xref: /linux/arch/x86/kvm/x86.c (revision 490cc3c5e724502667a104a4e818dc071faf5e77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 struct kvm_caps kvm_caps __read_mostly = {
96 	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99 
100 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101 
102 #define emul_to_vcpu(ctxt) \
103 	((struct kvm_vcpu *)(ctxt)->vcpu)
104 
105 /* EFER defaults:
106  * - enable syscall per default because its emulated by KVM
107  * - enable LME and LMA per default on 64 bit KVM
108  */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115 
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117 
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119 
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121 
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124 
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131 
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134 
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137 
138 #define KVM_X86_OP(func)					     \
139 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140 				*(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146 
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, 0644);
149 
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, 0644);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153 
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, 0644);
156 
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, 0444);
159 
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, 0644);
163 
164 /*
165  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167  * advancement entirely.  Any other value is used as-is and disables adaptive
168  * tuning, i.e. allows privileged userspace to set an exact advancement time.
169  */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, 0644);
172 
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, 0444);
175 
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, 0444);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179 
180 /*
181  * Flags to manipulate forced emulation behavior (any non-zero value will
182  * enable forced emulation).
183  */
184 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187 
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, 0644);
190 
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195 
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198 
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202 
203 /*
204  * Restoring the host value for MSRs that are only consumed when running in
205  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206  * returns to userspace, i.e. the kernel can run with the guest's value.
207  */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209 
210 struct kvm_user_return_msrs {
211 	struct user_return_notifier urn;
212 	bool registered;
213 	struct kvm_user_return_msr_values {
214 		u64 host;
215 		u64 curr;
216 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218 
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223 
224 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228 
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231 
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234 
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237 
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240 
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243 
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 	KVM_GENERIC_VM_STATS(),
246 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 	STATS_DESC_COUNTER(VM, mmu_pte_write),
248 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 	STATS_DESC_COUNTER(VM, mmu_flooded),
250 	STATS_DESC_COUNTER(VM, mmu_recycled),
251 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 	STATS_DESC_ICOUNTER(VM, pages_4k),
254 	STATS_DESC_ICOUNTER(VM, pages_2m),
255 	STATS_DESC_ICOUNTER(VM, pages_1g),
256 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260 
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 	.name_size = KVM_STATS_NAME_SIZE,
263 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 	.id_offset = sizeof(struct kvm_stats_header),
265 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 		       sizeof(kvm_vm_stats_desc),
268 };
269 
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 	KVM_GENERIC_VCPU_STATS(),
272 	STATS_DESC_COUNTER(VCPU, pf_taken),
273 	STATS_DESC_COUNTER(VCPU, pf_fixed),
274 	STATS_DESC_COUNTER(VCPU, pf_emulate),
275 	STATS_DESC_COUNTER(VCPU, pf_spurious),
276 	STATS_DESC_COUNTER(VCPU, pf_fast),
277 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 	STATS_DESC_COUNTER(VCPU, pf_guest),
279 	STATS_DESC_COUNTER(VCPU, tlb_flush),
280 	STATS_DESC_COUNTER(VCPU, invlpg),
281 	STATS_DESC_COUNTER(VCPU, exits),
282 	STATS_DESC_COUNTER(VCPU, io_exits),
283 	STATS_DESC_COUNTER(VCPU, mmio_exits),
284 	STATS_DESC_COUNTER(VCPU, signal_exits),
285 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 	STATS_DESC_COUNTER(VCPU, l1d_flush),
288 	STATS_DESC_COUNTER(VCPU, halt_exits),
289 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 	STATS_DESC_COUNTER(VCPU, irq_exits),
291 	STATS_DESC_COUNTER(VCPU, host_state_reload),
292 	STATS_DESC_COUNTER(VCPU, fpu_reload),
293 	STATS_DESC_COUNTER(VCPU, insn_emulation),
294 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 	STATS_DESC_COUNTER(VCPU, hypercalls),
296 	STATS_DESC_COUNTER(VCPU, irq_injections),
297 	STATS_DESC_COUNTER(VCPU, nmi_injections),
298 	STATS_DESC_COUNTER(VCPU, req_event),
299 	STATS_DESC_COUNTER(VCPU, nested_run),
300 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 	STATS_DESC_COUNTER(VCPU, preemption_reported),
303 	STATS_DESC_COUNTER(VCPU, preemption_other),
304 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307 
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 	.name_size = KVM_STATS_NAME_SIZE,
310 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 	.id_offset = sizeof(struct kvm_stats_header),
312 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 		       sizeof(kvm_vcpu_stats_desc),
315 };
316 
317 u64 __read_mostly host_xcr0;
318 
319 static struct kmem_cache *x86_emulator_cache;
320 
321 /*
322  * When called, it means the previous get/set msr reached an invalid msr.
323  * Return true if we want to ignore/silent this failed msr access.
324  */
325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 	const char *op = write ? "wrmsr" : "rdmsr";
328 
329 	if (ignore_msrs) {
330 		if (report_ignored_msrs)
331 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 				      op, msr, data);
333 		/* Mask the error */
334 		return true;
335 	} else {
336 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 				      op, msr, data);
338 		return false;
339 	}
340 }
341 
342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 	unsigned int size = sizeof(struct x86_emulate_ctxt);
346 
347 	return kmem_cache_create_usercopy("x86_emulator", size,
348 					  __alignof__(struct x86_emulate_ctxt),
349 					  SLAB_ACCOUNT, useroffset,
350 					  size - useroffset, NULL);
351 }
352 
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354 
355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 	int i;
358 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 		vcpu->arch.apf.gfns[i] = ~0;
360 }
361 
362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 	unsigned slot;
365 	struct kvm_user_return_msrs *msrs
366 		= container_of(urn, struct kvm_user_return_msrs, urn);
367 	struct kvm_user_return_msr_values *values;
368 	unsigned long flags;
369 
370 	/*
371 	 * Disabling irqs at this point since the following code could be
372 	 * interrupted and executed through kvm_arch_hardware_disable()
373 	 */
374 	local_irq_save(flags);
375 	if (msrs->registered) {
376 		msrs->registered = false;
377 		user_return_notifier_unregister(urn);
378 	}
379 	local_irq_restore(flags);
380 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 		values = &msrs->values[slot];
382 		if (values->host != values->curr) {
383 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 			values->curr = values->host;
385 		}
386 	}
387 }
388 
389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 	u64 val;
392 	int ret;
393 
394 	preempt_disable();
395 	ret = rdmsrl_safe(msr, &val);
396 	if (ret)
397 		goto out;
398 	ret = wrmsrl_safe(msr, val);
399 out:
400 	preempt_enable();
401 	return ret;
402 }
403 
404 int kvm_add_user_return_msr(u32 msr)
405 {
406 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407 
408 	if (kvm_probe_user_return_msr(msr))
409 		return -1;
410 
411 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 	return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415 
416 int kvm_find_user_return_msr(u32 msr)
417 {
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		if (kvm_uret_msrs_list[i] == msr)
422 			return i;
423 	}
424 	return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427 
428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 	unsigned int cpu = smp_processor_id();
431 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 	u64 value;
433 	int i;
434 
435 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 		msrs->values[i].host = value;
438 		msrs->values[i].curr = value;
439 	}
440 }
441 
442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 	unsigned int cpu = smp_processor_id();
445 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 	int err;
447 
448 	value = (value & mask) | (msrs->values[slot].host & ~mask);
449 	if (value == msrs->values[slot].curr)
450 		return 0;
451 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 	if (err)
453 		return 1;
454 
455 	msrs->values[slot].curr = value;
456 	if (!msrs->registered) {
457 		msrs->urn.on_user_return = kvm_on_user_return;
458 		user_return_notifier_register(&msrs->urn);
459 		msrs->registered = true;
460 	}
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464 
465 static void drop_user_return_notifiers(void)
466 {
467 	unsigned int cpu = smp_processor_id();
468 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469 
470 	if (msrs->registered)
471 		kvm_on_user_return(&msrs->urn);
472 }
473 
474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 	return vcpu->arch.apic_base;
477 }
478 
479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484 
485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491 
492 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 		return 1;
494 	if (!msr_info->host_initiated) {
495 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 			return 1;
497 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 			return 1;
499 	}
500 
501 	kvm_lapic_set_base(vcpu, msr_info->data);
502 	kvm_recalculate_apic_map(vcpu->kvm);
503 	return 0;
504 }
505 
506 /*
507  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508  *
509  * Hardware virtualization extension instructions may fault if a reboot turns
510  * off virtualization while processes are running.  Usually after catching the
511  * fault we just panic; during reboot instead the instruction is ignored.
