xref: /linux/arch/x86/kvm/x86.c (revision 5a48b7433a5aee719ab242d2feadaf4c9e065989)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87 
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92 
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94 
95 #define emul_to_vcpu(ctxt) \
96 	((struct kvm_vcpu *)(ctxt)->vcpu)
97 
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108 
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110 
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112 
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114 
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117 
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126 
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129 
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131 
132 #define KVM_X86_OP(func)					     \
133 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
134 				*(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140 
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143 
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147 
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153 
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166 
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170 
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179 
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182 
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186 
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189 
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192 
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197 
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200 
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207 
208 struct kvm_user_return_msrs {
209 	struct user_return_notifier urn;
210 	bool registered;
211 	struct kvm_user_return_msr_values {
212 		u64 host;
213 		u64 curr;
214 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216 
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221 
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226 
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229 
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232 
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235 
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240 
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242 	KVM_GENERIC_VM_STATS(),
243 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244 	STATS_DESC_COUNTER(VM, mmu_pte_write),
245 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246 	STATS_DESC_COUNTER(VM, mmu_flooded),
247 	STATS_DESC_COUNTER(VM, mmu_recycled),
248 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
249 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
250 	STATS_DESC_ICOUNTER(VM, pages_4k),
251 	STATS_DESC_ICOUNTER(VM, pages_2m),
252 	STATS_DESC_ICOUNTER(VM, pages_1g),
253 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257 
258 const struct kvm_stats_header kvm_vm_stats_header = {
259 	.name_size = KVM_STATS_NAME_SIZE,
260 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261 	.id_offset = sizeof(struct kvm_stats_header),
262 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264 		       sizeof(kvm_vm_stats_desc),
265 };
266 
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268 	KVM_GENERIC_VCPU_STATS(),
269 	STATS_DESC_COUNTER(VCPU, pf_fixed),
270 	STATS_DESC_COUNTER(VCPU, pf_guest),
271 	STATS_DESC_COUNTER(VCPU, tlb_flush),
272 	STATS_DESC_COUNTER(VCPU, invlpg),
273 	STATS_DESC_COUNTER(VCPU, exits),
274 	STATS_DESC_COUNTER(VCPU, io_exits),
275 	STATS_DESC_COUNTER(VCPU, mmio_exits),
276 	STATS_DESC_COUNTER(VCPU, signal_exits),
277 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
278 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
279 	STATS_DESC_COUNTER(VCPU, l1d_flush),
280 	STATS_DESC_COUNTER(VCPU, halt_exits),
281 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
282 	STATS_DESC_COUNTER(VCPU, irq_exits),
283 	STATS_DESC_COUNTER(VCPU, host_state_reload),
284 	STATS_DESC_COUNTER(VCPU, fpu_reload),
285 	STATS_DESC_COUNTER(VCPU, insn_emulation),
286 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
287 	STATS_DESC_COUNTER(VCPU, hypercalls),
288 	STATS_DESC_COUNTER(VCPU, irq_injections),
289 	STATS_DESC_COUNTER(VCPU, nmi_injections),
290 	STATS_DESC_COUNTER(VCPU, req_event),
291 	STATS_DESC_COUNTER(VCPU, nested_run),
292 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
293 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
294 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
295 };
296 
297 const struct kvm_stats_header kvm_vcpu_stats_header = {
298 	.name_size = KVM_STATS_NAME_SIZE,
299 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
300 	.id_offset = sizeof(struct kvm_stats_header),
301 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
302 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
303 		       sizeof(kvm_vcpu_stats_desc),
304 };
305 
306 u64 __read_mostly host_xcr0;
307 u64 __read_mostly supported_xcr0;
308 EXPORT_SYMBOL_GPL(supported_xcr0);
309 
310 static struct kmem_cache *x86_emulator_cache;
311 
312 /*
313  * When called, it means the previous get/set msr reached an invalid msr.
314  * Return true if we want to ignore/silent this failed msr access.
315  */
316 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
317 {
318 	const char *op = write ? "wrmsr" : "rdmsr";
319 
320 	if (ignore_msrs) {
321 		if (report_ignored_msrs)
322 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
323 				      op, msr, data);
324 		/* Mask the error */
325 		return true;
326 	} else {
327 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
328 				      op, msr, data);
329 		return false;
330 	}
331 }
332 
333 static struct kmem_cache *kvm_alloc_emulator_cache(void)
334 {
335 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
336 	unsigned int size = sizeof(struct x86_emulate_ctxt);
337 
338 	return kmem_cache_create_usercopy("x86_emulator", size,
339 					  __alignof__(struct x86_emulate_ctxt),
340 					  SLAB_ACCOUNT, useroffset,
341 					  size - useroffset, NULL);
342 }
343 
344 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
345 
346 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
347 {
348 	int i;
349 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
350 		vcpu->arch.apf.gfns[i] = ~0;
351 }
352 
353 static void kvm_on_user_return(struct user_return_notifier *urn)
354 {
355 	unsigned slot;
356 	struct kvm_user_return_msrs *msrs
357 		= container_of(urn, struct kvm_user_return_msrs, urn);
358 	struct kvm_user_return_msr_values *values;
359 	unsigned long flags;
360 
361 	/*
362 	 * Disabling irqs at this point since the following code could be
363 	 * interrupted and executed through kvm_arch_hardware_disable()
364 	 */
365 	local_irq_save(flags);
366 	if (msrs->registered) {
367 		msrs->registered = false;
368 		user_return_notifier_unregister(urn);
369 	}
370 	local_irq_restore(flags);
371 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
372 		values = &msrs->values[slot];
373 		if (values->host != values->curr) {
374 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
375 			values->curr = values->host;
376 		}
377 	}
378 }
379 
380 static int kvm_probe_user_return_msr(u32 msr)
381 {
382 	u64 val;
383 	int ret;
384 
385 	preempt_disable();
386 	ret = rdmsrl_safe(msr, &val);
387 	if (ret)
388 		goto out;
389 	ret = wrmsrl_safe(msr, val);
390 out:
391 	preempt_enable();
392 	return ret;
393 }
394 
395 int kvm_add_user_return_msr(u32 msr)
396 {
397 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
398 
399 	if (kvm_probe_user_return_msr(msr))
400 		return -1;
401 
402 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
403 	return kvm_nr_uret_msrs++;
404 }
405 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
406 
407 int kvm_find_user_return_msr(u32 msr)
408 {
409 	int i;
410 
411 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
412 		if (kvm_uret_msrs_list[i] == msr)
413 			return i;
414 	}
415 	return -1;
416 }
417 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
418 
419 static void kvm_user_return_msr_cpu_online(void)
420 {
421 	unsigned int cpu = smp_processor_id();
422 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
423 	u64 value;
424 	int i;
425 
426 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
427 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
428 		msrs->values[i].host = value;
429 		msrs->values[i].curr = value;
430 	}
431 }
432 
433 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
434 {
435 	unsigned int cpu = smp_processor_id();
436 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
437 	int err;
438 
439 	value = (value & mask) | (msrs->values[slot].host & ~mask);
440 	if (value == msrs->values[slot].curr)
441 		return 0;
442 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
443 	if (err)
444 		return 1;
445 
446 	msrs->values[slot].curr = value;
447 	if (!msrs->registered) {
448 		msrs->urn.on_user_return = kvm_on_user_return;
449 		user_return_notifier_register(&msrs->urn);
450 		msrs->registered = true;
451 	}
452 	return 0;
453 }
454 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
455 
456 static void drop_user_return_notifiers(void)
457 {
458 	unsigned int cpu = smp_processor_id();
459 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
460 
461 	if (msrs->registered)
462 		kvm_on_user_return(&msrs->urn);
463 }
464 
465 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
466 {
467 	return vcpu->arch.apic_base;
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
470 
471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
472 {
473 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
476 
477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
478 {
479 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
480 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
481 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
482 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
483 
484 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
485 		return 1;
486 	if (!msr_info->host_initiated) {
487 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
488 			return 1;
489 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
490 			return 1;
491 	}
492 
493 	kvm_lapic_set_base(vcpu, msr_info->data);
494 	kvm_recalculate_apic_map(vcpu->kvm);
495 	return 0;
496 }
497 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
498 
499 /*
500  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
501  *
502  * Hardware virtualization extension instructions may fault if a reboot turns
503  * off virtualization while processes are running.  Usually after catching the
504  * fault we just panic; during reboot instead the instruction is ignored.
505  */
506 noinstr void kvm_spurious_fault(void)
507 {
508 	/* Fault while not rebooting.  We want the trace. */
509 	BUG_ON(!kvm_rebooting);
510 }
511 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
512 
513 #define EXCPT_BENIGN		0
514 #define EXCPT_CONTRIBUTORY	1
515 #define EXCPT_PF		2
516 
517 static int exception_class(int vector)
518 {
519 	switch (vector) {
520 	case PF_VECTOR:
521 		return EXCPT_PF;
522 	case DE_VECTOR:
523 	case TS_VECTOR:
524 	case NP_VECTOR:
525 	case SS_VECTOR:
526 	case GP_VECTOR:
527 		return EXCPT_CONTRIBUTORY;
528 	default:
529 		break;
530 	}
531 	return EXCPT_BENIGN;
532 }
533 
534 #define EXCPT_FAULT		0
535 #define EXCPT_TRAP		1
536 #define EXCPT_ABORT		2
537 #define EXCPT_INTERRUPT		3
538 
539 static int exception_type(int vector)
540 {
541 	unsigned int mask;
542 
543 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
544 		return EXCPT_INTERRUPT;
545 
546 	mask = 1 << vector;
547 
548 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
549 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
550 		return EXCPT_TRAP;
551 
552 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
553 		return EXCPT_ABORT;
554 
555 	/* Reserved exceptions will result in fault */
556 	return EXCPT_FAULT;
557 }
558 
559 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
560 {
561 	unsigned nr = vcpu->arch.exception.nr;
562 	bool has_payload = vcpu->arch.exception.has_payload;
563 	unsigned long payload = vcpu->arch.exception.payload;
564 
565 	if (!has_payload)
566 		return;
567 
568 	switch (nr) {
569 	case DB_VECTOR:
570 		/*
571 		 * "Certain debug exceptions may clear bit 0-3.  The
572 		 * remaining contents of the DR6 register are never
573 		 * cleared by the processor".
574 		 */
575 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
576 		/*
577 		 * In order to reflect the #DB exception payload in guest
578 		 * dr6, three components need to be considered: active low
579 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
580 		 * DR6_BS and DR6_BT)
581 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
582 		 * In the target guest dr6:
583 		 * FIXED_1 bits should always be set.
584 		 * Active low bits should be cleared if 1-setting in payload.
585 		 * Active high bits should be set if 1-setting in payload.
586 		 *
587 		 * Note, the payload is compatible with the pending debug
588 		 * exceptions/exit qualification under VMX, that active_low bits
589 		 * are active high in payload.
590 		 * So they need to be flipped for DR6.
591 		 */
592 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
593 		vcpu->arch.dr6 |= payload;
594 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
595 
596 		/*
597 		 * The #DB payload is defined as compatible with the 'pending
598 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
599 		 * defined in the 'pending debug exceptions' field (enabled
600 		 * breakpoint), it is reserved and must be zero in DR6.
601 		 */
602 		vcpu->arch.dr6 &= ~BIT(12);
603 		break;
604 	case PF_VECTOR:
605 		vcpu->arch.cr2 = payload;
606 		break;
607 	}
608 
609 	vcpu->arch.exception.has_payload = false;
610 	vcpu->arch.exception.payload = 0;
611 }
612 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
613 
614 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
615 		unsigned nr, bool has_error, u32 error_code,
616 	        bool has_payload, unsigned long payload, bool reinject)
617 {
618 	u32 prev_nr;
619 	int class1, class2;
620 
621 	kvm_make_request(KVM_REQ_EVENT, vcpu);
622 
623 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
624 	queue:
625 		if (reinject) {
626 			/*
627 			 * On vmentry, vcpu->arch.exception.pending is only
628 			 * true if an event injection was blocked by
629 			 * nested_run_pending.  In that case, however,
630 			 * vcpu_enter_guest requests an immediate exit,
631 			 * and the guest shouldn't proceed far enough to
632 			 * need reinjection.
633 			 */
634 			WARN_ON_ONCE(vcpu->arch.exception.pending);
635 			vcpu->arch.exception.injected = true;
636 			if (WARN_ON_ONCE(has_payload)) {
637 				/*
638 				 * A reinjected event has already
639 				 * delivered its payload.
640 				 */
641 				has_payload = false;
642 				payload = 0;
643 			}
644 		} else {
645 			vcpu->arch.exception.pending = true;
646 			vcpu->arch.exception.injected = false;
647 		}
648 		vcpu->arch.exception.has_error_code = has_error;
649 		vcpu->arch.exception.nr = nr;
650 		vcpu->arch.exception.error_code = error_code;
651 		vcpu->arch.exception.has_payload = has_payload;
652 		vcpu->arch.exception.payload = payload;
653 		if (!is_guest_mode(vcpu))
654 			kvm_deliver_exception_payload(vcpu);
655 		return;
656 	}
657 
658 	/* to check exception */
659 	prev_nr = vcpu->arch.exception.nr;
660 	if (prev_nr == DF_VECTOR) {
661 		/* triple fault -> shutdown */
662 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
663 		return;
664 	}
665 	class1 = exception_class(prev_nr);
666 	class2 = exception_class(nr);
667 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
668 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
669 		/*
670 		 * Generate double fault per SDM Table 5-5.  Set
671 		 * exception.pending = true so that the double fault
672 		 * can trigger a nested vmexit.
673 		 */
674 		vcpu->arch.exception.pending = true;
675 		vcpu->arch.exception.injected = false;
676 		vcpu->arch.exception.has_error_code = true;
677 		vcpu->arch.exception.nr = DF_VECTOR;
678 		vcpu->arch.exception.error_code = 0;
679 		vcpu->arch.exception.has_payload = false;
680 		vcpu->arch.exception.payload = 0;
681 	} else
682 		/* replace previous exception with a new one in a hope
683 		   that instruction re-execution will regenerate lost
684 		   exception */
685 		goto queue;
686 }
687 
688 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
689 {
690 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
691 }
692 EXPORT_SYMBOL_GPL(kvm_queue_exception);
693 
694 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
695 {
696 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
697 }
698 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
699 
700 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
701 			   unsigned long payload)
702 {
703 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
704 }
705 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
706 
707 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
708 				    u32 error_code, unsigned long payload)
709 {
710 	kvm_multiple_exception(vcpu, nr, true, error_code,
711 			       true, payload, false);
712 }
713 
714 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
715 {
716 	if (err)
717 		kvm_inject_gp(vcpu, 0);
718 	else
719 		return kvm_skip_emulated_instruction(vcpu);
720 
721 	return 1;
722 }
723 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
724 
725 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
726 {
727 	if (err) {
728 		kvm_inject_gp(vcpu, 0);
729 		return 1;
730 	}
731 
732 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
733 				       EMULTYPE_COMPLETE_USER_EXIT);
734 }
735 
736 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
737 {
738 	++vcpu->stat.pf_guest;
739 	vcpu->arch.exception.nested_apf =
740 		is_guest_mode(vcpu) && fault->async_page_fault;
741 	if (vcpu->arch.exception.nested_apf) {
742 		vcpu->arch.apf.nested_apf_token = fault->address;
743 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
744 	} else {
745 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
746 					fault->address);
747 	}
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
750 
751 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
752 				    struct x86_exception *fault)
753 {
754 	struct kvm_mmu *fault_mmu;
755 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
756 
757 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
758 					       vcpu->arch.walk_mmu;
759 
760 	/*
761 	 * Invalidate the TLB entry for the faulting address, if it exists,
762 	 * else the access will fault indefinitely (and to emulate hardware).
763 	 */
764 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
765 	    !(fault->error_code & PFERR_RSVD_MASK))
766 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
767 				       fault_mmu->root.hpa);
768 
769 	fault_mmu->inject_page_fault(vcpu, fault);
770 	return fault->nested_page_fault;
771 }
772 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
773 
774 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
775 {
776 	atomic_inc(&vcpu->arch.nmi_queued);
777 	kvm_make_request(KVM_REQ_NMI, vcpu);
778 }
779 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
780 
781 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
782 {
783 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
784 }
785 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
786 
787 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
788 {
789 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
790 }
791 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
792 
793 /*
794  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
795  * a #GP and return false.
796  */
797 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
798 {
799 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
800 		return true;
801 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
802 	return false;
803 }
804 EXPORT_SYMBOL_GPL(kvm_require_cpl);
805 
806 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
807 {
808 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
809 		return true;
810 
811 	kvm_queue_exception(vcpu, UD_VECTOR);
812 	return false;
813 }
814 EXPORT_SYMBOL_GPL(kvm_require_dr);
815 
816 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
817 {
818 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
819 }
820 
821 /*
822  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
823  */
824 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
825 {
826 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
827 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828 	gpa_t real_gpa;
829 	int i;
830 	int ret;
831 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832 
833 	/*
834 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
835 	 * to an L1 GPA.
836 	 */
837 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
838 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
839 	if (real_gpa == UNMAPPED_GVA)
840 		return 0;
841 
842 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
843 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
844 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
845 	if (ret < 0)
846 		return 0;
847 
848 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
849 		if ((pdpte[i] & PT_PRESENT_MASK) &&
850 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
851 			return 0;
852 		}
853 	}
854 
855 	/*
856 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
857 	 * Shadow page roots need to be reconstructed instead.
858 	 */
859 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
860 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
861 
862 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
863 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
864 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
865 	vcpu->arch.pdptrs_from_userspace = false;
866 
867 	return 1;
868 }
869 EXPORT_SYMBOL_GPL(load_pdptrs);
870 
871 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
872 {
873 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874 		kvm_clear_async_pf_completion_queue(vcpu);
875 		kvm_async_pf_hash_reset(vcpu);
876 
877 		/*
878 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
879 		 * perspective.
880 		 */
881 		if (!(cr0 & X86_CR0_PG))
882 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
883 	}
884 
885 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
886 		kvm_mmu_reset_context(vcpu);
887 
888 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
889 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
890 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
891 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
892 }
893 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
894 
895 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
896 {
897 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
898 
899 	cr0 |= X86_CR0_ET;
900 
901 #ifdef CONFIG_X86_64
902 	if (cr0 & 0xffffffff00000000UL)
903 		return 1;
904 #endif
905 
906 	cr0 &= ~CR0_RESERVED_BITS;
907 
908 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
909 		return 1;
910 
911 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
912 		return 1;
913 
914 #ifdef CONFIG_X86_64
915 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
916 	    (cr0 & X86_CR0_PG)) {
917 		int cs_db, cs_l;
918 
919 		if (!is_pae(vcpu))
920 			return 1;
921 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
922 		if (cs_l)
923 			return 1;
924 	}
925 #endif
926 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
927 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
928 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
929 		return 1;
930 
931 	if (!(cr0 & X86_CR0_PG) &&
932 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
933 		return 1;
934 
935 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
936 
937 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
938 
939 	return 0;
940 }
941 EXPORT_SYMBOL_GPL(kvm_set_cr0);
942 
943 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
944 {
945 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
946 }
947 EXPORT_SYMBOL_GPL(kvm_lmsw);
948 
949 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
950 {
951 	if (vcpu->arch.guest_state_protected)
952 		return;
953 
954 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
955 
956 		if (vcpu->arch.xcr0 != host_xcr0)
957 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
958 
959 		if (vcpu->arch.xsaves_enabled &&
960 		    vcpu->arch.ia32_xss != host_xss)
961 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
962 	}
963 
964 	if (static_cpu_has(X86_FEATURE_PKU) &&
965 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
966 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
967 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
968 		write_pkru(vcpu->arch.pkru);
969 }
970 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
971 
972 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
973 {
974 	if (vcpu->arch.guest_state_protected)
975 		return;
976 
977 	if (static_cpu_has(X86_FEATURE_PKU) &&
978 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
979 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
980 		vcpu->arch.pkru = rdpkru();
981 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
982 			write_pkru(vcpu->arch.host_pkru);
983 	}
984 
985 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
986 
987 		if (vcpu->arch.xcr0 != host_xcr0)
988 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
989 
990 		if (vcpu->arch.xsaves_enabled &&
991 		    vcpu->arch.ia32_xss != host_xss)
992 			wrmsrl(MSR_IA32_XSS, host_xss);
993 	}
994 
995 }
996 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
997 
998 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
999 {
1000 	return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1001 }
1002 
1003 #ifdef CONFIG_X86_64
1004 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1005 {
1006 	return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1007 }
1008 #endif
1009 
1010 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1011 {
1012 	u64 xcr0 = xcr;
1013 	u64 old_xcr0 = vcpu->arch.xcr0;
1014 	u64 valid_bits;
1015 
1016 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1017 	if (index != XCR_XFEATURE_ENABLED_MASK)
1018 		return 1;
1019 	if (!(xcr0 & XFEATURE_MASK_FP))
1020 		return 1;
1021 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1022 		return 1;
1023 
1024 	/*
1025 	 * Do not allow the guest to set bits that we do not support
1026 	 * saving.  However, xcr0 bit 0 is always set, even if the
1027 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1028 	 */
1029 	valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1030 	if (xcr0 & ~valid_bits)
1031 		return 1;
1032 
1033 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1034 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1035 		return 1;
1036 
1037 	if (xcr0 & XFEATURE_MASK_AVX512) {
1038 		if (!(xcr0 & XFEATURE_MASK_YMM))
1039 			return 1;
1040 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1041 			return 1;
1042 	}
1043 
1044 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1045 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1046 		return 1;
1047 
1048 	vcpu->arch.xcr0 = xcr0;
1049 
1050 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1051 		kvm_update_cpuid_runtime(vcpu);
1052 	return 0;
1053 }
1054 
1055 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1056 {
1057 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1058 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1059 		kvm_inject_gp(vcpu, 0);
1060 		return 1;
1061 	}
1062 
1063 	return kvm_skip_emulated_instruction(vcpu);
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1066 
1067 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1068 {
1069 	if (cr4 & cr4_reserved_bits)
1070 		return false;
1071 
1072 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1073 		return false;
1074 
1075 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1078 
1079 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1080 {
1081 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1082 		kvm_mmu_reset_context(vcpu);
1083 
1084 	/*
1085 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1086 	 * according to the SDM; however, stale prev_roots could be reused
1087 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1088 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1089 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1090 	 * so fall through.
1091 	 */
1092 	if (!tdp_enabled &&
1093 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1094 		kvm_mmu_unload(vcpu);
1095 
1096 	/*
1097 	 * The TLB has to be flushed for all PCIDs if any of the following
1098 	 * (architecturally required) changes happen:
1099 	 * - CR4.PCIDE is changed from 1 to 0
1100 	 * - CR4.PGE is toggled
1101 	 *
1102 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1103 	 */
1104 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1105 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1106 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1107 
1108 	/*
1109 	 * The TLB has to be flushed for the current PCID if any of the
1110 	 * following (architecturally required) changes happen:
1111 	 * - CR4.SMEP is changed from 0 to 1
1112 	 * - CR4.PAE is toggled
1113 	 */
1114 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1115 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1116 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1117 
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1120 
1121 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1122 {
1123 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1124 
1125 	if (!kvm_is_valid_cr4(vcpu, cr4))
1126 		return 1;
1127 
1128 	if (is_long_mode(vcpu)) {
1129 		if (!(cr4 & X86_CR4_PAE))
1130 			return 1;
1131 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1132 			return 1;
1133 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1134 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1135 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1136 		return 1;
1137 
1138 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1139 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1140 			return 1;
1141 
1142 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1143 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1144 			return 1;
1145 	}
1146 
1147 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1148 
1149 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1154 
1155 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1156 {
1157 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1158 	unsigned long roots_to_free = 0;
1159 	int i;
1160 
1161 	/*
1162 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1163 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1164 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1165 	 * the invalidation, but the guest's TLB entries need to be flushed as
1166 	 * the CPU may have cached entries in its TLB for the target PCID.
1167 	 */
1168 	if (unlikely(tdp_enabled)) {
1169 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1170 		return;
1171 	}
1172 
1173 	/*
1174 	 * If neither the current CR3 nor any of the prev_roots use the given
1175 	 * PCID, then nothing needs to be done here because a resync will
1176 	 * happen anyway before switching to any other CR3.
1177 	 */
1178 	if (kvm_get_active_pcid(vcpu) == pcid) {
1179 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1180 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1181 	}
1182 
1183 	/*
1184 	 * If PCID is disabled, there is no need to free prev_roots even if the
1185 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1186 	 * with PCIDE=0.
1187 	 */
1188 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1189 		return;
1190 
1191 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1192 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1193 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1194 
1195 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1196 }
1197 
1198 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1199 {
1200 	bool skip_tlb_flush = false;
1201 	unsigned long pcid = 0;
1202 #ifdef CONFIG_X86_64
1203 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1204 
1205 	if (pcid_enabled) {
1206 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1207 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1208 		pcid = cr3 & X86_CR3_PCID_MASK;
1209 	}
1210 #endif
1211 
1212 	/* PDPTRs are always reloaded for PAE paging. */
1213 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1214 		goto handle_tlb_flush;
1215 
1216 	/*
1217 	 * Do not condition the GPA check on long mode, this helper is used to
1218 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1219 	 * the current vCPU mode is accurate.
1220 	 */
1221 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1222 		return 1;
1223 
1224 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1225 		return 1;
1226 
1227 	if (cr3 != kvm_read_cr3(vcpu))
1228 		kvm_mmu_new_pgd(vcpu, cr3);
1229 
1230 	vcpu->arch.cr3 = cr3;
1231 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1232 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1233 
1234 handle_tlb_flush:
1235 	/*
1236 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1237 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1238 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1239 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1240 	 * i.e. only PCID=0 can be relevant.
1241 	 */
1242 	if (!skip_tlb_flush)
1243 		kvm_invalidate_pcid(vcpu, pcid);
1244 
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1248 
1249 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1250 {
1251 	if (cr8 & CR8_RESERVED_BITS)
1252 		return 1;
1253 	if (lapic_in_kernel(vcpu))
1254 		kvm_lapic_set_tpr(vcpu, cr8);
1255 	else
1256 		vcpu->arch.cr8 = cr8;
1257 	return 0;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1260 
1261 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1262 {
1263 	if (lapic_in_kernel(vcpu))
1264 		return kvm_lapic_get_cr8(vcpu);
1265 	else
1266 		return vcpu->arch.cr8;
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1269 
1270 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1271 {
1272 	int i;
1273 
1274 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1275 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1276 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1277 	}
1278 }
1279 
1280 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1281 {
1282 	unsigned long dr7;
1283 
1284 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1285 		dr7 = vcpu->arch.guest_debug_dr7;
1286 	else
1287 		dr7 = vcpu->arch.dr7;
1288 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1289 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1290 	if (dr7 & DR7_BP_EN_MASK)
1291 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1294 
1295 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1296 {
1297 	u64 fixed = DR6_FIXED_1;
1298 
1299 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1300 		fixed |= DR6_RTM;
1301 
1302 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1303 		fixed |= DR6_BUS_LOCK;
1304 	return fixed;
1305 }
1306 
1307 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1308 {
1309 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1310 
1311 	switch (dr) {
1312 	case 0 ... 3:
1313 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1314 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1315 			vcpu->arch.eff_db[dr] = val;
1316 		break;
1317 	case 4:
1318 	case 6:
1319 		if (!kvm_dr6_valid(val))
1320 			return 1; /* #GP */
1321 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1322 		break;
1323 	case 5:
1324 	default: /* 7 */
1325 		if (!kvm_dr7_valid(val))
1326 			return 1; /* #GP */
1327 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1328 		kvm_update_dr7(vcpu);
1329 		break;
1330 	}
1331 
1332 	return 0;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_set_dr);
1335 
1336 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1337 {
1338 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1339 
1340 	switch (dr) {
1341 	case 0 ... 3:
1342 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1343 		break;
1344 	case 4:
1345 	case 6:
1346 		*val = vcpu->arch.dr6;
1347 		break;
1348 	case 5:
1349 	default: /* 7 */
1350 		*val = vcpu->arch.dr7;
1351 		break;
1352 	}
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_get_dr);
1355 
1356 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1357 {
1358 	u32 ecx = kvm_rcx_read(vcpu);
1359 	u64 data;
1360 
1361 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1362 		kvm_inject_gp(vcpu, 0);
1363 		return 1;
1364 	}
1365 
1366 	kvm_rax_write(vcpu, (u32)data);
1367 	kvm_rdx_write(vcpu, data >> 32);
1368 	return kvm_skip_emulated_instruction(vcpu);
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1371 
1372 /*
1373  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1374  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1375  *
1376  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1377  * extract the supported MSRs from the related const lists.
1378  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1379  * capabilities of the host cpu. This capabilities test skips MSRs that are
1380  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1381  * may depend on host virtualization features rather than host cpu features.
1382  */
1383 
1384 static const u32 msrs_to_save_all[] = {
1385 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1386 	MSR_STAR,
1387 #ifdef CONFIG_X86_64
1388 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1389 #endif
1390 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1391 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1392 	MSR_IA32_SPEC_CTRL,
1393 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1394 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1395 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1396 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1397 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1398 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1399 	MSR_IA32_UMWAIT_CONTROL,
1400 
1401 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1402 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1403 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1404 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1405 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1406 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1407 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1408 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1409 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1410 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1411 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1412 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1413 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1414 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1415 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1416 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1417 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1418 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1419 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1420 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1421 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1422 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1423 
1424 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1425 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1426 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1427 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1428 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1429 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1430 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1431 };
1432 
1433 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1434 static unsigned num_msrs_to_save;
1435 
1436 static const u32 emulated_msrs_all[] = {
1437 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1438 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1439 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1440 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1441 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1442 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1443 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1444 	HV_X64_MSR_RESET,
1445 	HV_X64_MSR_VP_INDEX,
1446 	HV_X64_MSR_VP_RUNTIME,
1447 	HV_X64_MSR_SCONTROL,
1448 	HV_X64_MSR_STIMER0_CONFIG,
1449 	HV_X64_MSR_VP_ASSIST_PAGE,
1450 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1451 	HV_X64_MSR_TSC_EMULATION_STATUS,
1452 	HV_X64_MSR_SYNDBG_OPTIONS,
1453 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1454 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1455 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1456 
1457 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1458 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1459 
1460 	MSR_IA32_TSC_ADJUST,
1461 	MSR_IA32_TSC_DEADLINE,
1462 	MSR_IA32_ARCH_CAPABILITIES,
1463 	MSR_IA32_PERF_CAPABILITIES,
1464 	MSR_IA32_MISC_ENABLE,
1465 	MSR_IA32_MCG_STATUS,
1466 	MSR_IA32_MCG_CTL,
1467 	MSR_IA32_MCG_EXT_CTL,
1468 	MSR_IA32_SMBASE,
1469 	MSR_SMI_COUNT,
1470 	MSR_PLATFORM_INFO,
1471 	MSR_MISC_FEATURES_ENABLES,
1472 	MSR_AMD64_VIRT_SPEC_CTRL,
1473 	MSR_AMD64_TSC_RATIO,
1474 	MSR_IA32_POWER_CTL,
1475 	MSR_IA32_UCODE_REV,
1476 
1477 	/*
1478 	 * The following list leaves out MSRs whose values are determined
1479 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1480 	 * We always support the "true" VMX control MSRs, even if the host
1481 	 * processor does not, so I am putting these registers here rather
1482 	 * than in msrs_to_save_all.
1483 	 */
1484 	MSR_IA32_VMX_BASIC,
1485 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1486 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1487 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1488 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1489 	MSR_IA32_VMX_MISC,
1490 	MSR_IA32_VMX_CR0_FIXED0,
1491 	MSR_IA32_VMX_CR4_FIXED0,
1492 	MSR_IA32_VMX_VMCS_ENUM,
1493 	MSR_IA32_VMX_PROCBASED_CTLS2,
1494 	MSR_IA32_VMX_EPT_VPID_CAP,
1495 	MSR_IA32_VMX_VMFUNC,
1496 
1497 	MSR_K7_HWCR,
1498 	MSR_KVM_POLL_CONTROL,
1499 };
1500 
1501 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1502 static unsigned num_emulated_msrs;
1503 
1504 /*
1505  * List of msr numbers which are used to expose MSR-based features that
1506  * can be used by a hypervisor to validate requested CPU features.
1507  */
1508 static const u32 msr_based_features_all[] = {
1509 	MSR_IA32_VMX_BASIC,
1510 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1511 	MSR_IA32_VMX_PINBASED_CTLS,
1512 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1513 	MSR_IA32_VMX_PROCBASED_CTLS,
1514 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1515 	MSR_IA32_VMX_EXIT_CTLS,
1516 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1517 	MSR_IA32_VMX_ENTRY_CTLS,
1518 	MSR_IA32_VMX_MISC,
1519 	MSR_IA32_VMX_CR0_FIXED0,
1520 	MSR_IA32_VMX_CR0_FIXED1,
1521 	MSR_IA32_VMX_CR4_FIXED0,
1522 	MSR_IA32_VMX_CR4_FIXED1,
1523 	MSR_IA32_VMX_VMCS_ENUM,
1524 	MSR_IA32_VMX_PROCBASED_CTLS2,
1525 	MSR_IA32_VMX_EPT_VPID_CAP,
1526 	MSR_IA32_VMX_VMFUNC,
1527 
1528 	MSR_F10H_DECFG,
1529 	MSR_IA32_UCODE_REV,
1530 	MSR_IA32_ARCH_CAPABILITIES,
1531 	MSR_IA32_PERF_CAPABILITIES,
1532 };
1533 
1534 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1535 static unsigned int num_msr_based_features;
1536 
1537 static u64 kvm_get_arch_capabilities(void)
1538 {
1539 	u64 data = 0;
1540 
1541 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1542 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1543 
1544 	/*
1545 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1546 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1547 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1548 	 * L1 guests, so it need not worry about its own (L2) guests.
1549 	 */
1550 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1551 
1552 	/*
1553 	 * If we're doing cache flushes (either "always" or "cond")
1554 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1555 	 * If an outer hypervisor is doing the cache flush for us
1556 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1557 	 * capability to the guest too, and if EPT is disabled we're not
1558 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1559 	 * require a nested hypervisor to do a flush of its own.
1560 	 */
1561 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1562 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1563 
1564 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1565 		data |= ARCH_CAP_RDCL_NO;
1566 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1567 		data |= ARCH_CAP_SSB_NO;
1568 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1569 		data |= ARCH_CAP_MDS_NO;
1570 
1571 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1572 		/*
1573 		 * If RTM=0 because the kernel has disabled TSX, the host might
1574 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1575 		 * and therefore knows that there cannot be TAA) but keep
1576 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1577 		 * and we want to allow migrating those guests to tsx=off hosts.
1578 		 */
1579 		data &= ~ARCH_CAP_TAA_NO;
1580 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1581 		data |= ARCH_CAP_TAA_NO;
1582 	} else {
1583 		/*
1584 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1585 		 * host so the guest can choose between disabling TSX or
1586 		 * using VERW to clear CPU buffers.
1587 		 */
1588 	}
1589 
1590 	return data;
1591 }
1592 
1593 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1594 {
1595 	switch (msr->index) {
1596 	case MSR_IA32_ARCH_CAPABILITIES:
1597 		msr->data = kvm_get_arch_capabilities();
1598 		break;
1599 	case MSR_IA32_UCODE_REV:
1600 		rdmsrl_safe(msr->index, &msr->data);
1601 		break;
1602 	default:
1603 		return static_call(kvm_x86_get_msr_feature)(msr);
1604 	}
1605 	return 0;
1606 }
1607 
1608 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1609 {
1610 	struct kvm_msr_entry msr;
1611 	int r;
1612 
1613 	msr.index = index;
1614 	r = kvm_get_msr_feature(&msr);
1615 
1616 	if (r == KVM_MSR_RET_INVALID) {
1617 		/* Unconditionally clear the output for simplicity */
1618 		*data = 0;
1619 		if (kvm_msr_ignored_check(index, 0, false))
1620 			r = 0;
1621 	}
1622 
1623 	if (r)
1624 		return r;
1625 
1626 	*data = msr.data;
1627 
1628 	return 0;
1629 }
1630 
1631 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1632 {
1633 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1634 		return false;
1635 
1636 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1637 		return false;
1638 
1639 	if (efer & (EFER_LME | EFER_LMA) &&
1640 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1641 		return false;
1642 
1643 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1644 		return false;
1645 
1646 	return true;
1647 
1648 }
1649 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1650 {
1651 	if (efer & efer_reserved_bits)
1652 		return false;
1653 
1654 	return __kvm_valid_efer(vcpu, efer);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1657 
1658 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1659 {
1660 	u64 old_efer = vcpu->arch.efer;
1661 	u64 efer = msr_info->data;
1662 	int r;
1663 
1664 	if (efer & efer_reserved_bits)
1665 		return 1;
1666 
1667 	if (!msr_info->host_initiated) {
1668 		if (!__kvm_valid_efer(vcpu, efer))
1669 			return 1;
1670 
1671 		if (is_paging(vcpu) &&
1672 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1673 			return 1;
1674 	}
1675 
1676 	efer &= ~EFER_LMA;
1677 	efer |= vcpu->arch.efer & EFER_LMA;
1678 
1679 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1680 	if (r) {
1681 		WARN_ON(r > 0);
1682 		return r;
1683 	}
1684 
1685 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1686 		kvm_mmu_reset_context(vcpu);
1687 
1688 	return 0;
1689 }
1690 
1691 void kvm_enable_efer_bits(u64 mask)
1692 {
1693        efer_reserved_bits &= ~mask;
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1696 
1697 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1698 {
1699 	struct kvm_x86_msr_filter *msr_filter;
1700 	struct msr_bitmap_range *ranges;
1701 	struct kvm *kvm = vcpu->kvm;
1702 	bool allowed;
1703 	int idx;
1704 	u32 i;
1705 
1706 	/* x2APIC MSRs do not support filtering. */
1707 	if (index >= 0x800 && index <= 0x8ff)
1708 		return true;
1709 
1710 	idx = srcu_read_lock(&kvm->srcu);
1711 
1712 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1713 	if (!msr_filter) {
1714 		allowed = true;
1715 		goto out;
1716 	}
1717 
1718 	allowed = msr_filter->default_allow;
1719 	ranges = msr_filter->ranges;
1720 
1721 	for (i = 0; i < msr_filter->count; i++) {
1722 		u32 start = ranges[i].base;
1723 		u32 end = start + ranges[i].nmsrs;
1724 		u32 flags = ranges[i].flags;
1725 		unsigned long *bitmap = ranges[i].bitmap;
1726 
1727 		if ((index >= start) && (index < end) && (flags & type)) {
1728 			allowed = !!test_bit(index - start, bitmap);
1729 			break;
1730 		}
1731 	}
1732 
1733 out:
1734 	srcu_read_unlock(&kvm->srcu, idx);
1735 
1736 	return allowed;
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1739 
1740 /*
1741  * Write @data into the MSR specified by @index.  Select MSR specific fault
1742  * checks are bypassed if @host_initiated is %true.
1743  * Returns 0 on success, non-0 otherwise.
1744  * Assumes vcpu_load() was already called.
1745  */
1746 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1747 			 bool host_initiated)
1748 {
1749 	struct msr_data msr;
1750 
1751 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1752 		return KVM_MSR_RET_FILTERED;
1753 
1754 	switch (index) {
1755 	case MSR_FS_BASE:
1756 	case MSR_GS_BASE:
1757 	case MSR_KERNEL_GS_BASE:
1758 	case MSR_CSTAR:
1759 	case MSR_LSTAR:
1760 		if (is_noncanonical_address(data, vcpu))
1761 			return 1;
1762 		break;
1763 	case MSR_IA32_SYSENTER_EIP:
1764 	case MSR_IA32_SYSENTER_ESP:
1765 		/*
1766 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1767 		 * non-canonical address is written on Intel but not on
1768 		 * AMD (which ignores the top 32-bits, because it does
1769 		 * not implement 64-bit SYSENTER).
1770 		 *
1771 		 * 64-bit code should hence be able to write a non-canonical
1772 		 * value on AMD.  Making the address canonical ensures that
1773 		 * vmentry does not fail on Intel after writing a non-canonical
1774 		 * value, and that something deterministic happens if the guest
1775 		 * invokes 64-bit SYSENTER.
1776 		 */
1777 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1778 		break;
1779 	case MSR_TSC_AUX:
1780 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1781 			return 1;
1782 
1783 		if (!host_initiated &&
1784 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1785 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1786 			return 1;
1787 
1788 		/*
1789 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1790 		 * incomplete and conflicting architectural behavior.  Current
1791 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1792 		 * reserved and always read as zeros.  Enforce Intel's reserved
1793 		 * bits check if and only if the guest CPU is Intel, and clear
1794 		 * the bits in all other cases.  This ensures cross-vendor
1795 		 * migration will provide consistent behavior for the guest.
1796 		 */
1797 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1798 			return 1;
1799 
1800 		data = (u32)data;
1801 		break;
1802 	}
1803 
1804 	msr.data = data;
1805 	msr.index = index;
1806 	msr.host_initiated = host_initiated;
1807 
1808 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1809 }
1810 
1811 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1812 				     u32 index, u64 data, bool host_initiated)
1813 {
1814 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1815 
1816 	if (ret == KVM_MSR_RET_INVALID)
1817 		if (kvm_msr_ignored_check(index, data, true))
1818 			ret = 0;
1819 
1820 	return ret;
1821 }
1822 
1823 /*
1824  * Read the MSR specified by @index into @data.  Select MSR specific fault
1825  * checks are bypassed if @host_initiated is %true.
1826  * Returns 0 on success, non-0 otherwise.
1827  * Assumes vcpu_load() was already called.
