xref: /linux/arch/x86/kvm/x86.c (revision 50a0844bf8c4d38be540e423672ef9408d029252)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 struct kvm_caps kvm_caps __read_mostly = {
96 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99 
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101 
102 #define emul_to_vcpu(ctxt) \
103 	((struct kvm_vcpu *)(ctxt)->vcpu)
104 
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115 
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 
138 #define KVM_X86_OP(func)					     \
139 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140 				*(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
149 
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
156 
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
159 
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
163 
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
172 
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
175 
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179 
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187 
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
190 
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195 
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198 
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202 
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 
210 struct kvm_user_return_msrs {
211 	struct user_return_notifier urn;
212 	bool registered;
213 	struct kvm_user_return_msr_values {
214 		u64 host;
215 		u64 curr;
216 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218 
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231 
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237 
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240 
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243 
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 	KVM_GENERIC_VM_STATS(),
246 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 	STATS_DESC_COUNTER(VM, mmu_pte_write),
248 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 	STATS_DESC_COUNTER(VM, mmu_flooded),
250 	STATS_DESC_COUNTER(VM, mmu_recycled),
251 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 	STATS_DESC_ICOUNTER(VM, pages_4k),
254 	STATS_DESC_ICOUNTER(VM, pages_2m),
255 	STATS_DESC_ICOUNTER(VM, pages_1g),
256 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260 
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 	.name_size = KVM_STATS_NAME_SIZE,
263 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 	.id_offset = sizeof(struct kvm_stats_header),
265 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 		       sizeof(kvm_vm_stats_desc),
268 };
269 
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 	KVM_GENERIC_VCPU_STATS(),
272 	STATS_DESC_COUNTER(VCPU, pf_taken),
273 	STATS_DESC_COUNTER(VCPU, pf_fixed),
274 	STATS_DESC_COUNTER(VCPU, pf_emulate),
275 	STATS_DESC_COUNTER(VCPU, pf_spurious),
276 	STATS_DESC_COUNTER(VCPU, pf_fast),
277 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 	STATS_DESC_COUNTER(VCPU, pf_guest),
279 	STATS_DESC_COUNTER(VCPU, tlb_flush),
280 	STATS_DESC_COUNTER(VCPU, invlpg),
281 	STATS_DESC_COUNTER(VCPU, exits),
282 	STATS_DESC_COUNTER(VCPU, io_exits),
283 	STATS_DESC_COUNTER(VCPU, mmio_exits),
284 	STATS_DESC_COUNTER(VCPU, signal_exits),
285 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 	STATS_DESC_COUNTER(VCPU, l1d_flush),
288 	STATS_DESC_COUNTER(VCPU, halt_exits),
289 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 	STATS_DESC_COUNTER(VCPU, irq_exits),
291 	STATS_DESC_COUNTER(VCPU, host_state_reload),
292 	STATS_DESC_COUNTER(VCPU, fpu_reload),
293 	STATS_DESC_COUNTER(VCPU, insn_emulation),
294 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 	STATS_DESC_COUNTER(VCPU, hypercalls),
296 	STATS_DESC_COUNTER(VCPU, irq_injections),
297 	STATS_DESC_COUNTER(VCPU, nmi_injections),
298 	STATS_DESC_COUNTER(VCPU, req_event),
299 	STATS_DESC_COUNTER(VCPU, nested_run),
300 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 	STATS_DESC_COUNTER(VCPU, preemption_reported),
303 	STATS_DESC_COUNTER(VCPU, preemption_other),
304 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307 
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 	.name_size = KVM_STATS_NAME_SIZE,
310 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 	.id_offset = sizeof(struct kvm_stats_header),
312 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 		       sizeof(kvm_vcpu_stats_desc),
315 };
316 
317 u64 __read_mostly host_xcr0;
318 
319 static struct kmem_cache *x86_emulator_cache;
320 
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 	const char *op = write ? "wrmsr" : "rdmsr";
328 
329 	if (ignore_msrs) {
330 		if (report_ignored_msrs)
331 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 				      op, msr, data);
333 		/* Mask the error */
334 		return true;
335 	} else {
336 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 				      op, msr, data);
338 		return false;
339 	}
340 }
341 
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 	unsigned int size = sizeof(struct x86_emulate_ctxt);
346 
347 	return kmem_cache_create_usercopy("x86_emulator", size,
348 					  __alignof__(struct x86_emulate_ctxt),
349 					  SLAB_ACCOUNT, useroffset,
350 					  size - useroffset, NULL);
351 }
352 
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354 
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 	int i;
358 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 		vcpu->arch.apf.gfns[i] = ~0;
360 }
361 
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 	unsigned slot;
365 	struct kvm_user_return_msrs *msrs
366 		= container_of(urn, struct kvm_user_return_msrs, urn);
367 	struct kvm_user_return_msr_values *values;
368 	unsigned long flags;
369 
370 	/*
371 	 * Disabling irqs at this point since the following code could be
372 	 * interrupted and executed through kvm_arch_hardware_disable()
373 	 */
374 	local_irq_save(flags);
375 	if (msrs->registered) {
376 		msrs->registered = false;
377 		user_return_notifier_unregister(urn);
378 	}
379 	local_irq_restore(flags);
380 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 		values = &msrs->values[slot];
382 		if (values->host != values->curr) {
383 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 			values->curr = values->host;
385 		}
386 	}
387 }
388 
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 	u64 val;
392 	int ret;
393 
394 	preempt_disable();
395 	ret = rdmsrl_safe(msr, &val);
396 	if (ret)
397 		goto out;
398 	ret = wrmsrl_safe(msr, val);
399 out:
400 	preempt_enable();
401 	return ret;
402 }
403 
404 int kvm_add_user_return_msr(u32 msr)
405 {
406 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407 
408 	if (kvm_probe_user_return_msr(msr))
409 		return -1;
410 
411 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 	return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415 
416 int kvm_find_user_return_msr(u32 msr)
417 {
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		if (kvm_uret_msrs_list[i] == msr)
422 			return i;
423 	}
424 	return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427 
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 	unsigned int cpu = smp_processor_id();
431 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 	u64 value;
433 	int i;
434 
435 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 		msrs->values[i].host = value;
438 		msrs->values[i].curr = value;
439 	}
440 }
441 
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 	unsigned int cpu = smp_processor_id();
445 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 	int err;
447 
448 	value = (value & mask) | (msrs->values[slot].host & ~mask);
449 	if (value == msrs->values[slot].curr)
450 		return 0;
451 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 	if (err)
453 		return 1;
454 
455 	msrs->values[slot].curr = value;
456 	if (!msrs->registered) {
457 		msrs->urn.on_user_return = kvm_on_user_return;
458 		user_return_notifier_register(&msrs->urn);
459 		msrs->registered = true;
460 	}
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464 
465 static void drop_user_return_notifiers(void)
466 {
467 	unsigned int cpu = smp_processor_id();
468 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469 
470 	if (msrs->registered)
471 		kvm_on_user_return(&msrs->urn);
472 }
473 
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 	return vcpu->arch.apic_base;
477 }
478 
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484 
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491 
492 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 		return 1;
494 	if (!msr_info->host_initiated) {
495 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 			return 1;
497 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 			return 1;
499 	}
500 
501 	kvm_lapic_set_base(vcpu, msr_info->data);
502 	kvm_recalculate_apic_map(vcpu->kvm);
503 	return 0;
504 }
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 #define EXCPT_DB		4
546 
547 static int exception_type(int vector)
548 {
549 	unsigned int mask;
550 
551 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 		return EXCPT_INTERRUPT;
553 
554 	mask = 1 << vector;
555 
556 	/*
557 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 	 */
560 	if (mask & (1 << DB_VECTOR))
561 		return EXCPT_DB;
562 
563 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 		return EXCPT_TRAP;
565 
566 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 		return EXCPT_ABORT;
568 
569 	/* Reserved exceptions will result in fault */
570 	return EXCPT_FAULT;
571 }
572 
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 				   struct kvm_queued_exception *ex)
575 {
576 	if (!ex->has_payload)
577 		return;
578 
579 	switch (ex->vector) {
580 	case DB_VECTOR:
581 		/*
582 		 * "Certain debug exceptions may clear bit 0-3.  The
583 		 * remaining contents of the DR6 register are never
584 		 * cleared by the processor".
585 		 */
586 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 		/*
588 		 * In order to reflect the #DB exception payload in guest
589 		 * dr6, three components need to be considered: active low
590 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 		 * DR6_BS and DR6_BT)
592 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 		 * In the target guest dr6:
594 		 * FIXED_1 bits should always be set.
595 		 * Active low bits should be cleared if 1-setting in payload.
596 		 * Active high bits should be set if 1-setting in payload.
597 		 *
598 		 * Note, the payload is compatible with the pending debug
599 		 * exceptions/exit qualification under VMX, that active_low bits
600 		 * are active high in payload.
601 		 * So they need to be flipped for DR6.
602 		 */
603 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 		vcpu->arch.dr6 |= ex->payload;
605 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606 
607 		/*
608 		 * The #DB payload is defined as compatible with the 'pending
609 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 		 * defined in the 'pending debug exceptions' field (enabled
611 		 * breakpoint), it is reserved and must be zero in DR6.
612 		 */
613 		vcpu->arch.dr6 &= ~BIT(12);
614 		break;
615 	case PF_VECTOR:
616 		vcpu->arch.cr2 = ex->payload;
617 		break;
618 	}
619 
620 	ex->has_payload = false;
621 	ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624 
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 				       bool has_error_code, u32 error_code,
627 				       bool has_payload, unsigned long payload)
628 {
629 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630 
631 	ex->vector = vector;
632 	ex->injected = false;
633 	ex->pending = true;
634 	ex->has_error_code = has_error_code;
635 	ex->error_code = error_code;
636 	ex->has_payload = has_payload;
637 	ex->payload = payload;
638 }
639 
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645 
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 		unsigned nr, bool has_error, u32 error_code,
648 	        bool has_payload, unsigned long payload, bool reinject)
649 {
650 	u32 prev_nr;
651 	int class1, class2;
652 
653 	kvm_make_request(KVM_REQ_EVENT, vcpu);
654 
655 	/*
656 	 * If the exception is destined for L2 and isn't being reinjected,
657 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658 	 * previously injected exception is not checked because it was checked
659 	 * when it was original queued, and re-checking is incorrect if _L1_
660 	 * injected the exception, in which case it's exempt from interception.
661 	 */
662 	if (!reinject && is_guest_mode(vcpu) &&
663 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 					   has_payload, payload);
666 		return;
667 	}
668 
669 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 	queue:
671 		if (reinject) {
672 			/*
673 			 * On VM-Entry, an exception can be pending if and only
674 			 * if event injection was blocked by nested_run_pending.
675 			 * In that case, however, vcpu_enter_guest() requests an
676 			 * immediate exit, and the guest shouldn't proceed far
677 			 * enough to need reinjection.
678 			 */
679 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 			vcpu->arch.exception.injected = true;
681 			if (WARN_ON_ONCE(has_payload)) {
682 				/*
683 				 * A reinjected event has already
684 				 * delivered its payload.
685 				 */
686 				has_payload = false;
687 				payload = 0;
688 			}
689 		} else {
690 			vcpu->arch.exception.pending = true;
691 			vcpu->arch.exception.injected = false;
692 		}
693 		vcpu->arch.exception.has_error_code = has_error;
694 		vcpu->arch.exception.vector = nr;
695 		vcpu->arch.exception.error_code = error_code;
696 		vcpu->arch.exception.has_payload = has_payload;
697 		vcpu->arch.exception.payload = payload;
698 		if (!is_guest_mode(vcpu))
699 			kvm_deliver_exception_payload(vcpu,
700 						      &vcpu->arch.exception);
701 		return;
702 	}
703 
704 	/* to check exception */
705 	prev_nr = vcpu->arch.exception.vector;
706 	if (prev_nr == DF_VECTOR) {
707 		/* triple fault -> shutdown */
708 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 		return;
710 	}
711 	class1 = exception_class(prev_nr);
712 	class2 = exception_class(nr);
713 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 		/*
716 		 * Synthesize #DF.  Clear the previously injected or pending
717 		 * exception so as not to incorrectly trigger shutdown.
718 		 */
719 		vcpu->arch.exception.injected = false;
720 		vcpu->arch.exception.pending = false;
721 
722 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 	} else {
724 		/* replace previous exception with a new one in a hope
725 		   that instruction re-execution will regenerate lost
726 		   exception */
727 		goto queue;
728 	}
729 }
730 
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736 
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742 
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 			   unsigned long payload)
745 {
746 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749 
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 				    u32 error_code, unsigned long payload)
752 {
753 	kvm_multiple_exception(vcpu, nr, true, error_code,
754 			       true, payload, false);
755 }
756 
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 	if (err)
760 		kvm_inject_gp(vcpu, 0);
761 	else
762 		return kvm_skip_emulated_instruction(vcpu);
763 
764 	return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767 
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 	if (err) {
771 		kvm_inject_gp(vcpu, 0);
772 		return 1;
773 	}
774 
775 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 				       EMULTYPE_COMPLETE_USER_EXIT);
777 }
778 
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 	++vcpu->stat.pf_guest;
782 
783 	/*
784 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 	 * whether or not L1 wants to intercept "regular" #PF.
786 	 */
787 	if (is_guest_mode(vcpu) && fault->async_page_fault)
788 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 					   true, fault->error_code,
790 					   true, fault->address);
791 	else
792 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 					fault->address);
794 }
795 
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 				    struct x86_exception *fault)
798 {
799 	struct kvm_mmu *fault_mmu;
800 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801 
802 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 					       vcpu->arch.walk_mmu;
804 
805 	/*
806 	 * Invalidate the TLB entry for the faulting address, if it exists,
807 	 * else the access will fault indefinitely (and to emulate hardware).
808 	 */
809 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 	    !(fault->error_code & PFERR_RSVD_MASK))
811 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 					KVM_MMU_ROOT_CURRENT);
813 
814 	fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817 
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 	atomic_inc(&vcpu->arch.nmi_queued);
821 	kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823 
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829 
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835 
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 		return true;
844 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 	return false;
846 }
847 
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 		return true;
852 
853 	kvm_queue_exception(vcpu, UD_VECTOR);
854 	return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857 
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862 
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 	gpa_t real_gpa;
871 	int i;
872 	int ret;
873 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874 
875 	/*
876 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 	 * to an L1 GPA.
878 	 */
879 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 	if (real_gpa == INVALID_GPA)
882 		return 0;
883 
884 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887 	if (ret < 0)
888 		return 0;
889 
890 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 		if ((pdpte[i] & PT_PRESENT_MASK) &&
892 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 			return 0;
894 		}
895 	}
896 
897 	/*
898 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 	 * Shadow page roots need to be reconstructed instead.
900 	 */
901 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903 
904 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 	vcpu->arch.pdptrs_from_userspace = false;
908 
909 	return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912 
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 	if (cr0 & 0xffffffff00000000UL)
917 		return false;
918 #endif
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return false;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return false;
925 
926 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928 
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 	/*
932 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934 	 * as there are no permission bits to emulate.  If TDP is enabled, the
935 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 	 * translations does the right thing, but there's no need to unload the
937 	 * root as CR0.WP doesn't affect SPTEs.
938 	 */
939 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 		if (!(cr0 & X86_CR0_PG))
941 			return;
942 
943 		if (tdp_enabled) {
944 			kvm_init_mmu(vcpu);
945 			return;
946 		}
947 	}
948 
949 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 		kvm_clear_async_pf_completion_queue(vcpu);
951 		kvm_async_pf_hash_reset(vcpu);
952 
953 		/*
954 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 		 * perspective.
956 		 */
957 		if (!(cr0 & X86_CR0_PG))
958 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 	}
960 
961 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 		kvm_mmu_reset_context(vcpu);
963 
964 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 	    kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970 
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974 
975 	if (!kvm_is_valid_cr0(vcpu, cr0))
976 		return 1;
977 
978 	cr0 |= X86_CR0_ET;
979 
980 	/* Write to CR0 reserved bits are ignored, even on Intel. */
981 	cr0 &= ~CR0_RESERVED_BITS;
982 
983 #ifdef CONFIG_X86_64
984 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 	    (cr0 & X86_CR0_PG)) {
986 		int cs_db, cs_l;
987 
988 		if (!is_pae(vcpu))
989 			return 1;
990 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 		if (cs_l)
992 			return 1;
993 	}
994 #endif
995 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 		return 1;
999 
1000 	if (!(cr0 & X86_CR0_PG) &&
1001 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 		return 1;
1003 
1004 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005 
1006 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011 
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017 
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 	if (vcpu->arch.guest_state_protected)
1021 		return;
1022 
1023 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024 
1025 		if (vcpu->arch.xcr0 != host_xcr0)
1026 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027 
1028 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 		    vcpu->arch.ia32_xss != host_xss)
1030 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 	}
1032 
1033 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 		write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040 
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 	if (vcpu->arch.guest_state_protected)
1044 		return;
1045 
1046 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 		vcpu->arch.pkru = rdpkru();
1050 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 			write_pkru(vcpu->arch.host_pkru);
1052 	}
1053 
1054 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055 
1056 		if (vcpu->arch.xcr0 != host_xcr0)
1057 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058 
1059 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 		    vcpu->arch.ia32_xss != host_xss)
1061 			wrmsrl(MSR_IA32_XSS, host_xss);
1062 	}
1063 
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066 
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073 
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 	u64 xcr0 = xcr;
1077 	u64 old_xcr0 = vcpu->arch.xcr0;
1078 	u64 valid_bits;
1079 
1080 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081 	if (index != XCR_XFEATURE_ENABLED_MASK)
1082 		return 1;
1083 	if (!(xcr0 & XFEATURE_MASK_FP))
1084 		return 1;
1085 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 		return 1;
1087 
1088 	/*
1089 	 * Do not allow the guest to set bits that we do not support
1090 	 * saving.  However, xcr0 bit 0 is always set, even if the
1091 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 	 */
1093 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 	if (xcr0 & ~valid_bits)
1095 		return 1;
1096 
1097 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 		return 1;
1100 
1101 	if (xcr0 & XFEATURE_MASK_AVX512) {
1102 		if (!(xcr0 & XFEATURE_MASK_YMM))
1103 			return 1;
1104 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 			return 1;
1106 	}
1107 
1108 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 		return 1;
1111 
1112 	vcpu->arch.xcr0 = xcr0;
1113 
1114 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 		kvm_update_cpuid_runtime(vcpu);
1116 	return 0;
1117 }
1118 
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 
1128 	return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131 
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 	if (cr4 & cr4_reserved_bits)
1135 		return false;
1136 
1137 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 		return false;
1139 
1140 	return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143 
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149 
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 		kvm_mmu_reset_context(vcpu);
1154 
1155 	/*
1156 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 	 * according to the SDM; however, stale prev_roots could be reused
1158 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 	 * so fall through.
1162 	 */
1163 	if (!tdp_enabled &&
1164 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 		kvm_mmu_unload(vcpu);
1166 
1167 	/*
1168 	 * The TLB has to be flushed for all PCIDs if any of the following
1169 	 * (architecturally required) changes happen:
1170 	 * - CR4.PCIDE is changed from 1 to 0
1171 	 * - CR4.PGE is toggled
1172 	 *
1173 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 	 */
1175 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178 
1179 	/*
1180 	 * The TLB has to be flushed for the current PCID if any of the
1181 	 * following (architecturally required) changes happen:
1182 	 * - CR4.SMEP is changed from 0 to 1
1183 	 * - CR4.PAE is toggled
1184 	 */
1185 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188 
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191 
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195 
1196 	if (!kvm_is_valid_cr4(vcpu, cr4))
1197 		return 1;
1198 
1199 	if (is_long_mode(vcpu)) {
1200 		if (!(cr4 & X86_CR4_PAE))
1201 			return 1;
1202 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 			return 1;
1204 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 		return 1;
1208 
1209 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 			return 1;
1213 	}
1214 
1215 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216 
1217 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222 
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 	unsigned long roots_to_free = 0;
1227 	int i;
1228 
1229 	/*
1230 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233 	 * the invalidation, but the guest's TLB entries need to be flushed as
1234 	 * the CPU may have cached entries in its TLB for the target PCID.
1235 	 */
1236 	if (unlikely(tdp_enabled)) {
1237 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * If neither the current CR3 nor any of the prev_roots use the given
1243 	 * PCID, then nothing needs to be done here because a resync will
1244 	 * happen anyway before switching to any other CR3.
1245 	 */
1246 	if (kvm_get_active_pcid(vcpu) == pcid) {
1247 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 	}
1250 
1251 	/*
1252 	 * If PCID is disabled, there is no need to free prev_roots even if the
1253 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 	 * with PCIDE=0.
1255 	 */
1256 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 		return;
1258 
1259 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262 
1263 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265 
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 	bool skip_tlb_flush = false;
1269 	unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 		pcid = cr3 & X86_CR3_PCID_MASK;
1275 	}
1276 #endif
1277 
1278 	/* PDPTRs are always reloaded for PAE paging. */
1279 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 		goto handle_tlb_flush;
1281 
1282 	/*
1283 	 * Do not condition the GPA check on long mode, this helper is used to
1284 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 	 * the current vCPU mode is accurate.
1286 	 */
1287 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1288 		return 1;
1289 
1290 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 		return 1;
1292 
1293 	if (cr3 != kvm_read_cr3(vcpu))
1294 		kvm_mmu_new_pgd(vcpu, cr3);
1295 
1296 	vcpu->arch.cr3 = cr3;
1297 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299 
1300 handle_tlb_flush:
1301 	/*
1302 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 	 * i.e. only PCID=0 can be relevant.
1307 	 */
1308 	if (!skip_tlb_flush)
1309 		kvm_invalidate_pcid(vcpu, pcid);
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314 
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 	if (cr8 & CR8_RESERVED_BITS)
1318 		return 1;
1319 	if (lapic_in_kernel(vcpu))
1320 		kvm_lapic_set_tpr(vcpu, cr8);
1321 	else
1322 		vcpu->arch.cr8 = cr8;
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326 
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 	if (lapic_in_kernel(vcpu))
1330 		return kvm_lapic_get_cr8(vcpu);
1331 	else
1332 		return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335 
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 	int i;
1339 
1340 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 	}
1344 }
1345 
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 	unsigned long dr7;
1349 
1350 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 		dr7 = vcpu->arch.guest_debug_dr7;
1352 	else
1353 		dr7 = vcpu->arch.dr7;
1354 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 	if (dr7 & DR7_BP_EN_MASK)
1357 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360 
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 	u64 fixed = DR6_FIXED_1;
1364 
1365 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 		fixed |= DR6_RTM;
1367 
1368 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 		fixed |= DR6_BUS_LOCK;
1370 	return fixed;
1371 }
1372 
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376 
1377 	switch (dr) {
1378 	case 0 ... 3:
1379 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 			vcpu->arch.eff_db[dr] = val;
1382 		break;
1383 	case 4:
1384 	case 6:
1385 		if (!kvm_dr6_valid(val))
1386 			return 1; /* #GP */
1387 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 		break;
1389 	case 5:
1390 	default: /* 7 */
1391 		if (!kvm_dr7_valid(val))
1392 			return 1; /* #GP */
1393 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 		kvm_update_dr7(vcpu);
1395 		break;
1396 	}
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401 
1402 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1403 {
1404 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405 
1406 	switch (dr) {
1407 	case 0 ... 3:
1408 		return vcpu->arch.db[array_index_nospec(dr, size)];
1409 	case 4:
1410 	case 6:
1411 		return vcpu->arch.dr6;
1412 	case 5:
1413 	default: /* 7 */
1414 		return vcpu->arch.dr7;
1415 	}
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_get_dr);
1418 
1419 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1420 {
1421 	u32 ecx = kvm_rcx_read(vcpu);
1422 	u64 data;
1423 
1424 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1425 		kvm_inject_gp(vcpu, 0);
1426 		return 1;
1427 	}
1428 
1429 	kvm_rax_write(vcpu, (u32)data);
1430 	kvm_rdx_write(vcpu, data >> 32);
1431 	return kvm_skip_emulated_instruction(vcpu);
1432 }
1433 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1434 
1435 /*
1436  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1437  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1438  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1439  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1440  * MSRs that KVM emulates without strictly requiring host support.
1441  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1442  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1443  * msrs_to_save and emulated_msrs.
1444  */
1445 
1446 static const u32 msrs_to_save_base[] = {
1447 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1448 	MSR_STAR,
1449 #ifdef CONFIG_X86_64
1450 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1451 #endif
1452 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1453 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1454 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1455 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1456 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1457 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1458 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1459 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1460 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1461 	MSR_IA32_UMWAIT_CONTROL,
1462 
1463 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1464 };
1465 
1466 static const u32 msrs_to_save_pmu[] = {
1467 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1468 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1469 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1470 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1471 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1472 
1473 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1474 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1475 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1476 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1477 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1478 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1479 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1480 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1481 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1482 
1483 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1484 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1485 
1486 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1487 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1488 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1489 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1490 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1491 
1492 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1493 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1494 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1495 };
1496 
1497 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1498 			ARRAY_SIZE(msrs_to_save_pmu)];
1499 static unsigned num_msrs_to_save;
1500 
1501 static const u32 emulated_msrs_all[] = {
1502 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1503 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1504 
1505 #ifdef CONFIG_KVM_HYPERV
1506 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1507 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1508 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1509 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1510 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1511 	HV_X64_MSR_RESET,
1512 	HV_X64_MSR_VP_INDEX,
1513 	HV_X64_MSR_VP_RUNTIME,
1514 	HV_X64_MSR_SCONTROL,
1515 	HV_X64_MSR_STIMER0_CONFIG,
1516 	HV_X64_MSR_VP_ASSIST_PAGE,
1517 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1518 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1519 	HV_X64_MSR_SYNDBG_OPTIONS,
1520 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1521 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1522 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1523 #endif
1524 
1525 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527 
1528 	MSR_IA32_TSC_ADJUST,
1529 	MSR_IA32_TSC_DEADLINE,
1530 	MSR_IA32_ARCH_CAPABILITIES,
1531 	MSR_IA32_PERF_CAPABILITIES,
1532 	MSR_IA32_MISC_ENABLE,
1533 	MSR_IA32_MCG_STATUS,
1534 	MSR_IA32_MCG_CTL,
1535 	MSR_IA32_MCG_EXT_CTL,
1536 	MSR_IA32_SMBASE,
1537 	MSR_SMI_COUNT,
1538 	MSR_PLATFORM_INFO,
1539 	MSR_MISC_FEATURES_ENABLES,
1540 	MSR_AMD64_VIRT_SPEC_CTRL,
1541 	MSR_AMD64_TSC_RATIO,
1542 	MSR_IA32_POWER_CTL,
1543 	MSR_IA32_UCODE_REV,
1544 
1545 	/*
1546 	 * KVM always supports the "true" VMX control MSRs, even if the host
1547 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1548 	 * doesn't strictly require them to exist in the host (ignoring that
1549 	 * KVM would refuse to load in the first place if the core set of MSRs
1550 	 * aren't supported).
1551 	 */
1552 	MSR_IA32_VMX_BASIC,
1553 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557 	MSR_IA32_VMX_MISC,
1558 	MSR_IA32_VMX_CR0_FIXED0,
1559 	MSR_IA32_VMX_CR4_FIXED0,
1560 	MSR_IA32_VMX_VMCS_ENUM,
1561 	MSR_IA32_VMX_PROCBASED_CTLS2,
1562 	MSR_IA32_VMX_EPT_VPID_CAP,
1563 	MSR_IA32_VMX_VMFUNC,
1564 
1565 	MSR_K7_HWCR,
1566 	MSR_KVM_POLL_CONTROL,
1567 };
1568 
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1571 
1572 /*
1573  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1575  * feature MSRs, but are handled separately to allow expedited lookups.
1576  */
1577 static const u32 msr_based_features_all_except_vmx[] = {
1578 	MSR_AMD64_DE_CFG,
1579 	MSR_IA32_UCODE_REV,
1580 	MSR_IA32_ARCH_CAPABILITIES,
1581 	MSR_IA32_PERF_CAPABILITIES,
1582 };
1583 
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1587 
1588 /*
1589  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590  * patch, are immutable once the vCPU model is defined.
1591  */
1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1593 {
1594 	int i;
1595 
1596 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597 		return true;
1598 
1599 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 		if (msr == msr_based_features_all_except_vmx[i])
1601 			return msr != MSR_IA32_UCODE_REV;
1602 	}
1603 
1604 	return false;
1605 }
1606 
1607 /*
1608  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609  * does not yet virtualize. These include:
1610  *   10 - MISC_PACKAGE_CTRLS
1611  *   11 - ENERGY_FILTERING_CTL
1612  *   12 - DOITM
1613  *   18 - FB_CLEAR_CTRL
1614  *   21 - XAPIC_DISABLE_STATUS
1615  *   23 - OVERCLOCKING_STATUS
1616  */
1617 
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1624 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR)
1625 
1626 static u64 kvm_get_arch_capabilities(void)
1627 {
1628 	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1629 
1630 	/*
1631 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1633 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634 	 * L1 guests, so it need not worry about its own (L2) guests.
1635 	 */
1636 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1637 
1638 	/*
1639 	 * If we're doing cache flushes (either "always" or "cond")
1640 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1641 	 * If an outer hypervisor is doing the cache flush for us
1642 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643 	 * capability to the guest too, and if EPT is disabled we're not
1644 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1645 	 * require a nested hypervisor to do a flush of its own.
1646 	 */
1647 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649 
1650 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651 		data |= ARCH_CAP_RDCL_NO;
1652 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653 		data |= ARCH_CAP_SSB_NO;
1654 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1655 		data |= ARCH_CAP_MDS_NO;
1656 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1657 		data |= ARCH_CAP_RFDS_NO;
1658 
1659 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660 		/*
1661 		 * If RTM=0 because the kernel has disabled TSX, the host might
1662 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1663 		 * and therefore knows that there cannot be TAA) but keep
1664 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665 		 * and we want to allow migrating those guests to tsx=off hosts.
1666 		 */
1667 		data &= ~ARCH_CAP_TAA_NO;
1668 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669 		data |= ARCH_CAP_TAA_NO;
1670 	} else {
1671 		/*
1672 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1673 		 * host so the guest can choose between disabling TSX or
1674 		 * using VERW to clear CPU buffers.
1675 		 */
1676 	}
1677 
1678 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679 		data |= ARCH_CAP_GDS_NO;
1680 
1681 	return data;
1682 }
1683 
1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685 {
1686 	switch (msr->index) {
1687 	case MSR_IA32_ARCH_CAPABILITIES:
1688 		msr->data = kvm_get_arch_capabilities();
1689 		break;
1690 	case MSR_IA32_PERF_CAPABILITIES:
1691 		msr->data = kvm_caps.supported_perf_cap;
1692 		break;
1693 	case MSR_IA32_UCODE_REV:
1694 		rdmsrl_safe(msr->index, &msr->data);
1695 		break;
1696 	default:
1697 		return static_call(kvm_x86_get_msr_feature)(msr);
1698 	}
1699 	return 0;
1700 }
1701 
1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703 {
1704 	struct kvm_msr_entry msr;
1705 	int r;
1706 
1707 	/* Unconditionally clear the output for simplicity */
1708 	msr.data = 0;
1709 	msr.index = index;
1710 	r = kvm_get_msr_feature(&msr);
1711 
1712 	if (r == KVM_MSR_RET_INVALID && kvm_msr_ignored_check(index, 0, false))
1713 		r = 0;
1714 
1715 	*data = msr.data;
1716 
1717 	return r;
1718 }
1719 
1720 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1721 {
1722 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1723 		return false;
1724 
1725 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1726 		return false;
1727 
1728 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1729 		return false;
1730 
1731 	if (efer & (EFER_LME | EFER_LMA) &&
1732 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1733 		return false;
1734 
1735 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1736 		return false;
1737 
1738 	return true;
1739 
1740 }
1741 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1742 {
1743 	if (efer & efer_reserved_bits)
1744 		return false;
1745 
1746 	return __kvm_valid_efer(vcpu, efer);
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1749 
1750 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1751 {
1752 	u64 old_efer = vcpu->arch.efer;
1753 	u64 efer = msr_info->data;
1754 	int r;
1755 
1756 	if (efer & efer_reserved_bits)
1757 		return 1;
1758 
1759 	if (!msr_info->host_initiated) {
1760 		if (!__kvm_valid_efer(vcpu, efer))
1761 			return 1;
1762 
1763 		if (is_paging(vcpu) &&
1764 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1765 			return 1;
1766 	}
1767 
1768 	efer &= ~EFER_LMA;
1769 	efer |= vcpu->arch.efer & EFER_LMA;
1770 
1771 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1772 	if (r) {
1773 		WARN_ON(r > 0);
1774 		return r;
1775 	}
1776 
1777 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1778 		kvm_mmu_reset_context(vcpu);
1779 
1780 	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1781 	    (efer & EFER_SVME))
1782 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1783 
1784 	return 0;
1785 }
1786 
1787 void kvm_enable_efer_bits(u64 mask)
1788 {
1789        efer_reserved_bits &= ~mask;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1792 
1793 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1794 {
1795 	struct kvm_x86_msr_filter *msr_filter;
1796 	struct msr_bitmap_range *ranges;
1797 	struct kvm *kvm = vcpu->kvm;
1798 	bool allowed;
1799 	int idx;
1800 	u32 i;
1801 
1802 	/* x2APIC MSRs do not support filtering. */
1803 	if (index >= 0x800 && index <= 0x8ff)
1804 		return true;
1805 
1806 	idx = srcu_read_lock(&kvm->srcu);
1807 
1808 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1809 	if (!msr_filter) {
1810 		allowed = true;
1811 		goto out;
1812 	}
1813 
1814 	allowed = msr_filter->default_allow;
1815 	ranges = msr_filter->ranges;
1816 
1817 	for (i = 0; i < msr_filter->count; i++) {
1818 		u32 start = ranges[i].base;
1819 		u32 end = start + ranges[i].nmsrs;
1820 		u32 flags = ranges[i].flags;
1821 		unsigned long *bitmap = ranges[i].bitmap;
1822 
1823 		if ((index >= start) && (index < end) && (flags & type)) {
1824 			allowed = test_bit(index - start, bitmap);
1825 			break;
1826 		}
1827 	}
1828 
1829 out:
1830 	srcu_read_unlock(&kvm->srcu, idx);
1831 
1832 	return allowed;
1833 }
1834 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1835 
1836 /*
1837  * Write @data into the MSR specified by @index.  Select MSR specific fault
1838  * checks are bypassed if @host_initiated is %true.
1839  * Returns 0 on success, non-0 otherwise.
1840  * Assumes vcpu_load() was already called.
1841  */
1842 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1843 			 bool host_initiated)
1844 {
1845 	struct msr_data msr;
1846 
1847 	switch (index) {
1848 	case MSR_FS_BASE:
1849 	case MSR_GS_BASE:
1850 	case MSR_KERNEL_GS_BASE:
1851 	case MSR_CSTAR:
1852 	case MSR_LSTAR:
1853 		if (is_noncanonical_address(data, vcpu))
1854 			return 1;
1855 		break;
1856 	case MSR_IA32_SYSENTER_EIP:
1857 	case MSR_IA32_SYSENTER_ESP:
1858 		/*
1859 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1860 		 * non-canonical address is written on Intel but not on
1861 		 * AMD (which ignores the top 32-bits, because it does
1862 		 * not implement 64-bit SYSENTER).
1863 		 *
1864 		 * 64-bit code should hence be able to write a non-canonical
1865 		 * value on AMD.  Making the address canonical ensures that
1866 		 * vmentry does not fail on Intel after writing a non-canonical
1867 		 * value, and that something deterministic happens if the guest
1868 		 * invokes 64-bit SYSENTER.
1869 		 */
1870 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1871 		break;
1872 	case MSR_TSC_AUX:
1873 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1874 			return 1;
1875 
1876 		if (!host_initiated &&
1877 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1878 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1879 			return 1;
1880 
1881 		/*
1882 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1883 		 * incomplete and conflicting architectural behavior.  Current
1884 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1885 		 * reserved and always read as zeros.  Enforce Intel's reserved
1886 		 * bits check if and only if the guest CPU is Intel, and clear
1887 		 * the bits in all other cases.  This ensures cross-vendor
1888 		 * migration will provide consistent behavior for the guest.
1889 		 */
1890 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1891 			return 1;
1892 
1893 		data = (u32)data;
1894 		break;
1895 	}
1896 
1897 	msr.data = data;
1898 	msr.index = index;
1899 	msr.host_initiated = host_initiated;
1900 
1901 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1902 }
1903 
1904 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1905 				     u32 index, u64 data, bool host_initiated)
1906 {
1907 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1908 
1909 	if (ret == KVM_MSR_RET_INVALID)
1910 		if (kvm_msr_ignored_check(index, data, true))
1911 			ret = 0;
1912 
1913 	return ret;
1914 }
1915 
1916 /*
1917  * Read the MSR specified by @index into @data.  Select MSR specific fault
1918  * checks are bypassed if @host_initiated is %true.
1919  * Returns 0 on success, non-0 otherwise.
1920  * Assumes vcpu_load() was already called.
1921  */
1922 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1923 		  bool host_initiated)
1924 {
1925 	struct msr_data msr;
1926 	int ret;
1927 
1928 	switch (index) {
1929 	case MSR_TSC_AUX:
1930 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1931 			return 1;
1932 
1933 		if (!host_initiated &&
1934 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1935 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1936 			return 1;
1937 		break;
1938 	}
1939 
1940 	msr.index = index;
1941 	msr.host_initiated = host_initiated;
1942 
1943 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1944 	if (!ret)
1945 		*data = msr.data;
1946 	return ret;
1947 }
1948 
1949 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1950 				     u32 index, u64 *data, bool host_initiated)
1951 {
1952 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1953 
1954 	if (ret == KVM_MSR_RET_INVALID) {
1955 		/* Unconditionally clear *data for simplicity */
1956 		*data = 0;
1957 		if (kvm_msr_ignored_check(index, 0, false))
1958 			ret = 0;
1959 	}
1960 
1961 	return ret;
1962 }
1963 
1964 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1965 {
1966 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1967 		return KVM_MSR_RET_FILTERED;
1968 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1969 }
1970 
1971 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1972 {
1973 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1974 		return KVM_MSR_RET_FILTERED;
1975 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1976 }
1977 
1978 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1979 {
1980 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_get_msr);
1983 
1984 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1985 {
1986 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1987 }
1988 EXPORT_SYMBOL_GPL(kvm_set_msr);
1989 
1990 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1991 {
1992 	if (!vcpu->run->msr.error) {
1993 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1994 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1995 	}
1996 }
1997 
1998 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1999 {
2000 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2001 }
2002 
2003 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2004 {
2005 	complete_userspace_rdmsr(vcpu);
2006 	return complete_emulated_msr_access(vcpu);
2007 }
2008 
2009 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2010 {
2011 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2012 }
2013 
2014 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2015 {
2016 	complete_userspace_rdmsr(vcpu);
2017 	return complete_fast_msr_access(vcpu);
2018 }
2019 
2020 static u64 kvm_msr_reason(int r)
2021 {
2022 	switch (r) {
2023 	case KVM_MSR_RET_INVALID:
2024 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2025 	case KVM_MSR_RET_FILTERED:
2026 		return KVM_MSR_EXIT_REASON_FILTER;
2027 	default:
2028 		return KVM_MSR_EXIT_REASON_INVAL;
2029 	}
2030 }
2031 
2032 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2033 			      u32 exit_reason, u64 data,
2034 			      int (*completion)(struct kvm_vcpu *vcpu),
2035 			      int r)
2036 {
2037 	u64 msr_reason = kvm_msr_reason(r);
2038 
2039 	/* Check if the user wanted to know about this MSR fault */
2040 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2041 		return 0;
2042 
2043 	vcpu->run->exit_reason = exit_reason;
2044 	vcpu->run->msr.error = 0;
2045 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2046 	vcpu->run->msr.reason = msr_reason;
2047 	vcpu->run->msr.index = index;
2048 	vcpu->run->msr.data = data;
2049 	vcpu->arch.complete_userspace_io = completion;
2050 
2051 	return 1;
2052 }
2053 
2054 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2055 {
2056 	u32 ecx = kvm_rcx_read(vcpu);
2057 	u64 data;
2058 	int r;
2059 
2060 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2061 
2062 	if (!r) {
2063 		trace_kvm_msr_read(ecx, data);
2064 
2065 		kvm_rax_write(vcpu, data & -1u);
2066 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2067 	} else {
2068 		/* MSR read failed? See if we should ask user space */
2069 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2070 				       complete_fast_rdmsr, r))
2071 			return 0;
2072 		trace_kvm_msr_read_ex(ecx);
2073 	}
2074 
2075 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2078 
2079 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2080 {
2081 	u32 ecx = kvm_rcx_read(vcpu);
2082 	u64 data = kvm_read_edx_eax(vcpu);
2083 	int r;
2084 
2085 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2086 
2087 	if (!r) {
2088 		trace_kvm_msr_write(ecx, data);
2089 	} else {
2090 		/* MSR write failed? See if we should ask user space */
2091 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2092 				       complete_fast_msr_access, r))
2093 			return 0;
2094 		/* Signal all other negative errors to userspace */
2095 		if (r < 0)
2096 			return r;
2097 		trace_kvm_msr_write_ex(ecx, data);
2098 	}
2099 
2100 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2103 
2104 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2105 {
2106 	return kvm_skip_emulated_instruction(vcpu);
2107 }
2108 
2109 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2110 {
2111 	/* Treat an INVD instruction as a NOP and just skip it. */
2112 	return kvm_emulate_as_nop(vcpu);
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2115 
2116 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2117 {
2118 	kvm_queue_exception(vcpu, UD_VECTOR);
2119 	return 1;
2120 }
2121 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2122 
2123 
2124 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2125 {
2126 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2127 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2128 		return kvm_handle_invalid_op(vcpu);
2129 
2130 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2131 	return kvm_emulate_as_nop(vcpu);
2132 }
2133 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2134 {
2135 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2136 }
2137 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2138 
2139 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2140 {
2141 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2142 }
2143 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2144 
2145 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2146 {
2147 	xfer_to_guest_mode_prepare();
2148 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2149 		xfer_to_guest_mode_work_pending();
2150 }
2151 
2152 /*
2153  * The fast path for frequent and performance sensitive wrmsr emulation,
2154  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2155  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2156  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2157  * other cases which must be called after interrupts are enabled on the host.
2158  */
2159 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2160 {
2161 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2162 		return 1;
2163 
2164 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2165 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2166 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2167 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2168 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2169 
2170 	return 1;
2171 }
2172 
2173 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2174 {
2175 	if (!kvm_can_use_hv_timer(vcpu))
2176 		return 1;
2177 
2178 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2179 	return 0;
2180 }
2181 
2182 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2183 {
2184 	u32 msr = kvm_rcx_read(vcpu);
2185 	u64 data;
2186 	fastpath_t ret = EXIT_FASTPATH_NONE;
2187 
2188 	kvm_vcpu_srcu_read_lock(vcpu);
2189 
2190 	switch (msr) {
2191 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2192 		data = kvm_read_edx_eax(vcpu);
2193 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2194 			kvm_skip_emulated_instruction(vcpu);
2195 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2196 		}
2197 		break;
2198 	case MSR_IA32_TSC_DEADLINE:
2199 		data = kvm_read_edx_eax(vcpu);
2200 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2201 			kvm_skip_emulated_instruction(vcpu);
2202 			ret = EXIT_FASTPATH_REENTER_GUEST;
2203 		}
2204 		break;
2205 	default:
2206 		break;
2207 	}
2208 
2209 	if (ret != EXIT_FASTPATH_NONE)
2210 		trace_kvm_msr_write(msr, data);
2211 
2212 	kvm_vcpu_srcu_read_unlock(vcpu);
2213 
2214 	return ret;
2215 }
2216 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2217 
2218 /*
2219  * Adapt set_msr() to msr_io()'s calling convention
2220  */
2221 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2222 {
2223 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2224 }
2225 
2226 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2227 {
2228 	u64 val;
2229 
2230 	/*
2231 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2232 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2233 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2234 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2235 	 * all MSRs when emulating RESET.
