmu. */ 4998 if (vcpu->arch.mmu.direct_map) { 4999 unsigned int indirect_shadow_pages; 5000 5001 spin_lock(&vcpu->kvm->mmu_lock); 5002 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5003 spin_unlock(&vcpu->kvm->mmu_lock); 5004 5005 if (indirect_shadow_pages) 5006 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5007 5008 return true; 5009 } 5010 5011 /* 5012 * if emulation was due to access to shadowed page table 5013 * and it failed try to unshadow page and re-enter the 5014 * guest to let CPU execute the instruction. 5015 */ 5016 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5017 5018 /* 5019 * If the access faults on its page table, it can not 5020 * be fixed by unprotecting shadow page and it should 5021 * be reported to userspace. 5022 */ 5023 return !write_fault_to_shadow_pgtable; 5024 } 5025 5026 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5027 unsigned long cr2, int emulation_type) 5028 { 5029 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5030 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5031 5032 last_retry_eip = vcpu->arch.last_retry_eip; 5033 last_retry_addr = vcpu->arch.last_retry_addr; 5034 5035 /* 5036 * If the emulation is caused by #PF and it is non-page_table 5037 * writing instruction, it means the VM-EXIT is caused by shadow 5038 * page protected, we can zap the shadow page and retry this 5039 * instruction directly. 5040 * 5041 * Note: if the guest uses a non-page-table modifying instruction 5042 * on the PDE that points to the instruction, then we will unmap 5043 * the instruction and go to an infinite loop. So, we cache the 5044 * last retried eip and the last fault address, if we meet the eip 5045 * and the address again, we can break out of the potential infinite 5046 * loop. 5047 */ 5048 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5049 5050 if (!(emulation_type & EMULTYPE_RETRY)) 5051 return false; 5052 5053 if (x86_page_table_writing_insn(ctxt)) 5054 return false; 5055 5056 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5057 return false; 5058 5059 vcpu->arch.last_retry_eip = ctxt->eip; 5060 vcpu->arch.last_retry_addr = cr2; 5061 5062 if (!vcpu->arch.mmu.direct_map) 5063 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5064 5065 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5066 5067 return true; 5068 } 5069 5070 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5071 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5072 5073 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5074 unsigned long *db) 5075 { 5076 u32 dr6 = 0; 5077 int i; 5078 u32 enable, rwlen; 5079 5080 enable = dr7; 5081 rwlen = dr7 >> 16; 5082 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5083 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5084 dr6 |= (1 << i); 5085 return dr6; 5086 } 5087 5088 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r) 5089 { 5090 struct kvm_run *kvm_run = vcpu->run; 5091 5092 /* 5093 * Use the "raw" value to see if TF was passed to the processor. 5094 * Note that the new value of the flags has not been saved yet. 5095 * 5096 * This is correct even for TF set by the guest, because "the 5097 * processor will not generate this exception after the instruction 5098 * that sets the TF flag". 5099 */ 5100 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5101 5102 if (unlikely(rflags & X86_EFLAGS_TF)) { 5103 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5104 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1; 5105 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5106 kvm_run->debug.arch.exception = DB_VECTOR; 5107 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5108 *r = EMULATE_USER_EXIT; 5109 } else { 5110 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF; 5111 /* 5112 * "Certain debug exceptions may clear bit 0-3. The 5113 * remaining contents of the DR6 register are never 5114 * cleared by the processor". 5115 */ 5116 vcpu->arch.dr6 &= ~15; 5117 vcpu->arch.dr6 |= DR6_BS; 5118 kvm_queue_exception(vcpu, DB_VECTOR); 5119 } 5120 } 5121 } 5122 5123 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5124 { 5125 struct kvm_run *kvm_run = vcpu->run; 5126 unsigned long eip = vcpu->arch.emulate_ctxt.eip; 5127 u32 dr6 = 0; 5128 5129 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5130 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5131 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5132 vcpu->arch.guest_debug_dr7, 5133 vcpu->arch.eff_db); 5134 5135 if (dr6 != 0) { 5136 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; 5137 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) + 5138 get_segment_base(vcpu, VCPU_SREG_CS); 5139 5140 kvm_run->debug.arch.exception = DB_VECTOR; 5141 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5142 *r = EMULATE_USER_EXIT; 5143 return true; 5144 } 5145 } 5146 5147 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) { 5148 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5149 vcpu->arch.dr7, 5150 vcpu->arch.db); 5151 5152 if (dr6 != 0) { 5153 vcpu->arch.dr6 &= ~15; 5154 vcpu->arch.dr6 |= dr6; 5155 kvm_queue_exception(vcpu, DB_VECTOR); 5156 *r = EMULATE_DONE; 5157 return true; 5158 } 5159 } 5160 5161 return false; 5162 } 5163 5164 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5165 unsigned long cr2, 5166 int emulation_type, 5167 void *insn, 5168 int insn_len) 5169 { 5170 int r; 5171 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5172 bool writeback = true; 5173 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5174 5175 /* 5176 * Clear write_fault_to_shadow_pgtable here to ensure it is 5177 * never reused. 5178 */ 5179 vcpu->arch.write_fault_to_shadow_pgtable = false; 5180 kvm_clear_exception_queue(vcpu); 5181 5182 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5183 init_emulate_ctxt(vcpu); 5184 5185 /* 5186 * We will reenter on the same instruction since 5187 * we do not set complete_userspace_io. This does not 5188 * handle watchpoints yet, those would be handled in 5189 * the emulate_ops. 5190 */ 5191 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5192 return r; 5193 5194 ctxt->interruptibility = 0; 5195 ctxt->have_exception = false; 5196 ctxt->perm_ok = false; 5197 5198 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5199 5200 r = x86_decode_insn(ctxt, insn, insn_len); 5201 5202 trace_kvm_emulate_insn_start(vcpu); 5203 ++vcpu->stat.insn_emulation; 5204 if (r != EMULATION_OK) { 5205 if (emulation_type & EMULTYPE_TRAP_UD) 5206 return EMULATE_FAIL; 5207 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5208 emulation_type)) 5209 return EMULATE_DONE; 5210 if (emulation_type & EMULTYPE_SKIP) 5211 return EMULATE_FAIL; 5212 return handle_emulation_failure(vcpu); 5213 } 5214 } 5215 5216 if (emulation_type & EMULTYPE_SKIP) { 5217 kvm_rip_write(vcpu, ctxt->_eip); 5218 return EMULATE_DONE; 5219 } 5220 5221 if (retry_instruction(ctxt, cr2, emulation_type)) 5222 return EMULATE_DONE; 5223 5224 /* this is needed for vmware backdoor interface to work since it 5225 changes registers values during IO operation */ 5226 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5227 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5228 emulator_invalidate_register_cache(ctxt); 5229 } 5230 5231 restart: 5232 r = x86_emulate_insn(ctxt); 5233 5234 if (r == EMULATION_INTERCEPTED) 5235 return EMULATE_DONE; 5236 5237 if (r == EMULATION_FAILED) { 5238 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5239 emulation_type)) 5240 return EMULATE_DONE; 5241 5242 return handle_emulation_failure(vcpu); 5243 } 5244 5245 if (ctxt->have_exception) { 5246 inject_emulated_exception(vcpu); 5247 r = EMULATE_DONE; 5248 } else if (vcpu->arch.pio.count) { 5249 if (!vcpu->arch.pio.in) { 5250 /* FIXME: return into emulator if single-stepping. */ 5251 vcpu->arch.pio.count = 0; 5252 } else { 5253 writeback = false; 5254 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5255 } 5256 r = EMULATE_USER_EXIT; 5257 } else if (vcpu->mmio_needed) { 5258 if (!vcpu->mmio_is_write) 5259 writeback = false; 5260 r = EMULATE_USER_EXIT; 5261 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5262 } else if (r == EMULATION_RESTART) 5263 goto restart; 5264 else 5265 r = EMULATE_DONE; 5266 5267 if (writeback) { 5268 toggle_interruptibility(vcpu, ctxt->interruptibility); 5269 kvm_make_request(KVM_REQ_EVENT, vcpu); 5270 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5271 kvm_rip_write(vcpu, ctxt->eip); 5272 if (r == EMULATE_DONE) 5273 kvm_vcpu_check_singlestep(vcpu, &r); 5274 kvm_set_rflags(vcpu, ctxt->eflags); 5275 } else 5276 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5277 5278 return r; 5279 } 5280 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5281 5282 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5283 { 5284 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5285 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5286 size, port, &val, 1); 5287 /* do not return to emulator after return from userspace */ 5288 vcpu->arch.pio.count = 0; 5289 return ret; 5290 } 5291 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5292 5293 static void tsc_bad(void *info) 5294 { 5295 __this_cpu_write(cpu_tsc_khz, 0); 5296 } 5297 5298 static void tsc_khz_changed(void *data) 5299 { 5300 struct cpufreq_freqs *freq = data; 5301 unsigned long khz = 0; 5302 5303 if (data) 5304 khz = freq->new; 5305 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5306 khz = cpufreq_quick_get(raw_smp_processor_id()); 5307 if (!khz) 5308 khz = tsc_khz; 5309 __this_cpu_write(cpu_tsc_khz, khz); 5310 } 5311 5312 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5313 void *data) 5314 { 5315 struct cpufreq_freqs *freq = data; 5316 struct kvm *kvm; 5317 struct kvm_vcpu *vcpu; 5318 int i, send_ipi = 0; 5319 5320 /* 5321 * We allow guests to temporarily run on slowing clocks, 5322 * provided we notify them after, or to run on accelerating 5323 * clocks, provided we notify them before. Thus time never 5324 * goes backwards. 