1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 #include "lapic.h" 33 #include "xen.h" 34 #include "smm.h" 35 36 #include <linux/clocksource.h> 37 #include <linux/interrupt.h> 38 #include <linux/kvm.h> 39 #include <linux/fs.h> 40 #include <linux/vmalloc.h> 41 #include <linux/export.h> 42 #include <linux/moduleparam.h> 43 #include <linux/mman.h> 44 #include <linux/highmem.h> 45 #include <linux/iommu.h> 46 #include <linux/cpufreq.h> 47 #include <linux/user-return-notifier.h> 48 #include <linux/srcu.h> 49 #include <linux/slab.h> 50 #include <linux/perf_event.h> 51 #include <linux/uaccess.h> 52 #include <linux/hash.h> 53 #include <linux/pci.h> 54 #include <linux/timekeeper_internal.h> 55 #include <linux/pvclock_gtod.h> 56 #include <linux/kvm_irqfd.h> 57 #include <linux/irqbypass.h> 58 #include <linux/sched/stat.h> 59 #include <linux/sched/isolation.h> 60 #include <linux/mem_encrypt.h> 61 #include <linux/entry-kvm.h> 62 #include <linux/suspend.h> 63 #include <linux/smp.h> 64 65 #include <trace/events/ipi.h> 66 #include <trace/events/kvm.h> 67 68 #include <asm/debugreg.h> 69 #include <asm/msr.h> 70 #include <asm/desc.h> 71 #include <asm/mce.h> 72 #include <asm/pkru.h> 73 #include <linux/kernel_stat.h> 74 #include <asm/fpu/api.h> 75 #include <asm/fpu/xcr.h> 76 #include <asm/fpu/xstate.h> 77 #include <asm/pvclock.h> 78 #include <asm/div64.h> 79 #include <asm/irq_remapping.h> 80 #include <asm/mshyperv.h> 81 #include <asm/hypervisor.h> 82 #include <asm/tlbflush.h> 83 #include <asm/intel_pt.h> 84 #include <asm/emulate_prefix.h> 85 #include <asm/sgx.h> 86 #include <clocksource/hyperv_timer.h> 87 88 #define CREATE_TRACE_POINTS 89 #include "trace.h" 90 91 #define MAX_IO_MSRS 256 92 #define KVM_MAX_MCE_BANKS 32 93 94 struct kvm_caps kvm_caps __read_mostly = { 95 .supported_mce_cap = MCG_CTL_P | MCG_SER_P, 96 }; 97 EXPORT_SYMBOL_GPL(kvm_caps); 98 99 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 100 101 #define emul_to_vcpu(ctxt) \ 102 ((struct kvm_vcpu *)(ctxt)->vcpu) 103 104 /* EFER defaults: 105 * - enable syscall per default because its emulated by KVM 106 * - enable LME and LMA per default on 64 bit KVM 107 */ 108 #ifdef CONFIG_X86_64 109 static 110 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 111 #else 112 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 113 #endif 114 115 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 116 117 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 118 119 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 120 121 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 122 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 123 124 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 125 static void process_nmi(struct kvm_vcpu *vcpu); 126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 127 static void store_regs(struct kvm_vcpu *vcpu); 128 static int sync_regs(struct kvm_vcpu *vcpu); 129 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 130 131 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 132 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 134 static DEFINE_MUTEX(vendor_module_lock); 135 struct kvm_x86_ops kvm_x86_ops __read_mostly; 136 137 #define KVM_X86_OP(func) \ 138 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 139 *(((struct kvm_x86_ops *)0)->func)); 140 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 141 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 142 #include <asm/kvm-x86-ops.h> 143 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 144 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 145 146 static bool __read_mostly ignore_msrs = 0; 147 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 148 149 bool __read_mostly report_ignored_msrs = true; 150 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 151 EXPORT_SYMBOL_GPL(report_ignored_msrs); 152 153 unsigned int min_timer_period_us = 200; 154 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 155 156 static bool __read_mostly kvmclock_periodic_sync = true; 157 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 158 159 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 160 static u32 __read_mostly tsc_tolerance_ppm = 250; 161 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 162 163 /* 164 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 165 * adaptive tuning starting from default advancement of 1000ns. '0' disables 166 * advancement entirely. Any other value is used as-is and disables adaptive 167 * tuning, i.e. allows privileged userspace to set an exact advancement time. 168 */ 169 static int __read_mostly lapic_timer_advance_ns = -1; 170 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 171 172 static bool __read_mostly vector_hashing = true; 173 module_param(vector_hashing, bool, S_IRUGO); 174 175 bool __read_mostly enable_vmware_backdoor = false; 176 module_param(enable_vmware_backdoor, bool, S_IRUGO); 177 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 178 179 /* 180 * Flags to manipulate forced emulation behavior (any non-zero value will 181 * enable forced emulation). 182 */ 183 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 184 static int __read_mostly force_emulation_prefix; 185 module_param(force_emulation_prefix, int, 0644); 186 187 int __read_mostly pi_inject_timer = -1; 188 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 189 190 /* Enable/disable PMU virtualization */ 191 bool __read_mostly enable_pmu = true; 192 EXPORT_SYMBOL_GPL(enable_pmu); 193 module_param(enable_pmu, bool, 0444); 194 195 bool __read_mostly eager_page_split = true; 196 module_param(eager_page_split, bool, 0644); 197 198 /* Enable/disable SMT_RSB bug mitigation */ 199 static bool __read_mostly mitigate_smt_rsb; 200 module_param(mitigate_smt_rsb, bool, 0444); 201 202 /* 203 * Restoring the host value for MSRs that are only consumed when running in 204 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 205 * returns to userspace, i.e. the kernel can run with the guest's value. 206 */ 207 #define KVM_MAX_NR_USER_RETURN_MSRS 16 208 209 struct kvm_user_return_msrs { 210 struct user_return_notifier urn; 211 bool registered; 212 struct kvm_user_return_msr_values { 213 u64 host; 214 u64 curr; 215 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 216 }; 217 218 u32 __read_mostly kvm_nr_uret_msrs; 219 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 220 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 221 static struct kvm_user_return_msrs __percpu *user_return_msrs; 222 223 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 224 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 225 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 226 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 227 228 u64 __read_mostly host_efer; 229 EXPORT_SYMBOL_GPL(host_efer); 230 231 bool __read_mostly allow_smaller_maxphyaddr = 0; 232 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 233 234 bool __read_mostly enable_apicv = true; 235 EXPORT_SYMBOL_GPL(enable_apicv); 236 237 u64 __read_mostly host_xss; 238 EXPORT_SYMBOL_GPL(host_xss); 239 240 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 241 KVM_GENERIC_VM_STATS(), 242 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 243 STATS_DESC_COUNTER(VM, mmu_pte_write), 244 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 245 STATS_DESC_COUNTER(VM, mmu_flooded), 246 STATS_DESC_COUNTER(VM, mmu_recycled), 247 STATS_DESC_COUNTER(VM, mmu_cache_miss), 248 STATS_DESC_ICOUNTER(VM, mmu_unsync), 249 STATS_DESC_ICOUNTER(VM, pages_4k), 250 STATS_DESC_ICOUNTER(VM, pages_2m), 251 STATS_DESC_ICOUNTER(VM, pages_1g), 252 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 253 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 254 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 255 }; 256 257 const struct kvm_stats_header kvm_vm_stats_header = { 258 .name_size = KVM_STATS_NAME_SIZE, 259 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 260 .id_offset = sizeof(struct kvm_stats_header), 261 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 262 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 263 sizeof(kvm_vm_stats_desc), 264 }; 265 266 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 267 KVM_GENERIC_VCPU_STATS(), 268 STATS_DESC_COUNTER(VCPU, pf_taken), 269 STATS_DESC_COUNTER(VCPU, pf_fixed), 270 STATS_DESC_COUNTER(VCPU, pf_emulate), 271 STATS_DESC_COUNTER(VCPU, pf_spurious), 272 STATS_DESC_COUNTER(VCPU, pf_fast), 273 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 274 STATS_DESC_COUNTER(VCPU, pf_guest), 275 STATS_DESC_COUNTER(VCPU, tlb_flush), 276 STATS_DESC_COUNTER(VCPU, invlpg), 277 STATS_DESC_COUNTER(VCPU, exits), 278 STATS_DESC_COUNTER(VCPU, io_exits), 279 STATS_DESC_COUNTER(VCPU, mmio_exits), 280 STATS_DESC_COUNTER(VCPU, signal_exits), 281 STATS_DESC_COUNTER(VCPU, irq_window_exits), 282 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 283 STATS_DESC_COUNTER(VCPU, l1d_flush), 284 STATS_DESC_COUNTER(VCPU, halt_exits), 285 STATS_DESC_COUNTER(VCPU, request_irq_exits), 286 STATS_DESC_COUNTER(VCPU, irq_exits), 287 STATS_DESC_COUNTER(VCPU, host_state_reload), 288 STATS_DESC_COUNTER(VCPU, fpu_reload), 289 STATS_DESC_COUNTER(VCPU, insn_emulation), 290 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 291 STATS_DESC_COUNTER(VCPU, hypercalls), 292 STATS_DESC_COUNTER(VCPU, irq_injections), 293 STATS_DESC_COUNTER(VCPU, nmi_injections), 294 STATS_DESC_COUNTER(VCPU, req_event), 295 STATS_DESC_COUNTER(VCPU, nested_run), 296 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 297 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 298 STATS_DESC_COUNTER(VCPU, preemption_reported), 299 STATS_DESC_COUNTER(VCPU, preemption_other), 300 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 301 STATS_DESC_COUNTER(VCPU, notify_window_exits), 302 }; 303 304 const struct kvm_stats_header kvm_vcpu_stats_header = { 305 .name_size = KVM_STATS_NAME_SIZE, 306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 307 .id_offset = sizeof(struct kvm_stats_header), 308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 310 sizeof(kvm_vcpu_stats_desc), 311 }; 312 313 u64 __read_mostly host_xcr0; 314 315 static struct kmem_cache *x86_emulator_cache; 316 317 /* 318 * When called, it means the previous get/set msr reached an invalid msr. 319 * Return true if we want to ignore/silent this failed msr access. 320 */ 321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 322 { 323 const char *op = write ? "wrmsr" : "rdmsr"; 324 325 if (ignore_msrs) { 326 if (report_ignored_msrs) 327 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 328 op, msr, data); 329 /* Mask the error */ 330 return true; 331 } else { 332 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 333 op, msr, data); 334 return false; 335 } 336 } 337 338 static struct kmem_cache *kvm_alloc_emulator_cache(void) 339 { 340 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 341 unsigned int size = sizeof(struct x86_emulate_ctxt); 342 343 return kmem_cache_create_usercopy("x86_emulator", size, 344 __alignof__(struct x86_emulate_ctxt), 345 SLAB_ACCOUNT, useroffset, 346 size - useroffset, NULL); 347 } 348 349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 350 351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 352 { 353 int i; 354 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 355 vcpu->arch.apf.gfns[i] = ~0; 356 } 357 358 static void kvm_on_user_return(struct user_return_notifier *urn) 359 { 360 unsigned slot; 361 struct kvm_user_return_msrs *msrs 362 = container_of(urn, struct kvm_user_return_msrs, urn); 363 struct kvm_user_return_msr_values *values; 364 unsigned long flags; 365 366 /* 367 * Disabling irqs at this point since the following code could be 368 * interrupted and executed through kvm_arch_hardware_disable() 369 */ 370 local_irq_save(flags); 371 if (msrs->registered) { 372 msrs->registered = false; 373 user_return_notifier_unregister(urn); 374 } 375 local_irq_restore(flags); 376 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 377 values = &msrs->values[slot]; 378 if (values->host != values->curr) { 379 wrmsrl(kvm_uret_msrs_list[slot], values->host); 380 values->curr = values->host; 381 } 382 } 383 } 384 385 static int kvm_probe_user_return_msr(u32 msr) 386 { 387 u64 val; 388 int ret; 389 390 preempt_disable(); 391 ret = rdmsrl_safe(msr, &val); 392 if (ret) 393 goto out; 394 ret = wrmsrl_safe(msr, val); 395 out: 396 preempt_enable(); 397 return ret; 398 } 399 400 int kvm_add_user_return_msr(u32 msr) 401 { 402 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 403 404 if (kvm_probe_user_return_msr(msr)) 405 return -1; 406 407 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 408 return kvm_nr_uret_msrs++; 409 } 410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 411 412 int kvm_find_user_return_msr(u32 msr) 413 { 414 int i; 415 416 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 417 if (kvm_uret_msrs_list[i] == msr) 418 return i; 419 } 420 return -1; 421 } 422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 423 424 static void kvm_user_return_msr_cpu_online(void) 425 { 426 unsigned int cpu = smp_processor_id(); 427 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 428 u64 value; 429 int i; 430 431 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 432 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 433 msrs->values[i].host = value; 434 msrs->values[i].curr = value; 435 } 436 } 437 438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 439 { 440 unsigned int cpu = smp_processor_id(); 441 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 442 int err; 443 444 value = (value & mask) | (msrs->values[slot].host & ~mask); 445 if (value == msrs->values[slot].curr) 446 return 0; 447 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 448 if (err) 449 return 1; 450 451 msrs->values[slot].curr = value; 452 if (!msrs->registered) { 453 msrs->urn.on_user_return = kvm_on_user_return; 454 user_return_notifier_register(&msrs->urn); 455 msrs->registered = true; 456 } 457 return 0; 458 } 459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 460 461 static void drop_user_return_notifiers(void) 462 { 463 unsigned int cpu = smp_processor_id(); 464 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 465 466 if (msrs->registered) 467 kvm_on_user_return(&msrs->urn); 468 } 469 470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 471 { 472 return vcpu->arch.apic_base; 473 } 474 475 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 476 { 477 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 478 } 479 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 480 481 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 482 { 483 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 484 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 485 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 486 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 487 488 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 489 return 1; 490 if (!msr_info->host_initiated) { 491 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 492 return 1; 493 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 494 return 1; 495 } 496 497 kvm_lapic_set_base(vcpu, msr_info->data); 498 kvm_recalculate_apic_map(vcpu->kvm); 499 return 0; 500 } 501 502 /* 503 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 504 * 505 * Hardware virtualization extension instructions may fault if a reboot turns 506 * off virtualization while processes are running. Usually after catching the 507 * fault we just panic; during reboot instead the instruction is ignored. 508 */ 509 noinstr void kvm_spurious_fault(void) 510 { 511 /* Fault while not rebooting. We want the trace. */ 512 BUG_ON(!kvm_rebooting); 513 } 514 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 515 516 #define EXCPT_BENIGN 0 517 #define EXCPT_CONTRIBUTORY 1 518 #define EXCPT_PF 2 519 520 static int exception_class(int vector) 521 { 522 switch (vector) { 523 case PF_VECTOR: 524 return EXCPT_PF; 525 case DE_VECTOR: 526 case TS_VECTOR: 527 case NP_VECTOR: 528 case SS_VECTOR: 529 case GP_VECTOR: 530 return EXCPT_CONTRIBUTORY; 531 default: 532 break; 533 } 534 return EXCPT_BENIGN; 535 } 536 537 #define EXCPT_FAULT 0 538 #define EXCPT_TRAP 1 539 #define EXCPT_ABORT 2 540 #define EXCPT_INTERRUPT 3 541 #define EXCPT_DB 4 542 543 static int exception_type(int vector) 544 { 545 unsigned int mask; 546 547 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 548 return EXCPT_INTERRUPT; 549 550 mask = 1 << vector; 551 552 /* 553 * #DBs can be trap-like or fault-like, the caller must check other CPU 554 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 555 */ 556 if (mask & (1 << DB_VECTOR)) 557 return EXCPT_DB; 558 559 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 560 return EXCPT_TRAP; 561 562 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 563 return EXCPT_ABORT; 564 565 /* Reserved exceptions will result in fault */ 566 return EXCPT_FAULT; 567 } 568 569 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 570 struct kvm_queued_exception *ex) 571 { 572 if (!ex->has_payload) 573 return; 574 575 switch (ex->vector) { 576 case DB_VECTOR: 577 /* 578 * "Certain debug exceptions may clear bit 0-3. The 579 * remaining contents of the DR6 register are never 580 * cleared by the processor". 581 */ 582 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 583 /* 584 * In order to reflect the #DB exception payload in guest 585 * dr6, three components need to be considered: active low 586 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 587 * DR6_BS and DR6_BT) 588 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 589 * In the target guest dr6: 590 * FIXED_1 bits should always be set. 591 * Active low bits should be cleared if 1-setting in payload. 592 * Active high bits should be set if 1-setting in payload. 593 * 594 * Note, the payload is compatible with the pending debug 595 * exceptions/exit qualification under VMX, that active_low bits 596 * are active high in payload. 597 * So they need to be flipped for DR6. 598 */ 599 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 600 vcpu->arch.dr6 |= ex->payload; 601 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 602 603 /* 604 * The #DB payload is defined as compatible with the 'pending 605 * debug exceptions' field under VMX, not DR6. While bit 12 is 606 * defined in the 'pending debug exceptions' field (enabled 607 * breakpoint), it is reserved and must be zero in DR6. 608 */ 609 vcpu->arch.dr6 &= ~BIT(12); 610 break; 611 case PF_VECTOR: 612 vcpu->arch.cr2 = ex->payload; 613 break; 614 } 615 616 ex->has_payload = false; 617 ex->payload = 0; 618 } 619 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 620 621 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 622 bool has_error_code, u32 error_code, 623 bool has_payload, unsigned long payload) 624 { 625 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 626 627 ex->vector = vector; 628 ex->injected = false; 629 ex->pending = true; 630 ex->has_error_code = has_error_code; 631 ex->error_code = error_code; 632 ex->has_payload = has_payload; 633 ex->payload = payload; 634 } 635 636 /* Forcibly leave the nested mode in cases like a vCPU reset */ 637 static void kvm_leave_nested(struct kvm_vcpu *vcpu) 638 { 639 kvm_x86_ops.nested_ops->leave_nested(vcpu); 640 } 641 642 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 643 unsigned nr, bool has_error, u32 error_code, 644 bool has_payload, unsigned long payload, bool reinject) 645 { 646 u32 prev_nr; 647 int class1, class2; 648 649 kvm_make_request(KVM_REQ_EVENT, vcpu); 650 651 /* 652 * If the exception is destined for L2 and isn't being reinjected, 653 * morph it to a VM-Exit if L1 wants to intercept the exception. A 654 * previously injected exception is not checked because it was checked 655 * when it was original queued, and re-checking is incorrect if _L1_ 656 * injected the exception, in which case it's exempt from interception. 657 */ 658 if (!reinject && is_guest_mode(vcpu) && 659 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 660 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 661 has_payload, payload); 662 return; 663 } 664 665 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 666 queue: 667 if (reinject) { 668 /* 669 * On VM-Entry, an exception can be pending if and only 670 * if event injection was blocked by nested_run_pending. 671 * In that case, however, vcpu_enter_guest() requests an 672 * immediate exit, and the guest shouldn't proceed far 673 * enough to need reinjection. 674 */ 675 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 676 vcpu->arch.exception.injected = true; 677 if (WARN_ON_ONCE(has_payload)) { 678 /* 679 * A reinjected event has already 680 * delivered its payload. 681 */ 682 has_payload = false; 683 payload = 0; 684 } 685 } else { 686 vcpu->arch.exception.pending = true; 687 vcpu->arch.exception.injected = false; 688 } 689 vcpu->arch.exception.has_error_code = has_error; 690 vcpu->arch.exception.vector = nr; 691 vcpu->arch.exception.error_code = error_code; 692 vcpu->arch.exception.has_payload = has_payload; 693 vcpu->arch.exception.payload = payload; 694 if (!is_guest_mode(vcpu)) 695 kvm_deliver_exception_payload(vcpu, 696 &vcpu->arch.exception); 697 return; 698 } 699 700 /* to check exception */ 701 prev_nr = vcpu->arch.exception.vector; 702 if (prev_nr == DF_VECTOR) { 703 /* triple fault -> shutdown */ 704 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 705 return; 706 } 707 class1 = exception_class(prev_nr); 708 class2 = exception_class(nr); 709 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 710 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 711 /* 712 * Synthesize #DF. Clear the previously injected or pending 713 * exception so as not to incorrectly trigger shutdown. 714 */ 715 vcpu->arch.exception.injected = false; 716 vcpu->arch.exception.pending = false; 717 718 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 719 } else { 720 /* replace previous exception with a new one in a hope 721 that instruction re-execution will regenerate lost 722 exception */ 723 goto queue; 724 } 725 } 726 727 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 728 { 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 730 } 731 EXPORT_SYMBOL_GPL(kvm_queue_exception); 732 733 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 734 { 735 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 736 } 737 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 738 739 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 740 unsigned long payload) 741 { 742 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 743 } 744 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 745 746 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 747 u32 error_code, unsigned long payload) 748 { 749 kvm_multiple_exception(vcpu, nr, true, error_code, 750 true, payload, false); 751 } 752 753 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 754 { 755 if (err) 756 kvm_inject_gp(vcpu, 0); 757 else 758 return kvm_skip_emulated_instruction(vcpu); 759 760 return 1; 761 } 762 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 763 764 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 765 { 766 if (err) { 767 kvm_inject_gp(vcpu, 0); 768 return 1; 769 } 770 771 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 772 EMULTYPE_COMPLETE_USER_EXIT); 773 } 774 775 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 776 { 777 ++vcpu->stat.pf_guest; 778 779 /* 780 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 781 * whether or not L1 wants to intercept "regular" #PF. 782 */ 783 if (is_guest_mode(vcpu) && fault->async_page_fault) 784 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 785 true, fault->error_code, 786 true, fault->address); 787 else 788 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 789 fault->address); 790 } 791 792 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 793 struct x86_exception *fault) 794 { 795 struct kvm_mmu *fault_mmu; 796 WARN_ON_ONCE(fault->vector != PF_VECTOR); 797 798 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 799 vcpu->arch.walk_mmu; 800 801 /* 802 * Invalidate the TLB entry for the faulting address, if it exists, 803 * else the access will fault indefinitely (and to emulate hardware). 804 */ 805 if ((fault->error_code & PFERR_PRESENT_MASK) && 806 !(fault->error_code & PFERR_RSVD_MASK)) 807 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 808 KVM_MMU_ROOT_CURRENT); 809 810 fault_mmu->inject_page_fault(vcpu, fault); 811 } 812 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 813 814 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 815 { 816 atomic_inc(&vcpu->arch.nmi_queued); 817 kvm_make_request(KVM_REQ_NMI, vcpu); 818 } 819 820 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 821 { 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 823 } 824 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 825 826 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 827 { 828 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 829 } 830 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 831 832 /* 833 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 834 * a #GP and return false. 835 */ 836 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 837 { 838 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 839 return true; 840 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 841 return false; 842 } 843 844 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 845 { 846 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 847 return true; 848 849 kvm_queue_exception(vcpu, UD_VECTOR); 850 return false; 851 } 852 EXPORT_SYMBOL_GPL(kvm_require_dr); 853 854 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 855 { 856 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 857 } 858 859 /* 860 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 861 */ 862 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 863 { 864 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 865 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 866 gpa_t real_gpa; 867 int i; 868 int ret; 869 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 870 871 /* 872 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 873 * to an L1 GPA. 874 */ 875 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 876 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 877 if (real_gpa == INVALID_GPA) 878 return 0; 879 880 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 881 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 882 cr3 & GENMASK(11, 5), sizeof(pdpte)); 883 if (ret < 0) 884 return 0; 885 886 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 887 if ((pdpte[i] & PT_PRESENT_MASK) && 888 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 889 return 0; 890 } 891 } 892 893 /* 894 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 895 * Shadow page roots need to be reconstructed instead. 896 */ 897 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 898 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 899 900 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 901 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 902 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 903 vcpu->arch.pdptrs_from_userspace = false; 904 905 return 1; 906 } 907 EXPORT_SYMBOL_GPL(load_pdptrs); 908 909 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 910 { 911 /* 912 * CR0.WP is incorporated into the MMU role, but only for non-nested, 913 * indirect shadow MMUs. If paging is disabled, no updates are needed 914 * as there are no permission bits to emulate. If TDP is enabled, the 915 * MMU's metadata needs to be updated, e.g. so that emulating guest 916 * translations does the right thing, but there's no need to unload the 917 * root as CR0.WP doesn't affect SPTEs. 918 */ 919 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 920 if (!(cr0 & X86_CR0_PG)) 921 return; 922 923 if (tdp_enabled) { 924 kvm_init_mmu(vcpu); 925 return; 926 } 927 } 928 929 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 930 kvm_clear_async_pf_completion_queue(vcpu); 931 kvm_async_pf_hash_reset(vcpu); 932 933 /* 934 * Clearing CR0.PG is defined to flush the TLB from the guest's 935 * perspective. 936 */ 937 if (!(cr0 & X86_CR0_PG)) 938 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 939 } 940 941 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 942 kvm_mmu_reset_context(vcpu); 943 944 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 945 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 946 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 947 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 948 } 949 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 950 951 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 952 { 953 unsigned long old_cr0 = kvm_read_cr0(vcpu); 954 955 cr0 |= X86_CR0_ET; 956 957 #ifdef CONFIG_X86_64 958 if (cr0 & 0xffffffff00000000UL) 959 return 1; 960 #endif 961 962 cr0 &= ~CR0_RESERVED_BITS; 963 964 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 965 return 1; 966 967 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 968 return 1; 969 970 #ifdef CONFIG_X86_64 971 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 972 (cr0 & X86_CR0_PG)) { 973 int cs_db, cs_l; 974 975 if (!is_pae(vcpu)) 976 return 1; 977 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 978 if (cs_l) 979 return 1; 980 } 981 #endif 982 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 983 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 984 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 985 return 1; 986 987 if (!(cr0 & X86_CR0_PG) && 988 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 989 return 1; 990 991 static_call(kvm_x86_set_cr0)(vcpu, cr0); 992 993 kvm_post_set_cr0(vcpu, old_cr0, cr0); 994 995 return 0; 996 } 997 EXPORT_SYMBOL_GPL(kvm_set_cr0); 998 999 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1000 { 1001 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1002 } 1003 EXPORT_SYMBOL_GPL(kvm_lmsw); 1004 1005 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1006 { 1007 if (vcpu->arch.guest_state_protected) 1008 return; 1009 1010 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1011 1012 if (vcpu->arch.xcr0 != host_xcr0) 1013 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1014 1015 if (vcpu->arch.xsaves_enabled && 1016 vcpu->arch.ia32_xss != host_xss) 1017 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1018 } 1019 1020 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1021 if (static_cpu_has(X86_FEATURE_PKU) && 1022 vcpu->arch.pkru != vcpu->arch.host_pkru && 1023 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1024 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1025 write_pkru(vcpu->arch.pkru); 1026 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1027 } 1028 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1029 1030 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1031 { 1032 if (vcpu->arch.guest_state_protected) 1033 return; 1034 1035 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1036 if (static_cpu_has(X86_FEATURE_PKU) && 1037 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1038 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1039 vcpu->arch.pkru = rdpkru(); 1040 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1041 write_pkru(vcpu->arch.host_pkru); 1042 } 1043 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1044 1045 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1046 1047 if (vcpu->arch.xcr0 != host_xcr0) 1048 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1049 1050 if (vcpu->arch.xsaves_enabled && 1051 vcpu->arch.ia32_xss != host_xss) 1052 wrmsrl(MSR_IA32_XSS, host_xss); 1053 } 1054 1055 } 1056 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1057 1058 #ifdef CONFIG_X86_64 1059 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1060 { 1061 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1062 } 1063 #endif 1064 1065 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1066 { 1067 u64 xcr0 = xcr; 1068 u64 old_xcr0 = vcpu->arch.xcr0; 1069 u64 valid_bits; 1070 1071 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1072 if (index != XCR_XFEATURE_ENABLED_MASK) 1073 return 1; 1074 if (!(xcr0 & XFEATURE_MASK_FP)) 1075 return 1; 1076 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1077 return 1; 1078 1079 /* 1080 * Do not allow the guest to set bits that we do not support 1081 * saving. However, xcr0 bit 0 is always set, even if the 1082 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1083 */ 1084 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1085 if (xcr0 & ~valid_bits) 1086 return 1; 1087 1088 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1089 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1090 return 1; 1091 1092 if (xcr0 & XFEATURE_MASK_AVX512) { 1093 if (!(xcr0 & XFEATURE_MASK_YMM)) 1094 return 1; 1095 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1096 return 1; 1097 } 1098 1099 if ((xcr0 & XFEATURE_MASK_XTILE) && 1100 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1101 return 1; 1102 1103 vcpu->arch.xcr0 = xcr0; 1104 1105 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1106 kvm_update_cpuid_runtime(vcpu); 1107 return 0; 1108 } 1109 1110 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1111 { 1112 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1113 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1114 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1115 kvm_inject_gp(vcpu, 0); 1116 return 1; 1117 } 1118 1119 return kvm_skip_emulated_instruction(vcpu); 1120 } 1121 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1122 1123 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1124 { 1125 if (cr4 & cr4_reserved_bits) 1126 return false; 1127 1128 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1129 return false; 1130 1131 return true; 1132 } 1133 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1134 1135 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1136 { 1137 return __kvm_is_valid_cr4(vcpu, cr4) && 1138 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1139 } 1140 1141 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1142 { 1143 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1144 kvm_mmu_reset_context(vcpu); 1145 1146 /* 1147 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1148 * according to the SDM; however, stale prev_roots could be reused 1149 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1150 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1151 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1152 * so fall through. 1153 */ 1154 if (!tdp_enabled && 1155 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1156 kvm_mmu_unload(vcpu); 1157 1158 /* 1159 * The TLB has to be flushed for all PCIDs if any of the following 1160 * (architecturally required) changes happen: 1161 * - CR4.PCIDE is changed from 1 to 0 1162 * - CR4.PGE is toggled 1163 * 1164 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1165 */ 1166 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1167 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1168 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1169 1170 /* 1171 * The TLB has to be flushed for the current PCID if any of the 1172 * following (architecturally required) changes happen: 1173 * - CR4.SMEP is changed from 0 to 1 1174 * - CR4.PAE is toggled 1175 */ 1176 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1177 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1178 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1179 1180 } 1181 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1182 1183 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1184 { 1185 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1186 1187 if (!kvm_is_valid_cr4(vcpu, cr4)) 1188 return 1; 1189 1190 if (is_long_mode(vcpu)) { 1191 if (!(cr4 & X86_CR4_PAE)) 1192 return 1; 1193 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1194 return 1; 1195 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1196 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1197 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1198 return 1; 1199 1200 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1201 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1202 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1203 return 1; 1204 } 1205 1206 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1207 1208 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1209 1210 return 0; 1211 } 1212 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1213 1214 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1215 { 1216 struct kvm_mmu *mmu = vcpu->arch.mmu; 1217 unsigned long roots_to_free = 0; 1218 int i; 1219 1220 /* 1221 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1222 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1223 * also via the emulator. KVM's TDP page tables are not in the scope of 1224 * the invalidation, but the guest's TLB entries need to be flushed as 1225 * the CPU may have cached entries in its TLB for the target PCID. 1226 */ 1227 if (unlikely(tdp_enabled)) { 1228 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1229 return; 1230 } 1231 1232 /* 1233 * If neither the current CR3 nor any of the prev_roots use the given 1234 * PCID, then nothing needs to be done here because a resync will 1235 * happen anyway before switching to any other CR3. 1236 */ 1237 if (kvm_get_active_pcid(vcpu) == pcid) { 1238 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1239 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1240 } 1241 1242 /* 1243 * If PCID is disabled, there is no need to free prev_roots even if the 1244 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1245 * with PCIDE=0. 1246 */ 1247 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1248 return; 1249 1250 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1251 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1252 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1253 1254 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1255 } 1256 1257 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1258 { 1259 bool skip_tlb_flush = false; 1260 unsigned long pcid = 0; 1261 #ifdef CONFIG_X86_64 1262 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1263 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1264 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1265 pcid = cr3 & X86_CR3_PCID_MASK; 1266 } 1267 #endif 1268 1269 /* PDPTRs are always reloaded for PAE paging. */ 1270 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1271 goto handle_tlb_flush; 1272 1273 /* 1274 * Do not condition the GPA check on long mode, this helper is used to 1275 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1276 * the current vCPU mode is accurate. 1277 */ 1278 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1279 return 1; 1280 1281 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1282 return 1; 1283 1284 if (cr3 != kvm_read_cr3(vcpu)) 1285 kvm_mmu_new_pgd(vcpu, cr3); 1286 1287 vcpu->arch.cr3 = cr3; 1288 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1289 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1290 1291 handle_tlb_flush: 1292 /* 1293 * A load of CR3 that flushes the TLB flushes only the current PCID, 1294 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1295 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1296 * and it's impossible to use a non-zero PCID when PCID is disabled, 1297 * i.e. only PCID=0 can be relevant. 1298 */ 1299 if (!skip_tlb_flush) 1300 kvm_invalidate_pcid(vcpu, pcid); 1301 1302 return 0; 1303 } 1304 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1305 1306 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1307 { 1308 if (cr8 & CR8_RESERVED_BITS) 1309 return 1; 1310 if (lapic_in_kernel(vcpu)) 1311 kvm_lapic_set_tpr(vcpu, cr8); 1312 else 1313 vcpu->arch.cr8 = cr8; 1314 return 0; 1315 } 1316 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1317 1318 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1319 { 1320 if (lapic_in_kernel(vcpu)) 1321 return kvm_lapic_get_cr8(vcpu); 1322 else 1323 return vcpu->arch.cr8; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1326 1327 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1328 { 1329 int i; 1330 1331 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1332 for (i = 0; i < KVM_NR_DB_REGS; i++) 1333 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1334 } 1335 } 1336 1337 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1338 { 1339 unsigned long dr7; 1340 1341 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1342 dr7 = vcpu->arch.guest_debug_dr7; 1343 else 1344 dr7 = vcpu->arch.dr7; 1345 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1346 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1347 if (dr7 & DR7_BP_EN_MASK) 1348 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1349 } 1350 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1351 1352 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1353 { 1354 u64 fixed = DR6_FIXED_1; 1355 1356 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1357 fixed |= DR6_RTM; 1358 1359 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1360 fixed |= DR6_BUS_LOCK; 1361 return fixed; 1362 } 1363 1364 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1365 { 1366 size_t size = ARRAY_SIZE(vcpu->arch.db); 1367 1368 switch (dr) { 1369 case 0 ... 3: 1370 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1371 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1372 vcpu->arch.eff_db[dr] = val; 1373 break; 1374 case 4: 1375 case 6: 1376 if (!kvm_dr6_valid(val)) 1377 return 1; /* #GP */ 1378 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1379 break; 1380 case 5: 1381 default: /* 7 */ 1382 if (!kvm_dr7_valid(val)) 1383 return 1; /* #GP */ 1384 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1385 kvm_update_dr7(vcpu); 1386 break; 1387 } 1388 1389 return 0; 1390 } 1391 EXPORT_SYMBOL_GPL(kvm_set_dr); 1392 1393 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1394 { 1395 size_t size = ARRAY_SIZE(vcpu->arch.db); 1396 1397 switch (dr) { 1398 case 0 ... 3: 1399 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1400 break; 1401 case 4: 1402 case 6: 1403 *val = vcpu->arch.dr6; 1404 break; 1405 case 5: 1406 default: /* 7 */ 1407 *val = vcpu->arch.dr7; 1408 break; 1409 } 1410 } 1411 EXPORT_SYMBOL_GPL(kvm_get_dr); 1412 1413 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1414 { 1415 u32 ecx = kvm_rcx_read(vcpu); 1416 u64 data; 1417 1418 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1419 kvm_inject_gp(vcpu, 0); 1420 return 1; 1421 } 1422 1423 kvm_rax_write(vcpu, (u32)data); 1424 kvm_rdx_write(vcpu, data >> 32); 1425 return kvm_skip_emulated_instruction(vcpu); 1426 } 1427 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1428 1429 /* 1430 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1431 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1432 * 1433 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1434 * extract the supported MSRs from the related const lists. 1435 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1436 * capabilities of the host cpu. This capabilities test skips MSRs that are 1437 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1438 * may depend on host virtualization features rather than host cpu features. 1439 */ 1440 1441 static const u32 msrs_to_save_base[] = { 1442 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1443 MSR_STAR, 1444 #ifdef CONFIG_X86_64 1445 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1446 #endif 1447 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1448 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1449 MSR_IA32_SPEC_CTRL, 1450 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1451 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1452 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1453 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1454 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1455 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1456 MSR_IA32_UMWAIT_CONTROL, 1457 1458 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1459 }; 1460 1461 static const u32 msrs_to_save_pmu[] = { 1462 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1463 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1464 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1465 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1466 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 1467 1468 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ 1469 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1470 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1471 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1472 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1473 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1474 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1475 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1476 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1477 1478 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1479 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1480 1481 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ 1482 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1483 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1484 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1485 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1486 }; 1487 1488 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 1489 ARRAY_SIZE(msrs_to_save_pmu)]; 1490 static unsigned num_msrs_to_save; 1491 1492 static const u32 emulated_msrs_all[] = { 1493 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1494 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1495 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1496 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1497 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1498 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1499 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1500 HV_X64_MSR_RESET, 1501 HV_X64_MSR_VP_INDEX, 1502 HV_X64_MSR_VP_RUNTIME, 1503 HV_X64_MSR_SCONTROL, 1504 HV_X64_MSR_STIMER0_CONFIG, 1505 HV_X64_MSR_VP_ASSIST_PAGE, 1506 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1507 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 1508 HV_X64_MSR_SYNDBG_OPTIONS, 1509 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1510 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1511 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1512 1513 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1514 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1515 1516 MSR_IA32_TSC_ADJUST, 1517 MSR_IA32_TSC_DEADLINE, 1518 MSR_IA32_ARCH_CAPABILITIES, 1519 MSR_IA32_PERF_CAPABILITIES, 1520 MSR_IA32_MISC_ENABLE, 1521 MSR_IA32_MCG_STATUS, 1522 MSR_IA32_MCG_CTL, 1523 MSR_IA32_MCG_EXT_CTL, 1524 MSR_IA32_SMBASE, 1525 MSR_SMI_COUNT, 1526 MSR_PLATFORM_INFO, 1527 MSR_MISC_FEATURES_ENABLES, 1528 MSR_AMD64_VIRT_SPEC_CTRL, 1529 MSR_AMD64_TSC_RATIO, 1530 MSR_IA32_POWER_CTL, 1531 MSR_IA32_UCODE_REV, 1532 1533 /* 1534 * The following list leaves out MSRs whose values are determined 1535 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1536 * We always support the "true" VMX control MSRs, even if the host 1537 * processor does not, so I am putting these registers here rather 1538 * than in msrs_to_save_all. 1539 */ 1540 MSR_IA32_VMX_BASIC, 1541 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1542 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1543 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1544 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1545 MSR_IA32_VMX_MISC, 1546 MSR_IA32_VMX_CR0_FIXED0, 1547 MSR_IA32_VMX_CR4_FIXED0, 1548 MSR_IA32_VMX_VMCS_ENUM, 1549 MSR_IA32_VMX_PROCBASED_CTLS2, 1550 MSR_IA32_VMX_EPT_VPID_CAP, 1551 MSR_IA32_VMX_VMFUNC, 1552 1553 MSR_K7_HWCR, 1554 MSR_KVM_POLL_CONTROL, 1555 }; 1556 1557 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1558 static unsigned num_emulated_msrs; 1559 1560 /* 1561 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 1562 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 1563 * feature MSRs, but are handled separately to allow expedited lookups. 1564 */ 1565 static const u32 msr_based_features_all_except_vmx[] = { 1566 MSR_AMD64_DE_CFG, 1567 MSR_IA32_UCODE_REV, 1568 MSR_IA32_ARCH_CAPABILITIES, 1569 MSR_IA32_PERF_CAPABILITIES, 1570 }; 1571 1572 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 1573 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 1574 static unsigned int num_msr_based_features; 1575 1576 /* 1577 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 1578 * patch, are immutable once the vCPU model is defined. 1579 */ 1580 static bool kvm_is_immutable_feature_msr(u32 msr) 1581 { 1582 int i; 1583 1584 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 1585 return true; 1586 1587 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 1588 if (msr == msr_based_features_all_except_vmx[i]) 1589 return msr != MSR_IA32_UCODE_REV; 1590 } 1591 1592 return false; 1593 } 1594 1595 /* 1596 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1597 * does not yet virtualize. These include: 1598 * 10 - MISC_PACKAGE_CTRLS 1599 * 11 - ENERGY_FILTERING_CTL 1600 * 12 - DOITM 1601 * 18 - FB_CLEAR_CTRL 1602 * 21 - XAPIC_DISABLE_STATUS 1603 * 23 - OVERCLOCKING_STATUS 1604 */ 1605 1606 #define KVM_SUPPORTED_ARCH_CAP \ 1607 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1608 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1609 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1610 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1611 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) 1612 1613 static u64 kvm_get_arch_capabilities(void) 1614 { 1615 u64 data = 0; 1616 1617 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 1618 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1619 data &= KVM_SUPPORTED_ARCH_CAP; 1620 } 1621 1622 /* 1623 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1624 * the nested hypervisor runs with NX huge pages. If it is not, 1625 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1626 * L1 guests, so it need not worry about its own (L2) guests. 1627 */ 1628 data |= ARCH_CAP_PSCHANGE_MC_NO; 1629 1630 /* 1631 * If we're doing cache flushes (either "always" or "cond") 1632 * we will do one whenever the guest does a vmlaunch/vmresume. 1633 * If an outer hypervisor is doing the cache flush for us 1634 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1635 * capability to the guest too, and if EPT is disabled we're not 1636 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1637 * require a nested hypervisor to do a flush of its own. 1638 */ 1639 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1640 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1641 1642 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1643 data |= ARCH_CAP_RDCL_NO; 1644 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1645 data |= ARCH_CAP_SSB_NO; 1646 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1647 data |= ARCH_CAP_MDS_NO; 1648 1649 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1650 /* 1651 * If RTM=0 because the kernel has disabled TSX, the host might 1652 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1653 * and therefore knows that there cannot be TAA) but keep 1654 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1655 * and we want to allow migrating those guests to tsx=off hosts. 