xref: /linux/arch/x86/kvm/x86.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73 
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78 
79 #define emul_to_vcpu(ctxt) \
80 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81 
82 /* EFER defaults:
83  * - enable syscall per default because its emulated by KVM
84  * - enable LME and LMA per default on 64 bit KVM
85  */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92 
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95 
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98 
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103 
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106 
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109 
110 static bool __read_mostly report_ignored_msrs = true;
111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
112 
113 unsigned int min_timer_period_us = 500;
114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
115 
116 static bool __read_mostly kvmclock_periodic_sync = true;
117 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
118 
119 bool __read_mostly kvm_has_tsc_control;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
121 u32  __read_mostly kvm_max_guest_tsc_khz;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
123 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
125 u64  __read_mostly kvm_max_tsc_scaling_ratio;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
129 
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm = 250;
132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
133 
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns = 0;
136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
137 
138 static bool __read_mostly vector_hashing = true;
139 module_param(vector_hashing, bool, S_IRUGO);
140 
141 #define KVM_NR_SHARED_MSRS 16
142 
143 struct kvm_shared_msrs_global {
144 	int nr;
145 	u32 msrs[KVM_NR_SHARED_MSRS];
146 };
147 
148 struct kvm_shared_msrs {
149 	struct user_return_notifier urn;
150 	bool registered;
151 	struct kvm_shared_msr_values {
152 		u64 host;
153 		u64 curr;
154 	} values[KVM_NR_SHARED_MSRS];
155 };
156 
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
158 static struct kvm_shared_msrs __percpu *shared_msrs;
159 
160 struct kvm_stats_debugfs_item debugfs_entries[] = {
161 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
162 	{ "pf_guest", VCPU_STAT(pf_guest) },
163 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
164 	{ "invlpg", VCPU_STAT(invlpg) },
165 	{ "exits", VCPU_STAT(exits) },
166 	{ "io_exits", VCPU_STAT(io_exits) },
167 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
168 	{ "signal_exits", VCPU_STAT(signal_exits) },
169 	{ "irq_window", VCPU_STAT(irq_window_exits) },
170 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
171 	{ "halt_exits", VCPU_STAT(halt_exits) },
172 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
173 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
174 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
175 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
176 	{ "hypercalls", VCPU_STAT(hypercalls) },
177 	{ "request_irq", VCPU_STAT(request_irq_exits) },
178 	{ "irq_exits", VCPU_STAT(irq_exits) },
179 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
180 	{ "efer_reload", VCPU_STAT(efer_reload) },
181 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
182 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
183 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
184 	{ "irq_injections", VCPU_STAT(irq_injections) },
185 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
186 	{ "req_event", VCPU_STAT(req_event) },
187 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
188 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
189 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
190 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
191 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
192 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
193 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
194 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
195 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
196 	{ "largepages", VM_STAT(lpages) },
197 	{ "max_mmu_page_hash_collisions",
198 		VM_STAT(max_mmu_page_hash_collisions) },
199 	{ NULL }
200 };
201 
202 u64 __read_mostly host_xcr0;
203 
204 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
205 
206 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
207 {
208 	int i;
209 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
210 		vcpu->arch.apf.gfns[i] = ~0;
211 }
212 
213 static void kvm_on_user_return(struct user_return_notifier *urn)
214 {
215 	unsigned slot;
216 	struct kvm_shared_msrs *locals
217 		= container_of(urn, struct kvm_shared_msrs, urn);
218 	struct kvm_shared_msr_values *values;
219 	unsigned long flags;
220 
221 	/*
222 	 * Disabling irqs at this point since the following code could be
223 	 * interrupted and executed through kvm_arch_hardware_disable()
224 	 */
225 	local_irq_save(flags);
226 	if (locals->registered) {
227 		locals->registered = false;
228 		user_return_notifier_unregister(urn);
229 	}
230 	local_irq_restore(flags);
231 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
232 		values = &locals->values[slot];
233 		if (values->host != values->curr) {
234 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
235 			values->curr = values->host;
236 		}
237 	}
238 }
239 
240 static void shared_msr_update(unsigned slot, u32 msr)
241 {
242 	u64 value;
243 	unsigned int cpu = smp_processor_id();
244 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
245 
246 	/* only read, and nobody should modify it at this time,
247 	 * so don't need lock */
248 	if (slot >= shared_msrs_global.nr) {
249 		printk(KERN_ERR "kvm: invalid MSR slot!");
250 		return;
251 	}
252 	rdmsrl_safe(msr, &value);
253 	smsr->values[slot].host = value;
254 	smsr->values[slot].curr = value;
255 }
256 
257 void kvm_define_shared_msr(unsigned slot, u32 msr)
258 {
259 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
260 	shared_msrs_global.msrs[slot] = msr;
261 	if (slot >= shared_msrs_global.nr)
262 		shared_msrs_global.nr = slot + 1;
263 }
264 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
265 
266 static void kvm_shared_msr_cpu_online(void)
267 {
268 	unsigned i;
269 
270 	for (i = 0; i < shared_msrs_global.nr; ++i)
271 		shared_msr_update(i, shared_msrs_global.msrs[i]);
272 }
273 
274 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
275 {
276 	unsigned int cpu = smp_processor_id();
277 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278 	int err;
279 
280 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
281 		return 0;
282 	smsr->values[slot].curr = value;
283 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
284 	if (err)
285 		return 1;
286 
287 	if (!smsr->registered) {
288 		smsr->urn.on_user_return = kvm_on_user_return;
289 		user_return_notifier_register(&smsr->urn);
290 		smsr->registered = true;
291 	}
292 	return 0;
293 }
294 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
295 
296 static void drop_user_return_notifiers(void)
297 {
298 	unsigned int cpu = smp_processor_id();
299 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300 
301 	if (smsr->registered)
302 		kvm_on_user_return(&smsr->urn);
303 }
304 
305 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
306 {
307 	return vcpu->arch.apic_base;
308 }
309 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
310 
311 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
312 {
313 	u64 old_state = vcpu->arch.apic_base &
314 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315 	u64 new_state = msr_info->data &
316 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
317 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
318 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
319 
320 	if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
321 		return 1;
322 	if (!msr_info->host_initiated &&
323 	    ((new_state == MSR_IA32_APICBASE_ENABLE &&
324 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
325 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
326 	      old_state == 0)))
327 		return 1;
328 
329 	kvm_lapic_set_base(vcpu, msr_info->data);
330 	return 0;
331 }
332 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
333 
334 asmlinkage __visible void kvm_spurious_fault(void)
335 {
336 	/* Fault while not rebooting.  We want the trace. */
337 	BUG();
338 }
339 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
340 
341 #define EXCPT_BENIGN		0
342 #define EXCPT_CONTRIBUTORY	1
343 #define EXCPT_PF		2
344 
345 static int exception_class(int vector)
346 {
347 	switch (vector) {
348 	case PF_VECTOR:
349 		return EXCPT_PF;
350 	case DE_VECTOR:
351 	case TS_VECTOR:
352 	case NP_VECTOR:
353 	case SS_VECTOR:
354 	case GP_VECTOR:
355 		return EXCPT_CONTRIBUTORY;
356 	default:
357 		break;
358 	}
359 	return EXCPT_BENIGN;
360 }
361 
362 #define EXCPT_FAULT		0
363 #define EXCPT_TRAP		1
364 #define EXCPT_ABORT		2
365 #define EXCPT_INTERRUPT		3
366 
367 static int exception_type(int vector)
368 {
369 	unsigned int mask;
370 
371 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
372 		return EXCPT_INTERRUPT;
373 
374 	mask = 1 << vector;
375 
376 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
377 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
378 		return EXCPT_TRAP;
379 
380 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
381 		return EXCPT_ABORT;
382 
383 	/* Reserved exceptions will result in fault */
384 	return EXCPT_FAULT;
385 }
386 
387 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
388 		unsigned nr, bool has_error, u32 error_code,
389 		bool reinject)
390 {
391 	u32 prev_nr;
392 	int class1, class2;
393 
394 	kvm_make_request(KVM_REQ_EVENT, vcpu);
395 
396 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
397 	queue:
398 		if (has_error && !is_protmode(vcpu))
399 			has_error = false;
400 		if (reinject) {
401 			/*
402 			 * On vmentry, vcpu->arch.exception.pending is only
403 			 * true if an event injection was blocked by
404 			 * nested_run_pending.  In that case, however,
405 			 * vcpu_enter_guest requests an immediate exit,
406 			 * and the guest shouldn't proceed far enough to
407 			 * need reinjection.
408 			 */
409 			WARN_ON_ONCE(vcpu->arch.exception.pending);
410 			vcpu->arch.exception.injected = true;
411 		} else {
412 			vcpu->arch.exception.pending = true;
413 			vcpu->arch.exception.injected = false;
414 		}
415 		vcpu->arch.exception.has_error_code = has_error;
416 		vcpu->arch.exception.nr = nr;
417 		vcpu->arch.exception.error_code = error_code;
418 		return;
419 	}
420 
421 	/* to check exception */
422 	prev_nr = vcpu->arch.exception.nr;
423 	if (prev_nr == DF_VECTOR) {
424 		/* triple fault -> shutdown */
425 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
426 		return;
427 	}
428 	class1 = exception_class(prev_nr);
429 	class2 = exception_class(nr);
430 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
431 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
432 		/*
433 		 * Generate double fault per SDM Table 5-5.  Set
434 		 * exception.pending = true so that the double fault
435 		 * can trigger a nested vmexit.
436 		 */
437 		vcpu->arch.exception.pending = true;
438 		vcpu->arch.exception.injected = false;
439 		vcpu->arch.exception.has_error_code = true;
440 		vcpu->arch.exception.nr = DF_VECTOR;
441 		vcpu->arch.exception.error_code = 0;
442 	} else
443 		/* replace previous exception with a new one in a hope
444 		   that instruction re-execution will regenerate lost
445 		   exception */
446 		goto queue;
447 }
448 
449 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
450 {
451 	kvm_multiple_exception(vcpu, nr, false, 0, false);
452 }
453 EXPORT_SYMBOL_GPL(kvm_queue_exception);
454 
455 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
456 {
457 	kvm_multiple_exception(vcpu, nr, false, 0, true);
458 }
459 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
460 
461 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
462 {
463 	if (err)
464 		kvm_inject_gp(vcpu, 0);
465 	else
466 		return kvm_skip_emulated_instruction(vcpu);
467 
468 	return 1;
469 }
470 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
471 
472 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
473 {
474 	++vcpu->stat.pf_guest;
475 	vcpu->arch.exception.nested_apf =
476 		is_guest_mode(vcpu) && fault->async_page_fault;
477 	if (vcpu->arch.exception.nested_apf)
478 		vcpu->arch.apf.nested_apf_token = fault->address;
479 	else
480 		vcpu->arch.cr2 = fault->address;
481 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
482 }
483 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
484 
485 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
486 {
487 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
488 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
489 	else
490 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
491 
492 	return fault->nested_page_fault;
493 }
494 
495 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
496 {
497 	atomic_inc(&vcpu->arch.nmi_queued);
498 	kvm_make_request(KVM_REQ_NMI, vcpu);
499 }
500 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
501 
502 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
503 {
504 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
505 }
506 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
507 
508 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
509 {
510 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
511 }
512 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
513 
514 /*
515  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
516  * a #GP and return false.
517  */
518 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
519 {
520 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
521 		return true;
522 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
523 	return false;
524 }
525 EXPORT_SYMBOL_GPL(kvm_require_cpl);
526 
527 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
528 {
529 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
530 		return true;
531 
532 	kvm_queue_exception(vcpu, UD_VECTOR);
533 	return false;
534 }
535 EXPORT_SYMBOL_GPL(kvm_require_dr);
536 
537 /*
538  * This function will be used to read from the physical memory of the currently
539  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
540  * can read from guest physical or from the guest's guest physical memory.
541  */
542 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
543 			    gfn_t ngfn, void *data, int offset, int len,
544 			    u32 access)
545 {
546 	struct x86_exception exception;
547 	gfn_t real_gfn;
548 	gpa_t ngpa;
549 
550 	ngpa     = gfn_to_gpa(ngfn);
551 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
552 	if (real_gfn == UNMAPPED_GVA)
553 		return -EFAULT;
554 
555 	real_gfn = gpa_to_gfn(real_gfn);
556 
557 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
558 }
559 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
560 
561 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
562 			       void *data, int offset, int len, u32 access)
563 {
564 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
565 				       data, offset, len, access);
566 }
567 
568 /*
569  * Load the pae pdptrs.  Return true is they are all valid.
570  */
571 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
572 {
573 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
574 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
575 	int i;
576 	int ret;
577 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
578 
579 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
580 				      offset * sizeof(u64), sizeof(pdpte),
581 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
582 	if (ret < 0) {
583 		ret = 0;
584 		goto out;
585 	}
586 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
587 		if ((pdpte[i] & PT_PRESENT_MASK) &&
588 		    (pdpte[i] &
589 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
590 			ret = 0;
591 			goto out;
592 		}
593 	}
594 	ret = 1;
595 
596 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
597 	__set_bit(VCPU_EXREG_PDPTR,
598 		  (unsigned long *)&vcpu->arch.regs_avail);
599 	__set_bit(VCPU_EXREG_PDPTR,
600 		  (unsigned long *)&vcpu->arch.regs_dirty);
601 out:
602 
603 	return ret;
604 }
605 EXPORT_SYMBOL_GPL(load_pdptrs);
606 
607 bool pdptrs_changed(struct kvm_vcpu *vcpu)
608 {
609 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
610 	bool changed = true;
611 	int offset;
612 	gfn_t gfn;
613 	int r;
614 
615 	if (is_long_mode(vcpu) || !is_pae(vcpu))
616 		return false;
617 
618 	if (!test_bit(VCPU_EXREG_PDPTR,
619 		      (unsigned long *)&vcpu->arch.regs_avail))
620 		return true;
621 
622 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
623 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
624 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
625 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
626 	if (r < 0)
627 		goto out;
628 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
629 out:
630 
631 	return changed;
632 }
633 EXPORT_SYMBOL_GPL(pdptrs_changed);
634 
635 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
636 {
637 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
638 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
639 
640 	cr0 |= X86_CR0_ET;
641 
642 #ifdef CONFIG_X86_64
643 	if (cr0 & 0xffffffff00000000UL)
644 		return 1;
645 #endif
646 
647 	cr0 &= ~CR0_RESERVED_BITS;
648 
649 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
650 		return 1;
651 
652 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
653 		return 1;
654 
655 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
656 #ifdef CONFIG_X86_64
657 		if ((vcpu->arch.efer & EFER_LME)) {
658 			int cs_db, cs_l;
659 
660 			if (!is_pae(vcpu))
661 				return 1;
662 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
663 			if (cs_l)
664 				return 1;
665 		} else
666 #endif
667 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
668 						 kvm_read_cr3(vcpu)))
669 			return 1;
670 	}
671 
672 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
673 		return 1;
674 
675 	kvm_x86_ops->set_cr0(vcpu, cr0);
676 
677 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
678 		kvm_clear_async_pf_completion_queue(vcpu);
679 		kvm_async_pf_hash_reset(vcpu);
680 	}
681 
682 	if ((cr0 ^ old_cr0) & update_bits)
683 		kvm_mmu_reset_context(vcpu);
684 
685 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
686 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
687 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
688 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
689 
690 	return 0;
691 }
692 EXPORT_SYMBOL_GPL(kvm_set_cr0);
693 
694 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
695 {
696 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
697 }
698 EXPORT_SYMBOL_GPL(kvm_lmsw);
699 
700 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
701 {
702 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
703 			!vcpu->guest_xcr0_loaded) {
704 		/* kvm_set_xcr() also depends on this */
705 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
706 		vcpu->guest_xcr0_loaded = 1;
707 	}
708 }
709 
710 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
711 {
712 	if (vcpu->guest_xcr0_loaded) {
713 		if (vcpu->arch.xcr0 != host_xcr0)
714 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
715 		vcpu->guest_xcr0_loaded = 0;
716 	}
717 }
718 
719 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
720 {
721 	u64 xcr0 = xcr;
722 	u64 old_xcr0 = vcpu->arch.xcr0;
723 	u64 valid_bits;
724 
725 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
726 	if (index != XCR_XFEATURE_ENABLED_MASK)
727 		return 1;
728 	if (!(xcr0 & XFEATURE_MASK_FP))
729 		return 1;
730 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
731 		return 1;
732 
733 	/*
734 	 * Do not allow the guest to set bits that we do not support
735 	 * saving.  However, xcr0 bit 0 is always set, even if the
736 	 * emulated CPU does not support XSAVE (see fx_init).
737 	 */
738 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
739 	if (xcr0 & ~valid_bits)
740 		return 1;
741 
742 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
743 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
744 		return 1;
745 
746 	if (xcr0 & XFEATURE_MASK_AVX512) {
747 		if (!(xcr0 & XFEATURE_MASK_YMM))
748 			return 1;
749 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
750 			return 1;
751 	}
752 	vcpu->arch.xcr0 = xcr0;
753 
754 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
755 		kvm_update_cpuid(vcpu);
756 	return 0;
757 }
758 
759 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
760 {
761 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
762 	    __kvm_set_xcr(vcpu, index, xcr)) {
763 		kvm_inject_gp(vcpu, 0);
764 		return 1;
765 	}
766 	return 0;
767 }
768 EXPORT_SYMBOL_GPL(kvm_set_xcr);
769 
770 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
771 {
772 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
773 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
774 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
775 
776 	if (cr4 & CR4_RESERVED_BITS)
777 		return 1;
778 
779 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
780 		return 1;
781 
782 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
783 		return 1;
784 
785 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
786 		return 1;
787 
788 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
789 		return 1;
790 
791 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
792 		return 1;
793 
794 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
795 		return 1;
796 
797 	if (is_long_mode(vcpu)) {
798 		if (!(cr4 & X86_CR4_PAE))
799 			return 1;
800 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
801 		   && ((cr4 ^ old_cr4) & pdptr_bits)
802 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
803 				   kvm_read_cr3(vcpu)))
804 		return 1;
805 
806 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
807 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
808 			return 1;
809 
810 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
811 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
812 			return 1;
813 	}
814 
815 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
816 		return 1;
817 
818 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
819 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
820 		kvm_mmu_reset_context(vcpu);
821 
822 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
823 		kvm_update_cpuid(vcpu);
824 
825 	return 0;
826 }
827 EXPORT_SYMBOL_GPL(kvm_set_cr4);
828 
829 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
830 {
831 #ifdef CONFIG_X86_64
832 	cr3 &= ~CR3_PCID_INVD;
833 #endif
834 
835 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
836 		kvm_mmu_sync_roots(vcpu);
837 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
838 		return 0;
839 	}
840 
841 	if (is_long_mode(vcpu) &&
842 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
843 		return 1;
844 	else if (is_pae(vcpu) && is_paging(vcpu) &&
845 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
846 		return 1;
847 
848 	vcpu->arch.cr3 = cr3;
849 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
850 	kvm_mmu_new_cr3(vcpu);
851 	return 0;
852 }
853 EXPORT_SYMBOL_GPL(kvm_set_cr3);
854 
855 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
856 {
857 	if (cr8 & CR8_RESERVED_BITS)
858 		return 1;
859 	if (lapic_in_kernel(vcpu))
860 		kvm_lapic_set_tpr(vcpu, cr8);
861 	else
862 		vcpu->arch.cr8 = cr8;
863 	return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_cr8);
866 
867 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
868 {
869 	if (lapic_in_kernel(vcpu))
870 		return kvm_lapic_get_cr8(vcpu);
871 	else
872 		return vcpu->arch.cr8;
873 }
874 EXPORT_SYMBOL_GPL(kvm_get_cr8);
875 
876 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
877 {
878 	int i;
879 
880 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
881 		for (i = 0; i < KVM_NR_DB_REGS; i++)
882 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
883 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
884 	}
885 }
886 
887 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
888 {
889 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
891 }
892 
893 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
894 {
895 	unsigned long dr7;
896 
897 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
898 		dr7 = vcpu->arch.guest_debug_dr7;
899 	else
900 		dr7 = vcpu->arch.dr7;
901 	kvm_x86_ops->set_dr7(vcpu, dr7);
902 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
903 	if (dr7 & DR7_BP_EN_MASK)
904 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
905 }
906 
907 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
908 {
909 	u64 fixed = DR6_FIXED_1;
910 
911 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
912 		fixed |= DR6_RTM;
913 	return fixed;
914 }
915 
916 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
917 {
918 	switch (dr) {
919 	case 0 ... 3:
920 		vcpu->arch.db[dr] = val;
921 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
922 			vcpu->arch.eff_db[dr] = val;
923 		break;
924 	case 4:
925 		/* fall through */
926 	case 6:
927 		if (val & 0xffffffff00000000ULL)
928 			return -1; /* #GP */
929 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
930 		kvm_update_dr6(vcpu);
931 		break;
932 	case 5:
933 		/* fall through */
934 	default: /* 7 */
935 		if (val & 0xffffffff00000000ULL)
936 			return -1; /* #GP */
937 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
938 		kvm_update_dr7(vcpu);
939 		break;
940 	}
941 
942 	return 0;
943 }
944 
945 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
946 {
947 	if (__kvm_set_dr(vcpu, dr, val)) {
948 		kvm_inject_gp(vcpu, 0);
949 		return 1;
950 	}
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_set_dr);
954 
955 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
956 {
957 	switch (dr) {
958 	case 0 ... 3:
959 		*val = vcpu->arch.db[dr];
960 		break;
961 	case 4:
962 		/* fall through */
963 	case 6:
964 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
965 			*val = vcpu->arch.dr6;
966 		else
967 			*val = kvm_x86_ops->get_dr6(vcpu);
968 		break;
969 	case 5:
970 		/* fall through */
971 	default: /* 7 */
972 		*val = vcpu->arch.dr7;
973 		break;
974 	}
975 	return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_get_dr);
978 
979 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
980 {
981 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
982 	u64 data;
983 	int err;
984 
985 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
986 	if (err)
987 		return err;
988 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
989 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
990 	return err;
991 }
992 EXPORT_SYMBOL_GPL(kvm_rdpmc);
993 
994 /*
995  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
996  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
997  *
998  * This list is modified at module load time to reflect the
999  * capabilities of the host cpu. This capabilities test skips MSRs that are
1000  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1001  * may depend on host virtualization features rather than host cpu features.
1002  */
1003 
1004 static u32 msrs_to_save[] = {
1005 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1006 	MSR_STAR,
1007 #ifdef CONFIG_X86_64
1008 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1009 #endif
1010 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1011 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1012 	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1013 };
1014 
1015 static unsigned num_msrs_to_save;
1016 
1017 static u32 emulated_msrs[] = {
1018 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1019 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1020 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1021 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1022 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1023 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1024 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1025 	HV_X64_MSR_RESET,
1026 	HV_X64_MSR_VP_INDEX,
1027 	HV_X64_MSR_VP_RUNTIME,
1028 	HV_X64_MSR_SCONTROL,
1029 	HV_X64_MSR_STIMER0_CONFIG,
1030 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1031 	MSR_KVM_PV_EOI_EN,
1032 
1033 	MSR_IA32_TSC_ADJUST,
1034 	MSR_IA32_TSCDEADLINE,
1035 	MSR_IA32_MISC_ENABLE,
1036 	MSR_IA32_MCG_STATUS,
1037 	MSR_IA32_MCG_CTL,
1038 	MSR_IA32_MCG_EXT_CTL,
1039 	MSR_IA32_SMBASE,
1040 	MSR_PLATFORM_INFO,
1041 	MSR_MISC_FEATURES_ENABLES,
1042 };
1043 
1044 static unsigned num_emulated_msrs;
1045 
1046 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1047 {
1048 	if (efer & efer_reserved_bits)
1049 		return false;
1050 
1051 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1052 			return false;
1053 
1054 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1055 			return false;
1056 
1057 	return true;
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1060 
1061 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1062 {
1063 	u64 old_efer = vcpu->arch.efer;
1064 
1065 	if (!kvm_valid_efer(vcpu, efer))
1066 		return 1;
1067 
1068 	if (is_paging(vcpu)
1069 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1070 		return 1;
1071 
1072 	efer &= ~EFER_LMA;
1073 	efer |= vcpu->arch.efer & EFER_LMA;
1074 
1075 	kvm_x86_ops->set_efer(vcpu, efer);
1076 
1077 	/* Update reserved bits */
1078 	if ((efer ^ old_efer) & EFER_NX)
1079 		kvm_mmu_reset_context(vcpu);
1080 
1081 	return 0;
1082 }
1083 
1084 void kvm_enable_efer_bits(u64 mask)
1085 {
1086        efer_reserved_bits &= ~mask;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1089 
1090 /*
1091  * Writes msr value into into the appropriate "register".
1092  * Returns 0 on success, non-0 otherwise.
1093  * Assumes vcpu_load() was already called.
1094  */
1095 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1096 {
1097 	switch (msr->index) {
1098 	case MSR_FS_BASE:
1099 	case MSR_GS_BASE:
1100 	case MSR_KERNEL_GS_BASE:
1101 	case MSR_CSTAR:
1102 	case MSR_LSTAR:
1103 		if (is_noncanonical_address(msr->data, vcpu))
1104 			return 1;
1105 		break;
1106 	case MSR_IA32_SYSENTER_EIP:
1107 	case MSR_IA32_SYSENTER_ESP:
1108 		/*
1109 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1110 		 * non-canonical address is written on Intel but not on
1111 		 * AMD (which ignores the top 32-bits, because it does
1112 		 * not implement 64-bit SYSENTER).
1113 		 *
1114 		 * 64-bit code should hence be able to write a non-canonical
1115 		 * value on AMD.  Making the address canonical ensures that
1116 		 * vmentry does not fail on Intel after writing a non-canonical
1117 		 * value, and that something deterministic happens if the guest
1118 		 * invokes 64-bit SYSENTER.
1119 		 */
1120 		msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1121 	}
1122 	return kvm_x86_ops->set_msr(vcpu, msr);
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_set_msr);
1125 
1126 /*
1127  * Adapt set_msr() to msr_io()'s calling convention
1128  */
1129 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1130 {
1131 	struct msr_data msr;
1132 	int r;
1133 
1134 	msr.index = index;
1135 	msr.host_initiated = true;
1136 	r = kvm_get_msr(vcpu, &msr);
1137 	if (r)
1138 		return r;
1139 
1140 	*data = msr.data;
1141 	return 0;
1142 }
1143 
1144 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1145 {
1146 	struct msr_data msr;
1147 
1148 	msr.data = *data;
1149 	msr.index = index;
1150 	msr.host_initiated = true;
1151 	return kvm_set_msr(vcpu, &msr);
1152 }
1153 
1154 #ifdef CONFIG_X86_64
1155 struct pvclock_gtod_data {
1156 	seqcount_t	seq;
1157 
1158 	struct { /* extract of a clocksource struct */
1159 		int vclock_mode;
1160 		u64	cycle_last;
1161 		u64	mask;
1162 		u32	mult;
1163 		u32	shift;
1164 	} clock;
1165 
1166 	u64		boot_ns;
1167 	u64		nsec_base;
1168 	u64		wall_time_sec;
1169 };
1170 
1171 static struct pvclock_gtod_data pvclock_gtod_data;
1172 
1173 static void update_pvclock_gtod(struct timekeeper *tk)
1174 {
1175 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1176 	u64 boot_ns;
1177 
1178 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1179 
1180 	write_seqcount_begin(&vdata->seq);
1181 
1182 	/* copy pvclock gtod data */
1183 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1184 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1185 	vdata->clock.mask		= tk->tkr_mono.mask;
1186 	vdata->clock.mult		= tk->tkr_mono.mult;
1187 	vdata->clock.shift		= tk->tkr_mono.shift;
1188 
1189 	vdata->boot_ns			= boot_ns;
1190 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1191 
1192 	vdata->wall_time_sec            = tk->xtime_sec;
1193 
1194 	write_seqcount_end(&vdata->seq);
1195 }
1196 #endif
1197 
1198 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1199 {
1200 	/*
1201 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1202 	 * vcpu_enter_guest.  This function is only called from
1203 	 * the physical CPU that is running vcpu.
1204 	 */
1205 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1206 }
1207 
1208 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1209 {
1210 	int version;
1211 	int r;
1212 	struct pvclock_wall_clock wc;
1213 	struct timespec64 boot;
1214 
1215 	if (!wall_clock)
1216 		return;
1217 
1218 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1219 	if (r)
1220 		return;
1221 
1222 	if (version & 1)
1223 		++version;  /* first time write, random junk */
1224 
1225 	++version;
1226 
1227 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1228 		return;
1229 
1230 	/*
1231 	 * The guest calculates current wall clock time by adding
1232 	 * system time (updated by kvm_guest_time_update below) to the
1233 	 * wall clock specified here.  guest system time equals host
1234 	 * system time for us, thus we must fill in host boot time here.
1235 	 */
1236 	getboottime64(&boot);
1237 
1238 	if (kvm->arch.kvmclock_offset) {
1239 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1240 		boot = timespec64_sub(boot, ts);
1241 	}
1242 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1243 	wc.nsec = boot.tv_nsec;
1244 	wc.version = version;
1245 
1246 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1247 
1248 	version++;
1249 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1250 }
1251 
1252 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1253 {
1254 	do_shl32_div32(dividend, divisor);
1255 	return dividend;
1256 }
1257 
1258 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1259 			       s8 *pshift, u32 *pmultiplier)
1260 {
1261 	uint64_t scaled64;
1262 	int32_t  shift = 0;
1263 	uint64_t tps64;
1264 	uint32_t tps32;
1265 
1266 	tps64 = base_hz;
1267 	scaled64 = scaled_hz;
1268 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1269 		tps64 >>= 1;
1270 		shift--;
1271 	}
1272 
1273 	tps32 = (uint32_t)tps64;
1274 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1275 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1276 			scaled64 >>= 1;
1277 		else
1278 			tps32 <<= 1;
1279 		shift++;
1280 	}
1281 
1282 	*pshift = shift;
1283 	*pmultiplier = div_frac(scaled64, tps32);
1284 
1285 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1286 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1287 }
1288 
1289 #ifdef CONFIG_X86_64
1290 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1291 #endif
1292 
1293 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1294 static unsigned long max_tsc_khz;
1295 
1296 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1297 {
1298 	u64 v = (u64)khz * (1000000 + ppm);
1299 	do_div(v, 1000000);
1300 	return v;
1301 }
1302 
1303 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1304 {
1305 	u64 ratio;
1306 
1307 	/* Guest TSC same frequency as host TSC? */
1308 	if (!scale) {
1309 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1310 		return 0;
1311 	}
1312 
1313 	/* TSC scaling supported? */
1314 	if (!kvm_has_tsc_control) {
1315 		if (user_tsc_khz > tsc_khz) {
1316 			vcpu->arch.tsc_catchup = 1;
1317 			vcpu->arch.tsc_always_catchup = 1;
1318 			return 0;
1319 		} else {
1320 			WARN(1, "user requested TSC rate below hardware speed\n");
1321 			return -1;
1322 		}
1323 	}
1324 
1325 	/* TSC scaling required  - calculate ratio */
1326 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1327 				user_tsc_khz, tsc_khz);
1328 
1329 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1330 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1331 			  user_tsc_khz);
1332 		return -1;
1333 	}
1334 
1335 	vcpu->arch.tsc_scaling_ratio = ratio;
1336 	return 0;
1337 }
1338 
1339 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1340 {
1341 	u32 thresh_lo, thresh_hi;
1342 	int use_scaling = 0;
1343 
1344 	/* tsc_khz can be zero if TSC calibration fails */
1345 	if (user_tsc_khz == 0) {
1346 		/* set tsc_scaling_ratio to a safe value */
1347 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1348 		return -1;
1349 	}
1350 
1351 	/* Compute a scale to convert nanoseconds in TSC cycles */
1352 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1353 			   &vcpu->arch.virtual_tsc_shift,
1354 			   &vcpu->arch.virtual_tsc_mult);
1355 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1356 
1357 	/*
1358 	 * Compute the variation in TSC rate which is acceptable
1359 	 * within the range of tolerance and decide if the
1360 	 * rate being applied is within that bounds of the hardware
1361 	 * rate.  If so, no scaling or compensation need be done.