5325 * 5326 * However, we have a problem. We can't atomically update 5327 * the frequency of a given CPU from this function; it is 5328 * merely a notifier, which can be called from any CPU. 5329 * Changing the TSC frequency at arbitrary points in time 5330 * requires a recomputation of local variables related to 5331 * the TSC for each VCPU. We must flag these local variables 5332 * to be updated and be sure the update takes place with the 5333 * new frequency before any guests proceed. 5334 * 5335 * Unfortunately, the combination of hotplug CPU and frequency 5336 * change creates an intractable locking scenario; the order 5337 * of when these callouts happen is undefined with respect to 5338 * CPU hotplug, and they can race with each other. As such, 5339 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5340 * undefined; you can actually have a CPU frequency change take 5341 * place in between the computation of X and the setting of the 5342 * variable. To protect against this problem, all updates of 5343 * the per_cpu tsc_khz variable are done in an interrupt 5344 * protected IPI, and all callers wishing to update the value 5345 * must wait for a synchronous IPI to complete (which is trivial 5346 * if the caller is on the CPU already). This establishes the 5347 * necessary total order on variable updates. 5348 * 5349 * Note that because a guest time update may take place 5350 * anytime after the setting of the VCPU's request bit, the 5351 * correct TSC value must be set before the request. However, 5352 * to ensure the update actually makes it to any guest which 5353 * starts running in hardware virtualization between the set 5354 * and the acquisition of the spinlock, we must also ping the 5355 * CPU after setting the request bit. 5356 * 5357 */ 5358 5359 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5360 return 0; 5361 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5362 return 0; 5363 5364 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5365 5366 spin_lock(&kvm_lock); 5367 list_for_each_entry(kvm, &vm_list, vm_list) { 5368 kvm_for_each_vcpu(i, vcpu, kvm) { 5369 if (vcpu->cpu != freq->cpu) 5370 continue; 5371 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5372 if (vcpu->cpu != smp_processor_id()) 5373 send_ipi = 1; 5374 } 5375 } 5376 spin_unlock(&kvm_lock); 5377 5378 if (freq->old < freq->new && send_ipi) { 5379 /* 5380 * We upscale the frequency. Must make the guest 5381 * doesn't see old kvmclock values while running with 5382 * the new frequency, otherwise we risk the guest sees 5383 * time go backwards. 5384 * 5385 * In case we update the frequency for another cpu 5386 * (which might be in guest context) send an interrupt 5387 * to kick the cpu out of guest context. Next time 5388 * guest context is entered kvmclock will be updated, 5389 * so the guest will not see stale values. 5390 */ 5391 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5392 } 5393 return 0; 5394 } 5395 5396 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5397 .notifier_call = kvmclock_cpufreq_notifier 5398 }; 5399 5400 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 5401 unsigned long action, void *hcpu) 5402 { 5403 unsigned int cpu = (unsigned long)hcpu; 5404 5405 switch (action) { 5406 case CPU_ONLINE: 5407 case CPU_DOWN_FAILED: 5408 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5409 break; 5410 case CPU_DOWN_PREPARE: 5411 smp_call_function_single(cpu, tsc_bad, NULL, 1); 5412 break; 5413 } 5414 return NOTIFY_OK; 5415 } 5416 5417 static struct notifier_block kvmclock_cpu_notifier_block = { 5418 .notifier_call = kvmclock_cpu_notifier, 5419 .priority = -INT_MAX 5420 }; 5421 5422 static void kvm_timer_init(void) 5423 { 5424 int cpu; 5425 5426 max_tsc_khz = tsc_khz; 5427 5428 cpu_notifier_register_begin(); 5429 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5430 #ifdef CONFIG_CPU_FREQ 5431 struct cpufreq_policy policy; 5432 memset(&policy, 0, sizeof(policy)); 5433 cpu = get_cpu(); 5434 cpufreq_get_policy(&policy, cpu); 5435 if (policy.cpuinfo.max_freq) 5436 max_tsc_khz = policy.cpuinfo.max_freq; 5437 put_cpu(); 5438 #endif 5439 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5440 CPUFREQ_TRANSITION_NOTIFIER); 5441 } 5442 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5443 for_each_online_cpu(cpu) 5444 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 5445 5446 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5447 cpu_notifier_register_done(); 5448 5449 } 5450 5451 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5452 5453 int kvm_is_in_guest(void) 5454 { 5455 return __this_cpu_read(current_vcpu) != NULL; 5456 } 5457 5458 static int kvm_is_user_mode(void) 5459 { 5460 int user_mode = 3; 5461 5462 if (__this_cpu_read(current_vcpu)) 5463 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5464 5465 return user_mode != 0; 5466 } 5467 5468 static unsigned long kvm_get_guest_ip(void) 5469 { 5470 unsigned long ip = 0; 5471 5472 if (__this_cpu_read(current_vcpu)) 5473 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5474 5475 return ip; 5476 } 5477 5478 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5479 .is_in_guest = kvm_is_in_guest, 5480 .is_user_mode = kvm_is_user_mode, 5481 .get_guest_ip = kvm_get_guest_ip, 5482 }; 5483 5484 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 5485 { 5486 __this_cpu_write(current_vcpu, vcpu); 5487 } 5488 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 5489 5490 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 5491 { 5492 __this_cpu_write(current_vcpu, NULL); 5493 } 5494 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 5495 5496 static void kvm_set_mmio_spte_mask(void) 5497 { 5498 u64 mask; 5499 int maxphyaddr = boot_cpu_data.x86_phys_bits; 5500 5501 /* 5502 * Set the reserved bits and the present bit of an paging-structure 5503 * entry to generate page fault with PFER.RSV = 1. 5504 */ 5505 /* Mask the reserved physical address bits. */ 5506 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr; 5507 5508 /* Bit 62 is always reserved for 32bit host. */ 5509 mask |= 0x3ull << 62; 5510 5511 /* Set the present bit. */ 5512 mask |= 1ull; 5513 5514 #ifdef CONFIG_X86_64 5515 /* 5516 * If reserved bit is not supported, clear the present bit to disable 5517 * mmio page fault. 5518 */ 5519 if (maxphyaddr == 52) 5520 mask &= ~1ull; 5521 #endif 5522 5523 kvm_mmu_set_mmio_spte_mask(mask); 5524 } 5525 5526 #ifdef CONFIG_X86_64 5527 static void pvclock_gtod_update_fn(struct work_struct *work) 5528 { 5529 struct kvm *kvm; 5530 5531 struct kvm_vcpu *vcpu; 5532 int i; 5533 5534 spin_lock(&kvm_lock); 5535 list_for_each_entry(kvm, &vm_list, vm_list) 5536 kvm_for_each_vcpu(i, vcpu, kvm) 5537 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); 5538 atomic_set(&kvm_guest_has_master_clock, 0); 5539 spin_unlock(&kvm_lock); 5540 } 5541 5542 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 5543 5544 /* 5545 * Notification about pvclock gtod data update. 5546 */ 5547 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 5548 void *priv) 5549 { 5550 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 5551 struct timekeeper *tk = priv; 5552 5553 update_pvclock_gtod(tk); 5554 5555 /* disable master clock if host does not trust, or does not 5556 * use, TSC clocksource 5557 */ 5558 if (gtod->clock.vclock_mode != VCLOCK_TSC && 5559 atomic_read(&kvm_guest_has_master_clock) != 0) 5560 queue_work(system_long_wq, &pvclock_gtod_work); 5561 5562 return 0; 5563 } 5564 5565 static struct notifier_block pvclock_gtod_notifier = { 5566 .notifier_call = pvclock_gtod_notify, 5567 }; 5568 #endif 5569 5570 int kvm_arch_init(void *opaque) 5571 { 5572 int r; 5573 struct kvm_x86_ops *ops = opaque; 5574 5575 if (kvm_x86_ops) { 5576 printk(KERN_ERR "kvm: already loaded the other module\n"); 5577 r = -EEXIST; 5578 goto out; 5579 } 5580 5581 if (!ops->cpu_has_kvm_support()) { 5582 printk(KERN_ERR "kvm: no hardware support\n"); 5583 r = -EOPNOTSUPP; 5584 goto out; 5585 } 5586 if (ops->disabled_by_bios()) { 5587 printk(KERN_ERR "kvm: disabled by bios\n"); 5588 r = -EOPNOTSUPP; 5589 goto out; 5590 } 5591 5592 r = -ENOMEM; 5593 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 5594 if (!shared_msrs) { 5595 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 5596 goto out; 5597 } 5598 5599 r = kvm_mmu_module_init(); 5600 if (r) 5601 goto out_free_percpu; 5602 5603 kvm_set_mmio_spte_mask(); 5604 5605 kvm_x86_ops = ops; 5606 kvm_init_msr_list(); 5607 5608 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 5609 PT_DIRTY_MASK, PT64_NX_MASK, 0); 5610 5611 kvm_timer_init(); 5612 5613 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5614 5615 if (cpu_has_xsave) 5616 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 5617 5618 kvm_lapic_init(); 5619 #ifdef CONFIG_X86_64 5620 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 5621 #endif 5622 5623 return 0; 5624 5625 out_free_percpu: 5626 free_percpu(shared_msrs); 5627 out: 5628 return r; 5629 } 5630 5631 void kvm_arch_exit(void) 5632 { 5633 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5634 5635 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5636 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 5637 CPUFREQ_TRANSITION_NOTIFIER); 5638 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 5639 #ifdef CONFIG_X86_64 5640 