1656 */ 1657 data &= ~ARCH_CAP_TAA_NO; 1658 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1659 data |= ARCH_CAP_TAA_NO; 1660 } else { 1661 /* 1662 * Nothing to do here; we emulate TSX_CTRL if present on the 1663 * host so the guest can choose between disabling TSX or 1664 * using VERW to clear CPU buffers. 1665 */ 1666 } 1667 1668 return data; 1669 } 1670 1671 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1672 { 1673 switch (msr->index) { 1674 case MSR_IA32_ARCH_CAPABILITIES: 1675 msr->data = kvm_get_arch_capabilities(); 1676 break; 1677 case MSR_IA32_PERF_CAPABILITIES: 1678 msr->data = kvm_caps.supported_perf_cap; 1679 break; 1680 case MSR_IA32_UCODE_REV: 1681 rdmsrl_safe(msr->index, &msr->data); 1682 break; 1683 default: 1684 return static_call(kvm_x86_get_msr_feature)(msr); 1685 } 1686 return 0; 1687 } 1688 1689 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1690 { 1691 struct kvm_msr_entry msr; 1692 int r; 1693 1694 msr.index = index; 1695 r = kvm_get_msr_feature(&msr); 1696 1697 if (r == KVM_MSR_RET_INVALID) { 1698 /* Unconditionally clear the output for simplicity */ 1699 *data = 0; 1700 if (kvm_msr_ignored_check(index, 0, false)) 1701 r = 0; 1702 } 1703 1704 if (r) 1705 return r; 1706 1707 *data = msr.data; 1708 1709 return 0; 1710 } 1711 1712 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1713 { 1714 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1715 return false; 1716 1717 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1718 return false; 1719 1720 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1721 return false; 1722 1723 if (efer & (EFER_LME | EFER_LMA) && 1724 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1725 return false; 1726 1727 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1728 return false; 1729 1730 return true; 1731 1732 } 1733 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1734 { 1735 if (efer & efer_reserved_bits) 1736 return false; 1737 1738 return __kvm_valid_efer(vcpu, efer); 1739 } 1740 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1741 1742 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1743 { 1744 u64 old_efer = vcpu->arch.efer; 1745 u64 efer = msr_info->data; 1746 int r; 1747 1748 if (efer & efer_reserved_bits) 1749 return 1; 1750 1751 if (!msr_info->host_initiated) { 1752 if (!__kvm_valid_efer(vcpu, efer)) 1753 return 1; 1754 1755 if (is_paging(vcpu) && 1756 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1757 return 1; 1758 } 1759 1760 efer &= ~EFER_LMA; 1761 efer |= vcpu->arch.efer & EFER_LMA; 1762 1763 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1764 if (r) { 1765 WARN_ON(r > 0); 1766 return r; 1767 } 1768 1769 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1770 kvm_mmu_reset_context(vcpu); 1771 1772 return 0; 1773 } 1774 1775 void kvm_enable_efer_bits(u64 mask) 1776 { 1777 efer_reserved_bits &= ~mask; 1778 } 1779 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1780 1781 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1782 { 1783 struct kvm_x86_msr_filter *msr_filter; 1784 struct msr_bitmap_range *ranges; 1785 struct kvm *kvm = vcpu->kvm; 1786 bool allowed; 1787 int idx; 1788 u32 i; 1789 1790 /* x2APIC MSRs do not support filtering. */ 1791 if (index >= 0x800 && index <= 0x8ff) 1792 return true; 1793 1794 idx = srcu_read_lock(&kvm->srcu); 1795 1796 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1797 if (!msr_filter) { 1798 allowed = true; 1799 goto out; 1800 } 1801 1802 allowed = msr_filter->default_allow; 1803 ranges = msr_filter->ranges; 1804 1805 for (i = 0; i < msr_filter->count; i++) { 1806 u32 start = ranges[i].base; 1807 u32 end = start + ranges[i].nmsrs; 1808 u32 flags = ranges[i].flags; 1809 unsigned long *bitmap = ranges[i].bitmap; 1810 1811 if ((index >= start) && (index < end) && (flags & type)) { 1812 allowed = !!test_bit(index - start, bitmap); 1813 break; 1814 } 1815 } 1816 1817 out: 1818 srcu_read_unlock(&kvm->srcu, idx); 1819 1820 return allowed; 1821 } 1822 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1823 1824 /* 1825 * Write @data into the MSR specified by @index. Select MSR specific fault 1826 * checks are bypassed if @host_initiated is %true. 1827 * Returns 0 on success, non-0 otherwise. 1828 * Assumes vcpu_load() was already called. 1829 */ 1830 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1831 bool host_initiated) 1832 { 1833 struct msr_data msr; 1834 1835 switch (index) { 1836 case MSR_FS_BASE: 1837 case MSR_GS_BASE: 1838 case MSR_KERNEL_GS_BASE: 1839 case MSR_CSTAR: 1840 case MSR_LSTAR: 1841 if (is_noncanonical_address(data, vcpu)) 1842 return 1; 1843 break; 1844 case MSR_IA32_SYSENTER_EIP: 1845 case MSR_IA32_SYSENTER_ESP: 1846 /* 1847 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1848 * non-canonical address is written on Intel but not on 1849 * AMD (which ignores the top 32-bits, because it does 1850 * not implement 64-bit SYSENTER). 1851 * 1852 * 64-bit code should hence be able to write a non-canonical 1853 * value on AMD. Making the address canonical ensures that 1854 * vmentry does not fail on Intel after writing a non-canonical 1855 * value, and that something deterministic happens if the guest 1856 * invokes 64-bit SYSENTER. 1857 */ 1858 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1859 break; 1860 case MSR_TSC_AUX: 1861 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1862 return 1; 1863 1864 if (!host_initiated && 1865 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1866 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1867 return 1; 1868 1869 /* 1870 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1871 * incomplete and conflicting architectural behavior. Current 1872 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1873 * reserved and always read as zeros. Enforce Intel's reserved 1874 * bits check if and only if the guest CPU is Intel, and clear 1875 * the bits in all other cases. This ensures cross-vendor 1876 * migration will provide consistent behavior for the guest. 1877 */ 1878 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1879 return 1; 1880 1881 data = (u32)data; 1882 break; 1883 } 1884 1885 msr.data = data; 1886 msr.index = index; 1887 msr.host_initiated = host_initiated; 1888 1889 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1890 } 1891 1892 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1893 u32 index, u64 data, bool host_initiated) 1894 { 1895 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1896 1897 if (ret == KVM_MSR_RET_INVALID) 1898 if (kvm_msr_ignored_check(index, data, true)) 1899 ret = 0; 1900 1901 return ret; 1902 } 1903 1904 /* 1905 * Read the MSR specified by @index into @data. Select MSR specific fault 1906 * checks are bypassed if @host_initiated is %true. 1907 * Returns 0 on success, non-0 otherwise. 1908 * Assumes vcpu_load() was already called. 1909 */ 1910 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1911 bool host_initiated) 1912 { 1913 struct msr_data msr; 1914 int ret; 1915 1916 switch (index) { 1917 case MSR_TSC_AUX: 1918 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1919 return 1; 1920 1921 if (!host_initiated && 1922 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1923 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1924 return 1; 1925 break; 1926 } 1927 1928 msr.index = index; 1929 msr.host_initiated = host_initiated; 1930 1931 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1932 if (!ret) 1933 *data = msr.data; 1934 return ret; 1935 } 1936 1937 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1938 u32 index, u64 *data, bool host_initiated) 1939 { 1940 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1941 1942 if (ret == KVM_MSR_RET_INVALID) { 1943 /* Unconditionally clear *data for simplicity */ 1944 *data = 0; 1945 if (kvm_msr_ignored_check(index, 0, false)) 1946 ret = 0; 1947 } 1948 1949 return ret; 1950 } 1951 1952 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1953 { 1954 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1955 return KVM_MSR_RET_FILTERED; 1956 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1957 } 1958 1959 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1960 { 1961 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1962 return KVM_MSR_RET_FILTERED; 1963 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1964 } 1965 1966 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1967 { 1968 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1969 } 1970 EXPORT_SYMBOL_GPL(kvm_get_msr); 1971 1972 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1973 { 1974 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1975 } 1976 EXPORT_SYMBOL_GPL(kvm_set_msr); 1977 1978 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1979 { 1980 if (!vcpu->run->msr.error) { 1981 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1982 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1983 } 1984 } 1985 1986 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1987 { 1988 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1989 } 1990 1991 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1992 { 1993 complete_userspace_rdmsr(vcpu); 1994 return complete_emulated_msr_access(vcpu); 1995 } 1996 1997 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1998 { 1999 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2000 } 2001 2002 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2003 { 2004 complete_userspace_rdmsr(vcpu); 2005 return complete_fast_msr_access(vcpu); 2006 } 2007 2008 static u64 kvm_msr_reason(int r) 2009 { 2010 switch (r) { 2011 case KVM_MSR_RET_INVALID: 2012 return KVM_MSR_EXIT_REASON_UNKNOWN; 2013 case KVM_MSR_RET_FILTERED: 2014 return KVM_MSR_EXIT_REASON_FILTER; 2015 default: 2016 return KVM_MSR_EXIT_REASON_INVAL; 2017 } 2018 } 2019 2020 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2021 u32 exit_reason, u64 data, 2022 int (*completion)(struct kvm_vcpu *vcpu), 2023 int r) 2024 { 2025 u64 msr_reason = kvm_msr_reason(r); 2026 2027 /* Check if the user wanted to know about this MSR fault */ 2028 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2029 return 0; 2030 2031 vcpu->run->exit_reason = exit_reason; 2032 vcpu->run->msr.error = 0; 2033 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2034 vcpu->run->msr.reason = msr_reason; 2035 vcpu->run->msr.index = index; 2036 vcpu->run->msr.data = data; 2037 vcpu->arch.complete_userspace_io = completion; 2038 2039 return 1; 2040 } 2041 2042 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2043 { 2044 u32 ecx = kvm_rcx_read(vcpu); 2045 u64 data; 2046 int r; 2047 2048 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2049 2050 if (!r) { 2051 trace_kvm_msr_read(ecx, data); 2052 2053 kvm_rax_write(vcpu, data & -1u); 2054 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2055 } else { 2056 /* MSR read failed? See if we should ask user space */ 2057 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2058 complete_fast_rdmsr, r)) 2059 return 0; 2060 trace_kvm_msr_read_ex(ecx); 2061 } 2062 2063 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2064 } 2065 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2066 2067 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2068 { 2069 u32 ecx = kvm_rcx_read(vcpu); 2070 u64 data = kvm_read_edx_eax(vcpu); 2071 int r; 2072 2073 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2074 2075 if (!r) { 2076 trace_kvm_msr_write(ecx, data); 2077 } else { 2078 /* MSR write failed? See if we should ask user space */ 2079 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2080 complete_fast_msr_access, r)) 2081 return 0; 2082 /* Signal all other negative errors to userspace */ 2083 if (r < 0) 2084 return r; 2085 trace_kvm_msr_write_ex(ecx, data); 2086 } 2087 2088 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2089 } 2090 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2091 2092 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2093 { 2094 return kvm_skip_emulated_instruction(vcpu); 2095 } 2096 2097 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2098 { 2099 /* Treat an INVD instruction as a NOP and just skip it. */ 2100 return kvm_emulate_as_nop(vcpu); 2101 } 2102 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2103 2104 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2105 { 2106 kvm_queue_exception(vcpu, UD_VECTOR); 2107 return 1; 2108 } 2109 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2110 2111 2112 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2113 { 2114 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2115 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2116 return kvm_handle_invalid_op(vcpu); 2117 2118 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2119 return kvm_emulate_as_nop(vcpu); 2120 } 2121 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2122 { 2123 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2124 } 2125 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2126 2127 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2128 { 2129 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2130 } 2131 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2132 2133 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2134 { 2135 xfer_to_guest_mode_prepare(); 2136 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2137 xfer_to_guest_mode_work_pending(); 2138 } 2139 2140 /* 2141 * The fast path for frequent and performance sensitive wrmsr emulation, 2142 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2143 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2144 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2145 * other cases which must be called after interrupts are enabled on the host. 2146 */ 2147 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2148 { 2149 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2150 return 1; 2151 2152 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2153 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2154 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2155 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2156 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2157 2158 return 1; 2159 } 2160 2161 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2162 { 2163 if (!kvm_can_use_hv_timer(vcpu)) 2164 return 1; 2165 2166 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2167 return 0; 2168 } 2169 2170 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2171 { 2172 u32 msr = kvm_rcx_read(vcpu); 2173 u64 data; 2174 fastpath_t ret = EXIT_FASTPATH_NONE; 2175 2176 switch (msr) { 2177 case APIC_BASE_MSR + (APIC_ICR >> 4): 2178 data = kvm_read_edx_eax(vcpu); 2179 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2180 kvm_skip_emulated_instruction(vcpu); 2181 ret = EXIT_FASTPATH_EXIT_HANDLED; 2182 } 2183 break; 2184 case MSR_IA32_TSC_DEADLINE: 2185 data = kvm_read_edx_eax(vcpu); 2186 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2187 kvm_skip_emulated_instruction(vcpu); 2188 ret = EXIT_FASTPATH_REENTER_GUEST; 2189 } 2190 break; 2191 default: 2192 break; 2193 } 2194 2195 if (ret != EXIT_FASTPATH_NONE) 2196 trace_kvm_msr_write(msr, data); 2197 2198 return ret; 2199 } 2200 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2201 2202 /* 2203 * Adapt set_msr() to msr_io()'s calling convention 2204 */ 2205 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2206 { 2207 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2208 } 2209 2210 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2211 { 2212 u64 val; 2213 2214 /* 2215 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2216 * not support modifying the guest vCPU model on the fly, e.g. changing 2217 * the nVMX capabilities while L2 is running is nonsensical. Ignore 2218 * writes of the same value, e.g. to allow userspace to blindly stuff 2219 * all MSRs when emulating RESET. 2220 */ 2221 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { 2222 if (do_get_msr(vcpu, index, &val) || *data != val) 2223 return -EINVAL; 2224 2225 return 0; 2226 } 2227 2228 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2229 } 2230 2231 #ifdef CONFIG_X86_64 2232 struct pvclock_clock { 2233 int vclock_mode; 2234 u64 cycle_last; 2235 u64 mask; 2236 u32 mult; 2237 u32 shift; 2238 u64 base_cycles; 2239 u64 offset; 2240 }; 2241 2242 struct pvclock_gtod_data { 2243 seqcount_t seq; 2244 2245 struct pvclock_clock clock; /* extract of a clocksource struct */ 2246 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2247 2248 ktime_t offs_boot; 2249 u64 wall_time_sec; 2250 }; 2251 2252 static struct pvclock_gtod_data pvclock_gtod_data; 2253 2254 static void update_pvclock_gtod(struct timekeeper *tk) 2255 { 2256 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2257 2258 write_seqcount_begin(&vdata->seq); 2259 2260 /* copy pvclock gtod data */ 2261 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2262 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2263 vdata->clock.mask = tk->tkr_mono.mask; 2264 vdata->clock.mult = tk->tkr_mono.mult; 2265 vdata->clock.shift = tk->tkr_mono.shift; 2266 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2267 vdata->clock.offset = tk->tkr_mono.base; 2268 2269 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2270 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2271 vdata->raw_clock.mask = tk->tkr_raw.mask; 2272 vdata->raw_clock.mult = tk->tkr_raw.mult; 2273 vdata->raw_clock.shift = tk->tkr_raw.shift; 2274 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2275 vdata->raw_clock.offset = tk->tkr_raw.base; 2276 2277 vdata->wall_time_sec = tk->xtime_sec; 2278 2279 vdata->offs_boot = tk->offs_boot; 2280 2281 write_seqcount_end(&vdata->seq); 2282 } 2283 2284 static s64 get_kvmclock_base_ns(void) 2285 { 2286 /* Count up from boot time, but with the frequency of the raw clock. */ 2287 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2288 } 2289 #else 2290 static s64 get_kvmclock_base_ns(void) 2291 { 2292 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2293 return ktime_get_boottime_ns(); 2294 } 2295 #endif 2296 2297 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2298 { 2299 int version; 2300 int r; 2301 struct pvclock_wall_clock wc; 2302 u32 wc_sec_hi; 2303 u64 wall_nsec; 2304 2305 if (!wall_clock) 2306 return; 2307 2308 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2309 if (r) 2310 return; 2311 2312 if (version & 1) 2313 ++version; /* first time write, random junk */ 2314 2315 ++version; 2316 2317 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2318 return; 2319 2320 /* 2321 * The guest calculates current wall clock time by adding 2322 * system time (updated by kvm_guest_time_update below) to the 2323 * wall clock specified here. We do the reverse here. 2324 */ 2325 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2326 2327 wc.nsec = do_div(wall_nsec, 1000000000); 2328 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2329 wc.version = version; 2330 2331 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2332 2333 if (sec_hi_ofs) { 2334 wc_sec_hi = wall_nsec >> 32; 2335 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2336 &wc_sec_hi, sizeof(wc_sec_hi)); 2337 } 2338 2339 version++; 2340 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2341 } 2342 2343 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2344 bool old_msr, bool host_initiated) 2345 { 2346 struct kvm_arch *ka = &vcpu->kvm->arch; 2347 2348 if (vcpu->vcpu_id == 0 && !host_initiated) { 2349 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2350 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2351 2352 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2353 } 2354 2355 vcpu->arch.time = system_time; 2356 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2357 2358 /* we verify if the enable bit is set... */ 2359 if (system_time & 1) 2360 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2361 sizeof(struct pvclock_vcpu_time_info)); 2362 else 2363 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2364 2365 return; 2366 } 2367 2368 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2369 { 2370 do_shl32_div32(dividend, divisor); 2371 return dividend; 2372 } 2373 2374 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2375 s8 *pshift, u32 *pmultiplier) 2376 { 2377 uint64_t scaled64; 2378 int32_t shift = 0; 2379 uint64_t tps64; 2380 uint32_t tps32; 2381 2382 tps64 = base_hz; 2383 scaled64 = scaled_hz; 2384 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2385 tps64 >>= 1; 2386 shift--; 2387 } 2388 2389 tps32 = (uint32_t)tps64; 2390 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2391 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2392 scaled64 >>= 1; 2393 else 2394 tps32 <<= 1; 2395 shift++; 2396 } 2397 2398 *pshift = shift; 2399 *pmultiplier = div_frac(scaled64, tps32); 2400 } 2401 2402 #ifdef CONFIG_X86_64 2403 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2404 #endif 2405 2406 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2407 static unsigned long max_tsc_khz; 2408 2409 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2410 { 2411 u64 v = (u64)khz * (1000000 + ppm); 2412 do_div(v, 1000000); 2413 return v; 2414 } 2415 2416 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2417 2418 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2419 { 2420 u64 ratio; 2421 2422 /* Guest TSC same frequency as host TSC? */ 2423 if (!scale) { 2424 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2425 return 0; 2426 } 2427 2428 /* TSC scaling supported? */ 2429 if (!kvm_caps.has_tsc_control) { 2430 if (user_tsc_khz > tsc_khz) { 2431 vcpu->arch.tsc_catchup = 1; 2432 vcpu->arch.tsc_always_catchup = 1; 2433 return 0; 2434 } else { 2435 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2436 return -1; 2437 } 2438 } 2439 2440 /* TSC scaling required - calculate ratio */ 2441 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2442 user_tsc_khz, tsc_khz); 2443 2444 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2445 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2446 user_tsc_khz); 2447 return -1; 2448 } 2449 2450 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2451 return 0; 2452 } 2453 2454 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2455 { 2456 u32 thresh_lo, thresh_hi; 2457 int use_scaling = 0; 2458 2459 /* tsc_khz can be zero if TSC calibration fails */ 2460 if (user_tsc_khz == 0) { 2461 /* set tsc_scaling_ratio to a safe value */ 2462 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2463 return -1; 2464 } 2465 2466 /* Compute a scale to convert nanoseconds in TSC cycles */ 2467 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2468 &vcpu->arch.virtual_tsc_shift, 2469 &vcpu->arch.virtual_tsc_mult); 2470 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2471 2472 /* 2473 * Compute the variation in TSC rate which is acceptable 2474 * within the range of tolerance and decide if the 2475 * rate being applied is within that bounds of the hardware 2476 * rate. If so, no scaling or compensation need be done. 2477 */ 2478 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2479 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2480 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2481 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2482 user_tsc_khz, thresh_lo, thresh_hi); 2483 use_scaling = 1; 2484 } 2485 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2486 } 2487 2488 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2489 { 2490 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2491 vcpu->arch.virtual_tsc_mult, 2492 vcpu->arch.virtual_tsc_shift); 2493 tsc += vcpu->arch.this_tsc_write; 2494 return tsc; 2495 } 2496 2497 #ifdef CONFIG_X86_64 2498 static inline int gtod_is_based_on_tsc(int mode) 2499 { 2500 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2501 } 2502 #endif 2503 2504 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2505 { 2506 #ifdef CONFIG_X86_64 2507 bool vcpus_matched; 2508 struct kvm_arch *ka = &vcpu->kvm->arch; 2509 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2510 2511 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2512 atomic_read(&vcpu->kvm->online_vcpus)); 2513 2514 /* 2515 * Once the masterclock is enabled, always perform request in 2516 * order to update it. 2517 * 2518 * In order to enable masterclock, the host clocksource must be TSC 2519 * and the vcpus need to have matched TSCs. When that happens, 2520 * perform request to enable masterclock. 2521 */ 2522 if (ka->use_master_clock || 2523 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2524 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2525 2526 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2527 atomic_read(&vcpu->kvm->online_vcpus), 2528 ka->use_master_clock, gtod->clock.vclock_mode); 2529 #endif 2530 } 2531 2532 /* 2533 * Multiply tsc by a fixed point number represented by ratio. 2534 * 2535 * The most significant 64-N bits (mult) of ratio represent the 2536 * integral part of the fixed point number; the remaining N bits 2537 * (frac) represent the fractional part, ie. ratio represents a fixed 2538 * point number (mult + frac * 2^(-N)). 2539 * 2540 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2541 */ 2542 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2543 { 2544 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2545 } 2546 2547 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2548 { 2549 u64 _tsc = tsc; 2550 2551 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2552 _tsc = __scale_tsc(ratio, tsc); 2553 2554 return _tsc; 2555 } 2556 2557 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2558 { 2559 u64 tsc; 2560 2561 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2562 2563 return target_tsc - tsc; 2564 } 2565 2566 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2567 { 2568 return vcpu->arch.l1_tsc_offset + 2569 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2570 } 2571 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2572 2573 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2574 { 2575 u64 nested_offset; 2576 2577 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2578 nested_offset = l1_offset; 2579 else 2580 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2581 kvm_caps.tsc_scaling_ratio_frac_bits); 2582 2583 nested_offset += l2_offset; 2584 return nested_offset; 2585 } 2586 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2587 2588 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2589 { 2590 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2591 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2592 kvm_caps.tsc_scaling_ratio_frac_bits); 2593 2594 return l1_multiplier; 2595 } 2596 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2597 2598 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2599 { 2600 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2601 vcpu->arch.l1_tsc_offset, 2602 l1_offset); 2603 2604 vcpu->arch.l1_tsc_offset = l1_offset; 2605 2606 /* 2607 * If we are here because L1 chose not to trap WRMSR to TSC then 2608 * according to the spec this should set L1's TSC (as opposed to 2609 * setting L1's offset for L2). 2610 */ 2611 if (is_guest_mode(vcpu)) 2612 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2613 l1_offset, 2614 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2615 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2616 else 2617 vcpu->arch.tsc_offset = l1_offset; 2618 2619 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2620 } 2621 2622 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2623 { 2624 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2625 2626 /* Userspace is changing the multiplier while L2 is active */ 2627 if (is_guest_mode(vcpu)) 2628 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2629 l1_multiplier, 2630 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2631 else 2632 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2633 2634 if (kvm_caps.has_tsc_control) 2635 static_call(kvm_x86_write_tsc_multiplier)( 2636 vcpu, vcpu->arch.tsc_scaling_ratio); 2637 } 2638 2639 static inline bool kvm_check_tsc_unstable(void) 2640 { 2641 #ifdef CONFIG_X86_64 2642 /* 2643 * TSC is marked unstable when we're running on Hyper-V, 2644 * 'TSC page' clocksource is good. 2645 */ 2646 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2647 return false; 2648 #endif 2649 return check_tsc_unstable(); 2650 } 2651 2652 /* 2653 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2654 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2655 * participates in. 2656 */ 2657 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2658 u64 ns, bool matched) 2659 { 2660 struct kvm *kvm = vcpu->kvm; 2661 2662 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2663 2664 /* 2665 * We also track th most recent recorded KHZ, write and time to 2666 * allow the matching interval to be extended at each write. 2667 */ 2668 kvm->arch.last_tsc_nsec = ns; 2669 kvm->arch.last_tsc_write = tsc; 2670 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2671 kvm->arch.last_tsc_offset = offset; 2672 2673 vcpu->arch.last_guest_tsc = tsc; 2674 2675 kvm_vcpu_write_tsc_offset(vcpu, offset); 2676 2677 if (!matched) { 2678 /* 2679 * We split periods of matched TSC writes into generations. 2680 * For each generation, we track the original measured 2681 * nanosecond time, offset, and write, so if TSCs are in 2682 * sync, we can match exact offset, and if not, we can match 2683 * exact software computation in compute_guest_tsc() 2684 * 2685 * These values are tracked in kvm->arch.cur_xxx variables. 2686 */ 2687 kvm->arch.cur_tsc_generation++; 2688 kvm->arch.cur_tsc_nsec = ns; 2689 kvm->arch.cur_tsc_write = tsc; 2690 kvm->arch.cur_tsc_offset = offset; 2691 kvm->arch.nr_vcpus_matched_tsc = 0; 2692 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2693 kvm->arch.nr_vcpus_matched_tsc++; 2694 } 2695 2696 /* Keep track of which generation this VCPU has synchronized to */ 2697 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2698 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2699 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2700 2701 kvm_track_tsc_matching(vcpu); 2702 } 2703 2704 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2705 { 2706 struct kvm *kvm = vcpu->kvm; 2707 u64 offset, ns, elapsed; 2708 unsigned long flags; 2709 bool matched = false; 2710 bool synchronizing = false; 2711 2712 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2713 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2714 ns = get_kvmclock_base_ns(); 2715 elapsed = ns - kvm->arch.last_tsc_nsec; 2716 2717 if (vcpu->arch.virtual_tsc_khz) { 2718 if (data == 0) { 2719 /* 2720 * detection of vcpu initialization -- need to sync 2721 * with other vCPUs. This particularly helps to keep 2722 * kvm_clock stable after CPU hotplug 2723 */ 2724 synchronizing = true; 2725 } else { 2726 u64 tsc_exp = kvm->arch.last_tsc_write + 2727 nsec_to_cycles(vcpu, elapsed); 2728 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2729 /* 2730 * Special case: TSC write with a small delta (1 second) 2731 * of virtual cycle time against real time is 2732 * interpreted as an attempt to synchronize the CPU. 2733 */ 2734 synchronizing = data < tsc_exp + tsc_hz && 2735 data + tsc_hz > tsc_exp; 2736 } 2737 } 2738 2739 /* 2740 * For a reliable TSC, we can match TSC offsets, and for an unstable 2741 * TSC, we add elapsed time in this computation. We could let the 2742 * compensation code attempt to catch up if we fall behind, but 2743 * it's better to try to match offsets from the beginning. 2744 */ 2745 if (synchronizing && 2746 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2747 if (!kvm_check_tsc_unstable()) { 2748 offset = kvm->arch.cur_tsc_offset; 2749 } else { 2750 u64 delta = nsec_to_cycles(vcpu, elapsed); 2751 data += delta; 2752 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2753 } 2754 matched = true; 2755 } 2756 2757 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2758 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2759 } 2760 2761 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2762 s64 adjustment) 2763 { 2764 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2765 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2766 } 2767 2768 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2769 { 2770 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2771 WARN_ON(adjustment < 0); 2772 adjustment = kvm_scale_tsc((u64) adjustment, 2773 vcpu->arch.l1_tsc_scaling_ratio); 2774 adjust_tsc_offset_guest(vcpu, adjustment); 2775 } 2776 2777 #ifdef CONFIG_X86_64 2778 2779 static u64 read_tsc(void) 2780 { 2781 u64 ret = (u64)rdtsc_ordered(); 2782 u64 last = pvclock_gtod_data.clock.cycle_last; 2783 2784 if (likely(ret >= last)) 2785 return ret; 2786 2787 /* 2788 * GCC likes to generate cmov here, but this branch is extremely 2789 * predictable (it's just a function of time and the likely is 2790 * very likely) and there's a data dependence, so force GCC 2791 * to generate a branch instead. I don't barrier() because 2792 * we don't actually need a barrier, and if this function 2793 * ever gets inlined it will generate worse code. 2794 */ 2795 asm volatile (""); 2796 return last; 2797 } 2798 2799 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2800 int *mode) 2801 { 2802 long v; 2803 u64 tsc_pg_val; 2804 2805 switch (clock->vclock_mode) { 2806 case VDSO_CLOCKMODE_HVCLOCK: 2807 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2808 tsc_timestamp); 2809 if (tsc_pg_val != U64_MAX) { 2810 /* TSC page valid */ 2811 *mode = VDSO_CLOCKMODE_HVCLOCK; 2812 v = (tsc_pg_val - clock->cycle_last) & 2813 clock->mask; 2814 } else { 2815 /* TSC page invalid */ 2816 *mode = VDSO_CLOCKMODE_NONE; 2817 } 2818 break; 2819 case VDSO_CLOCKMODE_TSC: 2820 *mode = VDSO_CLOCKMODE_TSC; 2821 *tsc_timestamp = read_tsc(); 2822 v = (*tsc_timestamp - clock->cycle_last) & 2823 clock->mask; 2824 break; 2825 default: 2826 *mode = VDSO_CLOCKMODE_NONE; 2827 } 2828 2829 if (*mode == VDSO_CLOCKMODE_NONE) 2830 *tsc_timestamp = v = 0; 2831 2832 return v * clock->mult; 2833 } 2834 2835 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2836 { 2837 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2838 unsigned long seq; 2839 int mode; 2840 u64 ns; 2841 2842 do { 2843 seq = read_seqcount_begin(>od->seq); 2844 ns = gtod->raw_clock.base_cycles; 2845 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2846 ns >>= gtod->raw_clock.shift; 2847 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2848 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2849 *t = ns; 2850 2851 return mode; 2852 } 2853 2854 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2855 { 2856 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2857 unsigned long seq; 2858 int mode; 2859 u64 ns; 2860 2861 do { 2862 seq = read_seqcount_begin(>od->seq); 2863 ts->tv_sec = gtod->wall_time_sec; 2864 ns = gtod->clock.base_cycles; 2865 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2866 ns >>= gtod->clock.shift; 2867 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2868 2869 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2870 ts->tv_nsec = ns; 2871 2872 return mode; 2873 } 2874 2875 /* returns true if host is using TSC based clocksource */ 2876 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2877 { 2878 /* checked again under seqlock below */ 2879 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2880 return false; 2881 2882 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2883 tsc_timestamp)); 2884 } 2885 2886 /* returns true if host is using TSC based clocksource */ 2887 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2888 u64 *tsc_timestamp) 2889 { 2890 /* checked again under seqlock below */ 2891 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2892 return false; 2893 2894 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2895 } 2896 #endif 2897 2898 /* 2899 * 2900 * Assuming a stable TSC across physical CPUS, and a stable TSC 2901 * across virtual CPUs, the following condition is possible. 2902 * Each numbered line represents an event visible to both 2903 * CPUs at the next numbered event. 2904 * 2905 * "timespecX" represents host monotonic time. "tscX" represents 2906 * RDTSC value. 2907 * 2908 * VCPU0 on CPU0 | VCPU1 on CPU1 2909 * 2910 * 1. read timespec0,tsc0 2911 * 2. | timespec1 = timespec0 + N 2912 * | tsc1 = tsc0 + M 2913 * 3. transition to guest | transition to guest 2914 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2915 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2916 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2917 * 2918 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2919 * 2920 * - ret0 < ret1 2921 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2922 * ... 2923 * - 0 < N - M => M < N 2924 * 2925 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2926 * always the case (the difference between two distinct xtime instances 2927 * might be smaller then the difference between corresponding TSC reads, 2928 * when updating guest vcpus pvclock areas). 2929 * 2930 * To avoid that problem, do not allow visibility of distinct 2931 * system_timestamp/tsc_timestamp values simultaneously: use a master 2932 * copy of host monotonic time values. Update that master copy 2933 * in lockstep. 2934 * 2935 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2936 * 2937 */ 2938 2939 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2940 { 2941 #ifdef CONFIG_X86_64 2942 struct kvm_arch *ka = &kvm->arch; 2943 int vclock_mode; 2944 bool host_tsc_clocksource, vcpus_matched; 2945 2946 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2947 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2948 atomic_read(&kvm->online_vcpus)); 2949 2950 /* 2951 * If the host uses TSC clock, then passthrough TSC as stable 2952 * to the guest. 2953 */ 2954 host_tsc_clocksource = kvm_get_time_and_clockread( 2955 &ka->master_kernel_ns, 2956 &ka->master_cycle_now); 2957 2958 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2959 && !ka->backwards_tsc_observed 2960 && !ka->boot_vcpu_runs_old_kvmclock; 2961 2962 if (ka->use_master_clock) 2963 atomic_set(&kvm_guest_has_master_clock, 1); 2964 2965 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2966 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2967 vcpus_matched); 2968 #endif 2969 } 2970 2971 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2972 { 2973 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2974 } 2975 2976 static void __kvm_start_pvclock_update(struct kvm *kvm) 2977 { 2978 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2979 write_seqcount_begin(&kvm->arch.pvclock_sc); 2980 } 2981 2982 static void kvm_start_pvclock_update(struct kvm *kvm) 2983 { 2984 kvm_make_mclock_inprogress_request(kvm); 2985 2986 /* no guest entries from this point */ 2987 __kvm_start_pvclock_update(kvm); 2988 } 2989 2990 static void kvm_end_pvclock_update(struct kvm *kvm) 2991 { 2992 struct kvm_arch *ka = &kvm->arch; 2993 struct kvm_vcpu *vcpu; 2994 unsigned long i; 2995 2996 write_seqcount_end(&ka->pvclock_sc); 2997 raw_spin_unlock_irq(&ka->tsc_write_lock); 2998 kvm_for_each_vcpu(i, vcpu, kvm) 2999 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3000 3001 /* guest entries allowed */ 3002 kvm_for_each_vcpu(i, vcpu, kvm) 3003 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3004 } 3005 3006 static void kvm_update_masterclock(struct kvm *kvm) 3007 { 3008 kvm_hv_request_tsc_page_update(kvm); 3009 kvm_start_pvclock_update(kvm); 3010 pvclock_update_vm_gtod_copy(kvm); 3011 kvm_end_pvclock_update(kvm); 3012 } 3013 3014 /* 3015 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3016 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3017 * can change during boot even if the TSC is constant, as it's possible for KVM 3018 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3019 * notification when calibration completes, but practically speaking calibration 3020 * will complete before userspace is alive enough to create VMs. 3021 */ 3022 static unsigned long get_cpu_tsc_khz(void) 3023 { 3024 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3025 return tsc_khz; 3026 else 3027 return __this_cpu_read(cpu_tsc_khz); 3028 } 3029 3030 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3031 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3032 { 3033 struct kvm_arch *ka = &kvm->arch; 3034 struct pvclock_vcpu_time_info hv_clock; 3035 3036 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3037 get_cpu(); 3038 3039 data->flags = 0; 3040 if (ka->use_master_clock && 3041 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3042 #ifdef CONFIG_X86_64 3043 struct timespec64 ts; 3044 3045 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3046 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3047 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3048 } else 3049 #endif 3050 data->host_tsc = rdtsc(); 3051 3052 data->flags |= KVM_CLOCK_TSC_STABLE; 3053 hv_clock.tsc_timestamp = ka->master_cycle_now; 3054 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3055 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3056 &hv_clock.tsc_shift, 3057 &hv_clock.tsc_to_system_mul); 3058 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3059 } else { 3060 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3061 } 3062 3063 put_cpu(); 3064 } 3065 3066 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3067 { 3068 struct kvm_arch *ka = &kvm->arch; 3069 unsigned seq; 3070 3071 do { 3072 seq = read_seqcount_begin(&ka->pvclock_sc); 3073 __get_kvmclock(kvm, data); 3074 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3075 } 3076 3077 u64 get_kvmclock_ns(struct kvm *kvm) 3078 { 3079 struct kvm_clock_data data; 3080 3081 get_kvmclock(kvm, &data); 3082 return data.clock; 3083 } 3084 3085 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3086 struct gfn_to_pfn_cache *gpc, 3087 unsigned int offset) 3088 { 3089 struct kvm_vcpu_arch *vcpu = &v->arch; 3090 struct pvclock_vcpu_time_info *guest_hv_clock; 3091 unsigned long flags; 3092 3093 read_lock_irqsave(&gpc->lock, flags); 3094 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3095 read_unlock_irqrestore(&gpc->lock, flags); 3096 3097 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3098 return; 3099 3100 read_lock_irqsave(&gpc->lock, flags); 3101 } 3102 3103 guest_hv_clock = (void *)(gpc->khva + offset); 3104 3105 /* 3106 * This VCPU is paused, but it's legal for a guest to read another 3107 * VCPU's kvmclock, so we really have to follow the specification where 3108 * it says that version is odd if data is being modified, and even after 3109 * it is consistent. 3110 */ 3111 3112 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3113 smp_wmb(); 3114 3115 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3116 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3117 3118 if (vcpu->pvclock_set_guest_stopped_request) { 3119 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3120 vcpu->pvclock_set_guest_stopped_request = false; 3121 } 3122 3123 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3124 smp_wmb(); 3125 3126 guest_hv_clock->version = ++vcpu->hv_clock.version; 3127 3128 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3129 read_unlock_irqrestore(&gpc->lock, flags); 3130 3131 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3132 } 3133 3134 static int kvm_guest_time_update(struct kvm_vcpu *v) 3135 { 3136 unsigned long flags, tgt_tsc_khz; 3137 unsigned seq; 3138 struct kvm_vcpu_arch *vcpu = &v->arch; 3139 struct kvm_arch *ka = &v->kvm->arch; 3140 s64 kernel_ns; 3141 u64 tsc_timestamp, host_tsc; 3142 u8 pvclock_flags; 3143 bool use_master_clock; 3144 3145 kernel_ns = 0; 3146 host_tsc = 0; 3147 3148 /* 3149 * If the host uses TSC clock, then passthrough TSC as stable 3150 * to the guest. 3151 */ 3152 do { 3153 seq = read_seqcount_begin(&ka->pvclock_sc); 3154 use_master_clock = ka->use_master_clock; 3155 if (use_master_clock) { 3156 host_tsc = ka->master_cycle_now; 3157 kernel_ns = ka->master_kernel_ns; 3158 } 3159 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3160 3161 /* Keep irq disabled to prevent changes to the clock */ 3162 local_irq_save(flags); 3163 tgt_tsc_khz = get_cpu_tsc_khz(); 3164 if (unlikely(tgt_tsc_khz == 0)) { 3165 local_irq_restore(flags); 3166 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3167 return 1; 3168 } 3169 if (!use_master_clock) { 3170 host_tsc = rdtsc(); 3171 kernel_ns = get_kvmclock_base_ns(); 3172 } 3173 3174 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3175 3176 /* 3177 * We may have to catch up the TSC to match elapsed wall clock 3178 * time for two reasons, even if kvmclock is used. 3179 * 1) CPU could have been running below the maximum TSC rate 3180 * 2) Broken TSC compensation resets the base at each VCPU 3181 * entry to avoid unknown leaps of TSC even when running 3182 * again on the same CPU. This may cause apparent elapsed 3183 * time to disappear, and the guest to stand still or run 3184 * very slowly. 3185 */ 3186 if (vcpu->tsc_catchup) { 3187 u64 tsc = compute_guest_tsc(v, kernel_ns); 3188 if (tsc > tsc_timestamp) { 3189 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3190 tsc_timestamp = tsc; 3191 } 3192 } 3193 3194 local_irq_restore(flags); 3195 3196 /* With all the info we got, fill in the values */ 3197 3198 if (kvm_caps.has_tsc_control) 3199 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3200 v->arch.l1_tsc_scaling_ratio); 3201 3202 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3203 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3204 &vcpu->hv_clock.tsc_shift, 3205 &vcpu->hv_clock.tsc_to_system_mul); 3206 vcpu->hw_tsc_khz = tgt_tsc_khz; 3207 kvm_xen_update_tsc_info(v); 3208 } 3209 3210 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3211 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3212 vcpu->last_guest_tsc = tsc_timestamp; 3213 3214 /* If the host uses TSC clocksource, then it is stable */ 3215 pvclock_flags = 0; 3216 if (use_master_clock) 3217 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3218 3219 vcpu->hv_clock.flags = pvclock_flags; 3220 3221 if (vcpu->pv_time.active) 3222 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3223 if (vcpu->xen.vcpu_info_cache.active) 3224 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3225 offsetof(struct compat_vcpu_info, time)); 3226 if (vcpu->xen.vcpu_time_info_cache.active) 3227 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3228 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3229 return 0; 3230 } 3231 3232 /* 3233 * kvmclock updates which are isolated to a given vcpu, such as 3234 * vcpu->cpu migration, should not allow system_timestamp from 3235 * the rest of the vcpus to remain static. Otherwise ntp frequency 3236 * correction applies to one vcpu's system_timestamp but not 3237 * the others. 3238 * 3239 * So in those cases, request a kvmclock update for all vcpus. 3240 * We need to rate-limit these requests though, as they can 3241 * considerably slow guests that have a large number of vcpus. 3242 * The time for a remote vcpu to update its kvmclock is bound 3243 * by the delay we use to rate-limit the updates. 3244 */ 3245 3246 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3247 3248 static void kvmclock_update_fn(struct work_struct *work) 3249 { 3250 unsigned long i; 3251 struct delayed_work *dwork = to_delayed_work(work); 3252 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3253 kvmclock_update_work); 3254 struct kvm *kvm = container_of(ka, struct kvm, arch); 3255 struct kvm_vcpu *vcpu; 3256 3257 kvm_for_each_vcpu(i, vcpu, kvm) { 3258 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3259 kvm_vcpu_kick(vcpu); 3260 } 3261 } 3262 3263 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3264 { 3265 struct kvm *kvm = v->kvm; 3266 3267 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3268 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3269 KVMCLOCK_UPDATE_DELAY); 3270 } 3271 3272 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3273 3274 static void kvmclock_sync_fn(struct work_struct *work) 3275 { 3276 struct delayed_work *dwork = to_delayed_work(work); 3277 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3278 kvmclock_sync_work); 3279 struct kvm *kvm = container_of(ka, struct kvm, arch); 3280 3281 if (!kvmclock_periodic_sync) 3282 return; 3283 3284 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3285 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3286 KVMCLOCK_SYNC_PERIOD); 3287 } 3288 3289 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3290 static bool is_mci_control_msr(u32 msr) 3291 { 3292 return (msr & 3) == 0; 3293 } 3294 static bool is_mci_status_msr(u32 msr) 3295 { 3296 return (msr & 3) == 1; 3297 } 3298 3299 /* 3300 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3301 */ 3302 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3303 { 3304 /* McStatusWrEn enabled? */ 3305 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3306 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3307 3308 return false; 3309 } 3310 3311 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3312 { 3313 u64 mcg_cap = vcpu->arch.mcg_cap; 3314 unsigned bank_num = mcg_cap & 0xff; 3315 u32 msr = msr_info->index; 3316 u64 data = msr_info->data; 3317 u32 offset, last_msr; 3318 3319 switch (msr) { 3320 case MSR_IA32_MCG_STATUS: 3321 vcpu->arch.mcg_status = data; 3322 break; 3323 case MSR_IA32_MCG_CTL: 3324 if (!(mcg_cap & MCG_CTL_P) && 3325 (data || !msr_info->host_initiated)) 3326 return 1; 3327 if (data != 0 && data != ~(u64)0) 3328 return 1; 3329 vcpu->arch.mcg_ctl = data; 3330 break; 3331 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3332 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3333 if (msr > last_msr) 3334 return 1; 3335 3336 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3337 return 1; 3338 /* An attempt to write a 1 to a reserved bit raises #GP */ 3339 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3340 return 1; 3341 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3342 last_msr + 1 - MSR_IA32_MC0_CTL2); 3343 vcpu->arch.mci_ctl2_banks[offset] = data; 3344 break; 3345 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3346 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3347 if (msr > last_msr) 3348 return 1; 3349 3350 /* 3351 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3352 * values are architecturally undefined. But, some Linux 3353 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3354 * issue on AMD K8s, allow bit 10 to be clear when setting all 3355 * other bits in order to avoid an uncaught #GP in the guest. 3356 * 3357 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3358 * single-bit ECC data errors. 