512  */
513 noinstr void kvm_spurious_fault(void)
514 {
515 	/* Fault while not rebooting.  We want the trace. */
516 	BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519 
520 #define EXCPT_BENIGN		0
521 #define EXCPT_CONTRIBUTORY	1
522 #define EXCPT_PF		2
523 
524 static int exception_class(int vector)
525 {
526 	switch (vector) {
527 	case PF_VECTOR:
528 		return EXCPT_PF;
529 	case DE_VECTOR:
530 	case TS_VECTOR:
531 	case NP_VECTOR:
532 	case SS_VECTOR:
533 	case GP_VECTOR:
534 		return EXCPT_CONTRIBUTORY;
535 	default:
536 		break;
537 	}
538 	return EXCPT_BENIGN;
539 }
540 
541 #define EXCPT_FAULT		0
542 #define EXCPT_TRAP		1
543 #define EXCPT_ABORT		2
544 #define EXCPT_INTERRUPT		3
545 #define EXCPT_DB		4
546 
547 static int exception_type(int vector)
548 {
549 	unsigned int mask;
550 
551 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 		return EXCPT_INTERRUPT;
553 
554 	mask = 1 << vector;
555 
556 	/*
557 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 	 */
560 	if (mask & (1 << DB_VECTOR))
561 		return EXCPT_DB;
562 
563 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 		return EXCPT_TRAP;
565 
566 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 		return EXCPT_ABORT;
568 
569 	/* Reserved exceptions will result in fault */
570 	return EXCPT_FAULT;
571 }
572 
573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 				   struct kvm_queued_exception *ex)
575 {
576 	if (!ex->has_payload)
577 		return;
578 
579 	switch (ex->vector) {
580 	case DB_VECTOR:
581 		/*
582 		 * "Certain debug exceptions may clear bit 0-3.  The
583 		 * remaining contents of the DR6 register are never
584 		 * cleared by the processor".
585 		 */
586 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 		/*
588 		 * In order to reflect the #DB exception payload in guest
589 		 * dr6, three components need to be considered: active low
590 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 		 * DR6_BS and DR6_BT)
592 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 		 * In the target guest dr6:
594 		 * FIXED_1 bits should always be set.
595 		 * Active low bits should be cleared if 1-setting in payload.
596 		 * Active high bits should be set if 1-setting in payload.
597 		 *
598 		 * Note, the payload is compatible with the pending debug
599 		 * exceptions/exit qualification under VMX, that active_low bits
600 		 * are active high in payload.
601 		 * So they need to be flipped for DR6.
602 		 */
603 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 		vcpu->arch.dr6 |= ex->payload;
605 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606 
607 		/*
608 		 * The #DB payload is defined as compatible with the 'pending
609 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 		 * defined in the 'pending debug exceptions' field (enabled
611 		 * breakpoint), it is reserved and must be zero in DR6.
612 		 */
613 		vcpu->arch.dr6 &= ~BIT(12);
614 		break;
615 	case PF_VECTOR:
616 		vcpu->arch.cr2 = ex->payload;
617 		break;
618 	}
619 
620 	ex->has_payload = false;
621 	ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624 
625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 				       bool has_error_code, u32 error_code,
627 				       bool has_payload, unsigned long payload)
628 {
629 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630 
631 	ex->vector = vector;
632 	ex->injected = false;
633 	ex->pending = true;
634 	ex->has_error_code = has_error_code;
635 	ex->error_code = error_code;
636 	ex->has_payload = has_payload;
637 	ex->payload = payload;
638 }
639 
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645 
646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 		unsigned nr, bool has_error, u32 error_code,
648 	        bool has_payload, unsigned long payload, bool reinject)
649 {
650 	u32 prev_nr;
651 	int class1, class2;
652 
653 	kvm_make_request(KVM_REQ_EVENT, vcpu);
654 
655 	/*
656 	 * If the exception is destined for L2 and isn't being reinjected,
657 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658 	 * previously injected exception is not checked because it was checked
659 	 * when it was original queued, and re-checking is incorrect if _L1_
660 	 * injected the exception, in which case it's exempt from interception.
661 	 */
662 	if (!reinject && is_guest_mode(vcpu) &&
663 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 					   has_payload, payload);
666 		return;
667 	}
668 
669 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 	queue:
671 		if (reinject) {
672 			/*
673 			 * On VM-Entry, an exception can be pending if and only
674 			 * if event injection was blocked by nested_run_pending.
675 			 * In that case, however, vcpu_enter_guest() requests an
676 			 * immediate exit, and the guest shouldn't proceed far
677 			 * enough to need reinjection.
678 			 */
679 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 			vcpu->arch.exception.injected = true;
681 			if (WARN_ON_ONCE(has_payload)) {
682 				/*
683 				 * A reinjected event has already
684 				 * delivered its payload.
685 				 */
686 				has_payload = false;
687 				payload = 0;
688 			}
689 		} else {
690 			vcpu->arch.exception.pending = true;
691 			vcpu->arch.exception.injected = false;
692 		}
693 		vcpu->arch.exception.has_error_code = has_error;
694 		vcpu->arch.exception.vector = nr;
695 		vcpu->arch.exception.error_code = error_code;
696 		vcpu->arch.exception.has_payload = has_payload;
697 		vcpu->arch.exception.payload = payload;
698 		if (!is_guest_mode(vcpu))
699 			kvm_deliver_exception_payload(vcpu,
700 						      &vcpu->arch.exception);
701 		return;
702 	}
703 
704 	/* to check exception */
705 	prev_nr = vcpu->arch.exception.vector;
706 	if (prev_nr == DF_VECTOR) {
707 		/* triple fault -> shutdown */
708 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 		return;
710 	}
711 	class1 = exception_class(prev_nr);
712 	class2 = exception_class(nr);
713 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 		/*
716 		 * Synthesize #DF.  Clear the previously injected or pending
717 		 * exception so as not to incorrectly trigger shutdown.
718 		 */
719 		vcpu->arch.exception.injected = false;
720 		vcpu->arch.exception.pending = false;
721 
722 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 	} else {
724 		/* replace previous exception with a new one in a hope
725 		   that instruction re-execution will regenerate lost
726 		   exception */
727 		goto queue;
728 	}
729 }
730 
731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736 
737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742 
743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 			   unsigned long payload)
745 {
746 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749 
750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 				    u32 error_code, unsigned long payload)
752 {
753 	kvm_multiple_exception(vcpu, nr, true, error_code,
754 			       true, payload, false);
755 }
756 
757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 	if (err)
760 		kvm_inject_gp(vcpu, 0);
761 	else
762 		return kvm_skip_emulated_instruction(vcpu);
763 
764 	return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767 
768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 	if (err) {
771 		kvm_inject_gp(vcpu, 0);
772 		return 1;
773 	}
774 
775 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 				       EMULTYPE_COMPLETE_USER_EXIT);
777 }
778 
779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 	++vcpu->stat.pf_guest;
782 
783 	/*
784 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 	 * whether or not L1 wants to intercept "regular" #PF.
786 	 */
787 	if (is_guest_mode(vcpu) && fault->async_page_fault)
788 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 					   true, fault->error_code,
790 					   true, fault->address);
791 	else
792 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 					fault->address);
794 }
795 
796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 				    struct x86_exception *fault)
798 {
799 	struct kvm_mmu *fault_mmu;
800 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801 
802 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 					       vcpu->arch.walk_mmu;
804 
805 	/*
806 	 * Invalidate the TLB entry for the faulting address, if it exists,
807 	 * else the access will fault indefinitely (and to emulate hardware).
808 	 */
809 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 	    !(fault->error_code & PFERR_RSVD_MASK))
811 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 					KVM_MMU_ROOT_CURRENT);
813 
814 	fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817 
818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 	atomic_inc(&vcpu->arch.nmi_queued);
821 	kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823 
824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829 
830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835 
836 /*
837  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838  * a #GP and return false.
839  */
840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 		return true;
844 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 	return false;
846 }
847 
848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 		return true;
852 
853 	kvm_queue_exception(vcpu, UD_VECTOR);
854 	return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857 
858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862 
863 /*
864  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865  */
866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 	gpa_t real_gpa;
871 	int i;
872 	int ret;
873 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874 
875 	/*
876 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 	 * to an L1 GPA.
878 	 */
879 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 	if (real_gpa == INVALID_GPA)
882 		return 0;
883 
884 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887 	if (ret < 0)
888 		return 0;
889 
890 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 		if ((pdpte[i] & PT_PRESENT_MASK) &&
892 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 			return 0;
894 		}
895 	}
896 
897 	/*
898 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 	 * Shadow page roots need to be reconstructed instead.
900 	 */
901 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903 
904 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 	vcpu->arch.pdptrs_from_userspace = false;
908 
909 	return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912 
913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 	if (cr0 & 0xffffffff00000000UL)
917 		return false;
918 #endif
919 
920 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 		return false;
922 
923 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 		return false;
925 
926 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928 
929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 	/*
932 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934 	 * as there are no permission bits to emulate.  If TDP is enabled, the
935 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 	 * translations does the right thing, but there's no need to unload the
937 	 * root as CR0.WP doesn't affect SPTEs.
938 	 */
939 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 		if (!(cr0 & X86_CR0_PG))
941 			return;
942 
943 		if (tdp_enabled) {
944 			kvm_init_mmu(vcpu);
945 			return;
946 		}
947 	}
948 
949 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 		kvm_clear_async_pf_completion_queue(vcpu);
951 		kvm_async_pf_hash_reset(vcpu);
952 
953 		/*
954 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 		 * perspective.