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 5641 #endif 5642 kvm_x86_ops = NULL; 5643 kvm_mmu_module_exit(); 5644 free_percpu(shared_msrs); 5645 } 5646 5647 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 5648 { 5649 ++vcpu->stat.halt_exits; 5650 if (irqchip_in_kernel(vcpu->kvm)) { 5651 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 5652 return 1; 5653 } else { 5654 vcpu->run->exit_reason = KVM_EXIT_HLT; 5655 return 0; 5656 } 5657 } 5658 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 5659 5660 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 5661 { 5662 u64 param, ingpa, outgpa, ret; 5663 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 5664 bool fast, longmode; 5665 int cs_db, cs_l; 5666 5667 /* 5668 * hypercall generates UD from non zero cpl and real mode 5669 * per HYPER-V spec 5670 */ 5671 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 5672 kvm_queue_exception(vcpu, UD_VECTOR); 5673 return 0; 5674 } 5675 5676 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5677 longmode = is_long_mode(vcpu) && cs_l == 1; 5678 5679 if (!longmode) { 5680 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 5681 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 5682 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 5683 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 5684 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 5685 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 5686 } 5687 #ifdef CONFIG_X86_64 5688 else { 5689 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 5690 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 5691 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 5692 } 5693 #endif 5694 5695 code = param & 0xffff; 5696 fast = (param >> 16) & 0x1; 5697 rep_cnt = (param >> 32) & 0xfff; 5698 rep_idx = (param >> 48) & 0xfff; 5699 5700 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 5701 5702 switch (code) { 5703 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5704 kvm_vcpu_on_spin(vcpu); 5705 break; 5706 default: 5707 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5708 break; 5709 } 5710 5711 ret = res | (((u64)rep_done & 0xfff) << 32); 5712 if (longmode) { 5713 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5714 } else { 5715 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5716 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5717 } 5718 5719 return 1; 5720 } 5721 5722 /* 5723 * kvm_pv_kick_cpu_op: Kick a vcpu. 5724 * 5725 * @apicid - apicid of vcpu to be kicked. 5726 */ 5727 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 5728 { 5729 struct kvm_lapic_irq lapic_irq; 5730 5731 lapic_irq.shorthand = 0; 5732 lapic_irq.dest_mode = 0; 5733 lapic_irq.dest_id = apicid; 5734 5735 lapic_irq.delivery_mode = APIC_DM_REMRD; 5736 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL); 5737 } 5738 5739 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5740 { 5741 unsigned long nr, a0, a1, a2, a3, ret; 5742 int r = 1; 5743 5744 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5745 return kvm_hv_hypercall(vcpu); 5746 5747 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5748 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5749 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5750 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5751 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5752 5753 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5754 5755 if (!is_long_mode(vcpu)) { 5756 nr &= 0xFFFFFFFF; 5757 a0 &= 0xFFFFFFFF; 5758 a1 &= 0xFFFFFFFF; 5759 a2 &= 0xFFFFFFFF; 5760 a3 &= 0xFFFFFFFF; 5761 } 5762 5763 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5764 ret = -KVM_EPERM; 5765 goto out; 5766 } 5767 5768 switch (nr) { 5769 case KVM_HC_VAPIC_POLL_IRQ: 5770 ret = 0; 5771 break; 5772 case KVM_HC_KICK_CPU: 5773 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 5774 ret = 0; 5775 break; 5776 default: 5777 ret = -KVM_ENOSYS; 5778 break; 5779 } 5780 out: 5781 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5782 ++vcpu->stat.hypercalls; 5783 return r; 5784 } 5785 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5786 5787 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5788 { 5789 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5790 char instruction[3]; 5791 unsigned long rip = kvm_rip_read(vcpu); 5792 5793 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5794 5795 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5796 } 5797 5798 /* 5799 * Check if userspace requested an interrupt window, and that the 5800 * interrupt window is open. 5801 * 5802 * No need to exit to userspace if we already have an interrupt queued. 5803 */ 5804 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5805 { 5806 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5807 vcpu->run->request_interrupt_window && 5808 kvm_arch_interrupt_allowed(vcpu)); 5809 } 5810 5811 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5812 { 5813 struct kvm_run *kvm_run = vcpu->run; 5814 5815 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5816 kvm_run->cr8 = kvm_get_cr8(vcpu); 5817 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5818 if (irqchip_in_kernel(vcpu->kvm)) 5819 kvm_run->ready_for_interrupt_injection = 1; 5820 else 5821 kvm_run->ready_for_interrupt_injection = 5822 kvm_arch_interrupt_allowed(vcpu) && 5823 !kvm_cpu_has_interrupt(vcpu) && 5824 !kvm_event_needs_reinjection(vcpu); 5825 } 5826 5827 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5828 { 5829 int max_irr, tpr; 5830 5831 if (!kvm_x86_ops->update_cr8_intercept) 5832 return; 5833 5834 if (!vcpu->arch.apic) 5835 return; 5836 5837 if (!vcpu->arch.apic->vapic_addr) 5838 max_irr = kvm_lapic_find_highest_irr(vcpu); 5839 else 5840 max_irr = -1; 5841 5842 if (max_irr != -1) 5843 max_irr >>= 4; 5844 5845 tpr = kvm_lapic_get_cr8(vcpu); 5846 5847 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5848 } 5849 5850 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 5851 { 5852 int r; 5853 5854 /* try to reinject previous events if any */ 5855 if (vcpu->arch.exception.pending) { 5856 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5857 vcpu->arch.exception.has_error_code, 5858 vcpu->arch.exception.error_code); 5859 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5860 vcpu->arch.exception.has_error_code, 5861 vcpu->arch.exception.error_code, 5862 vcpu->arch.exception.reinject); 5863 return 0; 5864 } 5865 5866 if (vcpu->arch.nmi_injected) { 5867 kvm_x86_ops->set_nmi(vcpu); 5868 return 0; 5869 } 5870 5871 if (vcpu->arch.interrupt.pending) { 5872 kvm_x86_ops->set_irq(vcpu); 5873 return 0; 5874 } 5875 5876 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 5877 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 5878 if (r != 0) 5879 return r; 5880 } 5881 5882 /* try to inject new event if pending */ 5883 if (vcpu->arch.nmi_pending) { 5884 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5885 --vcpu->arch.nmi_pending; 5886 vcpu->arch.nmi_injected = true; 5887 kvm_x86_ops->set_nmi(vcpu); 5888 } 5889 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 5890 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5891 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5892 false); 5893 kvm_x86_ops->set_irq(vcpu); 5894 } 5895 } 5896 return 0; 5897 } 5898 5899 static void process_nmi(struct kvm_vcpu *vcpu) 5900 { 5901 unsigned limit = 2; 5902 5903 /* 5904 * x86 is limited to one NMI running, and one NMI pending after it. 5905 * If an NMI is already in progress, limit further NMIs to just one. 5906 * Otherwise, allow two (and we'll inject the first one immediately). 5907 */ 5908 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5909 limit = 1; 5910 5911 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5912 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5913 kvm_make_request(KVM_REQ_EVENT, vcpu); 5914 } 5915 5916 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 5917 { 5918 u64 eoi_exit_bitmap[4]; 5919 u32 tmr[8]; 5920 5921 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 5922 return; 5923 5924 memset(eoi_exit_bitmap, 0, 32); 5925 memset(tmr, 0, 32); 5926 5927 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); 5928 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 5929 kvm_apic_update_tmr(vcpu, tmr); 5930 } 5931 5932 /* 5933 * Returns 1 to let __vcpu_run() continue the guest execution loop without 5934 * exiting to the userspace. Otherwise, the value will be returned to the 5935 * userspace. 