2236 	 */
2237 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2238 		if (do_get_msr(vcpu, index, &val) || *data != val)
2239 			return -EINVAL;
2240 
2241 		return 0;
2242 	}
2243 
2244 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2245 }
2246 
2247 #ifdef CONFIG_X86_64
2248 struct pvclock_clock {
2249 	int vclock_mode;
2250 	u64 cycle_last;
2251 	u64 mask;
2252 	u32 mult;
2253 	u32 shift;
2254 	u64 base_cycles;
2255 	u64 offset;
2256 };
2257 
2258 struct pvclock_gtod_data {
2259 	seqcount_t	seq;
2260 
2261 	struct pvclock_clock clock; /* extract of a clocksource struct */
2262 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2263 
2264 	ktime_t		offs_boot;
2265 	u64		wall_time_sec;
2266 };
2267 
2268 static struct pvclock_gtod_data pvclock_gtod_data;
2269 
2270 static void update_pvclock_gtod(struct timekeeper *tk)
2271 {
2272 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2273 
2274 	write_seqcount_begin(&vdata->seq);
2275 
2276 	/* copy pvclock gtod data */
2277 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2278 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2279 	vdata->clock.mask		= tk->tkr_mono.mask;
2280 	vdata->clock.mult		= tk->tkr_mono.mult;
2281 	vdata->clock.shift		= tk->tkr_mono.shift;
2282 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2283 	vdata->clock.offset		= tk->tkr_mono.base;
2284 
2285 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2286 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2287 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2288 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2289 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2290 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2291 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2292 
2293 	vdata->wall_time_sec            = tk->xtime_sec;
2294 
2295 	vdata->offs_boot		= tk->offs_boot;
2296 
2297 	write_seqcount_end(&vdata->seq);
2298 }
2299 
2300 static s64 get_kvmclock_base_ns(void)
2301 {
2302 	/* Count up from boot time, but with the frequency of the raw clock.  */
2303 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2304 }
2305 #else
2306 static s64 get_kvmclock_base_ns(void)
2307 {
2308 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2309 	return ktime_get_boottime_ns();
2310 }
2311 #endif
2312 
2313 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2314 {
2315 	int version;
2316 	int r;
2317 	struct pvclock_wall_clock wc;
2318 	u32 wc_sec_hi;
2319 	u64 wall_nsec;
2320 
2321 	if (!wall_clock)
2322 		return;
2323 
2324 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2325 	if (r)
2326 		return;
2327 
2328 	if (version & 1)
2329 		++version;  /* first time write, random junk */
2330 
2331 	++version;
2332 
2333 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2334 		return;
2335 
2336 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2337 
2338 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2339 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2340 	wc.version = version;
2341 
2342 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2343 
2344 	if (sec_hi_ofs) {
2345 		wc_sec_hi = wall_nsec >> 32;
2346 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2347 				&wc_sec_hi, sizeof(wc_sec_hi));
2348 	}
2349 
2350 	version++;
2351 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2352 }
2353 
2354 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2355 				  bool old_msr, bool host_initiated)
2356 {
2357 	struct kvm_arch *ka = &vcpu->kvm->arch;
2358 
2359 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2360 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2361 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2362 
2363 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2364 	}
2365 
2366 	vcpu->arch.time = system_time;
2367 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2368 
2369 	/* we verify if the enable bit is set... */
2370 	if (system_time & 1)
2371 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2372 				 sizeof(struct pvclock_vcpu_time_info));
2373 	else
2374 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2375 
2376 	return;
2377 }
2378 
2379 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2380 {
2381 	do_shl32_div32(dividend, divisor);
2382 	return dividend;
2383 }
2384 
2385 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2386 			       s8 *pshift, u32 *pmultiplier)
2387 {
2388 	uint64_t scaled64;
2389 	int32_t  shift = 0;
2390 	uint64_t tps64;
2391 	uint32_t tps32;
2392 
2393 	tps64 = base_hz;
2394 	scaled64 = scaled_hz;
2395 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2396 		tps64 >>= 1;
2397 		shift--;
2398 	}
2399 
2400 	tps32 = (uint32_t)tps64;
2401 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2402 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2403 			scaled64 >>= 1;
2404 		else
2405 			tps32 <<= 1;
2406 		shift++;
2407 	}
2408 
2409 	*pshift = shift;
2410 	*pmultiplier = div_frac(scaled64, tps32);
2411 }
2412 
2413 #ifdef CONFIG_X86_64
2414 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2415 #endif
2416 
2417 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2418 static unsigned long max_tsc_khz;
2419 
2420 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2421 {
2422 	u64 v = (u64)khz * (1000000 + ppm);
2423 	do_div(v, 1000000);
2424 	return v;
2425 }
2426 
2427 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2428 
2429 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2430 {
2431 	u64 ratio;
2432 
2433 	/* Guest TSC same frequency as host TSC? */
2434 	if (!scale) {
2435 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2436 		return 0;
2437 	}
2438 
2439 	/* TSC scaling supported? */
2440 	if (!kvm_caps.has_tsc_control) {
2441 		if (user_tsc_khz > tsc_khz) {
2442 			vcpu->arch.tsc_catchup = 1;
2443 			vcpu->arch.tsc_always_catchup = 1;
2444 			return 0;
2445 		} else {
2446 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2447 			return -1;
2448 		}
2449 	}
2450 
2451 	/* TSC scaling required  - calculate ratio */
2452 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2453 				user_tsc_khz, tsc_khz);
2454 
2455 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2456 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2457 			            user_tsc_khz);
2458 		return -1;
2459 	}
2460 
2461 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2462 	return 0;
2463 }
2464 
2465 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2466 {
2467 	u32 thresh_lo, thresh_hi;
2468 	int use_scaling = 0;
2469 
2470 	/* tsc_khz can be zero if TSC calibration fails */
2471 	if (user_tsc_khz == 0) {
2472 		/* set tsc_scaling_ratio to a safe value */
2473 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2474 		return -1;
2475 	}
2476 
2477 	/* Compute a scale to convert nanoseconds in TSC cycles */
2478 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2479 			   &vcpu->arch.virtual_tsc_shift,
2480 			   &vcpu->arch.virtual_tsc_mult);
2481 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2482 
2483 	/*
2484 	 * Compute the variation in TSC rate which is acceptable
2485 	 * within the range of tolerance and decide if the
2486 	 * rate being applied is within that bounds of the hardware
2487 	 * rate.  If so, no scaling or compensation need be done.
2488 	 */
2489 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2490 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2491 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2492 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2493 			 user_tsc_khz, thresh_lo, thresh_hi);
2494 		use_scaling = 1;
2495 	}
2496 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2497 }
2498 
2499 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2500 {
2501 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2502 				      vcpu->arch.virtual_tsc_mult,
2503 				      vcpu->arch.virtual_tsc_shift);
2504 	tsc += vcpu->arch.this_tsc_write;
2505 	return tsc;
2506 }
2507 
2508 #ifdef CONFIG_X86_64
2509 static inline bool gtod_is_based_on_tsc(int mode)
2510 {
2511 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2512 }
2513 #endif
2514 
2515 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2516 {
2517 #ifdef CONFIG_X86_64
2518 	struct kvm_arch *ka = &vcpu->kvm->arch;
2519 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2520 
2521 	/*
2522 	 * To use the masterclock, the host clocksource must be based on TSC
2523 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2524 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2525 	 */
2526 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2527 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2528 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2529 
2530 	/*
2531 	 * Request a masterclock update if the masterclock needs to be toggled
2532 	 * on/off, or when starting a new generation and the masterclock is
2533 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2534 	 * taken _after_ the new generation is created).
2535 	 */
2536 	if ((ka->use_master_clock && new_generation) ||
2537 	    (ka->use_master_clock != use_master_clock))
2538 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2539 
2540 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2541 			    atomic_read(&vcpu->kvm->online_vcpus),
2542 		            ka->use_master_clock, gtod->clock.vclock_mode);
2543 #endif
2544 }
2545 
2546 /*
2547  * Multiply tsc by a fixed point number represented by ratio.
2548  *
2549  * The most significant 64-N bits (mult) of ratio represent the
2550  * integral part of the fixed point number; the remaining N bits
2551  * (frac) represent the fractional part, ie. ratio represents a fixed
2552  * point number (mult + frac * 2^(-N)).
2553  *
2554  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2555  */
2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2557 {
2558 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2559 }
2560 
2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2562 {
2563 	u64 _tsc = tsc;
2564 
2565 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2566 		_tsc = __scale_tsc(ratio, tsc);
2567 
2568 	return _tsc;
2569 }
2570 
2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2572 {
2573 	u64 tsc;
2574 
2575 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2576 
2577 	return target_tsc - tsc;
2578 }
2579 
2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2581 {
2582 	return vcpu->arch.l1_tsc_offset +
2583 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2584 }
2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2586 
2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2588 {
2589 	u64 nested_offset;
2590 
2591 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2592 		nested_offset = l1_offset;
2593 	else
2594 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2595 						kvm_caps.tsc_scaling_ratio_frac_bits);
2596 
2597 	nested_offset += l2_offset;
2598 	return nested_offset;
2599 }
2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2601 
2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2603 {
2604 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2605 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2606 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2607 
2608 	return l1_multiplier;
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2611 
2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2613 {
2614 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2615 				   vcpu->arch.l1_tsc_offset,
2616 				   l1_offset);
2617 
2618 	vcpu->arch.l1_tsc_offset = l1_offset;
2619 
2620 	/*
2621 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2622 	 * according to the spec this should set L1's TSC (as opposed to
2623 	 * setting L1's offset for L2).
2624 	 */
2625 	if (is_guest_mode(vcpu))
2626 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2627 			l1_offset,
2628 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2629 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2630 	else
2631 		vcpu->arch.tsc_offset = l1_offset;
2632 
2633 	static_call(kvm_x86_write_tsc_offset)(vcpu);
2634 }
2635 
2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2637 {
2638 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2639 
2640 	/* Userspace is changing the multiplier while L2 is active */
2641 	if (is_guest_mode(vcpu))
2642 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2643 			l1_multiplier,
2644 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2645 	else
2646 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2647 
2648 	if (kvm_caps.has_tsc_control)
2649 		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2650 }
2651 
2652 static inline bool kvm_check_tsc_unstable(void)
2653 {
2654 #ifdef CONFIG_X86_64
2655 	/*
2656 	 * TSC is marked unstable when we're running on Hyper-V,
2657 	 * 'TSC page' clocksource is good.
2658 	 */
2659 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2660 		return false;
2661 #endif
2662 	return check_tsc_unstable();
2663 }
2664 
2665 /*
2666  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2667  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2668  * participates in.
2669  */
2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2671 				  u64 ns, bool matched)
2672 {
2673 	struct kvm *kvm = vcpu->kvm;
2674 
2675 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2676 
2677 	/*
2678 	 * We also track th most recent recorded KHZ, write and time to
2679 	 * allow the matching interval to be extended at each write.
2680 	 */
2681 	kvm->arch.last_tsc_nsec = ns;
2682 	kvm->arch.last_tsc_write = tsc;
2683 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2684 	kvm->arch.last_tsc_offset = offset;
2685 
2686 	vcpu->arch.last_guest_tsc = tsc;
2687 
2688 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2689 
2690 	if (!matched) {
2691 		/*
2692 		 * We split periods of matched TSC writes into generations.
2693 		 * For each generation, we track the original measured
2694 		 * nanosecond time, offset, and write, so if TSCs are in
2695 		 * sync, we can match exact offset, and if not, we can match
2696 		 * exact software computation in compute_guest_tsc()
2697 		 *
2698 		 * These values are tracked in kvm->arch.cur_xxx variables.
2699 		 */
2700 		kvm->arch.cur_tsc_generation++;
2701 		kvm->arch.cur_tsc_nsec = ns;
2702 		kvm->arch.cur_tsc_write = tsc;
2703 		kvm->arch.cur_tsc_offset = offset;
2704 		kvm->arch.nr_vcpus_matched_tsc = 0;
2705 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2706 		kvm->arch.nr_vcpus_matched_tsc++;
2707 	}
2708 
2709 	/* Keep track of which generation this VCPU has synchronized to */
2710 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2711 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2712 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2713 
2714 	kvm_track_tsc_matching(vcpu, !matched);
2715 }
2716 
2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2718 {
2719 	u64 data = user_value ? *user_value : 0;
2720 	struct kvm *kvm = vcpu->kvm;
2721 	u64 offset, ns, elapsed;
2722 	unsigned long flags;
2723 	bool matched = false;
2724 	bool synchronizing = false;
2725 
2726 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2727 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2728 	ns = get_kvmclock_base_ns();
2729 	elapsed = ns - kvm->arch.last_tsc_nsec;
2730 
2731 	if (vcpu->arch.virtual_tsc_khz) {
2732 		if (data == 0) {
2733 			/*
2734 			 * Force synchronization when creating a vCPU, or when
2735 			 * userspace explicitly writes a zero value.
2736 			 */
2737 			synchronizing = true;
2738 		} else if (kvm->arch.user_set_tsc) {
2739 			u64 tsc_exp = kvm->arch.last_tsc_write +
2740 						nsec_to_cycles(vcpu, elapsed);
2741 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2742 			/*
2743 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2744 			 * a small delta (1 second) of virtual cycle time against the
2745 			 * previously set vCPU, we assume that they were intended to be
2746 			 * in sync and the delta was only due to the racy nature of the
2747 			 * legacy API.
2748 			 *
2749 			 * This trick falls down when restoring a guest which genuinely
2750 			 * has been running for less time than the 1 second of imprecision
2751 			 * which we allow for in the legacy API. In this case, the first
2752 			 * value written by userspace (on any vCPU) should not be subject
2753 			 * to this 'correction' to make it sync up with values that only
2754 			 * come from the kernel's default vCPU creation. Make the 1-second
2755 			 * slop hack only trigger if the user_set_tsc flag is already set.
2756 			 */
2757 			synchronizing = data < tsc_exp + tsc_hz &&
2758 					data + tsc_hz > tsc_exp;
2759 		}
2760 	}
2761 
2762 	if (user_value)
2763 		kvm->arch.user_set_tsc = true;
2764 
2765 	/*
2766 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2767 	 * TSC, we add elapsed time in this computation.  We could let the
2768 	 * compensation code attempt to catch up if we fall behind, but
2769 	 * it's better to try to match offsets from the beginning.
2770          */
2771 	if (synchronizing &&
2772 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2773 		if (!kvm_check_tsc_unstable()) {
2774 			offset = kvm->arch.cur_tsc_offset;
2775 		} else {
2776 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2777 			data += delta;
2778 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2779 		}
2780 		matched = true;
2781 	}
2782 
2783 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2784 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2785 }
2786 
2787 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2788 					   s64 adjustment)
2789 {
2790 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2791 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2792 }
2793 
2794 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2795 {
2796 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2797 		WARN_ON(adjustment < 0);
2798 	adjustment = kvm_scale_tsc((u64) adjustment,
2799 				   vcpu->arch.l1_tsc_scaling_ratio);
2800 	adjust_tsc_offset_guest(vcpu, adjustment);
2801 }
2802 
2803 #ifdef CONFIG_X86_64
2804 
2805 static u64 read_tsc(void)
2806 {
2807 	u64 ret = (u64)rdtsc_ordered();
2808 	u64 last = pvclock_gtod_data.clock.cycle_last;
2809 
2810 	if (likely(ret >= last))
2811 		return ret;
2812 
2813 	/*
2814 	 * GCC likes to generate cmov here, but this branch is extremely
2815 	 * predictable (it's just a function of time and the likely is
2816 	 * very likely) and there's a data dependence, so force GCC
2817 	 * to generate a branch instead.  I don't barrier() because
2818 	 * we don't actually need a barrier, and if this function
2819 	 * ever gets inlined it will generate worse code.
2820 	 */
2821 	asm volatile ("");
2822 	return last;
2823 }
2824 
2825 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2826 			  int *mode)
2827 {
2828 	u64 tsc_pg_val;
2829 	long v;
2830 
2831 	switch (clock->vclock_mode) {
2832 	case VDSO_CLOCKMODE_HVCLOCK:
2833 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2834 					 tsc_timestamp, &tsc_pg_val)) {
2835 			/* TSC page valid */
2836 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2837 			v = (tsc_pg_val - clock->cycle_last) &
2838 				clock->mask;
2839 		} else {
2840 			/* TSC page invalid */
2841 			*mode = VDSO_CLOCKMODE_NONE;
2842 		}
2843 		break;
2844 	case VDSO_CLOCKMODE_TSC:
2845 		*mode = VDSO_CLOCKMODE_TSC;
2846 		*tsc_timestamp = read_tsc();
2847 		v = (*tsc_timestamp - clock->cycle_last) &
2848 			clock->mask;
2849 		break;
2850 	default:
2851 		*mode = VDSO_CLOCKMODE_NONE;
2852 	}
2853 
2854 	if (*mode == VDSO_CLOCKMODE_NONE)
2855 		*tsc_timestamp = v = 0;
2856 
2857 	return v * clock->mult;
2858 }
2859 
2860 /*
2861  * As with get_kvmclock_base_ns(), this counts from boot time, at the
2862  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2863  */
2864 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2865 {
2866 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2867 	unsigned long seq;
2868 	int mode;
2869 	u64 ns;
2870 
2871 	do {
2872 		seq = read_seqcount_begin(&gtod->seq);
2873 		ns = gtod->raw_clock.base_cycles;
2874 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2875 		ns >>= gtod->raw_clock.shift;
2876 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2877 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2878 	*t = ns;
2879 
2880 	return mode;
2881 }
2882 
2883 /*
2884  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2885  * no boot time offset.
2886  */
2887 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2888 {
2889 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2890 	unsigned long seq;
2891 	int mode;
2892 	u64 ns;
2893 
2894 	do {
2895 		seq = read_seqcount_begin(&gtod->seq);
2896 		ns = gtod->clock.base_cycles;
2897 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2898 		ns >>= gtod->clock.shift;
2899 		ns += ktime_to_ns(gtod->clock.offset);
2900 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2901 	*t = ns;
2902 
2903 	return mode;
2904 }
2905 
2906 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2907 {
2908 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2909 	unsigned long seq;
2910 	int mode;
2911 	u64 ns;
2912 
2913 	do {
2914 		seq = read_seqcount_begin(&gtod->seq);
2915 		ts->tv_sec = gtod->wall_time_sec;
2916 		ns = gtod->clock.base_cycles;
2917 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2918 		ns >>= gtod->clock.shift;
2919 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2920 
2921 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2922 	ts->tv_nsec = ns;
2923 
2924 	return mode;
2925 }
2926 
2927 /*
2928  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2929  * reports the TSC value from which it do so. Returns true if host is
2930  * using TSC based clocksource.
2931  */
2932 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2933 {
2934 	/* checked again under seqlock below */
2935 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2936 		return false;
2937 
2938 	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2939 						     tsc_timestamp));
2940 }
2941 
2942 /*
2943  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2944  * so. Returns true if host is using TSC based clocksource.
2945  */
2946 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2947 {
2948 	/* checked again under seqlock below */
2949 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2950 		return false;
2951 
2952 	return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2953 						 tsc_timestamp));
2954 }
2955 
2956 /*
2957  * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2958  * so. Returns true if host is using TSC based clocksource.
2959  *
2960  * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2961  * for that.
2962  */
2963 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2964 					   u64 *tsc_timestamp)
2965 {
2966 	/* checked again under seqlock below */
2967 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2968 		return false;
2969 
2970 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2971 }
2972 #endif
2973 
2974 /*
2975  *
2976  * Assuming a stable TSC across physical CPUS, and a stable TSC
2977  * across virtual CPUs, the following condition is possible.
2978  * Each numbered line represents an event visible to both
2979  * CPUs at the next numbered event.
2980  *
2981  * "timespecX" represents host monotonic time. "tscX" represents
2982  * RDTSC value.
2983  *
2984  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2985  *
2986  * 1.  read timespec0,tsc0
2987  * 2.					| timespec1 = timespec0 + N
2988  * 					| tsc1 = tsc0 + M
2989  * 3. transition to guest		| transition to guest
2990  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2991  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2992  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2993  *
2994  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2995  *
2996  * 	- ret0 < ret1
2997  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2998  *		...
2999  *	- 0 < N - M => M < N
3000  *
3001  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
3002  * always the case (the difference between two distinct xtime instances
3003  * might be smaller then the difference between corresponding TSC reads,
3004  * when updating guest vcpus pvclock areas).
3005  *
3006  * To avoid that problem, do not allow visibility of distinct
3007  * system_timestamp/tsc_timestamp values simultaneously: use a master
3008  * copy of host monotonic time values. Update that master copy
3009  * in lockstep.
3010  *
3011  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3012  *
3013  */
3014 
3015 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3016 {
3017 #ifdef CONFIG_X86_64
3018 	struct kvm_arch *ka = &kvm->arch;
3019 	int vclock_mode;
3020 	bool host_tsc_clocksource, vcpus_matched;
3021 
3022 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
3023 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3024 			atomic_read(&kvm->online_vcpus));
3025 
3026 	/*
3027 	 * If the host uses TSC clock, then passthrough TSC as stable
3028 	 * to the guest.
3029 	 */
3030 	host_tsc_clocksource = kvm_get_time_and_clockread(
3031 					&ka->master_kernel_ns,
3032 					&ka->master_cycle_now);
3033 
3034 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3035 				&& !ka->backwards_tsc_observed
3036 				&& !ka->boot_vcpu_runs_old_kvmclock;
3037 
3038 	if (ka->use_master_clock)
3039 		atomic_set(&kvm_guest_has_master_clock, 1);
3040 
3041 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3042 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3043 					vcpus_matched);
3044 #endif
3045 }
3046 
3047 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3048 {
3049 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3050 }
3051 
3052 static void __kvm_start_pvclock_update(struct kvm *kvm)
3053 {
3054 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3055 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3056 }
3057 
3058 static void kvm_start_pvclock_update(struct kvm *kvm)
3059 {
3060 	kvm_make_mclock_inprogress_request(kvm);
3061 
3062 	/* no guest entries from this point */
3063 	__kvm_start_pvclock_update(kvm);
3064 }
3065 
3066 static void kvm_end_pvclock_update(struct kvm *kvm)
3067 {
3068 	struct kvm_arch *ka = &kvm->arch;
3069 	struct kvm_vcpu *vcpu;
3070 	unsigned long i;
3071 
3072 	write_seqcount_end(&ka->pvclock_sc);
3073 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3074 	kvm_for_each_vcpu(i, vcpu, kvm)
3075 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3076 
3077 	/* guest entries allowed */
3078 	kvm_for_each_vcpu(i, vcpu, kvm)
3079 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3080 }
3081 
3082 static void kvm_update_masterclock(struct kvm *kvm)
3083 {
3084 	kvm_hv_request_tsc_page_update(kvm);
3085 	kvm_start_pvclock_update(kvm);
3086 	pvclock_update_vm_gtod_copy(kvm);
3087 	kvm_end_pvclock_update(kvm);
3088 }
3089 
3090 /*
3091  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3092  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3093  * can change during boot even if the TSC is constant, as it's possible for KVM
3094  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3095  * notification when calibration completes, but practically speaking calibration
3096  * will complete before userspace is alive enough to create VMs.
3097  */
3098 static unsigned long get_cpu_tsc_khz(void)
3099 {
3100 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3101 		return tsc_khz;
3102 	else
3103 		return __this_cpu_read(cpu_tsc_khz);
3104 }
3105 
3106 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3107 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3108 {
3109 	struct kvm_arch *ka = &kvm->arch;
3110 	struct pvclock_vcpu_time_info hv_clock;
3111 
3112 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3113 	get_cpu();
3114 
3115 	data->flags = 0;
3116 	if (ka->use_master_clock &&
3117 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3118 #ifdef CONFIG_X86_64
3119 		struct timespec64 ts;
3120 
3121 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3122 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3123 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3124 		} else
3125 #endif
3126 		data->host_tsc = rdtsc();
3127 
3128 		data->flags |= KVM_CLOCK_TSC_STABLE;
3129 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3130 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3131 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3132 				   &hv_clock.tsc_shift,
3133 				   &hv_clock.tsc_to_system_mul);
3134 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3135 	} else {
3136 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3137 	}
3138 
3139 	put_cpu();
3140 }
3141 
3142 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3143 {
3144 	struct kvm_arch *ka = &kvm->arch;
3145 	unsigned seq;
3146 
3147 	do {
3148 		seq = read_seqcount_begin(&ka->pvclock_sc);
3149 		__get_kvmclock(kvm, data);
3150 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3151 }
3152 
3153 u64 get_kvmclock_ns(struct kvm *kvm)
3154 {
3155 	struct kvm_clock_data data;
3156 
3157 	get_kvmclock(kvm, &data);
3158 	return data.clock;
3159 }
3160 
3161 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3162 				    struct gfn_to_pfn_cache *gpc,
3163 				    unsigned int offset,
3164 				    bool force_tsc_unstable)
3165 {
3166 	struct kvm_vcpu_arch *vcpu = &v->arch;
3167 	struct pvclock_vcpu_time_info *guest_hv_clock;
3168 	unsigned long flags;
3169 
3170 	read_lock_irqsave(&gpc->lock, flags);
3171 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3172 		read_unlock_irqrestore(&gpc->lock, flags);
3173 
3174 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3175 			return;
3176 
3177 		read_lock_irqsave(&gpc->lock, flags);
3178 	}
3179 
3180 	guest_hv_clock = (void *)(gpc->khva + offset);
3181 
3182 	/*
3183 	 * This VCPU is paused, but it's legal for a guest to read another
3184 	 * VCPU's kvmclock, so we really have to follow the specification where
3185 	 * it says that version is odd if data is being modified, and even after
3186 	 * it is consistent.
3187 	 */
3188 
3189 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3190 	smp_wmb();
3191 
3192 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3193 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3194 
3195 	if (vcpu->pvclock_set_guest_stopped_request) {
3196 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3197 		vcpu->pvclock_set_guest_stopped_request = false;
3198 	}
3199 
3200 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3201 
3202 	if (force_tsc_unstable)
3203 		guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3204 
3205 	smp_wmb();
3206 
3207 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3208 
3209 	kvm_gpc_mark_dirty_in_slot(gpc);
3210 	read_unlock_irqrestore(&gpc->lock, flags);
3211 
3212 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3213 }
3214 
3215 static int kvm_guest_time_update(struct kvm_vcpu *v)
3216 {
3217 	unsigned long flags, tgt_tsc_khz;
3218 	unsigned seq;
3219 	struct kvm_vcpu_arch *vcpu = &v->arch;
3220 	struct kvm_arch *ka = &v->kvm->arch;
3221 	s64 kernel_ns;
3222 	u64 tsc_timestamp, host_tsc;
3223 	u8 pvclock_flags;
3224 	bool use_master_clock;
3225 #ifdef CONFIG_KVM_XEN
3226 	/*
3227 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3228 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3229 	 * This default behaviour led to bugs in some guest kernels which cause
3230 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3231 	 */
3232 	bool xen_pvclock_tsc_unstable =
3233 		ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3234 #endif
3235 
3236 	kernel_ns = 0;
3237 	host_tsc = 0;
3238 
3239 	/*
3240 	 * If the host uses TSC clock, then passthrough TSC as stable
3241 	 * to the guest.
3242 	 */
3243 	do {
3244 		seq = read_seqcount_begin(&ka->pvclock_sc);
3245 		use_master_clock = ka->use_master_clock;
3246 		if (use_master_clock) {
3247 			host_tsc = ka->master_cycle_now;
3248 			kernel_ns = ka->master_kernel_ns;
3249 		}
3250 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3251 
3252 	/* Keep irq disabled to prevent changes to the clock */
3253 	local_irq_save(flags);
3254 	tgt_tsc_khz = get_cpu_tsc_khz();
3255 	if (unlikely(tgt_tsc_khz == 0)) {
3256 		local_irq_restore(flags);
3257 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3258 		return 1;
3259 	}
3260 	if (!use_master_clock) {
3261 		host_tsc = rdtsc();
3262 		kernel_ns = get_kvmclock_base_ns();
3263 	}
3264 
3265 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3266 
3267 	/*
3268 	 * We may have to catch up the TSC to match elapsed wall clock
3269 	 * time for two reasons, even if kvmclock is used.
3270 	 *   1) CPU could have been running below the maximum TSC rate
3271 	 *   2) Broken TSC compensation resets the base at each VCPU
3272 	 *      entry to avoid unknown leaps of TSC even when running
3273 	 *      again on the same CPU.  This may cause apparent elapsed
3274 	 *      time to disappear, and the guest to stand still or run
3275 	 *	very slowly.
3276 	 */
3277 	if (vcpu->tsc_catchup) {
3278 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3279 		if (tsc > tsc_timestamp) {
3280 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3281 			tsc_timestamp = tsc;
3282 		}
3283 	}
3284 
3285 	local_irq_restore(flags);
3286 
3287 	/* With all the info we got, fill in the values */
3288 
3289 	if (kvm_caps.has_tsc_control)
3290 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3291 					    v->arch.l1_tsc_scaling_ratio);
3292 
3293 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3294 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3295 				   &vcpu->hv_clock.tsc_shift,
3296 				   &vcpu->hv_clock.tsc_to_system_mul);
3297 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3298 		kvm_xen_update_tsc_info(v);
3299 	}
3300 
3301 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3302 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3303 	vcpu->last_guest_tsc = tsc_timestamp;
3304 
3305 	/* If the host uses TSC clocksource, then it is stable */
3306 	pvclock_flags = 0;
3307 	if (use_master_clock)
3308 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3309 
3310 	vcpu->hv_clock.flags = pvclock_flags;
3311 
3312 	if (vcpu->pv_time.active)
3313 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3314 #ifdef CONFIG_KVM_XEN
3315 	if (vcpu->xen.vcpu_info_cache.active)
3316 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3317 					offsetof(struct compat_vcpu_info, time),
3318 					xen_pvclock_tsc_unstable);
3319 	if (vcpu->xen.vcpu_time_info_cache.active)
3320 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3321 					xen_pvclock_tsc_unstable);
3322 #endif
3323 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3324 	return 0;
3325 }
3326 
3327 /*
3328  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3329  * which it started (i.e. its epoch, when its kvmclock was zero).
3330  *
3331  * In fact those clocks are subtly different; wall clock frequency is
3332  * adjusted by NTP and has leap seconds, while the kvmclock is a
3333  * simple function of the TSC without any such adjustment.
3334  *
3335  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3336  * that and kvmclock, but even that would be subject to change over
3337  * time.
3338  *
3339  * Attempt to calculate the epoch at a given moment using the *same*
3340  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3341  * wallclock and kvmclock times, and subtracting one from the other.
3342  *
3343  * Fall back to using their values at slightly different moments by
3344  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3345  */
3346 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3347 {
3348 #ifdef CONFIG_X86_64
3349 	struct pvclock_vcpu_time_info hv_clock;
3350 	struct kvm_arch *ka = &kvm->arch;
3351 	unsigned long seq, local_tsc_khz;
3352 	struct timespec64 ts;
3353 	uint64_t host_tsc;
3354 
3355 	do {
3356 		seq = read_seqcount_begin(&ka->pvclock_sc);
3357 
3358 		local_tsc_khz = 0;
3359 		if (!ka->use_master_clock)
3360 			break;
3361 
3362 		/*
3363 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3364 		 * on the same CPU.
3365 		 */
3366 		get_cpu();
3367 
3368 		local_tsc_khz = get_cpu_tsc_khz();
3369 
3370 		if (local_tsc_khz &&
3371 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3372 			local_tsc_khz = 0; /* Fall back to old method */
3373 
3374 		put_cpu();
3375 
3376 		/*
3377 		 * These values must be snapshotted within the seqcount loop.
3378 		 * After that, it's just mathematics which can happen on any
3379 		 * CPU at any time.
3380 		 */
3381 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3382 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3383 
3384 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3385 
3386 	/*
3387 	 * If the conditions were right, and obtaining the wallclock+TSC was
3388 	 * successful, calculate the KVM clock at the corresponding time and
3389 	 * subtract one from the other to get the guest's epoch in nanoseconds
3390 	 * since 1970-01-01.
3391 	 */
3392 	if (local_tsc_khz) {
3393 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3394 				   &hv_clock.tsc_shift,
3395 				   &hv_clock.tsc_to_system_mul);
3396 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3397 			__pvclock_read_cycles(&hv_clock, host_tsc);
3398 	}
3399 #endif
3400 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3401 }
3402 
3403 /*
3404  * kvmclock updates which are isolated to a given vcpu, such as
3405  * vcpu->cpu migration, should not allow system_timestamp from
3406  * the rest of the vcpus to remain static. Otherwise ntp frequency
3407  * correction applies to one vcpu's system_timestamp but not
3408  * the others.
3409  *
3410  * So in those cases, request a kvmclock update for all vcpus.
3411  * We need to rate-limit these requests though, as they can
3412  * considerably slow guests that have a large number of vcpus.
3413  * The time for a remote vcpu to update its kvmclock is bound
3414  * by the delay we use to rate-limit the updates.
3415  */
3416 
3417 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3418 
3419 static void kvmclock_update_fn(struct work_struct *work)
3420 {
3421 	unsigned long i;
3422 	struct delayed_work *dwork = to_delayed_work(work);
3423 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3424 					   kvmclock_update_work);
3425 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3426 	struct kvm_vcpu *vcpu;
3427 
3428 	kvm_for_each_vcpu(i, vcpu, kvm) {
3429 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3430 		kvm_vcpu_kick(vcpu);
3431 	}
3432 }
3433 
3434 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3435 {
3436 	struct kvm *kvm = v->kvm;
3437 
3438 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3439 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3440 					KVMCLOCK_UPDATE_DELAY);
3441 }
3442 
3443 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3444 
3445 static void kvmclock_sync_fn(struct work_struct *work)
3446 {
3447 	struct delayed_work *dwork = to_delayed_work(work);
3448 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3449 					   kvmclock_sync_work);
3450 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3451 
3452 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3453 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3454 					KVMCLOCK_SYNC_PERIOD);
3455 }
3456 
3457 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3458 static bool is_mci_control_msr(u32 msr)
3459 {
3460 	return (msr & 3) == 0;
3461 }
3462 static bool is_mci_status_msr(u32 msr)
3463 {
3464 	return (msr & 3) == 1;
3465 }
3466 
3467 /*
3468  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3469  */
3470 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3471 {
3472 	/* McStatusWrEn enabled? */
3473 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3474 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3475 
3476 	return false;
3477 }
3478 
3479 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3480 {
3481 	u64 mcg_cap = vcpu->arch.mcg_cap;
3482 	unsigned bank_num = mcg_cap & 0xff;
3483 	u32 msr = msr_info->index;
3484 	u64 data = msr_info->data;
3485 	u32 offset, last_msr;
3486 
3487 	switch (msr) {
3488 	case MSR_IA32_MCG_STATUS:
3489 		vcpu->arch.mcg_status = data;
3490 		break;
3491 	case MSR_IA32_MCG_CTL:
3492 		if (!(mcg_cap & MCG_CTL_P) &&
3493 		    (data || !msr_info->host_initiated))
3494 			return 1;
3495 		if (data != 0 && data != ~(u64)0)
3496 			return 1;
3497 		vcpu->arch.mcg_ctl = data;
3498 		break;
3499 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3500 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3501 		if (msr > last_msr)
3502 			return 1;
3503 
3504 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3505 			return 1;
3506 		/* An attempt to write a 1 to a reserved bit raises #GP */
3507 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3508 			return 1;
3509 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3510 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3511 		vcpu->arch.mci_ctl2_banks[offset] = data;
3512 		break;
3513 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3514 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3515 		if (msr > last_msr)
3516 			return 1;
3517 
3518 		/*
3519 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3520 		 * values are architecturally undefined.  But, some Linux
3521 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3522 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3523 		 * other bits in order to avoid an uncaught #GP in the guest.
3524 		 *
3525 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3526 		 * single-bit ECC data errors.
3527 		 */
3528 		if (is_mci_control_msr(msr) &&
3529 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3530 			return 1;
3531 
3532 		/*
3533 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3534 		 * AMD-based CPUs allow non-zero values, but if and only if
3535 		 * HWCR[McStatusWrEn] is set.
3536 		 */
3537 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3538 		    data != 0 && !can_set_mci_status(vcpu))
3539 			return 1;
3540 
3541 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3542 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3543 		vcpu->arch.mce_banks[offset] = data;
3544 		break;
3545 	default:
3546 		return 1;
3547 	}
3548 	return 0;
3549 }
3550 
3551 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3552 {
3553 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3554 
3555 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3556 }
3557 
3558 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3559 {
3560 	gpa_t gpa = data & ~0x3f;
3561 
3562 	/* Bits 4:5 are reserved, Should be zero */
3563 	if (data & 0x30)
3564 		return 1;
3565 
3566 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3567 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3568 		return 1;
3569 
3570 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3571 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3572 		return 1;
3573 
3574 	if (!lapic_in_kernel(vcpu))
3575 		return data ? 1 : 0;
3576 
3577 	vcpu->arch.apf.msr_en_val = data;
3578 
3579 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3580 		kvm_clear_async_pf_completion_queue(vcpu);
3581 		kvm_async_pf_hash_reset(vcpu);
3582 		return 0;
3583 	}
3584 
3585 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3586 					sizeof(u64)))
3587 		return 1;
3588 
3589 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3590 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3591 
3592 	kvm_async_pf_wakeup_all(vcpu);
3593 
3594 	return 0;
3595 }
3596 
3597 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3598 {
3599 	/* Bits 8-63 are reserved */
3600 	if (data >> 8)
3601 		return 1;
3602 
3603 	if (!lapic_in_kernel(vcpu))
3604 		return 1;
3605 
3606 	vcpu->arch.apf.msr_int_val = data;
3607 
3608 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3609 
3610 	return 0;
3611 }
3612 
3613 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3614 {
3615 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3616 	vcpu->arch.time = 0;
3617 }
3618 
3619 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3620 {
3621 	++vcpu->stat.tlb_flush;
3622 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3623 
3624 	/* Flushing all ASIDs flushes the current ASID... */
3625 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3626 }
3627 
3628 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3629 {
3630 	++vcpu->stat.tlb_flush;
3631 
3632 	if (!tdp_enabled) {
3633 		/*
3634 		 * A TLB flush on behalf of the guest is equivalent to
3635 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3636 		 * a forced sync of the shadow page tables.  Ensure all the
3637 		 * roots are synced and the guest TLB in hardware is clean.
3638 		 */
3639 		kvm_mmu_sync_roots(vcpu);
3640 		kvm_mmu_sync_prev_roots(vcpu);
3641 	}
3642 
3643 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3644 
3645 	/*
3646 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3647 	 * grained flushing.
3648 	 */
3649 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3650 }
3651 
3652 
3653 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3654 {
3655 	++vcpu->stat.tlb_flush;
3656 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3657 }
3658 
3659 /*
3660  * Service "local" TLB flush requests, which are specific to the current MMU
3661  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3662  * TLB flushes that are targeted at an MMU context also need to be serviced
3663  * prior before nested VM-Enter/VM-Exit.
3664  */
3665 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3666 {
3667 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3668 		kvm_vcpu_flush_tlb_current(vcpu);
3669 
3670 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3671 		kvm_vcpu_flush_tlb_guest(vcpu);
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3674 
3675 static void record_steal_time(struct kvm_vcpu *vcpu)
3676 {
3677 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3678 	struct kvm_steal_time __user *st;
3679 	struct kvm_memslots *slots;
3680 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3681 	u64 steal;
3682 	u32 version;
3683 
3684 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3685 		kvm_xen_runstate_set_running(vcpu);
3686 		return;
3687 	}
3688 
3689 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3690 		return;
3691 
3692 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3693 		return;
3694 
3695 	slots = kvm_memslots(vcpu->kvm);
3696 
3697 	if (unlikely(slots->generation != ghc->generation ||
3698 		     gpa != ghc->gpa ||
3699 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3700 		/* We rely on the fact that it fits in a single page. */
3701 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3702 
3703 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3704 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3705 			return;
3706 	}
3707 
3708 	st = (struct kvm_steal_time __user *)ghc->hva;
3709 	/*
3710 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3711 	 * expensive IPIs.
3712 	 */
3713 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3714 		u8 st_preempted = 0;
3715 		int err = -EFAULT;
3716 
3717 		if (!user_access_begin(st, sizeof(*st)))
3718 			return;
3719 
3720 		asm volatile("1: xchgb %0, %2\n"
3721 			     "xor %1, %1\n"
3722 			     "2:\n"
3723 			     _ASM_EXTABLE_UA(1b, 2b)
3724 			     : "+q" (st_preempted),
3725 			       "+&r" (err),
3726 			       "+m" (st->preempted));
3727 		if (err)
3728 			goto out;
3729 
3730 		user_access_end();
3731 
3732 		vcpu->arch.st.preempted = 0;
3733 
3734 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3735 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3736 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3737 			kvm_vcpu_flush_tlb_guest(vcpu);
3738 
3739 		if (!user_access_begin(st, sizeof(*st)))
3740 			goto dirty;
3741 	} else {
3742 		if (!user_access_begin(st, sizeof(*st)))
3743 			return;
3744 
3745 		unsafe_put_user(0, &st->preempted, out);
3746 		vcpu->arch.st.preempted = 0;
3747 	}
3748 
3749 	unsafe_get_user(version, &st->version, out);
3750 	if (version & 1)
3751 		version += 1;  /* first time write, random junk */
3752 
3753 	version += 1;
3754 	unsafe_put_user(version, &st->version, out);
3755 
3756 	smp_wmb();
3757 
3758 	unsafe_get_user(steal, &st->steal, out);
3759 	steal += current->sched_info.run_delay -
3760 		vcpu->arch.st.last_steal;
3761 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3762 	unsafe_put_user(steal, &st->steal, out);
3763 
3764 	version += 1;
3765 	unsafe_put_user(version, &st->version, out);
3766 
3767  out:
3768 	user_access_end();
3769  dirty:
3770 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3771 }
3772 
3773 static bool kvm_is_msr_to_save(u32 msr_index)
3774 {
3775 	unsigned int i;
3776 
3777 	for (i = 0; i < num_msrs_to_save; i++) {
3778 		if (msrs_to_save[i] == msr_index)
3779 			return true;
3780 	}
3781 
3782 	return false;
3783 }
3784 
3785 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3786 {
3787 	u32 msr = msr_info->index;
3788 	u64 data = msr_info->data;
3789 
3790 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3791 		return kvm_xen_write_hypercall_page(vcpu, data);
3792 
3793 	switch (msr) {
3794 	case MSR_AMD64_NB_CFG:
3795 	case MSR_IA32_UCODE_WRITE:
3796 	case MSR_VM_HSAVE_PA:
3797 	case MSR_AMD64_PATCH_LOADER:
3798 	case MSR_AMD64_BU_CFG2:
3799 	case MSR_AMD64_DC_CFG:
3800 	case MSR_AMD64_TW_CFG:
3801 	case MSR_F15H_EX_CFG:
3802 		break;
3803 
3804 	case MSR_IA32_UCODE_REV:
3805 		if (msr_info->host_initiated)
3806 			vcpu->arch.microcode_version = data;
3807 		break;
3808 	case MSR_IA32_ARCH_CAPABILITIES:
3809 		if (!msr_info->host_initiated)
3810 			return 1;
3811 		vcpu->arch.arch_capabilities = data;
3812 		break;
3813 	case MSR_IA32_PERF_CAPABILITIES:
3814 		if (!msr_info->host_initiated)
3815 			return 1;
3816 		if (data & ~kvm_caps.supported_perf_cap)
3817 			return 1;
3818 
3819 		/*
3820 		 * Note, this is not just a performance optimization!  KVM
3821 		 * disallows changing feature MSRs after the vCPU has run; PMU
3822 		 * refresh will bug the VM if called after the vCPU has run.
3823 		 */
3824 		if (vcpu->arch.perf_capabilities == data)
3825 			break;
3826 
3827 		vcpu->arch.perf_capabilities = data;
3828 		kvm_pmu_refresh(vcpu);
3829 		break;
3830 	case MSR_IA32_PRED_CMD: {
3831 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3832 
3833 		if (!msr_info->host_initiated) {
3834 			if ((!guest_has_pred_cmd_msr(vcpu)))
3835 				return 1;
3836 
3837 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3838 			    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3839 				reserved_bits |= PRED_CMD_IBPB;
3840 
3841 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3842 				reserved_bits |= PRED_CMD_SBPB;
3843 		}
3844 
3845 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3846 			reserved_bits |= PRED_CMD_IBPB;
3847 
3848 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3849 			reserved_bits |= PRED_CMD_SBPB;
3850 
3851 		if (data & reserved_bits)
3852 			return 1;
3853 
3854 		if (!data)
3855 			break;
3856 
3857 		wrmsrl(MSR_IA32_PRED_CMD, data);
3858 		break;
3859 	}
3860 	case MSR_IA32_FLUSH_CMD:
3861 		if (!msr_info->host_initiated &&
3862 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3863 			return 1;
3864 
3865 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3866 			return 1;
3867 		if (!data)
3868 			break;
3869 
3870 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3871 		break;
3872 	case MSR_EFER:
3873 		return set_efer(vcpu, msr_info);
3874 	case MSR_K7_HWCR:
3875 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3876 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3877 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3878 
3879 		/*
3880 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3881 		 * through at least v6.6 whine if TscFreqSel is clear,
3882 		 * depending on F/M/S.
3883 		 */
3884 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3885 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3886 			return 1;
3887 		}
3888 		vcpu->arch.msr_hwcr = data;
3889 		break;
3890 	case MSR_FAM10H_MMIO_CONF_BASE:
3891 		if (data != 0) {
3892 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3893 			return 1;
3894 		}
3895 		break;
3896 	case MSR_IA32_CR_PAT:
3897 		if (!kvm_pat_valid(data))
3898 			return 1;
3899 
3900 		vcpu->arch.pat = data;
3901 		break;
3902 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3903 	case MSR_MTRRdefType:
3904 		return kvm_mtrr_set_msr(vcpu, msr, data);
3905 	case MSR_IA32_APICBASE:
3906 		return kvm_set_apic_base(vcpu, msr_info);
3907 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3908 		return kvm_x2apic_msr_write(vcpu, msr, data);
3909 	case MSR_IA32_TSC_DEADLINE:
3910 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3911 		break;
3912 	case MSR_IA32_TSC_ADJUST:
3913 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3914 			if (!msr_info->host_initiated) {
3915 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3916 				adjust_tsc_offset_guest(vcpu, adj);
3917 				/* Before back to guest, tsc_timestamp must be adjusted
3918 				 * as well, otherwise guest's percpu pvclock time could jump.