1362 	 */
1363 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1364 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1365 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1366 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1367 		use_scaling = 1;
1368 	}
1369 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1370 }
1371 
1372 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1373 {
1374 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1375 				      vcpu->arch.virtual_tsc_mult,
1376 				      vcpu->arch.virtual_tsc_shift);
1377 	tsc += vcpu->arch.this_tsc_write;
1378 	return tsc;
1379 }
1380 
1381 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1382 {
1383 #ifdef CONFIG_X86_64
1384 	bool vcpus_matched;
1385 	struct kvm_arch *ka = &vcpu->kvm->arch;
1386 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1387 
1388 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1389 			 atomic_read(&vcpu->kvm->online_vcpus));
1390 
1391 	/*
1392 	 * Once the masterclock is enabled, always perform request in
1393 	 * order to update it.
1394 	 *
1395 	 * In order to enable masterclock, the host clocksource must be TSC
1396 	 * and the vcpus need to have matched TSCs.  When that happens,
1397 	 * perform request to enable masterclock.
1398 	 */
1399 	if (ka->use_master_clock ||
1400 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1401 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1402 
1403 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1404 			    atomic_read(&vcpu->kvm->online_vcpus),
1405 		            ka->use_master_clock, gtod->clock.vclock_mode);
1406 #endif
1407 }
1408 
1409 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1410 {
1411 	u64 curr_offset = vcpu->arch.tsc_offset;
1412 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1413 }
1414 
1415 /*
1416  * Multiply tsc by a fixed point number represented by ratio.
1417  *
1418  * The most significant 64-N bits (mult) of ratio represent the
1419  * integral part of the fixed point number; the remaining N bits
1420  * (frac) represent the fractional part, ie. ratio represents a fixed
1421  * point number (mult + frac * 2^(-N)).
1422  *
1423  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1424  */
1425 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1426 {
1427 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1428 }
1429 
1430 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1431 {
1432 	u64 _tsc = tsc;
1433 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1434 
1435 	if (ratio != kvm_default_tsc_scaling_ratio)
1436 		_tsc = __scale_tsc(ratio, tsc);
1437 
1438 	return _tsc;
1439 }
1440 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1441 
1442 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1443 {
1444 	u64 tsc;
1445 
1446 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1447 
1448 	return target_tsc - tsc;
1449 }
1450 
1451 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1452 {
1453 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1456 
1457 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1458 {
1459 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1460 	vcpu->arch.tsc_offset = offset;
1461 }
1462 
1463 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1464 {
1465 	struct kvm *kvm = vcpu->kvm;
1466 	u64 offset, ns, elapsed;
1467 	unsigned long flags;
1468 	bool matched;
1469 	bool already_matched;
1470 	u64 data = msr->data;
1471 	bool synchronizing = false;
1472 
1473 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1474 	offset = kvm_compute_tsc_offset(vcpu, data);
1475 	ns = ktime_get_boot_ns();
1476 	elapsed = ns - kvm->arch.last_tsc_nsec;
1477 
1478 	if (vcpu->arch.virtual_tsc_khz) {
1479 		if (data == 0 && msr->host_initiated) {
1480 			/*
1481 			 * detection of vcpu initialization -- need to sync
1482 			 * with other vCPUs. This particularly helps to keep
1483 			 * kvm_clock stable after CPU hotplug
1484 			 */
1485 			synchronizing = true;
1486 		} else {
1487 			u64 tsc_exp = kvm->arch.last_tsc_write +
1488 						nsec_to_cycles(vcpu, elapsed);
1489 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1490 			/*
1491 			 * Special case: TSC write with a small delta (1 second)
1492 			 * of virtual cycle time against real time is
1493 			 * interpreted as an attempt to synchronize the CPU.
1494 			 */
1495 			synchronizing = data < tsc_exp + tsc_hz &&
1496 					data + tsc_hz > tsc_exp;
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1502 	 * TSC, we add elapsed time in this computation.  We could let the
1503 	 * compensation code attempt to catch up if we fall behind, but
1504 	 * it's better to try to match offsets from the beginning.
1505          */
1506 	if (synchronizing &&
1507 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1508 		if (!check_tsc_unstable()) {
1509 			offset = kvm->arch.cur_tsc_offset;
1510 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1511 		} else {
1512 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1513 			data += delta;
1514 			offset = kvm_compute_tsc_offset(vcpu, data);
1515 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1516 		}
1517 		matched = true;
1518 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1519 	} else {
1520 		/*
1521 		 * We split periods of matched TSC writes into generations.
1522 		 * For each generation, we track the original measured
1523 		 * nanosecond time, offset, and write, so if TSCs are in
1524 		 * sync, we can match exact offset, and if not, we can match
1525 		 * exact software computation in compute_guest_tsc()
1526 		 *
1527 		 * These values are tracked in kvm->arch.cur_xxx variables.
1528 		 */
1529 		kvm->arch.cur_tsc_generation++;
1530 		kvm->arch.cur_tsc_nsec = ns;
1531 		kvm->arch.cur_tsc_write = data;
1532 		kvm->arch.cur_tsc_offset = offset;
1533 		matched = false;
1534 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1535 			 kvm->arch.cur_tsc_generation, data);
1536 	}
1537 
1538 	/*
1539 	 * We also track th most recent recorded KHZ, write and time to
1540 	 * allow the matching interval to be extended at each write.
1541 	 */
1542 	kvm->arch.last_tsc_nsec = ns;
1543 	kvm->arch.last_tsc_write = data;
1544 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1545 
1546 	vcpu->arch.last_guest_tsc = data;
1547 
1548 	/* Keep track of which generation this VCPU has synchronized to */
1549 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1550 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1551 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1552 
1553 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1554 		update_ia32_tsc_adjust_msr(vcpu, offset);
1555 
1556 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1557 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1558 
1559 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1560 	if (!matched) {
1561 		kvm->arch.nr_vcpus_matched_tsc = 0;
1562 	} else if (!already_matched) {
1563 		kvm->arch.nr_vcpus_matched_tsc++;
1564 	}
1565 
1566 	kvm_track_tsc_matching(vcpu);
1567 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1568 }
1569 
1570 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1571 
1572 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1573 					   s64 adjustment)
1574 {
1575 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1576 }
1577 
1578 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1579 {
1580 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1581 		WARN_ON(adjustment < 0);
1582 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1583 	adjust_tsc_offset_guest(vcpu, adjustment);
1584 }
1585 
1586 #ifdef CONFIG_X86_64
1587 
1588 static u64 read_tsc(void)
1589 {
1590 	u64 ret = (u64)rdtsc_ordered();
1591 	u64 last = pvclock_gtod_data.clock.cycle_last;
1592 
1593 	if (likely(ret >= last))
1594 		return ret;
1595 
1596 	/*
1597 	 * GCC likes to generate cmov here, but this branch is extremely
1598 	 * predictable (it's just a function of time and the likely is
1599 	 * very likely) and there's a data dependence, so force GCC
1600 	 * to generate a branch instead.  I don't barrier() because
1601 	 * we don't actually need a barrier, and if this function
1602 	 * ever gets inlined it will generate worse code.
1603 	 */
1604 	asm volatile ("");
1605 	return last;
1606 }
1607 
1608 static inline u64 vgettsc(u64 *cycle_now)
1609 {
1610 	long v;
1611 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1612 
1613 	*cycle_now = read_tsc();
1614 
1615 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1616 	return v * gtod->clock.mult;
1617 }
1618 
1619 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1620 {
1621 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1622 	unsigned long seq;
1623 	int mode;
1624 	u64 ns;
1625 
1626 	do {
1627 		seq = read_seqcount_begin(&gtod->seq);
1628 		mode = gtod->clock.vclock_mode;
1629 		ns = gtod->nsec_base;
1630 		ns += vgettsc(cycle_now);
1631 		ns >>= gtod->clock.shift;
1632 		ns += gtod->boot_ns;
1633 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1634 	*t = ns;
1635 
1636 	return mode;
1637 }
1638 
1639 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1640 {
1641 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1642 	unsigned long seq;
1643 	int mode;
1644 	u64 ns;
1645 
1646 	do {
1647 		seq = read_seqcount_begin(&gtod->seq);
1648 		mode = gtod->clock.vclock_mode;
1649 		ts->tv_sec = gtod->wall_time_sec;
1650 		ns = gtod->nsec_base;
1651 		ns += vgettsc(cycle_now);
1652 		ns >>= gtod->clock.shift;
1653 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1654 
1655 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1656 	ts->tv_nsec = ns;
1657 
1658 	return mode;
1659 }
1660 
1661 /* returns true if host is using tsc clocksource */
1662 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1663 {
1664 	/* checked again under seqlock below */
1665 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1666 		return false;
1667 
1668 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1669 }
1670 
1671 /* returns true if host is using tsc clocksource */
1672 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1673 					   u64 *cycle_now)
1674 {
1675 	/* checked again under seqlock below */
1676 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1677 		return false;
1678 
1679 	return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1680 }
1681 #endif
1682 
1683 /*
1684  *
1685  * Assuming a stable TSC across physical CPUS, and a stable TSC
1686  * across virtual CPUs, the following condition is possible.
1687  * Each numbered line represents an event visible to both
1688  * CPUs at the next numbered event.
1689  *
1690  * "timespecX" represents host monotonic time. "tscX" represents
1691  * RDTSC value.
1692  *
1693  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1694  *
1695  * 1.  read timespec0,tsc0
1696  * 2.					| timespec1 = timespec0 + N
1697  * 					| tsc1 = tsc0 + M
1698  * 3. transition to guest		| transition to guest
1699  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1700  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1701  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1702  *
1703  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1704  *
1705  * 	- ret0 < ret1
1706  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1707  *		...
1708  *	- 0 < N - M => M < N
1709  *
1710  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1711  * always the case (the difference between two distinct xtime instances
1712  * might be smaller then the difference between corresponding TSC reads,
1713  * when updating guest vcpus pvclock areas).
1714  *
1715  * To avoid that problem, do not allow visibility of distinct
1716  * system_timestamp/tsc_timestamp values simultaneously: use a master
1717  * copy of host monotonic time values. Update that master copy
1718  * in lockstep.
1719  *
1720  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1721  *
1722  */
1723 
1724 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1725 {
1726 #ifdef CONFIG_X86_64
1727 	struct kvm_arch *ka = &kvm->arch;
1728 	int vclock_mode;
1729 	bool host_tsc_clocksource, vcpus_matched;
1730 
1731 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1732 			atomic_read(&kvm->online_vcpus));
1733 
1734 	/*
1735 	 * If the host uses TSC clock, then passthrough TSC as stable
1736 	 * to the guest.
1737 	 */
1738 	host_tsc_clocksource = kvm_get_time_and_clockread(
1739 					&ka->master_kernel_ns,
1740 					&ka->master_cycle_now);
1741 
1742 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1743 				&& !ka->backwards_tsc_observed
1744 				&& !ka->boot_vcpu_runs_old_kvmclock;
1745 
1746 	if (ka->use_master_clock)
1747 		atomic_set(&kvm_guest_has_master_clock, 1);
1748 
1749 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1750 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1751 					vcpus_matched);
1752 #endif
1753 }
1754 
1755 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1756 {
1757 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1758 }
1759 
1760 static void kvm_gen_update_masterclock(struct kvm *kvm)
1761 {
1762 #ifdef CONFIG_X86_64
1763 	int i;
1764 	struct kvm_vcpu *vcpu;
1765 	struct kvm_arch *ka = &kvm->arch;
1766 
1767 	spin_lock(&ka->pvclock_gtod_sync_lock);
1768 	kvm_make_mclock_inprogress_request(kvm);
1769 	/* no guest entries from this point */
1770 	pvclock_update_vm_gtod_copy(kvm);
1771 
1772 	kvm_for_each_vcpu(i, vcpu, kvm)
1773 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1774 
1775 	/* guest entries allowed */
1776 	kvm_for_each_vcpu(i, vcpu, kvm)
1777 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1778 
1779 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1780 #endif
1781 }
1782 
1783 u64 get_kvmclock_ns(struct kvm *kvm)
1784 {
1785 	struct kvm_arch *ka = &kvm->arch;
1786 	struct pvclock_vcpu_time_info hv_clock;
1787 	u64 ret;
1788 
1789 	spin_lock(&ka->pvclock_gtod_sync_lock);
1790 	if (!ka->use_master_clock) {
1791 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1792 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1793 	}
1794 
1795 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1796 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1797 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1798 
1799 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1800 	get_cpu();
1801 
1802 	if (__this_cpu_read(cpu_tsc_khz)) {
1803 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1804 				   &hv_clock.tsc_shift,
1805 				   &hv_clock.tsc_to_system_mul);
1806 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1807 	} else
1808 		ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1809 
1810 	put_cpu();
1811 
1812 	return ret;
1813 }
1814 
1815 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1816 {
1817 	struct kvm_vcpu_arch *vcpu = &v->arch;
1818 	struct pvclock_vcpu_time_info guest_hv_clock;
1819 
1820 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1821 		&guest_hv_clock, sizeof(guest_hv_clock))))
1822 		return;
1823 
1824 	/* This VCPU is paused, but it's legal for a guest to read another
1825 	 * VCPU's kvmclock, so we really have to follow the specification where
1826 	 * it says that version is odd if data is being modified, and even after
1827 	 * it is consistent.
1828 	 *
1829 	 * Version field updates must be kept separate.  This is because
1830 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1831 	 * writes within a string instruction are weakly ordered.  So there
1832 	 * are three writes overall.
1833 	 *
1834 	 * As a small optimization, only write the version field in the first
1835 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1836 	 * version field is the first in the struct.
1837 	 */
1838 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1839 
1840 	if (guest_hv_clock.version & 1)
1841 		++guest_hv_clock.version;  /* first time write, random junk */
1842 
1843 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1844 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1845 				&vcpu->hv_clock,
1846 				sizeof(vcpu->hv_clock.version));
1847 
1848 	smp_wmb();
1849 
1850 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1851 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1852 
1853 	if (vcpu->pvclock_set_guest_stopped_request) {
1854 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1855 		vcpu->pvclock_set_guest_stopped_request = false;
1856 	}
1857 
1858 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1859 
1860 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1861 				&vcpu->hv_clock,
1862 				sizeof(vcpu->hv_clock));
1863 
1864 	smp_wmb();
1865 
1866 	vcpu->hv_clock.version++;
1867 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1868 				&vcpu->hv_clock,
1869 				sizeof(vcpu->hv_clock.version));
1870 }
1871 
1872 static int kvm_guest_time_update(struct kvm_vcpu *v)
1873 {
1874 	unsigned long flags, tgt_tsc_khz;
1875 	struct kvm_vcpu_arch *vcpu = &v->arch;
1876 	struct kvm_arch *ka = &v->kvm->arch;
1877 	s64 kernel_ns;
1878 	u64 tsc_timestamp, host_tsc;
1879 	u8 pvclock_flags;
1880 	bool use_master_clock;
1881 
1882 	kernel_ns = 0;
1883 	host_tsc = 0;
1884 
1885 	/*
1886 	 * If the host uses TSC clock, then passthrough TSC as stable
1887 	 * to the guest.
1888 	 */
1889 	spin_lock(&ka->pvclock_gtod_sync_lock);
1890 	use_master_clock = ka->use_master_clock;
1891 	if (use_master_clock) {
1892 		host_tsc = ka->master_cycle_now;
1893 		kernel_ns = ka->master_kernel_ns;
1894 	}
1895 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1896 
1897 	/* Keep irq disabled to prevent changes to the clock */
1898 	local_irq_save(flags);
1899 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1900 	if (unlikely(tgt_tsc_khz == 0)) {
1901 		local_irq_restore(flags);
1902 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1903 		return 1;
1904 	}
1905 	if (!use_master_clock) {
1906 		host_tsc = rdtsc();
1907 		kernel_ns = ktime_get_boot_ns();
1908 	}
1909 
1910 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1911 
1912 	/*
1913 	 * We may have to catch up the TSC to match elapsed wall clock
1914 	 * time for two reasons, even if kvmclock is used.
1915 	 *   1) CPU could have been running below the maximum TSC rate
1916 	 *   2) Broken TSC compensation resets the base at each VCPU
1917 	 *      entry to avoid unknown leaps of TSC even when running
1918 	 *      again on the same CPU.  This may cause apparent elapsed
1919 	 *      time to disappear, and the guest to stand still or run
1920 	 *	very slowly.
1921 	 */
1922 	if (vcpu->tsc_catchup) {
1923 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1924 		if (tsc > tsc_timestamp) {
1925 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1926 			tsc_timestamp = tsc;
1927 		}
1928 	}
1929 
1930 	local_irq_restore(flags);
1931 
1932 	/* With all the info we got, fill in the values */
1933 
1934 	if (kvm_has_tsc_control)
1935 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1936 
1937 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1938 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1939 				   &vcpu->hv_clock.tsc_shift,
1940 				   &vcpu->hv_clock.tsc_to_system_mul);
1941 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1942 	}
1943 
1944 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1945 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1946 	vcpu->last_guest_tsc = tsc_timestamp;
1947 
1948 	/* If the host uses TSC clocksource, then it is stable */
1949 	pvclock_flags = 0;
1950 	if (use_master_clock)
1951 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1952 
1953 	vcpu->hv_clock.flags = pvclock_flags;
1954 
1955 	if (vcpu->pv_time_enabled)
1956 		kvm_setup_pvclock_page(v);
1957 	if (v == kvm_get_vcpu(v->kvm, 0))
1958 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1959 	return 0;
1960 }
1961 
1962 /*
1963  * kvmclock updates which are isolated to a given vcpu, such as
1964  * vcpu->cpu migration, should not allow system_timestamp from
1965  * the rest of the vcpus to remain static. Otherwise ntp frequency
1966  * correction applies to one vcpu's system_timestamp but not
1967  * the others.
1968  *
1969  * So in those cases, request a kvmclock update for all vcpus.
1970  * We need to rate-limit these requests though, as they can
1971  * considerably slow guests that have a large number of vcpus.
1972  * The time for a remote vcpu to update its kvmclock is bound
1973  * by the delay we use to rate-limit the updates.
1974  */
1975 
1976 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1977 
1978 static void kvmclock_update_fn(struct work_struct *work)
1979 {
1980 	int i;
1981 	struct delayed_work *dwork = to_delayed_work(work);
1982 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1983 					   kvmclock_update_work);
1984 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1985 	struct kvm_vcpu *vcpu;
1986 
1987 	kvm_for_each_vcpu(i, vcpu, kvm) {
1988 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1989 		kvm_vcpu_kick(vcpu);
1990 	}
1991 }
1992 
1993 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1994 {
1995 	struct kvm *kvm = v->kvm;
1996 
1997 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1998 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1999 					KVMCLOCK_UPDATE_DELAY);
2000 }
2001 
2002 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2003 
2004 static void kvmclock_sync_fn(struct work_struct *work)
2005 {
2006 	struct delayed_work *dwork = to_delayed_work(work);
2007 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2008 					   kvmclock_sync_work);
2009 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2010 
2011 	if (!kvmclock_periodic_sync)
2012 		return;
2013 
2014 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2015 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2016 					KVMCLOCK_SYNC_PERIOD);
2017 }
2018 
2019 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2020 {
2021 	u64 mcg_cap = vcpu->arch.mcg_cap;
2022 	unsigned bank_num = mcg_cap & 0xff;
2023 	u32 msr = msr_info->index;
2024 	u64 data = msr_info->data;
2025 
2026 	switch (msr) {
2027 	case MSR_IA32_MCG_STATUS:
2028 		vcpu->arch.mcg_status = data;
2029 		break;
2030 	case MSR_IA32_MCG_CTL:
2031 		if (!(mcg_cap & MCG_CTL_P))
2032 			return 1;
2033 		if (data != 0 && data != ~(u64)0)
2034 			return -1;
2035 		vcpu->arch.mcg_ctl = data;
2036 		break;
2037 	default:
2038 		if (msr >= MSR_IA32_MC0_CTL &&
2039 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2040 			u32 offset = msr - MSR_IA32_MC0_CTL;
2041 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2042 			 * some Linux kernels though clear bit 10 in bank 4 to
2043 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2044 			 * this to avoid an uncatched #GP in the guest
2045 			 */
2046 			if ((offset & 0x3) == 0 &&
2047 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2048 				return -1;
2049 			if (!msr_info->host_initiated &&
2050 				(offset & 0x3) == 1 && data != 0)
2051 				return -1;
2052 			vcpu->arch.mce_banks[offset] = data;
2053 			break;
2054 		}
2055 		return 1;
2056 	}
2057 	return 0;
2058 }
2059 
2060 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2061 {
2062 	struct kvm *kvm = vcpu->kvm;
2063 	int lm = is_long_mode(vcpu);
2064 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2065 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2066 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2067 		: kvm->arch.xen_hvm_config.blob_size_32;
2068 	u32 page_num = data & ~PAGE_MASK;
2069 	u64 page_addr = data & PAGE_MASK;
2070 	u8 *page;
2071 	int r;
2072 
2073 	r = -E2BIG;
2074 	if (page_num >= blob_size)
2075 		goto out;
2076 	r = -ENOMEM;
2077 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2078 	if (IS_ERR(page)) {
2079 		r = PTR_ERR(page);
2080 		goto out;
2081 	}
2082 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2083 		goto out_free;
2084 	r = 0;
2085 out_free:
2086 	kfree(page);
2087 out:
2088 	return r;
2089 }
2090 
2091 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2092 {
2093 	gpa_t gpa = data & ~0x3f;
2094 
2095 	/* Bits 3:5 are reserved, Should be zero */
2096 	if (data & 0x38)
2097 		return 1;
2098 
2099 	vcpu->arch.apf.msr_val = data;
2100 
2101 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2102 		kvm_clear_async_pf_completion_queue(vcpu);
2103 		kvm_async_pf_hash_reset(vcpu);
2104 		return 0;
2105 	}
2106 
2107 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2108 					sizeof(u32)))
2109 		return 1;
2110 
2111 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2112 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2113 	kvm_async_pf_wakeup_all(vcpu);
2114 	return 0;
2115 }
2116 
2117 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2118 {
2119 	vcpu->arch.pv_time_enabled = false;
2120 }
2121 
2122 static void record_steal_time(struct kvm_vcpu *vcpu)
2123 {
2124 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2125 		return;
2126 
2127 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2128 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2129 		return;
2130 
2131 	vcpu->arch.st.steal.preempted = 0;
2132 
2133 	if (vcpu->arch.st.steal.version & 1)
2134 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2135 
2136 	vcpu->arch.st.steal.version += 1;
2137 
2138 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2139 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2140 
2141 	smp_wmb();
2142 
2143 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2144 		vcpu->arch.st.last_steal;
2145 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2146 
2147 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2148 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2149 
2150 	smp_wmb();
2151 
2152 	vcpu->arch.st.steal.version += 1;
2153 
2154 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2155 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2156 }
2157 
2158 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2159 {
2160 	bool pr = false;
2161 	u32 msr = msr_info->index;
2162 	u64 data = msr_info->data;
2163 
2164 	switch (msr) {
2165 	case MSR_AMD64_NB_CFG:
2166 	case MSR_IA32_UCODE_REV:
2167 	case MSR_IA32_UCODE_WRITE:
2168 	case MSR_VM_HSAVE_PA:
2169 	case MSR_AMD64_PATCH_LOADER:
2170 	case MSR_AMD64_BU_CFG2:
2171 	case MSR_AMD64_DC_CFG:
2172 		break;
2173 
2174 	case MSR_EFER:
2175 		return set_efer(vcpu, data);
2176 	case MSR_K7_HWCR:
2177 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2178 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2179 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2180 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2181 		if (data != 0) {
2182 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2183 				    data);
2184 			return 1;
2185 		}
2186 		break;
2187 	case MSR_FAM10H_MMIO_CONF_BASE:
2188 		if (data != 0) {
2189 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2190 				    "0x%llx\n", data);
2191 			return 1;
2192 		}
2193 		break;
2194 	case MSR_IA32_DEBUGCTLMSR:
2195 		if (!data) {
2196 			/* We support the non-activated case already */
2197 			break;
2198 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2199 			/* Values other than LBR and BTF are vendor-specific,
2200 			   thus reserved and should throw a #GP */
2201 			return 1;
2202 		}
2203 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2204 			    __func__, data);
2205 		break;
2206 	case 0x200 ... 0x2ff:
2207 		return kvm_mtrr_set_msr(vcpu, msr, data);
2208 	case MSR_IA32_APICBASE:
2209 		return kvm_set_apic_base(vcpu, msr_info);
2210 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2211 		return kvm_x2apic_msr_write(vcpu, msr, data);
2212 	case MSR_IA32_TSCDEADLINE:
2213 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2214 		break;
2215 	case MSR_IA32_TSC_ADJUST:
2216 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2217 			if (!msr_info->host_initiated) {
2218 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2219 				adjust_tsc_offset_guest(vcpu, adj);
2220 			}
2221 			vcpu->arch.ia32_tsc_adjust_msr = data;
2222 		}
2223 		break;
2224 	case MSR_IA32_MISC_ENABLE:
2225 		vcpu->arch.ia32_misc_enable_msr = data;
2226 		break;
2227 	case MSR_IA32_SMBASE:
2228 		if (!msr_info->host_initiated)
2229 			return 1;
2230 		vcpu->arch.smbase = data;
2231 		break;
2232 	case MSR_KVM_WALL_CLOCK_NEW:
2233 	case MSR_KVM_WALL_CLOCK:
2234 		vcpu->kvm->arch.wall_clock = data;
2235 		kvm_write_wall_clock(vcpu->kvm, data);
2236 		break;
2237 	case MSR_KVM_SYSTEM_TIME_NEW:
2238 	case MSR_KVM_SYSTEM_TIME: {
2239 		struct kvm_arch *ka = &vcpu->kvm->arch;
2240 
2241 		kvmclock_reset(vcpu);
2242 
2243 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2244 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2245 
2246 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2247 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2248 
2249 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2250 		}
2251 
2252 		vcpu->arch.time = data;
2253 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2254 
2255 		/* we verify if the enable bit is set... */
2256 		if (!(data & 1))
2257 			break;
2258 
2259 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2260 		     &vcpu->arch.pv_time, data & ~1ULL,
2261 		     sizeof(struct pvclock_vcpu_time_info)))
2262 			vcpu->arch.pv_time_enabled = false;
2263 		else
2264 			vcpu->arch.pv_time_enabled = true;
2265 
2266 		break;
2267 	}
2268 	case MSR_KVM_ASYNC_PF_EN:
2269 		if (kvm_pv_enable_async_pf(vcpu, data))
2270 			return 1;
2271 		break;
2272 	case MSR_KVM_STEAL_TIME:
2273 
2274 		if (unlikely(!sched_info_on()))
2275 			return 1;
2276 
2277 		if (data & KVM_STEAL_RESERVED_MASK)
2278 			return 1;
2279 
2280 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2281 						data & KVM_STEAL_VALID_BITS,
2282 						sizeof(struct kvm_steal_time)))
2283 			return 1;
2284 
2285 		vcpu->arch.st.msr_val = data;
2286 
2287 		if (!(data & KVM_MSR_ENABLED))
2288 			break;
2289 
2290 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2291 
2292 		break;
2293 	case MSR_KVM_PV_EOI_EN:
2294 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2295 			return 1;
2296 		break;
2297 
2298 	case MSR_IA32_MCG_CTL:
2299 	case MSR_IA32_MCG_STATUS:
2300 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2301 		return set_msr_mce(vcpu, msr_info);
2302 
2303 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2304 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2305 		pr = true; /* fall through */
2306 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2307 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2308 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2309 			return kvm_pmu_set_msr(vcpu, msr_info);
2310 
2311 		if (pr || data != 0)
2312 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2313 				    "0x%x data 0x%llx\n", msr, data);
2314 		break;
2315 	case MSR_K7_CLK_CTL:
2316 		/*
2317 		 * Ignore all writes to this no longer documented MSR.
2318 		 * Writes are only relevant for old K7 processors,
2319 		 * all pre-dating SVM, but a recommended workaround from
2320 		 * AMD for these chips. It is possible to specify the
2321 		 * affected processor models on the command line, hence
2322 		 * the need to ignore the workaround.
2323 		 */
2324 		break;
2325 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2326 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2327 	case HV_X64_MSR_CRASH_CTL:
2328 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2329 		return kvm_hv_set_msr_common(vcpu, msr, data,
2330 					     msr_info->host_initiated);
2331 	case MSR_IA32_BBL_CR_CTL3:
2332 		/* Drop writes to this legacy MSR -- see rdmsr
2333 		 * counterpart for further detail.