5936 */ 5937 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5938 { 5939 int r; 5940 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5941 vcpu->run->request_interrupt_window; 5942 bool req_immediate_exit = false; 5943 5944 if (vcpu->requests) { 5945 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5946 kvm_mmu_unload(vcpu); 5947 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5948 __kvm_migrate_timers(vcpu); 5949 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 5950 kvm_gen_update_masterclock(vcpu->kvm); 5951 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 5952 kvm_gen_kvmclock_update(vcpu); 5953 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5954 r = kvm_guest_time_update(vcpu); 5955 if (unlikely(r)) 5956 goto out; 5957 } 5958 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5959 kvm_mmu_sync_roots(vcpu); 5960 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5961 kvm_x86_ops->tlb_flush(vcpu); 5962 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5963 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5964 r = 0; 5965 goto out; 5966 } 5967 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5968 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5969 r = 0; 5970 goto out; 5971 } 5972 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5973 vcpu->fpu_active = 0; 5974 kvm_x86_ops->fpu_deactivate(vcpu); 5975 } 5976 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5977 /* Page is swapped out. Do synthetic halt */ 5978 vcpu->arch.apf.halted = true; 5979 r = 1; 5980 goto out; 5981 } 5982 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5983 record_steal_time(vcpu); 5984 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5985 process_nmi(vcpu); 5986 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5987 kvm_handle_pmu_event(vcpu); 5988 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5989 kvm_deliver_pmi(vcpu); 5990 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 5991 vcpu_scan_ioapic(vcpu); 5992 } 5993 5994 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5995 kvm_apic_accept_events(vcpu); 5996 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 5997 r = 1; 5998 goto out; 5999 } 6000 6001 if (inject_pending_event(vcpu, req_int_win) != 0) 6002 req_immediate_exit = true; 6003 /* enable NMI/IRQ window open exits if needed */ 6004 else if (vcpu->arch.nmi_pending) 6005 kvm_x86_ops->enable_nmi_window(vcpu); 6006 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 6007 kvm_x86_ops->enable_irq_window(vcpu); 6008 6009 if (kvm_lapic_enabled(vcpu)) { 6010 /* 6011 * Update architecture specific hints for APIC 6012 * virtual interrupt delivery. 6013 */ 6014 if (kvm_x86_ops->hwapic_irr_update) 6015 kvm_x86_ops->hwapic_irr_update(vcpu, 6016 kvm_lapic_find_highest_irr(vcpu)); 6017 update_cr8_intercept(vcpu); 6018 kvm_lapic_sync_to_vapic(vcpu); 6019 } 6020 } 6021 6022 r = kvm_mmu_reload(vcpu); 6023 if (unlikely(r)) { 6024 goto cancel_injection; 6025 } 6026 6027 preempt_disable(); 6028 6029 kvm_x86_ops->prepare_guest_switch(vcpu); 6030 if (vcpu->fpu_active) 6031 kvm_load_guest_fpu(vcpu); 6032 kvm_load_guest_xcr0(vcpu); 6033 6034 vcpu->mode = IN_GUEST_MODE; 6035 6036 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6037 6038 /* We should set ->mode before check ->requests, 6039 * see the comment in make_all_cpus_request. 6040 */ 6041 smp_mb__after_srcu_read_unlock(); 6042 6043 local_irq_disable(); 6044 6045 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 6046 || need_resched() || signal_pending(current)) { 6047 vcpu->mode = OUTSIDE_GUEST_MODE; 6048 smp_wmb(); 6049 local_irq_enable(); 6050 preempt_enable(); 6051 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6052 r = 1; 6053 goto cancel_injection; 6054 } 6055 6056 if (req_immediate_exit) 6057 smp_send_reschedule(vcpu->cpu); 6058 6059 kvm_guest_enter(); 6060 6061 if (unlikely(vcpu->arch.switch_db_regs)) { 6062 set_debugreg(0, 7); 6063 set_debugreg(vcpu->arch.eff_db[0], 0); 6064 set_debugreg(vcpu->arch.eff_db[1], 1); 6065 set_debugreg(vcpu->arch.eff_db[2], 2); 6066 set_debugreg(vcpu->arch.eff_db[3], 3); 6067 set_debugreg(vcpu->arch.dr6, 6); 6068 } 6069 6070 trace_kvm_entry(vcpu->vcpu_id); 6071 kvm_x86_ops->run(vcpu); 6072 6073 /* 6074 * Do this here before restoring debug registers on the host. And 6075 * since we do this before handling the vmexit, a DR access vmexit 6076 * can (a) read the correct value of the debug registers, (b) set 6077 * KVM_DEBUGREG_WONT_EXIT again. 6078 */ 6079 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 6080 int i; 6081 6082 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 6083 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 6084 for (i = 0; i < KVM_NR_DB_REGS; i++) 6085 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6086 } 6087 6088 /* 6089 * If the guest has used debug registers, at least dr7 6090 * will be disabled while returning to the host. 6091 * If we don't have active breakpoints in the host, we don't 6092 * care about the messed up debug address registers. But if 6093 * we have some of them active, restore the old state. 6094 */ 6095 if (hw_breakpoint_active()) 6096 hw_breakpoint_restore(); 6097 6098 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, 6099 native_read_tsc()); 6100 6101 vcpu->mode = OUTSIDE_GUEST_MODE; 6102 smp_wmb(); 6103 6104 /* Interrupt is enabled by handle_external_intr() */ 6105 kvm_x86_ops->handle_external_intr(vcpu); 6106 6107 ++vcpu->stat.exits; 6108 6109 /* 6110 * We must have an instruction between local_irq_enable() and 6111 * kvm_guest_exit(), so the timer interrupt isn't delayed by 6112 * the interrupt shadow. The stat.exits increment will do nicely. 6113 * But we need to prevent reordering, hence this barrier(): 6114 */ 6115 barrier(); 6116 6117 kvm_guest_exit(); 6118 6119 preempt_enable(); 6120 6121 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6122 6123 /* 6124 * Profile KVM exit RIPs: 6125 */ 6126 if (unlikely(prof_on == KVM_PROFILING)) { 6127 unsigned long rip = kvm_rip_read(vcpu); 6128 profile_hit(KVM_PROFILING, (void *)rip); 6129 } 6130 6131 if (unlikely(vcpu->arch.tsc_always_catchup)) 6132 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 6133 6134 if (vcpu->arch.apic_attention) 6135 kvm_lapic_sync_from_vapic(vcpu); 6136 6137 r = kvm_x86_ops->handle_exit(vcpu); 6138 return r; 6139 6140 cancel_injection: 6141 kvm_x86_ops->cancel_injection(vcpu); 6142 if (unlikely(vcpu->arch.apic_attention)) 6143 kvm_lapic_sync_from_vapic(vcpu); 6144 out: 6145 return r; 6146 } 6147 6148 6149 static int __vcpu_run(struct kvm_vcpu *vcpu) 6150 { 6151 int r; 6152 struct kvm *kvm = vcpu->kvm; 6153 6154 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6155 6156 r = 1; 6157 while (r > 0) { 6158 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6159 !vcpu->arch.apf.halted) 6160 r = vcpu_enter_guest(vcpu); 6161 else { 6162 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6163 kvm_vcpu_block(vcpu); 6164 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6165 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { 6166 kvm_apic_accept_events(vcpu); 6167 switch(vcpu->arch.mp_state) { 6168 case KVM_MP_STATE_HALTED: 6169 vcpu->arch.pv.pv_unhalted = false; 6170 vcpu->arch.mp_state = 6171 KVM_MP_STATE_RUNNABLE; 6172 case KVM_MP_STATE_RUNNABLE: 6173 vcpu->arch.apf.halted = false; 6174 break; 6175 case KVM_MP_STATE_INIT_RECEIVED: 6176 break; 6177 default: 6178 r = -EINTR; 6179 break; 6180 } 6181 } 6182 } 6183 6184 if (r <= 0) 6185 break; 6186 6187 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 6188 if (kvm_cpu_has_pending_timer(vcpu)) 6189 kvm_inject_pending_timer_irqs(vcpu); 6190 6191 if (dm_request_for_irq_injection(vcpu)) { 6192 r = -EINTR; 6193 vcpu->run->exit_reason = KVM_EXIT_INTR; 6194 ++vcpu->stat.request_irq_exits; 6195 } 6196 6197 kvm_check_async_pf_completion(vcpu); 6198 6199 if (signal_pending(current)) { 6200 r = -EINTR; 6201 vcpu->run->exit_reason = KVM_EXIT_INTR; 6202 ++vcpu->stat.signal_exits; 6203 } 6204 if (need_resched()) { 6205 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6206 cond_resched(); 6207 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 6208 } 6209 } 6210 6211 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 6212 6213 return r; 6214 } 6215 6216 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 6217 { 6218 int r; 6219 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6220 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 6221 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6222 if (r != EMULATE_DONE) 6223 return 0; 6224 return 1; 6225 } 6226 6227 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 6228 { 6229 BUG_ON(!vcpu->arch.pio.count); 6230 6231 return complete_emulated_io(vcpu); 6232 } 6233 6234 /* 6235 * Implements the following, as a state machine: 6236 * 6237 * read: 6238 * for each fragment 6239 * for each mmio piece in the fragment 6240 * write gpa, len 6241 * exit 6242 * copy data 6243 * execute insn 6244 * 6245 * write: 6246 * for each fragment 6247 * for each mmio piece in the fragment 6248 * write gpa, len 6249 * copy data 6250 * exit 6251 */ 6252 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 6253 { 6254 struct kvm_run *run = vcpu->run; 6255 struct kvm_mmio_fragment *frag; 6256 unsigned len; 6257 6258 BUG_ON(!vcpu->mmio_needed); 6259 6260 /* Complete previous fragment */ 6261 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 6262 len = min(8u, frag->len); 6263 if (!vcpu->mmio_is_write) 6264 memcpy(frag->data, run->mmio.data, len); 6265 6266 if (frag->len <= 8) { 6267 /* Switch to the next fragment. */ 6268 frag++; 6269 vcpu->mmio_cur_fragment++; 6270 } else { 6271 /* Go forward to the next mmio piece. */ 6272 frag->data += len; 6273 frag->gpa += len; 6274 frag->len -= len; 6275 } 6276 6277 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 6278 vcpu->mmio_needed = 0; 6279 6280 /* FIXME: return into emulator if single-stepping. */ 6281 if (vcpu->mmio_is_write) 6282 return 1; 6283 vcpu->mmio_read_completed = 1; 6284 return complete_emulated_io(vcpu); 6285 } 6286 6287 run->exit_reason = KVM_EXIT_MMIO; 6288 run->mmio.phys_addr = frag->gpa; 6289 if (vcpu->mmio_is_write) 6290 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 6291 run->mmio.len = min(8u, frag->len); 6292 run->mmio.is_write = vcpu->mmio_is_write; 6293 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 6294 return 0; 6295 } 6296 6297 6298 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 6299 { 6300 int r; 6301 sigset_t sigsaved; 6302 6303 if (!tsk_used_math(current) && init_fpu(current)) 6304 return -ENOMEM; 6305 6306 if (vcpu->sigset_active) 6307 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 6308 6309 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 6310 kvm_vcpu_block(vcpu); 6311 kvm_apic_accept_events(vcpu); 6312 