1828  */
1829 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1830 		  bool host_initiated)
1831 {
1832 	struct msr_data msr;
1833 	int ret;
1834 
1835 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1836 		return KVM_MSR_RET_FILTERED;
1837 
1838 	switch (index) {
1839 	case MSR_TSC_AUX:
1840 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1841 			return 1;
1842 
1843 		if (!host_initiated &&
1844 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1845 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1846 			return 1;
1847 		break;
1848 	}
1849 
1850 	msr.index = index;
1851 	msr.host_initiated = host_initiated;
1852 
1853 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1854 	if (!ret)
1855 		*data = msr.data;
1856 	return ret;
1857 }
1858 
1859 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1860 				     u32 index, u64 *data, bool host_initiated)
1861 {
1862 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1863 
1864 	if (ret == KVM_MSR_RET_INVALID) {
1865 		/* Unconditionally clear *data for simplicity */
1866 		*data = 0;
1867 		if (kvm_msr_ignored_check(index, 0, false))
1868 			ret = 0;
1869 	}
1870 
1871 	return ret;
1872 }
1873 
1874 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1875 {
1876 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_get_msr);
1879 
1880 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1881 {
1882 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_set_msr);
1885 
1886 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1887 {
1888 	if (!vcpu->run->msr.error) {
1889 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1890 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1891 	}
1892 }
1893 
1894 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1895 {
1896 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1897 }
1898 
1899 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1900 {
1901 	complete_userspace_rdmsr(vcpu);
1902 	return complete_emulated_msr_access(vcpu);
1903 }
1904 
1905 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1906 {
1907 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1908 }
1909 
1910 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1911 {
1912 	complete_userspace_rdmsr(vcpu);
1913 	return complete_fast_msr_access(vcpu);
1914 }
1915 
1916 static u64 kvm_msr_reason(int r)
1917 {
1918 	switch (r) {
1919 	case KVM_MSR_RET_INVALID:
1920 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1921 	case KVM_MSR_RET_FILTERED:
1922 		return KVM_MSR_EXIT_REASON_FILTER;
1923 	default:
1924 		return KVM_MSR_EXIT_REASON_INVAL;
1925 	}
1926 }
1927 
1928 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1929 			      u32 exit_reason, u64 data,
1930 			      int (*completion)(struct kvm_vcpu *vcpu),
1931 			      int r)
1932 {
1933 	u64 msr_reason = kvm_msr_reason(r);
1934 
1935 	/* Check if the user wanted to know about this MSR fault */
1936 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1937 		return 0;
1938 
1939 	vcpu->run->exit_reason = exit_reason;
1940 	vcpu->run->msr.error = 0;
1941 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1942 	vcpu->run->msr.reason = msr_reason;
1943 	vcpu->run->msr.index = index;
1944 	vcpu->run->msr.data = data;
1945 	vcpu->arch.complete_userspace_io = completion;
1946 
1947 	return 1;
1948 }
1949 
1950 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1951 {
1952 	u32 ecx = kvm_rcx_read(vcpu);
1953 	u64 data;
1954 	int r;
1955 
1956 	r = kvm_get_msr(vcpu, ecx, &data);
1957 
1958 	if (!r) {
1959 		trace_kvm_msr_read(ecx, data);
1960 
1961 		kvm_rax_write(vcpu, data & -1u);
1962 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1963 	} else {
1964 		/* MSR read failed? See if we should ask user space */
1965 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1966 				       complete_fast_rdmsr, r))
1967 			return 0;
1968 		trace_kvm_msr_read_ex(ecx);
1969 	}
1970 
1971 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1974 
1975 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1976 {
1977 	u32 ecx = kvm_rcx_read(vcpu);
1978 	u64 data = kvm_read_edx_eax(vcpu);
1979 	int r;
1980 
1981 	r = kvm_set_msr(vcpu, ecx, data);
1982 
1983 	if (!r) {
1984 		trace_kvm_msr_write(ecx, data);
1985 	} else {
1986 		/* MSR write failed? See if we should ask user space */
1987 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1988 				       complete_fast_msr_access, r))
1989 			return 0;
1990 		/* Signal all other negative errors to userspace */
1991 		if (r < 0)
1992 			return r;
1993 		trace_kvm_msr_write_ex(ecx, data);
1994 	}
1995 
1996 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1997 }
1998 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1999 
2000 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2001 {
2002 	return kvm_skip_emulated_instruction(vcpu);
2003 }
2004 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2005 
2006 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2007 {
2008 	/* Treat an INVD instruction as a NOP and just skip it. */
2009 	return kvm_emulate_as_nop(vcpu);
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2012 
2013 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2014 {
2015 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2016 	return kvm_emulate_as_nop(vcpu);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2019 
2020 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2021 {
2022 	kvm_queue_exception(vcpu, UD_VECTOR);
2023 	return 1;
2024 }
2025 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2026 
2027 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2028 {
2029 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2030 	return kvm_emulate_as_nop(vcpu);
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2033 
2034 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2035 {
2036 	xfer_to_guest_mode_prepare();
2037 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2038 		xfer_to_guest_mode_work_pending();
2039 }
2040 
2041 /*
2042  * The fast path for frequent and performance sensitive wrmsr emulation,
2043  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2044  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2045  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2046  * other cases which must be called after interrupts are enabled on the host.
2047  */
2048 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2049 {
2050 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2051 		return 1;
2052 
2053 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2054 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2055 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2056 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2057 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2058 
2059 	return 1;
2060 }
2061 
2062 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2063 {
2064 	if (!kvm_can_use_hv_timer(vcpu))
2065 		return 1;
2066 
2067 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2068 	return 0;
2069 }
2070 
2071 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2072 {
2073 	u32 msr = kvm_rcx_read(vcpu);
2074 	u64 data;
2075 	fastpath_t ret = EXIT_FASTPATH_NONE;
2076 
2077 	switch (msr) {
2078 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2079 		data = kvm_read_edx_eax(vcpu);
2080 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2081 			kvm_skip_emulated_instruction(vcpu);
2082 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2083 		}
2084 		break;
2085 	case MSR_IA32_TSC_DEADLINE:
2086 		data = kvm_read_edx_eax(vcpu);
2087 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2088 			kvm_skip_emulated_instruction(vcpu);
2089 			ret = EXIT_FASTPATH_REENTER_GUEST;
2090 		}
2091 		break;
2092 	default:
2093 		break;
2094 	}
2095 
2096 	if (ret != EXIT_FASTPATH_NONE)
2097 		trace_kvm_msr_write(msr, data);
2098 
2099 	return ret;
2100 }
2101 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2102 
2103 /*
2104  * Adapt set_msr() to msr_io()'s calling convention
2105  */
2106 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2107 {
2108 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2109 }
2110 
2111 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2112 {
2113 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2114 }
2115 
2116 #ifdef CONFIG_X86_64
2117 struct pvclock_clock {
2118 	int vclock_mode;
2119 	u64 cycle_last;
2120 	u64 mask;
2121 	u32 mult;
2122 	u32 shift;
2123 	u64 base_cycles;
2124 	u64 offset;
2125 };
2126 
2127 struct pvclock_gtod_data {
2128 	seqcount_t	seq;
2129 
2130 	struct pvclock_clock clock; /* extract of a clocksource struct */
2131 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2132 
2133 	ktime_t		offs_boot;
2134 	u64		wall_time_sec;
2135 };
2136 
2137 static struct pvclock_gtod_data pvclock_gtod_data;
2138 
2139 static void update_pvclock_gtod(struct timekeeper *tk)
2140 {
2141 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2142 
2143 	write_seqcount_begin(&vdata->seq);
2144 
2145 	/* copy pvclock gtod data */
2146 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2147 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2148 	vdata->clock.mask		= tk->tkr_mono.mask;
2149 	vdata->clock.mult		= tk->tkr_mono.mult;
2150 	vdata->clock.shift		= tk->tkr_mono.shift;
2151 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2152 	vdata->clock.offset		= tk->tkr_mono.base;
2153 
2154 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2155 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2156 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2157 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2158 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2159 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2160 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2161 
2162 	vdata->wall_time_sec            = tk->xtime_sec;
2163 
2164 	vdata->offs_boot		= tk->offs_boot;
2165 
2166 	write_seqcount_end(&vdata->seq);
2167 }
2168 
2169 static s64 get_kvmclock_base_ns(void)
2170 {
2171 	/* Count up from boot time, but with the frequency of the raw clock.  */
2172 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2173 }
2174 #else
2175 static s64 get_kvmclock_base_ns(void)
2176 {
2177 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2178 	return ktime_get_boottime_ns();
2179 }
2180 #endif
2181 
2182 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2183 {
2184 	int version;
2185 	int r;
2186 	struct pvclock_wall_clock wc;
2187 	u32 wc_sec_hi;
2188 	u64 wall_nsec;
2189 
2190 	if (!wall_clock)
2191 		return;
2192 
2193 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2194 	if (r)
2195 		return;
2196 
2197 	if (version & 1)
2198 		++version;  /* first time write, random junk */
2199 
2200 	++version;
2201 
2202 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2203 		return;
2204 
2205 	/*
2206 	 * The guest calculates current wall clock time by adding
2207 	 * system time (updated by kvm_guest_time_update below) to the
2208 	 * wall clock specified here.  We do the reverse here.
2209 	 */
2210 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2211 
2212 	wc.nsec = do_div(wall_nsec, 1000000000);
2213 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2214 	wc.version = version;
2215 
2216 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2217 
2218 	if (sec_hi_ofs) {
2219 		wc_sec_hi = wall_nsec >> 32;
2220 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2221 				&wc_sec_hi, sizeof(wc_sec_hi));
2222 	}
2223 
2224 	version++;
2225 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2226 }
2227 
2228 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2229 				  bool old_msr, bool host_initiated)
2230 {
2231 	struct kvm_arch *ka = &vcpu->kvm->arch;
2232 
2233 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2234 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2235 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2236 
2237 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2238 	}
2239 
2240 	vcpu->arch.time = system_time;
2241 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2242 
2243 	/* we verify if the enable bit is set... */
2244 	vcpu->arch.pv_time_enabled = false;
2245 	if (!(system_time & 1))
2246 		return;
2247 
2248 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2249 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2250 				       sizeof(struct pvclock_vcpu_time_info)))
2251 		vcpu->arch.pv_time_enabled = true;
2252 
2253 	return;
2254 }
2255 
2256 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2257 {
2258 	do_shl32_div32(dividend, divisor);
2259 	return dividend;
2260 }
2261 
2262 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2263 			       s8 *pshift, u32 *pmultiplier)
2264 {
2265 	uint64_t scaled64;
2266 	int32_t  shift = 0;
2267 	uint64_t tps64;
2268 	uint32_t tps32;
2269 
2270 	tps64 = base_hz;
2271 	scaled64 = scaled_hz;
2272 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2273 		tps64 >>= 1;
2274 		shift--;
2275 	}
2276 
2277 	tps32 = (uint32_t)tps64;
2278 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2279 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2280 			scaled64 >>= 1;
2281 		else
2282 			tps32 <<= 1;
2283 		shift++;
2284 	}
2285 
2286 	*pshift = shift;
2287 	*pmultiplier = div_frac(scaled64, tps32);
2288 }
2289 
2290 #ifdef CONFIG_X86_64
2291 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2292 #endif
2293 
2294 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2295 static unsigned long max_tsc_khz;
2296 
2297 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2298 {
2299 	u64 v = (u64)khz * (1000000 + ppm);
2300 	do_div(v, 1000000);
2301 	return v;
2302 }
2303 
2304 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2305 
2306 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2307 {
2308 	u64 ratio;
2309 
2310 	/* Guest TSC same frequency as host TSC? */
2311 	if (!scale) {
2312 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2313 		return 0;
2314 	}
2315 
2316 	/* TSC scaling supported? */
2317 	if (!kvm_has_tsc_control) {
2318 		if (user_tsc_khz > tsc_khz) {
2319 			vcpu->arch.tsc_catchup = 1;
2320 			vcpu->arch.tsc_always_catchup = 1;
2321 			return 0;
2322 		} else {
2323 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2324 			return -1;
2325 		}
2326 	}
2327 
2328 	/* TSC scaling required  - calculate ratio */
2329 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2330 				user_tsc_khz, tsc_khz);
2331 
2332 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2333 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2334 			            user_tsc_khz);
2335 		return -1;
2336 	}
2337 
2338 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2339 	return 0;
2340 }
2341 
2342 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2343 {
2344 	u32 thresh_lo, thresh_hi;
2345 	int use_scaling = 0;
2346 
2347 	/* tsc_khz can be zero if TSC calibration fails */
2348 	if (user_tsc_khz == 0) {
2349 		/* set tsc_scaling_ratio to a safe value */
2350 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2351 		return -1;
2352 	}
2353 
2354 	/* Compute a scale to convert nanoseconds in TSC cycles */
2355 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2356 			   &vcpu->arch.virtual_tsc_shift,
2357 			   &vcpu->arch.virtual_tsc_mult);
2358 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2359 
2360 	/*
2361 	 * Compute the variation in TSC rate which is acceptable
2362 	 * within the range of tolerance and decide if the
2363 	 * rate being applied is within that bounds of the hardware
2364 	 * rate.  If so, no scaling or compensation need be done.
2365 	 */
2366 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2367 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2368 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2369 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2370 		use_scaling = 1;
2371 	}
2372 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2373 }
2374 
2375 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2376 {
2377 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2378 				      vcpu->arch.virtual_tsc_mult,
2379 				      vcpu->arch.virtual_tsc_shift);
2380 	tsc += vcpu->arch.this_tsc_write;
2381 	return tsc;
2382 }
2383 
2384 #ifdef CONFIG_X86_64
2385 static inline int gtod_is_based_on_tsc(int mode)
2386 {
2387 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2388 }
2389 #endif
2390 
2391 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2392 {
2393 #ifdef CONFIG_X86_64
2394 	bool vcpus_matched;
2395 	struct kvm_arch *ka = &vcpu->kvm->arch;
2396 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2397 
2398 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2399 			 atomic_read(&vcpu->kvm->online_vcpus));
2400 
2401 	/*
2402 	 * Once the masterclock is enabled, always perform request in
2403 	 * order to update it.
2404 	 *
2405 	 * In order to enable masterclock, the host clocksource must be TSC
2406 	 * and the vcpus need to have matched TSCs.  When that happens,
2407 	 * perform request to enable masterclock.
2408 	 */
2409 	if (ka->use_master_clock ||
2410 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2411 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2412 
2413 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2414 			    atomic_read(&vcpu->kvm->online_vcpus),
2415 		            ka->use_master_clock, gtod->clock.vclock_mode);
2416 #endif
2417 }
2418 
2419 /*
2420  * Multiply tsc by a fixed point number represented by ratio.
2421  *
2422  * The most significant 64-N bits (mult) of ratio represent the
2423  * integral part of the fixed point number; the remaining N bits
2424  * (frac) represent the fractional part, ie. ratio represents a fixed
2425  * point number (mult + frac * 2^(-N)).
2426  *
2427  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2428  */
2429 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2430 {
2431 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2432 }
2433 
2434 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2435 {
2436 	u64 _tsc = tsc;
2437 
2438 	if (ratio != kvm_default_tsc_scaling_ratio)
2439 		_tsc = __scale_tsc(ratio, tsc);
2440 
2441 	return _tsc;
2442 }
2443 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2444 
2445 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2446 {
2447 	u64 tsc;
2448 
2449 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2450 
2451 	return target_tsc - tsc;
2452 }
2453 
2454 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2455 {
2456 	return vcpu->arch.l1_tsc_offset +
2457 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2460 
2461 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2462 {
2463 	u64 nested_offset;
2464 
2465 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2466 		nested_offset = l1_offset;
2467 	else
2468 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2469 						kvm_tsc_scaling_ratio_frac_bits);
2470 
2471 	nested_offset += l2_offset;
2472 	return nested_offset;
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2475 
2476 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2477 {
2478 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2479 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2480 				       kvm_tsc_scaling_ratio_frac_bits);
2481 
2482 	return l1_multiplier;
2483 }
2484 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2485 
2486 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2487 {
2488 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2489 				   vcpu->arch.l1_tsc_offset,
2490 				   l1_offset);
2491 
2492 	vcpu->arch.l1_tsc_offset = l1_offset;
2493 
2494 	/*
2495 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2496 	 * according to the spec this should set L1's TSC (as opposed to
2497 	 * setting L1's offset for L2).
2498 	 */
2499 	if (is_guest_mode(vcpu))
2500 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2501 			l1_offset,
2502 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2503 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2504 	else
2505 		vcpu->arch.tsc_offset = l1_offset;
2506 
2507 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2508 }
2509 
2510 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2511 {
2512 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2513 
2514 	/* Userspace is changing the multiplier while L2 is active */
2515 	if (is_guest_mode(vcpu))
2516 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2517 			l1_multiplier,
2518 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2519 	else
2520 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2521 
2522 	if (kvm_has_tsc_control)
2523 		static_call(kvm_x86_write_tsc_multiplier)(
2524 			vcpu, vcpu->arch.tsc_scaling_ratio);
2525 }
2526 
2527 static inline bool kvm_check_tsc_unstable(void)
2528 {
2529 #ifdef CONFIG_X86_64
2530 	/*
2531 	 * TSC is marked unstable when we're running on Hyper-V,
2532 	 * 'TSC page' clocksource is good.
2533 	 */
2534 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2535 		return false;
2536 #endif
2537 	return check_tsc_unstable();
2538 }
2539 
2540 /*
2541  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2542  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2543  * participates in.
2544  */
2545 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2546 				  u64 ns, bool matched)
2547 {
2548 	struct kvm *kvm = vcpu->kvm;
2549 
2550 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2551 
2552 	/*
2553 	 * We also track th most recent recorded KHZ, write and time to
2554 	 * allow the matching interval to be extended at each write.
2555 	 */
2556 	kvm->arch.last_tsc_nsec = ns;
2557 	kvm->arch.last_tsc_write = tsc;
2558 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2559 	kvm->arch.last_tsc_offset = offset;
2560 
2561 	vcpu->arch.last_guest_tsc = tsc;
2562 
2563 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2564 
2565 	if (!matched) {
2566 		/*
2567 		 * We split periods of matched TSC writes into generations.
2568 		 * For each generation, we track the original measured
2569 		 * nanosecond time, offset, and write, so if TSCs are in
2570 		 * sync, we can match exact offset, and if not, we can match
2571 		 * exact software computation in compute_guest_tsc()
2572 		 *
2573 		 * These values are tracked in kvm->arch.cur_xxx variables.
2574 		 */
2575 		kvm->arch.cur_tsc_generation++;
2576 		kvm->arch.cur_tsc_nsec = ns;
2577 		kvm->arch.cur_tsc_write = tsc;
2578 		kvm->arch.cur_tsc_offset = offset;
2579 		kvm->arch.nr_vcpus_matched_tsc = 0;
2580 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2581 		kvm->arch.nr_vcpus_matched_tsc++;
2582 	}
2583 
2584 	/* Keep track of which generation this VCPU has synchronized to */
2585 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2586 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2587 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2588 
2589 	kvm_track_tsc_matching(vcpu);
2590 }
2591 
2592 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2593 {
2594 	struct kvm *kvm = vcpu->kvm;
2595 	u64 offset, ns, elapsed;
2596 	unsigned long flags;
2597 	bool matched = false;
2598 	bool synchronizing = false;
2599 
2600 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2601 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2602 	ns = get_kvmclock_base_ns();
2603 	elapsed = ns - kvm->arch.last_tsc_nsec;
2604 
2605 	if (vcpu->arch.virtual_tsc_khz) {
2606 		if (data == 0) {
2607 			/*
2608 			 * detection of vcpu initialization -- need to sync
2609 			 * with other vCPUs. This particularly helps to keep
2610 			 * kvm_clock stable after CPU hotplug
2611 			 */
2612 			synchronizing = true;
2613 		} else {
2614 			u64 tsc_exp = kvm->arch.last_tsc_write +
2615 						nsec_to_cycles(vcpu, elapsed);
2616 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2617 			/*
2618 			 * Special case: TSC write with a small delta (1 second)
2619 			 * of virtual cycle time against real time is
2620 			 * interpreted as an attempt to synchronize the CPU.
2621 			 */
2622 			synchronizing = data < tsc_exp + tsc_hz &&
2623 					data + tsc_hz > tsc_exp;
2624 		}
2625 	}
2626 
2627 	/*
2628 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2629 	 * TSC, we add elapsed time in this computation.  We could let the
2630 	 * compensation code attempt to catch up if we fall behind, but
2631 	 * it's better to try to match offsets from the beginning.
2632          */
2633 	if (synchronizing &&
2634 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2635 		if (!kvm_check_tsc_unstable()) {
2636 			offset = kvm->arch.cur_tsc_offset;
2637 		} else {
2638 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2639 			data += delta;
2640 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2641 		}
2642 		matched = true;
2643 	}
2644 
2645 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2646 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2647 }
2648 
2649 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2650 					   s64 adjustment)
2651 {
2652 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2653 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2654 }
2655 
2656 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2657 {
2658 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2659 		WARN_ON(adjustment < 0);
2660 	adjustment = kvm_scale_tsc((u64) adjustment,
2661 				   vcpu->arch.l1_tsc_scaling_ratio);
2662 	adjust_tsc_offset_guest(vcpu, adjustment);
2663 }
2664 
2665 #ifdef CONFIG_X86_64
2666 
2667 static u64 read_tsc(void)
2668 {
2669 	u64 ret = (u64)rdtsc_ordered();
2670 	u64 last = pvclock_gtod_data.clock.cycle_last;
2671 
2672 	if (likely(ret >= last))
2673 		return ret;
2674 
2675 	/*
2676 	 * GCC likes to generate cmov here, but this branch is extremely
2677 	 * predictable (it's just a function of time and the likely is
2678 	 * very likely) and there's a data dependence, so force GCC
2679 	 * to generate a branch instead.  I don't barrier() because
2680 	 * we don't actually need a barrier, and if this function
2681 	 * ever gets inlined it will generate worse code.
2682 	 */
2683 	asm volatile ("");
2684 	return last;
2685 }
2686 
2687 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2688 			  int *mode)
2689 {
2690 	long v;
2691 	u64 tsc_pg_val;
2692 
2693 	switch (clock->vclock_mode) {
2694 	case VDSO_CLOCKMODE_HVCLOCK:
2695 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2696 						  tsc_timestamp);
2697 		if (tsc_pg_val != U64_MAX) {
2698 			/* TSC page valid */
2699 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2700 			v = (tsc_pg_val - clock->cycle_last) &
2701 				clock->mask;
2702 		} else {
2703 			/* TSC page invalid */
2704 			*mode = VDSO_CLOCKMODE_NONE;
2705 		}
2706 		break;
2707 	case VDSO_CLOCKMODE_TSC:
2708 		*mode = VDSO_CLOCKMODE_TSC;
2709 		*tsc_timestamp = read_tsc();
2710 		v = (*tsc_timestamp - clock->cycle_last) &
2711 			clock->mask;
2712 		break;
2713 	default:
2714 		*mode = VDSO_CLOCKMODE_NONE;
2715 	}
2716 
2717 	if (*mode == VDSO_CLOCKMODE_NONE)
2718 		*tsc_timestamp = v = 0;
2719 
2720 	return v * clock->mult;
2721 }
2722 
2723 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2724 {
2725 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2726 	unsigned long seq;
2727 	int mode;
2728 	u64 ns;
2729 
2730 	do {
2731 		seq = read_seqcount_begin(&gtod->seq);
2732 		ns = gtod->raw_clock.base_cycles;
2733 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2734 		ns >>= gtod->raw_clock.shift;
2735 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2736 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2737 	*t = ns;
2738 
2739 	return mode;
2740 }
2741 
2742 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2743 {
2744 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2745 	unsigned long seq;
2746 	int mode;
2747 	u64 ns;
2748 
2749 	do {
2750 		seq = read_seqcount_begin(&gtod->seq);
2751 		ts->tv_sec = gtod->wall_time_sec;
2752 		ns = gtod->clock.base_cycles;
2753 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2754 		ns >>= gtod->clock.shift;
2755 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2756 
2757 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2758 	ts->tv_nsec = ns;
2759 
2760 	return mode;
2761 }
2762 
2763 /* returns true if host is using TSC based clocksource */
2764 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2765 {
2766 	/* checked again under seqlock below */
2767 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2768 		return false;
2769 
2770 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2771 						      tsc_timestamp));
2772 }
2773 
2774 /* returns true if host is using TSC based clocksource */
2775 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2776 					   u64 *tsc_timestamp)
2777 {
2778 	/* checked again under seqlock below */
2779 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2780 		return false;
2781 
2782 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2783 }
2784 #endif
2785 
2786 /*
2787  *
2788  * Assuming a stable TSC across physical CPUS, and a stable TSC
2789  * across virtual CPUs, the following condition is possible.
2790  * Each numbered line represents an event visible to both
2791  * CPUs at the next numbered event.
2792  *
2793  * "timespecX" represents host monotonic time. "tscX" represents
2794  * RDTSC value.
2795  *
2796  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2797  *
2798  * 1.  read timespec0,tsc0
2799  * 2.					| timespec1 = timespec0 + N
2800  * 					| tsc1 = tsc0 + M
2801  * 3. transition to guest		| transition to guest
2802  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2803  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2804  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2805  *
2806  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2807  *
2808  * 	- ret0 < ret1
2809  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2810  *		...
2811  *	- 0 < N - M => M < N
2812  *
2813  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2814  * always the case (the difference between two distinct xtime instances
2815  * might be smaller then the difference between corresponding TSC reads,
2816  * when updating guest vcpus pvclock areas).
2817  *
2818  * To avoid that problem, do not allow visibility of distinct
2819  * system_timestamp/tsc_timestamp values simultaneously: use a master
2820  * copy of host monotonic time values. Update that master copy
2821  * in lockstep.
2822  *
2823  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2824  *
2825  */
2826 
2827 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2828 {
2829 #ifdef CONFIG_X86_64
2830 	struct kvm_arch *ka = &kvm->arch;
2831 	int vclock_mode;
2832 	bool host_tsc_clocksource, vcpus_matched;
2833 
2834 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2835 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2836 			atomic_read(&kvm->online_vcpus));
2837 
2838 	/*
2839 	 * If the host uses TSC clock, then passthrough TSC as stable
2840 	 * to the guest.
2841 	 */
2842 	host_tsc_clocksource = kvm_get_time_and_clockread(
2843 					&ka->master_kernel_ns,
2844 					&ka->master_cycle_now);
2845 
2846 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2847 				&& !ka->backwards_tsc_observed
2848 				&& !ka->boot_vcpu_runs_old_kvmclock;
2849 
2850 	if (ka->use_master_clock)
2851 		atomic_set(&kvm_guest_has_master_clock, 1);
2852 
2853 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2854 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2855 					vcpus_matched);
2856 #endif
2857 }
2858 
2859 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2860 {
2861 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2862 }
2863 
2864 static void __kvm_start_pvclock_update(struct kvm *kvm)
2865 {
2866 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2867 	write_seqcount_begin(&kvm->arch.pvclock_sc);
2868 }
2869 
2870 static void kvm_start_pvclock_update(struct kvm *kvm)
2871 {
2872 	kvm_make_mclock_inprogress_request(kvm);
2873 
2874 	/* no guest entries from this point */
2875 	__kvm_start_pvclock_update(kvm);
2876 }
2877 
2878 static void kvm_end_pvclock_update(struct kvm *kvm)
2879 {
2880 	struct kvm_arch *ka = &kvm->arch;
2881 	struct kvm_vcpu *vcpu;
2882 	unsigned long i;
2883 
2884 	write_seqcount_end(&ka->pvclock_sc);
2885 	raw_spin_unlock_irq(&ka->tsc_write_lock);
2886 	kvm_for_each_vcpu(i, vcpu, kvm)
2887 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2888 
2889 	/* guest entries allowed */
2890 	kvm_for_each_vcpu(i, vcpu, kvm)
2891 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2892 }
2893 
2894 static void kvm_update_masterclock(struct kvm *kvm)
2895 {
2896 	kvm_hv_invalidate_tsc_page(kvm);
2897 	kvm_start_pvclock_update(kvm);
2898 	pvclock_update_vm_gtod_copy(kvm);
2899 	kvm_end_pvclock_update(kvm);
2900 }
2901 
2902 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2903 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2904 {
2905 	struct kvm_arch *ka = &kvm->arch;
2906 	struct pvclock_vcpu_time_info hv_clock;
2907 
2908 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2909 	get_cpu();
2910 
2911 	data->flags = 0;
2912 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2913 #ifdef CONFIG_X86_64
2914 		struct timespec64 ts;
2915 
2916 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2917 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2918 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2919 		} else
2920 #endif
2921 		data->host_tsc = rdtsc();
2922 
2923 		data->flags |= KVM_CLOCK_TSC_STABLE;
2924 		hv_clock.tsc_timestamp = ka->master_cycle_now;
2925 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2926 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2927 				   &hv_clock.tsc_shift,
2928 				   &hv_clock.tsc_to_system_mul);
2929 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2930 	} else {
2931 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2932 	}
2933 
2934 	put_cpu();
2935 }
2936 
2937 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2938 {
2939 	struct kvm_arch *ka = &kvm->arch;
2940 	unsigned seq;
2941 
2942 	do {
2943 		seq = read_seqcount_begin(&ka->pvclock_sc);
2944 		__get_kvmclock(kvm, data);
2945 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
2946 }
2947 
2948 u64 get_kvmclock_ns(struct kvm *kvm)
2949 {
2950 	struct kvm_clock_data data;
2951 
2952 	get_kvmclock(kvm, &data);
2953 	return data.clock;
2954 }
2955 
2956 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2957 				   struct gfn_to_hva_cache *cache,
2958 				   unsigned int offset)
2959 {
2960 	struct kvm_vcpu_arch *vcpu = &v->arch;
2961 	struct pvclock_vcpu_time_info guest_hv_clock;
2962 
2963 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2964 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2965 		return;
2966 
2967 	/* This VCPU is paused, but it's legal for a guest to read another
2968 	 * VCPU's kvmclock, so we really have to follow the specification where
2969 	 * it says that version is odd if data is being modified, and even after
2970 	 * it is consistent.
2971 	 *
2972 	 * Version field updates must be kept separate.  This is because
2973 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2974 	 * writes within a string instruction are weakly ordered.  So there
2975 	 * are three writes overall.
2976 	 *
2977 	 * As a small optimization, only write the version field in the first
2978 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2979 	 * version field is the first in the struct.
2980 	 */
2981 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2982 
2983 	if (guest_hv_clock.version & 1)
2984 		++guest_hv_clock.version;  /* first time write, random junk */
2985 
2986 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2987 	kvm_write_guest_offset_cached(v->kvm, cache,
2988 				      &vcpu->hv_clock, offset,
2989 				      sizeof(vcpu->hv_clock.version));
2990 
2991 	smp_wmb();
2992 
2993 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2994 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2995 
2996 	if (vcpu->pvclock_set_guest_stopped_request) {
2997 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2998 		vcpu->pvclock_set_guest_stopped_request = false;
2999 	}
3000 
3001 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3002 
3003 	kvm_write_guest_offset_cached(v->kvm, cache,
3004 				      &vcpu->hv_clock, offset,
3005 				      sizeof(vcpu->hv_clock));
3006 
3007 	smp_wmb();
3008 
3009 	vcpu->hv_clock.version++;
3010 	kvm_write_guest_offset_cached(v->kvm, cache,
3011 				     &vcpu->hv_clock, offset,
3012 				     sizeof(vcpu->hv_clock.version));
3013 }
3014 
3015 static int kvm_guest_time_update(struct kvm_vcpu *v)
3016 {
3017 	unsigned long flags, tgt_tsc_khz;
3018 	unsigned seq;
3019 	struct kvm_vcpu_arch *vcpu = &v->arch;
3020 	struct kvm_arch *ka = &v->kvm->arch;
3021 	s64 kernel_ns;
3022 	u64 tsc_timestamp, host_tsc;
3023 	u8 pvclock_flags;
3024 	bool use_master_clock;
3025 
3026 	kernel_ns = 0;
3027 	host_tsc = 0;
3028 
3029 	/*
3030 	 * If the host uses TSC clock, then passthrough TSC as stable
3031 	 * to the guest.
3032 	 */
3033 	do {
3034 		seq = read_seqcount_begin(&ka->pvclock_sc);
3035 		use_master_clock = ka->use_master_clock;
3036 		if (use_master_clock) {
3037 			host_tsc = ka->master_cycle_now;
3038 			kernel_ns = ka->master_kernel_ns;
3039 		}
3040 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3041 
3042 	/* Keep irq disabled to prevent changes to the clock */
3043 	local_irq_save(flags);
3044 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3045 	if (unlikely(tgt_tsc_khz == 0)) {
3046 		local_irq_restore(flags);
3047 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3048 		return 1;
3049 	}
3050 	if (!use_master_clock) {
3051 		host_tsc = rdtsc();
3052 		kernel_ns = get_kvmclock_base_ns();
3053 	}
3054 
3055 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3056 
3057 	/*
3058 	 * We may have to catch up the TSC to match elapsed wall clock
3059 	 * time for two reasons, even if kvmclock is used.
3060 	 *   1) CPU could have been running below the maximum TSC rate
3061 	 *   2) Broken TSC compensation resets the base at each VCPU
3062 	 *      entry to avoid unknown leaps of TSC even when running
3063 	 *      again on the same CPU.  This may cause apparent elapsed
3064 	 *      time to disappear, and the guest to stand still or run
3065 	 *	very slowly.
3066 	 */
3067 	if (vcpu->tsc_catchup) {
3068 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3069 		if (tsc > tsc_timestamp) {
3070 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3071 			tsc_timestamp = tsc;
3072 		}
3073 	}
3074 
3075 	local_irq_restore(flags);
3076 
3077 	/* With all the info we got, fill in the values */
3078 
3079 	if (kvm_has_tsc_control)
3080 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3081 					    v->arch.l1_tsc_scaling_ratio);
3082 
3083 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3084 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3085 				   &vcpu->hv_clock.tsc_shift,
3086 				   &vcpu->hv_clock.tsc_to_system_mul);
3087 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3088 	}
3089 
3090 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3091 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3092 	vcpu->last_guest_tsc = tsc_timestamp;
3093 
3094 	/* If the host uses TSC clocksource, then it is stable */
3095 	pvclock_flags = 0;
3096 	if (use_master_clock)
3097 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3098 
3099 	vcpu->hv_clock.flags = pvclock_flags;
3100 
3101 	if (vcpu->pv_time_enabled)
3102 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3103 	if (vcpu->xen.vcpu_info_set)
3104 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3105 				       offsetof(struct compat_vcpu_info, time));
3106 	if (vcpu->xen.vcpu_time_info_set)
3107 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3108 	if (!v->vcpu_idx)
3109 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3110 	return 0;
3111 }
3112 
3113 /*
3114  * kvmclock updates which are isolated to a given vcpu, such as
3115  * vcpu->cpu migration, should not allow system_timestamp from
3116  * the rest of the vcpus to remain static. Otherwise ntp frequency
3117  * correction applies to one vcpu's system_timestamp but not
3118  * the others.
3119  *
3120  * So in those cases, request a kvmclock update for all vcpus.
3121  * We need to rate-limit these requests though, as they can
3122  * considerably slow guests that have a large number of vcpus.
3123  * The time for a remote vcpu to update its kvmclock is bound
3124  * by the delay we use to rate-limit the updates.
3125  */
3126 
3127 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3128 
3129 static void kvmclock_update_fn(struct work_struct *work)
3130 {
3131 	unsigned long i;
3132 	struct delayed_work *dwork = to_delayed_work(work);
3133 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3134 					   kvmclock_update_work);
3135 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3136 	struct kvm_vcpu *vcpu;
3137 
3138 	kvm_for_each_vcpu(i, vcpu, kvm) {
3139 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3140 		kvm_vcpu_kick(vcpu);
3141 	}
3142 }
3143 
3144 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3145 {
3146 	struct kvm *kvm = v->kvm;
3147 
3148 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3149 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3150 					KVMCLOCK_UPDATE_DELAY);
3151 }
3152 
3153 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3154 
3155 static void kvmclock_sync_fn(struct work_struct *work)
3156 {
3157 	struct delayed_work *dwork = to_delayed_work(work);
3158 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3159 					   kvmclock_sync_work);
3160 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3161 
3162 	if (!kvmclock_periodic_sync)
3163 		return;
3164 
3165 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3166 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3167 					KVMCLOCK_SYNC_PERIOD);
3168 }
3169 
3170 /*
3171  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3172  */
3173 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3174 {
3175 	/* McStatusWrEn enabled? */
3176 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3177 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3178 
3179 	return false;
3180 }
3181 
3182 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3183 {
3184 	u64 mcg_cap = vcpu->arch.mcg_cap;
3185 	unsigned bank_num = mcg_cap & 0xff;
3186 	u32 msr = msr_info->index;
3187 	u64 data = msr_info->data;
3188 
3189 	switch (msr) {
3190 	case MSR_IA32_MCG_STATUS:
3191 		vcpu->arch.mcg_status = data;
3192 		break;
3193 	case MSR_IA32_MCG_CTL:
3194 		if (!(mcg_cap & MCG_CTL_P) &&
3195 		    (data || !msr_info->host_initiated))
3196 			return 1;
3197 		if (data != 0 && data != ~(u64)0)
3198 			return 1;
3199 		vcpu->arch.mcg_ctl = data;
3200 		break;
3201 	default:
3202 		if (msr >= MSR_IA32_MC0_CTL &&
3203 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3204 			u32 offset = array_index_nospec(
3205 				msr - MSR_IA32_MC0_CTL,
3206 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3207 
3208 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3209 			 * some Linux kernels though clear bit 10 in bank 4 to
3210 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3211 			 * this to avoid an uncatched #GP in the guest
3212 			 */
3213 			if ((offset & 0x3) == 0 &&
3214 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
3215 				return -1;
3216 
3217 			/* MCi_STATUS */
3218 			if (!msr_info->host_initiated &&
3219 			    (offset & 0x3) == 1 && data != 0) {
3220 				if (!can_set_mci_status(vcpu))
3221 					return -1;
3222 			}
3223 
3224 			vcpu->arch.mce_banks[offset] = data;
3225 			break;
3226 		}
3227 		return 1;
3228 	}
3229 	return 0;
3230 }
3231 
3232 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3233 {
3234 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3235 
3236 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3237 }
3238 
3239 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3240 {
3241 	gpa_t gpa = data & ~0x3f;
3242 
3243 	/* Bits 4:5 are reserved, Should be zero */
3244 	if (data & 0x30)
3245 		return 1;
3246 
3247 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3248 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3249 		return 1;
3250 
3251 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3252 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3253 		return 1;
3254 
3255 	if (!lapic_in_kernel(vcpu))
3256 		return data ? 1 : 0;
3257 
3258 	vcpu->arch.apf.msr_en_val = data;
3259 
3260 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3261 		kvm_clear_async_pf_completion_queue(vcpu);
3262 		kvm_async_pf_hash_reset(vcpu);
3263 		return 0;
3264 	}
3265 
3266 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3267 					sizeof(u64)))
3268 		return 1;
3269 
3270 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3271 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3272 
3273 	kvm_async_pf_wakeup_all(vcpu);
3274 
3275 	return 0;
3276 }
3277 
3278 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3279 {
3280 	/* Bits 8-63 are reserved */
3281 	if (data >> 8)
3282 		return 1;
3283 
3284 	if (!lapic_in_kernel(vcpu))
3285 		return 1;
3286 
3287 	vcpu->arch.apf.msr_int_val = data;
3288 
3289 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3290 
3291 	return 0;
3292 }
3293 
3294 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3295 {
3296 	vcpu->arch.pv_time_enabled = false;
3297 	vcpu->arch.time = 0;
3298 }
3299 
3300 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3301 {
3302 	++vcpu->stat.tlb_flush;
3303 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3304 }
3305 
3306 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3307 {
3308 	++vcpu->stat.tlb_flush;
3309 
3310 	if (!tdp_enabled) {
3311 		/*
3312 		 * A TLB flush on behalf of the guest is equivalent to
3313 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3314 		 * a forced sync of the shadow page tables.  Ensure all the
3315 		 * roots are synced and the guest TLB in hardware is clean.
3316 		 */
3317 		kvm_mmu_sync_roots(vcpu);
3318 		kvm_mmu_sync_prev_roots(vcpu);
3319 	}
3320 
3321 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3322 }
3323 
3324 
3325 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3326 {
3327 	++vcpu->stat.tlb_flush;
3328 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3329 }
3330 
3331 /*
3332  * Service "local" TLB flush requests, which are specific to the current MMU
3333  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3334  * TLB flushes that are targeted at an MMU context also need to be serviced
3335  * prior before nested VM-Enter/VM-Exit.
3336  */
3337 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3338 {
3339 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3340 		kvm_vcpu_flush_tlb_current(vcpu);
3341 
3342 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3343 		kvm_vcpu_flush_tlb_guest(vcpu);
3344 }
3345 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3346 
3347 static void record_steal_time(struct kvm_vcpu *vcpu)
3348 {
3349 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3350 	struct kvm_steal_time __user *st;
3351 	struct kvm_memslots *slots;
3352 	u64 steal;
3353 	u32 version;
3354 
3355 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3356 		kvm_xen_runstate_set_running(vcpu);
3357 		return;
3358 	}
3359 
3360 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3361 		return;
3362 
3363 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3364 		return;
3365 
3366 	slots = kvm_memslots(vcpu->kvm);
3367 
3368 	if (unlikely(slots->generation != ghc->generation ||
3369 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3370 		gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3371 
3372 		/* We rely on the fact that it fits in a single page. */
3373 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3374 
3375 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3376 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3377 			return;
3378 	}
3379 
3380 	st = (struct kvm_steal_time __user *)ghc->hva;
3381 	/*
3382 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3383 	 * expensive IPIs.
3384 	 */
3385 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3386 		u8 st_preempted = 0;
3387 		int err = -EFAULT;
3388 
3389 		if (!user_access_begin(st, sizeof(*st)))
3390 			return;
3391 
3392 		asm volatile("1: xchgb %0, %2\n"
3393 			     "xor %1, %1\n"
3394 			     "2:\n"
3395 			     _ASM_EXTABLE_UA(1b, 2b)
3396 			     : "+q" (st_preempted),
3397 			       "+&r" (err),
3398 			       "+m" (st->preempted));
3399 		if (err)
3400 			goto out;
3401 
3402 		user_access_end();
3403 
3404 		vcpu->arch.st.preempted = 0;
3405 
3406 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3407 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3408 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3409 			kvm_vcpu_flush_tlb_guest(vcpu);
3410 
3411 		if (!user_access_begin(st, sizeof(*st)))
3412 			goto dirty;
3413 	} else {
3414 		if (!user_access_begin(st, sizeof(*st)))
3415 			return;
3416 
3417 		unsafe_put_user(0, &st->preempted, out);
3418 		vcpu->arch.st.preempted = 0;
3419 	}
3420 
3421 	unsafe_get_user(version, &st->version, out);
3422 	if (version & 1)
3423 		version += 1;  /* first time write, random junk */
3424 
3425 	version += 1;
3426 	unsafe_put_user(version, &st->version, out);
3427 
3428 	smp_wmb();
3429 
3430 	unsafe_get_user(steal, &st->steal, out);
3431 	steal += current->sched_info.run_delay -
3432 		vcpu->arch.st.last_steal;
3433 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3434 	unsafe_put_user(steal, &st->steal, out);
3435 
3436 	version += 1;
3437 	unsafe_put_user(version, &st->version, out);
3438 
3439  out:
3440 	user_access_end();
3441  dirty:
3442 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3443 }
3444 
3445 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3446 {
3447 	bool pr = false;
3448 	u32 msr = msr_info->index;
3449 	u64 data = msr_info->data;
3450 
3451 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3452 		return kvm_xen_write_hypercall_page(vcpu, data);
3453 
3454 	switch (msr) {
3455 	case MSR_AMD64_NB_CFG:
3456 	case MSR_IA32_UCODE_WRITE:
3457 	case MSR_VM_HSAVE_PA:
3458 	case MSR_AMD64_PATCH_LOADER:
3459 	case MSR_AMD64_BU_CFG2:
3460 	case MSR_AMD64_DC_CFG:
3461 	case MSR_F15H_EX_CFG:
3462 		break;
3463 
3464 	case MSR_IA32_UCODE_REV:
3465 		if (msr_info->host_initiated)
3466 			vcpu->arch.microcode_version = data;
3467 		break;
3468 	case MSR_IA32_ARCH_CAPABILITIES:
3469 		if (!msr_info->host_initiated)
3470 			return 1;
3471 		vcpu->arch.arch_capabilities = data;
3472 		break;
3473 	case MSR_IA32_PERF_CAPABILITIES: {
3474 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3475 
3476 		if (!msr_info->host_initiated)
3477 			return 1;
3478 		if (kvm_get_msr_feature(&msr_ent))
3479 			return 1;
3480 		if (data & ~msr_ent.data)
3481 			return 1;
3482 
3483 		vcpu->arch.perf_capabilities = data;
3484 
3485 		return 0;
3486 		}
3487 	case MSR_EFER:
3488 		return set_efer(vcpu, msr_info);
3489 	case MSR_K7_HWCR:
3490 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3491 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3492 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3493 
3494 		/* Handle McStatusWrEn */
3495 		if (data == BIT_ULL(18)) {
3496 			vcpu->arch.msr_hwcr = data;
3497 		} else if (data != 0) {
3498 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3499 				    data);
3500 			return 1;
3501 		}
3502 		break;
3503 	case MSR_FAM10H_MMIO_CONF_BASE:
3504 		if (data != 0) {
3505 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3506 				    "0x%llx\n", data);
3507 			return 1;
3508 		}
3509 		break;
3510 	case 0x200 ... 0x2ff:
3511 		return kvm_mtrr_set_msr(vcpu, msr, data);
3512 	case MSR_IA32_APICBASE:
3513 		return kvm_set_apic_base(vcpu, msr_info);
3514 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3515 		return kvm_x2apic_msr_write(vcpu, msr, data);
3516 	case MSR_IA32_TSC_DEADLINE:
3517 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3518 		break;
3519 	case MSR_IA32_TSC_ADJUST:
3520 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3521 			if (!msr_info->host_initiated) {
3522 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3523 				adjust_tsc_offset_guest(vcpu, adj);
3524 				/* Before back to guest, tsc_timestamp must be adjusted
3525 				 * as well, otherwise guest's percpu pvclock time could jump.