2334 		 */
2335 		if (report_ignored_msrs)
2336 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2337 				msr, data);
2338 		break;
2339 	case MSR_AMD64_OSVW_ID_LENGTH:
2340 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2341 			return 1;
2342 		vcpu->arch.osvw.length = data;
2343 		break;
2344 	case MSR_AMD64_OSVW_STATUS:
2345 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2346 			return 1;
2347 		vcpu->arch.osvw.status = data;
2348 		break;
2349 	case MSR_PLATFORM_INFO:
2350 		if (!msr_info->host_initiated ||
2351 		    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2352 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2353 		     cpuid_fault_enabled(vcpu)))
2354 			return 1;
2355 		vcpu->arch.msr_platform_info = data;
2356 		break;
2357 	case MSR_MISC_FEATURES_ENABLES:
2358 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2359 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2360 		     !supports_cpuid_fault(vcpu)))
2361 			return 1;
2362 		vcpu->arch.msr_misc_features_enables = data;
2363 		break;
2364 	default:
2365 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2366 			return xen_hvm_config(vcpu, data);
2367 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2368 			return kvm_pmu_set_msr(vcpu, msr_info);
2369 		if (!ignore_msrs) {
2370 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2371 				    msr, data);
2372 			return 1;
2373 		} else {
2374 			if (report_ignored_msrs)
2375 				vcpu_unimpl(vcpu,
2376 					"ignored wrmsr: 0x%x data 0x%llx\n",
2377 					msr, data);
2378 			break;
2379 		}
2380 	}
2381 	return 0;
2382 }
2383 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2384 
2385 
2386 /*
2387  * Reads an msr value (of 'msr_index') into 'pdata'.
2388  * Returns 0 on success, non-0 otherwise.
2389  * Assumes vcpu_load() was already called.
2390  */
2391 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2392 {
2393 	return kvm_x86_ops->get_msr(vcpu, msr);
2394 }
2395 EXPORT_SYMBOL_GPL(kvm_get_msr);
2396 
2397 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2398 {
2399 	u64 data;
2400 	u64 mcg_cap = vcpu->arch.mcg_cap;
2401 	unsigned bank_num = mcg_cap & 0xff;
2402 
2403 	switch (msr) {
2404 	case MSR_IA32_P5_MC_ADDR:
2405 	case MSR_IA32_P5_MC_TYPE:
2406 		data = 0;
2407 		break;
2408 	case MSR_IA32_MCG_CAP:
2409 		data = vcpu->arch.mcg_cap;
2410 		break;
2411 	case MSR_IA32_MCG_CTL:
2412 		if (!(mcg_cap & MCG_CTL_P))
2413 			return 1;
2414 		data = vcpu->arch.mcg_ctl;
2415 		break;
2416 	case MSR_IA32_MCG_STATUS:
2417 		data = vcpu->arch.mcg_status;
2418 		break;
2419 	default:
2420 		if (msr >= MSR_IA32_MC0_CTL &&
2421 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2422 			u32 offset = msr - MSR_IA32_MC0_CTL;
2423 			data = vcpu->arch.mce_banks[offset];
2424 			break;
2425 		}
2426 		return 1;
2427 	}
2428 	*pdata = data;
2429 	return 0;
2430 }
2431 
2432 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2433 {
2434 	switch (msr_info->index) {
2435 	case MSR_IA32_PLATFORM_ID:
2436 	case MSR_IA32_EBL_CR_POWERON:
2437 	case MSR_IA32_DEBUGCTLMSR:
2438 	case MSR_IA32_LASTBRANCHFROMIP:
2439 	case MSR_IA32_LASTBRANCHTOIP:
2440 	case MSR_IA32_LASTINTFROMIP:
2441 	case MSR_IA32_LASTINTTOIP:
2442 	case MSR_K8_SYSCFG:
2443 	case MSR_K8_TSEG_ADDR:
2444 	case MSR_K8_TSEG_MASK:
2445 	case MSR_K7_HWCR:
2446 	case MSR_VM_HSAVE_PA:
2447 	case MSR_K8_INT_PENDING_MSG:
2448 	case MSR_AMD64_NB_CFG:
2449 	case MSR_FAM10H_MMIO_CONF_BASE:
2450 	case MSR_AMD64_BU_CFG2:
2451 	case MSR_IA32_PERF_CTL:
2452 	case MSR_AMD64_DC_CFG:
2453 		msr_info->data = 0;
2454 		break;
2455 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2456 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2457 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2458 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2459 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2460 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2461 		msr_info->data = 0;
2462 		break;
2463 	case MSR_IA32_UCODE_REV:
2464 		msr_info->data = 0x100000000ULL;
2465 		break;
2466 	case MSR_MTRRcap:
2467 	case 0x200 ... 0x2ff:
2468 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2469 	case 0xcd: /* fsb frequency */
2470 		msr_info->data = 3;
2471 		break;
2472 		/*
2473 		 * MSR_EBC_FREQUENCY_ID
2474 		 * Conservative value valid for even the basic CPU models.
2475 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2476 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2477 		 * and 266MHz for model 3, or 4. Set Core Clock
2478 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2479 		 * 31:24) even though these are only valid for CPU
2480 		 * models > 2, however guests may end up dividing or
2481 		 * multiplying by zero otherwise.
2482 		 */
2483 	case MSR_EBC_FREQUENCY_ID:
2484 		msr_info->data = 1 << 24;
2485 		break;
2486 	case MSR_IA32_APICBASE:
2487 		msr_info->data = kvm_get_apic_base(vcpu);
2488 		break;
2489 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2490 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2491 		break;
2492 	case MSR_IA32_TSCDEADLINE:
2493 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2494 		break;
2495 	case MSR_IA32_TSC_ADJUST:
2496 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2497 		break;
2498 	case MSR_IA32_MISC_ENABLE:
2499 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2500 		break;
2501 	case MSR_IA32_SMBASE:
2502 		if (!msr_info->host_initiated)
2503 			return 1;
2504 		msr_info->data = vcpu->arch.smbase;
2505 		break;
2506 	case MSR_IA32_PERF_STATUS:
2507 		/* TSC increment by tick */
2508 		msr_info->data = 1000ULL;
2509 		/* CPU multiplier */
2510 		msr_info->data |= (((uint64_t)4ULL) << 40);
2511 		break;
2512 	case MSR_EFER:
2513 		msr_info->data = vcpu->arch.efer;
2514 		break;
2515 	case MSR_KVM_WALL_CLOCK:
2516 	case MSR_KVM_WALL_CLOCK_NEW:
2517 		msr_info->data = vcpu->kvm->arch.wall_clock;
2518 		break;
2519 	case MSR_KVM_SYSTEM_TIME:
2520 	case MSR_KVM_SYSTEM_TIME_NEW:
2521 		msr_info->data = vcpu->arch.time;
2522 		break;
2523 	case MSR_KVM_ASYNC_PF_EN:
2524 		msr_info->data = vcpu->arch.apf.msr_val;
2525 		break;
2526 	case MSR_KVM_STEAL_TIME:
2527 		msr_info->data = vcpu->arch.st.msr_val;
2528 		break;
2529 	case MSR_KVM_PV_EOI_EN:
2530 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2531 		break;
2532 	case MSR_IA32_P5_MC_ADDR:
2533 	case MSR_IA32_P5_MC_TYPE:
2534 	case MSR_IA32_MCG_CAP:
2535 	case MSR_IA32_MCG_CTL:
2536 	case MSR_IA32_MCG_STATUS:
2537 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2538 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2539 	case MSR_K7_CLK_CTL:
2540 		/*
2541 		 * Provide expected ramp-up count for K7. All other
2542 		 * are set to zero, indicating minimum divisors for
2543 		 * every field.
2544 		 *
2545 		 * This prevents guest kernels on AMD host with CPU
2546 		 * type 6, model 8 and higher from exploding due to
2547 		 * the rdmsr failing.
2548 		 */
2549 		msr_info->data = 0x20000000;
2550 		break;
2551 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2552 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2553 	case HV_X64_MSR_CRASH_CTL:
2554 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2555 		return kvm_hv_get_msr_common(vcpu,
2556 					     msr_info->index, &msr_info->data);
2557 		break;
2558 	case MSR_IA32_BBL_CR_CTL3:
2559 		/* This legacy MSR exists but isn't fully documented in current
2560 		 * silicon.  It is however accessed by winxp in very narrow
2561 		 * scenarios where it sets bit #19, itself documented as
2562 		 * a "reserved" bit.  Best effort attempt to source coherent
2563 		 * read data here should the balance of the register be
2564 		 * interpreted by the guest:
2565 		 *
2566 		 * L2 cache control register 3: 64GB range, 256KB size,
2567 		 * enabled, latency 0x1, configured
2568 		 */
2569 		msr_info->data = 0xbe702111;
2570 		break;
2571 	case MSR_AMD64_OSVW_ID_LENGTH:
2572 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2573 			return 1;
2574 		msr_info->data = vcpu->arch.osvw.length;
2575 		break;
2576 	case MSR_AMD64_OSVW_STATUS:
2577 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2578 			return 1;
2579 		msr_info->data = vcpu->arch.osvw.status;
2580 		break;
2581 	case MSR_PLATFORM_INFO:
2582 		msr_info->data = vcpu->arch.msr_platform_info;
2583 		break;
2584 	case MSR_MISC_FEATURES_ENABLES:
2585 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2586 		break;
2587 	default:
2588 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2589 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2590 		if (!ignore_msrs) {
2591 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2592 					       msr_info->index);
2593 			return 1;
2594 		} else {
2595 			if (report_ignored_msrs)
2596 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2597 					msr_info->index);
2598 			msr_info->data = 0;
2599 		}
2600 		break;
2601 	}
2602 	return 0;
2603 }
2604 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2605 
2606 /*
2607  * Read or write a bunch of msrs. All parameters are kernel addresses.
2608  *
2609  * @return number of msrs set successfully.
2610  */
2611 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2612 		    struct kvm_msr_entry *entries,
2613 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2614 				  unsigned index, u64 *data))
2615 {
2616 	int i, idx;
2617 
2618 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2619 	for (i = 0; i < msrs->nmsrs; ++i)
2620 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2621 			break;
2622 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2623 
2624 	return i;
2625 }
2626 
2627 /*
2628  * Read or write a bunch of msrs. Parameters are user addresses.
2629  *
2630  * @return number of msrs set successfully.
2631  */
2632 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2633 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2634 				unsigned index, u64 *data),
2635 		  int writeback)
2636 {
2637 	struct kvm_msrs msrs;
2638 	struct kvm_msr_entry *entries;
2639 	int r, n;
2640 	unsigned size;
2641 
2642 	r = -EFAULT;
2643 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2644 		goto out;
2645 
2646 	r = -E2BIG;
2647 	if (msrs.nmsrs >= MAX_IO_MSRS)
2648 		goto out;
2649 
2650 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2651 	entries = memdup_user(user_msrs->entries, size);
2652 	if (IS_ERR(entries)) {
2653 		r = PTR_ERR(entries);
2654 		goto out;
2655 	}
2656 
2657 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2658 	if (r < 0)
2659 		goto out_free;
2660 
2661 	r = -EFAULT;
2662 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2663 		goto out_free;
2664 
2665 	r = n;
2666 
2667 out_free:
2668 	kfree(entries);
2669 out:
2670 	return r;
2671 }
2672 
2673 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2674 {
2675 	int r;
2676 
2677 	switch (ext) {
2678 	case KVM_CAP_IRQCHIP:
2679 	case KVM_CAP_HLT:
2680 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2681 	case KVM_CAP_SET_TSS_ADDR:
2682 	case KVM_CAP_EXT_CPUID:
2683 	case KVM_CAP_EXT_EMUL_CPUID:
2684 	case KVM_CAP_CLOCKSOURCE:
2685 	case KVM_CAP_PIT:
2686 	case KVM_CAP_NOP_IO_DELAY:
2687 	case KVM_CAP_MP_STATE:
2688 	case KVM_CAP_SYNC_MMU:
2689 	case KVM_CAP_USER_NMI:
2690 	case KVM_CAP_REINJECT_CONTROL:
2691 	case KVM_CAP_IRQ_INJECT_STATUS:
2692 	case KVM_CAP_IOEVENTFD:
2693 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2694 	case KVM_CAP_PIT2:
2695 	case KVM_CAP_PIT_STATE2:
2696 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2697 	case KVM_CAP_XEN_HVM:
2698 	case KVM_CAP_VCPU_EVENTS:
2699 	case KVM_CAP_HYPERV:
2700 	case KVM_CAP_HYPERV_VAPIC:
2701 	case KVM_CAP_HYPERV_SPIN:
2702 	case KVM_CAP_HYPERV_SYNIC:
2703 	case KVM_CAP_HYPERV_SYNIC2:
2704 	case KVM_CAP_HYPERV_VP_INDEX:
2705 	case KVM_CAP_PCI_SEGMENT:
2706 	case KVM_CAP_DEBUGREGS:
2707 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2708 	case KVM_CAP_XSAVE:
2709 	case KVM_CAP_ASYNC_PF:
2710 	case KVM_CAP_GET_TSC_KHZ:
2711 	case KVM_CAP_KVMCLOCK_CTRL:
2712 	case KVM_CAP_READONLY_MEM:
2713 	case KVM_CAP_HYPERV_TIME:
2714 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2715 	case KVM_CAP_TSC_DEADLINE_TIMER:
2716 	case KVM_CAP_ENABLE_CAP_VM:
2717 	case KVM_CAP_DISABLE_QUIRKS:
2718 	case KVM_CAP_SET_BOOT_CPU_ID:
2719  	case KVM_CAP_SPLIT_IRQCHIP:
2720 	case KVM_CAP_IMMEDIATE_EXIT:
2721 		r = 1;
2722 		break;
2723 	case KVM_CAP_ADJUST_CLOCK:
2724 		r = KVM_CLOCK_TSC_STABLE;
2725 		break;
2726 	case KVM_CAP_X86_GUEST_MWAIT:
2727 		r = kvm_mwait_in_guest();
2728 		break;
2729 	case KVM_CAP_X86_SMM:
2730 		/* SMBASE is usually relocated above 1M on modern chipsets,
2731 		 * and SMM handlers might indeed rely on 4G segment limits,
2732 		 * so do not report SMM to be available if real mode is
2733 		 * emulated via vm86 mode.  Still, do not go to great lengths
2734 		 * to avoid userspace's usage of the feature, because it is a
2735 		 * fringe case that is not enabled except via specific settings
2736 		 * of the module parameters.
2737 		 */
2738 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2739 		break;
2740 	case KVM_CAP_VAPIC:
2741 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2742 		break;
2743 	case KVM_CAP_NR_VCPUS:
2744 		r = KVM_SOFT_MAX_VCPUS;
2745 		break;
2746 	case KVM_CAP_MAX_VCPUS:
2747 		r = KVM_MAX_VCPUS;
2748 		break;
2749 	case KVM_CAP_NR_MEMSLOTS:
2750 		r = KVM_USER_MEM_SLOTS;
2751 		break;
2752 	case KVM_CAP_PV_MMU:	/* obsolete */
2753 		r = 0;
2754 		break;
2755 	case KVM_CAP_MCE:
2756 		r = KVM_MAX_MCE_BANKS;
2757 		break;
2758 	case KVM_CAP_XCRS:
2759 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2760 		break;
2761 	case KVM_CAP_TSC_CONTROL:
2762 		r = kvm_has_tsc_control;
2763 		break;
2764 	case KVM_CAP_X2APIC_API:
2765 		r = KVM_X2APIC_API_VALID_FLAGS;
2766 		break;
2767 	default:
2768 		r = 0;
2769 		break;
2770 	}
2771 	return r;
2772 
2773 }
2774 
2775 long kvm_arch_dev_ioctl(struct file *filp,
2776 			unsigned int ioctl, unsigned long arg)
2777 {
2778 	void __user *argp = (void __user *)arg;
2779 	long r;
2780 
2781 	switch (ioctl) {
2782 	case KVM_GET_MSR_INDEX_LIST: {
2783 		struct kvm_msr_list __user *user_msr_list = argp;
2784 		struct kvm_msr_list msr_list;
2785 		unsigned n;
2786 
2787 		r = -EFAULT;
2788 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2789 			goto out;
2790 		n = msr_list.nmsrs;
2791 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2792 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2793 			goto out;
2794 		r = -E2BIG;
2795 		if (n < msr_list.nmsrs)
2796 			goto out;
2797 		r = -EFAULT;
2798 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2799 				 num_msrs_to_save * sizeof(u32)))
2800 			goto out;
2801 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2802 				 &emulated_msrs,
2803 				 num_emulated_msrs * sizeof(u32)))
2804 			goto out;
2805 		r = 0;
2806 		break;
2807 	}
2808 	case KVM_GET_SUPPORTED_CPUID:
2809 	case KVM_GET_EMULATED_CPUID: {
2810 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2811 		struct kvm_cpuid2 cpuid;
2812 
2813 		r = -EFAULT;
2814 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2815 			goto out;
2816 
2817 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2818 					    ioctl);
2819 		if (r)
2820 			goto out;
2821 
2822 		r = -EFAULT;
2823 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2824 			goto out;
2825 		r = 0;
2826 		break;
2827 	}
2828 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2829 		r = -EFAULT;
2830 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2831 				 sizeof(kvm_mce_cap_supported)))
2832 			goto out;
2833 		r = 0;
2834 		break;
2835 	}
2836 	default:
2837 		r = -EINVAL;
2838 	}
2839 out:
2840 	return r;
2841 }
2842 
2843 static void wbinvd_ipi(void *garbage)
2844 {
2845 	wbinvd();
2846 }
2847 
2848 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2849 {
2850 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2851 }
2852 
2853 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2854 {
2855 	/* Address WBINVD may be executed by guest */
2856 	if (need_emulate_wbinvd(vcpu)) {
2857 		if (kvm_x86_ops->has_wbinvd_exit())
2858 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2859 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2860 			smp_call_function_single(vcpu->cpu,
2861 					wbinvd_ipi, NULL, 1);
2862 	}
2863 
2864 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2865 
2866 	/* Apply any externally detected TSC adjustments (due to suspend) */
2867 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2868 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2869 		vcpu->arch.tsc_offset_adjustment = 0;
2870 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2871 	}
2872 
2873 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2874 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2875 				rdtsc() - vcpu->arch.last_host_tsc;
2876 		if (tsc_delta < 0)
2877 			mark_tsc_unstable("KVM discovered backwards TSC");
2878 
2879 		if (check_tsc_unstable()) {
2880 			u64 offset = kvm_compute_tsc_offset(vcpu,
2881 						vcpu->arch.last_guest_tsc);
2882 			kvm_vcpu_write_tsc_offset(vcpu, offset);
2883 			vcpu->arch.tsc_catchup = 1;
2884 		}
2885 
2886 		if (kvm_lapic_hv_timer_in_use(vcpu))
2887 			kvm_lapic_restart_hv_timer(vcpu);
2888 
2889 		/*
2890 		 * On a host with synchronized TSC, there is no need to update
2891 		 * kvmclock on vcpu->cpu migration
2892 		 */
2893 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2894 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2895 		if (vcpu->cpu != cpu)
2896 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2897 		vcpu->cpu = cpu;
2898 	}
2899 
2900 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2901 }
2902 
2903 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2904 {
2905 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2906 		return;
2907 
2908 	vcpu->arch.st.steal.preempted = 1;
2909 
2910 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2911 			&vcpu->arch.st.steal.preempted,
2912 			offsetof(struct kvm_steal_time, preempted),
2913 			sizeof(vcpu->arch.st.steal.preempted));
2914 }
2915 
2916 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2917 {
2918 	int idx;
2919 
2920 	if (vcpu->preempted)
2921 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2922 
2923 	/*
2924 	 * Disable page faults because we're in atomic context here.
2925 	 * kvm_write_guest_offset_cached() would call might_fault()
2926 	 * that relies on pagefault_disable() to tell if there's a
2927 	 * bug. NOTE: the write to guest memory may not go through if
2928 	 * during postcopy live migration or if there's heavy guest
2929 	 * paging.
2930 	 */
2931 	pagefault_disable();
2932 	/*
2933 	 * kvm_memslots() will be called by
2934 	 * kvm_write_guest_offset_cached() so take the srcu lock.
2935 	 */
2936 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2937 	kvm_steal_time_set_preempted(vcpu);
2938 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2939 	pagefault_enable();
2940 	kvm_x86_ops->vcpu_put(vcpu);
2941 	vcpu->arch.last_host_tsc = rdtsc();
2942 }
2943 
2944 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2945 				    struct kvm_lapic_state *s)
2946 {
2947 	if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2948 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2949 
2950 	return kvm_apic_get_state(vcpu, s);
2951 }
2952 
2953 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2954 				    struct kvm_lapic_state *s)
2955 {
2956 	int r;
2957 
2958 	r = kvm_apic_set_state(vcpu, s);
2959 	if (r)
2960 		return r;
2961 	update_cr8_intercept(vcpu);
2962 
2963 	return 0;
2964 }
2965 
2966 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2967 {
2968 	return (!lapic_in_kernel(vcpu) ||
2969 		kvm_apic_accept_pic_intr(vcpu));
2970 }
2971 
2972 /*
2973  * if userspace requested an interrupt window, check that the
2974  * interrupt window is open.
2975  *
2976  * No need to exit to userspace if we already have an interrupt queued.
2977  */
2978 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2979 {
2980 	return kvm_arch_interrupt_allowed(vcpu) &&
2981 		!kvm_cpu_has_interrupt(vcpu) &&
2982 		!kvm_event_needs_reinjection(vcpu) &&
2983 		kvm_cpu_accept_dm_intr(vcpu);
2984 }
2985 
2986 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2987 				    struct kvm_interrupt *irq)
2988 {
2989 	if (irq->irq >= KVM_NR_INTERRUPTS)
2990 		return -EINVAL;
2991 
2992 	if (!irqchip_in_kernel(vcpu->kvm)) {
2993 		kvm_queue_interrupt(vcpu, irq->irq, false);
2994 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2995 		return 0;
2996 	}
2997 
2998 	/*
2999 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3000 	 * fail for in-kernel 8259.
3001 	 */
3002 	if (pic_in_kernel(vcpu->kvm))
3003 		return -ENXIO;
3004 
3005 	if (vcpu->arch.pending_external_vector != -1)
3006 		return -EEXIST;
3007 
3008 	vcpu->arch.pending_external_vector = irq->irq;
3009 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3010 	return 0;
3011 }
3012 
3013 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3014 {
3015 	kvm_inject_nmi(vcpu);
3016 
3017 	return 0;
3018 }
3019 
3020 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3021 {
3022 	kvm_make_request(KVM_REQ_SMI, vcpu);
3023 
3024 	return 0;
3025 }
3026 
3027 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3028 					   struct kvm_tpr_access_ctl *tac)
3029 {
3030 	if (tac->flags)
3031 		return -EINVAL;
3032 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3033 	return 0;
3034 }
3035 
3036 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3037 					u64 mcg_cap)
3038 {
3039 	int r;
3040 	unsigned bank_num = mcg_cap & 0xff, bank;
3041 
3042 	r = -EINVAL;
3043 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3044 		goto out;
3045 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3046 		goto out;
3047 	r = 0;
3048 	vcpu->arch.mcg_cap = mcg_cap;
3049 	/* Init IA32_MCG_CTL to all 1s */
3050 	if (mcg_cap & MCG_CTL_P)
3051 		vcpu->arch.mcg_ctl = ~(u64)0;
3052 	/* Init IA32_MCi_CTL to all 1s */
3053 	for (bank = 0; bank < bank_num; bank++)
3054 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3055 
3056 	if (kvm_x86_ops->setup_mce)
3057 		kvm_x86_ops->setup_mce(vcpu);
3058 out:
3059 	return r;
3060 }
3061 
3062 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3063 				      struct kvm_x86_mce *mce)
3064 {
3065 	u64 mcg_cap = vcpu->arch.mcg_cap;
3066 	unsigned bank_num = mcg_cap & 0xff;
3067 	u64 *banks = vcpu->arch.mce_banks;
3068 
3069 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3070 		return -EINVAL;
3071 	/*
3072 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3073 	 * reporting is disabled
3074 	 */
3075 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3076 	    vcpu->arch.mcg_ctl != ~(u64)0)
3077 		return 0;
3078 	banks += 4 * mce->bank;
3079 	/*
3080 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3081 	 * reporting is disabled for the bank
3082 	 */
3083 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3084 		return 0;
3085 	if (mce->status & MCI_STATUS_UC) {
3086 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3087 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3088 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3089 			return 0;
3090 		}
3091 		if (banks[1] & MCI_STATUS_VAL)
3092 			mce->status |= MCI_STATUS_OVER;
3093 		banks[2] = mce->addr;
3094 		banks[3] = mce->misc;
3095 		vcpu->arch.mcg_status = mce->mcg_status;
3096 		banks[1] = mce->status;
3097 		kvm_queue_exception(vcpu, MC_VECTOR);
3098 	} else if (!(banks[1] & MCI_STATUS_VAL)
3099 		   || !(banks[1] & MCI_STATUS_UC)) {
3100 		if (banks[1] & MCI_STATUS_VAL)
3101 			mce->status |= MCI_STATUS_OVER;
3102 		banks[2] = mce->addr;
3103 		banks[3] = mce->misc;
3104 		banks[1] = mce->status;
3105 	} else
3106 		banks[1] |= MCI_STATUS_OVER;
3107 	return 0;
3108 }
3109 
3110 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3111 					       struct kvm_vcpu_events *events)
3112 {
3113 	process_nmi(vcpu);
3114 	/*
3115 	 * FIXME: pass injected and pending separately.  This is only
3116 	 * needed for nested virtualization, whose state cannot be
3117 	 * migrated yet.  For now we can combine them.
3118 	 */
3119 	events->exception.injected =
3120 		(vcpu->arch.exception.pending ||
3121 		 vcpu->arch.exception.injected) &&
3122 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3123 	events->exception.nr = vcpu->arch.exception.nr;
3124 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3125 	events->exception.pad = 0;
3126 	events->exception.error_code = vcpu->arch.exception.error_code;
3127 
3128 	events->interrupt.injected =
3129 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3130 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3131 	events->interrupt.soft = 0;
3132 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3133 
3134 	events->nmi.injected = vcpu->arch.nmi_injected;
3135 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3136 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3137 	events->nmi.pad = 0;
3138 
3139 	events->sipi_vector = 0; /* never valid when reporting to user space */
3140 
3141 	events->smi.smm = is_smm(vcpu);
3142 	events->smi.pending = vcpu->arch.smi_pending;
3143 	events->smi.smm_inside_nmi =
3144 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3145 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3146 
3147 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3148 			 | KVM_VCPUEVENT_VALID_SHADOW
3149 			 | KVM_VCPUEVENT_VALID_SMM);
3150 	memset(&events->reserved, 0, sizeof(events->reserved));
3151 }
3152 
3153 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3154 
3155 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3156 					      struct kvm_vcpu_events *events)
3157 {
3158 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3159 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3160 			      | KVM_VCPUEVENT_VALID_SHADOW
3161 			      | KVM_VCPUEVENT_VALID_SMM))
3162 		return -EINVAL;
3163 
3164 	if (events->exception.injected &&
3165 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3166 	     is_guest_mode(vcpu)))
3167 		return -EINVAL;
3168 
3169 	/* INITs are latched while in SMM */
3170 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3171 	    (events->smi.smm || events->smi.pending) &&
3172 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3173 		return -EINVAL;
3174 
3175 	process_nmi(vcpu);
3176 	vcpu->arch.exception.injected = false;
3177 	vcpu->arch.exception.pending = events->exception.injected;
3178 	vcpu->arch.exception.nr = events->exception.nr;
3179 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3180 	vcpu->arch.exception.error_code = events->exception.error_code;
3181 
3182 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3183 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3184 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3185 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3186 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3187 						  events->interrupt.shadow);
3188 
3189 	vcpu->arch.nmi_injected = events->nmi.injected;
3190 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3191 		vcpu->arch.nmi_pending = events->nmi.pending;
3192 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3193 
3194 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3195 	    lapic_in_kernel(vcpu))
3196 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3197 
3198 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3199 		u32 hflags = vcpu->arch.hflags;
3200 		if (events->smi.smm)
3201 			hflags |= HF_SMM_MASK;
3202 		else
3203 			hflags &= ~HF_SMM_MASK;
3204 		kvm_set_hflags(vcpu, hflags);
3205 
3206 		vcpu->arch.smi_pending = events->smi.pending;
3207 
3208 		if (events->smi.smm) {
3209 			if (events->smi.smm_inside_nmi)
3210 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3211 			else
3212 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3213 			if (lapic_in_kernel(vcpu)) {
3214 				if (events->smi.latched_init)
3215 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3216 				else
3217 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3218 			}
3219 		}
3220 	}
3221 
3222 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3223 
3224 	return 0;
3225 }
3226 
3227 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3228 					     struct kvm_debugregs *dbgregs)
3229 {
3230 	unsigned long val;
3231 
3232 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3233 	kvm_get_dr(vcpu, 6, &val);
3234 	dbgregs->dr6 = val;
3235 	dbgregs->dr7 = vcpu->arch.dr7;
3236 	dbgregs->flags = 0;
3237 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3238 }
3239 
3240 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3241 					    struct kvm_debugregs *dbgregs)
3242 {
3243 	if (dbgregs->flags)
3244 		return -EINVAL;
3245 
3246 	if (dbgregs->dr6 & ~0xffffffffull)
3247 		return -EINVAL;
3248 	if (dbgregs->dr7 & ~0xffffffffull)
3249 		return -EINVAL;
3250 
3251 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3252 	kvm_update_dr0123(vcpu);
3253 	vcpu->arch.dr6 = dbgregs->dr6;
3254 	kvm_update_dr6(vcpu);
3255 	vcpu->arch.dr7 = dbgregs->dr7;
3256 	kvm_update_dr7(vcpu);
3257 
3258 	return 0;
3259 }
3260 
3261 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3262 
3263 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3264 {
3265 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3266 	u64 xstate_bv = xsave->header.xfeatures;
3267 	u64 valid;
3268 
3269 	/*
3270 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3271 	 * leaves 0 and 1 in the loop below.
3272 	 */
3273 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3274 
3275 	/* Set XSTATE_BV */
3276 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3277 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3278 
3279 	/*
3280 	 * Copy each region from the possibly compacted offset to the
3281 	 * non-compacted offset.
3282 	 */
3283 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3284 	while (valid) {
3285 		u64 feature = valid & -valid;
3286 		int index = fls64(feature) - 1;
3287 		void *src = get_xsave_addr(xsave, feature);
3288 
3289 		if (src) {
3290 			u32 size, offset, ecx, edx;
3291 			cpuid_count(XSTATE_CPUID, index,
3292 				    &size, &offset, &ecx, &edx);
3293 			if (feature == XFEATURE_MASK_PKRU)
3294 				memcpy(dest + offset, &vcpu->arch.pkru,
3295 				       sizeof(vcpu->arch.pkru));
3296 			else
3297 				memcpy(dest + offset, src, size);
3298 
3299 		}
3300 
3301 		valid -= feature;
3302 	}
3303 }
3304 
3305 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3306 {
3307 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3308 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3309 	u64 valid;
3310 
3311 	/*
3312 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3313 	 * leaves 0 and 1 in the loop below.