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 6313 r = -EAGAIN; 6314 goto out; 6315 } 6316 6317 /* re-sync apic's tpr */ 6318 if (!irqchip_in_kernel(vcpu->kvm)) { 6319 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 6320 r = -EINVAL; 6321 goto out; 6322 } 6323 } 6324 6325 if (unlikely(vcpu->arch.complete_userspace_io)) { 6326 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 6327 vcpu->arch.complete_userspace_io = NULL; 6328 r = cui(vcpu); 6329 if (r <= 0) 6330 goto out; 6331 } else 6332 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 6333 6334 r = __vcpu_run(vcpu); 6335 6336 out: 6337 post_kvm_run_save(vcpu); 6338 if (vcpu->sigset_active) 6339 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 6340 6341 return r; 6342 } 6343 6344 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6345 { 6346 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 6347 /* 6348 * We are here if userspace calls get_regs() in the middle of 6349 * instruction emulation. Registers state needs to be copied 6350 * back from emulation context to vcpu. Userspace shouldn't do 6351 * that usually, but some bad designed PV devices (vmware 6352 * backdoor interface) need this to work 6353 */ 6354 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 6355 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6356 } 6357 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 6358 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 6359 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 6360 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 6361 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 6362 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 6363 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 6364 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 6365 #ifdef CONFIG_X86_64 6366 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 6367 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 6368 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 6369 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 6370 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 6371 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 6372 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 6373 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 6374 #endif 6375 6376 regs->rip = kvm_rip_read(vcpu); 6377 regs->rflags = kvm_get_rflags(vcpu); 6378 6379 return 0; 6380 } 6381 6382 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 6383 { 6384 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 6385 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 6386 6387 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 6388 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 6389 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 6390 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 6391 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 6392 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 6393 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 6394 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 6395 #ifdef CONFIG_X86_64 6396 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 6397 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 6398 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 6399 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 6400 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 6401 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 6402 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 6403 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 6404 #endif 6405 6406 kvm_rip_write(vcpu, regs->rip); 6407 kvm_set_rflags(vcpu, regs->rflags); 6408 6409 vcpu->arch.exception.pending = false; 6410 6411 kvm_make_request(KVM_REQ_EVENT, vcpu); 6412 6413 return 0; 6414 } 6415 6416 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 6417 { 6418 struct kvm_segment cs; 6419 6420 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6421 *db = cs.db; 6422 *l = cs.l; 6423 } 6424 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 6425 6426 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 6427 struct kvm_sregs *sregs) 6428 { 6429 struct desc_ptr dt; 6430 6431 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6432 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6433 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6434 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6435 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6436 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6437 6438 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6439 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6440 6441 kvm_x86_ops->get_idt(vcpu, &dt); 6442 sregs->idt.limit = dt.size; 6443 sregs->idt.base = dt.address; 6444 kvm_x86_ops->get_gdt(vcpu, &dt); 6445 sregs->gdt.limit = dt.size; 6446 sregs->gdt.base = dt.address; 6447 6448 sregs->cr0 = kvm_read_cr0(vcpu); 6449 sregs->cr2 = vcpu->arch.cr2; 6450 sregs->cr3 = kvm_read_cr3(vcpu); 6451 sregs->cr4 = kvm_read_cr4(vcpu); 6452 sregs->cr8 = kvm_get_cr8(vcpu); 6453 sregs->efer = vcpu->arch.efer; 6454 sregs->apic_base = kvm_get_apic_base(vcpu); 6455 6456 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 6457 6458 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 6459 set_bit(vcpu->arch.interrupt.nr, 6460 (unsigned long *)sregs->interrupt_bitmap); 6461 6462 return 0; 6463 } 6464 6465 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 6466 struct kvm_mp_state *mp_state) 6467 { 6468 kvm_apic_accept_events(vcpu); 6469 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 6470 vcpu->arch.pv.pv_unhalted) 6471 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 6472 else 6473 mp_state->mp_state = vcpu->arch.mp_state; 6474 6475 return 0; 6476 } 6477 6478 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 6479 struct kvm_mp_state *mp_state) 6480 { 6481 if (!kvm_vcpu_has_lapic(vcpu) && 6482 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 6483 return -EINVAL; 6484 6485 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 6486 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 6487 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 6488 } else 6489 vcpu->arch.mp_state = mp_state->mp_state; 6490 kvm_make_request(KVM_REQ_EVENT, vcpu); 6491 return 0; 6492 } 6493 6494 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 6495 int reason, bool has_error_code, u32 error_code) 6496 { 6497 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6498 int ret; 6499 6500 init_emulate_ctxt(vcpu); 6501 6502 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 6503 has_error_code, error_code); 6504 6505 if (ret) 6506 return EMULATE_FAIL; 6507 6508 kvm_rip_write(vcpu, ctxt->eip); 6509 kvm_set_rflags(vcpu, ctxt->eflags); 6510 kvm_make_request(KVM_REQ_EVENT, vcpu); 6511 return EMULATE_DONE; 6512 } 6513 EXPORT_SYMBOL_GPL(kvm_task_switch); 6514 6515 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 6516 struct kvm_sregs *sregs) 6517 { 6518 struct msr_data apic_base_msr; 6519 int mmu_reset_needed = 0; 6520 int pending_vec, max_bits, idx; 6521 struct desc_ptr dt; 6522 6523 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 6524 return -EINVAL; 6525 6526 dt.size = sregs->idt.limit; 6527 dt.address = sregs->idt.base; 6528 kvm_x86_ops->set_idt(vcpu, &dt); 6529 dt.size = sregs->gdt.limit; 6530 dt.address = sregs->gdt.base; 6531 kvm_x86_ops->set_gdt(vcpu, &dt); 6532 6533 vcpu->arch.cr2 = sregs->cr2; 6534 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 6535 vcpu->arch.cr3 = sregs->cr3; 6536 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 6537 6538 kvm_set_cr8(vcpu, sregs->cr8); 6539 6540 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 6541 kvm_x86_ops->set_efer(vcpu, sregs->efer); 6542 apic_base_msr.data = sregs->apic_base; 6543 apic_base_msr.host_initiated = true; 6544 kvm_set_apic_base(vcpu, &apic_base_msr); 6545 6546 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 6547 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 6548 vcpu->arch.cr0 = sregs->cr0; 6549 6550 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 6551 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 6552 if (sregs->cr4 & X86_CR4_OSXSAVE) 6553 kvm_update_cpuid(vcpu); 6554 6555 idx = srcu_read_lock(&vcpu->kvm->srcu); 6556 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 6557 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 6558 mmu_reset_needed = 1; 6559 } 6560 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6561 6562 if (mmu_reset_needed) 6563 kvm_mmu_reset_context(vcpu); 6564 6565 max_bits = KVM_NR_INTERRUPTS; 6566 pending_vec = find_first_bit( 6567 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 6568 if (pending_vec < max_bits) { 6569 kvm_queue_interrupt(vcpu, pending_vec, false); 6570 pr_debug("Set back pending irq %d\n", pending_vec); 6571 } 6572 6573 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 6574 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 6575 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 6576 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 6577 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 6578 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 6579 6580 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 6581 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 6582 6583 update_cr8_intercept(vcpu); 6584 6585 /* Older userspace won't unhalt the vcpu on reset. */ 6586 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 6587 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 6588 !is_protmode(vcpu)) 6589 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6590 6591 kvm_make_request(KVM_REQ_EVENT, vcpu); 6592 6593 return 0; 6594 } 6595 6596 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 6597 struct kvm_guest_debug *dbg) 6598 { 6599 unsigned long rflags; 6600 int i, r; 6601 6602 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 6603 r = -EBUSY; 6604 if (vcpu->arch.exception.pending) 6605 goto out; 6606 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 6607 kvm_queue_exception(vcpu, DB_VECTOR); 6608 else 6609 kvm_queue_exception(vcpu, BP_VECTOR); 6610 } 6611 6612 /* 6613 * Read rflags as long as potentially injected trace flags are still 6614 * filtered out. 6615 */ 6616 rflags = kvm_get_rflags(vcpu); 6617 6618 vcpu->guest_debug = dbg->control; 6619 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 6620 vcpu->guest_debug = 0; 6621 6622 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 6623 for (i = 0; i < KVM_NR_DB_REGS; ++i) 6624 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 6625 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 6626 } else { 6627 for (i = 0; i < KVM_NR_DB_REGS; i++) 6628 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 6629 } 6630 kvm_update_dr7(vcpu); 6631 6632 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6633 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 6634 get_segment_base(vcpu, VCPU_SREG_CS); 6635 6636 /* 6637 * Trigger an rflags update that will inject or remove the trace 6638 * flags. 