3919 				 */
3920 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3921 			}
3922 			vcpu->arch.ia32_tsc_adjust_msr = data;
3923 		}
3924 		break;
3925 	case MSR_IA32_MISC_ENABLE: {
3926 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3927 
3928 		if (!msr_info->host_initiated) {
3929 			/* RO bits */
3930 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3931 				return 1;
3932 
3933 			/* R bits, i.e. writes are ignored, but don't fault. */
3934 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3935 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3936 		}
3937 
3938 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3939 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3940 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3941 				return 1;
3942 			vcpu->arch.ia32_misc_enable_msr = data;
3943 			kvm_update_cpuid_runtime(vcpu);
3944 		} else {
3945 			vcpu->arch.ia32_misc_enable_msr = data;
3946 		}
3947 		break;
3948 	}
3949 	case MSR_IA32_SMBASE:
3950 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3951 			return 1;
3952 		vcpu->arch.smbase = data;
3953 		break;
3954 	case MSR_IA32_POWER_CTL:
3955 		vcpu->arch.msr_ia32_power_ctl = data;
3956 		break;
3957 	case MSR_IA32_TSC:
3958 		if (msr_info->host_initiated) {
3959 			kvm_synchronize_tsc(vcpu, &data);
3960 		} else {
3961 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3962 			adjust_tsc_offset_guest(vcpu, adj);
3963 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3964 		}
3965 		break;
3966 	case MSR_IA32_XSS:
3967 		if (!msr_info->host_initiated &&
3968 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3969 			return 1;
3970 		/*
3971 		 * KVM supports exposing PT to the guest, but does not support
3972 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3973 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3974 		 */
3975 		if (data & ~kvm_caps.supported_xss)
3976 			return 1;
3977 		vcpu->arch.ia32_xss = data;
3978 		kvm_update_cpuid_runtime(vcpu);
3979 		break;
3980 	case MSR_SMI_COUNT:
3981 		if (!msr_info->host_initiated)
3982 			return 1;
3983 		vcpu->arch.smi_count = data;
3984 		break;
3985 	case MSR_KVM_WALL_CLOCK_NEW:
3986 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3987 			return 1;
3988 
3989 		vcpu->kvm->arch.wall_clock = data;
3990 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3991 		break;
3992 	case MSR_KVM_WALL_CLOCK:
3993 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3994 			return 1;
3995 
3996 		vcpu->kvm->arch.wall_clock = data;
3997 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3998 		break;
3999 	case MSR_KVM_SYSTEM_TIME_NEW:
4000 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4001 			return 1;
4002 
4003 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
4004 		break;
4005 	case MSR_KVM_SYSTEM_TIME:
4006 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4007 			return 1;
4008 
4009 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
4010 		break;
4011 	case MSR_KVM_ASYNC_PF_EN:
4012 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4013 			return 1;
4014 
4015 		if (kvm_pv_enable_async_pf(vcpu, data))
4016 			return 1;
4017 		break;
4018 	case MSR_KVM_ASYNC_PF_INT:
4019 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4020 			return 1;
4021 
4022 		if (kvm_pv_enable_async_pf_int(vcpu, data))
4023 			return 1;
4024 		break;
4025 	case MSR_KVM_ASYNC_PF_ACK:
4026 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4027 			return 1;
4028 		if (data & 0x1) {
4029 			vcpu->arch.apf.pageready_pending = false;
4030 			kvm_check_async_pf_completion(vcpu);
4031 		}
4032 		break;
4033 	case MSR_KVM_STEAL_TIME:
4034 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4035 			return 1;
4036 
4037 		if (unlikely(!sched_info_on()))
4038 			return 1;
4039 
4040 		if (data & KVM_STEAL_RESERVED_MASK)
4041 			return 1;
4042 
4043 		vcpu->arch.st.msr_val = data;
4044 
4045 		if (!(data & KVM_MSR_ENABLED))
4046 			break;
4047 
4048 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4049 
4050 		break;
4051 	case MSR_KVM_PV_EOI_EN:
4052 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4053 			return 1;
4054 
4055 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4056 			return 1;
4057 		break;
4058 
4059 	case MSR_KVM_POLL_CONTROL:
4060 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4061 			return 1;
4062 
4063 		/* only enable bit supported */
4064 		if (data & (-1ULL << 1))
4065 			return 1;
4066 
4067 		vcpu->arch.msr_kvm_poll_control = data;
4068 		break;
4069 
4070 	case MSR_IA32_MCG_CTL:
4071 	case MSR_IA32_MCG_STATUS:
4072 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4073 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4074 		return set_msr_mce(vcpu, msr_info);
4075 
4076 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4077 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4078 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4079 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4080 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4081 			return kvm_pmu_set_msr(vcpu, msr_info);
4082 
4083 		if (data)
4084 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4085 		break;
4086 	case MSR_K7_CLK_CTL:
4087 		/*
4088 		 * Ignore all writes to this no longer documented MSR.
4089 		 * Writes are only relevant for old K7 processors,
4090 		 * all pre-dating SVM, but a recommended workaround from
4091 		 * AMD for these chips. It is possible to specify the
4092 		 * affected processor models on the command line, hence
4093 		 * the need to ignore the workaround.
4094 		 */
4095 		break;
4096 #ifdef CONFIG_KVM_HYPERV
4097 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4098 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4099 	case HV_X64_MSR_SYNDBG_OPTIONS:
4100 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4101 	case HV_X64_MSR_CRASH_CTL:
4102 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4103 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4104 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4105 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4106 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4107 		return kvm_hv_set_msr_common(vcpu, msr, data,
4108 					     msr_info->host_initiated);
4109 #endif
4110 	case MSR_IA32_BBL_CR_CTL3:
4111 		/* Drop writes to this legacy MSR -- see rdmsr
4112 		 * counterpart for further detail.
4113 		 */
4114 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4115 		break;
4116 	case MSR_AMD64_OSVW_ID_LENGTH:
4117 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4118 			return 1;
4119 		vcpu->arch.osvw.length = data;
4120 		break;
4121 	case MSR_AMD64_OSVW_STATUS:
4122 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4123 			return 1;
4124 		vcpu->arch.osvw.status = data;
4125 		break;
4126 	case MSR_PLATFORM_INFO:
4127 		if (!msr_info->host_initiated ||
4128 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4129 		     cpuid_fault_enabled(vcpu)))
4130 			return 1;
4131 		vcpu->arch.msr_platform_info = data;
4132 		break;
4133 	case MSR_MISC_FEATURES_ENABLES:
4134 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4135 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4136 		     !supports_cpuid_fault(vcpu)))
4137 			return 1;
4138 		vcpu->arch.msr_misc_features_enables = data;
4139 		break;
4140 #ifdef CONFIG_X86_64
4141 	case MSR_IA32_XFD:
4142 		if (!msr_info->host_initiated &&
4143 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4144 			return 1;
4145 
4146 		if (data & ~kvm_guest_supported_xfd(vcpu))
4147 			return 1;
4148 
4149 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4150 		break;
4151 	case MSR_IA32_XFD_ERR:
4152 		if (!msr_info->host_initiated &&
4153 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4154 			return 1;
4155 
4156 		if (data & ~kvm_guest_supported_xfd(vcpu))
4157 			return 1;
4158 
4159 		vcpu->arch.guest_fpu.xfd_err = data;
4160 		break;
4161 #endif
4162 	default:
4163 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4164 			return kvm_pmu_set_msr(vcpu, msr_info);
4165 
4166 		/*
4167 		 * Userspace is allowed to write '0' to MSRs that KVM reports
4168 		 * as to-be-saved, even if an MSRs isn't fully supported.
4169 		 */
4170 		if (msr_info->host_initiated && !data &&
4171 		    kvm_is_msr_to_save(msr))
4172 			break;
4173 
4174 		return KVM_MSR_RET_INVALID;
4175 	}
4176 	return 0;
4177 }
4178 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4179 
4180 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4181 {
4182 	u64 data;
4183 	u64 mcg_cap = vcpu->arch.mcg_cap;
4184 	unsigned bank_num = mcg_cap & 0xff;
4185 	u32 offset, last_msr;
4186 
4187 	switch (msr) {
4188 	case MSR_IA32_P5_MC_ADDR:
4189 	case MSR_IA32_P5_MC_TYPE:
4190 		data = 0;
4191 		break;
4192 	case MSR_IA32_MCG_CAP:
4193 		data = vcpu->arch.mcg_cap;
4194 		break;
4195 	case MSR_IA32_MCG_CTL:
4196 		if (!(mcg_cap & MCG_CTL_P) && !host)
4197 			return 1;
4198 		data = vcpu->arch.mcg_ctl;
4199 		break;
4200 	case MSR_IA32_MCG_STATUS:
4201 		data = vcpu->arch.mcg_status;
4202 		break;
4203 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4204 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4205 		if (msr > last_msr)
4206 			return 1;
4207 
4208 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4209 			return 1;
4210 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4211 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4212 		data = vcpu->arch.mci_ctl2_banks[offset];
4213 		break;
4214 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4215 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4216 		if (msr > last_msr)
4217 			return 1;
4218 
4219 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4220 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4221 		data = vcpu->arch.mce_banks[offset];
4222 		break;
4223 	default:
4224 		return 1;
4225 	}
4226 	*pdata = data;
4227 	return 0;
4228 }
4229 
4230 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4231 {
4232 	switch (msr_info->index) {
4233 	case MSR_IA32_PLATFORM_ID:
4234 	case MSR_IA32_EBL_CR_POWERON:
4235 	case MSR_IA32_LASTBRANCHFROMIP:
4236 	case MSR_IA32_LASTBRANCHTOIP:
4237 	case MSR_IA32_LASTINTFROMIP:
4238 	case MSR_IA32_LASTINTTOIP:
4239 	case MSR_AMD64_SYSCFG:
4240 	case MSR_K8_TSEG_ADDR:
4241 	case MSR_K8_TSEG_MASK:
4242 	case MSR_VM_HSAVE_PA:
4243 	case MSR_K8_INT_PENDING_MSG:
4244 	case MSR_AMD64_NB_CFG:
4245 	case MSR_FAM10H_MMIO_CONF_BASE:
4246 	case MSR_AMD64_BU_CFG2:
4247 	case MSR_IA32_PERF_CTL:
4248 	case MSR_AMD64_DC_CFG:
4249 	case MSR_AMD64_TW_CFG:
4250 	case MSR_F15H_EX_CFG:
4251 	/*
4252 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4253 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4254 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4255 	 * so for existing CPU-specific MSRs.
4256 	 */
4257 	case MSR_RAPL_POWER_UNIT:
4258 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4259 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4260 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4261 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4262 		msr_info->data = 0;
4263 		break;
4264 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4265 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4266 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4267 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4268 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4269 			return kvm_pmu_get_msr(vcpu, msr_info);
4270 		msr_info->data = 0;
4271 		break;
4272 	case MSR_IA32_UCODE_REV:
4273 		msr_info->data = vcpu->arch.microcode_version;
4274 		break;
4275 	case MSR_IA32_ARCH_CAPABILITIES:
4276 		if (!msr_info->host_initiated &&
4277 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4278 			return 1;
4279 		msr_info->data = vcpu->arch.arch_capabilities;
4280 		break;
4281 	case MSR_IA32_PERF_CAPABILITIES:
4282 		if (!msr_info->host_initiated &&
4283 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4284 			return 1;
4285 		msr_info->data = vcpu->arch.perf_capabilities;
4286 		break;
4287 	case MSR_IA32_POWER_CTL:
4288 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4289 		break;
4290 	case MSR_IA32_TSC: {
4291 		/*
4292 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4293 		 * even when not intercepted. AMD manual doesn't explicitly
4294 		 * state this but appears to behave the same.
4295 		 *
4296 		 * On userspace reads and writes, however, we unconditionally
4297 		 * return L1's TSC value to ensure backwards-compatible
4298 		 * behavior for migration.
4299 		 */
4300 		u64 offset, ratio;
4301 
4302 		if (msr_info->host_initiated) {
4303 			offset = vcpu->arch.l1_tsc_offset;
4304 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4305 		} else {
4306 			offset = vcpu->arch.tsc_offset;
4307 			ratio = vcpu->arch.tsc_scaling_ratio;
4308 		}
4309 
4310 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4311 		break;
4312 	}
4313 	case MSR_IA32_CR_PAT:
4314 		msr_info->data = vcpu->arch.pat;
4315 		break;
4316 	case MSR_MTRRcap:
4317 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4318 	case MSR_MTRRdefType:
4319 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4320 	case 0xcd: /* fsb frequency */
4321 		msr_info->data = 3;
4322 		break;
4323 		/*
4324 		 * MSR_EBC_FREQUENCY_ID
4325 		 * Conservative value valid for even the basic CPU models.
4326 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4327 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4328 		 * and 266MHz for model 3, or 4. Set Core Clock
4329 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4330 		 * 31:24) even though these are only valid for CPU
4331 		 * models > 2, however guests may end up dividing or
4332 		 * multiplying by zero otherwise.
4333 		 */
4334 	case MSR_EBC_FREQUENCY_ID:
4335 		msr_info->data = 1 << 24;
4336 		break;
4337 	case MSR_IA32_APICBASE:
4338 		msr_info->data = kvm_get_apic_base(vcpu);
4339 		break;
4340 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4341 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4342 	case MSR_IA32_TSC_DEADLINE:
4343 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4344 		break;
4345 	case MSR_IA32_TSC_ADJUST:
4346 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4347 		break;
4348 	case MSR_IA32_MISC_ENABLE:
4349 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4350 		break;
4351 	case MSR_IA32_SMBASE:
4352 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4353 			return 1;
4354 		msr_info->data = vcpu->arch.smbase;
4355 		break;
4356 	case MSR_SMI_COUNT:
4357 		msr_info->data = vcpu->arch.smi_count;
4358 		break;
4359 	case MSR_IA32_PERF_STATUS:
4360 		/* TSC increment by tick */
4361 		msr_info->data = 1000ULL;
4362 		/* CPU multiplier */
4363 		msr_info->data |= (((uint64_t)4ULL) << 40);
4364 		break;
4365 	case MSR_EFER:
4366 		msr_info->data = vcpu->arch.efer;
4367 		break;
4368 	case MSR_KVM_WALL_CLOCK:
4369 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4370 			return 1;
4371 
4372 		msr_info->data = vcpu->kvm->arch.wall_clock;
4373 		break;
4374 	case MSR_KVM_WALL_CLOCK_NEW:
4375 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4376 			return 1;
4377 
4378 		msr_info->data = vcpu->kvm->arch.wall_clock;
4379 		break;
4380 	case MSR_KVM_SYSTEM_TIME:
4381 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4382 			return 1;
4383 
4384 		msr_info->data = vcpu->arch.time;
4385 		break;
4386 	case MSR_KVM_SYSTEM_TIME_NEW:
4387 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4388 			return 1;
4389 
4390 		msr_info->data = vcpu->arch.time;
4391 		break;
4392 	case MSR_KVM_ASYNC_PF_EN:
4393 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4394 			return 1;
4395 
4396 		msr_info->data = vcpu->arch.apf.msr_en_val;
4397 		break;
4398 	case MSR_KVM_ASYNC_PF_INT:
4399 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4400 			return 1;
4401 
4402 		msr_info->data = vcpu->arch.apf.msr_int_val;
4403 		break;
4404 	case MSR_KVM_ASYNC_PF_ACK:
4405 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4406 			return 1;
4407 
4408 		msr_info->data = 0;
4409 		break;
4410 	case MSR_KVM_STEAL_TIME:
4411 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4412 			return 1;
4413 
4414 		msr_info->data = vcpu->arch.st.msr_val;
4415 		break;
4416 	case MSR_KVM_PV_EOI_EN:
4417 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4418 			return 1;
4419 
4420 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4421 		break;
4422 	case MSR_KVM_POLL_CONTROL:
4423 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4424 			return 1;
4425 
4426 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4427 		break;
4428 	case MSR_IA32_P5_MC_ADDR:
4429 	case MSR_IA32_P5_MC_TYPE:
4430 	case MSR_IA32_MCG_CAP:
4431 	case MSR_IA32_MCG_CTL:
4432 	case MSR_IA32_MCG_STATUS:
4433 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4434 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4435 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4436 				   msr_info->host_initiated);
4437 	case MSR_IA32_XSS:
4438 		if (!msr_info->host_initiated &&
4439 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4440 			return 1;
4441 		msr_info->data = vcpu->arch.ia32_xss;
4442 		break;
4443 	case MSR_K7_CLK_CTL:
4444 		/*
4445 		 * Provide expected ramp-up count for K7. All other
4446 		 * are set to zero, indicating minimum divisors for
4447 		 * every field.
4448 		 *
4449 		 * This prevents guest kernels on AMD host with CPU
4450 		 * type 6, model 8 and higher from exploding due to
4451 		 * the rdmsr failing.
4452 		 */
4453 		msr_info->data = 0x20000000;
4454 		break;
4455 #ifdef CONFIG_KVM_HYPERV
4456 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4457 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4458 	case HV_X64_MSR_SYNDBG_OPTIONS:
4459 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4460 	case HV_X64_MSR_CRASH_CTL:
4461 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4462 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4463 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4464 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4465 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4466 		return kvm_hv_get_msr_common(vcpu,
4467 					     msr_info->index, &msr_info->data,
4468 					     msr_info->host_initiated);
4469 #endif
4470 	case MSR_IA32_BBL_CR_CTL3:
4471 		/* This legacy MSR exists but isn't fully documented in current
4472 		 * silicon.  It is however accessed by winxp in very narrow
4473 		 * scenarios where it sets bit #19, itself documented as
4474 		 * a "reserved" bit.  Best effort attempt to source coherent
4475 		 * read data here should the balance of the register be
4476 		 * interpreted by the guest:
4477 		 *
4478 		 * L2 cache control register 3: 64GB range, 256KB size,
4479 		 * enabled, latency 0x1, configured
4480 		 */
4481 		msr_info->data = 0xbe702111;
4482 		break;
4483 	case MSR_AMD64_OSVW_ID_LENGTH:
4484 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4485 			return 1;
4486 		msr_info->data = vcpu->arch.osvw.length;
4487 		break;
4488 	case MSR_AMD64_OSVW_STATUS:
4489 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4490 			return 1;
4491 		msr_info->data = vcpu->arch.osvw.status;
4492 		break;
4493 	case MSR_PLATFORM_INFO:
4494 		if (!msr_info->host_initiated &&
4495 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4496 			return 1;
4497 		msr_info->data = vcpu->arch.msr_platform_info;
4498 		break;
4499 	case MSR_MISC_FEATURES_ENABLES:
4500 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4501 		break;
4502 	case MSR_K7_HWCR:
4503 		msr_info->data = vcpu->arch.msr_hwcr;
4504 		break;
4505 #ifdef CONFIG_X86_64
4506 	case MSR_IA32_XFD:
4507 		if (!msr_info->host_initiated &&
4508 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4509 			return 1;
4510 
4511 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4512 		break;
4513 	case MSR_IA32_XFD_ERR:
4514 		if (!msr_info->host_initiated &&
4515 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4516 			return 1;
4517 
4518 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4519 		break;
4520 #endif
4521 	default:
4522 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4523 			return kvm_pmu_get_msr(vcpu, msr_info);
4524 
4525 		/*
4526 		 * Userspace is allowed to read MSRs that KVM reports as
4527 		 * to-be-saved, even if an MSR isn't fully supported.
4528 		 */
4529 		if (msr_info->host_initiated &&
4530 		    kvm_is_msr_to_save(msr_info->index)) {
4531 			msr_info->data = 0;
4532 			break;
4533 		}
4534 
4535 		return KVM_MSR_RET_INVALID;
4536 	}
4537 	return 0;
4538 }
4539 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4540 
4541 /*
4542  * Read or write a bunch of msrs. All parameters are kernel addresses.
4543  *
4544  * @return number of msrs set successfully.
4545  */
4546 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4547 		    struct kvm_msr_entry *entries,
4548 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4549 				  unsigned index, u64 *data))
4550 {
4551 	int i;
4552 
4553 	for (i = 0; i < msrs->nmsrs; ++i)
4554 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4555 			break;
4556 
4557 	return i;
4558 }
4559 
4560 /*
4561  * Read or write a bunch of msrs. Parameters are user addresses.
4562  *
4563  * @return number of msrs set successfully.
4564  */
4565 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4566 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4567 				unsigned index, u64 *data),
4568 		  int writeback)
4569 {
4570 	struct kvm_msrs msrs;
4571 	struct kvm_msr_entry *entries;
4572 	unsigned size;
4573 	int r;
4574 
4575 	r = -EFAULT;
4576 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4577 		goto out;
4578 
4579 	r = -E2BIG;
4580 	if (msrs.nmsrs >= MAX_IO_MSRS)
4581 		goto out;
4582 
4583 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4584 	entries = memdup_user(user_msrs->entries, size);
4585 	if (IS_ERR(entries)) {
4586 		r = PTR_ERR(entries);
4587 		goto out;
4588 	}
4589 
4590 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4591 
4592 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4593 		r = -EFAULT;
4594 
4595 	kfree(entries);
4596 out:
4597 	return r;
4598 }
4599 
4600 static inline bool kvm_can_mwait_in_guest(void)
4601 {
4602 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4603 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4604 		boot_cpu_has(X86_FEATURE_ARAT);
4605 }
4606 
4607 #ifdef CONFIG_KVM_HYPERV
4608 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4609 					    struct kvm_cpuid2 __user *cpuid_arg)
4610 {
4611 	struct kvm_cpuid2 cpuid;
4612 	int r;
4613 
4614 	r = -EFAULT;
4615 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4616 		return r;
4617 
4618 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4619 	if (r)
4620 		return r;
4621 
4622 	r = -EFAULT;
4623 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4624 		return r;
4625 
4626 	return 0;
4627 }
4628 #endif
4629 
4630 static bool kvm_is_vm_type_supported(unsigned long type)
4631 {
4632 	return type == KVM_X86_DEFAULT_VM ||
4633 	       (type == KVM_X86_SW_PROTECTED_VM &&
4634 		IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled);
4635 }
4636 
4637 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4638 {
4639 	int r = 0;
4640 
4641 	switch (ext) {
4642 	case KVM_CAP_IRQCHIP:
4643 	case KVM_CAP_HLT:
4644 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4645 	case KVM_CAP_SET_TSS_ADDR:
4646 	case KVM_CAP_EXT_CPUID:
4647 	case KVM_CAP_EXT_EMUL_CPUID:
4648 	case KVM_CAP_CLOCKSOURCE:
4649 	case KVM_CAP_PIT:
4650 	case KVM_CAP_NOP_IO_DELAY:
4651 	case KVM_CAP_MP_STATE:
4652 	case KVM_CAP_SYNC_MMU:
4653 	case KVM_CAP_USER_NMI:
4654 	case KVM_CAP_REINJECT_CONTROL:
4655 	case KVM_CAP_IRQ_INJECT_STATUS:
4656 	case KVM_CAP_IOEVENTFD:
4657 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4658 	case KVM_CAP_PIT2:
4659 	case KVM_CAP_PIT_STATE2:
4660 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4661 	case KVM_CAP_VCPU_EVENTS:
4662 #ifdef CONFIG_KVM_HYPERV
4663 	case KVM_CAP_HYPERV:
4664 	case KVM_CAP_HYPERV_VAPIC:
4665 	case KVM_CAP_HYPERV_SPIN:
4666 	case KVM_CAP_HYPERV_TIME:
4667 	case KVM_CAP_HYPERV_SYNIC:
4668 	case KVM_CAP_HYPERV_SYNIC2:
4669 	case KVM_CAP_HYPERV_VP_INDEX:
4670 	case KVM_CAP_HYPERV_EVENTFD:
4671 	case KVM_CAP_HYPERV_TLBFLUSH:
4672 	case KVM_CAP_HYPERV_SEND_IPI:
4673 	case KVM_CAP_HYPERV_CPUID:
4674 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4675 	case KVM_CAP_SYS_HYPERV_CPUID:
4676 #endif
4677 	case KVM_CAP_PCI_SEGMENT:
4678 	case KVM_CAP_DEBUGREGS:
4679 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4680 	case KVM_CAP_XSAVE:
4681 	case KVM_CAP_ASYNC_PF:
4682 	case KVM_CAP_ASYNC_PF_INT:
4683 	case KVM_CAP_GET_TSC_KHZ:
4684 	case KVM_CAP_KVMCLOCK_CTRL:
4685 	case KVM_CAP_READONLY_MEM:
4686 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4687 	case KVM_CAP_TSC_DEADLINE_TIMER:
4688 	case KVM_CAP_DISABLE_QUIRKS:
4689 	case KVM_CAP_SET_BOOT_CPU_ID:
4690  	case KVM_CAP_SPLIT_IRQCHIP:
4691 	case KVM_CAP_IMMEDIATE_EXIT:
4692 	case KVM_CAP_PMU_EVENT_FILTER:
4693 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4694 	case KVM_CAP_GET_MSR_FEATURES:
4695 	case KVM_CAP_MSR_PLATFORM_INFO:
4696 	case KVM_CAP_EXCEPTION_PAYLOAD:
4697 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4698 	case KVM_CAP_SET_GUEST_DEBUG:
4699 	case KVM_CAP_LAST_CPU:
4700 	case KVM_CAP_X86_USER_SPACE_MSR:
4701 	case KVM_CAP_X86_MSR_FILTER:
4702 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4703 #ifdef CONFIG_X86_SGX_KVM
4704 	case KVM_CAP_SGX_ATTRIBUTE:
4705 #endif
4706 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4707 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4708 	case KVM_CAP_SREGS2:
4709 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4710 	case KVM_CAP_VCPU_ATTRIBUTES:
4711 	case KVM_CAP_SYS_ATTRIBUTES:
4712 	case KVM_CAP_VAPIC:
4713 	case KVM_CAP_ENABLE_CAP:
4714 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4715 	case KVM_CAP_IRQFD_RESAMPLE:
4716 	case KVM_CAP_MEMORY_FAULT_INFO:
4717 		r = 1;
4718 		break;
4719 	case KVM_CAP_EXIT_HYPERCALL:
4720 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4721 		break;
4722 	case KVM_CAP_SET_GUEST_DEBUG2:
4723 		return KVM_GUESTDBG_VALID_MASK;
4724 #ifdef CONFIG_KVM_XEN
4725 	case KVM_CAP_XEN_HVM:
4726 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4727 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4728 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4729 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4730 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4731 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4732 		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4733 		if (sched_info_on())
4734 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4735 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4736 		break;
4737 #endif
4738 	case KVM_CAP_SYNC_REGS:
4739 		r = KVM_SYNC_X86_VALID_FIELDS;
4740 		break;
4741 	case KVM_CAP_ADJUST_CLOCK:
4742 		r = KVM_CLOCK_VALID_FLAGS;
4743 		break;
4744 	case KVM_CAP_X86_DISABLE_EXITS:
4745 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4746 
4747 		if (!mitigate_smt_rsb) {
4748 			r |= KVM_X86_DISABLE_EXITS_HLT |
4749 			     KVM_X86_DISABLE_EXITS_CSTATE;
4750 
4751 			if (kvm_can_mwait_in_guest())
4752 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4753 		}
4754 		break;
4755 	case KVM_CAP_X86_SMM:
4756 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4757 			break;
4758 
4759 		/* SMBASE is usually relocated above 1M on modern chipsets,
4760 		 * and SMM handlers might indeed rely on 4G segment limits,
4761 		 * so do not report SMM to be available if real mode is
4762 		 * emulated via vm86 mode.  Still, do not go to great lengths
4763 		 * to avoid userspace's usage of the feature, because it is a
4764 		 * fringe case that is not enabled except via specific settings
4765 		 * of the module parameters.
4766 		 */
4767 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4768 		break;
4769 	case KVM_CAP_NR_VCPUS:
4770 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4771 		break;
4772 	case KVM_CAP_MAX_VCPUS:
4773 		r = KVM_MAX_VCPUS;
4774 		break;
4775 	case KVM_CAP_MAX_VCPU_ID:
4776 		r = KVM_MAX_VCPU_IDS;
4777 		break;
4778 	case KVM_CAP_PV_MMU:	/* obsolete */
4779 		r = 0;
4780 		break;
4781 	case KVM_CAP_MCE:
4782 		r = KVM_MAX_MCE_BANKS;
4783 		break;
4784 	case KVM_CAP_XCRS:
4785 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4786 		break;
4787 	case KVM_CAP_TSC_CONTROL:
4788 	case KVM_CAP_VM_TSC_CONTROL:
4789 		r = kvm_caps.has_tsc_control;
4790 		break;
4791 	case KVM_CAP_X2APIC_API:
4792 		r = KVM_X2APIC_API_VALID_FLAGS;
4793 		break;
4794 	case KVM_CAP_NESTED_STATE:
4795 		r = kvm_x86_ops.nested_ops->get_state ?
4796 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4797 		break;
4798 #ifdef CONFIG_KVM_HYPERV
4799 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4800 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4801 		break;
4802 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4803 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4804 		break;
4805 #endif
4806 	case KVM_CAP_SMALLER_MAXPHYADDR:
4807 		r = (int) allow_smaller_maxphyaddr;
4808 		break;
4809 	case KVM_CAP_STEAL_TIME:
4810 		r = sched_info_on();
4811 		break;
4812 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4813 		if (kvm_caps.has_bus_lock_exit)
4814 			r = KVM_BUS_LOCK_DETECTION_OFF |
4815 			    KVM_BUS_LOCK_DETECTION_EXIT;
4816 		else
4817 			r = 0;
4818 		break;
4819 	case KVM_CAP_XSAVE2: {
4820 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4821 		if (r < sizeof(struct kvm_xsave))
4822 			r = sizeof(struct kvm_xsave);
4823 		break;
4824 	}
4825 	case KVM_CAP_PMU_CAPABILITY:
4826 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4827 		break;
4828 	case KVM_CAP_DISABLE_QUIRKS2:
4829 		r = KVM_X86_VALID_QUIRKS;
4830 		break;
4831 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4832 		r = kvm_caps.has_notify_vmexit;
4833 		break;
4834 	case KVM_CAP_VM_TYPES:
4835 		r = BIT(KVM_X86_DEFAULT_VM);
4836 		if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4837 			r |= BIT(KVM_X86_SW_PROTECTED_VM);
4838 		break;
4839 	default:
4840 		break;
4841 	}
4842 	return r;
4843 }
4844 
4845 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4846 {
4847 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4848 
4849 	if ((u64)(unsigned long)uaddr != attr->addr)
4850 		return ERR_PTR_USR(-EFAULT);
4851 	return uaddr;
4852 }
4853 
4854 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4855 {
4856 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4857 
4858 	if (attr->group)
4859 		return -ENXIO;
4860 
4861 	if (IS_ERR(uaddr))
4862 		return PTR_ERR(uaddr);
4863 
4864 	switch (attr->attr) {
4865 	case KVM_X86_XCOMP_GUEST_SUPP:
4866 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4867 			return -EFAULT;
4868 		return 0;
4869 	default:
4870 		return -ENXIO;
4871 	}
4872 }
4873 
4874 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4875 {
4876 	if (attr->group)
4877 		return -ENXIO;
4878 
4879 	switch (attr->attr) {
4880 	case KVM_X86_XCOMP_GUEST_SUPP:
4881 		return 0;
4882 	default:
4883 		return -ENXIO;
4884 	}
4885 }
4886 
4887 long kvm_arch_dev_ioctl(struct file *filp,
4888 			unsigned int ioctl, unsigned long arg)
4889 {
4890 	void __user *argp = (void __user *)arg;
4891 	long r;
4892 
4893 	switch (ioctl) {
4894 	case KVM_GET_MSR_INDEX_LIST: {
4895 		struct kvm_msr_list __user *user_msr_list = argp;
4896 		struct kvm_msr_list msr_list;
4897 		unsigned n;
4898 
4899 		r = -EFAULT;
4900 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4901 			goto out;
4902 		n = msr_list.nmsrs;
4903 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4904 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4905 			goto out;
4906 		r = -E2BIG;
4907 		if (n < msr_list.nmsrs)
4908 			goto out;
4909 		r = -EFAULT;
4910 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4911 				 num_msrs_to_save * sizeof(u32)))
4912 			goto out;
4913 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4914 				 &emulated_msrs,
4915 				 num_emulated_msrs * sizeof(u32)))
4916 			goto out;
4917 		r = 0;
4918 		break;
4919 	}
4920 	case KVM_GET_SUPPORTED_CPUID:
4921 	case KVM_GET_EMULATED_CPUID: {
4922 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4923 		struct kvm_cpuid2 cpuid;
4924 
4925 		r = -EFAULT;
4926 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4927 			goto out;
4928 
4929 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4930 					    ioctl);
4931 		if (r)
4932 			goto out;
4933 
4934 		r = -EFAULT;
4935 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4936 			goto out;
4937 		r = 0;
4938 		break;
4939 	}
4940 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4941 		r = -EFAULT;
4942 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4943 				 sizeof(kvm_caps.supported_mce_cap)))
4944 			goto out;
4945 		r = 0;
4946 		break;
4947 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4948 		struct kvm_msr_list __user *user_msr_list = argp;
4949 		struct kvm_msr_list msr_list;
4950 		unsigned int n;
4951 
4952 		r = -EFAULT;
4953 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4954 			goto out;
4955 		n = msr_list.nmsrs;
4956 		msr_list.nmsrs = num_msr_based_features;
4957 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4958 			goto out;
4959 		r = -E2BIG;
4960 		if (n < msr_list.nmsrs)
4961 			goto out;
4962 		r = -EFAULT;
4963 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4964 				 num_msr_based_features * sizeof(u32)))
4965 			goto out;
4966 		r = 0;
4967 		break;
4968 	}
4969 	case KVM_GET_MSRS:
4970 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4971 		break;
4972 #ifdef CONFIG_KVM_HYPERV
4973 	case KVM_GET_SUPPORTED_HV_CPUID:
4974 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4975 		break;
4976 #endif
4977 	case KVM_GET_DEVICE_ATTR: {
4978 		struct kvm_device_attr attr;
4979 		r = -EFAULT;
4980 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4981 			break;
4982 		r = kvm_x86_dev_get_attr(&attr);
4983 		break;
4984 	}
4985 	case KVM_HAS_DEVICE_ATTR: {
4986 		struct kvm_device_attr attr;
4987 		r = -EFAULT;
4988 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4989 			break;
4990 		r = kvm_x86_dev_has_attr(&attr);
4991 		break;
4992 	}
4993 	default:
4994 		r = -EINVAL;
4995 		break;
4996 	}
4997 out:
4998 	return r;
4999 }
5000 
5001 static void wbinvd_ipi(void *garbage)
5002 {
5003 	wbinvd();
5004 }
5005 
5006 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
5007 {
5008 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
5009 }
5010 
5011 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5012 {
5013 	/* Address WBINVD may be executed by guest */
5014 	if (need_emulate_wbinvd(vcpu)) {
5015 		if (static_call(kvm_x86_has_wbinvd_exit)())
5016 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5017 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5018 			smp_call_function_single(vcpu->cpu,
5019 					wbinvd_ipi, NULL, 1);
5020 	}
5021 
5022 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
5023 
5024 	/* Save host pkru register if supported */
5025 	vcpu->arch.host_pkru = read_pkru();
5026 
5027 	/* Apply any externally detected TSC adjustments (due to suspend) */
5028 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5029 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5030 		vcpu->arch.tsc_offset_adjustment = 0;
5031 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5032 	}
5033 
5034 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5035 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5036 				rdtsc() - vcpu->arch.last_host_tsc;
5037 		if (tsc_delta < 0)
5038 			mark_tsc_unstable("KVM discovered backwards TSC");
5039 
5040 		if (kvm_check_tsc_unstable()) {
5041 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5042 						vcpu->arch.last_guest_tsc);
5043 			kvm_vcpu_write_tsc_offset(vcpu, offset);
5044 			vcpu->arch.tsc_catchup = 1;
5045 		}
5046 
5047 		if (kvm_lapic_hv_timer_in_use(vcpu))
5048 			kvm_lapic_restart_hv_timer(vcpu);
5049 
5050 		/*
5051 		 * On a host with synchronized TSC, there is no need to update
5052 		 * kvmclock on vcpu->cpu migration
5053 		 */
5054 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5055 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5056 		if (vcpu->cpu != cpu)
5057 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5058 		vcpu->cpu = cpu;
5059 	}
5060 
5061 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5062 }
5063 
5064 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5065 {
5066 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5067 	struct kvm_steal_time __user *st;
5068 	struct kvm_memslots *slots;
5069 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5070 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5071 
5072 	/*
5073 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5074 	 * an instruction boundary and will not trigger guest emulation of any
5075 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5076 	 * when this is true, for example allowing the vCPU to be marked
5077 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5078 	 */
5079 	if (!vcpu->arch.at_instruction_boundary) {
5080 		vcpu->stat.preemption_other++;
5081 		return;
5082 	}
5083 
5084 	vcpu->stat.preemption_reported++;
5085 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5086 		return;
5087 
5088 	if (vcpu->arch.st.preempted)
5089 		return;
5090 
5091 	/* This happens on process exit */
5092 	if (unlikely(current->mm != vcpu->kvm->mm))
5093 		return;
5094 
5095 	slots = kvm_memslots(vcpu->kvm);
5096 
5097 	if (unlikely(slots->generation != ghc->generation ||
5098 		     gpa != ghc->gpa ||
5099 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5100 		return;
5101 
5102 	st = (struct kvm_steal_time __user *)ghc->hva;
5103 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5104 
5105 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5106 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5107 
5108 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5109 }
5110 
5111 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5112 {
5113 	int idx;
5114 
5115 	if (vcpu->preempted) {
5116 		vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu);
5117 
5118 		/*
5119 		 * Take the srcu lock as memslots will be accessed to check the gfn
5120 		 * cache generation against the memslots generation.
5121 		 */
5122 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5123 		if (kvm_xen_msr_enabled(vcpu->kvm))
5124 			kvm_xen_runstate_set_preempted(vcpu);
5125 		else
5126 			kvm_steal_time_set_preempted(vcpu);
5127 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5128 	}
5129 
5130 	static_call(kvm_x86_vcpu_put)(vcpu);
5131 	vcpu->arch.last_host_tsc = rdtsc();
5132 }
5133 
5134 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5135 				    struct kvm_lapic_state *s)
5136 {
5137 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5138 
5139 	return kvm_apic_get_state(vcpu, s);
5140 }
5141 
5142 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5143 				    struct kvm_lapic_state *s)
5144 {
5145 	int r;
5146 
5147 	r = kvm_apic_set_state(vcpu, s);
5148 	if (r)
5149 		return r;
5150 	update_cr8_intercept(vcpu);
5151 
5152 	return 0;
5153 }
5154 
5155 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5156 {
5157 	/*
5158 	 * We can accept userspace's request for interrupt injection
5159 	 * as long as we have a place to store the interrupt number.
5160 	 * The actual injection will happen when the CPU is able to
5161 	 * deliver the interrupt.
5162 	 */
5163 	if (kvm_cpu_has_extint(vcpu))
5164 		return false;
5165 
5166 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5167 	return (!lapic_in_kernel(vcpu) ||
5168 		kvm_apic_accept_pic_intr(vcpu));
5169 }
5170 
5171 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5172 {
5173 	/*
5174 	 * Do not cause an interrupt window exit if an exception
5175 	 * is pending or an event needs reinjection; userspace
5176 	 * might want to inject the interrupt manually using KVM_SET_REGS
5177 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5178 	 * instruction boundary and with no events half-injected.
5179 	 */
5180 	return (kvm_arch_interrupt_allowed(vcpu) &&
5181 		kvm_cpu_accept_dm_intr(vcpu) &&
5182 		!kvm_event_needs_reinjection(vcpu) &&
5183 		!kvm_is_exception_pending(vcpu));
5184 }
5185 
5186 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5187 				    struct kvm_interrupt *irq)
5188 {
5189 	if (irq->irq >= KVM_NR_INTERRUPTS)
5190 		return -EINVAL;
5191 
5192 	if (!irqchip_in_kernel(vcpu->kvm)) {
5193 		kvm_queue_interrupt(vcpu, irq->irq, false);
5194 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5195 		return 0;
5196 	}
5197 
5198 	/*
5199 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5200 	 * fail for in-kernel 8259.
5201 	 */
5202 	if (pic_in_kernel(vcpu->kvm))
5203 		return -ENXIO;
5204 
5205 	if (vcpu->arch.pending_external_vector != -1)
5206 		return -EEXIST;
5207 
5208 	vcpu->arch.pending_external_vector = irq->irq;
5209 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5210 	return 0;
5211 }
5212 
5213 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5214 {
5215 	kvm_inject_nmi(vcpu);
5216 
5217 	return 0;
5218 }
5219 
5220 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5221 					   struct kvm_tpr_access_ctl *tac)
5222 {
5223 	if (tac->flags)
5224 		return -EINVAL;
5225 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5226 	return 0;
5227 }
5228 
5229 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5230 					u64 mcg_cap)
5231 {
5232 	int r;
5233 	unsigned bank_num = mcg_cap & 0xff, bank;
5234 
5235 	r = -EINVAL;
5236 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5237 		goto out;
5238 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5239 		goto out;
5240 	r = 0;
5241 	vcpu->arch.mcg_cap = mcg_cap;
5242 	/* Init IA32_MCG_CTL to all 1s */
5243 	if (mcg_cap & MCG_CTL_P)
5244 		vcpu->arch.mcg_ctl = ~(u64)0;
5245 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5246 	for (bank = 0; bank < bank_num; bank++) {
5247 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5248 		if (mcg_cap & MCG_CMCI_P)
5249 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5250 	}
5251 
5252 	kvm_apic_after_set_mcg_cap(vcpu);
5253 
5254 	static_call(kvm_x86_setup_mce)(vcpu);
5255 out:
5256 	return r;
5257 }
5258 
5259 /*
5260  * Validate this is an UCNA (uncorrectable no action) error by checking the
5261  * MCG_STATUS and MCi_STATUS registers:
5262  * - none of the bits for Machine Check Exceptions are set
5263  * - both the VAL (valid) and UC (uncorrectable) bits are set
5264  * MCI_STATUS_PCC - Processor Context Corrupted
5265  * MCI_STATUS_S - Signaled as a Machine Check Exception
5266  * MCI_STATUS_AR - Software recoverable Action Required
5267  */
5268 static bool is_ucna(struct kvm_x86_mce *mce)
5269 {
5270 	return	!mce->mcg_status &&
5271 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5272 		(mce->status & MCI_STATUS_VAL) &&
5273 		(mce->status & MCI_STATUS_UC);
5274 }
5275 
5276 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5277 {
5278 	u64 mcg_cap = vcpu->arch.mcg_cap;
5279 
5280 	banks[1] = mce->status;
5281 	banks[2] = mce->addr;
5282 	banks[3] = mce->misc;
5283 	vcpu->arch.mcg_status = mce->mcg_status;
5284 
5285 	if (!(mcg_cap & MCG_CMCI_P) ||
5286 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5287 		return 0;
5288 
5289 	if (lapic_in_kernel(vcpu))
5290 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5291 
5292 	return 0;
5293 }
5294 
5295 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5296 				      struct kvm_x86_mce *mce)
5297 {
5298 	u64 mcg_cap = vcpu->arch.mcg_cap;
5299 	unsigned bank_num = mcg_cap & 0xff;
5300 	u64 *banks = vcpu->arch.mce_banks;
5301 
5302 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5303 		return -EINVAL;
5304 
5305 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5306 
5307 	if (is_ucna(mce))
5308 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5309 
5310 	/*
5311 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5312 	 * reporting is disabled
5313 	 */
5314 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5315 	    vcpu->arch.mcg_ctl != ~(u64)0)
5316 		return 0;
5317 	/*
5318 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5319 	 * reporting is disabled for the bank
5320 	 */
5321 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5322 		return 0;
5323 	if (mce->status & MCI_STATUS_UC) {
5324 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5325 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5326 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5327 			return 0;
5328 		}
5329 		if (banks[1] & MCI_STATUS_VAL)
5330 			mce->status |= MCI_STATUS_OVER;
5331 		banks[2] = mce->addr;
5332 		banks[3] = mce->misc;
5333 		vcpu->arch.mcg_status = mce->mcg_status;
5334 		banks[1] = mce->status;
5335 		kvm_queue_exception(vcpu, MC_VECTOR);
5336 	} else if (!(banks[1] & MCI_STATUS_VAL)
5337 		   || !(banks[1] & MCI_STATUS_UC)) {
5338 		if (banks[1] & MCI_STATUS_VAL)
5339 			mce->status |= MCI_STATUS_OVER;
5340 		banks[2] = mce->addr;
5341 		banks[3] = mce->misc;
5342 		banks[1] = mce->status;
5343 	} else
5344 		banks[1] |= MCI_STATUS_OVER;
5345 	return 0;
5346 }
5347 
5348 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5349 					       struct kvm_vcpu_events *events)
5350 {
5351 	struct kvm_queued_exception *ex;
5352 
5353 	process_nmi(vcpu);
5354 
5355 #ifdef CONFIG_KVM_SMM
5356 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5357 		process_smi(vcpu);
5358 #endif
5359 
5360 	/*
5361 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5362 	 * the only time there can be two queued exceptions is if there's a
5363 	 * non-exiting _injected_ exception, and a pending exiting exception.
5364 	 * In that case, ignore the VM-Exiting exception as it's an extension
5365 	 * of the injected exception.
5366 	 */
5367 	if (vcpu->arch.exception_vmexit.pending &&
5368 	    !vcpu->arch.exception.pending &&
5369 	    !vcpu->arch.exception.injected)
5370 		ex = &vcpu->arch.exception_vmexit;
5371 	else
5372 		ex = &vcpu->arch.exception;
5373 
5374 	/*
5375 	 * In guest mode, payload delivery should be deferred if the exception
5376 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5377 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5378 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5379 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5380 	 * the payload if the capability hasn't been requested.
5381 	 */
5382 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5383 	    ex->pending && ex->has_payload)
5384 		kvm_deliver_exception_payload(vcpu, ex);
5385 
5386 	memset(events, 0, sizeof(*events));
5387 
5388 	/*
5389 	 * The API doesn't provide the instruction length for software
5390 	 * exceptions, so don't report them. As long as the guest RIP
5391 	 * isn't advanced, we should expect to encounter the exception
5392 	 * again.
5393 	 */
5394 	if (!kvm_exception_is_soft(ex->vector)) {
5395 		events->exception.injected = ex->injected;
5396 		events->exception.pending = ex->pending;
5397 		/*
5398 		 * For ABI compatibility, deliberately conflate
5399 		 * pending and injected exceptions when
5400 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5401 		 */
5402 		if (!vcpu->kvm->arch.exception_payload_enabled)
5403 			events->exception.injected |= ex->pending;
5404 	}
5405 	events->exception.nr = ex->vector;
5406 	events->exception.has_error_code = ex->has_error_code;
5407 	events->exception.error_code = ex->error_code;
5408 	events->exception_has_payload = ex->has_payload;
5409 	events->exception_payload = ex->payload;
5410 
5411 	events->interrupt.injected =
5412 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5413 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5414 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5415 
5416 	events->nmi.injected = vcpu->arch.nmi_injected;
5417 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5418 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5419 
5420 	/* events->sipi_vector is never valid when reporting to user space */
5421 
5422 #ifdef CONFIG_KVM_SMM
5423 	events->smi.smm = is_smm(vcpu);
5424 	events->smi.pending = vcpu->arch.smi_pending;
5425 	events->smi.smm_inside_nmi =
5426 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5427 #endif
5428 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5429 
5430 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5431 			 | KVM_VCPUEVENT_VALID_SHADOW
5432 			 | KVM_VCPUEVENT_VALID_SMM);
5433 	if (vcpu->kvm->arch.exception_payload_enabled)
5434 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5435 	if (vcpu->kvm->arch.triple_fault_event) {
5436 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5437 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5438 	}
5439 }
5440 
5441 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5442 					      struct kvm_vcpu_events *events)
5443 {
5444 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5445 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5446 			      | KVM_VCPUEVENT_VALID_SHADOW
5447 			      | KVM_VCPUEVENT_VALID_SMM
5448 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5449 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5450 		return -EINVAL;
5451 
5452 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5453 		if (!vcpu->kvm->arch.exception_payload_enabled)
5454 			return -EINVAL;
5455 		if (events->exception.pending)
5456 			events->exception.injected = 0;
5457 		else
5458 			events->exception_has_payload = 0;
5459 	} else {
5460 		events->exception.pending = 0;
5461 		events->exception_has_payload = 0;
5462 	}
5463 
5464 	if ((events->exception.injected || events->exception.pending) &&
5465 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5466 		return -EINVAL;
5467 
5468 	/* INITs are latched while in SMM */
5469 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5470 	    (events->smi.smm || events->smi.pending) &&
5471 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5472 		return -EINVAL;
5473 
5474 	process_nmi(vcpu);
5475 
5476 	/*
5477 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5478 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5479 	 * pending exceptions, already-injected exceptions are not subject to
5480 	 * intercpetion.  Note, userspace that conflates pending and injected
5481 	 * is hosed, and will incorrectly convert an injected exception into a
5482 	 * pending exception, which in turn may cause a spurious VM-Exit.