3359 */ 3360 if (is_mci_control_msr(msr) && 3361 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3362 return 1; 3363 3364 /* 3365 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3366 * AMD-based CPUs allow non-zero values, but if and only if 3367 * HWCR[McStatusWrEn] is set. 3368 */ 3369 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3370 data != 0 && !can_set_mci_status(vcpu)) 3371 return 1; 3372 3373 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3374 last_msr + 1 - MSR_IA32_MC0_CTL); 3375 vcpu->arch.mce_banks[offset] = data; 3376 break; 3377 default: 3378 return 1; 3379 } 3380 return 0; 3381 } 3382 3383 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3384 { 3385 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3386 3387 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3388 } 3389 3390 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3391 { 3392 gpa_t gpa = data & ~0x3f; 3393 3394 /* Bits 4:5 are reserved, Should be zero */ 3395 if (data & 0x30) 3396 return 1; 3397 3398 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3399 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3400 return 1; 3401 3402 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3403 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3404 return 1; 3405 3406 if (!lapic_in_kernel(vcpu)) 3407 return data ? 1 : 0; 3408 3409 vcpu->arch.apf.msr_en_val = data; 3410 3411 if (!kvm_pv_async_pf_enabled(vcpu)) { 3412 kvm_clear_async_pf_completion_queue(vcpu); 3413 kvm_async_pf_hash_reset(vcpu); 3414 return 0; 3415 } 3416 3417 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3418 sizeof(u64))) 3419 return 1; 3420 3421 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3422 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3423 3424 kvm_async_pf_wakeup_all(vcpu); 3425 3426 return 0; 3427 } 3428 3429 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3430 { 3431 /* Bits 8-63 are reserved */ 3432 if (data >> 8) 3433 return 1; 3434 3435 if (!lapic_in_kernel(vcpu)) 3436 return 1; 3437 3438 vcpu->arch.apf.msr_int_val = data; 3439 3440 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3441 3442 return 0; 3443 } 3444 3445 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3446 { 3447 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3448 vcpu->arch.time = 0; 3449 } 3450 3451 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3452 { 3453 ++vcpu->stat.tlb_flush; 3454 static_call(kvm_x86_flush_tlb_all)(vcpu); 3455 3456 /* Flushing all ASIDs flushes the current ASID... */ 3457 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3458 } 3459 3460 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3461 { 3462 ++vcpu->stat.tlb_flush; 3463 3464 if (!tdp_enabled) { 3465 /* 3466 * A TLB flush on behalf of the guest is equivalent to 3467 * INVPCID(all), toggling CR4.PGE, etc., which requires 3468 * a forced sync of the shadow page tables. Ensure all the 3469 * roots are synced and the guest TLB in hardware is clean. 3470 */ 3471 kvm_mmu_sync_roots(vcpu); 3472 kvm_mmu_sync_prev_roots(vcpu); 3473 } 3474 3475 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3476 3477 /* 3478 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3479 * grained flushing. 3480 */ 3481 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3482 } 3483 3484 3485 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3486 { 3487 ++vcpu->stat.tlb_flush; 3488 static_call(kvm_x86_flush_tlb_current)(vcpu); 3489 } 3490 3491 /* 3492 * Service "local" TLB flush requests, which are specific to the current MMU 3493 * context. In addition to the generic event handling in vcpu_enter_guest(), 3494 * TLB flushes that are targeted at an MMU context also need to be serviced 3495 * prior before nested VM-Enter/VM-Exit. 3496 */ 3497 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3498 { 3499 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3500 kvm_vcpu_flush_tlb_current(vcpu); 3501 3502 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3503 kvm_vcpu_flush_tlb_guest(vcpu); 3504 } 3505 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3506 3507 static void record_steal_time(struct kvm_vcpu *vcpu) 3508 { 3509 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3510 struct kvm_steal_time __user *st; 3511 struct kvm_memslots *slots; 3512 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3513 u64 steal; 3514 u32 version; 3515 3516 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3517 kvm_xen_runstate_set_running(vcpu); 3518 return; 3519 } 3520 3521 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3522 return; 3523 3524 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3525 return; 3526 3527 slots = kvm_memslots(vcpu->kvm); 3528 3529 if (unlikely(slots->generation != ghc->generation || 3530 gpa != ghc->gpa || 3531 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3532 /* We rely on the fact that it fits in a single page. */ 3533 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3534 3535 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3536 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3537 return; 3538 } 3539 3540 st = (struct kvm_steal_time __user *)ghc->hva; 3541 /* 3542 * Doing a TLB flush here, on the guest's behalf, can avoid 3543 * expensive IPIs. 3544 */ 3545 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3546 u8 st_preempted = 0; 3547 int err = -EFAULT; 3548 3549 if (!user_access_begin(st, sizeof(*st))) 3550 return; 3551 3552 asm volatile("1: xchgb %0, %2\n" 3553 "xor %1, %1\n" 3554 "2:\n" 3555 _ASM_EXTABLE_UA(1b, 2b) 3556 : "+q" (st_preempted), 3557 "+&r" (err), 3558 "+m" (st->preempted)); 3559 if (err) 3560 goto out; 3561 3562 user_access_end(); 3563 3564 vcpu->arch.st.preempted = 0; 3565 3566 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3567 st_preempted & KVM_VCPU_FLUSH_TLB); 3568 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3569 kvm_vcpu_flush_tlb_guest(vcpu); 3570 3571 if (!user_access_begin(st, sizeof(*st))) 3572 goto dirty; 3573 } else { 3574 if (!user_access_begin(st, sizeof(*st))) 3575 return; 3576 3577 unsafe_put_user(0, &st->preempted, out); 3578 vcpu->arch.st.preempted = 0; 3579 } 3580 3581 unsafe_get_user(version, &st->version, out); 3582 if (version & 1) 3583 version += 1; /* first time write, random junk */ 3584 3585 version += 1; 3586 unsafe_put_user(version, &st->version, out); 3587 3588 smp_wmb(); 3589 3590 unsafe_get_user(steal, &st->steal, out); 3591 steal += current->sched_info.run_delay - 3592 vcpu->arch.st.last_steal; 3593 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3594 unsafe_put_user(steal, &st->steal, out); 3595 3596 version += 1; 3597 unsafe_put_user(version, &st->version, out); 3598 3599 out: 3600 user_access_end(); 3601 dirty: 3602 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3603 } 3604 3605 static bool kvm_is_msr_to_save(u32 msr_index) 3606 { 3607 unsigned int i; 3608 3609 for (i = 0; i < num_msrs_to_save; i++) { 3610 if (msrs_to_save[i] == msr_index) 3611 return true; 3612 } 3613 3614 return false; 3615 } 3616 3617 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3618 { 3619 u32 msr = msr_info->index; 3620 u64 data = msr_info->data; 3621 3622 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3623 return kvm_xen_write_hypercall_page(vcpu, data); 3624 3625 switch (msr) { 3626 case MSR_AMD64_NB_CFG: 3627 case MSR_IA32_UCODE_WRITE: 3628 case MSR_VM_HSAVE_PA: 3629 case MSR_AMD64_PATCH_LOADER: 3630 case MSR_AMD64_BU_CFG2: 3631 case MSR_AMD64_DC_CFG: 3632 case MSR_F15H_EX_CFG: 3633 break; 3634 3635 case MSR_IA32_UCODE_REV: 3636 if (msr_info->host_initiated) 3637 vcpu->arch.microcode_version = data; 3638 break; 3639 case MSR_IA32_ARCH_CAPABILITIES: 3640 if (!msr_info->host_initiated) 3641 return 1; 3642 vcpu->arch.arch_capabilities = data; 3643 break; 3644 case MSR_IA32_PERF_CAPABILITIES: 3645 if (!msr_info->host_initiated) 3646 return 1; 3647 if (data & ~kvm_caps.supported_perf_cap) 3648 return 1; 3649 3650 /* 3651 * Note, this is not just a performance optimization! KVM 3652 * disallows changing feature MSRs after the vCPU has run; PMU 3653 * refresh will bug the VM if called after the vCPU has run. 3654 */ 3655 if (vcpu->arch.perf_capabilities == data) 3656 break; 3657 3658 vcpu->arch.perf_capabilities = data; 3659 kvm_pmu_refresh(vcpu); 3660 break; 3661 case MSR_IA32_PRED_CMD: 3662 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) 3663 return 1; 3664 3665 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) 3666 return 1; 3667 if (!data) 3668 break; 3669 3670 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 3671 break; 3672 case MSR_IA32_FLUSH_CMD: 3673 if (!msr_info->host_initiated && 3674 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3675 return 1; 3676 3677 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3678 return 1; 3679 if (!data) 3680 break; 3681 3682 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3683 break; 3684 case MSR_EFER: 3685 return set_efer(vcpu, msr_info); 3686 case MSR_K7_HWCR: 3687 data &= ~(u64)0x40; /* ignore flush filter disable */ 3688 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3689 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3690 3691 /* Handle McStatusWrEn */ 3692 if (data == BIT_ULL(18)) { 3693 vcpu->arch.msr_hwcr = data; 3694 } else if (data != 0) { 3695 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3696 return 1; 3697 } 3698 break; 3699 case MSR_FAM10H_MMIO_CONF_BASE: 3700 if (data != 0) { 3701 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3702 return 1; 3703 } 3704 break; 3705 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 3706 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 3707 return kvm_mtrr_set_msr(vcpu, msr, data); 3708 case MSR_IA32_APICBASE: 3709 return kvm_set_apic_base(vcpu, msr_info); 3710 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3711 return kvm_x2apic_msr_write(vcpu, msr, data); 3712 case MSR_IA32_TSC_DEADLINE: 3713 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3714 break; 3715 case MSR_IA32_TSC_ADJUST: 3716 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3717 if (!msr_info->host_initiated) { 3718 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3719 adjust_tsc_offset_guest(vcpu, adj); 3720 /* Before back to guest, tsc_timestamp must be adjusted 3721 * as well, otherwise guest's percpu pvclock time could jump. 3722 */ 3723 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3724 } 3725 vcpu->arch.ia32_tsc_adjust_msr = data; 3726 } 3727 break; 3728 case MSR_IA32_MISC_ENABLE: { 3729 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3730 3731 if (!msr_info->host_initiated) { 3732 /* RO bits */ 3733 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3734 return 1; 3735 3736 /* R bits, i.e. writes are ignored, but don't fault. */ 3737 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3738 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3739 } 3740 3741 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3742 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3743 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3744 return 1; 3745 vcpu->arch.ia32_misc_enable_msr = data; 3746 kvm_update_cpuid_runtime(vcpu); 3747 } else { 3748 vcpu->arch.ia32_misc_enable_msr = data; 3749 } 3750 break; 3751 } 3752 case MSR_IA32_SMBASE: 3753 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3754 return 1; 3755 vcpu->arch.smbase = data; 3756 break; 3757 case MSR_IA32_POWER_CTL: 3758 vcpu->arch.msr_ia32_power_ctl = data; 3759 break; 3760 case MSR_IA32_TSC: 3761 if (msr_info->host_initiated) { 3762 kvm_synchronize_tsc(vcpu, data); 3763 } else { 3764 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3765 adjust_tsc_offset_guest(vcpu, adj); 3766 vcpu->arch.ia32_tsc_adjust_msr += adj; 3767 } 3768 break; 3769 case MSR_IA32_XSS: 3770 if (!msr_info->host_initiated && 3771 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3772 return 1; 3773 /* 3774 * KVM supports exposing PT to the guest, but does not support 3775 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3776 * XSAVES/XRSTORS to save/restore PT MSRs. 3777 */ 3778 if (data & ~kvm_caps.supported_xss) 3779 return 1; 3780 vcpu->arch.ia32_xss = data; 3781 kvm_update_cpuid_runtime(vcpu); 3782 break; 3783 case MSR_SMI_COUNT: 3784 if (!msr_info->host_initiated) 3785 return 1; 3786 vcpu->arch.smi_count = data; 3787 break; 3788 case MSR_KVM_WALL_CLOCK_NEW: 3789 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3790 return 1; 3791 3792 vcpu->kvm->arch.wall_clock = data; 3793 kvm_write_wall_clock(vcpu->kvm, data, 0); 3794 break; 3795 case MSR_KVM_WALL_CLOCK: 3796 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3797 return 1; 3798 3799 vcpu->kvm->arch.wall_clock = data; 3800 kvm_write_wall_clock(vcpu->kvm, data, 0); 3801 break; 3802 case MSR_KVM_SYSTEM_TIME_NEW: 3803 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3804 return 1; 3805 3806 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3807 break; 3808 case MSR_KVM_SYSTEM_TIME: 3809 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3810 return 1; 3811 3812 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3813 break; 3814 case MSR_KVM_ASYNC_PF_EN: 3815 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3816 return 1; 3817 3818 if (kvm_pv_enable_async_pf(vcpu, data)) 3819 return 1; 3820 break; 3821 case MSR_KVM_ASYNC_PF_INT: 3822 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3823 return 1; 3824 3825 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3826 return 1; 3827 break; 3828 case MSR_KVM_ASYNC_PF_ACK: 3829 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3830 return 1; 3831 if (data & 0x1) { 3832 vcpu->arch.apf.pageready_pending = false; 3833 kvm_check_async_pf_completion(vcpu); 3834 } 3835 break; 3836 case MSR_KVM_STEAL_TIME: 3837 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3838 return 1; 3839 3840 if (unlikely(!sched_info_on())) 3841 return 1; 3842 3843 if (data & KVM_STEAL_RESERVED_MASK) 3844 return 1; 3845 3846 vcpu->arch.st.msr_val = data; 3847 3848 if (!(data & KVM_MSR_ENABLED)) 3849 break; 3850 3851 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3852 3853 break; 3854 case MSR_KVM_PV_EOI_EN: 3855 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3856 return 1; 3857 3858 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3859 return 1; 3860 break; 3861 3862 case MSR_KVM_POLL_CONTROL: 3863 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3864 return 1; 3865 3866 /* only enable bit supported */ 3867 if (data & (-1ULL << 1)) 3868 return 1; 3869 3870 vcpu->arch.msr_kvm_poll_control = data; 3871 break; 3872 3873 case MSR_IA32_MCG_CTL: 3874 case MSR_IA32_MCG_STATUS: 3875 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3876 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3877 return set_msr_mce(vcpu, msr_info); 3878 3879 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3880 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3881 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3882 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3883 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3884 return kvm_pmu_set_msr(vcpu, msr_info); 3885 3886 if (data) 3887 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3888 break; 3889 case MSR_K7_CLK_CTL: 3890 /* 3891 * Ignore all writes to this no longer documented MSR. 3892 * Writes are only relevant for old K7 processors, 3893 * all pre-dating SVM, but a recommended workaround from 3894 * AMD for these chips. It is possible to specify the 3895 * affected processor models on the command line, hence 3896 * the need to ignore the workaround. 3897 */ 3898 break; 3899 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3900 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3901 case HV_X64_MSR_SYNDBG_OPTIONS: 3902 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3903 case HV_X64_MSR_CRASH_CTL: 3904 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3905 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3906 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3907 case HV_X64_MSR_TSC_EMULATION_STATUS: 3908 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 3909 return kvm_hv_set_msr_common(vcpu, msr, data, 3910 msr_info->host_initiated); 3911 case MSR_IA32_BBL_CR_CTL3: 3912 /* Drop writes to this legacy MSR -- see rdmsr 3913 * counterpart for further detail. 3914 */ 3915 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3916 break; 3917 case MSR_AMD64_OSVW_ID_LENGTH: 3918 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3919 return 1; 3920 vcpu->arch.osvw.length = data; 3921 break; 3922 case MSR_AMD64_OSVW_STATUS: 3923 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3924 return 1; 3925 vcpu->arch.osvw.status = data; 3926 break; 3927 case MSR_PLATFORM_INFO: 3928 if (!msr_info->host_initiated || 3929 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3930 cpuid_fault_enabled(vcpu))) 3931 return 1; 3932 vcpu->arch.msr_platform_info = data; 3933 break; 3934 case MSR_MISC_FEATURES_ENABLES: 3935 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3936 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3937 !supports_cpuid_fault(vcpu))) 3938 return 1; 3939 vcpu->arch.msr_misc_features_enables = data; 3940 break; 3941 #ifdef CONFIG_X86_64 3942 case MSR_IA32_XFD: 3943 if (!msr_info->host_initiated && 3944 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3945 return 1; 3946 3947 if (data & ~kvm_guest_supported_xfd(vcpu)) 3948 return 1; 3949 3950 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3951 break; 3952 case MSR_IA32_XFD_ERR: 3953 if (!msr_info->host_initiated && 3954 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3955 return 1; 3956 3957 if (data & ~kvm_guest_supported_xfd(vcpu)) 3958 return 1; 3959 3960 vcpu->arch.guest_fpu.xfd_err = data; 3961 break; 3962 #endif 3963 default: 3964 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3965 return kvm_pmu_set_msr(vcpu, msr_info); 3966 3967 /* 3968 * Userspace is allowed to write '0' to MSRs that KVM reports 3969 * as to-be-saved, even if an MSRs isn't fully supported. 3970 */ 3971 if (msr_info->host_initiated && !data && 3972 kvm_is_msr_to_save(msr)) 3973 break; 3974 3975 return KVM_MSR_RET_INVALID; 3976 } 3977 return 0; 3978 } 3979 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3980 3981 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3982 { 3983 u64 data; 3984 u64 mcg_cap = vcpu->arch.mcg_cap; 3985 unsigned bank_num = mcg_cap & 0xff; 3986 u32 offset, last_msr; 3987 3988 switch (msr) { 3989 case MSR_IA32_P5_MC_ADDR: 3990 case MSR_IA32_P5_MC_TYPE: 3991 data = 0; 3992 break; 3993 case MSR_IA32_MCG_CAP: 3994 data = vcpu->arch.mcg_cap; 3995 break; 3996 case MSR_IA32_MCG_CTL: 3997 if (!(mcg_cap & MCG_CTL_P) && !host) 3998 return 1; 3999 data = vcpu->arch.mcg_ctl; 4000 break; 4001 case MSR_IA32_MCG_STATUS: 4002 data = vcpu->arch.mcg_status; 4003 break; 4004 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4005 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4006 if (msr > last_msr) 4007 return 1; 4008 4009 if (!(mcg_cap & MCG_CMCI_P) && !host) 4010 return 1; 4011 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4012 last_msr + 1 - MSR_IA32_MC0_CTL2); 4013 data = vcpu->arch.mci_ctl2_banks[offset]; 4014 break; 4015 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4016 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4017 if (msr > last_msr) 4018 return 1; 4019 4020 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4021 last_msr + 1 - MSR_IA32_MC0_CTL); 4022 data = vcpu->arch.mce_banks[offset]; 4023 break; 4024 default: 4025 return 1; 4026 } 4027 *pdata = data; 4028 return 0; 4029 } 4030 4031 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4032 { 4033 switch (msr_info->index) { 4034 case MSR_IA32_PLATFORM_ID: 4035 case MSR_IA32_EBL_CR_POWERON: 4036 case MSR_IA32_LASTBRANCHFROMIP: 4037 case MSR_IA32_LASTBRANCHTOIP: 4038 case MSR_IA32_LASTINTFROMIP: 4039 case MSR_IA32_LASTINTTOIP: 4040 case MSR_AMD64_SYSCFG: 4041 case MSR_K8_TSEG_ADDR: 4042 case MSR_K8_TSEG_MASK: 4043 case MSR_VM_HSAVE_PA: 4044 case MSR_K8_INT_PENDING_MSG: 4045 case MSR_AMD64_NB_CFG: 4046 case MSR_FAM10H_MMIO_CONF_BASE: 4047 case MSR_AMD64_BU_CFG2: 4048 case MSR_IA32_PERF_CTL: 4049 case MSR_AMD64_DC_CFG: 4050 case MSR_F15H_EX_CFG: 4051 /* 4052 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4053 * limit) MSRs. Just return 0, as we do not want to expose the host 4054 * data here. Do not conditionalize this on CPUID, as KVM does not do 4055 * so for existing CPU-specific MSRs. 4056 */ 4057 case MSR_RAPL_POWER_UNIT: 4058 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4059 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4060 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4061 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4062 msr_info->data = 0; 4063 break; 4064 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4065 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4066 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4067 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4068 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4069 return kvm_pmu_get_msr(vcpu, msr_info); 4070 msr_info->data = 0; 4071 break; 4072 case MSR_IA32_UCODE_REV: 4073 msr_info->data = vcpu->arch.microcode_version; 4074 break; 4075 case MSR_IA32_ARCH_CAPABILITIES: 4076 if (!msr_info->host_initiated && 4077 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4078 return 1; 4079 msr_info->data = vcpu->arch.arch_capabilities; 4080 break; 4081 case MSR_IA32_PERF_CAPABILITIES: 4082 if (!msr_info->host_initiated && 4083 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4084 return 1; 4085 msr_info->data = vcpu->arch.perf_capabilities; 4086 break; 4087 case MSR_IA32_POWER_CTL: 4088 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4089 break; 4090 case MSR_IA32_TSC: { 4091 /* 4092 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4093 * even when not intercepted. AMD manual doesn't explicitly 4094 * state this but appears to behave the same. 4095 * 4096 * On userspace reads and writes, however, we unconditionally 4097 * return L1's TSC value to ensure backwards-compatible 4098 * behavior for migration. 4099 */ 4100 u64 offset, ratio; 4101 4102 if (msr_info->host_initiated) { 4103 offset = vcpu->arch.l1_tsc_offset; 4104 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4105 } else { 4106 offset = vcpu->arch.tsc_offset; 4107 ratio = vcpu->arch.tsc_scaling_ratio; 4108 } 4109 4110 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4111 break; 4112 } 4113 case MSR_MTRRcap: 4114 case 0x200 ... MSR_IA32_MC0_CTL2 - 1: 4115 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff: 4116 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4117 case 0xcd: /* fsb frequency */ 4118 msr_info->data = 3; 4119 break; 4120 /* 4121 * MSR_EBC_FREQUENCY_ID 4122 * Conservative value valid for even the basic CPU models. 4123 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4124 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4125 * and 266MHz for model 3, or 4. Set Core Clock 4126 * Frequency to System Bus Frequency Ratio to 1 (bits 4127 * 31:24) even though these are only valid for CPU 4128 * models > 2, however guests may end up dividing or 4129 * multiplying by zero otherwise. 4130 */ 4131 case MSR_EBC_FREQUENCY_ID: 4132 msr_info->data = 1 << 24; 4133 break; 4134 case MSR_IA32_APICBASE: 4135 msr_info->data = kvm_get_apic_base(vcpu); 4136 break; 4137 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4138 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4139 case MSR_IA32_TSC_DEADLINE: 4140 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4141 break; 4142 case MSR_IA32_TSC_ADJUST: 4143 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4144 break; 4145 case MSR_IA32_MISC_ENABLE: 4146 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4147 break; 4148 case MSR_IA32_SMBASE: 4149 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4150 return 1; 4151 msr_info->data = vcpu->arch.smbase; 4152 break; 4153 case MSR_SMI_COUNT: 4154 msr_info->data = vcpu->arch.smi_count; 4155 break; 4156 case MSR_IA32_PERF_STATUS: 4157 /* TSC increment by tick */ 4158 msr_info->data = 1000ULL; 4159 /* CPU multiplier */ 4160 msr_info->data |= (((uint64_t)4ULL) << 40); 4161 break; 4162 case MSR_EFER: 4163 msr_info->data = vcpu->arch.efer; 4164 break; 4165 case MSR_KVM_WALL_CLOCK: 4166 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4167 return 1; 4168 4169 msr_info->data = vcpu->kvm->arch.wall_clock; 4170 break; 4171 case MSR_KVM_WALL_CLOCK_NEW: 4172 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4173 return 1; 4174 4175 msr_info->data = vcpu->kvm->arch.wall_clock; 4176 break; 4177 case MSR_KVM_SYSTEM_TIME: 4178 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4179 return 1; 4180 4181 msr_info->data = vcpu->arch.time; 4182 break; 4183 case MSR_KVM_SYSTEM_TIME_NEW: 4184 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4185 return 1; 4186 4187 msr_info->data = vcpu->arch.time; 4188 break; 4189 case MSR_KVM_ASYNC_PF_EN: 4190 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4191 return 1; 4192 4193 msr_info->data = vcpu->arch.apf.msr_en_val; 4194 break; 4195 case MSR_KVM_ASYNC_PF_INT: 4196 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4197 return 1; 4198 4199 msr_info->data = vcpu->arch.apf.msr_int_val; 4200 break; 4201 case MSR_KVM_ASYNC_PF_ACK: 4202 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4203 return 1; 4204 4205 msr_info->data = 0; 4206 break; 4207 case MSR_KVM_STEAL_TIME: 4208 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4209 return 1; 4210 4211 msr_info->data = vcpu->arch.st.msr_val; 4212 break; 4213 case MSR_KVM_PV_EOI_EN: 4214 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4215 return 1; 4216 4217 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4218 break; 4219 case MSR_KVM_POLL_CONTROL: 4220 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4221 return 1; 4222 4223 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4224 break; 4225 case MSR_IA32_P5_MC_ADDR: 4226 case MSR_IA32_P5_MC_TYPE: 4227 case MSR_IA32_MCG_CAP: 4228 case MSR_IA32_MCG_CTL: 4229 case MSR_IA32_MCG_STATUS: 4230 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4231 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4232 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4233 msr_info->host_initiated); 4234 case MSR_IA32_XSS: 4235 if (!msr_info->host_initiated && 4236 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4237 return 1; 4238 msr_info->data = vcpu->arch.ia32_xss; 4239 break; 4240 case MSR_K7_CLK_CTL: 4241 /* 4242 * Provide expected ramp-up count for K7. All other 4243 * are set to zero, indicating minimum divisors for 4244 * every field. 4245 * 4246 * This prevents guest kernels on AMD host with CPU 4247 * type 6, model 8 and higher from exploding due to 4248 * the rdmsr failing. 4249 */ 4250 msr_info->data = 0x20000000; 4251 break; 4252 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4253 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4254 case HV_X64_MSR_SYNDBG_OPTIONS: 4255 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4256 case HV_X64_MSR_CRASH_CTL: 4257 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4258 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4259 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4260 case HV_X64_MSR_TSC_EMULATION_STATUS: 4261 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4262 return kvm_hv_get_msr_common(vcpu, 4263 msr_info->index, &msr_info->data, 4264 msr_info->host_initiated); 4265 case MSR_IA32_BBL_CR_CTL3: 4266 /* This legacy MSR exists but isn't fully documented in current 4267 * silicon. It is however accessed by winxp in very narrow 4268 * scenarios where it sets bit #19, itself documented as 4269 * a "reserved" bit. Best effort attempt to source coherent 4270 * read data here should the balance of the register be 4271 * interpreted by the guest: 4272 * 4273 * L2 cache control register 3: 64GB range, 256KB size, 4274 * enabled, latency 0x1, configured 4275 */ 4276 msr_info->data = 0xbe702111; 4277 break; 4278 case MSR_AMD64_OSVW_ID_LENGTH: 4279 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4280 return 1; 4281 msr_info->data = vcpu->arch.osvw.length; 4282 break; 4283 case MSR_AMD64_OSVW_STATUS: 4284 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4285 return 1; 4286 msr_info->data = vcpu->arch.osvw.status; 4287 break; 4288 case MSR_PLATFORM_INFO: 4289 if (!msr_info->host_initiated && 4290 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4291 return 1; 4292 msr_info->data = vcpu->arch.msr_platform_info; 4293 break; 4294 case MSR_MISC_FEATURES_ENABLES: 4295 msr_info->data = vcpu->arch.msr_misc_features_enables; 4296 break; 4297 case MSR_K7_HWCR: 4298 msr_info->data = vcpu->arch.msr_hwcr; 4299 break; 4300 #ifdef CONFIG_X86_64 4301 case MSR_IA32_XFD: 4302 if (!msr_info->host_initiated && 4303 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4304 return 1; 4305 4306 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4307 break; 4308 case MSR_IA32_XFD_ERR: 4309 if (!msr_info->host_initiated && 4310 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4311 return 1; 4312 4313 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4314 break; 4315 #endif 4316 default: 4317 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4318 return kvm_pmu_get_msr(vcpu, msr_info); 4319 4320 /* 4321 * Userspace is allowed to read MSRs that KVM reports as 4322 * to-be-saved, even if an MSR isn't fully supported. 4323 */ 4324 if (msr_info->host_initiated && 4325 kvm_is_msr_to_save(msr_info->index)) { 4326 msr_info->data = 0; 4327 break; 4328 } 4329 4330 return KVM_MSR_RET_INVALID; 4331 } 4332 return 0; 4333 } 4334 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4335 4336 /* 4337 * Read or write a bunch of msrs. All parameters are kernel addresses. 4338 * 4339 * @return number of msrs set successfully. 4340 */ 4341 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4342 struct kvm_msr_entry *entries, 4343 int (*do_msr)(struct kvm_vcpu *vcpu, 4344 unsigned index, u64 *data)) 4345 { 4346 int i; 4347 4348 for (i = 0; i < msrs->nmsrs; ++i) 4349 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4350 break; 4351 4352 return i; 4353 } 4354 4355 /* 4356 * Read or write a bunch of msrs. Parameters are user addresses. 4357 * 4358 * @return number of msrs set successfully. 4359 */ 4360 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4361 int (*do_msr)(struct kvm_vcpu *vcpu, 4362 unsigned index, u64 *data), 4363 int writeback) 4364 { 4365 struct kvm_msrs msrs; 4366 struct kvm_msr_entry *entries; 4367 unsigned size; 4368 int r; 4369 4370 r = -EFAULT; 4371 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4372 goto out; 4373 4374 r = -E2BIG; 4375 if (msrs.nmsrs >= MAX_IO_MSRS) 4376 goto out; 4377 4378 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4379 entries = memdup_user(user_msrs->entries, size); 4380 if (IS_ERR(entries)) { 4381 r = PTR_ERR(entries); 4382 goto out; 4383 } 4384 4385 r = __msr_io(vcpu, &msrs, entries, do_msr); 4386 4387 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4388 r = -EFAULT; 4389 4390 kfree(entries); 4391 out: 4392 return r; 4393 } 4394 4395 static inline bool kvm_can_mwait_in_guest(void) 4396 { 4397 return boot_cpu_has(X86_FEATURE_MWAIT) && 4398 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4399 boot_cpu_has(X86_FEATURE_ARAT); 4400 } 4401 4402 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4403 struct kvm_cpuid2 __user *cpuid_arg) 4404 { 4405 struct kvm_cpuid2 cpuid; 4406 int r; 4407 4408 r = -EFAULT; 4409 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4410 return r; 4411 4412 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4413 if (r) 4414 return r; 4415 4416 r = -EFAULT; 4417 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4418 return r; 4419 4420 return 0; 4421 } 4422 4423 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4424 { 4425 int r = 0; 4426 4427 switch (ext) { 4428 case KVM_CAP_IRQCHIP: 4429 case KVM_CAP_HLT: 4430 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4431 case KVM_CAP_SET_TSS_ADDR: 4432 case KVM_CAP_EXT_CPUID: 4433 case KVM_CAP_EXT_EMUL_CPUID: 4434 case KVM_CAP_CLOCKSOURCE: 4435 case KVM_CAP_PIT: 4436 case KVM_CAP_NOP_IO_DELAY: 4437 case KVM_CAP_MP_STATE: 4438 case KVM_CAP_SYNC_MMU: 4439 case KVM_CAP_USER_NMI: 4440 case KVM_CAP_REINJECT_CONTROL: 4441 case KVM_CAP_IRQ_INJECT_STATUS: 4442 case KVM_CAP_IOEVENTFD: 4443 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4444 case KVM_CAP_PIT2: 4445 case KVM_CAP_PIT_STATE2: 4446 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4447 case KVM_CAP_VCPU_EVENTS: 4448 case KVM_CAP_HYPERV: 4449 case KVM_CAP_HYPERV_VAPIC: 4450 case KVM_CAP_HYPERV_SPIN: 4451 case KVM_CAP_HYPERV_SYNIC: 4452 case KVM_CAP_HYPERV_SYNIC2: 4453 case KVM_CAP_HYPERV_VP_INDEX: 4454 case KVM_CAP_HYPERV_EVENTFD: 4455 case KVM_CAP_HYPERV_TLBFLUSH: 4456 case KVM_CAP_HYPERV_SEND_IPI: 4457 case KVM_CAP_HYPERV_CPUID: 4458 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4459 case KVM_CAP_SYS_HYPERV_CPUID: 4460 case KVM_CAP_PCI_SEGMENT: 4461 case KVM_CAP_DEBUGREGS: 4462 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4463 case KVM_CAP_XSAVE: 4464 case KVM_CAP_ASYNC_PF: 4465 case KVM_CAP_ASYNC_PF_INT: 4466 case KVM_CAP_GET_TSC_KHZ: 4467 case KVM_CAP_KVMCLOCK_CTRL: 4468 case KVM_CAP_READONLY_MEM: 4469 case KVM_CAP_HYPERV_TIME: 4470 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4471 case KVM_CAP_TSC_DEADLINE_TIMER: 4472 case KVM_CAP_DISABLE_QUIRKS: 4473 case KVM_CAP_SET_BOOT_CPU_ID: 4474 case KVM_CAP_SPLIT_IRQCHIP: 4475 case KVM_CAP_IMMEDIATE_EXIT: 4476 case KVM_CAP_PMU_EVENT_FILTER: 4477 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4478 case KVM_CAP_GET_MSR_FEATURES: 4479 case KVM_CAP_MSR_PLATFORM_INFO: 4480 case KVM_CAP_EXCEPTION_PAYLOAD: 4481 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4482 case KVM_CAP_SET_GUEST_DEBUG: 4483 case KVM_CAP_LAST_CPU: 4484 case KVM_CAP_X86_USER_SPACE_MSR: 4485 case KVM_CAP_X86_MSR_FILTER: 4486 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4487 #ifdef CONFIG_X86_SGX_KVM 4488 case KVM_CAP_SGX_ATTRIBUTE: 4489 #endif 4490 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4491 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4492 case KVM_CAP_SREGS2: 4493 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4494 case KVM_CAP_VCPU_ATTRIBUTES: 4495 case KVM_CAP_SYS_ATTRIBUTES: 4496 case KVM_CAP_VAPIC: 4497 case KVM_CAP_ENABLE_CAP: 4498 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4499 case KVM_CAP_IRQFD_RESAMPLE: 4500 r = 1; 4501 break; 4502 case KVM_CAP_EXIT_HYPERCALL: 4503 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4504 break; 4505 case KVM_CAP_SET_GUEST_DEBUG2: 4506 return KVM_GUESTDBG_VALID_MASK; 4507 #ifdef CONFIG_KVM_XEN 4508 case KVM_CAP_XEN_HVM: 4509 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4510 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4511 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4512 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4513 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4514 if (sched_info_on()) 4515 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4516 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4517 break; 4518 #endif 4519 case KVM_CAP_SYNC_REGS: 4520 r = KVM_SYNC_X86_VALID_FIELDS; 4521 break; 4522 case KVM_CAP_ADJUST_CLOCK: 4523 r = KVM_CLOCK_VALID_FLAGS; 4524 break; 4525 case KVM_CAP_X86_DISABLE_EXITS: 4526 r = KVM_X86_DISABLE_EXITS_PAUSE; 4527 4528 if (!mitigate_smt_rsb) { 4529 r |= KVM_X86_DISABLE_EXITS_HLT | 4530 KVM_X86_DISABLE_EXITS_CSTATE; 4531 4532 if (kvm_can_mwait_in_guest()) 4533 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4534 } 4535 break; 4536 case KVM_CAP_X86_SMM: 4537 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4538 break; 4539 4540 /* SMBASE is usually relocated above 1M on modern chipsets, 4541 * and SMM handlers might indeed rely on 4G segment limits, 4542 * so do not report SMM to be available if real mode is 4543 * emulated via vm86 mode. Still, do not go to great lengths 4544 * to avoid userspace's usage of the feature, because it is a 4545 * fringe case that is not enabled except via specific settings 4546 * of the module parameters. 4547 */ 4548 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4549 break; 4550 case KVM_CAP_NR_VCPUS: 4551 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4552 break; 4553 case KVM_CAP_MAX_VCPUS: 4554 r = KVM_MAX_VCPUS; 4555 break; 4556 case KVM_CAP_MAX_VCPU_ID: 4557 r = KVM_MAX_VCPU_IDS; 4558 break; 4559 case KVM_CAP_PV_MMU: /* obsolete */ 4560 r = 0; 4561 break; 4562 case KVM_CAP_MCE: 4563 r = KVM_MAX_MCE_BANKS; 4564 break; 4565 case KVM_CAP_XCRS: 4566 r = boot_cpu_has(X86_FEATURE_XSAVE); 4567 break; 4568 case KVM_CAP_TSC_CONTROL: 4569 case KVM_CAP_VM_TSC_CONTROL: 4570 r = kvm_caps.has_tsc_control; 4571 break; 4572 case KVM_CAP_X2APIC_API: 4573 r = KVM_X2APIC_API_VALID_FLAGS; 4574 break; 4575 case KVM_CAP_NESTED_STATE: 4576 r = kvm_x86_ops.nested_ops->get_state ? 4577 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4578 break; 4579 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4580 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4581 break; 4582 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4583 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4584 break; 4585 case KVM_CAP_SMALLER_MAXPHYADDR: 4586 r = (int) allow_smaller_maxphyaddr; 4587 break; 4588 case KVM_CAP_STEAL_TIME: 4589 r = sched_info_on(); 4590 break; 4591 case KVM_CAP_X86_BUS_LOCK_EXIT: 4592 if (kvm_caps.has_bus_lock_exit) 4593 r = KVM_BUS_LOCK_DETECTION_OFF | 4594 KVM_BUS_LOCK_DETECTION_EXIT; 4595 else 4596 r = 0; 4597 break; 4598 case KVM_CAP_XSAVE2: { 4599 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4600 if (r < sizeof(struct kvm_xsave)) 4601 r = sizeof(struct kvm_xsave); 4602 break; 4603 } 4604 case KVM_CAP_PMU_CAPABILITY: 4605 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4606 break; 4607 case KVM_CAP_DISABLE_QUIRKS2: 4608 r = KVM_X86_VALID_QUIRKS; 4609 break; 4610 case KVM_CAP_X86_NOTIFY_VMEXIT: 4611 r = kvm_caps.has_notify_vmexit; 4612 break; 4613 default: 4614 break; 4615 } 4616 return r; 4617 } 4618 4619 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4620 { 4621 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4622 4623 if ((u64)(unsigned long)uaddr != attr->addr) 4624 return ERR_PTR_USR(-EFAULT); 4625 return uaddr; 4626 } 4627 4628 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4629 { 4630 u64 __user *uaddr = kvm_get_attr_addr(attr); 4631 4632 if (attr->group) 4633 return -ENXIO; 4634 4635 if (IS_ERR(uaddr)) 4636 return PTR_ERR(uaddr); 4637 4638 switch (attr->attr) { 4639 case KVM_X86_XCOMP_GUEST_SUPP: 4640 if (put_user(kvm_caps.supported_xcr0, uaddr)) 4641 return -EFAULT; 4642 return 0; 4643 default: 4644 return -ENXIO; 4645 break; 4646 } 4647 } 4648 4649 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4650 { 4651 if (attr->group) 4652 return -ENXIO; 4653 4654 switch (attr->attr) { 4655 case KVM_X86_XCOMP_GUEST_SUPP: 4656 return 0; 4657 default: 4658 return -ENXIO; 4659 } 4660 } 4661 4662 long kvm_arch_dev_ioctl(struct file *filp, 4663 unsigned int ioctl, unsigned long arg) 4664 { 4665 void __user *argp = (void __user *)arg; 4666 long r; 4667 4668 switch (ioctl) { 4669 case KVM_GET_MSR_INDEX_LIST: { 4670 struct kvm_msr_list __user *user_msr_list = argp; 4671 struct kvm_msr_list msr_list; 4672 unsigned n; 4673 4674 r = -EFAULT; 4675 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4676 goto out; 4677 n = msr_list.nmsrs; 4678 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4679 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4680 goto out; 4681 r = -E2BIG; 4682 if (n < msr_list.nmsrs) 4683 goto out; 4684 r = -EFAULT; 4685 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4686 num_msrs_to_save * sizeof(u32))) 4687 goto out; 4688 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4689 &emulated_msrs, 4690 num_emulated_msrs * sizeof(u32))) 4691 goto out; 4692 r = 0; 4693 break; 4694 } 4695 case KVM_GET_SUPPORTED_CPUID: 4696 case KVM_GET_EMULATED_CPUID: { 4697 struct kvm_cpuid2 __user *cpuid_arg = argp; 4698 struct kvm_cpuid2 cpuid; 4699 4700 r = -EFAULT; 4701 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4702 goto out; 4703 4704 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4705 ioctl); 4706 if (r) 4707 goto out; 4708 4709 r = -EFAULT; 4710 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4711 goto out; 4712 r = 0; 4713 break; 4714 } 4715 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4716 r = -EFAULT; 4717 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4718 sizeof(kvm_caps.supported_mce_cap))) 4719 goto out; 4720 r = 0; 4721 break; 4722 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4723 struct kvm_msr_list __user *user_msr_list = argp; 4724 struct kvm_msr_list msr_list; 4725 unsigned int n; 4726 4727 r = -EFAULT; 4728 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4729 goto out; 4730 n = msr_list.nmsrs; 4731 msr_list.nmsrs = num_msr_based_features; 4732 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4733 goto out; 4734 r = -E2BIG; 4735 if (n < msr_list.nmsrs) 4736 goto out; 4737 r = -EFAULT; 4738 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4739 num_msr_based_features * sizeof(u32))) 4740 goto out; 4741 r = 0; 4742 break; 4743 } 4744 case KVM_GET_MSRS: 4745 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4746 break; 4747 case KVM_GET_SUPPORTED_HV_CPUID: 4748 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4749 break; 4750 case KVM_GET_DEVICE_ATTR: { 4751 struct kvm_device_attr attr; 4752 r = -EFAULT; 4753 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4754 break; 4755 r = kvm_x86_dev_get_attr(&attr); 4756 break; 4757 } 4758 case KVM_HAS_DEVICE_ATTR: { 4759 struct kvm_device_attr attr; 4760 r = -EFAULT; 4761 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4762 break; 4763 r = kvm_x86_dev_has_attr(&attr); 4764 break; 4765 } 4766 default: 4767 r = -EINVAL; 4768 break; 4769 } 4770 out: 4771 return r; 4772 } 4773 4774 static void wbinvd_ipi(void *garbage) 4775 { 4776 wbinvd(); 4777 } 4778 4779 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4780 { 4781 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4782 } 4783 4784 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4785 { 4786 /* Address WBINVD may be executed by guest */ 4787 if (need_emulate_wbinvd(vcpu)) { 4788 if (static_call(kvm_x86_has_wbinvd_exit)()) 4789 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4790 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4791 smp_call_function_single(vcpu->cpu, 4792 wbinvd_ipi, NULL, 1); 4793 } 4794 4795 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4796 4797 /* Save host pkru register if supported */ 4798 vcpu->arch.host_pkru = read_pkru(); 4799 4800 /* Apply any externally detected TSC adjustments (due to suspend) */ 4801 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4802 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4803 vcpu->arch.tsc_offset_adjustment = 0; 4804 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4805 } 4806 4807 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4808 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4809 rdtsc() - vcpu->arch.last_host_tsc; 4810 if (tsc_delta < 0) 4811 mark_tsc_unstable("KVM discovered backwards TSC"); 4812 4813 if (kvm_check_tsc_unstable()) { 4814 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4815 vcpu->arch.last_guest_tsc); 4816 kvm_vcpu_write_tsc_offset(vcpu, offset); 4817 vcpu->arch.tsc_catchup = 1; 4818 } 4819 4820 if (kvm_lapic_hv_timer_in_use(vcpu)) 4821 kvm_lapic_restart_hv_timer(vcpu); 4822 4823 /* 4824 * On a host with synchronized TSC, there is no need to update 4825 * kvmclock on vcpu->cpu migration 4826 */ 4827 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4828 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4829 if (vcpu->cpu != cpu) 4830 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4831 vcpu->cpu = cpu; 4832 } 4833 4834 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4835 } 4836 4837 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4838 { 4839 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4840 struct kvm_steal_time __user *st; 4841 struct kvm_memslots *slots; 4842 static const u8 preempted = KVM_VCPU_PREEMPTED; 4843 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 4844 4845 /* 4846 * The vCPU can be marked preempted if and only if the VM-Exit was on 4847 * an instruction boundary and will not trigger guest emulation of any 4848 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4849 * when this is true, for example allowing the vCPU to be marked 4850 * preempted if and only if the VM-Exit was due to a host interrupt. 4851 */ 4852 if (!vcpu->arch.at_instruction_boundary) { 4853 vcpu->stat.preemption_other++; 4854 return; 4855 } 4856 4857 vcpu->stat.preemption_reported++; 4858 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4859 return; 4860 4861 if (vcpu->arch.st.preempted) 4862 return; 4863 4864 /* This happens on process exit */ 4865 if (unlikely(current->mm != vcpu->kvm->mm)) 4866 return; 4867 4868 slots = kvm_memslots(vcpu->kvm); 4869 4870 if (unlikely(slots->generation != ghc->generation || 4871 gpa != ghc->gpa || 4872 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4873 return; 4874 4875 st = (struct kvm_steal_time __user *)ghc->hva; 4876 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4877 4878 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4879 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4880 4881 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4882 } 4883 4884 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4885 { 4886 int idx; 4887 4888 if (vcpu->preempted) { 4889 if (!vcpu->arch.guest_state_protected) 4890 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4891 4892 /* 4893 * Take the srcu lock as memslots will be accessed to check the gfn 4894 * cache generation against the memslots generation. 4895 */ 4896 idx = srcu_read_lock(&vcpu->kvm->srcu); 4897 if (kvm_xen_msr_enabled(vcpu->kvm)) 4898 kvm_xen_runstate_set_preempted(vcpu); 4899 else 4900 kvm_steal_time_set_preempted(vcpu); 4901 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4902 } 4903 4904 static_call(kvm_x86_vcpu_put)(vcpu); 4905 vcpu->arch.last_host_tsc = rdtsc(); 4906 } 4907 4908 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4909 struct kvm_lapic_state *s) 4910 { 4911 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4912 4913 return kvm_apic_get_state(vcpu, s); 4914 } 4915 4916 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4917 struct kvm_lapic_state *s) 4918 { 4919 int r; 4920 4921 r = kvm_apic_set_state(vcpu, s); 4922 if (r) 4923 return r; 4924 update_cr8_intercept(vcpu); 4925 4926 return 0; 4927 } 4928 4929 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4930 { 4931 /* 4932 * We can accept userspace's request for interrupt injection 4933 * as long as we have a place to store the interrupt number. 4934 * The actual injection will happen when the CPU is able to 4935 * deliver the interrupt. 4936 */ 4937 if (kvm_cpu_has_extint(vcpu)) 4938 return false; 4939 4940 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4941 return (!lapic_in_kernel(vcpu) || 4942 kvm_apic_accept_pic_intr(vcpu)); 4943 } 4944 4945 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4946 { 4947 /* 4948 * Do not cause an interrupt window exit if an exception 4949 * is pending or an event needs reinjection; userspace 4950 * might want to inject the interrupt manually using KVM_SET_REGS 4951 * or KVM_SET_SREGS. For that to work, we must be at an 4952 * instruction boundary and with no events half-injected. 4953 */ 4954 return (kvm_arch_interrupt_allowed(vcpu) && 4955 kvm_cpu_accept_dm_intr(vcpu) && 4956 !kvm_event_needs_reinjection(vcpu) && 4957 !kvm_is_exception_pending(vcpu)); 4958 } 4959 4960 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4961 struct kvm_interrupt *irq) 4962 { 4963 if (irq->irq >= KVM_NR_INTERRUPTS) 4964 return -EINVAL; 4965 4966 if (!irqchip_in_kernel(vcpu->kvm)) { 4967 kvm_queue_interrupt(vcpu, irq->irq, false); 4968 kvm_make_request(KVM_REQ_EVENT, vcpu); 4969 return 0; 4970 } 4971 4972 /* 4973 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4974 * fail for in-kernel 8259. 4975 */ 4976 if (pic_in_kernel(vcpu->kvm)) 4977 return -ENXIO; 4978 4979 if (vcpu->arch.pending_external_vector != -1) 4980 return -EEXIST; 4981 4982 vcpu->arch.pending_external_vector = irq->irq; 4983 kvm_make_request(KVM_REQ_EVENT, vcpu); 4984 return 0; 4985 } 4986 4987 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4988 { 4989 kvm_inject_nmi(vcpu); 4990 4991 return 0; 4992 } 4993 4994 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4995 struct kvm_tpr_access_ctl *tac) 4996 { 4997 if (tac->flags) 4998 return -EINVAL; 4999 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5000 return 0; 5001 } 5002 5003 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5004 u64 mcg_cap) 5005 { 5006 int r; 5007 unsigned bank_num = mcg_cap & 0xff, bank; 5008 5009 r = -EINVAL; 5010 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5011 goto out; 5012 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5013 goto out; 5014 r = 0; 5015 vcpu->arch.mcg_cap = mcg_cap; 5016 /* Init IA32_MCG_CTL to all 1s */ 5017 if (mcg_cap & MCG_CTL_P) 5018 vcpu->arch.mcg_ctl = ~(u64)0; 5019 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5020 for (bank = 0; bank < bank_num; bank++) { 5021 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5022 if (mcg_cap & MCG_CMCI_P) 5023 vcpu->arch.mci_ctl2_banks[bank] = 0; 5024 } 5025 5026 kvm_apic_after_set_mcg_cap(vcpu); 5027 5028 static_call(kvm_x86_setup_mce)(vcpu); 5029 out: 5030 return r; 5031 } 5032 5033 /* 5034 * Validate this is an UCNA (uncorrectable no action) error by checking the 5035 * MCG_STATUS and MCi_STATUS registers: 5036 * - none of the bits for Machine Check Exceptions are set 5037 * - both the VAL (valid) and UC (uncorrectable) bits are set 5038 * MCI_STATUS_PCC - Processor Context Corrupted 5039 * MCI_STATUS_S - Signaled as a Machine Check Exception 5040 * MCI_STATUS_AR - Software recoverable Action Required 5041 */ 5042 static bool is_ucna(struct kvm_x86_mce *mce) 5043 { 5044 return !mce->mcg_status && 5045 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5046 (mce->status & MCI_STATUS_VAL) && 5047 (mce->status & MCI_STATUS_UC); 5048 } 5049 5050 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5051 { 5052 u64 mcg_cap = vcpu->arch.mcg_cap; 5053 5054 banks[1] = mce->status; 5055 banks[2] = mce->addr; 5056 banks[3] = mce->misc; 5057 vcpu->arch.mcg_status = mce->mcg_status; 5058 5059 if (!(mcg_cap & MCG_CMCI_P) || 5060 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5061 return 0; 5062 5063 if (lapic_in_kernel(vcpu)) 5064 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5065 5066 return 0; 5067 } 5068 5069 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5070 struct kvm_x86_mce *mce) 5071 { 5072 u64 mcg_cap = vcpu->arch.mcg_cap; 5073 unsigned bank_num = mcg_cap & 0xff; 5074 u64 *banks = vcpu->arch.mce_banks; 5075 5076 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5077 return -EINVAL; 5078 5079 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5080 5081 if (is_ucna(mce)) 5082 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5083 5084 /* 5085 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5086 * reporting is disabled 5087 */ 5088 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5089 vcpu->arch.mcg_ctl != ~(u64)0) 5090 return 0; 5091 /* 5092 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5093 * reporting is disabled for the bank 5094 */ 5095 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5096 return 0; 5097 if (mce->status & MCI_STATUS_UC) { 5098 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5099 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5100 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5101 return 0; 5102 } 5103 if (banks[1] & MCI_STATUS_VAL) 5104 mce->status |= MCI_STATUS_OVER; 5105 banks[2] = mce->addr; 5106 banks[3] = mce->misc; 5107 vcpu->arch.mcg_status = mce->mcg_status; 5108 banks[1] = mce->status; 5109 kvm_queue_exception(vcpu, MC_VECTOR); 5110 } else if (!