3526 				 */
3527 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3528 			}
3529 			vcpu->arch.ia32_tsc_adjust_msr = data;
3530 		}
3531 		break;
3532 	case MSR_IA32_MISC_ENABLE:
3533 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3534 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3535 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3536 				return 1;
3537 			vcpu->arch.ia32_misc_enable_msr = data;
3538 			kvm_update_cpuid_runtime(vcpu);
3539 		} else {
3540 			vcpu->arch.ia32_misc_enable_msr = data;
3541 		}
3542 		break;
3543 	case MSR_IA32_SMBASE:
3544 		if (!msr_info->host_initiated)
3545 			return 1;
3546 		vcpu->arch.smbase = data;
3547 		break;
3548 	case MSR_IA32_POWER_CTL:
3549 		vcpu->arch.msr_ia32_power_ctl = data;
3550 		break;
3551 	case MSR_IA32_TSC:
3552 		if (msr_info->host_initiated) {
3553 			kvm_synchronize_tsc(vcpu, data);
3554 		} else {
3555 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3556 			adjust_tsc_offset_guest(vcpu, adj);
3557 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3558 		}
3559 		break;
3560 	case MSR_IA32_XSS:
3561 		if (!msr_info->host_initiated &&
3562 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3563 			return 1;
3564 		/*
3565 		 * KVM supports exposing PT to the guest, but does not support
3566 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3567 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3568 		 */
3569 		if (data & ~supported_xss)
3570 			return 1;
3571 		vcpu->arch.ia32_xss = data;
3572 		kvm_update_cpuid_runtime(vcpu);
3573 		break;
3574 	case MSR_SMI_COUNT:
3575 		if (!msr_info->host_initiated)
3576 			return 1;
3577 		vcpu->arch.smi_count = data;
3578 		break;
3579 	case MSR_KVM_WALL_CLOCK_NEW:
3580 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3581 			return 1;
3582 
3583 		vcpu->kvm->arch.wall_clock = data;
3584 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3585 		break;
3586 	case MSR_KVM_WALL_CLOCK:
3587 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3588 			return 1;
3589 
3590 		vcpu->kvm->arch.wall_clock = data;
3591 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3592 		break;
3593 	case MSR_KVM_SYSTEM_TIME_NEW:
3594 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3595 			return 1;
3596 
3597 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3598 		break;
3599 	case MSR_KVM_SYSTEM_TIME:
3600 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3601 			return 1;
3602 
3603 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3604 		break;
3605 	case MSR_KVM_ASYNC_PF_EN:
3606 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3607 			return 1;
3608 
3609 		if (kvm_pv_enable_async_pf(vcpu, data))
3610 			return 1;
3611 		break;
3612 	case MSR_KVM_ASYNC_PF_INT:
3613 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3614 			return 1;
3615 
3616 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3617 			return 1;
3618 		break;
3619 	case MSR_KVM_ASYNC_PF_ACK:
3620 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3621 			return 1;
3622 		if (data & 0x1) {
3623 			vcpu->arch.apf.pageready_pending = false;
3624 			kvm_check_async_pf_completion(vcpu);
3625 		}
3626 		break;
3627 	case MSR_KVM_STEAL_TIME:
3628 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3629 			return 1;
3630 
3631 		if (unlikely(!sched_info_on()))
3632 			return 1;
3633 
3634 		if (data & KVM_STEAL_RESERVED_MASK)
3635 			return 1;
3636 
3637 		vcpu->arch.st.msr_val = data;
3638 
3639 		if (!(data & KVM_MSR_ENABLED))
3640 			break;
3641 
3642 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3643 
3644 		break;
3645 	case MSR_KVM_PV_EOI_EN:
3646 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3647 			return 1;
3648 
3649 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3650 			return 1;
3651 		break;
3652 
3653 	case MSR_KVM_POLL_CONTROL:
3654 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3655 			return 1;
3656 
3657 		/* only enable bit supported */
3658 		if (data & (-1ULL << 1))
3659 			return 1;
3660 
3661 		vcpu->arch.msr_kvm_poll_control = data;
3662 		break;
3663 
3664 	case MSR_IA32_MCG_CTL:
3665 	case MSR_IA32_MCG_STATUS:
3666 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3667 		return set_msr_mce(vcpu, msr_info);
3668 
3669 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3670 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3671 		pr = true;
3672 		fallthrough;
3673 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3674 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3675 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3676 			return kvm_pmu_set_msr(vcpu, msr_info);
3677 
3678 		if (pr || data != 0)
3679 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3680 				    "0x%x data 0x%llx\n", msr, data);
3681 		break;
3682 	case MSR_K7_CLK_CTL:
3683 		/*
3684 		 * Ignore all writes to this no longer documented MSR.
3685 		 * Writes are only relevant for old K7 processors,
3686 		 * all pre-dating SVM, but a recommended workaround from
3687 		 * AMD for these chips. It is possible to specify the
3688 		 * affected processor models on the command line, hence
3689 		 * the need to ignore the workaround.
3690 		 */
3691 		break;
3692 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3693 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3694 	case HV_X64_MSR_SYNDBG_OPTIONS:
3695 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3696 	case HV_X64_MSR_CRASH_CTL:
3697 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3698 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3699 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3700 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3701 		return kvm_hv_set_msr_common(vcpu, msr, data,
3702 					     msr_info->host_initiated);
3703 	case MSR_IA32_BBL_CR_CTL3:
3704 		/* Drop writes to this legacy MSR -- see rdmsr
3705 		 * counterpart for further detail.
3706 		 */
3707 		if (report_ignored_msrs)
3708 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3709 				msr, data);
3710 		break;
3711 	case MSR_AMD64_OSVW_ID_LENGTH:
3712 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3713 			return 1;
3714 		vcpu->arch.osvw.length = data;
3715 		break;
3716 	case MSR_AMD64_OSVW_STATUS:
3717 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3718 			return 1;
3719 		vcpu->arch.osvw.status = data;
3720 		break;
3721 	case MSR_PLATFORM_INFO:
3722 		if (!msr_info->host_initiated ||
3723 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3724 		     cpuid_fault_enabled(vcpu)))
3725 			return 1;
3726 		vcpu->arch.msr_platform_info = data;
3727 		break;
3728 	case MSR_MISC_FEATURES_ENABLES:
3729 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3730 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3731 		     !supports_cpuid_fault(vcpu)))
3732 			return 1;
3733 		vcpu->arch.msr_misc_features_enables = data;
3734 		break;
3735 #ifdef CONFIG_X86_64
3736 	case MSR_IA32_XFD:
3737 		if (!msr_info->host_initiated &&
3738 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3739 			return 1;
3740 
3741 		if (data & ~kvm_guest_supported_xfd(vcpu))
3742 			return 1;
3743 
3744 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3745 		break;
3746 	case MSR_IA32_XFD_ERR:
3747 		if (!msr_info->host_initiated &&
3748 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3749 			return 1;
3750 
3751 		if (data & ~kvm_guest_supported_xfd(vcpu))
3752 			return 1;
3753 
3754 		vcpu->arch.guest_fpu.xfd_err = data;
3755 		break;
3756 #endif
3757 	default:
3758 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3759 			return kvm_pmu_set_msr(vcpu, msr_info);
3760 		return KVM_MSR_RET_INVALID;
3761 	}
3762 	return 0;
3763 }
3764 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3765 
3766 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3767 {
3768 	u64 data;
3769 	u64 mcg_cap = vcpu->arch.mcg_cap;
3770 	unsigned bank_num = mcg_cap & 0xff;
3771 
3772 	switch (msr) {
3773 	case MSR_IA32_P5_MC_ADDR:
3774 	case MSR_IA32_P5_MC_TYPE:
3775 		data = 0;
3776 		break;
3777 	case MSR_IA32_MCG_CAP:
3778 		data = vcpu->arch.mcg_cap;
3779 		break;
3780 	case MSR_IA32_MCG_CTL:
3781 		if (!(mcg_cap & MCG_CTL_P) && !host)
3782 			return 1;
3783 		data = vcpu->arch.mcg_ctl;
3784 		break;
3785 	case MSR_IA32_MCG_STATUS:
3786 		data = vcpu->arch.mcg_status;
3787 		break;
3788 	default:
3789 		if (msr >= MSR_IA32_MC0_CTL &&
3790 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3791 			u32 offset = array_index_nospec(
3792 				msr - MSR_IA32_MC0_CTL,
3793 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3794 
3795 			data = vcpu->arch.mce_banks[offset];
3796 			break;
3797 		}
3798 		return 1;
3799 	}
3800 	*pdata = data;
3801 	return 0;
3802 }
3803 
3804 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3805 {
3806 	switch (msr_info->index) {
3807 	case MSR_IA32_PLATFORM_ID:
3808 	case MSR_IA32_EBL_CR_POWERON:
3809 	case MSR_IA32_LASTBRANCHFROMIP:
3810 	case MSR_IA32_LASTBRANCHTOIP:
3811 	case MSR_IA32_LASTINTFROMIP:
3812 	case MSR_IA32_LASTINTTOIP:
3813 	case MSR_AMD64_SYSCFG:
3814 	case MSR_K8_TSEG_ADDR:
3815 	case MSR_K8_TSEG_MASK:
3816 	case MSR_VM_HSAVE_PA:
3817 	case MSR_K8_INT_PENDING_MSG:
3818 	case MSR_AMD64_NB_CFG:
3819 	case MSR_FAM10H_MMIO_CONF_BASE:
3820 	case MSR_AMD64_BU_CFG2:
3821 	case MSR_IA32_PERF_CTL:
3822 	case MSR_AMD64_DC_CFG:
3823 	case MSR_F15H_EX_CFG:
3824 	/*
3825 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3826 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3827 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3828 	 * so for existing CPU-specific MSRs.
3829 	 */
3830 	case MSR_RAPL_POWER_UNIT:
3831 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3832 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3833 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3834 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3835 		msr_info->data = 0;
3836 		break;
3837 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3838 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3839 			return kvm_pmu_get_msr(vcpu, msr_info);
3840 		if (!msr_info->host_initiated)
3841 			return 1;
3842 		msr_info->data = 0;
3843 		break;
3844 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3845 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3846 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3847 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3848 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3849 			return kvm_pmu_get_msr(vcpu, msr_info);
3850 		msr_info->data = 0;
3851 		break;
3852 	case MSR_IA32_UCODE_REV:
3853 		msr_info->data = vcpu->arch.microcode_version;
3854 		break;
3855 	case MSR_IA32_ARCH_CAPABILITIES:
3856 		if (!msr_info->host_initiated &&
3857 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3858 			return 1;
3859 		msr_info->data = vcpu->arch.arch_capabilities;
3860 		break;
3861 	case MSR_IA32_PERF_CAPABILITIES:
3862 		if (!msr_info->host_initiated &&
3863 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3864 			return 1;
3865 		msr_info->data = vcpu->arch.perf_capabilities;
3866 		break;
3867 	case MSR_IA32_POWER_CTL:
3868 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3869 		break;
3870 	case MSR_IA32_TSC: {
3871 		/*
3872 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3873 		 * even when not intercepted. AMD manual doesn't explicitly
3874 		 * state this but appears to behave the same.
3875 		 *
3876 		 * On userspace reads and writes, however, we unconditionally
3877 		 * return L1's TSC value to ensure backwards-compatible
3878 		 * behavior for migration.
3879 		 */
3880 		u64 offset, ratio;
3881 
3882 		if (msr_info->host_initiated) {
3883 			offset = vcpu->arch.l1_tsc_offset;
3884 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3885 		} else {
3886 			offset = vcpu->arch.tsc_offset;
3887 			ratio = vcpu->arch.tsc_scaling_ratio;
3888 		}
3889 
3890 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3891 		break;
3892 	}
3893 	case MSR_MTRRcap:
3894 	case 0x200 ... 0x2ff:
3895 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3896 	case 0xcd: /* fsb frequency */
3897 		msr_info->data = 3;
3898 		break;
3899 		/*
3900 		 * MSR_EBC_FREQUENCY_ID
3901 		 * Conservative value valid for even the basic CPU models.
3902 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3903 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3904 		 * and 266MHz for model 3, or 4. Set Core Clock
3905 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3906 		 * 31:24) even though these are only valid for CPU
3907 		 * models > 2, however guests may end up dividing or
3908 		 * multiplying by zero otherwise.
3909 		 */
3910 	case MSR_EBC_FREQUENCY_ID:
3911 		msr_info->data = 1 << 24;
3912 		break;
3913 	case MSR_IA32_APICBASE:
3914 		msr_info->data = kvm_get_apic_base(vcpu);
3915 		break;
3916 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3917 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3918 	case MSR_IA32_TSC_DEADLINE:
3919 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3920 		break;
3921 	case MSR_IA32_TSC_ADJUST:
3922 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3923 		break;
3924 	case MSR_IA32_MISC_ENABLE:
3925 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3926 		break;
3927 	case MSR_IA32_SMBASE:
3928 		if (!msr_info->host_initiated)
3929 			return 1;
3930 		msr_info->data = vcpu->arch.smbase;
3931 		break;
3932 	case MSR_SMI_COUNT:
3933 		msr_info->data = vcpu->arch.smi_count;
3934 		break;
3935 	case MSR_IA32_PERF_STATUS:
3936 		/* TSC increment by tick */
3937 		msr_info->data = 1000ULL;
3938 		/* CPU multiplier */
3939 		msr_info->data |= (((uint64_t)4ULL) << 40);
3940 		break;
3941 	case MSR_EFER:
3942 		msr_info->data = vcpu->arch.efer;
3943 		break;
3944 	case MSR_KVM_WALL_CLOCK:
3945 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3946 			return 1;
3947 
3948 		msr_info->data = vcpu->kvm->arch.wall_clock;
3949 		break;
3950 	case MSR_KVM_WALL_CLOCK_NEW:
3951 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3952 			return 1;
3953 
3954 		msr_info->data = vcpu->kvm->arch.wall_clock;
3955 		break;
3956 	case MSR_KVM_SYSTEM_TIME:
3957 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3958 			return 1;
3959 
3960 		msr_info->data = vcpu->arch.time;
3961 		break;
3962 	case MSR_KVM_SYSTEM_TIME_NEW:
3963 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3964 			return 1;
3965 
3966 		msr_info->data = vcpu->arch.time;
3967 		break;
3968 	case MSR_KVM_ASYNC_PF_EN:
3969 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3970 			return 1;
3971 
3972 		msr_info->data = vcpu->arch.apf.msr_en_val;
3973 		break;
3974 	case MSR_KVM_ASYNC_PF_INT:
3975 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3976 			return 1;
3977 
3978 		msr_info->data = vcpu->arch.apf.msr_int_val;
3979 		break;
3980 	case MSR_KVM_ASYNC_PF_ACK:
3981 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3982 			return 1;
3983 
3984 		msr_info->data = 0;
3985 		break;
3986 	case MSR_KVM_STEAL_TIME:
3987 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3988 			return 1;
3989 
3990 		msr_info->data = vcpu->arch.st.msr_val;
3991 		break;
3992 	case MSR_KVM_PV_EOI_EN:
3993 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3994 			return 1;
3995 
3996 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3997 		break;
3998 	case MSR_KVM_POLL_CONTROL:
3999 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4000 			return 1;
4001 
4002 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4003 		break;
4004 	case MSR_IA32_P5_MC_ADDR:
4005 	case MSR_IA32_P5_MC_TYPE:
4006 	case MSR_IA32_MCG_CAP:
4007 	case MSR_IA32_MCG_CTL:
4008 	case MSR_IA32_MCG_STATUS:
4009 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4010 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4011 				   msr_info->host_initiated);
4012 	case MSR_IA32_XSS:
4013 		if (!msr_info->host_initiated &&
4014 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4015 			return 1;
4016 		msr_info->data = vcpu->arch.ia32_xss;
4017 		break;
4018 	case MSR_K7_CLK_CTL:
4019 		/*
4020 		 * Provide expected ramp-up count for K7. All other
4021 		 * are set to zero, indicating minimum divisors for
4022 		 * every field.
4023 		 *
4024 		 * This prevents guest kernels on AMD host with CPU
4025 		 * type 6, model 8 and higher from exploding due to
4026 		 * the rdmsr failing.
4027 		 */
4028 		msr_info->data = 0x20000000;
4029 		break;
4030 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4031 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4032 	case HV_X64_MSR_SYNDBG_OPTIONS:
4033 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4034 	case HV_X64_MSR_CRASH_CTL:
4035 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4036 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4037 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4038 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4039 		return kvm_hv_get_msr_common(vcpu,
4040 					     msr_info->index, &msr_info->data,
4041 					     msr_info->host_initiated);
4042 	case MSR_IA32_BBL_CR_CTL3:
4043 		/* This legacy MSR exists but isn't fully documented in current
4044 		 * silicon.  It is however accessed by winxp in very narrow
4045 		 * scenarios where it sets bit #19, itself documented as
4046 		 * a "reserved" bit.  Best effort attempt to source coherent
4047 		 * read data here should the balance of the register be
4048 		 * interpreted by the guest:
4049 		 *
4050 		 * L2 cache control register 3: 64GB range, 256KB size,
4051 		 * enabled, latency 0x1, configured
4052 		 */
4053 		msr_info->data = 0xbe702111;
4054 		break;
4055 	case MSR_AMD64_OSVW_ID_LENGTH:
4056 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4057 			return 1;
4058 		msr_info->data = vcpu->arch.osvw.length;
4059 		break;
4060 	case MSR_AMD64_OSVW_STATUS:
4061 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4062 			return 1;
4063 		msr_info->data = vcpu->arch.osvw.status;
4064 		break;
4065 	case MSR_PLATFORM_INFO:
4066 		if (!msr_info->host_initiated &&
4067 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4068 			return 1;
4069 		msr_info->data = vcpu->arch.msr_platform_info;
4070 		break;
4071 	case MSR_MISC_FEATURES_ENABLES:
4072 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4073 		break;
4074 	case MSR_K7_HWCR:
4075 		msr_info->data = vcpu->arch.msr_hwcr;
4076 		break;
4077 #ifdef CONFIG_X86_64
4078 	case MSR_IA32_XFD:
4079 		if (!msr_info->host_initiated &&
4080 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4081 			return 1;
4082 
4083 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4084 		break;
4085 	case MSR_IA32_XFD_ERR:
4086 		if (!msr_info->host_initiated &&
4087 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4088 			return 1;
4089 
4090 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4091 		break;
4092 #endif
4093 	default:
4094 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4095 			return kvm_pmu_get_msr(vcpu, msr_info);
4096 		return KVM_MSR_RET_INVALID;
4097 	}
4098 	return 0;
4099 }
4100 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4101 
4102 /*
4103  * Read or write a bunch of msrs. All parameters are kernel addresses.
4104  *
4105  * @return number of msrs set successfully.
4106  */
4107 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4108 		    struct kvm_msr_entry *entries,
4109 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4110 				  unsigned index, u64 *data))
4111 {
4112 	int i;
4113 
4114 	for (i = 0; i < msrs->nmsrs; ++i)
4115 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4116 			break;
4117 
4118 	return i;
4119 }
4120 
4121 /*
4122  * Read or write a bunch of msrs. Parameters are user addresses.
4123  *
4124  * @return number of msrs set successfully.
4125  */
4126 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4127 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4128 				unsigned index, u64 *data),
4129 		  int writeback)
4130 {
4131 	struct kvm_msrs msrs;
4132 	struct kvm_msr_entry *entries;
4133 	int r, n;
4134 	unsigned size;
4135 
4136 	r = -EFAULT;
4137 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4138 		goto out;
4139 
4140 	r = -E2BIG;
4141 	if (msrs.nmsrs >= MAX_IO_MSRS)
4142 		goto out;
4143 
4144 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4145 	entries = memdup_user(user_msrs->entries, size);
4146 	if (IS_ERR(entries)) {
4147 		r = PTR_ERR(entries);
4148 		goto out;
4149 	}
4150 
4151 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4152 	if (r < 0)
4153 		goto out_free;
4154 
4155 	r = -EFAULT;
4156 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4157 		goto out_free;
4158 
4159 	r = n;
4160 
4161 out_free:
4162 	kfree(entries);
4163 out:
4164 	return r;
4165 }
4166 
4167 static inline bool kvm_can_mwait_in_guest(void)
4168 {
4169 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4170 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4171 		boot_cpu_has(X86_FEATURE_ARAT);
4172 }
4173 
4174 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4175 					    struct kvm_cpuid2 __user *cpuid_arg)
4176 {
4177 	struct kvm_cpuid2 cpuid;
4178 	int r;
4179 
4180 	r = -EFAULT;
4181 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4182 		return r;
4183 
4184 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4185 	if (r)
4186 		return r;
4187 
4188 	r = -EFAULT;
4189 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4190 		return r;
4191 
4192 	return 0;
4193 }
4194 
4195 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4196 {
4197 	int r = 0;
4198 
4199 	switch (ext) {
4200 	case KVM_CAP_IRQCHIP:
4201 	case KVM_CAP_HLT:
4202 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4203 	case KVM_CAP_SET_TSS_ADDR:
4204 	case KVM_CAP_EXT_CPUID:
4205 	case KVM_CAP_EXT_EMUL_CPUID:
4206 	case KVM_CAP_CLOCKSOURCE:
4207 	case KVM_CAP_PIT:
4208 	case KVM_CAP_NOP_IO_DELAY:
4209 	case KVM_CAP_MP_STATE:
4210 	case KVM_CAP_SYNC_MMU:
4211 	case KVM_CAP_USER_NMI:
4212 	case KVM_CAP_REINJECT_CONTROL:
4213 	case KVM_CAP_IRQ_INJECT_STATUS:
4214 	case KVM_CAP_IOEVENTFD:
4215 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4216 	case KVM_CAP_PIT2:
4217 	case KVM_CAP_PIT_STATE2:
4218 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4219 	case KVM_CAP_VCPU_EVENTS:
4220 	case KVM_CAP_HYPERV:
4221 	case KVM_CAP_HYPERV_VAPIC:
4222 	case KVM_CAP_HYPERV_SPIN:
4223 	case KVM_CAP_HYPERV_SYNIC:
4224 	case KVM_CAP_HYPERV_SYNIC2:
4225 	case KVM_CAP_HYPERV_VP_INDEX:
4226 	case KVM_CAP_HYPERV_EVENTFD:
4227 	case KVM_CAP_HYPERV_TLBFLUSH:
4228 	case KVM_CAP_HYPERV_SEND_IPI:
4229 	case KVM_CAP_HYPERV_CPUID:
4230 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4231 	case KVM_CAP_SYS_HYPERV_CPUID:
4232 	case KVM_CAP_PCI_SEGMENT:
4233 	case KVM_CAP_DEBUGREGS:
4234 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4235 	case KVM_CAP_XSAVE:
4236 	case KVM_CAP_ASYNC_PF:
4237 	case KVM_CAP_ASYNC_PF_INT:
4238 	case KVM_CAP_GET_TSC_KHZ:
4239 	case KVM_CAP_KVMCLOCK_CTRL:
4240 	case KVM_CAP_READONLY_MEM:
4241 	case KVM_CAP_HYPERV_TIME:
4242 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4243 	case KVM_CAP_TSC_DEADLINE_TIMER:
4244 	case KVM_CAP_DISABLE_QUIRKS:
4245 	case KVM_CAP_SET_BOOT_CPU_ID:
4246  	case KVM_CAP_SPLIT_IRQCHIP:
4247 	case KVM_CAP_IMMEDIATE_EXIT:
4248 	case KVM_CAP_PMU_EVENT_FILTER:
4249 	case KVM_CAP_GET_MSR_FEATURES:
4250 	case KVM_CAP_MSR_PLATFORM_INFO:
4251 	case KVM_CAP_EXCEPTION_PAYLOAD:
4252 	case KVM_CAP_SET_GUEST_DEBUG:
4253 	case KVM_CAP_LAST_CPU:
4254 	case KVM_CAP_X86_USER_SPACE_MSR:
4255 	case KVM_CAP_X86_MSR_FILTER:
4256 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4257 #ifdef CONFIG_X86_SGX_KVM
4258 	case KVM_CAP_SGX_ATTRIBUTE:
4259 #endif
4260 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4261 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4262 	case KVM_CAP_SREGS2:
4263 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4264 	case KVM_CAP_VCPU_ATTRIBUTES:
4265 	case KVM_CAP_SYS_ATTRIBUTES:
4266 	case KVM_CAP_VAPIC:
4267 	case KVM_CAP_ENABLE_CAP:
4268 		r = 1;
4269 		break;
4270 	case KVM_CAP_EXIT_HYPERCALL:
4271 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4272 		break;
4273 	case KVM_CAP_SET_GUEST_DEBUG2:
4274 		return KVM_GUESTDBG_VALID_MASK;
4275 #ifdef CONFIG_KVM_XEN
4276 	case KVM_CAP_XEN_HVM:
4277 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4278 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4279 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4280 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4281 		if (sched_info_on())
4282 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4283 		break;
4284 #endif
4285 	case KVM_CAP_SYNC_REGS:
4286 		r = KVM_SYNC_X86_VALID_FIELDS;
4287 		break;
4288 	case KVM_CAP_ADJUST_CLOCK:
4289 		r = KVM_CLOCK_VALID_FLAGS;
4290 		break;
4291 	case KVM_CAP_X86_DISABLE_EXITS:
4292 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4293 		      KVM_X86_DISABLE_EXITS_CSTATE;
4294 		if(kvm_can_mwait_in_guest())
4295 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4296 		break;
4297 	case KVM_CAP_X86_SMM:
4298 		/* SMBASE is usually relocated above 1M on modern chipsets,
4299 		 * and SMM handlers might indeed rely on 4G segment limits,
4300 		 * so do not report SMM to be available if real mode is
4301 		 * emulated via vm86 mode.  Still, do not go to great lengths
4302 		 * to avoid userspace's usage of the feature, because it is a
4303 		 * fringe case that is not enabled except via specific settings
4304 		 * of the module parameters.
4305 		 */
4306 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4307 		break;
4308 	case KVM_CAP_NR_VCPUS:
4309 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4310 		break;
4311 	case KVM_CAP_MAX_VCPUS:
4312 		r = KVM_MAX_VCPUS;
4313 		break;
4314 	case KVM_CAP_MAX_VCPU_ID:
4315 		r = KVM_MAX_VCPU_IDS;
4316 		break;
4317 	case KVM_CAP_PV_MMU:	/* obsolete */
4318 		r = 0;
4319 		break;
4320 	case KVM_CAP_MCE:
4321 		r = KVM_MAX_MCE_BANKS;
4322 		break;
4323 	case KVM_CAP_XCRS:
4324 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4325 		break;
4326 	case KVM_CAP_TSC_CONTROL:
4327 		r = kvm_has_tsc_control;
4328 		break;
4329 	case KVM_CAP_X2APIC_API:
4330 		r = KVM_X2APIC_API_VALID_FLAGS;
4331 		break;
4332 	case KVM_CAP_NESTED_STATE:
4333 		r = kvm_x86_ops.nested_ops->get_state ?
4334 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4335 		break;
4336 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4337 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4338 		break;
4339 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4340 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4341 		break;
4342 	case KVM_CAP_SMALLER_MAXPHYADDR:
4343 		r = (int) allow_smaller_maxphyaddr;
4344 		break;
4345 	case KVM_CAP_STEAL_TIME:
4346 		r = sched_info_on();
4347 		break;
4348 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4349 		if (kvm_has_bus_lock_exit)
4350 			r = KVM_BUS_LOCK_DETECTION_OFF |
4351 			    KVM_BUS_LOCK_DETECTION_EXIT;
4352 		else
4353 			r = 0;
4354 		break;
4355 	case KVM_CAP_XSAVE2: {
4356 		u64 guest_perm = xstate_get_guest_group_perm();
4357 
4358 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
4359 		if (r < sizeof(struct kvm_xsave))
4360 			r = sizeof(struct kvm_xsave);
4361 		break;
4362 	case KVM_CAP_PMU_CAPABILITY:
4363 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4364 		break;
4365 	}
4366 	case KVM_CAP_DISABLE_QUIRKS2:
4367 		r = KVM_X86_VALID_QUIRKS;
4368 		break;
4369 	default:
4370 		break;
4371 	}
4372 	return r;
4373 }
4374 
4375 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4376 {
4377 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4378 
4379 	if ((u64)(unsigned long)uaddr != attr->addr)
4380 		return ERR_PTR_USR(-EFAULT);
4381 	return uaddr;
4382 }
4383 
4384 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4385 {
4386 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4387 
4388 	if (attr->group)
4389 		return -ENXIO;
4390 
4391 	if (IS_ERR(uaddr))
4392 		return PTR_ERR(uaddr);
4393 
4394 	switch (attr->attr) {
4395 	case KVM_X86_XCOMP_GUEST_SUPP:
4396 		if (put_user(supported_xcr0, uaddr))
4397 			return -EFAULT;
4398 		return 0;
4399 	default:
4400 		return -ENXIO;
4401 		break;
4402 	}
4403 }
4404 
4405 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4406 {
4407 	if (attr->group)
4408 		return -ENXIO;
4409 
4410 	switch (attr->attr) {
4411 	case KVM_X86_XCOMP_GUEST_SUPP:
4412 		return 0;
4413 	default:
4414 		return -ENXIO;
4415 	}
4416 }
4417 
4418 long kvm_arch_dev_ioctl(struct file *filp,
4419 			unsigned int ioctl, unsigned long arg)
4420 {
4421 	void __user *argp = (void __user *)arg;
4422 	long r;
4423 
4424 	switch (ioctl) {
4425 	case KVM_GET_MSR_INDEX_LIST: {
4426 		struct kvm_msr_list __user *user_msr_list = argp;
4427 		struct kvm_msr_list msr_list;
4428 		unsigned n;
4429 
4430 		r = -EFAULT;
4431 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4432 			goto out;
4433 		n = msr_list.nmsrs;
4434 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4435 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4436 			goto out;
4437 		r = -E2BIG;
4438 		if (n < msr_list.nmsrs)
4439 			goto out;
4440 		r = -EFAULT;
4441 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4442 				 num_msrs_to_save * sizeof(u32)))
4443 			goto out;
4444 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4445 				 &emulated_msrs,
4446 				 num_emulated_msrs * sizeof(u32)))
4447 			goto out;
4448 		r = 0;
4449 		break;
4450 	}
4451 	case KVM_GET_SUPPORTED_CPUID:
4452 	case KVM_GET_EMULATED_CPUID: {
4453 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4454 		struct kvm_cpuid2 cpuid;
4455 
4456 		r = -EFAULT;
4457 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4458 			goto out;
4459 
4460 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4461 					    ioctl);
4462 		if (r)
4463 			goto out;
4464 
4465 		r = -EFAULT;
4466 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4467 			goto out;
4468 		r = 0;
4469 		break;
4470 	}
4471 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4472 		r = -EFAULT;
4473 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4474 				 sizeof(kvm_mce_cap_supported)))
4475 			goto out;
4476 		r = 0;
4477 		break;
4478 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4479 		struct kvm_msr_list __user *user_msr_list = argp;
4480 		struct kvm_msr_list msr_list;
4481 		unsigned int n;
4482 
4483 		r = -EFAULT;
4484 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4485 			goto out;
4486 		n = msr_list.nmsrs;
4487 		msr_list.nmsrs = num_msr_based_features;
4488 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4489 			goto out;
4490 		r = -E2BIG;
4491 		if (n < msr_list.nmsrs)
4492 			goto out;
4493 		r = -EFAULT;
4494 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4495 				 num_msr_based_features * sizeof(u32)))
4496 			goto out;
4497 		r = 0;
4498 		break;
4499 	}
4500 	case KVM_GET_MSRS:
4501 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4502 		break;
4503 	case KVM_GET_SUPPORTED_HV_CPUID:
4504 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4505 		break;
4506 	case KVM_GET_DEVICE_ATTR: {
4507 		struct kvm_device_attr attr;
4508 		r = -EFAULT;
4509 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4510 			break;
4511 		r = kvm_x86_dev_get_attr(&attr);
4512 		break;
4513 	}
4514 	case KVM_HAS_DEVICE_ATTR: {
4515 		struct kvm_device_attr attr;
4516 		r = -EFAULT;
4517 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4518 			break;
4519 		r = kvm_x86_dev_has_attr(&attr);
4520 		break;
4521 	}
4522 	default:
4523 		r = -EINVAL;
4524 		break;
4525 	}
4526 out:
4527 	return r;
4528 }
4529 
4530 static void wbinvd_ipi(void *garbage)
4531 {
4532 	wbinvd();
4533 }
4534 
4535 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4536 {
4537 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4538 }
4539 
4540 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4541 {
4542 	/* Address WBINVD may be executed by guest */
4543 	if (need_emulate_wbinvd(vcpu)) {
4544 		if (static_call(kvm_x86_has_wbinvd_exit)())
4545 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4546 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4547 			smp_call_function_single(vcpu->cpu,
4548 					wbinvd_ipi, NULL, 1);
4549 	}
4550 
4551 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4552 
4553 	/* Save host pkru register if supported */
4554 	vcpu->arch.host_pkru = read_pkru();
4555 
4556 	/* Apply any externally detected TSC adjustments (due to suspend) */
4557 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4558 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4559 		vcpu->arch.tsc_offset_adjustment = 0;
4560 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4561 	}
4562 
4563 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4564 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4565 				rdtsc() - vcpu->arch.last_host_tsc;
4566 		if (tsc_delta < 0)
4567 			mark_tsc_unstable("KVM discovered backwards TSC");
4568 
4569 		if (kvm_check_tsc_unstable()) {
4570 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4571 						vcpu->arch.last_guest_tsc);
4572 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4573 			vcpu->arch.tsc_catchup = 1;
4574 		}
4575 
4576 		if (kvm_lapic_hv_timer_in_use(vcpu))
4577 			kvm_lapic_restart_hv_timer(vcpu);
4578 
4579 		/*
4580 		 * On a host with synchronized TSC, there is no need to update
4581 		 * kvmclock on vcpu->cpu migration
4582 		 */
4583 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4584 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4585 		if (vcpu->cpu != cpu)
4586 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4587 		vcpu->cpu = cpu;
4588 	}
4589 
4590 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4591 }
4592 
4593 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4594 {
4595 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4596 	struct kvm_steal_time __user *st;
4597 	struct kvm_memslots *slots;
4598 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4599 
4600 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4601 		return;
4602 
4603 	if (vcpu->arch.st.preempted)
4604 		return;
4605 
4606 	/* This happens on process exit */
4607 	if (unlikely(current->mm != vcpu->kvm->mm))
4608 		return;
4609 
4610 	slots = kvm_memslots(vcpu->kvm);
4611 
4612 	if (unlikely(slots->generation != ghc->generation ||
4613 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4614 		return;
4615 
4616 	st = (struct kvm_steal_time __user *)ghc->hva;
4617 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4618 
4619 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4620 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4621 
4622 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4623 }
4624 
4625 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4626 {
4627 	int idx;
4628 
4629 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4630 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4631 
4632 	/*
4633 	 * Take the srcu lock as memslots will be accessed to check the gfn
4634 	 * cache generation against the memslots generation.
4635 	 */
4636 	idx = srcu_read_lock(&vcpu->kvm->srcu);
4637 	if (kvm_xen_msr_enabled(vcpu->kvm))
4638 		kvm_xen_runstate_set_preempted(vcpu);
4639 	else
4640 		kvm_steal_time_set_preempted(vcpu);
4641 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4642 
4643 	static_call(kvm_x86_vcpu_put)(vcpu);
4644 	vcpu->arch.last_host_tsc = rdtsc();
4645 }
4646 
4647 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4648 				    struct kvm_lapic_state *s)
4649 {
4650 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4651 
4652 	return kvm_apic_get_state(vcpu, s);
4653 }
4654 
4655 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4656 				    struct kvm_lapic_state *s)
4657 {
4658 	int r;
4659 
4660 	r = kvm_apic_set_state(vcpu, s);
4661 	if (r)
4662 		return r;
4663 	update_cr8_intercept(vcpu);
4664 
4665 	return 0;
4666 }
4667 
4668 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4669 {
4670 	/*
4671 	 * We can accept userspace's request for interrupt injection
4672 	 * as long as we have a place to store the interrupt number.
4673 	 * The actual injection will happen when the CPU is able to
4674 	 * deliver the interrupt.
4675 	 */
4676 	if (kvm_cpu_has_extint(vcpu))
4677 		return false;
4678 
4679 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4680 	return (!lapic_in_kernel(vcpu) ||
4681 		kvm_apic_accept_pic_intr(vcpu));
4682 }
4683 
4684 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4685 {
4686 	/*
4687 	 * Do not cause an interrupt window exit if an exception
4688 	 * is pending or an event needs reinjection; userspace
4689 	 * might want to inject the interrupt manually using KVM_SET_REGS
4690 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4691 	 * instruction boundary and with no events half-injected.
4692 	 */
4693 	return (kvm_arch_interrupt_allowed(vcpu) &&
4694 		kvm_cpu_accept_dm_intr(vcpu) &&
4695 		!kvm_event_needs_reinjection(vcpu) &&
4696 		!vcpu->arch.exception.pending);
4697 }
4698 
4699 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4700 				    struct kvm_interrupt *irq)
4701 {
4702 	if (irq->irq >= KVM_NR_INTERRUPTS)
4703 		return -EINVAL;
4704 
4705 	if (!irqchip_in_kernel(vcpu->kvm)) {
4706 		kvm_queue_interrupt(vcpu, irq->irq, false);
4707 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4708 		return 0;
4709 	}
4710 
4711 	/*
4712 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4713 	 * fail for in-kernel 8259.
4714 	 */
4715 	if (pic_in_kernel(vcpu->kvm))
4716 		return -ENXIO;
4717 
4718 	if (vcpu->arch.pending_external_vector != -1)
4719 		return -EEXIST;
4720 
4721 	vcpu->arch.pending_external_vector = irq->irq;
4722 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4723 	return 0;
4724 }
4725 
4726 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4727 {
4728 	kvm_inject_nmi(vcpu);
4729 
4730 	return 0;
4731 }
4732 
4733 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4734 {
4735 	kvm_make_request(KVM_REQ_SMI, vcpu);
4736 
4737 	return 0;
4738 }
4739 
4740 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4741 					   struct kvm_tpr_access_ctl *tac)
4742 {
4743 	if (tac->flags)
4744 		return -EINVAL;
4745 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4746 	return 0;
4747 }
4748 
4749 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4750 					u64 mcg_cap)
4751 {
4752 	int r;
4753 	unsigned bank_num = mcg_cap & 0xff, bank;
4754 
4755 	r = -EINVAL;
4756 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4757 		goto out;
4758 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4759 		goto out;
4760 	r = 0;
4761 	vcpu->arch.mcg_cap = mcg_cap;
4762 	/* Init IA32_MCG_CTL to all 1s */
4763 	if (mcg_cap & MCG_CTL_P)
4764 		vcpu->arch.mcg_ctl = ~(u64)0;
4765 	/* Init IA32_MCi_CTL to all 1s */
4766 	for (bank = 0; bank < bank_num; bank++)
4767 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4768 
4769 	static_call(kvm_x86_setup_mce)(vcpu);
4770 out:
4771 	return r;
4772 }
4773 
4774 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4775 				      struct kvm_x86_mce *mce)
4776 {
4777 	u64 mcg_cap = vcpu->arch.mcg_cap;
4778 	unsigned bank_num = mcg_cap & 0xff;
4779 	u64 *banks = vcpu->arch.mce_banks;
4780 
4781 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4782 		return -EINVAL;
4783 	/*
4784 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4785 	 * reporting is disabled
4786 	 */
4787 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4788 	    vcpu->arch.mcg_ctl != ~(u64)0)
4789 		return 0;
4790 	banks += 4 * mce->bank;
4791 	/*
4792 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4793 	 * reporting is disabled for the bank
4794 	 */
4795 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4796 		return 0;
4797 	if (mce->status & MCI_STATUS_UC) {
4798 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4799 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4800 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4801 			return 0;
4802 		}
4803 		if (banks[1] & MCI_STATUS_VAL)
4804 			mce->status |= MCI_STATUS_OVER;
4805 		banks[2] = mce->addr;
4806 		banks[3] = mce->misc;
4807 		vcpu->arch.mcg_status = mce->mcg_status;
4808 		banks[1] = mce->status;
4809 		kvm_queue_exception(vcpu, MC_VECTOR);
4810 	} else if (!(banks[1] & MCI_STATUS_VAL)
4811 		   || !(banks[1] & MCI_STATUS_UC)) {
4812 		if (banks[1] & MCI_STATUS_VAL)
4813 			mce->status |= MCI_STATUS_OVER;
4814 		banks[2] = mce->addr;
4815 		banks[3] = mce->misc;
4816 		banks[1] = mce->status;
4817 	} else
4818 		banks[1] |= MCI_STATUS_OVER;
4819 	return 0;
4820 }
4821 
4822 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4823 					       struct kvm_vcpu_events *events)
4824 {
4825 	process_nmi(vcpu);
4826 
4827 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4828 		process_smi(vcpu);
4829 
4830 	/*
4831 	 * In guest mode, payload delivery should be deferred,
4832 	 * so that the L1 hypervisor can intercept #PF before
4833 	 * CR2 is modified (or intercept #DB before DR6 is
4834 	 * modified under nVMX). Unless the per-VM capability,
4835 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4836 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4837 	 * opportunistically defer the exception payload, deliver it if the
4838 	 * capability hasn't been requested before processing a
4839 	 * KVM_GET_VCPU_EVENTS.
4840 	 */
4841 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4842 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4843 		kvm_deliver_exception_payload(vcpu);
4844 
4845 	/*
4846 	 * The API doesn't provide the instruction length for software
4847 	 * exceptions, so don't report them. As long as the guest RIP
4848 	 * isn't advanced, we should expect to encounter the exception
4849 	 * again.