956 		 */
957 		if (!(cr0 & X86_CR0_PG))
958 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 	}
960 
961 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 		kvm_mmu_reset_context(vcpu);
963 
964 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 	    kvm_mmu_honors_guest_mtrrs(vcpu->kvm) &&
966 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970 
971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974 
975 	if (!kvm_is_valid_cr0(vcpu, cr0))
976 		return 1;
977 
978 	cr0 |= X86_CR0_ET;
979 
980 	/* Write to CR0 reserved bits are ignored, even on Intel. */
981 	cr0 &= ~CR0_RESERVED_BITS;
982 
983 #ifdef CONFIG_X86_64
984 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 	    (cr0 & X86_CR0_PG)) {
986 		int cs_db, cs_l;
987 
988 		if (!is_pae(vcpu))
989 			return 1;
990 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 		if (cs_l)
992 			return 1;
993 	}
994 #endif
995 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 		return 1;
999 
1000 	if (!(cr0 & X86_CR0_PG) &&
1001 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 		return 1;
1003 
1004 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005 
1006 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007 
1008 	return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011 
1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017 
1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 	if (vcpu->arch.guest_state_protected)
1021 		return;
1022 
1023 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024 
1025 		if (vcpu->arch.xcr0 != host_xcr0)
1026 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027 
1028 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 		    vcpu->arch.ia32_xss != host_xss)
1030 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 	}
1032 
1033 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 		write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040 
1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 	if (vcpu->arch.guest_state_protected)
1044 		return;
1045 
1046 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 		vcpu->arch.pkru = rdpkru();
1050 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 			write_pkru(vcpu->arch.host_pkru);
1052 	}
1053 
1054 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055 
1056 		if (vcpu->arch.xcr0 != host_xcr0)
1057 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058 
1059 		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 		    vcpu->arch.ia32_xss != host_xss)
1061 			wrmsrl(MSR_IA32_XSS, host_xss);
1062 	}
1063 
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066 
1067 #ifdef CONFIG_X86_64
1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073 
1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 	u64 xcr0 = xcr;
1077 	u64 old_xcr0 = vcpu->arch.xcr0;
1078 	u64 valid_bits;
1079 
1080 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081 	if (index != XCR_XFEATURE_ENABLED_MASK)
1082 		return 1;
1083 	if (!(xcr0 & XFEATURE_MASK_FP))
1084 		return 1;
1085 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 		return 1;
1087 
1088 	/*
1089 	 * Do not allow the guest to set bits that we do not support
1090 	 * saving.  However, xcr0 bit 0 is always set, even if the
1091 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 	 */
1093 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 	if (xcr0 & ~valid_bits)
1095 		return 1;
1096 
1097 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 		return 1;
1100 
1101 	if (xcr0 & XFEATURE_MASK_AVX512) {
1102 		if (!(xcr0 & XFEATURE_MASK_YMM))
1103 			return 1;
1104 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 			return 1;
1106 	}
1107 
1108 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 		return 1;
1111 
1112 	vcpu->arch.xcr0 = xcr0;
1113 
1114 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 		kvm_update_cpuid_runtime(vcpu);
1116 	return 0;
1117 }
1118 
1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 		kvm_inject_gp(vcpu, 0);
1125 		return 1;
1126 	}
1127 
1128 	return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131 
1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 	if (cr4 & cr4_reserved_bits)
1135 		return false;
1136 
1137 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 		return false;
1139 
1140 	return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143 
1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149 
1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 		kvm_mmu_reset_context(vcpu);
1154 
1155 	/*
1156 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 	 * according to the SDM; however, stale prev_roots could be reused
1158 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 	 * so fall through.
1162 	 */
1163 	if (!tdp_enabled &&
1164 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 		kvm_mmu_unload(vcpu);
1166 
1167 	/*
1168 	 * The TLB has to be flushed for all PCIDs if any of the following
1169 	 * (architecturally required) changes happen:
1170 	 * - CR4.PCIDE is changed from 1 to 0
1171 	 * - CR4.PGE is toggled
1172 	 *
1173 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 	 */
1175 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178 
1179 	/*
1180 	 * The TLB has to be flushed for the current PCID if any of the
1181 	 * following (architecturally required) changes happen:
1182 	 * - CR4.SMEP is changed from 0 to 1
1183 	 * - CR4.PAE is toggled
1184 	 */
1185 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188 
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191 
1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195 
1196 	if (!kvm_is_valid_cr4(vcpu, cr4))
1197 		return 1;
1198 
1199 	if (is_long_mode(vcpu)) {
1200 		if (!(cr4 & X86_CR4_PAE))
1201 			return 1;
1202 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 			return 1;
1204 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 		return 1;
1208 
1209 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 			return 1;
1213 	}
1214 
1215 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216 
1217 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218 
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222 
1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 	unsigned long roots_to_free = 0;
1227 	int i;
1228 
1229 	/*
1230 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233 	 * the invalidation, but the guest's TLB entries need to be flushed as
1234 	 * the CPU may have cached entries in its TLB for the target PCID.
1235 	 */
1236 	if (unlikely(tdp_enabled)) {
1237 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * If neither the current CR3 nor any of the prev_roots use the given
1243 	 * PCID, then nothing needs to be done here because a resync will
1244 	 * happen anyway before switching to any other CR3.
1245 	 */
1246 	if (kvm_get_active_pcid(vcpu) == pcid) {
1247 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 	}
1250 
1251 	/*
1252 	 * If PCID is disabled, there is no need to free prev_roots even if the
1253 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 	 * with PCIDE=0.
1255 	 */
1256 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 		return;
1258 
1259 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262 
1263 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265 
1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 	bool skip_tlb_flush = false;
1269 	unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 		pcid = cr3 & X86_CR3_PCID_MASK;
1275 	}
1276 #endif
1277 
1278 	/* PDPTRs are always reloaded for PAE paging. */
1279 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 		goto handle_tlb_flush;
1281 
1282 	/*
1283 	 * Do not condition the GPA check on long mode, this helper is used to
1284 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 	 * the current vCPU mode is accurate.
1286 	 */
1287 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1288 		return 1;
1289 
1290 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 		return 1;
1292 
1293 	if (cr3 != kvm_read_cr3(vcpu))
1294 		kvm_mmu_new_pgd(vcpu, cr3);
1295 
1296 	vcpu->arch.cr3 = cr3;
1297 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299 
1300 handle_tlb_flush:
1301 	/*
1302 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 	 * i.e. only PCID=0 can be relevant.
1307 	 */
1308 	if (!skip_tlb_flush)
1309 		kvm_invalidate_pcid(vcpu, pcid);
1310 
1311 	return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314 
1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 	if (cr8 & CR8_RESERVED_BITS)
1318 		return 1;
1319 	if (lapic_in_kernel(vcpu))
1320 		kvm_lapic_set_tpr(vcpu, cr8);
1321 	else
1322 		vcpu->arch.cr8 = cr8;
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326 
1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 	if (lapic_in_kernel(vcpu))
1330 		return kvm_lapic_get_cr8(vcpu);
1331 	else
1332 		return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335 
1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 	int i;
1339 
1340 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 	}
1344 }
1345 
1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 	unsigned long dr7;
1349 
1350 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 		dr7 = vcpu->arch.guest_debug_dr7;
1352 	else
1353 		dr7 = vcpu->arch.dr7;
1354 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 	if (dr7 & DR7_BP_EN_MASK)
1357 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360 
1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 	u64 fixed = DR6_FIXED_1;
1364 
1365 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 		fixed |= DR6_RTM;
1367 
1368 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 		fixed |= DR6_BUS_LOCK;
1370 	return fixed;
1371 }
1372 
1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376 
1377 	switch (dr) {
1378 	case 0 ... 3:
1379 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 			vcpu->arch.eff_db[dr] = val;
1382 		break;
1383 	case 4:
1384 	case 6:
1385 		if (!kvm_dr6_valid(val))
1386 			return 1; /* #GP */
1387 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 		break;
1389 	case 5:
1390 	default: /* 7 */
1391 		if (!kvm_dr7_valid(val))
1392 			return 1; /* #GP */
1393 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 		kvm_update_dr7(vcpu);
1395 		break;
1396 	}
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401 
1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405 
1406 	switch (dr) {
1407 	case 0 ... 3:
1408 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 		break;
1410 	case 4:
1411 	case 6:
1412 		*val = vcpu->arch.dr6;
1413 		break;
1414 	case 5:
1415 	default: /* 7 */
1416 		*val = vcpu->arch.dr7;
1417 		break;
1418 	}
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421 
1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 	u32 ecx = kvm_rcx_read(vcpu);
1425 	u64 data;
1426 
1427 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 		kvm_inject_gp(vcpu, 0);
1429 		return 1;
1430 	}
1431 
1432 	kvm_rax_write(vcpu, (u32)data);
1433 	kvm_rdx_write(vcpu, data >> 32);
1434 	return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437 
1438 /*
1439  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443  * MSRs that KVM emulates without strictly requiring host support.
1444  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446  * msrs_to_save and emulated_msrs.