5483 	 */
5484 	vcpu->arch.exception_from_userspace = events->exception.pending;
5485 
5486 	vcpu->arch.exception_vmexit.pending = false;
5487 
5488 	vcpu->arch.exception.injected = events->exception.injected;
5489 	vcpu->arch.exception.pending = events->exception.pending;
5490 	vcpu->arch.exception.vector = events->exception.nr;
5491 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5492 	vcpu->arch.exception.error_code = events->exception.error_code;
5493 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5494 	vcpu->arch.exception.payload = events->exception_payload;
5495 
5496 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5497 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5498 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5499 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5500 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5501 						events->interrupt.shadow);
5502 
5503 	vcpu->arch.nmi_injected = events->nmi.injected;
5504 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5505 		vcpu->arch.nmi_pending = 0;
5506 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5507 		if (events->nmi.pending)
5508 			kvm_make_request(KVM_REQ_NMI, vcpu);
5509 	}
5510 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5511 
5512 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5513 	    lapic_in_kernel(vcpu))
5514 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5515 
5516 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5517 #ifdef CONFIG_KVM_SMM
5518 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5519 			kvm_leave_nested(vcpu);
5520 			kvm_smm_changed(vcpu, events->smi.smm);
5521 		}
5522 
5523 		vcpu->arch.smi_pending = events->smi.pending;
5524 
5525 		if (events->smi.smm) {
5526 			if (events->smi.smm_inside_nmi)
5527 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5528 			else
5529 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5530 		}
5531 
5532 #else
5533 		if (events->smi.smm || events->smi.pending ||
5534 		    events->smi.smm_inside_nmi)
5535 			return -EINVAL;
5536 #endif
5537 
5538 		if (lapic_in_kernel(vcpu)) {
5539 			if (events->smi.latched_init)
5540 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5541 			else
5542 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5543 		}
5544 	}
5545 
5546 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5547 		if (!vcpu->kvm->arch.triple_fault_event)
5548 			return -EINVAL;
5549 		if (events->triple_fault.pending)
5550 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5551 		else
5552 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5553 	}
5554 
5555 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5556 
5557 	return 0;
5558 }
5559 
5560 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5561 					     struct kvm_debugregs *dbgregs)
5562 {
5563 	unsigned int i;
5564 
5565 	memset(dbgregs, 0, sizeof(*dbgregs));
5566 
5567 	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5568 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5569 		dbgregs->db[i] = vcpu->arch.db[i];
5570 
5571 	dbgregs->dr6 = vcpu->arch.dr6;
5572 	dbgregs->dr7 = vcpu->arch.dr7;
5573 }
5574 
5575 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5576 					    struct kvm_debugregs *dbgregs)
5577 {
5578 	unsigned int i;
5579 
5580 	if (dbgregs->flags)
5581 		return -EINVAL;
5582 
5583 	if (!kvm_dr6_valid(dbgregs->dr6))
5584 		return -EINVAL;
5585 	if (!kvm_dr7_valid(dbgregs->dr7))
5586 		return -EINVAL;
5587 
5588 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5589 		vcpu->arch.db[i] = dbgregs->db[i];
5590 
5591 	kvm_update_dr0123(vcpu);
5592 	vcpu->arch.dr6 = dbgregs->dr6;
5593 	vcpu->arch.dr7 = dbgregs->dr7;
5594 	kvm_update_dr7(vcpu);
5595 
5596 	return 0;
5597 }
5598 
5599 
5600 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5601 					  u8 *state, unsigned int size)
5602 {
5603 	/*
5604 	 * Only copy state for features that are enabled for the guest.  The
5605 	 * state itself isn't problematic, but setting bits in the header for
5606 	 * features that are supported in *this* host but not exposed to the
5607 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5608 	 * compatible host without the features that are NOT exposed to the
5609 	 * guest.
5610 	 *
5611 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5612 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5613 	 * supported by the host.
5614 	 */
5615 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5616 			     XFEATURE_MASK_FPSSE;
5617 
5618 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5619 		return;
5620 
5621 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5622 				       supported_xcr0, vcpu->arch.pkru);
5623 }
5624 
5625 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5626 					 struct kvm_xsave *guest_xsave)
5627 {
5628 	kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5629 				      sizeof(guest_xsave->region));
5630 }
5631 
5632 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5633 					struct kvm_xsave *guest_xsave)
5634 {
5635 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5636 		return 0;
5637 
5638 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5639 					      guest_xsave->region,
5640 					      kvm_caps.supported_xcr0,
5641 					      &vcpu->arch.pkru);
5642 }
5643 
5644 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5645 					struct kvm_xcrs *guest_xcrs)
5646 {
5647 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5648 		guest_xcrs->nr_xcrs = 0;
5649 		return;
5650 	}
5651 
5652 	guest_xcrs->nr_xcrs = 1;
5653 	guest_xcrs->flags = 0;
5654 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5655 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5656 }
5657 
5658 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5659 				       struct kvm_xcrs *guest_xcrs)
5660 {
5661 	int i, r = 0;
5662 
5663 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5664 		return -EINVAL;
5665 
5666 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5667 		return -EINVAL;
5668 
5669 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5670 		/* Only support XCR0 currently */
5671 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5672 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5673 				guest_xcrs->xcrs[i].value);
5674 			break;
5675 		}
5676 	if (r)
5677 		r = -EINVAL;
5678 	return r;
5679 }
5680 
5681 /*
5682  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5683  * stopped by the hypervisor.  This function will be called from the host only.
5684  * EINVAL is returned when the host attempts to set the flag for a guest that
5685  * does not support pv clocks.
5686  */
5687 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5688 {
5689 	if (!vcpu->arch.pv_time.active)
5690 		return -EINVAL;
5691 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5692 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5693 	return 0;
5694 }
5695 
5696 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5697 				 struct kvm_device_attr *attr)
5698 {
5699 	int r;
5700 
5701 	switch (attr->attr) {
5702 	case KVM_VCPU_TSC_OFFSET:
5703 		r = 0;
5704 		break;
5705 	default:
5706 		r = -ENXIO;
5707 	}
5708 
5709 	return r;
5710 }
5711 
5712 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5713 				 struct kvm_device_attr *attr)
5714 {
5715 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5716 	int r;
5717 
5718 	if (IS_ERR(uaddr))
5719 		return PTR_ERR(uaddr);
5720 
5721 	switch (attr->attr) {
5722 	case KVM_VCPU_TSC_OFFSET:
5723 		r = -EFAULT;
5724 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5725 			break;
5726 		r = 0;
5727 		break;
5728 	default:
5729 		r = -ENXIO;
5730 	}
5731 
5732 	return r;
5733 }
5734 
5735 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5736 				 struct kvm_device_attr *attr)
5737 {
5738 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5739 	struct kvm *kvm = vcpu->kvm;
5740 	int r;
5741 
5742 	if (IS_ERR(uaddr))
5743 		return PTR_ERR(uaddr);
5744 
5745 	switch (attr->attr) {
5746 	case KVM_VCPU_TSC_OFFSET: {
5747 		u64 offset, tsc, ns;
5748 		unsigned long flags;
5749 		bool matched;
5750 
5751 		r = -EFAULT;
5752 		if (get_user(offset, uaddr))
5753 			break;
5754 
5755 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5756 
5757 		matched = (vcpu->arch.virtual_tsc_khz &&
5758 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5759 			   kvm->arch.last_tsc_offset == offset);
5760 
5761 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5762 		ns = get_kvmclock_base_ns();
5763 
5764 		kvm->arch.user_set_tsc = true;
5765 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5766 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5767 
5768 		r = 0;
5769 		break;
5770 	}
5771 	default:
5772 		r = -ENXIO;
5773 	}
5774 
5775 	return r;
5776 }
5777 
5778 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5779 				      unsigned int ioctl,
5780 				      void __user *argp)
5781 {
5782 	struct kvm_device_attr attr;
5783 	int r;
5784 
5785 	if (copy_from_user(&attr, argp, sizeof(attr)))
5786 		return -EFAULT;
5787 
5788 	if (attr.group != KVM_VCPU_TSC_CTRL)
5789 		return -ENXIO;
5790 
5791 	switch (ioctl) {
5792 	case KVM_HAS_DEVICE_ATTR:
5793 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5794 		break;
5795 	case KVM_GET_DEVICE_ATTR:
5796 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5797 		break;
5798 	case KVM_SET_DEVICE_ATTR:
5799 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5800 		break;
5801 	}
5802 
5803 	return r;
5804 }
5805 
5806 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5807 				     struct kvm_enable_cap *cap)
5808 {
5809 	if (cap->flags)
5810 		return -EINVAL;
5811 
5812 	switch (cap->cap) {
5813 #ifdef CONFIG_KVM_HYPERV
5814 	case KVM_CAP_HYPERV_SYNIC2:
5815 		if (cap->args[0])
5816 			return -EINVAL;
5817 		fallthrough;
5818 
5819 	case KVM_CAP_HYPERV_SYNIC:
5820 		if (!irqchip_in_kernel(vcpu->kvm))
5821 			return -EINVAL;
5822 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5823 					     KVM_CAP_HYPERV_SYNIC2);
5824 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5825 		{
5826 			int r;
5827 			uint16_t vmcs_version;
5828 			void __user *user_ptr;
5829 
5830 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5831 				return -ENOTTY;
5832 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5833 			if (!r) {
5834 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5835 				if (copy_to_user(user_ptr, &vmcs_version,
5836 						 sizeof(vmcs_version)))
5837 					r = -EFAULT;
5838 			}
5839 			return r;
5840 		}
5841 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5842 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5843 			return -ENOTTY;
5844 
5845 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5846 
5847 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5848 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5849 #endif
5850 
5851 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5852 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5853 		if (vcpu->arch.pv_cpuid.enforce)
5854 			kvm_update_pv_runtime(vcpu);
5855 
5856 		return 0;
5857 	default:
5858 		return -EINVAL;
5859 	}
5860 }
5861 
5862 long kvm_arch_vcpu_ioctl(struct file *filp,
5863 			 unsigned int ioctl, unsigned long arg)
5864 {
5865 	struct kvm_vcpu *vcpu = filp->private_data;
5866 	void __user *argp = (void __user *)arg;
5867 	int r;
5868 	union {
5869 		struct kvm_sregs2 *sregs2;
5870 		struct kvm_lapic_state *lapic;
5871 		struct kvm_xsave *xsave;
5872 		struct kvm_xcrs *xcrs;
5873 		void *buffer;
5874 	} u;
5875 
5876 	vcpu_load(vcpu);
5877 
5878 	u.buffer = NULL;
5879 	switch (ioctl) {
5880 	case KVM_GET_LAPIC: {
5881 		r = -EINVAL;
5882 		if (!lapic_in_kernel(vcpu))
5883 			goto out;
5884 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5885 				GFP_KERNEL_ACCOUNT);
5886 
5887 		r = -ENOMEM;
5888 		if (!u.lapic)
5889 			goto out;
5890 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5891 		if (r)
5892 			goto out;
5893 		r = -EFAULT;
5894 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5895 			goto out;
5896 		r = 0;
5897 		break;
5898 	}
5899 	case KVM_SET_LAPIC: {
5900 		r = -EINVAL;
5901 		if (!lapic_in_kernel(vcpu))
5902 			goto out;
5903 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5904 		if (IS_ERR(u.lapic)) {
5905 			r = PTR_ERR(u.lapic);
5906 			goto out_nofree;
5907 		}
5908 
5909 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5910 		break;
5911 	}
5912 	case KVM_INTERRUPT: {
5913 		struct kvm_interrupt irq;
5914 
5915 		r = -EFAULT;
5916 		if (copy_from_user(&irq, argp, sizeof(irq)))
5917 			goto out;
5918 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5919 		break;
5920 	}
5921 	case KVM_NMI: {
5922 		r = kvm_vcpu_ioctl_nmi(vcpu);
5923 		break;
5924 	}
5925 	case KVM_SMI: {
5926 		r = kvm_inject_smi(vcpu);
5927 		break;
5928 	}
5929 	case KVM_SET_CPUID: {
5930 		struct kvm_cpuid __user *cpuid_arg = argp;
5931 		struct kvm_cpuid cpuid;
5932 
5933 		r = -EFAULT;
5934 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5935 			goto out;
5936 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5937 		break;
5938 	}
5939 	case KVM_SET_CPUID2: {
5940 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5941 		struct kvm_cpuid2 cpuid;
5942 
5943 		r = -EFAULT;
5944 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5945 			goto out;
5946 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5947 					      cpuid_arg->entries);
5948 		break;
5949 	}
5950 	case KVM_GET_CPUID2: {
5951 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5952 		struct kvm_cpuid2 cpuid;
5953 
5954 		r = -EFAULT;
5955 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5956 			goto out;
5957 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5958 					      cpuid_arg->entries);
5959 		if (r)
5960 			goto out;
5961 		r = -EFAULT;
5962 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5963 			goto out;
5964 		r = 0;
5965 		break;
5966 	}
5967 	case KVM_GET_MSRS: {
5968 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5969 		r = msr_io(vcpu, argp, do_get_msr, 1);
5970 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5971 		break;
5972 	}
5973 	case KVM_SET_MSRS: {
5974 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5975 		r = msr_io(vcpu, argp, do_set_msr, 0);
5976 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5977 		break;
5978 	}
5979 	case KVM_TPR_ACCESS_REPORTING: {
5980 		struct kvm_tpr_access_ctl tac;
5981 
5982 		r = -EFAULT;
5983 		if (copy_from_user(&tac, argp, sizeof(tac)))
5984 			goto out;
5985 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5986 		if (r)
5987 			goto out;
5988 		r = -EFAULT;
5989 		if (copy_to_user(argp, &tac, sizeof(tac)))
5990 			goto out;
5991 		r = 0;
5992 		break;
5993 	};
5994 	case KVM_SET_VAPIC_ADDR: {
5995 		struct kvm_vapic_addr va;
5996 		int idx;
5997 
5998 		r = -EINVAL;
5999 		if (!lapic_in_kernel(vcpu))
6000 			goto out;
6001 		r = -EFAULT;
6002 		if (copy_from_user(&va, argp, sizeof(va)))
6003 			goto out;
6004 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6005 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6006 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6007 		break;
6008 	}
6009 	case KVM_X86_SETUP_MCE: {
6010 		u64 mcg_cap;
6011 
6012 		r = -EFAULT;
6013 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6014 			goto out;
6015 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6016 		break;
6017 	}
6018 	case KVM_X86_SET_MCE: {
6019 		struct kvm_x86_mce mce;
6020 
6021 		r = -EFAULT;
6022 		if (copy_from_user(&mce, argp, sizeof(mce)))
6023 			goto out;
6024 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6025 		break;
6026 	}
6027 	case KVM_GET_VCPU_EVENTS: {
6028 		struct kvm_vcpu_events events;
6029 
6030 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6031 
6032 		r = -EFAULT;
6033 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6034 			break;
6035 		r = 0;
6036 		break;
6037 	}
6038 	case KVM_SET_VCPU_EVENTS: {
6039 		struct kvm_vcpu_events events;
6040 
6041 		r = -EFAULT;
6042 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6043 			break;
6044 
6045 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6046 		break;
6047 	}
6048 	case KVM_GET_DEBUGREGS: {
6049 		struct kvm_debugregs dbgregs;
6050 
6051 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6052 
6053 		r = -EFAULT;
6054 		if (copy_to_user(argp, &dbgregs,
6055 				 sizeof(struct kvm_debugregs)))
6056 			break;
6057 		r = 0;
6058 		break;
6059 	}
6060 	case KVM_SET_DEBUGREGS: {
6061 		struct kvm_debugregs dbgregs;
6062 
6063 		r = -EFAULT;
6064 		if (copy_from_user(&dbgregs, argp,
6065 				   sizeof(struct kvm_debugregs)))
6066 			break;
6067 
6068 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6069 		break;
6070 	}
6071 	case KVM_GET_XSAVE: {
6072 		r = -EINVAL;
6073 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6074 			break;
6075 
6076 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6077 		r = -ENOMEM;
6078 		if (!u.xsave)
6079 			break;
6080 
6081 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6082 
6083 		r = -EFAULT;
6084 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6085 			break;
6086 		r = 0;
6087 		break;
6088 	}
6089 	case KVM_SET_XSAVE: {
6090 		int size = vcpu->arch.guest_fpu.uabi_size;
6091 
6092 		u.xsave = memdup_user(argp, size);
6093 		if (IS_ERR(u.xsave)) {
6094 			r = PTR_ERR(u.xsave);
6095 			goto out_nofree;
6096 		}
6097 
6098 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6099 		break;
6100 	}
6101 
6102 	case KVM_GET_XSAVE2: {
6103 		int size = vcpu->arch.guest_fpu.uabi_size;
6104 
6105 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6106 		r = -ENOMEM;
6107 		if (!u.xsave)
6108 			break;
6109 
6110 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6111 
6112 		r = -EFAULT;
6113 		if (copy_to_user(argp, u.xsave, size))
6114 			break;
6115 
6116 		r = 0;
6117 		break;
6118 	}
6119 
6120 	case KVM_GET_XCRS: {
6121 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6122 		r = -ENOMEM;
6123 		if (!u.xcrs)
6124 			break;
6125 
6126 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6127 
6128 		r = -EFAULT;
6129 		if (copy_to_user(argp, u.xcrs,
6130 				 sizeof(struct kvm_xcrs)))
6131 			break;
6132 		r = 0;
6133 		break;
6134 	}
6135 	case KVM_SET_XCRS: {
6136 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6137 		if (IS_ERR(u.xcrs)) {
6138 			r = PTR_ERR(u.xcrs);
6139 			goto out_nofree;
6140 		}
6141 
6142 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6143 		break;
6144 	}
6145 	case KVM_SET_TSC_KHZ: {
6146 		u32 user_tsc_khz;
6147 
6148 		r = -EINVAL;
6149 		user_tsc_khz = (u32)arg;
6150 
6151 		if (kvm_caps.has_tsc_control &&
6152 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6153 			goto out;
6154 
6155 		if (user_tsc_khz == 0)
6156 			user_tsc_khz = tsc_khz;
6157 
6158 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6159 			r = 0;
6160 
6161 		goto out;
6162 	}
6163 	case KVM_GET_TSC_KHZ: {
6164 		r = vcpu->arch.virtual_tsc_khz;
6165 		goto out;
6166 	}
6167 	case KVM_KVMCLOCK_CTRL: {
6168 		r = kvm_set_guest_paused(vcpu);
6169 		goto out;
6170 	}
6171 	case KVM_ENABLE_CAP: {
6172 		struct kvm_enable_cap cap;
6173 
6174 		r = -EFAULT;
6175 		if (copy_from_user(&cap, argp, sizeof(cap)))
6176 			goto out;
6177 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6178 		break;
6179 	}
6180 	case KVM_GET_NESTED_STATE: {
6181 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6182 		u32 user_data_size;
6183 
6184 		r = -EINVAL;
6185 		if (!kvm_x86_ops.nested_ops->get_state)
6186 			break;
6187 
6188 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6189 		r = -EFAULT;
6190 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6191 			break;
6192 
6193 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6194 						     user_data_size);
6195 		if (r < 0)
6196 			break;
6197 
6198 		if (r > user_data_size) {
6199 			if (put_user(r, &user_kvm_nested_state->size))
6200 				r = -EFAULT;
6201 			else
6202 				r = -E2BIG;
6203 			break;
6204 		}
6205 
6206 		r = 0;
6207 		break;
6208 	}
6209 	case KVM_SET_NESTED_STATE: {
6210 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6211 		struct kvm_nested_state kvm_state;
6212 		int idx;
6213 
6214 		r = -EINVAL;
6215 		if (!kvm_x86_ops.nested_ops->set_state)
6216 			break;
6217 
6218 		r = -EFAULT;
6219 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6220 			break;
6221 
6222 		r = -EINVAL;
6223 		if (kvm_state.size < sizeof(kvm_state))
6224 			break;
6225 
6226 		if (kvm_state.flags &
6227 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6228 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6229 		      | KVM_STATE_NESTED_GIF_SET))
6230 			break;
6231 
6232 		/* nested_run_pending implies guest_mode.  */
6233 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6234 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6235 			break;
6236 
6237 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6238 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6239 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6240 		break;
6241 	}
6242 #ifdef CONFIG_KVM_HYPERV
6243 	case KVM_GET_SUPPORTED_HV_CPUID:
6244 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6245 		break;
6246 #endif
6247 #ifdef CONFIG_KVM_XEN
6248 	case KVM_XEN_VCPU_GET_ATTR: {
6249 		struct kvm_xen_vcpu_attr xva;
6250 
6251 		r = -EFAULT;
6252 		if (copy_from_user(&xva, argp, sizeof(xva)))
6253 			goto out;
6254 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6255 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6256 			r = -EFAULT;
6257 		break;
6258 	}
6259 	case KVM_XEN_VCPU_SET_ATTR: {
6260 		struct kvm_xen_vcpu_attr xva;
6261 
6262 		r = -EFAULT;
6263 		if (copy_from_user(&xva, argp, sizeof(xva)))
6264 			goto out;
6265 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6266 		break;
6267 	}
6268 #endif
6269 	case KVM_GET_SREGS2: {
6270 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6271 		r = -ENOMEM;
6272 		if (!u.sregs2)
6273 			goto out;
6274 		__get_sregs2(vcpu, u.sregs2);
6275 		r = -EFAULT;
6276 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6277 			goto out;
6278 		r = 0;
6279 		break;
6280 	}
6281 	case KVM_SET_SREGS2: {
6282 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6283 		if (IS_ERR(u.sregs2)) {
6284 			r = PTR_ERR(u.sregs2);
6285 			u.sregs2 = NULL;
6286 			goto out;
6287 		}
6288 		r = __set_sregs2(vcpu, u.sregs2);
6289 		break;
6290 	}
6291 	case KVM_HAS_DEVICE_ATTR:
6292 	case KVM_GET_DEVICE_ATTR:
6293 	case KVM_SET_DEVICE_ATTR:
6294 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6295 		break;
6296 	default:
6297 		r = -EINVAL;
6298 	}
6299 out:
6300 	kfree(u.buffer);
6301 out_nofree:
6302 	vcpu_put(vcpu);
6303 	return r;
6304 }
6305 
6306 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6307 {
6308 	return VM_FAULT_SIGBUS;
6309 }
6310 
6311 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6312 {
6313 	int ret;
6314 
6315 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6316 		return -EINVAL;
6317 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6318 	return ret;
6319 }
6320 
6321 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6322 					      u64 ident_addr)
6323 {
6324 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6325 }
6326 
6327 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6328 					 unsigned long kvm_nr_mmu_pages)
6329 {
6330 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6331 		return -EINVAL;
6332 
6333 	mutex_lock(&kvm->slots_lock);
6334 
6335 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6336 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6337 
6338 	mutex_unlock(&kvm->slots_lock);
6339 	return 0;
6340 }
6341 
6342 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6343 {
6344 	struct kvm_pic *pic = kvm->arch.vpic;
6345 	int r;
6346 
6347 	r = 0;
6348 	switch (chip->chip_id) {
6349 	case KVM_IRQCHIP_PIC_MASTER:
6350 		memcpy(&chip->chip.pic, &pic->pics[0],
6351 			sizeof(struct kvm_pic_state));
6352 		break;
6353 	case KVM_IRQCHIP_PIC_SLAVE:
6354 		memcpy(&chip->chip.pic, &pic->pics[1],
6355 			sizeof(struct kvm_pic_state));
6356 		break;
6357 	case KVM_IRQCHIP_IOAPIC:
6358 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6359 		break;
6360 	default:
6361 		r = -EINVAL;
6362 		break;
6363 	}
6364 	return r;
6365 }
6366 
6367 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6368 {
6369 	struct kvm_pic *pic = kvm->arch.vpic;
6370 	int r;
6371 
6372 	r = 0;
6373 	switch (chip->chip_id) {
6374 	case KVM_IRQCHIP_PIC_MASTER:
6375 		spin_lock(&pic->lock);
6376 		memcpy(&pic->pics[0], &chip->chip.pic,
6377 			sizeof(struct kvm_pic_state));
6378 		spin_unlock(&pic->lock);
6379 		break;
6380 	case KVM_IRQCHIP_PIC_SLAVE:
6381 		spin_lock(&pic->lock);
6382 		memcpy(&pic->pics[1], &chip->chip.pic,
6383 			sizeof(struct kvm_pic_state));
6384 		spin_unlock(&pic->lock);
6385 		break;
6386 	case KVM_IRQCHIP_IOAPIC:
6387 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6388 		break;
6389 	default:
6390 		r = -EINVAL;
6391 		break;
6392 	}
6393 	kvm_pic_update_irq(pic);
6394 	return r;
6395 }
6396 
6397 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6398 {
6399 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6400 
6401 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6402 
6403 	mutex_lock(&kps->lock);
6404 	memcpy(ps, &kps->channels, sizeof(*ps));
6405 	mutex_unlock(&kps->lock);
6406 	return 0;
6407 }
6408 
6409 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6410 {
6411 	int i;
6412 	struct kvm_pit *pit = kvm->arch.vpit;
6413 
6414 	mutex_lock(&pit->pit_state.lock);
6415 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6416 	for (i = 0; i < 3; i++)
6417 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6418 	mutex_unlock(&pit->pit_state.lock);
6419 	return 0;
6420 }
6421 
6422 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6423 {
6424 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6425 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6426 		sizeof(ps->channels));
6427 	ps->flags = kvm->arch.vpit->pit_state.flags;
6428 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6429 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6430 	return 0;
6431 }
6432 
6433 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6434 {
6435 	int start = 0;
6436 	int i;
6437 	u32 prev_legacy, cur_legacy;
6438 	struct kvm_pit *pit = kvm->arch.vpit;
6439 
6440 	mutex_lock(&pit->pit_state.lock);
6441 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6442 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6443 	if (!prev_legacy && cur_legacy)
6444 		start = 1;
6445 	memcpy(&pit->pit_state.channels, &ps->channels,
6446 	       sizeof(pit->pit_state.channels));
6447 	pit->pit_state.flags = ps->flags;
6448 	for (i = 0; i < 3; i++)
6449 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6450 				   start && i == 0);
6451 	mutex_unlock(&pit->pit_state.lock);
6452 	return 0;
6453 }
6454 
6455 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6456 				 struct kvm_reinject_control *control)
6457 {
6458 	struct kvm_pit *pit = kvm->arch.vpit;
6459 
6460 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6461 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6462 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6463 	 */
6464 	mutex_lock(&pit->pit_state.lock);
6465 	kvm_pit_set_reinject(pit, control->pit_reinject);
6466 	mutex_unlock(&pit->pit_state.lock);
6467 
6468 	return 0;
6469 }
6470 
6471 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6472 {
6473 
6474 	/*
6475 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6476 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6477 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6478 	 * VM-Exit.
6479 	 */
6480 	struct kvm_vcpu *vcpu;
6481 	unsigned long i;
6482 
6483 	if (!kvm_x86_ops.cpu_dirty_log_size)
6484 		return;
6485 
6486 	kvm_for_each_vcpu(i, vcpu, kvm)
6487 		kvm_vcpu_kick(vcpu);
6488 }
6489 
6490 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6491 			bool line_status)
6492 {
6493 	if (!irqchip_in_kernel(kvm))
6494 		return -ENXIO;
6495 
6496 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6497 					irq_event->irq, irq_event->level,
6498 					line_status);
6499 	return 0;
6500 }
6501 
6502 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6503 			    struct kvm_enable_cap *cap)
6504 {
6505 	int r;
6506 
6507 	if (cap->flags)
6508 		return -EINVAL;
6509 
6510 	switch (cap->cap) {
6511 	case KVM_CAP_DISABLE_QUIRKS2:
6512 		r = -EINVAL;
6513 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6514 			break;
6515 		fallthrough;
6516 	case KVM_CAP_DISABLE_QUIRKS:
6517 		kvm->arch.disabled_quirks = cap->args[0];
6518 		r = 0;
6519 		break;
6520 	case KVM_CAP_SPLIT_IRQCHIP: {
6521 		mutex_lock(&kvm->lock);
6522 		r = -EINVAL;
6523 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6524 			goto split_irqchip_unlock;
6525 		r = -EEXIST;
6526 		if (irqchip_in_kernel(kvm))
6527 			goto split_irqchip_unlock;
6528 		if (kvm->created_vcpus)
6529 			goto split_irqchip_unlock;
6530 		r = kvm_setup_empty_irq_routing(kvm);
6531 		if (r)
6532 			goto split_irqchip_unlock;
6533 		/* Pairs with irqchip_in_kernel. */
6534 		smp_wmb();
6535 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6536 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6537 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6538 		r = 0;
6539 split_irqchip_unlock:
6540 		mutex_unlock(&kvm->lock);
6541 		break;
6542 	}
6543 	case KVM_CAP_X2APIC_API:
6544 		r = -EINVAL;
6545 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6546 			break;
6547 
6548 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6549 			kvm->arch.x2apic_format = true;
6550 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6551 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6552 
6553 		r = 0;
6554 		break;
6555 	case KVM_CAP_X86_DISABLE_EXITS:
6556 		r = -EINVAL;
6557 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6558 			break;
6559 
6560 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6561 			kvm->arch.pause_in_guest = true;
6562 
6563 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6564 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6565 
6566 		if (!mitigate_smt_rsb) {
6567 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6568 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6569 				pr_warn_once(SMT_RSB_MSG);
6570 
6571 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6572 			    kvm_can_mwait_in_guest())
6573 				kvm->arch.mwait_in_guest = true;
6574 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6575 				kvm->arch.hlt_in_guest = true;
6576 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6577 				kvm->arch.cstate_in_guest = true;
6578 		}
6579 
6580 		r = 0;
6581 		break;
6582 	case KVM_CAP_MSR_PLATFORM_INFO:
6583 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6584 		r = 0;
6585 		break;
6586 	case KVM_CAP_EXCEPTION_PAYLOAD:
6587 		kvm->arch.exception_payload_enabled = cap->args[0];
6588 		r = 0;
6589 		break;
6590 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6591 		kvm->arch.triple_fault_event = cap->args[0];
6592 		r = 0;
6593 		break;
6594 	case KVM_CAP_X86_USER_SPACE_MSR:
6595 		r = -EINVAL;
6596 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6597 			break;
6598 		kvm->arch.user_space_msr_mask = cap->args[0];
6599 		r = 0;
6600 		break;
6601 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6602 		r = -EINVAL;
6603 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6604 			break;
6605 
6606 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6607 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6608 			break;
6609 
6610 		if (kvm_caps.has_bus_lock_exit &&
6611 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6612 			kvm->arch.bus_lock_detection_enabled = true;
6613 		r = 0;
6614 		break;
6615 #ifdef CONFIG_X86_SGX_KVM
6616 	case KVM_CAP_SGX_ATTRIBUTE: {
6617 		unsigned long allowed_attributes = 0;
6618 
6619 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6620 		if (r)
6621 			break;
6622 
6623 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6624 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6625 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6626 			kvm->arch.sgx_provisioning_allowed = true;
6627 		else
6628 			r = -EINVAL;
6629 		break;
6630 	}
6631 #endif
6632 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6633 		r = -EINVAL;
6634 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6635 			break;
6636 
6637 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6638 		break;
6639 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6640 		r = -EINVAL;
6641 		if (!kvm_x86_ops.vm_move_enc_context_from)
6642 			break;
6643 
6644 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6645 		break;
6646 	case KVM_CAP_EXIT_HYPERCALL:
6647 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6648 			r = -EINVAL;
6649 			break;
6650 		}
6651 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6652 		r = 0;
6653 		break;
6654 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6655 		r = -EINVAL;
6656 		if (cap->args[0] & ~1)
6657 			break;
6658 		kvm->arch.exit_on_emulation_error = cap->args[0];
6659 		r = 0;
6660 		break;
6661 	case KVM_CAP_PMU_CAPABILITY:
6662 		r = -EINVAL;
6663 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6664 			break;
6665 
6666 		mutex_lock(&kvm->lock);
6667 		if (!kvm->created_vcpus) {
6668 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6669 			r = 0;
6670 		}
6671 		mutex_unlock(&kvm->lock);
6672 		break;
6673 	case KVM_CAP_MAX_VCPU_ID:
6674 		r = -EINVAL;
6675 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6676 			break;
6677 
6678 		mutex_lock(&kvm->lock);
6679 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6680 			r = 0;
6681 		} else if (!kvm->arch.max_vcpu_ids) {
6682 			kvm->arch.max_vcpu_ids = cap->args[0];
6683 			r = 0;
6684 		}
6685 		mutex_unlock(&kvm->lock);
6686 		break;
6687 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6688 		r = -EINVAL;
6689 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6690 			break;
6691 		if (!kvm_caps.has_notify_vmexit)
6692 			break;
6693 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6694 			break;
6695 		mutex_lock(&kvm->lock);
6696 		if (!kvm->created_vcpus) {
6697 			kvm->arch.notify_window = cap->args[0] >> 32;
6698 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6699 			r = 0;
6700 		}
6701 		mutex_unlock(&kvm->lock);
6702 		break;
6703 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6704 		r = -EINVAL;
6705 
6706 		/*
6707 		 * Since the risk of disabling NX hugepages is a guest crashing
6708 		 * the system, ensure the userspace process has permission to
6709 		 * reboot the system.
6710 		 *
6711 		 * Note that unlike the reboot() syscall, the process must have
6712 		 * this capability in the root namespace because exposing
6713 		 * /dev/kvm into a container does not limit the scope of the
6714 		 * iTLB multihit bug to that container. In other words,
6715 		 * this must use capable(), not ns_capable().
6716 		 */
6717 		if (!capable(CAP_SYS_BOOT)) {
6718 			r = -EPERM;
6719 			break;
6720 		}
6721 
6722 		if (cap->args[0])
6723 			break;
6724 
6725 		mutex_lock(&kvm->lock);
6726 		if (!kvm->created_vcpus) {
6727 			kvm->arch.disable_nx_huge_pages = true;
6728 			r = 0;
6729 		}
6730 		mutex_unlock(&kvm->lock);
6731 		break;
6732 	default:
6733 		r = -EINVAL;
6734 		break;
6735 	}
6736 	return r;
6737 }
6738 
6739 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6740 {
6741 	struct kvm_x86_msr_filter *msr_filter;
6742 
6743 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6744 	if (!msr_filter)
6745 		return NULL;
6746 
6747 	msr_filter->default_allow = default_allow;
6748 	return msr_filter;
6749 }
6750 
6751 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6752 {
6753 	u32 i;
6754 
6755 	if (!msr_filter)
6756 		return;
6757 
6758 	for (i = 0; i < msr_filter->count; i++)
6759 		kfree(msr_filter->ranges[i].bitmap);
6760 
6761 	kfree(msr_filter);
6762 }
6763 
6764 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6765 			      struct kvm_msr_filter_range *user_range)
6766 {
6767 	unsigned long *bitmap;
6768 	size_t bitmap_size;
6769 
6770 	if (!user_range->nmsrs)
6771 		return 0;
6772 
6773 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6774 		return -EINVAL;
6775 
6776 	if (!user_range->flags)
6777 		return -EINVAL;
6778 
6779 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6780 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6781 		return -EINVAL;
6782 
6783 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6784 	if (IS_ERR(bitmap))
6785 		return PTR_ERR(bitmap);
6786 
6787 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6788 		.flags = user_range->flags,
6789 		.base = user_range->base,
6790 		.nmsrs = user_range->nmsrs,
6791 		.bitmap = bitmap,
6792 	};
6793 
6794 	msr_filter->count++;
6795 	return 0;
6796 }
6797 
6798 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6799 				       struct kvm_msr_filter *filter)
6800 {
6801 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6802 	bool default_allow;
6803 	bool empty = true;
6804 	int r;
6805 	u32 i;
6806 
6807 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6808 		return -EINVAL;
6809 
6810 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6811 		empty &= !filter->ranges[i].nmsrs;
6812 
6813 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6814 	if (empty && !default_allow)
6815 		return -EINVAL;
6816 
6817 	new_filter = kvm_alloc_msr_filter(default_allow);
6818 	if (!new_filter)
6819 		return -ENOMEM;
6820 
6821 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6822 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6823 		if (r) {
6824 			kvm_free_msr_filter(new_filter);
6825 			return r;
6826 		}
6827 	}
6828 
6829 	mutex_lock(&kvm->lock);
6830 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6831 					 mutex_is_locked(&kvm->lock));
6832 	mutex_unlock(&kvm->lock);
6833 	synchronize_srcu(&kvm->srcu);
6834 
6835 	kvm_free_msr_filter(old_filter);
6836 
6837 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6838 
6839 	return 0;
6840 }
6841 
6842 #ifdef CONFIG_KVM_COMPAT
6843 /* for KVM_X86_SET_MSR_FILTER */
6844 struct kvm_msr_filter_range_compat {
6845 	__u32 flags;
6846 	__u32 nmsrs;
6847 	__u32 base;
6848 	__u32 bitmap;
6849 };
6850 
6851 struct kvm_msr_filter_compat {
6852 	__u32 flags;
6853 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6854 };
6855 
6856 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6857 
6858 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6859 			      unsigned long arg)
6860 {
6861 	void __user *argp = (void __user *)arg;
6862 	struct kvm *kvm = filp->private_data;
6863 	long r = -ENOTTY;
6864 
6865 	switch (ioctl) {
6866 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6867 		struct kvm_msr_filter __user *user_msr_filter = argp;
6868 		struct kvm_msr_filter_compat filter_compat;
6869 		struct kvm_msr_filter filter;
6870 		int i;
6871 
6872 		if (copy_from_user(&filter_compat, user_msr_filter,
6873 				   sizeof(filter_compat)))
6874 			return -EFAULT;
6875 
6876 		filter.flags = filter_compat.flags;
6877 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6878 			struct kvm_msr_filter_range_compat *cr;
6879 
6880 			cr = &filter_compat.ranges[i];
6881 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6882 				.flags = cr->flags,
6883 				.nmsrs = cr->nmsrs,
6884 				.base = cr->base,
6885 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6886 			};
6887 		}
6888 
6889 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6890 		break;
6891 	}
6892 	}
6893 
6894 	return r;
6895 }
6896 #endif
6897 
6898 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6899 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6900 {
6901 	struct kvm_vcpu *vcpu;
6902 	unsigned long i;
6903 	int ret = 0;
6904 
6905 	mutex_lock(&kvm->lock);
6906 	kvm_for_each_vcpu(i, vcpu, kvm) {
6907 		if (!vcpu->arch.pv_time.active)
6908 			continue;
6909 
6910 		ret = kvm_set_guest_paused(vcpu);
6911 		if (ret) {
6912 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6913 				vcpu->vcpu_id, ret);
6914 			break;
6915 		}
6916 	}
6917 	mutex_unlock(&kvm->lock);
6918 
6919 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6920 }
6921 
6922 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6923 {
6924 	switch (state) {
6925 	case PM_HIBERNATION_PREPARE:
6926 	case PM_SUSPEND_PREPARE:
6927 		return kvm_arch_suspend_notifier(kvm);
6928 	}
6929 
6930 	return NOTIFY_DONE;
6931 }
6932 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6933 
6934 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6935 {
6936 	struct kvm_clock_data data = { 0 };
6937 
6938 	get_kvmclock(kvm, &data);
6939 	if (copy_to_user(argp, &data, sizeof(data)))
6940 		return -EFAULT;
6941 
6942 	return 0;
6943 }
6944 
6945 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6946 {
6947 	struct kvm_arch *ka = &kvm->arch;
6948 	struct kvm_clock_data data;
6949 	u64 now_raw_ns;
6950 
6951 	if (copy_from_user(&data, argp, sizeof(data)))
6952 		return -EFAULT;
6953 
6954 	/*
6955 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6956 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6957 	 */
6958 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6959 		return -EINVAL;
6960 
6961 	kvm_hv_request_tsc_page_update(kvm);
6962 	kvm_start_pvclock_update(kvm);
6963 	pvclock_update_vm_gtod_copy(kvm);
6964 
6965 	/*
6966 	 * This pairs with kvm_guest_time_update(): when masterclock is
6967 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6968 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6969 	 * is slightly ahead) here we risk going negative on unsigned
6970 	 * 'system_time' when 'data.clock' is very small.
6971 	 */
6972 	if (data.flags & KVM_CLOCK_REALTIME) {
6973 		u64 now_real_ns = ktime_get_real_ns();
6974 
6975 		/*
6976 		 * Avoid stepping the kvmclock backwards.
6977 		 */
6978 		if (now_real_ns > data.realtime)
6979 			data.clock += now_real_ns - data.realtime;
6980 	}
6981 
6982 	if (ka->use_master_clock)
6983 		now_raw_ns = ka->master_kernel_ns;
6984 	else
6985 		now_raw_ns = get_kvmclock_base_ns();
6986 	ka->kvmclock_offset = data.clock - now_raw_ns;
6987 	kvm_end_pvclock_update(kvm);
6988 	return 0;
6989 }
6990 
6991 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6992 {
6993 	struct kvm *kvm = filp->private_data;
6994 	void __user *argp = (void __user *)arg;
6995 	int r = -ENOTTY;
6996 	/*
6997 	 * This union makes it completely explicit to gcc-3.x
6998 	 * that these two variables' stack usage should be
6999 	 * combined, not added together.