3314 	 */
3315 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3316 
3317 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3318 	xsave->header.xfeatures = xstate_bv;
3319 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3320 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3321 
3322 	/*
3323 	 * Copy each region from the non-compacted offset to the
3324 	 * possibly compacted offset.
3325 	 */
3326 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3327 	while (valid) {
3328 		u64 feature = valid & -valid;
3329 		int index = fls64(feature) - 1;
3330 		void *dest = get_xsave_addr(xsave, feature);
3331 
3332 		if (dest) {
3333 			u32 size, offset, ecx, edx;
3334 			cpuid_count(XSTATE_CPUID, index,
3335 				    &size, &offset, &ecx, &edx);
3336 			if (feature == XFEATURE_MASK_PKRU)
3337 				memcpy(&vcpu->arch.pkru, src + offset,
3338 				       sizeof(vcpu->arch.pkru));
3339 			else
3340 				memcpy(dest, src + offset, size);
3341 		}
3342 
3343 		valid -= feature;
3344 	}
3345 }
3346 
3347 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3348 					 struct kvm_xsave *guest_xsave)
3349 {
3350 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3351 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3352 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3353 	} else {
3354 		memcpy(guest_xsave->region,
3355 			&vcpu->arch.guest_fpu.state.fxsave,
3356 			sizeof(struct fxregs_state));
3357 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3358 			XFEATURE_MASK_FPSSE;
3359 	}
3360 }
3361 
3362 #define XSAVE_MXCSR_OFFSET 24
3363 
3364 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3365 					struct kvm_xsave *guest_xsave)
3366 {
3367 	u64 xstate_bv =
3368 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3369 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3370 
3371 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3372 		/*
3373 		 * Here we allow setting states that are not present in
3374 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3375 		 * with old userspace.
3376 		 */
3377 		if (xstate_bv & ~kvm_supported_xcr0() ||
3378 			mxcsr & ~mxcsr_feature_mask)
3379 			return -EINVAL;
3380 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3381 	} else {
3382 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3383 			mxcsr & ~mxcsr_feature_mask)
3384 			return -EINVAL;
3385 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3386 			guest_xsave->region, sizeof(struct fxregs_state));
3387 	}
3388 	return 0;
3389 }
3390 
3391 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3392 					struct kvm_xcrs *guest_xcrs)
3393 {
3394 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3395 		guest_xcrs->nr_xcrs = 0;
3396 		return;
3397 	}
3398 
3399 	guest_xcrs->nr_xcrs = 1;
3400 	guest_xcrs->flags = 0;
3401 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3402 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3403 }
3404 
3405 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3406 				       struct kvm_xcrs *guest_xcrs)
3407 {
3408 	int i, r = 0;
3409 
3410 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3411 		return -EINVAL;
3412 
3413 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3414 		return -EINVAL;
3415 
3416 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3417 		/* Only support XCR0 currently */
3418 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3419 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3420 				guest_xcrs->xcrs[i].value);
3421 			break;
3422 		}
3423 	if (r)
3424 		r = -EINVAL;
3425 	return r;
3426 }
3427 
3428 /*
3429  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3430  * stopped by the hypervisor.  This function will be called from the host only.
3431  * EINVAL is returned when the host attempts to set the flag for a guest that
3432  * does not support pv clocks.
3433  */
3434 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3435 {
3436 	if (!vcpu->arch.pv_time_enabled)
3437 		return -EINVAL;
3438 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3439 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3440 	return 0;
3441 }
3442 
3443 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3444 				     struct kvm_enable_cap *cap)
3445 {
3446 	if (cap->flags)
3447 		return -EINVAL;
3448 
3449 	switch (cap->cap) {
3450 	case KVM_CAP_HYPERV_SYNIC2:
3451 		if (cap->args[0])
3452 			return -EINVAL;
3453 	case KVM_CAP_HYPERV_SYNIC:
3454 		if (!irqchip_in_kernel(vcpu->kvm))
3455 			return -EINVAL;
3456 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3457 					     KVM_CAP_HYPERV_SYNIC2);
3458 	default:
3459 		return -EINVAL;
3460 	}
3461 }
3462 
3463 long kvm_arch_vcpu_ioctl(struct file *filp,
3464 			 unsigned int ioctl, unsigned long arg)
3465 {
3466 	struct kvm_vcpu *vcpu = filp->private_data;
3467 	void __user *argp = (void __user *)arg;
3468 	int r;
3469 	union {
3470 		struct kvm_lapic_state *lapic;
3471 		struct kvm_xsave *xsave;
3472 		struct kvm_xcrs *xcrs;
3473 		void *buffer;
3474 	} u;
3475 
3476 	u.buffer = NULL;
3477 	switch (ioctl) {
3478 	case KVM_GET_LAPIC: {
3479 		r = -EINVAL;
3480 		if (!lapic_in_kernel(vcpu))
3481 			goto out;
3482 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3483 
3484 		r = -ENOMEM;
3485 		if (!u.lapic)
3486 			goto out;
3487 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3488 		if (r)
3489 			goto out;
3490 		r = -EFAULT;
3491 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3492 			goto out;
3493 		r = 0;
3494 		break;
3495 	}
3496 	case KVM_SET_LAPIC: {
3497 		r = -EINVAL;
3498 		if (!lapic_in_kernel(vcpu))
3499 			goto out;
3500 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3501 		if (IS_ERR(u.lapic))
3502 			return PTR_ERR(u.lapic);
3503 
3504 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3505 		break;
3506 	}
3507 	case KVM_INTERRUPT: {
3508 		struct kvm_interrupt irq;
3509 
3510 		r = -EFAULT;
3511 		if (copy_from_user(&irq, argp, sizeof irq))
3512 			goto out;
3513 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3514 		break;
3515 	}
3516 	case KVM_NMI: {
3517 		r = kvm_vcpu_ioctl_nmi(vcpu);
3518 		break;
3519 	}
3520 	case KVM_SMI: {
3521 		r = kvm_vcpu_ioctl_smi(vcpu);
3522 		break;
3523 	}
3524 	case KVM_SET_CPUID: {
3525 		struct kvm_cpuid __user *cpuid_arg = argp;
3526 		struct kvm_cpuid cpuid;
3527 
3528 		r = -EFAULT;
3529 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3530 			goto out;
3531 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3532 		break;
3533 	}
3534 	case KVM_SET_CPUID2: {
3535 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3536 		struct kvm_cpuid2 cpuid;
3537 
3538 		r = -EFAULT;
3539 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3540 			goto out;
3541 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3542 					      cpuid_arg->entries);
3543 		break;
3544 	}
3545 	case KVM_GET_CPUID2: {
3546 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3547 		struct kvm_cpuid2 cpuid;
3548 
3549 		r = -EFAULT;
3550 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3551 			goto out;
3552 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3553 					      cpuid_arg->entries);
3554 		if (r)
3555 			goto out;
3556 		r = -EFAULT;
3557 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3558 			goto out;
3559 		r = 0;
3560 		break;
3561 	}
3562 	case KVM_GET_MSRS:
3563 		r = msr_io(vcpu, argp, do_get_msr, 1);
3564 		break;
3565 	case KVM_SET_MSRS:
3566 		r = msr_io(vcpu, argp, do_set_msr, 0);
3567 		break;
3568 	case KVM_TPR_ACCESS_REPORTING: {
3569 		struct kvm_tpr_access_ctl tac;
3570 
3571 		r = -EFAULT;
3572 		if (copy_from_user(&tac, argp, sizeof tac))
3573 			goto out;
3574 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3575 		if (r)
3576 			goto out;
3577 		r = -EFAULT;
3578 		if (copy_to_user(argp, &tac, sizeof tac))
3579 			goto out;
3580 		r = 0;
3581 		break;
3582 	};
3583 	case KVM_SET_VAPIC_ADDR: {
3584 		struct kvm_vapic_addr va;
3585 		int idx;
3586 
3587 		r = -EINVAL;
3588 		if (!lapic_in_kernel(vcpu))
3589 			goto out;
3590 		r = -EFAULT;
3591 		if (copy_from_user(&va, argp, sizeof va))
3592 			goto out;
3593 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3594 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3595 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3596 		break;
3597 	}
3598 	case KVM_X86_SETUP_MCE: {
3599 		u64 mcg_cap;
3600 
3601 		r = -EFAULT;
3602 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3603 			goto out;
3604 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3605 		break;
3606 	}
3607 	case KVM_X86_SET_MCE: {
3608 		struct kvm_x86_mce mce;
3609 
3610 		r = -EFAULT;
3611 		if (copy_from_user(&mce, argp, sizeof mce))
3612 			goto out;
3613 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3614 		break;
3615 	}
3616 	case KVM_GET_VCPU_EVENTS: {
3617 		struct kvm_vcpu_events events;
3618 
3619 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3620 
3621 		r = -EFAULT;
3622 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3623 			break;
3624 		r = 0;
3625 		break;
3626 	}
3627 	case KVM_SET_VCPU_EVENTS: {
3628 		struct kvm_vcpu_events events;
3629 
3630 		r = -EFAULT;
3631 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3632 			break;
3633 
3634 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3635 		break;
3636 	}
3637 	case KVM_GET_DEBUGREGS: {
3638 		struct kvm_debugregs dbgregs;
3639 
3640 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3641 
3642 		r = -EFAULT;
3643 		if (copy_to_user(argp, &dbgregs,
3644 				 sizeof(struct kvm_debugregs)))
3645 			break;
3646 		r = 0;
3647 		break;
3648 	}
3649 	case KVM_SET_DEBUGREGS: {
3650 		struct kvm_debugregs dbgregs;
3651 
3652 		r = -EFAULT;
3653 		if (copy_from_user(&dbgregs, argp,
3654 				   sizeof(struct kvm_debugregs)))
3655 			break;
3656 
3657 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3658 		break;
3659 	}
3660 	case KVM_GET_XSAVE: {
3661 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3662 		r = -ENOMEM;
3663 		if (!u.xsave)
3664 			break;
3665 
3666 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3667 
3668 		r = -EFAULT;
3669 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3670 			break;
3671 		r = 0;
3672 		break;
3673 	}
3674 	case KVM_SET_XSAVE: {
3675 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3676 		if (IS_ERR(u.xsave))
3677 			return PTR_ERR(u.xsave);
3678 
3679 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3680 		break;
3681 	}
3682 	case KVM_GET_XCRS: {
3683 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3684 		r = -ENOMEM;
3685 		if (!u.xcrs)
3686 			break;
3687 
3688 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3689 
3690 		r = -EFAULT;
3691 		if (copy_to_user(argp, u.xcrs,
3692 				 sizeof(struct kvm_xcrs)))
3693 			break;
3694 		r = 0;
3695 		break;
3696 	}
3697 	case KVM_SET_XCRS: {
3698 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3699 		if (IS_ERR(u.xcrs))
3700 			return PTR_ERR(u.xcrs);
3701 
3702 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3703 		break;
3704 	}
3705 	case KVM_SET_TSC_KHZ: {
3706 		u32 user_tsc_khz;
3707 
3708 		r = -EINVAL;
3709 		user_tsc_khz = (u32)arg;
3710 
3711 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3712 			goto out;
3713 
3714 		if (user_tsc_khz == 0)
3715 			user_tsc_khz = tsc_khz;
3716 
3717 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3718 			r = 0;
3719 
3720 		goto out;
3721 	}
3722 	case KVM_GET_TSC_KHZ: {
3723 		r = vcpu->arch.virtual_tsc_khz;
3724 		goto out;
3725 	}
3726 	case KVM_KVMCLOCK_CTRL: {
3727 		r = kvm_set_guest_paused(vcpu);
3728 		goto out;
3729 	}
3730 	case KVM_ENABLE_CAP: {
3731 		struct kvm_enable_cap cap;
3732 
3733 		r = -EFAULT;
3734 		if (copy_from_user(&cap, argp, sizeof(cap)))
3735 			goto out;
3736 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3737 		break;
3738 	}
3739 	default:
3740 		r = -EINVAL;
3741 	}
3742 out:
3743 	kfree(u.buffer);
3744 	return r;
3745 }
3746 
3747 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3748 {
3749 	return VM_FAULT_SIGBUS;
3750 }
3751 
3752 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3753 {
3754 	int ret;
3755 
3756 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3757 		return -EINVAL;
3758 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3759 	return ret;
3760 }
3761 
3762 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3763 					      u64 ident_addr)
3764 {
3765 	kvm->arch.ept_identity_map_addr = ident_addr;
3766 	return 0;
3767 }
3768 
3769 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3770 					  u32 kvm_nr_mmu_pages)
3771 {
3772 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3773 		return -EINVAL;
3774 
3775 	mutex_lock(&kvm->slots_lock);
3776 
3777 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3778 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3779 
3780 	mutex_unlock(&kvm->slots_lock);
3781 	return 0;
3782 }
3783 
3784 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3785 {
3786 	return kvm->arch.n_max_mmu_pages;
3787 }
3788 
3789 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3790 {
3791 	struct kvm_pic *pic = kvm->arch.vpic;
3792 	int r;
3793 
3794 	r = 0;
3795 	switch (chip->chip_id) {
3796 	case KVM_IRQCHIP_PIC_MASTER:
3797 		memcpy(&chip->chip.pic, &pic->pics[0],
3798 			sizeof(struct kvm_pic_state));
3799 		break;
3800 	case KVM_IRQCHIP_PIC_SLAVE:
3801 		memcpy(&chip->chip.pic, &pic->pics[1],
3802 			sizeof(struct kvm_pic_state));
3803 		break;
3804 	case KVM_IRQCHIP_IOAPIC:
3805 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
3806 		break;
3807 	default:
3808 		r = -EINVAL;
3809 		break;
3810 	}
3811 	return r;
3812 }
3813 
3814 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3815 {
3816 	struct kvm_pic *pic = kvm->arch.vpic;
3817 	int r;
3818 
3819 	r = 0;
3820 	switch (chip->chip_id) {
3821 	case KVM_IRQCHIP_PIC_MASTER:
3822 		spin_lock(&pic->lock);
3823 		memcpy(&pic->pics[0], &chip->chip.pic,
3824 			sizeof(struct kvm_pic_state));
3825 		spin_unlock(&pic->lock);
3826 		break;
3827 	case KVM_IRQCHIP_PIC_SLAVE:
3828 		spin_lock(&pic->lock);
3829 		memcpy(&pic->pics[1], &chip->chip.pic,
3830 			sizeof(struct kvm_pic_state));
3831 		spin_unlock(&pic->lock);
3832 		break;
3833 	case KVM_IRQCHIP_IOAPIC:
3834 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
3835 		break;
3836 	default:
3837 		r = -EINVAL;
3838 		break;
3839 	}
3840 	kvm_pic_update_irq(pic);
3841 	return r;
3842 }
3843 
3844 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3845 {
3846 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3847 
3848 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3849 
3850 	mutex_lock(&kps->lock);
3851 	memcpy(ps, &kps->channels, sizeof(*ps));
3852 	mutex_unlock(&kps->lock);
3853 	return 0;
3854 }
3855 
3856 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3857 {
3858 	int i;
3859 	struct kvm_pit *pit = kvm->arch.vpit;
3860 
3861 	mutex_lock(&pit->pit_state.lock);
3862 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3863 	for (i = 0; i < 3; i++)
3864 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3865 	mutex_unlock(&pit->pit_state.lock);
3866 	return 0;
3867 }
3868 
3869 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3870 {
3871 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3872 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3873 		sizeof(ps->channels));
3874 	ps->flags = kvm->arch.vpit->pit_state.flags;
3875 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3876 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3877 	return 0;
3878 }
3879 
3880 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3881 {
3882 	int start = 0;
3883 	int i;
3884 	u32 prev_legacy, cur_legacy;
3885 	struct kvm_pit *pit = kvm->arch.vpit;
3886 
3887 	mutex_lock(&pit->pit_state.lock);
3888 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3889 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3890 	if (!prev_legacy && cur_legacy)
3891 		start = 1;
3892 	memcpy(&pit->pit_state.channels, &ps->channels,
3893 	       sizeof(pit->pit_state.channels));
3894 	pit->pit_state.flags = ps->flags;
3895 	for (i = 0; i < 3; i++)
3896 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3897 				   start && i == 0);
3898 	mutex_unlock(&pit->pit_state.lock);
3899 	return 0;
3900 }
3901 
3902 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3903 				 struct kvm_reinject_control *control)
3904 {
3905 	struct kvm_pit *pit = kvm->arch.vpit;
3906 
3907 	if (!pit)
3908 		return -ENXIO;
3909 
3910 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3911 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3912 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3913 	 */
3914 	mutex_lock(&pit->pit_state.lock);
3915 	kvm_pit_set_reinject(pit, control->pit_reinject);
3916 	mutex_unlock(&pit->pit_state.lock);
3917 
3918 	return 0;
3919 }
3920 
3921 /**
3922  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3923  * @kvm: kvm instance
3924  * @log: slot id and address to which we copy the log
3925  *
3926  * Steps 1-4 below provide general overview of dirty page logging. See
3927  * kvm_get_dirty_log_protect() function description for additional details.
3928  *
3929  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3930  * always flush the TLB (step 4) even if previous step failed  and the dirty
3931  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3932  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3933  * writes will be marked dirty for next log read.
3934  *
3935  *   1. Take a snapshot of the bit and clear it if needed.
3936  *   2. Write protect the corresponding page.
3937  *   3. Copy the snapshot to the userspace.
3938  *   4. Flush TLB's if needed.
3939  */
3940 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3941 {
3942 	bool is_dirty = false;
3943 	int r;
3944 
3945 	mutex_lock(&kvm->slots_lock);
3946 
3947 	/*
3948 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3949 	 */
3950 	if (kvm_x86_ops->flush_log_dirty)
3951 		kvm_x86_ops->flush_log_dirty(kvm);
3952 
3953 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3954 
3955 	/*
3956 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3957 	 * kvm_mmu_slot_remove_write_access().
3958 	 */
3959 	lockdep_assert_held(&kvm->slots_lock);
3960 	if (is_dirty)
3961 		kvm_flush_remote_tlbs(kvm);
3962 
3963 	mutex_unlock(&kvm->slots_lock);
3964 	return r;
3965 }
3966 
3967 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3968 			bool line_status)
3969 {
3970 	if (!irqchip_in_kernel(kvm))
3971 		return -ENXIO;
3972 
3973 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3974 					irq_event->irq, irq_event->level,
3975 					line_status);
3976 	return 0;
3977 }
3978 
3979 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3980 				   struct kvm_enable_cap *cap)
3981 {
3982 	int r;
3983 
3984 	if (cap->flags)
3985 		return -EINVAL;
3986 
3987 	switch (cap->cap) {
3988 	case KVM_CAP_DISABLE_QUIRKS:
3989 		kvm->arch.disabled_quirks = cap->args[0];
3990 		r = 0;
3991 		break;
3992 	case KVM_CAP_SPLIT_IRQCHIP: {
3993 		mutex_lock(&kvm->lock);
3994 		r = -EINVAL;
3995 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3996 			goto split_irqchip_unlock;
3997 		r = -EEXIST;
3998 		if (irqchip_in_kernel(kvm))
3999 			goto split_irqchip_unlock;
4000 		if (kvm->created_vcpus)
4001 			goto split_irqchip_unlock;
4002 		r = kvm_setup_empty_irq_routing(kvm);
4003 		if (r)
4004 			goto split_irqchip_unlock;
4005 		/* Pairs with irqchip_in_kernel. */
4006 		smp_wmb();
4007 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4008 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4009 		r = 0;
4010 split_irqchip_unlock:
4011 		mutex_unlock(&kvm->lock);
4012 		break;
4013 	}
4014 	case KVM_CAP_X2APIC_API:
4015 		r = -EINVAL;
4016 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4017 			break;
4018 
4019 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4020 			kvm->arch.x2apic_format = true;
4021 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4022 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4023 
4024 		r = 0;
4025 		break;
4026 	default:
4027 		r = -EINVAL;
4028 		break;
4029 	}
4030 	return r;
4031 }
4032 
4033 long kvm_arch_vm_ioctl(struct file *filp,
4034 		       unsigned int ioctl, unsigned long arg)
4035 {
4036 	struct kvm *kvm = filp->private_data;
4037 	void __user *argp = (void __user *)arg;
4038 	int r = -ENOTTY;
4039 	/*
4040 	 * This union makes it completely explicit to gcc-3.x
4041 	 * that these two variables' stack usage should be
4042 	 * combined, not added together.
4043 	 */
4044 	union {
4045 		struct kvm_pit_state ps;
4046 		struct kvm_pit_state2 ps2;
4047 		struct kvm_pit_config pit_config;
4048 	} u;
4049 
4050 	switch (ioctl) {
4051 	case KVM_SET_TSS_ADDR:
4052 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4053 		break;
4054 	case KVM_SET_IDENTITY_MAP_ADDR: {
4055 		u64 ident_addr;
4056 
4057 		mutex_lock(&kvm->lock);
4058 		r = -EINVAL;
4059 		if (kvm->created_vcpus)
4060 			goto set_identity_unlock;
4061 		r = -EFAULT;
4062 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4063 			goto set_identity_unlock;
4064 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4065 set_identity_unlock:
4066 		mutex_unlock(&kvm->lock);
4067 		break;
4068 	}
4069 	case KVM_SET_NR_MMU_PAGES:
4070 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4071 		break;
4072 	case KVM_GET_NR_MMU_PAGES:
4073 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4074 		break;
4075 	case KVM_CREATE_IRQCHIP: {
4076 		mutex_lock(&kvm->lock);
4077 
4078 		r = -EEXIST;
4079 		if (irqchip_in_kernel(kvm))
4080 			goto create_irqchip_unlock;
4081 
4082 		r = -EINVAL;
4083 		if (kvm->created_vcpus)
4084 			goto create_irqchip_unlock;
4085 
4086 		r = kvm_pic_init(kvm);
4087 		if (r)
4088 			goto create_irqchip_unlock;
4089 
4090 		r = kvm_ioapic_init(kvm);
4091 		if (r) {
4092 			kvm_pic_destroy(kvm);
4093 			goto create_irqchip_unlock;
4094 		}
4095 
4096 		r = kvm_setup_default_irq_routing(kvm);
4097 		if (r) {
4098 			kvm_ioapic_destroy(kvm);
4099 			kvm_pic_destroy(kvm);
4100 			goto create_irqchip_unlock;
4101 		}
4102 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4103 		smp_wmb();
4104 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4105 	create_irqchip_unlock:
4106 		mutex_unlock(&kvm->lock);
4107 		break;
4108 	}
4109 	case KVM_CREATE_PIT:
4110 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4111 		goto create_pit;
4112 	case KVM_CREATE_PIT2:
4113 		r = -EFAULT;
4114 		if (copy_from_user(&u.pit_config, argp,
4115 				   sizeof(struct kvm_pit_config)))
4116 			goto out;
4117 	create_pit:
4118 		mutex_lock(&kvm->lock);
4119 		r = -EEXIST;
4120 		if (kvm->arch.vpit)
4121 			goto create_pit_unlock;
4122 		r = -ENOMEM;
4123 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4124 		if (kvm->arch.vpit)
4125 			r = 0;
4126 	create_pit_unlock:
4127 		mutex_unlock(&kvm->lock);
4128 		break;
4129 	case KVM_GET_IRQCHIP: {
4130 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4131 		struct kvm_irqchip *chip;
4132 
4133 		chip = memdup_user(argp, sizeof(*chip));
4134 		if (IS_ERR(chip)) {
4135 			r = PTR_ERR(chip);
4136 			goto out;
4137 		}
4138 
4139 		r = -ENXIO;
4140 		if (!irqchip_kernel(kvm))
4141 			goto get_irqchip_out;
4142 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4143 		if (r)
4144 			goto get_irqchip_out;
4145 		r = -EFAULT;
4146 		if (copy_to_user(argp, chip, sizeof *chip))
4147 			goto get_irqchip_out;
4148 		r = 0;
4149 	get_irqchip_out:
4150 		kfree(chip);
4151 		break;
4152 	}
4153 	case KVM_SET_IRQCHIP: {
4154 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4155 		struct kvm_irqchip *chip;
4156 
4157 		chip = memdup_user(argp, sizeof(*chip));
4158 		if (IS_ERR(chip)) {
4159 			r = PTR_ERR(chip);
4160 			goto out;
4161 		}
4162 
4163 		r = -ENXIO;
4164 		if (!irqchip_kernel(kvm))
4165 			goto set_irqchip_out;
4166 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4167 		if (r)
4168 			goto set_irqchip_out;
4169 		r = 0;
4170 	set_irqchip_out:
4171 		kfree(chip);
4172 		break;
4173 	}
4174 	case KVM_GET_PIT: {
4175 		r = -EFAULT;
4176 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4177 			goto out;
4178 		r = -ENXIO;
4179 		if (!kvm->arch.vpit)
4180 			goto out;
4181 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4182 		if (r)
4183 			goto out;
4184 		r = -EFAULT;
4185 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4186 			goto out;
4187 		r = 0;
4188 		break;
4189 	}
4190 	case KVM_SET_PIT: {
4191 		r = -EFAULT;
4192 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4193 			goto out;
4194 		r = -ENXIO;
4195 		if (!kvm->arch.vpit)
4196 			goto out;
4197 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4198 		break;
4199 	}
4200 	case KVM_GET_PIT2: {
4201 		r = -ENXIO;
4202 		if (!kvm->arch.vpit)
4203 			goto out;
4204 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4205 		if (r)
4206 			goto out;
4207 		r = -EFAULT;
4208 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4209 			goto out;
4210 		r = 0;
4211 		break;
4212 	}
4213 	case KVM_SET_PIT2: {
4214 		r = -EFAULT;
4215 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4216 			goto out;
4217 		r = -ENXIO;
4218 		if (!kvm->arch.vpit)
4219 			goto out;
4220 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4221 		break;
4222 	}
4223 	case KVM_REINJECT_CONTROL: {
4224 		struct kvm_reinject_control control;
4225 		r =  -EFAULT;
4226 		if (copy_from_user(&control, argp, sizeof(control)))
4227 			goto out;
4228 		r = kvm_vm_ioctl_reinject(kvm, &control);
4229 		break;
4230 	}
4231 	case KVM_SET_BOOT_CPU_ID:
4232 		r = 0;
4233 		mutex_lock(&kvm->lock);
4234 		if (kvm->created_vcpus)
4235 			r = -EBUSY;
4236 		else
4237 			kvm->arch.bsp_vcpu_id = arg;
4238 		mutex_unlock(&kvm->lock);
4239 		break;
4240 	case KVM_XEN_HVM_CONFIG: {
4241 		struct kvm_xen_hvm_config xhc;
4242 		r = -EFAULT;
4243 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
4244 			goto out;
4245 		r = -EINVAL;
4246 		if (xhc.flags)
4247 			goto out;
4248 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4249 		r = 0;
4250 		break;
4251 	}
4252 	case KVM_SET_CLOCK: {
4253 		struct kvm_clock_data user_ns;
4254 		u64 now_ns;
4255 
4256 		r = -EFAULT;
4257 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4258 			goto out;
4259 
4260 		r = -EINVAL;
4261 		if (user_ns.flags)
4262 			goto out;
4263 
4264 		r = 0;
4265 		/*
4266 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4267 		 * kvm_gen_update_masterclock() can be cut down to locked
4268 		 * pvclock_update_vm_gtod_copy().
4269 		 */
4270 		kvm_gen_update_masterclock(kvm);
4271 		now_ns = get_kvmclock_ns(kvm);
4272 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4273 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4274 		break;
4275 	}
4276 	case KVM_GET_CLOCK: {
4277 		struct kvm_clock_data user_ns;
4278 		u64 now_ns;
4279 
4280 		now_ns = get_kvmclock_ns(kvm);
4281 		user_ns.clock = now_ns;
4282 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4283 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4284 
4285 		r = -EFAULT;
4286 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4287 			goto out;
4288 		r = 0;
4289 		break;
4290 	}
4291 	case KVM_ENABLE_CAP: {
4292 		struct kvm_enable_cap cap;
4293 
4294 		r = -EFAULT;
4295 		if (copy_from_user(&cap, argp, sizeof(cap)))
4296 			goto out;
4297 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4298 		break;
4299 	}
4300 	default:
4301 		r = -ENOTTY;
4302 	}
4303 out:
4304 	return r;
4305 }
4306 
4307 static void kvm_init_msr_list(void)
4308 {
4309 	u32 dummy[2];
4310 	unsigned i, j;
4311 
4312 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4313 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4314 			continue;
4315 
4316 		/*
4317 		 * Even MSRs that are valid in the host may not be exposed
4318 		 * to the guests in some cases.