6639 */ 6640 kvm_set_rflags(vcpu, rflags); 6641 6642 kvm_x86_ops->update_db_bp_intercept(vcpu); 6643 6644 r = 0; 6645 6646 out: 6647 6648 return r; 6649 } 6650 6651 /* 6652 * Translate a guest virtual address to a guest physical address. 6653 */ 6654 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 6655 struct kvm_translation *tr) 6656 { 6657 unsigned long vaddr = tr->linear_address; 6658 gpa_t gpa; 6659 int idx; 6660 6661 idx = srcu_read_lock(&vcpu->kvm->srcu); 6662 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 6663 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6664 tr->physical_address = gpa; 6665 tr->valid = gpa != UNMAPPED_GVA; 6666 tr->writeable = 1; 6667 tr->usermode = 0; 6668 6669 return 0; 6670 } 6671 6672 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6673 { 6674 struct i387_fxsave_struct *fxsave = 6675 &vcpu->arch.guest_fpu.state->fxsave; 6676 6677 memcpy(fpu->fpr, fxsave->st_space, 128); 6678 fpu->fcw = fxsave->cwd; 6679 fpu->fsw = fxsave->swd; 6680 fpu->ftwx = fxsave->twd; 6681 fpu->last_opcode = fxsave->fop; 6682 fpu->last_ip = fxsave->rip; 6683 fpu->last_dp = fxsave->rdp; 6684 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 6685 6686 return 0; 6687 } 6688 6689 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 6690 { 6691 struct i387_fxsave_struct *fxsave = 6692 &vcpu->arch.guest_fpu.state->fxsave; 6693 6694 memcpy(fxsave->st_space, fpu->fpr, 128); 6695 fxsave->cwd = fpu->fcw; 6696 fxsave->swd = fpu->fsw; 6697 fxsave->twd = fpu->ftwx; 6698 fxsave->fop = fpu->last_opcode; 6699 fxsave->rip = fpu->last_ip; 6700 fxsave->rdp = fpu->last_dp; 6701 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 6702 6703 return 0; 6704 } 6705 6706 int fx_init(struct kvm_vcpu *vcpu) 6707 { 6708 int err; 6709 6710 err = fpu_alloc(&vcpu->arch.guest_fpu); 6711 if (err) 6712 return err; 6713 6714 fpu_finit(&vcpu->arch.guest_fpu); 6715 6716 /* 6717 * Ensure guest xcr0 is valid for loading 6718 */ 6719 vcpu->arch.xcr0 = XSTATE_FP; 6720 6721 vcpu->arch.cr0 |= X86_CR0_ET; 6722 6723 return 0; 6724 } 6725 EXPORT_SYMBOL_GPL(fx_init); 6726 6727 static void fx_free(struct kvm_vcpu *vcpu) 6728 { 6729 fpu_free(&vcpu->arch.guest_fpu); 6730 } 6731 6732 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 6733 { 6734 if (vcpu->guest_fpu_loaded) 6735 return; 6736 6737 /* 6738 * Restore all possible states in the guest, 6739 * and assume host would use all available bits. 6740 * Guest xcr0 would be loaded later. 6741 */ 6742 kvm_put_guest_xcr0(vcpu); 6743 vcpu->guest_fpu_loaded = 1; 6744 __kernel_fpu_begin(); 6745 fpu_restore_checking(&vcpu->arch.guest_fpu); 6746 trace_kvm_fpu(1); 6747 } 6748 6749 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 6750 { 6751 kvm_put_guest_xcr0(vcpu); 6752 6753 if (!vcpu->guest_fpu_loaded) 6754 return; 6755 6756 vcpu->guest_fpu_loaded = 0; 6757 fpu_save_init(&vcpu->arch.guest_fpu); 6758 __kernel_fpu_end(); 6759 ++vcpu->stat.fpu_reload; 6760 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 6761 trace_kvm_fpu(0); 6762 } 6763 6764 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 6765 { 6766 kvmclock_reset(vcpu); 6767 6768 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 6769 fx_free(vcpu); 6770 kvm_x86_ops->vcpu_free(vcpu); 6771 } 6772 6773 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 6774 unsigned int id) 6775 { 6776 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6777 printk_once(KERN_WARNING 6778 "kvm: SMP vm created on host with unstable TSC; " 6779 "guest TSC will not be reliable\n"); 6780 return kvm_x86_ops->vcpu_create(kvm, id); 6781 } 6782 6783 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6784 { 6785 int r; 6786 6787 vcpu->arch.mtrr_state.have_fixed = 1; 6788 r = vcpu_load(vcpu); 6789 if (r) 6790 return r; 6791 kvm_vcpu_reset(vcpu); 6792 kvm_mmu_setup(vcpu); 6793 vcpu_put(vcpu); 6794 6795 return r; 6796 } 6797 6798 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 6799 { 6800 int r; 6801 struct msr_data msr; 6802 struct kvm *kvm = vcpu->kvm; 6803 6804 r = vcpu_load(vcpu); 6805 if (r) 6806 return r; 6807 msr.data = 0x0; 6808 msr.index = MSR_IA32_TSC; 6809 msr.host_initiated = true; 6810 kvm_write_tsc(vcpu, &msr); 6811 vcpu_put(vcpu); 6812 6813 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 6814 KVMCLOCK_SYNC_PERIOD); 6815 6816 return r; 6817 } 6818 6819 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6820 { 6821 int r; 6822 vcpu->arch.apf.msr_val = 0; 6823 6824 r = vcpu_load(vcpu); 6825 BUG_ON(r); 6826 kvm_mmu_unload(vcpu); 6827 vcpu_put(vcpu); 6828 6829 fx_free(vcpu); 6830 kvm_x86_ops->vcpu_free(vcpu); 6831 } 6832 6833 void kvm_vcpu_reset(struct kvm_vcpu *vcpu) 6834 { 6835 atomic_set(&vcpu->arch.nmi_queued, 0); 6836 vcpu->arch.nmi_pending = 0; 6837 vcpu->arch.nmi_injected = false; 6838 6839 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6840 vcpu->arch.dr6 = DR6_FIXED_1; 6841 kvm_update_dr6(vcpu); 6842 vcpu->arch.dr7 = DR7_FIXED_1; 6843 kvm_update_dr7(vcpu); 6844 6845 kvm_make_request(KVM_REQ_EVENT, vcpu); 6846 vcpu->arch.apf.msr_val = 0; 6847 vcpu->arch.st.msr_val = 0; 6848 6849 kvmclock_reset(vcpu); 6850 6851 kvm_clear_async_pf_completion_queue(vcpu); 6852 kvm_async_pf_hash_reset(vcpu); 6853 vcpu->arch.apf.halted = false; 6854 6855 kvm_pmu_reset(vcpu); 6856 6857 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 6858 vcpu->arch.regs_avail = ~0; 6859 vcpu->arch.regs_dirty = ~0; 6860 6861 kvm_x86_ops->vcpu_reset(vcpu); 6862 } 6863 6864 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) 6865 { 6866 struct kvm_segment cs; 6867 6868 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 6869 cs.selector = vector << 8; 6870 cs.base = vector << 12; 6871 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6872 kvm_rip_write(vcpu, 0); 6873 } 6874 6875 int kvm_arch_hardware_enable(void *garbage) 6876 { 6877 struct kvm *kvm; 6878 struct kvm_vcpu *vcpu; 6879 int i; 6880 int ret; 6881 u64 local_tsc; 6882 u64 max_tsc = 0; 6883 bool stable, backwards_tsc = false; 6884 6885 kvm_shared_msr_cpu_online(); 6886 ret = kvm_x86_ops->hardware_enable(garbage); 6887 if (ret != 0) 6888 return ret; 6889 6890 local_tsc = native_read_tsc(); 6891 stable = !check_tsc_unstable(); 6892 list_for_each_entry(kvm, &vm_list, vm_list) { 6893 kvm_for_each_vcpu(i, vcpu, kvm) { 6894 if (!stable && vcpu->cpu == smp_processor_id()) 6895 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6896 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6897 backwards_tsc = true; 6898 if (vcpu->arch.last_host_tsc > max_tsc) 6899 max_tsc = vcpu->arch.last_host_tsc; 6900 } 6901 } 6902 } 6903 6904 /* 6905 * Sometimes, even reliable TSCs go backwards. This happens on 6906 * platforms that reset TSC during suspend or hibernate actions, but 6907 * maintain synchronization. We must compensate. Fortunately, we can 6908 * detect that condition here, which happens early in CPU bringup, 6909 * before any KVM threads can be running. Unfortunately, we can't 6910 * bring the TSCs fully up to date with real time, as we aren't yet far 6911 * enough into CPU bringup that we know how much real time has actually 6912 * elapsed; our helper function, get_kernel_ns() will be using boot 6913 * variables that haven't been updated yet. 6914 * 6915 * So we simply find the maximum observed TSC above, then record the 6916 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6917 * the adjustment will be applied. Note that we accumulate 6918 * adjustments, in case multiple suspend cycles happen before some VCPU 6919 * gets a chance to run again. In the event that no KVM threads get a 6920 * chance to run, we will miss the entire elapsed period, as we'll have 6921 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6922 * loose cycle time. This isn't too big a deal, since the loss will be 6923 * uniform across all VCPUs (not to mention the scenario is extremely 6924 * unlikely). It is possible that a second hibernate recovery happens 6925 * much faster than a first, causing the observed TSC here to be 6926 * smaller; this would require additional padding adjustment, which is 6927 * why we set last_host_tsc to the local tsc observed here. 6928 * 6929 * N.B. - this code below runs only on platforms with reliable TSC, 6930 * as that is the only way backwards_tsc is set above. Also note 6931 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6932 * have the same delta_cyc adjustment applied if backwards_tsc 6933 * is detected. Note further, this adjustment is only done once, 6934 * as we reset last_host_tsc on all VCPUs to stop this from being 6935 * called multiple times (one for each physical CPU bringup). 