7000 	 */
7001 	union {
7002 		struct kvm_pit_state ps;
7003 		struct kvm_pit_state2 ps2;
7004 		struct kvm_pit_config pit_config;
7005 	} u;
7006 
7007 	switch (ioctl) {
7008 	case KVM_SET_TSS_ADDR:
7009 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7010 		break;
7011 	case KVM_SET_IDENTITY_MAP_ADDR: {
7012 		u64 ident_addr;
7013 
7014 		mutex_lock(&kvm->lock);
7015 		r = -EINVAL;
7016 		if (kvm->created_vcpus)
7017 			goto set_identity_unlock;
7018 		r = -EFAULT;
7019 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7020 			goto set_identity_unlock;
7021 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7022 set_identity_unlock:
7023 		mutex_unlock(&kvm->lock);
7024 		break;
7025 	}
7026 	case KVM_SET_NR_MMU_PAGES:
7027 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7028 		break;
7029 	case KVM_CREATE_IRQCHIP: {
7030 		mutex_lock(&kvm->lock);
7031 
7032 		r = -EEXIST;
7033 		if (irqchip_in_kernel(kvm))
7034 			goto create_irqchip_unlock;
7035 
7036 		r = -EINVAL;
7037 		if (kvm->created_vcpus)
7038 			goto create_irqchip_unlock;
7039 
7040 		r = kvm_pic_init(kvm);
7041 		if (r)
7042 			goto create_irqchip_unlock;
7043 
7044 		r = kvm_ioapic_init(kvm);
7045 		if (r) {
7046 			kvm_pic_destroy(kvm);
7047 			goto create_irqchip_unlock;
7048 		}
7049 
7050 		r = kvm_setup_default_irq_routing(kvm);
7051 		if (r) {
7052 			kvm_ioapic_destroy(kvm);
7053 			kvm_pic_destroy(kvm);
7054 			goto create_irqchip_unlock;
7055 		}
7056 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7057 		smp_wmb();
7058 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7059 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7060 	create_irqchip_unlock:
7061 		mutex_unlock(&kvm->lock);
7062 		break;
7063 	}
7064 	case KVM_CREATE_PIT:
7065 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7066 		goto create_pit;
7067 	case KVM_CREATE_PIT2:
7068 		r = -EFAULT;
7069 		if (copy_from_user(&u.pit_config, argp,
7070 				   sizeof(struct kvm_pit_config)))
7071 			goto out;
7072 	create_pit:
7073 		mutex_lock(&kvm->lock);
7074 		r = -EEXIST;
7075 		if (kvm->arch.vpit)
7076 			goto create_pit_unlock;
7077 		r = -ENOENT;
7078 		if (!pic_in_kernel(kvm))
7079 			goto create_pit_unlock;
7080 		r = -ENOMEM;
7081 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7082 		if (kvm->arch.vpit)
7083 			r = 0;
7084 	create_pit_unlock:
7085 		mutex_unlock(&kvm->lock);
7086 		break;
7087 	case KVM_GET_IRQCHIP: {
7088 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7089 		struct kvm_irqchip *chip;
7090 
7091 		chip = memdup_user(argp, sizeof(*chip));
7092 		if (IS_ERR(chip)) {
7093 			r = PTR_ERR(chip);
7094 			goto out;
7095 		}
7096 
7097 		r = -ENXIO;
7098 		if (!irqchip_kernel(kvm))
7099 			goto get_irqchip_out;
7100 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7101 		if (r)
7102 			goto get_irqchip_out;
7103 		r = -EFAULT;
7104 		if (copy_to_user(argp, chip, sizeof(*chip)))
7105 			goto get_irqchip_out;
7106 		r = 0;
7107 	get_irqchip_out:
7108 		kfree(chip);
7109 		break;
7110 	}
7111 	case KVM_SET_IRQCHIP: {
7112 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7113 		struct kvm_irqchip *chip;
7114 
7115 		chip = memdup_user(argp, sizeof(*chip));
7116 		if (IS_ERR(chip)) {
7117 			r = PTR_ERR(chip);
7118 			goto out;
7119 		}
7120 
7121 		r = -ENXIO;
7122 		if (!irqchip_kernel(kvm))
7123 			goto set_irqchip_out;
7124 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7125 	set_irqchip_out:
7126 		kfree(chip);
7127 		break;
7128 	}
7129 	case KVM_GET_PIT: {
7130 		r = -EFAULT;
7131 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7132 			goto out;
7133 		r = -ENXIO;
7134 		if (!kvm->arch.vpit)
7135 			goto out;
7136 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7137 		if (r)
7138 			goto out;
7139 		r = -EFAULT;
7140 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7141 			goto out;
7142 		r = 0;
7143 		break;
7144 	}
7145 	case KVM_SET_PIT: {
7146 		r = -EFAULT;
7147 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7148 			goto out;
7149 		mutex_lock(&kvm->lock);
7150 		r = -ENXIO;
7151 		if (!kvm->arch.vpit)
7152 			goto set_pit_out;
7153 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7154 set_pit_out:
7155 		mutex_unlock(&kvm->lock);
7156 		break;
7157 	}
7158 	case KVM_GET_PIT2: {
7159 		r = -ENXIO;
7160 		if (!kvm->arch.vpit)
7161 			goto out;
7162 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7163 		if (r)
7164 			goto out;
7165 		r = -EFAULT;
7166 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7167 			goto out;
7168 		r = 0;
7169 		break;
7170 	}
7171 	case KVM_SET_PIT2: {
7172 		r = -EFAULT;
7173 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7174 			goto out;
7175 		mutex_lock(&kvm->lock);
7176 		r = -ENXIO;
7177 		if (!kvm->arch.vpit)
7178 			goto set_pit2_out;
7179 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7180 set_pit2_out:
7181 		mutex_unlock(&kvm->lock);
7182 		break;
7183 	}
7184 	case KVM_REINJECT_CONTROL: {
7185 		struct kvm_reinject_control control;
7186 		r =  -EFAULT;
7187 		if (copy_from_user(&control, argp, sizeof(control)))
7188 			goto out;
7189 		r = -ENXIO;
7190 		if (!kvm->arch.vpit)
7191 			goto out;
7192 		r = kvm_vm_ioctl_reinject(kvm, &control);
7193 		break;
7194 	}
7195 	case KVM_SET_BOOT_CPU_ID:
7196 		r = 0;
7197 		mutex_lock(&kvm->lock);
7198 		if (kvm->created_vcpus)
7199 			r = -EBUSY;
7200 		else
7201 			kvm->arch.bsp_vcpu_id = arg;
7202 		mutex_unlock(&kvm->lock);
7203 		break;
7204 #ifdef CONFIG_KVM_XEN
7205 	case KVM_XEN_HVM_CONFIG: {
7206 		struct kvm_xen_hvm_config xhc;
7207 		r = -EFAULT;
7208 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7209 			goto out;
7210 		r = kvm_xen_hvm_config(kvm, &xhc);
7211 		break;
7212 	}
7213 	case KVM_XEN_HVM_GET_ATTR: {
7214 		struct kvm_xen_hvm_attr xha;
7215 
7216 		r = -EFAULT;
7217 		if (copy_from_user(&xha, argp, sizeof(xha)))
7218 			goto out;
7219 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7220 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7221 			r = -EFAULT;
7222 		break;
7223 	}
7224 	case KVM_XEN_HVM_SET_ATTR: {
7225 		struct kvm_xen_hvm_attr xha;
7226 
7227 		r = -EFAULT;
7228 		if (copy_from_user(&xha, argp, sizeof(xha)))
7229 			goto out;
7230 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7231 		break;
7232 	}
7233 	case KVM_XEN_HVM_EVTCHN_SEND: {
7234 		struct kvm_irq_routing_xen_evtchn uxe;
7235 
7236 		r = -EFAULT;
7237 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7238 			goto out;
7239 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7240 		break;
7241 	}
7242 #endif
7243 	case KVM_SET_CLOCK:
7244 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7245 		break;
7246 	case KVM_GET_CLOCK:
7247 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7248 		break;
7249 	case KVM_SET_TSC_KHZ: {
7250 		u32 user_tsc_khz;
7251 
7252 		r = -EINVAL;
7253 		user_tsc_khz = (u32)arg;
7254 
7255 		if (kvm_caps.has_tsc_control &&
7256 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7257 			goto out;
7258 
7259 		if (user_tsc_khz == 0)
7260 			user_tsc_khz = tsc_khz;
7261 
7262 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7263 		r = 0;
7264 
7265 		goto out;
7266 	}
7267 	case KVM_GET_TSC_KHZ: {
7268 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7269 		goto out;
7270 	}
7271 	case KVM_MEMORY_ENCRYPT_OP: {
7272 		r = -ENOTTY;
7273 		if (!kvm_x86_ops.mem_enc_ioctl)
7274 			goto out;
7275 
7276 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7277 		break;
7278 	}
7279 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7280 		struct kvm_enc_region region;
7281 
7282 		r = -EFAULT;
7283 		if (copy_from_user(&region, argp, sizeof(region)))
7284 			goto out;
7285 
7286 		r = -ENOTTY;
7287 		if (!kvm_x86_ops.mem_enc_register_region)
7288 			goto out;
7289 
7290 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7291 		break;
7292 	}
7293 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7294 		struct kvm_enc_region region;
7295 
7296 		r = -EFAULT;
7297 		if (copy_from_user(&region, argp, sizeof(region)))
7298 			goto out;
7299 
7300 		r = -ENOTTY;
7301 		if (!kvm_x86_ops.mem_enc_unregister_region)
7302 			goto out;
7303 
7304 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7305 		break;
7306 	}
7307 #ifdef CONFIG_KVM_HYPERV
7308 	case KVM_HYPERV_EVENTFD: {
7309 		struct kvm_hyperv_eventfd hvevfd;
7310 
7311 		r = -EFAULT;
7312 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7313 			goto out;
7314 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7315 		break;
7316 	}
7317 #endif
7318 	case KVM_SET_PMU_EVENT_FILTER:
7319 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7320 		break;
7321 	case KVM_X86_SET_MSR_FILTER: {
7322 		struct kvm_msr_filter __user *user_msr_filter = argp;
7323 		struct kvm_msr_filter filter;
7324 
7325 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7326 			return -EFAULT;
7327 
7328 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7329 		break;
7330 	}
7331 	default:
7332 		r = -ENOTTY;
7333 	}
7334 out:
7335 	return r;
7336 }
7337 
7338 static void kvm_probe_feature_msr(u32 msr_index)
7339 {
7340 	struct kvm_msr_entry msr = {
7341 		.index = msr_index,
7342 	};
7343 
7344 	if (kvm_get_msr_feature(&msr))
7345 		return;
7346 
7347 	msr_based_features[num_msr_based_features++] = msr_index;
7348 }
7349 
7350 static void kvm_probe_msr_to_save(u32 msr_index)
7351 {
7352 	u32 dummy[2];
7353 
7354 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7355 		return;
7356 
7357 	/*
7358 	 * Even MSRs that are valid in the host may not be exposed to guests in
7359 	 * some cases.
7360 	 */
7361 	switch (msr_index) {
7362 	case MSR_IA32_BNDCFGS:
7363 		if (!kvm_mpx_supported())
7364 			return;
7365 		break;
7366 	case MSR_TSC_AUX:
7367 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7368 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7369 			return;
7370 		break;
7371 	case MSR_IA32_UMWAIT_CONTROL:
7372 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7373 			return;
7374 		break;
7375 	case MSR_IA32_RTIT_CTL:
7376 	case MSR_IA32_RTIT_STATUS:
7377 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7378 			return;
7379 		break;
7380 	case MSR_IA32_RTIT_CR3_MATCH:
7381 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7382 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7383 			return;
7384 		break;
7385 	case MSR_IA32_RTIT_OUTPUT_BASE:
7386 	case MSR_IA32_RTIT_OUTPUT_MASK:
7387 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7388 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7389 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7390 			return;
7391 		break;
7392 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7393 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7394 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7395 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7396 			return;
7397 		break;
7398 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7399 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7400 		    kvm_pmu_cap.num_counters_gp)
7401 			return;
7402 		break;
7403 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7404 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7405 		    kvm_pmu_cap.num_counters_gp)
7406 			return;
7407 		break;
7408 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7409 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7410 		    kvm_pmu_cap.num_counters_fixed)
7411 			return;
7412 		break;
7413 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7414 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7415 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7416 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7417 			return;
7418 		break;
7419 	case MSR_IA32_XFD:
7420 	case MSR_IA32_XFD_ERR:
7421 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7422 			return;
7423 		break;
7424 	case MSR_IA32_TSX_CTRL:
7425 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7426 			return;
7427 		break;
7428 	default:
7429 		break;
7430 	}
7431 
7432 	msrs_to_save[num_msrs_to_save++] = msr_index;
7433 }
7434 
7435 static void kvm_init_msr_lists(void)
7436 {
7437 	unsigned i;
7438 
7439 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7440 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7441 
7442 	num_msrs_to_save = 0;
7443 	num_emulated_msrs = 0;
7444 	num_msr_based_features = 0;
7445 
7446 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7447 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7448 
7449 	if (enable_pmu) {
7450 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7451 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7452 	}
7453 
7454 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7455 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7456 			continue;
7457 
7458 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7459 	}
7460 
7461 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7462 		kvm_probe_feature_msr(i);
7463 
7464 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7465 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7466 }
7467 
7468 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7469 			   const void *v)
7470 {
7471 	int handled = 0;
7472 	int n;
7473 
7474 	do {
7475 		n = min(len, 8);
7476 		if (!(lapic_in_kernel(vcpu) &&
7477 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7478 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7479 			break;
7480 		handled += n;
7481 		addr += n;
7482 		len -= n;
7483 		v += n;
7484 	} while (len);
7485 
7486 	return handled;
7487 }
7488 
7489 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7490 {
7491 	int handled = 0;
7492 	int n;
7493 
7494 	do {
7495 		n = min(len, 8);
7496 		if (!(lapic_in_kernel(vcpu) &&
7497 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7498 					 addr, n, v))
7499 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7500 			break;
7501 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7502 		handled += n;
7503 		addr += n;
7504 		len -= n;
7505 		v += n;
7506 	} while (len);
7507 
7508 	return handled;
7509 }
7510 
7511 void kvm_set_segment(struct kvm_vcpu *vcpu,
7512 		     struct kvm_segment *var, int seg)
7513 {
7514 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7515 }
7516 
7517 void kvm_get_segment(struct kvm_vcpu *vcpu,
7518 		     struct kvm_segment *var, int seg)
7519 {
7520 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7521 }
7522 
7523 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7524 			   struct x86_exception *exception)
7525 {
7526 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7527 	gpa_t t_gpa;
7528 
7529 	BUG_ON(!mmu_is_nested(vcpu));
7530 
7531 	/* NPT walks are always user-walks */
7532 	access |= PFERR_USER_MASK;
7533 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7534 
7535 	return t_gpa;
7536 }
7537 
7538 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7539 			      struct x86_exception *exception)
7540 {
7541 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7542 
7543 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7544 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7545 }
7546 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7547 
7548 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7549 			       struct x86_exception *exception)
7550 {
7551 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7552 
7553 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7554 	access |= PFERR_WRITE_MASK;
7555 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7556 }
7557 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7558 
7559 /* uses this to access any guest's mapped memory without checking CPL */
7560 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7561 				struct x86_exception *exception)
7562 {
7563 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7564 
7565 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7566 }
7567 
7568 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7569 				      struct kvm_vcpu *vcpu, u64 access,
7570 				      struct x86_exception *exception)
7571 {
7572 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7573 	void *data = val;
7574 	int r = X86EMUL_CONTINUE;
7575 
7576 	while (bytes) {
7577 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7578 		unsigned offset = addr & (PAGE_SIZE-1);
7579 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7580 		int ret;
7581 
7582 		if (gpa == INVALID_GPA)
7583 			return X86EMUL_PROPAGATE_FAULT;
7584 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7585 					       offset, toread);
7586 		if (ret < 0) {
7587 			r = X86EMUL_IO_NEEDED;
7588 			goto out;
7589 		}
7590 
7591 		bytes -= toread;
7592 		data += toread;
7593 		addr += toread;
7594 	}
7595 out:
7596 	return r;
7597 }
7598 
7599 /* used for instruction fetching */
7600 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7601 				gva_t addr, void *val, unsigned int bytes,
7602 				struct x86_exception *exception)
7603 {
7604 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7605 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7606 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7607 	unsigned offset;
7608 	int ret;
7609 
7610 	/* Inline kvm_read_guest_virt_helper for speed.  */
7611 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7612 				    exception);
7613 	if (unlikely(gpa == INVALID_GPA))
7614 		return X86EMUL_PROPAGATE_FAULT;
7615 
7616 	offset = addr & (PAGE_SIZE-1);
7617 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7618 		bytes = (unsigned)PAGE_SIZE - offset;
7619 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7620 				       offset, bytes);
7621 	if (unlikely(ret < 0))
7622 		return X86EMUL_IO_NEEDED;
7623 
7624 	return X86EMUL_CONTINUE;
7625 }
7626 
7627 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7628 			       gva_t addr, void *val, unsigned int bytes,
7629 			       struct x86_exception *exception)
7630 {
7631 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7632 
7633 	/*
7634 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7635 	 * is returned, but our callers are not ready for that and they blindly
7636 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7637 	 * uninitialized kernel stack memory into cr2 and error code.
7638 	 */
7639 	memset(exception, 0, sizeof(*exception));
7640 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7641 					  exception);
7642 }
7643 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7644 
7645 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7646 			     gva_t addr, void *val, unsigned int bytes,
7647 			     struct x86_exception *exception, bool system)
7648 {
7649 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7650 	u64 access = 0;
7651 
7652 	if (system)
7653 		access |= PFERR_IMPLICIT_ACCESS;
7654 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7655 		access |= PFERR_USER_MASK;
7656 
7657 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7658 }
7659 
7660 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7661 				      struct kvm_vcpu *vcpu, u64 access,
7662 				      struct x86_exception *exception)
7663 {
7664 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7665 	void *data = val;
7666 	int r = X86EMUL_CONTINUE;
7667 
7668 	while (bytes) {
7669 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7670 		unsigned offset = addr & (PAGE_SIZE-1);
7671 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7672 		int ret;
7673 
7674 		if (gpa == INVALID_GPA)
7675 			return X86EMUL_PROPAGATE_FAULT;
7676 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7677 		if (ret < 0) {
7678 			r = X86EMUL_IO_NEEDED;
7679 			goto out;
7680 		}
7681 
7682 		bytes -= towrite;
7683 		data += towrite;
7684 		addr += towrite;
7685 	}
7686 out:
7687 	return r;
7688 }
7689 
7690 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7691 			      unsigned int bytes, struct x86_exception *exception,
7692 			      bool system)
7693 {
7694 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7695 	u64 access = PFERR_WRITE_MASK;
7696 
7697 	if (system)
7698 		access |= PFERR_IMPLICIT_ACCESS;
7699 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7700 		access |= PFERR_USER_MASK;
7701 
7702 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7703 					   access, exception);
7704 }
7705 
7706 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7707 				unsigned int bytes, struct x86_exception *exception)
7708 {
7709 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7710 	vcpu->arch.l1tf_flush_l1d = true;
7711 
7712 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7713 					   PFERR_WRITE_MASK, exception);
7714 }
7715 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7716 
7717 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7718 				  void *insn, int insn_len)
7719 {
7720 	return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7721 							      insn, insn_len);
7722 }
7723 
7724 int handle_ud(struct kvm_vcpu *vcpu)
7725 {
7726 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7727 	int fep_flags = READ_ONCE(force_emulation_prefix);
7728 	int emul_type = EMULTYPE_TRAP_UD;
7729 	char sig[5]; /* ud2; .ascii "kvm" */
7730 	struct x86_exception e;
7731 	int r;
7732 
7733 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7734 	if (r != X86EMUL_CONTINUE)
7735 		return 1;
7736 
7737 	if (fep_flags &&
7738 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7739 				sig, sizeof(sig), &e) == 0 &&
7740 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7741 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7742 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7743 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7744 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7745 	}
7746 
7747 	return kvm_emulate_instruction(vcpu, emul_type);
7748 }
7749 EXPORT_SYMBOL_GPL(handle_ud);
7750 
7751 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7752 			    gpa_t gpa, bool write)
7753 {
7754 	/* For APIC access vmexit */
7755 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7756 		return 1;
7757 
7758 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7759 		trace_vcpu_match_mmio(gva, gpa, write, true);
7760 		return 1;
7761 	}
7762 
7763 	return 0;
7764 }
7765 
7766 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7767 				gpa_t *gpa, struct x86_exception *exception,
7768 				bool write)
7769 {
7770 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7771 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7772 		| (write ? PFERR_WRITE_MASK : 0);
7773 
7774 	/*
7775 	 * currently PKRU is only applied to ept enabled guest so
7776 	 * there is no pkey in EPT page table for L1 guest or EPT
7777 	 * shadow page table for L2 guest.
7778 	 */
7779 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7780 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7781 			      vcpu->arch.mmio_access, 0, access))) {
7782 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7783 					(gva & (PAGE_SIZE - 1));
7784 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7785 		return 1;
7786 	}
7787 
7788 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7789 
7790 	if (*gpa == INVALID_GPA)
7791 		return -1;
7792 
7793 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7794 }
7795 
7796 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7797 			const void *val, int bytes)
7798 {
7799 	int ret;
7800 
7801 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7802 	if (ret < 0)
7803 		return 0;
7804 	kvm_page_track_write(vcpu, gpa, val, bytes);
7805 	return 1;
7806 }
7807 
7808 struct read_write_emulator_ops {
7809 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7810 				  int bytes);
7811 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7812 				  void *val, int bytes);
7813 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7814 			       int bytes, void *val);
7815 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7816 				    void *val, int bytes);
7817 	bool write;
7818 };
7819 
7820 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7821 {
7822 	if (vcpu->mmio_read_completed) {
7823 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7824 			       vcpu->mmio_fragments[0].gpa, val);
7825 		vcpu->mmio_read_completed = 0;
7826 		return 1;
7827 	}
7828 
7829 	return 0;
7830 }
7831 
7832 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7833 			void *val, int bytes)
7834 {
7835 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7836 }
7837 
7838 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7839 			 void *val, int bytes)
7840 {
7841 	return emulator_write_phys(vcpu, gpa, val, bytes);
7842 }
7843 
7844 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7845 {
7846 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7847 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7848 }
7849 
7850 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7851 			  void *val, int bytes)
7852 {
7853 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7854 	return X86EMUL_IO_NEEDED;
7855 }
7856 
7857 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7858 			   void *val, int bytes)
7859 {
7860 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7861 
7862 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7863 	return X86EMUL_CONTINUE;
7864 }
7865 
7866 static const struct read_write_emulator_ops read_emultor = {
7867 	.read_write_prepare = read_prepare,
7868 	.read_write_emulate = read_emulate,
7869 	.read_write_mmio = vcpu_mmio_read,
7870 	.read_write_exit_mmio = read_exit_mmio,
7871 };
7872 
7873 static const struct read_write_emulator_ops write_emultor = {
7874 	.read_write_emulate = write_emulate,
7875 	.read_write_mmio = write_mmio,
7876 	.read_write_exit_mmio = write_exit_mmio,
7877 	.write = true,
7878 };
7879 
7880 static int emulator_read_write_onepage(unsigned long addr, void *val,
7881 				       unsigned int bytes,
7882 				       struct x86_exception *exception,
7883 				       struct kvm_vcpu *vcpu,
7884 				       const struct read_write_emulator_ops *ops)
7885 {
7886 	gpa_t gpa;
7887 	int handled, ret;
7888 	bool write = ops->write;
7889 	struct kvm_mmio_fragment *frag;
7890 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7891 
7892 	/*
7893 	 * If the exit was due to a NPF we may already have a GPA.
7894 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7895 	 * Note, this cannot be used on string operations since string
7896 	 * operation using rep will only have the initial GPA from the NPF
7897 	 * occurred.
7898 	 */
7899 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7900 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7901 		gpa = ctxt->gpa_val;
7902 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7903 	} else {
7904 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7905 		if (ret < 0)
7906 			return X86EMUL_PROPAGATE_FAULT;
7907 	}
7908 
7909 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7910 		return X86EMUL_CONTINUE;
7911 
7912 	/*
7913 	 * Is this MMIO handled locally?
7914 	 */
7915 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7916 	if (handled == bytes)
7917 		return X86EMUL_CONTINUE;
7918 
7919 	gpa += handled;
7920 	bytes -= handled;
7921 	val += handled;
7922 
7923 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7924 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7925 	frag->gpa = gpa;
7926 	frag->data = val;
7927 	frag->len = bytes;
7928 	return X86EMUL_CONTINUE;
7929 }
7930 
7931 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7932 			unsigned long addr,
7933 			void *val, unsigned int bytes,
7934 			struct x86_exception *exception,
7935 			const struct read_write_emulator_ops *ops)
7936 {
7937 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7938 	gpa_t gpa;
7939 	int rc;
7940 
7941 	if (ops->read_write_prepare &&
7942 		  ops->read_write_prepare(vcpu, val, bytes))
7943 		return X86EMUL_CONTINUE;
7944 
7945 	vcpu->mmio_nr_fragments = 0;
7946 
7947 	/* Crossing a page boundary? */
7948 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7949 		int now;
7950 
7951 		now = -addr & ~PAGE_MASK;
7952 		rc = emulator_read_write_onepage(addr, val, now, exception,
7953 						 vcpu, ops);
7954 
7955 		if (rc != X86EMUL_CONTINUE)
7956 			return rc;
7957 		addr += now;
7958 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7959 			addr = (u32)addr;
7960 		val += now;
7961 		bytes -= now;
7962 	}
7963 
7964 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7965 					 vcpu, ops);
7966 	if (rc != X86EMUL_CONTINUE)
7967 		return rc;
7968 
7969 	if (!vcpu->mmio_nr_fragments)
7970 		return rc;
7971 
7972 	gpa = vcpu->mmio_fragments[0].gpa;
7973 
7974 	vcpu->mmio_needed = 1;
7975 	vcpu->mmio_cur_fragment = 0;
7976 
7977 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7978 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7979 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7980 	vcpu->run->mmio.phys_addr = gpa;
7981 
7982 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7983 }
7984 
7985 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7986 				  unsigned long addr,
7987 				  void *val,
7988 				  unsigned int bytes,
7989 				  struct x86_exception *exception)
7990 {
7991 	return emulator_read_write(ctxt, addr, val, bytes,
7992 				   exception, &read_emultor);
7993 }
7994 
7995 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7996 			    unsigned long addr,
7997 			    const void *val,
7998 			    unsigned int bytes,
7999 			    struct x86_exception *exception)
8000 {
8001 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
8002 				   exception, &write_emultor);
8003 }
8004 
8005 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8006 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8007 
8008 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8009 				     unsigned long addr,
8010 				     const void *old,
8011 				     const void *new,
8012 				     unsigned int bytes,
8013 				     struct x86_exception *exception)
8014 {
8015 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8016 	u64 page_line_mask;
8017 	unsigned long hva;
8018 	gpa_t gpa;
8019 	int r;
8020 
8021 	/* guests cmpxchg8b have to be emulated atomically */
8022 	if (bytes > 8 || (bytes & (bytes - 1)))
8023 		goto emul_write;
8024 
8025 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8026 
8027 	if (gpa == INVALID_GPA ||
8028 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8029 		goto emul_write;
8030 
8031 	/*
8032 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
8033 	 * enabled in the host and the access splits a cache line.
8034 	 */
8035 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8036 		page_line_mask = ~(cache_line_size() - 1);
8037 	else
8038 		page_line_mask = PAGE_MASK;
8039 
8040 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8041 		goto emul_write;
8042 
8043 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8044 	if (kvm_is_error_hva(hva))
8045 		goto emul_write;
8046 
8047 	hva += offset_in_page(gpa);
8048 
8049 	switch (bytes) {
8050 	case 1:
8051 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
8052 		break;
8053 	case 2:
8054 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8055 		break;
8056 	case 4:
8057 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8058 		break;
8059 	case 8:
8060 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8061 		break;
8062 	default:
8063 		BUG();
8064 	}
8065 
8066 	if (r < 0)
8067 		return X86EMUL_UNHANDLEABLE;
8068 
8069 	/*
8070 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8071 	 * successful, as the old value is written back on failure.  Note, for
8072 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8073 	 * back the original value and the access is atomic, but KVM's ABI is
8074 	 * that all writes are dirty logged, regardless of the value written.
8075 	 */
8076 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8077 
8078 	if (r)
8079 		return X86EMUL_CMPXCHG_FAILED;
8080 
8081 	kvm_page_track_write(vcpu, gpa, new, bytes);
8082 
8083 	return X86EMUL_CONTINUE;
8084 
8085 emul_write:
8086 	pr_warn_once("emulating exchange as write\n");
8087 
8088 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8089 }
8090 
8091 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8092 			       unsigned short port, void *data,
8093 			       unsigned int count, bool in)
8094 {
8095 	unsigned i;
8096 	int r;
8097 
8098 	WARN_ON_ONCE(vcpu->arch.pio.count);
8099 	for (i = 0; i < count; i++) {
8100 		if (in)
8101 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8102 		else
8103 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8104 
8105 		if (r) {
8106 			if (i == 0)
8107 				goto userspace_io;
8108 
8109 			/*
8110 			 * Userspace must have unregistered the device while PIO
8111 			 * was running.  Drop writes / read as 0.
8112 			 */
8113 			if (in)
8114 				memset(data, 0, size * (count - i));
8115 			break;
8116 		}
8117 
8118 		data += size;
8119 	}
8120 	return 1;
8121 
8122 userspace_io:
8123 	vcpu->arch.pio.port = port;
8124 	vcpu->arch.pio.in = in;
8125 	vcpu->arch.pio.count = count;
8126 	vcpu->arch.pio.size = size;
8127 
8128 	if (in)
8129 		memset(vcpu->arch.pio_data, 0, size * count);
8130 	else
8131 		memcpy(vcpu->arch.pio_data, data, size * count);
8132 
8133 	vcpu->run->exit_reason = KVM_EXIT_IO;
8134 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8135 	vcpu->run->io.size = size;
8136 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8137 	vcpu->run->io.count = count;
8138 	vcpu->run->io.port = port;
8139 	return 0;
8140 }
8141 
8142 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8143       			   unsigned short port, void *val, unsigned int count)
8144 {
8145 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8146 	if (r)
8147 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8148 
8149 	return r;
8150 }
8151 
8152 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8153 {
8154 	int size = vcpu->arch.pio.size;
8155 	unsigned int count = vcpu->arch.pio.count;
8156 	memcpy(val, vcpu->arch.pio_data, size * count);
8157 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8158 	vcpu->arch.pio.count = 0;
8159 }
8160 
8161 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8162 				    int size, unsigned short port, void *val,
8163 				    unsigned int count)
8164 {
8165 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8166 	if (vcpu->arch.pio.count) {
8167 		/*
8168 		 * Complete a previous iteration that required userspace I/O.
8169 		 * Note, @count isn't guaranteed to match pio.count as userspace
8170 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8171 		 * shenanigans as KVM doesn't support modifying the rep count,
8172 		 * and the emulator ensures @count doesn't overflow the buffer.
8173 		 */
8174 		complete_emulator_pio_in(vcpu, val);
8175 		return 1;
8176 	}
8177 
8178 	return emulator_pio_in(vcpu, size, port, val, count);
8179 }
8180 
8181 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8182 			    unsigned short port, const void *val,
8183 			    unsigned int count)
8184 {
8185 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8186 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8187 }
8188 
8189 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8190 				     int size, unsigned short port,
8191 				     const void *val, unsigned int count)
8192 {
8193 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8194 }
8195 
8196 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8197 {
8198 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8199 }
8200 
8201 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8202 {
8203 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8204 }
8205 
8206 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8207 {
8208 	if (!need_emulate_wbinvd(vcpu))
8209 		return X86EMUL_CONTINUE;
8210 
8211 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
8212 		int cpu = get_cpu();
8213 
8214 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8215 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8216 				wbinvd_ipi, NULL, 1);
8217 		put_cpu();
8218 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8219 	} else
8220 		wbinvd();
8221 	return X86EMUL_CONTINUE;
8222 }
8223 
8224 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8225 {
8226 	kvm_emulate_wbinvd_noskip(vcpu);
8227 	return kvm_skip_emulated_instruction(vcpu);
8228 }
8229 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8230 
8231 
8232 
8233 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8234 {
8235 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8236 }
8237 
8238 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8239 {
8240 	return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8241 }
8242 
8243 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8244 			   unsigned long value)
8245 {
8246 
8247 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8248 }
8249 
8250 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8251 {
8252 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8253 }
8254 
8255 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8256 {
8257 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8258 	unsigned long value;
8259 
8260 	switch (cr) {
8261 	case 0:
8262 		value = kvm_read_cr0(vcpu);
8263 		break;
8264 	case 2:
8265 		value = vcpu->arch.cr2;
8266 		break;
8267 	case 3:
8268 		value = kvm_read_cr3(vcpu);
8269 		break;
8270 	case 4:
8271 		value = kvm_read_cr4(vcpu);
8272 		break;
8273 	case 8:
8274 		value = kvm_get_cr8(vcpu);
8275 		break;
8276 	default:
8277 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8278 		return 0;
8279 	}
8280 
8281 	return value;
8282 }
8283 
8284 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8285 {
8286 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8287 	int res = 0;
8288 
8289 	switch (cr) {
8290 	case 0:
8291 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8292 		break;
8293 	case 2:
8294 		vcpu->arch.cr2 = val;
8295 		break;
8296 	case 3:
8297 		res = kvm_set_cr3(vcpu, val);
8298 		break;
8299 	case 4:
8300 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8301 		break;
8302 	case 8:
8303 		res = kvm_set_cr8(vcpu, val);
8304 		break;
8305 	default:
8306 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8307 		res = -1;
8308 	}
8309 
8310 	return res;
8311 }
8312 
8313 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8314 {
8315 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8316 }
8317 
8318 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8319 {
8320 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8321 }
8322 
8323 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8324 {
8325 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8326 }
8327 
8328 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8329 {
8330 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8331 }
8332 
8333 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8334 {
8335 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8336 }
8337 
8338 static unsigned long emulator_get_cached_segment_base(
8339 	struct x86_emulate_ctxt *ctxt, int seg)
8340 {
8341 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8342 }
8343 
8344 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8345 				 struct desc_struct *desc, u32 *base3,
8346 				 int seg)
8347 {
8348 	struct kvm_segment var;
8349 
8350 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8351 	*selector = var.selector;
8352 
8353 	if (var.unusable) {
8354 		memset(desc, 0, sizeof(*desc));
8355 		if (base3)
8356 			*base3 = 0;
8357 		return false;
8358 	}
8359 
8360 	if (var.g)
8361 		var.limit >>= 12;
8362 	set_desc_limit(desc, var.limit);
8363 	set_desc_base(desc, (unsigned long)var.base);
8364 #ifdef CONFIG_X86_64
8365 	if (base3)
8366 		*base3 = var.base >> 32;
8367 #endif
8368 	desc->type = var.type;
8369 	desc->s = var.s;
8370 	desc->dpl = var.dpl;
8371 	desc->p = var.present;
8372 	desc->avl = var.avl;
8373 	desc->l = var.l;
8374 	desc->d = var.db;
8375 	desc->g = var.g;
8376 
8377 	return true;
8378 }
8379 
8380 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8381 				 struct desc_struct *desc, u32 base3,
8382 				 int seg)
8383 {
8384 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8385 	struct kvm_segment var;
8386 
8387 	var.selector = selector;
8388 	var.base = get_desc_base(desc);
8389 #ifdef CONFIG_X86_64
8390 	var.base |= ((u64)base3) << 32;
8391 #endif
8392 	var.limit = get_desc_limit(desc);
8393 	if (desc->g)
8394 		var.limit = (var.limit << 12) | 0xfff;
8395 	var.type = desc->type;
8396 	var.dpl = desc->dpl;
8397 	var.db = desc->d;
8398 	var.s = desc->s;
8399 	var.l = desc->l;
8400 	var.g = desc->g;
8401 	var.avl = desc->avl;
8402 	var.present = desc->p;
8403 	var.unusable = !var.present;
8404 	var.padding = 0;
8405 
8406 	kvm_set_segment(vcpu, &var, seg);
8407 	return;
8408 }
8409 
8410 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8411 					u32 msr_index, u64 *pdata)
8412 {
8413 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8414 	int r;
8415 
8416 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8417 	if (r < 0)
8418 		return X86EMUL_UNHANDLEABLE;
8419 
8420 	if (r) {
8421 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8422 				       complete_emulated_rdmsr, r))
8423 			return X86EMUL_IO_NEEDED;
8424 
8425 		trace_kvm_msr_read_ex(msr_index);
8426 		return X86EMUL_PROPAGATE_FAULT;
8427 	}
8428 
8429 	trace_kvm_msr_read(msr_index, *pdata);
8430 	return X86EMUL_CONTINUE;
8431 }
8432 
8433 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8434 					u32 msr_index, u64 data)
8435 {
8436 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8437 	int r;
8438 
8439 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8440 	if (r < 0)
8441 		return X86EMUL_UNHANDLEABLE;
8442 
8443 	if (r) {
8444 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8445 				       complete_emulated_msr_access, r))
8446 			return X86EMUL_IO_NEEDED;
8447 
8448 		trace_kvm_msr_write_ex(msr_index, data);
8449 		return X86EMUL_PROPAGATE_FAULT;
8450 	}
8451 
8452 	trace_kvm_msr_write(msr_index, data);
8453 	return X86EMUL_CONTINUE;
8454 }
8455 
8456 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8457 			    u32 msr_index, u64 *pdata)
8458 {
8459 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8460 }
8461 
8462 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8463 {
8464 	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8465 }
8466 
8467 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8468 			     u32 pmc, u64 *pdata)
8469 {
8470 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8471 }
8472 
8473 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8474 {
8475 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8476 }
8477 
8478 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8479 			      struct x86_instruction_info *info,
8480 			      enum x86_intercept_stage stage)
8481 {
8482 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8483 					    &ctxt->exception);
8484 }
8485 
8486 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8487 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8488 			      bool exact_only)
8489 {
8490 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8491 }
8492 
8493 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8494 {
8495 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8496 }
8497 
8498 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8499 {
8500 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8501 }
8502 
8503 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8504 {
8505 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8506 }
8507 
8508 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8509 {
8510 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8511 }
8512 
8513 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8514 {
8515 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8516 }
8517 
8518 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8519 {
8520 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8521 }
8522 
8523 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8524 {
8525 	return is_smm(emul_to_vcpu(ctxt));
8526 }
8527 
8528 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8529 {
8530 	return is_guest_mode(emul_to_vcpu(ctxt));
8531 }
8532 
8533 #ifndef CONFIG_KVM_SMM
8534 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8535 {
8536 	WARN_ON_ONCE(1);
8537 	return X86EMUL_UNHANDLEABLE;
8538 }
8539 #endif
8540 
8541 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8542 {
8543 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8544 }
8545 
8546 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8547 {
8548 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8549 }
8550 
8551 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8552 {
8553 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8554 
8555 	if (!kvm->vm_bugged)
8556 		kvm_vm_bugged(kvm);
8557 }
8558 
8559 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8560 					gva_t addr, unsigned int flags)
8561 {
8562 	if (!kvm_x86_ops.get_untagged_addr)
8563 		return addr;
8564 
8565 	return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8566 }
8567 
8568 static const struct x86_emulate_ops emulate_ops = {
8569 	.vm_bugged           = emulator_vm_bugged,
8570 	.read_gpr            = emulator_read_gpr,
8571 	.write_gpr           = emulator_write_gpr,
8572 	.read_std            = emulator_read_std,
8573 	.write_std           = emulator_write_std,
8574 	.fetch               = kvm_fetch_guest_virt,
8575 	.read_emulated       = emulator_read_emulated,
8576 	.write_emulated      = emulator_write_emulated,
8577 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8578 	.invlpg              = emulator_invlpg,
8579 	.pio_in_emulated     = emulator_pio_in_emulated,
8580 	.pio_out_emulated    = emulator_pio_out_emulated,
8581 	.get_segment         = emulator_get_segment,
8582 	.set_segment         = emulator_set_segment,
8583 	.get_cached_segment_base = emulator_get_cached_segment_base,
8584 	.get_gdt             = emulator_get_gdt,
8585 	.get_idt	     = emulator_get_idt,
8586 	.set_gdt             = emulator_set_gdt,
8587 	.set_idt	     = emulator_set_idt,
8588 	.get_cr              = emulator_get_cr,
8589 	.set_cr              = emulator_set_cr,
8590 	.cpl                 = emulator_get_cpl,
8591 	.get_dr              = emulator_get_dr,
8592 	.set_dr              = emulator_set_dr,
8593 	.set_msr_with_filter = emulator_set_msr_with_filter,
8594 	.get_msr_with_filter = emulator_get_msr_with_filter,
8595 	.get_msr             = emulator_get_msr,
8596 	.check_rdpmc_early   = emulator_check_rdpmc_early,
8597 	.read_pmc            = emulator_read_pmc,
8598 	.halt                = emulator_halt,
8599 	.wbinvd              = emulator_wbinvd,
8600 	.fix_hypercall       = emulator_fix_hypercall,
8601 	.intercept           = emulator_intercept,
8602 	.get_cpuid           = emulator_get_cpuid,
8603 	.guest_has_movbe     = emulator_guest_has_movbe,
8604 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8605 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8606 	.set_nmi_mask        = emulator_set_nmi_mask,
8607 	.is_smm              = emulator_is_smm,
8608 	.is_guest_mode       = emulator_is_guest_mode,
8609 	.leave_smm           = emulator_leave_smm,
8610 	.triple_fault        = emulator_triple_fault,
8611 	.set_xcr             = emulator_set_xcr,
8612 	.get_untagged_addr   = emulator_get_untagged_addr,
8613 };
8614 
8615 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8616 {
8617 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8618 	/*
8619 	 * an sti; sti; sequence only disable interrupts for the first
8620 	 * instruction. So, if the last instruction, be it emulated or
8621 	 * not, left the system with the INT_STI flag enabled, it
8622 	 * means that the last instruction is an sti. We should not
8623 	 * leave the flag on in this case. The same goes for mov ss
8624 	 */
8625 	if (int_shadow & mask)
8626 		mask = 0;
8627 	if (unlikely(int_shadow || mask)) {
8628 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8629 		if (!mask)
8630 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8631 	}
8632 }
8633 
8634 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8635 {
8636 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8637 
8638 	if (ctxt->exception.vector == PF_VECTOR)
8639 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8640 	else if (ctxt->exception.error_code_valid)
8641 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8642 				      ctxt->exception.error_code);
8643 	else
8644 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8645 }
8646 
8647 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8648 {
8649 	struct x86_emulate_ctxt *ctxt;
8650 
8651 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8652 	if (!ctxt) {
8653 		pr_err("failed to allocate vcpu's emulator\n");
8654 		return NULL;
8655 	}
8656 
8657 	ctxt->vcpu = vcpu;
8658 	ctxt->ops = &emulate_ops;
8659 	vcpu->arch.emulate_ctxt = ctxt;
8660 
8661 	return ctxt;
8662 }
8663 
8664 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8665 {
8666 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8667 	int cs_db, cs_l;
8668 
8669 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8670 
8671 	ctxt->gpa_available = false;
8672 	ctxt->eflags = kvm_get_rflags(vcpu);
8673 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8674 
8675 	ctxt->eip = kvm_rip_read(vcpu);
8676 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8677 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8678 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8679 		     cs_db				? X86EMUL_MODE_PROT32 :
8680 							  X86EMUL_MODE_PROT16;
8681 	ctxt->interruptibility = 0;
8682 	ctxt->have_exception = false;
8683 	ctxt->exception.vector = -1;
8684 	ctxt->perm_ok = false;
8685 
8686 	init_decode_cache(ctxt);
8687 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8688 }
8689 
8690 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8691 {
8692 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8693 	int ret;
8694 
8695 	init_emulate_ctxt(vcpu);
8696 
8697 	ctxt->op_bytes = 2;
8698 	ctxt->ad_bytes = 2;
8699 	ctxt->_eip = ctxt->eip + inc_eip;
8700 	ret = emulate_int_real(ctxt, irq);
8701 
8702 	if (ret != X86EMUL_CONTINUE) {
8703 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8704 	} else {
8705 		ctxt->eip = ctxt->_eip;
8706 		kvm_rip_write(vcpu, ctxt->eip);
8707 		kvm_set_rflags(vcpu, ctxt->eflags);
8708 	}
8709 }
8710 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8711 
8712 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8713 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8714 {
8715 	struct kvm_run *run = vcpu->run;
8716 	u64 info[5];
8717 	u8 info_start;
8718 
8719 	/*
8720 	 * Zero the whole array used to retrieve the exit info, as casting to
8721 	 * u32 for select entries will leave some chunks uninitialized.
8722 	 */
8723 	memset(&info, 0, sizeof(info));
8724 
8725 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8726 					   &info[2], (u32 *)&info[3],
8727 					   (u32 *)&info[4]);
8728 
8729 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8730 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8731 
8732 	/*
8733 	 * There's currently space for 13 entries, but 5 are used for the exit
8734 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8735 	 * when expanding kvm_run.emulation_failure in the future.
8736 	 */
8737 	if (WARN_ON_ONCE(ndata > 4))
8738 		ndata = 4;
8739 
8740 	/* Always include the flags as a 'data' entry. */
8741 	info_start = 1;
8742 	run->emulation_failure.flags = 0;
8743 
8744 	if (insn_size) {
8745 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8746 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8747 		info_start += 2;
8748 		run->emulation_failure.flags |=
8749 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8750 		run->emulation_failure.insn_size = insn_size;
8751 		memset(run->emulation_failure.insn_bytes, 0x90,
8752 		       sizeof(run->emulation_failure.insn_bytes));
8753 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8754 	}
8755 
8756 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8757 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8758 	       ndata * sizeof(data[0]));
8759 
8760 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8761 }
8762 
8763 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8764 {
8765 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8766 
8767 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8768 				       ctxt->fetch.end - ctxt->fetch.data);
8769 }
8770 
8771 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8772 					  u8 ndata)
8773 {
8774 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8775 }
8776 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8777 
8778 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8779 {
8780 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8781 }
8782 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8783 
8784 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8785 {
8786 	struct kvm *kvm = vcpu->kvm;
8787 
8788 	++vcpu->stat.insn_emulation_fail;
8789 	trace_kvm_emulate_insn_failed(vcpu);
8790 
8791 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8792 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8793 		return 1;
8794 	}
8795 
8796 	if (kvm->arch.exit_on_emulation_error ||
8797 	    (emulation_type & EMULTYPE_SKIP)) {
8798 		prepare_emulation_ctxt_failure_exit(vcpu);
8799 		return 0;
8800 	}
8801 
8802 	kvm_queue_exception(vcpu, UD_VECTOR);
8803 
8804 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8805 		prepare_emulation_ctxt_failure_exit(vcpu);
8806 		return 0;
8807 	}
8808 
8809 	return 1;
8810 }
8811 
8812 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8813 				  int emulation_type)
8814 {
8815 	gpa_t gpa = cr2_or_gpa;
8816 	kvm_pfn_t pfn;
8817 
8818 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8819 		return false;
8820 
8821 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8822 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8823 		return false;
8824 
8825 	if (!vcpu->arch.mmu->root_role.direct) {
8826 		/*
8827 		 * Write permission should be allowed since only
8828 		 * write access need to be emulated.
8829 		 */
8830 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8831 
8832 		/*
8833 		 * If the mapping is invalid in guest, let cpu retry
8834 		 * it to generate fault.
8835 		 */
8836 		if (gpa == INVALID_GPA)
8837 			return true;
8838 	}
8839 
8840 	/*
8841 	 * Do not retry the unhandleable instruction if it faults on the
8842 	 * readonly host memory, otherwise it will goto a infinite loop:
8843 	 * retry instruction -> write #PF -> emulation fail -> retry
8844 	 * instruction -> ...
8845 	 */
8846 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8847 
8848 	/*
8849 	 * If the instruction failed on the error pfn, it can not be fixed,
8850 	 * report the error to userspace.
8851 	 */
8852 	if (is_error_noslot_pfn(pfn))
8853 		return false;
8854 
8855 	kvm_release_pfn_clean(pfn);
8856 
8857 	/*
8858 	 * If emulation may have been triggered by a write to a shadowed page
8859 	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8860 	 * guest to let the CPU re-execute the instruction in the hope that the
8861 	 * CPU can cleanly execute the instruction that KVM failed to emulate.
8862 	 */
8863 	if (vcpu->kvm->arch.indirect_shadow_pages)
8864 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8865 
8866 	/*
8867 	 * If the failed instruction faulted on an access to page tables that
8868 	 * are used to translate any part of the instruction, KVM can't resolve
8869 	 * the issue by unprotecting the gfn, as zapping the shadow page will
8870 	 * result in the instruction taking a !PRESENT page fault and thus put
8871 	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8872 	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8873 	 * then zap the SPTE to unprotect the gfn, and then do it all over
8874 	 * again.  Report the error to userspace.
8875 	 */
8876 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8877 }
8878 
8879 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8880 			      gpa_t cr2_or_gpa,  int emulation_type)
8881 {
8882 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8883 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8884 
8885 	last_retry_eip = vcpu->arch.last_retry_eip;
8886 	last_retry_addr = vcpu->arch.last_retry_addr;
8887 
8888 	/*
8889 	 * If the emulation is caused by #PF and it is non-page_table
8890 	 * writing instruction, it means the VM-EXIT is caused by shadow
8891 	 * page protected, we can zap the shadow page and retry this
8892 	 * instruction directly.
8893 	 *
8894 	 * Note: if the guest uses a non-page-table modifying instruction
8895 	 * on the PDE that points to the instruction, then we will unmap
8896 	 * the instruction and go to an infinite loop. So, we cache the
8897 	 * last retried eip and the last fault address, if we meet the eip
8898 	 * and the address again, we can break out of the potential infinite
8899 	 * loop.
8900 	 */
8901 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8902 
8903 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8904 		return false;
8905 
8906 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8907 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8908 		return false;
8909 
8910 	if (x86_page_table_writing_insn(ctxt))
8911 		return false;
8912 
8913 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8914 		return false;
8915 
8916 	vcpu->arch.last_retry_eip = ctxt->eip;
8917 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8918 
8919 	if (!vcpu->arch.mmu->root_role.direct)
8920 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8921 
8922 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8923 
8924 	return true;
8925 }
8926 
8927 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8928 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8929 
8930 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8931 				unsigned long *db)
8932 {
8933 	u32 dr6 = 0;
8934 	int i;
8935 	u32 enable, rwlen;
8936 
8937 	enable = dr7;
8938 	rwlen = dr7 >> 16;
8939 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8940 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8941 			dr6 |= (1 << i);
8942 	return dr6;
8943 }
8944 
8945 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8946 {
8947 	struct kvm_run *kvm_run = vcpu->run;
8948 
8949 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8950 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8951 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8952 		kvm_run->debug.arch.exception = DB_VECTOR;
8953 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8954 		return 0;
8955 	}
8956 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8957 	return 1;
8958 }
8959 
8960 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8961 {
8962 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8963 	int r;
8964 
8965 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8966 	if (unlikely(!r))
8967 		return 0;
8968 
8969 	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8970 
8971 	/*
8972 	 * rflags is the old, "raw" value of the flags.  The new value has
8973 	 * not been saved yet.
8974 	 *
8975 	 * This is correct even for TF set by the guest, because "the
8976 	 * processor will not generate this exception after the instruction
8977 	 * that sets the TF flag".