1447  */
1448 
1449 static const u32 msrs_to_save_base[] = {
1450 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 	MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 	MSR_IA32_UMWAIT_CONTROL,
1465 
1466 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468 
1469 static const u32 msrs_to_save_pmu[] = {
1470 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475 
1476 	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485 
1486 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488 
1489 	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494 
1495 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499 
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 			ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503 
1504 static const u32 emulated_msrs_all[] = {
1505 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 
1508 #ifdef CONFIG_KVM_HYPERV
1509 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1510 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1511 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1512 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1513 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1514 	HV_X64_MSR_RESET,
1515 	HV_X64_MSR_VP_INDEX,
1516 	HV_X64_MSR_VP_RUNTIME,
1517 	HV_X64_MSR_SCONTROL,
1518 	HV_X64_MSR_STIMER0_CONFIG,
1519 	HV_X64_MSR_VP_ASSIST_PAGE,
1520 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1521 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1522 	HV_X64_MSR_SYNDBG_OPTIONS,
1523 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1524 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1525 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1526 #endif
1527 
1528 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1529 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1530 
1531 	MSR_IA32_TSC_ADJUST,
1532 	MSR_IA32_TSC_DEADLINE,
1533 	MSR_IA32_ARCH_CAPABILITIES,
1534 	MSR_IA32_PERF_CAPABILITIES,
1535 	MSR_IA32_MISC_ENABLE,
1536 	MSR_IA32_MCG_STATUS,
1537 	MSR_IA32_MCG_CTL,
1538 	MSR_IA32_MCG_EXT_CTL,
1539 	MSR_IA32_SMBASE,
1540 	MSR_SMI_COUNT,
1541 	MSR_PLATFORM_INFO,
1542 	MSR_MISC_FEATURES_ENABLES,
1543 	MSR_AMD64_VIRT_SPEC_CTRL,
1544 	MSR_AMD64_TSC_RATIO,
1545 	MSR_IA32_POWER_CTL,
1546 	MSR_IA32_UCODE_REV,
1547 
1548 	/*
1549 	 * KVM always supports the "true" VMX control MSRs, even if the host
1550 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1551 	 * doesn't strictly require them to exist in the host (ignoring that
1552 	 * KVM would refuse to load in the first place if the core set of MSRs
1553 	 * aren't supported).
1554 	 */
1555 	MSR_IA32_VMX_BASIC,
1556 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1557 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1558 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1559 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1560 	MSR_IA32_VMX_MISC,
1561 	MSR_IA32_VMX_CR0_FIXED0,
1562 	MSR_IA32_VMX_CR4_FIXED0,
1563 	MSR_IA32_VMX_VMCS_ENUM,
1564 	MSR_IA32_VMX_PROCBASED_CTLS2,
1565 	MSR_IA32_VMX_EPT_VPID_CAP,
1566 	MSR_IA32_VMX_VMFUNC,
1567 
1568 	MSR_K7_HWCR,
1569 	MSR_KVM_POLL_CONTROL,
1570 };
1571 
1572 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1573 static unsigned num_emulated_msrs;
1574 
1575 /*
1576  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1577  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1578  * feature MSRs, but are handled separately to allow expedited lookups.
1579  */
1580 static const u32 msr_based_features_all_except_vmx[] = {
1581 	MSR_AMD64_DE_CFG,
1582 	MSR_IA32_UCODE_REV,
1583 	MSR_IA32_ARCH_CAPABILITIES,
1584 	MSR_IA32_PERF_CAPABILITIES,
1585 };
1586 
1587 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1588 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1589 static unsigned int num_msr_based_features;
1590 
1591 /*
1592  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1593  * patch, are immutable once the vCPU model is defined.
1594  */
1595 static bool kvm_is_immutable_feature_msr(u32 msr)
1596 {
1597 	int i;
1598 
1599 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1600 		return true;
1601 
1602 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1603 		if (msr == msr_based_features_all_except_vmx[i])
1604 			return msr != MSR_IA32_UCODE_REV;
1605 	}
1606 
1607 	return false;
1608 }
1609 
1610 /*
1611  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1612  * does not yet virtualize. These include:
1613  *   10 - MISC_PACKAGE_CTRLS
1614  *   11 - ENERGY_FILTERING_CTL
1615  *   12 - DOITM
1616  *   18 - FB_CLEAR_CTRL
1617  *   21 - XAPIC_DISABLE_STATUS
1618  *   23 - OVERCLOCKING_STATUS
1619  */
1620 
1621 #define KVM_SUPPORTED_ARCH_CAP \
1622 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1623 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1624 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1625 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1626 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1627 
1628 static u64 kvm_get_arch_capabilities(void)
1629 {
1630 	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1631 
1632 	/*
1633 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1634 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1635 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1636 	 * L1 guests, so it need not worry about its own (L2) guests.
1637 	 */
1638 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1639 
1640 	/*
1641 	 * If we're doing cache flushes (either "always" or "cond")
1642 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1643 	 * If an outer hypervisor is doing the cache flush for us
1644 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1645 	 * capability to the guest too, and if EPT is disabled we're not
1646 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1647 	 * require a nested hypervisor to do a flush of its own.
1648 	 */
1649 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1650 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1651 
1652 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1653 		data |= ARCH_CAP_RDCL_NO;
1654 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1655 		data |= ARCH_CAP_SSB_NO;
1656 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1657 		data |= ARCH_CAP_MDS_NO;
1658 
1659 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660 		/*
1661 		 * If RTM=0 because the kernel has disabled TSX, the host might
1662 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1663 		 * and therefore knows that there cannot be TAA) but keep
1664 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665 		 * and we want to allow migrating those guests to tsx=off hosts.
1666 		 */
1667 		data &= ~ARCH_CAP_TAA_NO;
1668 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669 		data |= ARCH_CAP_TAA_NO;
1670 	} else {
1671 		/*
1672 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1673 		 * host so the guest can choose between disabling TSX or
1674 		 * using VERW to clear CPU buffers.
1675 		 */
1676 	}
1677 
1678 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679 		data |= ARCH_CAP_GDS_NO;
1680 
1681 	return data;
1682 }
1683 
1684 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685 {
1686 	switch (msr->index) {
1687 	case MSR_IA32_ARCH_CAPABILITIES:
1688 		msr->data = kvm_get_arch_capabilities();
1689 		break;
1690 	case MSR_IA32_PERF_CAPABILITIES:
1691 		msr->data = kvm_caps.supported_perf_cap;
1692 		break;
1693 	case MSR_IA32_UCODE_REV:
1694 		rdmsrl_safe(msr->index, &msr->data);
1695 		break;
1696 	default:
1697 		return static_call(kvm_x86_get_msr_feature)(msr);
1698 	}
1699 	return 0;
1700 }
1701 
1702 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703 {
1704 	struct kvm_msr_entry msr;
1705 	int r;
1706 
1707 	msr.index = index;
1708 	r = kvm_get_msr_feature(&msr);
1709 
1710 	if (r == KVM_MSR_RET_INVALID) {
1711 		/* Unconditionally clear the output for simplicity */
1712 		*data = 0;
1713 		if (kvm_msr_ignored_check(index, 0, false))
1714 			r = 0;
1715 	}
1716 
1717 	if (r)
1718 		return r;
1719 
1720 	*data = msr.data;
1721 
1722 	return 0;
1723 }
1724 
1725 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726 {
1727 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1728 		return false;
1729 
1730 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1731 		return false;
1732 
1733 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1734 		return false;
1735 
1736 	if (efer & (EFER_LME | EFER_LMA) &&
1737 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1738 		return false;
1739 
1740 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1741 		return false;
1742 
1743 	return true;
1744 
1745 }
1746 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747 {
1748 	if (efer & efer_reserved_bits)
1749 		return false;
1750 
1751 	return __kvm_valid_efer(vcpu, efer);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1754 
1755 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756 {
1757 	u64 old_efer = vcpu->arch.efer;
1758 	u64 efer = msr_info->data;
1759 	int r;
1760 
1761 	if (efer & efer_reserved_bits)
1762 		return 1;
1763 
1764 	if (!msr_info->host_initiated) {
1765 		if (!__kvm_valid_efer(vcpu, efer))
1766 			return 1;
1767 
1768 		if (is_paging(vcpu) &&
1769 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1770 			return 1;
1771 	}
1772 
1773 	efer &= ~EFER_LMA;
1774 	efer |= vcpu->arch.efer & EFER_LMA;
1775 
1776 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1777 	if (r) {
1778 		WARN_ON(r > 0);
1779 		return r;
1780 	}
1781 
1782 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783 		kvm_mmu_reset_context(vcpu);
1784 
1785 	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1786 	    (efer & EFER_SVME))
1787 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1788 
1789 	return 0;
1790 }
1791 
1792 void kvm_enable_efer_bits(u64 mask)
1793 {
1794        efer_reserved_bits &= ~mask;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1797 
1798 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1799 {
1800 	struct kvm_x86_msr_filter *msr_filter;
1801 	struct msr_bitmap_range *ranges;
1802 	struct kvm *kvm = vcpu->kvm;
1803 	bool allowed;
1804 	int idx;
1805 	u32 i;
1806 
1807 	/* x2APIC MSRs do not support filtering. */
1808 	if (index >= 0x800 && index <= 0x8ff)
1809 		return true;
1810 
1811 	idx = srcu_read_lock(&kvm->srcu);
1812 
1813 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1814 	if (!msr_filter) {
1815 		allowed = true;
1816 		goto out;
1817 	}
1818 
1819 	allowed = msr_filter->default_allow;
1820 	ranges = msr_filter->ranges;
1821 
1822 	for (i = 0; i < msr_filter->count; i++) {
1823 		u32 start = ranges[i].base;
1824 		u32 end = start + ranges[i].nmsrs;
1825 		u32 flags = ranges[i].flags;
1826 		unsigned long *bitmap = ranges[i].bitmap;
1827 
1828 		if ((index >= start) && (index < end) && (flags & type)) {
1829 			allowed = test_bit(index - start, bitmap);
1830 			break;
1831 		}
1832 	}
1833 
1834 out:
1835 	srcu_read_unlock(&kvm->srcu, idx);
1836 
1837 	return allowed;
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1840 
1841 /*
1842  * Write @data into the MSR specified by @index.  Select MSR specific fault
1843  * checks are bypassed if @host_initiated is %true.