6936 * 6937 * Platforms with unreliable TSCs don't have to deal with this, they 6938 * will be compensated by the logic in vcpu_load, which sets the TSC to 6939 * catchup mode. This will catchup all VCPUs to real time, but cannot 6940 * guarantee that they stay in perfect synchronization. 6941 */ 6942 if (backwards_tsc) { 6943 u64 delta_cyc = max_tsc - local_tsc; 6944 backwards_tsc_observed = true; 6945 list_for_each_entry(kvm, &vm_list, vm_list) { 6946 kvm_for_each_vcpu(i, vcpu, kvm) { 6947 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6948 vcpu->arch.last_host_tsc = local_tsc; 6949 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, 6950 &vcpu->requests); 6951 } 6952 6953 /* 6954 * We have to disable TSC offset matching.. if you were 6955 * booting a VM while issuing an S4 host suspend.... 6956 * you may have some problem. Solving this issue is 6957 * left as an exercise to the reader. 6958 */ 6959 kvm->arch.last_tsc_nsec = 0; 6960 kvm->arch.last_tsc_write = 0; 6961 } 6962 6963 } 6964 return 0; 6965 } 6966 6967 void kvm_arch_hardware_disable(void *garbage) 6968 { 6969 kvm_x86_ops->hardware_disable(garbage); 6970 drop_user_return_notifiers(garbage); 6971 } 6972 6973 int kvm_arch_hardware_setup(void) 6974 { 6975 return kvm_x86_ops->hardware_setup(); 6976 } 6977 6978 void kvm_arch_hardware_unsetup(void) 6979 { 6980 kvm_x86_ops->hardware_unsetup(); 6981 } 6982 6983 void kvm_arch_check_processor_compat(void *rtn) 6984 { 6985 kvm_x86_ops->check_processor_compatibility(rtn); 6986 } 6987 6988 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6989 { 6990 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6991 } 6992 6993 struct static_key kvm_no_apic_vcpu __read_mostly; 6994 6995 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6996 { 6997 struct page *page; 6998 struct kvm *kvm; 6999 int r; 7000 7001 BUG_ON(vcpu->kvm == NULL); 7002 kvm = vcpu->kvm; 7003 7004 vcpu->arch.pv.pv_unhalted = false; 7005 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 7006 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 7007 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7008 else 7009 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 7010 7011 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 7012 if (!page) { 7013 r = -ENOMEM; 7014 goto fail; 7015 } 7016 vcpu->arch.pio_data = page_address(page); 7017 7018 kvm_set_tsc_khz(vcpu, max_tsc_khz); 7019 7020 r = kvm_mmu_create(vcpu); 7021 if (r < 0) 7022 goto fail_free_pio_data; 7023 7024 if (irqchip_in_kernel(kvm)) { 7025 r = kvm_create_lapic(vcpu); 7026 if (r < 0) 7027 goto fail_mmu_destroy; 7028 } else 7029 static_key_slow_inc(&kvm_no_apic_vcpu); 7030 7031 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 7032 GFP_KERNEL); 7033 if (!vcpu->arch.mce_banks) { 7034 r = -ENOMEM; 7035 goto fail_free_lapic; 7036 } 7037 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 7038 7039 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 7040 r = -ENOMEM; 7041 goto fail_free_mce_banks; 7042 } 7043 7044 r = fx_init(vcpu); 7045 if (r) 7046 goto fail_free_wbinvd_dirty_mask; 7047 7048 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 7049 vcpu->arch.pv_time_enabled = false; 7050 7051 vcpu->arch.guest_supported_xcr0 = 0; 7052 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 7053 7054 kvm_async_pf_hash_reset(vcpu); 7055 kvm_pmu_init(vcpu); 7056 7057 return 0; 7058 fail_free_wbinvd_dirty_mask: 7059 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 7060 fail_free_mce_banks: 7061 kfree(vcpu->arch.mce_banks); 7062 fail_free_lapic: 7063 kvm_free_lapic(vcpu); 7064 fail_mmu_destroy: 7065 kvm_mmu_destroy(vcpu); 7066 fail_free_pio_data: 7067 free_page((unsigned long)vcpu->arch.pio_data); 7068 fail: 7069 return r; 7070 } 7071 7072 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 7073 { 7074 int idx; 7075 7076 kvm_pmu_destroy(vcpu); 7077 kfree(vcpu->arch.mce_banks); 7078 kvm_free_lapic(vcpu); 7079 idx = srcu_read_lock(&vcpu->kvm->srcu); 7080 kvm_mmu_destroy(vcpu); 7081 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7082 free_page((unsigned long)vcpu->arch.pio_data); 7083 if (!irqchip_in_kernel(vcpu->kvm)) 7084 static_key_slow_dec(&kvm_no_apic_vcpu); 7085 } 7086 7087 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 7088 { 7089 if (type) 7090 return -EINVAL; 7091 7092 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 7093 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 7094 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 7095 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 7096 7097 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 7098 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 7099 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 7100 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 7101 &kvm->arch.irq_sources_bitmap); 7102 7103 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 7104 mutex_init(&kvm->arch.apic_map_lock); 7105 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 7106 7107 pvclock_update_vm_gtod_copy(kvm); 7108 7109 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 7110 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 7111 7112 return 0; 7113 } 7114 7115 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 7116 { 7117 int r; 7118 r = vcpu_load(vcpu); 7119 BUG_ON(r); 7120 kvm_mmu_unload(vcpu); 7121 vcpu_put(vcpu); 7122 } 7123 7124 static void kvm_free_vcpus(struct kvm *kvm) 7125 { 7126 unsigned int i; 7127 struct kvm_vcpu *vcpu; 7128 7129 /* 7130 * Unpin any mmu pages first. 7131 */ 7132 kvm_for_each_vcpu(i, vcpu, kvm) { 7133 kvm_clear_async_pf_completion_queue(vcpu); 7134 kvm_unload_vcpu_mmu(vcpu); 7135 } 7136 kvm_for_each_vcpu(i, vcpu, kvm) 7137 kvm_arch_vcpu_free(vcpu); 7138 7139 mutex_lock(&kvm->lock); 7140 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 7141 kvm->vcpus[i] = NULL; 7142 7143 atomic_set(&kvm->online_vcpus, 0); 7144 mutex_unlock(&kvm->lock); 7145 } 7146 7147 void kvm_arch_sync_events(struct kvm *kvm) 7148 { 7149 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 7150 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 7151 kvm_free_all_assigned_devices(kvm); 7152 kvm_free_pit(kvm); 7153 } 7154 7155 void kvm_arch_destroy_vm(struct kvm *kvm) 7156 { 7157 if (current->mm == kvm->mm) { 7158 /* 7159 * Free memory regions allocated on behalf of userspace, 7160 * unless the the memory map has changed due to process exit 7161 * or fd copying. 7162 */ 7163 struct kvm_userspace_memory_region mem; 7164 memset(&mem, 0, sizeof(mem)); 7165 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; 7166 kvm_set_memory_region(kvm, &mem); 7167 7168 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; 7169 kvm_set_memory_region(kvm, &mem); 7170 7171 mem.slot = TSS_PRIVATE_MEMSLOT; 7172 kvm_set_memory_region(kvm, &mem); 7173 } 7174 kvm_iommu_unmap_guest(kvm); 7175 kfree(kvm->arch.vpic); 7176 kfree(kvm->arch.vioapic); 7177 kvm_free_vcpus(kvm); 7178 if (kvm->arch.apic_access_page) 7179 put_page(kvm->arch.apic_access_page); 7180 if (kvm->arch.ept_identity_pagetable) 7181 put_page(kvm->arch.ept_identity_pagetable); 7182 kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 7183 } 7184 7185 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 7186 struct kvm_memory_slot *dont) 7187 { 7188 int i; 7189 7190 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7191 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 7192 kvm_kvfree(free->arch.rmap[i]); 7193 free->arch.rmap[i] = NULL; 7194 } 7195 if (i == 0) 7196 continue; 7197 7198 if (!dont || free->arch.lpage_info[i - 1] != 7199 dont->arch.lpage_info[i - 1]) { 7200 kvm_kvfree(free->arch.lpage_info[i - 1]); 7201 free->arch.lpage_info[i - 1] = NULL; 7202 } 7203 } 7204 } 7205 7206 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 7207 unsigned long npages) 7208 { 7209 int i; 7210 7211 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7212 unsigned long ugfn; 7213 int lpages; 7214 int level = i + 1; 7215 7216 lpages = gfn_to_index(slot->base_gfn + npages - 1, 7217 slot->base_gfn, level) + 1; 7218 7219 slot->arch.rmap[i] = 7220 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); 7221 if (!slot->arch.rmap[i]) 7222 goto out_free; 7223 if (i == 0) 7224 continue; 7225 7226 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * 7227 sizeof(*slot->arch.lpage_info[i - 1])); 7228 if (!slot->arch.lpage_info[i - 1]) 7229 goto out_free; 7230 7231 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 7232 slot->arch.lpage_info[i - 1][0].write_count = 1; 7233 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 7234 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; 7235 ugfn = slot->userspace_addr >> PAGE_SHIFT; 7236 /* 7237 * If the gfn and userspace address are not aligned wrt each 7238 * other, or if explicitly asked to, disable large page 7239 * support for this slot 7240 */ 7241 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 7242 !kvm_largepages_enabled()) { 7243 unsigned long j; 7244 7245 for (j = 0; j < lpages; ++j) 7246 slot->arch.lpage_info[i - 1][j].write_count = 1; 7247 } 7248 } 7249 7250 return 0; 7251 7252 out_free: 7253 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 7254 kvm_kvfree(slot->arch.rmap[i]); 7255 slot->arch.rmap[i] = NULL; 7256 if (i == 0) 7257 continue; 7258 7259 kvm_kvfree(slot->arch.lpage_info[i - 1]); 7260 slot->arch.lpage_info[i - 1] = NULL; 7261 } 7262 return -ENOMEM; 7263 } 7264 7265 void kvm_arch_memslots_updated(struct kvm *kvm) 7266 { 7267 /* 7268 * memslots->generation has been incremented. 