4319 		 */
4320 		switch (msrs_to_save[i]) {
4321 		case MSR_IA32_BNDCFGS:
4322 			if (!kvm_x86_ops->mpx_supported())
4323 				continue;
4324 			break;
4325 		case MSR_TSC_AUX:
4326 			if (!kvm_x86_ops->rdtscp_supported())
4327 				continue;
4328 			break;
4329 		default:
4330 			break;
4331 		}
4332 
4333 		if (j < i)
4334 			msrs_to_save[j] = msrs_to_save[i];
4335 		j++;
4336 	}
4337 	num_msrs_to_save = j;
4338 
4339 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4340 		switch (emulated_msrs[i]) {
4341 		case MSR_IA32_SMBASE:
4342 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4343 				continue;
4344 			break;
4345 		default:
4346 			break;
4347 		}
4348 
4349 		if (j < i)
4350 			emulated_msrs[j] = emulated_msrs[i];
4351 		j++;
4352 	}
4353 	num_emulated_msrs = j;
4354 }
4355 
4356 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4357 			   const void *v)
4358 {
4359 	int handled = 0;
4360 	int n;
4361 
4362 	do {
4363 		n = min(len, 8);
4364 		if (!(lapic_in_kernel(vcpu) &&
4365 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4366 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4367 			break;
4368 		handled += n;
4369 		addr += n;
4370 		len -= n;
4371 		v += n;
4372 	} while (len);
4373 
4374 	return handled;
4375 }
4376 
4377 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4378 {
4379 	int handled = 0;
4380 	int n;
4381 
4382 	do {
4383 		n = min(len, 8);
4384 		if (!(lapic_in_kernel(vcpu) &&
4385 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4386 					 addr, n, v))
4387 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4388 			break;
4389 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4390 		handled += n;
4391 		addr += n;
4392 		len -= n;
4393 		v += n;
4394 	} while (len);
4395 
4396 	return handled;
4397 }
4398 
4399 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4400 			struct kvm_segment *var, int seg)
4401 {
4402 	kvm_x86_ops->set_segment(vcpu, var, seg);
4403 }
4404 
4405 void kvm_get_segment(struct kvm_vcpu *vcpu,
4406 		     struct kvm_segment *var, int seg)
4407 {
4408 	kvm_x86_ops->get_segment(vcpu, var, seg);
4409 }
4410 
4411 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4412 			   struct x86_exception *exception)
4413 {
4414 	gpa_t t_gpa;
4415 
4416 	BUG_ON(!mmu_is_nested(vcpu));
4417 
4418 	/* NPT walks are always user-walks */
4419 	access |= PFERR_USER_MASK;
4420 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4421 
4422 	return t_gpa;
4423 }
4424 
4425 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4426 			      struct x86_exception *exception)
4427 {
4428 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4429 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4430 }
4431 
4432  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4433 				struct x86_exception *exception)
4434 {
4435 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4436 	access |= PFERR_FETCH_MASK;
4437 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4438 }
4439 
4440 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4441 			       struct x86_exception *exception)
4442 {
4443 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4444 	access |= PFERR_WRITE_MASK;
4445 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4446 }
4447 
4448 /* uses this to access any guest's mapped memory without checking CPL */
4449 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4450 				struct x86_exception *exception)
4451 {
4452 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4453 }
4454 
4455 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4456 				      struct kvm_vcpu *vcpu, u32 access,
4457 				      struct x86_exception *exception)
4458 {
4459 	void *data = val;
4460 	int r = X86EMUL_CONTINUE;
4461 
4462 	while (bytes) {
4463 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4464 							    exception);
4465 		unsigned offset = addr & (PAGE_SIZE-1);
4466 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4467 		int ret;
4468 
4469 		if (gpa == UNMAPPED_GVA)
4470 			return X86EMUL_PROPAGATE_FAULT;
4471 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4472 					       offset, toread);
4473 		if (ret < 0) {
4474 			r = X86EMUL_IO_NEEDED;
4475 			goto out;
4476 		}
4477 
4478 		bytes -= toread;
4479 		data += toread;
4480 		addr += toread;
4481 	}
4482 out:
4483 	return r;
4484 }
4485 
4486 /* used for instruction fetching */
4487 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4488 				gva_t addr, void *val, unsigned int bytes,
4489 				struct x86_exception *exception)
4490 {
4491 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4492 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4493 	unsigned offset;
4494 	int ret;
4495 
4496 	/* Inline kvm_read_guest_virt_helper for speed.  */
4497 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4498 						    exception);
4499 	if (unlikely(gpa == UNMAPPED_GVA))
4500 		return X86EMUL_PROPAGATE_FAULT;
4501 
4502 	offset = addr & (PAGE_SIZE-1);
4503 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4504 		bytes = (unsigned)PAGE_SIZE - offset;
4505 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4506 				       offset, bytes);
4507 	if (unlikely(ret < 0))
4508 		return X86EMUL_IO_NEEDED;
4509 
4510 	return X86EMUL_CONTINUE;
4511 }
4512 
4513 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4514 			       gva_t addr, void *val, unsigned int bytes,
4515 			       struct x86_exception *exception)
4516 {
4517 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4518 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4519 
4520 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4521 					  exception);
4522 }
4523 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4524 
4525 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4526 				      gva_t addr, void *val, unsigned int bytes,
4527 				      struct x86_exception *exception)
4528 {
4529 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4530 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4531 }
4532 
4533 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4534 		unsigned long addr, void *val, unsigned int bytes)
4535 {
4536 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4537 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4538 
4539 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4540 }
4541 
4542 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4543 				       gva_t addr, void *val,
4544 				       unsigned int bytes,
4545 				       struct x86_exception *exception)
4546 {
4547 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4548 	void *data = val;
4549 	int r = X86EMUL_CONTINUE;
4550 
4551 	while (bytes) {
4552 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4553 							     PFERR_WRITE_MASK,
4554 							     exception);
4555 		unsigned offset = addr & (PAGE_SIZE-1);
4556 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4557 		int ret;
4558 
4559 		if (gpa == UNMAPPED_GVA)
4560 			return X86EMUL_PROPAGATE_FAULT;
4561 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4562 		if (ret < 0) {
4563 			r = X86EMUL_IO_NEEDED;
4564 			goto out;
4565 		}
4566 
4567 		bytes -= towrite;
4568 		data += towrite;
4569 		addr += towrite;
4570 	}
4571 out:
4572 	return r;
4573 }
4574 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4575 
4576 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4577 			    gpa_t gpa, bool write)
4578 {
4579 	/* For APIC access vmexit */
4580 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4581 		return 1;
4582 
4583 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4584 		trace_vcpu_match_mmio(gva, gpa, write, true);
4585 		return 1;
4586 	}
4587 
4588 	return 0;
4589 }
4590 
4591 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4592 				gpa_t *gpa, struct x86_exception *exception,
4593 				bool write)
4594 {
4595 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4596 		| (write ? PFERR_WRITE_MASK : 0);
4597 
4598 	/*
4599 	 * currently PKRU is only applied to ept enabled guest so
4600 	 * there is no pkey in EPT page table for L1 guest or EPT
4601 	 * shadow page table for L2 guest.
4602 	 */
4603 	if (vcpu_match_mmio_gva(vcpu, gva)
4604 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4605 				 vcpu->arch.access, 0, access)) {
4606 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4607 					(gva & (PAGE_SIZE - 1));
4608 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4609 		return 1;
4610 	}
4611 
4612 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4613 
4614 	if (*gpa == UNMAPPED_GVA)
4615 		return -1;
4616 
4617 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4618 }
4619 
4620 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4621 			const void *val, int bytes)
4622 {
4623 	int ret;
4624 
4625 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4626 	if (ret < 0)
4627 		return 0;
4628 	kvm_page_track_write(vcpu, gpa, val, bytes);
4629 	return 1;
4630 }
4631 
4632 struct read_write_emulator_ops {
4633 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4634 				  int bytes);
4635 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4636 				  void *val, int bytes);
4637 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4638 			       int bytes, void *val);
4639 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4640 				    void *val, int bytes);
4641 	bool write;
4642 };
4643 
4644 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4645 {
4646 	if (vcpu->mmio_read_completed) {
4647 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4648 			       vcpu->mmio_fragments[0].gpa, val);
4649 		vcpu->mmio_read_completed = 0;
4650 		return 1;
4651 	}
4652 
4653 	return 0;
4654 }
4655 
4656 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4657 			void *val, int bytes)
4658 {
4659 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4660 }
4661 
4662 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4663 			 void *val, int bytes)
4664 {
4665 	return emulator_write_phys(vcpu, gpa, val, bytes);
4666 }
4667 
4668 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4669 {
4670 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4671 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4672 }
4673 
4674 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4675 			  void *val, int bytes)
4676 {
4677 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4678 	return X86EMUL_IO_NEEDED;
4679 }
4680 
4681 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4682 			   void *val, int bytes)
4683 {
4684 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4685 
4686 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4687 	return X86EMUL_CONTINUE;
4688 }
4689 
4690 static const struct read_write_emulator_ops read_emultor = {
4691 	.read_write_prepare = read_prepare,
4692 	.read_write_emulate = read_emulate,
4693 	.read_write_mmio = vcpu_mmio_read,
4694 	.read_write_exit_mmio = read_exit_mmio,
4695 };
4696 
4697 static const struct read_write_emulator_ops write_emultor = {
4698 	.read_write_emulate = write_emulate,
4699 	.read_write_mmio = write_mmio,
4700 	.read_write_exit_mmio = write_exit_mmio,
4701 	.write = true,
4702 };
4703 
4704 static int emulator_read_write_onepage(unsigned long addr, void *val,
4705 				       unsigned int bytes,
4706 				       struct x86_exception *exception,
4707 				       struct kvm_vcpu *vcpu,
4708 				       const struct read_write_emulator_ops *ops)
4709 {
4710 	gpa_t gpa;
4711 	int handled, ret;
4712 	bool write = ops->write;
4713 	struct kvm_mmio_fragment *frag;
4714 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4715 
4716 	/*
4717 	 * If the exit was due to a NPF we may already have a GPA.
4718 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4719 	 * Note, this cannot be used on string operations since string
4720 	 * operation using rep will only have the initial GPA from the NPF
4721 	 * occurred.
4722 	 */
4723 	if (vcpu->arch.gpa_available &&
4724 	    emulator_can_use_gpa(ctxt) &&
4725 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4726 		gpa = vcpu->arch.gpa_val;
4727 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4728 	} else {
4729 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4730 		if (ret < 0)
4731 			return X86EMUL_PROPAGATE_FAULT;
4732 	}
4733 
4734 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4735 		return X86EMUL_CONTINUE;
4736 
4737 	/*
4738 	 * Is this MMIO handled locally?
4739 	 */
4740 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4741 	if (handled == bytes)
4742 		return X86EMUL_CONTINUE;
4743 
4744 	gpa += handled;
4745 	bytes -= handled;
4746 	val += handled;
4747 
4748 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4749 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4750 	frag->gpa = gpa;
4751 	frag->data = val;
4752 	frag->len = bytes;
4753 	return X86EMUL_CONTINUE;
4754 }
4755 
4756 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4757 			unsigned long addr,
4758 			void *val, unsigned int bytes,
4759 			struct x86_exception *exception,
4760 			const struct read_write_emulator_ops *ops)
4761 {
4762 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4763 	gpa_t gpa;
4764 	int rc;
4765 
4766 	if (ops->read_write_prepare &&
4767 		  ops->read_write_prepare(vcpu, val, bytes))
4768 		return X86EMUL_CONTINUE;
4769 
4770 	vcpu->mmio_nr_fragments = 0;
4771 
4772 	/* Crossing a page boundary? */
4773 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4774 		int now;
4775 
4776 		now = -addr & ~PAGE_MASK;
4777 		rc = emulator_read_write_onepage(addr, val, now, exception,
4778 						 vcpu, ops);
4779 
4780 		if (rc != X86EMUL_CONTINUE)
4781 			return rc;
4782 		addr += now;
4783 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4784 			addr = (u32)addr;
4785 		val += now;
4786 		bytes -= now;
4787 	}
4788 
4789 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4790 					 vcpu, ops);
4791 	if (rc != X86EMUL_CONTINUE)
4792 		return rc;
4793 
4794 	if (!vcpu->mmio_nr_fragments)
4795 		return rc;
4796 
4797 	gpa = vcpu->mmio_fragments[0].gpa;
4798 
4799 	vcpu->mmio_needed = 1;
4800 	vcpu->mmio_cur_fragment = 0;
4801 
4802 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4803 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4804 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4805 	vcpu->run->mmio.phys_addr = gpa;
4806 
4807 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4808 }
4809 
4810 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4811 				  unsigned long addr,
4812 				  void *val,
4813 				  unsigned int bytes,
4814 				  struct x86_exception *exception)
4815 {
4816 	return emulator_read_write(ctxt, addr, val, bytes,
4817 				   exception, &read_emultor);
4818 }
4819 
4820 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4821 			    unsigned long addr,
4822 			    const void *val,
4823 			    unsigned int bytes,
4824 			    struct x86_exception *exception)
4825 {
4826 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4827 				   exception, &write_emultor);
4828 }
4829 
4830 #define CMPXCHG_TYPE(t, ptr, old, new) \
4831 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4832 
4833 #ifdef CONFIG_X86_64
4834 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4835 #else
4836 #  define CMPXCHG64(ptr, old, new) \
4837 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4838 #endif
4839 
4840 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4841 				     unsigned long addr,
4842 				     const void *old,
4843 				     const void *new,
4844 				     unsigned int bytes,
4845 				     struct x86_exception *exception)
4846 {
4847 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4848 	gpa_t gpa;
4849 	struct page *page;
4850 	char *kaddr;
4851 	bool exchanged;
4852 
4853 	/* guests cmpxchg8b have to be emulated atomically */
4854 	if (bytes > 8 || (bytes & (bytes - 1)))
4855 		goto emul_write;
4856 
4857 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4858 
4859 	if (gpa == UNMAPPED_GVA ||
4860 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4861 		goto emul_write;
4862 
4863 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4864 		goto emul_write;
4865 
4866 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4867 	if (is_error_page(page))
4868 		goto emul_write;
4869 
4870 	kaddr = kmap_atomic(page);
4871 	kaddr += offset_in_page(gpa);
4872 	switch (bytes) {
4873 	case 1:
4874 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4875 		break;
4876 	case 2:
4877 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4878 		break;
4879 	case 4:
4880 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4881 		break;
4882 	case 8:
4883 		exchanged = CMPXCHG64(kaddr, old, new);
4884 		break;
4885 	default:
4886 		BUG();
4887 	}
4888 	kunmap_atomic(kaddr);
4889 	kvm_release_page_dirty(page);
4890 
4891 	if (!exchanged)
4892 		return X86EMUL_CMPXCHG_FAILED;
4893 
4894 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4895 	kvm_page_track_write(vcpu, gpa, new, bytes);
4896 
4897 	return X86EMUL_CONTINUE;
4898 
4899 emul_write:
4900 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4901 
4902 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4903 }
4904 
4905 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4906 {
4907 	int r = 0, i;
4908 
4909 	for (i = 0; i < vcpu->arch.pio.count; i++) {
4910 		if (vcpu->arch.pio.in)
4911 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4912 					    vcpu->arch.pio.size, pd);
4913 		else
4914 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4915 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
4916 					     pd);
4917 		if (r)
4918 			break;
4919 		pd += vcpu->arch.pio.size;
4920 	}
4921 	return r;
4922 }
4923 
4924 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4925 			       unsigned short port, void *val,
4926 			       unsigned int count, bool in)
4927 {
4928 	vcpu->arch.pio.port = port;
4929 	vcpu->arch.pio.in = in;
4930 	vcpu->arch.pio.count  = count;
4931 	vcpu->arch.pio.size = size;
4932 
4933 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4934 		vcpu->arch.pio.count = 0;
4935 		return 1;
4936 	}
4937 
4938 	vcpu->run->exit_reason = KVM_EXIT_IO;
4939 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4940 	vcpu->run->io.size = size;
4941 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4942 	vcpu->run->io.count = count;
4943 	vcpu->run->io.port = port;
4944 
4945 	return 0;
4946 }
4947 
4948 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4949 				    int size, unsigned short port, void *val,
4950 				    unsigned int count)
4951 {
4952 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4953 	int ret;
4954 
4955 	if (vcpu->arch.pio.count)
4956 		goto data_avail;
4957 
4958 	memset(vcpu->arch.pio_data, 0, size * count);
4959 
4960 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4961 	if (ret) {
4962 data_avail:
4963 		memcpy(val, vcpu->arch.pio_data, size * count);
4964 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4965 		vcpu->arch.pio.count = 0;
4966 		return 1;
4967 	}
4968 
4969 	return 0;
4970 }
4971 
4972 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4973 				     int size, unsigned short port,
4974 				     const void *val, unsigned int count)
4975 {
4976 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4977 
4978 	memcpy(vcpu->arch.pio_data, val, size * count);
4979 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4980 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4981 }
4982 
4983 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4984 {
4985 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4986 }
4987 
4988 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4989 {
4990 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4991 }
4992 
4993 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4994 {
4995 	if (!need_emulate_wbinvd(vcpu))
4996 		return X86EMUL_CONTINUE;
4997 
4998 	if (kvm_x86_ops->has_wbinvd_exit()) {
4999 		int cpu = get_cpu();
5000 
5001 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5002 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5003 				wbinvd_ipi, NULL, 1);
5004 		put_cpu();
5005 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5006 	} else
5007 		wbinvd();
5008 	return X86EMUL_CONTINUE;
5009 }
5010 
5011 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5012 {
5013 	kvm_emulate_wbinvd_noskip(vcpu);
5014 	return kvm_skip_emulated_instruction(vcpu);
5015 }
5016 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5017 
5018 
5019 
5020 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5021 {
5022 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5023 }
5024 
5025 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5026 			   unsigned long *dest)
5027 {
5028 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5029 }
5030 
5031 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5032 			   unsigned long value)
5033 {
5034 
5035 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5036 }
5037 
5038 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5039 {
5040 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5041 }
5042 
5043 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5044 {
5045 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5046 	unsigned long value;
5047 
5048 	switch (cr) {
5049 	case 0:
5050 		value = kvm_read_cr0(vcpu);
5051 		break;
5052 	case 2:
5053 		value = vcpu->arch.cr2;
5054 		break;
5055 	case 3:
5056 		value = kvm_read_cr3(vcpu);
5057 		break;
5058 	case 4:
5059 		value = kvm_read_cr4(vcpu);
5060 		break;
5061 	case 8:
5062 		value = kvm_get_cr8(vcpu);
5063 		break;
5064 	default:
5065 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5066 		return 0;
5067 	}
5068 
5069 	return value;
5070 }
5071 
5072 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5073 {
5074 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5075 	int res = 0;
5076 
5077 	switch (cr) {
5078 	case 0:
5079 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5080 		break;
5081 	case 2:
5082 		vcpu->arch.cr2 = val;
5083 		break;
5084 	case 3:
5085 		res = kvm_set_cr3(vcpu, val);
5086 		break;
5087 	case 4:
5088 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5089 		break;
5090 	case 8:
5091 		res = kvm_set_cr8(vcpu, val);
5092 		break;
5093 	default:
5094 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5095 		res = -1;
5096 	}
5097 
5098 	return res;
5099 }
5100 
5101 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5102 {
5103 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5104 }
5105 
5106 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5107 {
5108 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5109 }
5110 
5111 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5112 {
5113 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5114 }
5115 
5116 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5117 {
5118 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5119 }
5120 
5121 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5122 {
5123 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5124 }
5125 
5126 static unsigned long emulator_get_cached_segment_base(
5127 	struct x86_emulate_ctxt *ctxt, int seg)
5128 {
5129 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5130 }
5131 
5132 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5133 				 struct desc_struct *desc, u32 *base3,
5134 				 int seg)
5135 {
5136 	struct kvm_segment var;
5137 
5138 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5139 	*selector = var.selector;
5140 
5141 	if (var.unusable) {
5142 		memset(desc, 0, sizeof(*desc));
5143 		if (base3)
5144 			*base3 = 0;
5145 		return false;
5146 	}
5147 
5148 	if (var.g)
5149 		var.limit >>= 12;
5150 	set_desc_limit(desc, var.limit);
5151 	set_desc_base(desc, (unsigned long)var.base);
5152 #ifdef CONFIG_X86_64
5153 	if (base3)
5154 		*base3 = var.base >> 32;
5155 #endif
5156 	desc->type = var.type;
5157 	desc->s = var.s;
5158 	desc->dpl = var.dpl;
5159 	desc->p = var.present;
5160 	desc->avl = var.avl;
5161 	desc->l = var.l;
5162 	desc->d = var.db;
5163 	desc->g = var.g;
5164 
5165 	return true;
5166 }
5167 
5168 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5169 				 struct desc_struct *desc, u32 base3,
5170 				 int seg)
5171 {
5172 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5173 	struct kvm_segment var;
5174 
5175 	var.selector = selector;
5176 	var.base = get_desc_base(desc);
5177 #ifdef CONFIG_X86_64
5178 	var.base |= ((u64)base3) << 32;
5179 #endif
5180 	var.limit = get_desc_limit(desc);
5181 	if (desc->g)
5182 		var.limit = (var.limit << 12) | 0xfff;
5183 	var.type = desc->type;
5184 	var.dpl = desc->dpl;
5185 	var.db = desc->d;
5186 	var.s = desc->s;
5187 	var.l = desc->l;
5188 	var.g = desc->g;
5189 	var.avl = desc->avl;
5190 	var.present = desc->p;
5191 	var.unusable = !var.present;
5192 	var.padding = 0;
5193 
5194 	kvm_set_segment(vcpu, &var, seg);
5195 	return;
5196 }
5197 
5198 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5199 			    u32 msr_index, u64 *pdata)
5200 {
5201 	struct msr_data msr;
5202 	int r;
5203 
5204 	msr.index = msr_index;
5205 	msr.host_initiated = false;
5206 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5207 	if (r)
5208 		return r;
5209 
5210 	*pdata = msr.data;
5211 	return 0;
5212 }
5213 
5214 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5215 			    u32 msr_index, u64 data)
5216 {
5217 	struct msr_data msr;
5218 
5219 	msr.data = data;
5220 	msr.index = msr_index;
5221 	msr.host_initiated = false;
5222 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5223 }
5224 
5225 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5226 {
5227 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5228 
5229 	return vcpu->arch.smbase;
5230 }
5231 
5232 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5233 {
5234 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5235 
5236 	vcpu->arch.smbase = smbase;
5237 }
5238 
5239 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5240 			      u32 pmc)
5241 {
5242 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5243 }
5244 
5245 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5246 			     u32 pmc, u64 *pdata)
5247 {
5248 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5249 }
5250 
5251 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5252 {
5253 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5254 }
5255 
5256 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5257 			      struct x86_instruction_info *info,
5258 			      enum x86_intercept_stage stage)
5259 {
5260 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5261 }
5262 
5263 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5264 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5265 {
5266 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5267 }
5268 
5269 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5270 {
5271 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5272 }
5273 
5274 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5275 {
5276 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5277 }
5278 
5279 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5280 {
5281 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5282 }
5283 
5284 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5285 {
5286 	return emul_to_vcpu(ctxt)->arch.hflags;
5287 }
5288 
5289 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5290 {
5291 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5292 }
5293 
5294 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5295 {
5296 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5297 }
5298 
5299 static const struct x86_emulate_ops emulate_ops = {
5300 	.read_gpr            = emulator_read_gpr,
5301 	.write_gpr           = emulator_write_gpr,
5302 	.read_std            = kvm_read_guest_virt_system,
5303 	.write_std           = kvm_write_guest_virt_system,
5304 	.read_phys           = kvm_read_guest_phys_system,
5305 	.fetch               = kvm_fetch_guest_virt,
5306 	.read_emulated       = emulator_read_emulated,
5307 	.write_emulated      = emulator_write_emulated,
5308 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5309 	.invlpg              = emulator_invlpg,
5310 	.pio_in_emulated     = emulator_pio_in_emulated,
5311 	.pio_out_emulated    = emulator_pio_out_emulated,
5312 	.get_segment         = emulator_get_segment,
5313 	.set_segment         = emulator_set_segment,
5314 	.get_cached_segment_base = emulator_get_cached_segment_base,
5315 	.get_gdt             = emulator_get_gdt,
5316 	.get_idt	     = emulator_get_idt,
5317 	.set_gdt             = emulator_set_gdt,
5318 	.set_idt	     = emulator_set_idt,
5319 	.get_cr              = emulator_get_cr,
5320 	.set_cr              = emulator_set_cr,
5321 	.cpl                 = emulator_get_cpl,
5322 	.get_dr              = emulator_get_dr,
5323 	.set_dr              = emulator_set_dr,
5324 	.get_smbase          = emulator_get_smbase,
5325 	.set_smbase          = emulator_set_smbase,
5326 	.set_msr             = emulator_set_msr,
5327 	.get_msr             = emulator_get_msr,
5328 	.check_pmc	     = emulator_check_pmc,
5329 	.read_pmc            = emulator_read_pmc,
5330 	.halt                = emulator_halt,
5331 	.wbinvd              = emulator_wbinvd,
5332 	.fix_hypercall       = emulator_fix_hypercall,
5333 	.intercept           = emulator_intercept,
5334 	.get_cpuid           = emulator_get_cpuid,
5335 	.set_nmi_mask        = emulator_set_nmi_mask,
5336 	.get_hflags          = emulator_get_hflags,
5337 	.set_hflags          = emulator_set_hflags,
5338 	.pre_leave_smm       = emulator_pre_leave_smm,
5339 };
5340 
5341 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5342 {
5343 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5344 	/*
5345 	 * an sti; sti; sequence only disable interrupts for the first
5346 	 * instruction. So, if the last instruction, be it emulated or
5347 	 * not, left the system with the INT_STI flag enabled, it
5348 	 * means that the last instruction is an sti. We should not
5349 	 * leave the flag on in this case. The same goes for mov ss
5350 	 */
5351 	if (int_shadow & mask)
5352 		mask = 0;
5353 	if (unlikely(int_shadow || mask)) {
5354 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5355 		if (!mask)
5356 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5357 	}
5358 }
5359 
5360 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5361 {
5362 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5363 	if (ctxt->exception.vector == PF_VECTOR)
5364 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5365 
5366 	if (ctxt->exception.error_code_valid)
5367 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5368 				      ctxt->exception.error_code);
5369 	else
5370 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5371 	return false;
5372 }
5373 
5374 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5375 {
5376 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5377 	int cs_db, cs_l;
5378 
5379 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5380 
5381 	ctxt->eflags = kvm_get_rflags(vcpu);
5382 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5383 
5384 	ctxt->eip = kvm_rip_read(vcpu);
5385 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5386 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5387 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5388 		     cs_db				? X86EMUL_MODE_PROT32 :
5389 							  X86EMUL_MODE_PROT16;
5390 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5391 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5392 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5393 
5394 	init_decode_cache(ctxt);
5395 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5396 }
5397 
5398 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5399 {
5400 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5401 	int ret;
5402 
5403 	init_emulate_ctxt(vcpu);
5404 
5405 	ctxt->op_bytes = 2;
5406 	ctxt->ad_bytes = 2;
5407 	ctxt->_eip = ctxt->eip + inc_eip;
5408 	ret = emulate_int_real(ctxt, irq);
5409 
5410 	if (ret != X86EMUL_CONTINUE)
5411 		return EMULATE_FAIL;
5412 
5413 	ctxt->eip = ctxt->_eip;
5414 	kvm_rip_write(vcpu, ctxt->eip);
5415 	kvm_set_rflags(vcpu, ctxt->eflags);
5416 
5417 	if (irq == NMI_VECTOR)
5418 		vcpu->arch.nmi_pending = 0;
5419 	else
5420 		vcpu->arch.interrupt.pending = false;
5421 
5422 	return EMULATE_DONE;
5423 }
5424 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5425 
5426 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5427 {
5428 	int r = EMULATE_DONE;
5429 
5430 	++vcpu->stat.insn_emulation_fail;
5431 	trace_kvm_emulate_insn_failed(vcpu);
5432 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5433 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5434 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5435 		vcpu->run->internal.ndata = 0;
5436 		r = EMULATE_USER_EXIT;
5437 	}
5438 	kvm_queue_exception(vcpu, UD_VECTOR);
5439 
5440 	return r;
5441 }
5442 
5443 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5444 				  bool write_fault_to_shadow_pgtable,
5445 				  int emulation_type)
5446 {
5447 	gpa_t gpa = cr2;
5448 	kvm_pfn_t pfn;
5449 
5450 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5451 		return false;
5452 
5453 	if (!vcpu->arch.mmu.direct_map) {
5454 		/*
5455 		 * Write permission should be allowed since only
5456 		 * write access need to be emulated.
5457 		 */
5458 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5459 
5460 		/*
5461 		 * If the mapping is invalid in guest, let cpu retry
5462 		 * it to generate fault.
5463 		 */
5464 		if (gpa == UNMAPPED_GVA)
5465 			return true;
5466 	}
5467 
5468 	/*
5469 	 * Do not retry the unhandleable instruction if it faults on the
5470 	 * readonly host memory, otherwise it will goto a infinite loop:
5471 	 * retry instruction -> write #PF -> emulation fail -> retry
5472 	 * instruction -> ...
5473 	 */
5474 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5475 
5476 	/*
5477 	 * If the instruction failed on the error pfn, it can not be fixed,
5478 	 * report the error to userspace.
5479 	 */
5480 	if (is_error_noslot_pfn(pfn))
5481 		return false;
5482 
5483 	kvm_release_pfn_clean(pfn);
5484 
5485 	/* The instructions are well-emulated on direct mmu. */
5486 	if (vcpu->arch.mmu.direct_map) {
5487 		unsigned int indirect_shadow_pages;
5488 
5489 		spin_lock(&vcpu->kvm->mmu_lock);
5490 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5491 		spin_unlock(&vcpu->kvm->mmu_lock);
5492 
5493 		if (indirect_shadow_pages)
5494 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5495 
5496 		return true;
5497 	}
5498 
5499 	/*
5500 	 * if emulation was due to access to shadowed page table
5501 	 * and it failed try to unshadow page and re-enter the
5502 	 * guest to let CPU execute the instruction.
5503 	 */
5504 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5505 
5506 	/*
5507 	 * If the access faults on its page table, it can not
5508 	 * be fixed by unprotecting shadow page and it should
5509 	 * be reported to userspace.
5510 	 */
5511 	return !write_fault_to_shadow_pgtable;
5512 }
5513 
5514 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5515 			      unsigned long cr2,  int emulation_type)
5516 {
5517 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5518 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5519 
5520 	last_retry_eip = vcpu->arch.last_retry_eip;
5521 	last_retry_addr = vcpu->arch.last_retry_addr;
5522 
5523 	/*
5524 	 * If the emulation is caused by #PF and it is non-page_table
5525 	 * writing instruction, it means the VM-EXIT is caused by shadow
5526 	 * page protected, we can zap the shadow page and retry this
5527 	 * instruction directly.
5528 	 *
5529 	 * Note: if the guest uses a non-page-table modifying instruction
5530 	 * on the PDE that points to the instruction, then we will unmap
5531 	 * the instruction and go to an infinite loop. So, we cache the
5532 	 * last retried eip and the last fault address, if we meet the eip
5533 	 * and the address again, we can break out of the potential infinite
5534 	 * loop.
5535 	 */
5536 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5537 
5538 	if (!(emulation_type & EMULTYPE_RETRY))
5539 		return false;
5540 
5541 	if (x86_page_table_writing_insn(ctxt))
5542 		return false;
5543 
5544 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5545 		return false;
5546 
5547 	vcpu->arch.last_retry_eip = ctxt->eip;
5548 	vcpu->arch.last_retry_addr = cr2;
5549 
5550 	if (!vcpu->arch.mmu.direct_map)
5551 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5552 
5553 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5554 
5555 	return true;
5556 }
5557 
5558 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5559 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5560 
5561 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5562 {
5563 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5564 		/* This is a good place to trace that we are exiting SMM.  */
5565 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5566 
5567 		/* Process a latched INIT or SMI, if any.  */
5568 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5569 	}
5570 
5571 	kvm_mmu_reset_context(vcpu);
5572 }
5573 
5574 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5575 {
5576 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5577 
5578 	vcpu->arch.hflags = emul_flags;
5579 
5580 	if (changed & HF_SMM_MASK)
5581 		kvm_smm_changed(vcpu);
5582 }
5583 
5584 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5585 				unsigned long *db)
5586 {
5587 	u32 dr6 = 0;
5588 	int i;
5589 	u32 enable, rwlen;
5590 
5591 	enable = dr7;
5592 	rwlen = dr7 >> 16;
5593 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5594 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5595 			dr6 |= (1 << i);
5596 	return dr6;
5597 }
5598 
5599 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5600 {
5601 	struct kvm_run *kvm_run = vcpu->run;
5602 
5603 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5604 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5605 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5606 		kvm_run->debug.arch.exception = DB_VECTOR;
5607 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5608 		*r = EMULATE_USER_EXIT;
5609 	} else {
5610 		/*
5611 		 * "Certain debug exceptions may clear bit 0-3.  The
5612 		 * remaining contents of the DR6 register are never
5613 		 * cleared by the processor".