4850 	 */
4851 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4852 		events->exception.injected = 0;
4853 		events->exception.pending = 0;
4854 	} else {
4855 		events->exception.injected = vcpu->arch.exception.injected;
4856 		events->exception.pending = vcpu->arch.exception.pending;
4857 		/*
4858 		 * For ABI compatibility, deliberately conflate
4859 		 * pending and injected exceptions when
4860 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4861 		 */
4862 		if (!vcpu->kvm->arch.exception_payload_enabled)
4863 			events->exception.injected |=
4864 				vcpu->arch.exception.pending;
4865 	}
4866 	events->exception.nr = vcpu->arch.exception.nr;
4867 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4868 	events->exception.error_code = vcpu->arch.exception.error_code;
4869 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4870 	events->exception_payload = vcpu->arch.exception.payload;
4871 
4872 	events->interrupt.injected =
4873 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4874 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4875 	events->interrupt.soft = 0;
4876 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4877 
4878 	events->nmi.injected = vcpu->arch.nmi_injected;
4879 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4880 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4881 	events->nmi.pad = 0;
4882 
4883 	events->sipi_vector = 0; /* never valid when reporting to user space */
4884 
4885 	events->smi.smm = is_smm(vcpu);
4886 	events->smi.pending = vcpu->arch.smi_pending;
4887 	events->smi.smm_inside_nmi =
4888 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4889 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4890 
4891 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4892 			 | KVM_VCPUEVENT_VALID_SHADOW
4893 			 | KVM_VCPUEVENT_VALID_SMM);
4894 	if (vcpu->kvm->arch.exception_payload_enabled)
4895 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4896 
4897 	memset(&events->reserved, 0, sizeof(events->reserved));
4898 }
4899 
4900 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4901 
4902 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4903 					      struct kvm_vcpu_events *events)
4904 {
4905 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4906 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4907 			      | KVM_VCPUEVENT_VALID_SHADOW
4908 			      | KVM_VCPUEVENT_VALID_SMM
4909 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4910 		return -EINVAL;
4911 
4912 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4913 		if (!vcpu->kvm->arch.exception_payload_enabled)
4914 			return -EINVAL;
4915 		if (events->exception.pending)
4916 			events->exception.injected = 0;
4917 		else
4918 			events->exception_has_payload = 0;
4919 	} else {
4920 		events->exception.pending = 0;
4921 		events->exception_has_payload = 0;
4922 	}
4923 
4924 	if ((events->exception.injected || events->exception.pending) &&
4925 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4926 		return -EINVAL;
4927 
4928 	/* INITs are latched while in SMM */
4929 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4930 	    (events->smi.smm || events->smi.pending) &&
4931 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4932 		return -EINVAL;
4933 
4934 	process_nmi(vcpu);
4935 	vcpu->arch.exception.injected = events->exception.injected;
4936 	vcpu->arch.exception.pending = events->exception.pending;
4937 	vcpu->arch.exception.nr = events->exception.nr;
4938 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4939 	vcpu->arch.exception.error_code = events->exception.error_code;
4940 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4941 	vcpu->arch.exception.payload = events->exception_payload;
4942 
4943 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4944 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4945 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4946 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4947 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4948 						events->interrupt.shadow);
4949 
4950 	vcpu->arch.nmi_injected = events->nmi.injected;
4951 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4952 		vcpu->arch.nmi_pending = events->nmi.pending;
4953 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4954 
4955 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4956 	    lapic_in_kernel(vcpu))
4957 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4958 
4959 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4960 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4961 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
4962 			kvm_smm_changed(vcpu, events->smi.smm);
4963 		}
4964 
4965 		vcpu->arch.smi_pending = events->smi.pending;
4966 
4967 		if (events->smi.smm) {
4968 			if (events->smi.smm_inside_nmi)
4969 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4970 			else
4971 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4972 		}
4973 
4974 		if (lapic_in_kernel(vcpu)) {
4975 			if (events->smi.latched_init)
4976 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4977 			else
4978 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4979 		}
4980 	}
4981 
4982 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4983 
4984 	return 0;
4985 }
4986 
4987 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4988 					     struct kvm_debugregs *dbgregs)
4989 {
4990 	unsigned long val;
4991 
4992 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4993 	kvm_get_dr(vcpu, 6, &val);
4994 	dbgregs->dr6 = val;
4995 	dbgregs->dr7 = vcpu->arch.dr7;
4996 	dbgregs->flags = 0;
4997 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4998 }
4999 
5000 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5001 					    struct kvm_debugregs *dbgregs)
5002 {
5003 	if (dbgregs->flags)
5004 		return -EINVAL;
5005 
5006 	if (!kvm_dr6_valid(dbgregs->dr6))
5007 		return -EINVAL;
5008 	if (!kvm_dr7_valid(dbgregs->dr7))
5009 		return -EINVAL;
5010 
5011 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5012 	kvm_update_dr0123(vcpu);
5013 	vcpu->arch.dr6 = dbgregs->dr6;
5014 	vcpu->arch.dr7 = dbgregs->dr7;
5015 	kvm_update_dr7(vcpu);
5016 
5017 	return 0;
5018 }
5019 
5020 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5021 					 struct kvm_xsave *guest_xsave)
5022 {
5023 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5024 		return;
5025 
5026 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5027 				       guest_xsave->region,
5028 				       sizeof(guest_xsave->region),
5029 				       vcpu->arch.pkru);
5030 }
5031 
5032 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5033 					  u8 *state, unsigned int size)
5034 {
5035 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5036 		return;
5037 
5038 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5039 				       state, size, vcpu->arch.pkru);
5040 }
5041 
5042 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5043 					struct kvm_xsave *guest_xsave)
5044 {
5045 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5046 		return 0;
5047 
5048 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5049 					      guest_xsave->region,
5050 					      supported_xcr0, &vcpu->arch.pkru);
5051 }
5052 
5053 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5054 					struct kvm_xcrs *guest_xcrs)
5055 {
5056 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5057 		guest_xcrs->nr_xcrs = 0;
5058 		return;
5059 	}
5060 
5061 	guest_xcrs->nr_xcrs = 1;
5062 	guest_xcrs->flags = 0;
5063 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5064 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5065 }
5066 
5067 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5068 				       struct kvm_xcrs *guest_xcrs)
5069 {
5070 	int i, r = 0;
5071 
5072 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5073 		return -EINVAL;
5074 
5075 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5076 		return -EINVAL;
5077 
5078 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5079 		/* Only support XCR0 currently */
5080 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5081 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5082 				guest_xcrs->xcrs[i].value);
5083 			break;
5084 		}
5085 	if (r)
5086 		r = -EINVAL;
5087 	return r;
5088 }
5089 
5090 /*
5091  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5092  * stopped by the hypervisor.  This function will be called from the host only.
5093  * EINVAL is returned when the host attempts to set the flag for a guest that
5094  * does not support pv clocks.
5095  */
5096 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5097 {
5098 	if (!vcpu->arch.pv_time_enabled)
5099 		return -EINVAL;
5100 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5101 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5102 	return 0;
5103 }
5104 
5105 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5106 				 struct kvm_device_attr *attr)
5107 {
5108 	int r;
5109 
5110 	switch (attr->attr) {
5111 	case KVM_VCPU_TSC_OFFSET:
5112 		r = 0;
5113 		break;
5114 	default:
5115 		r = -ENXIO;
5116 	}
5117 
5118 	return r;
5119 }
5120 
5121 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5122 				 struct kvm_device_attr *attr)
5123 {
5124 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5125 	int r;
5126 
5127 	if (IS_ERR(uaddr))
5128 		return PTR_ERR(uaddr);
5129 
5130 	switch (attr->attr) {
5131 	case KVM_VCPU_TSC_OFFSET:
5132 		r = -EFAULT;
5133 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5134 			break;
5135 		r = 0;
5136 		break;
5137 	default:
5138 		r = -ENXIO;
5139 	}
5140 
5141 	return r;
5142 }
5143 
5144 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5145 				 struct kvm_device_attr *attr)
5146 {
5147 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5148 	struct kvm *kvm = vcpu->kvm;
5149 	int r;
5150 
5151 	if (IS_ERR(uaddr))
5152 		return PTR_ERR(uaddr);
5153 
5154 	switch (attr->attr) {
5155 	case KVM_VCPU_TSC_OFFSET: {
5156 		u64 offset, tsc, ns;
5157 		unsigned long flags;
5158 		bool matched;
5159 
5160 		r = -EFAULT;
5161 		if (get_user(offset, uaddr))
5162 			break;
5163 
5164 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5165 
5166 		matched = (vcpu->arch.virtual_tsc_khz &&
5167 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5168 			   kvm->arch.last_tsc_offset == offset);
5169 
5170 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5171 		ns = get_kvmclock_base_ns();
5172 
5173 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5174 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5175 
5176 		r = 0;
5177 		break;
5178 	}
5179 	default:
5180 		r = -ENXIO;
5181 	}
5182 
5183 	return r;
5184 }
5185 
5186 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5187 				      unsigned int ioctl,
5188 				      void __user *argp)
5189 {
5190 	struct kvm_device_attr attr;
5191 	int r;
5192 
5193 	if (copy_from_user(&attr, argp, sizeof(attr)))
5194 		return -EFAULT;
5195 
5196 	if (attr.group != KVM_VCPU_TSC_CTRL)
5197 		return -ENXIO;
5198 
5199 	switch (ioctl) {
5200 	case KVM_HAS_DEVICE_ATTR:
5201 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5202 		break;
5203 	case KVM_GET_DEVICE_ATTR:
5204 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5205 		break;
5206 	case KVM_SET_DEVICE_ATTR:
5207 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5208 		break;
5209 	}
5210 
5211 	return r;
5212 }
5213 
5214 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5215 				     struct kvm_enable_cap *cap)
5216 {
5217 	int r;
5218 	uint16_t vmcs_version;
5219 	void __user *user_ptr;
5220 
5221 	if (cap->flags)
5222 		return -EINVAL;
5223 
5224 	switch (cap->cap) {
5225 	case KVM_CAP_HYPERV_SYNIC2:
5226 		if (cap->args[0])
5227 			return -EINVAL;
5228 		fallthrough;
5229 
5230 	case KVM_CAP_HYPERV_SYNIC:
5231 		if (!irqchip_in_kernel(vcpu->kvm))
5232 			return -EINVAL;
5233 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5234 					     KVM_CAP_HYPERV_SYNIC2);
5235 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5236 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5237 			return -ENOTTY;
5238 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5239 		if (!r) {
5240 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5241 			if (copy_to_user(user_ptr, &vmcs_version,
5242 					 sizeof(vmcs_version)))
5243 				r = -EFAULT;
5244 		}
5245 		return r;
5246 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5247 		if (!kvm_x86_ops.enable_direct_tlbflush)
5248 			return -ENOTTY;
5249 
5250 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5251 
5252 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5253 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5254 
5255 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5256 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5257 		if (vcpu->arch.pv_cpuid.enforce)
5258 			kvm_update_pv_runtime(vcpu);
5259 
5260 		return 0;
5261 	default:
5262 		return -EINVAL;
5263 	}
5264 }
5265 
5266 long kvm_arch_vcpu_ioctl(struct file *filp,
5267 			 unsigned int ioctl, unsigned long arg)
5268 {
5269 	struct kvm_vcpu *vcpu = filp->private_data;
5270 	void __user *argp = (void __user *)arg;
5271 	int r;
5272 	union {
5273 		struct kvm_sregs2 *sregs2;
5274 		struct kvm_lapic_state *lapic;
5275 		struct kvm_xsave *xsave;
5276 		struct kvm_xcrs *xcrs;
5277 		void *buffer;
5278 	} u;
5279 
5280 	vcpu_load(vcpu);
5281 
5282 	u.buffer = NULL;
5283 	switch (ioctl) {
5284 	case KVM_GET_LAPIC: {
5285 		r = -EINVAL;
5286 		if (!lapic_in_kernel(vcpu))
5287 			goto out;
5288 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5289 				GFP_KERNEL_ACCOUNT);
5290 
5291 		r = -ENOMEM;
5292 		if (!u.lapic)
5293 			goto out;
5294 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5295 		if (r)
5296 			goto out;
5297 		r = -EFAULT;
5298 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5299 			goto out;
5300 		r = 0;
5301 		break;
5302 	}
5303 	case KVM_SET_LAPIC: {
5304 		r = -EINVAL;
5305 		if (!lapic_in_kernel(vcpu))
5306 			goto out;
5307 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5308 		if (IS_ERR(u.lapic)) {
5309 			r = PTR_ERR(u.lapic);
5310 			goto out_nofree;
5311 		}
5312 
5313 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5314 		break;
5315 	}
5316 	case KVM_INTERRUPT: {
5317 		struct kvm_interrupt irq;
5318 
5319 		r = -EFAULT;
5320 		if (copy_from_user(&irq, argp, sizeof(irq)))
5321 			goto out;
5322 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5323 		break;
5324 	}
5325 	case KVM_NMI: {
5326 		r = kvm_vcpu_ioctl_nmi(vcpu);
5327 		break;
5328 	}
5329 	case KVM_SMI: {
5330 		r = kvm_vcpu_ioctl_smi(vcpu);
5331 		break;
5332 	}
5333 	case KVM_SET_CPUID: {
5334 		struct kvm_cpuid __user *cpuid_arg = argp;
5335 		struct kvm_cpuid cpuid;
5336 
5337 		r = -EFAULT;
5338 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5339 			goto out;
5340 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5341 		break;
5342 	}
5343 	case KVM_SET_CPUID2: {
5344 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5345 		struct kvm_cpuid2 cpuid;
5346 
5347 		r = -EFAULT;
5348 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5349 			goto out;
5350 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5351 					      cpuid_arg->entries);
5352 		break;
5353 	}
5354 	case KVM_GET_CPUID2: {
5355 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5356 		struct kvm_cpuid2 cpuid;
5357 
5358 		r = -EFAULT;
5359 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5360 			goto out;
5361 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5362 					      cpuid_arg->entries);
5363 		if (r)
5364 			goto out;
5365 		r = -EFAULT;
5366 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5367 			goto out;
5368 		r = 0;
5369 		break;
5370 	}
5371 	case KVM_GET_MSRS: {
5372 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5373 		r = msr_io(vcpu, argp, do_get_msr, 1);
5374 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5375 		break;
5376 	}
5377 	case KVM_SET_MSRS: {
5378 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5379 		r = msr_io(vcpu, argp, do_set_msr, 0);
5380 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5381 		break;
5382 	}
5383 	case KVM_TPR_ACCESS_REPORTING: {
5384 		struct kvm_tpr_access_ctl tac;
5385 
5386 		r = -EFAULT;
5387 		if (copy_from_user(&tac, argp, sizeof(tac)))
5388 			goto out;
5389 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5390 		if (r)
5391 			goto out;
5392 		r = -EFAULT;
5393 		if (copy_to_user(argp, &tac, sizeof(tac)))
5394 			goto out;
5395 		r = 0;
5396 		break;
5397 	};
5398 	case KVM_SET_VAPIC_ADDR: {
5399 		struct kvm_vapic_addr va;
5400 		int idx;
5401 
5402 		r = -EINVAL;
5403 		if (!lapic_in_kernel(vcpu))
5404 			goto out;
5405 		r = -EFAULT;
5406 		if (copy_from_user(&va, argp, sizeof(va)))
5407 			goto out;
5408 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5409 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5410 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5411 		break;
5412 	}
5413 	case KVM_X86_SETUP_MCE: {
5414 		u64 mcg_cap;
5415 
5416 		r = -EFAULT;
5417 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5418 			goto out;
5419 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5420 		break;
5421 	}
5422 	case KVM_X86_SET_MCE: {
5423 		struct kvm_x86_mce mce;
5424 
5425 		r = -EFAULT;
5426 		if (copy_from_user(&mce, argp, sizeof(mce)))
5427 			goto out;
5428 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5429 		break;
5430 	}
5431 	case KVM_GET_VCPU_EVENTS: {
5432 		struct kvm_vcpu_events events;
5433 
5434 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5435 
5436 		r = -EFAULT;
5437 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5438 			break;
5439 		r = 0;
5440 		break;
5441 	}
5442 	case KVM_SET_VCPU_EVENTS: {
5443 		struct kvm_vcpu_events events;
5444 
5445 		r = -EFAULT;
5446 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5447 			break;
5448 
5449 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5450 		break;
5451 	}
5452 	case KVM_GET_DEBUGREGS: {
5453 		struct kvm_debugregs dbgregs;
5454 
5455 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5456 
5457 		r = -EFAULT;
5458 		if (copy_to_user(argp, &dbgregs,
5459 				 sizeof(struct kvm_debugregs)))
5460 			break;
5461 		r = 0;
5462 		break;
5463 	}
5464 	case KVM_SET_DEBUGREGS: {
5465 		struct kvm_debugregs dbgregs;
5466 
5467 		r = -EFAULT;
5468 		if (copy_from_user(&dbgregs, argp,
5469 				   sizeof(struct kvm_debugregs)))
5470 			break;
5471 
5472 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5473 		break;
5474 	}
5475 	case KVM_GET_XSAVE: {
5476 		r = -EINVAL;
5477 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5478 			break;
5479 
5480 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5481 		r = -ENOMEM;
5482 		if (!u.xsave)
5483 			break;
5484 
5485 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5486 
5487 		r = -EFAULT;
5488 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5489 			break;
5490 		r = 0;
5491 		break;
5492 	}
5493 	case KVM_SET_XSAVE: {
5494 		int size = vcpu->arch.guest_fpu.uabi_size;
5495 
5496 		u.xsave = memdup_user(argp, size);
5497 		if (IS_ERR(u.xsave)) {
5498 			r = PTR_ERR(u.xsave);
5499 			goto out_nofree;
5500 		}
5501 
5502 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5503 		break;
5504 	}
5505 
5506 	case KVM_GET_XSAVE2: {
5507 		int size = vcpu->arch.guest_fpu.uabi_size;
5508 
5509 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5510 		r = -ENOMEM;
5511 		if (!u.xsave)
5512 			break;
5513 
5514 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5515 
5516 		r = -EFAULT;
5517 		if (copy_to_user(argp, u.xsave, size))
5518 			break;
5519 
5520 		r = 0;
5521 		break;
5522 	}
5523 
5524 	case KVM_GET_XCRS: {
5525 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5526 		r = -ENOMEM;
5527 		if (!u.xcrs)
5528 			break;
5529 
5530 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5531 
5532 		r = -EFAULT;
5533 		if (copy_to_user(argp, u.xcrs,
5534 				 sizeof(struct kvm_xcrs)))
5535 			break;
5536 		r = 0;
5537 		break;
5538 	}
5539 	case KVM_SET_XCRS: {
5540 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5541 		if (IS_ERR(u.xcrs)) {
5542 			r = PTR_ERR(u.xcrs);
5543 			goto out_nofree;
5544 		}
5545 
5546 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5547 		break;
5548 	}
5549 	case KVM_SET_TSC_KHZ: {
5550 		u32 user_tsc_khz;
5551 
5552 		r = -EINVAL;
5553 		user_tsc_khz = (u32)arg;
5554 
5555 		if (kvm_has_tsc_control &&
5556 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5557 			goto out;
5558 
5559 		if (user_tsc_khz == 0)
5560 			user_tsc_khz = tsc_khz;
5561 
5562 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5563 			r = 0;
5564 
5565 		goto out;
5566 	}
5567 	case KVM_GET_TSC_KHZ: {
5568 		r = vcpu->arch.virtual_tsc_khz;
5569 		goto out;
5570 	}
5571 	case KVM_KVMCLOCK_CTRL: {
5572 		r = kvm_set_guest_paused(vcpu);
5573 		goto out;
5574 	}
5575 	case KVM_ENABLE_CAP: {
5576 		struct kvm_enable_cap cap;
5577 
5578 		r = -EFAULT;
5579 		if (copy_from_user(&cap, argp, sizeof(cap)))
5580 			goto out;
5581 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5582 		break;
5583 	}
5584 	case KVM_GET_NESTED_STATE: {
5585 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5586 		u32 user_data_size;
5587 
5588 		r = -EINVAL;
5589 		if (!kvm_x86_ops.nested_ops->get_state)
5590 			break;
5591 
5592 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5593 		r = -EFAULT;
5594 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5595 			break;
5596 
5597 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5598 						     user_data_size);
5599 		if (r < 0)
5600 			break;
5601 
5602 		if (r > user_data_size) {
5603 			if (put_user(r, &user_kvm_nested_state->size))
5604 				r = -EFAULT;
5605 			else
5606 				r = -E2BIG;
5607 			break;
5608 		}
5609 
5610 		r = 0;
5611 		break;
5612 	}
5613 	case KVM_SET_NESTED_STATE: {
5614 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5615 		struct kvm_nested_state kvm_state;
5616 		int idx;
5617 
5618 		r = -EINVAL;
5619 		if (!kvm_x86_ops.nested_ops->set_state)
5620 			break;
5621 
5622 		r = -EFAULT;
5623 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5624 			break;
5625 
5626 		r = -EINVAL;
5627 		if (kvm_state.size < sizeof(kvm_state))
5628 			break;
5629 
5630 		if (kvm_state.flags &
5631 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5632 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5633 		      | KVM_STATE_NESTED_GIF_SET))
5634 			break;
5635 
5636 		/* nested_run_pending implies guest_mode.  */
5637 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5638 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5639 			break;
5640 
5641 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5642 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5643 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5644 		break;
5645 	}
5646 	case KVM_GET_SUPPORTED_HV_CPUID:
5647 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5648 		break;
5649 #ifdef CONFIG_KVM_XEN
5650 	case KVM_XEN_VCPU_GET_ATTR: {
5651 		struct kvm_xen_vcpu_attr xva;
5652 
5653 		r = -EFAULT;
5654 		if (copy_from_user(&xva, argp, sizeof(xva)))
5655 			goto out;
5656 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5657 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5658 			r = -EFAULT;
5659 		break;
5660 	}
5661 	case KVM_XEN_VCPU_SET_ATTR: {
5662 		struct kvm_xen_vcpu_attr xva;
5663 
5664 		r = -EFAULT;
5665 		if (copy_from_user(&xva, argp, sizeof(xva)))
5666 			goto out;
5667 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5668 		break;
5669 	}
5670 #endif
5671 	case KVM_GET_SREGS2: {
5672 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5673 		r = -ENOMEM;
5674 		if (!u.sregs2)
5675 			goto out;
5676 		__get_sregs2(vcpu, u.sregs2);
5677 		r = -EFAULT;
5678 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5679 			goto out;
5680 		r = 0;
5681 		break;
5682 	}
5683 	case KVM_SET_SREGS2: {
5684 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5685 		if (IS_ERR(u.sregs2)) {
5686 			r = PTR_ERR(u.sregs2);
5687 			u.sregs2 = NULL;
5688 			goto out;
5689 		}
5690 		r = __set_sregs2(vcpu, u.sregs2);
5691 		break;
5692 	}
5693 	case KVM_HAS_DEVICE_ATTR:
5694 	case KVM_GET_DEVICE_ATTR:
5695 	case KVM_SET_DEVICE_ATTR:
5696 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5697 		break;
5698 	default:
5699 		r = -EINVAL;
5700 	}
5701 out:
5702 	kfree(u.buffer);
5703 out_nofree:
5704 	vcpu_put(vcpu);
5705 	return r;
5706 }
5707 
5708 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5709 {
5710 	return VM_FAULT_SIGBUS;
5711 }
5712 
5713 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5714 {
5715 	int ret;
5716 
5717 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5718 		return -EINVAL;
5719 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5720 	return ret;
5721 }
5722 
5723 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5724 					      u64 ident_addr)
5725 {
5726 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5727 }
5728 
5729 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5730 					 unsigned long kvm_nr_mmu_pages)
5731 {
5732 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5733 		return -EINVAL;
5734 
5735 	mutex_lock(&kvm->slots_lock);
5736 
5737 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5738 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5739 
5740 	mutex_unlock(&kvm->slots_lock);
5741 	return 0;
5742 }
5743 
5744 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5745 {
5746 	return kvm->arch.n_max_mmu_pages;
5747 }
5748 
5749 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5750 {
5751 	struct kvm_pic *pic = kvm->arch.vpic;
5752 	int r;
5753 
5754 	r = 0;
5755 	switch (chip->chip_id) {
5756 	case KVM_IRQCHIP_PIC_MASTER:
5757 		memcpy(&chip->chip.pic, &pic->pics[0],
5758 			sizeof(struct kvm_pic_state));
5759 		break;
5760 	case KVM_IRQCHIP_PIC_SLAVE:
5761 		memcpy(&chip->chip.pic, &pic->pics[1],
5762 			sizeof(struct kvm_pic_state));
5763 		break;
5764 	case KVM_IRQCHIP_IOAPIC:
5765 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5766 		break;
5767 	default:
5768 		r = -EINVAL;
5769 		break;
5770 	}
5771 	return r;
5772 }
5773 
5774 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5775 {
5776 	struct kvm_pic *pic = kvm->arch.vpic;
5777 	int r;
5778 
5779 	r = 0;
5780 	switch (chip->chip_id) {
5781 	case KVM_IRQCHIP_PIC_MASTER:
5782 		spin_lock(&pic->lock);
5783 		memcpy(&pic->pics[0], &chip->chip.pic,
5784 			sizeof(struct kvm_pic_state));
5785 		spin_unlock(&pic->lock);
5786 		break;
5787 	case KVM_IRQCHIP_PIC_SLAVE:
5788 		spin_lock(&pic->lock);
5789 		memcpy(&pic->pics[1], &chip->chip.pic,
5790 			sizeof(struct kvm_pic_state));
5791 		spin_unlock(&pic->lock);
5792 		break;
5793 	case KVM_IRQCHIP_IOAPIC:
5794 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5795 		break;
5796 	default:
5797 		r = -EINVAL;
5798 		break;
5799 	}
5800 	kvm_pic_update_irq(pic);
5801 	return r;
5802 }
5803 
5804 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5805 {
5806 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5807 
5808 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5809 
5810 	mutex_lock(&kps->lock);
5811 	memcpy(ps, &kps->channels, sizeof(*ps));
5812 	mutex_unlock(&kps->lock);
5813 	return 0;
5814 }
5815 
5816 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5817 {
5818 	int i;
5819 	struct kvm_pit *pit = kvm->arch.vpit;
5820 
5821 	mutex_lock(&pit->pit_state.lock);
5822 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5823 	for (i = 0; i < 3; i++)
5824 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5825 	mutex_unlock(&pit->pit_state.lock);
5826 	return 0;
5827 }
5828 
5829 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5830 {
5831 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5832 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5833 		sizeof(ps->channels));
5834 	ps->flags = kvm->arch.vpit->pit_state.flags;
5835 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5836 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5837 	return 0;
5838 }
5839 
5840 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5841 {
5842 	int start = 0;
5843 	int i;
5844 	u32 prev_legacy, cur_legacy;
5845 	struct kvm_pit *pit = kvm->arch.vpit;
5846 
5847 	mutex_lock(&pit->pit_state.lock);
5848 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5849 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5850 	if (!prev_legacy && cur_legacy)
5851 		start = 1;
5852 	memcpy(&pit->pit_state.channels, &ps->channels,
5853 	       sizeof(pit->pit_state.channels));
5854 	pit->pit_state.flags = ps->flags;
5855 	for (i = 0; i < 3; i++)
5856 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5857 				   start && i == 0);
5858 	mutex_unlock(&pit->pit_state.lock);
5859 	return 0;
5860 }
5861 
5862 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5863 				 struct kvm_reinject_control *control)
5864 {
5865 	struct kvm_pit *pit = kvm->arch.vpit;
5866 
5867 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5868 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5869 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5870 	 */
5871 	mutex_lock(&pit->pit_state.lock);
5872 	kvm_pit_set_reinject(pit, control->pit_reinject);
5873 	mutex_unlock(&pit->pit_state.lock);
5874 
5875 	return 0;
5876 }
5877 
5878 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5879 {
5880 
5881 	/*
5882 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5883 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5884 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5885 	 * VM-Exit.
5886 	 */
5887 	struct kvm_vcpu *vcpu;
5888 	unsigned long i;
5889 
5890 	kvm_for_each_vcpu(i, vcpu, kvm)
5891 		kvm_vcpu_kick(vcpu);
5892 }
5893 
5894 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5895 			bool line_status)
5896 {
5897 	if (!irqchip_in_kernel(kvm))
5898 		return -ENXIO;
5899 
5900 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5901 					irq_event->irq, irq_event->level,
5902 					line_status);
5903 	return 0;
5904 }
5905 
5906 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5907 			    struct kvm_enable_cap *cap)
5908 {
5909 	int r;
5910 
5911 	if (cap->flags)
5912 		return -EINVAL;
5913 
5914 	switch (cap->cap) {
5915 	case KVM_CAP_DISABLE_QUIRKS2:
5916 		r = -EINVAL;
5917 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5918 			break;
5919 		fallthrough;
5920 	case KVM_CAP_DISABLE_QUIRKS:
5921 		kvm->arch.disabled_quirks = cap->args[0];
5922 		r = 0;
5923 		break;
5924 	case KVM_CAP_SPLIT_IRQCHIP: {
5925 		mutex_lock(&kvm->lock);
5926 		r = -EINVAL;
5927 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5928 			goto split_irqchip_unlock;
5929 		r = -EEXIST;
5930 		if (irqchip_in_kernel(kvm))
5931 			goto split_irqchip_unlock;
5932 		if (kvm->created_vcpus)
5933 			goto split_irqchip_unlock;
5934 		r = kvm_setup_empty_irq_routing(kvm);
5935 		if (r)
5936 			goto split_irqchip_unlock;
5937 		/* Pairs with irqchip_in_kernel. */
5938 		smp_wmb();
5939 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5940 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5941 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5942 		r = 0;
5943 split_irqchip_unlock:
5944 		mutex_unlock(&kvm->lock);
5945 		break;
5946 	}
5947 	case KVM_CAP_X2APIC_API:
5948 		r = -EINVAL;
5949 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5950 			break;
5951 
5952 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5953 			kvm->arch.x2apic_format = true;
5954 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5955 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5956 
5957 		r = 0;
5958 		break;
5959 	case KVM_CAP_X86_DISABLE_EXITS:
5960 		r = -EINVAL;
5961 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5962 			break;
5963 
5964 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5965 			kvm_can_mwait_in_guest())
5966 			kvm->arch.mwait_in_guest = true;
5967 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5968 			kvm->arch.hlt_in_guest = true;
5969 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5970 			kvm->arch.pause_in_guest = true;
5971 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5972 			kvm->arch.cstate_in_guest = true;
5973 		r = 0;
5974 		break;
5975 	case KVM_CAP_MSR_PLATFORM_INFO:
5976 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5977 		r = 0;
5978 		break;
5979 	case KVM_CAP_EXCEPTION_PAYLOAD:
5980 		kvm->arch.exception_payload_enabled = cap->args[0];
5981 		r = 0;
5982 		break;
5983 	case KVM_CAP_X86_USER_SPACE_MSR:
5984 		kvm->arch.user_space_msr_mask = cap->args[0];
5985 		r = 0;
5986 		break;
5987 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5988 		r = -EINVAL;
5989 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5990 			break;
5991 
5992 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5993 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5994 			break;
5995 
5996 		if (kvm_has_bus_lock_exit &&
5997 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5998 			kvm->arch.bus_lock_detection_enabled = true;
5999 		r = 0;
6000 		break;
6001 #ifdef CONFIG_X86_SGX_KVM
6002 	case KVM_CAP_SGX_ATTRIBUTE: {
6003 		unsigned long allowed_attributes = 0;
6004 
6005 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6006 		if (r)
6007 			break;
6008 
6009 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6010 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6011 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6012 			kvm->arch.sgx_provisioning_allowed = true;
6013 		else
6014 			r = -EINVAL;
6015 		break;
6016 	}
6017 #endif
6018 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6019 		r = -EINVAL;
6020 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6021 			break;
6022 
6023 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6024 		break;
6025 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6026 		r = -EINVAL;
6027 		if (!kvm_x86_ops.vm_move_enc_context_from)
6028 			break;
6029 
6030 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6031 		break;
6032 	case KVM_CAP_EXIT_HYPERCALL:
6033 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6034 			r = -EINVAL;
6035 			break;
6036 		}
6037 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6038 		r = 0;
6039 		break;
6040 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6041 		r = -EINVAL;
6042 		if (cap->args[0] & ~1)
6043 			break;
6044 		kvm->arch.exit_on_emulation_error = cap->args[0];
6045 		r = 0;
6046 		break;
6047 	case KVM_CAP_PMU_CAPABILITY:
6048 		r = -EINVAL;
6049 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6050 			break;
6051 
6052 		mutex_lock(&kvm->lock);
6053 		if (!kvm->created_vcpus) {
6054 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6055 			r = 0;
6056 		}
6057 		mutex_unlock(&kvm->lock);
6058 		break;
6059 	default:
6060 		r = -EINVAL;
6061 		break;
6062 	}
6063 	return r;
6064 }
6065 
6066 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6067 {
6068 	struct kvm_x86_msr_filter *msr_filter;
6069 
6070 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6071 	if (!msr_filter)
6072 		return NULL;
6073 
6074 	msr_filter->default_allow = default_allow;
6075 	return msr_filter;
6076 }
6077 
6078 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6079 {
6080 	u32 i;
6081 
6082 	if (!msr_filter)
6083 		return;
6084 
6085 	for (i = 0; i < msr_filter->count; i++)
6086 		kfree(msr_filter->ranges[i].bitmap);
6087 
6088 	kfree(msr_filter);
6089 }
6090 
6091 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6092 			      struct kvm_msr_filter_range *user_range)
6093 {
6094 	unsigned long *bitmap = NULL;
6095 	size_t bitmap_size;
6096 
6097 	if (!user_range->nmsrs)
6098 		return 0;
6099 
6100 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6101 		return -EINVAL;
6102 
6103 	if (!user_range->flags)
6104 		return -EINVAL;
6105 
6106 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6107 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6108 		return -EINVAL;
6109 
6110 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6111 	if (IS_ERR(bitmap))
6112 		return PTR_ERR(bitmap);
6113 
6114 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6115 		.flags = user_range->flags,
6116 		.base = user_range->base,
6117 		.nmsrs = user_range->nmsrs,
6118 		.bitmap = bitmap,
6119 	};
6120 
6121 	msr_filter->count++;
6122 	return 0;
6123 }
6124 
6125 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6126 {
6127 	struct kvm_msr_filter __user *user_msr_filter = argp;
6128 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6129 	struct kvm_msr_filter filter;
6130 	bool default_allow;
6131 	bool empty = true;
6132 	int r = 0;
6133 	u32 i;
6134 
6135 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6136 		return -EFAULT;
6137 
6138 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6139 		empty &= !filter.ranges[i].nmsrs;
6140 
6141 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6142 	if (empty && !default_allow)
6143 		return -EINVAL;
6144 
6145 	new_filter = kvm_alloc_msr_filter(default_allow);
6146 	if (!new_filter)
6147 		return -ENOMEM;
6148 
6149 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6150 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6151 		if (r) {
6152 			kvm_free_msr_filter(new_filter);
6153 			return r;
6154 		}
6155 	}
6156 
6157 	mutex_lock(&kvm->lock);
6158 
6159 	/* The per-VM filter is protected by kvm->lock... */
6160 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6161 
6162 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6163 	synchronize_srcu(&kvm->srcu);
6164 
6165 	kvm_free_msr_filter(old_filter);
6166 
6167 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6168 	mutex_unlock(&kvm->lock);
6169 
6170 	return 0;
6171 }
6172 
6173 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6174 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6175 {
6176 	struct kvm_vcpu *vcpu;
6177 	unsigned long i;
6178 	int ret = 0;
6179 
6180 	mutex_lock(&kvm->lock);
6181 	kvm_for_each_vcpu(i, vcpu, kvm) {
6182 		if (!vcpu->arch.pv_time_enabled)
6183 			continue;
6184 
6185 		ret = kvm_set_guest_paused(vcpu);
6186 		if (ret) {
6187 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6188 				vcpu->vcpu_id, ret);
6189 			break;
6190 		}
6191 	}
6192 	mutex_unlock(&kvm->lock);
6193 
6194 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6195 }
6196 
6197 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6198 {
6199 	switch (state) {
6200 	case PM_HIBERNATION_PREPARE:
6201 	case PM_SUSPEND_PREPARE:
6202 		return kvm_arch_suspend_notifier(kvm);
6203 	}
6204 
6205 	return NOTIFY_DONE;
6206 }
6207 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6208 
6209 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6210 {
6211 	struct kvm_clock_data data = { 0 };
6212 
6213 	get_kvmclock(kvm, &data);
6214 	if (copy_to_user(argp, &data, sizeof(data)))
6215 		return -EFAULT;
6216 
6217 	return 0;
6218 }
6219 
6220 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6221 {
6222 	struct kvm_arch *ka = &kvm->arch;
6223 	struct kvm_clock_data data;
6224 	u64 now_raw_ns;
6225 
6226 	if (copy_from_user(&data, argp, sizeof(data)))
6227 		return -EFAULT;
6228 
6229 	/*
6230 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6231 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6232 	 */
6233 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6234 		return -EINVAL;
6235 
6236 	kvm_hv_invalidate_tsc_page(kvm);
6237 	kvm_start_pvclock_update(kvm);
6238 	pvclock_update_vm_gtod_copy(kvm);
6239 
6240 	/*
6241 	 * This pairs with kvm_guest_time_update(): when masterclock is
6242 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6243 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6244 	 * is slightly ahead) here we risk going negative on unsigned
6245 	 * 'system_time' when 'data.clock' is very small.
6246 	 */
6247 	if (data.flags & KVM_CLOCK_REALTIME) {
6248 		u64 now_real_ns = ktime_get_real_ns();
6249 
6250 		/*
6251 		 * Avoid stepping the kvmclock backwards.
6252 		 */
6253 		if (now_real_ns > data.realtime)
6254 			data.clock += now_real_ns - data.realtime;
6255 	}
6256 
6257 	if (ka->use_master_clock)
6258 		now_raw_ns = ka->master_kernel_ns;
6259 	else
6260 		now_raw_ns = get_kvmclock_base_ns();
6261 	ka->kvmclock_offset = data.clock - now_raw_ns;
6262 	kvm_end_pvclock_update(kvm);
6263 	return 0;
6264 }
6265 
6266 long kvm_arch_vm_ioctl(struct file *filp,
6267 		       unsigned int ioctl, unsigned long arg)
6268 {
6269 	struct kvm *kvm = filp->private_data;
6270 	void __user *argp = (void __user *)arg;
6271 	int r = -ENOTTY;
6272 	/*
6273 	 * This union makes it completely explicit to gcc-3.x
6274 	 * that these two variables' stack usage should be
6275 	 * combined, not added together.
6276 	 */
6277 	union {
6278 		struct kvm_pit_state ps;
6279 		struct kvm_pit_state2 ps2;
6280 		struct kvm_pit_config pit_config;
6281 	} u;
6282 
6283 	switch (ioctl) {
6284 	case KVM_SET_TSS_ADDR:
6285 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6286 		break;
6287 	case KVM_SET_IDENTITY_MAP_ADDR: {
6288 		u64 ident_addr;
6289 
6290 		mutex_lock(&kvm->lock);
6291 		r = -EINVAL;
6292 		if (kvm->created_vcpus)
6293 			goto set_identity_unlock;
6294 		r = -EFAULT;
6295 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6296 			goto set_identity_unlock;
6297 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6298 set_identity_unlock:
6299 		mutex_unlock(&kvm->lock);
6300 		break;
6301 	}
6302 	case KVM_SET_NR_MMU_PAGES:
6303 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6304 		break;
6305 	case KVM_GET_NR_MMU_PAGES:
6306 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6307 		break;
6308 	case KVM_CREATE_IRQCHIP: {
6309 		mutex_lock(&kvm->lock);
6310 
6311 		r = -EEXIST;
6312 		if (irqchip_in_kernel(kvm))
6313 			goto create_irqchip_unlock;
6314 
6315 		r = -EINVAL;
6316 		if (kvm->created_vcpus)
6317 			goto create_irqchip_unlock;
6318 
6319 		r = kvm_pic_init(kvm);
6320 		if (r)
6321 			goto create_irqchip_unlock;
6322 
6323 		r = kvm_ioapic_init(kvm);
6324 		if (r) {
6325 			kvm_pic_destroy(kvm);
6326 			goto create_irqchip_unlock;
6327 		}
6328 
6329 		r = kvm_setup_default_irq_routing(kvm);
6330 		if (r) {
6331 			kvm_ioapic_destroy(kvm);
6332 			kvm_pic_destroy(kvm);
6333 			goto create_irqchip_unlock;
6334 		}
6335 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6336 		smp_wmb();
6337 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6338 		kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6339 	create_irqchip_unlock:
6340 		mutex_unlock(&kvm->lock);
6341 		break;
6342 	}
6343 	case KVM_CREATE_PIT:
6344 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6345 		goto create_pit;
6346 	case KVM_CREATE_PIT2:
6347 		r = -EFAULT;
6348 		if (copy_from_user(&u.pit_config, argp,
6349 				   sizeof(struct kvm_pit_config)))
6350 			goto out;
6351 	create_pit:
6352 		mutex_lock(&kvm->lock);
6353 		r = -EEXIST;
6354 		if (kvm->arch.vpit)
6355 			goto create_pit_unlock;
6356 		r = -ENOMEM;
6357 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6358 		if (kvm->arch.vpit)
6359 			r = 0;
6360 	create_pit_unlock:
6361 		mutex_unlock(&kvm->lock);
6362 		break;
6363 	case KVM_GET_IRQCHIP: {
6364 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6365 		struct kvm_irqchip *chip;
6366 
6367 		chip = memdup_user(argp, sizeof(*chip));
6368 		if (IS_ERR(chip)) {
6369 			r = PTR_ERR(chip);
6370 			goto out;
6371 		}
6372 
6373 		r = -ENXIO;
6374 		if (!irqchip_kernel(kvm))
6375 			goto get_irqchip_out;
6376 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6377 		if (r)
6378 			goto get_irqchip_out;
6379 		r = -EFAULT;
6380 		if (copy_to_user(argp, chip, sizeof(*chip)))
6381 			goto get_irqchip_out;
6382 		r = 0;
6383 	get_irqchip_out:
6384 		kfree(chip);
6385 		break;
6386 	}
6387 	case KVM_SET_IRQCHIP: {
6388 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6389 		struct kvm_irqchip *chip;
6390 
6391 		chip = memdup_user(argp, sizeof(*chip));
6392 		if (IS_ERR(chip)) {
6393 			r = PTR_ERR(chip);
6394 			goto out;
6395 		}
6396 
6397 		r = -ENXIO;
6398 		if (!irqchip_kernel(kvm))
6399 			goto set_irqchip_out;
6400 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6401 	set_irqchip_out:
6402 		kfree(chip);
6403 		break;
6404 	}
6405 	case KVM_GET_PIT: {
6406 		r = -EFAULT;
6407 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6408 			goto out;
6409 		r = -ENXIO;
6410 		if (!kvm->arch.vpit)
6411 			goto out;
6412 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6413 		if (r)
6414 			goto out;
6415 		r = -EFAULT;
6416 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6417 			goto out;
6418 		r = 0;
6419 		break;
6420 	}
6421 	case KVM_SET_PIT: {
6422 		r = -EFAULT;
6423 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6424 			goto out;
6425 		mutex_lock(&kvm->lock);
6426 		r = -ENXIO;
6427 		if (!kvm->arch.vpit)
6428 			goto set_pit_out;
6429 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6430 set_pit_out:
6431 		mutex_unlock(&kvm->lock);
6432 		break;
6433 	}
6434 	case KVM_GET_PIT2: {
6435 		r = -ENXIO;
6436 		if (!kvm->arch.vpit)
6437 			goto out;
6438 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6439 		if (r)
6440 			goto out;
6441 		r = -EFAULT;
6442 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6443 			goto out;
6444 		r = 0;
6445 		break;
6446 	}
6447 	case KVM_SET_PIT2: {
6448 		r = -EFAULT;
6449 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6450 			goto out;
6451 		mutex_lock(&kvm->lock);
6452 		r = -ENXIO;
6453 		if (!kvm->arch.vpit)
6454 			goto set_pit2_out;
6455 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6456 set_pit2_out:
6457 		mutex_unlock(&kvm->lock);
6458 		break;
6459 	}
6460 	case KVM_REINJECT_CONTROL: {
6461 		struct kvm_reinject_control control;
6462 		r =  -EFAULT;
6463 		if (copy_from_user(&control, argp, sizeof(control)))
6464 			goto out;
6465 		r = -ENXIO;
6466 		if (!kvm->arch.vpit)
6467 			goto out;
6468 		r = kvm_vm_ioctl_reinject(kvm, &control);
6469 		break;
6470 	}
6471 	case KVM_SET_BOOT_CPU_ID:
6472 		r = 0;
6473 		mutex_lock(&kvm->lock);
6474 		if (kvm->created_vcpus)
6475 			r = -EBUSY;
6476 		else
6477 			kvm->arch.bsp_vcpu_id = arg;
6478 		mutex_unlock(&kvm->lock);
6479 		break;
6480 #ifdef CONFIG_KVM_XEN
6481 	case KVM_XEN_HVM_CONFIG: {
6482 		struct kvm_xen_hvm_config xhc;
6483 		r = -EFAULT;
6484 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6485 			goto out;
6486 		r = kvm_xen_hvm_config(kvm, &xhc);
6487 		break;
6488 	}
6489 	case KVM_XEN_HVM_GET_ATTR: {
6490 		struct kvm_xen_hvm_attr xha;
6491 
6492 		r = -EFAULT;
6493 		if (copy_from_user(&xha, argp, sizeof(xha)))
6494 			goto out;
6495 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6496 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6497 			r = -EFAULT;
6498 		break;
6499 	}
6500 	case KVM_XEN_HVM_SET_ATTR: {
6501 		struct kvm_xen_hvm_attr xha;
6502 
6503 		r = -EFAULT;
6504 		if (copy_from_user(&xha, argp, sizeof(xha)))
6505 			goto out;
6506 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6507 		break;
6508 	}
6509 #endif
6510 	case KVM_SET_CLOCK:
6511 		r = kvm_vm_ioctl_set_clock(kvm, argp);
6512 		break;
6513 	case KVM_GET_CLOCK:
6514 		r = kvm_vm_ioctl_get_clock(kvm, argp);
6515 		break;
6516 	case KVM_MEMORY_ENCRYPT_OP: {
6517 		r = -ENOTTY;
6518 		if (!kvm_x86_ops.mem_enc_ioctl)
6519 			goto out;
6520 
6521 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6522 		break;
6523 	}
6524 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6525 		struct kvm_enc_region region;
6526 
6527 		r = -EFAULT;
6528 		if (copy_from_user(&region, argp, sizeof(region)))
6529 			goto out;
6530 
6531 		r = -ENOTTY;
6532 		if (!kvm_x86_ops.mem_enc_register_region)
6533 			goto out;
6534 
6535 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6536 		break;
6537 	}
6538 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6539 		struct kvm_enc_region region;
6540 
6541 		r = -EFAULT;
6542 		if (copy_from_user(&region, argp, sizeof(region)))
6543 			goto out;
6544 
6545 		r = -ENOTTY;
6546 		if (!kvm_x86_ops.mem_enc_unregister_region)
6547 			goto out;
6548 
6549 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6550 		break;
6551 	}
6552 	case KVM_HYPERV_EVENTFD: {
6553 		struct kvm_hyperv_eventfd hvevfd;
6554 
6555 		r = -EFAULT;
6556 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6557 			goto out;
6558 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6559 		break;
6560 	}
6561 	case KVM_SET_PMU_EVENT_FILTER:
6562 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6563 		break;
6564 	case KVM_X86_SET_MSR_FILTER:
6565 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6566 		break;
6567 	default:
6568 		r = -ENOTTY;
6569 	}
6570 out:
6571 	return r;
6572 }
6573 
6574 static void kvm_init_msr_list(void)
6575 {
6576 	struct x86_pmu_capability x86_pmu;
6577 	u32 dummy[2];
6578 	unsigned i;
6579 
6580 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6581 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6582 
6583 	perf_get_x86_pmu_capability(&x86_pmu);
6584 
6585 	num_msrs_to_save = 0;
6586 	num_emulated_msrs = 0;
6587 	num_msr_based_features = 0;
6588 
6589 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6590 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6591 			continue;
6592 
6593 		/*
6594 		 * Even MSRs that are valid in the host may not be exposed
6595 		 * to the guests in some cases.