7269 * mmio generation may have reached its maximum value. 7270 */ 7271 kvm_mmu_invalidate_mmio_sptes(kvm); 7272 } 7273 7274 int kvm_arch_prepare_memory_region(struct kvm *kvm, 7275 struct kvm_memory_slot *memslot, 7276 struct kvm_userspace_memory_region *mem, 7277 enum kvm_mr_change change) 7278 { 7279 /* 7280 * Only private memory slots need to be mapped here since 7281 * KVM_SET_MEMORY_REGION ioctl is no longer supported. 7282 */ 7283 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { 7284 unsigned long userspace_addr; 7285 7286 /* 7287 * MAP_SHARED to prevent internal slot pages from being moved 7288 * by fork()/COW. 7289 */ 7290 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, 7291 PROT_READ | PROT_WRITE, 7292 MAP_SHARED | MAP_ANONYMOUS, 0); 7293 7294 if (IS_ERR((void *)userspace_addr)) 7295 return PTR_ERR((void *)userspace_addr); 7296 7297 memslot->userspace_addr = userspace_addr; 7298 } 7299 7300 return 0; 7301 } 7302 7303 void kvm_arch_commit_memory_region(struct kvm *kvm, 7304 struct kvm_userspace_memory_region *mem, 7305 const struct kvm_memory_slot *old, 7306 enum kvm_mr_change change) 7307 { 7308 7309 int nr_mmu_pages = 0; 7310 7311 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { 7312 int ret; 7313 7314 ret = vm_munmap(old->userspace_addr, 7315 old->npages * PAGE_SIZE); 7316 if (ret < 0) 7317 printk(KERN_WARNING 7318 "kvm_vm_ioctl_set_memory_region: " 7319 "failed to munmap memory\n"); 7320 } 7321 7322 if (!kvm->arch.n_requested_mmu_pages) 7323 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 7324 7325 if (nr_mmu_pages) 7326 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 7327 /* 7328 * Write protect all pages for dirty logging. 7329 * 7330 * All the sptes including the large sptes which point to this 7331 * slot are set to readonly. We can not create any new large 7332 * spte on this slot until the end of the logging. 7333 * 7334 * See the comments in fast_page_fault(). 7335 */ 7336 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) 7337 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 7338 } 7339 7340 void kvm_arch_flush_shadow_all(struct kvm *kvm) 7341 { 7342 kvm_mmu_invalidate_zap_all_pages(kvm); 7343 } 7344 7345 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 7346 struct kvm_memory_slot *slot) 7347 { 7348 kvm_mmu_invalidate_zap_all_pages(kvm); 7349 } 7350 7351 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 7352 { 7353 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 7354 kvm_x86_ops->check_nested_events(vcpu, false); 7355 7356 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7357 !vcpu->arch.apf.halted) 7358 || !list_empty_careful(&vcpu->async_pf.done) 7359 || kvm_apic_has_events(vcpu) 7360 || vcpu->arch.pv.pv_unhalted 7361 || atomic_read(&vcpu->arch.nmi_queued) || 7362 (kvm_arch_interrupt_allowed(vcpu) && 7363 kvm_cpu_has_interrupt(vcpu)); 7364 } 7365 7366 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 7367 { 7368 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 7369 } 7370 7371 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 7372 { 7373 return kvm_x86_ops->interrupt_allowed(vcpu); 7374 } 7375 7376 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 7377 { 7378 unsigned long current_rip = kvm_rip_read(vcpu) + 7379 get_segment_base(vcpu, VCPU_SREG_CS); 7380 7381 return current_rip == linear_rip; 7382 } 7383 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 7384 7385 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 7386 { 7387 unsigned long rflags; 7388 7389 rflags = kvm_x86_ops->get_rflags(vcpu); 7390 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7391 rflags &= ~X86_EFLAGS_TF; 7392 return rflags; 7393 } 7394 EXPORT_SYMBOL_GPL(kvm_get_rflags); 7395 7396 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 7397 { 7398 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 7399 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 7400 rflags |= X86_EFLAGS_TF; 7401 kvm_x86_ops->set_rflags(vcpu, rflags); 7402 kvm_make_request(KVM_REQ_EVENT, vcpu); 7403 } 7404 EXPORT_SYMBOL_GPL(kvm_set_rflags); 7405 7406 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 7407 { 7408 int r; 7409 7410 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 7411 work->wakeup_all) 7412 return; 7413 7414 r = kvm_mmu_reload(vcpu); 7415 if (unlikely(r)) 7416 return; 7417 7418 if (!vcpu->arch.mmu.direct_map && 7419 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 7420 return; 7421 7422 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 7423 } 7424 7425 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 7426 { 7427 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 7428 } 7429 7430 static inline u32 kvm_async_pf_next_probe(u32 key) 7431 { 7432 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 7433 } 7434 7435 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7436 { 7437 u32 key = kvm_async_pf_hash_fn(gfn); 7438 7439 while (vcpu->arch.apf.gfns[key] != ~0) 7440 key = kvm_async_pf_next_probe(key); 7441 7442 vcpu->arch.apf.gfns[key] = gfn; 7443 } 7444 7445 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 7446 { 7447 int i; 7448 u32 key = kvm_async_pf_hash_fn(gfn); 7449 7450 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 7451 (vcpu->arch.apf.gfns[key] != gfn && 7452 vcpu->arch.apf.gfns[key] != ~0); i++) 7453 key = kvm_async_pf_next_probe(key); 7454 7455 return key; 7456 } 7457 7458 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7459 { 7460 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 7461 } 7462 7463 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 7464 { 7465 u32 i, j, k; 7466 7467 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 7468 while (true) { 7469 vcpu->arch.apf.gfns[i] = ~0; 7470 do { 7471 j = kvm_async_pf_next_probe(j); 7472 if (vcpu->arch.apf.gfns[j] == ~0) 7473 return; 7474 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 7475 /* 7476 * k lies cyclically in ]i,j] 7477 * | i.k.j | 7478 * |....j i.k.| or |.k..j i...| 7479 */ 7480 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 7481 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 7482 i = j; 7483 } 7484 } 7485 7486 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 7487 { 7488 7489 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 7490 sizeof(val)); 7491 } 7492 7493 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 7494 struct kvm_async_pf *work) 7495 { 7496 struct x86_exception fault; 7497 7498 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 7499 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 7500 7501 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 7502 (vcpu->arch.apf.send_user_only && 7503 kvm_x86_ops->get_cpl(vcpu) == 0)) 7504 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 7505 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 7506 fault.vector = PF_VECTOR; 7507 fault.error_code_valid = true; 7508 fault.error_code = 0; 7509 fault.nested_page_fault = false; 7510 fault.address = work->arch.token; 7511 kvm_inject_page_fault(vcpu, &fault); 7512 } 7513 } 7514 7515 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 7516 struct kvm_async_pf *work) 7517 { 7518 struct x86_exception fault; 7519 7520 trace_kvm_async_pf_ready(work->arch.token, work->gva); 7521 if (work->wakeup_all) 7522 work->arch.token = ~0; /* broadcast wakeup */ 7523 else 7524 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 7525 7526 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 7527 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 7528 fault.vector = PF_VECTOR; 7529 fault.error_code_valid = true; 7530 fault.error_code = 0; 7531 fault.nested_page_fault = false; 7532 fault.address = work->arch.token; 7533 kvm_inject_page_fault(vcpu, &fault); 7534 } 7535 vcpu->arch.apf.halted = false; 7536 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7537 } 7538 7539 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 7540 { 7541 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 7542 return true; 7543 else 7544 return !kvm_event_needs_reinjection(vcpu) && 7545 kvm_x86_ops->interrupt_allowed(vcpu); 7546 } 7547 7548 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 7549 { 7550 atomic_inc(&kvm->arch.noncoherent_dma_count); 7551 } 7552 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 7553 7554 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 7555 { 7556 atomic_dec(&kvm->arch.noncoherent_dma_count); 7557 } 7558 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 7559 7560 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 7561 { 7562 return atomic_read(&kvm->arch.noncoherent_dma_count); 7563 } 7564 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 7565 7566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 7567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 7568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 7569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 7570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 7571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 7572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 7573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 7574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 7575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 7576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 7577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 7578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 7579