5614 		 */
5615 		vcpu->arch.dr6 &= ~15;
5616 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5617 		kvm_queue_exception(vcpu, DB_VECTOR);
5618 	}
5619 }
5620 
5621 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5622 {
5623 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5624 	int r = EMULATE_DONE;
5625 
5626 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5627 
5628 	/*
5629 	 * rflags is the old, "raw" value of the flags.  The new value has
5630 	 * not been saved yet.
5631 	 *
5632 	 * This is correct even for TF set by the guest, because "the
5633 	 * processor will not generate this exception after the instruction
5634 	 * that sets the TF flag".
5635 	 */
5636 	if (unlikely(rflags & X86_EFLAGS_TF))
5637 		kvm_vcpu_do_singlestep(vcpu, &r);
5638 	return r == EMULATE_DONE;
5639 }
5640 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5641 
5642 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5643 {
5644 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5645 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5646 		struct kvm_run *kvm_run = vcpu->run;
5647 		unsigned long eip = kvm_get_linear_rip(vcpu);
5648 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5649 					   vcpu->arch.guest_debug_dr7,
5650 					   vcpu->arch.eff_db);
5651 
5652 		if (dr6 != 0) {
5653 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5654 			kvm_run->debug.arch.pc = eip;
5655 			kvm_run->debug.arch.exception = DB_VECTOR;
5656 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5657 			*r = EMULATE_USER_EXIT;
5658 			return true;
5659 		}
5660 	}
5661 
5662 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5663 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5664 		unsigned long eip = kvm_get_linear_rip(vcpu);
5665 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5666 					   vcpu->arch.dr7,
5667 					   vcpu->arch.db);
5668 
5669 		if (dr6 != 0) {
5670 			vcpu->arch.dr6 &= ~15;
5671 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5672 			kvm_queue_exception(vcpu, DB_VECTOR);
5673 			*r = EMULATE_DONE;
5674 			return true;
5675 		}
5676 	}
5677 
5678 	return false;
5679 }
5680 
5681 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5682 			    unsigned long cr2,
5683 			    int emulation_type,
5684 			    void *insn,
5685 			    int insn_len)
5686 {
5687 	int r;
5688 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5689 	bool writeback = true;
5690 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5691 
5692 	/*
5693 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5694 	 * never reused.
5695 	 */
5696 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5697 	kvm_clear_exception_queue(vcpu);
5698 
5699 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5700 		init_emulate_ctxt(vcpu);
5701 
5702 		/*
5703 		 * We will reenter on the same instruction since
5704 		 * we do not set complete_userspace_io.  This does not
5705 		 * handle watchpoints yet, those would be handled in
5706 		 * the emulate_ops.
5707 		 */
5708 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5709 			return r;
5710 
5711 		ctxt->interruptibility = 0;
5712 		ctxt->have_exception = false;
5713 		ctxt->exception.vector = -1;
5714 		ctxt->perm_ok = false;
5715 
5716 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5717 
5718 		r = x86_decode_insn(ctxt, insn, insn_len);
5719 
5720 		trace_kvm_emulate_insn_start(vcpu);
5721 		++vcpu->stat.insn_emulation;
5722 		if (r != EMULATION_OK)  {
5723 			if (emulation_type & EMULTYPE_TRAP_UD)
5724 				return EMULATE_FAIL;
5725 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5726 						emulation_type))
5727 				return EMULATE_DONE;
5728 			if (ctxt->have_exception && inject_emulated_exception(vcpu))
5729 				return EMULATE_DONE;
5730 			if (emulation_type & EMULTYPE_SKIP)
5731 				return EMULATE_FAIL;
5732 			return handle_emulation_failure(vcpu);
5733 		}
5734 	}
5735 
5736 	if (emulation_type & EMULTYPE_SKIP) {
5737 		kvm_rip_write(vcpu, ctxt->_eip);
5738 		if (ctxt->eflags & X86_EFLAGS_RF)
5739 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5740 		return EMULATE_DONE;
5741 	}
5742 
5743 	if (retry_instruction(ctxt, cr2, emulation_type))
5744 		return EMULATE_DONE;
5745 
5746 	/* this is needed for vmware backdoor interface to work since it
5747 	   changes registers values  during IO operation */
5748 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5749 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5750 		emulator_invalidate_register_cache(ctxt);
5751 	}
5752 
5753 restart:
5754 	/* Save the faulting GPA (cr2) in the address field */
5755 	ctxt->exception.address = cr2;
5756 
5757 	r = x86_emulate_insn(ctxt);
5758 
5759 	if (r == EMULATION_INTERCEPTED)
5760 		return EMULATE_DONE;
5761 
5762 	if (r == EMULATION_FAILED) {
5763 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5764 					emulation_type))
5765 			return EMULATE_DONE;
5766 
5767 		return handle_emulation_failure(vcpu);
5768 	}
5769 
5770 	if (ctxt->have_exception) {
5771 		r = EMULATE_DONE;
5772 		if (inject_emulated_exception(vcpu))
5773 			return r;
5774 	} else if (vcpu->arch.pio.count) {
5775 		if (!vcpu->arch.pio.in) {
5776 			/* FIXME: return into emulator if single-stepping.  */
5777 			vcpu->arch.pio.count = 0;
5778 		} else {
5779 			writeback = false;
5780 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5781 		}
5782 		r = EMULATE_USER_EXIT;
5783 	} else if (vcpu->mmio_needed) {
5784 		if (!vcpu->mmio_is_write)
5785 			writeback = false;
5786 		r = EMULATE_USER_EXIT;
5787 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5788 	} else if (r == EMULATION_RESTART)
5789 		goto restart;
5790 	else
5791 		r = EMULATE_DONE;
5792 
5793 	if (writeback) {
5794 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5795 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5796 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5797 		kvm_rip_write(vcpu, ctxt->eip);
5798 		if (r == EMULATE_DONE &&
5799 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5800 			kvm_vcpu_do_singlestep(vcpu, &r);
5801 		if (!ctxt->have_exception ||
5802 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5803 			__kvm_set_rflags(vcpu, ctxt->eflags);
5804 
5805 		/*
5806 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5807 		 * do nothing, and it will be requested again as soon as
5808 		 * the shadow expires.  But we still need to check here,
5809 		 * because POPF has no interrupt shadow.
5810 		 */
5811 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5812 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5813 	} else
5814 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5815 
5816 	return r;
5817 }
5818 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5819 
5820 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5821 {
5822 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5823 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5824 					    size, port, &val, 1);
5825 	/* do not return to emulator after return from userspace */
5826 	vcpu->arch.pio.count = 0;
5827 	return ret;
5828 }
5829 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5830 
5831 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5832 {
5833 	unsigned long val;
5834 
5835 	/* We should only ever be called with arch.pio.count equal to 1 */
5836 	BUG_ON(vcpu->arch.pio.count != 1);
5837 
5838 	/* For size less than 4 we merge, else we zero extend */
5839 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5840 					: 0;
5841 
5842 	/*
5843 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5844 	 * the copy and tracing
5845 	 */
5846 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5847 				 vcpu->arch.pio.port, &val, 1);
5848 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5849 
5850 	return 1;
5851 }
5852 
5853 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5854 {
5855 	unsigned long val;
5856 	int ret;
5857 
5858 	/* For size less than 4 we merge, else we zero extend */
5859 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5860 
5861 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5862 				       &val, 1);
5863 	if (ret) {
5864 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5865 		return ret;
5866 	}
5867 
5868 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5869 
5870 	return 0;
5871 }
5872 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5873 
5874 static int kvmclock_cpu_down_prep(unsigned int cpu)
5875 {
5876 	__this_cpu_write(cpu_tsc_khz, 0);
5877 	return 0;
5878 }
5879 
5880 static void tsc_khz_changed(void *data)
5881 {
5882 	struct cpufreq_freqs *freq = data;
5883 	unsigned long khz = 0;
5884 
5885 	if (data)
5886 		khz = freq->new;
5887 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5888 		khz = cpufreq_quick_get(raw_smp_processor_id());
5889 	if (!khz)
5890 		khz = tsc_khz;
5891 	__this_cpu_write(cpu_tsc_khz, khz);
5892 }
5893 
5894 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5895 				     void *data)
5896 {
5897 	struct cpufreq_freqs *freq = data;
5898 	struct kvm *kvm;
5899 	struct kvm_vcpu *vcpu;
5900 	int i, send_ipi = 0;
5901 
5902 	/*
5903 	 * We allow guests to temporarily run on slowing clocks,
5904 	 * provided we notify them after, or to run on accelerating
5905 	 * clocks, provided we notify them before.  Thus time never
5906 	 * goes backwards.
5907 	 *
5908 	 * However, we have a problem.  We can't atomically update
5909 	 * the frequency of a given CPU from this function; it is
5910 	 * merely a notifier, which can be called from any CPU.
5911 	 * Changing the TSC frequency at arbitrary points in time
5912 	 * requires a recomputation of local variables related to
5913 	 * the TSC for each VCPU.  We must flag these local variables
5914 	 * to be updated and be sure the update takes place with the
5915 	 * new frequency before any guests proceed.
5916 	 *
5917 	 * Unfortunately, the combination of hotplug CPU and frequency
5918 	 * change creates an intractable locking scenario; the order
5919 	 * of when these callouts happen is undefined with respect to
5920 	 * CPU hotplug, and they can race with each other.  As such,
5921 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5922 	 * undefined; you can actually have a CPU frequency change take
5923 	 * place in between the computation of X and the setting of the
5924 	 * variable.  To protect against this problem, all updates of
5925 	 * the per_cpu tsc_khz variable are done in an interrupt
5926 	 * protected IPI, and all callers wishing to update the value
5927 	 * must wait for a synchronous IPI to complete (which is trivial
5928 	 * if the caller is on the CPU already).  This establishes the
5929 	 * necessary total order on variable updates.
5930 	 *
5931 	 * Note that because a guest time update may take place
5932 	 * anytime after the setting of the VCPU's request bit, the
5933 	 * correct TSC value must be set before the request.  However,
5934 	 * to ensure the update actually makes it to any guest which
5935 	 * starts running in hardware virtualization between the set
5936 	 * and the acquisition of the spinlock, we must also ping the
5937 	 * CPU after setting the request bit.
5938 	 *
5939 	 */
5940 
5941 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5942 		return 0;
5943 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5944 		return 0;
5945 
5946 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5947 
5948 	spin_lock(&kvm_lock);
5949 	list_for_each_entry(kvm, &vm_list, vm_list) {
5950 		kvm_for_each_vcpu(i, vcpu, kvm) {
5951 			if (vcpu->cpu != freq->cpu)
5952 				continue;
5953 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5954 			if (vcpu->cpu != smp_processor_id())
5955 				send_ipi = 1;
5956 		}
5957 	}
5958 	spin_unlock(&kvm_lock);
5959 
5960 	if (freq->old < freq->new && send_ipi) {
5961 		/*
5962 		 * We upscale the frequency.  Must make the guest
5963 		 * doesn't see old kvmclock values while running with
5964 		 * the new frequency, otherwise we risk the guest sees
5965 		 * time go backwards.
5966 		 *
5967 		 * In case we update the frequency for another cpu
5968 		 * (which might be in guest context) send an interrupt
5969 		 * to kick the cpu out of guest context.  Next time
5970 		 * guest context is entered kvmclock will be updated,
5971 		 * so the guest will not see stale values.
5972 		 */
5973 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5974 	}
5975 	return 0;
5976 }
5977 
5978 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5979 	.notifier_call  = kvmclock_cpufreq_notifier
5980 };
5981 
5982 static int kvmclock_cpu_online(unsigned int cpu)
5983 {
5984 	tsc_khz_changed(NULL);
5985 	return 0;
5986 }
5987 
5988 static void kvm_timer_init(void)
5989 {
5990 	max_tsc_khz = tsc_khz;
5991 
5992 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5993 #ifdef CONFIG_CPU_FREQ
5994 		struct cpufreq_policy policy;
5995 		int cpu;
5996 
5997 		memset(&policy, 0, sizeof(policy));
5998 		cpu = get_cpu();
5999 		cpufreq_get_policy(&policy, cpu);
6000 		if (policy.cpuinfo.max_freq)
6001 			max_tsc_khz = policy.cpuinfo.max_freq;
6002 		put_cpu();
6003 #endif
6004 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6005 					  CPUFREQ_TRANSITION_NOTIFIER);
6006 	}
6007 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6008 
6009 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6010 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
6011 }
6012 
6013 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6014 
6015 int kvm_is_in_guest(void)
6016 {
6017 	return __this_cpu_read(current_vcpu) != NULL;
6018 }
6019 
6020 static int kvm_is_user_mode(void)
6021 {
6022 	int user_mode = 3;
6023 
6024 	if (__this_cpu_read(current_vcpu))
6025 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6026 
6027 	return user_mode != 0;
6028 }
6029 
6030 static unsigned long kvm_get_guest_ip(void)
6031 {
6032 	unsigned long ip = 0;
6033 
6034 	if (__this_cpu_read(current_vcpu))
6035 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6036 
6037 	return ip;
6038 }
6039 
6040 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6041 	.is_in_guest		= kvm_is_in_guest,
6042 	.is_user_mode		= kvm_is_user_mode,
6043 	.get_guest_ip		= kvm_get_guest_ip,
6044 };
6045 
6046 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6047 {
6048 	__this_cpu_write(current_vcpu, vcpu);
6049 }
6050 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6051 
6052 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6053 {
6054 	__this_cpu_write(current_vcpu, NULL);
6055 }
6056 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6057 
6058 static void kvm_set_mmio_spte_mask(void)
6059 {
6060 	u64 mask;
6061 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6062 
6063 	/*
6064 	 * Set the reserved bits and the present bit of an paging-structure
6065 	 * entry to generate page fault with PFER.RSV = 1.
6066 	 */
6067 	 /* Mask the reserved physical address bits. */
6068 	mask = rsvd_bits(maxphyaddr, 51);
6069 
6070 	/* Set the present bit. */
6071 	mask |= 1ull;
6072 
6073 #ifdef CONFIG_X86_64
6074 	/*
6075 	 * If reserved bit is not supported, clear the present bit to disable
6076 	 * mmio page fault.
6077 	 */
6078 	if (maxphyaddr == 52)
6079 		mask &= ~1ull;
6080 #endif
6081 
6082 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6083 }
6084 
6085 #ifdef CONFIG_X86_64
6086 static void pvclock_gtod_update_fn(struct work_struct *work)
6087 {
6088 	struct kvm *kvm;
6089 
6090 	struct kvm_vcpu *vcpu;
6091 	int i;
6092 
6093 	spin_lock(&kvm_lock);
6094 	list_for_each_entry(kvm, &vm_list, vm_list)
6095 		kvm_for_each_vcpu(i, vcpu, kvm)
6096 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6097 	atomic_set(&kvm_guest_has_master_clock, 0);
6098 	spin_unlock(&kvm_lock);
6099 }
6100 
6101 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6102 
6103 /*
6104  * Notification about pvclock gtod data update.
6105  */
6106 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6107 			       void *priv)
6108 {
6109 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6110 	struct timekeeper *tk = priv;
6111 
6112 	update_pvclock_gtod(tk);
6113 
6114 	/* disable master clock if host does not trust, or does not
6115 	 * use, TSC clocksource
6116 	 */
6117 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6118 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6119 		queue_work(system_long_wq, &pvclock_gtod_work);
6120 
6121 	return 0;
6122 }
6123 
6124 static struct notifier_block pvclock_gtod_notifier = {
6125 	.notifier_call = pvclock_gtod_notify,
6126 };
6127 #endif
6128 
6129 int kvm_arch_init(void *opaque)
6130 {
6131 	int r;
6132 	struct kvm_x86_ops *ops = opaque;
6133 
6134 	if (kvm_x86_ops) {
6135 		printk(KERN_ERR "kvm: already loaded the other module\n");
6136 		r = -EEXIST;
6137 		goto out;
6138 	}
6139 
6140 	if (!ops->cpu_has_kvm_support()) {
6141 		printk(KERN_ERR "kvm: no hardware support\n");
6142 		r = -EOPNOTSUPP;
6143 		goto out;
6144 	}
6145 	if (ops->disabled_by_bios()) {
6146 		printk(KERN_ERR "kvm: disabled by bios\n");
6147 		r = -EOPNOTSUPP;
6148 		goto out;
6149 	}
6150 
6151 	r = -ENOMEM;
6152 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6153 	if (!shared_msrs) {
6154 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6155 		goto out;
6156 	}
6157 
6158 	r = kvm_mmu_module_init();
6159 	if (r)
6160 		goto out_free_percpu;
6161 
6162 	kvm_set_mmio_spte_mask();
6163 
6164 	kvm_x86_ops = ops;
6165 
6166 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6167 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6168 			PT_PRESENT_MASK, 0, sme_me_mask);
6169 	kvm_timer_init();
6170 
6171 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6172 
6173 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6174 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6175 
6176 	kvm_lapic_init();
6177 #ifdef CONFIG_X86_64
6178 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6179 #endif
6180 
6181 	return 0;
6182 
6183 out_free_percpu:
6184 	free_percpu(shared_msrs);
6185 out:
6186 	return r;
6187 }
6188 
6189 void kvm_arch_exit(void)
6190 {
6191 	kvm_lapic_exit();
6192 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6193 
6194 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6195 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6196 					    CPUFREQ_TRANSITION_NOTIFIER);
6197 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6198 #ifdef CONFIG_X86_64
6199 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6200 #endif
6201 	kvm_x86_ops = NULL;
6202 	kvm_mmu_module_exit();
6203 	free_percpu(shared_msrs);
6204 }
6205 
6206 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6207 {
6208 	++vcpu->stat.halt_exits;
6209 	if (lapic_in_kernel(vcpu)) {
6210 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6211 		return 1;
6212 	} else {
6213 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6214 		return 0;
6215 	}
6216 }
6217 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6218 
6219 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6220 {
6221 	int ret = kvm_skip_emulated_instruction(vcpu);
6222 	/*
6223 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6224 	 * KVM_EXIT_DEBUG here.
6225 	 */
6226 	return kvm_vcpu_halt(vcpu) && ret;
6227 }
6228 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6229 
6230 #ifdef CONFIG_X86_64
6231 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6232 			        unsigned long clock_type)
6233 {
6234 	struct kvm_clock_pairing clock_pairing;
6235 	struct timespec ts;
6236 	u64 cycle;
6237 	int ret;
6238 
6239 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6240 		return -KVM_EOPNOTSUPP;
6241 
6242 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6243 		return -KVM_EOPNOTSUPP;
6244 
6245 	clock_pairing.sec = ts.tv_sec;
6246 	clock_pairing.nsec = ts.tv_nsec;
6247 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6248 	clock_pairing.flags = 0;
6249 
6250 	ret = 0;
6251 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6252 			    sizeof(struct kvm_clock_pairing)))
6253 		ret = -KVM_EFAULT;
6254 
6255 	return ret;
6256 }
6257 #endif
6258 
6259 /*
6260  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6261  *
6262  * @apicid - apicid of vcpu to be kicked.
6263  */
6264 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6265 {
6266 	struct kvm_lapic_irq lapic_irq;
6267 
6268 	lapic_irq.shorthand = 0;
6269 	lapic_irq.dest_mode = 0;
6270 	lapic_irq.level = 0;
6271 	lapic_irq.dest_id = apicid;
6272 	lapic_irq.msi_redir_hint = false;
6273 
6274 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6275 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6276 }
6277 
6278 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6279 {
6280 	vcpu->arch.apicv_active = false;
6281 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6282 }
6283 
6284 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6285 {
6286 	unsigned long nr, a0, a1, a2, a3, ret;
6287 	int op_64_bit, r;
6288 
6289 	r = kvm_skip_emulated_instruction(vcpu);
6290 
6291 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6292 		return kvm_hv_hypercall(vcpu);
6293 
6294 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6295 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6296 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6297 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6298 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6299 
6300 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6301 
6302 	op_64_bit = is_64_bit_mode(vcpu);
6303 	if (!op_64_bit) {
6304 		nr &= 0xFFFFFFFF;
6305 		a0 &= 0xFFFFFFFF;
6306 		a1 &= 0xFFFFFFFF;
6307 		a2 &= 0xFFFFFFFF;
6308 		a3 &= 0xFFFFFFFF;
6309 	}
6310 
6311 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6312 		ret = -KVM_EPERM;
6313 		goto out;
6314 	}
6315 
6316 	switch (nr) {
6317 	case KVM_HC_VAPIC_POLL_IRQ:
6318 		ret = 0;
6319 		break;
6320 	case KVM_HC_KICK_CPU:
6321 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6322 		ret = 0;
6323 		break;
6324 #ifdef CONFIG_X86_64
6325 	case KVM_HC_CLOCK_PAIRING:
6326 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6327 		break;
6328 #endif
6329 	default:
6330 		ret = -KVM_ENOSYS;
6331 		break;
6332 	}
6333 out:
6334 	if (!op_64_bit)
6335 		ret = (u32)ret;
6336 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6337 	++vcpu->stat.hypercalls;
6338 	return r;
6339 }
6340 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6341 
6342 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6343 {
6344 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6345 	char instruction[3];
6346 	unsigned long rip = kvm_rip_read(vcpu);
6347 
6348 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6349 
6350 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6351 		&ctxt->exception);
6352 }
6353 
6354 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6355 {
6356 	return vcpu->run->request_interrupt_window &&
6357 		likely(!pic_in_kernel(vcpu->kvm));
6358 }
6359 
6360 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6361 {
6362 	struct kvm_run *kvm_run = vcpu->run;
6363 
6364 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6365 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6366 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6367 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6368 	kvm_run->ready_for_interrupt_injection =
6369 		pic_in_kernel(vcpu->kvm) ||
6370 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6371 }
6372 
6373 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6374 {
6375 	int max_irr, tpr;
6376 
6377 	if (!kvm_x86_ops->update_cr8_intercept)
6378 		return;
6379 
6380 	if (!lapic_in_kernel(vcpu))
6381 		return;
6382 
6383 	if (vcpu->arch.apicv_active)
6384 		return;
6385 
6386 	if (!vcpu->arch.apic->vapic_addr)
6387 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6388 	else
6389 		max_irr = -1;
6390 
6391 	if (max_irr != -1)
6392 		max_irr >>= 4;
6393 
6394 	tpr = kvm_lapic_get_cr8(vcpu);
6395 
6396 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6397 }
6398 
6399 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6400 {
6401 	int r;
6402 
6403 	/* try to reinject previous events if any */
6404 	if (vcpu->arch.exception.injected) {
6405 		kvm_x86_ops->queue_exception(vcpu);
6406 		return 0;
6407 	}
6408 
6409 	/*
6410 	 * Exceptions must be injected immediately, or the exception
6411 	 * frame will have the address of the NMI or interrupt handler.
6412 	 */
6413 	if (!vcpu->arch.exception.pending) {
6414 		if (vcpu->arch.nmi_injected) {
6415 			kvm_x86_ops->set_nmi(vcpu);
6416 			return 0;
6417 		}
6418 
6419 		if (vcpu->arch.interrupt.pending) {
6420 			kvm_x86_ops->set_irq(vcpu);
6421 			return 0;
6422 		}
6423 	}
6424 
6425 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6426 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6427 		if (r != 0)
6428 			return r;
6429 	}
6430 
6431 	/* try to inject new event if pending */
6432 	if (vcpu->arch.exception.pending) {
6433 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6434 					vcpu->arch.exception.has_error_code,
6435 					vcpu->arch.exception.error_code);
6436 
6437 		vcpu->arch.exception.pending = false;
6438 		vcpu->arch.exception.injected = true;
6439 
6440 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6441 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6442 					     X86_EFLAGS_RF);
6443 
6444 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6445 		    (vcpu->arch.dr7 & DR7_GD)) {
6446 			vcpu->arch.dr7 &= ~DR7_GD;
6447 			kvm_update_dr7(vcpu);
6448 		}
6449 
6450 		kvm_x86_ops->queue_exception(vcpu);
6451 	} else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6452 		vcpu->arch.smi_pending = false;
6453 		enter_smm(vcpu);
6454 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6455 		--vcpu->arch.nmi_pending;
6456 		vcpu->arch.nmi_injected = true;
6457 		kvm_x86_ops->set_nmi(vcpu);
6458 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6459 		/*
6460 		 * Because interrupts can be injected asynchronously, we are
6461 		 * calling check_nested_events again here to avoid a race condition.
6462 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6463 		 * proposal and current concerns.  Perhaps we should be setting
6464 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6465 		 */
6466 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6467 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6468 			if (r != 0)
6469 				return r;
6470 		}
6471 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6472 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6473 					    false);
6474 			kvm_x86_ops->set_irq(vcpu);
6475 		}
6476 	}
6477 
6478 	return 0;
6479 }
6480 
6481 static void process_nmi(struct kvm_vcpu *vcpu)
6482 {
6483 	unsigned limit = 2;
6484 
6485 	/*
6486 	 * x86 is limited to one NMI running, and one NMI pending after it.
6487 	 * If an NMI is already in progress, limit further NMIs to just one.
6488 	 * Otherwise, allow two (and we'll inject the first one immediately).
6489 	 */
6490 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6491 		limit = 1;
6492 
6493 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6494 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6495 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6496 }
6497 
6498 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6499 {
6500 	u32 flags = 0;
6501 	flags |= seg->g       << 23;
6502 	flags |= seg->db      << 22;
6503 	flags |= seg->l       << 21;
6504 	flags |= seg->avl     << 20;
6505 	flags |= seg->present << 15;
6506 	flags |= seg->dpl     << 13;
6507 	flags |= seg->s       << 12;
6508 	flags |= seg->type    << 8;
6509 	return flags;
6510 }
6511 
6512 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6513 {
6514 	struct kvm_segment seg;
6515 	int offset;
6516 
6517 	kvm_get_segment(vcpu, &seg, n);
6518 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6519 
6520 	if (n < 3)
6521 		offset = 0x7f84 + n * 12;
6522 	else
6523 		offset = 0x7f2c + (n - 3) * 12;
6524 
6525 	put_smstate(u32, buf, offset + 8, seg.base);
6526 	put_smstate(u32, buf, offset + 4, seg.limit);
6527 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6528 }
6529 
6530 #ifdef CONFIG_X86_64
6531 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6532 {
6533 	struct kvm_segment seg;
6534 	int offset;
6535 	u16 flags;
6536 
6537 	kvm_get_segment(vcpu, &seg, n);
6538 	offset = 0x7e00 + n * 16;
6539 
6540 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6541 	put_smstate(u16, buf, offset, seg.selector);
6542 	put_smstate(u16, buf, offset + 2, flags);
6543 	put_smstate(u32, buf, offset + 4, seg.limit);
6544 	put_smstate(u64, buf, offset + 8, seg.base);
6545 }
6546 #endif
6547 
6548 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6549 {
6550 	struct desc_ptr dt;
6551 	struct kvm_segment seg;
6552 	unsigned long val;
6553 	int i;
6554 
6555 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6556 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6557 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6558 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6559 
6560 	for (i = 0; i < 8; i++)
6561 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6562 
6563 	kvm_get_dr(vcpu, 6, &val);
6564 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6565 	kvm_get_dr(vcpu, 7, &val);
6566 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6567 
6568 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6569 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6570 	put_smstate(u32, buf, 0x7f64, seg.base);
6571 	put_smstate(u32, buf, 0x7f60, seg.limit);
6572 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6573 
6574 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6575 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6576 	put_smstate(u32, buf, 0x7f80, seg.base);
6577 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6578 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6579 
6580 	kvm_x86_ops->get_gdt(vcpu, &dt);
6581 	put_smstate(u32, buf, 0x7f74, dt.address);
6582 	put_smstate(u32, buf, 0x7f70, dt.size);
6583 
6584 	kvm_x86_ops->get_idt(vcpu, &dt);
6585 	put_smstate(u32, buf, 0x7f58, dt.address);
6586 	put_smstate(u32, buf, 0x7f54, dt.size);
6587 
6588 	for (i = 0; i < 6; i++)
6589 		enter_smm_save_seg_32(vcpu, buf, i);
6590 
6591 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6592 
6593 	/* revision id */
6594 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6595 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6596 }
6597 
6598 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6599 {
6600 #ifdef CONFIG_X86_64
6601 	struct desc_ptr dt;
6602 	struct kvm_segment seg;
6603 	unsigned long val;
6604 	int i;
6605 
6606 	for (i = 0; i < 16; i++)
6607 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6608 
6609 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6610 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6611 
6612 	kvm_get_dr(vcpu, 6, &val);
6613 	put_smstate(u64, buf, 0x7f68, val);
6614 	kvm_get_dr(vcpu, 7, &val);
6615 	put_smstate(u64, buf, 0x7f60, val);
6616 
6617 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6618 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6619 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6620 
6621 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6622 
6623 	/* revision id */
6624 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6625 
6626 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6627 
6628 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6629 	put_smstate(u16, buf, 0x7e90, seg.selector);
6630 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6631 	put_smstate(u32, buf, 0x7e94, seg.limit);
6632 	put_smstate(u64, buf, 0x7e98, seg.base);
6633 
6634 	kvm_x86_ops->get_idt(vcpu, &dt);
6635 	put_smstate(u32, buf, 0x7e84, dt.size);
6636 	put_smstate(u64, buf, 0x7e88, dt.address);
6637 
6638 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6639 	put_smstate(u16, buf, 0x7e70, seg.selector);
6640 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6641 	put_smstate(u32, buf, 0x7e74, seg.limit);
6642 	put_smstate(u64, buf, 0x7e78, seg.base);
6643 
6644 	kvm_x86_ops->get_gdt(vcpu, &dt);
6645 	put_smstate(u32, buf, 0x7e64, dt.size);
6646 	put_smstate(u64, buf, 0x7e68, dt.address);
6647 
6648 	for (i = 0; i < 6; i++)
6649 		enter_smm_save_seg_64(vcpu, buf, i);
6650 #else
6651 	WARN_ON_ONCE(1);
6652 #endif
6653 }
6654 
6655 static void enter_smm(struct kvm_vcpu *vcpu)
6656 {
6657 	struct kvm_segment cs, ds;
6658 	struct desc_ptr dt;
6659 	char buf[512];
6660 	u32 cr0;
6661 
6662 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6663 	memset(buf, 0, 512);
6664 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6665 		enter_smm_save_state_64(vcpu, buf);
6666 	else
6667 		enter_smm_save_state_32(vcpu, buf);
6668 
6669 	/*
6670 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
6671 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
6672 	 * the SMM state-save area.