(banks[1] & MCI_STATUS_VAL) 5111 || !(banks[1] & MCI_STATUS_UC)) { 5112 if (banks[1] & MCI_STATUS_VAL) 5113 mce->status |= MCI_STATUS_OVER; 5114 banks[2] = mce->addr; 5115 banks[3] = mce->misc; 5116 banks[1] = mce->status; 5117 } else 5118 banks[1] |= MCI_STATUS_OVER; 5119 return 0; 5120 } 5121 5122 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5123 struct kvm_vcpu_events *events) 5124 { 5125 struct kvm_queued_exception *ex; 5126 5127 process_nmi(vcpu); 5128 5129 #ifdef CONFIG_KVM_SMM 5130 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5131 process_smi(vcpu); 5132 #endif 5133 5134 /* 5135 * KVM's ABI only allows for one exception to be migrated. Luckily, 5136 * the only time there can be two queued exceptions is if there's a 5137 * non-exiting _injected_ exception, and a pending exiting exception. 5138 * In that case, ignore the VM-Exiting exception as it's an extension 5139 * of the injected exception. 5140 */ 5141 if (vcpu->arch.exception_vmexit.pending && 5142 !vcpu->arch.exception.pending && 5143 !vcpu->arch.exception.injected) 5144 ex = &vcpu->arch.exception_vmexit; 5145 else 5146 ex = &vcpu->arch.exception; 5147 5148 /* 5149 * In guest mode, payload delivery should be deferred if the exception 5150 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5151 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5152 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5153 * propagate the payload and so it cannot be safely deferred. Deliver 5154 * the payload if the capability hasn't been requested. 5155 */ 5156 if (!vcpu->kvm->arch.exception_payload_enabled && 5157 ex->pending && ex->has_payload) 5158 kvm_deliver_exception_payload(vcpu, ex); 5159 5160 memset(events, 0, sizeof(*events)); 5161 5162 /* 5163 * The API doesn't provide the instruction length for software 5164 * exceptions, so don't report them. As long as the guest RIP 5165 * isn't advanced, we should expect to encounter the exception 5166 * again. 5167 */ 5168 if (!kvm_exception_is_soft(ex->vector)) { 5169 events->exception.injected = ex->injected; 5170 events->exception.pending = ex->pending; 5171 /* 5172 * For ABI compatibility, deliberately conflate 5173 * pending and injected exceptions when 5174 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5175 */ 5176 if (!vcpu->kvm->arch.exception_payload_enabled) 5177 events->exception.injected |= ex->pending; 5178 } 5179 events->exception.nr = ex->vector; 5180 events->exception.has_error_code = ex->has_error_code; 5181 events->exception.error_code = ex->error_code; 5182 events->exception_has_payload = ex->has_payload; 5183 events->exception_payload = ex->payload; 5184 5185 events->interrupt.injected = 5186 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5187 events->interrupt.nr = vcpu->arch.interrupt.nr; 5188 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 5189 5190 events->nmi.injected = vcpu->arch.nmi_injected; 5191 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5192 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 5193 5194 /* events->sipi_vector is never valid when reporting to user space */ 5195 5196 #ifdef CONFIG_KVM_SMM 5197 events->smi.smm = is_smm(vcpu); 5198 events->smi.pending = vcpu->arch.smi_pending; 5199 events->smi.smm_inside_nmi = 5200 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5201 #endif 5202 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5203 5204 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5205 | KVM_VCPUEVENT_VALID_SHADOW 5206 | KVM_VCPUEVENT_VALID_SMM); 5207 if (vcpu->kvm->arch.exception_payload_enabled) 5208 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5209 if (vcpu->kvm->arch.triple_fault_event) { 5210 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5211 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5212 } 5213 } 5214 5215 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5216 struct kvm_vcpu_events *events) 5217 { 5218 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5219 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5220 | KVM_VCPUEVENT_VALID_SHADOW 5221 | KVM_VCPUEVENT_VALID_SMM 5222 | KVM_VCPUEVENT_VALID_PAYLOAD 5223 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5224 return -EINVAL; 5225 5226 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5227 if (!vcpu->kvm->arch.exception_payload_enabled) 5228 return -EINVAL; 5229 if (events->exception.pending) 5230 events->exception.injected = 0; 5231 else 5232 events->exception_has_payload = 0; 5233 } else { 5234 events->exception.pending = 0; 5235 events->exception_has_payload = 0; 5236 } 5237 5238 if ((events->exception.injected || events->exception.pending) && 5239 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5240 return -EINVAL; 5241 5242 /* INITs are latched while in SMM */ 5243 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5244 (events->smi.smm || events->smi.pending) && 5245 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5246 return -EINVAL; 5247 5248 process_nmi(vcpu); 5249 5250 /* 5251 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5252 * morph the exception to a VM-Exit if appropriate. Do this only for 5253 * pending exceptions, already-injected exceptions are not subject to 5254 * intercpetion. Note, userspace that conflates pending and injected 5255 * is hosed, and will incorrectly convert an injected exception into a 5256 * pending exception, which in turn may cause a spurious VM-Exit. 5257 */ 5258 vcpu->arch.exception_from_userspace = events->exception.pending; 5259 5260 vcpu->arch.exception_vmexit.pending = false; 5261 5262 vcpu->arch.exception.injected = events->exception.injected; 5263 vcpu->arch.exception.pending = events->exception.pending; 5264 vcpu->arch.exception.vector = events->exception.nr; 5265 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5266 vcpu->arch.exception.error_code = events->exception.error_code; 5267 vcpu->arch.exception.has_payload = events->exception_has_payload; 5268 vcpu->arch.exception.payload = events->exception_payload; 5269 5270 vcpu->arch.interrupt.injected = events->interrupt.injected; 5271 vcpu->arch.interrupt.nr = events->interrupt.nr; 5272 vcpu->arch.interrupt.soft = events->interrupt.soft; 5273 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5274 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5275 events->interrupt.shadow); 5276 5277 vcpu->arch.nmi_injected = events->nmi.injected; 5278 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5279 vcpu->arch.nmi_pending = 0; 5280 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5281 kvm_make_request(KVM_REQ_NMI, vcpu); 5282 } 5283 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5284 5285 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5286 lapic_in_kernel(vcpu)) 5287 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5288 5289 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5290 #ifdef CONFIG_KVM_SMM 5291 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5292 kvm_leave_nested(vcpu); 5293 kvm_smm_changed(vcpu, events->smi.smm); 5294 } 5295 5296 vcpu->arch.smi_pending = events->smi.pending; 5297 5298 if (events->smi.smm) { 5299 if (events->smi.smm_inside_nmi) 5300 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5301 else 5302 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5303 } 5304 5305 #else 5306 if (events->smi.smm || events->smi.pending || 5307 events->smi.smm_inside_nmi) 5308 return -EINVAL; 5309 #endif 5310 5311 if (lapic_in_kernel(vcpu)) { 5312 if (events->smi.latched_init) 5313 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5314 else 5315 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5316 } 5317 } 5318 5319 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5320 if (!vcpu->kvm->arch.triple_fault_event) 5321 return -EINVAL; 5322 if (events->triple_fault.pending) 5323 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5324 else 5325 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5326 } 5327 5328 kvm_make_request(KVM_REQ_EVENT, vcpu); 5329 5330 return 0; 5331 } 5332 5333 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5334 struct kvm_debugregs *dbgregs) 5335 { 5336 unsigned long val; 5337 5338 memset(dbgregs, 0, sizeof(*dbgregs)); 5339 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5340 kvm_get_dr(vcpu, 6, &val); 5341 dbgregs->dr6 = val; 5342 dbgregs->dr7 = vcpu->arch.dr7; 5343 } 5344 5345 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5346 struct kvm_debugregs *dbgregs) 5347 { 5348 if (dbgregs->flags) 5349 return -EINVAL; 5350 5351 if (!kvm_dr6_valid(dbgregs->dr6)) 5352 return -EINVAL; 5353 if (!kvm_dr7_valid(dbgregs->dr7)) 5354 return -EINVAL; 5355 5356 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5357 kvm_update_dr0123(vcpu); 5358 vcpu->arch.dr6 = dbgregs->dr6; 5359 vcpu->arch.dr7 = dbgregs->dr7; 5360 kvm_update_dr7(vcpu); 5361 5362 return 0; 5363 } 5364 5365 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5366 struct kvm_xsave *guest_xsave) 5367 { 5368 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5369 return; 5370 5371 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5372 guest_xsave->region, 5373 sizeof(guest_xsave->region), 5374 vcpu->arch.pkru); 5375 } 5376 5377 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5378 u8 *state, unsigned int size) 5379 { 5380 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5381 return; 5382 5383 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5384 state, size, vcpu->arch.pkru); 5385 } 5386 5387 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5388 struct kvm_xsave *guest_xsave) 5389 { 5390 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5391 return 0; 5392 5393 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5394 guest_xsave->region, 5395 kvm_caps.supported_xcr0, 5396 &vcpu->arch.pkru); 5397 } 5398 5399 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5400 struct kvm_xcrs *guest_xcrs) 5401 { 5402 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5403 guest_xcrs->nr_xcrs = 0; 5404 return; 5405 } 5406 5407 guest_xcrs->nr_xcrs = 1; 5408 guest_xcrs->flags = 0; 5409 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5410 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5411 } 5412 5413 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5414 struct kvm_xcrs *guest_xcrs) 5415 { 5416 int i, r = 0; 5417 5418 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5419 return -EINVAL; 5420 5421 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5422 return -EINVAL; 5423 5424 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5425 /* Only support XCR0 currently */ 5426 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5427 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5428 guest_xcrs->xcrs[i].value); 5429 break; 5430 } 5431 if (r) 5432 r = -EINVAL; 5433 return r; 5434 } 5435 5436 /* 5437 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5438 * stopped by the hypervisor. This function will be called from the host only. 5439 * EINVAL is returned when the host attempts to set the flag for a guest that 5440 * does not support pv clocks. 5441 */ 5442 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5443 { 5444 if (!vcpu->arch.pv_time.active) 5445 return -EINVAL; 5446 vcpu->arch.pvclock_set_guest_stopped_request = true; 5447 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5448 return 0; 5449 } 5450 5451 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5452 struct kvm_device_attr *attr) 5453 { 5454 int r; 5455 5456 switch (attr->attr) { 5457 case KVM_VCPU_TSC_OFFSET: 5458 r = 0; 5459 break; 5460 default: 5461 r = -ENXIO; 5462 } 5463 5464 return r; 5465 } 5466 5467 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5468 struct kvm_device_attr *attr) 5469 { 5470 u64 __user *uaddr = kvm_get_attr_addr(attr); 5471 int r; 5472 5473 if (IS_ERR(uaddr)) 5474 return PTR_ERR(uaddr); 5475 5476 switch (attr->attr) { 5477 case KVM_VCPU_TSC_OFFSET: 5478 r = -EFAULT; 5479 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5480 break; 5481 r = 0; 5482 break; 5483 default: 5484 r = -ENXIO; 5485 } 5486 5487 return r; 5488 } 5489 5490 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5491 struct kvm_device_attr *attr) 5492 { 5493 u64 __user *uaddr = kvm_get_attr_addr(attr); 5494 struct kvm *kvm = vcpu->kvm; 5495 int r; 5496 5497 if (IS_ERR(uaddr)) 5498 return PTR_ERR(uaddr); 5499 5500 switch (attr->attr) { 5501 case KVM_VCPU_TSC_OFFSET: { 5502 u64 offset, tsc, ns; 5503 unsigned long flags; 5504 bool matched; 5505 5506 r = -EFAULT; 5507 if (get_user(offset, uaddr)) 5508 break; 5509 5510 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5511 5512 matched = (vcpu->arch.virtual_tsc_khz && 5513 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5514 kvm->arch.last_tsc_offset == offset); 5515 5516 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5517 ns = get_kvmclock_base_ns(); 5518 5519 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5520 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5521 5522 r = 0; 5523 break; 5524 } 5525 default: 5526 r = -ENXIO; 5527 } 5528 5529 return r; 5530 } 5531 5532 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5533 unsigned int ioctl, 5534 void __user *argp) 5535 { 5536 struct kvm_device_attr attr; 5537 int r; 5538 5539 if (copy_from_user(&attr, argp, sizeof(attr))) 5540 return -EFAULT; 5541 5542 if (attr.group != KVM_VCPU_TSC_CTRL) 5543 return -ENXIO; 5544 5545 switch (ioctl) { 5546 case KVM_HAS_DEVICE_ATTR: 5547 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5548 break; 5549 case KVM_GET_DEVICE_ATTR: 5550 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5551 break; 5552 case KVM_SET_DEVICE_ATTR: 5553 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5554 break; 5555 } 5556 5557 return r; 5558 } 5559 5560 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5561 struct kvm_enable_cap *cap) 5562 { 5563 int r; 5564 uint16_t vmcs_version; 5565 void __user *user_ptr; 5566 5567 if (cap->flags) 5568 return -EINVAL; 5569 5570 switch (cap->cap) { 5571 case KVM_CAP_HYPERV_SYNIC2: 5572 if (cap->args[0]) 5573 return -EINVAL; 5574 fallthrough; 5575 5576 case KVM_CAP_HYPERV_SYNIC: 5577 if (!irqchip_in_kernel(vcpu->kvm)) 5578 return -EINVAL; 5579 return kvm_hv_activate_synic(vcpu, cap->cap == 5580 KVM_CAP_HYPERV_SYNIC2); 5581 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5582 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5583 return -ENOTTY; 5584 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5585 if (!r) { 5586 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5587 if (copy_to_user(user_ptr, &vmcs_version, 5588 sizeof(vmcs_version))) 5589 r = -EFAULT; 5590 } 5591 return r; 5592 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5593 if (!kvm_x86_ops.enable_l2_tlb_flush) 5594 return -ENOTTY; 5595 5596 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); 5597 5598 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5599 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5600 5601 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5602 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5603 if (vcpu->arch.pv_cpuid.enforce) 5604 kvm_update_pv_runtime(vcpu); 5605 5606 return 0; 5607 default: 5608 return -EINVAL; 5609 } 5610 } 5611 5612 long kvm_arch_vcpu_ioctl(struct file *filp, 5613 unsigned int ioctl, unsigned long arg) 5614 { 5615 struct kvm_vcpu *vcpu = filp->private_data; 5616 void __user *argp = (void __user *)arg; 5617 int r; 5618 union { 5619 struct kvm_sregs2 *sregs2; 5620 struct kvm_lapic_state *lapic; 5621 struct kvm_xsave *xsave; 5622 struct kvm_xcrs *xcrs; 5623 void *buffer; 5624 } u; 5625 5626 vcpu_load(vcpu); 5627 5628 u.buffer = NULL; 5629 switch (ioctl) { 5630 case KVM_GET_LAPIC: { 5631 r = -EINVAL; 5632 if (!lapic_in_kernel(vcpu)) 5633 goto out; 5634 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5635 GFP_KERNEL_ACCOUNT); 5636 5637 r = -ENOMEM; 5638 if (!u.lapic) 5639 goto out; 5640 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5641 if (r) 5642 goto out; 5643 r = -EFAULT; 5644 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5645 goto out; 5646 r = 0; 5647 break; 5648 } 5649 case KVM_SET_LAPIC: { 5650 r = -EINVAL; 5651 if (!lapic_in_kernel(vcpu)) 5652 goto out; 5653 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5654 if (IS_ERR(u.lapic)) { 5655 r = PTR_ERR(u.lapic); 5656 goto out_nofree; 5657 } 5658 5659 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5660 break; 5661 } 5662 case KVM_INTERRUPT: { 5663 struct kvm_interrupt irq; 5664 5665 r = -EFAULT; 5666 if (copy_from_user(&irq, argp, sizeof(irq))) 5667 goto out; 5668 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5669 break; 5670 } 5671 case KVM_NMI: { 5672 r = kvm_vcpu_ioctl_nmi(vcpu); 5673 break; 5674 } 5675 case KVM_SMI: { 5676 r = kvm_inject_smi(vcpu); 5677 break; 5678 } 5679 case KVM_SET_CPUID: { 5680 struct kvm_cpuid __user *cpuid_arg = argp; 5681 struct kvm_cpuid cpuid; 5682 5683 r = -EFAULT; 5684 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5685 goto out; 5686 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5687 break; 5688 } 5689 case KVM_SET_CPUID2: { 5690 struct kvm_cpuid2 __user *cpuid_arg = argp; 5691 struct kvm_cpuid2 cpuid; 5692 5693 r = -EFAULT; 5694 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5695 goto out; 5696 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5697 cpuid_arg->entries); 5698 break; 5699 } 5700 case KVM_GET_CPUID2: { 5701 struct kvm_cpuid2 __user *cpuid_arg = argp; 5702 struct kvm_cpuid2 cpuid; 5703 5704 r = -EFAULT; 5705 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5706 goto out; 5707 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5708 cpuid_arg->entries); 5709 if (r) 5710 goto out; 5711 r = -EFAULT; 5712 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5713 goto out; 5714 r = 0; 5715 break; 5716 } 5717 case KVM_GET_MSRS: { 5718 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5719 r = msr_io(vcpu, argp, do_get_msr, 1); 5720 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5721 break; 5722 } 5723 case KVM_SET_MSRS: { 5724 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5725 r = msr_io(vcpu, argp, do_set_msr, 0); 5726 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5727 break; 5728 } 5729 case KVM_TPR_ACCESS_REPORTING: { 5730 struct kvm_tpr_access_ctl tac; 5731 5732 r = -EFAULT; 5733 if (copy_from_user(&tac, argp, sizeof(tac))) 5734 goto out; 5735 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5736 if (r) 5737 goto out; 5738 r = -EFAULT; 5739 if (copy_to_user(argp, &tac, sizeof(tac))) 5740 goto out; 5741 r = 0; 5742 break; 5743 }; 5744 case KVM_SET_VAPIC_ADDR: { 5745 struct kvm_vapic_addr va; 5746 int idx; 5747 5748 r = -EINVAL; 5749 if (!lapic_in_kernel(vcpu)) 5750 goto out; 5751 r = -EFAULT; 5752 if (copy_from_user(&va, argp, sizeof(va))) 5753 goto out; 5754 idx = srcu_read_lock(&vcpu->kvm->srcu); 5755 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5756 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5757 break; 5758 } 5759 case KVM_X86_SETUP_MCE: { 5760 u64 mcg_cap; 5761 5762 r = -EFAULT; 5763 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5764 goto out; 5765 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5766 break; 5767 } 5768 case KVM_X86_SET_MCE: { 5769 struct kvm_x86_mce mce; 5770 5771 r = -EFAULT; 5772 if (copy_from_user(&mce, argp, sizeof(mce))) 5773 goto out; 5774 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5775 break; 5776 } 5777 case KVM_GET_VCPU_EVENTS: { 5778 struct kvm_vcpu_events events; 5779 5780 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5781 5782 r = -EFAULT; 5783 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5784 break; 5785 r = 0; 5786 break; 5787 } 5788 case KVM_SET_VCPU_EVENTS: { 5789 struct kvm_vcpu_events events; 5790 5791 r = -EFAULT; 5792 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5793 break; 5794 5795 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5796 break; 5797 } 5798 case KVM_GET_DEBUGREGS: { 5799 struct kvm_debugregs dbgregs; 5800 5801 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5802 5803 r = -EFAULT; 5804 if (copy_to_user(argp, &dbgregs, 5805 sizeof(struct kvm_debugregs))) 5806 break; 5807 r = 0; 5808 break; 5809 } 5810 case KVM_SET_DEBUGREGS: { 5811 struct kvm_debugregs dbgregs; 5812 5813 r = -EFAULT; 5814 if (copy_from_user(&dbgregs, argp, 5815 sizeof(struct kvm_debugregs))) 5816 break; 5817 5818 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5819 break; 5820 } 5821 case KVM_GET_XSAVE: { 5822 r = -EINVAL; 5823 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5824 break; 5825 5826 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5827 r = -ENOMEM; 5828 if (!u.xsave) 5829 break; 5830 5831 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5832 5833 r = -EFAULT; 5834 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5835 break; 5836 r = 0; 5837 break; 5838 } 5839 case KVM_SET_XSAVE: { 5840 int size = vcpu->arch.guest_fpu.uabi_size; 5841 5842 u.xsave = memdup_user(argp, size); 5843 if (IS_ERR(u.xsave)) { 5844 r = PTR_ERR(u.xsave); 5845 goto out_nofree; 5846 } 5847 5848 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5849 break; 5850 } 5851 5852 case KVM_GET_XSAVE2: { 5853 int size = vcpu->arch.guest_fpu.uabi_size; 5854 5855 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5856 r = -ENOMEM; 5857 if (!u.xsave) 5858 break; 5859 5860 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5861 5862 r = -EFAULT; 5863 if (copy_to_user(argp, u.xsave, size)) 5864 break; 5865 5866 r = 0; 5867 break; 5868 } 5869 5870 case KVM_GET_XCRS: { 5871 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5872 r = -ENOMEM; 5873 if (!u.xcrs) 5874 break; 5875 5876 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5877 5878 r = -EFAULT; 5879 if (copy_to_user(argp, u.xcrs, 5880 sizeof(struct kvm_xcrs))) 5881 break; 5882 r = 0; 5883 break; 5884 } 5885 case KVM_SET_XCRS: { 5886 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5887 if (IS_ERR(u.xcrs)) { 5888 r = PTR_ERR(u.xcrs); 5889 goto out_nofree; 5890 } 5891 5892 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5893 break; 5894 } 5895 case KVM_SET_TSC_KHZ: { 5896 u32 user_tsc_khz; 5897 5898 r = -EINVAL; 5899 user_tsc_khz = (u32)arg; 5900 5901 if (kvm_caps.has_tsc_control && 5902 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 5903 goto out; 5904 5905 if (user_tsc_khz == 0) 5906 user_tsc_khz = tsc_khz; 5907 5908 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5909 r = 0; 5910 5911 goto out; 5912 } 5913 case KVM_GET_TSC_KHZ: { 5914 r = vcpu->arch.virtual_tsc_khz; 5915 goto out; 5916 } 5917 case KVM_KVMCLOCK_CTRL: { 5918 r = kvm_set_guest_paused(vcpu); 5919 goto out; 5920 } 5921 case KVM_ENABLE_CAP: { 5922 struct kvm_enable_cap cap; 5923 5924 r = -EFAULT; 5925 if (copy_from_user(&cap, argp, sizeof(cap))) 5926 goto out; 5927 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5928 break; 5929 } 5930 case KVM_GET_NESTED_STATE: { 5931 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5932 u32 user_data_size; 5933 5934 r = -EINVAL; 5935 if (!kvm_x86_ops.nested_ops->get_state) 5936 break; 5937 5938 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5939 r = -EFAULT; 5940 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5941 break; 5942 5943 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5944 user_data_size); 5945 if (r < 0) 5946 break; 5947 5948 if (r > user_data_size) { 5949 if (put_user(r, &user_kvm_nested_state->size)) 5950 r = -EFAULT; 5951 else 5952 r = -E2BIG; 5953 break; 5954 } 5955 5956 r = 0; 5957 break; 5958 } 5959 case KVM_SET_NESTED_STATE: { 5960 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5961 struct kvm_nested_state kvm_state; 5962 int idx; 5963 5964 r = -EINVAL; 5965 if (!kvm_x86_ops.nested_ops->set_state) 5966 break; 5967 5968 r = -EFAULT; 5969 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5970 break; 5971 5972 r = -EINVAL; 5973 if (kvm_state.size < sizeof(kvm_state)) 5974 break; 5975 5976 if (kvm_state.flags & 5977 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5978 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5979 | KVM_STATE_NESTED_GIF_SET)) 5980 break; 5981 5982 /* nested_run_pending implies guest_mode. */ 5983 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5984 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5985 break; 5986 5987 idx = srcu_read_lock(&vcpu->kvm->srcu); 5988 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5989 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5990 break; 5991 } 5992 case KVM_GET_SUPPORTED_HV_CPUID: 5993 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5994 break; 5995 #ifdef CONFIG_KVM_XEN 5996 case KVM_XEN_VCPU_GET_ATTR: { 5997 struct kvm_xen_vcpu_attr xva; 5998 5999 r = -EFAULT; 6000 if (copy_from_user(&xva, argp, sizeof(xva))) 6001 goto out; 6002 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6003 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6004 r = -EFAULT; 6005 break; 6006 } 6007 case KVM_XEN_VCPU_SET_ATTR: { 6008 struct kvm_xen_vcpu_attr xva; 6009 6010 r = -EFAULT; 6011 if (copy_from_user(&xva, argp, sizeof(xva))) 6012 goto out; 6013 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6014 break; 6015 } 6016 #endif 6017 case KVM_GET_SREGS2: { 6018 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6019 r = -ENOMEM; 6020 if (!u.sregs2) 6021 goto out; 6022 __get_sregs2(vcpu, u.sregs2); 6023 r = -EFAULT; 6024 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6025 goto out; 6026 r = 0; 6027 break; 6028 } 6029 case KVM_SET_SREGS2: { 6030 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6031 if (IS_ERR(u.sregs2)) { 6032 r = PTR_ERR(u.sregs2); 6033 u.sregs2 = NULL; 6034 goto out; 6035 } 6036 r = __set_sregs2(vcpu, u.sregs2); 6037 break; 6038 } 6039 case KVM_HAS_DEVICE_ATTR: 6040 case KVM_GET_DEVICE_ATTR: 6041 case KVM_SET_DEVICE_ATTR: 6042 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6043 break; 6044 default: 6045 r = -EINVAL; 6046 } 6047 out: 6048 kfree(u.buffer); 6049 out_nofree: 6050 vcpu_put(vcpu); 6051 return r; 6052 } 6053 6054 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6055 { 6056 return VM_FAULT_SIGBUS; 6057 } 6058 6059 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6060 { 6061 int ret; 6062 6063 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6064 return -EINVAL; 6065 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 6066 return ret; 6067 } 6068 6069 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6070 u64 ident_addr) 6071 { 6072 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 6073 } 6074 6075 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6076 unsigned long kvm_nr_mmu_pages) 6077 { 6078 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6079 return -EINVAL; 6080 6081 mutex_lock(&kvm->slots_lock); 6082 6083 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6084 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6085 6086 mutex_unlock(&kvm->slots_lock); 6087 return 0; 6088 } 6089 6090 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6091 { 6092 struct kvm_pic *pic = kvm->arch.vpic; 6093 int r; 6094 6095 r = 0; 6096 switch (chip->chip_id) { 6097 case KVM_IRQCHIP_PIC_MASTER: 6098 memcpy(&chip->chip.pic, &pic->pics[0], 6099 sizeof(struct kvm_pic_state)); 6100 break; 6101 case KVM_IRQCHIP_PIC_SLAVE: 6102 memcpy(&chip->chip.pic, &pic->pics[1], 6103 sizeof(struct kvm_pic_state)); 6104 break; 6105 case KVM_IRQCHIP_IOAPIC: 6106 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6107 break; 6108 default: 6109 r = -EINVAL; 6110 break; 6111 } 6112 return r; 6113 } 6114 6115 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6116 { 6117 struct kvm_pic *pic = kvm->arch.vpic; 6118 int r; 6119 6120 r = 0; 6121 switch (chip->chip_id) { 6122 case KVM_IRQCHIP_PIC_MASTER: 6123 spin_lock(&pic->lock); 6124 memcpy(&pic->pics[0], &chip->chip.pic, 6125 sizeof(struct kvm_pic_state)); 6126 spin_unlock(&pic->lock); 6127 break; 6128 case KVM_IRQCHIP_PIC_SLAVE: 6129 spin_lock(&pic->lock); 6130 memcpy(&pic->pics[1], &chip->chip.pic, 6131 sizeof(struct kvm_pic_state)); 6132 spin_unlock(&pic->lock); 6133 break; 6134 case KVM_IRQCHIP_IOAPIC: 6135 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6136 break; 6137 default: 6138 r = -EINVAL; 6139 break; 6140 } 6141 kvm_pic_update_irq(pic); 6142 return r; 6143 } 6144 6145 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6146 { 6147 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6148 6149 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6150 6151 mutex_lock(&kps->lock); 6152 memcpy(ps, &kps->channels, sizeof(*ps)); 6153 mutex_unlock(&kps->lock); 6154 return 0; 6155 } 6156 6157 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6158 { 6159 int i; 6160 struct kvm_pit *pit = kvm->arch.vpit; 6161 6162 mutex_lock(&pit->pit_state.lock); 6163 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6164 for (i = 0; i < 3; i++) 6165 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6166 mutex_unlock(&pit->pit_state.lock); 6167 return 0; 6168 } 6169 6170 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6171 { 6172 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6173 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6174 sizeof(ps->channels)); 6175 ps->flags = kvm->arch.vpit->pit_state.flags; 6176 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6177 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6178 return 0; 6179 } 6180 6181 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6182 { 6183 int start = 0; 6184 int i; 6185 u32 prev_legacy, cur_legacy; 6186 struct kvm_pit *pit = kvm->arch.vpit; 6187 6188 mutex_lock(&pit->pit_state.lock); 6189 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6190 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6191 if (!prev_legacy && cur_legacy) 6192 start = 1; 6193 memcpy(&pit->pit_state.channels, &ps->channels, 6194 sizeof(pit->pit_state.channels)); 6195 pit->pit_state.flags = ps->flags; 6196 for (i = 0; i < 3; i++) 6197 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6198 start && i == 0); 6199 mutex_unlock(&pit->pit_state.lock); 6200 return 0; 6201 } 6202 6203 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6204 struct kvm_reinject_control *control) 6205 { 6206 struct kvm_pit *pit = kvm->arch.vpit; 6207 6208 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6209 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6210 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6211 */ 6212 mutex_lock(&pit->pit_state.lock); 6213 kvm_pit_set_reinject(pit, control->pit_reinject); 6214 mutex_unlock(&pit->pit_state.lock); 6215 6216 return 0; 6217 } 6218 6219 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6220 { 6221 6222 /* 6223 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6224 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6225 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6226 * VM-Exit. 6227 */ 6228 struct kvm_vcpu *vcpu; 6229 unsigned long i; 6230 6231 kvm_for_each_vcpu(i, vcpu, kvm) 6232 kvm_vcpu_kick(vcpu); 6233 } 6234 6235 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6236 bool line_status) 6237 { 6238 if (!irqchip_in_kernel(kvm)) 6239 return -ENXIO; 6240 6241 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6242 irq_event->irq, irq_event->level, 6243 line_status); 6244 return 0; 6245 } 6246 6247 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6248 struct kvm_enable_cap *cap) 6249 { 6250 int r; 6251 6252 if (cap->flags) 6253 return -EINVAL; 6254 6255 switch (cap->cap) { 6256 case KVM_CAP_DISABLE_QUIRKS2: 6257 r = -EINVAL; 6258 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6259 break; 6260 fallthrough; 6261 case KVM_CAP_DISABLE_QUIRKS: 6262 kvm->arch.disabled_quirks = cap->args[0]; 6263 r = 0; 6264 break; 6265 case KVM_CAP_SPLIT_IRQCHIP: { 6266 mutex_lock(&kvm->lock); 6267 r = -EINVAL; 6268 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6269 goto split_irqchip_unlock; 6270 r = -EEXIST; 6271 if (irqchip_in_kernel(kvm)) 6272 goto split_irqchip_unlock; 6273 if (kvm->created_vcpus) 6274 goto split_irqchip_unlock; 6275 r = kvm_setup_empty_irq_routing(kvm); 6276 if (r) 6277 goto split_irqchip_unlock; 6278 /* Pairs with irqchip_in_kernel. */ 6279 smp_wmb(); 6280 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6281 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6282 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6283 r = 0; 6284 split_irqchip_unlock: 6285 mutex_unlock(&kvm->lock); 6286 break; 6287 } 6288 case KVM_CAP_X2APIC_API: 6289 r = -EINVAL; 6290 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6291 break; 6292 6293 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6294 kvm->arch.x2apic_format = true; 6295 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6296 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6297 6298 r = 0; 6299 break; 6300 case KVM_CAP_X86_DISABLE_EXITS: 6301 r = -EINVAL; 6302 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6303 break; 6304 6305 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6306 kvm->arch.pause_in_guest = true; 6307 6308 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6309 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6310 6311 if (!mitigate_smt_rsb) { 6312 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6313 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6314 pr_warn_once(SMT_RSB_MSG); 6315 6316 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6317 kvm_can_mwait_in_guest()) 6318 kvm->arch.mwait_in_guest = true; 6319 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6320 kvm->arch.hlt_in_guest = true; 6321 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6322 kvm->arch.cstate_in_guest = true; 6323 } 6324 6325 r = 0; 6326 break; 6327 case KVM_CAP_MSR_PLATFORM_INFO: 6328 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6329 r = 0; 6330 break; 6331 case KVM_CAP_EXCEPTION_PAYLOAD: 6332 kvm->arch.exception_payload_enabled = cap->args[0]; 6333 r = 0; 6334 break; 6335 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6336 kvm->arch.triple_fault_event = cap->args[0]; 6337 r = 0; 6338 break; 6339 case KVM_CAP_X86_USER_SPACE_MSR: 6340 r = -EINVAL; 6341 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6342 break; 6343 kvm->arch.user_space_msr_mask = cap->args[0]; 6344 r = 0; 6345 break; 6346 case KVM_CAP_X86_BUS_LOCK_EXIT: 6347 r = -EINVAL; 6348 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6349 break; 6350 6351 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6352 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6353 break; 6354 6355 if (kvm_caps.has_bus_lock_exit && 6356 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6357 kvm->arch.bus_lock_detection_enabled = true; 6358 r = 0; 6359 break; 6360 #ifdef CONFIG_X86_SGX_KVM 6361 case KVM_CAP_SGX_ATTRIBUTE: { 6362 unsigned long allowed_attributes = 0; 6363 6364 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6365 if (r) 6366 break; 6367 6368 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6369 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6370 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6371 kvm->arch.sgx_provisioning_allowed = true; 6372 else 6373 r = -EINVAL; 6374 break; 6375 } 6376 #endif 6377 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6378 r = -EINVAL; 6379 if (!kvm_x86_ops.vm_copy_enc_context_from) 6380 break; 6381 6382 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6383 break; 6384 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6385 r = -EINVAL; 6386 if (!kvm_x86_ops.vm_move_enc_context_from) 6387 break; 6388 6389 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6390 break; 6391 case KVM_CAP_EXIT_HYPERCALL: 6392 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6393 r = -EINVAL; 6394 break; 6395 } 6396 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6397 r = 0; 6398 break; 6399 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6400 r = -EINVAL; 6401 if (cap->args[0] & ~1) 6402 break; 6403 kvm->arch.exit_on_emulation_error = cap->args[0]; 6404 r = 0; 6405 break; 6406 case KVM_CAP_PMU_CAPABILITY: 6407 r = -EINVAL; 6408 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6409 break; 6410 6411 mutex_lock(&kvm->lock); 6412 if (!kvm->created_vcpus) { 6413 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6414 r = 0; 6415 } 6416 mutex_unlock(&kvm->lock); 6417 break; 6418 case KVM_CAP_MAX_VCPU_ID: 6419 r = -EINVAL; 6420 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6421 break; 6422 6423 mutex_lock(&kvm->lock); 6424 if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6425 r = 0; 6426 } else if (!kvm->arch.max_vcpu_ids) { 6427 kvm->arch.max_vcpu_ids = cap->args[0]; 6428 r = 0; 6429 } 6430 mutex_unlock(&kvm->lock); 6431 break; 6432 case KVM_CAP_X86_NOTIFY_VMEXIT: 6433 r = -EINVAL; 6434 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6435 break; 6436 if (!kvm_caps.has_notify_vmexit) 6437 break; 6438 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6439 break; 6440 mutex_lock(&kvm->lock); 6441 if (!kvm->created_vcpus) { 6442 kvm->arch.notify_window = cap->args[0] >> 32; 6443 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6444 r = 0; 6445 } 6446 mutex_unlock(&kvm->lock); 6447 break; 6448 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6449 r = -EINVAL; 6450 6451 /* 6452 * Since the risk of disabling NX hugepages is a guest crashing 6453 * the system, ensure the userspace process has permission to 6454 * reboot the system. 6455 * 6456 * Note that unlike the reboot() syscall, the process must have 6457 * this capability in the root namespace because exposing 6458 * /dev/kvm into a container does not limit the scope of the 6459 * iTLB multihit bug to that container. In other words, 6460 * this must use capable(), not ns_capable(). 6461 */ 6462 if (!capable(CAP_SYS_BOOT)) { 6463 r = -EPERM; 6464 break; 6465 } 6466 6467 if (cap->args[0]) 6468 break; 6469 6470 mutex_lock(&kvm->lock); 6471 if (!kvm->created_vcpus) { 6472 kvm->arch.disable_nx_huge_pages = true; 6473 r = 0; 6474 } 6475 mutex_unlock(&kvm->lock); 6476 break; 6477 default: 6478 r = -EINVAL; 6479 break; 6480 } 6481 return r; 6482 } 6483 6484 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6485 { 6486 struct kvm_x86_msr_filter *msr_filter; 6487 6488 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6489 if (!msr_filter) 6490 return NULL; 6491 6492 msr_filter->default_allow = default_allow; 6493 return msr_filter; 6494 } 6495 6496 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6497 { 6498 u32 i; 6499 6500 if (!msr_filter) 6501 return; 6502 6503 for (i = 0; i < msr_filter->count; i++) 6504 kfree(msr_filter->ranges[i].bitmap); 6505 6506 kfree(msr_filter); 6507 } 6508 6509 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6510 struct kvm_msr_filter_range *user_range) 6511 { 6512 unsigned long *bitmap = NULL; 6513 size_t bitmap_size; 6514 6515 if (!user_range->nmsrs) 6516 return 0; 6517 6518 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6519 return -EINVAL; 6520 6521 if (!user_range->flags) 6522 return -EINVAL; 6523 6524 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6525 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6526 return -EINVAL; 6527 6528 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6529 if (IS_ERR(bitmap)) 6530 return PTR_ERR(bitmap); 6531 6532 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6533 .flags = user_range->flags, 6534 .base = user_range->base, 6535 .nmsrs = user_range->nmsrs, 6536 .bitmap = bitmap, 6537 }; 6538 6539 msr_filter->count++; 6540 return 0; 6541 } 6542 6543 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6544 struct kvm_msr_filter *filter) 6545 { 6546 struct kvm_x86_msr_filter *new_filter, *old_filter; 6547 bool default_allow; 6548 bool empty = true; 6549 int r; 6550 u32 i; 6551 6552 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6553 return -EINVAL; 6554 6555 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6556 empty &= !filter->ranges[i].nmsrs; 6557 6558 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6559 if (empty && !default_allow) 6560 return -EINVAL; 6561 6562 new_filter = kvm_alloc_msr_filter(default_allow); 6563 if (!new_filter) 6564 return -ENOMEM; 6565 6566 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6567 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6568 if (r) { 6569 kvm_free_msr_filter(new_filter); 6570 return r; 6571 } 6572 } 6573 6574 mutex_lock(&kvm->lock); 6575 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6576 mutex_is_locked(&kvm->lock)); 6577 mutex_unlock(&kvm->lock); 6578 synchronize_srcu(&kvm->srcu); 6579 6580 kvm_free_msr_filter(old_filter); 6581 6582 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6583 6584 return 0; 6585 } 6586 6587 #ifdef CONFIG_KVM_COMPAT 6588 /* for KVM_X86_SET_MSR_FILTER */ 6589 struct kvm_msr_filter_range_compat { 6590 __u32 flags; 6591 __u32 nmsrs; 6592 __u32 base; 6593 __u32 bitmap; 6594 }; 6595 6596 struct kvm_msr_filter_compat { 6597 __u32 flags; 6598 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6599 }; 6600 6601 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6602 6603 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6604 unsigned long arg) 6605 { 6606 void __user *argp = (void __user *)arg; 6607 struct kvm *kvm = filp->private_data; 6608 long r = -ENOTTY; 6609 6610 switch (ioctl) { 6611 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6612 struct kvm_msr_filter __user *user_msr_filter = argp; 6613 struct kvm_msr_filter_compat filter_compat; 6614 struct kvm_msr_filter filter; 6615 int i; 6616 6617 if (copy_from_user(&filter_compat, user_msr_filter, 6618 sizeof(filter_compat))) 6619 return -EFAULT; 6620 6621 filter.flags = filter_compat.flags; 6622 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6623 struct kvm_msr_filter_range_compat *cr; 6624 6625 cr = &filter_compat.ranges[i]; 6626 filter.ranges[i] = (struct kvm_msr_filter_range) { 6627 .flags = cr->flags, 6628 .nmsrs = cr->nmsrs, 6629 .base = cr->base, 6630 .bitmap = (__u8 *)(ulong)cr->bitmap, 6631 }; 6632 } 6633 6634 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6635 break; 6636 } 6637 } 6638 6639 return r; 6640 } 6641 #endif 6642 6643 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6644 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6645 { 6646 struct kvm_vcpu *vcpu; 6647 unsigned long i; 6648 int ret = 0; 6649 6650 mutex_lock(&kvm->lock); 6651 kvm_for_each_vcpu(i, vcpu, kvm) { 6652 if (!vcpu->arch.pv_time.active) 6653 continue; 6654 6655 ret = kvm_set_guest_paused(vcpu); 6656 if (ret) { 6657 kvm_err("Failed to pause guest VCPU%d: %d\n", 6658 vcpu->vcpu_id, ret); 6659 break; 6660 } 6661 } 6662 mutex_unlock(&kvm->lock); 6663 6664 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6665 } 6666 6667 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6668 { 6669 switch (state) { 6670 case PM_HIBERNATION_PREPARE: 6671 case PM_SUSPEND_PREPARE: 6672 return kvm_arch_suspend_notifier(kvm); 6673 } 6674 6675 return NOTIFY_DONE; 6676 } 6677 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6678 6679 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6680 { 6681 struct kvm_clock_data data = { 0 }; 6682 6683 get_kvmclock(kvm, &data); 6684 if (copy_to_user(argp, &data, sizeof(data))) 6685 return -EFAULT; 6686 6687 return 0; 6688 } 6689 6690 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6691 { 6692 struct kvm_arch *ka = &kvm->arch; 6693 struct kvm_clock_data data; 6694 u64 now_raw_ns; 6695 6696 if (copy_from_user(&data, argp, sizeof(data))) 6697 return -EFAULT; 6698 6699 /* 6700 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6701 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6702 */ 6703 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6704 return -EINVAL; 6705 6706 kvm_hv_request_tsc_page_update(kvm); 6707 kvm_start_pvclock_update(kvm); 6708 pvclock_update_vm_gtod_copy(kvm); 6709 6710 /* 6711 * This pairs with kvm_guest_time_update(): when masterclock is 6712 * in use, we use master_kernel_ns + kvmclock_offset to set 6713 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6714 * is slightly ahead) here we risk going negative on unsigned 6715 * 'system_time' when 'data.clock' is very small. 6716 */ 6717 if (data.flags & KVM_CLOCK_REALTIME) { 6718 u64 now_real_ns = ktime_get_real_ns(); 6719 6720 /* 6721 * Avoid stepping the kvmclock backwards. 6722 */ 6723 if (now_real_ns > data.realtime) 6724 data.clock += now_real_ns - data.realtime; 6725 } 6726 6727 if (ka->use_master_clock) 6728 now_raw_ns = ka->master_kernel_ns; 6729 else 6730 now_raw_ns = get_kvmclock_base_ns(); 6731 ka->kvmclock_offset = data.clock - now_raw_ns; 6732 kvm_end_pvclock_update(kvm); 6733 return 0; 6734 } 6735 6736 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 6737 { 6738 struct kvm *kvm = filp->private_data; 6739 void __user *argp = (void __user *)arg; 6740 int r = -ENOTTY; 6741 /* 6742 * This union makes it completely explicit to gcc-3.x 6743 * that these two variables' stack usage should be 6744 * combined, not added together. 6745 */ 6746 union { 6747 struct kvm_pit_state ps; 6748 struct kvm_pit_state2 ps2; 6749 struct kvm_pit_config pit_config; 6750 } u; 6751 6752 switch (ioctl) { 6753 case KVM_SET_TSS_ADDR: 6754 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6755 break; 6756 case KVM_SET_IDENTITY_MAP_ADDR: { 6757 u64 ident_addr; 6758 6759 mutex_lock(&kvm->lock); 6760 r = -EINVAL; 6761 if (kvm->created_vcpus) 6762 goto set_identity_unlock; 6763 r = -EFAULT; 6764 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6765 goto set_identity_unlock; 6766 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6767 set_identity_unlock: 6768 mutex_unlock(&kvm->lock); 6769 break; 6770 } 6771 case KVM_SET_NR_MMU_PAGES: 6772 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6773 break; 6774 case KVM_CREATE_IRQCHIP: { 6775 mutex_lock(&kvm->lock); 6776 6777 r = -EEXIST; 6778 if (irqchip_in_kernel(kvm)) 6779 goto create_irqchip_unlock; 6780 6781 r = -EINVAL; 6782 if (kvm->created_vcpus) 6783 goto create_irqchip_unlock; 6784 6785 r = kvm_pic_init(kvm); 6786 if (r) 6787 goto create_irqchip_unlock; 6788 6789 r = kvm_ioapic_init(kvm); 6790 if (r) { 6791 kvm_pic_destroy(kvm); 6792 goto create_irqchip_unlock; 6793 } 6794 6795 r = kvm_setup_default_irq_routing(kvm); 6796 if (r) { 6797 kvm_ioapic_destroy(kvm); 6798 kvm_pic_destroy(kvm); 6799 goto create_irqchip_unlock; 6800 } 6801 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6802 smp_wmb(); 6803 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6804 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6805 create_irqchip_unlock: 6806 mutex_unlock(&kvm->lock); 6807 break; 6808 } 6809 case KVM_CREATE_PIT: 6810 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6811 goto create_pit; 6812 case KVM_CREATE_PIT2: 6813 r = -EFAULT; 6814 if (copy_from_user(&u.pit_config, argp, 6815 sizeof(struct kvm_pit_config))) 6816 goto out; 6817 create_pit: 6818 mutex_lock(&kvm->lock); 6819 r = -EEXIST; 6820 if (kvm->arch.vpit) 6821 goto create_pit_unlock; 6822 r = -ENOMEM; 6823 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6824 if (kvm->arch.vpit) 6825 r = 0; 6826 create_pit_unlock: 6827 mutex_unlock(&kvm->lock); 6828 break; 6829 case KVM_GET_IRQCHIP: { 6830 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6831 struct kvm_irqchip *chip; 6832 6833 chip = memdup_user(argp, sizeof(*chip)); 6834 if (IS_ERR(chip)) { 6835 r = PTR_ERR(chip); 6836 goto out; 6837 } 6838 6839 r = -ENXIO; 6840 if (!irqchip_kernel(kvm)) 6841 goto get_irqchip_out; 6842 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6843 if (r) 6844 goto get_irqchip_out; 6845 r = -EFAULT; 6846 if (copy_to_user(argp, chip, sizeof(*chip))) 6847 goto get_irqchip_out; 6848 r = 0; 6849 get_irqchip_out: 6850 kfree(chip); 6851 break; 6852 } 6853 case KVM_SET_IRQCHIP: { 6854 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6855 struct kvm_irqchip *chip; 6856 6857 chip = memdup_user(argp, sizeof(*chip)); 6858 if (IS_ERR(chip)) { 6859 r = PTR_ERR(chip); 6860 goto out; 6861 } 6862 6863 r = -ENXIO; 6864 if (!irqchip_kernel(kvm)) 6865 goto set_irqchip_out; 6866 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6867 set_irqchip_out: 6868 kfree(chip); 6869 break; 6870 } 6871 case KVM_GET_PIT: { 6872 r = -EFAULT; 6873 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6874 goto out; 6875 r = -ENXIO; 6876 if (!kvm->arch.vpit) 6877 goto out; 6878 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6879 if (r) 6880 goto out; 6881 r = -EFAULT; 6882 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6883 goto out; 6884 r = 0; 6885 break; 6886 } 6887 case KVM_SET_PIT: { 6888 r = -EFAULT; 6889 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6890 goto out; 6891 mutex_lock(&kvm->lock); 6892 r = -ENXIO; 6893 if (!kvm->arch.vpit) 6894 goto set_pit_out; 6895 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6896 set_pit_out: 6897 mutex_unlock(&kvm->lock); 6898 break; 6899 } 6900 case KVM_GET_PIT2: { 6901 r = -ENXIO; 6902 if (!kvm->arch.vpit) 6903 goto out; 6904 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6905 if (r) 6906 goto out; 6907 r = -EFAULT; 6908 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6909 goto out; 6910 r = 0; 6911 break; 6912 } 6913 case KVM_SET_PIT2: { 6914 r = -EFAULT; 6915 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6916 goto out; 6917 mutex_lock(&kvm->lock); 6918 r = -ENXIO; 6919 if (!kvm->arch.vpit) 6920 goto set_pit2_out; 6921 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6922 set_pit2_out: 6923 mutex_unlock(&kvm->lock); 6924 break; 6925 } 6926 case KVM_REINJECT_CONTROL: { 6927 struct kvm_reinject_control control; 6928 r = -EFAULT; 6929 if (copy_from_user(&control, argp, sizeof(control))) 6930 goto out; 6931 r = -ENXIO; 6932 if (!kvm->arch.vpit) 6933 goto out; 6934 r = kvm_vm_ioctl_reinject(kvm, &control); 6935 break; 6936 } 6937 case KVM_SET_BOOT_CPU_ID: 6938 r = 0; 6939 mutex_lock(&kvm->lock); 6940 if (kvm->created_vcpus) 6941 r = -EBUSY; 6942 else 6943 kvm->arch.bsp_vcpu_id = arg; 6944 mutex_unlock(&kvm->lock); 6945 break; 6946 #ifdef CONFIG_KVM_XEN 6947 case KVM_XEN_HVM_CONFIG: { 6948 struct kvm_xen_hvm_config xhc; 6949 r = -EFAULT; 6950 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6951 goto out; 6952 r = kvm_xen_hvm_config(kvm, &xhc); 6953 break; 6954 } 6955 case KVM_XEN_HVM_GET_ATTR: { 6956 struct kvm_xen_hvm_attr xha; 6957 6958 r = -EFAULT; 6959 if (copy_from_user(&xha, argp, sizeof(xha))) 6960 goto out; 6961 r = kvm_xen_hvm_get_attr(kvm, &xha); 6962 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6963 r = -EFAULT; 6964 break; 6965 } 6966 case KVM_XEN_HVM_SET_ATTR: { 6967 struct kvm_xen_hvm_attr xha; 6968 6969 r = -EFAULT; 6970 if (copy_from_user(&xha, argp, sizeof(xha))) 6971 goto out; 6972 r = kvm_xen_hvm_set_attr(kvm, &xha); 6973 break; 6974 } 6975 case KVM_XEN_HVM_EVTCHN_SEND: { 6976 struct kvm_irq_routing_xen_evtchn uxe; 6977 6978 r = -EFAULT; 6979 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6980 goto out; 6981 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6982 break; 6983 } 6984 #endif 6985 case KVM_SET_CLOCK: 6986 r = kvm_vm_ioctl_set_clock(kvm, argp); 6987 break; 6988 case KVM_GET_CLOCK: 6989 r = kvm_vm_ioctl_get_clock(kvm, argp); 6990 break; 6991 case KVM_SET_TSC_KHZ: { 6992 u32 user_tsc_khz; 6993 6994 r = -EINVAL; 6995 user_tsc_khz = (u32)arg; 6996 6997 if (kvm_caps.has_tsc_control && 6998 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6999 goto out; 7000 7001 if (user_tsc_khz == 0) 7002 user_tsc_khz = tsc_khz; 7003 7004 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7005 r = 0; 7006 7007 goto out; 7008 } 7009 case KVM_GET_TSC_KHZ: { 7010 r = READ_ONCE(kvm->arch.default_tsc_khz); 7011 goto out; 7012 } 7013 case KVM_MEMORY_ENCRYPT_OP: { 7014 r = -ENOTTY; 7015 if (!kvm_x86_ops.mem_enc_ioctl) 7016 goto out; 7017 7018 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 7019 break; 7020 } 7021 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7022 struct kvm_enc_region region; 7023 7024 r = -EFAULT; 7025 if (copy_from_user(®ion, argp, sizeof(region))) 7026 goto out; 7027 7028 r = -ENOTTY; 7029 if (!kvm_x86_ops.mem_enc_register_region) 7030 goto out; 7031 7032 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 7033 break; 7034 } 7035 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7036 struct kvm_enc_region region; 7037 7038 r = -EFAULT; 7039 if (copy_from_user(®ion, argp, sizeof(region))) 7040 goto out; 7041 7042 r = -ENOTTY; 7043 if (!kvm_x86_ops.mem_enc_unregister_region) 7044 goto out; 7045 7046 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 7047 break; 7048 } 7049 case KVM_HYPERV_EVENTFD: { 7050 struct kvm_hyperv_eventfd hvevfd; 7051 7052 r = -EFAULT; 7053 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7054 goto out; 7055 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7056 break; 7057 } 7058 case KVM_SET_PMU_EVENT_FILTER: 7059 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7060 break; 7061 case KVM_X86_SET_MSR_FILTER: { 7062 struct kvm_msr_filter __user *user_msr_filter = argp; 7063 struct kvm_msr_filter filter; 7064 7065 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7066 return -EFAULT; 7067 7068 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7069 break; 7070 } 7071 default: 7072 r = -ENOTTY; 7073 } 7074 out: 7075 return r; 7076 } 7077 7078 static void kvm_probe_feature_msr(u32 msr_index) 7079 { 7080 struct kvm_msr_entry msr = { 7081 .index = msr_index, 7082 }; 7083 7084 if (kvm_get_msr_feature(&msr)) 7085 return; 7086 7087 msr_based_features[num_msr_based_features++] = msr_index; 7088 } 7089 7090 static void kvm_probe_msr_to_save(u32 msr_index) 7091 { 7092 u32 dummy[2]; 7093 7094 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7095 return; 7096 7097 /* 7098 * Even MSRs that are valid in the host may not be exposed to guests in 7099 * some cases. 