6596 		 */
6597 		switch (msrs_to_save_all[i]) {
6598 		case MSR_IA32_BNDCFGS:
6599 			if (!kvm_mpx_supported())
6600 				continue;
6601 			break;
6602 		case MSR_TSC_AUX:
6603 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6604 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6605 				continue;
6606 			break;
6607 		case MSR_IA32_UMWAIT_CONTROL:
6608 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6609 				continue;
6610 			break;
6611 		case MSR_IA32_RTIT_CTL:
6612 		case MSR_IA32_RTIT_STATUS:
6613 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6614 				continue;
6615 			break;
6616 		case MSR_IA32_RTIT_CR3_MATCH:
6617 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6618 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6619 				continue;
6620 			break;
6621 		case MSR_IA32_RTIT_OUTPUT_BASE:
6622 		case MSR_IA32_RTIT_OUTPUT_MASK:
6623 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6624 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6625 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6626 				continue;
6627 			break;
6628 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6629 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6630 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6631 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6632 				continue;
6633 			break;
6634 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6635 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6636 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6637 				continue;
6638 			break;
6639 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6640 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6641 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6642 				continue;
6643 			break;
6644 		case MSR_IA32_XFD:
6645 		case MSR_IA32_XFD_ERR:
6646 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6647 				continue;
6648 			break;
6649 		default:
6650 			break;
6651 		}
6652 
6653 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6654 	}
6655 
6656 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6657 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6658 			continue;
6659 
6660 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6661 	}
6662 
6663 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6664 		struct kvm_msr_entry msr;
6665 
6666 		msr.index = msr_based_features_all[i];
6667 		if (kvm_get_msr_feature(&msr))
6668 			continue;
6669 
6670 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6671 	}
6672 }
6673 
6674 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6675 			   const void *v)
6676 {
6677 	int handled = 0;
6678 	int n;
6679 
6680 	do {
6681 		n = min(len, 8);
6682 		if (!(lapic_in_kernel(vcpu) &&
6683 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6684 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6685 			break;
6686 		handled += n;
6687 		addr += n;
6688 		len -= n;
6689 		v += n;
6690 	} while (len);
6691 
6692 	return handled;
6693 }
6694 
6695 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6696 {
6697 	int handled = 0;
6698 	int n;
6699 
6700 	do {
6701 		n = min(len, 8);
6702 		if (!(lapic_in_kernel(vcpu) &&
6703 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6704 					 addr, n, v))
6705 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6706 			break;
6707 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6708 		handled += n;
6709 		addr += n;
6710 		len -= n;
6711 		v += n;
6712 	} while (len);
6713 
6714 	return handled;
6715 }
6716 
6717 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6718 			struct kvm_segment *var, int seg)
6719 {
6720 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6721 }
6722 
6723 void kvm_get_segment(struct kvm_vcpu *vcpu,
6724 		     struct kvm_segment *var, int seg)
6725 {
6726 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6727 }
6728 
6729 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6730 			   struct x86_exception *exception)
6731 {
6732 	struct kvm_mmu *mmu = vcpu->arch.mmu;
6733 	gpa_t t_gpa;
6734 
6735 	BUG_ON(!mmu_is_nested(vcpu));
6736 
6737 	/* NPT walks are always user-walks */
6738 	access |= PFERR_USER_MASK;
6739 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6740 
6741 	return t_gpa;
6742 }
6743 
6744 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6745 			      struct x86_exception *exception)
6746 {
6747 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6748 
6749 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6750 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6751 }
6752 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6753 
6754  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6755 				struct x86_exception *exception)
6756 {
6757 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6758 
6759 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6760 	access |= PFERR_FETCH_MASK;
6761 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6762 }
6763 
6764 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6765 			       struct x86_exception *exception)
6766 {
6767 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6768 
6769 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6770 	access |= PFERR_WRITE_MASK;
6771 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6772 }
6773 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6774 
6775 /* uses this to access any guest's mapped memory without checking CPL */
6776 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6777 				struct x86_exception *exception)
6778 {
6779 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6780 
6781 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6782 }
6783 
6784 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6785 				      struct kvm_vcpu *vcpu, u32 access,
6786 				      struct x86_exception *exception)
6787 {
6788 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6789 	void *data = val;
6790 	int r = X86EMUL_CONTINUE;
6791 
6792 	while (bytes) {
6793 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6794 		unsigned offset = addr & (PAGE_SIZE-1);
6795 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6796 		int ret;
6797 
6798 		if (gpa == UNMAPPED_GVA)
6799 			return X86EMUL_PROPAGATE_FAULT;
6800 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6801 					       offset, toread);
6802 		if (ret < 0) {
6803 			r = X86EMUL_IO_NEEDED;
6804 			goto out;
6805 		}
6806 
6807 		bytes -= toread;
6808 		data += toread;
6809 		addr += toread;
6810 	}
6811 out:
6812 	return r;
6813 }
6814 
6815 /* used for instruction fetching */
6816 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6817 				gva_t addr, void *val, unsigned int bytes,
6818 				struct x86_exception *exception)
6819 {
6820 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6821 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6822 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6823 	unsigned offset;
6824 	int ret;
6825 
6826 	/* Inline kvm_read_guest_virt_helper for speed.  */
6827 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6828 				    exception);
6829 	if (unlikely(gpa == UNMAPPED_GVA))
6830 		return X86EMUL_PROPAGATE_FAULT;
6831 
6832 	offset = addr & (PAGE_SIZE-1);
6833 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6834 		bytes = (unsigned)PAGE_SIZE - offset;
6835 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6836 				       offset, bytes);
6837 	if (unlikely(ret < 0))
6838 		return X86EMUL_IO_NEEDED;
6839 
6840 	return X86EMUL_CONTINUE;
6841 }
6842 
6843 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6844 			       gva_t addr, void *val, unsigned int bytes,
6845 			       struct x86_exception *exception)
6846 {
6847 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6848 
6849 	/*
6850 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6851 	 * is returned, but our callers are not ready for that and they blindly
6852 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6853 	 * uninitialized kernel stack memory into cr2 and error code.
6854 	 */
6855 	memset(exception, 0, sizeof(*exception));
6856 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6857 					  exception);
6858 }
6859 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6860 
6861 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6862 			     gva_t addr, void *val, unsigned int bytes,
6863 			     struct x86_exception *exception, bool system)
6864 {
6865 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6866 	u32 access = 0;
6867 
6868 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6869 		access |= PFERR_USER_MASK;
6870 
6871 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6872 }
6873 
6874 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6875 		unsigned long addr, void *val, unsigned int bytes)
6876 {
6877 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6878 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6879 
6880 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6881 }
6882 
6883 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6884 				      struct kvm_vcpu *vcpu, u32 access,
6885 				      struct x86_exception *exception)
6886 {
6887 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6888 	void *data = val;
6889 	int r = X86EMUL_CONTINUE;
6890 
6891 	while (bytes) {
6892 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6893 		unsigned offset = addr & (PAGE_SIZE-1);
6894 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6895 		int ret;
6896 
6897 		if (gpa == UNMAPPED_GVA)
6898 			return X86EMUL_PROPAGATE_FAULT;
6899 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6900 		if (ret < 0) {
6901 			r = X86EMUL_IO_NEEDED;
6902 			goto out;
6903 		}
6904 
6905 		bytes -= towrite;
6906 		data += towrite;
6907 		addr += towrite;
6908 	}
6909 out:
6910 	return r;
6911 }
6912 
6913 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6914 			      unsigned int bytes, struct x86_exception *exception,
6915 			      bool system)
6916 {
6917 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6918 	u32 access = PFERR_WRITE_MASK;
6919 
6920 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6921 		access |= PFERR_USER_MASK;
6922 
6923 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6924 					   access, exception);
6925 }
6926 
6927 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6928 				unsigned int bytes, struct x86_exception *exception)
6929 {
6930 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6931 	vcpu->arch.l1tf_flush_l1d = true;
6932 
6933 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6934 					   PFERR_WRITE_MASK, exception);
6935 }
6936 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6937 
6938 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6939 				void *insn, int insn_len)
6940 {
6941 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6942 							    insn, insn_len);
6943 }
6944 
6945 int handle_ud(struct kvm_vcpu *vcpu)
6946 {
6947 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6948 	int emul_type = EMULTYPE_TRAP_UD;
6949 	char sig[5]; /* ud2; .ascii "kvm" */
6950 	struct x86_exception e;
6951 
6952 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6953 		return 1;
6954 
6955 	if (force_emulation_prefix &&
6956 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6957 				sig, sizeof(sig), &e) == 0 &&
6958 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6959 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6960 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6961 	}
6962 
6963 	return kvm_emulate_instruction(vcpu, emul_type);
6964 }
6965 EXPORT_SYMBOL_GPL(handle_ud);
6966 
6967 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6968 			    gpa_t gpa, bool write)
6969 {
6970 	/* For APIC access vmexit */
6971 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6972 		return 1;
6973 
6974 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6975 		trace_vcpu_match_mmio(gva, gpa, write, true);
6976 		return 1;
6977 	}
6978 
6979 	return 0;
6980 }
6981 
6982 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6983 				gpa_t *gpa, struct x86_exception *exception,
6984 				bool write)
6985 {
6986 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6987 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6988 		| (write ? PFERR_WRITE_MASK : 0);
6989 
6990 	/*
6991 	 * currently PKRU is only applied to ept enabled guest so
6992 	 * there is no pkey in EPT page table for L1 guest or EPT
6993 	 * shadow page table for L2 guest.
6994 	 */
6995 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6996 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
6997 			      vcpu->arch.mmio_access, 0, access))) {
6998 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6999 					(gva & (PAGE_SIZE - 1));
7000 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7001 		return 1;
7002 	}
7003 
7004 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7005 
7006 	if (*gpa == UNMAPPED_GVA)
7007 		return -1;
7008 
7009 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7010 }
7011 
7012 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7013 			const void *val, int bytes)
7014 {
7015 	int ret;
7016 
7017 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7018 	if (ret < 0)
7019 		return 0;
7020 	kvm_page_track_write(vcpu, gpa, val, bytes);
7021 	return 1;
7022 }
7023 
7024 struct read_write_emulator_ops {
7025 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7026 				  int bytes);
7027 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7028 				  void *val, int bytes);
7029 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7030 			       int bytes, void *val);
7031 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7032 				    void *val, int bytes);
7033 	bool write;
7034 };
7035 
7036 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7037 {
7038 	if (vcpu->mmio_read_completed) {
7039 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7040 			       vcpu->mmio_fragments[0].gpa, val);
7041 		vcpu->mmio_read_completed = 0;
7042 		return 1;
7043 	}
7044 
7045 	return 0;
7046 }
7047 
7048 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7049 			void *val, int bytes)
7050 {
7051 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7052 }
7053 
7054 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7055 			 void *val, int bytes)
7056 {
7057 	return emulator_write_phys(vcpu, gpa, val, bytes);
7058 }
7059 
7060 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7061 {
7062 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7063 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7064 }
7065 
7066 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7067 			  void *val, int bytes)
7068 {
7069 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7070 	return X86EMUL_IO_NEEDED;
7071 }
7072 
7073 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7074 			   void *val, int bytes)
7075 {
7076 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7077 
7078 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7079 	return X86EMUL_CONTINUE;
7080 }
7081 
7082 static const struct read_write_emulator_ops read_emultor = {
7083 	.read_write_prepare = read_prepare,
7084 	.read_write_emulate = read_emulate,
7085 	.read_write_mmio = vcpu_mmio_read,
7086 	.read_write_exit_mmio = read_exit_mmio,
7087 };
7088 
7089 static const struct read_write_emulator_ops write_emultor = {
7090 	.read_write_emulate = write_emulate,
7091 	.read_write_mmio = write_mmio,
7092 	.read_write_exit_mmio = write_exit_mmio,
7093 	.write = true,
7094 };
7095 
7096 static int emulator_read_write_onepage(unsigned long addr, void *val,
7097 				       unsigned int bytes,
7098 				       struct x86_exception *exception,
7099 				       struct kvm_vcpu *vcpu,
7100 				       const struct read_write_emulator_ops *ops)
7101 {
7102 	gpa_t gpa;
7103 	int handled, ret;
7104 	bool write = ops->write;
7105 	struct kvm_mmio_fragment *frag;
7106 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7107 
7108 	/*
7109 	 * If the exit was due to a NPF we may already have a GPA.
7110 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7111 	 * Note, this cannot be used on string operations since string
7112 	 * operation using rep will only have the initial GPA from the NPF
7113 	 * occurred.
7114 	 */
7115 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7116 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7117 		gpa = ctxt->gpa_val;
7118 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7119 	} else {
7120 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7121 		if (ret < 0)
7122 			return X86EMUL_PROPAGATE_FAULT;
7123 	}
7124 
7125 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7126 		return X86EMUL_CONTINUE;
7127 
7128 	/*
7129 	 * Is this MMIO handled locally?
7130 	 */
7131 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7132 	if (handled == bytes)
7133 		return X86EMUL_CONTINUE;
7134 
7135 	gpa += handled;
7136 	bytes -= handled;
7137 	val += handled;
7138 
7139 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7140 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7141 	frag->gpa = gpa;
7142 	frag->data = val;
7143 	frag->len = bytes;
7144 	return X86EMUL_CONTINUE;
7145 }
7146 
7147 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7148 			unsigned long addr,
7149 			void *val, unsigned int bytes,
7150 			struct x86_exception *exception,
7151 			const struct read_write_emulator_ops *ops)
7152 {
7153 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7154 	gpa_t gpa;
7155 	int rc;
7156 
7157 	if (ops->read_write_prepare &&
7158 		  ops->read_write_prepare(vcpu, val, bytes))
7159 		return X86EMUL_CONTINUE;
7160 
7161 	vcpu->mmio_nr_fragments = 0;
7162 
7163 	/* Crossing a page boundary? */
7164 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7165 		int now;
7166 
7167 		now = -addr & ~PAGE_MASK;
7168 		rc = emulator_read_write_onepage(addr, val, now, exception,
7169 						 vcpu, ops);
7170 
7171 		if (rc != X86EMUL_CONTINUE)
7172 			return rc;
7173 		addr += now;
7174 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7175 			addr = (u32)addr;
7176 		val += now;
7177 		bytes -= now;
7178 	}
7179 
7180 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7181 					 vcpu, ops);
7182 	if (rc != X86EMUL_CONTINUE)
7183 		return rc;
7184 
7185 	if (!vcpu->mmio_nr_fragments)
7186 		return rc;
7187 
7188 	gpa = vcpu->mmio_fragments[0].gpa;
7189 
7190 	vcpu->mmio_needed = 1;
7191 	vcpu->mmio_cur_fragment = 0;
7192 
7193 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7194 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7195 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7196 	vcpu->run->mmio.phys_addr = gpa;
7197 
7198 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7199 }
7200 
7201 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7202 				  unsigned long addr,
7203 				  void *val,
7204 				  unsigned int bytes,
7205 				  struct x86_exception *exception)
7206 {
7207 	return emulator_read_write(ctxt, addr, val, bytes,
7208 				   exception, &read_emultor);
7209 }
7210 
7211 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7212 			    unsigned long addr,
7213 			    const void *val,
7214 			    unsigned int bytes,
7215 			    struct x86_exception *exception)
7216 {
7217 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7218 				   exception, &write_emultor);
7219 }
7220 
7221 #define CMPXCHG_TYPE(t, ptr, old, new) \
7222 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7223 
7224 #ifdef CONFIG_X86_64
7225 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7226 #else
7227 #  define CMPXCHG64(ptr, old, new) \
7228 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7229 #endif
7230 
7231 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7232 				     unsigned long addr,
7233 				     const void *old,
7234 				     const void *new,
7235 				     unsigned int bytes,
7236 				     struct x86_exception *exception)
7237 {
7238 	struct kvm_host_map map;
7239 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7240 	u64 page_line_mask;
7241 	gpa_t gpa;
7242 	char *kaddr;
7243 	bool exchanged;
7244 
7245 	/* guests cmpxchg8b have to be emulated atomically */
7246 	if (bytes > 8 || (bytes & (bytes - 1)))
7247 		goto emul_write;
7248 
7249 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7250 
7251 	if (gpa == UNMAPPED_GVA ||
7252 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7253 		goto emul_write;
7254 
7255 	/*
7256 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7257 	 * enabled in the host and the access splits a cache line.
7258 	 */
7259 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7260 		page_line_mask = ~(cache_line_size() - 1);
7261 	else
7262 		page_line_mask = PAGE_MASK;
7263 
7264 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7265 		goto emul_write;
7266 
7267 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7268 		goto emul_write;
7269 
7270 	kaddr = map.hva + offset_in_page(gpa);
7271 
7272 	switch (bytes) {
7273 	case 1:
7274 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7275 		break;
7276 	case 2:
7277 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7278 		break;
7279 	case 4:
7280 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7281 		break;
7282 	case 8:
7283 		exchanged = CMPXCHG64(kaddr, old, new);
7284 		break;
7285 	default:
7286 		BUG();
7287 	}
7288 
7289 	kvm_vcpu_unmap(vcpu, &map, true);
7290 
7291 	if (!exchanged)
7292 		return X86EMUL_CMPXCHG_FAILED;
7293 
7294 	kvm_page_track_write(vcpu, gpa, new, bytes);
7295 
7296 	return X86EMUL_CONTINUE;
7297 
7298 emul_write:
7299 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7300 
7301 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7302 }
7303 
7304 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7305 {
7306 	int r = 0, i;
7307 
7308 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7309 		if (vcpu->arch.pio.in)
7310 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7311 					    vcpu->arch.pio.size, pd);
7312 		else
7313 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7314 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7315 					     pd);
7316 		if (r)
7317 			break;
7318 		pd += vcpu->arch.pio.size;
7319 	}
7320 	return r;
7321 }
7322 
7323 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7324 			       unsigned short port,
7325 			       unsigned int count, bool in)
7326 {
7327 	vcpu->arch.pio.port = port;
7328 	vcpu->arch.pio.in = in;
7329 	vcpu->arch.pio.count  = count;
7330 	vcpu->arch.pio.size = size;
7331 
7332 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7333 		return 1;
7334 
7335 	vcpu->run->exit_reason = KVM_EXIT_IO;
7336 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7337 	vcpu->run->io.size = size;
7338 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7339 	vcpu->run->io.count = count;
7340 	vcpu->run->io.port = port;
7341 
7342 	return 0;
7343 }
7344 
7345 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7346 			     unsigned short port, unsigned int count)
7347 {
7348 	WARN_ON(vcpu->arch.pio.count);
7349 	memset(vcpu->arch.pio_data, 0, size * count);
7350 	return emulator_pio_in_out(vcpu, size, port, count, true);
7351 }
7352 
7353 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7354 {
7355 	int size = vcpu->arch.pio.size;
7356 	unsigned count = vcpu->arch.pio.count;
7357 	memcpy(val, vcpu->arch.pio_data, size * count);
7358 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7359 	vcpu->arch.pio.count = 0;
7360 }
7361 
7362 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7363 			   unsigned short port, void *val, unsigned int count)
7364 {
7365 	if (vcpu->arch.pio.count) {
7366 		/*
7367 		 * Complete a previous iteration that required userspace I/O.
7368 		 * Note, @count isn't guaranteed to match pio.count as userspace
7369 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7370 		 * shenanigans as KVM doesn't support modifying the rep count,
7371 		 * and the emulator ensures @count doesn't overflow the buffer.
7372 		 */
7373 	} else {
7374 		int r = __emulator_pio_in(vcpu, size, port, count);
7375 		if (!r)
7376 			return r;
7377 
7378 		/* Results already available, fall through.  */
7379 	}
7380 
7381 	complete_emulator_pio_in(vcpu, val);
7382 	return 1;
7383 }
7384 
7385 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7386 				    int size, unsigned short port, void *val,
7387 				    unsigned int count)
7388 {
7389 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7390 
7391 }
7392 
7393 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7394 			    unsigned short port, const void *val,
7395 			    unsigned int count)
7396 {
7397 	int ret;
7398 
7399 	memcpy(vcpu->arch.pio_data, val, size * count);
7400 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7401 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7402 	if (ret)
7403                 vcpu->arch.pio.count = 0;
7404 
7405         return ret;
7406 }
7407 
7408 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7409 				     int size, unsigned short port,
7410 				     const void *val, unsigned int count)
7411 {
7412 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7413 }
7414 
7415 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7416 {
7417 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7418 }
7419 
7420 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7421 {
7422 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7423 }
7424 
7425 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7426 {
7427 	if (!need_emulate_wbinvd(vcpu))
7428 		return X86EMUL_CONTINUE;
7429 
7430 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7431 		int cpu = get_cpu();
7432 
7433 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7434 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7435 				wbinvd_ipi, NULL, 1);
7436 		put_cpu();
7437 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7438 	} else
7439 		wbinvd();
7440 	return X86EMUL_CONTINUE;
7441 }
7442 
7443 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7444 {
7445 	kvm_emulate_wbinvd_noskip(vcpu);
7446 	return kvm_skip_emulated_instruction(vcpu);
7447 }
7448 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7449 
7450 
7451 
7452 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7453 {
7454 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7455 }
7456 
7457 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7458 			    unsigned long *dest)
7459 {
7460 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7461 }
7462 
7463 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7464 			   unsigned long value)
7465 {
7466 
7467 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7468 }
7469 
7470 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7471 {
7472 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7473 }
7474 
7475 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7476 {
7477 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7478 	unsigned long value;
7479 
7480 	switch (cr) {
7481 	case 0:
7482 		value = kvm_read_cr0(vcpu);
7483 		break;
7484 	case 2:
7485 		value = vcpu->arch.cr2;
7486 		break;
7487 	case 3:
7488 		value = kvm_read_cr3(vcpu);
7489 		break;
7490 	case 4:
7491 		value = kvm_read_cr4(vcpu);
7492 		break;
7493 	case 8:
7494 		value = kvm_get_cr8(vcpu);
7495 		break;
7496 	default:
7497 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7498 		return 0;
7499 	}
7500 
7501 	return value;
7502 }
7503 
7504 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7505 {
7506 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7507 	int res = 0;
7508 
7509 	switch (cr) {
7510 	case 0:
7511 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7512 		break;
7513 	case 2:
7514 		vcpu->arch.cr2 = val;
7515 		break;
7516 	case 3:
7517 		res = kvm_set_cr3(vcpu, val);
7518 		break;
7519 	case 4:
7520 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7521 		break;
7522 	case 8:
7523 		res = kvm_set_cr8(vcpu, val);
7524 		break;
7525 	default:
7526 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7527 		res = -1;
7528 	}
7529 
7530 	return res;
7531 }
7532 
7533 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7534 {
7535 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7536 }
7537 
7538 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7539 {
7540 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7541 }
7542 
7543 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7544 {
7545 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7546 }
7547 
7548 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7549 {
7550 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7551 }
7552 
7553 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7554 {
7555 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7556 }
7557 
7558 static unsigned long emulator_get_cached_segment_base(
7559 	struct x86_emulate_ctxt *ctxt, int seg)
7560 {
7561 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7562 }
7563 
7564 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7565 				 struct desc_struct *desc, u32 *base3,
7566 				 int seg)
7567 {
7568 	struct kvm_segment var;
7569 
7570 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7571 	*selector = var.selector;
7572 
7573 	if (var.unusable) {
7574 		memset(desc, 0, sizeof(*desc));
7575 		if (base3)
7576 			*base3 = 0;
7577 		return false;
7578 	}
7579 
7580 	if (var.g)
7581 		var.limit >>= 12;
7582 	set_desc_limit(desc, var.limit);
7583 	set_desc_base(desc, (unsigned long)var.base);
7584 #ifdef CONFIG_X86_64
7585 	if (base3)
7586 		*base3 = var.base >> 32;
7587 #endif
7588 	desc->type = var.type;
7589 	desc->s = var.s;
7590 	desc->dpl = var.dpl;
7591 	desc->p = var.present;
7592 	desc->avl = var.avl;
7593 	desc->l = var.l;
7594 	desc->d = var.db;
7595 	desc->g = var.g;
7596 
7597 	return true;
7598 }
7599 
7600 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7601 				 struct desc_struct *desc, u32 base3,
7602 				 int seg)
7603 {
7604 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7605 	struct kvm_segment var;
7606 
7607 	var.selector = selector;
7608 	var.base = get_desc_base(desc);
7609 #ifdef CONFIG_X86_64
7610 	var.base |= ((u64)base3) << 32;
7611 #endif
7612 	var.limit = get_desc_limit(desc);
7613 	if (desc->g)
7614 		var.limit = (var.limit << 12) | 0xfff;
7615 	var.type = desc->type;
7616 	var.dpl = desc->dpl;
7617 	var.db = desc->d;
7618 	var.s = desc->s;
7619 	var.l = desc->l;
7620 	var.g = desc->g;
7621 	var.avl = desc->avl;
7622 	var.present = desc->p;
7623 	var.unusable = !var.present;
7624 	var.padding = 0;
7625 
7626 	kvm_set_segment(vcpu, &var, seg);
7627 	return;
7628 }
7629 
7630 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7631 			    u32 msr_index, u64 *pdata)
7632 {
7633 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7634 	int r;
7635 
7636 	r = kvm_get_msr(vcpu, msr_index, pdata);
7637 
7638 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7639 				    complete_emulated_rdmsr, r)) {
7640 		/* Bounce to user space */
7641 		return X86EMUL_IO_NEEDED;
7642 	}
7643 
7644 	return r;
7645 }
7646 
7647 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7648 			    u32 msr_index, u64 data)
7649 {
7650 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7651 	int r;
7652 
7653 	r = kvm_set_msr(vcpu, msr_index, data);
7654 
7655 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7656 				    complete_emulated_msr_access, r)) {
7657 		/* Bounce to user space */
7658 		return X86EMUL_IO_NEEDED;
7659 	}
7660 
7661 	return r;
7662 }
7663 
7664 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7665 {
7666 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7667 
7668 	return vcpu->arch.smbase;
7669 }
7670 
7671 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7672 {
7673 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7674 
7675 	vcpu->arch.smbase = smbase;
7676 }
7677 
7678 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7679 			      u32 pmc)
7680 {
7681 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7682 		return 0;
7683 	return -EINVAL;
7684 }
7685 
7686 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7687 			     u32 pmc, u64 *pdata)
7688 {
7689 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7690 }
7691 
7692 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7693 {
7694 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7695 }
7696 
7697 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7698 			      struct x86_instruction_info *info,
7699 			      enum x86_intercept_stage stage)
7700 {
7701 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7702 					    &ctxt->exception);
7703 }
7704 
7705 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7706 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7707 			      bool exact_only)
7708 {
7709 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7710 }
7711 
7712 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7713 {
7714 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7715 }
7716 
7717 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7718 {
7719 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7720 }
7721 
7722 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7723 {
7724 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7725 }
7726 
7727 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7728 {
7729 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7730 }
7731 
7732 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7733 {
7734 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7735 }
7736 
7737 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7738 {
7739 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7740 }
7741 
7742 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7743 {
7744 	return emul_to_vcpu(ctxt)->arch.hflags;
7745 }
7746 
7747 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7748 {
7749 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7750 
7751 	kvm_smm_changed(vcpu, false);
7752 }
7753 
7754 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7755 				  const char *smstate)
7756 {
7757 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7758 }
7759 
7760 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7761 {
7762 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7763 }
7764 
7765 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7766 {
7767 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7768 }
7769 
7770 static const struct x86_emulate_ops emulate_ops = {
7771 	.read_gpr            = emulator_read_gpr,
7772 	.write_gpr           = emulator_write_gpr,
7773 	.read_std            = emulator_read_std,
7774 	.write_std           = emulator_write_std,
7775 	.read_phys           = kvm_read_guest_phys_system,
7776 	.fetch               = kvm_fetch_guest_virt,
7777 	.read_emulated       = emulator_read_emulated,
7778 	.write_emulated      = emulator_write_emulated,
7779 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7780 	.invlpg              = emulator_invlpg,
7781 	.pio_in_emulated     = emulator_pio_in_emulated,
7782 	.pio_out_emulated    = emulator_pio_out_emulated,
7783 	.get_segment         = emulator_get_segment,
7784 	.set_segment         = emulator_set_segment,
7785 	.get_cached_segment_base = emulator_get_cached_segment_base,
7786 	.get_gdt             = emulator_get_gdt,
7787 	.get_idt	     = emulator_get_idt,
7788 	.set_gdt             = emulator_set_gdt,
7789 	.set_idt	     = emulator_set_idt,
7790 	.get_cr              = emulator_get_cr,
7791 	.set_cr              = emulator_set_cr,
7792 	.cpl                 = emulator_get_cpl,
7793 	.get_dr              = emulator_get_dr,
7794 	.set_dr              = emulator_set_dr,
7795 	.get_smbase          = emulator_get_smbase,
7796 	.set_smbase          = emulator_set_smbase,
7797 	.set_msr             = emulator_set_msr,
7798 	.get_msr             = emulator_get_msr,
7799 	.check_pmc	     = emulator_check_pmc,
7800 	.read_pmc            = emulator_read_pmc,
7801 	.halt                = emulator_halt,
7802 	.wbinvd              = emulator_wbinvd,
7803 	.fix_hypercall       = emulator_fix_hypercall,
7804 	.intercept           = emulator_intercept,
7805 	.get_cpuid           = emulator_get_cpuid,
7806 	.guest_has_long_mode = emulator_guest_has_long_mode,
7807 	.guest_has_movbe     = emulator_guest_has_movbe,
7808 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7809 	.set_nmi_mask        = emulator_set_nmi_mask,
7810 	.get_hflags          = emulator_get_hflags,
7811 	.exiting_smm         = emulator_exiting_smm,
7812 	.leave_smm           = emulator_leave_smm,
7813 	.triple_fault        = emulator_triple_fault,
7814 	.set_xcr             = emulator_set_xcr,
7815 };
7816 
7817 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7818 {
7819 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7820 	/*
7821 	 * an sti; sti; sequence only disable interrupts for the first
7822 	 * instruction. So, if the last instruction, be it emulated or
7823 	 * not, left the system with the INT_STI flag enabled, it
7824 	 * means that the last instruction is an sti. We should not
7825 	 * leave the flag on in this case. The same goes for mov ss
7826 	 */
7827 	if (int_shadow & mask)
7828 		mask = 0;
7829 	if (unlikely(int_shadow || mask)) {
7830 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7831 		if (!mask)
7832 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7833 	}
7834 }
7835 
7836 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7837 {
7838 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7839 	if (ctxt->exception.vector == PF_VECTOR)
7840 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7841 
7842 	if (ctxt->exception.error_code_valid)
7843 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7844 				      ctxt->exception.error_code);
7845 	else
7846 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7847 	return false;
7848 }
7849 
7850 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7851 {
7852 	struct x86_emulate_ctxt *ctxt;
7853 
7854 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7855 	if (!ctxt) {
7856 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7857 		return NULL;
7858 	}
7859 
7860 	ctxt->vcpu = vcpu;
7861 	ctxt->ops = &emulate_ops;
7862 	vcpu->arch.emulate_ctxt = ctxt;
7863 
7864 	return ctxt;
7865 }
7866 
7867 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7868 {
7869 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7870 	int cs_db, cs_l;
7871 
7872 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7873 
7874 	ctxt->gpa_available = false;
7875 	ctxt->eflags = kvm_get_rflags(vcpu);
7876 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7877 
7878 	ctxt->eip = kvm_rip_read(vcpu);
7879 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7880 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7881 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7882 		     cs_db				? X86EMUL_MODE_PROT32 :
7883 							  X86EMUL_MODE_PROT16;
7884 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7885 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7886 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7887 
7888 	ctxt->interruptibility = 0;
7889 	ctxt->have_exception = false;
7890 	ctxt->exception.vector = -1;
7891 	ctxt->perm_ok = false;
7892 
7893 	init_decode_cache(ctxt);
7894 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7895 }
7896 
7897 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7898 {
7899 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7900 	int ret;
7901 
7902 	init_emulate_ctxt(vcpu);
7903 
7904 	ctxt->op_bytes = 2;
7905 	ctxt->ad_bytes = 2;
7906 	ctxt->_eip = ctxt->eip + inc_eip;
7907 	ret = emulate_int_real(ctxt, irq);
7908 
7909 	if (ret != X86EMUL_CONTINUE) {
7910 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7911 	} else {
7912 		ctxt->eip = ctxt->_eip;
7913 		kvm_rip_write(vcpu, ctxt->eip);
7914 		kvm_set_rflags(vcpu, ctxt->eflags);
7915 	}
7916 }
7917 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7918 
7919 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7920 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
7921 {
7922 	struct kvm_run *run = vcpu->run;
7923 	u64 info[5];
7924 	u8 info_start;
7925 
7926 	/*
7927 	 * Zero the whole array used to retrieve the exit info, as casting to
7928 	 * u32 for select entries will leave some chunks uninitialized.
7929 	 */
7930 	memset(&info, 0, sizeof(info));
7931 
7932 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7933 					   &info[2], (u32 *)&info[3],
7934 					   (u32 *)&info[4]);
7935 
7936 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7937 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7938 
7939 	/*
7940 	 * There's currently space for 13 entries, but 5 are used for the exit
7941 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
7942 	 * when expanding kvm_run.emulation_failure in the future.
7943 	 */
7944 	if (WARN_ON_ONCE(ndata > 4))
7945 		ndata = 4;
7946 
7947 	/* Always include the flags as a 'data' entry. */
7948 	info_start = 1;
7949 	run->emulation_failure.flags = 0;
7950 
7951 	if (insn_size) {
7952 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7953 			      sizeof(run->emulation_failure.insn_bytes) != 16));
7954 		info_start += 2;
7955 		run->emulation_failure.flags |=
7956 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7957 		run->emulation_failure.insn_size = insn_size;
7958 		memset(run->emulation_failure.insn_bytes, 0x90,
7959 		       sizeof(run->emulation_failure.insn_bytes));
7960 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7961 	}
7962 
7963 	memcpy(&run->internal.data[info_start], info, sizeof(info));
7964 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7965 	       ndata * sizeof(data[0]));
7966 
7967 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7968 }
7969 
7970 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7971 {
7972 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7973 
7974 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7975 				       ctxt->fetch.end - ctxt->fetch.data);
7976 }
7977 
7978 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7979 					  u8 ndata)
7980 {
7981 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7982 }
7983 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7984 
7985 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7986 {
7987 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7988 }
7989 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7990 
7991 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7992 {
7993 	struct kvm *kvm = vcpu->kvm;
7994 
7995 	++vcpu->stat.insn_emulation_fail;
7996 	trace_kvm_emulate_insn_failed(vcpu);
7997 
7998 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7999 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8000 		return 1;
8001 	}
8002 
8003 	if (kvm->arch.exit_on_emulation_error ||
8004 	    (emulation_type & EMULTYPE_SKIP)) {
8005 		prepare_emulation_ctxt_failure_exit(vcpu);
8006 		return 0;
8007 	}
8008 
8009 	kvm_queue_exception(vcpu, UD_VECTOR);
8010 
8011 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8012 		prepare_emulation_ctxt_failure_exit(vcpu);
8013 		return 0;
8014 	}
8015 
8016 	return 1;
8017 }
8018 
8019 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8020 				  bool write_fault_to_shadow_pgtable,
8021 				  int emulation_type)
8022 {
8023 	gpa_t gpa = cr2_or_gpa;
8024 	kvm_pfn_t pfn;
8025 
8026 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8027 		return false;
8028 
8029 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8030 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8031 		return false;
8032 
8033 	if (!vcpu->arch.mmu->direct_map) {
8034 		/*
8035 		 * Write permission should be allowed since only
8036 		 * write access need to be emulated.
8037 		 */
8038 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8039 
8040 		/*
8041 		 * If the mapping is invalid in guest, let cpu retry
8042 		 * it to generate fault.
8043 		 */
8044 		if (gpa == UNMAPPED_GVA)
8045 			return true;
8046 	}
8047 
8048 	/*
8049 	 * Do not retry the unhandleable instruction if it faults on the
8050 	 * readonly host memory, otherwise it will goto a infinite loop:
8051 	 * retry instruction -> write #PF -> emulation fail -> retry
8052 	 * instruction -> ...
8053 	 */
8054 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8055 
8056 	/*
8057 	 * If the instruction failed on the error pfn, it can not be fixed,
8058 	 * report the error to userspace.
8059 	 */
8060 	if (is_error_noslot_pfn(pfn))
8061 		return false;
8062 
8063 	kvm_release_pfn_clean(pfn);
8064 
8065 	/* The instructions are well-emulated on direct mmu. */
8066 	if (vcpu->arch.mmu->direct_map) {
8067 		unsigned int indirect_shadow_pages;
8068 
8069 		write_lock(&vcpu->kvm->mmu_lock);
8070 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8071 		write_unlock(&vcpu->kvm->mmu_lock);
8072 
8073 		if (indirect_shadow_pages)
8074 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8075 
8076 		return true;
8077 	}
8078 
8079 	/*
8080 	 * if emulation was due to access to shadowed page table
8081 	 * and it failed try to unshadow page and re-enter the
8082 	 * guest to let CPU execute the instruction.
8083 	 */
8084 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8085 
8086 	/*
8087 	 * If the access faults on its page table, it can not
8088 	 * be fixed by unprotecting shadow page and it should
8089 	 * be reported to userspace.
8090 	 */
8091 	return !write_fault_to_shadow_pgtable;
8092 }
8093 
8094 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8095 			      gpa_t cr2_or_gpa,  int emulation_type)
8096 {
8097 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8098 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8099 
8100 	last_retry_eip = vcpu->arch.last_retry_eip;
8101 	last_retry_addr = vcpu->arch.last_retry_addr;
8102 
8103 	/*
8104 	 * If the emulation is caused by #PF and it is non-page_table
8105 	 * writing instruction, it means the VM-EXIT is caused by shadow
8106 	 * page protected, we can zap the shadow page and retry this
8107 	 * instruction directly.
8108 	 *
8109 	 * Note: if the guest uses a non-page-table modifying instruction
8110 	 * on the PDE that points to the instruction, then we will unmap
8111 	 * the instruction and go to an infinite loop. So, we cache the
8112 	 * last retried eip and the last fault address, if we meet the eip
8113 	 * and the address again, we can break out of the potential infinite
8114 	 * loop.
8115 	 */
8116 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8117 
8118 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8119 		return false;
8120 
8121 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8122 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8123 		return false;
8124 
8125 	if (x86_page_table_writing_insn(ctxt))
8126 		return false;
8127 
8128 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8129 		return false;
8130 
8131 	vcpu->arch.last_retry_eip = ctxt->eip;
8132 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8133 
8134 	if (!vcpu->arch.mmu->direct_map)
8135 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8136 
8137 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8138 
8139 	return true;
8140 }
8141 
8142 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8143 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8144 
8145 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8146 {
8147 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8148 
8149 	if (entering_smm) {
8150 		vcpu->arch.hflags |= HF_SMM_MASK;
8151 	} else {
8152 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8153 
8154 		/* Process a latched INIT or SMI, if any.  */
8155 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8156 
8157 		/*
8158 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8159 		 * on SMM exit we still need to reload them from
8160 		 * guest memory
8161 		 */
8162 		vcpu->arch.pdptrs_from_userspace = false;
8163 	}
8164 
8165 	kvm_mmu_reset_context(vcpu);
8166 }
8167 
8168 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8169 				unsigned long *db)
8170 {
8171 	u32 dr6 = 0;
8172 	int i;
8173 	u32 enable, rwlen;
8174 
8175 	enable = dr7;
8176 	rwlen = dr7 >> 16;
8177 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8178 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8179 			dr6 |= (1 << i);
8180 	return dr6;
8181 }
8182 
8183 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8184 {
8185 	struct kvm_run *kvm_run = vcpu->run;
8186 
8187 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8188 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8189 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8190 		kvm_run->debug.arch.exception = DB_VECTOR;
8191 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8192 		return 0;
8193 	}
8194 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8195 	return 1;
8196 }
8197 
8198 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8199 {
8200 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8201 	int r;
8202 
8203 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8204 	if (unlikely(!r))
8205 		return 0;
8206 
8207 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8208 
8209 	/*
8210 	 * rflags is the old, "raw" value of the flags.  The new value has
8211 	 * not been saved yet.