1844  * Returns 0 on success, non-0 otherwise.
1845  * Assumes vcpu_load() was already called.
1846  */
1847 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1848 			 bool host_initiated)
1849 {
1850 	struct msr_data msr;
1851 
1852 	switch (index) {
1853 	case MSR_FS_BASE:
1854 	case MSR_GS_BASE:
1855 	case MSR_KERNEL_GS_BASE:
1856 	case MSR_CSTAR:
1857 	case MSR_LSTAR:
1858 		if (is_noncanonical_address(data, vcpu))
1859 			return 1;
1860 		break;
1861 	case MSR_IA32_SYSENTER_EIP:
1862 	case MSR_IA32_SYSENTER_ESP:
1863 		/*
1864 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1865 		 * non-canonical address is written on Intel but not on
1866 		 * AMD (which ignores the top 32-bits, because it does
1867 		 * not implement 64-bit SYSENTER).
1868 		 *
1869 		 * 64-bit code should hence be able to write a non-canonical
1870 		 * value on AMD.  Making the address canonical ensures that
1871 		 * vmentry does not fail on Intel after writing a non-canonical
1872 		 * value, and that something deterministic happens if the guest
1873 		 * invokes 64-bit SYSENTER.
1874 		 */
1875 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1876 		break;
1877 	case MSR_TSC_AUX:
1878 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1879 			return 1;
1880 
1881 		if (!host_initiated &&
1882 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1883 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1884 			return 1;
1885 
1886 		/*
1887 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1888 		 * incomplete and conflicting architectural behavior.  Current
1889 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1890 		 * reserved and always read as zeros.  Enforce Intel's reserved
1891 		 * bits check if and only if the guest CPU is Intel, and clear
1892 		 * the bits in all other cases.  This ensures cross-vendor
1893 		 * migration will provide consistent behavior for the guest.
1894 		 */
1895 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1896 			return 1;
1897 
1898 		data = (u32)data;
1899 		break;
1900 	}
1901 
1902 	msr.data = data;
1903 	msr.index = index;
1904 	msr.host_initiated = host_initiated;
1905 
1906 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1907 }
1908 
1909 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1910 				     u32 index, u64 data, bool host_initiated)
1911 {
1912 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1913 
1914 	if (ret == KVM_MSR_RET_INVALID)
1915 		if (kvm_msr_ignored_check(index, data, true))
1916 			ret = 0;
1917 
1918 	return ret;
1919 }
1920 
1921 /*
1922  * Read the MSR specified by @index into @data.  Select MSR specific fault
1923  * checks are bypassed if @host_initiated is %true.
1924  * Returns 0 on success, non-0 otherwise.
1925  * Assumes vcpu_load() was already called.
1926  */
1927 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1928 		  bool host_initiated)
1929 {
1930 	struct msr_data msr;
1931 	int ret;
1932 
1933 	switch (index) {
1934 	case MSR_TSC_AUX:
1935 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1936 			return 1;
1937 
1938 		if (!host_initiated &&
1939 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1940 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1941 			return 1;
1942 		break;
1943 	}
1944 
1945 	msr.index = index;
1946 	msr.host_initiated = host_initiated;
1947 
1948 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1949 	if (!ret)
1950 		*data = msr.data;
1951 	return ret;
1952 }
1953 
1954 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1955 				     u32 index, u64 *data, bool host_initiated)
1956 {
1957 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1958 
1959 	if (ret == KVM_MSR_RET_INVALID) {
1960 		/* Unconditionally clear *data for simplicity */
1961 		*data = 0;
1962 		if (kvm_msr_ignored_check(index, 0, false))
1963 			ret = 0;
1964 	}
1965 
1966 	return ret;
1967 }
1968 
1969 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1970 {
1971 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1972 		return KVM_MSR_RET_FILTERED;
1973 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1974 }
1975 
1976 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1977 {
1978 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1979 		return KVM_MSR_RET_FILTERED;
1980 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1981 }
1982 
1983 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1984 {
1985 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_get_msr);
1988 
1989 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1990 {
1991 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_set_msr);
1994 
1995 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1996 {
1997 	if (!vcpu->run->msr.error) {
1998 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1999 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
2000 	}
2001 }
2002 
2003 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2004 {
2005 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2006 }
2007 
2008 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2009 {
2010 	complete_userspace_rdmsr(vcpu);
2011 	return complete_emulated_msr_access(vcpu);
2012 }
2013 
2014 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2015 {
2016 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2017 }
2018 
2019 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2020 {
2021 	complete_userspace_rdmsr(vcpu);
2022 	return complete_fast_msr_access(vcpu);
2023 }
2024 
2025 static u64 kvm_msr_reason(int r)
2026 {
2027 	switch (r) {
2028 	case KVM_MSR_RET_INVALID:
2029 		return KVM_MSR_EXIT_REASON_UNKNOWN;
2030 	case KVM_MSR_RET_FILTERED:
2031 		return KVM_MSR_EXIT_REASON_FILTER;
2032 	default:
2033 		return KVM_MSR_EXIT_REASON_INVAL;
2034 	}
2035 }
2036 
2037 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2038 			      u32 exit_reason, u64 data,
2039 			      int (*completion)(struct kvm_vcpu *vcpu),
2040 			      int r)
2041 {
2042 	u64 msr_reason = kvm_msr_reason(r);
2043 
2044 	/* Check if the user wanted to know about this MSR fault */
2045 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2046 		return 0;
2047 
2048 	vcpu->run->exit_reason = exit_reason;
2049 	vcpu->run->msr.error = 0;
2050 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2051 	vcpu->run->msr.reason = msr_reason;
2052 	vcpu->run->msr.index = index;
2053 	vcpu->run->msr.data = data;
2054 	vcpu->arch.complete_userspace_io = completion;
2055 
2056 	return 1;
2057 }
2058 
2059 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2060 {
2061 	u32 ecx = kvm_rcx_read(vcpu);
2062 	u64 data;
2063 	int r;
2064 
2065 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2066 
2067 	if (!r) {
2068 		trace_kvm_msr_read(ecx, data);
2069 
2070 		kvm_rax_write(vcpu, data & -1u);
2071 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2072 	} else {
2073 		/* MSR read failed? See if we should ask user space */
2074 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2075 				       complete_fast_rdmsr, r))
2076 			return 0;
2077 		trace_kvm_msr_read_ex(ecx);
2078 	}
2079 
2080 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2083 
2084 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2085 {
2086 	u32 ecx = kvm_rcx_read(vcpu);
2087 	u64 data = kvm_read_edx_eax(vcpu);
2088 	int r;
2089 
2090 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2091 
2092 	if (!r) {
2093 		trace_kvm_msr_write(ecx, data);
2094 	} else {
2095 		/* MSR write failed? See if we should ask user space */
2096 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2097 				       complete_fast_msr_access, r))
2098 			return 0;
2099 		/* Signal all other negative errors to userspace */
2100 		if (r < 0)
2101 			return r;
2102 		trace_kvm_msr_write_ex(ecx, data);
2103 	}
2104 
2105 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2108 
2109 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2110 {
2111 	return kvm_skip_emulated_instruction(vcpu);
2112 }
2113 
2114 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2115 {
2116 	/* Treat an INVD instruction as a NOP and just skip it. */
2117 	return kvm_emulate_as_nop(vcpu);
2118 }
2119 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2120 
2121 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2122 {
2123 	kvm_queue_exception(vcpu, UD_VECTOR);
2124 	return 1;
2125 }
2126 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2127 
2128 
2129 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2130 {
2131 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2132 	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2133 		return kvm_handle_invalid_op(vcpu);
2134 
2135 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2136 	return kvm_emulate_as_nop(vcpu);
2137 }
2138 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2139 {
2140 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2141 }
2142 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2143 
2144 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2145 {
2146 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2147 }
2148 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2149 
2150 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2151 {
2152 	xfer_to_guest_mode_prepare();
2153 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2154 		xfer_to_guest_mode_work_pending();
2155 }
2156 
2157 /*
2158  * The fast path for frequent and performance sensitive wrmsr emulation,
2159  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2160  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2161  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2162  * other cases which must be called after interrupts are enabled on the host.
2163  */
2164 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2165 {
2166 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2167 		return 1;
2168 
2169 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2170 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2171 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2172 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2173 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2174 
2175 	return 1;
2176 }
2177 
2178 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2179 {
2180 	if (!kvm_can_use_hv_timer(vcpu))
2181 		return 1;
2182 
2183 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2184 	return 0;
2185 }
2186 
2187 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2188 {
2189 	u32 msr = kvm_rcx_read(vcpu);
2190 	u64 data;
2191 	fastpath_t ret = EXIT_FASTPATH_NONE;
2192 
2193 	kvm_vcpu_srcu_read_lock(vcpu);
2194 
2195 	switch (msr) {
2196 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2197 		data = kvm_read_edx_eax(vcpu);
2198 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2199 			kvm_skip_emulated_instruction(vcpu);
2200 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2201 		}
2202 		break;
2203 	case MSR_IA32_TSC_DEADLINE:
2204 		data = kvm_read_edx_eax(vcpu);
2205 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2206 			kvm_skip_emulated_instruction(vcpu);
2207 			ret = EXIT_FASTPATH_REENTER_GUEST;
2208 		}
2209 		break;
2210 	default:
2211 		break;
2212 	}
2213 
2214 	if (ret != EXIT_FASTPATH_NONE)
2215 		trace_kvm_msr_write(msr, data);
2216 
2217 	kvm_vcpu_srcu_read_unlock(vcpu);
2218 
2219 	return ret;
2220 }
2221 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2222 
2223 /*
2224  * Adapt set_msr() to msr_io()'s calling convention
2225  */
2226 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2227 {
2228 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2229 }
2230 
2231 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2232 {
2233 	u64 val;
2234 
2235 	/*
2236 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2237 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2238 	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2239 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2240 	 * all MSRs when emulating RESET.