7100 */ 7101 switch (msr_index) { 7102 case MSR_IA32_BNDCFGS: 7103 if (!kvm_mpx_supported()) 7104 return; 7105 break; 7106 case MSR_TSC_AUX: 7107 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7108 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7109 return; 7110 break; 7111 case MSR_IA32_UMWAIT_CONTROL: 7112 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7113 return; 7114 break; 7115 case MSR_IA32_RTIT_CTL: 7116 case MSR_IA32_RTIT_STATUS: 7117 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7118 return; 7119 break; 7120 case MSR_IA32_RTIT_CR3_MATCH: 7121 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7122 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7123 return; 7124 break; 7125 case MSR_IA32_RTIT_OUTPUT_BASE: 7126 case MSR_IA32_RTIT_OUTPUT_MASK: 7127 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7128 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7129 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7130 return; 7131 break; 7132 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7133 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7134 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7135 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7136 return; 7137 break; 7138 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: 7139 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7140 kvm_pmu_cap.num_counters_gp) 7141 return; 7142 break; 7143 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: 7144 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7145 kvm_pmu_cap.num_counters_gp) 7146 return; 7147 break; 7148 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: 7149 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7150 kvm_pmu_cap.num_counters_fixed) 7151 return; 7152 break; 7153 case MSR_IA32_XFD: 7154 case MSR_IA32_XFD_ERR: 7155 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7156 return; 7157 break; 7158 default: 7159 break; 7160 } 7161 7162 msrs_to_save[num_msrs_to_save++] = msr_index; 7163 } 7164 7165 static void kvm_init_msr_lists(void) 7166 { 7167 unsigned i; 7168 7169 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 7170 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7171 7172 num_msrs_to_save = 0; 7173 num_emulated_msrs = 0; 7174 num_msr_based_features = 0; 7175 7176 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7177 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7178 7179 if (enable_pmu) { 7180 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7181 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7182 } 7183 7184 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7185 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 7186 continue; 7187 7188 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7189 } 7190 7191 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7192 kvm_probe_feature_msr(i); 7193 7194 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7195 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7196 } 7197 7198 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7199 const void *v) 7200 { 7201 int handled = 0; 7202 int n; 7203 7204 do { 7205 n = min(len, 8); 7206 if (!(lapic_in_kernel(vcpu) && 7207 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7208 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7209 break; 7210 handled += n; 7211 addr += n; 7212 len -= n; 7213 v += n; 7214 } while (len); 7215 7216 return handled; 7217 } 7218 7219 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7220 { 7221 int handled = 0; 7222 int n; 7223 7224 do { 7225 n = min(len, 8); 7226 if (!(lapic_in_kernel(vcpu) && 7227 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7228 addr, n, v)) 7229 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7230 break; 7231 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7232 handled += n; 7233 addr += n; 7234 len -= n; 7235 v += n; 7236 } while (len); 7237 7238 return handled; 7239 } 7240 7241 void kvm_set_segment(struct kvm_vcpu *vcpu, 7242 struct kvm_segment *var, int seg) 7243 { 7244 static_call(kvm_x86_set_segment)(vcpu, var, seg); 7245 } 7246 7247 void kvm_get_segment(struct kvm_vcpu *vcpu, 7248 struct kvm_segment *var, int seg) 7249 { 7250 static_call(kvm_x86_get_segment)(vcpu, var, seg); 7251 } 7252 7253 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7254 struct x86_exception *exception) 7255 { 7256 struct kvm_mmu *mmu = vcpu->arch.mmu; 7257 gpa_t t_gpa; 7258 7259 BUG_ON(!mmu_is_nested(vcpu)); 7260 7261 /* NPT walks are always user-walks */ 7262 access |= PFERR_USER_MASK; 7263 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7264 7265 return t_gpa; 7266 } 7267 7268 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7269 struct x86_exception *exception) 7270 { 7271 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7272 7273 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7274 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7275 } 7276 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7277 7278 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7279 struct x86_exception *exception) 7280 { 7281 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7282 7283 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7284 access |= PFERR_WRITE_MASK; 7285 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7286 } 7287 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7288 7289 /* uses this to access any guest's mapped memory without checking CPL */ 7290 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7291 struct x86_exception *exception) 7292 { 7293 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7294 7295 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7296 } 7297 7298 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7299 struct kvm_vcpu *vcpu, u64 access, 7300 struct x86_exception *exception) 7301 { 7302 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7303 void *data = val; 7304 int r = X86EMUL_CONTINUE; 7305 7306 while (bytes) { 7307 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7308 unsigned offset = addr & (PAGE_SIZE-1); 7309 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7310 int ret; 7311 7312 if (gpa == INVALID_GPA) 7313 return X86EMUL_PROPAGATE_FAULT; 7314 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7315 offset, toread); 7316 if (ret < 0) { 7317 r = X86EMUL_IO_NEEDED; 7318 goto out; 7319 } 7320 7321 bytes -= toread; 7322 data += toread; 7323 addr += toread; 7324 } 7325 out: 7326 return r; 7327 } 7328 7329 /* used for instruction fetching */ 7330 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7331 gva_t addr, void *val, unsigned int bytes, 7332 struct x86_exception *exception) 7333 { 7334 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7335 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7336 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7337 unsigned offset; 7338 int ret; 7339 7340 /* Inline kvm_read_guest_virt_helper for speed. */ 7341 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7342 exception); 7343 if (unlikely(gpa == INVALID_GPA)) 7344 return X86EMUL_PROPAGATE_FAULT; 7345 7346 offset = addr & (PAGE_SIZE-1); 7347 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7348 bytes = (unsigned)PAGE_SIZE - offset; 7349 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7350 offset, bytes); 7351 if (unlikely(ret < 0)) 7352 return X86EMUL_IO_NEEDED; 7353 7354 return X86EMUL_CONTINUE; 7355 } 7356 7357 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7358 gva_t addr, void *val, unsigned int bytes, 7359 struct x86_exception *exception) 7360 { 7361 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7362 7363 /* 7364 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7365 * is returned, but our callers are not ready for that and they blindly 7366 * call kvm_inject_page_fault. Ensure that they at least do not leak 7367 * uninitialized kernel stack memory into cr2 and error code. 7368 */ 7369 memset(exception, 0, sizeof(*exception)); 7370 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7371 exception); 7372 } 7373 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7374 7375 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7376 gva_t addr, void *val, unsigned int bytes, 7377 struct x86_exception *exception, bool system) 7378 { 7379 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7380 u64 access = 0; 7381 7382 if (system) 7383 access |= PFERR_IMPLICIT_ACCESS; 7384 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7385 access |= PFERR_USER_MASK; 7386 7387 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7388 } 7389 7390 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7391 struct kvm_vcpu *vcpu, u64 access, 7392 struct x86_exception *exception) 7393 { 7394 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7395 void *data = val; 7396 int r = X86EMUL_CONTINUE; 7397 7398 while (bytes) { 7399 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7400 unsigned offset = addr & (PAGE_SIZE-1); 7401 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7402 int ret; 7403 7404 if (gpa == INVALID_GPA) 7405 return X86EMUL_PROPAGATE_FAULT; 7406 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7407 if (ret < 0) { 7408 r = X86EMUL_IO_NEEDED; 7409 goto out; 7410 } 7411 7412 bytes -= towrite; 7413 data += towrite; 7414 addr += towrite; 7415 } 7416 out: 7417 return r; 7418 } 7419 7420 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7421 unsigned int bytes, struct x86_exception *exception, 7422 bool system) 7423 { 7424 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7425 u64 access = PFERR_WRITE_MASK; 7426 7427 if (system) 7428 access |= PFERR_IMPLICIT_ACCESS; 7429 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7430 access |= PFERR_USER_MASK; 7431 7432 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7433 access, exception); 7434 } 7435 7436 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7437 unsigned int bytes, struct x86_exception *exception) 7438 { 7439 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7440 vcpu->arch.l1tf_flush_l1d = true; 7441 7442 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7443 PFERR_WRITE_MASK, exception); 7444 } 7445 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7446 7447 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7448 void *insn, int insn_len) 7449 { 7450 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7451 insn, insn_len); 7452 } 7453 7454 int handle_ud(struct kvm_vcpu *vcpu) 7455 { 7456 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7457 int fep_flags = READ_ONCE(force_emulation_prefix); 7458 int emul_type = EMULTYPE_TRAP_UD; 7459 char sig[5]; /* ud2; .ascii "kvm" */ 7460 struct x86_exception e; 7461 7462 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7463 return 1; 7464 7465 if (fep_flags && 7466 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7467 sig, sizeof(sig), &e) == 0 && 7468 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7469 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7470 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7471 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7472 emul_type = EMULTYPE_TRAP_UD_FORCED; 7473 } 7474 7475 return kvm_emulate_instruction(vcpu, emul_type); 7476 } 7477 EXPORT_SYMBOL_GPL(handle_ud); 7478 7479 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7480 gpa_t gpa, bool write) 7481 { 7482 /* For APIC access vmexit */ 7483 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7484 return 1; 7485 7486 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7487 trace_vcpu_match_mmio(gva, gpa, write, true); 7488 return 1; 7489 } 7490 7491 return 0; 7492 } 7493 7494 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7495 gpa_t *gpa, struct x86_exception *exception, 7496 bool write) 7497 { 7498 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7499 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7500 | (write ? PFERR_WRITE_MASK : 0); 7501 7502 /* 7503 * currently PKRU is only applied to ept enabled guest so 7504 * there is no pkey in EPT page table for L1 guest or EPT 7505 * shadow page table for L2 guest. 7506 */ 7507 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7508 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7509 vcpu->arch.mmio_access, 0, access))) { 7510 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7511 (gva & (PAGE_SIZE - 1)); 7512 trace_vcpu_match_mmio(gva, *gpa, write, false); 7513 return 1; 7514 } 7515 7516 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7517 7518 if (*gpa == INVALID_GPA) 7519 return -1; 7520 7521 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7522 } 7523 7524 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7525 const void *val, int bytes) 7526 { 7527 int ret; 7528 7529 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7530 if (ret < 0) 7531 return 0; 7532 kvm_page_track_write(vcpu, gpa, val, bytes); 7533 return 1; 7534 } 7535 7536 struct read_write_emulator_ops { 7537 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7538 int bytes); 7539 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7540 void *val, int bytes); 7541 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7542 int bytes, void *val); 7543 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7544 void *val, int bytes); 7545 bool write; 7546 }; 7547 7548 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7549 { 7550 if (vcpu->mmio_read_completed) { 7551 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7552 vcpu->mmio_fragments[0].gpa, val); 7553 vcpu->mmio_read_completed = 0; 7554 return 1; 7555 } 7556 7557 return 0; 7558 } 7559 7560 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7561 void *val, int bytes) 7562 { 7563 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7564 } 7565 7566 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7567 void *val, int bytes) 7568 { 7569 return emulator_write_phys(vcpu, gpa, val, bytes); 7570 } 7571 7572 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7573 { 7574 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7575 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7576 } 7577 7578 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7579 void *val, int bytes) 7580 { 7581 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7582 return X86EMUL_IO_NEEDED; 7583 } 7584 7585 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7586 void *val, int bytes) 7587 { 7588 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7589 7590 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7591 return X86EMUL_CONTINUE; 7592 } 7593 7594 static const struct read_write_emulator_ops read_emultor = { 7595 .read_write_prepare = read_prepare, 7596 .read_write_emulate = read_emulate, 7597 .read_write_mmio = vcpu_mmio_read, 7598 .read_write_exit_mmio = read_exit_mmio, 7599 }; 7600 7601 static const struct read_write_emulator_ops write_emultor = { 7602 .read_write_emulate = write_emulate, 7603 .read_write_mmio = write_mmio, 7604 .read_write_exit_mmio = write_exit_mmio, 7605 .write = true, 7606 }; 7607 7608 static int emulator_read_write_onepage(unsigned long addr, void *val, 7609 unsigned int bytes, 7610 struct x86_exception *exception, 7611 struct kvm_vcpu *vcpu, 7612 const struct read_write_emulator_ops *ops) 7613 { 7614 gpa_t gpa; 7615 int handled, ret; 7616 bool write = ops->write; 7617 struct kvm_mmio_fragment *frag; 7618 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7619 7620 /* 7621 * If the exit was due to a NPF we may already have a GPA. 7622 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7623 * Note, this cannot be used on string operations since string 7624 * operation using rep will only have the initial GPA from the NPF 7625 * occurred. 7626 */ 7627 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7628 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7629 gpa = ctxt->gpa_val; 7630 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7631 } else { 7632 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7633 if (ret < 0) 7634 return X86EMUL_PROPAGATE_FAULT; 7635 } 7636 7637 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7638 return X86EMUL_CONTINUE; 7639 7640 /* 7641 * Is this MMIO handled locally? 7642 */ 7643 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7644 if (handled == bytes) 7645 return X86EMUL_CONTINUE; 7646 7647 gpa += handled; 7648 bytes -= handled; 7649 val += handled; 7650 7651 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7652 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7653 frag->gpa = gpa; 7654 frag->data = val; 7655 frag->len = bytes; 7656 return X86EMUL_CONTINUE; 7657 } 7658 7659 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7660 unsigned long addr, 7661 void *val, unsigned int bytes, 7662 struct x86_exception *exception, 7663 const struct read_write_emulator_ops *ops) 7664 { 7665 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7666 gpa_t gpa; 7667 int rc; 7668 7669 if (ops->read_write_prepare && 7670 ops->read_write_prepare(vcpu, val, bytes)) 7671 return X86EMUL_CONTINUE; 7672 7673 vcpu->mmio_nr_fragments = 0; 7674 7675 /* Crossing a page boundary? */ 7676 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7677 int now; 7678 7679 now = -addr & ~PAGE_MASK; 7680 rc = emulator_read_write_onepage(addr, val, now, exception, 7681 vcpu, ops); 7682 7683 if (rc != X86EMUL_CONTINUE) 7684 return rc; 7685 addr += now; 7686 if (ctxt->mode != X86EMUL_MODE_PROT64) 7687 addr = (u32)addr; 7688 val += now; 7689 bytes -= now; 7690 } 7691 7692 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7693 vcpu, ops); 7694 if (rc != X86EMUL_CONTINUE) 7695 return rc; 7696 7697 if (!vcpu->mmio_nr_fragments) 7698 return rc; 7699 7700 gpa = vcpu->mmio_fragments[0].gpa; 7701 7702 vcpu->mmio_needed = 1; 7703 vcpu->mmio_cur_fragment = 0; 7704 7705 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7706 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7707 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7708 vcpu->run->mmio.phys_addr = gpa; 7709 7710 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7711 } 7712 7713 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7714 unsigned long addr, 7715 void *val, 7716 unsigned int bytes, 7717 struct x86_exception *exception) 7718 { 7719 return emulator_read_write(ctxt, addr, val, bytes, 7720 exception, &read_emultor); 7721 } 7722 7723 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7724 unsigned long addr, 7725 const void *val, 7726 unsigned int bytes, 7727 struct x86_exception *exception) 7728 { 7729 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7730 exception, &write_emultor); 7731 } 7732 7733 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7734 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7735 7736 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7737 unsigned long addr, 7738 const void *old, 7739 const void *new, 7740 unsigned int bytes, 7741 struct x86_exception *exception) 7742 { 7743 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7744 u64 page_line_mask; 7745 unsigned long hva; 7746 gpa_t gpa; 7747 int r; 7748 7749 /* guests cmpxchg8b have to be emulated atomically */ 7750 if (bytes > 8 || (bytes & (bytes - 1))) 7751 goto emul_write; 7752 7753 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7754 7755 if (gpa == INVALID_GPA || 7756 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7757 goto emul_write; 7758 7759 /* 7760 * Emulate the atomic as a straight write to avoid #AC if SLD is 7761 * enabled in the host and the access splits a cache line. 7762 */ 7763 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7764 page_line_mask = ~(cache_line_size() - 1); 7765 else 7766 page_line_mask = PAGE_MASK; 7767 7768 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7769 goto emul_write; 7770 7771 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7772 if (kvm_is_error_hva(hva)) 7773 goto emul_write; 7774 7775 hva += offset_in_page(gpa); 7776 7777 switch (bytes) { 7778 case 1: 7779 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7780 break; 7781 case 2: 7782 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7783 break; 7784 case 4: 7785 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7786 break; 7787 case 8: 7788 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7789 break; 7790 default: 7791 BUG(); 7792 } 7793 7794 if (r < 0) 7795 return X86EMUL_UNHANDLEABLE; 7796 if (r) 7797 return X86EMUL_CMPXCHG_FAILED; 7798 7799 kvm_page_track_write(vcpu, gpa, new, bytes); 7800 7801 return X86EMUL_CONTINUE; 7802 7803 emul_write: 7804 pr_warn_once("emulating exchange as write\n"); 7805 7806 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7807 } 7808 7809 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7810 unsigned short port, void *data, 7811 unsigned int count, bool in) 7812 { 7813 unsigned i; 7814 int r; 7815 7816 WARN_ON_ONCE(vcpu->arch.pio.count); 7817 for (i = 0; i < count; i++) { 7818 if (in) 7819 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 7820 else 7821 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 7822 7823 if (r) { 7824 if (i == 0) 7825 goto userspace_io; 7826 7827 /* 7828 * Userspace must have unregistered the device while PIO 7829 * was running. Drop writes / read as 0. 7830 */ 7831 if (in) 7832 memset(data, 0, size * (count - i)); 7833 break; 7834 } 7835 7836 data += size; 7837 } 7838 return 1; 7839 7840 userspace_io: 7841 vcpu->arch.pio.port = port; 7842 vcpu->arch.pio.in = in; 7843 vcpu->arch.pio.count = count; 7844 vcpu->arch.pio.size = size; 7845 7846 if (in) 7847 memset(vcpu->arch.pio_data, 0, size * count); 7848 else 7849 memcpy(vcpu->arch.pio_data, data, size * count); 7850 7851 vcpu->run->exit_reason = KVM_EXIT_IO; 7852 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7853 vcpu->run->io.size = size; 7854 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7855 vcpu->run->io.count = count; 7856 vcpu->run->io.port = port; 7857 return 0; 7858 } 7859 7860 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7861 unsigned short port, void *val, unsigned int count) 7862 { 7863 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 7864 if (r) 7865 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 7866 7867 return r; 7868 } 7869 7870 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7871 { 7872 int size = vcpu->arch.pio.size; 7873 unsigned int count = vcpu->arch.pio.count; 7874 memcpy(val, vcpu->arch.pio_data, size * count); 7875 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7876 vcpu->arch.pio.count = 0; 7877 } 7878 7879 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7880 int size, unsigned short port, void *val, 7881 unsigned int count) 7882 { 7883 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7884 if (vcpu->arch.pio.count) { 7885 /* 7886 * Complete a previous iteration that required userspace I/O. 7887 * Note, @count isn't guaranteed to match pio.count as userspace 7888 * can modify ECX before rerunning the vCPU. Ignore any such 7889 * shenanigans as KVM doesn't support modifying the rep count, 7890 * and the emulator ensures @count doesn't overflow the buffer. 7891 */ 7892 complete_emulator_pio_in(vcpu, val); 7893 return 1; 7894 } 7895 7896 return emulator_pio_in(vcpu, size, port, val, count); 7897 } 7898 7899 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7900 unsigned short port, const void *val, 7901 unsigned int count) 7902 { 7903 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 7904 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 7905 } 7906 7907 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7908 int size, unsigned short port, 7909 const void *val, unsigned int count) 7910 { 7911 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7912 } 7913 7914 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7915 { 7916 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7917 } 7918 7919 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7920 { 7921 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7922 } 7923 7924 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7925 { 7926 if (!need_emulate_wbinvd(vcpu)) 7927 return X86EMUL_CONTINUE; 7928 7929 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7930 int cpu = get_cpu(); 7931 7932 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7933 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7934 wbinvd_ipi, NULL, 1); 7935 put_cpu(); 7936 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7937 } else 7938 wbinvd(); 7939 return X86EMUL_CONTINUE; 7940 } 7941 7942 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7943 { 7944 kvm_emulate_wbinvd_noskip(vcpu); 7945 return kvm_skip_emulated_instruction(vcpu); 7946 } 7947 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7948 7949 7950 7951 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7952 { 7953 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7954 } 7955 7956 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7957 unsigned long *dest) 7958 { 7959 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7960 } 7961 7962 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7963 unsigned long value) 7964 { 7965 7966 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7967 } 7968 7969 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7970 { 7971 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7972 } 7973 7974 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7975 { 7976 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7977 unsigned long value; 7978 7979 switch (cr) { 7980 case 0: 7981 value = kvm_read_cr0(vcpu); 7982 break; 7983 case 2: 7984 value = vcpu->arch.cr2; 7985 break; 7986 case 3: 7987 value = kvm_read_cr3(vcpu); 7988 break; 7989 case 4: 7990 value = kvm_read_cr4(vcpu); 7991 break; 7992 case 8: 7993 value = kvm_get_cr8(vcpu); 7994 break; 7995 default: 7996 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7997 return 0; 7998 } 7999 8000 return value; 8001 } 8002 8003 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8004 { 8005 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8006 int res = 0; 8007 8008 switch (cr) { 8009 case 0: 8010 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8011 break; 8012 case 2: 8013 vcpu->arch.cr2 = val; 8014 break; 8015 case 3: 8016 res = kvm_set_cr3(vcpu, val); 8017 break; 8018 case 4: 8019 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8020 break; 8021 case 8: 8022 res = kvm_set_cr8(vcpu, val); 8023 break; 8024 default: 8025 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8026 res = -1; 8027 } 8028 8029 return res; 8030 } 8031 8032 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8033 { 8034 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 8035 } 8036 8037 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8038 { 8039 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 8040 } 8041 8042 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8043 { 8044 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 8045 } 8046 8047 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8048 { 8049 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 8050 } 8051 8052 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8053 { 8054 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 8055 } 8056 8057 static unsigned long emulator_get_cached_segment_base( 8058 struct x86_emulate_ctxt *ctxt, int seg) 8059 { 8060 return get_segment_base(emul_to_vcpu(ctxt), seg); 8061 } 8062 8063 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8064 struct desc_struct *desc, u32 *base3, 8065 int seg) 8066 { 8067 struct kvm_segment var; 8068 8069 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8070 *selector = var.selector; 8071 8072 if (var.unusable) { 8073 memset(desc, 0, sizeof(*desc)); 8074 if (base3) 8075 *base3 = 0; 8076 return false; 8077 } 8078 8079 if (var.g) 8080 var.limit >>= 12; 8081 set_desc_limit(desc, var.limit); 8082 set_desc_base(desc, (unsigned long)var.base); 8083 #ifdef CONFIG_X86_64 8084 if (base3) 8085 *base3 = var.base >> 32; 8086 #endif 8087 desc->type = var.type; 8088 desc->s = var.s; 8089 desc->dpl = var.dpl; 8090 desc->p = var.present; 8091 desc->avl = var.avl; 8092 desc->l = var.l; 8093 desc->d = var.db; 8094 desc->g = var.g; 8095 8096 return true; 8097 } 8098 8099 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8100 struct desc_struct *desc, u32 base3, 8101 int seg) 8102 { 8103 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8104 struct kvm_segment var; 8105 8106 var.selector = selector; 8107 var.base = get_desc_base(desc); 8108 #ifdef CONFIG_X86_64 8109 var.base |= ((u64)base3) << 32; 8110 #endif 8111 var.limit = get_desc_limit(desc); 8112 if (desc->g) 8113 var.limit = (var.limit << 12) | 0xfff; 8114 var.type = desc->type; 8115 var.dpl = desc->dpl; 8116 var.db = desc->d; 8117 var.s = desc->s; 8118 var.l = desc->l; 8119 var.g = desc->g; 8120 var.avl = desc->avl; 8121 var.present = desc->p; 8122 var.unusable = !var.present; 8123 var.padding = 0; 8124 8125 kvm_set_segment(vcpu, &var, seg); 8126 return; 8127 } 8128 8129 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8130 u32 msr_index, u64 *pdata) 8131 { 8132 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8133 int r; 8134 8135 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8136 if (r < 0) 8137 return X86EMUL_UNHANDLEABLE; 8138 8139 if (r) { 8140 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8141 complete_emulated_rdmsr, r)) 8142 return X86EMUL_IO_NEEDED; 8143 8144 trace_kvm_msr_read_ex(msr_index); 8145 return X86EMUL_PROPAGATE_FAULT; 8146 } 8147 8148 trace_kvm_msr_read(msr_index, *pdata); 8149 return X86EMUL_CONTINUE; 8150 } 8151 8152 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8153 u32 msr_index, u64 data) 8154 { 8155 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8156 int r; 8157 8158 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8159 if (r < 0) 8160 return X86EMUL_UNHANDLEABLE; 8161 8162 if (r) { 8163 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8164 complete_emulated_msr_access, r)) 8165 return X86EMUL_IO_NEEDED; 8166 8167 trace_kvm_msr_write_ex(msr_index, data); 8168 return X86EMUL_PROPAGATE_FAULT; 8169 } 8170 8171 trace_kvm_msr_write(msr_index, data); 8172 return X86EMUL_CONTINUE; 8173 } 8174 8175 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8176 u32 msr_index, u64 *pdata) 8177 { 8178 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8179 } 8180 8181 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 8182 u32 pmc) 8183 { 8184 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 8185 return 0; 8186 return -EINVAL; 8187 } 8188 8189 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8190 u32 pmc, u64 *pdata) 8191 { 8192 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8193 } 8194 8195 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8196 { 8197 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8198 } 8199 8200 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8201 struct x86_instruction_info *info, 8202 enum x86_intercept_stage stage) 8203 { 8204 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 8205 &ctxt->exception); 8206 } 8207 8208 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8209 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8210 bool exact_only) 8211 { 8212 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8213 } 8214 8215 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 8216 { 8217 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 8218 } 8219 8220 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8221 { 8222 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8223 } 8224 8225 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8226 { 8227 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8228 } 8229 8230 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8231 { 8232 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8233 } 8234 8235 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8236 { 8237 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8238 } 8239 8240 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8241 { 8242 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8243 } 8244 8245 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8246 { 8247 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8248 } 8249 8250 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8251 { 8252 return is_smm(emul_to_vcpu(ctxt)); 8253 } 8254 8255 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8256 { 8257 return is_guest_mode(emul_to_vcpu(ctxt)); 8258 } 8259 8260 #ifndef CONFIG_KVM_SMM 8261 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8262 { 8263 WARN_ON_ONCE(1); 8264 return X86EMUL_UNHANDLEABLE; 8265 } 8266 #endif 8267 8268 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8269 { 8270 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8271 } 8272 8273 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8274 { 8275 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8276 } 8277 8278 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8279 { 8280 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8281 8282 if (!kvm->vm_bugged) 8283 kvm_vm_bugged(kvm); 8284 } 8285 8286 static const struct x86_emulate_ops emulate_ops = { 8287 .vm_bugged = emulator_vm_bugged, 8288 .read_gpr = emulator_read_gpr, 8289 .write_gpr = emulator_write_gpr, 8290 .read_std = emulator_read_std, 8291 .write_std = emulator_write_std, 8292 .fetch = kvm_fetch_guest_virt, 8293 .read_emulated = emulator_read_emulated, 8294 .write_emulated = emulator_write_emulated, 8295 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8296 .invlpg = emulator_invlpg, 8297 .pio_in_emulated = emulator_pio_in_emulated, 8298 .pio_out_emulated = emulator_pio_out_emulated, 8299 .get_segment = emulator_get_segment, 8300 .set_segment = emulator_set_segment, 8301 .get_cached_segment_base = emulator_get_cached_segment_base, 8302 .get_gdt = emulator_get_gdt, 8303 .get_idt = emulator_get_idt, 8304 .set_gdt = emulator_set_gdt, 8305 .set_idt = emulator_set_idt, 8306 .get_cr = emulator_get_cr, 8307 .set_cr = emulator_set_cr, 8308 .cpl = emulator_get_cpl, 8309 .get_dr = emulator_get_dr, 8310 .set_dr = emulator_set_dr, 8311 .set_msr_with_filter = emulator_set_msr_with_filter, 8312 .get_msr_with_filter = emulator_get_msr_with_filter, 8313 .get_msr = emulator_get_msr, 8314 .check_pmc = emulator_check_pmc, 8315 .read_pmc = emulator_read_pmc, 8316 .halt = emulator_halt, 8317 .wbinvd = emulator_wbinvd, 8318 .fix_hypercall = emulator_fix_hypercall, 8319 .intercept = emulator_intercept, 8320 .get_cpuid = emulator_get_cpuid, 8321 .guest_has_long_mode = emulator_guest_has_long_mode, 8322 .guest_has_movbe = emulator_guest_has_movbe, 8323 .guest_has_fxsr = emulator_guest_has_fxsr, 8324 .guest_has_rdpid = emulator_guest_has_rdpid, 8325 .set_nmi_mask = emulator_set_nmi_mask, 8326 .is_smm = emulator_is_smm, 8327 .is_guest_mode = emulator_is_guest_mode, 8328 .leave_smm = emulator_leave_smm, 8329 .triple_fault = emulator_triple_fault, 8330 .set_xcr = emulator_set_xcr, 8331 }; 8332 8333 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8334 { 8335 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8336 /* 8337 * an sti; sti; sequence only disable interrupts for the first 8338 * instruction. So, if the last instruction, be it emulated or 8339 * not, left the system with the INT_STI flag enabled, it 8340 * means that the last instruction is an sti. We should not 8341 * leave the flag on in this case. The same goes for mov ss 8342 */ 8343 if (int_shadow & mask) 8344 mask = 0; 8345 if (unlikely(int_shadow || mask)) { 8346 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 8347 if (!mask) 8348 kvm_make_request(KVM_REQ_EVENT, vcpu); 8349 } 8350 } 8351 8352 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8353 { 8354 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8355 8356 if (ctxt->exception.vector == PF_VECTOR) 8357 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8358 else if (ctxt->exception.error_code_valid) 8359 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8360 ctxt->exception.error_code); 8361 else 8362 kvm_queue_exception(vcpu, ctxt->exception.vector); 8363 } 8364 8365 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8366 { 8367 struct x86_emulate_ctxt *ctxt; 8368 8369 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8370 if (!ctxt) { 8371 pr_err("failed to allocate vcpu's emulator\n"); 8372 return NULL; 8373 } 8374 8375 ctxt->vcpu = vcpu; 8376 ctxt->ops = &emulate_ops; 8377 vcpu->arch.emulate_ctxt = ctxt; 8378 8379 return ctxt; 8380 } 8381 8382 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8383 { 8384 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8385 int cs_db, cs_l; 8386 8387 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8388 8389 ctxt->gpa_available = false; 8390 ctxt->eflags = kvm_get_rflags(vcpu); 8391 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8392 8393 ctxt->eip = kvm_rip_read(vcpu); 8394 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8395 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8396 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8397 cs_db ? X86EMUL_MODE_PROT32 : 8398 X86EMUL_MODE_PROT16; 8399 ctxt->interruptibility = 0; 8400 ctxt->have_exception = false; 8401 ctxt->exception.vector = -1; 8402 ctxt->perm_ok = false; 8403 8404 init_decode_cache(ctxt); 8405 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8406 } 8407 8408 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8409 { 8410 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8411 int ret; 8412 8413 init_emulate_ctxt(vcpu); 8414 8415 ctxt->op_bytes = 2; 8416 ctxt->ad_bytes = 2; 8417 ctxt->_eip = ctxt->eip + inc_eip; 8418 ret = emulate_int_real(ctxt, irq); 8419 8420 if (ret != X86EMUL_CONTINUE) { 8421 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8422 } else { 8423 ctxt->eip = ctxt->_eip; 8424 kvm_rip_write(vcpu, ctxt->eip); 8425 kvm_set_rflags(vcpu, ctxt->eflags); 8426 } 8427 } 8428 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8429 8430 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8431 u8 ndata, u8 *insn_bytes, u8 insn_size) 8432 { 8433 struct kvm_run *run = vcpu->run; 8434 u64 info[5]; 8435 u8 info_start; 8436 8437 /* 8438 * Zero the whole array used to retrieve the exit info, as casting to 8439 * u32 for select entries will leave some chunks uninitialized. 8440 */ 8441 memset(&info, 0, sizeof(info)); 8442 8443 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8444 &info[2], (u32 *)&info[3], 8445 (u32 *)&info[4]); 8446 8447 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8448 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8449 8450 /* 8451 * There's currently space for 13 entries, but 5 are used for the exit 8452 * reason and info. Restrict to 4 to reduce the maintenance burden 8453 * when expanding kvm_run.emulation_failure in the future. 8454 */ 8455 if (WARN_ON_ONCE(ndata > 4)) 8456 ndata = 4; 8457 8458 /* Always include the flags as a 'data' entry. */ 8459 info_start = 1; 8460 run->emulation_failure.flags = 0; 8461 8462 if (insn_size) { 8463 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8464 sizeof(run->emulation_failure.insn_bytes) != 16)); 8465 info_start += 2; 8466 run->emulation_failure.flags |= 8467 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8468 run->emulation_failure.insn_size = insn_size; 8469 memset(run->emulation_failure.insn_bytes, 0x90, 8470 sizeof(run->emulation_failure.insn_bytes)); 8471 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8472 } 8473 8474 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8475 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8476 ndata * sizeof(data[0])); 8477 8478 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8479 } 8480 8481 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8482 { 8483 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8484 8485 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8486 ctxt->fetch.end - ctxt->fetch.data); 8487 } 8488 8489 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8490 u8 ndata) 8491 { 8492 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8493 } 8494 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8495 8496 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8497 { 8498 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8499 } 8500 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8501 8502 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8503 { 8504 struct kvm *kvm = vcpu->kvm; 8505 8506 ++vcpu->stat.insn_emulation_fail; 8507 trace_kvm_emulate_insn_failed(vcpu); 8508 8509 if (emulation_type & EMULTYPE_VMWARE_GP) { 8510 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8511 return 1; 8512 } 8513 8514 if (kvm->arch.exit_on_emulation_error || 8515 (emulation_type & EMULTYPE_SKIP)) { 8516 prepare_emulation_ctxt_failure_exit(vcpu); 8517 return 0; 8518 } 8519 8520 kvm_queue_exception(vcpu, UD_VECTOR); 8521 8522 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8523 prepare_emulation_ctxt_failure_exit(vcpu); 8524 return 0; 8525 } 8526 8527 return 1; 8528 } 8529 8530 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8531 int emulation_type) 8532 { 8533 gpa_t gpa = cr2_or_gpa; 8534 kvm_pfn_t pfn; 8535 8536 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8537 return false; 8538 8539 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8540 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8541 return false; 8542 8543 if (!vcpu->arch.mmu->root_role.direct) { 8544 /* 8545 * Write permission should be allowed since only 8546 * write access need to be emulated. 8547 */ 8548 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8549 8550 /* 8551 * If the mapping is invalid in guest, let cpu retry 8552 * it to generate fault. 8553 */ 8554 if (gpa == INVALID_GPA) 8555 return true; 8556 } 8557 8558 /* 8559 * Do not retry the unhandleable instruction if it faults on the 8560 * readonly host memory, otherwise it will goto a infinite loop: 8561 * retry instruction -> write #PF -> emulation fail -> retry 8562 * instruction -> ... 8563 */ 8564 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8565 8566 /* 8567 * If the instruction failed on the error pfn, it can not be fixed, 8568 * report the error to userspace. 8569 */ 8570 if (is_error_noslot_pfn(pfn)) 8571 return false; 8572 8573 kvm_release_pfn_clean(pfn); 8574 8575 /* The instructions are well-emulated on direct mmu. */ 8576 if (vcpu->arch.mmu->root_role.direct) { 8577 unsigned int indirect_shadow_pages; 8578 8579 write_lock(&vcpu->kvm->mmu_lock); 8580 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8581 write_unlock(&vcpu->kvm->mmu_lock); 8582 8583 if (indirect_shadow_pages) 8584 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8585 8586 return true; 8587 } 8588 8589 /* 8590 * if emulation was due to access to shadowed page table 8591 * and it failed try to unshadow page and re-enter the 8592 * guest to let CPU execute the instruction. 8593 */ 8594 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8595 8596 /* 8597 * If the access faults on its page table, it can not 8598 * be fixed by unprotecting shadow page and it should 8599 * be reported to userspace. 8600 */ 8601 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); 8602 } 8603 8604 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8605 gpa_t cr2_or_gpa, int emulation_type) 8606 { 8607 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8608 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8609 8610 last_retry_eip = vcpu->arch.last_retry_eip; 8611 last_retry_addr = vcpu->arch.last_retry_addr; 8612 8613 /* 8614 * If the emulation is caused by #PF and it is non-page_table 8615 * writing instruction, it means the VM-EXIT is caused by shadow 8616 * page protected, we can zap the shadow page and retry this 8617 * instruction directly. 8618 * 8619 * Note: if the guest uses a non-page-table modifying instruction 8620 * on the PDE that points to the instruction, then we will unmap 8621 * the instruction and go to an infinite loop. So, we cache the 8622 * last retried eip and the last fault address, if we meet the eip 8623 * and the address again, we can break out of the potential infinite 8624 * loop. 8625 */ 8626 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8627 8628 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8629 return false; 8630 8631 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8632 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8633 return false; 8634 8635 if (x86_page_table_writing_insn(ctxt)) 8636 return false; 8637 8638 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8639 return false; 8640 8641 vcpu->arch.last_retry_eip = ctxt->eip; 8642 vcpu->arch.last_retry_addr = cr2_or_gpa; 8643 8644 if (!vcpu->arch.mmu->root_role.direct) 8645 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8646 8647 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8648 8649 return true; 8650 } 8651 8652 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8653 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8654 8655 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8656 unsigned long *db) 8657 { 8658 u32 dr6 = 0; 8659 int i; 8660 u32 enable, rwlen; 8661 8662 enable = dr7; 8663 rwlen = dr7 >> 16; 8664 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8665 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8666 dr6 |= (1 << i); 8667 return dr6; 8668 } 8669 8670 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8671 { 8672 struct kvm_run *kvm_run = vcpu->run; 8673 8674 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8675 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8676 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8677 kvm_run->debug.arch.exception = DB_VECTOR; 8678 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8679 return 0; 8680 } 8681 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8682 return 1; 8683 } 8684 8685 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8686 { 8687 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8688 int r; 8689 8690 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8691 if (unlikely(!r)) 8692 return 0; 8693 8694 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8695 8696 /* 8697 * rflags is the old, "raw" value of the flags. The new value has 8698 * not been saved yet. 8699 * 8700 * This is correct even for TF set by the guest, because "the 8701 * processor will not generate this exception after the instruction 8702 * that sets the TF flag". 8703 */ 8704 if (unlikely(rflags & X86_EFLAGS_TF)) 8705 r = kvm_vcpu_do_singlestep(vcpu); 8706 return r; 8707 } 8708 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8709 8710 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8711 { 8712 u32 shadow; 8713 8714 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8715 return true; 8716 8717 /* 8718 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, 8719 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first 8720 * to avoid the relatively expensive CPUID lookup. 8721 */ 8722 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 8723 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && 8724 guest_cpuid_is_intel(vcpu); 8725 } 8726 8727 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8728 int emulation_type, int *r) 8729 { 8730 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8731 8732 /* 8733 * Do not check for code breakpoints if hardware has already done the 8734 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8735 * the instruction has passed all exception checks, and all intercepted 8736 * exceptions that trigger emulation have lower priority than code 8737 * breakpoints, i.e. the fact that the intercepted exception occurred 8738 * means any code breakpoints have already been serviced. 8739 * 8740 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8741 * hardware has checked the RIP of the magic prefix, but not the RIP of 8742 * the instruction being emulated. The intent of forced emulation is 8743 * to behave as if KVM intercepted the instruction without an exception 8744 * and without a prefix. 