8212 	 *
8213 	 * This is correct even for TF set by the guest, because "the
8214 	 * processor will not generate this exception after the instruction
8215 	 * that sets the TF flag".
8216 	 */
8217 	if (unlikely(rflags & X86_EFLAGS_TF))
8218 		r = kvm_vcpu_do_singlestep(vcpu);
8219 	return r;
8220 }
8221 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8222 
8223 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8224 {
8225 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8226 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8227 		struct kvm_run *kvm_run = vcpu->run;
8228 		unsigned long eip = kvm_get_linear_rip(vcpu);
8229 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8230 					   vcpu->arch.guest_debug_dr7,
8231 					   vcpu->arch.eff_db);
8232 
8233 		if (dr6 != 0) {
8234 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8235 			kvm_run->debug.arch.pc = eip;
8236 			kvm_run->debug.arch.exception = DB_VECTOR;
8237 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8238 			*r = 0;
8239 			return true;
8240 		}
8241 	}
8242 
8243 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8244 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8245 		unsigned long eip = kvm_get_linear_rip(vcpu);
8246 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8247 					   vcpu->arch.dr7,
8248 					   vcpu->arch.db);
8249 
8250 		if (dr6 != 0) {
8251 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8252 			*r = 1;
8253 			return true;
8254 		}
8255 	}
8256 
8257 	return false;
8258 }
8259 
8260 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8261 {
8262 	switch (ctxt->opcode_len) {
8263 	case 1:
8264 		switch (ctxt->b) {
8265 		case 0xe4:	/* IN */
8266 		case 0xe5:
8267 		case 0xec:
8268 		case 0xed:
8269 		case 0xe6:	/* OUT */
8270 		case 0xe7:
8271 		case 0xee:
8272 		case 0xef:
8273 		case 0x6c:	/* INS */
8274 		case 0x6d:
8275 		case 0x6e:	/* OUTS */
8276 		case 0x6f:
8277 			return true;
8278 		}
8279 		break;
8280 	case 2:
8281 		switch (ctxt->b) {
8282 		case 0x33:	/* RDPMC */
8283 			return true;
8284 		}
8285 		break;
8286 	}
8287 
8288 	return false;
8289 }
8290 
8291 /*
8292  * Decode to be emulated instruction. Return EMULATION_OK if success.
8293  */
8294 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8295 				    void *insn, int insn_len)
8296 {
8297 	int r = EMULATION_OK;
8298 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8299 
8300 	init_emulate_ctxt(vcpu);
8301 
8302 	/*
8303 	 * We will reenter on the same instruction since we do not set
8304 	 * complete_userspace_io. This does not handle watchpoints yet,
8305 	 * those would be handled in the emulate_ops.
8306 	 */
8307 	if (!(emulation_type & EMULTYPE_SKIP) &&
8308 	    kvm_vcpu_check_breakpoint(vcpu, &r))
8309 		return r;
8310 
8311 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8312 
8313 	trace_kvm_emulate_insn_start(vcpu);
8314 	++vcpu->stat.insn_emulation;
8315 
8316 	return r;
8317 }
8318 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8319 
8320 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8321 			    int emulation_type, void *insn, int insn_len)
8322 {
8323 	int r;
8324 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8325 	bool writeback = true;
8326 	bool write_fault_to_spt;
8327 
8328 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8329 		return 1;
8330 
8331 	vcpu->arch.l1tf_flush_l1d = true;
8332 
8333 	/*
8334 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8335 	 * never reused.
8336 	 */
8337 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8338 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8339 
8340 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8341 		kvm_clear_exception_queue(vcpu);
8342 
8343 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8344 						    insn, insn_len);
8345 		if (r != EMULATION_OK)  {
8346 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8347 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8348 				kvm_queue_exception(vcpu, UD_VECTOR);
8349 				return 1;
8350 			}
8351 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8352 						  write_fault_to_spt,
8353 						  emulation_type))
8354 				return 1;
8355 			if (ctxt->have_exception) {
8356 				/*
8357 				 * #UD should result in just EMULATION_FAILED, and trap-like
8358 				 * exception should not be encountered during decode.
8359 				 */
8360 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8361 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8362 				inject_emulated_exception(vcpu);
8363 				return 1;
8364 			}
8365 			return handle_emulation_failure(vcpu, emulation_type);
8366 		}
8367 	}
8368 
8369 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8370 	    !is_vmware_backdoor_opcode(ctxt)) {
8371 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8372 		return 1;
8373 	}
8374 
8375 	/*
8376 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8377 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8378 	 * The caller is responsible for updating interruptibility state and
8379 	 * injecting single-step #DBs.
8380 	 */
8381 	if (emulation_type & EMULTYPE_SKIP) {
8382 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8383 			ctxt->eip = (u32)ctxt->_eip;
8384 		else
8385 			ctxt->eip = ctxt->_eip;
8386 
8387 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8388 			r = 1;
8389 			goto writeback;
8390 		}
8391 
8392 		kvm_rip_write(vcpu, ctxt->eip);
8393 		if (ctxt->eflags & X86_EFLAGS_RF)
8394 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8395 		return 1;
8396 	}
8397 
8398 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8399 		return 1;
8400 
8401 	/* this is needed for vmware backdoor interface to work since it
8402 	   changes registers values  during IO operation */
8403 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8404 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8405 		emulator_invalidate_register_cache(ctxt);
8406 	}
8407 
8408 restart:
8409 	if (emulation_type & EMULTYPE_PF) {
8410 		/* Save the faulting GPA (cr2) in the address field */
8411 		ctxt->exception.address = cr2_or_gpa;
8412 
8413 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8414 		if (vcpu->arch.mmu->direct_map) {
8415 			ctxt->gpa_available = true;
8416 			ctxt->gpa_val = cr2_or_gpa;
8417 		}
8418 	} else {
8419 		/* Sanitize the address out of an abundance of paranoia. */
8420 		ctxt->exception.address = 0;
8421 	}
8422 
8423 	r = x86_emulate_insn(ctxt);
8424 
8425 	if (r == EMULATION_INTERCEPTED)
8426 		return 1;
8427 
8428 	if (r == EMULATION_FAILED) {
8429 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8430 					emulation_type))
8431 			return 1;
8432 
8433 		return handle_emulation_failure(vcpu, emulation_type);
8434 	}
8435 
8436 	if (ctxt->have_exception) {
8437 		r = 1;
8438 		if (inject_emulated_exception(vcpu))
8439 			return r;
8440 	} else if (vcpu->arch.pio.count) {
8441 		if (!vcpu->arch.pio.in) {
8442 			/* FIXME: return into emulator if single-stepping.  */
8443 			vcpu->arch.pio.count = 0;
8444 		} else {
8445 			writeback = false;
8446 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8447 		}
8448 		r = 0;
8449 	} else if (vcpu->mmio_needed) {
8450 		++vcpu->stat.mmio_exits;
8451 
8452 		if (!vcpu->mmio_is_write)
8453 			writeback = false;
8454 		r = 0;
8455 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8456 	} else if (vcpu->arch.complete_userspace_io) {
8457 		writeback = false;
8458 		r = 0;
8459 	} else if (r == EMULATION_RESTART)
8460 		goto restart;
8461 	else
8462 		r = 1;
8463 
8464 writeback:
8465 	if (writeback) {
8466 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8467 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8468 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8469 		if (!ctxt->have_exception ||
8470 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8471 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8472 			if (ctxt->is_branch)
8473 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8474 			kvm_rip_write(vcpu, ctxt->eip);
8475 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8476 				r = kvm_vcpu_do_singlestep(vcpu);
8477 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8478 			__kvm_set_rflags(vcpu, ctxt->eflags);
8479 		}
8480 
8481 		/*
8482 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8483 		 * do nothing, and it will be requested again as soon as
8484 		 * the shadow expires.  But we still need to check here,
8485 		 * because POPF has no interrupt shadow.
8486 		 */
8487 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8488 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8489 	} else
8490 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8491 
8492 	return r;
8493 }
8494 
8495 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8496 {
8497 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8498 }
8499 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8500 
8501 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8502 					void *insn, int insn_len)
8503 {
8504 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8505 }
8506 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8507 
8508 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8509 {
8510 	vcpu->arch.pio.count = 0;
8511 	return 1;
8512 }
8513 
8514 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8515 {
8516 	vcpu->arch.pio.count = 0;
8517 
8518 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8519 		return 1;
8520 
8521 	return kvm_skip_emulated_instruction(vcpu);
8522 }
8523 
8524 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8525 			    unsigned short port)
8526 {
8527 	unsigned long val = kvm_rax_read(vcpu);
8528 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8529 
8530 	if (ret)
8531 		return ret;
8532 
8533 	/*
8534 	 * Workaround userspace that relies on old KVM behavior of %rip being
8535 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8536 	 */
8537 	if (port == 0x7e &&
8538 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8539 		vcpu->arch.complete_userspace_io =
8540 			complete_fast_pio_out_port_0x7e;
8541 		kvm_skip_emulated_instruction(vcpu);
8542 	} else {
8543 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8544 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8545 	}
8546 	return 0;
8547 }
8548 
8549 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8550 {
8551 	unsigned long val;
8552 
8553 	/* We should only ever be called with arch.pio.count equal to 1 */
8554 	BUG_ON(vcpu->arch.pio.count != 1);
8555 
8556 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8557 		vcpu->arch.pio.count = 0;
8558 		return 1;
8559 	}
8560 
8561 	/* For size less than 4 we merge, else we zero extend */
8562 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8563 
8564 	/*
8565 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8566 	 * the copy and tracing
8567 	 */
8568 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8569 	kvm_rax_write(vcpu, val);
8570 
8571 	return kvm_skip_emulated_instruction(vcpu);
8572 }
8573 
8574 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8575 			   unsigned short port)
8576 {
8577 	unsigned long val;
8578 	int ret;
8579 
8580 	/* For size less than 4 we merge, else we zero extend */
8581 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8582 
8583 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8584 	if (ret) {
8585 		kvm_rax_write(vcpu, val);
8586 		return ret;
8587 	}
8588 
8589 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8590 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8591 
8592 	return 0;
8593 }
8594 
8595 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8596 {
8597 	int ret;
8598 
8599 	if (in)
8600 		ret = kvm_fast_pio_in(vcpu, size, port);
8601 	else
8602 		ret = kvm_fast_pio_out(vcpu, size, port);
8603 	return ret && kvm_skip_emulated_instruction(vcpu);
8604 }
8605 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8606 
8607 static int kvmclock_cpu_down_prep(unsigned int cpu)
8608 {
8609 	__this_cpu_write(cpu_tsc_khz, 0);
8610 	return 0;
8611 }
8612 
8613 static void tsc_khz_changed(void *data)
8614 {
8615 	struct cpufreq_freqs *freq = data;
8616 	unsigned long khz = 0;
8617 
8618 	if (data)
8619 		khz = freq->new;
8620 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8621 		khz = cpufreq_quick_get(raw_smp_processor_id());
8622 	if (!khz)
8623 		khz = tsc_khz;
8624 	__this_cpu_write(cpu_tsc_khz, khz);
8625 }
8626 
8627 #ifdef CONFIG_X86_64
8628 static void kvm_hyperv_tsc_notifier(void)
8629 {
8630 	struct kvm *kvm;
8631 	int cpu;
8632 
8633 	mutex_lock(&kvm_lock);
8634 	list_for_each_entry(kvm, &vm_list, vm_list)
8635 		kvm_make_mclock_inprogress_request(kvm);
8636 
8637 	/* no guest entries from this point */
8638 	hyperv_stop_tsc_emulation();
8639 
8640 	/* TSC frequency always matches when on Hyper-V */
8641 	for_each_present_cpu(cpu)
8642 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8643 	kvm_max_guest_tsc_khz = tsc_khz;
8644 
8645 	list_for_each_entry(kvm, &vm_list, vm_list) {
8646 		__kvm_start_pvclock_update(kvm);
8647 		pvclock_update_vm_gtod_copy(kvm);
8648 		kvm_end_pvclock_update(kvm);
8649 	}
8650 
8651 	mutex_unlock(&kvm_lock);
8652 }
8653 #endif
8654 
8655 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8656 {
8657 	struct kvm *kvm;
8658 	struct kvm_vcpu *vcpu;
8659 	int send_ipi = 0;
8660 	unsigned long i;
8661 
8662 	/*
8663 	 * We allow guests to temporarily run on slowing clocks,
8664 	 * provided we notify them after, or to run on accelerating
8665 	 * clocks, provided we notify them before.  Thus time never
8666 	 * goes backwards.
8667 	 *
8668 	 * However, we have a problem.  We can't atomically update
8669 	 * the frequency of a given CPU from this function; it is
8670 	 * merely a notifier, which can be called from any CPU.
8671 	 * Changing the TSC frequency at arbitrary points in time
8672 	 * requires a recomputation of local variables related to
8673 	 * the TSC for each VCPU.  We must flag these local variables
8674 	 * to be updated and be sure the update takes place with the
8675 	 * new frequency before any guests proceed.
8676 	 *
8677 	 * Unfortunately, the combination of hotplug CPU and frequency
8678 	 * change creates an intractable locking scenario; the order
8679 	 * of when these callouts happen is undefined with respect to
8680 	 * CPU hotplug, and they can race with each other.  As such,
8681 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8682 	 * undefined; you can actually have a CPU frequency change take
8683 	 * place in between the computation of X and the setting of the
8684 	 * variable.  To protect against this problem, all updates of
8685 	 * the per_cpu tsc_khz variable are done in an interrupt
8686 	 * protected IPI, and all callers wishing to update the value
8687 	 * must wait for a synchronous IPI to complete (which is trivial
8688 	 * if the caller is on the CPU already).  This establishes the
8689 	 * necessary total order on variable updates.
8690 	 *
8691 	 * Note that because a guest time update may take place
8692 	 * anytime after the setting of the VCPU's request bit, the
8693 	 * correct TSC value must be set before the request.  However,
8694 	 * to ensure the update actually makes it to any guest which
8695 	 * starts running in hardware virtualization between the set
8696 	 * and the acquisition of the spinlock, we must also ping the
8697 	 * CPU after setting the request bit.
8698 	 *
8699 	 */
8700 
8701 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8702 
8703 	mutex_lock(&kvm_lock);
8704 	list_for_each_entry(kvm, &vm_list, vm_list) {
8705 		kvm_for_each_vcpu(i, vcpu, kvm) {
8706 			if (vcpu->cpu != cpu)
8707 				continue;
8708 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8709 			if (vcpu->cpu != raw_smp_processor_id())
8710 				send_ipi = 1;
8711 		}
8712 	}
8713 	mutex_unlock(&kvm_lock);
8714 
8715 	if (freq->old < freq->new && send_ipi) {
8716 		/*
8717 		 * We upscale the frequency.  Must make the guest
8718 		 * doesn't see old kvmclock values while running with
8719 		 * the new frequency, otherwise we risk the guest sees
8720 		 * time go backwards.
8721 		 *
8722 		 * In case we update the frequency for another cpu
8723 		 * (which might be in guest context) send an interrupt
8724 		 * to kick the cpu out of guest context.  Next time
8725 		 * guest context is entered kvmclock will be updated,
8726 		 * so the guest will not see stale values.
8727 		 */
8728 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8729 	}
8730 }
8731 
8732 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8733 				     void *data)
8734 {
8735 	struct cpufreq_freqs *freq = data;
8736 	int cpu;
8737 
8738 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8739 		return 0;
8740 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8741 		return 0;
8742 
8743 	for_each_cpu(cpu, freq->policy->cpus)
8744 		__kvmclock_cpufreq_notifier(freq, cpu);
8745 
8746 	return 0;
8747 }
8748 
8749 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8750 	.notifier_call  = kvmclock_cpufreq_notifier
8751 };
8752 
8753 static int kvmclock_cpu_online(unsigned int cpu)
8754 {
8755 	tsc_khz_changed(NULL);
8756 	return 0;
8757 }
8758 
8759 static void kvm_timer_init(void)
8760 {
8761 	max_tsc_khz = tsc_khz;
8762 
8763 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8764 #ifdef CONFIG_CPU_FREQ
8765 		struct cpufreq_policy *policy;
8766 		int cpu;
8767 
8768 		cpu = get_cpu();
8769 		policy = cpufreq_cpu_get(cpu);
8770 		if (policy) {
8771 			if (policy->cpuinfo.max_freq)
8772 				max_tsc_khz = policy->cpuinfo.max_freq;
8773 			cpufreq_cpu_put(policy);
8774 		}
8775 		put_cpu();
8776 #endif
8777 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8778 					  CPUFREQ_TRANSITION_NOTIFIER);
8779 	}
8780 
8781 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8782 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8783 }
8784 
8785 #ifdef CONFIG_X86_64
8786 static void pvclock_gtod_update_fn(struct work_struct *work)
8787 {
8788 	struct kvm *kvm;
8789 	struct kvm_vcpu *vcpu;
8790 	unsigned long i;
8791 
8792 	mutex_lock(&kvm_lock);
8793 	list_for_each_entry(kvm, &vm_list, vm_list)
8794 		kvm_for_each_vcpu(i, vcpu, kvm)
8795 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8796 	atomic_set(&kvm_guest_has_master_clock, 0);
8797 	mutex_unlock(&kvm_lock);
8798 }
8799 
8800 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8801 
8802 /*
8803  * Indirection to move queue_work() out of the tk_core.seq write held
8804  * region to prevent possible deadlocks against time accessors which
8805  * are invoked with work related locks held.
8806  */
8807 static void pvclock_irq_work_fn(struct irq_work *w)
8808 {
8809 	queue_work(system_long_wq, &pvclock_gtod_work);
8810 }
8811 
8812 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8813 
8814 /*
8815  * Notification about pvclock gtod data update.
8816  */
8817 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8818 			       void *priv)
8819 {
8820 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8821 	struct timekeeper *tk = priv;
8822 
8823 	update_pvclock_gtod(tk);
8824 
8825 	/*
8826 	 * Disable master clock if host does not trust, or does not use,
8827 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8828 	 * this is invoked with tk_core.seq write held.
8829 	 */
8830 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8831 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8832 		irq_work_queue(&pvclock_irq_work);
8833 	return 0;
8834 }
8835 
8836 static struct notifier_block pvclock_gtod_notifier = {
8837 	.notifier_call = pvclock_gtod_notify,
8838 };
8839 #endif
8840 
8841 int kvm_arch_init(void *opaque)
8842 {
8843 	struct kvm_x86_init_ops *ops = opaque;
8844 	int r;
8845 
8846 	if (kvm_x86_ops.hardware_enable) {
8847 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8848 		r = -EEXIST;
8849 		goto out;
8850 	}
8851 
8852 	if (!ops->cpu_has_kvm_support()) {
8853 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8854 				   ops->runtime_ops->name);
8855 		r = -EOPNOTSUPP;
8856 		goto out;
8857 	}
8858 	if (ops->disabled_by_bios()) {
8859 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8860 				   ops->runtime_ops->name);
8861 		r = -EOPNOTSUPP;
8862 		goto out;
8863 	}
8864 
8865 	/*
8866 	 * KVM explicitly assumes that the guest has an FPU and
8867 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8868 	 * vCPU's FPU state as a fxregs_state struct.
8869 	 */
8870 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8871 		printk(KERN_ERR "kvm: inadequate fpu\n");
8872 		r = -EOPNOTSUPP;
8873 		goto out;
8874 	}
8875 
8876 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8877 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8878 		r = -EOPNOTSUPP;
8879 		goto out;
8880 	}
8881 
8882 	r = -ENOMEM;
8883 
8884 	x86_emulator_cache = kvm_alloc_emulator_cache();
8885 	if (!x86_emulator_cache) {
8886 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8887 		goto out;
8888 	}
8889 
8890 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8891 	if (!user_return_msrs) {
8892 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8893 		goto out_free_x86_emulator_cache;
8894 	}
8895 	kvm_nr_uret_msrs = 0;
8896 
8897 	r = kvm_mmu_module_init();
8898 	if (r)
8899 		goto out_free_percpu;
8900 
8901 	kvm_timer_init();
8902 
8903 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8904 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8905 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8906 	}
8907 
8908 	if (pi_inject_timer == -1)
8909 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
8910 #ifdef CONFIG_X86_64
8911 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8912 
8913 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8914 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8915 #endif
8916 
8917 	return 0;
8918 
8919 out_free_percpu:
8920 	free_percpu(user_return_msrs);
8921 out_free_x86_emulator_cache:
8922 	kmem_cache_destroy(x86_emulator_cache);
8923 out:
8924 	return r;
8925 }
8926 
8927 void kvm_arch_exit(void)
8928 {
8929 #ifdef CONFIG_X86_64
8930 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8931 		clear_hv_tscchange_cb();
8932 #endif
8933 	kvm_lapic_exit();
8934 
8935 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8936 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8937 					    CPUFREQ_TRANSITION_NOTIFIER);
8938 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8939 #ifdef CONFIG_X86_64
8940 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8941 	irq_work_sync(&pvclock_irq_work);
8942 	cancel_work_sync(&pvclock_gtod_work);
8943 #endif
8944 	kvm_x86_ops.hardware_enable = NULL;
8945 	kvm_mmu_module_exit();
8946 	free_percpu(user_return_msrs);
8947 	kmem_cache_destroy(x86_emulator_cache);
8948 #ifdef CONFIG_KVM_XEN
8949 	static_key_deferred_flush(&kvm_xen_enabled);
8950 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8951 #endif
8952 }
8953 
8954 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8955 {
8956 	/*
8957 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8958 	 * local APIC is in-kernel, the run loop will detect the non-runnable
8959 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
8960 	 * managed by userspace, in which case userspace is responsible for
8961 	 * handling wake events.
8962 	 */
8963 	++vcpu->stat.halt_exits;
8964 	if (lapic_in_kernel(vcpu)) {
8965 		vcpu->arch.mp_state = state;
8966 		return 1;
8967 	} else {
8968 		vcpu->run->exit_reason = reason;
8969 		return 0;
8970 	}
8971 }
8972 
8973 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8974 {
8975 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8976 }
8977 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8978 
8979 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8980 {
8981 	int ret = kvm_skip_emulated_instruction(vcpu);
8982 	/*
8983 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8984 	 * KVM_EXIT_DEBUG here.
8985 	 */
8986 	return kvm_emulate_halt_noskip(vcpu) && ret;
8987 }
8988 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8989 
8990 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8991 {
8992 	int ret = kvm_skip_emulated_instruction(vcpu);
8993 
8994 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8995 					KVM_EXIT_AP_RESET_HOLD) && ret;
8996 }
8997 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8998 
8999 #ifdef CONFIG_X86_64
9000 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9001 			        unsigned long clock_type)
9002 {
9003 	struct kvm_clock_pairing clock_pairing;
9004 	struct timespec64 ts;
9005 	u64 cycle;
9006 	int ret;
9007 
9008 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9009 		return -KVM_EOPNOTSUPP;
9010 
9011 	/*
9012 	 * When tsc is in permanent catchup mode guests won't be able to use
9013 	 * pvclock_read_retry loop to get consistent view of pvclock
9014 	 */
9015 	if (vcpu->arch.tsc_always_catchup)
9016 		return -KVM_EOPNOTSUPP;
9017 
9018 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9019 		return -KVM_EOPNOTSUPP;
9020 
9021 	clock_pairing.sec = ts.tv_sec;
9022 	clock_pairing.nsec = ts.tv_nsec;
9023 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9024 	clock_pairing.flags = 0;
9025 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9026 
9027 	ret = 0;
9028 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9029 			    sizeof(struct kvm_clock_pairing)))
9030 		ret = -KVM_EFAULT;
9031 
9032 	return ret;
9033 }
9034 #endif
9035 
9036 /*
9037  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9038  *
9039  * @apicid - apicid of vcpu to be kicked.
9040  */
9041 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9042 {
9043 	struct kvm_lapic_irq lapic_irq;
9044 
9045 	lapic_irq.shorthand = APIC_DEST_NOSHORT;
9046 	lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9047 	lapic_irq.level = 0;
9048 	lapic_irq.dest_id = apicid;
9049 	lapic_irq.msi_redir_hint = false;
9050 
9051 	lapic_irq.delivery_mode = APIC_DM_REMRD;
9052 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9053 }
9054 
9055 bool kvm_apicv_activated(struct kvm *kvm)
9056 {
9057 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9058 }
9059 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9060 
9061 static void kvm_apicv_init(struct kvm *kvm)
9062 {
9063 	init_rwsem(&kvm->arch.apicv_update_lock);
9064 
9065 	set_bit(APICV_INHIBIT_REASON_ABSENT,
9066 		&kvm->arch.apicv_inhibit_reasons);
9067 	if (!enable_apicv)
9068 		set_bit(APICV_INHIBIT_REASON_DISABLE,
9069 			&kvm->arch.apicv_inhibit_reasons);
9070 }
9071 
9072 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9073 {
9074 	struct kvm_vcpu *target = NULL;
9075 	struct kvm_apic_map *map;
9076 
9077 	vcpu->stat.directed_yield_attempted++;
9078 
9079 	if (single_task_running())
9080 		goto no_yield;
9081 
9082 	rcu_read_lock();
9083 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9084 
9085 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9086 		target = map->phys_map[dest_id]->vcpu;
9087 
9088 	rcu_read_unlock();
9089 
9090 	if (!target || !READ_ONCE(target->ready))
9091 		goto no_yield;
9092 
9093 	/* Ignore requests to yield to self */
9094 	if (vcpu == target)
9095 		goto no_yield;
9096 
9097 	if (kvm_vcpu_yield_to(target) <= 0)
9098 		goto no_yield;
9099 
9100 	vcpu->stat.directed_yield_successful++;
9101 
9102 no_yield:
9103 	return;
9104 }
9105 
9106 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9107 {
9108 	u64 ret = vcpu->run->hypercall.ret;
9109 
9110 	if (!is_64_bit_mode(vcpu))
9111 		ret = (u32)ret;
9112 	kvm_rax_write(vcpu, ret);
9113 	++vcpu->stat.hypercalls;
9114 	return kvm_skip_emulated_instruction(vcpu);
9115 }
9116 
9117 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9118 {
9119 	unsigned long nr, a0, a1, a2, a3, ret;
9120 	int op_64_bit;
9121 
9122 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9123 		return kvm_xen_hypercall(vcpu);
9124 
9125 	if (kvm_hv_hypercall_enabled(vcpu))
9126 		return kvm_hv_hypercall(vcpu);
9127 
9128 	nr = kvm_rax_read(vcpu);
9129 	a0 = kvm_rbx_read(vcpu);
9130 	a1 = kvm_rcx_read(vcpu);
9131 	a2 = kvm_rdx_read(vcpu);
9132 	a3 = kvm_rsi_read(vcpu);
9133 
9134 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9135 
9136 	op_64_bit = is_64_bit_hypercall(vcpu);
9137 	if (!op_64_bit) {
9138 		nr &= 0xFFFFFFFF;
9139 		a0 &= 0xFFFFFFFF;
9140 		a1 &= 0xFFFFFFFF;
9141 		a2 &= 0xFFFFFFFF;
9142 		a3 &= 0xFFFFFFFF;
9143 	}
9144 
9145 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9146 		ret = -KVM_EPERM;
9147 		goto out;
9148 	}
9149 
9150 	ret = -KVM_ENOSYS;
9151 
9152 	switch (nr) {
9153 	case KVM_HC_VAPIC_POLL_IRQ:
9154 		ret = 0;
9155 		break;
9156 	case KVM_HC_KICK_CPU:
9157 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9158 			break;
9159 
9160 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9161 		kvm_sched_yield(vcpu, a1);
9162 		ret = 0;
9163 		break;
9164 #ifdef CONFIG_X86_64
9165 	case KVM_HC_CLOCK_PAIRING:
9166 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9167 		break;
9168 #endif
9169 	case KVM_HC_SEND_IPI:
9170 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9171 			break;
9172 
9173 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9174 		break;
9175 	case KVM_HC_SCHED_YIELD:
9176 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9177 			break;
9178 
9179 		kvm_sched_yield(vcpu, a0);
9180 		ret = 0;
9181 		break;
9182 	case KVM_HC_MAP_GPA_RANGE: {
9183 		u64 gpa = a0, npages = a1, attrs = a2;
9184 
9185 		ret = -KVM_ENOSYS;
9186 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9187 			break;
9188 
9189 		if (!PAGE_ALIGNED(gpa) || !npages ||
9190 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9191 			ret = -KVM_EINVAL;
9192 			break;
9193 		}
9194 
9195 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9196 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9197 		vcpu->run->hypercall.args[0]  = gpa;
9198 		vcpu->run->hypercall.args[1]  = npages;
9199 		vcpu->run->hypercall.args[2]  = attrs;
9200 		vcpu->run->hypercall.longmode = op_64_bit;
9201 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9202 		return 0;
9203 	}
9204 	default:
9205 		ret = -KVM_ENOSYS;
9206 		break;
9207 	}
9208 out:
9209 	if (!op_64_bit)
9210 		ret = (u32)ret;
9211 	kvm_rax_write(vcpu, ret);
9212 
9213 	++vcpu->stat.hypercalls;
9214 	return kvm_skip_emulated_instruction(vcpu);
9215 }
9216 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9217 
9218 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9219 {
9220 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9221 	char instruction[3];
9222 	unsigned long rip = kvm_rip_read(vcpu);
9223 
9224 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9225 
9226 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9227 		&ctxt->exception);
9228 }
9229 
9230 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9231 {
9232 	return vcpu->run->request_interrupt_window &&
9233 		likely(!pic_in_kernel(vcpu->kvm));
9234 }
9235 
9236 /* Called within kvm->srcu read side.  */
9237 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9238 {
9239 	struct kvm_run *kvm_run = vcpu->run;
9240 
9241 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9242 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9243 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9244 
9245 	kvm_run->ready_for_interrupt_injection =
9246 		pic_in_kernel(vcpu->kvm) ||
9247 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9248 
9249 	if (is_smm(vcpu))
9250 		kvm_run->flags |= KVM_RUN_X86_SMM;
9251 }
9252 
9253 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9254 {
9255 	int max_irr, tpr;
9256 
9257 	if (!kvm_x86_ops.update_cr8_intercept)
9258 		return;
9259 
9260 	if (!lapic_in_kernel(vcpu))
9261 		return;
9262 
9263 	if (vcpu->arch.apicv_active)
9264 		return;
9265 
9266 	if (!vcpu->arch.apic->vapic_addr)
9267 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9268 	else
9269 		max_irr = -1;
9270 
9271 	if (max_irr != -1)
9272 		max_irr >>= 4;
9273 
9274 	tpr = kvm_lapic_get_cr8(vcpu);
9275 
9276 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9277 }
9278 
9279 
9280 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9281 {
9282 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9283 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9284 		return 1;
9285 	}
9286 
9287 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9288 }
9289 
9290 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9291 {
9292 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9293 		vcpu->arch.exception.error_code = false;
9294 	static_call(kvm_x86_queue_exception)(vcpu);
9295 }
9296 
9297 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9298 {
9299 	int r;
9300 	bool can_inject = true;
9301 
9302 	/* try to reinject previous events if any */
9303 
9304 	if (vcpu->arch.exception.injected) {
9305 		kvm_inject_exception(vcpu);
9306 		can_inject = false;
9307 	}
9308 	/*
9309 	 * Do not inject an NMI or interrupt if there is a pending
9310 	 * exception.  Exceptions and interrupts are recognized at
9311 	 * instruction boundaries, i.e. the start of an instruction.
9312 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9313 	 * NMIs and interrupts, i.e. traps are recognized before an
9314 	 * NMI/interrupt that's pending on the same instruction.
9315 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9316 	 * priority, but are only generated (pended) during instruction
9317 	 * execution, i.e. a pending fault-like exception means the
9318 	 * fault occurred on the *previous* instruction and must be
9319 	 * serviced prior to recognizing any new events in order to
9320 	 * fully complete the previous instruction.
9321 	 */
9322 	else if (!vcpu->arch.exception.pending) {
9323 		if (vcpu->arch.nmi_injected) {
9324 			static_call(kvm_x86_inject_nmi)(vcpu);
9325 			can_inject = false;
9326 		} else if (vcpu->arch.interrupt.injected) {
9327 			static_call(kvm_x86_inject_irq)(vcpu);
9328 			can_inject = false;
9329 		}
9330 	}
9331 
9332 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9333 		     vcpu->arch.exception.pending);
9334 
9335 	/*
9336 	 * Call check_nested_events() even if we reinjected a previous event
9337 	 * in order for caller to determine if it should require immediate-exit
9338 	 * from L2 to L1 due to pending L1 events which require exit
9339 	 * from L2 to L1.
9340 	 */
9341 	if (is_guest_mode(vcpu)) {
9342 		r = kvm_check_nested_events(vcpu);
9343 		if (r < 0)
9344 			goto out;
9345 	}
9346 
9347 	/* try to inject new event if pending */
9348 	if (vcpu->arch.exception.pending) {
9349 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
9350 					vcpu->arch.exception.has_error_code,
9351 					vcpu->arch.exception.error_code);
9352 
9353 		vcpu->arch.exception.pending = false;
9354 		vcpu->arch.exception.injected = true;
9355 
9356 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9357 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9358 					     X86_EFLAGS_RF);
9359 
9360 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9361 			kvm_deliver_exception_payload(vcpu);
9362 			if (vcpu->arch.dr7 & DR7_GD) {
9363 				vcpu->arch.dr7 &= ~DR7_GD;
9364 				kvm_update_dr7(vcpu);
9365 			}
9366 		}
9367 
9368 		kvm_inject_exception(vcpu);
9369 		can_inject = false;
9370 	}
9371 
9372 	/* Don't inject interrupts if the user asked to avoid doing so */
9373 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9374 		return 0;
9375 
9376 	/*
9377 	 * Finally, inject interrupt events.  If an event cannot be injected
9378 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9379 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9380 	 * and can architecturally be injected, but we cannot do it right now:
9381 	 * an interrupt could have arrived just now and we have to inject it
9382 	 * as a vmexit, or there could already an event in the queue, which is
9383 	 * indicated by can_inject.  In that case we request an immediate exit
9384 	 * in order to make progress and get back here for another iteration.
9385 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9386 	 */
9387 	if (vcpu->arch.smi_pending) {
9388 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9389 		if (r < 0)
9390 			goto out;
9391 		if (r) {
9392 			vcpu->arch.smi_pending = false;
9393 			++vcpu->arch.smi_count;
9394 			enter_smm(vcpu);
9395 			can_inject = false;
9396 		} else
9397 			static_call(kvm_x86_enable_smi_window)(vcpu);
9398 	}
9399 
9400 	if (vcpu->arch.nmi_pending) {
9401 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9402 		if (r < 0)
9403 			goto out;
9404 		if (r) {
9405 			--vcpu->arch.nmi_pending;
9406 			vcpu->arch.nmi_injected = true;
9407 			static_call(kvm_x86_inject_nmi)(vcpu);
9408 			can_inject = false;
9409 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9410 		}
9411 		if (vcpu->arch.nmi_pending)
9412 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9413 	}
9414 
9415 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9416 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9417 		if (r < 0)
9418 			goto out;
9419 		if (r) {
9420 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9421 			static_call(kvm_x86_inject_irq)(vcpu);
9422 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9423 		}
9424 		if (kvm_cpu_has_injectable_intr(vcpu))
9425 			static_call(kvm_x86_enable_irq_window)(vcpu);
9426 	}
9427 
9428 	if (is_guest_mode(vcpu) &&
9429 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9430 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9431 		*req_immediate_exit = true;
9432 
9433 	WARN_ON(vcpu->arch.exception.pending);
9434 	return 0;
9435 
9436 out:
9437 	if (r == -EBUSY) {
9438 		*req_immediate_exit = true;
9439 		r = 0;
9440 	}
9441 	return r;
9442 }
9443 
9444 static void process_nmi(struct kvm_vcpu *vcpu)
9445 {
9446 	unsigned limit = 2;
9447 
9448 	/*
9449 	 * x86 is limited to one NMI running, and one NMI pending after it.
9450 	 * If an NMI is already in progress, limit further NMIs to just one.
9451 	 * Otherwise, allow two (and we'll inject the first one immediately).
9452 	 */
9453 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9454 		limit = 1;
9455 
9456 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9457 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9458 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9459 }
9460 
9461 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9462 {
9463 	u32 flags = 0;
9464 	flags |= seg->g       << 23;
9465 	flags |= seg->db      << 22;
9466 	flags |= seg->l       << 21;
9467 	flags |= seg->avl     << 20;
9468 	flags |= seg->present << 15;
9469 	flags |= seg->dpl     << 13;
9470 	flags |= seg->s       << 12;
9471 	flags |= seg->type    << 8;
9472 	return flags;
9473 }
9474 
9475 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9476 {
9477 	struct kvm_segment seg;
9478 	int offset;
9479 
9480 	kvm_get_segment(vcpu, &seg, n);
9481 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9482 
9483 	if (n < 3)
9484 		offset = 0x7f84 + n * 12;
9485 	else
9486 		offset = 0x7f2c + (n - 3) * 12;
9487 
9488 	put_smstate(u32, buf, offset + 8, seg.base);
9489 	put_smstate(u32, buf, offset + 4, seg.limit);
9490 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9491 }
9492 
9493 #ifdef CONFIG_X86_64
9494 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9495 {
9496 	struct kvm_segment seg;
9497 	int offset;
9498 	u16 flags;
9499 
9500 	kvm_get_segment(vcpu, &seg, n);
9501 	offset = 0x7e00 + n * 16;
9502 
9503 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9504 	put_smstate(u16, buf, offset, seg.selector);
9505 	put_smstate(u16, buf, offset + 2, flags);
9506 	put_smstate(u32, buf, offset + 4, seg.limit);
9507 	put_smstate(u64, buf, offset + 8, seg.base);
9508 }
9509 #endif
9510 
9511 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9512 {
9513 	struct desc_ptr dt;
9514 	struct kvm_segment seg;
9515 	unsigned long val;
9516 	int i;
9517 
9518 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9519 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9520 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9521 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9522 
9523 	for (i = 0; i < 8; i++)
9524 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9525 
9526 	kvm_get_dr(vcpu, 6, &val);
9527 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9528 	kvm_get_dr(vcpu, 7, &val);
9529 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9530 
9531 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9532 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9533 	put_smstate(u32, buf, 0x7f64, seg.base);
9534 	put_smstate(u32, buf, 0x7f60, seg.limit);
9535 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9536 
9537 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9538 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9539 	put_smstate(u32, buf, 0x7f80, seg.base);
9540 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9541 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9542 
9543 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9544 	put_smstate(u32, buf, 0x7f74, dt.address);
9545 	put_smstate(u32, buf, 0x7f70, dt.size);
9546 
9547 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9548 	put_smstate(u32, buf, 0x7f58, dt.address);
9549 	put_smstate(u32, buf, 0x7f54, dt.size);
9550 
9551 	for (i = 0; i < 6; i++)
9552 		enter_smm_save_seg_32(vcpu, buf, i);
9553 
9554 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9555 
9556 	/* revision id */
9557 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9558 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9559 }
9560 
9561 #ifdef CONFIG_X86_64
9562 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9563 {
9564 	struct desc_ptr dt;
9565 	struct kvm_segment seg;
9566 	unsigned long val;
9567 	int i;
9568 
9569 	for (i = 0; i < 16; i++)
9570 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9571 
9572 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9573 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9574 
9575 	kvm_get_dr(vcpu, 6, &val);
9576 	put_smstate(u64, buf, 0x7f68, val);
9577 	kvm_get_dr(vcpu, 7, &val);
9578 	put_smstate(u64, buf, 0x7f60, val);
9579 
9580 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9581 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9582 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9583 
9584 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9585 
9586 	/* revision id */
9587 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9588 
9589 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9590 
9591 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9592 	put_smstate(u16, buf, 0x7e90, seg.selector);
9593 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9594 	put_smstate(u32, buf, 0x7e94, seg.limit);
9595 	put_smstate(u64, buf, 0x7e98, seg.base);
9596 
9597 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9598 	put_smstate(u32, buf, 0x7e84, dt.size);
9599 	put_smstate(u64, buf, 0x7e88, dt.address);
9600 
9601 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9602 	put_smstate(u16, buf, 0x7e70, seg.selector);
9603 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9604 	put_smstate(u32, buf, 0x7e74, seg.limit);
9605 	put_smstate(u64, buf, 0x7e78, seg.base);
9606 
9607 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9608 	put_smstate(u32, buf, 0x7e64, dt.size);
9609 	put_smstate(u64, buf, 0x7e68, dt.address);
9610 
9611 	for (i = 0; i < 6; i++)
9612 		enter_smm_save_seg_64(vcpu, buf, i);
9613 }
9614 #endif
9615 
9616 static void enter_smm(struct kvm_vcpu *vcpu)
9617 {
9618 	struct kvm_segment cs, ds;
9619 	struct desc_ptr dt;
9620 	unsigned long cr0;
9621 	char buf[512];
9622 
9623 	memset(buf, 0, 512);
9624 #ifdef CONFIG_X86_64
9625 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9626 		enter_smm_save_state_64(vcpu, buf);
9627 	else
9628 #endif
9629 		enter_smm_save_state_32(vcpu, buf);
9630 
9631 	/*
9632 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9633 	 * state (e.g. leave guest mode) after we've saved the state into the
9634 	 * SMM state-save area.
9635 	 */
9636 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9637 
9638 	kvm_smm_changed(vcpu, true);
9639 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9640 
9641 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9642 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9643 	else
9644 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9645 
9646 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9647 	kvm_rip_write(vcpu, 0x8000);
9648 
9649 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9650 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9651 	vcpu->arch.cr0 = cr0;
9652 
9653 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9654 
9655 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9656 	dt.address = dt.size = 0;
9657 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9658 
9659 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9660 
9661 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9662 	cs.base = vcpu->arch.smbase;
9663 
9664 	ds.selector = 0;
9665 	ds.base = 0;
9666 
9667 	cs.limit    = ds.limit = 0xffffffff;
9668 	cs.type     = ds.type = 0x3;
9669 	cs.dpl      = ds.dpl = 0;
9670 	cs.db       = ds.db = 0;
9671 	cs.s        = ds.s = 1;
9672 	cs.l        = ds.l = 0;
9673 	cs.g        = ds.g = 1;
9674 	cs.avl      = ds.avl = 0;
9675 	cs.present  = ds.present = 1;
9676 	cs.unusable = ds.unusable = 0;
9677 	cs.padding  = ds.padding = 0;
9678 
9679 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9680 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9681 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9682 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9683 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9684 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9685 
9686 #ifdef CONFIG_X86_64
9687 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9688 		static_call(kvm_x86_set_efer)(vcpu, 0);
9689 #endif
9690 
9691 	kvm_update_cpuid_runtime(vcpu);
9692 	kvm_mmu_reset_context(vcpu);
9693 }
9694 
9695 static void process_smi(struct kvm_vcpu *vcpu)
9696 {
9697 	vcpu->arch.smi_pending = true;
9698 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9699 }
9700 
9701 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9702 				       unsigned long *vcpu_bitmap)
9703 {
9704 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9705 }
9706 
9707 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9708 {
9709 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9710 }
9711 
9712 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9713 {
9714 	bool activate;
9715 
9716 	if (!lapic_in_kernel(vcpu))
9717 		return;
9718 
9719 	down_read(&vcpu->kvm->arch.apicv_update_lock);
9720 
9721 	activate = kvm_apicv_activated(vcpu->kvm);
9722 	if (vcpu->arch.apicv_active == activate)
9723 		goto out;
9724 
9725 	vcpu->arch.apicv_active = activate;
9726 	kvm_apic_update_apicv(vcpu);
9727 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9728 
9729 	/*
9730 	 * When APICv gets disabled, we may still have injected interrupts
9731 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9732 	 * still active when the interrupt got accepted. Make sure
9733 	 * inject_pending_event() is called to check for that.