8978 	 */
8979 	if (unlikely(rflags & X86_EFLAGS_TF))
8980 		r = kvm_vcpu_do_singlestep(vcpu);
8981 	return r;
8982 }
8983 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8984 
8985 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8986 {
8987 	u32 shadow;
8988 
8989 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8990 		return true;
8991 
8992 	/*
8993 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8994 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8995 	 * to avoid the relatively expensive CPUID lookup.
8996 	 */
8997 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8998 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8999 	       guest_cpuid_is_intel(vcpu);
9000 }
9001 
9002 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9003 					   int emulation_type, int *r)
9004 {
9005 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9006 
9007 	/*
9008 	 * Do not check for code breakpoints if hardware has already done the
9009 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
9010 	 * the instruction has passed all exception checks, and all intercepted
9011 	 * exceptions that trigger emulation have lower priority than code
9012 	 * breakpoints, i.e. the fact that the intercepted exception occurred
9013 	 * means any code breakpoints have already been serviced.
9014 	 *
9015 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9016 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
9017 	 * the instruction being emulated.  The intent of forced emulation is
9018 	 * to behave as if KVM intercepted the instruction without an exception
9019 	 * and without a prefix.
9020 	 */
9021 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9022 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9023 		return false;
9024 
9025 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9026 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9027 		struct kvm_run *kvm_run = vcpu->run;
9028 		unsigned long eip = kvm_get_linear_rip(vcpu);
9029 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9030 					   vcpu->arch.guest_debug_dr7,
9031 					   vcpu->arch.eff_db);
9032 
9033 		if (dr6 != 0) {
9034 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9035 			kvm_run->debug.arch.pc = eip;
9036 			kvm_run->debug.arch.exception = DB_VECTOR;
9037 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
9038 			*r = 0;
9039 			return true;
9040 		}
9041 	}
9042 
9043 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9044 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
9045 		unsigned long eip = kvm_get_linear_rip(vcpu);
9046 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9047 					   vcpu->arch.dr7,
9048 					   vcpu->arch.db);
9049 
9050 		if (dr6 != 0) {
9051 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9052 			*r = 1;
9053 			return true;
9054 		}
9055 	}
9056 
9057 	return false;
9058 }
9059 
9060 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9061 {
9062 	switch (ctxt->opcode_len) {
9063 	case 1:
9064 		switch (ctxt->b) {
9065 		case 0xe4:	/* IN */
9066 		case 0xe5:
9067 		case 0xec:
9068 		case 0xed:
9069 		case 0xe6:	/* OUT */
9070 		case 0xe7:
9071 		case 0xee:
9072 		case 0xef:
9073 		case 0x6c:	/* INS */
9074 		case 0x6d:
9075 		case 0x6e:	/* OUTS */
9076 		case 0x6f:
9077 			return true;
9078 		}
9079 		break;
9080 	case 2:
9081 		switch (ctxt->b) {
9082 		case 0x33:	/* RDPMC */
9083 			return true;
9084 		}
9085 		break;
9086 	}
9087 
9088 	return false;
9089 }
9090 
9091 /*
9092  * Decode an instruction for emulation.  The caller is responsible for handling
9093  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9094  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9095  * code breakpoints have higher priority and thus have already been done by
9096  * hardware.
9097  *
9098  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9099  *     response to a machine check.
9100  */
9101 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9102 				    void *insn, int insn_len)
9103 {
9104 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9105 	int r;
9106 
9107 	init_emulate_ctxt(vcpu);
9108 
9109 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9110 
9111 	trace_kvm_emulate_insn_start(vcpu);
9112 	++vcpu->stat.insn_emulation;
9113 
9114 	return r;
9115 }
9116 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9117 
9118 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9119 			    int emulation_type, void *insn, int insn_len)
9120 {
9121 	int r;
9122 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9123 	bool writeback = true;
9124 
9125 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9126 	if (r != X86EMUL_CONTINUE) {
9127 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9128 			return 1;
9129 
9130 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9131 		return handle_emulation_failure(vcpu, emulation_type);
9132 	}
9133 
9134 	vcpu->arch.l1tf_flush_l1d = true;
9135 
9136 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9137 		kvm_clear_exception_queue(vcpu);
9138 
9139 		/*
9140 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9141 		 * are fault-like and are higher priority than any faults on
9142 		 * the code fetch itself.
9143 		 */
9144 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9145 			return r;
9146 
9147 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9148 						    insn, insn_len);
9149 		if (r != EMULATION_OK)  {
9150 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9151 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9152 				kvm_queue_exception(vcpu, UD_VECTOR);
9153 				return 1;
9154 			}
9155 			if (reexecute_instruction(vcpu, cr2_or_gpa,
9156 						  emulation_type))
9157 				return 1;
9158 
9159 			if (ctxt->have_exception &&
9160 			    !(emulation_type & EMULTYPE_SKIP)) {
9161 				/*
9162 				 * #UD should result in just EMULATION_FAILED, and trap-like
9163 				 * exception should not be encountered during decode.
9164 				 */
9165 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9166 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9167 				inject_emulated_exception(vcpu);
9168 				return 1;
9169 			}
9170 			return handle_emulation_failure(vcpu, emulation_type);
9171 		}
9172 	}
9173 
9174 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9175 	    !is_vmware_backdoor_opcode(ctxt)) {
9176 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9177 		return 1;
9178 	}
9179 
9180 	/*
9181 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9182 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9183 	 * The caller is responsible for updating interruptibility state and
9184 	 * injecting single-step #DBs.
9185 	 */
9186 	if (emulation_type & EMULTYPE_SKIP) {
9187 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9188 			ctxt->eip = (u32)ctxt->_eip;
9189 		else
9190 			ctxt->eip = ctxt->_eip;
9191 
9192 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9193 			r = 1;
9194 			goto writeback;
9195 		}
9196 
9197 		kvm_rip_write(vcpu, ctxt->eip);
9198 		if (ctxt->eflags & X86_EFLAGS_RF)
9199 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9200 		return 1;
9201 	}
9202 
9203 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9204 		return 1;
9205 
9206 	/* this is needed for vmware backdoor interface to work since it
9207 	   changes registers values  during IO operation */
9208 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9209 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9210 		emulator_invalidate_register_cache(ctxt);
9211 	}
9212 
9213 restart:
9214 	if (emulation_type & EMULTYPE_PF) {
9215 		/* Save the faulting GPA (cr2) in the address field */
9216 		ctxt->exception.address = cr2_or_gpa;
9217 
9218 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9219 		if (vcpu->arch.mmu->root_role.direct) {
9220 			ctxt->gpa_available = true;
9221 			ctxt->gpa_val = cr2_or_gpa;
9222 		}
9223 	} else {
9224 		/* Sanitize the address out of an abundance of paranoia. */
9225 		ctxt->exception.address = 0;
9226 	}
9227 
9228 	r = x86_emulate_insn(ctxt);
9229 
9230 	if (r == EMULATION_INTERCEPTED)
9231 		return 1;
9232 
9233 	if (r == EMULATION_FAILED) {
9234 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9235 			return 1;
9236 
9237 		return handle_emulation_failure(vcpu, emulation_type);
9238 	}
9239 
9240 	if (ctxt->have_exception) {
9241 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9242 		vcpu->mmio_needed = false;
9243 		r = 1;
9244 		inject_emulated_exception(vcpu);
9245 	} else if (vcpu->arch.pio.count) {
9246 		if (!vcpu->arch.pio.in) {
9247 			/* FIXME: return into emulator if single-stepping.  */
9248 			vcpu->arch.pio.count = 0;
9249 		} else {
9250 			writeback = false;
9251 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9252 		}
9253 		r = 0;
9254 	} else if (vcpu->mmio_needed) {
9255 		++vcpu->stat.mmio_exits;
9256 
9257 		if (!vcpu->mmio_is_write)
9258 			writeback = false;
9259 		r = 0;
9260 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9261 	} else if (vcpu->arch.complete_userspace_io) {
9262 		writeback = false;
9263 		r = 0;
9264 	} else if (r == EMULATION_RESTART)
9265 		goto restart;
9266 	else
9267 		r = 1;
9268 
9269 writeback:
9270 	if (writeback) {
9271 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9272 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9273 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9274 
9275 		/*
9276 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9277 		 * only supports code breakpoints and general detect #DB, both
9278 		 * of which are fault-like.
9279 		 */
9280 		if (!ctxt->have_exception ||
9281 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9282 			kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9283 			if (ctxt->is_branch)
9284 				kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9285 			kvm_rip_write(vcpu, ctxt->eip);
9286 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9287 				r = kvm_vcpu_do_singlestep(vcpu);
9288 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9289 			__kvm_set_rflags(vcpu, ctxt->eflags);
9290 		}
9291 
9292 		/*
9293 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9294 		 * do nothing, and it will be requested again as soon as
9295 		 * the shadow expires.  But we still need to check here,
9296 		 * because POPF has no interrupt shadow.
9297 		 */
9298 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9299 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9300 	} else
9301 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9302 
9303 	return r;
9304 }
9305 
9306 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9307 {
9308 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9309 }
9310 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9311 
9312 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9313 					void *insn, int insn_len)
9314 {
9315 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9316 }
9317 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9318 
9319 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9320 {
9321 	vcpu->arch.pio.count = 0;
9322 	return 1;
9323 }
9324 
9325 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9326 {
9327 	vcpu->arch.pio.count = 0;
9328 
9329 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9330 		return 1;
9331 
9332 	return kvm_skip_emulated_instruction(vcpu);
9333 }
9334 
9335 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9336 			    unsigned short port)
9337 {
9338 	unsigned long val = kvm_rax_read(vcpu);
9339 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9340 
9341 	if (ret)
9342 		return ret;
9343 
9344 	/*
9345 	 * Workaround userspace that relies on old KVM behavior of %rip being
9346 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9347 	 */
9348 	if (port == 0x7e &&
9349 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9350 		vcpu->arch.complete_userspace_io =
9351 			complete_fast_pio_out_port_0x7e;
9352 		kvm_skip_emulated_instruction(vcpu);
9353 	} else {
9354 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9355 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9356 	}
9357 	return 0;
9358 }
9359 
9360 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9361 {
9362 	unsigned long val;
9363 
9364 	/* We should only ever be called with arch.pio.count equal to 1 */
9365 	BUG_ON(vcpu->arch.pio.count != 1);
9366 
9367 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9368 		vcpu->arch.pio.count = 0;
9369 		return 1;
9370 	}
9371 
9372 	/* For size less than 4 we merge, else we zero extend */
9373 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9374 
9375 	complete_emulator_pio_in(vcpu, &val);
9376 	kvm_rax_write(vcpu, val);
9377 
9378 	return kvm_skip_emulated_instruction(vcpu);
9379 }
9380 
9381 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9382 			   unsigned short port)
9383 {
9384 	unsigned long val;
9385 	int ret;
9386 
9387 	/* For size less than 4 we merge, else we zero extend */
9388 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9389 
9390 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9391 	if (ret) {
9392 		kvm_rax_write(vcpu, val);
9393 		return ret;
9394 	}
9395 
9396 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9397 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9398 
9399 	return 0;
9400 }
9401 
9402 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9403 {
9404 	int ret;
9405 
9406 	if (in)
9407 		ret = kvm_fast_pio_in(vcpu, size, port);
9408 	else
9409 		ret = kvm_fast_pio_out(vcpu, size, port);
9410 	return ret && kvm_skip_emulated_instruction(vcpu);
9411 }
9412 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9413 
9414 static int kvmclock_cpu_down_prep(unsigned int cpu)
9415 {
9416 	__this_cpu_write(cpu_tsc_khz, 0);
9417 	return 0;
9418 }
9419 
9420 static void tsc_khz_changed(void *data)
9421 {
9422 	struct cpufreq_freqs *freq = data;
9423 	unsigned long khz;
9424 
9425 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9426 
9427 	if (data)
9428 		khz = freq->new;
9429 	else
9430 		khz = cpufreq_quick_get(raw_smp_processor_id());
9431 	if (!khz)
9432 		khz = tsc_khz;
9433 	__this_cpu_write(cpu_tsc_khz, khz);
9434 }
9435 
9436 #ifdef CONFIG_X86_64
9437 static void kvm_hyperv_tsc_notifier(void)
9438 {
9439 	struct kvm *kvm;
9440 	int cpu;
9441 
9442 	mutex_lock(&kvm_lock);
9443 	list_for_each_entry(kvm, &vm_list, vm_list)
9444 		kvm_make_mclock_inprogress_request(kvm);
9445 
9446 	/* no guest entries from this point */
9447 	hyperv_stop_tsc_emulation();
9448 
9449 	/* TSC frequency always matches when on Hyper-V */
9450 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9451 		for_each_present_cpu(cpu)
9452 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9453 	}
9454 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9455 
9456 	list_for_each_entry(kvm, &vm_list, vm_list) {
9457 		__kvm_start_pvclock_update(kvm);
9458 		pvclock_update_vm_gtod_copy(kvm);
9459 		kvm_end_pvclock_update(kvm);
9460 	}
9461 
9462 	mutex_unlock(&kvm_lock);
9463 }
9464 #endif
9465 
9466 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9467 {
9468 	struct kvm *kvm;
9469 	struct kvm_vcpu *vcpu;
9470 	int send_ipi = 0;
9471 	unsigned long i;
9472 
9473 	/*
9474 	 * We allow guests to temporarily run on slowing clocks,
9475 	 * provided we notify them after, or to run on accelerating
9476 	 * clocks, provided we notify them before.  Thus time never
9477 	 * goes backwards.
9478 	 *
9479 	 * However, we have a problem.  We can't atomically update
9480 	 * the frequency of a given CPU from this function; it is
9481 	 * merely a notifier, which can be called from any CPU.
9482 	 * Changing the TSC frequency at arbitrary points in time
9483 	 * requires a recomputation of local variables related to
9484 	 * the TSC for each VCPU.  We must flag these local variables
9485 	 * to be updated and be sure the update takes place with the
9486 	 * new frequency before any guests proceed.
9487 	 *
9488 	 * Unfortunately, the combination of hotplug CPU and frequency
9489 	 * change creates an intractable locking scenario; the order
9490 	 * of when these callouts happen is undefined with respect to
9491 	 * CPU hotplug, and they can race with each other.  As such,
9492 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9493 	 * undefined; you can actually have a CPU frequency change take
9494 	 * place in between the computation of X and the setting of the
9495 	 * variable.  To protect against this problem, all updates of
9496 	 * the per_cpu tsc_khz variable are done in an interrupt
9497 	 * protected IPI, and all callers wishing to update the value
9498 	 * must wait for a synchronous IPI to complete (which is trivial
9499 	 * if the caller is on the CPU already).  This establishes the
9500 	 * necessary total order on variable updates.
9501 	 *
9502 	 * Note that because a guest time update may take place
9503 	 * anytime after the setting of the VCPU's request bit, the
9504 	 * correct TSC value must be set before the request.  However,
9505 	 * to ensure the update actually makes it to any guest which
9506 	 * starts running in hardware virtualization between the set
9507 	 * and the acquisition of the spinlock, we must also ping the
9508 	 * CPU after setting the request bit.
9509 	 *
9510 	 */
9511 
9512 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9513 
9514 	mutex_lock(&kvm_lock);
9515 	list_for_each_entry(kvm, &vm_list, vm_list) {
9516 		kvm_for_each_vcpu(i, vcpu, kvm) {
9517 			if (vcpu->cpu != cpu)
9518 				continue;
9519 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9520 			if (vcpu->cpu != raw_smp_processor_id())
9521 				send_ipi = 1;
9522 		}
9523 	}
9524 	mutex_unlock(&kvm_lock);
9525 
9526 	if (freq->old < freq->new && send_ipi) {
9527 		/*
9528 		 * We upscale the frequency.  Must make the guest
9529 		 * doesn't see old kvmclock values while running with
9530 		 * the new frequency, otherwise we risk the guest sees
9531 		 * time go backwards.
9532 		 *
9533 		 * In case we update the frequency for another cpu
9534 		 * (which might be in guest context) send an interrupt
9535 		 * to kick the cpu out of guest context.  Next time
9536 		 * guest context is entered kvmclock will be updated,
9537 		 * so the guest will not see stale values.
9538 		 */
9539 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9540 	}
9541 }
9542 
9543 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9544 				     void *data)
9545 {
9546 	struct cpufreq_freqs *freq = data;
9547 	int cpu;
9548 
9549 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9550 		return 0;
9551 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9552 		return 0;
9553 
9554 	for_each_cpu(cpu, freq->policy->cpus)
9555 		__kvmclock_cpufreq_notifier(freq, cpu);
9556 
9557 	return 0;
9558 }
9559 
9560 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9561 	.notifier_call  = kvmclock_cpufreq_notifier
9562 };
9563 
9564 static int kvmclock_cpu_online(unsigned int cpu)
9565 {
9566 	tsc_khz_changed(NULL);
9567 	return 0;
9568 }
9569 
9570 static void kvm_timer_init(void)
9571 {
9572 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9573 		max_tsc_khz = tsc_khz;
9574 
9575 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9576 			struct cpufreq_policy *policy;
9577 			int cpu;
9578 
9579 			cpu = get_cpu();
9580 			policy = cpufreq_cpu_get(cpu);
9581 			if (policy) {
9582 				if (policy->cpuinfo.max_freq)
9583 					max_tsc_khz = policy->cpuinfo.max_freq;
9584 				cpufreq_cpu_put(policy);
9585 			}
9586 			put_cpu();
9587 		}
9588 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9589 					  CPUFREQ_TRANSITION_NOTIFIER);
9590 
9591 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9592 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9593 	}
9594 }
9595 
9596 #ifdef CONFIG_X86_64
9597 static void pvclock_gtod_update_fn(struct work_struct *work)
9598 {
9599 	struct kvm *kvm;
9600 	struct kvm_vcpu *vcpu;
9601 	unsigned long i;
9602 
9603 	mutex_lock(&kvm_lock);
9604 	list_for_each_entry(kvm, &vm_list, vm_list)
9605 		kvm_for_each_vcpu(i, vcpu, kvm)
9606 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9607 	atomic_set(&kvm_guest_has_master_clock, 0);
9608 	mutex_unlock(&kvm_lock);
9609 }
9610 
9611 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9612 
9613 /*
9614  * Indirection to move queue_work() out of the tk_core.seq write held
9615  * region to prevent possible deadlocks against time accessors which
9616  * are invoked with work related locks held.
9617  */
9618 static void pvclock_irq_work_fn(struct irq_work *w)
9619 {
9620 	queue_work(system_long_wq, &pvclock_gtod_work);
9621 }
9622 
9623 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9624 
9625 /*
9626  * Notification about pvclock gtod data update.
9627  */
9628 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9629 			       void *priv)
9630 {
9631 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9632 	struct timekeeper *tk = priv;
9633 
9634 	update_pvclock_gtod(tk);
9635 
9636 	/*
9637 	 * Disable master clock if host does not trust, or does not use,
9638 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9639 	 * this is invoked with tk_core.seq write held.
9640 	 */
9641 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9642 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9643 		irq_work_queue(&pvclock_irq_work);
9644 	return 0;
9645 }
9646 
9647 static struct notifier_block pvclock_gtod_notifier = {
9648 	.notifier_call = pvclock_gtod_notify,
9649 };
9650 #endif
9651 
9652 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9653 {
9654 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9655 
9656 #define __KVM_X86_OP(func) \
9657 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9658 #define KVM_X86_OP(func) \
9659 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9660 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9661 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9662 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9663 					   (void *)__static_call_return0);
9664 #include <asm/kvm-x86-ops.h>
9665 #undef __KVM_X86_OP
9666 
9667 	kvm_pmu_ops_update(ops->pmu_ops);
9668 }
9669 
9670 static int kvm_x86_check_processor_compatibility(void)
9671 {
9672 	int cpu = smp_processor_id();
9673 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9674 
9675 	/*
9676 	 * Compatibility checks are done when loading KVM and when enabling
9677 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9678 	 * compatible, i.e. KVM should never perform a compatibility check on
9679 	 * an offline CPU.
9680 	 */
9681 	WARN_ON(!cpu_online(cpu));
9682 
9683 	if (__cr4_reserved_bits(cpu_has, c) !=
9684 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9685 		return -EIO;
9686 
9687 	return static_call(kvm_x86_check_processor_compatibility)();
9688 }
9689 
9690 static void kvm_x86_check_cpu_compat(void *ret)
9691 {
9692 	*(int *)ret = kvm_x86_check_processor_compatibility();
9693 }
9694 
9695 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9696 {
9697 	u64 host_pat;
9698 	int r, cpu;
9699 
9700 	guard(mutex)(&vendor_module_lock);
9701 
9702 	if (kvm_x86_ops.hardware_enable) {
9703 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9704 		return -EEXIST;
9705 	}
9706 
9707 	/*
9708 	 * KVM explicitly assumes that the guest has an FPU and
9709 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9710 	 * vCPU's FPU state as a fxregs_state struct.
9711 	 */
9712 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9713 		pr_err("inadequate fpu\n");
9714 		return -EOPNOTSUPP;
9715 	}
9716 
9717 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9718 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9719 		return -EOPNOTSUPP;
9720 	}
9721 
9722 	/*
9723 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9724 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9725 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9726 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9727 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9728 	 */
9729 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9730 	    (host_pat & GENMASK(2, 0)) != 6) {
9731 		pr_err("host PAT[0] is not WB\n");
9732 		return -EIO;
9733 	}
9734 
9735 	x86_emulator_cache = kvm_alloc_emulator_cache();
9736 	if (!x86_emulator_cache) {
9737 		pr_err("failed to allocate cache for x86 emulator\n");
9738 		return -ENOMEM;
9739 	}
9740 
9741 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9742 	if (!user_return_msrs) {
9743 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9744 		r = -ENOMEM;
9745 		goto out_free_x86_emulator_cache;
9746 	}
9747 	kvm_nr_uret_msrs = 0;
9748 
9749 	r = kvm_mmu_vendor_module_init();
9750 	if (r)
9751 		goto out_free_percpu;
9752 
9753 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9754 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9755 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9756 	}
9757 
9758 	rdmsrl_safe(MSR_EFER, &host_efer);
9759 
9760 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9761 		rdmsrl(MSR_IA32_XSS, host_xss);
9762 
9763 	kvm_init_pmu_capability(ops->pmu_ops);
9764 
9765 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9766 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9767 
9768 	r = ops->hardware_setup();
9769 	if (r != 0)
9770 		goto out_mmu_exit;
9771 
9772 	kvm_ops_update(ops);
9773 
9774 	for_each_online_cpu(cpu) {
9775 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9776 		if (r < 0)
9777 			goto out_unwind_ops;
9778 	}
9779 
9780 	/*
9781 	 * Point of no return!  DO NOT add error paths below this point unless
9782 	 * absolutely necessary, as most operations from this point forward
9783 	 * require unwinding.
9784 	 */
9785 	kvm_timer_init();
9786 
9787 	if (pi_inject_timer == -1)
9788 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9789 #ifdef CONFIG_X86_64
9790 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9791 
9792 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9793 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9794 #endif
9795 
9796 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9797 
9798 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9799 		kvm_caps.supported_xss = 0;
9800 
9801 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9802 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9803 #undef __kvm_cpu_cap_has
9804 
9805 	if (kvm_caps.has_tsc_control) {
9806 		/*
9807 		 * Make sure the user can only configure tsc_khz values that
9808 		 * fit into a signed integer.
9809 		 * A min value is not calculated because it will always
9810 		 * be 1 on all machines.
9811 		 */
9812 		u64 max = min(0x7fffffffULL,
9813 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9814 		kvm_caps.max_guest_tsc_khz = max;
9815 	}
9816 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9817 	kvm_init_msr_lists();
9818 	return 0;
9819 
9820 out_unwind_ops:
9821 	kvm_x86_ops.hardware_enable = NULL;
9822 	static_call(kvm_x86_hardware_unsetup)();
9823 out_mmu_exit:
9824 	kvm_mmu_vendor_module_exit();
9825 out_free_percpu:
9826 	free_percpu(user_return_msrs);
9827 out_free_x86_emulator_cache:
9828 	kmem_cache_destroy(x86_emulator_cache);
9829 	return r;
9830 }
9831 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9832 
9833 void kvm_x86_vendor_exit(void)
9834 {
9835 	kvm_unregister_perf_callbacks();
9836 
9837 #ifdef CONFIG_X86_64
9838 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9839 		clear_hv_tscchange_cb();
9840 #endif
9841 	kvm_lapic_exit();
9842 
9843 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9844 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9845 					    CPUFREQ_TRANSITION_NOTIFIER);
9846 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9847 	}
9848 #ifdef CONFIG_X86_64
9849 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9850 	irq_work_sync(&pvclock_irq_work);
9851 	cancel_work_sync(&pvclock_gtod_work);
9852 #endif
9853 	static_call(kvm_x86_hardware_unsetup)();
9854 	kvm_mmu_vendor_module_exit();
9855 	free_percpu(user_return_msrs);
9856 	kmem_cache_destroy(x86_emulator_cache);
9857 #ifdef CONFIG_KVM_XEN
9858 	static_key_deferred_flush(&kvm_xen_enabled);
9859 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9860 #endif
9861 	mutex_lock(&vendor_module_lock);
9862 	kvm_x86_ops.hardware_enable = NULL;
9863 	mutex_unlock(&vendor_module_lock);
9864 }
9865 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9866 
9867 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9868 {
9869 	/*
9870 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9871 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9872 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9873 	 * managed by userspace, in which case userspace is responsible for
9874 	 * handling wake events.
9875 	 */
9876 	++vcpu->stat.halt_exits;
9877 	if (lapic_in_kernel(vcpu)) {
9878 		vcpu->arch.mp_state = state;
9879 		return 1;
9880 	} else {
9881 		vcpu->run->exit_reason = reason;
9882 		return 0;
9883 	}
9884 }
9885 
9886 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9887 {
9888 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9889 }
9890 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9891 
9892 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9893 {
9894 	int ret = kvm_skip_emulated_instruction(vcpu);
9895 	/*
9896 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9897 	 * KVM_EXIT_DEBUG here.
9898 	 */
9899 	return kvm_emulate_halt_noskip(vcpu) && ret;
9900 }
9901 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9902 
9903 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9904 {
9905 	int ret = kvm_skip_emulated_instruction(vcpu);
9906 
9907 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9908 					KVM_EXIT_AP_RESET_HOLD) && ret;
9909 }
9910 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9911 
9912 #ifdef CONFIG_X86_64
9913 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9914 			        unsigned long clock_type)
9915 {
9916 	struct kvm_clock_pairing clock_pairing;
9917 	struct timespec64 ts;
9918 	u64 cycle;
9919 	int ret;
9920 
9921 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9922 		return -KVM_EOPNOTSUPP;
9923 
9924 	/*
9925 	 * When tsc is in permanent catchup mode guests won't be able to use
9926 	 * pvclock_read_retry loop to get consistent view of pvclock
9927 	 */
9928 	if (vcpu->arch.tsc_always_catchup)
9929 		return -KVM_EOPNOTSUPP;
9930 
9931 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9932 		return -KVM_EOPNOTSUPP;
9933 
9934 	clock_pairing.sec = ts.tv_sec;
9935 	clock_pairing.nsec = ts.tv_nsec;
9936 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9937 	clock_pairing.flags = 0;
9938 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9939 
9940 	ret = 0;
9941 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9942 			    sizeof(struct kvm_clock_pairing)))
9943 		ret = -KVM_EFAULT;
9944 
9945 	return ret;
9946 }
9947 #endif
9948 
9949 /*
9950  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9951  *
9952  * @apicid - apicid of vcpu to be kicked.
9953  */
9954 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9955 {
9956 	/*
9957 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9958 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9959 	 */
9960 	struct kvm_lapic_irq lapic_irq = {
9961 		.delivery_mode = APIC_DM_REMRD,
9962 		.dest_mode = APIC_DEST_PHYSICAL,
9963 		.shorthand = APIC_DEST_NOSHORT,
9964 		.dest_id = apicid,
9965 	};
9966 
9967 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9968 }
9969 
9970 bool kvm_apicv_activated(struct kvm *kvm)
9971 {
9972 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9973 }
9974 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9975 
9976 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9977 {
9978 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9979 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9980 
9981 	return (vm_reasons | vcpu_reasons) == 0;
9982 }
9983 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9984 
9985 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9986 				       enum kvm_apicv_inhibit reason, bool set)
9987 {
9988 	if (set)
9989 		__set_bit(reason, inhibits);
9990 	else
9991 		__clear_bit(reason, inhibits);
9992 
9993 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9994 }
9995 
9996 static void kvm_apicv_init(struct kvm *kvm)
9997 {
9998 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9999 
10000 	init_rwsem(&kvm->arch.apicv_update_lock);
10001 
10002 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
10003 
10004 	if (!enable_apicv)
10005 		set_or_clear_apicv_inhibit(inhibits,
10006 					   APICV_INHIBIT_REASON_DISABLE, true);
10007 }
10008 
10009 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10010 {
10011 	struct kvm_vcpu *target = NULL;
10012 	struct kvm_apic_map *map;
10013 
10014 	vcpu->stat.directed_yield_attempted++;
10015 
10016 	if (single_task_running())
10017 		goto no_yield;
10018 
10019 	rcu_read_lock();
10020 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
10021 
10022 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
10023 		target = map->phys_map[dest_id]->vcpu;
10024 
10025 	rcu_read_unlock();
10026 
10027 	if (!target || !READ_ONCE(target->ready))
10028 		goto no_yield;
10029 
10030 	/* Ignore requests to yield to self */
10031 	if (vcpu == target)
10032 		goto no_yield;
10033 
10034 	if (kvm_vcpu_yield_to(target) <= 0)
10035 		goto no_yield;
10036 
10037 	vcpu->stat.directed_yield_successful++;
10038 
10039 no_yield:
10040 	return;
10041 }
10042 
10043 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10044 {
10045 	u64 ret = vcpu->run->hypercall.ret;
10046 
10047 	if (!is_64_bit_mode(vcpu))
10048 		ret = (u32)ret;
10049 	kvm_rax_write(vcpu, ret);
10050 	++vcpu->stat.hypercalls;
10051 	return kvm_skip_emulated_instruction(vcpu);
10052 }
10053 
10054 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10055 {
10056 	unsigned long nr, a0, a1, a2, a3, ret;
10057 	int op_64_bit;
10058 
10059 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10060 		return kvm_xen_hypercall(vcpu);
10061 
10062 	if (kvm_hv_hypercall_enabled(vcpu))
10063 		return kvm_hv_hypercall(vcpu);
10064 
10065 	nr = kvm_rax_read(vcpu);
10066 	a0 = kvm_rbx_read(vcpu);
10067 	a1 = kvm_rcx_read(vcpu);
10068 	a2 = kvm_rdx_read(vcpu);
10069 	a3 = kvm_rsi_read(vcpu);
10070 
10071 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10072 
10073 	op_64_bit = is_64_bit_hypercall(vcpu);
10074 	if (!op_64_bit) {
10075 		nr &= 0xFFFFFFFF;
10076 		a0 &= 0xFFFFFFFF;
10077 		a1 &= 0xFFFFFFFF;
10078 		a2 &= 0xFFFFFFFF;
10079 		a3 &= 0xFFFFFFFF;
10080 	}
10081 
10082 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10083 		ret = -KVM_EPERM;
10084 		goto out;
10085 	}
10086 
10087 	ret = -KVM_ENOSYS;
10088 
10089 	switch (nr) {
10090 	case KVM_HC_VAPIC_POLL_IRQ:
10091 		ret = 0;
10092 		break;
10093 	case KVM_HC_KICK_CPU:
10094 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10095 			break;
10096 
10097 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10098 		kvm_sched_yield(vcpu, a1);
10099 		ret = 0;
10100 		break;
10101 #ifdef CONFIG_X86_64
10102 	case KVM_HC_CLOCK_PAIRING:
10103 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10104 		break;
10105 #endif
10106 	case KVM_HC_SEND_IPI:
10107 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10108 			break;
10109 
10110 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10111 		break;
10112 	case KVM_HC_SCHED_YIELD:
10113 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10114 			break;
10115 
10116 		kvm_sched_yield(vcpu, a0);
10117 		ret = 0;
10118 		break;
10119 	case KVM_HC_MAP_GPA_RANGE: {
10120 		u64 gpa = a0, npages = a1, attrs = a2;
10121 
10122 		ret = -KVM_ENOSYS;
10123 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10124 			break;
10125 
10126 		if (!PAGE_ALIGNED(gpa) || !npages ||
10127 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10128 			ret = -KVM_EINVAL;
10129 			break;
10130 		}
10131 
10132 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10133 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10134 		vcpu->run->hypercall.args[0]  = gpa;
10135 		vcpu->run->hypercall.args[1]  = npages;
10136 		vcpu->run->hypercall.args[2]  = attrs;
10137 		vcpu->run->hypercall.flags    = 0;
10138 		if (op_64_bit)
10139 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10140 
10141 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10142 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10143 		return 0;
10144 	}
10145 	default:
10146 		ret = -KVM_ENOSYS;
10147 		break;
10148 	}
10149 out:
10150 	if (!op_64_bit)
10151 		ret = (u32)ret;
10152 	kvm_rax_write(vcpu, ret);
10153 
10154 	++vcpu->stat.hypercalls;
10155 	return kvm_skip_emulated_instruction(vcpu);
10156 }
10157 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10158 
10159 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10160 {
10161 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10162 	char instruction[3];
10163 	unsigned long rip = kvm_rip_read(vcpu);
10164 
10165 	/*
10166 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10167 	 * the pieces.
10168 	 */
10169 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10170 		ctxt->exception.error_code_valid = false;
10171 		ctxt->exception.vector = UD_VECTOR;
10172 		ctxt->have_exception = true;
10173 		return X86EMUL_PROPAGATE_FAULT;
10174 	}
10175 
10176 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10177 
10178 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10179 		&ctxt->exception);
10180 }
10181 
10182 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10183 {
10184 	return vcpu->run->request_interrupt_window &&
10185 		likely(!pic_in_kernel(vcpu->kvm));
10186 }
10187 
10188 /* Called within kvm->srcu read side.  */
10189 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10190 {
10191 	struct kvm_run *kvm_run = vcpu->run;
10192 
10193 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10194 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10195 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
10196 
10197 	kvm_run->ready_for_interrupt_injection =
10198 		pic_in_kernel(vcpu->kvm) ||
10199 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10200 
10201 	if (is_smm(vcpu))
10202 		kvm_run->flags |= KVM_RUN_X86_SMM;
10203 }
10204 
10205 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10206 {
10207 	int max_irr, tpr;
10208 
10209 	if (!kvm_x86_ops.update_cr8_intercept)
10210 		return;
10211 
10212 	if (!lapic_in_kernel(vcpu))
10213 		return;
10214 
10215 	if (vcpu->arch.apic->apicv_active)
10216 		return;
10217 
10218 	if (!vcpu->arch.apic->vapic_addr)
10219 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10220 	else
10221 		max_irr = -1;
10222 
10223 	if (max_irr != -1)
10224 		max_irr >>= 4;
10225 
10226 	tpr = kvm_lapic_get_cr8(vcpu);
10227 
10228 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10229 }
10230 
10231 
10232 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10233 {
10234 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10235 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10236 		return 1;
10237 	}
10238 
10239 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10240 }
10241 
10242 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10243 {
10244 	/*
10245 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10246 	 * exceptions don't report error codes.  The presence of an error code
10247 	 * is carried with the exception and only stripped when the exception
10248 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10249 	 * report an error code despite the CPU being in Real Mode.
10250 	 */
10251 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10252 
10253 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10254 				vcpu->arch.exception.has_error_code,
10255 				vcpu->arch.exception.error_code,
10256 				vcpu->arch.exception.injected);
10257 
10258 	static_call(kvm_x86_inject_exception)(vcpu);
10259 }
10260 
10261 /*
10262  * Check for any event (interrupt or exception) that is ready to be injected,
10263  * and if there is at least one event, inject the event with the highest
10264  * priority.  This handles both "pending" events, i.e. events that have never
10265  * been injected into the guest, and "injected" events, i.e. events that were
10266  * injected as part of a previous VM-Enter, but weren't successfully delivered
10267  * and need to be re-injected.
10268  *
10269  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10270  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10271  * be able to inject exceptions in the "middle" of an instruction, and so must
10272  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10273  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10274  * boundaries is necessary and correct.
10275  *
10276  * For simplicity, KVM uses a single path to inject all events (except events
10277  * that are injected directly from L1 to L2) and doesn't explicitly track
10278  * instruction boundaries for asynchronous events.  However, because VM-Exits
10279  * that can occur during instruction execution typically result in KVM skipping
10280  * the instruction or injecting an exception, e.g. instruction and exception
10281  * intercepts, and because pending exceptions have higher priority than pending
10282  * interrupts, KVM still honors instruction boundaries in most scenarios.
10283  *
10284  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10285  * the instruction or inject an exception, then KVM can incorrecty inject a new
10286  * asynchronous event if the event became pending after the CPU fetched the
10287  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10288  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10289  * injected on the restarted instruction instead of being deferred until the
10290  * instruction completes.
10291  *
10292  * In practice, this virtualization hole is unlikely to be observed by the
10293  * guest, and even less likely to cause functional problems.  To detect the
10294  * hole, the guest would have to trigger an event on a side effect of an early
10295  * phase of instruction execution, e.g. on the instruction fetch from memory.
10296  * And for it to be a functional problem, the guest would need to depend on the
10297  * ordering between that side effect, the instruction completing, _and_ the
10298  * delivery of the asynchronous event.
10299  */
10300 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10301 				       bool *req_immediate_exit)
10302 {
10303 	bool can_inject;
10304 	int r;
10305 
10306 	/*
10307 	 * Process nested events first, as nested VM-Exit supersedes event
10308 	 * re-injection.  If there's an event queued for re-injection, it will
10309 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10310 	 */
10311 	if (is_guest_mode(vcpu))
10312 		r = kvm_check_nested_events(vcpu);
10313 	else
10314 		r = 0;
10315 
10316 	/*
10317 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10318 	 * to/from L2 is needed, as any event that has already been injected
10319 	 * into L2 needs to complete its lifecycle before injecting a new event.
10320 	 *
10321 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10322 	 * This collision arises if an exception occurred while vectoring the
10323 	 * injected event, KVM intercepted said exception, and KVM ultimately
10324 	 * determined the fault belongs to the guest and queues the exception
10325 	 * for injection back into the guest.
10326 	 *
10327 	 * "Injected" interrupts can also collide with pending exceptions if
10328 	 * userspace ignores the "ready for injection" flag and blindly queues
10329 	 * an interrupt.  In that case, prioritizing the exception is correct,
10330 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10331 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10332 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10333 	 * priority, they're only generated (pended) during instruction
10334 	 * execution, and interrupts are recognized at instruction boundaries.
10335 	 * Thus a pending fault-like exception means the fault occurred on the
10336 	 * *previous* instruction and must be serviced prior to recognizing any
10337 	 * new events in order to fully complete the previous instruction.
10338 	 */
10339 	if (vcpu->arch.exception.injected)
10340 		kvm_inject_exception(vcpu);
10341 	else if (kvm_is_exception_pending(vcpu))
10342 		; /* see above */
10343 	else if (vcpu->arch.nmi_injected)
10344 		static_call(kvm_x86_inject_nmi)(vcpu);
10345 	else if (vcpu->arch.interrupt.injected)
10346 		static_call(kvm_x86_inject_irq)(vcpu, true);
10347 
10348 	/*
10349 	 * Exceptions that morph to VM-Exits are handled above, and pending
10350 	 * exceptions on top of injected exceptions that do not VM-Exit should
10351 	 * either morph to #DF or, sadly, override the injected exception.
10352 	 */
10353 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10354 		     vcpu->arch.exception.pending);
10355 
10356 	/*
10357 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10358 	 * nested VM-Enter or event re-injection so that a different pending
10359 	 * event can be serviced (or if KVM needs to exit to userspace).
10360 	 *
10361 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10362 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10363 	 * there may now be events that can be injected into L1.
10364 	 */
10365 	if (r < 0)
10366 		goto out;
10367 
10368 	/*
10369 	 * A pending exception VM-Exit should either result in nested VM-Exit
10370 	 * or force an immediate re-entry and exit to/from L2, and exception
10371 	 * VM-Exits cannot be injected (flag should _never_ be set).
10372 	 */
10373 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10374 		     vcpu->arch.exception_vmexit.pending);
10375 
10376 	/*
10377 	 * New events, other than exceptions, cannot be injected if KVM needs
10378 	 * to re-inject a previous event.  See above comments on re-injecting
10379 	 * for why pending exceptions get priority.
10380 	 */
10381 	can_inject = !kvm_event_needs_reinjection(vcpu);
10382 
10383 	if (vcpu->arch.exception.pending) {
10384 		/*
10385 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10386 		 * value pushed on the stack.  Trap-like exception and all #DBs
10387 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10388 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10389 		 *
10390 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10391 		 * describe the behavior of General Detect #DBs, which are
10392 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10393 		 */
10394 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10395 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10396 					     X86_EFLAGS_RF);
10397 
10398 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10399 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10400 			if (vcpu->arch.dr7 & DR7_GD) {
10401 				vcpu->arch.dr7 &= ~DR7_GD;
10402 				kvm_update_dr7(vcpu);
10403 			}
10404 		}
10405 
10406 		kvm_inject_exception(vcpu);
10407 
10408 		vcpu->arch.exception.pending = false;
10409 		vcpu->arch.exception.injected = true;
10410 
10411 		can_inject = false;
10412 	}
10413 
10414 	/* Don't inject interrupts if the user asked to avoid doing so */
10415 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10416 		return 0;
10417 
10418 	/*
10419 	 * Finally, inject interrupt events.  If an event cannot be injected
10420 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10421 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10422 	 * and can architecturally be injected, but we cannot do it right now:
10423 	 * an interrupt could have arrived just now and we have to inject it
10424 	 * as a vmexit, or there could already an event in the queue, which is
10425 	 * indicated by can_inject.  In that case we request an immediate exit
10426 	 * in order to make progress and get back here for another iteration.
10427 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10428 	 */
10429 #ifdef CONFIG_KVM_SMM
10430 	if (vcpu->arch.smi_pending) {
10431 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10432 		if (r < 0)
10433 			goto out;
10434 		if (r) {
10435 			vcpu->arch.smi_pending = false;
10436 			++vcpu->arch.smi_count;
10437 			enter_smm(vcpu);
10438 			can_inject = false;
10439 		} else
10440 			static_call(kvm_x86_enable_smi_window)(vcpu);
10441 	}
10442 #endif
10443 
10444 	if (vcpu->arch.nmi_pending) {
10445 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10446 		if (r < 0)
10447 			goto out;
10448 		if (r) {
10449 			--vcpu->arch.nmi_pending;
10450 			vcpu->arch.nmi_injected = true;
10451 			static_call(kvm_x86_inject_nmi)(vcpu);
10452 			can_inject = false;
10453 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10454 		}
10455 		if (vcpu->arch.nmi_pending)
10456 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10457 	}
10458 
10459 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10460 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10461 		if (r < 0)
10462 			goto out;
10463 		if (r) {
10464 			int irq = kvm_cpu_get_interrupt(vcpu);
10465 
10466 			if (!WARN_ON_ONCE(irq == -1)) {
10467 				kvm_queue_interrupt(vcpu, irq, false);
10468 				static_call(kvm_x86_inject_irq)(vcpu, false);
10469 				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10470 			}
10471 		}
10472 		if (kvm_cpu_has_injectable_intr(vcpu))
10473 			static_call(kvm_x86_enable_irq_window)(vcpu);
10474 	}
10475 
10476 	if (is_guest_mode(vcpu) &&
10477 	    kvm_x86_ops.nested_ops->has_events &&
10478 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10479 		*req_immediate_exit = true;
10480 
10481 	/*
10482 	 * KVM must never queue a new exception while injecting an event; KVM
10483 	 * is done emulating and should only propagate the to-be-injected event
10484 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10485 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10486 	 * exception and start the cycle all over.
10487 	 *
10488 	 * Exempt triple faults as they have special handling and won't put the
10489 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10490 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10491 	 * Mode events (see kvm_inject_realmode_interrupt()).
10492 	 */
10493 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10494 		     vcpu->arch.exception_vmexit.pending);
10495 	return 0;
10496 
10497 out:
10498 	if (r == -EBUSY) {
10499 		*req_immediate_exit = true;
10500 		r = 0;
10501 	}
10502 	return r;
10503 }
10504 
10505 static void process_nmi(struct kvm_vcpu *vcpu)
10506 {
10507 	unsigned int limit;
10508 
10509 	/*
10510 	 * x86 is limited to one NMI pending, but because KVM can't react to
10511 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10512 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10513 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10514 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10515 	 * waiting for a previous NMI injection to complete (which effectively
10516 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10517 	 * will request an NMI window to handle the second NMI.
10518 	 */
10519 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10520 		limit = 1;
10521 	else
10522 		limit = 2;
10523 
10524 	/*
10525 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10526 	 * tracked in vcpu->arch.nmi_pending.
10527 	 */
10528 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10529 		limit--;
10530 
10531 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10532 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10533 
10534 	if (vcpu->arch.nmi_pending &&
10535 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10536 		vcpu->arch.nmi_pending--;
10537 
10538 	if (vcpu->arch.nmi_pending)
10539 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10540 }
10541 
10542 /* Return total number of NMIs pending injection to the VM */
10543 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10544 {
10545 	return vcpu->arch.nmi_pending +
10546 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10547 }
10548 
10549 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10550 				       unsigned long *vcpu_bitmap)
10551 {
10552 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10553 }
10554 
10555 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10556 {
10557 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10558 }
10559 
10560 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10561 {
10562 	struct kvm_lapic *apic = vcpu->arch.apic;
10563 	bool activate;
10564 
10565 	if (!lapic_in_kernel(vcpu))
10566 		return;
10567 
10568 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10569 	preempt_disable();
10570 
10571 	/* Do not activate APICV when APIC is disabled */
10572 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10573 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10574 
10575 	if (apic->apicv_active == activate)
10576 		goto out;
10577 
10578 	apic->apicv_active = activate;
10579 	kvm_apic_update_apicv(vcpu);
10580 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10581 
10582 	/*
10583 	 * When APICv gets disabled, we may still have injected interrupts
10584 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10585 	 * still active when the interrupt got accepted. Make sure
10586 	 * kvm_check_and_inject_events() is called to check for that.
10587 	 */
10588 	if (!apic->apicv_active)
10589 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10590 
10591 out:
10592 	preempt_enable();
10593 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10594 }
10595 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10596 
10597 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10598 {
10599 	if (!lapic_in_kernel(vcpu))
10600 		return;
10601 
10602 	/*
10603 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10604 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10605 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10606 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10607 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10608 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10609 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10610 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10611 	 * access page is sticky.