2241 	 */
2242 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2243 		if (do_get_msr(vcpu, index, &val) || *data != val)
2244 			return -EINVAL;
2245 
2246 		return 0;
2247 	}
2248 
2249 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2250 }
2251 
2252 #ifdef CONFIG_X86_64
2253 struct pvclock_clock {
2254 	int vclock_mode;
2255 	u64 cycle_last;
2256 	u64 mask;
2257 	u32 mult;
2258 	u32 shift;
2259 	u64 base_cycles;
2260 	u64 offset;
2261 };
2262 
2263 struct pvclock_gtod_data {
2264 	seqcount_t	seq;
2265 
2266 	struct pvclock_clock clock; /* extract of a clocksource struct */
2267 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2268 
2269 	ktime_t		offs_boot;
2270 	u64		wall_time_sec;
2271 };
2272 
2273 static struct pvclock_gtod_data pvclock_gtod_data;
2274 
2275 static void update_pvclock_gtod(struct timekeeper *tk)
2276 {
2277 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2278 
2279 	write_seqcount_begin(&vdata->seq);
2280 
2281 	/* copy pvclock gtod data */
2282 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2283 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2284 	vdata->clock.mask		= tk->tkr_mono.mask;
2285 	vdata->clock.mult		= tk->tkr_mono.mult;
2286 	vdata->clock.shift		= tk->tkr_mono.shift;
2287 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2288 	vdata->clock.offset		= tk->tkr_mono.base;
2289 
2290 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2291 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2292 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2293 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2294 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2295 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2296 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2297 
2298 	vdata->wall_time_sec            = tk->xtime_sec;
2299 
2300 	vdata->offs_boot		= tk->offs_boot;
2301 
2302 	write_seqcount_end(&vdata->seq);
2303 }
2304 
2305 static s64 get_kvmclock_base_ns(void)
2306 {
2307 	/* Count up from boot time, but with the frequency of the raw clock.  */
2308 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2309 }
2310 #else
2311 static s64 get_kvmclock_base_ns(void)
2312 {
2313 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2314 	return ktime_get_boottime_ns();
2315 }
2316 #endif
2317 
2318 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2319 {
2320 	int version;
2321 	int r;
2322 	struct pvclock_wall_clock wc;
2323 	u32 wc_sec_hi;
2324 	u64 wall_nsec;
2325 
2326 	if (!wall_clock)
2327 		return;
2328 
2329 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2330 	if (r)
2331 		return;
2332 
2333 	if (version & 1)
2334 		++version;  /* first time write, random junk */
2335 
2336 	++version;
2337 
2338 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2339 		return;
2340 
2341 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2342 
2343 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2344 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2345 	wc.version = version;
2346 
2347 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2348 
2349 	if (sec_hi_ofs) {
2350 		wc_sec_hi = wall_nsec >> 32;
2351 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2352 				&wc_sec_hi, sizeof(wc_sec_hi));
2353 	}
2354 
2355 	version++;
2356 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2357 }
2358 
2359 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2360 				  bool old_msr, bool host_initiated)
2361 {
2362 	struct kvm_arch *ka = &vcpu->kvm->arch;
2363 
2364 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2365 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2366 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2367 
2368 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2369 	}
2370 
2371 	vcpu->arch.time = system_time;
2372 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2373 
2374 	/* we verify if the enable bit is set... */
2375 	if (system_time & 1)
2376 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2377 				 sizeof(struct pvclock_vcpu_time_info));
2378 	else
2379 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2380 
2381 	return;
2382 }
2383 
2384 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2385 {
2386 	do_shl32_div32(dividend, divisor);
2387 	return dividend;
2388 }
2389 
2390 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2391 			       s8 *pshift, u32 *pmultiplier)
2392 {
2393 	uint64_t scaled64;
2394 	int32_t  shift = 0;
2395 	uint64_t tps64;
2396 	uint32_t tps32;
2397 
2398 	tps64 = base_hz;
2399 	scaled64 = scaled_hz;
2400 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2401 		tps64 >>= 1;
2402 		shift--;
2403 	}
2404 
2405 	tps32 = (uint32_t)tps64;
2406 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2407 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2408 			scaled64 >>= 1;
2409 		else
2410 			tps32 <<= 1;
2411 		shift++;
2412 	}
2413 
2414 	*pshift = shift;
2415 	*pmultiplier = div_frac(scaled64, tps32);
2416 }
2417 
2418 #ifdef CONFIG_X86_64
2419 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2420 #endif
2421 
2422 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2423 static unsigned long max_tsc_khz;
2424 
2425 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2426 {
2427 	u64 v = (u64)khz * (1000000 + ppm);
2428 	do_div(v, 1000000);
2429 	return v;
2430 }
2431 
2432 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2433 
2434 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2435 {
2436 	u64 ratio;
2437 
2438 	/* Guest TSC same frequency as host TSC? */
2439 	if (!scale) {
2440 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2441 		return 0;
2442 	}
2443 
2444 	/* TSC scaling supported? */
2445 	if (!kvm_caps.has_tsc_control) {
2446 		if (user_tsc_khz > tsc_khz) {
2447 			vcpu->arch.tsc_catchup = 1;
2448 			vcpu->arch.tsc_always_catchup = 1;
2449 			return 0;
2450 		} else {
2451 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2452 			return -1;
2453 		}
2454 	}
2455 
2456 	/* TSC scaling required  - calculate ratio */
2457 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2458 				user_tsc_khz, tsc_khz);
2459 
2460 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2461 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2462 			            user_tsc_khz);
2463 		return -1;
2464 	}
2465 
2466 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2467 	return 0;
2468 }
2469 
2470 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2471 {
2472 	u32 thresh_lo, thresh_hi;
2473 	int use_scaling = 0;
2474 
2475 	/* tsc_khz can be zero if TSC calibration fails */
2476 	if (user_tsc_khz == 0) {
2477 		/* set tsc_scaling_ratio to a safe value */
2478 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2479 		return -1;
2480 	}
2481 
2482 	/* Compute a scale to convert nanoseconds in TSC cycles */
2483 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2484 			   &vcpu->arch.virtual_tsc_shift,
2485 			   &vcpu->arch.virtual_tsc_mult);
2486 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2487 
2488 	/*
2489 	 * Compute the variation in TSC rate which is acceptable
2490 	 * within the range of tolerance and decide if the
2491 	 * rate being applied is within that bounds of the hardware
2492 	 * rate.  If so, no scaling or compensation need be done.
2493 	 */
2494 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2495 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2496 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2497 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2498 			 user_tsc_khz, thresh_lo, thresh_hi);
2499 		use_scaling = 1;
2500 	}
2501 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2502 }
2503 
2504 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2505 {
2506 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2507 				      vcpu->arch.virtual_tsc_mult,
2508 				      vcpu->arch.virtual_tsc_shift);
2509 	tsc += vcpu->arch.this_tsc_write;
2510 	return tsc;
2511 }
2512 
2513 #ifdef CONFIG_X86_64
2514 static inline int gtod_is_based_on_tsc(int mode)
2515 {
2516 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2517 }
2518 #endif
2519 
2520 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2521 {
2522 #ifdef CONFIG_X86_64
2523 	struct kvm_arch *ka = &vcpu->kvm->arch;
2524 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2525 
2526 	/*
2527 	 * To use the masterclock, the host clocksource must be based on TSC
2528 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2529 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2530 	 */
2531 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2532 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2533 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2534 
2535 	/*
2536 	 * Request a masterclock update if the masterclock needs to be toggled
2537 	 * on/off, or when starting a new generation and the masterclock is
2538 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2539 	 * taken _after_ the new generation is created).
2540 	 */
2541 	if ((ka->use_master_clock && new_generation) ||
2542 	    (ka->use_master_clock != use_master_clock))
2543 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2544 
2545 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2546 			    atomic_read(&vcpu->kvm->online_vcpus),
2547 		            ka->use_master_clock, gtod->clock.vclock_mode);
2548 #endif
2549 }
2550 
2551 /*
2552  * Multiply tsc by a fixed point number represented by ratio.
2553  *
2554  * The most significant 64-N bits (mult) of ratio represent the
2555  * integral part of the fixed point number; the remaining N bits
2556  * (frac) represent the fractional part, ie. ratio represents a fixed
2557  * point number (mult + frac * 2^(-N)).