9734 	 */
9735 	if (!vcpu->arch.apicv_active)
9736 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9737 
9738 out:
9739 	up_read(&vcpu->kvm->arch.apicv_update_lock);
9740 }
9741 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9742 
9743 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9744 {
9745 	unsigned long old, new;
9746 
9747 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9748 
9749 	if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9750 		return;
9751 
9752 	old = new = kvm->arch.apicv_inhibit_reasons;
9753 
9754 	if (activate)
9755 		__clear_bit(bit, &new);
9756 	else
9757 		__set_bit(bit, &new);
9758 
9759 	if (!!old != !!new) {
9760 		trace_kvm_apicv_update_request(activate, bit);
9761 		/*
9762 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9763 		 * false positives in the sanity check WARN in svm_vcpu_run().
9764 		 * This task will wait for all vCPUs to ack the kick IRQ before
9765 		 * updating apicv_inhibit_reasons, and all other vCPUs will
9766 		 * block on acquiring apicv_update_lock so that vCPUs can't
9767 		 * redo svm_vcpu_run() without seeing the new inhibit state.
9768 		 *
9769 		 * Note, holding apicv_update_lock and taking it in the read
9770 		 * side (handling the request) also prevents other vCPUs from
9771 		 * servicing the request with a stale apicv_inhibit_reasons.
9772 		 */
9773 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9774 		kvm->arch.apicv_inhibit_reasons = new;
9775 		if (new) {
9776 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9777 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9778 		}
9779 	} else
9780 		kvm->arch.apicv_inhibit_reasons = new;
9781 }
9782 
9783 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9784 {
9785 	if (!enable_apicv)
9786 		return;
9787 
9788 	down_write(&kvm->arch.apicv_update_lock);
9789 	__kvm_request_apicv_update(kvm, activate, bit);
9790 	up_write(&kvm->arch.apicv_update_lock);
9791 }
9792 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9793 
9794 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9795 {
9796 	if (!kvm_apic_present(vcpu))
9797 		return;
9798 
9799 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9800 
9801 	if (irqchip_split(vcpu->kvm))
9802 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9803 	else {
9804 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9805 		if (ioapic_in_kernel(vcpu->kvm))
9806 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9807 	}
9808 
9809 	if (is_guest_mode(vcpu))
9810 		vcpu->arch.load_eoi_exitmap_pending = true;
9811 	else
9812 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9813 }
9814 
9815 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9816 {
9817 	u64 eoi_exit_bitmap[4];
9818 
9819 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9820 		return;
9821 
9822 	if (to_hv_vcpu(vcpu)) {
9823 		bitmap_or((ulong *)eoi_exit_bitmap,
9824 			  vcpu->arch.ioapic_handled_vectors,
9825 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9826 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9827 		return;
9828 	}
9829 
9830 	static_call_cond(kvm_x86_load_eoi_exitmap)(
9831 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9832 }
9833 
9834 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9835 					    unsigned long start, unsigned long end)
9836 {
9837 	unsigned long apic_address;
9838 
9839 	/*
9840 	 * The physical address of apic access page is stored in the VMCS.
9841 	 * Update it when it becomes invalid.
9842 	 */
9843 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9844 	if (start <= apic_address && apic_address < end)
9845 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9846 }
9847 
9848 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9849 {
9850 	if (!lapic_in_kernel(vcpu))
9851 		return;
9852 
9853 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9854 }
9855 
9856 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9857 {
9858 	smp_send_reschedule(vcpu->cpu);
9859 }
9860 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9861 
9862 /*
9863  * Called within kvm->srcu read side.
9864  * Returns 1 to let vcpu_run() continue the guest execution loop without
9865  * exiting to the userspace.  Otherwise, the value will be returned to the
9866  * userspace.
9867  */
9868 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9869 {
9870 	int r;
9871 	bool req_int_win =
9872 		dm_request_for_irq_injection(vcpu) &&
9873 		kvm_cpu_accept_dm_intr(vcpu);
9874 	fastpath_t exit_fastpath;
9875 
9876 	bool req_immediate_exit = false;
9877 
9878 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9879 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9880 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9881 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9882 		trace_kvm_dirty_ring_exit(vcpu);
9883 		r = 0;
9884 		goto out;
9885 	}
9886 
9887 	if (kvm_request_pending(vcpu)) {
9888 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9889 			r = -EIO;
9890 			goto out;
9891 		}
9892 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9893 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9894 				r = 0;
9895 				goto out;
9896 			}
9897 		}
9898 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
9899 			kvm_mmu_free_obsolete_roots(vcpu);
9900 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9901 			__kvm_migrate_timers(vcpu);
9902 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9903 			kvm_update_masterclock(vcpu->kvm);
9904 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9905 			kvm_gen_kvmclock_update(vcpu);
9906 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9907 			r = kvm_guest_time_update(vcpu);
9908 			if (unlikely(r))
9909 				goto out;
9910 		}
9911 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9912 			kvm_mmu_sync_roots(vcpu);
9913 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9914 			kvm_mmu_load_pgd(vcpu);
9915 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9916 			kvm_vcpu_flush_tlb_all(vcpu);
9917 
9918 			/* Flushing all ASIDs flushes the current ASID... */
9919 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9920 		}
9921 		kvm_service_local_tlb_flush_requests(vcpu);
9922 
9923 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9924 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9925 			r = 0;
9926 			goto out;
9927 		}
9928 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9929 			if (is_guest_mode(vcpu)) {
9930 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9931 			} else {
9932 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9933 				vcpu->mmio_needed = 0;
9934 				r = 0;
9935 				goto out;
9936 			}
9937 		}
9938 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9939 			/* Page is swapped out. Do synthetic halt */
9940 			vcpu->arch.apf.halted = true;
9941 			r = 1;
9942 			goto out;
9943 		}
9944 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9945 			record_steal_time(vcpu);
9946 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9947 			process_smi(vcpu);
9948 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9949 			process_nmi(vcpu);
9950 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9951 			kvm_pmu_handle_event(vcpu);
9952 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9953 			kvm_pmu_deliver_pmi(vcpu);
9954 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9955 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9956 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9957 				     vcpu->arch.ioapic_handled_vectors)) {
9958 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9959 				vcpu->run->eoi.vector =
9960 						vcpu->arch.pending_ioapic_eoi;
9961 				r = 0;
9962 				goto out;
9963 			}
9964 		}
9965 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9966 			vcpu_scan_ioapic(vcpu);
9967 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9968 			vcpu_load_eoi_exitmap(vcpu);
9969 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9970 			kvm_vcpu_reload_apic_access_page(vcpu);
9971 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9972 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9973 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9974 			r = 0;
9975 			goto out;
9976 		}
9977 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9978 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9979 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9980 			r = 0;
9981 			goto out;
9982 		}
9983 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9984 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9985 
9986 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9987 			vcpu->run->hyperv = hv_vcpu->exit;
9988 			r = 0;
9989 			goto out;
9990 		}
9991 
9992 		/*
9993 		 * KVM_REQ_HV_STIMER has to be processed after
9994 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9995 		 * depend on the guest clock being up-to-date
9996 		 */
9997 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9998 			kvm_hv_process_stimers(vcpu);
9999 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10000 			kvm_vcpu_update_apicv(vcpu);
10001 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10002 			kvm_check_async_pf_completion(vcpu);
10003 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10004 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10005 
10006 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10007 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10008 	}
10009 
10010 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10011 	    kvm_xen_has_interrupt(vcpu)) {
10012 		++vcpu->stat.req_event;
10013 		r = kvm_apic_accept_events(vcpu);
10014 		if (r < 0) {
10015 			r = 0;
10016 			goto out;
10017 		}
10018 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10019 			r = 1;
10020 			goto out;
10021 		}
10022 
10023 		r = inject_pending_event(vcpu, &req_immediate_exit);
10024 		if (r < 0) {
10025 			r = 0;
10026 			goto out;
10027 		}
10028 		if (req_int_win)
10029 			static_call(kvm_x86_enable_irq_window)(vcpu);
10030 
10031 		if (kvm_lapic_enabled(vcpu)) {
10032 			update_cr8_intercept(vcpu);
10033 			kvm_lapic_sync_to_vapic(vcpu);
10034 		}
10035 	}
10036 
10037 	r = kvm_mmu_reload(vcpu);
10038 	if (unlikely(r)) {
10039 		goto cancel_injection;
10040 	}
10041 
10042 	preempt_disable();
10043 
10044 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10045 
10046 	/*
10047 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10048 	 * IPI are then delayed after guest entry, which ensures that they
10049 	 * result in virtual interrupt delivery.
10050 	 */
10051 	local_irq_disable();
10052 
10053 	/* Store vcpu->apicv_active before vcpu->mode.  */
10054 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10055 
10056 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10057 
10058 	/*
10059 	 * 1) We should set ->mode before checking ->requests.  Please see
10060 	 * the comment in kvm_vcpu_exiting_guest_mode().
10061 	 *
10062 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10063 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10064 	 * (see vmx_deliver_posted_interrupt).
10065 	 *
10066 	 * 3) This also orders the write to mode from any reads to the page
10067 	 * tables done while the VCPU is running.  Please see the comment
10068 	 * in kvm_flush_remote_tlbs.
10069 	 */
10070 	smp_mb__after_srcu_read_unlock();
10071 
10072 	/*
10073 	 * Process pending posted interrupts to handle the case where the
10074 	 * notification IRQ arrived in the host, or was never sent (because the
10075 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10076 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10077 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10078 	 */
10079 	if (kvm_lapic_enabled(vcpu))
10080 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10081 
10082 	if (kvm_vcpu_exit_request(vcpu)) {
10083 		vcpu->mode = OUTSIDE_GUEST_MODE;
10084 		smp_wmb();
10085 		local_irq_enable();
10086 		preempt_enable();
10087 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10088 		r = 1;
10089 		goto cancel_injection;
10090 	}
10091 
10092 	if (req_immediate_exit) {
10093 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10094 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10095 	}
10096 
10097 	fpregs_assert_state_consistent();
10098 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10099 		switch_fpu_return();
10100 
10101 	if (vcpu->arch.guest_fpu.xfd_err)
10102 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10103 
10104 	if (unlikely(vcpu->arch.switch_db_regs)) {
10105 		set_debugreg(0, 7);
10106 		set_debugreg(vcpu->arch.eff_db[0], 0);
10107 		set_debugreg(vcpu->arch.eff_db[1], 1);
10108 		set_debugreg(vcpu->arch.eff_db[2], 2);
10109 		set_debugreg(vcpu->arch.eff_db[3], 3);
10110 	} else if (unlikely(hw_breakpoint_active())) {
10111 		set_debugreg(0, 7);
10112 	}
10113 
10114 	guest_timing_enter_irqoff();
10115 
10116 	for (;;) {
10117 		/*
10118 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10119 		 * update must kick and wait for all vCPUs before toggling the
10120 		 * per-VM state, and responsing vCPUs must wait for the update
10121 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10122 		 */
10123 		WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10124 
10125 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10126 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10127 			break;
10128 
10129 		if (kvm_lapic_enabled(vcpu))
10130 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10131 
10132 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10133 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10134 			break;
10135 		}
10136 	}
10137 
10138 	/*
10139 	 * Do this here before restoring debug registers on the host.  And
10140 	 * since we do this before handling the vmexit, a DR access vmexit
10141 	 * can (a) read the correct value of the debug registers, (b) set
10142 	 * KVM_DEBUGREG_WONT_EXIT again.
10143 	 */
10144 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10145 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10146 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10147 		kvm_update_dr0123(vcpu);
10148 		kvm_update_dr7(vcpu);
10149 	}
10150 
10151 	/*
10152 	 * If the guest has used debug registers, at least dr7
10153 	 * will be disabled while returning to the host.
10154 	 * If we don't have active breakpoints in the host, we don't
10155 	 * care about the messed up debug address registers. But if
10156 	 * we have some of them active, restore the old state.
10157 	 */
10158 	if (hw_breakpoint_active())
10159 		hw_breakpoint_restore();
10160 
10161 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10162 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10163 
10164 	vcpu->mode = OUTSIDE_GUEST_MODE;
10165 	smp_wmb();
10166 
10167 	/*
10168 	 * Sync xfd before calling handle_exit_irqoff() which may
10169 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10170 	 * in #NM irqoff handler).
10171 	 */
10172 	if (vcpu->arch.xfd_no_write_intercept)
10173 		fpu_sync_guest_vmexit_xfd_state();
10174 
10175 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10176 
10177 	if (vcpu->arch.guest_fpu.xfd_err)
10178 		wrmsrl(MSR_IA32_XFD_ERR, 0);
10179 
10180 	/*
10181 	 * Consume any pending interrupts, including the possible source of
10182 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10183 	 * An instruction is required after local_irq_enable() to fully unblock
10184 	 * interrupts on processors that implement an interrupt shadow, the
10185 	 * stat.exits increment will do nicely.
10186 	 */
10187 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10188 	local_irq_enable();
10189 	++vcpu->stat.exits;
10190 	local_irq_disable();
10191 	kvm_after_interrupt(vcpu);
10192 
10193 	/*
10194 	 * Wait until after servicing IRQs to account guest time so that any
10195 	 * ticks that occurred while running the guest are properly accounted
10196 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10197 	 * of accounting via context tracking, but the loss of accuracy is
10198 	 * acceptable for all known use cases.
10199 	 */
10200 	guest_timing_exit_irqoff();
10201 
10202 	if (lapic_in_kernel(vcpu)) {
10203 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10204 		if (delta != S64_MIN) {
10205 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10206 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10207 		}
10208 	}
10209 
10210 	local_irq_enable();
10211 	preempt_enable();
10212 
10213 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10214 
10215 	/*
10216 	 * Profile KVM exit RIPs:
10217 	 */
10218 	if (unlikely(prof_on == KVM_PROFILING)) {
10219 		unsigned long rip = kvm_rip_read(vcpu);
10220 		profile_hit(KVM_PROFILING, (void *)rip);
10221 	}
10222 
10223 	if (unlikely(vcpu->arch.tsc_always_catchup))
10224 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10225 
10226 	if (vcpu->arch.apic_attention)
10227 		kvm_lapic_sync_from_vapic(vcpu);
10228 
10229 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10230 	return r;
10231 
10232 cancel_injection:
10233 	if (req_immediate_exit)
10234 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10235 	static_call(kvm_x86_cancel_injection)(vcpu);
10236 	if (unlikely(vcpu->arch.apic_attention))
10237 		kvm_lapic_sync_from_vapic(vcpu);
10238 out:
10239 	return r;
10240 }
10241 
10242 /* Called within kvm->srcu read side.  */
10243 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10244 {
10245 	bool hv_timer;
10246 
10247 	if (!kvm_arch_vcpu_runnable(vcpu)) {
10248 		/*
10249 		 * Switch to the software timer before halt-polling/blocking as
10250 		 * the guest's timer may be a break event for the vCPU, and the
10251 		 * hypervisor timer runs only when the CPU is in guest mode.
10252 		 * Switch before halt-polling so that KVM recognizes an expired
10253 		 * timer before blocking.
10254 		 */
10255 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10256 		if (hv_timer)
10257 			kvm_lapic_switch_to_sw_timer(vcpu);
10258 
10259 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10260 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10261 			kvm_vcpu_halt(vcpu);
10262 		else
10263 			kvm_vcpu_block(vcpu);
10264 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10265 
10266 		if (hv_timer)
10267 			kvm_lapic_switch_to_hv_timer(vcpu);
10268 
10269 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10270 			return 1;
10271 	}
10272 
10273 	if (kvm_apic_accept_events(vcpu) < 0)
10274 		return 0;
10275 	switch(vcpu->arch.mp_state) {
10276 	case KVM_MP_STATE_HALTED:
10277 	case KVM_MP_STATE_AP_RESET_HOLD:
10278 		vcpu->arch.pv.pv_unhalted = false;
10279 		vcpu->arch.mp_state =
10280 			KVM_MP_STATE_RUNNABLE;
10281 		fallthrough;
10282 	case KVM_MP_STATE_RUNNABLE:
10283 		vcpu->arch.apf.halted = false;
10284 		break;
10285 	case KVM_MP_STATE_INIT_RECEIVED:
10286 		break;
10287 	default:
10288 		return -EINTR;
10289 	}
10290 	return 1;
10291 }
10292 
10293 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10294 {
10295 	if (is_guest_mode(vcpu))
10296 		kvm_check_nested_events(vcpu);
10297 
10298 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10299 		!vcpu->arch.apf.halted);
10300 }
10301 
10302 /* Called within kvm->srcu read side.  */
10303 static int vcpu_run(struct kvm_vcpu *vcpu)
10304 {
10305 	int r;
10306 	struct kvm *kvm = vcpu->kvm;
10307 
10308 	vcpu->arch.l1tf_flush_l1d = true;
10309 
10310 	for (;;) {
10311 		if (kvm_vcpu_running(vcpu)) {
10312 			r = vcpu_enter_guest(vcpu);
10313 		} else {
10314 			r = vcpu_block(kvm, vcpu);
10315 		}
10316 
10317 		if (r <= 0)
10318 			break;
10319 
10320 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10321 		if (kvm_cpu_has_pending_timer(vcpu))
10322 			kvm_inject_pending_timer_irqs(vcpu);
10323 
10324 		if (dm_request_for_irq_injection(vcpu) &&
10325 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10326 			r = 0;
10327 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10328 			++vcpu->stat.request_irq_exits;
10329 			break;
10330 		}
10331 
10332 		if (__xfer_to_guest_mode_work_pending()) {
10333 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10334 			r = xfer_to_guest_mode_handle_work(vcpu);
10335 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10336 			if (r)
10337 				return r;
10338 		}
10339 	}
10340 
10341 	return r;
10342 }
10343 
10344 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10345 {
10346 	int r;
10347 
10348 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10349 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10350 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10351 	return r;
10352 }
10353 
10354 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10355 {
10356 	BUG_ON(!vcpu->arch.pio.count);
10357 
10358 	return complete_emulated_io(vcpu);
10359 }
10360 
10361 /*
10362  * Implements the following, as a state machine:
10363  *
10364  * read:
10365  *   for each fragment
10366  *     for each mmio piece in the fragment
10367  *       write gpa, len
10368  *       exit
10369  *       copy data
10370  *   execute insn
10371  *
10372  * write:
10373  *   for each fragment
10374  *     for each mmio piece in the fragment
10375  *       write gpa, len
10376  *       copy data
10377  *       exit
10378  */
10379 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10380 {
10381 	struct kvm_run *run = vcpu->run;
10382 	struct kvm_mmio_fragment *frag;
10383 	unsigned len;
10384 
10385 	BUG_ON(!vcpu->mmio_needed);
10386 
10387 	/* Complete previous fragment */
10388 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10389 	len = min(8u, frag->len);
10390 	if (!vcpu->mmio_is_write)
10391 		memcpy(frag->data, run->mmio.data, len);
10392 
10393 	if (frag->len <= 8) {
10394 		/* Switch to the next fragment. */
10395 		frag++;
10396 		vcpu->mmio_cur_fragment++;
10397 	} else {
10398 		/* Go forward to the next mmio piece. */
10399 		frag->data += len;
10400 		frag->gpa += len;
10401 		frag->len -= len;
10402 	}
10403 
10404 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10405 		vcpu->mmio_needed = 0;
10406 
10407 		/* FIXME: return into emulator if single-stepping.  */
10408 		if (vcpu->mmio_is_write)
10409 			return 1;
10410 		vcpu->mmio_read_completed = 1;
10411 		return complete_emulated_io(vcpu);
10412 	}
10413 
10414 	run->exit_reason = KVM_EXIT_MMIO;
10415 	run->mmio.phys_addr = frag->gpa;
10416 	if (vcpu->mmio_is_write)
10417 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10418 	run->mmio.len = min(8u, frag->len);
10419 	run->mmio.is_write = vcpu->mmio_is_write;
10420 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10421 	return 0;
10422 }
10423 
10424 /* Swap (qemu) user FPU context for the guest FPU context. */
10425 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10426 {
10427 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10428 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10429 	trace_kvm_fpu(1);
10430 }
10431 
10432 /* When vcpu_run ends, restore user space FPU context. */
10433 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10434 {
10435 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10436 	++vcpu->stat.fpu_reload;
10437 	trace_kvm_fpu(0);
10438 }
10439 
10440 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10441 {
10442 	struct kvm_run *kvm_run = vcpu->run;
10443 	struct kvm *kvm = vcpu->kvm;
10444 	int r;
10445 
10446 	vcpu_load(vcpu);
10447 	kvm_sigset_activate(vcpu);
10448 	kvm_run->flags = 0;
10449 	kvm_load_guest_fpu(vcpu);
10450 
10451 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10452 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10453 		if (kvm_run->immediate_exit) {
10454 			r = -EINTR;
10455 			goto out;
10456 		}
10457 		/*
10458 		 * It should be impossible for the hypervisor timer to be in
10459 		 * use before KVM has ever run the vCPU.
10460 		 */
10461 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10462 
10463 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10464 		kvm_vcpu_block(vcpu);
10465 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10466 
10467 		if (kvm_apic_accept_events(vcpu) < 0) {
10468 			r = 0;
10469 			goto out;
10470 		}
10471 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10472 		r = -EAGAIN;
10473 		if (signal_pending(current)) {
10474 			r = -EINTR;
10475 			kvm_run->exit_reason = KVM_EXIT_INTR;
10476 			++vcpu->stat.signal_exits;
10477 		}
10478 		goto out;
10479 	}
10480 
10481 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10482 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10483 		r = -EINVAL;
10484 		goto out;
10485 	}
10486 
10487 	if (kvm_run->kvm_dirty_regs) {
10488 		r = sync_regs(vcpu);
10489 		if (r != 0)
10490 			goto out;
10491 	}
10492 
10493 	/* re-sync apic's tpr */
10494 	if (!lapic_in_kernel(vcpu)) {
10495 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10496 			r = -EINVAL;
10497 			goto out;
10498 		}
10499 	}
10500 
10501 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10502 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10503 		vcpu->arch.complete_userspace_io = NULL;
10504 		r = cui(vcpu);
10505 		if (r <= 0)
10506 			goto out;
10507 	} else
10508 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10509 
10510 	if (kvm_run->immediate_exit) {
10511 		r = -EINTR;
10512 		goto out;
10513 	}
10514 
10515 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10516 	if (r <= 0)
10517 		goto out;
10518 
10519 	r = vcpu_run(vcpu);
10520 
10521 out:
10522 	kvm_put_guest_fpu(vcpu);
10523 	if (kvm_run->kvm_valid_regs)
10524 		store_regs(vcpu);
10525 	post_kvm_run_save(vcpu);
10526 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10527 
10528 	kvm_sigset_deactivate(vcpu);
10529 	vcpu_put(vcpu);
10530 	return r;
10531 }
10532 
10533 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10534 {
10535 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10536 		/*
10537 		 * We are here if userspace calls get_regs() in the middle of
10538 		 * instruction emulation. Registers state needs to be copied
10539 		 * back from emulation context to vcpu. Userspace shouldn't do
10540 		 * that usually, but some bad designed PV devices (vmware
10541 		 * backdoor interface) need this to work
10542 		 */
10543 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10544 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10545 	}
10546 	regs->rax = kvm_rax_read(vcpu);
10547 	regs->rbx = kvm_rbx_read(vcpu);
10548 	regs->rcx = kvm_rcx_read(vcpu);
10549 	regs->rdx = kvm_rdx_read(vcpu);
10550 	regs->rsi = kvm_rsi_read(vcpu);
10551 	regs->rdi = kvm_rdi_read(vcpu);
10552 	regs->rsp = kvm_rsp_read(vcpu);
10553 	regs->rbp = kvm_rbp_read(vcpu);
10554 #ifdef CONFIG_X86_64
10555 	regs->r8 = kvm_r8_read(vcpu);
10556 	regs->r9 = kvm_r9_read(vcpu);
10557 	regs->r10 = kvm_r10_read(vcpu);
10558 	regs->r11 = kvm_r11_read(vcpu);
10559 	regs->r12 = kvm_r12_read(vcpu);
10560 	regs->r13 = kvm_r13_read(vcpu);
10561 	regs->r14 = kvm_r14_read(vcpu);
10562 	regs->r15 = kvm_r15_read(vcpu);
10563 #endif
10564 
10565 	regs->rip = kvm_rip_read(vcpu);
10566 	regs->rflags = kvm_get_rflags(vcpu);
10567 }
10568 
10569 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10570 {
10571 	vcpu_load(vcpu);
10572 	__get_regs(vcpu, regs);
10573 	vcpu_put(vcpu);
10574 	return 0;
10575 }
10576 
10577 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10578 {
10579 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10580 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10581 
10582 	kvm_rax_write(vcpu, regs->rax);
10583 	kvm_rbx_write(vcpu, regs->rbx);
10584 	kvm_rcx_write(vcpu, regs->rcx);
10585 	kvm_rdx_write(vcpu, regs->rdx);
10586 	kvm_rsi_write(vcpu, regs->rsi);
10587 	kvm_rdi_write(vcpu, regs->rdi);
10588 	kvm_rsp_write(vcpu, regs->rsp);
10589 	kvm_rbp_write(vcpu, regs->rbp);
10590 #ifdef CONFIG_X86_64
10591 	kvm_r8_write(vcpu, regs->r8);
10592 	kvm_r9_write(vcpu, regs->r9);
10593 	kvm_r10_write(vcpu, regs->r10);
10594 	kvm_r11_write(vcpu, regs->r11);
10595 	kvm_r12_write(vcpu, regs->r12);
10596 	kvm_r13_write(vcpu, regs->r13);
10597 	kvm_r14_write(vcpu, regs->r14);
10598 	kvm_r15_write(vcpu, regs->r15);
10599 #endif
10600 
10601 	kvm_rip_write(vcpu, regs->rip);
10602 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10603 
10604 	vcpu->arch.exception.pending = false;
10605 
10606 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10607 }
10608 
10609 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10610 {
10611 	vcpu_load(vcpu);
10612 	__set_regs(vcpu, regs);
10613 	vcpu_put(vcpu);
10614 	return 0;
10615 }
10616 
10617 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10618 {
10619 	struct desc_ptr dt;
10620 
10621 	if (vcpu->arch.guest_state_protected)
10622 		goto skip_protected_regs;
10623 
10624 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10625 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10626 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10627 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10628 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10629 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10630 
10631 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10632 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10633 
10634 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10635 	sregs->idt.limit = dt.size;
10636 	sregs->idt.base = dt.address;
10637 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10638 	sregs->gdt.limit = dt.size;
10639 	sregs->gdt.base = dt.address;
10640 
10641 	sregs->cr2 = vcpu->arch.cr2;
10642 	sregs->cr3 = kvm_read_cr3(vcpu);
10643 
10644 skip_protected_regs:
10645 	sregs->cr0 = kvm_read_cr0(vcpu);
10646 	sregs->cr4 = kvm_read_cr4(vcpu);
10647 	sregs->cr8 = kvm_get_cr8(vcpu);
10648 	sregs->efer = vcpu->arch.efer;
10649 	sregs->apic_base = kvm_get_apic_base(vcpu);
10650 }
10651 
10652 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10653 {
10654 	__get_sregs_common(vcpu, sregs);
10655 
10656 	if (vcpu->arch.guest_state_protected)
10657 		return;
10658 
10659 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10660 		set_bit(vcpu->arch.interrupt.nr,
10661 			(unsigned long *)sregs->interrupt_bitmap);
10662 }
10663 
10664 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10665 {
10666 	int i;
10667 
10668 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10669 
10670 	if (vcpu->arch.guest_state_protected)
10671 		return;
10672 
10673 	if (is_pae_paging(vcpu)) {
10674 		for (i = 0 ; i < 4 ; i++)
10675 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10676 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10677 	}
10678 }
10679 
10680 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10681 				  struct kvm_sregs *sregs)
10682 {
10683 	vcpu_load(vcpu);
10684 	__get_sregs(vcpu, sregs);
10685 	vcpu_put(vcpu);
10686 	return 0;
10687 }
10688 
10689 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10690 				    struct kvm_mp_state *mp_state)
10691 {
10692 	int r;
10693 
10694 	vcpu_load(vcpu);
10695 	if (kvm_mpx_supported())
10696 		kvm_load_guest_fpu(vcpu);
10697 
10698 	r = kvm_apic_accept_events(vcpu);
10699 	if (r < 0)
10700 		goto out;
10701 	r = 0;
10702 
10703 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10704 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10705 	    vcpu->arch.pv.pv_unhalted)
10706 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10707 	else
10708 		mp_state->mp_state = vcpu->arch.mp_state;
10709 
10710 out:
10711 	if (kvm_mpx_supported())
10712 		kvm_put_guest_fpu(vcpu);
10713 	vcpu_put(vcpu);
10714 	return r;
10715 }
10716 
10717 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10718 				    struct kvm_mp_state *mp_state)
10719 {
10720 	int ret = -EINVAL;
10721 
10722 	vcpu_load(vcpu);
10723 
10724 	if (!lapic_in_kernel(vcpu) &&
10725 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10726 		goto out;
10727 
10728 	/*
10729 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10730 	 * INIT state; latched init should be reported using
10731 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10732 	 */
10733 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10734 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10735 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10736 		goto out;
10737 
10738 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10739 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10740 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10741 	} else
10742 		vcpu->arch.mp_state = mp_state->mp_state;
10743 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10744 
10745 	ret = 0;
10746 out:
10747 	vcpu_put(vcpu);
10748 	return ret;
10749 }
10750 
10751 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10752 		    int reason, bool has_error_code, u32 error_code)
10753 {
10754 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10755 	int ret;
10756 
10757 	init_emulate_ctxt(vcpu);
10758 
10759 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10760 				   has_error_code, error_code);
10761 	if (ret) {
10762 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10763 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10764 		vcpu->run->internal.ndata = 0;
10765 		return 0;
10766 	}
10767 
10768 	kvm_rip_write(vcpu, ctxt->eip);
10769 	kvm_set_rflags(vcpu, ctxt->eflags);
10770 	return 1;
10771 }
10772 EXPORT_SYMBOL_GPL(kvm_task_switch);
10773 
10774 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10775 {
10776 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10777 		/*
10778 		 * When EFER.LME and CR0.PG are set, the processor is in
10779 		 * 64-bit mode (though maybe in a 32-bit code segment).
10780 		 * CR4.PAE and EFER.LMA must be set.
10781 		 */
10782 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10783 			return false;
10784 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10785 			return false;
10786 	} else {
10787 		/*
10788 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10789 		 * segment cannot be 64-bit.
10790 		 */
10791 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10792 			return false;
10793 	}
10794 
10795 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
10796 }
10797 
10798 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10799 		int *mmu_reset_needed, bool update_pdptrs)
10800 {
10801 	struct msr_data apic_base_msr;
10802 	int idx;
10803 	struct desc_ptr dt;
10804 
10805 	if (!kvm_is_valid_sregs(vcpu, sregs))
10806 		return -EINVAL;
10807 
10808 	apic_base_msr.data = sregs->apic_base;
10809 	apic_base_msr.host_initiated = true;
10810 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10811 		return -EINVAL;
10812 
10813 	if (vcpu->arch.guest_state_protected)
10814 		return 0;
10815 
10816 	dt.size = sregs->idt.limit;
10817 	dt.address = sregs->idt.base;
10818 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10819 	dt.size = sregs->gdt.limit;
10820 	dt.address = sregs->gdt.base;
10821 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10822 
10823 	vcpu->arch.cr2 = sregs->cr2;
10824 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10825 	vcpu->arch.cr3 = sregs->cr3;
10826 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10827 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10828 
10829 	kvm_set_cr8(vcpu, sregs->cr8);
10830 
10831 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10832 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10833 
10834 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10835 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10836 	vcpu->arch.cr0 = sregs->cr0;
10837 
10838 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10839 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10840 
10841 	if (update_pdptrs) {
10842 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10843 		if (is_pae_paging(vcpu)) {
10844 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10845 			*mmu_reset_needed = 1;
10846 		}
10847 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10848 	}
10849 
10850 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10851 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10852 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10853 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10854 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10855 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10856 
10857 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10858 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10859 
10860 	update_cr8_intercept(vcpu);
10861 
10862 	/* Older userspace won't unhalt the vcpu on reset. */
10863 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10864 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10865 	    !is_protmode(vcpu))
10866 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10867 
10868 	return 0;
10869 }
10870 
10871 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10872 {
10873 	int pending_vec, max_bits;
10874 	int mmu_reset_needed = 0;
10875 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10876 
10877 	if (ret)
10878 		return ret;
10879 
10880 	if (mmu_reset_needed)
10881 		kvm_mmu_reset_context(vcpu);
10882 
10883 	max_bits = KVM_NR_INTERRUPTS;
10884 	pending_vec = find_first_bit(
10885 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10886 
10887 	if (pending_vec < max_bits) {
10888 		kvm_queue_interrupt(vcpu, pending_vec, false);
10889 		pr_debug("Set back pending irq %d\n", pending_vec);
10890 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10891 	}
10892 	return 0;
10893 }
10894 
10895 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10896 {
10897 	int mmu_reset_needed = 0;
10898 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10899 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10900 		!(sregs2->efer & EFER_LMA);
10901 	int i, ret;
10902 
10903 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10904 		return -EINVAL;
10905 
10906 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10907 		return -EINVAL;
10908 
10909 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10910 				 &mmu_reset_needed, !valid_pdptrs);
10911 	if (ret)
10912 		return ret;
10913 
10914 	if (valid_pdptrs) {
10915 		for (i = 0; i < 4 ; i++)
10916 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10917 
10918 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10919 		mmu_reset_needed = 1;
10920 		vcpu->arch.pdptrs_from_userspace = true;
10921 	}
10922 	if (mmu_reset_needed)
10923 		kvm_mmu_reset_context(vcpu);
10924 	return 0;
10925 }
10926 
10927 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10928 				  struct kvm_sregs *sregs)
10929 {
10930 	int ret;
10931 
10932 	vcpu_load(vcpu);
10933 	ret = __set_sregs(vcpu, sregs);
10934 	vcpu_put(vcpu);
10935 	return ret;
10936 }
10937 
10938 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10939 {
10940 	bool inhibit = false;
10941 	struct kvm_vcpu *vcpu;
10942 	unsigned long i;
10943 
10944 	down_write(&kvm->arch.apicv_update_lock);
10945 
10946 	kvm_for_each_vcpu(i, vcpu, kvm) {
10947 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10948 			inhibit = true;
10949 			break;
10950 		}
10951 	}
10952 	__kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10953 	up_write(&kvm->arch.apicv_update_lock);
10954 }
10955 
10956 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10957 					struct kvm_guest_debug *dbg)
10958 {
10959 	unsigned long rflags;
10960 	int i, r;
10961 
10962 	if (vcpu->arch.guest_state_protected)
10963 		return -EINVAL;
10964 
10965 	vcpu_load(vcpu);
10966 
10967 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10968 		r = -EBUSY;
10969 		if (vcpu->arch.exception.pending)
10970 			goto out;
10971 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10972 			kvm_queue_exception(vcpu, DB_VECTOR);
10973 		else
10974 			kvm_queue_exception(vcpu, BP_VECTOR);
10975 	}
10976 
10977 	/*
10978 	 * Read rflags as long as potentially injected trace flags are still
10979 	 * filtered out.
10980 	 */
10981 	rflags = kvm_get_rflags(vcpu);
10982 
10983 	vcpu->guest_debug = dbg->control;
10984 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10985 		vcpu->guest_debug = 0;
10986 
10987 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10988 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10989 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10990 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10991 	} else {
10992 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10993 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10994 	}
10995 	kvm_update_dr7(vcpu);
10996 
10997 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10998 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10999 
11000 	/*
11001 	 * Trigger an rflags update that will inject or remove the trace
11002 	 * flags.
11003 	 */
11004 	kvm_set_rflags(vcpu, rflags);
11005 
11006 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11007 
11008 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11009 
11010 	r = 0;
11011 
11012 out:
11013 	vcpu_put(vcpu);
11014 	return r;
11015 }
11016 
11017 /*
11018  * Translate a guest virtual address to a guest physical address.
11019  */
11020 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11021 				    struct kvm_translation *tr)
11022 {
11023 	unsigned long vaddr = tr->linear_address;
11024 	gpa_t gpa;
11025 	int idx;
11026 
11027 	vcpu_load(vcpu);
11028 
11029 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11030 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11031 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11032 	tr->physical_address = gpa;
11033 	tr->valid = gpa != UNMAPPED_GVA;
11034 	tr->writeable = 1;
11035 	tr->usermode = 0;
11036 
11037 	vcpu_put(vcpu);
11038 	return 0;
11039 }
11040 
11041 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11042 {
11043 	struct fxregs_state *fxsave;
11044 
11045 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11046 		return 0;
11047 
11048 	vcpu_load(vcpu);
11049 
11050 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11051 	memcpy(fpu->fpr, fxsave->st_space, 128);
11052 	fpu->fcw = fxsave->cwd;
11053 	fpu->fsw = fxsave->swd;
11054 	fpu->ftwx = fxsave->twd;
11055 	fpu->last_opcode = fxsave->fop;
11056 	fpu->last_ip = fxsave->rip;
11057 	fpu->last_dp = fxsave->rdp;
11058 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11059 
11060 	vcpu_put(vcpu);
11061 	return 0;
11062 }
11063 
11064 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11065 {
11066 	struct fxregs_state *fxsave;
11067 
11068 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11069 		return 0;
11070 
11071 	vcpu_load(vcpu);
11072 
11073 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11074 
11075 	memcpy(fxsave->st_space, fpu->fpr, 128);
11076 	fxsave->cwd = fpu->fcw;
11077 	fxsave->swd = fpu->fsw;
11078 	fxsave->twd = fpu->ftwx;
11079 	fxsave->fop = fpu->last_opcode;
11080 	fxsave->rip = fpu->last_ip;
11081 	fxsave->rdp = fpu->last_dp;
11082 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11083 
11084 	vcpu_put(vcpu);
11085 	return 0;
11086 }
11087 
11088 static void store_regs(struct kvm_vcpu *vcpu)
11089 {
11090 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11091 
11092 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11093 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11094 
11095 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11096 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11097 
11098 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11099 		kvm_vcpu_ioctl_x86_get_vcpu_events(
11100 				vcpu, &vcpu->run->s.regs.events);
11101 }
11102 
11103 static int sync_regs(struct kvm_vcpu *vcpu)
11104 {
11105 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11106 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11107 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11108 	}
11109 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11110 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11111 			return -EINVAL;
11112 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11113 	}
11114 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11115 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11116 				vcpu, &vcpu->run->s.regs.events))
11117 			return -EINVAL;
11118 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11119 	}
11120 
11121 	return 0;
11122 }
11123 
11124 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11125 {
11126 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11127 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11128 			     "guest TSC will not be reliable\n");
11129 
11130 	return 0;
11131 }
11132 
11133 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11134 {
11135 	struct page *page;
11136 	int r;
11137 
11138 	vcpu->arch.last_vmentry_cpu = -1;
11139 	vcpu->arch.regs_avail = ~0;
11140 	vcpu->arch.regs_dirty = ~0;
11141 
11142 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11143 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11144 	else
11145 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11146 
11147 	r = kvm_mmu_create(vcpu);
11148 	if (r < 0)
11149 		return r;
11150 
11151 	if (irqchip_in_kernel(vcpu->kvm)) {
11152 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11153 		if (r < 0)
11154 			goto fail_mmu_destroy;
11155 		if (kvm_apicv_activated(vcpu->kvm))
11156 			vcpu->arch.apicv_active = true;
11157 	} else
11158 		static_branch_inc(&kvm_has_noapic_vcpu);
11159 
11160 	r = -ENOMEM;
11161 
11162 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11163 	if (!page)
11164 		goto fail_free_lapic;
11165 	vcpu->arch.pio_data = page_address(page);
11166 
11167 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11168 				       GFP_KERNEL_ACCOUNT);
11169 	if (!vcpu->arch.mce_banks)
11170 		goto fail_free_pio_data;
11171 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11172 
11173 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11174 				GFP_KERNEL_ACCOUNT))
11175 		goto fail_free_mce_banks;
11176 
11177 	if (!alloc_emulate_ctxt(vcpu))
11178 		goto free_wbinvd_dirty_mask;
11179 
11180 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11181 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11182 		goto free_emulate_ctxt;
11183 	}
11184 
11185 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11186 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11187 
11188 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11189 
11190 	kvm_async_pf_hash_reset(vcpu);
11191 	kvm_pmu_init(vcpu);
11192 
11193 	vcpu->arch.pending_external_vector = -1;
11194 	vcpu->arch.preempted_in_kernel = false;
11195 
11196 #if IS_ENABLED(CONFIG_HYPERV)
11197 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11198 #endif
11199 
11200 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11201 	if (r)
11202 		goto free_guest_fpu;
11203 
11204 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11205 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11206 	kvm_vcpu_mtrr_init(vcpu);
11207 	vcpu_load(vcpu);
11208 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
11209 	kvm_vcpu_reset(vcpu, false);
11210 	kvm_init_mmu(vcpu);
11211 	vcpu_put(vcpu);
11212 	return 0;
11213 
11214 free_guest_fpu:
11215 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11216 free_emulate_ctxt:
11217 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11218 free_wbinvd_dirty_mask:
11219 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11220 fail_free_mce_banks:
11221 	kfree(vcpu->arch.mce_banks);
11222 fail_free_pio_data:
11223 	free_page((unsigned long)vcpu->arch.pio_data);
11224 fail_free_lapic:
11225 	kvm_free_lapic(vcpu);
11226 fail_mmu_destroy:
11227 	kvm_mmu_destroy(vcpu);
11228 	return r;
11229 }
11230 
11231 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11232 {
11233 	struct kvm *kvm = vcpu->kvm;
11234 
11235 	if (mutex_lock_killable(&vcpu->mutex))
11236 		return;
11237 	vcpu_load(vcpu);
11238 	kvm_synchronize_tsc(vcpu, 0);
11239 	vcpu_put(vcpu);
11240 
11241 	/* poll control enabled by default */
11242 	vcpu->arch.msr_kvm_poll_control = 1;
11243 
11244 	mutex_unlock(&vcpu->mutex);
11245 
11246 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11247 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11248 						KVMCLOCK_SYNC_PERIOD);
11249 }
11250 
11251 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11252 {
11253 	int idx;
11254 
11255 	kvmclock_reset(vcpu);
11256 
11257 	static_call(kvm_x86_vcpu_free)(vcpu);
11258 
11259 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11260 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11261 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11262 
11263 	kvm_hv_vcpu_uninit(vcpu);
11264 	kvm_pmu_destroy(vcpu);
11265 	kfree(vcpu->arch.mce_banks);
11266 	kvm_free_lapic(vcpu);
11267 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11268 	kvm_mmu_destroy(vcpu);
11269 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11270 	free_page((unsigned long)vcpu->arch.pio_data);
11271 	kvfree(vcpu->arch.cpuid_entries);
11272 	if (!lapic_in_kernel(vcpu))
11273 		static_branch_dec(&kvm_has_noapic_vcpu);
11274 }
11275 
11276 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11277 {
11278 	struct kvm_cpuid_entry2 *cpuid_0x1;
11279 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11280 	unsigned long new_cr0;
11281 
11282 	/*
11283 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11284 	 * to handle side effects.  RESET emulation hits those flows and relies
11285 	 * on emulated/virtualized registers, including those that are loaded
11286 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11287 	 * to detect improper or missing initialization.