6673 	 */
6674 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
6675 
6676 	vcpu->arch.hflags |= HF_SMM_MASK;
6677 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6678 
6679 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6680 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6681 	else
6682 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6683 
6684 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6685 	kvm_rip_write(vcpu, 0x8000);
6686 
6687 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6688 	kvm_x86_ops->set_cr0(vcpu, cr0);
6689 	vcpu->arch.cr0 = cr0;
6690 
6691 	kvm_x86_ops->set_cr4(vcpu, 0);
6692 
6693 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6694 	dt.address = dt.size = 0;
6695 	kvm_x86_ops->set_idt(vcpu, &dt);
6696 
6697 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6698 
6699 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6700 	cs.base = vcpu->arch.smbase;
6701 
6702 	ds.selector = 0;
6703 	ds.base = 0;
6704 
6705 	cs.limit    = ds.limit = 0xffffffff;
6706 	cs.type     = ds.type = 0x3;
6707 	cs.dpl      = ds.dpl = 0;
6708 	cs.db       = ds.db = 0;
6709 	cs.s        = ds.s = 1;
6710 	cs.l        = ds.l = 0;
6711 	cs.g        = ds.g = 1;
6712 	cs.avl      = ds.avl = 0;
6713 	cs.present  = ds.present = 1;
6714 	cs.unusable = ds.unusable = 0;
6715 	cs.padding  = ds.padding = 0;
6716 
6717 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6718 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6719 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6720 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6721 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6722 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6723 
6724 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6725 		kvm_x86_ops->set_efer(vcpu, 0);
6726 
6727 	kvm_update_cpuid(vcpu);
6728 	kvm_mmu_reset_context(vcpu);
6729 }
6730 
6731 static void process_smi(struct kvm_vcpu *vcpu)
6732 {
6733 	vcpu->arch.smi_pending = true;
6734 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6735 }
6736 
6737 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6738 {
6739 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6740 }
6741 
6742 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6743 {
6744 	u64 eoi_exit_bitmap[4];
6745 
6746 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6747 		return;
6748 
6749 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6750 
6751 	if (irqchip_split(vcpu->kvm))
6752 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6753 	else {
6754 		if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6755 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6756 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6757 	}
6758 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6759 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6760 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6761 }
6762 
6763 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6764 {
6765 	++vcpu->stat.tlb_flush;
6766 	kvm_x86_ops->tlb_flush(vcpu);
6767 }
6768 
6769 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6770 		unsigned long start, unsigned long end)
6771 {
6772 	unsigned long apic_address;
6773 
6774 	/*
6775 	 * The physical address of apic access page is stored in the VMCS.
6776 	 * Update it when it becomes invalid.
6777 	 */
6778 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6779 	if (start <= apic_address && apic_address < end)
6780 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6781 }
6782 
6783 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6784 {
6785 	struct page *page = NULL;
6786 
6787 	if (!lapic_in_kernel(vcpu))
6788 		return;
6789 
6790 	if (!kvm_x86_ops->set_apic_access_page_addr)
6791 		return;
6792 
6793 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6794 	if (is_error_page(page))
6795 		return;
6796 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6797 
6798 	/*
6799 	 * Do not pin apic access page in memory, the MMU notifier
6800 	 * will call us again if it is migrated or swapped out.
6801 	 */
6802 	put_page(page);
6803 }
6804 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6805 
6806 /*
6807  * Returns 1 to let vcpu_run() continue the guest execution loop without
6808  * exiting to the userspace.  Otherwise, the value will be returned to the
6809  * userspace.
6810  */
6811 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6812 {
6813 	int r;
6814 	bool req_int_win =
6815 		dm_request_for_irq_injection(vcpu) &&
6816 		kvm_cpu_accept_dm_intr(vcpu);
6817 
6818 	bool req_immediate_exit = false;
6819 
6820 	if (kvm_request_pending(vcpu)) {
6821 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6822 			kvm_mmu_unload(vcpu);
6823 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6824 			__kvm_migrate_timers(vcpu);
6825 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6826 			kvm_gen_update_masterclock(vcpu->kvm);
6827 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6828 			kvm_gen_kvmclock_update(vcpu);
6829 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6830 			r = kvm_guest_time_update(vcpu);
6831 			if (unlikely(r))
6832 				goto out;
6833 		}
6834 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6835 			kvm_mmu_sync_roots(vcpu);
6836 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6837 			kvm_vcpu_flush_tlb(vcpu);
6838 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6839 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6840 			r = 0;
6841 			goto out;
6842 		}
6843 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6844 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6845 			vcpu->mmio_needed = 0;
6846 			r = 0;
6847 			goto out;
6848 		}
6849 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6850 			/* Page is swapped out. Do synthetic halt */
6851 			vcpu->arch.apf.halted = true;
6852 			r = 1;
6853 			goto out;
6854 		}
6855 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6856 			record_steal_time(vcpu);
6857 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6858 			process_smi(vcpu);
6859 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6860 			process_nmi(vcpu);
6861 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6862 			kvm_pmu_handle_event(vcpu);
6863 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6864 			kvm_pmu_deliver_pmi(vcpu);
6865 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6866 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6867 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6868 				     vcpu->arch.ioapic_handled_vectors)) {
6869 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6870 				vcpu->run->eoi.vector =
6871 						vcpu->arch.pending_ioapic_eoi;
6872 				r = 0;
6873 				goto out;
6874 			}
6875 		}
6876 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6877 			vcpu_scan_ioapic(vcpu);
6878 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6879 			kvm_vcpu_reload_apic_access_page(vcpu);
6880 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6881 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6882 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6883 			r = 0;
6884 			goto out;
6885 		}
6886 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6887 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6888 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6889 			r = 0;
6890 			goto out;
6891 		}
6892 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6893 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6894 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6895 			r = 0;
6896 			goto out;
6897 		}
6898 
6899 		/*
6900 		 * KVM_REQ_HV_STIMER has to be processed after
6901 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6902 		 * depend on the guest clock being up-to-date
6903 		 */
6904 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6905 			kvm_hv_process_stimers(vcpu);
6906 	}
6907 
6908 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6909 		++vcpu->stat.req_event;
6910 		kvm_apic_accept_events(vcpu);
6911 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6912 			r = 1;
6913 			goto out;
6914 		}
6915 
6916 		if (inject_pending_event(vcpu, req_int_win) != 0)
6917 			req_immediate_exit = true;
6918 		else {
6919 			/* Enable SMI/NMI/IRQ window open exits if needed.
6920 			 *
6921 			 * SMIs have three cases:
6922 			 * 1) They can be nested, and then there is nothing to
6923 			 *    do here because RSM will cause a vmexit anyway.
6924 			 * 2) There is an ISA-specific reason why SMI cannot be
6925 			 *    injected, and the moment when this changes can be
6926 			 *    intercepted.
6927 			 * 3) Or the SMI can be pending because
6928 			 *    inject_pending_event has completed the injection
6929 			 *    of an IRQ or NMI from the previous vmexit, and
6930 			 *    then we request an immediate exit to inject the
6931 			 *    SMI.
6932 			 */
6933 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
6934 				if (!kvm_x86_ops->enable_smi_window(vcpu))
6935 					req_immediate_exit = true;
6936 			if (vcpu->arch.nmi_pending)
6937 				kvm_x86_ops->enable_nmi_window(vcpu);
6938 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6939 				kvm_x86_ops->enable_irq_window(vcpu);
6940 			WARN_ON(vcpu->arch.exception.pending);
6941 		}
6942 
6943 		if (kvm_lapic_enabled(vcpu)) {
6944 			update_cr8_intercept(vcpu);
6945 			kvm_lapic_sync_to_vapic(vcpu);
6946 		}
6947 	}
6948 
6949 	r = kvm_mmu_reload(vcpu);
6950 	if (unlikely(r)) {
6951 		goto cancel_injection;
6952 	}
6953 
6954 	preempt_disable();
6955 
6956 	kvm_x86_ops->prepare_guest_switch(vcpu);
6957 
6958 	/*
6959 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6960 	 * IPI are then delayed after guest entry, which ensures that they
6961 	 * result in virtual interrupt delivery.
6962 	 */
6963 	local_irq_disable();
6964 	vcpu->mode = IN_GUEST_MODE;
6965 
6966 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6967 
6968 	/*
6969 	 * 1) We should set ->mode before checking ->requests.  Please see
6970 	 * the comment in kvm_vcpu_exiting_guest_mode().
6971 	 *
6972 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6973 	 * pairs with the memory barrier implicit in pi_test_and_set_on
6974 	 * (see vmx_deliver_posted_interrupt).
6975 	 *
6976 	 * 3) This also orders the write to mode from any reads to the page
6977 	 * tables done while the VCPU is running.  Please see the comment
6978 	 * in kvm_flush_remote_tlbs.
6979 	 */
6980 	smp_mb__after_srcu_read_unlock();
6981 
6982 	/*
6983 	 * This handles the case where a posted interrupt was
6984 	 * notified with kvm_vcpu_kick.
6985 	 */
6986 	if (kvm_lapic_enabled(vcpu)) {
6987 		if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6988 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6989 	}
6990 
6991 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6992 	    || need_resched() || signal_pending(current)) {
6993 		vcpu->mode = OUTSIDE_GUEST_MODE;
6994 		smp_wmb();
6995 		local_irq_enable();
6996 		preempt_enable();
6997 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6998 		r = 1;
6999 		goto cancel_injection;
7000 	}
7001 
7002 	kvm_load_guest_xcr0(vcpu);
7003 
7004 	if (req_immediate_exit) {
7005 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7006 		smp_send_reschedule(vcpu->cpu);
7007 	}
7008 
7009 	trace_kvm_entry(vcpu->vcpu_id);
7010 	wait_lapic_expire(vcpu);
7011 	guest_enter_irqoff();
7012 
7013 	if (unlikely(vcpu->arch.switch_db_regs)) {
7014 		set_debugreg(0, 7);
7015 		set_debugreg(vcpu->arch.eff_db[0], 0);
7016 		set_debugreg(vcpu->arch.eff_db[1], 1);
7017 		set_debugreg(vcpu->arch.eff_db[2], 2);
7018 		set_debugreg(vcpu->arch.eff_db[3], 3);
7019 		set_debugreg(vcpu->arch.dr6, 6);
7020 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7021 	}
7022 
7023 	kvm_x86_ops->run(vcpu);
7024 
7025 	/*
7026 	 * Do this here before restoring debug registers on the host.  And
7027 	 * since we do this before handling the vmexit, a DR access vmexit
7028 	 * can (a) read the correct value of the debug registers, (b) set
7029 	 * KVM_DEBUGREG_WONT_EXIT again.
7030 	 */
7031 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7032 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7033 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7034 		kvm_update_dr0123(vcpu);
7035 		kvm_update_dr6(vcpu);
7036 		kvm_update_dr7(vcpu);
7037 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7038 	}
7039 
7040 	/*
7041 	 * If the guest has used debug registers, at least dr7
7042 	 * will be disabled while returning to the host.
7043 	 * If we don't have active breakpoints in the host, we don't
7044 	 * care about the messed up debug address registers. But if
7045 	 * we have some of them active, restore the old state.
7046 	 */
7047 	if (hw_breakpoint_active())
7048 		hw_breakpoint_restore();
7049 
7050 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7051 
7052 	vcpu->mode = OUTSIDE_GUEST_MODE;
7053 	smp_wmb();
7054 
7055 	kvm_put_guest_xcr0(vcpu);
7056 
7057 	kvm_x86_ops->handle_external_intr(vcpu);
7058 
7059 	++vcpu->stat.exits;
7060 
7061 	guest_exit_irqoff();
7062 
7063 	local_irq_enable();
7064 	preempt_enable();
7065 
7066 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7067 
7068 	/*
7069 	 * Profile KVM exit RIPs:
7070 	 */
7071 	if (unlikely(prof_on == KVM_PROFILING)) {
7072 		unsigned long rip = kvm_rip_read(vcpu);
7073 		profile_hit(KVM_PROFILING, (void *)rip);
7074 	}
7075 
7076 	if (unlikely(vcpu->arch.tsc_always_catchup))
7077 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7078 
7079 	if (vcpu->arch.apic_attention)
7080 		kvm_lapic_sync_from_vapic(vcpu);
7081 
7082 	vcpu->arch.gpa_available = false;
7083 	r = kvm_x86_ops->handle_exit(vcpu);
7084 	return r;
7085 
7086 cancel_injection:
7087 	kvm_x86_ops->cancel_injection(vcpu);
7088 	if (unlikely(vcpu->arch.apic_attention))
7089 		kvm_lapic_sync_from_vapic(vcpu);
7090 out:
7091 	return r;
7092 }
7093 
7094 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7095 {
7096 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7097 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7098 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7099 		kvm_vcpu_block(vcpu);
7100 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7101 
7102 		if (kvm_x86_ops->post_block)
7103 			kvm_x86_ops->post_block(vcpu);
7104 
7105 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7106 			return 1;
7107 	}
7108 
7109 	kvm_apic_accept_events(vcpu);
7110 	switch(vcpu->arch.mp_state) {
7111 	case KVM_MP_STATE_HALTED:
7112 		vcpu->arch.pv.pv_unhalted = false;
7113 		vcpu->arch.mp_state =
7114 			KVM_MP_STATE_RUNNABLE;
7115 	case KVM_MP_STATE_RUNNABLE:
7116 		vcpu->arch.apf.halted = false;
7117 		break;
7118 	case KVM_MP_STATE_INIT_RECEIVED:
7119 		break;
7120 	default:
7121 		return -EINTR;
7122 		break;
7123 	}
7124 	return 1;
7125 }
7126 
7127 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7128 {
7129 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7130 		kvm_x86_ops->check_nested_events(vcpu, false);
7131 
7132 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7133 		!vcpu->arch.apf.halted);
7134 }
7135 
7136 static int vcpu_run(struct kvm_vcpu *vcpu)
7137 {
7138 	int r;
7139 	struct kvm *kvm = vcpu->kvm;
7140 
7141 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7142 
7143 	for (;;) {
7144 		if (kvm_vcpu_running(vcpu)) {
7145 			r = vcpu_enter_guest(vcpu);
7146 		} else {
7147 			r = vcpu_block(kvm, vcpu);
7148 		}
7149 
7150 		if (r <= 0)
7151 			break;
7152 
7153 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7154 		if (kvm_cpu_has_pending_timer(vcpu))
7155 			kvm_inject_pending_timer_irqs(vcpu);
7156 
7157 		if (dm_request_for_irq_injection(vcpu) &&
7158 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7159 			r = 0;
7160 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7161 			++vcpu->stat.request_irq_exits;
7162 			break;
7163 		}
7164 
7165 		kvm_check_async_pf_completion(vcpu);
7166 
7167 		if (signal_pending(current)) {
7168 			r = -EINTR;
7169 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7170 			++vcpu->stat.signal_exits;
7171 			break;
7172 		}
7173 		if (need_resched()) {
7174 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7175 			cond_resched();
7176 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7177 		}
7178 	}
7179 
7180 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7181 
7182 	return r;
7183 }
7184 
7185 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7186 {
7187 	int r;
7188 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7189 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7190 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7191 	if (r != EMULATE_DONE)
7192 		return 0;
7193 	return 1;
7194 }
7195 
7196 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7197 {
7198 	BUG_ON(!vcpu->arch.pio.count);
7199 
7200 	return complete_emulated_io(vcpu);
7201 }
7202 
7203 /*
7204  * Implements the following, as a state machine:
7205  *
7206  * read:
7207  *   for each fragment
7208  *     for each mmio piece in the fragment
7209  *       write gpa, len
7210  *       exit
7211  *       copy data
7212  *   execute insn
7213  *
7214  * write:
7215  *   for each fragment
7216  *     for each mmio piece in the fragment
7217  *       write gpa, len
7218  *       copy data
7219  *       exit
7220  */
7221 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7222 {
7223 	struct kvm_run *run = vcpu->run;
7224 	struct kvm_mmio_fragment *frag;
7225 	unsigned len;
7226 
7227 	BUG_ON(!vcpu->mmio_needed);
7228 
7229 	/* Complete previous fragment */
7230 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7231 	len = min(8u, frag->len);
7232 	if (!vcpu->mmio_is_write)
7233 		memcpy(frag->data, run->mmio.data, len);
7234 
7235 	if (frag->len <= 8) {
7236 		/* Switch to the next fragment. */
7237 		frag++;
7238 		vcpu->mmio_cur_fragment++;
7239 	} else {
7240 		/* Go forward to the next mmio piece. */
7241 		frag->data += len;
7242 		frag->gpa += len;
7243 		frag->len -= len;
7244 	}
7245 
7246 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7247 		vcpu->mmio_needed = 0;
7248 
7249 		/* FIXME: return into emulator if single-stepping.  */
7250 		if (vcpu->mmio_is_write)
7251 			return 1;
7252 		vcpu->mmio_read_completed = 1;
7253 		return complete_emulated_io(vcpu);
7254 	}
7255 
7256 	run->exit_reason = KVM_EXIT_MMIO;
7257 	run->mmio.phys_addr = frag->gpa;
7258 	if (vcpu->mmio_is_write)
7259 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7260 	run->mmio.len = min(8u, frag->len);
7261 	run->mmio.is_write = vcpu->mmio_is_write;
7262 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7263 	return 0;
7264 }
7265 
7266 
7267 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7268 {
7269 	int r;
7270 
7271 	kvm_sigset_activate(vcpu);
7272 
7273 	kvm_load_guest_fpu(vcpu);
7274 
7275 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7276 		if (kvm_run->immediate_exit) {
7277 			r = -EINTR;
7278 			goto out;
7279 		}
7280 		kvm_vcpu_block(vcpu);
7281 		kvm_apic_accept_events(vcpu);
7282 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7283 		r = -EAGAIN;
7284 		if (signal_pending(current)) {
7285 			r = -EINTR;
7286 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7287 			++vcpu->stat.signal_exits;
7288 		}
7289 		goto out;
7290 	}
7291 
7292 	/* re-sync apic's tpr */
7293 	if (!lapic_in_kernel(vcpu)) {
7294 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7295 			r = -EINVAL;
7296 			goto out;
7297 		}
7298 	}
7299 
7300 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7301 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7302 		vcpu->arch.complete_userspace_io = NULL;
7303 		r = cui(vcpu);
7304 		if (r <= 0)
7305 			goto out;
7306 	} else
7307 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7308 
7309 	if (kvm_run->immediate_exit)
7310 		r = -EINTR;
7311 	else
7312 		r = vcpu_run(vcpu);
7313 
7314 out:
7315 	kvm_put_guest_fpu(vcpu);
7316 	post_kvm_run_save(vcpu);
7317 	kvm_sigset_deactivate(vcpu);
7318 
7319 	return r;
7320 }
7321 
7322 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7323 {
7324 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7325 		/*
7326 		 * We are here if userspace calls get_regs() in the middle of
7327 		 * instruction emulation. Registers state needs to be copied
7328 		 * back from emulation context to vcpu. Userspace shouldn't do
7329 		 * that usually, but some bad designed PV devices (vmware
7330 		 * backdoor interface) need this to work
7331 		 */
7332 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7333 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7334 	}
7335 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7336 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7337 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7338 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7339 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7340 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7341 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7342 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7343 #ifdef CONFIG_X86_64
7344 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7345 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7346 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7347 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7348 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7349 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7350 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7351 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7352 #endif
7353 
7354 	regs->rip = kvm_rip_read(vcpu);
7355 	regs->rflags = kvm_get_rflags(vcpu);
7356 
7357 	return 0;
7358 }
7359 
7360 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7361 {
7362 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7363 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7364 
7365 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7366 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7367 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7368 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7369 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7370 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7371 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7372 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7373 #ifdef CONFIG_X86_64
7374 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7375 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7376 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7377 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7378 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7379 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7380 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7381 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7382 #endif
7383 
7384 	kvm_rip_write(vcpu, regs->rip);
7385 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7386 
7387 	vcpu->arch.exception.pending = false;
7388 
7389 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7390 
7391 	return 0;
7392 }
7393 
7394 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7395 {
7396 	struct kvm_segment cs;
7397 
7398 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7399 	*db = cs.db;
7400 	*l = cs.l;
7401 }
7402 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7403 
7404 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7405 				  struct kvm_sregs *sregs)
7406 {
7407 	struct desc_ptr dt;
7408 
7409 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7410 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7411 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7412 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7413 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7414 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7415 
7416 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7417 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7418 
7419 	kvm_x86_ops->get_idt(vcpu, &dt);
7420 	sregs->idt.limit = dt.size;
7421 	sregs->idt.base = dt.address;
7422 	kvm_x86_ops->get_gdt(vcpu, &dt);
7423 	sregs->gdt.limit = dt.size;
7424 	sregs->gdt.base = dt.address;
7425 
7426 	sregs->cr0 = kvm_read_cr0(vcpu);
7427 	sregs->cr2 = vcpu->arch.cr2;
7428 	sregs->cr3 = kvm_read_cr3(vcpu);
7429 	sregs->cr4 = kvm_read_cr4(vcpu);
7430 	sregs->cr8 = kvm_get_cr8(vcpu);
7431 	sregs->efer = vcpu->arch.efer;
7432 	sregs->apic_base = kvm_get_apic_base(vcpu);
7433 
7434 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7435 
7436 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7437 		set_bit(vcpu->arch.interrupt.nr,
7438 			(unsigned long *)sregs->interrupt_bitmap);
7439 
7440 	return 0;
7441 }
7442 
7443 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7444 				    struct kvm_mp_state *mp_state)
7445 {
7446 	kvm_apic_accept_events(vcpu);
7447 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7448 					vcpu->arch.pv.pv_unhalted)
7449 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7450 	else
7451 		mp_state->mp_state = vcpu->arch.mp_state;
7452 
7453 	return 0;
7454 }
7455 
7456 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7457 				    struct kvm_mp_state *mp_state)
7458 {
7459 	if (!lapic_in_kernel(vcpu) &&
7460 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7461 		return -EINVAL;
7462 
7463 	/* INITs are latched while in SMM */
7464 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7465 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7466 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7467 		return -EINVAL;
7468 
7469 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7470 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7471 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7472 	} else
7473 		vcpu->arch.mp_state = mp_state->mp_state;
7474 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7475 	return 0;
7476 }
7477 
7478 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7479 		    int reason, bool has_error_code, u32 error_code)
7480 {
7481 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7482 	int ret;
7483 
7484 	init_emulate_ctxt(vcpu);
7485 
7486 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7487 				   has_error_code, error_code);
7488 
7489 	if (ret)
7490 		return EMULATE_FAIL;
7491 
7492 	kvm_rip_write(vcpu, ctxt->eip);
7493 	kvm_set_rflags(vcpu, ctxt->eflags);
7494 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7495 	return EMULATE_DONE;
7496 }
7497 EXPORT_SYMBOL_GPL(kvm_task_switch);
7498 
7499 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7500 {
7501 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7502 		/*
7503 		 * When EFER.LME and CR0.PG are set, the processor is in
7504 		 * 64-bit mode (though maybe in a 32-bit code segment).
7505 		 * CR4.PAE and EFER.LMA must be set.
7506 		 */
7507 		if (!(sregs->cr4 & X86_CR4_PAE)
7508 		    || !(sregs->efer & EFER_LMA))
7509 			return -EINVAL;
7510 	} else {
7511 		/*
7512 		 * Not in 64-bit mode: EFER.LMA is clear and the code
7513 		 * segment cannot be 64-bit.
7514 		 */
7515 		if (sregs->efer & EFER_LMA || sregs->cs.l)
7516 			return -EINVAL;
7517 	}
7518 
7519 	return 0;
7520 }
7521 
7522 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7523 				  struct kvm_sregs *sregs)
7524 {
7525 	struct msr_data apic_base_msr;
7526 	int mmu_reset_needed = 0;
7527 	int pending_vec, max_bits, idx;
7528 	struct desc_ptr dt;
7529 
7530 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7531 			(sregs->cr4 & X86_CR4_OSXSAVE))
7532 		return -EINVAL;
7533 
7534 	if (kvm_valid_sregs(vcpu, sregs))
7535 		return -EINVAL;
7536 
7537 	apic_base_msr.data = sregs->apic_base;
7538 	apic_base_msr.host_initiated = true;
7539 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
7540 		return -EINVAL;
7541 
7542 	dt.size = sregs->idt.limit;
7543 	dt.address = sregs->idt.base;
7544 	kvm_x86_ops->set_idt(vcpu, &dt);
7545 	dt.size = sregs->gdt.limit;
7546 	dt.address = sregs->gdt.base;
7547 	kvm_x86_ops->set_gdt(vcpu, &dt);
7548 
7549 	vcpu->arch.cr2 = sregs->cr2;
7550 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7551 	vcpu->arch.cr3 = sregs->cr3;
7552 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7553 
7554 	kvm_set_cr8(vcpu, sregs->cr8);
7555 
7556 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7557 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7558 
7559 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7560 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7561 	vcpu->arch.cr0 = sregs->cr0;
7562 
7563 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7564 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7565 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7566 		kvm_update_cpuid(vcpu);
7567 
7568 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7569 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7570 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7571 		mmu_reset_needed = 1;
7572 	}
7573 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7574 
7575 	if (mmu_reset_needed)
7576 		kvm_mmu_reset_context(vcpu);
7577 
7578 	max_bits = KVM_NR_INTERRUPTS;
7579 	pending_vec = find_first_bit(
7580 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7581 	if (pending_vec < max_bits) {
7582 		kvm_queue_interrupt(vcpu, pending_vec, false);
7583 		pr_debug("Set back pending irq %d\n", pending_vec);
7584 	}
7585 
7586 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7587 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7588 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7589 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7590 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7591 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7592 
7593 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7594 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7595 
7596 	update_cr8_intercept(vcpu);
7597 
7598 	/* Older userspace won't unhalt the vcpu on reset. */
7599 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7600 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7601 	    !is_protmode(vcpu))
7602 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7603 
7604 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7605 
7606 	return 0;
7607 }
7608 
7609 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7610 					struct kvm_guest_debug *dbg)
7611 {
7612 	unsigned long rflags;
7613 	int i, r;
7614 
7615 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7616 		r = -EBUSY;
7617 		if (vcpu->arch.exception.pending)
7618 			goto out;
7619 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7620 			kvm_queue_exception(vcpu, DB_VECTOR);
7621 		else
7622 			kvm_queue_exception(vcpu, BP_VECTOR);
7623 	}
7624 
7625 	/*
7626 	 * Read rflags as long as potentially injected trace flags are still
7627 	 * filtered out.
7628 	 */
7629 	rflags = kvm_get_rflags(vcpu);
7630 
7631 	vcpu->guest_debug = dbg->control;
7632 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7633 		vcpu->guest_debug = 0;
7634 
7635 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7636 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7637 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7638 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7639 	} else {
7640 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7641 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7642 	}
7643 	kvm_update_dr7(vcpu);
7644 
7645 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7646 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7647 			get_segment_base(vcpu, VCPU_SREG_CS);
7648 
7649 	/*
7650 	 * Trigger an rflags update that will inject or remove the trace
7651 	 * flags.
7652 	 */
7653 	kvm_set_rflags(vcpu, rflags);
7654 
7655 	kvm_x86_ops->update_bp_intercept(vcpu);
7656 
7657 	r = 0;
7658 
7659 out:
7660 
7661 	return r;
7662 }
7663 
7664 /*
7665  * Translate a guest virtual address to a guest physical address.
7666  */
7667 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7668 				    struct kvm_translation *tr)
7669 {
7670 	unsigned long vaddr = tr->linear_address;
7671 	gpa_t gpa;
7672 	int idx;
7673 
7674 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7675 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7676 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7677 	tr->physical_address = gpa;
7678 	tr->valid = gpa != UNMAPPED_GVA;
7679 	tr->writeable = 1;
7680 	tr->usermode = 0;
7681 
7682 	return 0;
7683 }
7684 
7685 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7686 {
7687 	struct fxregs_state *fxsave =
7688 			&vcpu->arch.guest_fpu.state.fxsave;
7689 
7690 	memcpy(fpu->fpr, fxsave->st_space, 128);
7691 	fpu->fcw = fxsave->cwd;
7692 	fpu->fsw = fxsave->swd;
7693 	fpu->ftwx = fxsave->twd;
7694 	fpu->last_opcode = fxsave->fop;
7695 	fpu->last_ip = fxsave->rip;
7696 	fpu->last_dp = fxsave->rdp;
7697 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7698 
7699 	return 0;
7700 }
7701 
7702 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7703 {
7704 	struct fxregs_state *fxsave =
7705 			&vcpu->arch.guest_fpu.state.fxsave;
7706 
7707 	memcpy(fxsave->st_space, fpu->fpr, 128);
7708 	fxsave->cwd = fpu->fcw;
7709 	fxsave->swd = fpu->fsw;
7710 	fxsave->twd = fpu->ftwx;
7711 	fxsave->fop = fpu->last_opcode;
7712 	fxsave->rip = fpu->last_ip;
7713 	fxsave->rdp = fpu->last_dp;
7714 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7715 
7716 	return 0;
7717 }
7718 
7719 static void fx_init(struct kvm_vcpu *vcpu)
7720 {
7721 	fpstate_init(&vcpu->arch.guest_fpu.state);
7722 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7723 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7724 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7725 
7726 	/*
7727 	 * Ensure guest xcr0 is valid for loading
7728 	 */
7729 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7730 
7731 	vcpu->arch.cr0 |= X86_CR0_ET;
7732 }
7733 
7734 /* Swap (qemu) user FPU context for the guest FPU context. */
7735 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7736 {
7737 	preempt_disable();
7738 	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7739 	/* PKRU is separately restored in kvm_x86_ops->run.  */
7740 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7741 				~XFEATURE_MASK_PKRU);
7742 	preempt_enable();
7743 	trace_kvm_fpu(1);
7744 }
7745 
7746 /* When vcpu_run ends, restore user space FPU context. */
7747 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7748 {
7749 	preempt_disable();
7750 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7751 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7752 	preempt_enable();
7753 	++vcpu->stat.fpu_reload;
7754 	trace_kvm_fpu(0);
7755 }
7756 
7757 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7758 {
7759 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7760 
7761 	kvmclock_reset(vcpu);
7762 
7763 	kvm_x86_ops->vcpu_free(vcpu);
7764 	free_cpumask_var(wbinvd_dirty_mask);
7765 }
7766 
7767 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7768 						unsigned int id)
7769 {
7770 	struct kvm_vcpu *vcpu;
7771 
7772 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7773 		printk_once(KERN_WARNING
7774 		"kvm: SMP vm created on host with unstable TSC; "
7775 		"guest TSC will not be reliable\n");
7776 
7777 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7778 
7779 	return vcpu;
7780 }
7781 
7782 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7783 {
7784 	int r;
7785 
7786 	kvm_vcpu_mtrr_init(vcpu);
7787 	r = vcpu_load(vcpu);
7788 	if (r)
7789 		return r;
7790 	kvm_vcpu_reset(vcpu, false);
7791 	kvm_mmu_setup(vcpu);
7792 	vcpu_put(vcpu);
7793 	return r;
7794 }
7795 
7796 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7797 {
7798 	struct msr_data msr;
7799 	struct kvm *kvm = vcpu->kvm;
7800 
7801 	kvm_hv_vcpu_postcreate(vcpu);
7802 
7803 	if (vcpu_load(vcpu))
7804 		return;
7805 	msr.data = 0x0;
7806 	msr.index = MSR_IA32_TSC;
7807 	msr.host_initiated = true;
7808 	kvm_write_tsc(vcpu, &msr);
7809 	vcpu_put(vcpu);
7810 
7811 	if (!kvmclock_periodic_sync)
7812 		return;
7813 
7814 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7815 					KVMCLOCK_SYNC_PERIOD);
7816 }
7817 
7818 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7819 {
7820 	int r;
7821 	vcpu->arch.apf.msr_val = 0;
7822 
7823 	r = vcpu_load(vcpu);
7824 	BUG_ON(r);
7825 	kvm_mmu_unload(vcpu);
7826 	vcpu_put(vcpu);
7827 
7828 	kvm_x86_ops->vcpu_free(vcpu);
7829 }
7830 
7831 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7832 {
7833 	vcpu->arch.hflags = 0;
7834 
7835 	vcpu->arch.smi_pending = 0;
7836 	atomic_set(&vcpu->arch.nmi_queued, 0);
7837 	vcpu->arch.nmi_pending = 0;
7838 	vcpu->arch.nmi_injected = false;
7839 	kvm_clear_interrupt_queue(vcpu);
7840 	kvm_clear_exception_queue(vcpu);
7841 	vcpu->arch.exception.pending = false;
7842 
7843 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7844 	kvm_update_dr0123(vcpu);
7845 	vcpu->arch.dr6 = DR6_INIT;
7846 	kvm_update_dr6(vcpu);
7847 	vcpu->arch.dr7 = DR7_FIXED_1;
7848 	kvm_update_dr7(vcpu);
7849 
7850 	vcpu->arch.cr2 = 0;
7851 
7852 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7853 	vcpu->arch.apf.msr_val = 0;
7854 	vcpu->arch.st.msr_val = 0;
7855 
7856 	kvmclock_reset(vcpu);
7857 
7858 	kvm_clear_async_pf_completion_queue(vcpu);
7859 	kvm_async_pf_hash_reset(vcpu);
7860 	vcpu->arch.apf.halted = false;
7861 
7862 	if (kvm_mpx_supported()) {
7863 		void *mpx_state_buffer;
7864 
7865 		/*
7866 		 * To avoid have the INIT path from kvm_apic_has_events() that be
7867 		 * called with loaded FPU and does not let userspace fix the state.