10612 	 */
10613 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10614 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10615 		kvm_inhibit_apic_access_page(vcpu);
10616 
10617 	__kvm_vcpu_update_apicv(vcpu);
10618 }
10619 
10620 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10621 				      enum kvm_apicv_inhibit reason, bool set)
10622 {
10623 	unsigned long old, new;
10624 
10625 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10626 
10627 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10628 		return;
10629 
10630 	old = new = kvm->arch.apicv_inhibit_reasons;
10631 
10632 	set_or_clear_apicv_inhibit(&new, reason, set);
10633 
10634 	if (!!old != !!new) {
10635 		/*
10636 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10637 		 * false positives in the sanity check WARN in svm_vcpu_run().
10638 		 * This task will wait for all vCPUs to ack the kick IRQ before
10639 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10640 		 * block on acquiring apicv_update_lock so that vCPUs can't
10641 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10642 		 *
10643 		 * Note, holding apicv_update_lock and taking it in the read
10644 		 * side (handling the request) also prevents other vCPUs from
10645 		 * servicing the request with a stale apicv_inhibit_reasons.
10646 		 */
10647 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10648 		kvm->arch.apicv_inhibit_reasons = new;
10649 		if (new) {
10650 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10651 			int idx = srcu_read_lock(&kvm->srcu);
10652 
10653 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10654 			srcu_read_unlock(&kvm->srcu, idx);
10655 		}
10656 	} else {
10657 		kvm->arch.apicv_inhibit_reasons = new;
10658 	}
10659 }
10660 
10661 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10662 				    enum kvm_apicv_inhibit reason, bool set)
10663 {
10664 	if (!enable_apicv)
10665 		return;
10666 
10667 	down_write(&kvm->arch.apicv_update_lock);
10668 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10669 	up_write(&kvm->arch.apicv_update_lock);
10670 }
10671 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10672 
10673 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10674 {
10675 	if (!kvm_apic_present(vcpu))
10676 		return;
10677 
10678 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10679 
10680 	if (irqchip_split(vcpu->kvm))
10681 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10682 	else {
10683 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10684 		if (ioapic_in_kernel(vcpu->kvm))
10685 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10686 	}
10687 
10688 	if (is_guest_mode(vcpu))
10689 		vcpu->arch.load_eoi_exitmap_pending = true;
10690 	else
10691 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10692 }
10693 
10694 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10695 {
10696 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10697 		return;
10698 
10699 #ifdef CONFIG_KVM_HYPERV
10700 	if (to_hv_vcpu(vcpu)) {
10701 		u64 eoi_exit_bitmap[4];
10702 
10703 		bitmap_or((ulong *)eoi_exit_bitmap,
10704 			  vcpu->arch.ioapic_handled_vectors,
10705 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10706 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10707 		return;
10708 	}
10709 #endif
10710 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10711 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10712 }
10713 
10714 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10715 {
10716 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10717 }
10718 
10719 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10720 {
10721 	if (!lapic_in_kernel(vcpu))
10722 		return;
10723 
10724 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10725 }
10726 
10727 /*
10728  * Called within kvm->srcu read side.
10729  * Returns 1 to let vcpu_run() continue the guest execution loop without
10730  * exiting to the userspace.  Otherwise, the value will be returned to the
10731  * userspace.
10732  */
10733 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10734 {
10735 	int r;
10736 	bool req_int_win =
10737 		dm_request_for_irq_injection(vcpu) &&
10738 		kvm_cpu_accept_dm_intr(vcpu);
10739 	fastpath_t exit_fastpath;
10740 
10741 	bool req_immediate_exit = false;
10742 
10743 	if (kvm_request_pending(vcpu)) {
10744 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10745 			r = -EIO;
10746 			goto out;
10747 		}
10748 
10749 		if (kvm_dirty_ring_check_request(vcpu)) {
10750 			r = 0;
10751 			goto out;
10752 		}
10753 
10754 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10755 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10756 				r = 0;
10757 				goto out;
10758 			}
10759 		}
10760 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10761 			kvm_mmu_free_obsolete_roots(vcpu);
10762 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10763 			__kvm_migrate_timers(vcpu);
10764 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10765 			kvm_update_masterclock(vcpu->kvm);
10766 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10767 			kvm_gen_kvmclock_update(vcpu);
10768 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10769 			r = kvm_guest_time_update(vcpu);
10770 			if (unlikely(r))
10771 				goto out;
10772 		}
10773 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10774 			kvm_mmu_sync_roots(vcpu);
10775 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10776 			kvm_mmu_load_pgd(vcpu);
10777 
10778 		/*
10779 		 * Note, the order matters here, as flushing "all" TLB entries
10780 		 * also flushes the "current" TLB entries, i.e. servicing the
10781 		 * flush "all" will clear any request to flush "current".
10782 		 */
10783 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10784 			kvm_vcpu_flush_tlb_all(vcpu);
10785 
10786 		kvm_service_local_tlb_flush_requests(vcpu);
10787 
10788 		/*
10789 		 * Fall back to a "full" guest flush if Hyper-V's precise
10790 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10791 		 * the flushes are considered "remote" and not "local" because
10792 		 * the requests can be initiated from other vCPUs.
10793 		 */
10794 #ifdef CONFIG_KVM_HYPERV
10795 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10796 		    kvm_hv_vcpu_flush_tlb(vcpu))
10797 			kvm_vcpu_flush_tlb_guest(vcpu);
10798 #endif
10799 
10800 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10801 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10802 			r = 0;
10803 			goto out;
10804 		}
10805 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10806 			if (is_guest_mode(vcpu))
10807 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10808 
10809 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10810 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10811 				vcpu->mmio_needed = 0;
10812 				r = 0;
10813 				goto out;
10814 			}
10815 		}
10816 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10817 			/* Page is swapped out. Do synthetic halt */
10818 			vcpu->arch.apf.halted = true;
10819 			r = 1;
10820 			goto out;
10821 		}
10822 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10823 			record_steal_time(vcpu);
10824 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10825 			kvm_pmu_handle_event(vcpu);
10826 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10827 			kvm_pmu_deliver_pmi(vcpu);
10828 #ifdef CONFIG_KVM_SMM
10829 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10830 			process_smi(vcpu);
10831 #endif
10832 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10833 			process_nmi(vcpu);
10834 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10835 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10836 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10837 				     vcpu->arch.ioapic_handled_vectors)) {
10838 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10839 				vcpu->run->eoi.vector =
10840 						vcpu->arch.pending_ioapic_eoi;
10841 				r = 0;
10842 				goto out;
10843 			}
10844 		}
10845 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10846 			vcpu_scan_ioapic(vcpu);
10847 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10848 			vcpu_load_eoi_exitmap(vcpu);
10849 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10850 			kvm_vcpu_reload_apic_access_page(vcpu);
10851 #ifdef CONFIG_KVM_HYPERV
10852 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10853 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10854 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10855 			vcpu->run->system_event.ndata = 0;
10856 			r = 0;
10857 			goto out;
10858 		}
10859 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10860 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10861 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10862 			vcpu->run->system_event.ndata = 0;
10863 			r = 0;
10864 			goto out;
10865 		}
10866 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10867 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10868 
10869 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10870 			vcpu->run->hyperv = hv_vcpu->exit;
10871 			r = 0;
10872 			goto out;
10873 		}
10874 
10875 		/*
10876 		 * KVM_REQ_HV_STIMER has to be processed after
10877 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10878 		 * depend on the guest clock being up-to-date
10879 		 */
10880 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10881 			kvm_hv_process_stimers(vcpu);
10882 #endif
10883 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10884 			kvm_vcpu_update_apicv(vcpu);
10885 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10886 			kvm_check_async_pf_completion(vcpu);
10887 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10888 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10889 
10890 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10891 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10892 	}
10893 
10894 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10895 	    kvm_xen_has_interrupt(vcpu)) {
10896 		++vcpu->stat.req_event;
10897 		r = kvm_apic_accept_events(vcpu);
10898 		if (r < 0) {
10899 			r = 0;
10900 			goto out;
10901 		}
10902 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10903 			r = 1;
10904 			goto out;
10905 		}
10906 
10907 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10908 		if (r < 0) {
10909 			r = 0;
10910 			goto out;
10911 		}
10912 		if (req_int_win)
10913 			static_call(kvm_x86_enable_irq_window)(vcpu);
10914 
10915 		if (kvm_lapic_enabled(vcpu)) {
10916 			update_cr8_intercept(vcpu);
10917 			kvm_lapic_sync_to_vapic(vcpu);
10918 		}
10919 	}
10920 
10921 	r = kvm_mmu_reload(vcpu);
10922 	if (unlikely(r)) {
10923 		goto cancel_injection;
10924 	}
10925 
10926 	preempt_disable();
10927 
10928 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10929 
10930 	/*
10931 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10932 	 * IPI are then delayed after guest entry, which ensures that they
10933 	 * result in virtual interrupt delivery.
10934 	 */
10935 	local_irq_disable();
10936 
10937 	/* Store vcpu->apicv_active before vcpu->mode.  */
10938 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10939 
10940 	kvm_vcpu_srcu_read_unlock(vcpu);
10941 
10942 	/*
10943 	 * 1) We should set ->mode before checking ->requests.  Please see
10944 	 * the comment in kvm_vcpu_exiting_guest_mode().
10945 	 *
10946 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10947 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10948 	 * (see vmx_deliver_posted_interrupt).
10949 	 *
10950 	 * 3) This also orders the write to mode from any reads to the page
10951 	 * tables done while the VCPU is running.  Please see the comment
10952 	 * in kvm_flush_remote_tlbs.
10953 	 */
10954 	smp_mb__after_srcu_read_unlock();
10955 
10956 	/*
10957 	 * Process pending posted interrupts to handle the case where the
10958 	 * notification IRQ arrived in the host, or was never sent (because the
10959 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10960 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10961 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10962 	 */
10963 	if (kvm_lapic_enabled(vcpu))
10964 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10965 
10966 	if (kvm_vcpu_exit_request(vcpu)) {
10967 		vcpu->mode = OUTSIDE_GUEST_MODE;
10968 		smp_wmb();
10969 		local_irq_enable();
10970 		preempt_enable();
10971 		kvm_vcpu_srcu_read_lock(vcpu);
10972 		r = 1;
10973 		goto cancel_injection;
10974 	}
10975 
10976 	if (req_immediate_exit)
10977 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10978 
10979 	fpregs_assert_state_consistent();
10980 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10981 		switch_fpu_return();
10982 
10983 	if (vcpu->arch.guest_fpu.xfd_err)
10984 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10985 
10986 	if (unlikely(vcpu->arch.switch_db_regs)) {
10987 		set_debugreg(0, 7);
10988 		set_debugreg(vcpu->arch.eff_db[0], 0);
10989 		set_debugreg(vcpu->arch.eff_db[1], 1);
10990 		set_debugreg(vcpu->arch.eff_db[2], 2);
10991 		set_debugreg(vcpu->arch.eff_db[3], 3);
10992 	} else if (unlikely(hw_breakpoint_active())) {
10993 		set_debugreg(0, 7);
10994 	}
10995 
10996 	guest_timing_enter_irqoff();
10997 
10998 	for (;;) {
10999 		/*
11000 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
11001 		 * update must kick and wait for all vCPUs before toggling the
11002 		 * per-VM state, and responding vCPUs must wait for the update
11003 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
11004 		 */
11005 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11006 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11007 
11008 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu, req_immediate_exit);
11009 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11010 			break;
11011 
11012 		if (kvm_lapic_enabled(vcpu))
11013 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
11014 
11015 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11016 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11017 			break;
11018 		}
11019 
11020 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
11021 		++vcpu->stat.exits;
11022 	}
11023 
11024 	/*
11025 	 * Do this here before restoring debug registers on the host.  And
11026 	 * since we do this before handling the vmexit, a DR access vmexit
11027 	 * can (a) read the correct value of the debug registers, (b) set
11028 	 * KVM_DEBUGREG_WONT_EXIT again.
11029 	 */
11030 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11031 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11032 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
11033 		kvm_update_dr0123(vcpu);
11034 		kvm_update_dr7(vcpu);
11035 	}
11036 
11037 	/*
11038 	 * If the guest has used debug registers, at least dr7
11039 	 * will be disabled while returning to the host.
11040 	 * If we don't have active breakpoints in the host, we don't
11041 	 * care about the messed up debug address registers. But if
11042 	 * we have some of them active, restore the old state.
11043 	 */
11044 	if (hw_breakpoint_active())
11045 		hw_breakpoint_restore();
11046 
11047 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11048 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11049 
11050 	vcpu->mode = OUTSIDE_GUEST_MODE;
11051 	smp_wmb();
11052 
11053 	/*
11054 	 * Sync xfd before calling handle_exit_irqoff() which may
11055 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11056 	 * in #NM irqoff handler).
11057 	 */
11058 	if (vcpu->arch.xfd_no_write_intercept)
11059 		fpu_sync_guest_vmexit_xfd_state();
11060 
11061 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11062 
11063 	if (vcpu->arch.guest_fpu.xfd_err)
11064 		wrmsrl(MSR_IA32_XFD_ERR, 0);
11065 
11066 	/*
11067 	 * Consume any pending interrupts, including the possible source of
11068 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11069 	 * An instruction is required after local_irq_enable() to fully unblock
11070 	 * interrupts on processors that implement an interrupt shadow, the
11071 	 * stat.exits increment will do nicely.
11072 	 */
11073 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11074 	local_irq_enable();
11075 	++vcpu->stat.exits;
11076 	local_irq_disable();
11077 	kvm_after_interrupt(vcpu);
11078 
11079 	/*
11080 	 * Wait until after servicing IRQs to account guest time so that any
11081 	 * ticks that occurred while running the guest are properly accounted
11082 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11083 	 * of accounting via context tracking, but the loss of accuracy is
11084 	 * acceptable for all known use cases.
11085 	 */
11086 	guest_timing_exit_irqoff();
11087 
11088 	local_irq_enable();
11089 	preempt_enable();
11090 
11091 	kvm_vcpu_srcu_read_lock(vcpu);
11092 
11093 	/*
11094 	 * Profile KVM exit RIPs:
11095 	 */
11096 	if (unlikely(prof_on == KVM_PROFILING)) {
11097 		unsigned long rip = kvm_rip_read(vcpu);
11098 		profile_hit(KVM_PROFILING, (void *)rip);
11099 	}
11100 
11101 	if (unlikely(vcpu->arch.tsc_always_catchup))
11102 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11103 
11104 	if (vcpu->arch.apic_attention)
11105 		kvm_lapic_sync_from_vapic(vcpu);
11106 
11107 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11108 	return r;
11109 
11110 cancel_injection:
11111 	if (req_immediate_exit)
11112 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11113 	static_call(kvm_x86_cancel_injection)(vcpu);
11114 	if (unlikely(vcpu->arch.apic_attention))
11115 		kvm_lapic_sync_from_vapic(vcpu);
11116 out:
11117 	return r;
11118 }
11119 
11120 /* Called within kvm->srcu read side.  */
11121 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11122 {
11123 	bool hv_timer;
11124 
11125 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11126 		/*
11127 		 * Switch to the software timer before halt-polling/blocking as
11128 		 * the guest's timer may be a break event for the vCPU, and the
11129 		 * hypervisor timer runs only when the CPU is in guest mode.
11130 		 * Switch before halt-polling so that KVM recognizes an expired
11131 		 * timer before blocking.
11132 		 */
11133 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11134 		if (hv_timer)
11135 			kvm_lapic_switch_to_sw_timer(vcpu);
11136 
11137 		kvm_vcpu_srcu_read_unlock(vcpu);
11138 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11139 			kvm_vcpu_halt(vcpu);
11140 		else
11141 			kvm_vcpu_block(vcpu);
11142 		kvm_vcpu_srcu_read_lock(vcpu);
11143 
11144 		if (hv_timer)
11145 			kvm_lapic_switch_to_hv_timer(vcpu);
11146 
11147 		/*
11148 		 * If the vCPU is not runnable, a signal or another host event
11149 		 * of some kind is pending; service it without changing the
11150 		 * vCPU's activity state.
11151 		 */
11152 		if (!kvm_arch_vcpu_runnable(vcpu))
11153 			return 1;
11154 	}
11155 
11156 	/*
11157 	 * Evaluate nested events before exiting the halted state.  This allows
11158 	 * the halt state to be recorded properly in the VMCS12's activity
11159 	 * state field (AMD does not have a similar field and a VM-Exit always
11160 	 * causes a spurious wakeup from HLT).
11161 	 */
11162 	if (is_guest_mode(vcpu)) {
11163 		if (kvm_check_nested_events(vcpu) < 0)
11164 			return 0;
11165 	}
11166 
11167 	if (kvm_apic_accept_events(vcpu) < 0)
11168 		return 0;
11169 	switch(vcpu->arch.mp_state) {
11170 	case KVM_MP_STATE_HALTED:
11171 	case KVM_MP_STATE_AP_RESET_HOLD:
11172 		vcpu->arch.pv.pv_unhalted = false;
11173 		vcpu->arch.mp_state =
11174 			KVM_MP_STATE_RUNNABLE;
11175 		fallthrough;
11176 	case KVM_MP_STATE_RUNNABLE:
11177 		vcpu->arch.apf.halted = false;
11178 		break;
11179 	case KVM_MP_STATE_INIT_RECEIVED:
11180 		break;
11181 	default:
11182 		WARN_ON_ONCE(1);
11183 		break;
11184 	}
11185 	return 1;
11186 }
11187 
11188 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11189 {
11190 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11191 		!vcpu->arch.apf.halted);
11192 }
11193 
11194 /* Called within kvm->srcu read side.  */
11195 static int vcpu_run(struct kvm_vcpu *vcpu)
11196 {
11197 	int r;
11198 
11199 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11200 	vcpu->arch.l1tf_flush_l1d = true;
11201 
11202 	for (;;) {
11203 		/*
11204 		 * If another guest vCPU requests a PV TLB flush in the middle
11205 		 * of instruction emulation, the rest of the emulation could
11206 		 * use a stale page translation. Assume that any code after
11207 		 * this point can start executing an instruction.
11208 		 */
11209 		vcpu->arch.at_instruction_boundary = false;
11210 		if (kvm_vcpu_running(vcpu)) {
11211 			r = vcpu_enter_guest(vcpu);
11212 		} else {
11213 			r = vcpu_block(vcpu);
11214 		}
11215 
11216 		if (r <= 0)
11217 			break;
11218 
11219 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11220 		if (kvm_xen_has_pending_events(vcpu))
11221 			kvm_xen_inject_pending_events(vcpu);
11222 
11223 		if (kvm_cpu_has_pending_timer(vcpu))
11224 			kvm_inject_pending_timer_irqs(vcpu);
11225 
11226 		if (dm_request_for_irq_injection(vcpu) &&
11227 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11228 			r = 0;
11229 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11230 			++vcpu->stat.request_irq_exits;
11231 			break;
11232 		}
11233 
11234 		if (__xfer_to_guest_mode_work_pending()) {
11235 			kvm_vcpu_srcu_read_unlock(vcpu);
11236 			r = xfer_to_guest_mode_handle_work(vcpu);
11237 			kvm_vcpu_srcu_read_lock(vcpu);
11238 			if (r)
11239 				return r;
11240 		}
11241 	}
11242 
11243 	return r;
11244 }
11245 
11246 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11247 {
11248 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11249 }
11250 
11251 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11252 {
11253 	BUG_ON(!vcpu->arch.pio.count);
11254 
11255 	return complete_emulated_io(vcpu);
11256 }
11257 
11258 /*
11259  * Implements the following, as a state machine:
11260  *
11261  * read:
11262  *   for each fragment
11263  *     for each mmio piece in the fragment
11264  *       write gpa, len
11265  *       exit
11266  *       copy data
11267  *   execute insn
11268  *
11269  * write:
11270  *   for each fragment
11271  *     for each mmio piece in the fragment
11272  *       write gpa, len
11273  *       copy data
11274  *       exit
11275  */
11276 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11277 {
11278 	struct kvm_run *run = vcpu->run;
11279 	struct kvm_mmio_fragment *frag;
11280 	unsigned len;
11281 
11282 	BUG_ON(!vcpu->mmio_needed);
11283 
11284 	/* Complete previous fragment */
11285 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11286 	len = min(8u, frag->len);
11287 	if (!vcpu->mmio_is_write)
11288 		memcpy(frag->data, run->mmio.data, len);
11289 
11290 	if (frag->len <= 8) {
11291 		/* Switch to the next fragment. */
11292 		frag++;
11293 		vcpu->mmio_cur_fragment++;
11294 	} else {
11295 		/* Go forward to the next mmio piece. */
11296 		frag->data += len;
11297 		frag->gpa += len;
11298 		frag->len -= len;
11299 	}
11300 
11301 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11302 		vcpu->mmio_needed = 0;
11303 
11304 		/* FIXME: return into emulator if single-stepping.  */
11305 		if (vcpu->mmio_is_write)
11306 			return 1;
11307 		vcpu->mmio_read_completed = 1;
11308 		return complete_emulated_io(vcpu);
11309 	}
11310 
11311 	run->exit_reason = KVM_EXIT_MMIO;
11312 	run->mmio.phys_addr = frag->gpa;
11313 	if (vcpu->mmio_is_write)
11314 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11315 	run->mmio.len = min(8u, frag->len);
11316 	run->mmio.is_write = vcpu->mmio_is_write;
11317 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11318 	return 0;
11319 }
11320 
11321 /* Swap (qemu) user FPU context for the guest FPU context. */
11322 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11323 {
11324 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11325 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11326 	trace_kvm_fpu(1);
11327 }
11328 
11329 /* When vcpu_run ends, restore user space FPU context. */
11330 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11331 {
11332 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11333 	++vcpu->stat.fpu_reload;
11334 	trace_kvm_fpu(0);
11335 }
11336 
11337 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11338 {
11339 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11340 	struct kvm_run *kvm_run = vcpu->run;
11341 	int r;
11342 
11343 	vcpu_load(vcpu);
11344 	kvm_sigset_activate(vcpu);
11345 	kvm_run->flags = 0;
11346 	kvm_load_guest_fpu(vcpu);
11347 
11348 	kvm_vcpu_srcu_read_lock(vcpu);
11349 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11350 		if (kvm_run->immediate_exit) {
11351 			r = -EINTR;
11352 			goto out;
11353 		}
11354 
11355 		/*
11356 		 * Don't bother switching APIC timer emulation from the
11357 		 * hypervisor timer to the software timer, the only way for the
11358 		 * APIC timer to be active is if userspace stuffed vCPU state,
11359 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11360 		 * will transition the vCPU out of UNINITIALIZED (without more
11361 		 * state stuffing from userspace), which will reset the local
11362 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11363 		 * already expired).
11364 		 */
11365 		kvm_vcpu_srcu_read_unlock(vcpu);
11366 		kvm_vcpu_block(vcpu);
11367 		kvm_vcpu_srcu_read_lock(vcpu);
11368 
11369 		if (kvm_apic_accept_events(vcpu) < 0) {
11370 			r = 0;
11371 			goto out;
11372 		}
11373 		r = -EAGAIN;
11374 		if (signal_pending(current)) {
11375 			r = -EINTR;
11376 			kvm_run->exit_reason = KVM_EXIT_INTR;
11377 			++vcpu->stat.signal_exits;
11378 		}
11379 		goto out;
11380 	}
11381 
11382 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11383 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11384 		r = -EINVAL;
11385 		goto out;
11386 	}
11387 
11388 	if (kvm_run->kvm_dirty_regs) {
11389 		r = sync_regs(vcpu);
11390 		if (r != 0)
11391 			goto out;
11392 	}
11393 
11394 	/* re-sync apic's tpr */
11395 	if (!lapic_in_kernel(vcpu)) {
11396 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11397 			r = -EINVAL;
11398 			goto out;
11399 		}
11400 	}
11401 
11402 	/*
11403 	 * If userspace set a pending exception and L2 is active, convert it to
11404 	 * a pending VM-Exit if L1 wants to intercept the exception.
11405 	 */
11406 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11407 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11408 							ex->error_code)) {
11409 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11410 					   ex->has_error_code, ex->error_code,
11411 					   ex->has_payload, ex->payload);
11412 		ex->injected = false;
11413 		ex->pending = false;
11414 	}
11415 	vcpu->arch.exception_from_userspace = false;
11416 
11417 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11418 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11419 		vcpu->arch.complete_userspace_io = NULL;
11420 		r = cui(vcpu);
11421 		if (r <= 0)
11422 			goto out;
11423 	} else {
11424 		WARN_ON_ONCE(vcpu->arch.pio.count);
11425 		WARN_ON_ONCE(vcpu->mmio_needed);
11426 	}
11427 
11428 	if (kvm_run->immediate_exit) {
11429 		r = -EINTR;
11430 		goto out;
11431 	}
11432 
11433 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11434 	if (r <= 0)
11435 		goto out;
11436 
11437 	r = vcpu_run(vcpu);
11438 
11439 out:
11440 	kvm_put_guest_fpu(vcpu);
11441 	if (kvm_run->kvm_valid_regs)
11442 		store_regs(vcpu);
11443 	post_kvm_run_save(vcpu);
11444 	kvm_vcpu_srcu_read_unlock(vcpu);
11445 
11446 	kvm_sigset_deactivate(vcpu);
11447 	vcpu_put(vcpu);
11448 	return r;
11449 }
11450 
11451 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11452 {
11453 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11454 		/*
11455 		 * We are here if userspace calls get_regs() in the middle of
11456 		 * instruction emulation. Registers state needs to be copied
11457 		 * back from emulation context to vcpu. Userspace shouldn't do
11458 		 * that usually, but some bad designed PV devices (vmware
11459 		 * backdoor interface) need this to work
11460 		 */
11461 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11462 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11463 	}
11464 	regs->rax = kvm_rax_read(vcpu);
11465 	regs->rbx = kvm_rbx_read(vcpu);
11466 	regs->rcx = kvm_rcx_read(vcpu);
11467 	regs->rdx = kvm_rdx_read(vcpu);
11468 	regs->rsi = kvm_rsi_read(vcpu);
11469 	regs->rdi = kvm_rdi_read(vcpu);
11470 	regs->rsp = kvm_rsp_read(vcpu);
11471 	regs->rbp = kvm_rbp_read(vcpu);
11472 #ifdef CONFIG_X86_64
11473 	regs->r8 = kvm_r8_read(vcpu);
11474 	regs->r9 = kvm_r9_read(vcpu);
11475 	regs->r10 = kvm_r10_read(vcpu);
11476 	regs->r11 = kvm_r11_read(vcpu);
11477 	regs->r12 = kvm_r12_read(vcpu);
11478 	regs->r13 = kvm_r13_read(vcpu);
11479 	regs->r14 = kvm_r14_read(vcpu);
11480 	regs->r15 = kvm_r15_read(vcpu);
11481 #endif
11482 
11483 	regs->rip = kvm_rip_read(vcpu);
11484 	regs->rflags = kvm_get_rflags(vcpu);
11485 }
11486 
11487 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11488 {
11489 	vcpu_load(vcpu);
11490 	__get_regs(vcpu, regs);
11491 	vcpu_put(vcpu);
11492 	return 0;
11493 }
11494 
11495 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11496 {
11497 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11498 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11499 
11500 	kvm_rax_write(vcpu, regs->rax);
11501 	kvm_rbx_write(vcpu, regs->rbx);
11502 	kvm_rcx_write(vcpu, regs->rcx);
11503 	kvm_rdx_write(vcpu, regs->rdx);
11504 	kvm_rsi_write(vcpu, regs->rsi);
11505 	kvm_rdi_write(vcpu, regs->rdi);
11506 	kvm_rsp_write(vcpu, regs->rsp);
11507 	kvm_rbp_write(vcpu, regs->rbp);
11508 #ifdef CONFIG_X86_64
11509 	kvm_r8_write(vcpu, regs->r8);
11510 	kvm_r9_write(vcpu, regs->r9);
11511 	kvm_r10_write(vcpu, regs->r10);
11512 	kvm_r11_write(vcpu, regs->r11);
11513 	kvm_r12_write(vcpu, regs->r12);
11514 	kvm_r13_write(vcpu, regs->r13);
11515 	kvm_r14_write(vcpu, regs->r14);
11516 	kvm_r15_write(vcpu, regs->r15);
11517 #endif
11518 
11519 	kvm_rip_write(vcpu, regs->rip);
11520 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11521 
11522 	vcpu->arch.exception.pending = false;
11523 	vcpu->arch.exception_vmexit.pending = false;
11524 
11525 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11526 }
11527 
11528 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11529 {
11530 	vcpu_load(vcpu);
11531 	__set_regs(vcpu, regs);
11532 	vcpu_put(vcpu);
11533 	return 0;
11534 }
11535 
11536 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11537 {
11538 	struct desc_ptr dt;
11539 
11540 	if (vcpu->arch.guest_state_protected)
11541 		goto skip_protected_regs;
11542 
11543 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11544 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11545 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11546 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11547 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11548 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11549 
11550 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11551 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11552 
11553 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11554 	sregs->idt.limit = dt.size;
11555 	sregs->idt.base = dt.address;
11556 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11557 	sregs->gdt.limit = dt.size;
11558 	sregs->gdt.base = dt.address;
11559 
11560 	sregs->cr2 = vcpu->arch.cr2;
11561 	sregs->cr3 = kvm_read_cr3(vcpu);
11562 
11563 skip_protected_regs:
11564 	sregs->cr0 = kvm_read_cr0(vcpu);
11565 	sregs->cr4 = kvm_read_cr4(vcpu);
11566 	sregs->cr8 = kvm_get_cr8(vcpu);
11567 	sregs->efer = vcpu->arch.efer;
11568 	sregs->apic_base = kvm_get_apic_base(vcpu);
11569 }
11570 
11571 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11572 {
11573 	__get_sregs_common(vcpu, sregs);
11574 
11575 	if (vcpu->arch.guest_state_protected)
11576 		return;
11577 
11578 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11579 		set_bit(vcpu->arch.interrupt.nr,
11580 			(unsigned long *)sregs->interrupt_bitmap);
11581 }
11582 
11583 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11584 {
11585 	int i;
11586 
11587 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11588 
11589 	if (vcpu->arch.guest_state_protected)
11590 		return;
11591 
11592 	if (is_pae_paging(vcpu)) {
11593 		for (i = 0 ; i < 4 ; i++)
11594 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11595 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11596 	}
11597 }
11598 
11599 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11600 				  struct kvm_sregs *sregs)
11601 {
11602 	vcpu_load(vcpu);
11603 	__get_sregs(vcpu, sregs);
11604 	vcpu_put(vcpu);
11605 	return 0;
11606 }
11607 
11608 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11609 				    struct kvm_mp_state *mp_state)
11610 {
11611 	int r;
11612 
11613 	vcpu_load(vcpu);
11614 	if (kvm_mpx_supported())
11615 		kvm_load_guest_fpu(vcpu);
11616 
11617 	r = kvm_apic_accept_events(vcpu);
11618 	if (r < 0)
11619 		goto out;
11620 	r = 0;
11621 
11622 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11623 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11624 	    vcpu->arch.pv.pv_unhalted)
11625 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11626 	else
11627 		mp_state->mp_state = vcpu->arch.mp_state;
11628 
11629 out:
11630 	if (kvm_mpx_supported())
11631 		kvm_put_guest_fpu(vcpu);
11632 	vcpu_put(vcpu);
11633 	return r;
11634 }
11635 
11636 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11637 				    struct kvm_mp_state *mp_state)
11638 {
11639 	int ret = -EINVAL;
11640 
11641 	vcpu_load(vcpu);
11642 
11643 	switch (mp_state->mp_state) {
11644 	case KVM_MP_STATE_UNINITIALIZED:
11645 	case KVM_MP_STATE_HALTED:
11646 	case KVM_MP_STATE_AP_RESET_HOLD:
11647 	case KVM_MP_STATE_INIT_RECEIVED:
11648 	case KVM_MP_STATE_SIPI_RECEIVED:
11649 		if (!lapic_in_kernel(vcpu))
11650 			goto out;
11651 		break;
11652 
11653 	case KVM_MP_STATE_RUNNABLE:
11654 		break;
11655 
11656 	default:
11657 		goto out;
11658 	}
11659 
11660 	/*
11661 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11662 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11663 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11664 	 * if an SMI is pending as well.
11665 	 */
11666 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11667 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11668 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11669 		goto out;
11670 
11671 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11672 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11673 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11674 	} else
11675 		vcpu->arch.mp_state = mp_state->mp_state;
11676 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11677 
11678 	ret = 0;
11679 out:
11680 	vcpu_put(vcpu);
11681 	return ret;
11682 }
11683 
11684 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11685 		    int reason, bool has_error_code, u32 error_code)
11686 {
11687 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11688 	int ret;
11689 
11690 	init_emulate_ctxt(vcpu);
11691 
11692 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11693 				   has_error_code, error_code);
11694 	if (ret) {
11695 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11696 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11697 		vcpu->run->internal.ndata = 0;
11698 		return 0;
11699 	}
11700 
11701 	kvm_rip_write(vcpu, ctxt->eip);
11702 	kvm_set_rflags(vcpu, ctxt->eflags);
11703 	return 1;
11704 }
11705 EXPORT_SYMBOL_GPL(kvm_task_switch);
11706 
11707 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11708 {
11709 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11710 		/*
11711 		 * When EFER.LME and CR0.PG are set, the processor is in
11712 		 * 64-bit mode (though maybe in a 32-bit code segment).
11713 		 * CR4.PAE and EFER.LMA must be set.
11714 		 */
11715 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11716 			return false;
11717 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11718 			return false;
11719 	} else {
11720 		/*
11721 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11722 		 * segment cannot be 64-bit.
11723 		 */
11724 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11725 			return false;
11726 	}
11727 
11728 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11729 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11730 }
11731 
11732 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11733 		int *mmu_reset_needed, bool update_pdptrs)
11734 {
11735 	struct msr_data apic_base_msr;
11736 	int idx;
11737 	struct desc_ptr dt;
11738 
11739 	if (!kvm_is_valid_sregs(vcpu, sregs))
11740 		return -EINVAL;
11741 
11742 	apic_base_msr.data = sregs->apic_base;
11743 	apic_base_msr.host_initiated = true;
11744 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11745 		return -EINVAL;
11746 
11747 	if (vcpu->arch.guest_state_protected)
11748 		return 0;
11749 
11750 	dt.size = sregs->idt.limit;
11751 	dt.address = sregs->idt.base;
11752 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11753 	dt.size = sregs->gdt.limit;
11754 	dt.address = sregs->gdt.base;
11755 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11756 
11757 	vcpu->arch.cr2 = sregs->cr2;
11758 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11759 	vcpu->arch.cr3 = sregs->cr3;
11760 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11761 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11762 
11763 	kvm_set_cr8(vcpu, sregs->cr8);
11764 
11765 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11766 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11767 
11768 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11769 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11770 
11771 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11772 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11773 
11774 	if (update_pdptrs) {
11775 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11776 		if (is_pae_paging(vcpu)) {
11777 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11778 			*mmu_reset_needed = 1;
11779 		}
11780 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11781 	}
11782 
11783 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11784 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11785 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11786 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11787 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11788 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11789 
11790 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11791 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11792 
11793 	update_cr8_intercept(vcpu);
11794 
11795 	/* Older userspace won't unhalt the vcpu on reset. */
11796 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11797 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11798 	    !is_protmode(vcpu))
11799 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11800 
11801 	return 0;
11802 }
11803 
11804 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11805 {
11806 	int pending_vec, max_bits;
11807 	int mmu_reset_needed = 0;
11808 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11809 
11810 	if (ret)
11811 		return ret;
11812 
11813 	if (mmu_reset_needed) {
11814 		kvm_mmu_reset_context(vcpu);
11815 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11816 	}
11817 
11818 	max_bits = KVM_NR_INTERRUPTS;
11819 	pending_vec = find_first_bit(
11820 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11821 
11822 	if (pending_vec < max_bits) {
11823 		kvm_queue_interrupt(vcpu, pending_vec, false);
11824 		pr_debug("Set back pending irq %d\n", pending_vec);
11825 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11826 	}
11827 	return 0;
11828 }
11829 
11830 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11831 {
11832 	int mmu_reset_needed = 0;
11833 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11834 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11835 		!(sregs2->efer & EFER_LMA);
11836 	int i, ret;
11837 
11838 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11839 		return -EINVAL;
11840 
11841 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11842 		return -EINVAL;
11843 
11844 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11845 				 &mmu_reset_needed, !valid_pdptrs);
11846 	if (ret)
11847 		return ret;
11848 
11849 	if (valid_pdptrs) {
11850 		for (i = 0; i < 4 ; i++)
11851 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11852 
11853 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11854 		mmu_reset_needed = 1;
11855 		vcpu->arch.pdptrs_from_userspace = true;
11856 	}
11857 	if (mmu_reset_needed) {
11858 		kvm_mmu_reset_context(vcpu);
11859 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11860 	}
11861 	return 0;
11862 }
11863 
11864 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11865 				  struct kvm_sregs *sregs)
11866 {
11867 	int ret;
11868 
11869 	vcpu_load(vcpu);
11870 	ret = __set_sregs(vcpu, sregs);
11871 	vcpu_put(vcpu);
11872 	return ret;
11873 }
11874 
11875 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11876 {
11877 	bool set = false;
11878 	struct kvm_vcpu *vcpu;
11879 	unsigned long i;
11880 
11881 	if (!enable_apicv)
11882 		return;
11883 
11884 	down_write(&kvm->arch.apicv_update_lock);
11885 
11886 	kvm_for_each_vcpu(i, vcpu, kvm) {
11887 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11888 			set = true;
11889 			break;
11890 		}
11891 	}
11892 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11893 	up_write(&kvm->arch.apicv_update_lock);
11894 }
11895 
11896 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11897 					struct kvm_guest_debug *dbg)
11898 {
11899 	unsigned long rflags;
11900 	int i, r;
11901 
11902 	if (vcpu->arch.guest_state_protected)
11903 		return -EINVAL;
11904 
11905 	vcpu_load(vcpu);
11906 
11907 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11908 		r = -EBUSY;
11909 		if (kvm_is_exception_pending(vcpu))
11910 			goto out;
11911 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11912 			kvm_queue_exception(vcpu, DB_VECTOR);
11913 		else
11914 			kvm_queue_exception(vcpu, BP_VECTOR);
11915 	}
11916 
11917 	/*
11918 	 * Read rflags as long as potentially injected trace flags are still
11919 	 * filtered out.
11920 	 */
11921 	rflags = kvm_get_rflags(vcpu);
11922 
11923 	vcpu->guest_debug = dbg->control;
11924 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11925 		vcpu->guest_debug = 0;
11926 
11927 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11928 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11929 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11930 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11931 	} else {
11932 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11933 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11934 	}
11935 	kvm_update_dr7(vcpu);
11936 
11937 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11938 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11939 
11940 	/*
11941 	 * Trigger an rflags update that will inject or remove the trace
11942 	 * flags.
11943 	 */
11944 	kvm_set_rflags(vcpu, rflags);
11945 
11946 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11947 
11948 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11949 
11950 	r = 0;
11951 
11952 out:
11953 	vcpu_put(vcpu);
11954 	return r;
11955 }
11956 
11957 /*
11958  * Translate a guest virtual address to a guest physical address.
11959  */
11960 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11961 				    struct kvm_translation *tr)
11962 {
11963 	unsigned long vaddr = tr->linear_address;
11964 	gpa_t gpa;
11965 	int idx;
11966 
11967 	vcpu_load(vcpu);
11968 
11969 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11970 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11971 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11972 	tr->physical_address = gpa;
11973 	tr->valid = gpa != INVALID_GPA;
11974 	tr->writeable = 1;
11975 	tr->usermode = 0;
11976 
11977 	vcpu_put(vcpu);
11978 	return 0;
11979 }
11980 
11981 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11982 {
11983 	struct fxregs_state *fxsave;
11984 
11985 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11986 		return 0;
11987 
11988 	vcpu_load(vcpu);
11989 
11990 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11991 	memcpy(fpu->fpr, fxsave->st_space, 128);
11992 	fpu->fcw = fxsave->cwd;
11993 	fpu->fsw = fxsave->swd;
11994 	fpu->ftwx = fxsave->twd;
11995 	fpu->last_opcode = fxsave->fop;
11996 	fpu->last_ip = fxsave->rip;
11997 	fpu->last_dp = fxsave->rdp;
11998 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11999 
12000 	vcpu_put(vcpu);
12001 	return 0;
12002 }
12003 
12004 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12005 {
12006 	struct fxregs_state *fxsave;
12007 
12008 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12009 		return 0;
12010 
12011 	vcpu_load(vcpu);
12012 
12013 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12014 
12015 	memcpy(fxsave->st_space, fpu->fpr, 128);
12016 	fxsave->cwd = fpu->fcw;
12017 	fxsave->swd = fpu->fsw;
12018 	fxsave->twd = fpu->ftwx;
12019 	fxsave->fop = fpu->last_opcode;
12020 	fxsave->rip = fpu->last_ip;
12021 	fxsave->rdp = fpu->last_dp;
12022 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12023 
12024 	vcpu_put(vcpu);
12025 	return 0;
12026 }
12027 
12028 static void store_regs(struct kvm_vcpu *vcpu)
12029 {
12030 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12031 
12032 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12033 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12034 
12035 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12036 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12037 
12038 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12039 		kvm_vcpu_ioctl_x86_get_vcpu_events(
12040 				vcpu, &vcpu->run->s.regs.events);
12041 }
12042 
12043 static int sync_regs(struct kvm_vcpu *vcpu)
12044 {
12045 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12046 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12047 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12048 	}
12049 
12050 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12051 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12052 
12053 		if (__set_sregs(vcpu, &sregs))
12054 			return -EINVAL;
12055 
12056 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12057 	}
12058 
12059 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12060 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12061 
12062 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12063 			return -EINVAL;
12064 
12065 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12066 	}
12067 
12068 	return 0;
12069 }
12070 
12071 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12072 {
12073 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12074 		pr_warn_once("SMP vm created on host with unstable TSC; "
12075 			     "guest TSC will not be reliable\n");
12076 
12077 	if (!kvm->arch.max_vcpu_ids)
12078 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12079 
12080 	if (id >= kvm->arch.max_vcpu_ids)
12081 		return -EINVAL;
12082 
12083 	return static_call(kvm_x86_vcpu_precreate)(kvm);
12084 }
12085 
12086 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12087 {
12088 	struct page *page;
12089 	int r;
12090 
12091 	vcpu->arch.last_vmentry_cpu = -1;
12092 	vcpu->arch.regs_avail = ~0;
12093 	vcpu->arch.regs_dirty = ~0;
12094 
12095 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12096 
12097 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12098 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12099 	else
12100 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12101 
12102 	r = kvm_mmu_create(vcpu);
12103 	if (r < 0)
12104 		return r;
12105 
12106 	r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12107 	if (r < 0)
12108 		goto fail_mmu_destroy;
12109 
12110 	r = -ENOMEM;
12111 
12112 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12113 	if (!page)
12114 		goto fail_free_lapic;
12115 	vcpu->arch.pio_data = page_address(page);
12116 
12117 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12118 				       GFP_KERNEL_ACCOUNT);
12119 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12120 					    GFP_KERNEL_ACCOUNT);
12121 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12122 		goto fail_free_mce_banks;
12123 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12124 
12125 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12126 				GFP_KERNEL_ACCOUNT))
12127 		goto fail_free_mce_banks;
12128 
12129 	if (!alloc_emulate_ctxt(vcpu))
12130 		goto free_wbinvd_dirty_mask;
12131 
12132 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12133 		pr_err("failed to allocate vcpu's fpu\n");
12134 		goto free_emulate_ctxt;
12135 	}
12136 
12137 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12138 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12139 
12140 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12141 
12142 	kvm_async_pf_hash_reset(vcpu);
12143 
12144 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12145 	kvm_pmu_init(vcpu);
12146 
12147 	vcpu->arch.pending_external_vector = -1;
12148 	vcpu->arch.preempted_in_kernel = false;
12149 
12150 #if IS_ENABLED(CONFIG_HYPERV)
12151 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12152 #endif
12153 
12154 	r = static_call(kvm_x86_vcpu_create)(vcpu);
12155 	if (r)
12156 		goto free_guest_fpu;
12157 
12158 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12159 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12160 	kvm_xen_init_vcpu(vcpu);
12161 	kvm_vcpu_mtrr_init(vcpu);
12162 	vcpu_load(vcpu);
12163 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12164 	kvm_vcpu_reset(vcpu, false);
12165 	kvm_init_mmu(vcpu);
12166 	vcpu_put(vcpu);
12167 	return 0;
12168 
12169 free_guest_fpu:
12170 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12171 free_emulate_ctxt:
12172 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12173 free_wbinvd_dirty_mask:
12174 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12175 fail_free_mce_banks:
12176 	kfree(vcpu->arch.mce_banks);
12177 	kfree(vcpu->arch.mci_ctl2_banks);
12178 	free_page((unsigned long)vcpu->arch.pio_data);
12179 fail_free_lapic:
12180 	kvm_free_lapic(vcpu);
12181 fail_mmu_destroy:
12182 	kvm_mmu_destroy(vcpu);
12183 	return r;
12184 }
12185 
12186 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12187 {
12188 	struct kvm *kvm = vcpu->kvm;
12189 
12190 	if (mutex_lock_killable(&vcpu->mutex))
12191 		return;
12192 	vcpu_load(vcpu);
12193 	kvm_synchronize_tsc(vcpu, NULL);
12194 	vcpu_put(vcpu);
12195 
12196 	/* poll control enabled by default */
12197 	vcpu->arch.msr_kvm_poll_control = 1;
12198 
12199 	mutex_unlock(&vcpu->mutex);
12200 
12201 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12202 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12203 						KVMCLOCK_SYNC_PERIOD);
12204 }
12205 
12206 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12207 {
12208 	int idx;
12209 
12210 	kvmclock_reset(vcpu);
12211 
12212 	static_call(kvm_x86_vcpu_free)(vcpu);
12213 
12214 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12215 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12216 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12217 
12218 	kvm_xen_destroy_vcpu(vcpu);
12219 	kvm_hv_vcpu_uninit(vcpu);
12220 	kvm_pmu_destroy(vcpu);
12221 	kfree(vcpu->arch.mce_banks);
12222 	kfree(vcpu->arch.mci_ctl2_banks);
12223 	kvm_free_lapic(vcpu);
12224 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12225 	kvm_mmu_destroy(vcpu);
12226 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12227 	free_page((unsigned long)vcpu->arch.pio_data);
12228 	kvfree(vcpu->arch.cpuid_entries);
12229 }
12230 
12231 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12232 {
12233 	struct kvm_cpuid_entry2 *cpuid_0x1;
12234 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12235 	unsigned long new_cr0;
12236 
12237 	/*
12238 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12239 	 * to handle side effects.  RESET emulation hits those flows and relies
12240 	 * on emulated/virtualized registers, including those that are loaded
12241 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12242 	 * to detect improper or missing initialization.