8745 */ 8746 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8747 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8748 return false; 8749 8750 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8751 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8752 struct kvm_run *kvm_run = vcpu->run; 8753 unsigned long eip = kvm_get_linear_rip(vcpu); 8754 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8755 vcpu->arch.guest_debug_dr7, 8756 vcpu->arch.eff_db); 8757 8758 if (dr6 != 0) { 8759 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8760 kvm_run->debug.arch.pc = eip; 8761 kvm_run->debug.arch.exception = DB_VECTOR; 8762 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8763 *r = 0; 8764 return true; 8765 } 8766 } 8767 8768 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8769 !kvm_is_code_breakpoint_inhibited(vcpu)) { 8770 unsigned long eip = kvm_get_linear_rip(vcpu); 8771 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8772 vcpu->arch.dr7, 8773 vcpu->arch.db); 8774 8775 if (dr6 != 0) { 8776 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8777 *r = 1; 8778 return true; 8779 } 8780 } 8781 8782 return false; 8783 } 8784 8785 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8786 { 8787 switch (ctxt->opcode_len) { 8788 case 1: 8789 switch (ctxt->b) { 8790 case 0xe4: /* IN */ 8791 case 0xe5: 8792 case 0xec: 8793 case 0xed: 8794 case 0xe6: /* OUT */ 8795 case 0xe7: 8796 case 0xee: 8797 case 0xef: 8798 case 0x6c: /* INS */ 8799 case 0x6d: 8800 case 0x6e: /* OUTS */ 8801 case 0x6f: 8802 return true; 8803 } 8804 break; 8805 case 2: 8806 switch (ctxt->b) { 8807 case 0x33: /* RDPMC */ 8808 return true; 8809 } 8810 break; 8811 } 8812 8813 return false; 8814 } 8815 8816 /* 8817 * Decode an instruction for emulation. The caller is responsible for handling 8818 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8819 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8820 * code breakpoints have higher priority and thus have already been done by 8821 * hardware. 8822 * 8823 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8824 * response to a machine check. 8825 */ 8826 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8827 void *insn, int insn_len) 8828 { 8829 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8830 int r; 8831 8832 init_emulate_ctxt(vcpu); 8833 8834 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8835 8836 trace_kvm_emulate_insn_start(vcpu); 8837 ++vcpu->stat.insn_emulation; 8838 8839 return r; 8840 } 8841 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8842 8843 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8844 int emulation_type, void *insn, int insn_len) 8845 { 8846 int r; 8847 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8848 bool writeback = true; 8849 8850 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8851 return 1; 8852 8853 vcpu->arch.l1tf_flush_l1d = true; 8854 8855 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8856 kvm_clear_exception_queue(vcpu); 8857 8858 /* 8859 * Return immediately if RIP hits a code breakpoint, such #DBs 8860 * are fault-like and are higher priority than any faults on 8861 * the code fetch itself. 8862 */ 8863 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 8864 return r; 8865 8866 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8867 insn, insn_len); 8868 if (r != EMULATION_OK) { 8869 if ((emulation_type & EMULTYPE_TRAP_UD) || 8870 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8871 kvm_queue_exception(vcpu, UD_VECTOR); 8872 return 1; 8873 } 8874 if (reexecute_instruction(vcpu, cr2_or_gpa, 8875 emulation_type)) 8876 return 1; 8877 8878 if (ctxt->have_exception && 8879 !(emulation_type & EMULTYPE_SKIP)) { 8880 /* 8881 * #UD should result in just EMULATION_FAILED, and trap-like 8882 * exception should not be encountered during decode. 8883 */ 8884 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8885 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8886 inject_emulated_exception(vcpu); 8887 return 1; 8888 } 8889 return handle_emulation_failure(vcpu, emulation_type); 8890 } 8891 } 8892 8893 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8894 !is_vmware_backdoor_opcode(ctxt)) { 8895 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8896 return 1; 8897 } 8898 8899 /* 8900 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8901 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8902 * The caller is responsible for updating interruptibility state and 8903 * injecting single-step #DBs. 8904 */ 8905 if (emulation_type & EMULTYPE_SKIP) { 8906 if (ctxt->mode != X86EMUL_MODE_PROT64) 8907 ctxt->eip = (u32)ctxt->_eip; 8908 else 8909 ctxt->eip = ctxt->_eip; 8910 8911 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8912 r = 1; 8913 goto writeback; 8914 } 8915 8916 kvm_rip_write(vcpu, ctxt->eip); 8917 if (ctxt->eflags & X86_EFLAGS_RF) 8918 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8919 return 1; 8920 } 8921 8922 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8923 return 1; 8924 8925 /* this is needed for vmware backdoor interface to work since it 8926 changes registers values during IO operation */ 8927 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8928 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8929 emulator_invalidate_register_cache(ctxt); 8930 } 8931 8932 restart: 8933 if (emulation_type & EMULTYPE_PF) { 8934 /* Save the faulting GPA (cr2) in the address field */ 8935 ctxt->exception.address = cr2_or_gpa; 8936 8937 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8938 if (vcpu->arch.mmu->root_role.direct) { 8939 ctxt->gpa_available = true; 8940 ctxt->gpa_val = cr2_or_gpa; 8941 } 8942 } else { 8943 /* Sanitize the address out of an abundance of paranoia. */ 8944 ctxt->exception.address = 0; 8945 } 8946 8947 r = x86_emulate_insn(ctxt); 8948 8949 if (r == EMULATION_INTERCEPTED) 8950 return 1; 8951 8952 if (r == EMULATION_FAILED) { 8953 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) 8954 return 1; 8955 8956 return handle_emulation_failure(vcpu, emulation_type); 8957 } 8958 8959 if (ctxt->have_exception) { 8960 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 8961 vcpu->mmio_needed = false; 8962 r = 1; 8963 inject_emulated_exception(vcpu); 8964 } else if (vcpu->arch.pio.count) { 8965 if (!vcpu->arch.pio.in) { 8966 /* FIXME: return into emulator if single-stepping. */ 8967 vcpu->arch.pio.count = 0; 8968 } else { 8969 writeback = false; 8970 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8971 } 8972 r = 0; 8973 } else if (vcpu->mmio_needed) { 8974 ++vcpu->stat.mmio_exits; 8975 8976 if (!vcpu->mmio_is_write) 8977 writeback = false; 8978 r = 0; 8979 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8980 } else if (vcpu->arch.complete_userspace_io) { 8981 writeback = false; 8982 r = 0; 8983 } else if (r == EMULATION_RESTART) 8984 goto restart; 8985 else 8986 r = 1; 8987 8988 writeback: 8989 if (writeback) { 8990 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8991 toggle_interruptibility(vcpu, ctxt->interruptibility); 8992 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8993 8994 /* 8995 * Note, EXCPT_DB is assumed to be fault-like as the emulator 8996 * only supports code breakpoints and general detect #DB, both 8997 * of which are fault-like. 8998 */ 8999 if (!ctxt->have_exception || 9000 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9001 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 9002 if (ctxt->is_branch) 9003 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 9004 kvm_rip_write(vcpu, ctxt->eip); 9005 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9006 r = kvm_vcpu_do_singlestep(vcpu); 9007 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 9008 __kvm_set_rflags(vcpu, ctxt->eflags); 9009 } 9010 9011 /* 9012 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9013 * do nothing, and it will be requested again as soon as 9014 * the shadow expires. But we still need to check here, 9015 * because POPF has no interrupt shadow. 9016 */ 9017 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9018 kvm_make_request(KVM_REQ_EVENT, vcpu); 9019 } else 9020 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9021 9022 return r; 9023 } 9024 9025 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9026 { 9027 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9028 } 9029 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9030 9031 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9032 void *insn, int insn_len) 9033 { 9034 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9035 } 9036 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9037 9038 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9039 { 9040 vcpu->arch.pio.count = 0; 9041 return 1; 9042 } 9043 9044 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9045 { 9046 vcpu->arch.pio.count = 0; 9047 9048 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9049 return 1; 9050 9051 return kvm_skip_emulated_instruction(vcpu); 9052 } 9053 9054 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9055 unsigned short port) 9056 { 9057 unsigned long val = kvm_rax_read(vcpu); 9058 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9059 9060 if (ret) 9061 return ret; 9062 9063 /* 9064 * Workaround userspace that relies on old KVM behavior of %rip being 9065 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9066 */ 9067 if (port == 0x7e && 9068 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9069 vcpu->arch.complete_userspace_io = 9070 complete_fast_pio_out_port_0x7e; 9071 kvm_skip_emulated_instruction(vcpu); 9072 } else { 9073 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9074 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9075 } 9076 return 0; 9077 } 9078 9079 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9080 { 9081 unsigned long val; 9082 9083 /* We should only ever be called with arch.pio.count equal to 1 */ 9084 BUG_ON(vcpu->arch.pio.count != 1); 9085 9086 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9087 vcpu->arch.pio.count = 0; 9088 return 1; 9089 } 9090 9091 /* For size less than 4 we merge, else we zero extend */ 9092 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9093 9094 complete_emulator_pio_in(vcpu, &val); 9095 kvm_rax_write(vcpu, val); 9096 9097 return kvm_skip_emulated_instruction(vcpu); 9098 } 9099 9100 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9101 unsigned short port) 9102 { 9103 unsigned long val; 9104 int ret; 9105 9106 /* For size less than 4 we merge, else we zero extend */ 9107 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9108 9109 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9110 if (ret) { 9111 kvm_rax_write(vcpu, val); 9112 return ret; 9113 } 9114 9115 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9116 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9117 9118 return 0; 9119 } 9120 9121 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9122 { 9123 int ret; 9124 9125 if (in) 9126 ret = kvm_fast_pio_in(vcpu, size, port); 9127 else 9128 ret = kvm_fast_pio_out(vcpu, size, port); 9129 return ret && kvm_skip_emulated_instruction(vcpu); 9130 } 9131 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9132 9133 static int kvmclock_cpu_down_prep(unsigned int cpu) 9134 { 9135 __this_cpu_write(cpu_tsc_khz, 0); 9136 return 0; 9137 } 9138 9139 static void tsc_khz_changed(void *data) 9140 { 9141 struct cpufreq_freqs *freq = data; 9142 unsigned long khz = 0; 9143 9144 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9145 9146 if (data) 9147 khz = freq->new; 9148 else 9149 khz = cpufreq_quick_get(raw_smp_processor_id()); 9150 if (!khz) 9151 khz = tsc_khz; 9152 __this_cpu_write(cpu_tsc_khz, khz); 9153 } 9154 9155 #ifdef CONFIG_X86_64 9156 static void kvm_hyperv_tsc_notifier(void) 9157 { 9158 struct kvm *kvm; 9159 int cpu; 9160 9161 mutex_lock(&kvm_lock); 9162 list_for_each_entry(kvm, &vm_list, vm_list) 9163 kvm_make_mclock_inprogress_request(kvm); 9164 9165 /* no guest entries from this point */ 9166 hyperv_stop_tsc_emulation(); 9167 9168 /* TSC frequency always matches when on Hyper-V */ 9169 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9170 for_each_present_cpu(cpu) 9171 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9172 } 9173 kvm_caps.max_guest_tsc_khz = tsc_khz; 9174 9175 list_for_each_entry(kvm, &vm_list, vm_list) { 9176 __kvm_start_pvclock_update(kvm); 9177 pvclock_update_vm_gtod_copy(kvm); 9178 kvm_end_pvclock_update(kvm); 9179 } 9180 9181 mutex_unlock(&kvm_lock); 9182 } 9183 #endif 9184 9185 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9186 { 9187 struct kvm *kvm; 9188 struct kvm_vcpu *vcpu; 9189 int send_ipi = 0; 9190 unsigned long i; 9191 9192 /* 9193 * We allow guests to temporarily run on slowing clocks, 9194 * provided we notify them after, or to run on accelerating 9195 * clocks, provided we notify them before. Thus time never 9196 * goes backwards. 9197 * 9198 * However, we have a problem. We can't atomically update 9199 * the frequency of a given CPU from this function; it is 9200 * merely a notifier, which can be called from any CPU. 9201 * Changing the TSC frequency at arbitrary points in time 9202 * requires a recomputation of local variables related to 9203 * the TSC for each VCPU. We must flag these local variables 9204 * to be updated and be sure the update takes place with the 9205 * new frequency before any guests proceed. 9206 * 9207 * Unfortunately, the combination of hotplug CPU and frequency 9208 * change creates an intractable locking scenario; the order 9209 * of when these callouts happen is undefined with respect to 9210 * CPU hotplug, and they can race with each other. As such, 9211 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9212 * undefined; you can actually have a CPU frequency change take 9213 * place in between the computation of X and the setting of the 9214 * variable. To protect against this problem, all updates of 9215 * the per_cpu tsc_khz variable are done in an interrupt 9216 * protected IPI, and all callers wishing to update the value 9217 * must wait for a synchronous IPI to complete (which is trivial 9218 * if the caller is on the CPU already). This establishes the 9219 * necessary total order on variable updates. 9220 * 9221 * Note that because a guest time update may take place 9222 * anytime after the setting of the VCPU's request bit, the 9223 * correct TSC value must be set before the request. However, 9224 * to ensure the update actually makes it to any guest which 9225 * starts running in hardware virtualization between the set 9226 * and the acquisition of the spinlock, we must also ping the 9227 * CPU after setting the request bit. 9228 * 9229 */ 9230 9231 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9232 9233 mutex_lock(&kvm_lock); 9234 list_for_each_entry(kvm, &vm_list, vm_list) { 9235 kvm_for_each_vcpu(i, vcpu, kvm) { 9236 if (vcpu->cpu != cpu) 9237 continue; 9238 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9239 if (vcpu->cpu != raw_smp_processor_id()) 9240 send_ipi = 1; 9241 } 9242 } 9243 mutex_unlock(&kvm_lock); 9244 9245 if (freq->old < freq->new && send_ipi) { 9246 /* 9247 * We upscale the frequency. Must make the guest 9248 * doesn't see old kvmclock values while running with 9249 * the new frequency, otherwise we risk the guest sees 9250 * time go backwards. 9251 * 9252 * In case we update the frequency for another cpu 9253 * (which might be in guest context) send an interrupt 9254 * to kick the cpu out of guest context. Next time 9255 * guest context is entered kvmclock will be updated, 9256 * so the guest will not see stale values. 9257 */ 9258 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9259 } 9260 } 9261 9262 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9263 void *data) 9264 { 9265 struct cpufreq_freqs *freq = data; 9266 int cpu; 9267 9268 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9269 return 0; 9270 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9271 return 0; 9272 9273 for_each_cpu(cpu, freq->policy->cpus) 9274 __kvmclock_cpufreq_notifier(freq, cpu); 9275 9276 return 0; 9277 } 9278 9279 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9280 .notifier_call = kvmclock_cpufreq_notifier 9281 }; 9282 9283 static int kvmclock_cpu_online(unsigned int cpu) 9284 { 9285 tsc_khz_changed(NULL); 9286 return 0; 9287 } 9288 9289 static void kvm_timer_init(void) 9290 { 9291 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9292 max_tsc_khz = tsc_khz; 9293 9294 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9295 struct cpufreq_policy *policy; 9296 int cpu; 9297 9298 cpu = get_cpu(); 9299 policy = cpufreq_cpu_get(cpu); 9300 if (policy) { 9301 if (policy->cpuinfo.max_freq) 9302 max_tsc_khz = policy->cpuinfo.max_freq; 9303 cpufreq_cpu_put(policy); 9304 } 9305 put_cpu(); 9306 } 9307 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9308 CPUFREQ_TRANSITION_NOTIFIER); 9309 9310 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9311 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9312 } 9313 } 9314 9315 #ifdef CONFIG_X86_64 9316 static void pvclock_gtod_update_fn(struct work_struct *work) 9317 { 9318 struct kvm *kvm; 9319 struct kvm_vcpu *vcpu; 9320 unsigned long i; 9321 9322 mutex_lock(&kvm_lock); 9323 list_for_each_entry(kvm, &vm_list, vm_list) 9324 kvm_for_each_vcpu(i, vcpu, kvm) 9325 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9326 atomic_set(&kvm_guest_has_master_clock, 0); 9327 mutex_unlock(&kvm_lock); 9328 } 9329 9330 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9331 9332 /* 9333 * Indirection to move queue_work() out of the tk_core.seq write held 9334 * region to prevent possible deadlocks against time accessors which 9335 * are invoked with work related locks held. 9336 */ 9337 static void pvclock_irq_work_fn(struct irq_work *w) 9338 { 9339 queue_work(system_long_wq, &pvclock_gtod_work); 9340 } 9341 9342 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9343 9344 /* 9345 * Notification about pvclock gtod data update. 9346 */ 9347 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9348 void *priv) 9349 { 9350 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9351 struct timekeeper *tk = priv; 9352 9353 update_pvclock_gtod(tk); 9354 9355 /* 9356 * Disable master clock if host does not trust, or does not use, 9357 * TSC based clocksource. Delegate queue_work() to irq_work as 9358 * this is invoked with tk_core.seq write held. 9359 */ 9360 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9361 atomic_read(&kvm_guest_has_master_clock) != 0) 9362 irq_work_queue(&pvclock_irq_work); 9363 return 0; 9364 } 9365 9366 static struct notifier_block pvclock_gtod_notifier = { 9367 .notifier_call = pvclock_gtod_notify, 9368 }; 9369 #endif 9370 9371 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9372 { 9373 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9374 9375 #define __KVM_X86_OP(func) \ 9376 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9377 #define KVM_X86_OP(func) \ 9378 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9379 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9380 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9381 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9382 (void *)__static_call_return0); 9383 #include <asm/kvm-x86-ops.h> 9384 #undef __KVM_X86_OP 9385 9386 kvm_pmu_ops_update(ops->pmu_ops); 9387 } 9388 9389 static int kvm_x86_check_processor_compatibility(void) 9390 { 9391 int cpu = smp_processor_id(); 9392 struct cpuinfo_x86 *c = &cpu_data(cpu); 9393 9394 /* 9395 * Compatibility checks are done when loading KVM and when enabling 9396 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9397 * compatible, i.e. KVM should never perform a compatibility check on 9398 * an offline CPU. 9399 */ 9400 WARN_ON(!cpu_online(cpu)); 9401 9402 if (__cr4_reserved_bits(cpu_has, c) != 9403 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9404 return -EIO; 9405 9406 return static_call(kvm_x86_check_processor_compatibility)(); 9407 } 9408 9409 static void kvm_x86_check_cpu_compat(void *ret) 9410 { 9411 *(int *)ret = kvm_x86_check_processor_compatibility(); 9412 } 9413 9414 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9415 { 9416 u64 host_pat; 9417 int r, cpu; 9418 9419 if (kvm_x86_ops.hardware_enable) { 9420 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9421 return -EEXIST; 9422 } 9423 9424 /* 9425 * KVM explicitly assumes that the guest has an FPU and 9426 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9427 * vCPU's FPU state as a fxregs_state struct. 9428 */ 9429 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9430 pr_err("inadequate fpu\n"); 9431 return -EOPNOTSUPP; 9432 } 9433 9434 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9435 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9436 return -EOPNOTSUPP; 9437 } 9438 9439 /* 9440 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9441 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9442 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9443 * with an exception. PAT[0] is set to WB on RESET and also by the 9444 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9445 */ 9446 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9447 (host_pat & GENMASK(2, 0)) != 6) { 9448 pr_err("host PAT[0] is not WB\n"); 9449 return -EIO; 9450 } 9451 9452 x86_emulator_cache = kvm_alloc_emulator_cache(); 9453 if (!x86_emulator_cache) { 9454 pr_err("failed to allocate cache for x86 emulator\n"); 9455 return -ENOMEM; 9456 } 9457 9458 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9459 if (!user_return_msrs) { 9460 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9461 r = -ENOMEM; 9462 goto out_free_x86_emulator_cache; 9463 } 9464 kvm_nr_uret_msrs = 0; 9465 9466 r = kvm_mmu_vendor_module_init(); 9467 if (r) 9468 goto out_free_percpu; 9469 9470 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9471 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9472 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9473 } 9474 9475 rdmsrl_safe(MSR_EFER, &host_efer); 9476 9477 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9478 rdmsrl(MSR_IA32_XSS, host_xss); 9479 9480 kvm_init_pmu_capability(ops->pmu_ops); 9481 9482 r = ops->hardware_setup(); 9483 if (r != 0) 9484 goto out_mmu_exit; 9485 9486 kvm_ops_update(ops); 9487 9488 for_each_online_cpu(cpu) { 9489 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9490 if (r < 0) 9491 goto out_unwind_ops; 9492 } 9493 9494 /* 9495 * Point of no return! DO NOT add error paths below this point unless 9496 * absolutely necessary, as most operations from this point forward 9497 * require unwinding. 9498 */ 9499 kvm_timer_init(); 9500 9501 if (pi_inject_timer == -1) 9502 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9503 #ifdef CONFIG_X86_64 9504 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9505 9506 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9507 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9508 #endif 9509 9510 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9511 9512 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9513 kvm_caps.supported_xss = 0; 9514 9515 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9516 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9517 #undef __kvm_cpu_cap_has 9518 9519 if (kvm_caps.has_tsc_control) { 9520 /* 9521 * Make sure the user can only configure tsc_khz values that 9522 * fit into a signed integer. 9523 * A min value is not calculated because it will always 9524 * be 1 on all machines. 9525 */ 9526 u64 max = min(0x7fffffffULL, 9527 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9528 kvm_caps.max_guest_tsc_khz = max; 9529 } 9530 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9531 kvm_init_msr_lists(); 9532 return 0; 9533 9534 out_unwind_ops: 9535 kvm_x86_ops.hardware_enable = NULL; 9536 static_call(kvm_x86_hardware_unsetup)(); 9537 out_mmu_exit: 9538 kvm_mmu_vendor_module_exit(); 9539 out_free_percpu: 9540 free_percpu(user_return_msrs); 9541 out_free_x86_emulator_cache: 9542 kmem_cache_destroy(x86_emulator_cache); 9543 return r; 9544 } 9545 9546 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9547 { 9548 int r; 9549 9550 mutex_lock(&vendor_module_lock); 9551 r = __kvm_x86_vendor_init(ops); 9552 mutex_unlock(&vendor_module_lock); 9553 9554 return r; 9555 } 9556 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9557 9558 void kvm_x86_vendor_exit(void) 9559 { 9560 kvm_unregister_perf_callbacks(); 9561 9562 #ifdef CONFIG_X86_64 9563 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9564 clear_hv_tscchange_cb(); 9565 #endif 9566 kvm_lapic_exit(); 9567 9568 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9569 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9570 CPUFREQ_TRANSITION_NOTIFIER); 9571 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9572 } 9573 #ifdef CONFIG_X86_64 9574 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9575 irq_work_sync(&pvclock_irq_work); 9576 cancel_work_sync(&pvclock_gtod_work); 9577 #endif 9578 static_call(kvm_x86_hardware_unsetup)(); 9579 kvm_mmu_vendor_module_exit(); 9580 free_percpu(user_return_msrs); 9581 kmem_cache_destroy(x86_emulator_cache); 9582 #ifdef CONFIG_KVM_XEN 9583 static_key_deferred_flush(&kvm_xen_enabled); 9584 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9585 #endif 9586 mutex_lock(&vendor_module_lock); 9587 kvm_x86_ops.hardware_enable = NULL; 9588 mutex_unlock(&vendor_module_lock); 9589 } 9590 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9591 9592 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9593 { 9594 /* 9595 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9596 * local APIC is in-kernel, the run loop will detect the non-runnable 9597 * state and halt the vCPU. Exit to userspace if the local APIC is 9598 * managed by userspace, in which case userspace is responsible for 9599 * handling wake events. 9600 */ 9601 ++vcpu->stat.halt_exits; 9602 if (lapic_in_kernel(vcpu)) { 9603 vcpu->arch.mp_state = state; 9604 return 1; 9605 } else { 9606 vcpu->run->exit_reason = reason; 9607 return 0; 9608 } 9609 } 9610 9611 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9612 { 9613 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9614 } 9615 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9616 9617 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9618 { 9619 int ret = kvm_skip_emulated_instruction(vcpu); 9620 /* 9621 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9622 * KVM_EXIT_DEBUG here. 9623 */ 9624 return kvm_emulate_halt_noskip(vcpu) && ret; 9625 } 9626 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9627 9628 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9629 { 9630 int ret = kvm_skip_emulated_instruction(vcpu); 9631 9632 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9633 KVM_EXIT_AP_RESET_HOLD) && ret; 9634 } 9635 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9636 9637 #ifdef CONFIG_X86_64 9638 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9639 unsigned long clock_type) 9640 { 9641 struct kvm_clock_pairing clock_pairing; 9642 struct timespec64 ts; 9643 u64 cycle; 9644 int ret; 9645 9646 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9647 return -KVM_EOPNOTSUPP; 9648 9649 /* 9650 * When tsc is in permanent catchup mode guests won't be able to use 9651 * pvclock_read_retry loop to get consistent view of pvclock 9652 */ 9653 if (vcpu->arch.tsc_always_catchup) 9654 return -KVM_EOPNOTSUPP; 9655 9656 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9657 return -KVM_EOPNOTSUPP; 9658 9659 clock_pairing.sec = ts.tv_sec; 9660 clock_pairing.nsec = ts.tv_nsec; 9661 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9662 clock_pairing.flags = 0; 9663 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9664 9665 ret = 0; 9666 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9667 sizeof(struct kvm_clock_pairing))) 9668 ret = -KVM_EFAULT; 9669 9670 return ret; 9671 } 9672 #endif 9673 9674 /* 9675 * kvm_pv_kick_cpu_op: Kick a vcpu. 9676 * 9677 * @apicid - apicid of vcpu to be kicked. 9678 */ 9679 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9680 { 9681 /* 9682 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9683 * common code, e.g. for tracing. Defer initialization to the compiler. 9684 */ 9685 struct kvm_lapic_irq lapic_irq = { 9686 .delivery_mode = APIC_DM_REMRD, 9687 .dest_mode = APIC_DEST_PHYSICAL, 9688 .shorthand = APIC_DEST_NOSHORT, 9689 .dest_id = apicid, 9690 }; 9691 9692 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9693 } 9694 9695 bool kvm_apicv_activated(struct kvm *kvm) 9696 { 9697 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9698 } 9699 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9700 9701 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9702 { 9703 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9704 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9705 9706 return (vm_reasons | vcpu_reasons) == 0; 9707 } 9708 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9709 9710 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9711 enum kvm_apicv_inhibit reason, bool set) 9712 { 9713 if (set) 9714 __set_bit(reason, inhibits); 9715 else 9716 __clear_bit(reason, inhibits); 9717 9718 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9719 } 9720 9721 static void kvm_apicv_init(struct kvm *kvm) 9722 { 9723 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9724 9725 init_rwsem(&kvm->arch.apicv_update_lock); 9726 9727 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9728 9729 if (!enable_apicv) 9730 set_or_clear_apicv_inhibit(inhibits, 9731 APICV_INHIBIT_REASON_DISABLE, true); 9732 } 9733 9734 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9735 { 9736 struct kvm_vcpu *target = NULL; 9737 struct kvm_apic_map *map; 9738 9739 vcpu->stat.directed_yield_attempted++; 9740 9741 if (single_task_running()) 9742 goto no_yield; 9743 9744 rcu_read_lock(); 9745 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9746 9747 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9748 target = map->phys_map[dest_id]->vcpu; 9749 9750 rcu_read_unlock(); 9751 9752 if (!target || !READ_ONCE(target->ready)) 9753 goto no_yield; 9754 9755 /* Ignore requests to yield to self */ 9756 if (vcpu == target) 9757 goto no_yield; 9758 9759 if (kvm_vcpu_yield_to(target) <= 0) 9760 goto no_yield; 9761 9762 vcpu->stat.directed_yield_successful++; 9763 9764 no_yield: 9765 return; 9766 } 9767 9768 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9769 { 9770 u64 ret = vcpu->run->hypercall.ret; 9771 9772 if (!is_64_bit_mode(vcpu)) 9773 ret = (u32)ret; 9774 kvm_rax_write(vcpu, ret); 9775 ++vcpu->stat.hypercalls; 9776 return kvm_skip_emulated_instruction(vcpu); 9777 } 9778 9779 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9780 { 9781 unsigned long nr, a0, a1, a2, a3, ret; 9782 int op_64_bit; 9783 9784 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9785 return kvm_xen_hypercall(vcpu); 9786 9787 if (kvm_hv_hypercall_enabled(vcpu)) 9788 return kvm_hv_hypercall(vcpu); 9789 9790 nr = kvm_rax_read(vcpu); 9791 a0 = kvm_rbx_read(vcpu); 9792 a1 = kvm_rcx_read(vcpu); 9793 a2 = kvm_rdx_read(vcpu); 9794 a3 = kvm_rsi_read(vcpu); 9795 9796 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9797 9798 op_64_bit = is_64_bit_hypercall(vcpu); 9799 if (!op_64_bit) { 9800 nr &= 0xFFFFFFFF; 9801 a0 &= 0xFFFFFFFF; 9802 a1 &= 0xFFFFFFFF; 9803 a2 &= 0xFFFFFFFF; 9804 a3 &= 0xFFFFFFFF; 9805 } 9806 9807 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9808 ret = -KVM_EPERM; 9809 goto out; 9810 } 9811 9812 ret = -KVM_ENOSYS; 9813 9814 switch (nr) { 9815 case KVM_HC_VAPIC_POLL_IRQ: 9816 ret = 0; 9817 break; 9818 case KVM_HC_KICK_CPU: 9819 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9820 break; 9821 9822 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9823 kvm_sched_yield(vcpu, a1); 9824 ret = 0; 9825 break; 9826 #ifdef CONFIG_X86_64 9827 case KVM_HC_CLOCK_PAIRING: 9828 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9829 break; 9830 #endif 9831 case KVM_HC_SEND_IPI: 9832 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9833 break; 9834 9835 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9836 break; 9837 case KVM_HC_SCHED_YIELD: 9838 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9839 break; 9840 9841 kvm_sched_yield(vcpu, a0); 9842 ret = 0; 9843 break; 9844 case KVM_HC_MAP_GPA_RANGE: { 9845 u64 gpa = a0, npages = a1, attrs = a2; 9846 9847 ret = -KVM_ENOSYS; 9848 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9849 break; 9850 9851 if (!PAGE_ALIGNED(gpa) || !npages || 9852 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9853 ret = -KVM_EINVAL; 9854 break; 9855 } 9856 9857 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9858 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9859 vcpu->run->hypercall.args[0] = gpa; 9860 vcpu->run->hypercall.args[1] = npages; 9861 vcpu->run->hypercall.args[2] = attrs; 9862 vcpu->run->hypercall.flags = 0; 9863 if (op_64_bit) 9864 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 9865 9866 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 9867 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9868 return 0; 9869 } 9870 default: 9871 ret = -KVM_ENOSYS; 9872 break; 9873 } 9874 out: 9875 if (!op_64_bit) 9876 ret = (u32)ret; 9877 kvm_rax_write(vcpu, ret); 9878 9879 ++vcpu->stat.hypercalls; 9880 return kvm_skip_emulated_instruction(vcpu); 9881 } 9882 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9883 9884 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9885 { 9886 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9887 char instruction[3]; 9888 unsigned long rip = kvm_rip_read(vcpu); 9889 9890 /* 9891 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9892 * the pieces. 9893 */ 9894 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9895 ctxt->exception.error_code_valid = false; 9896 ctxt->exception.vector = UD_VECTOR; 9897 ctxt->have_exception = true; 9898 return X86EMUL_PROPAGATE_FAULT; 9899 } 9900 9901 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9902 9903 return emulator_write_emulated(ctxt, rip, instruction, 3, 9904 &ctxt->exception); 9905 } 9906 9907 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9908 { 9909 return vcpu->run->request_interrupt_window && 9910 likely(!pic_in_kernel(vcpu->kvm)); 9911 } 9912 9913 /* Called within kvm->srcu read side. */ 9914 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9915 { 9916 struct kvm_run *kvm_run = vcpu->run; 9917 9918 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9919 kvm_run->cr8 = kvm_get_cr8(vcpu); 9920 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9921 9922 kvm_run->ready_for_interrupt_injection = 9923 pic_in_kernel(vcpu->kvm) || 9924 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9925 9926 if (is_smm(vcpu)) 9927 kvm_run->flags |= KVM_RUN_X86_SMM; 9928 } 9929 9930 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9931 { 9932 int max_irr, tpr; 9933 9934 if (!kvm_x86_ops.update_cr8_intercept) 9935 return; 9936 9937 if (!lapic_in_kernel(vcpu)) 9938 return; 9939 9940 if (vcpu->arch.apic->apicv_active) 9941 return; 9942 9943 if (!vcpu->arch.apic->vapic_addr) 9944 max_irr = kvm_lapic_find_highest_irr(vcpu); 9945 else 9946 max_irr = -1; 9947 9948 if (max_irr != -1) 9949 max_irr >>= 4; 9950 9951 tpr = kvm_lapic_get_cr8(vcpu); 9952 9953 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9954 } 9955 9956 9957 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9958 { 9959 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9960 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9961 return 1; 9962 } 9963 9964 return kvm_x86_ops.nested_ops->check_events(vcpu); 9965 } 9966 9967 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9968 { 9969 /* 9970 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 9971 * exceptions don't report error codes. The presence of an error code 9972 * is carried with the exception and only stripped when the exception 9973 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 9974 * report an error code despite the CPU being in Real Mode. 9975 */ 9976 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 9977 9978 trace_kvm_inj_exception(vcpu->arch.exception.vector, 9979 vcpu->arch.exception.has_error_code, 9980 vcpu->arch.exception.error_code, 9981 vcpu->arch.exception.injected); 9982 9983 static_call(kvm_x86_inject_exception)(vcpu); 9984 } 9985 9986 /* 9987 * Check for any event (interrupt or exception) that is ready to be injected, 9988 * and if there is at least one event, inject the event with the highest 9989 * priority. This handles both "pending" events, i.e. events that have never 9990 * been injected into the guest, and "injected" events, i.e. events that were 9991 * injected as part of a previous VM-Enter, but weren't successfully delivered 9992 * and need to be re-injected. 9993 * 9994 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 9995 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 9996 * be able to inject exceptions in the "middle" of an instruction, and so must 9997 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 9998 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 9999 * boundaries is necessary and correct. 10000 * 10001 * For simplicity, KVM uses a single path to inject all events (except events 10002 * that are injected directly from L1 to L2) and doesn't explicitly track 10003 * instruction boundaries for asynchronous events. However, because VM-Exits 10004 * that can occur during instruction execution typically result in KVM skipping 10005 * the instruction or injecting an exception, e.g. instruction and exception 10006 * intercepts, and because pending exceptions have higher priority than pending 10007 * interrupts, KVM still honors instruction boundaries in most scenarios. 10008 * 10009 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10010 * the instruction or inject an exception, then KVM can incorrecty inject a new 10011 * asynchrounous event if the event became pending after the CPU fetched the 10012 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10013 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10014 * injected on the restarted instruction instead of being deferred until the 10015 * instruction completes. 10016 * 10017 * In practice, this virtualization hole is unlikely to be observed by the 10018 * guest, and even less likely to cause functional problems. To detect the 10019 * hole, the guest would have to trigger an event on a side effect of an early 10020 * phase of instruction execution, e.g. on the instruction fetch from memory. 10021 * And for it to be a functional problem, the guest would need to depend on the 10022 * ordering between that side effect, the instruction completing, _and_ the 10023 * delivery of the asynchronous event. 10024 */ 10025 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10026 bool *req_immediate_exit) 10027 { 10028 bool can_inject; 10029 int r; 10030 10031 /* 10032 * Process nested events first, as nested VM-Exit supercedes event 10033 * re-injection. If there's an event queued for re-injection, it will 10034 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10035 */ 10036 if (is_guest_mode(vcpu)) 10037 r = kvm_check_nested_events(vcpu); 10038 else 10039 r = 0; 10040 10041 /* 10042 * Re-inject exceptions and events *especially* if immediate entry+exit 10043 * to/from L2 is needed, as any event that has already been injected 10044 * into L2 needs to complete its lifecycle before injecting a new event. 10045 * 10046 * Don't re-inject an NMI or interrupt if there is a pending exception. 10047 * This collision arises if an exception occurred while vectoring the 10048 * injected event, KVM intercepted said exception, and KVM ultimately 10049 * determined the fault belongs to the guest and queues the exception 10050 * for injection back into the guest. 10051 * 10052 * "Injected" interrupts can also collide with pending exceptions if 10053 * userspace ignores the "ready for injection" flag and blindly queues 10054 * an interrupt. In that case, prioritizing the exception is correct, 10055 * as the exception "occurred" before the exit to userspace. Trap-like 10056 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10057 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10058 * priority, they're only generated (pended) during instruction 10059 * execution, and interrupts are recognized at instruction boundaries. 10060 * Thus a pending fault-like exception means the fault occurred on the 10061 * *previous* instruction and must be serviced prior to recognizing any 10062 * new events in order to fully complete the previous instruction. 10063 */ 10064 if (vcpu->arch.exception.injected) 10065 kvm_inject_exception(vcpu); 10066 else if (kvm_is_exception_pending(vcpu)) 10067 ; /* see above */ 10068 else if (vcpu->arch.nmi_injected) 10069 static_call(kvm_x86_inject_nmi)(vcpu); 10070 else if (vcpu->arch.interrupt.injected) 10071 static_call(kvm_x86_inject_irq)(vcpu, true); 10072 10073 /* 10074 * Exceptions that morph to VM-Exits are handled above, and pending 10075 * exceptions on top of injected exceptions that do not VM-Exit should 10076 * either morph to #DF or, sadly, override the injected exception. 10077 */ 10078 WARN_ON_ONCE(vcpu->arch.exception.injected && 10079 vcpu->arch.exception.pending); 10080 10081 /* 10082 * Bail if immediate entry+exit to/from the guest is needed to complete 10083 * nested VM-Enter or event re-injection so that a different pending 10084 * event can be serviced (or if KVM needs to exit to userspace). 10085 * 10086 * Otherwise, continue processing events even if VM-Exit occurred. The 10087 * VM-Exit will have cleared exceptions that were meant for L2, but 10088 * there may now be events that can be injected into L1. 10089 */ 10090 if (r < 0) 10091 goto out; 10092 10093 /* 10094 * A pending exception VM-Exit should either result in nested VM-Exit 10095 * or force an immediate re-entry and exit to/from L2, and exception 10096 * VM-Exits cannot be injected (flag should _never_ be set). 10097 */ 10098 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10099 vcpu->arch.exception_vmexit.pending); 10100 10101 /* 10102 * New events, other than exceptions, cannot be injected if KVM needs 10103 * to re-inject a previous event. See above comments on re-injecting 10104 * for why pending exceptions get priority. 10105 */ 10106 can_inject = !kvm_event_needs_reinjection(vcpu); 10107 10108 if (vcpu->arch.exception.pending) { 10109 /* 10110 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10111 * value pushed on the stack. Trap-like exception and all #DBs 10112 * leave RF as-is (KVM follows Intel's behavior in this regard; 10113 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10114 * 10115 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10116 * describe the behavior of General Detect #DBs, which are 10117 * fault-like. They do _not_ set RF, a la code breakpoints. 10118 */ 10119 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10120 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10121 X86_EFLAGS_RF); 10122 10123 if (vcpu->arch.exception.vector == DB_VECTOR) { 10124 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10125 if (vcpu->arch.dr7 & DR7_GD) { 10126 vcpu->arch.dr7 &= ~DR7_GD; 10127 kvm_update_dr7(vcpu); 10128 } 10129 } 10130 10131 kvm_inject_exception(vcpu); 10132 10133 vcpu->arch.exception.pending = false; 10134 vcpu->arch.exception.injected = true; 10135 10136 can_inject = false; 10137 } 10138 10139 /* Don't inject interrupts if the user asked to avoid doing so */ 10140 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10141 return 0; 10142 10143 /* 10144 * Finally, inject interrupt events. If an event cannot be injected 10145 * due to architectural conditions (e.g. IF=0) a window-open exit 10146 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10147 * and can architecturally be injected, but we cannot do it right now: 10148 * an interrupt could have arrived just now and we have to inject it 10149 * as a vmexit, or there could already an event in the queue, which is 10150 * indicated by can_inject. In that case we request an immediate exit 10151 * in order to make progress and get back here for another iteration. 10152 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10153 */ 10154 #ifdef CONFIG_KVM_SMM 10155 if (vcpu->arch.smi_pending) { 10156 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 10157 if (r < 0) 10158 goto out; 10159 if (r) { 10160 vcpu->arch.smi_pending = false; 10161 ++vcpu->arch.smi_count; 10162 enter_smm(vcpu); 10163 can_inject = false; 10164 } else 10165 static_call(kvm_x86_enable_smi_window)(vcpu); 10166 } 10167 #endif 10168 10169 if (vcpu->arch.nmi_pending) { 10170 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 10171 if (r < 0) 10172 goto out; 10173 if (r) { 10174 --vcpu->arch.nmi_pending; 10175 vcpu->arch.nmi_injected = true; 10176 static_call(kvm_x86_inject_nmi)(vcpu); 10177 can_inject = false; 10178 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 10179 } 10180 if (vcpu->arch.nmi_pending) 10181 static_call(kvm_x86_enable_nmi_window)(vcpu); 10182 } 10183 10184 if (kvm_cpu_has_injectable_intr(vcpu)) { 10185 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 10186 if (r < 0) 10187 goto out; 10188 if (r) { 10189 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 10190 static_call(kvm_x86_inject_irq)(vcpu, false); 10191 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 10192 } 10193 if (kvm_cpu_has_injectable_intr(vcpu)) 10194 static_call(kvm_x86_enable_irq_window)(vcpu); 10195 } 10196 10197 if (is_guest_mode(vcpu) && 10198 kvm_x86_ops.nested_ops->has_events && 10199 kvm_x86_ops.nested_ops->has_events(vcpu)) 10200 *req_immediate_exit = true; 10201 10202 /* 10203 * KVM must never queue a new exception while injecting an event; KVM 10204 * is done emulating and should only propagate the to-be-injected event 10205 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10206 * infinite loop as KVM will bail from VM-Enter to inject the pending 10207 * exception and start the cycle all over. 10208 * 10209 * Exempt triple faults as they have special handling and won't put the 10210 * vCPU into an infinite loop. Triple fault can be queued when running 10211 * VMX without unrestricted guest, as that requires KVM to emulate Real 10212 * Mode events (see kvm_inject_realmode_interrupt()). 10213 */ 10214 WARN_ON_ONCE(vcpu->arch.exception.pending || 10215 vcpu->arch.exception_vmexit.pending); 10216 return 0; 10217 10218 out: 10219 if (r == -EBUSY) { 10220 *req_immediate_exit = true; 10221 r = 0; 10222 } 10223 return r; 10224 } 10225 10226 static void process_nmi(struct kvm_vcpu *vcpu) 10227 { 10228 unsigned int limit; 10229 10230 /* 10231 * x86 is limited to one NMI pending, but because KVM can't react to 10232 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10233 * scheduled out, KVM needs to play nice with two queued NMIs showing 10234 * up at the same time. To handle this scenario, allow two NMIs to be 10235 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10236 * waiting for a previous NMI injection to complete (which effectively 10237 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10238 * will request an NMI window to handle the second NMI. 10239 */ 10240 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10241 limit = 1; 10242 else 10243 limit = 2; 10244 10245 /* 10246 * Adjust the limit to account for pending virtual NMIs, which aren't 10247 * tracked in vcpu->arch.nmi_pending. 10248 */ 10249 if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) 10250 limit--; 10251 10252 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10253 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10254 10255 if (vcpu->arch.nmi_pending && 10256 (static_call(kvm_x86_set_vnmi_pending)(vcpu))) 10257 vcpu->arch.nmi_pending--; 10258 10259 if (vcpu->arch.nmi_pending) 10260 kvm_make_request(KVM_REQ_EVENT, vcpu); 10261 } 10262 10263 /* Return total number of NMIs pending injection to the VM */ 10264 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10265 { 10266 return vcpu->arch.nmi_pending + 10267 static_call(kvm_x86_is_vnmi_pending)(vcpu); 10268 } 10269 10270 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10271 unsigned long *vcpu_bitmap) 10272 { 10273 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10274 } 10275 10276 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10277 { 10278 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10279 } 10280 10281 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10282 { 10283 struct kvm_lapic *apic = vcpu->arch.apic; 10284 bool activate; 10285 10286 if (!lapic_in_kernel(vcpu)) 10287 return; 10288 10289 down_read(&vcpu->kvm->arch.apicv_update_lock); 10290 preempt_disable(); 10291 10292 /* Do not activate APICV when APIC is disabled */ 10293 activate = kvm_vcpu_apicv_activated(vcpu) && 10294 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10295 10296 if (apic->apicv_active == activate) 10297 goto out; 10298 10299 apic->apicv_active = activate; 10300 kvm_apic_update_apicv(vcpu); 10301 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 10302 10303 /* 10304 * When APICv gets disabled, we may still have injected interrupts 10305 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10306 * still active when the interrupt got accepted. Make sure 10307 * kvm_check_and_inject_events() is called to check for that. 10308 */ 10309 if (!apic->apicv_active) 10310 kvm_make_request(KVM_REQ_EVENT, vcpu); 10311 10312 out: 10313 preempt_enable(); 10314 up_read(&vcpu->kvm->arch.apicv_update_lock); 10315 } 10316 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10317 10318 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10319 { 10320 if (!lapic_in_kernel(vcpu)) 10321 return; 10322 10323 /* 10324 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10325 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10326 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10327 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10328 * this case so that KVM can the AVIC doorbell to inject interrupts to 10329 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10330 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10331 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10332 * access page is sticky. 10333 */ 10334 if (apic_x2apic_mode(vcpu->arch.apic) && 10335 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10336 kvm_inhibit_apic_access_page(vcpu); 10337 10338 __kvm_vcpu_update_apicv(vcpu); 10339 } 10340 10341 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10342 enum kvm_apicv_inhibit reason, bool set) 10343 { 10344 unsigned long old, new; 10345 10346 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10347 10348 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10349 return; 10350 10351 old = new = kvm->arch.apicv_inhibit_reasons; 10352 10353 set_or_clear_apicv_inhibit(&new, reason, set); 10354 10355 if (!!old != !!new) { 10356 /* 10357 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10358 * false positives in the sanity check WARN in svm_vcpu_run(). 10359 * This task will wait for all vCPUs to ack the kick IRQ before 10360 * updating apicv_inhibit_reasons, and all other vCPUs will 10361 * block on acquiring apicv_update_lock so that vCPUs can't 10362 * redo svm_vcpu_run() without seeing the new inhibit state. 10363 * 10364 * Note, holding apicv_update_lock and taking it in the read 10365 * side (handling the request) also prevents other vCPUs from 10366 * servicing the request with a stale apicv_inhibit_reasons. 