11288 	 */
11289 	WARN_ON_ONCE(!init_event &&
11290 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11291 
11292 	kvm_lapic_reset(vcpu, init_event);
11293 
11294 	vcpu->arch.hflags = 0;
11295 
11296 	vcpu->arch.smi_pending = 0;
11297 	vcpu->arch.smi_count = 0;
11298 	atomic_set(&vcpu->arch.nmi_queued, 0);
11299 	vcpu->arch.nmi_pending = 0;
11300 	vcpu->arch.nmi_injected = false;
11301 	kvm_clear_interrupt_queue(vcpu);
11302 	kvm_clear_exception_queue(vcpu);
11303 
11304 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11305 	kvm_update_dr0123(vcpu);
11306 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11307 	vcpu->arch.dr7 = DR7_FIXED_1;
11308 	kvm_update_dr7(vcpu);
11309 
11310 	vcpu->arch.cr2 = 0;
11311 
11312 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11313 	vcpu->arch.apf.msr_en_val = 0;
11314 	vcpu->arch.apf.msr_int_val = 0;
11315 	vcpu->arch.st.msr_val = 0;
11316 
11317 	kvmclock_reset(vcpu);
11318 
11319 	kvm_clear_async_pf_completion_queue(vcpu);
11320 	kvm_async_pf_hash_reset(vcpu);
11321 	vcpu->arch.apf.halted = false;
11322 
11323 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11324 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11325 
11326 		/*
11327 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11328 		 * called with loaded FPU and does not let userspace fix the state.
11329 		 */
11330 		if (init_event)
11331 			kvm_put_guest_fpu(vcpu);
11332 
11333 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11334 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11335 
11336 		if (init_event)
11337 			kvm_load_guest_fpu(vcpu);
11338 	}
11339 
11340 	if (!init_event) {
11341 		kvm_pmu_reset(vcpu);
11342 		vcpu->arch.smbase = 0x30000;
11343 
11344 		vcpu->arch.msr_misc_features_enables = 0;
11345 
11346 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11347 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11348 	}
11349 
11350 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11351 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11352 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11353 
11354 	/*
11355 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11356 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11357 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11358 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11359 	 * on RESET.  But, go through the motions in case that's ever remedied.
11360 	 */
11361 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11362 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11363 
11364 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11365 
11366 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11367 	kvm_rip_write(vcpu, 0xfff0);
11368 
11369 	vcpu->arch.cr3 = 0;
11370 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11371 
11372 	/*
11373 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11374 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11375 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11376 	 */
11377 	new_cr0 = X86_CR0_ET;
11378 	if (init_event)
11379 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11380 	else
11381 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11382 
11383 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11384 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11385 	static_call(kvm_x86_set_efer)(vcpu, 0);
11386 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11387 
11388 	/*
11389 	 * On the standard CR0/CR4/EFER modification paths, there are several
11390 	 * complex conditions determining whether the MMU has to be reset and/or
11391 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11392 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11393 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11394 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11395 	 */
11396 	if (old_cr0 & X86_CR0_PG) {
11397 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11398 		kvm_mmu_reset_context(vcpu);
11399 	}
11400 
11401 	/*
11402 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11403 	 * APM states the TLBs are untouched by INIT, but it also states that
11404 	 * the TLBs are flushed on "External initialization of the processor."
11405 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11406 	 * benefit in relying on the guest to flush the TLB immediately after
11407 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11408 	 * performance perspective.
11409 	 */
11410 	if (init_event)
11411 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11412 }
11413 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11414 
11415 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11416 {
11417 	struct kvm_segment cs;
11418 
11419 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11420 	cs.selector = vector << 8;
11421 	cs.base = vector << 12;
11422 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11423 	kvm_rip_write(vcpu, 0);
11424 }
11425 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11426 
11427 int kvm_arch_hardware_enable(void)
11428 {
11429 	struct kvm *kvm;
11430 	struct kvm_vcpu *vcpu;
11431 	unsigned long i;
11432 	int ret;
11433 	u64 local_tsc;
11434 	u64 max_tsc = 0;
11435 	bool stable, backwards_tsc = false;
11436 
11437 	kvm_user_return_msr_cpu_online();
11438 	ret = static_call(kvm_x86_hardware_enable)();
11439 	if (ret != 0)
11440 		return ret;
11441 
11442 	local_tsc = rdtsc();
11443 	stable = !kvm_check_tsc_unstable();
11444 	list_for_each_entry(kvm, &vm_list, vm_list) {
11445 		kvm_for_each_vcpu(i, vcpu, kvm) {
11446 			if (!stable && vcpu->cpu == smp_processor_id())
11447 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11448 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11449 				backwards_tsc = true;
11450 				if (vcpu->arch.last_host_tsc > max_tsc)
11451 					max_tsc = vcpu->arch.last_host_tsc;
11452 			}
11453 		}
11454 	}
11455 
11456 	/*
11457 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11458 	 * platforms that reset TSC during suspend or hibernate actions, but
11459 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11460 	 * detect that condition here, which happens early in CPU bringup,
11461 	 * before any KVM threads can be running.  Unfortunately, we can't
11462 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11463 	 * enough into CPU bringup that we know how much real time has actually
11464 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11465 	 * variables that haven't been updated yet.
11466 	 *
11467 	 * So we simply find the maximum observed TSC above, then record the
11468 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11469 	 * the adjustment will be applied.  Note that we accumulate
11470 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11471 	 * gets a chance to run again.  In the event that no KVM threads get a
11472 	 * chance to run, we will miss the entire elapsed period, as we'll have
11473 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11474 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11475 	 * uniform across all VCPUs (not to mention the scenario is extremely
11476 	 * unlikely). It is possible that a second hibernate recovery happens
11477 	 * much faster than a first, causing the observed TSC here to be
11478 	 * smaller; this would require additional padding adjustment, which is
11479 	 * why we set last_host_tsc to the local tsc observed here.
11480 	 *
11481 	 * N.B. - this code below runs only on platforms with reliable TSC,
11482 	 * as that is the only way backwards_tsc is set above.  Also note
11483 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11484 	 * have the same delta_cyc adjustment applied if backwards_tsc
11485 	 * is detected.  Note further, this adjustment is only done once,
11486 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11487 	 * called multiple times (one for each physical CPU bringup).
11488 	 *
11489 	 * Platforms with unreliable TSCs don't have to deal with this, they
11490 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11491 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11492 	 * guarantee that they stay in perfect synchronization.
11493 	 */
11494 	if (backwards_tsc) {
11495 		u64 delta_cyc = max_tsc - local_tsc;
11496 		list_for_each_entry(kvm, &vm_list, vm_list) {
11497 			kvm->arch.backwards_tsc_observed = true;
11498 			kvm_for_each_vcpu(i, vcpu, kvm) {
11499 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11500 				vcpu->arch.last_host_tsc = local_tsc;
11501 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11502 			}
11503 
11504 			/*
11505 			 * We have to disable TSC offset matching.. if you were
11506 			 * booting a VM while issuing an S4 host suspend....
11507 			 * you may have some problem.  Solving this issue is
11508 			 * left as an exercise to the reader.
11509 			 */
11510 			kvm->arch.last_tsc_nsec = 0;
11511 			kvm->arch.last_tsc_write = 0;
11512 		}
11513 
11514 	}
11515 	return 0;
11516 }
11517 
11518 void kvm_arch_hardware_disable(void)
11519 {
11520 	static_call(kvm_x86_hardware_disable)();
11521 	drop_user_return_notifiers();
11522 }
11523 
11524 int kvm_arch_hardware_setup(void *opaque)
11525 {
11526 	struct kvm_x86_init_ops *ops = opaque;
11527 	int r;
11528 
11529 	rdmsrl_safe(MSR_EFER, &host_efer);
11530 
11531 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11532 		rdmsrl(MSR_IA32_XSS, host_xss);
11533 
11534 	r = ops->hardware_setup();
11535 	if (r != 0)
11536 		return r;
11537 
11538 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11539 	kvm_ops_static_call_update();
11540 
11541 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11542 
11543 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11544 		supported_xss = 0;
11545 
11546 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11547 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11548 #undef __kvm_cpu_cap_has
11549 
11550 	if (kvm_has_tsc_control) {
11551 		/*
11552 		 * Make sure the user can only configure tsc_khz values that
11553 		 * fit into a signed integer.
11554 		 * A min value is not calculated because it will always
11555 		 * be 1 on all machines.
11556 		 */
11557 		u64 max = min(0x7fffffffULL,
11558 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11559 		kvm_max_guest_tsc_khz = max;
11560 
11561 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11562 	}
11563 
11564 	kvm_init_msr_list();
11565 	return 0;
11566 }
11567 
11568 void kvm_arch_hardware_unsetup(void)
11569 {
11570 	kvm_unregister_perf_callbacks();
11571 
11572 	static_call(kvm_x86_hardware_unsetup)();
11573 }
11574 
11575 int kvm_arch_check_processor_compat(void *opaque)
11576 {
11577 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11578 	struct kvm_x86_init_ops *ops = opaque;
11579 
11580 	WARN_ON(!irqs_disabled());
11581 
11582 	if (__cr4_reserved_bits(cpu_has, c) !=
11583 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11584 		return -EIO;
11585 
11586 	return ops->check_processor_compatibility();
11587 }
11588 
11589 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11590 {
11591 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11592 }
11593 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11594 
11595 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11596 {
11597 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11598 }
11599 
11600 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11601 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11602 
11603 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11604 {
11605 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11606 
11607 	vcpu->arch.l1tf_flush_l1d = true;
11608 	if (pmu->version && unlikely(pmu->event_count)) {
11609 		pmu->need_cleanup = true;
11610 		kvm_make_request(KVM_REQ_PMU, vcpu);
11611 	}
11612 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11613 }
11614 
11615 void kvm_arch_free_vm(struct kvm *kvm)
11616 {
11617 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11618 	__kvm_arch_free_vm(kvm);
11619 }
11620 
11621 
11622 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11623 {
11624 	int ret;
11625 	unsigned long flags;
11626 
11627 	if (type)
11628 		return -EINVAL;
11629 
11630 	ret = kvm_page_track_init(kvm);
11631 	if (ret)
11632 		return ret;
11633 
11634 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11635 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11636 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11637 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11638 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11639 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11640 
11641 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11642 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11643 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11644 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11645 		&kvm->arch.irq_sources_bitmap);
11646 
11647 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11648 	mutex_init(&kvm->arch.apic_map_lock);
11649 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11650 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11651 
11652 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11653 	pvclock_update_vm_gtod_copy(kvm);
11654 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11655 
11656 	kvm->arch.guest_can_read_msr_platform_info = true;
11657 	kvm->arch.enable_pmu = enable_pmu;
11658 
11659 #if IS_ENABLED(CONFIG_HYPERV)
11660 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11661 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11662 #endif
11663 
11664 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11665 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11666 
11667 	kvm_apicv_init(kvm);
11668 	kvm_hv_init_vm(kvm);
11669 	kvm_mmu_init_vm(kvm);
11670 	kvm_xen_init_vm(kvm);
11671 
11672 	return static_call(kvm_x86_vm_init)(kvm);
11673 }
11674 
11675 int kvm_arch_post_init_vm(struct kvm *kvm)
11676 {
11677 	return kvm_mmu_post_init_vm(kvm);
11678 }
11679 
11680 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11681 {
11682 	vcpu_load(vcpu);
11683 	kvm_mmu_unload(vcpu);
11684 	vcpu_put(vcpu);
11685 }
11686 
11687 static void kvm_free_vcpus(struct kvm *kvm)
11688 {
11689 	unsigned long i;
11690 	struct kvm_vcpu *vcpu;
11691 
11692 	/*
11693 	 * Unpin any mmu pages first.
11694 	 */
11695 	kvm_for_each_vcpu(i, vcpu, kvm) {
11696 		kvm_clear_async_pf_completion_queue(vcpu);
11697 		kvm_unload_vcpu_mmu(vcpu);
11698 	}
11699 
11700 	kvm_destroy_vcpus(kvm);
11701 }
11702 
11703 void kvm_arch_sync_events(struct kvm *kvm)
11704 {
11705 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11706 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11707 	kvm_free_pit(kvm);
11708 }
11709 
11710 /**
11711  * __x86_set_memory_region: Setup KVM internal memory slot
11712  *
11713  * @kvm: the kvm pointer to the VM.
11714  * @id: the slot ID to setup.
11715  * @gpa: the GPA to install the slot (unused when @size == 0).
11716  * @size: the size of the slot. Set to zero to uninstall a slot.
11717  *
11718  * This function helps to setup a KVM internal memory slot.  Specify
11719  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11720  * slot.  The return code can be one of the following:
11721  *
11722  *   HVA:           on success (uninstall will return a bogus HVA)
11723  *   -errno:        on error
11724  *
11725  * The caller should always use IS_ERR() to check the return value
11726  * before use.  Note, the KVM internal memory slots are guaranteed to
11727  * remain valid and unchanged until the VM is destroyed, i.e., the
11728  * GPA->HVA translation will not change.  However, the HVA is a user
11729  * address, i.e. its accessibility is not guaranteed, and must be
11730  * accessed via __copy_{to,from}_user().
11731  */
11732 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11733 				      u32 size)
11734 {
11735 	int i, r;
11736 	unsigned long hva, old_npages;
11737 	struct kvm_memslots *slots = kvm_memslots(kvm);
11738 	struct kvm_memory_slot *slot;
11739 
11740 	/* Called with kvm->slots_lock held.  */
11741 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11742 		return ERR_PTR_USR(-EINVAL);
11743 
11744 	slot = id_to_memslot(slots, id);
11745 	if (size) {
11746 		if (slot && slot->npages)
11747 			return ERR_PTR_USR(-EEXIST);
11748 
11749 		/*
11750 		 * MAP_SHARED to prevent internal slot pages from being moved
11751 		 * by fork()/COW.
11752 		 */
11753 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11754 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11755 		if (IS_ERR((void *)hva))
11756 			return (void __user *)hva;
11757 	} else {
11758 		if (!slot || !slot->npages)
11759 			return NULL;
11760 
11761 		old_npages = slot->npages;
11762 		hva = slot->userspace_addr;
11763 	}
11764 
11765 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11766 		struct kvm_userspace_memory_region m;
11767 
11768 		m.slot = id | (i << 16);
11769 		m.flags = 0;
11770 		m.guest_phys_addr = gpa;
11771 		m.userspace_addr = hva;
11772 		m.memory_size = size;
11773 		r = __kvm_set_memory_region(kvm, &m);
11774 		if (r < 0)
11775 			return ERR_PTR_USR(r);
11776 	}
11777 
11778 	if (!size)
11779 		vm_munmap(hva, old_npages * PAGE_SIZE);
11780 
11781 	return (void __user *)hva;
11782 }
11783 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11784 
11785 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11786 {
11787 	kvm_mmu_pre_destroy_vm(kvm);
11788 }
11789 
11790 void kvm_arch_destroy_vm(struct kvm *kvm)
11791 {
11792 	if (current->mm == kvm->mm) {
11793 		/*
11794 		 * Free memory regions allocated on behalf of userspace,
11795 		 * unless the the memory map has changed due to process exit
11796 		 * or fd copying.
11797 		 */
11798 		mutex_lock(&kvm->slots_lock);
11799 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11800 					0, 0);
11801 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11802 					0, 0);
11803 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11804 		mutex_unlock(&kvm->slots_lock);
11805 	}
11806 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11807 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11808 	kvm_pic_destroy(kvm);
11809 	kvm_ioapic_destroy(kvm);
11810 	kvm_free_vcpus(kvm);
11811 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11812 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11813 	kvm_mmu_uninit_vm(kvm);
11814 	kvm_page_track_cleanup(kvm);
11815 	kvm_xen_destroy_vm(kvm);
11816 	kvm_hv_destroy_vm(kvm);
11817 }
11818 
11819 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11820 {
11821 	int i;
11822 
11823 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11824 		kvfree(slot->arch.rmap[i]);
11825 		slot->arch.rmap[i] = NULL;
11826 	}
11827 }
11828 
11829 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11830 {
11831 	int i;
11832 
11833 	memslot_rmap_free(slot);
11834 
11835 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11836 		kvfree(slot->arch.lpage_info[i - 1]);
11837 		slot->arch.lpage_info[i - 1] = NULL;
11838 	}
11839 
11840 	kvm_page_track_free_memslot(slot);
11841 }
11842 
11843 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11844 {
11845 	const int sz = sizeof(*slot->arch.rmap[0]);
11846 	int i;
11847 
11848 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11849 		int level = i + 1;
11850 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11851 
11852 		if (slot->arch.rmap[i])
11853 			continue;
11854 
11855 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11856 		if (!slot->arch.rmap[i]) {
11857 			memslot_rmap_free(slot);
11858 			return -ENOMEM;
11859 		}
11860 	}
11861 
11862 	return 0;
11863 }
11864 
11865 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11866 				      struct kvm_memory_slot *slot)
11867 {
11868 	unsigned long npages = slot->npages;
11869 	int i, r;
11870 
11871 	/*
11872 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11873 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11874 	 * the new memslot is successful.
11875 	 */
11876 	memset(&slot->arch, 0, sizeof(slot->arch));
11877 
11878 	if (kvm_memslots_have_rmaps(kvm)) {
11879 		r = memslot_rmap_alloc(slot, npages);
11880 		if (r)
11881 			return r;
11882 	}
11883 
11884 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11885 		struct kvm_lpage_info *linfo;
11886 		unsigned long ugfn;
11887 		int lpages;
11888 		int level = i + 1;
11889 
11890 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11891 
11892 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11893 		if (!linfo)
11894 			goto out_free;
11895 
11896 		slot->arch.lpage_info[i - 1] = linfo;
11897 
11898 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11899 			linfo[0].disallow_lpage = 1;
11900 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11901 			linfo[lpages - 1].disallow_lpage = 1;
11902 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11903 		/*
11904 		 * If the gfn and userspace address are not aligned wrt each
11905 		 * other, disable large page support for this slot.
11906 		 */
11907 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11908 			unsigned long j;
11909 
11910 			for (j = 0; j < lpages; ++j)
11911 				linfo[j].disallow_lpage = 1;
11912 		}
11913 	}
11914 
11915 	if (kvm_page_track_create_memslot(kvm, slot, npages))
11916 		goto out_free;
11917 
11918 	return 0;
11919 
11920 out_free:
11921 	memslot_rmap_free(slot);
11922 
11923 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11924 		kvfree(slot->arch.lpage_info[i - 1]);
11925 		slot->arch.lpage_info[i - 1] = NULL;
11926 	}
11927 	return -ENOMEM;
11928 }
11929 
11930 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11931 {
11932 	struct kvm_vcpu *vcpu;
11933 	unsigned long i;
11934 
11935 	/*
11936 	 * memslots->generation has been incremented.
11937 	 * mmio generation may have reached its maximum value.
11938 	 */
11939 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11940 
11941 	/* Force re-initialization of steal_time cache */
11942 	kvm_for_each_vcpu(i, vcpu, kvm)
11943 		kvm_vcpu_kick(vcpu);
11944 }
11945 
11946 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11947 				   const struct kvm_memory_slot *old,
11948 				   struct kvm_memory_slot *new,
11949 				   enum kvm_mr_change change)
11950 {
11951 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11952 		return kvm_alloc_memslot_metadata(kvm, new);
11953 
11954 	if (change == KVM_MR_FLAGS_ONLY)
11955 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
11956 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11957 		return -EIO;
11958 
11959 	return 0;
11960 }
11961 
11962 
11963 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11964 {
11965 	struct kvm_arch *ka = &kvm->arch;
11966 
11967 	if (!kvm_x86_ops.cpu_dirty_log_size)
11968 		return;
11969 
11970 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11971 	    (!enable && --ka->cpu_dirty_logging_count == 0))
11972 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11973 
11974 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11975 }
11976 
11977 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11978 				     struct kvm_memory_slot *old,
11979 				     const struct kvm_memory_slot *new,
11980 				     enum kvm_mr_change change)
11981 {
11982 	u32 old_flags = old ? old->flags : 0;
11983 	u32 new_flags = new ? new->flags : 0;
11984 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11985 
11986 	/*
11987 	 * Update CPU dirty logging if dirty logging is being toggled.  This
11988 	 * applies to all operations.
11989 	 */
11990 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11991 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11992 
11993 	/*
11994 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
11995 	 * made writable) or CREATE/MOVE/DELETE of a slot.
11996 	 *
11997 	 * For a memslot with dirty logging disabled:
11998 	 * CREATE:      No dirty mappings will already exist.
11999 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12000 	 *		kvm_arch_flush_shadow_memslot()
12001 	 *
12002 	 * For a memslot with dirty logging enabled:
12003 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12004 	 *		and no dirty bits to clear.
12005 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12006 	 *		kvm_arch_flush_shadow_memslot().
12007 	 */
12008 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12009 		return;
12010 
12011 	/*
12012 	 * READONLY and non-flags changes were filtered out above, and the only
12013 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12014 	 * logging isn't being toggled on or off.
12015 	 */
12016 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12017 		return;
12018 
12019 	if (!log_dirty_pages) {
12020 		/*
12021 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12022 		 * large sptes have to be split.  If live migration succeeds,
12023 		 * the guest in the source machine will be destroyed and large
12024 		 * sptes will be created in the destination.  However, if the
12025 		 * guest continues to run in the source machine (for example if
12026 		 * live migration fails), small sptes will remain around and
12027 		 * cause bad performance.
12028 		 *
12029 		 * Scan sptes if dirty logging has been stopped, dropping those
12030 		 * which can be collapsed into a single large-page spte.  Later
12031 		 * page faults will create the large-page sptes.
12032 		 */
12033 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12034 	} else {
12035 		/*
12036 		 * Initially-all-set does not require write protecting any page,
12037 		 * because they're all assumed to be dirty.
12038 		 */
12039 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12040 			return;
12041 
12042 		if (READ_ONCE(eager_page_split))
12043 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12044 
12045 		if (kvm_x86_ops.cpu_dirty_log_size) {
12046 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12047 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12048 		} else {
12049 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12050 		}
12051 	}
12052 }
12053 
12054 void kvm_arch_commit_memory_region(struct kvm *kvm,
12055 				struct kvm_memory_slot *old,
12056 				const struct kvm_memory_slot *new,
12057 				enum kvm_mr_change change)
12058 {
12059 	if (!kvm->arch.n_requested_mmu_pages &&
12060 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12061 		unsigned long nr_mmu_pages;
12062 
12063 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12064 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12065 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12066 	}
12067 
12068 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12069 
12070 	/* Free the arrays associated with the old memslot. */
12071 	if (change == KVM_MR_MOVE)
12072 		kvm_arch_free_memslot(kvm, old);
12073 }
12074 
12075 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12076 {
12077 	kvm_mmu_zap_all(kvm);
12078 }
12079 
12080 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12081 				   struct kvm_memory_slot *slot)
12082 {
12083 	kvm_page_track_flush_slot(kvm, slot);
12084 }
12085 
12086 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12087 {
12088 	return (is_guest_mode(vcpu) &&
12089 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12090 }
12091 
12092 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12093 {
12094 	if (!list_empty_careful(&vcpu->async_pf.done))
12095 		return true;
12096 
12097 	if (kvm_apic_has_events(vcpu))
12098 		return true;
12099 
12100 	if (vcpu->arch.pv.pv_unhalted)
12101 		return true;
12102 
12103 	if (vcpu->arch.exception.pending)
12104 		return true;
12105 
12106 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12107 	    (vcpu->arch.nmi_pending &&
12108 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12109 		return true;
12110 
12111 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12112 	    (vcpu->arch.smi_pending &&
12113 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12114 		return true;
12115 
12116 	if (kvm_arch_interrupt_allowed(vcpu) &&
12117 	    (kvm_cpu_has_interrupt(vcpu) ||
12118 	    kvm_guest_apic_has_interrupt(vcpu)))
12119 		return true;
12120 
12121 	if (kvm_hv_has_stimer_pending(vcpu))
12122 		return true;
12123 
12124 	if (is_guest_mode(vcpu) &&
12125 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12126 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12127 		return true;
12128 
12129 	return false;
12130 }
12131 
12132 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12133 {
12134 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12135 }
12136 
12137 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12138 {
12139 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12140 		return true;
12141 
12142 	return false;
12143 }
12144 
12145 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12146 {
12147 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12148 		return true;
12149 
12150 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12151 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12152 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12153 		return true;
12154 
12155 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12156 }
12157 
12158 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12159 {
12160 	if (vcpu->arch.guest_state_protected)
12161 		return true;
12162 
12163 	return vcpu->arch.preempted_in_kernel;
12164 }
12165 
12166 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12167 {
12168 	return kvm_rip_read(vcpu);
12169 }
12170 
12171 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12172 {
12173 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12174 }
12175 
12176 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12177 {
12178 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12179 }
12180 
12181 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12182 {
12183 	/* Can't read the RIP when guest state is protected, just return 0 */
12184 	if (vcpu->arch.guest_state_protected)
12185 		return 0;
12186 
12187 	if (is_64_bit_mode(vcpu))
12188 		return kvm_rip_read(vcpu);
12189 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12190 		     kvm_rip_read(vcpu));
12191 }
12192 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12193 
12194 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12195 {
12196 	return kvm_get_linear_rip(vcpu) == linear_rip;
12197 }
12198 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12199 
12200 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12201 {
12202 	unsigned long rflags;
12203 
12204 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12205 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12206 		rflags &= ~X86_EFLAGS_TF;
12207 	return rflags;
12208 }
12209 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12210 
12211 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12212 {
12213 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12214 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12215 		rflags |= X86_EFLAGS_TF;
12216 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12217 }
12218 
12219 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12220 {
12221 	__kvm_set_rflags(vcpu, rflags);
12222 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12223 }
12224 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12225 
12226 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12227 {
12228 	int r;
12229 
12230 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12231 	      work->wakeup_all)
12232 		return;
12233 
12234 	r = kvm_mmu_reload(vcpu);
12235 	if (unlikely(r))
12236 		return;
12237 
12238 	if (!vcpu->arch.mmu->direct_map &&
12239 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12240 		return;
12241 
12242 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12243 }
12244 
12245 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12246 {
12247 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12248 
12249 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12250 }
12251 
12252 static inline u32 kvm_async_pf_next_probe(u32 key)
12253 {
12254 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12255 }
12256 
12257 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12258 {
12259 	u32 key = kvm_async_pf_hash_fn(gfn);
12260 
12261 	while (vcpu->arch.apf.gfns[key] != ~0)
12262 		key = kvm_async_pf_next_probe(key);
12263 
12264 	vcpu->arch.apf.gfns[key] = gfn;
12265 }
12266 
12267 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12268 {
12269 	int i;
12270 	u32 key = kvm_async_pf_hash_fn(gfn);
12271 
12272 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12273 		     (vcpu->arch.apf.gfns[key] != gfn &&
12274 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12275 		key = kvm_async_pf_next_probe(key);
12276 
12277 	return key;
12278 }
12279 
12280 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12281 {
12282 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12283 }
12284 
12285 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12286 {
12287 	u32 i, j, k;
12288 
12289 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12290 
12291 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12292 		return;
12293 
12294 	while (true) {
12295 		vcpu->arch.apf.gfns[i] = ~0;
12296 		do {
12297 			j = kvm_async_pf_next_probe(j);
12298 			if (vcpu->arch.apf.gfns[j] == ~0)
12299 				return;
12300 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12301 			/*
12302 			 * k lies cyclically in ]i,j]
12303 			 * |    i.k.j |
12304 			 * |....j i.k.| or  |.k..j i...|
12305 			 */
12306 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12307 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12308 		i = j;
12309 	}
12310 }
12311 
12312 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12313 {
12314 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12315 
12316 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12317 				      sizeof(reason));
12318 }
12319 
12320 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12321 {
12322 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12323 
12324 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12325 					     &token, offset, sizeof(token));
12326 }
12327 
12328 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12329 {
12330 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12331 	u32 val;
12332 
12333 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12334 					 &val, offset, sizeof(val)))
12335 		return false;
12336 
12337 	return !val;
12338 }
12339 
12340 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12341 {
12342 
12343 	if (!kvm_pv_async_pf_enabled(vcpu))
12344 		return false;
12345 
12346 	if (vcpu->arch.apf.send_user_only &&
12347 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
12348 		return false;
12349 
12350 	if (is_guest_mode(vcpu)) {
12351 		/*
12352 		 * L1 needs to opt into the special #PF vmexits that are
12353 		 * used to deliver async page faults.
12354 		 */
12355 		return vcpu->arch.apf.delivery_as_pf_vmexit;
12356 	} else {
12357 		/*
12358 		 * Play it safe in case the guest temporarily disables paging.
12359 		 * The real mode IDT in particular is unlikely to have a #PF
12360 		 * exception setup.
12361 		 */
12362 		return is_paging(vcpu);
12363 	}
12364 }
12365 
12366 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12367 {
12368 	if (unlikely(!lapic_in_kernel(vcpu) ||
12369 		     kvm_event_needs_reinjection(vcpu) ||
12370 		     vcpu->arch.exception.pending))
12371 		return false;
12372 
12373 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12374 		return false;
12375 
12376 	/*
12377 	 * If interrupts are off we cannot even use an artificial
12378 	 * halt state.
12379 	 */
12380 	return kvm_arch_interrupt_allowed(vcpu);
12381 }
12382 
12383 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12384 				     struct kvm_async_pf *work)
12385 {
12386 	struct x86_exception fault;
12387 
12388 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12389 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12390 
12391 	if (kvm_can_deliver_async_pf(vcpu) &&
12392 	    !apf_put_user_notpresent(vcpu)) {
12393 		fault.vector = PF_VECTOR;
12394 		fault.error_code_valid = true;
12395 		fault.error_code = 0;
12396 		fault.nested_page_fault = false;
12397 		fault.address = work->arch.token;
12398 		fault.async_page_fault = true;
12399 		kvm_inject_page_fault(vcpu, &fault);
12400 		return true;
12401 	} else {
12402 		/*
12403 		 * It is not possible to deliver a paravirtualized asynchronous
12404 		 * page fault, but putting the guest in an artificial halt state
12405 		 * can be beneficial nevertheless: if an interrupt arrives, we
12406 		 * can deliver it timely and perhaps the guest will schedule
12407 		 * another process.  When the instruction that triggered a page
12408 		 * fault is retried, hopefully the page will be ready in the host.
12409 		 */
12410 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12411 		return false;
12412 	}
12413 }
12414 
12415 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12416 				 struct kvm_async_pf *work)
12417 {
12418 	struct kvm_lapic_irq irq = {
12419 		.delivery_mode = APIC_DM_FIXED,
12420 		.vector = vcpu->arch.apf.vec
12421 	};
12422 
12423 	if (work->wakeup_all)
12424 		work->arch.token = ~0; /* broadcast wakeup */
12425 	else
12426 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12427 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12428 
12429 	if ((work->wakeup_all || work->notpresent_injected) &&
12430 	    kvm_pv_async_pf_enabled(vcpu) &&
12431 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12432 		vcpu->arch.apf.pageready_pending = true;
12433 		kvm_apic_set_irq(vcpu, &irq, NULL);
12434 	}
12435 
12436 	vcpu->arch.apf.halted = false;
12437 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12438 }
12439 
12440 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12441 {
12442 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12443 	if (!vcpu->arch.apf.pageready_pending)
12444 		kvm_vcpu_kick(vcpu);
12445 }
12446 
12447 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12448 {
12449 	if (!kvm_pv_async_pf_enabled(vcpu))
12450 		return true;
12451 	else
12452 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12453 }
12454 
12455 void kvm_arch_start_assignment(struct kvm *kvm)
12456 {
12457 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12458 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12459 }
12460 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12461 
12462 void kvm_arch_end_assignment(struct kvm *kvm)
12463 {
12464 	atomic_dec(&kvm->arch.assigned_device_count);
12465 }
12466 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12467 
12468 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12469 {
12470 	return atomic_read(&kvm->arch.assigned_device_count);
12471 }
12472 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12473 
12474 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12475 {
12476 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12477 }
12478 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12479 
12480 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12481 {
12482 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12483 }
12484 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12485 
12486 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12487 {
12488 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12489 }
12490 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12491 
12492 bool kvm_arch_has_irq_bypass(void)
12493 {
12494 	return true;
12495 }
12496 
12497 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12498 				      struct irq_bypass_producer *prod)
12499 {
12500 	struct kvm_kernel_irqfd *irqfd =
12501 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12502 	int ret;
12503 
12504 	irqfd->producer = prod;
12505 	kvm_arch_start_assignment(irqfd->kvm);
12506 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12507 					 prod->irq, irqfd->gsi, 1);
12508 
12509 	if (ret)
12510 		kvm_arch_end_assignment(irqfd->kvm);
12511 
12512 	return ret;
12513 }
12514 
12515 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12516 				      struct irq_bypass_producer *prod)
12517 {
12518 	int ret;
12519 	struct kvm_kernel_irqfd *irqfd =
12520 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12521 
12522 	WARN_ON(irqfd->producer != prod);
12523 	irqfd->producer = NULL;
12524 
12525 	/*
12526 	 * When producer of consumer is unregistered, we change back to
12527 	 * remapped mode, so we can re-use the current implementation
12528 	 * when the irq is masked/disabled or the consumer side (KVM
12529 	 * int this case doesn't want to receive the interrupts.
12530 	*/
12531 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12532 	if (ret)
12533 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12534 		       " fails: %d\n", irqfd->consumer.token, ret);
12535 
12536 	kvm_arch_end_assignment(irqfd->kvm);
12537 }
12538 
12539 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12540 				   uint32_t guest_irq, bool set)
12541 {
12542 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12543 }
12544 
12545 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12546 				  struct kvm_kernel_irq_routing_entry *new)
12547 {
12548 	if (new->type != KVM_IRQ_ROUTING_MSI)
12549 		return true;
12550 
12551 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12552 }
12553 
12554 bool kvm_vector_hashing_enabled(void)
12555 {
12556 	return vector_hashing;
12557 }
12558 
12559 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12560 {
12561 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12562 }
12563 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12564 
12565 
12566 int kvm_spec_ctrl_test_value(u64 value)
12567 {
12568 	/*
12569 	 * test that setting IA32_SPEC_CTRL to given value
12570 	 * is allowed by the host processor
12571 	 */
12572 
12573 	u64 saved_value;
12574 	unsigned long flags;
12575 	int ret = 0;
12576 
12577 	local_irq_save(flags);
12578 
12579 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12580 		ret = 1;
12581 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12582 		ret = 1;
12583 	else
12584 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12585 
12586 	local_irq_restore(flags);
12587 
12588 	return ret;
12589 }
12590 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12591 
12592 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12593 {
12594 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12595 	struct x86_exception fault;
12596 	u32 access = error_code &
12597 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12598 
12599 	if (!(error_code & PFERR_PRESENT_MASK) ||
12600 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12601 		/*
12602 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12603 		 * tables probably do not match the TLB.  Just proceed
12604 		 * with the error code that the processor gave.
12605 		 */
12606 		fault.vector = PF_VECTOR;
12607 		fault.error_code_valid = true;
12608 		fault.error_code = error_code;
12609 		fault.nested_page_fault = false;
12610 		fault.address = gva;
12611 	}
12612 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12613 }
12614 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12615 
12616 /*
12617  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12618  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12619  * indicates whether exit to userspace is needed.
12620  */
12621 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12622 			      struct x86_exception *e)
12623 {
12624 	if (r == X86EMUL_PROPAGATE_FAULT) {
12625 		kvm_inject_emulated_page_fault(vcpu, e);
12626 		return 1;
12627 	}
12628 
12629 	/*
12630 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12631 	 * while handling a VMX instruction KVM could've handled the request
12632 	 * correctly by exiting to userspace and performing I/O but there
12633 	 * doesn't seem to be a real use-case behind such requests, just return
12634 	 * KVM_EXIT_INTERNAL_ERROR for now.
12635 	 */
12636 	kvm_prepare_emulation_failure_exit(vcpu);
12637 
12638 	return 0;
12639 }
12640 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12641 
12642 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12643 {
12644 	bool pcid_enabled;
12645 	struct x86_exception e;
12646 	struct {
12647 		u64 pcid;
12648 		u64 gla;
12649 	} operand;
12650 	int r;
12651 
12652 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12653 	if (r != X86EMUL_CONTINUE)
12654 		return kvm_handle_memory_failure(vcpu, r, &e);
12655 
12656 	if (operand.pcid >> 12 != 0) {
12657 		kvm_inject_gp(vcpu, 0);
12658 		return 1;
12659 	}
12660 
12661 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12662 
12663 	switch (type) {
12664 	case INVPCID_TYPE_INDIV_ADDR:
12665 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12666 		    is_noncanonical_address(operand.gla, vcpu)) {
12667 			kvm_inject_gp(vcpu, 0);
12668 			return 1;
12669 		}
12670 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12671 		return kvm_skip_emulated_instruction(vcpu);
12672 
12673 	case INVPCID_TYPE_SINGLE_CTXT:
12674 		if (!pcid_enabled && (operand.pcid != 0)) {
12675 			kvm_inject_gp(vcpu, 0);
12676 			return 1;
12677 		}
12678 
12679 		kvm_invalidate_pcid(vcpu, operand.pcid);
12680 		return kvm_skip_emulated_instruction(vcpu);
12681 
12682 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12683 		/*
12684 		 * Currently, KVM doesn't mark global entries in the shadow
12685 		 * page tables, so a non-global flush just degenerates to a
12686 		 * global flush. If needed, we could optimize this later by
12687 		 * keeping track of global entries in shadow page tables.
12688 		 */
12689 
12690 		fallthrough;
12691 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12692 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12693 		return kvm_skip_emulated_instruction(vcpu);
12694 
12695 	default:
12696 		kvm_inject_gp(vcpu, 0);
12697 		return 1;
12698 	}
12699 }
12700 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12701 
12702 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12703 {
12704 	struct kvm_run *run = vcpu->run;
12705 	struct kvm_mmio_fragment *frag;
12706 	unsigned int len;
12707 
12708 	BUG_ON(!vcpu->mmio_needed);
12709 
12710 	/* Complete previous fragment */
12711 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12712 	len = min(8u, frag->len);
12713 	if (!vcpu->mmio_is_write)
12714 		memcpy(frag->data, run->mmio.data, len);
12715 
12716 	if (frag->len <= 8) {
12717 		/* Switch to the next fragment. */
12718 		frag++;
12719 		vcpu->mmio_cur_fragment++;
12720 	} else {
12721 		/* Go forward to the next mmio piece. */
12722 		frag->data += len;
12723 		frag->gpa += len;
12724 		frag->len -= len;
12725 	}
12726 
12727 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12728 		vcpu->mmio_needed = 0;
12729 
12730 		// VMG change, at this point, we're always done
12731 		// RIP has already been advanced
12732 		return 1;
12733 	}
12734 
12735 	// More MMIO is needed
12736 	run->mmio.phys_addr = frag->gpa;
12737 	run->mmio.len = min(8u, frag->len);
12738 	run->mmio.is_write = vcpu->mmio_is_write;
12739 	if (run->mmio.is_write)
12740 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12741 	run->exit_reason = KVM_EXIT_MMIO;
12742 
12743 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12744 
12745 	return 0;
12746 }
12747 
12748 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12749 			  void *data)
12750 {
12751 	int handled;
12752 	struct kvm_mmio_fragment *frag;
12753 
12754 	if (!data)
12755 		return -EINVAL;
12756 
12757 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12758 	if (handled == bytes)
12759 		return 1;
12760 
12761 	bytes -= handled;
12762 	gpa += handled;
12763 	data += handled;
12764 
12765 	/*TODO: Check if need to increment number of frags */
12766 	frag = vcpu->mmio_fragments;
12767 	vcpu->mmio_nr_fragments = 1;
12768 	frag->len = bytes;
12769 	frag->gpa = gpa;
12770 	frag->data = data;
12771 
12772 	vcpu->mmio_needed = 1;
12773 	vcpu->mmio_cur_fragment = 0;
12774 
12775 	vcpu->run->mmio.phys_addr = gpa;
12776 	vcpu->run->mmio.len = min(8u, frag->len);
12777 	vcpu->run->mmio.is_write = 1;
12778 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12779 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12780 
12781 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12782 
12783 	return 0;
12784 }
12785 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12786 
12787 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12788 			 void *data)
12789 {
12790 	int handled;
12791 	struct kvm_mmio_fragment *frag;
12792 
12793 	if (!data)
12794 		return -EINVAL;
12795 
12796 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12797 	if (handled == bytes)
12798 		return 1;
12799 
12800 	bytes -= handled;
12801 	gpa += handled;
12802 	data += handled;
12803 
12804 	/*TODO: Check if need to increment number of frags */
12805 	frag = vcpu->mmio_fragments;
12806 	vcpu->mmio_nr_fragments = 1;
12807 	frag->len = bytes;
12808 	frag->gpa = gpa;
12809 	frag->data = data;
12810 
12811 	vcpu->mmio_needed = 1;
12812 	vcpu->mmio_cur_fragment = 0;
12813 
12814 	vcpu->run->mmio.phys_addr = gpa;
12815 	vcpu->run->mmio.len = min(8u, frag->len);
12816 	vcpu->run->mmio.is_write = 0;
12817 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12818 
12819 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12820 
12821 	return 0;
12822 }
12823 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12824 
12825 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12826 			   unsigned int port);
12827 
12828 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12829 {
12830 	int size = vcpu->arch.pio.size;
12831 	int port = vcpu->arch.pio.port;
12832 
12833 	vcpu->arch.pio.count = 0;
12834 	if (vcpu->arch.sev_pio_count)
12835 		return kvm_sev_es_outs(vcpu, size, port);
12836 	return 1;
12837 }
12838 
12839 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12840 			   unsigned int port)
12841 {
12842 	for (;;) {
12843 		unsigned int count =
12844 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12845 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12846 
12847 		/* memcpy done already by emulator_pio_out.  */
12848 		vcpu->arch.sev_pio_count -= count;
12849 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12850 		if (!ret)
12851 			break;
12852 
12853 		/* Emulation done by the kernel.  */
12854 		if (!vcpu->arch.sev_pio_count)
12855 			return 1;
12856 	}
12857 
12858 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12859 	return 0;
12860 }
12861 
12862 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12863 			  unsigned int port);
12864 
12865 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12866 {
12867 	unsigned count = vcpu->arch.pio.count;
12868 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12869 	vcpu->arch.sev_pio_count -= count;
12870 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12871 }
12872 
12873 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12874 {
12875 	int size = vcpu->arch.pio.size;
12876 	int port = vcpu->arch.pio.port;
12877 
12878 	advance_sev_es_emulated_ins(vcpu);
12879 	if (vcpu->arch.sev_pio_count)
12880 		return kvm_sev_es_ins(vcpu, size, port);
12881 	return 1;
12882 }
12883 
12884 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12885 			  unsigned int port)
12886 {
12887 	for (;;) {
12888 		unsigned int count =
12889 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12890 		if (!__emulator_pio_in(vcpu, size, port, count))
12891 			break;
12892 
12893 		/* Emulation done by the kernel.  */
12894 		advance_sev_es_emulated_ins(vcpu);
12895 		if (!vcpu->arch.sev_pio_count)
12896 			return 1;
12897 	}
12898 
12899 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12900 	return 0;
12901 }
12902 
12903 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12904 			 unsigned int port, void *data,  unsigned int count,
12905 			 int in)
12906 {
12907 	vcpu->arch.sev_pio_data = data;
12908 	vcpu->arch.sev_pio_count = count;
12909 	return in ? kvm_sev_es_ins(vcpu, size, port)
12910 		  : kvm_sev_es_outs(vcpu, size, port);
12911 }
12912 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12913 
12914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12916 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12917 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12918 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12919 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12920 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12921 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12922 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12923 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12924 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12925 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12926 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12927 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12928 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12929 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12930 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12931 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12932 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12933 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12934 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12935 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12936 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12937 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12938 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12939 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12940 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12941 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12942