12243 	 */
12244 	WARN_ON_ONCE(!init_event &&
12245 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12246 
12247 	/*
12248 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12249 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12250 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12251 	 * bits), i.e. virtualization is disabled.
12252 	 */
12253 	if (is_guest_mode(vcpu))
12254 		kvm_leave_nested(vcpu);
12255 
12256 	kvm_lapic_reset(vcpu, init_event);
12257 
12258 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12259 	vcpu->arch.hflags = 0;
12260 
12261 	vcpu->arch.smi_pending = 0;
12262 	vcpu->arch.smi_count = 0;
12263 	atomic_set(&vcpu->arch.nmi_queued, 0);
12264 	vcpu->arch.nmi_pending = 0;
12265 	vcpu->arch.nmi_injected = false;
12266 	kvm_clear_interrupt_queue(vcpu);
12267 	kvm_clear_exception_queue(vcpu);
12268 
12269 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12270 	kvm_update_dr0123(vcpu);
12271 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12272 	vcpu->arch.dr7 = DR7_FIXED_1;
12273 	kvm_update_dr7(vcpu);
12274 
12275 	vcpu->arch.cr2 = 0;
12276 
12277 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12278 	vcpu->arch.apf.msr_en_val = 0;
12279 	vcpu->arch.apf.msr_int_val = 0;
12280 	vcpu->arch.st.msr_val = 0;
12281 
12282 	kvmclock_reset(vcpu);
12283 
12284 	kvm_clear_async_pf_completion_queue(vcpu);
12285 	kvm_async_pf_hash_reset(vcpu);
12286 	vcpu->arch.apf.halted = false;
12287 
12288 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12289 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12290 
12291 		/*
12292 		 * All paths that lead to INIT are required to load the guest's
12293 		 * FPU state (because most paths are buried in KVM_RUN).
12294 		 */
12295 		if (init_event)
12296 			kvm_put_guest_fpu(vcpu);
12297 
12298 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12299 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12300 
12301 		if (init_event)
12302 			kvm_load_guest_fpu(vcpu);
12303 	}
12304 
12305 	if (!init_event) {
12306 		vcpu->arch.smbase = 0x30000;
12307 
12308 		vcpu->arch.msr_misc_features_enables = 0;
12309 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12310 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12311 
12312 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12313 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12314 	}
12315 
12316 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12317 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12318 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12319 
12320 	/*
12321 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12322 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12323 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12324 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12325 	 * on RESET.  But, go through the motions in case that's ever remedied.
12326 	 */
12327 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12328 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12329 
12330 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12331 
12332 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12333 	kvm_rip_write(vcpu, 0xfff0);
12334 
12335 	vcpu->arch.cr3 = 0;
12336 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12337 
12338 	/*
12339 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12340 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12341 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12342 	 */
12343 	new_cr0 = X86_CR0_ET;
12344 	if (init_event)
12345 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12346 	else
12347 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12348 
12349 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12350 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12351 	static_call(kvm_x86_set_efer)(vcpu, 0);
12352 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12353 
12354 	/*
12355 	 * On the standard CR0/CR4/EFER modification paths, there are several
12356 	 * complex conditions determining whether the MMU has to be reset and/or
12357 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12358 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12359 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12360 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12361 	 */
12362 	if (old_cr0 & X86_CR0_PG) {
12363 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12364 		kvm_mmu_reset_context(vcpu);
12365 	}
12366 
12367 	/*
12368 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12369 	 * APM states the TLBs are untouched by INIT, but it also states that
12370 	 * the TLBs are flushed on "External initialization of the processor."
12371 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12372 	 * benefit in relying on the guest to flush the TLB immediately after
12373 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12374 	 * performance perspective.
12375 	 */
12376 	if (init_event)
12377 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12378 }
12379 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12380 
12381 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12382 {
12383 	struct kvm_segment cs;
12384 
12385 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12386 	cs.selector = vector << 8;
12387 	cs.base = vector << 12;
12388 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12389 	kvm_rip_write(vcpu, 0);
12390 }
12391 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12392 
12393 int kvm_arch_hardware_enable(void)
12394 {
12395 	struct kvm *kvm;
12396 	struct kvm_vcpu *vcpu;
12397 	unsigned long i;
12398 	int ret;
12399 	u64 local_tsc;
12400 	u64 max_tsc = 0;
12401 	bool stable, backwards_tsc = false;
12402 
12403 	kvm_user_return_msr_cpu_online();
12404 
12405 	ret = kvm_x86_check_processor_compatibility();
12406 	if (ret)
12407 		return ret;
12408 
12409 	ret = static_call(kvm_x86_hardware_enable)();
12410 	if (ret != 0)
12411 		return ret;
12412 
12413 	local_tsc = rdtsc();
12414 	stable = !kvm_check_tsc_unstable();
12415 	list_for_each_entry(kvm, &vm_list, vm_list) {
12416 		kvm_for_each_vcpu(i, vcpu, kvm) {
12417 			if (!stable && vcpu->cpu == smp_processor_id())
12418 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12419 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12420 				backwards_tsc = true;
12421 				if (vcpu->arch.last_host_tsc > max_tsc)
12422 					max_tsc = vcpu->arch.last_host_tsc;
12423 			}
12424 		}
12425 	}
12426 
12427 	/*
12428 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12429 	 * platforms that reset TSC during suspend or hibernate actions, but
12430 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12431 	 * detect that condition here, which happens early in CPU bringup,
12432 	 * before any KVM threads can be running.  Unfortunately, we can't
12433 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12434 	 * enough into CPU bringup that we know how much real time has actually
12435 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12436 	 * variables that haven't been updated yet.
12437 	 *
12438 	 * So we simply find the maximum observed TSC above, then record the
12439 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12440 	 * the adjustment will be applied.  Note that we accumulate
12441 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12442 	 * gets a chance to run again.  In the event that no KVM threads get a
12443 	 * chance to run, we will miss the entire elapsed period, as we'll have
12444 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12445 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12446 	 * uniform across all VCPUs (not to mention the scenario is extremely
12447 	 * unlikely). It is possible that a second hibernate recovery happens
12448 	 * much faster than a first, causing the observed TSC here to be
12449 	 * smaller; this would require additional padding adjustment, which is
12450 	 * why we set last_host_tsc to the local tsc observed here.
12451 	 *
12452 	 * N.B. - this code below runs only on platforms with reliable TSC,
12453 	 * as that is the only way backwards_tsc is set above.  Also note
12454 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12455 	 * have the same delta_cyc adjustment applied if backwards_tsc
12456 	 * is detected.  Note further, this adjustment is only done once,
12457 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12458 	 * called multiple times (one for each physical CPU bringup).
12459 	 *
12460 	 * Platforms with unreliable TSCs don't have to deal with this, they
12461 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12462 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12463 	 * guarantee that they stay in perfect synchronization.
12464 	 */
12465 	if (backwards_tsc) {
12466 		u64 delta_cyc = max_tsc - local_tsc;
12467 		list_for_each_entry(kvm, &vm_list, vm_list) {
12468 			kvm->arch.backwards_tsc_observed = true;
12469 			kvm_for_each_vcpu(i, vcpu, kvm) {
12470 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12471 				vcpu->arch.last_host_tsc = local_tsc;
12472 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12473 			}
12474 
12475 			/*
12476 			 * We have to disable TSC offset matching.. if you were
12477 			 * booting a VM while issuing an S4 host suspend....
12478 			 * you may have some problem.  Solving this issue is
12479 			 * left as an exercise to the reader.
12480 			 */
12481 			kvm->arch.last_tsc_nsec = 0;
12482 			kvm->arch.last_tsc_write = 0;
12483 		}
12484 
12485 	}
12486 	return 0;
12487 }
12488 
12489 void kvm_arch_hardware_disable(void)
12490 {
12491 	static_call(kvm_x86_hardware_disable)();
12492 	drop_user_return_notifiers();
12493 }
12494 
12495 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12496 {
12497 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12498 }
12499 
12500 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12501 {
12502 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12503 }
12504 
12505 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12506 {
12507 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12508 
12509 	vcpu->arch.l1tf_flush_l1d = true;
12510 	if (pmu->version && unlikely(pmu->event_count)) {
12511 		pmu->need_cleanup = true;
12512 		kvm_make_request(KVM_REQ_PMU, vcpu);
12513 	}
12514 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12515 }
12516 
12517 void kvm_arch_free_vm(struct kvm *kvm)
12518 {
12519 #if IS_ENABLED(CONFIG_HYPERV)
12520 	kfree(kvm->arch.hv_pa_pg);
12521 #endif
12522 	__kvm_arch_free_vm(kvm);
12523 }
12524 
12525 
12526 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12527 {
12528 	int ret;
12529 	unsigned long flags;
12530 
12531 	if (!kvm_is_vm_type_supported(type))
12532 		return -EINVAL;
12533 
12534 	kvm->arch.vm_type = type;
12535 
12536 	ret = kvm_page_track_init(kvm);
12537 	if (ret)
12538 		goto out;
12539 
12540 	kvm_mmu_init_vm(kvm);
12541 
12542 	ret = static_call(kvm_x86_vm_init)(kvm);
12543 	if (ret)
12544 		goto out_uninit_mmu;
12545 
12546 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12547 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12548 
12549 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12550 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12551 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12552 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12553 		&kvm->arch.irq_sources_bitmap);
12554 
12555 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12556 	mutex_init(&kvm->arch.apic_map_lock);
12557 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12558 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12559 
12560 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12561 	pvclock_update_vm_gtod_copy(kvm);
12562 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12563 
12564 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12565 	kvm->arch.guest_can_read_msr_platform_info = true;
12566 	kvm->arch.enable_pmu = enable_pmu;
12567 
12568 #if IS_ENABLED(CONFIG_HYPERV)
12569 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12570 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12571 #endif
12572 
12573 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12574 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12575 
12576 	kvm_apicv_init(kvm);
12577 	kvm_hv_init_vm(kvm);
12578 	kvm_xen_init_vm(kvm);
12579 
12580 	return 0;
12581 
12582 out_uninit_mmu:
12583 	kvm_mmu_uninit_vm(kvm);
12584 	kvm_page_track_cleanup(kvm);
12585 out:
12586 	return ret;
12587 }
12588 
12589 int kvm_arch_post_init_vm(struct kvm *kvm)
12590 {
12591 	return kvm_mmu_post_init_vm(kvm);
12592 }
12593 
12594 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12595 {
12596 	vcpu_load(vcpu);
12597 	kvm_mmu_unload(vcpu);
12598 	vcpu_put(vcpu);
12599 }
12600 
12601 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12602 {
12603 	unsigned long i;
12604 	struct kvm_vcpu *vcpu;
12605 
12606 	kvm_for_each_vcpu(i, vcpu, kvm) {
12607 		kvm_clear_async_pf_completion_queue(vcpu);
12608 		kvm_unload_vcpu_mmu(vcpu);
12609 	}
12610 }
12611 
12612 void kvm_arch_sync_events(struct kvm *kvm)
12613 {
12614 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12615 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12616 	kvm_free_pit(kvm);
12617 }
12618 
12619 /**
12620  * __x86_set_memory_region: Setup KVM internal memory slot
12621  *
12622  * @kvm: the kvm pointer to the VM.
12623  * @id: the slot ID to setup.
12624  * @gpa: the GPA to install the slot (unused when @size == 0).
12625  * @size: the size of the slot. Set to zero to uninstall a slot.
12626  *
12627  * This function helps to setup a KVM internal memory slot.  Specify
12628  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12629  * slot.  The return code can be one of the following:
12630  *
12631  *   HVA:           on success (uninstall will return a bogus HVA)
12632  *   -errno:        on error
12633  *
12634  * The caller should always use IS_ERR() to check the return value
12635  * before use.  Note, the KVM internal memory slots are guaranteed to
12636  * remain valid and unchanged until the VM is destroyed, i.e., the
12637  * GPA->HVA translation will not change.  However, the HVA is a user
12638  * address, i.e. its accessibility is not guaranteed, and must be
12639  * accessed via __copy_{to,from}_user().
12640  */
12641 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12642 				      u32 size)
12643 {
12644 	int i, r;
12645 	unsigned long hva, old_npages;
12646 	struct kvm_memslots *slots = kvm_memslots(kvm);
12647 	struct kvm_memory_slot *slot;
12648 
12649 	/* Called with kvm->slots_lock held.  */
12650 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12651 		return ERR_PTR_USR(-EINVAL);
12652 
12653 	slot = id_to_memslot(slots, id);
12654 	if (size) {
12655 		if (slot && slot->npages)
12656 			return ERR_PTR_USR(-EEXIST);
12657 
12658 		/*
12659 		 * MAP_SHARED to prevent internal slot pages from being moved
12660 		 * by fork()/COW.
12661 		 */
12662 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12663 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12664 		if (IS_ERR_VALUE(hva))
12665 			return (void __user *)hva;
12666 	} else {
12667 		if (!slot || !slot->npages)
12668 			return NULL;
12669 
12670 		old_npages = slot->npages;
12671 		hva = slot->userspace_addr;
12672 	}
12673 
12674 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12675 		struct kvm_userspace_memory_region2 m;
12676 
12677 		m.slot = id | (i << 16);
12678 		m.flags = 0;
12679 		m.guest_phys_addr = gpa;
12680 		m.userspace_addr = hva;
12681 		m.memory_size = size;
12682 		r = __kvm_set_memory_region(kvm, &m);
12683 		if (r < 0)
12684 			return ERR_PTR_USR(r);
12685 	}
12686 
12687 	if (!size)
12688 		vm_munmap(hva, old_npages * PAGE_SIZE);
12689 
12690 	return (void __user *)hva;
12691 }
12692 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12693 
12694 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12695 {
12696 	kvm_mmu_pre_destroy_vm(kvm);
12697 }
12698 
12699 void kvm_arch_destroy_vm(struct kvm *kvm)
12700 {
12701 	if (current->mm == kvm->mm) {
12702 		/*
12703 		 * Free memory regions allocated on behalf of userspace,
12704 		 * unless the memory map has changed due to process exit
12705 		 * or fd copying.
12706 		 */
12707 		mutex_lock(&kvm->slots_lock);
12708 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12709 					0, 0);
12710 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12711 					0, 0);
12712 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12713 		mutex_unlock(&kvm->slots_lock);
12714 	}
12715 	kvm_unload_vcpu_mmus(kvm);
12716 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12717 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12718 	kvm_pic_destroy(kvm);
12719 	kvm_ioapic_destroy(kvm);
12720 	kvm_destroy_vcpus(kvm);
12721 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12722 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12723 	kvm_mmu_uninit_vm(kvm);
12724 	kvm_page_track_cleanup(kvm);
12725 	kvm_xen_destroy_vm(kvm);
12726 	kvm_hv_destroy_vm(kvm);
12727 }
12728 
12729 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12730 {
12731 	int i;
12732 
12733 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12734 		kvfree(slot->arch.rmap[i]);
12735 		slot->arch.rmap[i] = NULL;
12736 	}
12737 }
12738 
12739 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12740 {
12741 	int i;
12742 
12743 	memslot_rmap_free(slot);
12744 
12745 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12746 		kvfree(slot->arch.lpage_info[i - 1]);
12747 		slot->arch.lpage_info[i - 1] = NULL;
12748 	}
12749 
12750 	kvm_page_track_free_memslot(slot);
12751 }
12752 
12753 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12754 {
12755 	const int sz = sizeof(*slot->arch.rmap[0]);
12756 	int i;
12757 
12758 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12759 		int level = i + 1;
12760 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12761 
12762 		if (slot->arch.rmap[i])
12763 			continue;
12764 
12765 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12766 		if (!slot->arch.rmap[i]) {
12767 			memslot_rmap_free(slot);
12768 			return -ENOMEM;
12769 		}
12770 	}
12771 
12772 	return 0;
12773 }
12774 
12775 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12776 				      struct kvm_memory_slot *slot)
12777 {
12778 	unsigned long npages = slot->npages;
12779 	int i, r;
12780 
12781 	/*
12782 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12783 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12784 	 * the new memslot is successful.
12785 	 */
12786 	memset(&slot->arch, 0, sizeof(slot->arch));
12787 
12788 	if (kvm_memslots_have_rmaps(kvm)) {
12789 		r = memslot_rmap_alloc(slot, npages);
12790 		if (r)
12791 			return r;
12792 	}
12793 
12794 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12795 		struct kvm_lpage_info *linfo;
12796 		unsigned long ugfn;
12797 		int lpages;
12798 		int level = i + 1;
12799 
12800 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12801 
12802 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12803 		if (!linfo)
12804 			goto out_free;
12805 
12806 		slot->arch.lpage_info[i - 1] = linfo;
12807 
12808 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12809 			linfo[0].disallow_lpage = 1;
12810 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12811 			linfo[lpages - 1].disallow_lpage = 1;
12812 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12813 		/*
12814 		 * If the gfn and userspace address are not aligned wrt each
12815 		 * other, disable large page support for this slot.
12816 		 */
12817 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12818 			unsigned long j;
12819 
12820 			for (j = 0; j < lpages; ++j)
12821 				linfo[j].disallow_lpage = 1;
12822 		}
12823 	}
12824 
12825 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12826 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12827 #endif
12828 
12829 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12830 		goto out_free;
12831 
12832 	return 0;
12833 
12834 out_free:
12835 	memslot_rmap_free(slot);
12836 
12837 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12838 		kvfree(slot->arch.lpage_info[i - 1]);
12839 		slot->arch.lpage_info[i - 1] = NULL;
12840 	}
12841 	return -ENOMEM;
12842 }
12843 
12844 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12845 {
12846 	struct kvm_vcpu *vcpu;
12847 	unsigned long i;
12848 
12849 	/*
12850 	 * memslots->generation has been incremented.
12851 	 * mmio generation may have reached its maximum value.
12852 	 */
12853 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12854 
12855 	/* Force re-initialization of steal_time cache */
12856 	kvm_for_each_vcpu(i, vcpu, kvm)
12857 		kvm_vcpu_kick(vcpu);
12858 }
12859 
12860 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12861 				   const struct kvm_memory_slot *old,
12862 				   struct kvm_memory_slot *new,
12863 				   enum kvm_mr_change change)
12864 {
12865 	/*
12866 	 * KVM doesn't support moving memslots when there are external page
12867 	 * trackers attached to the VM, i.e. if KVMGT is in use.
12868 	 */
12869 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12870 		return -EINVAL;
12871 
12872 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12873 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12874 			return -EINVAL;
12875 
12876 		return kvm_alloc_memslot_metadata(kvm, new);
12877 	}
12878 
12879 	if (change == KVM_MR_FLAGS_ONLY)
12880 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12881 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12882 		return -EIO;
12883 
12884 	return 0;
12885 }
12886 
12887 
12888 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12889 {
12890 	int nr_slots;
12891 
12892 	if (!kvm_x86_ops.cpu_dirty_log_size)
12893 		return;
12894 
12895 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12896 	if ((enable && nr_slots == 1) || !nr_slots)
12897 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12898 }
12899 
12900 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12901 				     struct kvm_memory_slot *old,
12902 				     const struct kvm_memory_slot *new,
12903 				     enum kvm_mr_change change)
12904 {
12905 	u32 old_flags = old ? old->flags : 0;
12906 	u32 new_flags = new ? new->flags : 0;
12907 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12908 
12909 	/*
12910 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12911 	 * applies to all operations.
12912 	 */
12913 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12914 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12915 
12916 	/*
12917 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12918 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12919 	 *
12920 	 * For a memslot with dirty logging disabled:
12921 	 * CREATE:      No dirty mappings will already exist.
12922 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12923 	 *		kvm_arch_flush_shadow_memslot()
12924 	 *
12925 	 * For a memslot with dirty logging enabled:
12926 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12927 	 *		and no dirty bits to clear.
12928 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12929 	 *		kvm_arch_flush_shadow_memslot().
12930 	 */
12931 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12932 		return;
12933 
12934 	/*
12935 	 * READONLY and non-flags changes were filtered out above, and the only
12936 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12937 	 * logging isn't being toggled on or off.
12938 	 */
12939 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12940 		return;
12941 
12942 	if (!log_dirty_pages) {
12943 		/*
12944 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12945 		 * large sptes have to be split.  If live migration succeeds,
12946 		 * the guest in the source machine will be destroyed and large
12947 		 * sptes will be created in the destination.  However, if the
12948 		 * guest continues to run in the source machine (for example if
12949 		 * live migration fails), small sptes will remain around and
12950 		 * cause bad performance.
12951 		 *
12952 		 * Scan sptes if dirty logging has been stopped, dropping those
12953 		 * which can be collapsed into a single large-page spte.  Later
12954 		 * page faults will create the large-page sptes.
12955 		 */
12956 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12957 	} else {
12958 		/*
12959 		 * Initially-all-set does not require write protecting any page,
12960 		 * because they're all assumed to be dirty.
12961 		 */
12962 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12963 			return;
12964 
12965 		if (READ_ONCE(eager_page_split))
12966 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12967 
12968 		if (kvm_x86_ops.cpu_dirty_log_size) {
12969 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12970 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12971 		} else {
12972 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12973 		}
12974 
12975 		/*
12976 		 * Unconditionally flush the TLBs after enabling dirty logging.
12977 		 * A flush is almost always going to be necessary (see below),
12978 		 * and unconditionally flushing allows the helpers to omit
12979 		 * the subtly complex checks when removing write access.
12980 		 *
12981 		 * Do the flush outside of mmu_lock to reduce the amount of
12982 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12983 		 * safe as KVM only needs to guarantee the slot is fully
12984 		 * write-protected before returning to userspace, i.e. before
12985 		 * userspace can consume the dirty status.
12986 		 *
12987 		 * Flushing outside of mmu_lock requires KVM to be careful when
12988 		 * making decisions based on writable status of an SPTE, e.g. a
12989 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12990 		 *
12991 		 * Specifically, KVM also write-protects guest page tables to
12992 		 * monitor changes when using shadow paging, and must guarantee
12993 		 * no CPUs can write to those page before mmu_lock is dropped.
12994 		 * Because CPUs may have stale TLB entries at this point, a
12995 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12996 		 *
12997 		 * KVM also allows making SPTES writable outside of mmu_lock,
12998 		 * e.g. to allow dirty logging without taking mmu_lock.
12999 		 *
13000 		 * To handle these scenarios, KVM uses a separate software-only
13001 		 * bit (MMU-writable) to track if a SPTE is !writable due to
13002 		 * a guest page table being write-protected (KVM clears the
13003 		 * MMU-writable flag when write-protecting for shadow paging).
13004 		 *
13005 		 * The use of MMU-writable is also the primary motivation for
13006 		 * the unconditional flush.  Because KVM must guarantee that a
13007 		 * CPU doesn't contain stale, writable TLB entries for a
13008 		 * !MMU-writable SPTE, KVM must flush if it encounters any
13009 		 * MMU-writable SPTE regardless of whether the actual hardware
13010 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13011 		 * to flush, while unconditionally flushing allows the "remove
13012 		 * write access" helpers to ignore MMU-writable entirely.
13013 		 *
13014 		 * See is_writable_pte() for more details (the case involving
13015 		 * access-tracked SPTEs is particularly relevant).
13016 		 */
13017 		kvm_flush_remote_tlbs_memslot(kvm, new);
13018 	}
13019 }
13020 
13021 void kvm_arch_commit_memory_region(struct kvm *kvm,
13022 				struct kvm_memory_slot *old,
13023 				const struct kvm_memory_slot *new,
13024 				enum kvm_mr_change change)
13025 {
13026 	if (change == KVM_MR_DELETE)
13027 		kvm_page_track_delete_slot(kvm, old);
13028 
13029 	if (!kvm->arch.n_requested_mmu_pages &&
13030 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13031 		unsigned long nr_mmu_pages;
13032 
13033 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13034 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13035 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13036 	}
13037 
13038 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13039 
13040 	/* Free the arrays associated with the old memslot. */
13041 	if (change == KVM_MR_MOVE)
13042 		kvm_arch_free_memslot(kvm, old);
13043 }
13044 
13045 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13046 {
13047 	return (is_guest_mode(vcpu) &&
13048 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13049 }
13050 
13051 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13052 {
13053 	if (!list_empty_careful(&vcpu->async_pf.done))
13054 		return true;
13055 
13056 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13057 	    kvm_apic_init_sipi_allowed(vcpu))
13058 		return true;
13059 
13060 	if (vcpu->arch.pv.pv_unhalted)
13061 		return true;
13062 
13063 	if (kvm_is_exception_pending(vcpu))
13064 		return true;
13065 
13066 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13067 	    (vcpu->arch.nmi_pending &&
13068 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13069 		return true;
13070 
13071 #ifdef CONFIG_KVM_SMM
13072 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13073 	    (vcpu->arch.smi_pending &&
13074 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
13075 		return true;
13076 #endif
13077 
13078 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
13079 		return true;
13080 
13081 	if (kvm_arch_interrupt_allowed(vcpu) &&
13082 	    (kvm_cpu_has_interrupt(vcpu) ||
13083 	    kvm_guest_apic_has_interrupt(vcpu)))
13084 		return true;
13085 
13086 	if (kvm_hv_has_stimer_pending(vcpu))
13087 		return true;
13088 
13089 	if (is_guest_mode(vcpu) &&
13090 	    kvm_x86_ops.nested_ops->has_events &&
13091 	    kvm_x86_ops.nested_ops->has_events(vcpu))
13092 		return true;
13093 
13094 	if (kvm_xen_has_pending_events(vcpu))
13095 		return true;
13096 
13097 	return false;
13098 }
13099 
13100 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13101 {
13102 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13103 }
13104 
13105 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13106 {
13107 	return kvm_vcpu_apicv_active(vcpu) &&
13108 	       static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu);
13109 }
13110 
13111 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
13112 {
13113 	return vcpu->arch.preempted_in_kernel;
13114 }
13115 
13116 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13117 {
13118 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13119 		return true;
13120 
13121 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13122 #ifdef CONFIG_KVM_SMM
13123 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
13124 #endif
13125 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
13126 		return true;
13127 
13128 	return kvm_arch_dy_has_pending_interrupt(vcpu);
13129 }
13130 
13131 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13132 {
13133 	if (vcpu->arch.guest_state_protected)
13134 		return true;
13135 
13136 	return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13137 }
13138 
13139 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13140 {
13141 	return kvm_rip_read(vcpu);
13142 }
13143 
13144 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13145 {
13146 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13147 }
13148 
13149 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13150 {
13151 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13152 }
13153 
13154 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13155 {
13156 	/* Can't read the RIP when guest state is protected, just return 0 */
13157 	if (vcpu->arch.guest_state_protected)
13158 		return 0;
13159 
13160 	if (is_64_bit_mode(vcpu))
13161 		return kvm_rip_read(vcpu);
13162 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13163 		     kvm_rip_read(vcpu));
13164 }
13165 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13166 
13167 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13168 {
13169 	return kvm_get_linear_rip(vcpu) == linear_rip;
13170 }
13171 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13172 
13173 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13174 {
13175 	unsigned long rflags;
13176 
13177 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
13178 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13179 		rflags &= ~X86_EFLAGS_TF;
13180 	return rflags;
13181 }
13182 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13183 
13184 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13185 {
13186 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13187 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13188 		rflags |= X86_EFLAGS_TF;
13189 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
13190 }
13191 
13192 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13193 {
13194 	__kvm_set_rflags(vcpu, rflags);
13195 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13196 }
13197 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13198 
13199 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13200 {
13201 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13202 
13203 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13204 }
13205 
13206 static inline u32 kvm_async_pf_next_probe(u32 key)
13207 {
13208 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13209 }
13210 
13211 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13212 {
13213 	u32 key = kvm_async_pf_hash_fn(gfn);
13214 
13215 	while (vcpu->arch.apf.gfns[key] != ~0)
13216 		key = kvm_async_pf_next_probe(key);
13217 
13218 	vcpu->arch.apf.gfns[key] = gfn;
13219 }
13220 
13221 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13222 {
13223 	int i;
13224 	u32 key = kvm_async_pf_hash_fn(gfn);
13225 
13226 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13227 		     (vcpu->arch.apf.gfns[key] != gfn &&
13228 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13229 		key = kvm_async_pf_next_probe(key);
13230 
13231 	return key;
13232 }
13233 
13234 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13235 {
13236 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13237 }
13238 
13239 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13240 {
13241 	u32 i, j, k;
13242 
13243 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13244 
13245 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13246 		return;
13247 
13248 	while (true) {
13249 		vcpu->arch.apf.gfns[i] = ~0;
13250 		do {
13251 			j = kvm_async_pf_next_probe(j);
13252 			if (vcpu->arch.apf.gfns[j] == ~0)
13253 				return;
13254 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13255 			/*
13256 			 * k lies cyclically in ]i,j]
13257 			 * |    i.k.j |
13258 			 * |....j i.k.| or  |.k..j i...|
13259 			 */
13260 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13261 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13262 		i = j;
13263 	}
13264 }
13265 
13266 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13267 {
13268 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13269 
13270 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13271 				      sizeof(reason));
13272 }
13273 
13274 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13275 {
13276 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13277 
13278 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13279 					     &token, offset, sizeof(token));
13280 }
13281 
13282 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13283 {
13284 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13285 	u32 val;
13286 
13287 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13288 					 &val, offset, sizeof(val)))
13289 		return false;
13290 
13291 	return !val;
13292 }
13293 
13294 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13295 {
13296 
13297 	if (!kvm_pv_async_pf_enabled(vcpu))
13298 		return false;
13299 
13300 	if (vcpu->arch.apf.send_user_only &&
13301 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13302 		return false;
13303 
13304 	if (is_guest_mode(vcpu)) {
13305 		/*
13306 		 * L1 needs to opt into the special #PF vmexits that are
13307 		 * used to deliver async page faults.
13308 		 */
13309 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13310 	} else {
13311 		/*
13312 		 * Play it safe in case the guest temporarily disables paging.
13313 		 * The real mode IDT in particular is unlikely to have a #PF
13314 		 * exception setup.
13315 		 */
13316 		return is_paging(vcpu);
13317 	}
13318 }
13319 
13320 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13321 {
13322 	if (unlikely(!lapic_in_kernel(vcpu) ||
13323 		     kvm_event_needs_reinjection(vcpu) ||
13324 		     kvm_is_exception_pending(vcpu)))
13325 		return false;
13326 
13327 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13328 		return false;
13329 
13330 	/*
13331 	 * If interrupts are off we cannot even use an artificial
13332 	 * halt state.
13333 	 */
13334 	return kvm_arch_interrupt_allowed(vcpu);
13335 }
13336 
13337 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13338 				     struct kvm_async_pf *work)
13339 {
13340 	struct x86_exception fault;
13341 
13342 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13343 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13344 
13345 	if (kvm_can_deliver_async_pf(vcpu) &&
13346 	    !apf_put_user_notpresent(vcpu)) {
13347 		fault.vector = PF_VECTOR;
13348 		fault.error_code_valid = true;
13349 		fault.error_code = 0;
13350 		fault.nested_page_fault = false;
13351 		fault.address = work->arch.token;
13352 		fault.async_page_fault = true;
13353 		kvm_inject_page_fault(vcpu, &fault);
13354 		return true;
13355 	} else {
13356 		/*
13357 		 * It is not possible to deliver a paravirtualized asynchronous
13358 		 * page fault, but putting the guest in an artificial halt state
13359 		 * can be beneficial nevertheless: if an interrupt arrives, we
13360 		 * can deliver it timely and perhaps the guest will schedule
13361 		 * another process.  When the instruction that triggered a page
13362 		 * fault is retried, hopefully the page will be ready in the host.
13363 		 */
13364 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13365 		return false;
13366 	}
13367 }
13368 
13369 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13370 				 struct kvm_async_pf *work)
13371 {
13372 	struct kvm_lapic_irq irq = {
13373 		.delivery_mode = APIC_DM_FIXED,
13374 		.vector = vcpu->arch.apf.vec
13375 	};
13376 
13377 	if (work->wakeup_all)
13378 		work->arch.token = ~0; /* broadcast wakeup */
13379 	else
13380 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13381 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13382 
13383 	if ((work->wakeup_all || work->notpresent_injected) &&
13384 	    kvm_pv_async_pf_enabled(vcpu) &&
13385 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13386 		vcpu->arch.apf.pageready_pending = true;
13387 		kvm_apic_set_irq(vcpu, &irq, NULL);
13388 	}
13389 
13390 	vcpu->arch.apf.halted = false;
13391 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13392 }
13393 
13394 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13395 {
13396 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13397 	if (!vcpu->arch.apf.pageready_pending)
13398 		kvm_vcpu_kick(vcpu);
13399 }
13400 
13401 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13402 {
13403 	if (!kvm_pv_async_pf_enabled(vcpu))
13404 		return true;
13405 	else
13406 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13407 }
13408 
13409 void kvm_arch_start_assignment(struct kvm *kvm)
13410 {
13411 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13412 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13413 }
13414 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13415 
13416 void kvm_arch_end_assignment(struct kvm *kvm)
13417 {
13418 	atomic_dec(&kvm->arch.assigned_device_count);
13419 }
13420 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13421 
13422 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13423 {
13424 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13425 }
13426 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13427 
13428 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13429 {
13430 	/*
13431 	 * Non-coherent DMA assignment and de-assignment will affect
13432 	 * whether KVM honors guest MTRRs and cause changes in memtypes
13433 	 * in TDP.
13434 	 * So, pass %true unconditionally to indicate non-coherent DMA was,
13435 	 * or will be involved, and that zapping SPTEs might be necessary.
13436 	 */
13437 	if (__kvm_mmu_honors_guest_mtrrs(true))
13438 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13439 }
13440 
13441 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13442 {
13443 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13444 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13445 }
13446 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13447 
13448 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13449 {
13450 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13451 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13452 }
13453 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13454 
13455 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13456 {
13457 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13458 }
13459 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13460 
13461 bool kvm_arch_has_irq_bypass(void)
13462 {
13463 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13464 }
13465 
13466 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13467 				      struct irq_bypass_producer *prod)
13468 {
13469 	struct kvm_kernel_irqfd *irqfd =
13470 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13471 	int ret;
13472 
13473 	irqfd->producer = prod;
13474 	kvm_arch_start_assignment(irqfd->kvm);
13475 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13476 					 prod->irq, irqfd->gsi, 1);
13477 
13478 	if (ret)
13479 		kvm_arch_end_assignment(irqfd->kvm);
13480 
13481 	return ret;
13482 }
13483 
13484 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13485 				      struct irq_bypass_producer *prod)
13486 {
13487 	int ret;
13488 	struct kvm_kernel_irqfd *irqfd =
13489 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13490 
13491 	WARN_ON(irqfd->producer != prod);
13492 	irqfd->producer = NULL;
13493 
13494 	/*
13495 	 * When producer of consumer is unregistered, we change back to
13496 	 * remapped mode, so we can re-use the current implementation
13497 	 * when the irq is masked/disabled or the consumer side (KVM
13498 	 * int this case doesn't want to receive the interrupts.
13499 	*/
13500 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13501 	if (ret)
13502 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13503 		       " fails: %d\n", irqfd->consumer.token, ret);
13504 
13505 	kvm_arch_end_assignment(irqfd->kvm);
13506 }
13507 
13508 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13509 				   uint32_t guest_irq, bool set)
13510 {
13511 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13512 }
13513 
13514 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13515 				  struct kvm_kernel_irq_routing_entry *new)
13516 {
13517 	if (new->type != KVM_IRQ_ROUTING_MSI)
13518 		return true;
13519 
13520 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13521 }
13522 
13523 bool kvm_vector_hashing_enabled(void)
13524 {
13525 	return vector_hashing;
13526 }
13527 
13528 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13529 {
13530 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13531 }
13532 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13533 
13534 
13535 int kvm_spec_ctrl_test_value(u64 value)
13536 {
13537 	/*
13538 	 * test that setting IA32_SPEC_CTRL to given value
13539 	 * is allowed by the host processor
13540 	 */
13541 
13542 	u64 saved_value;
13543 	unsigned long flags;
13544 	int ret = 0;
13545 
13546 	local_irq_save(flags);
13547 
13548 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13549 		ret = 1;
13550 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13551 		ret = 1;
13552 	else
13553 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13554 
13555 	local_irq_restore(flags);
13556 
13557 	return ret;
13558 }
13559 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13560 
13561 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13562 {
13563 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13564 	struct x86_exception fault;
13565 	u64 access = error_code &
13566 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13567 
13568 	if (!(error_code & PFERR_PRESENT_MASK) ||
13569 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13570 		/*
13571 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13572 		 * tables probably do not match the TLB.  Just proceed
13573 		 * with the error code that the processor gave.
13574 		 */
13575 		fault.vector = PF_VECTOR;
13576 		fault.error_code_valid = true;
13577 		fault.error_code = error_code;
13578 		fault.nested_page_fault = false;
13579 		fault.address = gva;
13580 		fault.async_page_fault = false;
13581 	}
13582 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13583 }
13584 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13585 
13586 /*
13587  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13588  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13589  * indicates whether exit to userspace is needed.
13590  */
13591 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13592 			      struct x86_exception *e)
13593 {
13594 	if (r == X86EMUL_PROPAGATE_FAULT) {
13595 		if (KVM_BUG_ON(!e, vcpu->kvm))
13596 			return -EIO;
13597 
13598 		kvm_inject_emulated_page_fault(vcpu, e);
13599 		return 1;
13600 	}
13601 
13602 	/*
13603 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13604 	 * while handling a VMX instruction KVM could've handled the request
13605 	 * correctly by exiting to userspace and performing I/O but there
13606 	 * doesn't seem to be a real use-case behind such requests, just return
13607 	 * KVM_EXIT_INTERNAL_ERROR for now.
13608 	 */
13609 	kvm_prepare_emulation_failure_exit(vcpu);
13610 
13611 	return 0;
13612 }
13613 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13614 
13615 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13616 {
13617 	bool pcid_enabled;
13618 	struct x86_exception e;
13619 	struct {
13620 		u64 pcid;
13621 		u64 gla;
13622 	} operand;
13623 	int r;
13624 
13625 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13626 	if (r != X86EMUL_CONTINUE)
13627 		return kvm_handle_memory_failure(vcpu, r, &e);
13628 
13629 	if (operand.pcid >> 12 != 0) {
13630 		kvm_inject_gp(vcpu, 0);
13631 		return 1;
13632 	}
13633 
13634 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13635 
13636 	switch (type) {
13637 	case INVPCID_TYPE_INDIV_ADDR:
13638 		/*
13639 		 * LAM doesn't apply to addresses that are inputs to TLB
13640 		 * invalidation.
13641 		 */
13642 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13643 		    is_noncanonical_address(operand.gla, vcpu)) {
13644 			kvm_inject_gp(vcpu, 0);
13645 			return 1;
13646 		}
13647 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13648 		return kvm_skip_emulated_instruction(vcpu);
13649 
13650 	case INVPCID_TYPE_SINGLE_CTXT:
13651 		if (!pcid_enabled && (operand.pcid != 0)) {
13652 			kvm_inject_gp(vcpu, 0);
13653 			return 1;
13654 		}
13655 
13656 		kvm_invalidate_pcid(vcpu, operand.pcid);
13657 		return kvm_skip_emulated_instruction(vcpu);
13658 
13659 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13660 		/*
13661 		 * Currently, KVM doesn't mark global entries in the shadow
13662 		 * page tables, so a non-global flush just degenerates to a
13663 		 * global flush. If needed, we could optimize this later by
13664 		 * keeping track of global entries in shadow page tables.
13665 		 */
13666 
13667 		fallthrough;
13668 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13669 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13670 		return kvm_skip_emulated_instruction(vcpu);
13671 
13672 	default:
13673 		kvm_inject_gp(vcpu, 0);
13674 		return 1;
13675 	}
13676 }
13677 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13678 
13679 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13680 {
13681 	struct kvm_run *run = vcpu->run;
13682 	struct kvm_mmio_fragment *frag;
13683 	unsigned int len;
13684 
13685 	BUG_ON(!vcpu->mmio_needed);
13686 
13687 	/* Complete previous fragment */
13688 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13689 	len = min(8u, frag->len);
13690 	if (!vcpu->mmio_is_write)
13691 		memcpy(frag->data, run->mmio.data, len);
13692 
13693 	if (frag->len <= 8) {
13694 		/* Switch to the next fragment. */
13695 		frag++;
13696 		vcpu->mmio_cur_fragment++;
13697 	} else {
13698 		/* Go forward to the next mmio piece. */
13699 		frag->data += len;
13700 		frag->gpa += len;
13701 		frag->len -= len;
13702 	}
13703 
13704 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13705 		vcpu->mmio_needed = 0;
13706 
13707 		// VMG change, at this point, we're always done
13708 		// RIP has already been advanced
13709 		return 1;
13710 	}
13711 
13712 	// More MMIO is needed
13713 	run->mmio.phys_addr = frag->gpa;
13714 	run->mmio.len = min(8u, frag->len);
13715 	run->mmio.is_write = vcpu->mmio_is_write;
13716 	if (run->mmio.is_write)
13717 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13718 	run->exit_reason = KVM_EXIT_MMIO;
13719 
13720 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13721 
13722 	return 0;
13723 }
13724 
13725 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13726 			  void *data)
13727 {
13728 	int handled;
13729 	struct kvm_mmio_fragment *frag;
13730 
13731 	if (!data)
13732 		return -EINVAL;
13733 
13734 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13735 	if (handled == bytes)
13736 		return 1;
13737 
13738 	bytes -= handled;
13739 	gpa += handled;
13740 	data += handled;
13741 
13742 	/*TODO: Check if need to increment number of frags */
13743 	frag = vcpu->mmio_fragments;
13744 	vcpu->mmio_nr_fragments = 1;
13745 	frag->len = bytes;
13746 	frag->gpa = gpa;
13747 	frag->data = data;
13748 
13749 	vcpu->mmio_needed = 1;
13750 	vcpu->mmio_cur_fragment = 0;
13751 
13752 	vcpu->run->mmio.phys_addr = gpa;
13753 	vcpu->run->mmio.len = min(8u, frag->len);
13754 	vcpu->run->mmio.is_write = 1;
13755 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13756 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13757 
13758 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13759 
13760 	return 0;
13761 }
13762 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13763 
13764 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13765 			 void *data)
13766 {
13767 	int handled;
13768 	struct kvm_mmio_fragment *frag;
13769 
13770 	if (!data)
13771 		return -EINVAL;
13772 
13773 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13774 	if (handled == bytes)
13775 		return 1;
13776 
13777 	bytes -= handled;
13778 	gpa += handled;
13779 	data += handled;
13780 
13781 	/*TODO: Check if need to increment number of frags */
13782 	frag = vcpu->mmio_fragments;
13783 	vcpu->mmio_nr_fragments = 1;
13784 	frag->len = bytes;
13785 	frag->gpa = gpa;
13786 	frag->data = data;
13787 
13788 	vcpu->mmio_needed = 1;
13789 	vcpu->mmio_cur_fragment = 0;
13790 
13791 	vcpu->run->mmio.phys_addr = gpa;
13792 	vcpu->run->mmio.len = min(8u, frag->len);
13793 	vcpu->run->mmio.is_write = 0;
13794 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13795 
13796 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13797 
13798 	return 0;
13799 }
13800 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13801 
13802 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13803 {
13804 	vcpu->arch.sev_pio_count -= count;
13805 	vcpu->arch.sev_pio_data += count * size;
13806 }
13807 
13808 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13809 			   unsigned int port);
13810 
13811 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13812 {
13813 	int size = vcpu->arch.pio.size;
13814 	int port = vcpu->arch.pio.port;
13815 
13816 	vcpu->arch.pio.count = 0;
13817 	if (vcpu->arch.sev_pio_count)
13818 		return kvm_sev_es_outs(vcpu, size, port);
13819 	return 1;
13820 }
13821 
13822 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13823 			   unsigned int port)
13824 {
13825 	for (;;) {
13826 		unsigned int count =
13827 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13828 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13829 
13830 		/* memcpy done already by emulator_pio_out.  */
13831 		advance_sev_es_emulated_pio(vcpu, count, size);
13832 		if (!ret)
13833 			break;
13834 
13835 		/* Emulation done by the kernel.  */
13836 		if (!vcpu->arch.sev_pio_count)
13837 			return 1;
13838 	}
13839 
13840 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13841 	return 0;
13842 }
13843 
13844 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13845 			  unsigned int port);
13846 
13847 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13848 {
13849 	unsigned count = vcpu->arch.pio.count;
13850 	int size = vcpu->arch.pio.size;
13851 	int port = vcpu->arch.pio.port;
13852 
13853 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13854 	advance_sev_es_emulated_pio(vcpu, count, size);
13855 	if (vcpu->arch.sev_pio_count)
13856 		return kvm_sev_es_ins(vcpu, size, port);
13857 	return 1;
13858 }
13859 
13860 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13861 			  unsigned int port)
13862 {
13863 	for (;;) {
13864 		unsigned int count =
13865 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13866 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13867 			break;
13868 
13869 		/* Emulation done by the kernel.  */
13870 		advance_sev_es_emulated_pio(vcpu, count, size);
13871 		if (!vcpu->arch.sev_pio_count)
13872 			return 1;
13873 	}
13874 
13875 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13876 	return 0;
13877 }
13878 
13879 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13880 			 unsigned int port, void *data,  unsigned int count,
13881 			 int in)
13882 {
13883 	vcpu->arch.sev_pio_data = data;
13884 	vcpu->arch.sev_pio_count = count;
13885 	return in ? kvm_sev_es_ins(vcpu, size, port)
13886 		  : kvm_sev_es_outs(vcpu, size, port);
13887 }
13888 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13889 
13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13907 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13914 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13915 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13916 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13917 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13918 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13919 
13920 static int __init kvm_x86_init(void)
13921 {
13922 	kvm_mmu_x86_module_init();
13923 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13924 	return 0;
13925 }
13926 module_init(kvm_x86_init);
13927 
13928 static void __exit kvm_x86_exit(void)
13929 {
13930 	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
13931 }
13932 module_exit(kvm_x86_exit);
13933