2558  *
2559  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2560  */
2561 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2562 {
2563 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2564 }
2565 
2566 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2567 {
2568 	u64 _tsc = tsc;
2569 
2570 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2571 		_tsc = __scale_tsc(ratio, tsc);
2572 
2573 	return _tsc;
2574 }
2575 
2576 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2577 {
2578 	u64 tsc;
2579 
2580 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2581 
2582 	return target_tsc - tsc;
2583 }
2584 
2585 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2586 {
2587 	return vcpu->arch.l1_tsc_offset +
2588 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2589 }
2590 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2591 
2592 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2593 {
2594 	u64 nested_offset;
2595 
2596 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2597 		nested_offset = l1_offset;
2598 	else
2599 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2600 						kvm_caps.tsc_scaling_ratio_frac_bits);
2601 
2602 	nested_offset += l2_offset;
2603 	return nested_offset;
2604 }
2605 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2606 
2607 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2608 {
2609 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2610 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2611 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2612 
2613 	return l1_multiplier;
2614 }
2615 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2616 
2617 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2618 {
2619 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2620 				   vcpu->arch.l1_tsc_offset,
2621 				   l1_offset);
2622 
2623 	vcpu->arch.l1_tsc_offset = l1_offset;
2624 
2625 	/*
2626 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2627 	 * according to the spec this should set L1's TSC (as opposed to
2628 	 * setting L1's offset for L2).
2629 	 */
2630 	if (is_guest_mode(vcpu))
2631 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2632 			l1_offset,
2633 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2634 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2635 	else
2636 		vcpu->arch.tsc_offset = l1_offset;
2637 
2638 	static_call(kvm_x86_write_tsc_offset)(vcpu);
2639 }
2640 
2641 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2642 {
2643 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2644 
2645 	/* Userspace is changing the multiplier while L2 is active */
2646 	if (is_guest_mode(vcpu))
2647 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2648 			l1_multiplier,
2649 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2650 	else
2651 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2652 
2653 	if (kvm_caps.has_tsc_control)
2654 		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2655 }
2656 
2657 static inline bool kvm_check_tsc_unstable(void)
2658 {
2659 #ifdef CONFIG_X86_64
2660 	/*
2661 	 * TSC is marked unstable when we're running on Hyper-V,
2662 	 * 'TSC page' clocksource is good.
2663 	 */
2664 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2665 		return false;
2666 #endif
2667 	return check_tsc_unstable();
2668 }
2669 
2670 /*
2671  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2672  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2673  * participates in.
2674  */
2675 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2676 				  u64 ns, bool matched)
2677 {
2678 	struct kvm *kvm = vcpu->kvm;
2679 
2680 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2681 
2682 	/*
2683 	 * We also track th most recent recorded KHZ, write and time to
2684 	 * allow the matching interval to be extended at each write.
2685 	 */
2686 	kvm->arch.last_tsc_nsec = ns;
2687 	kvm->arch.last_tsc_write = tsc;
2688 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2689 	kvm->arch.last_tsc_offset = offset;
2690 
2691 	vcpu->arch.last_guest_tsc = tsc;
2692 
2693 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2694 
2695 	if (!matched) {
2696 		/*
2697 		 * We split periods of matched TSC writes into generations.
2698 		 * For each generation, we track the original measured
2699 		 * nanosecond time, offset, and write, so if TSCs are in
2700 		 * sync, we can match exact offset, and if not, we can match
2701 		 * exact software computation in compute_guest_tsc()
2702 		 *
2703 		 * These values are tracked in kvm->arch.cur_xxx variables.
2704 		 */
2705 		kvm->arch.cur_tsc_generation++;
2706 		kvm->arch.cur_tsc_nsec = ns;
2707 		kvm->arch.cur_tsc_write = tsc;
2708 		kvm->arch.cur_tsc_offset = offset;
2709 		kvm->arch.nr_vcpus_matched_tsc = 0;
2710 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2711 		kvm->arch.nr_vcpus_matched_tsc++;
2712 	}
2713 
2714 	/* Keep track of which generation this VCPU has synchronized to */
2715 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2716 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2717 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2718 
2719 	kvm_track_tsc_matching(vcpu, !matched);
2720 }
2721 
2722 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2723 {
2724 	u64 data = user_value ? *user_value : 0;
2725 	struct kvm *kvm = vcpu->kvm;
2726 	u64 offset, ns, elapsed;
2727 	unsigned long flags;
2728 	bool matched = false;
2729 	bool synchronizing = false;
2730 
2731 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2732 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2733 	ns = get_kvmclock_base_ns();
2734 	elapsed = ns - kvm->arch.last_tsc_nsec;
2735 
2736 	if (vcpu->arch.virtual_tsc_khz) {
2737 		if (data == 0) {
2738 			/*
2739 			 * Force synchronization when creating a vCPU, or when
2740 			 * userspace explicitly writes a zero value.
2741 			 */
2742 			synchronizing = true;
2743 		} else if (kvm->arch.user_set_tsc) {
2744 			u64 tsc_exp = kvm->arch.last_tsc_write +
2745 						nsec_to_cycles(vcpu, elapsed);
2746 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2747 			/*
2748 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2749 			 * a small delta (1 second) of virtual cycle time against the
2750 			 * previously set vCPU, we assume that they were intended to be
2751 			 * in sync and the delta was only due to the racy nature of the
2752 			 * legacy API.
2753 			 *
2754 			 * This trick falls down when restoring a guest which genuinely
2755 			 * has been running for less time than the 1 second of imprecision
2756 			 * which we allow for in the legacy API. In this case, the first
2757 			 * value written by userspace (on any vCPU) should not be subject
2758 			 * to this 'correction' to make it sync up with values that only
2759 			 * come from the kernel's default vCPU creation. Make the 1-second
2760 			 * slop hack only trigger if the user_set_tsc flag is already set.
2761 			 */
2762 			synchronizing = data < tsc_exp + tsc_hz &&
2763 					data + tsc_hz > tsc_exp;
2764 		}
2765 	}
2766 
2767 	if (user_value)
2768 		kvm->arch.user_set_tsc = true;
2769 
2770 	/*
2771 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2772 	 * TSC, we add elapsed time in this computation.  We could let the
2773 	 * compensation code attempt to catch up if we fall behind, but
2774 	 * it's better to try to match offsets from the beginning.
2775          */
2776 	if (synchronizing &&
2777 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2778 		if (!kvm_check_tsc_unstable()) {
2779 			offset = kvm->arch.cur_tsc_offset;
2780 		} else {
2781 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2782 			data += delta;
2783 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2784 		}
2785 		matched = true;
2786 	}
2787 
2788 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2789 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2790 }
2791 
2792 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2793 					   s64 adjustment)
2794 {
2795 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2796 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2797 }
2798 
2799 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2800 {
2801 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2802 		WARN_ON(adjustment < 0);
2803 	adjustment = kvm_scale_tsc((u64) adjustment,
2804 				   vcpu->arch.l1_tsc_scaling_ratio);
2805 	adjust_tsc_offset_guest(vcpu, adjustment);
2806 }
2807 
2808 #ifdef CONFIG_X86_64
2809 
2810 static u64 read_tsc(void)
2811 {
2812 	u64 ret = (u64)rdtsc_ordered();
2813 	u64 last = pvclock_gtod_data.clock.cycle_last;
2814 
2815 	if (likely(ret >= last))
2816 		return ret;
2817 
2818 	/*
2819 	 * GCC likes to generate cmov here, but this branch is extremely
2820 	 * predictable (it's just a function of time and the likely is
2821 	 * very likely) and there's a data dependence, so force GCC
2822 	 * to generate a branch instead.  I don't barrier() because
2823 	 * we don't actually need a barrier, and if this function
2824 	 * ever gets inlined it will generate worse code.
2825 	 */
2826 	asm volatile ("");
2827 	return last;
2828 }
2829 
2830 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2831 			  int *mode)
2832 {
2833 	u64 tsc_pg_val;
2834 	long v;
2835 
2836 	switch (clock->vclock_mode) {
2837 	case VDSO_CLOCKMODE_HVCLOCK:
2838 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2839 					 tsc_timestamp, &tsc_pg_val)) {
2840 			/* TSC page valid */
2841 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2842 			v = (tsc_pg_val - clock->cycle_last) &
2843 				clock->mask;
2844 		} else {
2845 			/* TSC page invalid */
2846 			*mode = VDSO_CLOCKMODE_NONE;
2847 		}
2848 		break;
2849 	case VDSO_CLOCKMODE_TSC:
2850 		*mode = VDSO_CLOCKMODE_TSC;
2851 		*tsc_timestamp = read_tsc();
2852 		v = (*tsc_timestamp - clock->cycle_last) &
2853 			clock->mask;
2854 		break;
2855 	default:
2856 		*mode = VDSO_CLOCKMODE_NONE;
2857 	}
2858 
2859 	if (*mode == VDSO_CLOCKMODE_NONE)
2860 		*tsc_timestamp = v = 0;
2861 
2862 	return v * clock->mult;
2863 }
2864 
2865 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2866 {
2867 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2868 	unsigned long seq;
2869 	int mode;
2870 	u64 ns;
2871 
2872 	do {
2873 		seq = read_seqcount_begin(&gtod->seq);
2874 		ns = gtod->raw_clock.base_cycles;
2875 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2876 		ns >>= gtod->raw_clock.shift;
2877 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2878 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2879 	*t = ns;
2880 
2881 	return mode;
2882 }
2883 
2884 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2885 {
2886 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2887 	unsigned long seq;
2888 	int mode;
2889 	u64 ns;
2890 
2891 	do {
2892 		seq = read_seqcount_begin(&gtod->seq);
2893 		ts->tv_sec = gtod->wall_time_sec;
2894 		ns = gtod->clock.base_cycles;
2895 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2896 		ns >>= gtod->clock.shift;
2897 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2898 
2899 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2900 	ts->tv_nsec = ns;
2901 
2902 	return mode;
2903 }
2904 
2905 /* returns true if host is using TSC based clocksource */
2906 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2907 {
2908 	/* checked again under seqlock below */
2909 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2910 		return false;
2911 
2912 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2913 						      tsc_timestamp));
2914 }
2915 
2916 /* returns true if host is using TSC based clocksource */
2917 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2918 					   u64 *tsc_timestamp)
2919 {
2920 	/* checked again under seqlock below */
2921 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2922 		return false;
2923 
2924 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2925 }
2926 #endif
2927 
2928 /*
2929  *
2930  * Assuming a stable TSC across physical CPUS, and a stable TSC
2931  * across virtual CPUs, the following condition is possible.