10367 */ 10368 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10369 kvm->arch.apicv_inhibit_reasons = new; 10370 if (new) { 10371 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10372 int idx = srcu_read_lock(&kvm->srcu); 10373 10374 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10375 srcu_read_unlock(&kvm->srcu, idx); 10376 } 10377 } else { 10378 kvm->arch.apicv_inhibit_reasons = new; 10379 } 10380 } 10381 10382 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10383 enum kvm_apicv_inhibit reason, bool set) 10384 { 10385 if (!enable_apicv) 10386 return; 10387 10388 down_write(&kvm->arch.apicv_update_lock); 10389 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10390 up_write(&kvm->arch.apicv_update_lock); 10391 } 10392 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10393 10394 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10395 { 10396 if (!kvm_apic_present(vcpu)) 10397 return; 10398 10399 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10400 10401 if (irqchip_split(vcpu->kvm)) 10402 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10403 else { 10404 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10405 if (ioapic_in_kernel(vcpu->kvm)) 10406 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10407 } 10408 10409 if (is_guest_mode(vcpu)) 10410 vcpu->arch.load_eoi_exitmap_pending = true; 10411 else 10412 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10413 } 10414 10415 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10416 { 10417 u64 eoi_exit_bitmap[4]; 10418 10419 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10420 return; 10421 10422 if (to_hv_vcpu(vcpu)) { 10423 bitmap_or((ulong *)eoi_exit_bitmap, 10424 vcpu->arch.ioapic_handled_vectors, 10425 to_hv_synic(vcpu)->vec_bitmap, 256); 10426 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10427 return; 10428 } 10429 10430 static_call_cond(kvm_x86_load_eoi_exitmap)( 10431 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10432 } 10433 10434 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 10435 unsigned long start, unsigned long end) 10436 { 10437 unsigned long apic_address; 10438 10439 /* 10440 * The physical address of apic access page is stored in the VMCS. 10441 * Update it when it becomes invalid. 10442 */ 10443 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10444 if (start <= apic_address && apic_address < end) 10445 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10446 } 10447 10448 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10449 { 10450 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); 10451 } 10452 10453 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10454 { 10455 if (!lapic_in_kernel(vcpu)) 10456 return; 10457 10458 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10459 } 10460 10461 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10462 { 10463 smp_send_reschedule(vcpu->cpu); 10464 } 10465 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10466 10467 /* 10468 * Called within kvm->srcu read side. 10469 * Returns 1 to let vcpu_run() continue the guest execution loop without 10470 * exiting to the userspace. Otherwise, the value will be returned to the 10471 * userspace. 10472 */ 10473 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10474 { 10475 int r; 10476 bool req_int_win = 10477 dm_request_for_irq_injection(vcpu) && 10478 kvm_cpu_accept_dm_intr(vcpu); 10479 fastpath_t exit_fastpath; 10480 10481 bool req_immediate_exit = false; 10482 10483 if (kvm_request_pending(vcpu)) { 10484 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10485 r = -EIO; 10486 goto out; 10487 } 10488 10489 if (kvm_dirty_ring_check_request(vcpu)) { 10490 r = 0; 10491 goto out; 10492 } 10493 10494 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10495 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10496 r = 0; 10497 goto out; 10498 } 10499 } 10500 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10501 kvm_mmu_free_obsolete_roots(vcpu); 10502 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10503 __kvm_migrate_timers(vcpu); 10504 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10505 kvm_update_masterclock(vcpu->kvm); 10506 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10507 kvm_gen_kvmclock_update(vcpu); 10508 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10509 r = kvm_guest_time_update(vcpu); 10510 if (unlikely(r)) 10511 goto out; 10512 } 10513 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10514 kvm_mmu_sync_roots(vcpu); 10515 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10516 kvm_mmu_load_pgd(vcpu); 10517 10518 /* 10519 * Note, the order matters here, as flushing "all" TLB entries 10520 * also flushes the "current" TLB entries, i.e. servicing the 10521 * flush "all" will clear any request to flush "current". 10522 */ 10523 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10524 kvm_vcpu_flush_tlb_all(vcpu); 10525 10526 kvm_service_local_tlb_flush_requests(vcpu); 10527 10528 /* 10529 * Fall back to a "full" guest flush if Hyper-V's precise 10530 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10531 * the flushes are considered "remote" and not "local" because 10532 * the requests can be initiated from other vCPUs. 10533 */ 10534 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10535 kvm_hv_vcpu_flush_tlb(vcpu)) 10536 kvm_vcpu_flush_tlb_guest(vcpu); 10537 10538 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10539 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10540 r = 0; 10541 goto out; 10542 } 10543 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10544 if (is_guest_mode(vcpu)) 10545 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10546 10547 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10548 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10549 vcpu->mmio_needed = 0; 10550 r = 0; 10551 goto out; 10552 } 10553 } 10554 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10555 /* Page is swapped out. Do synthetic halt */ 10556 vcpu->arch.apf.halted = true; 10557 r = 1; 10558 goto out; 10559 } 10560 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10561 record_steal_time(vcpu); 10562 #ifdef CONFIG_KVM_SMM 10563 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10564 process_smi(vcpu); 10565 #endif 10566 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10567 process_nmi(vcpu); 10568 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10569 kvm_pmu_handle_event(vcpu); 10570 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10571 kvm_pmu_deliver_pmi(vcpu); 10572 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10573 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10574 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10575 vcpu->arch.ioapic_handled_vectors)) { 10576 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10577 vcpu->run->eoi.vector = 10578 vcpu->arch.pending_ioapic_eoi; 10579 r = 0; 10580 goto out; 10581 } 10582 } 10583 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10584 vcpu_scan_ioapic(vcpu); 10585 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10586 vcpu_load_eoi_exitmap(vcpu); 10587 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10588 kvm_vcpu_reload_apic_access_page(vcpu); 10589 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10590 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10591 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10592 vcpu->run->system_event.ndata = 0; 10593 r = 0; 10594 goto out; 10595 } 10596 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10597 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10598 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10599 vcpu->run->system_event.ndata = 0; 10600 r = 0; 10601 goto out; 10602 } 10603 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10604 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10605 10606 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10607 vcpu->run->hyperv = hv_vcpu->exit; 10608 r = 0; 10609 goto out; 10610 } 10611 10612 /* 10613 * KVM_REQ_HV_STIMER has to be processed after 10614 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10615 * depend on the guest clock being up-to-date 10616 */ 10617 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10618 kvm_hv_process_stimers(vcpu); 10619 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10620 kvm_vcpu_update_apicv(vcpu); 10621 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10622 kvm_check_async_pf_completion(vcpu); 10623 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10624 static_call(kvm_x86_msr_filter_changed)(vcpu); 10625 10626 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10627 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10628 } 10629 10630 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10631 kvm_xen_has_interrupt(vcpu)) { 10632 ++vcpu->stat.req_event; 10633 r = kvm_apic_accept_events(vcpu); 10634 if (r < 0) { 10635 r = 0; 10636 goto out; 10637 } 10638 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10639 r = 1; 10640 goto out; 10641 } 10642 10643 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10644 if (r < 0) { 10645 r = 0; 10646 goto out; 10647 } 10648 if (req_int_win) 10649 static_call(kvm_x86_enable_irq_window)(vcpu); 10650 10651 if (kvm_lapic_enabled(vcpu)) { 10652 update_cr8_intercept(vcpu); 10653 kvm_lapic_sync_to_vapic(vcpu); 10654 } 10655 } 10656 10657 r = kvm_mmu_reload(vcpu); 10658 if (unlikely(r)) { 10659 goto cancel_injection; 10660 } 10661 10662 preempt_disable(); 10663 10664 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10665 10666 /* 10667 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10668 * IPI are then delayed after guest entry, which ensures that they 10669 * result in virtual interrupt delivery. 10670 */ 10671 local_irq_disable(); 10672 10673 /* Store vcpu->apicv_active before vcpu->mode. */ 10674 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10675 10676 kvm_vcpu_srcu_read_unlock(vcpu); 10677 10678 /* 10679 * 1) We should set ->mode before checking ->requests. Please see 10680 * the comment in kvm_vcpu_exiting_guest_mode(). 10681 * 10682 * 2) For APICv, we should set ->mode before checking PID.ON. This 10683 * pairs with the memory barrier implicit in pi_test_and_set_on 10684 * (see vmx_deliver_posted_interrupt). 10685 * 10686 * 3) This also orders the write to mode from any reads to the page 10687 * tables done while the VCPU is running. Please see the comment 10688 * in kvm_flush_remote_tlbs. 10689 */ 10690 smp_mb__after_srcu_read_unlock(); 10691 10692 /* 10693 * Process pending posted interrupts to handle the case where the 10694 * notification IRQ arrived in the host, or was never sent (because the 10695 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10696 * status, KVM doesn't update assigned devices when APICv is inhibited, 10697 * i.e. they can post interrupts even if APICv is temporarily disabled. 10698 */ 10699 if (kvm_lapic_enabled(vcpu)) 10700 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10701 10702 if (kvm_vcpu_exit_request(vcpu)) { 10703 vcpu->mode = OUTSIDE_GUEST_MODE; 10704 smp_wmb(); 10705 local_irq_enable(); 10706 preempt_enable(); 10707 kvm_vcpu_srcu_read_lock(vcpu); 10708 r = 1; 10709 goto cancel_injection; 10710 } 10711 10712 if (req_immediate_exit) { 10713 kvm_make_request(KVM_REQ_EVENT, vcpu); 10714 static_call(kvm_x86_request_immediate_exit)(vcpu); 10715 } 10716 10717 fpregs_assert_state_consistent(); 10718 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10719 switch_fpu_return(); 10720 10721 if (vcpu->arch.guest_fpu.xfd_err) 10722 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10723 10724 if (unlikely(vcpu->arch.switch_db_regs)) { 10725 set_debugreg(0, 7); 10726 set_debugreg(vcpu->arch.eff_db[0], 0); 10727 set_debugreg(vcpu->arch.eff_db[1], 1); 10728 set_debugreg(vcpu->arch.eff_db[2], 2); 10729 set_debugreg(vcpu->arch.eff_db[3], 3); 10730 } else if (unlikely(hw_breakpoint_active())) { 10731 set_debugreg(0, 7); 10732 } 10733 10734 guest_timing_enter_irqoff(); 10735 10736 for (;;) { 10737 /* 10738 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10739 * update must kick and wait for all vCPUs before toggling the 10740 * per-VM state, and responsing vCPUs must wait for the update 10741 * to complete before servicing KVM_REQ_APICV_UPDATE. 10742 */ 10743 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10744 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10745 10746 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10747 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10748 break; 10749 10750 if (kvm_lapic_enabled(vcpu)) 10751 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10752 10753 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10754 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10755 break; 10756 } 10757 } 10758 10759 /* 10760 * Do this here before restoring debug registers on the host. And 10761 * since we do this before handling the vmexit, a DR access vmexit 10762 * can (a) read the correct value of the debug registers, (b) set 10763 * KVM_DEBUGREG_WONT_EXIT again. 10764 */ 10765 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10766 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10767 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10768 kvm_update_dr0123(vcpu); 10769 kvm_update_dr7(vcpu); 10770 } 10771 10772 /* 10773 * If the guest has used debug registers, at least dr7 10774 * will be disabled while returning to the host. 10775 * If we don't have active breakpoints in the host, we don't 10776 * care about the messed up debug address registers. But if 10777 * we have some of them active, restore the old state. 10778 */ 10779 if (hw_breakpoint_active()) 10780 hw_breakpoint_restore(); 10781 10782 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10783 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10784 10785 vcpu->mode = OUTSIDE_GUEST_MODE; 10786 smp_wmb(); 10787 10788 /* 10789 * Sync xfd before calling handle_exit_irqoff() which may 10790 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10791 * in #NM irqoff handler). 10792 */ 10793 if (vcpu->arch.xfd_no_write_intercept) 10794 fpu_sync_guest_vmexit_xfd_state(); 10795 10796 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10797 10798 if (vcpu->arch.guest_fpu.xfd_err) 10799 wrmsrl(MSR_IA32_XFD_ERR, 0); 10800 10801 /* 10802 * Consume any pending interrupts, including the possible source of 10803 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10804 * An instruction is required after local_irq_enable() to fully unblock 10805 * interrupts on processors that implement an interrupt shadow, the 10806 * stat.exits increment will do nicely. 10807 */ 10808 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10809 local_irq_enable(); 10810 ++vcpu->stat.exits; 10811 local_irq_disable(); 10812 kvm_after_interrupt(vcpu); 10813 10814 /* 10815 * Wait until after servicing IRQs to account guest time so that any 10816 * ticks that occurred while running the guest are properly accounted 10817 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10818 * of accounting via context tracking, but the loss of accuracy is 10819 * acceptable for all known use cases. 10820 */ 10821 guest_timing_exit_irqoff(); 10822 10823 local_irq_enable(); 10824 preempt_enable(); 10825 10826 kvm_vcpu_srcu_read_lock(vcpu); 10827 10828 /* 10829 * Profile KVM exit RIPs: 10830 */ 10831 if (unlikely(prof_on == KVM_PROFILING)) { 10832 unsigned long rip = kvm_rip_read(vcpu); 10833 profile_hit(KVM_PROFILING, (void *)rip); 10834 } 10835 10836 if (unlikely(vcpu->arch.tsc_always_catchup)) 10837 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10838 10839 if (vcpu->arch.apic_attention) 10840 kvm_lapic_sync_from_vapic(vcpu); 10841 10842 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10843 return r; 10844 10845 cancel_injection: 10846 if (req_immediate_exit) 10847 kvm_make_request(KVM_REQ_EVENT, vcpu); 10848 static_call(kvm_x86_cancel_injection)(vcpu); 10849 if (unlikely(vcpu->arch.apic_attention)) 10850 kvm_lapic_sync_from_vapic(vcpu); 10851 out: 10852 return r; 10853 } 10854 10855 /* Called within kvm->srcu read side. */ 10856 static inline int vcpu_block(struct kvm_vcpu *vcpu) 10857 { 10858 bool hv_timer; 10859 10860 if (!kvm_arch_vcpu_runnable(vcpu)) { 10861 /* 10862 * Switch to the software timer before halt-polling/blocking as 10863 * the guest's timer may be a break event for the vCPU, and the 10864 * hypervisor timer runs only when the CPU is in guest mode. 10865 * Switch before halt-polling so that KVM recognizes an expired 10866 * timer before blocking. 10867 */ 10868 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10869 if (hv_timer) 10870 kvm_lapic_switch_to_sw_timer(vcpu); 10871 10872 kvm_vcpu_srcu_read_unlock(vcpu); 10873 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10874 kvm_vcpu_halt(vcpu); 10875 else 10876 kvm_vcpu_block(vcpu); 10877 kvm_vcpu_srcu_read_lock(vcpu); 10878 10879 if (hv_timer) 10880 kvm_lapic_switch_to_hv_timer(vcpu); 10881 10882 /* 10883 * If the vCPU is not runnable, a signal or another host event 10884 * of some kind is pending; service it without changing the 10885 * vCPU's activity state. 10886 */ 10887 if (!kvm_arch_vcpu_runnable(vcpu)) 10888 return 1; 10889 } 10890 10891 /* 10892 * Evaluate nested events before exiting the halted state. This allows 10893 * the halt state to be recorded properly in the VMCS12's activity 10894 * state field (AMD does not have a similar field and a VM-Exit always 10895 * causes a spurious wakeup from HLT). 10896 */ 10897 if (is_guest_mode(vcpu)) { 10898 if (kvm_check_nested_events(vcpu) < 0) 10899 return 0; 10900 } 10901 10902 if (kvm_apic_accept_events(vcpu) < 0) 10903 return 0; 10904 switch(vcpu->arch.mp_state) { 10905 case KVM_MP_STATE_HALTED: 10906 case KVM_MP_STATE_AP_RESET_HOLD: 10907 vcpu->arch.pv.pv_unhalted = false; 10908 vcpu->arch.mp_state = 10909 KVM_MP_STATE_RUNNABLE; 10910 fallthrough; 10911 case KVM_MP_STATE_RUNNABLE: 10912 vcpu->arch.apf.halted = false; 10913 break; 10914 case KVM_MP_STATE_INIT_RECEIVED: 10915 break; 10916 default: 10917 WARN_ON_ONCE(1); 10918 break; 10919 } 10920 return 1; 10921 } 10922 10923 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10924 { 10925 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10926 !vcpu->arch.apf.halted); 10927 } 10928 10929 /* Called within kvm->srcu read side. */ 10930 static int vcpu_run(struct kvm_vcpu *vcpu) 10931 { 10932 int r; 10933 10934 vcpu->arch.l1tf_flush_l1d = true; 10935 10936 for (;;) { 10937 /* 10938 * If another guest vCPU requests a PV TLB flush in the middle 10939 * of instruction emulation, the rest of the emulation could 10940 * use a stale page translation. Assume that any code after 10941 * this point can start executing an instruction. 10942 */ 10943 vcpu->arch.at_instruction_boundary = false; 10944 if (kvm_vcpu_running(vcpu)) { 10945 r = vcpu_enter_guest(vcpu); 10946 } else { 10947 r = vcpu_block(vcpu); 10948 } 10949 10950 if (r <= 0) 10951 break; 10952 10953 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10954 if (kvm_xen_has_pending_events(vcpu)) 10955 kvm_xen_inject_pending_events(vcpu); 10956 10957 if (kvm_cpu_has_pending_timer(vcpu)) 10958 kvm_inject_pending_timer_irqs(vcpu); 10959 10960 if (dm_request_for_irq_injection(vcpu) && 10961 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10962 r = 0; 10963 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10964 ++vcpu->stat.request_irq_exits; 10965 break; 10966 } 10967 10968 if (__xfer_to_guest_mode_work_pending()) { 10969 kvm_vcpu_srcu_read_unlock(vcpu); 10970 r = xfer_to_guest_mode_handle_work(vcpu); 10971 kvm_vcpu_srcu_read_lock(vcpu); 10972 if (r) 10973 return r; 10974 } 10975 } 10976 10977 return r; 10978 } 10979 10980 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10981 { 10982 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10983 } 10984 10985 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10986 { 10987 BUG_ON(!vcpu->arch.pio.count); 10988 10989 return complete_emulated_io(vcpu); 10990 } 10991 10992 /* 10993 * Implements the following, as a state machine: 10994 * 10995 * read: 10996 * for each fragment 10997 * for each mmio piece in the fragment 10998 * write gpa, len 10999 * exit 11000 * copy data 11001 * execute insn 11002 * 11003 * write: 11004 * for each fragment 11005 * for each mmio piece in the fragment 11006 * write gpa, len 11007 * copy data 11008 * exit 11009 */ 11010 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11011 { 11012 struct kvm_run *run = vcpu->run; 11013 struct kvm_mmio_fragment *frag; 11014 unsigned len; 11015 11016 BUG_ON(!vcpu->mmio_needed); 11017 11018 /* Complete previous fragment */ 11019 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11020 len = min(8u, frag->len); 11021 if (!vcpu->mmio_is_write) 11022 memcpy(frag->data, run->mmio.data, len); 11023 11024 if (frag->len <= 8) { 11025 /* Switch to the next fragment. */ 11026 frag++; 11027 vcpu->mmio_cur_fragment++; 11028 } else { 11029 /* Go forward to the next mmio piece. */ 11030 frag->data += len; 11031 frag->gpa += len; 11032 frag->len -= len; 11033 } 11034 11035 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11036 vcpu->mmio_needed = 0; 11037 11038 /* FIXME: return into emulator if single-stepping. */ 11039 if (vcpu->mmio_is_write) 11040 return 1; 11041 vcpu->mmio_read_completed = 1; 11042 return complete_emulated_io(vcpu); 11043 } 11044 11045 run->exit_reason = KVM_EXIT_MMIO; 11046 run->mmio.phys_addr = frag->gpa; 11047 if (vcpu->mmio_is_write) 11048 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11049 run->mmio.len = min(8u, frag->len); 11050 run->mmio.is_write = vcpu->mmio_is_write; 11051 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11052 return 0; 11053 } 11054 11055 /* Swap (qemu) user FPU context for the guest FPU context. */ 11056 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11057 { 11058 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11059 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11060 trace_kvm_fpu(1); 11061 } 11062 11063 /* When vcpu_run ends, restore user space FPU context. */ 11064 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11065 { 11066 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11067 ++vcpu->stat.fpu_reload; 11068 trace_kvm_fpu(0); 11069 } 11070 11071 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11072 { 11073 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11074 struct kvm_run *kvm_run = vcpu->run; 11075 int r; 11076 11077 vcpu_load(vcpu); 11078 kvm_sigset_activate(vcpu); 11079 kvm_run->flags = 0; 11080 kvm_load_guest_fpu(vcpu); 11081 11082 kvm_vcpu_srcu_read_lock(vcpu); 11083 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11084 if (kvm_run->immediate_exit) { 11085 r = -EINTR; 11086 goto out; 11087 } 11088 /* 11089 * It should be impossible for the hypervisor timer to be in 11090 * use before KVM has ever run the vCPU. 11091 */ 11092 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 11093 11094 kvm_vcpu_srcu_read_unlock(vcpu); 11095 kvm_vcpu_block(vcpu); 11096 kvm_vcpu_srcu_read_lock(vcpu); 11097 11098 if (kvm_apic_accept_events(vcpu) < 0) { 11099 r = 0; 11100 goto out; 11101 } 11102 r = -EAGAIN; 11103 if (signal_pending(current)) { 11104 r = -EINTR; 11105 kvm_run->exit_reason = KVM_EXIT_INTR; 11106 ++vcpu->stat.signal_exits; 11107 } 11108 goto out; 11109 } 11110 11111 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11112 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11113 r = -EINVAL; 11114 goto out; 11115 } 11116 11117 if (kvm_run->kvm_dirty_regs) { 11118 r = sync_regs(vcpu); 11119 if (r != 0) 11120 goto out; 11121 } 11122 11123 /* re-sync apic's tpr */ 11124 if (!lapic_in_kernel(vcpu)) { 11125 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11126 r = -EINVAL; 11127 goto out; 11128 } 11129 } 11130 11131 /* 11132 * If userspace set a pending exception and L2 is active, convert it to 11133 * a pending VM-Exit if L1 wants to intercept the exception. 11134 */ 11135 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11136 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11137 ex->error_code)) { 11138 kvm_queue_exception_vmexit(vcpu, ex->vector, 11139 ex->has_error_code, ex->error_code, 11140 ex->has_payload, ex->payload); 11141 ex->injected = false; 11142 ex->pending = false; 11143 } 11144 vcpu->arch.exception_from_userspace = false; 11145 11146 if (unlikely(vcpu->arch.complete_userspace_io)) { 11147 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11148 vcpu->arch.complete_userspace_io = NULL; 11149 r = cui(vcpu); 11150 if (r <= 0) 11151 goto out; 11152 } else { 11153 WARN_ON_ONCE(vcpu->arch.pio.count); 11154 WARN_ON_ONCE(vcpu->mmio_needed); 11155 } 11156 11157 if (kvm_run->immediate_exit) { 11158 r = -EINTR; 11159 goto out; 11160 } 11161 11162 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 11163 if (r <= 0) 11164 goto out; 11165 11166 r = vcpu_run(vcpu); 11167 11168 out: 11169 kvm_put_guest_fpu(vcpu); 11170 if (kvm_run->kvm_valid_regs) 11171 store_regs(vcpu); 11172 post_kvm_run_save(vcpu); 11173 kvm_vcpu_srcu_read_unlock(vcpu); 11174 11175 kvm_sigset_deactivate(vcpu); 11176 vcpu_put(vcpu); 11177 return r; 11178 } 11179 11180 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11181 { 11182 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11183 /* 11184 * We are here if userspace calls get_regs() in the middle of 11185 * instruction emulation. Registers state needs to be copied 11186 * back from emulation context to vcpu. Userspace shouldn't do 11187 * that usually, but some bad designed PV devices (vmware 11188 * backdoor interface) need this to work 11189 */ 11190 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11191 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11192 } 11193 regs->rax = kvm_rax_read(vcpu); 11194 regs->rbx = kvm_rbx_read(vcpu); 11195 regs->rcx = kvm_rcx_read(vcpu); 11196 regs->rdx = kvm_rdx_read(vcpu); 11197 regs->rsi = kvm_rsi_read(vcpu); 11198 regs->rdi = kvm_rdi_read(vcpu); 11199 regs->rsp = kvm_rsp_read(vcpu); 11200 regs->rbp = kvm_rbp_read(vcpu); 11201 #ifdef CONFIG_X86_64 11202 regs->r8 = kvm_r8_read(vcpu); 11203 regs->r9 = kvm_r9_read(vcpu); 11204 regs->r10 = kvm_r10_read(vcpu); 11205 regs->r11 = kvm_r11_read(vcpu); 11206 regs->r12 = kvm_r12_read(vcpu); 11207 regs->r13 = kvm_r13_read(vcpu); 11208 regs->r14 = kvm_r14_read(vcpu); 11209 regs->r15 = kvm_r15_read(vcpu); 11210 #endif 11211 11212 regs->rip = kvm_rip_read(vcpu); 11213 regs->rflags = kvm_get_rflags(vcpu); 11214 } 11215 11216 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11217 { 11218 vcpu_load(vcpu); 11219 __get_regs(vcpu, regs); 11220 vcpu_put(vcpu); 11221 return 0; 11222 } 11223 11224 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11225 { 11226 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11227 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11228 11229 kvm_rax_write(vcpu, regs->rax); 11230 kvm_rbx_write(vcpu, regs->rbx); 11231 kvm_rcx_write(vcpu, regs->rcx); 11232 kvm_rdx_write(vcpu, regs->rdx); 11233 kvm_rsi_write(vcpu, regs->rsi); 11234 kvm_rdi_write(vcpu, regs->rdi); 11235 kvm_rsp_write(vcpu, regs->rsp); 11236 kvm_rbp_write(vcpu, regs->rbp); 11237 #ifdef CONFIG_X86_64 11238 kvm_r8_write(vcpu, regs->r8); 11239 kvm_r9_write(vcpu, regs->r9); 11240 kvm_r10_write(vcpu, regs->r10); 11241 kvm_r11_write(vcpu, regs->r11); 11242 kvm_r12_write(vcpu, regs->r12); 11243 kvm_r13_write(vcpu, regs->r13); 11244 kvm_r14_write(vcpu, regs->r14); 11245 kvm_r15_write(vcpu, regs->r15); 11246 #endif 11247 11248 kvm_rip_write(vcpu, regs->rip); 11249 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11250 11251 vcpu->arch.exception.pending = false; 11252 vcpu->arch.exception_vmexit.pending = false; 11253 11254 kvm_make_request(KVM_REQ_EVENT, vcpu); 11255 } 11256 11257 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11258 { 11259 vcpu_load(vcpu); 11260 __set_regs(vcpu, regs); 11261 vcpu_put(vcpu); 11262 return 0; 11263 } 11264 11265 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11266 { 11267 struct desc_ptr dt; 11268 11269 if (vcpu->arch.guest_state_protected) 11270 goto skip_protected_regs; 11271 11272 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11273 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11274 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11275 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11276 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11277 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11278 11279 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11280 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11281 11282 static_call(kvm_x86_get_idt)(vcpu, &dt); 11283 sregs->idt.limit = dt.size; 11284 sregs->idt.base = dt.address; 11285 static_call(kvm_x86_get_gdt)(vcpu, &dt); 11286 sregs->gdt.limit = dt.size; 11287 sregs->gdt.base = dt.address; 11288 11289 sregs->cr2 = vcpu->arch.cr2; 11290 sregs->cr3 = kvm_read_cr3(vcpu); 11291 11292 skip_protected_regs: 11293 sregs->cr0 = kvm_read_cr0(vcpu); 11294 sregs->cr4 = kvm_read_cr4(vcpu); 11295 sregs->cr8 = kvm_get_cr8(vcpu); 11296 sregs->efer = vcpu->arch.efer; 11297 sregs->apic_base = kvm_get_apic_base(vcpu); 11298 } 11299 11300 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11301 { 11302 __get_sregs_common(vcpu, sregs); 11303 11304 if (vcpu->arch.guest_state_protected) 11305 return; 11306 11307 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11308 set_bit(vcpu->arch.interrupt.nr, 11309 (unsigned long *)sregs->interrupt_bitmap); 11310 } 11311 11312 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11313 { 11314 int i; 11315 11316 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11317 11318 if (vcpu->arch.guest_state_protected) 11319 return; 11320 11321 if (is_pae_paging(vcpu)) { 11322 for (i = 0 ; i < 4 ; i++) 11323 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11324 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11325 } 11326 } 11327 11328 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11329 struct kvm_sregs *sregs) 11330 { 11331 vcpu_load(vcpu); 11332 __get_sregs(vcpu, sregs); 11333 vcpu_put(vcpu); 11334 return 0; 11335 } 11336 11337 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11338 struct kvm_mp_state *mp_state) 11339 { 11340 int r; 11341 11342 vcpu_load(vcpu); 11343 if (kvm_mpx_supported()) 11344 kvm_load_guest_fpu(vcpu); 11345 11346 r = kvm_apic_accept_events(vcpu); 11347 if (r < 0) 11348 goto out; 11349 r = 0; 11350 11351 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11352 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11353 vcpu->arch.pv.pv_unhalted) 11354 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11355 else 11356 mp_state->mp_state = vcpu->arch.mp_state; 11357 11358 out: 11359 if (kvm_mpx_supported()) 11360 kvm_put_guest_fpu(vcpu); 11361 vcpu_put(vcpu); 11362 return r; 11363 } 11364 11365 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11366 struct kvm_mp_state *mp_state) 11367 { 11368 int ret = -EINVAL; 11369 11370 vcpu_load(vcpu); 11371 11372 switch (mp_state->mp_state) { 11373 case KVM_MP_STATE_UNINITIALIZED: 11374 case KVM_MP_STATE_HALTED: 11375 case KVM_MP_STATE_AP_RESET_HOLD: 11376 case KVM_MP_STATE_INIT_RECEIVED: 11377 case KVM_MP_STATE_SIPI_RECEIVED: 11378 if (!lapic_in_kernel(vcpu)) 11379 goto out; 11380 break; 11381 11382 case KVM_MP_STATE_RUNNABLE: 11383 break; 11384 11385 default: 11386 goto out; 11387 } 11388 11389 /* 11390 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11391 * forcing the guest into INIT/SIPI if those events are supposed to be 11392 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11393 * if an SMI is pending as well. 11394 */ 11395 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11396 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11397 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11398 goto out; 11399 11400 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11401 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11402 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11403 } else 11404 vcpu->arch.mp_state = mp_state->mp_state; 11405 kvm_make_request(KVM_REQ_EVENT, vcpu); 11406 11407 ret = 0; 11408 out: 11409 vcpu_put(vcpu); 11410 return ret; 11411 } 11412 11413 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11414 int reason, bool has_error_code, u32 error_code) 11415 { 11416 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11417 int ret; 11418 11419 init_emulate_ctxt(vcpu); 11420 11421 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11422 has_error_code, error_code); 11423 if (ret) { 11424 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11425 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11426 vcpu->run->internal.ndata = 0; 11427 return 0; 11428 } 11429 11430 kvm_rip_write(vcpu, ctxt->eip); 11431 kvm_set_rflags(vcpu, ctxt->eflags); 11432 return 1; 11433 } 11434 EXPORT_SYMBOL_GPL(kvm_task_switch); 11435 11436 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11437 { 11438 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11439 /* 11440 * When EFER.LME and CR0.PG are set, the processor is in 11441 * 64-bit mode (though maybe in a 32-bit code segment). 11442 * CR4.PAE and EFER.LMA must be set. 11443 */ 11444 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11445 return false; 11446 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 11447 return false; 11448 } else { 11449 /* 11450 * Not in 64-bit mode: EFER.LMA is clear and the code 11451 * segment cannot be 64-bit. 11452 */ 11453 if (sregs->efer & EFER_LMA || sregs->cs.l) 11454 return false; 11455 } 11456 11457 return kvm_is_valid_cr4(vcpu, sregs->cr4); 11458 } 11459 11460 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11461 int *mmu_reset_needed, bool update_pdptrs) 11462 { 11463 struct msr_data apic_base_msr; 11464 int idx; 11465 struct desc_ptr dt; 11466 11467 if (!kvm_is_valid_sregs(vcpu, sregs)) 11468 return -EINVAL; 11469 11470 apic_base_msr.data = sregs->apic_base; 11471 apic_base_msr.host_initiated = true; 11472 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11473 return -EINVAL; 11474 11475 if (vcpu->arch.guest_state_protected) 11476 return 0; 11477 11478 dt.size = sregs->idt.limit; 11479 dt.address = sregs->idt.base; 11480 static_call(kvm_x86_set_idt)(vcpu, &dt); 11481 dt.size = sregs->gdt.limit; 11482 dt.address = sregs->gdt.base; 11483 static_call(kvm_x86_set_gdt)(vcpu, &dt); 11484 11485 vcpu->arch.cr2 = sregs->cr2; 11486 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11487 vcpu->arch.cr3 = sregs->cr3; 11488 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11489 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 11490 11491 kvm_set_cr8(vcpu, sregs->cr8); 11492 11493 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11494 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 11495 11496 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11497 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 11498 vcpu->arch.cr0 = sregs->cr0; 11499 11500 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11501 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11502 11503 if (update_pdptrs) { 11504 idx = srcu_read_lock(&vcpu->kvm->srcu); 11505 if (is_pae_paging(vcpu)) { 11506 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11507 *mmu_reset_needed = 1; 11508 } 11509 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11510 } 11511 11512 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11513 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11514 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11515 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11516 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11517 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11518 11519 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11520 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11521 11522 update_cr8_intercept(vcpu); 11523 11524 /* Older userspace won't unhalt the vcpu on reset. */ 11525 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11526 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11527 !is_protmode(vcpu)) 11528 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11529 11530 return 0; 11531 } 11532 11533 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11534 { 11535 int pending_vec, max_bits; 11536 int mmu_reset_needed = 0; 11537 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11538 11539 if (ret) 11540 return ret; 11541 11542 if (mmu_reset_needed) 11543 kvm_mmu_reset_context(vcpu); 11544 11545 max_bits = KVM_NR_INTERRUPTS; 11546 pending_vec = find_first_bit( 11547 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11548 11549 if (pending_vec < max_bits) { 11550 kvm_queue_interrupt(vcpu, pending_vec, false); 11551 pr_debug("Set back pending irq %d\n", pending_vec); 11552 kvm_make_request(KVM_REQ_EVENT, vcpu); 11553 } 11554 return 0; 11555 } 11556 11557 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11558 { 11559 int mmu_reset_needed = 0; 11560 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11561 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11562 !(sregs2->efer & EFER_LMA); 11563 int i, ret; 11564 11565 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11566 return -EINVAL; 11567 11568 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11569 return -EINVAL; 11570 11571 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11572 &mmu_reset_needed, !valid_pdptrs); 11573 if (ret) 11574 return ret; 11575 11576 if (valid_pdptrs) { 11577 for (i = 0; i < 4 ; i++) 11578 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11579 11580 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11581 mmu_reset_needed = 1; 11582 vcpu->arch.pdptrs_from_userspace = true; 11583 } 11584 if (mmu_reset_needed) 11585 kvm_mmu_reset_context(vcpu); 11586 return 0; 11587 } 11588 11589 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11590 struct kvm_sregs *sregs) 11591 { 11592 int ret; 11593 11594 vcpu_load(vcpu); 11595 ret = __set_sregs(vcpu, sregs); 11596 vcpu_put(vcpu); 11597 return ret; 11598 } 11599 11600 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11601 { 11602 bool set = false; 11603 struct kvm_vcpu *vcpu; 11604 unsigned long i; 11605 11606 if (!enable_apicv) 11607 return; 11608 11609 down_write(&kvm->arch.apicv_update_lock); 11610 11611 kvm_for_each_vcpu(i, vcpu, kvm) { 11612 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11613 set = true; 11614 break; 11615 } 11616 } 11617 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11618 up_write(&kvm->arch.apicv_update_lock); 11619 } 11620 11621 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11622 struct kvm_guest_debug *dbg) 11623 { 11624 unsigned long rflags; 11625 int i, r; 11626 11627 if (vcpu->arch.guest_state_protected) 11628 return -EINVAL; 11629 11630 vcpu_load(vcpu); 11631 11632 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11633 r = -EBUSY; 11634 if (kvm_is_exception_pending(vcpu)) 11635 goto out; 11636 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11637 kvm_queue_exception(vcpu, DB_VECTOR); 11638 else 11639 kvm_queue_exception(vcpu, BP_VECTOR); 11640 } 11641 11642 /* 11643 * Read rflags as long as potentially injected trace flags are still 11644 * filtered out. 11645 */ 11646 rflags = kvm_get_rflags(vcpu); 11647 11648 vcpu->guest_debug = dbg->control; 11649 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11650 vcpu->guest_debug = 0; 11651 11652 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11653 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11654 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11655 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11656 } else { 11657 for (i = 0; i < KVM_NR_DB_REGS; i++) 11658 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11659 } 11660 kvm_update_dr7(vcpu); 11661 11662 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11663 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11664 11665 /* 11666 * Trigger an rflags update that will inject or remove the trace 11667 * flags. 11668 */ 11669 kvm_set_rflags(vcpu, rflags); 11670 11671 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11672 11673 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11674 11675 r = 0; 11676 11677 out: 11678 vcpu_put(vcpu); 11679 return r; 11680 } 11681 11682 /* 11683 * Translate a guest virtual address to a guest physical address. 11684 */ 11685 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11686 struct kvm_translation *tr) 11687 { 11688 unsigned long vaddr = tr->linear_address; 11689 gpa_t gpa; 11690 int idx; 11691 11692 vcpu_load(vcpu); 11693 11694 idx = srcu_read_lock(&vcpu->kvm->srcu); 11695 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11696 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11697 tr->physical_address = gpa; 11698 tr->valid = gpa != INVALID_GPA; 11699 tr->writeable = 1; 11700 tr->usermode = 0; 11701 11702 vcpu_put(vcpu); 11703 return 0; 11704 } 11705 11706 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11707 { 11708 struct fxregs_state *fxsave; 11709 11710 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11711 return 0; 11712 11713 vcpu_load(vcpu); 11714 11715 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11716 memcpy(fpu->fpr, fxsave->st_space, 128); 11717 fpu->fcw = fxsave->cwd; 11718 fpu->fsw = fxsave->swd; 11719 fpu->ftwx = fxsave->twd; 11720 fpu->last_opcode = fxsave->fop; 11721 fpu->last_ip = fxsave->rip; 11722 fpu->last_dp = fxsave->rdp; 11723 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11724 11725 vcpu_put(vcpu); 11726 return 0; 11727 } 11728 11729 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11730 { 11731 struct fxregs_state *fxsave; 11732 11733 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11734 return 0; 11735 11736 vcpu_load(vcpu); 11737 11738 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11739 11740 memcpy(fxsave->st_space, fpu->fpr, 128); 11741 fxsave->cwd = fpu->fcw; 11742 fxsave->swd = fpu->fsw; 11743 fxsave->twd = fpu->ftwx; 11744 fxsave->fop = fpu->last_opcode; 11745 fxsave->rip = fpu->last_ip; 11746 fxsave->rdp = fpu->last_dp; 11747 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11748 11749 vcpu_put(vcpu); 11750 return 0; 11751 } 11752 11753 static void store_regs(struct kvm_vcpu *vcpu) 11754 { 11755 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11756 11757 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11758 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11759 11760 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11761 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11762 11763 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11764 kvm_vcpu_ioctl_x86_get_vcpu_events( 11765 vcpu, &vcpu->run->s.regs.events); 11766 } 11767 11768 static int sync_regs(struct kvm_vcpu *vcpu) 11769 { 11770 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11771 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11772 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11773 } 11774 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11775 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11776 return -EINVAL; 11777 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11778 } 11779 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11780 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11781 vcpu, &vcpu->run->s.regs.events)) 11782 return -EINVAL; 11783 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11784 } 11785 11786 return 0; 11787 } 11788 11789 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11790 { 11791 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 11792 pr_warn_once("SMP vm created on host with unstable TSC; " 11793 "guest TSC will not be reliable\n"); 11794 11795 if (!kvm->arch.max_vcpu_ids) 11796 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 11797 11798 if (id >= kvm->arch.max_vcpu_ids) 11799 return -EINVAL; 11800 11801 return static_call(kvm_x86_vcpu_precreate)(kvm); 11802 } 11803 11804 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11805 { 11806 struct page *page; 11807 int r; 11808 11809 vcpu->arch.last_vmentry_cpu = -1; 11810 vcpu->arch.regs_avail = ~0; 11811 vcpu->arch.regs_dirty = ~0; 11812 11813 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); 11814 11815 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11816 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11817 else 11818 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11819 11820 r = kvm_mmu_create(vcpu); 11821 if (r < 0) 11822 return r; 11823 11824 if (irqchip_in_kernel(vcpu->kvm)) { 11825 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11826 if (r < 0) 11827 goto fail_mmu_destroy; 11828 11829 /* 11830 * Defer evaluating inhibits until the vCPU is first run, as 11831 * this vCPU will not get notified of any changes until this 11832 * vCPU is visible to other vCPUs (marked online and added to 11833 * the set of vCPUs). Opportunistically mark APICv active as 11834 * VMX in particularly is highly unlikely to have inhibits. 11835 * Ignore the current per-VM APICv state so that vCPU creation 11836 * is guaranteed to run with a deterministic value, the request 11837 * will ensure the vCPU gets the correct state before VM-Entry. 11838 */ 11839 if (enable_apicv) { 11840 vcpu->arch.apic->apicv_active = true; 11841 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11842 } 11843 } else 11844 static_branch_inc(&kvm_has_noapic_vcpu); 11845 11846 r = -ENOMEM; 11847 11848 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11849 if (!page) 11850 goto fail_free_lapic; 11851 vcpu->arch.pio_data = page_address(page); 11852 11853 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 11854 GFP_KERNEL_ACCOUNT); 11855 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 11856 GFP_KERNEL_ACCOUNT); 11857 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 11858 goto fail_free_mce_banks; 11859 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11860 11861 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11862 GFP_KERNEL_ACCOUNT)) 11863 goto fail_free_mce_banks; 11864 11865 if (!alloc_emulate_ctxt(vcpu)) 11866 goto free_wbinvd_dirty_mask; 11867 11868 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11869 pr_err("failed to allocate vcpu's fpu\n"); 11870 goto free_emulate_ctxt; 11871 } 11872 11873 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11874 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11875 11876 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11877 11878 kvm_async_pf_hash_reset(vcpu); 11879 11880 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 11881 kvm_pmu_init(vcpu); 11882 11883 vcpu->arch.pending_external_vector = -1; 11884 vcpu->arch.preempted_in_kernel = false; 11885 11886 #if IS_ENABLED(CONFIG_HYPERV) 11887 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11888 #endif 11889 11890 r = static_call(kvm_x86_vcpu_create)(vcpu); 11891 if (r) 11892 goto free_guest_fpu; 11893 11894 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11895 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11896 kvm_xen_init_vcpu(vcpu); 11897 kvm_vcpu_mtrr_init(vcpu); 11898 vcpu_load(vcpu); 11899 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11900 kvm_vcpu_reset(vcpu, false); 11901 kvm_init_mmu(vcpu); 11902 vcpu_put(vcpu); 11903 return 0; 11904 11905 free_guest_fpu: 11906 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11907 free_emulate_ctxt: 11908 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11909 free_wbinvd_dirty_mask: 11910 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11911 fail_free_mce_banks: 11912 kfree(vcpu->arch.mce_banks); 11913 kfree(vcpu->arch.mci_ctl2_banks); 11914 free_page((unsigned long)vcpu->arch.pio_data); 11915 fail_free_lapic: 11916 kvm_free_lapic(vcpu); 11917 fail_mmu_destroy: 11918 kvm_mmu_destroy(vcpu); 11919 return r; 11920 } 11921 11922 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11923 { 11924 struct kvm *kvm = vcpu->kvm; 11925 11926 if (mutex_lock_killable(&vcpu->mutex)) 11927 return; 11928 vcpu_load(vcpu); 11929 kvm_synchronize_tsc(vcpu, 0); 11930 vcpu_put(vcpu); 11931 11932 /* poll control enabled by default */ 11933 vcpu->arch.msr_kvm_poll_control = 1; 11934 11935 mutex_unlock(&vcpu->mutex); 11936 11937 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11938 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11939 KVMCLOCK_SYNC_PERIOD); 11940 } 11941 11942 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11943 { 11944 int idx; 11945 11946 kvmclock_reset(vcpu); 11947 11948 static_call(kvm_x86_vcpu_free)(vcpu); 11949 11950 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11951 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11952 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11953 11954 kvm_xen_destroy_vcpu(vcpu); 11955 kvm_hv_vcpu_uninit(vcpu); 11956 kvm_pmu_destroy(vcpu); 11957 kfree(vcpu->arch.mce_banks); 11958 kfree(vcpu->arch.mci_ctl2_banks); 11959 kvm_free_lapic(vcpu); 11960 idx = srcu_read_lock(&vcpu->kvm->srcu); 11961 kvm_mmu_destroy(vcpu); 11962 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11963 free_page((unsigned long)vcpu->arch.pio_data); 11964 kvfree(vcpu->arch.cpuid_entries); 11965 if (!lapic_in_kernel(vcpu)) 11966 static_branch_dec(&kvm_has_noapic_vcpu); 11967 } 11968 11969 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11970 { 11971 struct kvm_cpuid_entry2 *cpuid_0x1; 11972 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11973 unsigned long new_cr0; 11974 11975 /* 11976 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11977 * to handle side effects. RESET emulation hits those flows and relies 11978 * on emulated/virtualized registers, including those that are loaded 11979 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11980 * to detect improper or missing initialization. 11981 */ 11982 WARN_ON_ONCE(!init_event && 11983 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11984 11985 /* 11986 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 11987 * possible to INIT the vCPU while L2 is active. Force the vCPU back 11988 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 11989 * bits), i.e. virtualization is disabled. 11990 */ 11991 if (is_guest_mode(vcpu)) 11992 kvm_leave_nested(vcpu); 11993 11994 kvm_lapic_reset(vcpu, init_event); 11995 11996 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 11997 vcpu->arch.hflags = 0; 11998 11999 vcpu->arch.smi_pending = 0; 12000 vcpu->arch.smi_count = 0; 12001 atomic_set(&vcpu->arch.nmi_queued, 0); 12002 vcpu->arch.nmi_pending = 0; 12003 vcpu->arch.nmi_injected = false; 12004 kvm_clear_interrupt_queue(vcpu); 12005 kvm_clear_exception_queue(vcpu); 12006 12007 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12008 kvm_update_dr0123(vcpu); 12009 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12010 vcpu->arch.dr7 = DR7_FIXED_1; 12011 kvm_update_dr7(vcpu); 12012 12013 vcpu->arch.cr2 = 0; 12014 12015 kvm_make_request(KVM_REQ_EVENT, vcpu); 12016 vcpu->arch.apf.msr_en_val = 0; 12017 vcpu->arch.apf.msr_int_val = 0; 12018 vcpu->arch.st.msr_val = 0; 12019 12020 kvmclock_reset(vcpu); 12021 12022 kvm_clear_async_pf_completion_queue(vcpu); 12023 kvm_async_pf_hash_reset(vcpu); 12024 vcpu->arch.apf.halted = false; 12025 12026 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12027 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12028 12029 /* 12030 * All paths that lead to INIT are required to load the guest's 12031 * FPU state (because most paths are buried in KVM_RUN). 