7868 		 */
7869 		if (init_event)
7870 			kvm_put_guest_fpu(vcpu);
7871 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7872 					XFEATURE_MASK_BNDREGS);
7873 		if (mpx_state_buffer)
7874 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
7875 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7876 					XFEATURE_MASK_BNDCSR);
7877 		if (mpx_state_buffer)
7878 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
7879 		if (init_event)
7880 			kvm_load_guest_fpu(vcpu);
7881 	}
7882 
7883 	if (!init_event) {
7884 		kvm_pmu_reset(vcpu);
7885 		vcpu->arch.smbase = 0x30000;
7886 
7887 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7888 		vcpu->arch.msr_misc_features_enables = 0;
7889 
7890 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7891 	}
7892 
7893 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7894 	vcpu->arch.regs_avail = ~0;
7895 	vcpu->arch.regs_dirty = ~0;
7896 
7897 	vcpu->arch.ia32_xss = 0;
7898 
7899 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7900 }
7901 
7902 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7903 {
7904 	struct kvm_segment cs;
7905 
7906 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7907 	cs.selector = vector << 8;
7908 	cs.base = vector << 12;
7909 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7910 	kvm_rip_write(vcpu, 0);
7911 }
7912 
7913 int kvm_arch_hardware_enable(void)
7914 {
7915 	struct kvm *kvm;
7916 	struct kvm_vcpu *vcpu;
7917 	int i;
7918 	int ret;
7919 	u64 local_tsc;
7920 	u64 max_tsc = 0;
7921 	bool stable, backwards_tsc = false;
7922 
7923 	kvm_shared_msr_cpu_online();
7924 	ret = kvm_x86_ops->hardware_enable();
7925 	if (ret != 0)
7926 		return ret;
7927 
7928 	local_tsc = rdtsc();
7929 	stable = !check_tsc_unstable();
7930 	list_for_each_entry(kvm, &vm_list, vm_list) {
7931 		kvm_for_each_vcpu(i, vcpu, kvm) {
7932 			if (!stable && vcpu->cpu == smp_processor_id())
7933 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7934 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7935 				backwards_tsc = true;
7936 				if (vcpu->arch.last_host_tsc > max_tsc)
7937 					max_tsc = vcpu->arch.last_host_tsc;
7938 			}
7939 		}
7940 	}
7941 
7942 	/*
7943 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7944 	 * platforms that reset TSC during suspend or hibernate actions, but
7945 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7946 	 * detect that condition here, which happens early in CPU bringup,
7947 	 * before any KVM threads can be running.  Unfortunately, we can't
7948 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7949 	 * enough into CPU bringup that we know how much real time has actually
7950 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7951 	 * variables that haven't been updated yet.
7952 	 *
7953 	 * So we simply find the maximum observed TSC above, then record the
7954 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7955 	 * the adjustment will be applied.  Note that we accumulate
7956 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7957 	 * gets a chance to run again.  In the event that no KVM threads get a
7958 	 * chance to run, we will miss the entire elapsed period, as we'll have
7959 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7960 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7961 	 * uniform across all VCPUs (not to mention the scenario is extremely
7962 	 * unlikely). It is possible that a second hibernate recovery happens
7963 	 * much faster than a first, causing the observed TSC here to be
7964 	 * smaller; this would require additional padding adjustment, which is
7965 	 * why we set last_host_tsc to the local tsc observed here.
7966 	 *
7967 	 * N.B. - this code below runs only on platforms with reliable TSC,
7968 	 * as that is the only way backwards_tsc is set above.  Also note
7969 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7970 	 * have the same delta_cyc adjustment applied if backwards_tsc
7971 	 * is detected.  Note further, this adjustment is only done once,
7972 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7973 	 * called multiple times (one for each physical CPU bringup).
7974 	 *
7975 	 * Platforms with unreliable TSCs don't have to deal with this, they
7976 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7977 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7978 	 * guarantee that they stay in perfect synchronization.
7979 	 */
7980 	if (backwards_tsc) {
7981 		u64 delta_cyc = max_tsc - local_tsc;
7982 		list_for_each_entry(kvm, &vm_list, vm_list) {
7983 			kvm->arch.backwards_tsc_observed = true;
7984 			kvm_for_each_vcpu(i, vcpu, kvm) {
7985 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7986 				vcpu->arch.last_host_tsc = local_tsc;
7987 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7988 			}
7989 
7990 			/*
7991 			 * We have to disable TSC offset matching.. if you were
7992 			 * booting a VM while issuing an S4 host suspend....
7993 			 * you may have some problem.  Solving this issue is
7994 			 * left as an exercise to the reader.
7995 			 */
7996 			kvm->arch.last_tsc_nsec = 0;
7997 			kvm->arch.last_tsc_write = 0;
7998 		}
7999 
8000 	}
8001 	return 0;
8002 }
8003 
8004 void kvm_arch_hardware_disable(void)
8005 {
8006 	kvm_x86_ops->hardware_disable();
8007 	drop_user_return_notifiers();
8008 }
8009 
8010 int kvm_arch_hardware_setup(void)
8011 {
8012 	int r;
8013 
8014 	r = kvm_x86_ops->hardware_setup();
8015 	if (r != 0)
8016 		return r;
8017 
8018 	if (kvm_has_tsc_control) {
8019 		/*
8020 		 * Make sure the user can only configure tsc_khz values that
8021 		 * fit into a signed integer.
8022 		 * A min value is not calculated needed because it will always
8023 		 * be 1 on all machines.
8024 		 */
8025 		u64 max = min(0x7fffffffULL,
8026 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8027 		kvm_max_guest_tsc_khz = max;
8028 
8029 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8030 	}
8031 
8032 	kvm_init_msr_list();
8033 	return 0;
8034 }
8035 
8036 void kvm_arch_hardware_unsetup(void)
8037 {
8038 	kvm_x86_ops->hardware_unsetup();
8039 }
8040 
8041 void kvm_arch_check_processor_compat(void *rtn)
8042 {
8043 	kvm_x86_ops->check_processor_compatibility(rtn);
8044 }
8045 
8046 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8047 {
8048 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8049 }
8050 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8051 
8052 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8053 {
8054 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8055 }
8056 
8057 struct static_key kvm_no_apic_vcpu __read_mostly;
8058 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8059 
8060 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8061 {
8062 	struct page *page;
8063 	int r;
8064 
8065 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8066 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8067 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8068 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8069 	else
8070 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8071 
8072 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8073 	if (!page) {
8074 		r = -ENOMEM;
8075 		goto fail;
8076 	}
8077 	vcpu->arch.pio_data = page_address(page);
8078 
8079 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
8080 
8081 	r = kvm_mmu_create(vcpu);
8082 	if (r < 0)
8083 		goto fail_free_pio_data;
8084 
8085 	if (irqchip_in_kernel(vcpu->kvm)) {
8086 		r = kvm_create_lapic(vcpu);
8087 		if (r < 0)
8088 			goto fail_mmu_destroy;
8089 	} else
8090 		static_key_slow_inc(&kvm_no_apic_vcpu);
8091 
8092 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8093 				       GFP_KERNEL);
8094 	if (!vcpu->arch.mce_banks) {
8095 		r = -ENOMEM;
8096 		goto fail_free_lapic;
8097 	}
8098 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8099 
8100 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8101 		r = -ENOMEM;
8102 		goto fail_free_mce_banks;
8103 	}
8104 
8105 	fx_init(vcpu);
8106 
8107 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8108 
8109 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8110 
8111 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8112 
8113 	kvm_async_pf_hash_reset(vcpu);
8114 	kvm_pmu_init(vcpu);
8115 
8116 	vcpu->arch.pending_external_vector = -1;
8117 	vcpu->arch.preempted_in_kernel = false;
8118 
8119 	kvm_hv_vcpu_init(vcpu);
8120 
8121 	return 0;
8122 
8123 fail_free_mce_banks:
8124 	kfree(vcpu->arch.mce_banks);
8125 fail_free_lapic:
8126 	kvm_free_lapic(vcpu);
8127 fail_mmu_destroy:
8128 	kvm_mmu_destroy(vcpu);
8129 fail_free_pio_data:
8130 	free_page((unsigned long)vcpu->arch.pio_data);
8131 fail:
8132 	return r;
8133 }
8134 
8135 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8136 {
8137 	int idx;
8138 
8139 	kvm_hv_vcpu_uninit(vcpu);
8140 	kvm_pmu_destroy(vcpu);
8141 	kfree(vcpu->arch.mce_banks);
8142 	kvm_free_lapic(vcpu);
8143 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8144 	kvm_mmu_destroy(vcpu);
8145 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8146 	free_page((unsigned long)vcpu->arch.pio_data);
8147 	if (!lapic_in_kernel(vcpu))
8148 		static_key_slow_dec(&kvm_no_apic_vcpu);
8149 }
8150 
8151 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8152 {
8153 	kvm_x86_ops->sched_in(vcpu, cpu);
8154 }
8155 
8156 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8157 {
8158 	if (type)
8159 		return -EINVAL;
8160 
8161 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8162 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8163 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8164 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8165 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8166 
8167 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8168 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8169 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8170 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8171 		&kvm->arch.irq_sources_bitmap);
8172 
8173 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8174 	mutex_init(&kvm->arch.apic_map_lock);
8175 	mutex_init(&kvm->arch.hyperv.hv_lock);
8176 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8177 
8178 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8179 	pvclock_update_vm_gtod_copy(kvm);
8180 
8181 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8182 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8183 
8184 	kvm_page_track_init(kvm);
8185 	kvm_mmu_init_vm(kvm);
8186 
8187 	if (kvm_x86_ops->vm_init)
8188 		return kvm_x86_ops->vm_init(kvm);
8189 
8190 	return 0;
8191 }
8192 
8193 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8194 {
8195 	int r;
8196 	r = vcpu_load(vcpu);
8197 	BUG_ON(r);
8198 	kvm_mmu_unload(vcpu);
8199 	vcpu_put(vcpu);
8200 }
8201 
8202 static void kvm_free_vcpus(struct kvm *kvm)
8203 {
8204 	unsigned int i;
8205 	struct kvm_vcpu *vcpu;
8206 
8207 	/*
8208 	 * Unpin any mmu pages first.
8209 	 */
8210 	kvm_for_each_vcpu(i, vcpu, kvm) {
8211 		kvm_clear_async_pf_completion_queue(vcpu);
8212 		kvm_unload_vcpu_mmu(vcpu);
8213 	}
8214 	kvm_for_each_vcpu(i, vcpu, kvm)
8215 		kvm_arch_vcpu_free(vcpu);
8216 
8217 	mutex_lock(&kvm->lock);
8218 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8219 		kvm->vcpus[i] = NULL;
8220 
8221 	atomic_set(&kvm->online_vcpus, 0);
8222 	mutex_unlock(&kvm->lock);
8223 }
8224 
8225 void kvm_arch_sync_events(struct kvm *kvm)
8226 {
8227 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8228 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8229 	kvm_free_pit(kvm);
8230 }
8231 
8232 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8233 {
8234 	int i, r;
8235 	unsigned long hva;
8236 	struct kvm_memslots *slots = kvm_memslots(kvm);
8237 	struct kvm_memory_slot *slot, old;
8238 
8239 	/* Called with kvm->slots_lock held.  */
8240 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8241 		return -EINVAL;
8242 
8243 	slot = id_to_memslot(slots, id);
8244 	if (size) {
8245 		if (slot->npages)
8246 			return -EEXIST;
8247 
8248 		/*
8249 		 * MAP_SHARED to prevent internal slot pages from being moved
8250 		 * by fork()/COW.
8251 		 */
8252 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8253 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8254 		if (IS_ERR((void *)hva))
8255 			return PTR_ERR((void *)hva);
8256 	} else {
8257 		if (!slot->npages)
8258 			return 0;
8259 
8260 		hva = 0;
8261 	}
8262 
8263 	old = *slot;
8264 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8265 		struct kvm_userspace_memory_region m;
8266 
8267 		m.slot = id | (i << 16);
8268 		m.flags = 0;
8269 		m.guest_phys_addr = gpa;
8270 		m.userspace_addr = hva;
8271 		m.memory_size = size;
8272 		r = __kvm_set_memory_region(kvm, &m);
8273 		if (r < 0)
8274 			return r;
8275 	}
8276 
8277 	if (!size) {
8278 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8279 		WARN_ON(r < 0);
8280 	}
8281 
8282 	return 0;
8283 }
8284 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8285 
8286 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8287 {
8288 	int r;
8289 
8290 	mutex_lock(&kvm->slots_lock);
8291 	r = __x86_set_memory_region(kvm, id, gpa, size);
8292 	mutex_unlock(&kvm->slots_lock);
8293 
8294 	return r;
8295 }
8296 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8297 
8298 void kvm_arch_destroy_vm(struct kvm *kvm)
8299 {
8300 	if (current->mm == kvm->mm) {
8301 		/*
8302 		 * Free memory regions allocated on behalf of userspace,
8303 		 * unless the the memory map has changed due to process exit
8304 		 * or fd copying.
8305 		 */
8306 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8307 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8308 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8309 	}
8310 	if (kvm_x86_ops->vm_destroy)
8311 		kvm_x86_ops->vm_destroy(kvm);
8312 	kvm_pic_destroy(kvm);
8313 	kvm_ioapic_destroy(kvm);
8314 	kvm_free_vcpus(kvm);
8315 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8316 	kvm_mmu_uninit_vm(kvm);
8317 	kvm_page_track_cleanup(kvm);
8318 }
8319 
8320 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8321 			   struct kvm_memory_slot *dont)
8322 {
8323 	int i;
8324 
8325 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8326 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8327 			kvfree(free->arch.rmap[i]);
8328 			free->arch.rmap[i] = NULL;
8329 		}
8330 		if (i == 0)
8331 			continue;
8332 
8333 		if (!dont || free->arch.lpage_info[i - 1] !=
8334 			     dont->arch.lpage_info[i - 1]) {
8335 			kvfree(free->arch.lpage_info[i - 1]);
8336 			free->arch.lpage_info[i - 1] = NULL;
8337 		}
8338 	}
8339 
8340 	kvm_page_track_free_memslot(free, dont);
8341 }
8342 
8343 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8344 			    unsigned long npages)
8345 {
8346 	int i;
8347 
8348 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8349 		struct kvm_lpage_info *linfo;
8350 		unsigned long ugfn;
8351 		int lpages;
8352 		int level = i + 1;
8353 
8354 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8355 				      slot->base_gfn, level) + 1;
8356 
8357 		slot->arch.rmap[i] =
8358 			kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8359 		if (!slot->arch.rmap[i])
8360 			goto out_free;
8361 		if (i == 0)
8362 			continue;
8363 
8364 		linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8365 		if (!linfo)
8366 			goto out_free;
8367 
8368 		slot->arch.lpage_info[i - 1] = linfo;
8369 
8370 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8371 			linfo[0].disallow_lpage = 1;
8372 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8373 			linfo[lpages - 1].disallow_lpage = 1;
8374 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8375 		/*
8376 		 * If the gfn and userspace address are not aligned wrt each
8377 		 * other, or if explicitly asked to, disable large page
8378 		 * support for this slot
8379 		 */
8380 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8381 		    !kvm_largepages_enabled()) {
8382 			unsigned long j;
8383 
8384 			for (j = 0; j < lpages; ++j)
8385 				linfo[j].disallow_lpage = 1;
8386 		}
8387 	}
8388 
8389 	if (kvm_page_track_create_memslot(slot, npages))
8390 		goto out_free;
8391 
8392 	return 0;
8393 
8394 out_free:
8395 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8396 		kvfree(slot->arch.rmap[i]);
8397 		slot->arch.rmap[i] = NULL;
8398 		if (i == 0)
8399 			continue;
8400 
8401 		kvfree(slot->arch.lpage_info[i - 1]);
8402 		slot->arch.lpage_info[i - 1] = NULL;
8403 	}
8404 	return -ENOMEM;
8405 }
8406 
8407 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8408 {
8409 	/*
8410 	 * memslots->generation has been incremented.
8411 	 * mmio generation may have reached its maximum value.
8412 	 */
8413 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8414 }
8415 
8416 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8417 				struct kvm_memory_slot *memslot,
8418 				const struct kvm_userspace_memory_region *mem,
8419 				enum kvm_mr_change change)
8420 {
8421 	return 0;
8422 }
8423 
8424 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8425 				     struct kvm_memory_slot *new)
8426 {
8427 	/* Still write protect RO slot */
8428 	if (new->flags & KVM_MEM_READONLY) {
8429 		kvm_mmu_slot_remove_write_access(kvm, new);
8430 		return;
8431 	}
8432 
8433 	/*
8434 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8435 	 *
8436 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8437 	 *
8438 	 *  - KVM_MR_CREATE with dirty logging is disabled
8439 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8440 	 *
8441 	 * The reason is, in case of PML, we need to set D-bit for any slots
8442 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8443 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8444 	 * guarantees leaving PML enabled during guest's lifetime won't have
8445 	 * any additonal overhead from PML when guest is running with dirty
8446 	 * logging disabled for memory slots.
8447 	 *
8448 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8449 	 * to dirty logging mode.
8450 	 *
8451 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8452 	 *
8453 	 * In case of write protect:
8454 	 *
8455 	 * Write protect all pages for dirty logging.
8456 	 *
8457 	 * All the sptes including the large sptes which point to this
8458 	 * slot are set to readonly. We can not create any new large
8459 	 * spte on this slot until the end of the logging.
8460 	 *
8461 	 * See the comments in fast_page_fault().
8462 	 */
8463 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8464 		if (kvm_x86_ops->slot_enable_log_dirty)
8465 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8466 		else
8467 			kvm_mmu_slot_remove_write_access(kvm, new);
8468 	} else {
8469 		if (kvm_x86_ops->slot_disable_log_dirty)
8470 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8471 	}
8472 }
8473 
8474 void kvm_arch_commit_memory_region(struct kvm *kvm,
8475 				const struct kvm_userspace_memory_region *mem,
8476 				const struct kvm_memory_slot *old,
8477 				const struct kvm_memory_slot *new,
8478 				enum kvm_mr_change change)
8479 {
8480 	int nr_mmu_pages = 0;
8481 
8482 	if (!kvm->arch.n_requested_mmu_pages)
8483 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8484 
8485 	if (nr_mmu_pages)
8486 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8487 
8488 	/*
8489 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8490 	 * sptes have to be split.  If live migration is successful, the guest
8491 	 * in the source machine will be destroyed and large sptes will be
8492 	 * created in the destination. However, if the guest continues to run
8493 	 * in the source machine (for example if live migration fails), small
8494 	 * sptes will remain around and cause bad performance.
8495 	 *
8496 	 * Scan sptes if dirty logging has been stopped, dropping those
8497 	 * which can be collapsed into a single large-page spte.  Later
8498 	 * page faults will create the large-page sptes.
8499 	 */
8500 	if ((change != KVM_MR_DELETE) &&
8501 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8502 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8503 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8504 
8505 	/*
8506 	 * Set up write protection and/or dirty logging for the new slot.
8507 	 *
8508 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8509 	 * been zapped so no dirty logging staff is needed for old slot. For
8510 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8511 	 * new and it's also covered when dealing with the new slot.
8512 	 *
8513 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8514 	 */
8515 	if (change != KVM_MR_DELETE)
8516 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8517 }
8518 
8519 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8520 {
8521 	kvm_mmu_invalidate_zap_all_pages(kvm);
8522 }
8523 
8524 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8525 				   struct kvm_memory_slot *slot)
8526 {
8527 	kvm_page_track_flush_slot(kvm, slot);
8528 }
8529 
8530 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8531 {
8532 	if (!list_empty_careful(&vcpu->async_pf.done))
8533 		return true;
8534 
8535 	if (kvm_apic_has_events(vcpu))
8536 		return true;
8537 
8538 	if (vcpu->arch.pv.pv_unhalted)
8539 		return true;
8540 
8541 	if (vcpu->arch.exception.pending)
8542 		return true;
8543 
8544 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8545 	    (vcpu->arch.nmi_pending &&
8546 	     kvm_x86_ops->nmi_allowed(vcpu)))
8547 		return true;
8548 
8549 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8550 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
8551 		return true;
8552 
8553 	if (kvm_arch_interrupt_allowed(vcpu) &&
8554 	    kvm_cpu_has_interrupt(vcpu))
8555 		return true;
8556 
8557 	if (kvm_hv_has_stimer_pending(vcpu))
8558 		return true;
8559 
8560 	return false;
8561 }
8562 
8563 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8564 {
8565 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8566 }
8567 
8568 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8569 {
8570 	return vcpu->arch.preempted_in_kernel;
8571 }
8572 
8573 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8574 {
8575 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8576 }
8577 
8578 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8579 {
8580 	return kvm_x86_ops->interrupt_allowed(vcpu);
8581 }
8582 
8583 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8584 {
8585 	if (is_64_bit_mode(vcpu))
8586 		return kvm_rip_read(vcpu);
8587 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8588 		     kvm_rip_read(vcpu));
8589 }
8590 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8591 
8592 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8593 {
8594 	return kvm_get_linear_rip(vcpu) == linear_rip;
8595 }
8596 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8597 
8598 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8599 {
8600 	unsigned long rflags;
8601 
8602 	rflags = kvm_x86_ops->get_rflags(vcpu);
8603 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8604 		rflags &= ~X86_EFLAGS_TF;
8605 	return rflags;
8606 }
8607 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8608 
8609 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8610 {
8611 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8612 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8613 		rflags |= X86_EFLAGS_TF;
8614 	kvm_x86_ops->set_rflags(vcpu, rflags);
8615 }
8616 
8617 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8618 {
8619 	__kvm_set_rflags(vcpu, rflags);
8620 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8621 }
8622 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8623 
8624 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8625 {
8626 	int r;
8627 
8628 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8629 	      work->wakeup_all)
8630 		return;
8631 
8632 	r = kvm_mmu_reload(vcpu);
8633 	if (unlikely(r))
8634 		return;
8635 
8636 	if (!vcpu->arch.mmu.direct_map &&
8637 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8638 		return;
8639 
8640 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8641 }
8642 
8643 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8644 {
8645 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8646 }
8647 
8648 static inline u32 kvm_async_pf_next_probe(u32 key)
8649 {
8650 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8651 }
8652 
8653 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8654 {
8655 	u32 key = kvm_async_pf_hash_fn(gfn);
8656 
8657 	while (vcpu->arch.apf.gfns[key] != ~0)
8658 		key = kvm_async_pf_next_probe(key);
8659 
8660 	vcpu->arch.apf.gfns[key] = gfn;
8661 }
8662 
8663 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8664 {
8665 	int i;
8666 	u32 key = kvm_async_pf_hash_fn(gfn);
8667 
8668 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8669 		     (vcpu->arch.apf.gfns[key] != gfn &&
8670 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8671 		key = kvm_async_pf_next_probe(key);
8672 
8673 	return key;
8674 }
8675 
8676 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8677 {
8678 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8679 }
8680 
8681 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8682 {
8683 	u32 i, j, k;
8684 
8685 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8686 	while (true) {
8687 		vcpu->arch.apf.gfns[i] = ~0;
8688 		do {
8689 			j = kvm_async_pf_next_probe(j);
8690 			if (vcpu->arch.apf.gfns[j] == ~0)
8691 				return;
8692 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8693 			/*
8694 			 * k lies cyclically in ]i,j]
8695 			 * |    i.k.j |
8696 			 * |....j i.k.| or  |.k..j i...|
8697 			 */
8698 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8699 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8700 		i = j;
8701 	}
8702 }
8703 
8704 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8705 {
8706 
8707 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8708 				      sizeof(val));
8709 }
8710 
8711 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8712 {
8713 
8714 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8715 				      sizeof(u32));
8716 }
8717 
8718 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8719 				     struct kvm_async_pf *work)
8720 {
8721 	struct x86_exception fault;
8722 
8723 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8724 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8725 
8726 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8727 	    (vcpu->arch.apf.send_user_only &&
8728 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8729 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8730 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8731 		fault.vector = PF_VECTOR;
8732 		fault.error_code_valid = true;
8733 		fault.error_code = 0;
8734 		fault.nested_page_fault = false;
8735 		fault.address = work->arch.token;
8736 		fault.async_page_fault = true;
8737 		kvm_inject_page_fault(vcpu, &fault);
8738 	}
8739 }
8740 
8741 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8742 				 struct kvm_async_pf *work)
8743 {
8744 	struct x86_exception fault;
8745 	u32 val;
8746 
8747 	if (work->wakeup_all)
8748 		work->arch.token = ~0; /* broadcast wakeup */
8749 	else
8750 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8751 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8752 
8753 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8754 	    !apf_get_user(vcpu, &val)) {
8755 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8756 		    vcpu->arch.exception.pending &&
8757 		    vcpu->arch.exception.nr == PF_VECTOR &&
8758 		    !apf_put_user(vcpu, 0)) {
8759 			vcpu->arch.exception.injected = false;
8760 			vcpu->arch.exception.pending = false;
8761 			vcpu->arch.exception.nr = 0;
8762 			vcpu->arch.exception.has_error_code = false;
8763 			vcpu->arch.exception.error_code = 0;
8764 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8765 			fault.vector = PF_VECTOR;
8766 			fault.error_code_valid = true;
8767 			fault.error_code = 0;
8768 			fault.nested_page_fault = false;
8769 			fault.address = work->arch.token;
8770 			fault.async_page_fault = true;
8771 			kvm_inject_page_fault(vcpu, &fault);
8772 		}
8773 	}
8774 	vcpu->arch.apf.halted = false;
8775 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8776 }
8777 
8778 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8779 {
8780 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8781 		return true;
8782 	else
8783 		return kvm_can_do_async_pf(vcpu);
8784 }
8785 
8786 void kvm_arch_start_assignment(struct kvm *kvm)
8787 {
8788 	atomic_inc(&kvm->arch.assigned_device_count);
8789 }
8790 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8791 
8792 void kvm_arch_end_assignment(struct kvm *kvm)
8793 {
8794 	atomic_dec(&kvm->arch.assigned_device_count);
8795 }
8796 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8797 
8798 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8799 {
8800 	return atomic_read(&kvm->arch.assigned_device_count);
8801 }
8802 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8803 
8804 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8805 {
8806 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8807 }
8808 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8809 
8810 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8811 {
8812 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8813 }
8814 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8815 
8816 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8817 {
8818 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8819 }
8820 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8821 
8822 bool kvm_arch_has_irq_bypass(void)
8823 {
8824 	return kvm_x86_ops->update_pi_irte != NULL;
8825 }
8826 
8827 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8828 				      struct irq_bypass_producer *prod)
8829 {
8830 	struct kvm_kernel_irqfd *irqfd =
8831 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8832 
8833 	irqfd->producer = prod;
8834 
8835 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8836 					   prod->irq, irqfd->gsi, 1);
8837 }
8838 
8839 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8840 				      struct irq_bypass_producer *prod)
8841 {
8842 	int ret;
8843 	struct kvm_kernel_irqfd *irqfd =
8844 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8845 
8846 	WARN_ON(irqfd->producer != prod);
8847 	irqfd->producer = NULL;
8848 
8849 	/*
8850 	 * When producer of consumer is unregistered, we change back to
8851 	 * remapped mode, so we can re-use the current implementation
8852 	 * when the irq is masked/disabled or the consumer side (KVM
8853 	 * int this case doesn't want to receive the interrupts.
8854 	*/
8855 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8856 	if (ret)
8857 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8858 		       " fails: %d\n", irqfd->consumer.token, ret);
8859 }
8860 
8861 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8862 				   uint32_t guest_irq, bool set)
8863 {
8864 	if (!kvm_x86_ops->update_pi_irte)
8865 		return -EINVAL;
8866 
8867 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8868 }
8869 
8870 bool kvm_vector_hashing_enabled(void)
8871 {
8872 	return vector_hashing;
8873 }
8874 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8875 
8876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8895