12032 */ 12033 if (init_event) 12034 kvm_put_guest_fpu(vcpu); 12035 12036 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12037 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12038 12039 if (init_event) 12040 kvm_load_guest_fpu(vcpu); 12041 } 12042 12043 if (!init_event) { 12044 kvm_pmu_reset(vcpu); 12045 vcpu->arch.smbase = 0x30000; 12046 12047 vcpu->arch.msr_misc_features_enables = 0; 12048 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12049 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12050 12051 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12052 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12053 } 12054 12055 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12056 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12057 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12058 12059 /* 12060 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12061 * if no CPUID match is found. Note, it's impossible to get a match at 12062 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12063 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12064 * on RESET. But, go through the motions in case that's ever remedied. 12065 */ 12066 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12067 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12068 12069 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 12070 12071 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12072 kvm_rip_write(vcpu, 0xfff0); 12073 12074 vcpu->arch.cr3 = 0; 12075 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12076 12077 /* 12078 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12079 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12080 * (or qualify) that with a footnote stating that CD/NW are preserved. 12081 */ 12082 new_cr0 = X86_CR0_ET; 12083 if (init_event) 12084 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12085 else 12086 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12087 12088 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 12089 static_call(kvm_x86_set_cr4)(vcpu, 0); 12090 static_call(kvm_x86_set_efer)(vcpu, 0); 12091 static_call(kvm_x86_update_exception_bitmap)(vcpu); 12092 12093 /* 12094 * On the standard CR0/CR4/EFER modification paths, there are several 12095 * complex conditions determining whether the MMU has to be reset and/or 12096 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12097 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12098 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12099 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12100 */ 12101 if (old_cr0 & X86_CR0_PG) { 12102 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12103 kvm_mmu_reset_context(vcpu); 12104 } 12105 12106 /* 12107 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12108 * APM states the TLBs are untouched by INIT, but it also states that 12109 * the TLBs are flushed on "External initialization of the processor." 12110 * Flush the guest TLB regardless of vendor, there is no meaningful 12111 * benefit in relying on the guest to flush the TLB immediately after 12112 * INIT. A spurious TLB flush is benign and likely negligible from a 12113 * performance perspective. 12114 */ 12115 if (init_event) 12116 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12117 } 12118 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12119 12120 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12121 { 12122 struct kvm_segment cs; 12123 12124 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12125 cs.selector = vector << 8; 12126 cs.base = vector << 12; 12127 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12128 kvm_rip_write(vcpu, 0); 12129 } 12130 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12131 12132 int kvm_arch_hardware_enable(void) 12133 { 12134 struct kvm *kvm; 12135 struct kvm_vcpu *vcpu; 12136 unsigned long i; 12137 int ret; 12138 u64 local_tsc; 12139 u64 max_tsc = 0; 12140 bool stable, backwards_tsc = false; 12141 12142 kvm_user_return_msr_cpu_online(); 12143 12144 ret = kvm_x86_check_processor_compatibility(); 12145 if (ret) 12146 return ret; 12147 12148 ret = static_call(kvm_x86_hardware_enable)(); 12149 if (ret != 0) 12150 return ret; 12151 12152 local_tsc = rdtsc(); 12153 stable = !kvm_check_tsc_unstable(); 12154 list_for_each_entry(kvm, &vm_list, vm_list) { 12155 kvm_for_each_vcpu(i, vcpu, kvm) { 12156 if (!stable && vcpu->cpu == smp_processor_id()) 12157 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12158 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12159 backwards_tsc = true; 12160 if (vcpu->arch.last_host_tsc > max_tsc) 12161 max_tsc = vcpu->arch.last_host_tsc; 12162 } 12163 } 12164 } 12165 12166 /* 12167 * Sometimes, even reliable TSCs go backwards. This happens on 12168 * platforms that reset TSC during suspend or hibernate actions, but 12169 * maintain synchronization. We must compensate. Fortunately, we can 12170 * detect that condition here, which happens early in CPU bringup, 12171 * before any KVM threads can be running. Unfortunately, we can't 12172 * bring the TSCs fully up to date with real time, as we aren't yet far 12173 * enough into CPU bringup that we know how much real time has actually 12174 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12175 * variables that haven't been updated yet. 12176 * 12177 * So we simply find the maximum observed TSC above, then record the 12178 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12179 * the adjustment will be applied. Note that we accumulate 12180 * adjustments, in case multiple suspend cycles happen before some VCPU 12181 * gets a chance to run again. In the event that no KVM threads get a 12182 * chance to run, we will miss the entire elapsed period, as we'll have 12183 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12184 * loose cycle time. This isn't too big a deal, since the loss will be 12185 * uniform across all VCPUs (not to mention the scenario is extremely 12186 * unlikely). It is possible that a second hibernate recovery happens 12187 * much faster than a first, causing the observed TSC here to be 12188 * smaller; this would require additional padding adjustment, which is 12189 * why we set last_host_tsc to the local tsc observed here. 12190 * 12191 * N.B. - this code below runs only on platforms with reliable TSC, 12192 * as that is the only way backwards_tsc is set above. Also note 12193 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12194 * have the same delta_cyc adjustment applied if backwards_tsc 12195 * is detected. Note further, this adjustment is only done once, 12196 * as we reset last_host_tsc on all VCPUs to stop this from being 12197 * called multiple times (one for each physical CPU bringup). 12198 * 12199 * Platforms with unreliable TSCs don't have to deal with this, they 12200 * will be compensated by the logic in vcpu_load, which sets the TSC to 12201 * catchup mode. This will catchup all VCPUs to real time, but cannot 12202 * guarantee that they stay in perfect synchronization. 12203 */ 12204 if (backwards_tsc) { 12205 u64 delta_cyc = max_tsc - local_tsc; 12206 list_for_each_entry(kvm, &vm_list, vm_list) { 12207 kvm->arch.backwards_tsc_observed = true; 12208 kvm_for_each_vcpu(i, vcpu, kvm) { 12209 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12210 vcpu->arch.last_host_tsc = local_tsc; 12211 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12212 } 12213 12214 /* 12215 * We have to disable TSC offset matching.. if you were 12216 * booting a VM while issuing an S4 host suspend.... 12217 * you may have some problem. Solving this issue is 12218 * left as an exercise to the reader. 12219 */ 12220 kvm->arch.last_tsc_nsec = 0; 12221 kvm->arch.last_tsc_write = 0; 12222 } 12223 12224 } 12225 return 0; 12226 } 12227 12228 void kvm_arch_hardware_disable(void) 12229 { 12230 static_call(kvm_x86_hardware_disable)(); 12231 drop_user_return_notifiers(); 12232 } 12233 12234 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12235 { 12236 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12237 } 12238 12239 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12240 { 12241 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12242 } 12243 12244 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 12245 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 12246 12247 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 12248 { 12249 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 12250 12251 vcpu->arch.l1tf_flush_l1d = true; 12252 if (pmu->version && unlikely(pmu->event_count)) { 12253 pmu->need_cleanup = true; 12254 kvm_make_request(KVM_REQ_PMU, vcpu); 12255 } 12256 static_call(kvm_x86_sched_in)(vcpu, cpu); 12257 } 12258 12259 void kvm_arch_free_vm(struct kvm *kvm) 12260 { 12261 kfree(to_kvm_hv(kvm)->hv_pa_pg); 12262 __kvm_arch_free_vm(kvm); 12263 } 12264 12265 12266 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12267 { 12268 int ret; 12269 unsigned long flags; 12270 12271 if (type) 12272 return -EINVAL; 12273 12274 ret = kvm_page_track_init(kvm); 12275 if (ret) 12276 goto out; 12277 12278 ret = kvm_mmu_init_vm(kvm); 12279 if (ret) 12280 goto out_page_track; 12281 12282 ret = static_call(kvm_x86_vm_init)(kvm); 12283 if (ret) 12284 goto out_uninit_mmu; 12285 12286 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12287 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 12288 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12289 12290 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12291 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12292 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12293 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12294 &kvm->arch.irq_sources_bitmap); 12295 12296 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12297 mutex_init(&kvm->arch.apic_map_lock); 12298 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12299 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12300 12301 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12302 pvclock_update_vm_gtod_copy(kvm); 12303 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12304 12305 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12306 kvm->arch.guest_can_read_msr_platform_info = true; 12307 kvm->arch.enable_pmu = enable_pmu; 12308 12309 #if IS_ENABLED(CONFIG_HYPERV) 12310 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12311 kvm->arch.hv_root_tdp = INVALID_PAGE; 12312 #endif 12313 12314 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12315 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12316 12317 kvm_apicv_init(kvm); 12318 kvm_hv_init_vm(kvm); 12319 kvm_xen_init_vm(kvm); 12320 12321 return 0; 12322 12323 out_uninit_mmu: 12324 kvm_mmu_uninit_vm(kvm); 12325 out_page_track: 12326 kvm_page_track_cleanup(kvm); 12327 out: 12328 return ret; 12329 } 12330 12331 int kvm_arch_post_init_vm(struct kvm *kvm) 12332 { 12333 return kvm_mmu_post_init_vm(kvm); 12334 } 12335 12336 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12337 { 12338 vcpu_load(vcpu); 12339 kvm_mmu_unload(vcpu); 12340 vcpu_put(vcpu); 12341 } 12342 12343 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12344 { 12345 unsigned long i; 12346 struct kvm_vcpu *vcpu; 12347 12348 kvm_for_each_vcpu(i, vcpu, kvm) { 12349 kvm_clear_async_pf_completion_queue(vcpu); 12350 kvm_unload_vcpu_mmu(vcpu); 12351 } 12352 } 12353 12354 void kvm_arch_sync_events(struct kvm *kvm) 12355 { 12356 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12357 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12358 kvm_free_pit(kvm); 12359 } 12360 12361 /** 12362 * __x86_set_memory_region: Setup KVM internal memory slot 12363 * 12364 * @kvm: the kvm pointer to the VM. 12365 * @id: the slot ID to setup. 12366 * @gpa: the GPA to install the slot (unused when @size == 0). 12367 * @size: the size of the slot. Set to zero to uninstall a slot. 12368 * 12369 * This function helps to setup a KVM internal memory slot. Specify 12370 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12371 * slot. The return code can be one of the following: 12372 * 12373 * HVA: on success (uninstall will return a bogus HVA) 12374 * -errno: on error 12375 * 12376 * The caller should always use IS_ERR() to check the return value 12377 * before use. Note, the KVM internal memory slots are guaranteed to 12378 * remain valid and unchanged until the VM is destroyed, i.e., the 12379 * GPA->HVA translation will not change. However, the HVA is a user 12380 * address, i.e. its accessibility is not guaranteed, and must be 12381 * accessed via __copy_{to,from}_user(). 12382 */ 12383 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12384 u32 size) 12385 { 12386 int i, r; 12387 unsigned long hva, old_npages; 12388 struct kvm_memslots *slots = kvm_memslots(kvm); 12389 struct kvm_memory_slot *slot; 12390 12391 /* Called with kvm->slots_lock held. */ 12392 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12393 return ERR_PTR_USR(-EINVAL); 12394 12395 slot = id_to_memslot(slots, id); 12396 if (size) { 12397 if (slot && slot->npages) 12398 return ERR_PTR_USR(-EEXIST); 12399 12400 /* 12401 * MAP_SHARED to prevent internal slot pages from being moved 12402 * by fork()/COW. 12403 */ 12404 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12405 MAP_SHARED | MAP_ANONYMOUS, 0); 12406 if (IS_ERR_VALUE(hva)) 12407 return (void __user *)hva; 12408 } else { 12409 if (!slot || !slot->npages) 12410 return NULL; 12411 12412 old_npages = slot->npages; 12413 hva = slot->userspace_addr; 12414 } 12415 12416 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 12417 struct kvm_userspace_memory_region m; 12418 12419 m.slot = id | (i << 16); 12420 m.flags = 0; 12421 m.guest_phys_addr = gpa; 12422 m.userspace_addr = hva; 12423 m.memory_size = size; 12424 r = __kvm_set_memory_region(kvm, &m); 12425 if (r < 0) 12426 return ERR_PTR_USR(r); 12427 } 12428 12429 if (!size) 12430 vm_munmap(hva, old_npages * PAGE_SIZE); 12431 12432 return (void __user *)hva; 12433 } 12434 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12435 12436 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12437 { 12438 kvm_mmu_pre_destroy_vm(kvm); 12439 } 12440 12441 void kvm_arch_destroy_vm(struct kvm *kvm) 12442 { 12443 if (current->mm == kvm->mm) { 12444 /* 12445 * Free memory regions allocated on behalf of userspace, 12446 * unless the memory map has changed due to process exit 12447 * or fd copying. 12448 */ 12449 mutex_lock(&kvm->slots_lock); 12450 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12451 0, 0); 12452 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12453 0, 0); 12454 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12455 mutex_unlock(&kvm->slots_lock); 12456 } 12457 kvm_unload_vcpu_mmus(kvm); 12458 static_call_cond(kvm_x86_vm_destroy)(kvm); 12459 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12460 kvm_pic_destroy(kvm); 12461 kvm_ioapic_destroy(kvm); 12462 kvm_destroy_vcpus(kvm); 12463 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12464 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12465 kvm_mmu_uninit_vm(kvm); 12466 kvm_page_track_cleanup(kvm); 12467 kvm_xen_destroy_vm(kvm); 12468 kvm_hv_destroy_vm(kvm); 12469 } 12470 12471 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12472 { 12473 int i; 12474 12475 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12476 kvfree(slot->arch.rmap[i]); 12477 slot->arch.rmap[i] = NULL; 12478 } 12479 } 12480 12481 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12482 { 12483 int i; 12484 12485 memslot_rmap_free(slot); 12486 12487 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12488 kvfree(slot->arch.lpage_info[i - 1]); 12489 slot->arch.lpage_info[i - 1] = NULL; 12490 } 12491 12492 kvm_page_track_free_memslot(slot); 12493 } 12494 12495 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12496 { 12497 const int sz = sizeof(*slot->arch.rmap[0]); 12498 int i; 12499 12500 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12501 int level = i + 1; 12502 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12503 12504 if (slot->arch.rmap[i]) 12505 continue; 12506 12507 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12508 if (!slot->arch.rmap[i]) { 12509 memslot_rmap_free(slot); 12510 return -ENOMEM; 12511 } 12512 } 12513 12514 return 0; 12515 } 12516 12517 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12518 struct kvm_memory_slot *slot) 12519 { 12520 unsigned long npages = slot->npages; 12521 int i, r; 12522 12523 /* 12524 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12525 * old arrays will be freed by __kvm_set_memory_region() if installing 12526 * the new memslot is successful. 12527 */ 12528 memset(&slot->arch, 0, sizeof(slot->arch)); 12529 12530 if (kvm_memslots_have_rmaps(kvm)) { 12531 r = memslot_rmap_alloc(slot, npages); 12532 if (r) 12533 return r; 12534 } 12535 12536 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12537 struct kvm_lpage_info *linfo; 12538 unsigned long ugfn; 12539 int lpages; 12540 int level = i + 1; 12541 12542 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12543 12544 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12545 if (!linfo) 12546 goto out_free; 12547 12548 slot->arch.lpage_info[i - 1] = linfo; 12549 12550 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12551 linfo[0].disallow_lpage = 1; 12552 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12553 linfo[lpages - 1].disallow_lpage = 1; 12554 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12555 /* 12556 * If the gfn and userspace address are not aligned wrt each 12557 * other, disable large page support for this slot. 12558 */ 12559 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12560 unsigned long j; 12561 12562 for (j = 0; j < lpages; ++j) 12563 linfo[j].disallow_lpage = 1; 12564 } 12565 } 12566 12567 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12568 goto out_free; 12569 12570 return 0; 12571 12572 out_free: 12573 memslot_rmap_free(slot); 12574 12575 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12576 kvfree(slot->arch.lpage_info[i - 1]); 12577 slot->arch.lpage_info[i - 1] = NULL; 12578 } 12579 return -ENOMEM; 12580 } 12581 12582 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12583 { 12584 struct kvm_vcpu *vcpu; 12585 unsigned long i; 12586 12587 /* 12588 * memslots->generation has been incremented. 12589 * mmio generation may have reached its maximum value. 12590 */ 12591 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12592 12593 /* Force re-initialization of steal_time cache */ 12594 kvm_for_each_vcpu(i, vcpu, kvm) 12595 kvm_vcpu_kick(vcpu); 12596 } 12597 12598 int kvm_arch_prepare_memory_region(struct kvm *kvm, 12599 const struct kvm_memory_slot *old, 12600 struct kvm_memory_slot *new, 12601 enum kvm_mr_change change) 12602 { 12603 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12604 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12605 return -EINVAL; 12606 12607 return kvm_alloc_memslot_metadata(kvm, new); 12608 } 12609 12610 if (change == KVM_MR_FLAGS_ONLY) 12611 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12612 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12613 return -EIO; 12614 12615 return 0; 12616 } 12617 12618 12619 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12620 { 12621 int nr_slots; 12622 12623 if (!kvm_x86_ops.cpu_dirty_log_size) 12624 return; 12625 12626 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 12627 if ((enable && nr_slots == 1) || !nr_slots) 12628 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12629 } 12630 12631 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12632 struct kvm_memory_slot *old, 12633 const struct kvm_memory_slot *new, 12634 enum kvm_mr_change change) 12635 { 12636 u32 old_flags = old ? old->flags : 0; 12637 u32 new_flags = new ? new->flags : 0; 12638 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12639 12640 /* 12641 * Update CPU dirty logging if dirty logging is being toggled. This 12642 * applies to all operations. 12643 */ 12644 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12645 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12646 12647 /* 12648 * Nothing more to do for RO slots (which can't be dirtied and can't be 12649 * made writable) or CREATE/MOVE/DELETE of a slot. 12650 * 12651 * For a memslot with dirty logging disabled: 12652 * CREATE: No dirty mappings will already exist. 12653 * MOVE/DELETE: The old mappings will already have been cleaned up by 12654 * kvm_arch_flush_shadow_memslot() 12655 * 12656 * For a memslot with dirty logging enabled: 12657 * CREATE: No shadow pages exist, thus nothing to write-protect 12658 * and no dirty bits to clear. 12659 * MOVE/DELETE: The old mappings will already have been cleaned up by 12660 * kvm_arch_flush_shadow_memslot(). 12661 */ 12662 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12663 return; 12664 12665 /* 12666 * READONLY and non-flags changes were filtered out above, and the only 12667 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12668 * logging isn't being toggled on or off. 12669 */ 12670 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12671 return; 12672 12673 if (!log_dirty_pages) { 12674 /* 12675 * Dirty logging tracks sptes in 4k granularity, meaning that 12676 * large sptes have to be split. If live migration succeeds, 12677 * the guest in the source machine will be destroyed and large 12678 * sptes will be created in the destination. However, if the 12679 * guest continues to run in the source machine (for example if 12680 * live migration fails), small sptes will remain around and 12681 * cause bad performance. 12682 * 12683 * Scan sptes if dirty logging has been stopped, dropping those 12684 * which can be collapsed into a single large-page spte. Later 12685 * page faults will create the large-page sptes. 12686 */ 12687 kvm_mmu_zap_collapsible_sptes(kvm, new); 12688 } else { 12689 /* 12690 * Initially-all-set does not require write protecting any page, 12691 * because they're all assumed to be dirty. 12692 */ 12693 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12694 return; 12695 12696 if (READ_ONCE(eager_page_split)) 12697 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12698 12699 if (kvm_x86_ops.cpu_dirty_log_size) { 12700 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12701 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12702 } else { 12703 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12704 } 12705 12706 /* 12707 * Unconditionally flush the TLBs after enabling dirty logging. 12708 * A flush is almost always going to be necessary (see below), 12709 * and unconditionally flushing allows the helpers to omit 12710 * the subtly complex checks when removing write access. 12711 * 12712 * Do the flush outside of mmu_lock to reduce the amount of 12713 * time mmu_lock is held. Flushing after dropping mmu_lock is 12714 * safe as KVM only needs to guarantee the slot is fully 12715 * write-protected before returning to userspace, i.e. before 12716 * userspace can consume the dirty status. 12717 * 12718 * Flushing outside of mmu_lock requires KVM to be careful when 12719 * making decisions based on writable status of an SPTE, e.g. a 12720 * !writable SPTE doesn't guarantee a CPU can't perform writes. 12721 * 12722 * Specifically, KVM also write-protects guest page tables to 12723 * monitor changes when using shadow paging, and must guarantee 12724 * no CPUs can write to those page before mmu_lock is dropped. 12725 * Because CPUs may have stale TLB entries at this point, a 12726 * !writable SPTE doesn't guarantee CPUs can't perform writes. 12727 * 12728 * KVM also allows making SPTES writable outside of mmu_lock, 12729 * e.g. to allow dirty logging without taking mmu_lock. 12730 * 12731 * To handle these scenarios, KVM uses a separate software-only 12732 * bit (MMU-writable) to track if a SPTE is !writable due to 12733 * a guest page table being write-protected (KVM clears the 12734 * MMU-writable flag when write-protecting for shadow paging). 12735 * 12736 * The use of MMU-writable is also the primary motivation for 12737 * the unconditional flush. Because KVM must guarantee that a 12738 * CPU doesn't contain stale, writable TLB entries for a 12739 * !MMU-writable SPTE, KVM must flush if it encounters any 12740 * MMU-writable SPTE regardless of whether the actual hardware 12741 * writable bit was set. I.e. KVM is almost guaranteed to need 12742 * to flush, while unconditionally flushing allows the "remove 12743 * write access" helpers to ignore MMU-writable entirely. 12744 * 12745 * See is_writable_pte() for more details (the case involving 12746 * access-tracked SPTEs is particularly relevant). 12747 */ 12748 kvm_arch_flush_remote_tlbs_memslot(kvm, new); 12749 } 12750 } 12751 12752 void kvm_arch_commit_memory_region(struct kvm *kvm, 12753 struct kvm_memory_slot *old, 12754 const struct kvm_memory_slot *new, 12755 enum kvm_mr_change change) 12756 { 12757 if (!kvm->arch.n_requested_mmu_pages && 12758 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12759 unsigned long nr_mmu_pages; 12760 12761 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12762 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12763 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12764 } 12765 12766 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12767 12768 /* Free the arrays associated with the old memslot. */ 12769 if (change == KVM_MR_MOVE) 12770 kvm_arch_free_memslot(kvm, old); 12771 } 12772 12773 void kvm_arch_flush_shadow_all(struct kvm *kvm) 12774 { 12775 kvm_mmu_zap_all(kvm); 12776 } 12777 12778 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12779 struct kvm_memory_slot *slot) 12780 { 12781 kvm_page_track_flush_slot(kvm, slot); 12782 } 12783 12784 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12785 { 12786 return (is_guest_mode(vcpu) && 12787 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12788 } 12789 12790 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12791 { 12792 if (!list_empty_careful(&vcpu->async_pf.done)) 12793 return true; 12794 12795 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 12796 kvm_apic_init_sipi_allowed(vcpu)) 12797 return true; 12798 12799 if (vcpu->arch.pv.pv_unhalted) 12800 return true; 12801 12802 if (kvm_is_exception_pending(vcpu)) 12803 return true; 12804 12805 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12806 (vcpu->arch.nmi_pending && 12807 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12808 return true; 12809 12810 #ifdef CONFIG_KVM_SMM 12811 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12812 (vcpu->arch.smi_pending && 12813 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12814 return true; 12815 #endif 12816 12817 if (kvm_arch_interrupt_allowed(vcpu) && 12818 (kvm_cpu_has_interrupt(vcpu) || 12819 kvm_guest_apic_has_interrupt(vcpu))) 12820 return true; 12821 12822 if (kvm_hv_has_stimer_pending(vcpu)) 12823 return true; 12824 12825 if (is_guest_mode(vcpu) && 12826 kvm_x86_ops.nested_ops->has_events && 12827 kvm_x86_ops.nested_ops->has_events(vcpu)) 12828 return true; 12829 12830 if (kvm_xen_has_pending_events(vcpu)) 12831 return true; 12832 12833 return false; 12834 } 12835 12836 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12837 { 12838 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12839 } 12840 12841 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12842 { 12843 if (kvm_vcpu_apicv_active(vcpu) && 12844 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12845 return true; 12846 12847 return false; 12848 } 12849 12850 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12851 { 12852 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12853 return true; 12854 12855 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12856 #ifdef CONFIG_KVM_SMM 12857 kvm_test_request(KVM_REQ_SMI, vcpu) || 12858 #endif 12859 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12860 return true; 12861 12862 return kvm_arch_dy_has_pending_interrupt(vcpu); 12863 } 12864 12865 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12866 { 12867 if (vcpu->arch.guest_state_protected) 12868 return true; 12869 12870 return vcpu->arch.preempted_in_kernel; 12871 } 12872 12873 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12874 { 12875 return kvm_rip_read(vcpu); 12876 } 12877 12878 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12879 { 12880 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12881 } 12882 12883 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12884 { 12885 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12886 } 12887 12888 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12889 { 12890 /* Can't read the RIP when guest state is protected, just return 0 */ 12891 if (vcpu->arch.guest_state_protected) 12892 return 0; 12893 12894 if (is_64_bit_mode(vcpu)) 12895 return kvm_rip_read(vcpu); 12896 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12897 kvm_rip_read(vcpu)); 12898 } 12899 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12900 12901 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12902 { 12903 return kvm_get_linear_rip(vcpu) == linear_rip; 12904 } 12905 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12906 12907 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12908 { 12909 unsigned long rflags; 12910 12911 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12912 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12913 rflags &= ~X86_EFLAGS_TF; 12914 return rflags; 12915 } 12916 EXPORT_SYMBOL_GPL(kvm_get_rflags); 12917 12918 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12919 { 12920 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12921 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12922 rflags |= X86_EFLAGS_TF; 12923 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12924 } 12925 12926 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12927 { 12928 __kvm_set_rflags(vcpu, rflags); 12929 kvm_make_request(KVM_REQ_EVENT, vcpu); 12930 } 12931 EXPORT_SYMBOL_GPL(kvm_set_rflags); 12932 12933 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12934 { 12935 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12936 12937 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12938 } 12939 12940 static inline u32 kvm_async_pf_next_probe(u32 key) 12941 { 12942 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12943 } 12944 12945 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12946 { 12947 u32 key = kvm_async_pf_hash_fn(gfn); 12948 12949 while (vcpu->arch.apf.gfns[key] != ~0) 12950 key = kvm_async_pf_next_probe(key); 12951 12952 vcpu->arch.apf.gfns[key] = gfn; 12953 } 12954 12955 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12956 { 12957 int i; 12958 u32 key = kvm_async_pf_hash_fn(gfn); 12959 12960 for (i = 0; i < ASYNC_PF_PER_VCPU && 12961 (vcpu->arch.apf.gfns[key] != gfn && 12962 vcpu->arch.apf.gfns[key] != ~0); i++) 12963 key = kvm_async_pf_next_probe(key); 12964 12965 return key; 12966 } 12967 12968 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12969 { 12970 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12971 } 12972 12973 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12974 { 12975 u32 i, j, k; 12976 12977 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12978 12979 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12980 return; 12981 12982 while (true) { 12983 vcpu->arch.apf.gfns[i] = ~0; 12984 do { 12985 j = kvm_async_pf_next_probe(j); 12986 if (vcpu->arch.apf.gfns[j] == ~0) 12987 return; 12988 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12989 /* 12990 * k lies cyclically in ]i,j] 12991 * | i.k.j | 12992 * |....j i.k.| or |.k..j i...| 12993 */ 12994 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12995 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12996 i = j; 12997 } 12998 } 12999 13000 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13001 { 13002 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13003 13004 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13005 sizeof(reason)); 13006 } 13007 13008 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13009 { 13010 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13011 13012 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13013 &token, offset, sizeof(token)); 13014 } 13015 13016 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13017 { 13018 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13019 u32 val; 13020 13021 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13022 &val, offset, sizeof(val))) 13023 return false; 13024 13025 return !val; 13026 } 13027 13028 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13029 { 13030 13031 if (!kvm_pv_async_pf_enabled(vcpu)) 13032 return false; 13033 13034 if (vcpu->arch.apf.send_user_only && 13035 static_call(kvm_x86_get_cpl)(vcpu) == 0) 13036 return false; 13037 13038 if (is_guest_mode(vcpu)) { 13039 /* 13040 * L1 needs to opt into the special #PF vmexits that are 13041 * used to deliver async page faults. 13042 */ 13043 return vcpu->arch.apf.delivery_as_pf_vmexit; 13044 } else { 13045 /* 13046 * Play it safe in case the guest temporarily disables paging. 13047 * The real mode IDT in particular is unlikely to have a #PF 13048 * exception setup. 13049 */ 13050 return is_paging(vcpu); 13051 } 13052 } 13053 13054 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13055 { 13056 if (unlikely(!lapic_in_kernel(vcpu) || 13057 kvm_event_needs_reinjection(vcpu) || 13058 kvm_is_exception_pending(vcpu))) 13059 return false; 13060 13061 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13062 return false; 13063 13064 /* 13065 * If interrupts are off we cannot even use an artificial 13066 * halt state. 13067 */ 13068 return kvm_arch_interrupt_allowed(vcpu); 13069 } 13070 13071 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13072 struct kvm_async_pf *work) 13073 { 13074 struct x86_exception fault; 13075 13076 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13077 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13078 13079 if (kvm_can_deliver_async_pf(vcpu) && 13080 !apf_put_user_notpresent(vcpu)) { 13081 fault.vector = PF_VECTOR; 13082 fault.error_code_valid = true; 13083 fault.error_code = 0; 13084 fault.nested_page_fault = false; 13085 fault.address = work->arch.token; 13086 fault.async_page_fault = true; 13087 kvm_inject_page_fault(vcpu, &fault); 13088 return true; 13089 } else { 13090 /* 13091 * It is not possible to deliver a paravirtualized asynchronous 13092 * page fault, but putting the guest in an artificial halt state 13093 * can be beneficial nevertheless: if an interrupt arrives, we 13094 * can deliver it timely and perhaps the guest will schedule 13095 * another process. When the instruction that triggered a page 13096 * fault is retried, hopefully the page will be ready in the host. 13097 */ 13098 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13099 return false; 13100 } 13101 } 13102 13103 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13104 struct kvm_async_pf *work) 13105 { 13106 struct kvm_lapic_irq irq = { 13107 .delivery_mode = APIC_DM_FIXED, 13108 .vector = vcpu->arch.apf.vec 13109 }; 13110 13111 if (work->wakeup_all) 13112 work->arch.token = ~0; /* broadcast wakeup */ 13113 else 13114 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13115 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13116 13117 if ((work->wakeup_all || work->notpresent_injected) && 13118 kvm_pv_async_pf_enabled(vcpu) && 13119 !apf_put_user_ready(vcpu, work->arch.token)) { 13120 vcpu->arch.apf.pageready_pending = true; 13121 kvm_apic_set_irq(vcpu, &irq, NULL); 13122 } 13123 13124 vcpu->arch.apf.halted = false; 13125 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13126 } 13127 13128 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13129 { 13130 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13131 if (!vcpu->arch.apf.pageready_pending) 13132 kvm_vcpu_kick(vcpu); 13133 } 13134 13135 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13136 { 13137 if (!kvm_pv_async_pf_enabled(vcpu)) 13138 return true; 13139 else 13140 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13141 } 13142 13143 void kvm_arch_start_assignment(struct kvm *kvm) 13144 { 13145 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13146 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 13147 } 13148 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13149 13150 void kvm_arch_end_assignment(struct kvm *kvm) 13151 { 13152 atomic_dec(&kvm->arch.assigned_device_count); 13153 } 13154 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13155 13156 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13157 { 13158 return arch_atomic_read(&kvm->arch.assigned_device_count); 13159 } 13160 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13161 13162 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13163 { 13164 atomic_inc(&kvm->arch.noncoherent_dma_count); 13165 } 13166 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13167 13168 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13169 { 13170 atomic_dec(&kvm->arch.noncoherent_dma_count); 13171 } 13172 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13173 13174 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13175 { 13176 return atomic_read(&kvm->arch.noncoherent_dma_count); 13177 } 13178 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13179 13180 bool kvm_arch_has_irq_bypass(void) 13181 { 13182 return true; 13183 } 13184 13185 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13186 struct irq_bypass_producer *prod) 13187 { 13188 struct kvm_kernel_irqfd *irqfd = 13189 container_of(cons, struct kvm_kernel_irqfd, consumer); 13190 int ret; 13191 13192 irqfd->producer = prod; 13193 kvm_arch_start_assignment(irqfd->kvm); 13194 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 13195 prod->irq, irqfd->gsi, 1); 13196 13197 if (ret) 13198 kvm_arch_end_assignment(irqfd->kvm); 13199 13200 return ret; 13201 } 13202 13203 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13204 struct irq_bypass_producer *prod) 13205 { 13206 int ret; 13207 struct kvm_kernel_irqfd *irqfd = 13208 container_of(cons, struct kvm_kernel_irqfd, consumer); 13209 13210 WARN_ON(irqfd->producer != prod); 13211 irqfd->producer = NULL; 13212 13213 /* 13214 * When producer of consumer is unregistered, we change back to 13215 * remapped mode, so we can re-use the current implementation 13216 * when the irq is masked/disabled or the consumer side (KVM 13217 * int this case doesn't want to receive the interrupts. 13218 */ 13219 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 13220 if (ret) 13221 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13222 " fails: %d\n", irqfd->consumer.token, ret); 13223 13224 kvm_arch_end_assignment(irqfd->kvm); 13225 } 13226 13227 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13228 uint32_t guest_irq, bool set) 13229 { 13230 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 13231 } 13232 13233 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13234 struct kvm_kernel_irq_routing_entry *new) 13235 { 13236 if (new->type != KVM_IRQ_ROUTING_MSI) 13237 return true; 13238 13239 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13240 } 13241 13242 bool kvm_vector_hashing_enabled(void) 13243 { 13244 return vector_hashing; 13245 } 13246 13247 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13248 { 13249 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13250 } 13251 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13252 13253 13254 int kvm_spec_ctrl_test_value(u64 value) 13255 { 13256 /* 13257 * test that setting IA32_SPEC_CTRL to given value 13258 * is allowed by the host processor 13259 */ 13260 13261 u64 saved_value; 13262 unsigned long flags; 13263 int ret = 0; 13264 13265 local_irq_save(flags); 13266 13267 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13268 ret = 1; 13269 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13270 ret = 1; 13271 else 13272 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13273 13274 local_irq_restore(flags); 13275 13276 return ret; 13277 } 13278 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13279 13280 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13281 { 13282 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13283 struct x86_exception fault; 13284 u64 access = error_code & 13285 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13286 13287 if (!(error_code & PFERR_PRESENT_MASK) || 13288 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13289 /* 13290 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13291 * tables probably do not match the TLB. Just proceed 13292 * with the error code that the processor gave. 13293 */ 13294 fault.vector = PF_VECTOR; 13295 fault.error_code_valid = true; 13296 fault.error_code = error_code; 13297 fault.nested_page_fault = false; 13298 fault.address = gva; 13299 fault.async_page_fault = false; 13300 } 13301 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13302 } 13303 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13304 13305 /* 13306 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13307 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13308 * indicates whether exit to userspace is needed. 13309 */ 13310 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13311 struct x86_exception *e) 13312 { 13313 if (r == X86EMUL_PROPAGATE_FAULT) { 13314 if (KVM_BUG_ON(!e, vcpu->kvm)) 13315 return -EIO; 13316 13317 kvm_inject_emulated_page_fault(vcpu, e); 13318 return 1; 13319 } 13320 13321 /* 13322 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13323 * while handling a VMX instruction KVM could've handled the request 13324 * correctly by exiting to userspace and performing I/O but there 13325 * doesn't seem to be a real use-case behind such requests, just return 13326 * KVM_EXIT_INTERNAL_ERROR for now. 13327 */ 13328 kvm_prepare_emulation_failure_exit(vcpu); 13329 13330 return 0; 13331 } 13332 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13333 13334 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13335 { 13336 bool pcid_enabled; 13337 struct x86_exception e; 13338 struct { 13339 u64 pcid; 13340 u64 gla; 13341 } operand; 13342 int r; 13343 13344 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13345 if (r != X86EMUL_CONTINUE) 13346 return kvm_handle_memory_failure(vcpu, r, &e); 13347 13348 if (operand.pcid >> 12 != 0) { 13349 kvm_inject_gp(vcpu, 0); 13350 return 1; 13351 } 13352 13353 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13354 13355 switch (type) { 13356 case INVPCID_TYPE_INDIV_ADDR: 13357 if ((!pcid_enabled && (operand.pcid != 0)) || 13358 is_noncanonical_address(operand.gla, vcpu)) { 13359 kvm_inject_gp(vcpu, 0); 13360 return 1; 13361 } 13362 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13363 return kvm_skip_emulated_instruction(vcpu); 13364 13365 case INVPCID_TYPE_SINGLE_CTXT: 13366 if (!pcid_enabled && (operand.pcid != 0)) { 13367 kvm_inject_gp(vcpu, 0); 13368 return 1; 13369 } 13370 13371 kvm_invalidate_pcid(vcpu, operand.pcid); 13372 return kvm_skip_emulated_instruction(vcpu); 13373 13374 case INVPCID_TYPE_ALL_NON_GLOBAL: 13375 /* 13376 * Currently, KVM doesn't mark global entries in the shadow 13377 * page tables, so a non-global flush just degenerates to a 13378 * global flush. If needed, we could optimize this later by 13379 * keeping track of global entries in shadow page tables. 13380 */ 13381 13382 fallthrough; 13383 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13384 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13385 return kvm_skip_emulated_instruction(vcpu); 13386 13387 default: 13388 kvm_inject_gp(vcpu, 0); 13389 return 1; 13390 } 13391 } 13392 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13393 13394 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13395 { 13396 struct kvm_run *run = vcpu->run; 13397 struct kvm_mmio_fragment *frag; 13398 unsigned int len; 13399 13400 BUG_ON(!vcpu->mmio_needed); 13401 13402 /* Complete previous fragment */ 13403 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13404 len = min(8u, frag->len); 13405 if (!vcpu->mmio_is_write) 13406 memcpy(frag->data, run->mmio.data, len); 13407 13408 if (frag->len <= 8) { 13409 /* Switch to the next fragment. */ 13410 frag++; 13411 vcpu->mmio_cur_fragment++; 13412 } else { 13413 /* Go forward to the next mmio piece. */ 13414 frag->data += len; 13415 frag->gpa += len; 13416 frag->len -= len; 13417 } 13418 13419 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13420 vcpu->mmio_needed = 0; 13421 13422 // VMG change, at this point, we're always done 13423 // RIP has already been advanced 13424 return 1; 13425 } 13426 13427 // More MMIO is needed 13428 run->mmio.phys_addr = frag->gpa; 13429 run->mmio.len = min(8u, frag->len); 13430 run->mmio.is_write = vcpu->mmio_is_write; 13431 if (run->mmio.is_write) 13432 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13433 run->exit_reason = KVM_EXIT_MMIO; 13434 13435 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13436 13437 return 0; 13438 } 13439 13440 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13441 void *data) 13442 { 13443 int handled; 13444 struct kvm_mmio_fragment *frag; 13445 13446 if (!data) 13447 return -EINVAL; 13448 13449 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13450 if (handled == bytes) 13451 return 1; 13452 13453 bytes -= handled; 13454 gpa += handled; 13455 data += handled; 13456 13457 /*TODO: Check if need to increment number of frags */ 13458 frag = vcpu->mmio_fragments; 13459 vcpu->mmio_nr_fragments = 1; 13460 frag->len = bytes; 13461 frag->gpa = gpa; 13462 frag->data = data; 13463 13464 vcpu->mmio_needed = 1; 13465 vcpu->mmio_cur_fragment = 0; 13466 13467 vcpu->run->mmio.phys_addr = gpa; 13468 vcpu->run->mmio.len = min(8u, frag->len); 13469 vcpu->run->mmio.is_write = 1; 13470 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13471 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13472 13473 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13474 13475 return 0; 13476 } 13477 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13478 13479 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13480 void *data) 13481 { 13482 int handled; 13483 struct kvm_mmio_fragment *frag; 13484 13485 if (!data) 13486 return -EINVAL; 13487 13488 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13489 if (handled == bytes) 13490 return 1; 13491 13492 bytes -= handled; 13493 gpa += handled; 13494 data += handled; 13495 13496 /*TODO: Check if need to increment number of frags */ 13497 frag = vcpu->mmio_fragments; 13498 vcpu->mmio_nr_fragments = 1; 13499 frag->len = bytes; 13500 frag->gpa = gpa; 13501 frag->data = data; 13502 13503 vcpu->mmio_needed = 1; 13504 vcpu->mmio_cur_fragment = 0; 13505 13506 vcpu->run->mmio.phys_addr = gpa; 13507 vcpu->run->mmio.len = min(8u, frag->len); 13508 vcpu->run->mmio.is_write = 0; 13509 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13510 13511 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13512 13513 return 0; 13514 } 13515 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13516 13517 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13518 { 13519 vcpu->arch.sev_pio_count -= count; 13520 vcpu->arch.sev_pio_data += count * size; 13521 } 13522 13523 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13524 unsigned int port); 13525 13526 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13527 { 13528 int size = vcpu->arch.pio.size; 13529 int port = vcpu->arch.pio.port; 13530 13531 vcpu->arch.pio.count = 0; 13532 if (vcpu->arch.sev_pio_count) 13533 return kvm_sev_es_outs(vcpu, size, port); 13534 return 1; 13535 } 13536 13537 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13538 unsigned int port) 13539 { 13540 for (;;) { 13541 unsigned int count = 13542 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13543 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13544 13545 /* memcpy done already by emulator_pio_out. */ 13546 advance_sev_es_emulated_pio(vcpu, count, size); 13547 if (!ret) 13548 break; 13549 13550 /* Emulation done by the kernel. */ 13551 if (!vcpu->arch.sev_pio_count) 13552 return 1; 13553 } 13554 13555 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13556 return 0; 13557 } 13558 13559 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13560 unsigned int port); 13561 13562 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13563 { 13564 unsigned count = vcpu->arch.pio.count; 13565 int size = vcpu->arch.pio.size; 13566 int port = vcpu->arch.pio.port; 13567 13568 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13569 advance_sev_es_emulated_pio(vcpu, count, size); 13570 if (vcpu->arch.sev_pio_count) 13571 return kvm_sev_es_ins(vcpu, size, port); 13572 return 1; 13573 } 13574 13575 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13576 unsigned int port) 13577 { 13578 for (;;) { 13579 unsigned int count = 13580 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13581 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13582 break; 13583 13584 /* Emulation done by the kernel. */ 13585 advance_sev_es_emulated_pio(vcpu, count, size); 13586 if (!vcpu->arch.sev_pio_count) 13587 return 1; 13588 } 13589 13590 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13591 return 0; 13592 } 13593 13594 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13595 unsigned int port, void *data, unsigned int count, 13596 int in) 13597 { 13598 vcpu->arch.sev_pio_data = data; 13599 vcpu->arch.sev_pio_count = count; 13600 return in ? kvm_sev_es_ins(vcpu, size, port) 13601 : kvm_sev_es_outs(vcpu, size, port); 13602 } 13603 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13604 13605 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13606 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13607 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13608 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13609 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13610 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13611 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13612 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13613 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13614 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13615 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13616 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13617 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13618 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13619 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13620 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13621 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13622 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13623 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 13629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13634 13635 static int __init kvm_x86_init(void) 13636 { 13637 kvm_mmu_x86_module_init(); 13638 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 13639 return 0; 13640 } 13641 module_init(kvm_x86_init); 13642 13643 static void __exit kvm_x86_exit(void) 13644 { 13645 /* 13646 * If module_init() is implemented, module_exit() must also be 13647 * implemented to allow module unload. 13648 */ 13649 } 13650 module_exit(kvm_x86_exit); 13651