2932  * Each numbered line represents an event visible to both
2933  * CPUs at the next numbered event.
2934  *
2935  * "timespecX" represents host monotonic time. "tscX" represents
2936  * RDTSC value.
2937  *
2938  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2939  *
2940  * 1.  read timespec0,tsc0
2941  * 2.					| timespec1 = timespec0 + N
2942  * 					| tsc1 = tsc0 + M
2943  * 3. transition to guest		| transition to guest
2944  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2945  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2946  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2947  *
2948  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2949  *
2950  * 	- ret0 < ret1
2951  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2952  *		...
2953  *	- 0 < N - M => M < N
2954  *
2955  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2956  * always the case (the difference between two distinct xtime instances
2957  * might be smaller then the difference between corresponding TSC reads,
2958  * when updating guest vcpus pvclock areas).
2959  *
2960  * To avoid that problem, do not allow visibility of distinct
2961  * system_timestamp/tsc_timestamp values simultaneously: use a master
2962  * copy of host monotonic time values. Update that master copy
2963  * in lockstep.
2964  *
2965  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2966  *
2967  */
2968 
2969 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2970 {
2971 #ifdef CONFIG_X86_64
2972 	struct kvm_arch *ka = &kvm->arch;
2973 	int vclock_mode;
2974 	bool host_tsc_clocksource, vcpus_matched;
2975 
2976 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2977 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2978 			atomic_read(&kvm->online_vcpus));
2979 
2980 	/*
2981 	 * If the host uses TSC clock, then passthrough TSC as stable
2982 	 * to the guest.
2983 	 */
2984 	host_tsc_clocksource = kvm_get_time_and_clockread(
2985 					&ka->master_kernel_ns,
2986 					&ka->master_cycle_now);
2987 
2988 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2989 				&& !ka->backwards_tsc_observed
2990 				&& !ka->boot_vcpu_runs_old_kvmclock;
2991 
2992 	if (ka->use_master_clock)
2993 		atomic_set(&kvm_guest_has_master_clock, 1);
2994 
2995 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2996 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2997 					vcpus_matched);
2998 #endif
2999 }
3000 
3001 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3002 {
3003 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3004 }
3005 
3006 static void __kvm_start_pvclock_update(struct kvm *kvm)
3007 {
3008 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3009 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3010 }
3011 
3012 static void kvm_start_pvclock_update(struct kvm *kvm)
3013 {
3014 	kvm_make_mclock_inprogress_request(kvm);
3015 
3016 	/* no guest entries from this point */
3017 	__kvm_start_pvclock_update(kvm);
3018 }
3019 
3020 static void kvm_end_pvclock_update(struct kvm *kvm)
3021 {
3022 	struct kvm_arch *ka = &kvm->arch;
3023 	struct kvm_vcpu *vcpu;
3024 	unsigned long i;
3025 
3026 	write_seqcount_end(&ka->pvclock_sc);
3027 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3028 	kvm_for_each_vcpu(i, vcpu, kvm)
3029 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3030 
3031 	/* guest entries allowed */
3032 	kvm_for_each_vcpu(i, vcpu, kvm)
3033 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3034 }
3035 
3036 static void kvm_update_masterclock(struct kvm *kvm)
3037 {
3038 	kvm_hv_request_tsc_page_update(kvm);
3039 	kvm_start_pvclock_update(kvm);
3040 	pvclock_update_vm_gtod_copy(kvm);
3041 	kvm_end_pvclock_update(kvm);
3042 }
3043 
3044 /*
3045  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3046  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3047  * can change during boot even if the TSC is constant, as it's possible for KVM
3048  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3049  * notification when calibration completes, but practically speaking calibration
3050  * will complete before userspace is alive enough to create VMs.
3051  */
3052 static unsigned long get_cpu_tsc_khz(void)
3053 {
3054 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3055 		return tsc_khz;
3056 	else
3057 		return __this_cpu_read(cpu_tsc_khz);
3058 }
3059 
3060 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3061 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3062 {
3063 	struct kvm_arch *ka = &kvm->arch;
3064 	struct pvclock_vcpu_time_info hv_clock;
3065 
3066 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3067 	get_cpu();
3068 
3069 	data->flags = 0;
3070 	if (ka->use_master_clock &&
3071 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3072 #ifdef CONFIG_X86_64
3073 		struct timespec64 ts;
3074 
3075 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3076 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3077 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3078 		} else
3079 #endif
3080 		data->host_tsc = rdtsc();
3081 
3082 		data->flags |= KVM_CLOCK_TSC_STABLE;
3083 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3084 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3085 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3086 				   &hv_clock.tsc_shift,
3087 				   &hv_clock.tsc_to_system_mul);
3088 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3089 	} else {
3090 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3091 	}
3092 
3093 	put_cpu();
3094 }
3095 
3096 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3097 {
3098 	struct kvm_arch *ka = &kvm->arch;
3099 	unsigned seq;
3100 
3101 	do {
3102 		seq = read_seqcount_begin(&ka->pvclock_sc);
3103 		__get_kvmclock(kvm, data);
3104 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3105 }
3106 
3107 u64 get_kvmclock_ns(struct kvm *kvm)
3108 {
3109 	struct kvm_clock_data data;
3110 
3111 	get_kvmclock(kvm, &data);
3112 	return data.clock;
3113 }
3114 
3115 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3116 				    struct gfn_to_pfn_cache *gpc,
3117 				    unsigned int offset,
3118 				    bool force_tsc_unstable)
3119 {
3120 	struct kvm_vcpu_arch *vcpu = &v->arch;
3121 	struct pvclock_vcpu_time_info *guest_hv_clock;
3122 	unsigned long flags;
3123 
3124 	read_lock_irqsave(&gpc->lock, flags);
3125 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3126 		read_unlock_irqrestore(&gpc->lock, flags);
3127 
3128 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3129 			return;
3130 
3131 		read_lock_irqsave(&gpc->lock, flags);
3132 	}
3133 
3134 	guest_hv_clock = (void *)(gpc->khva + offset);
3135 
3136 	/*
3137 	 * This VCPU is paused, but it's legal for a guest to read another
3138 	 * VCPU's kvmclock, so we really have to follow the specification where
3139 	 * it says that version is odd if data is being modified, and even after
3140 	 * it is consistent.
3141 	 */
3142 
3143 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3144 	smp_wmb();
3145 
3146 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3147 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3148 
3149 	if (vcpu->pvclock_set_guest_stopped_request) {
3150 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3151 		vcpu->pvclock_set_guest_stopped_request = false;
3152 	}
3153 
3154 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3155 
3156 	if (force_tsc_unstable)
3157 		guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3158 
3159 	smp_wmb();
3160 
3161 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3162 
3163 	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3164 	read_unlock_irqrestore(&gpc->lock, flags);
3165 
3166 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3167 }
3168 
3169 static int kvm_guest_time_update(struct kvm_vcpu *v)
3170 {
3171 	unsigned long flags, tgt_tsc_khz;
3172 	unsigned seq;
3173 	struct kvm_vcpu_arch *vcpu = &v->arch;
3174 	struct kvm_arch *ka = &v->kvm->arch;
3175 	s64 kernel_ns;
3176 	u64 tsc_timestamp, host_tsc;
3177 	u8 pvclock_flags;
3178 	bool use_master_clock;
3179 #ifdef CONFIG_KVM_XEN
3180 	/*
3181 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3182 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3183 	 * This default behaviour led to bugs in some guest kernels which cause
3184 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3185 	 */
3186 	bool xen_pvclock_tsc_unstable =
3187 		ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3188 #endif
3189 
3190 	kernel_ns = 0;
3191 	host_tsc = 0;
3192 
3193 	/*
3194 	 * If the host uses TSC clock, then passthrough TSC as stable
3195 	 * to the guest.
3196 	 */
3197 	do {
3198 		seq = read_seqcount_begin(&ka->pvclock_sc);
3199 		use_master_clock = ka->use_master_clock;
3200 		if (use_master_clock) {
3201 			host_tsc = ka->master_cycle_now;
3202 			kernel_ns = ka->master_kernel_ns;
3203 		}
3204 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3205 
3206 	/* Keep irq disabled to prevent changes to the clock */
3207 	local_irq_save(flags);
3208 	tgt_tsc_khz = get_cpu_tsc_khz();
3209 	if (unlikely(tgt_tsc_khz == 0)) {
3210 		local_irq_restore(flags);
3211 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3212 		return 1;
3213 	}
3214 	if (!use_master_clock) {
3215 		host_tsc = rdtsc();
3216 		kernel_ns = get_kvmclock_base_ns();
3217 	}
3218 
3219 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3220 
3221 	/*
3222 	 * We may have to catch up the TSC to match elapsed wall clock
3223 	 * time for two reasons, even if kvmclock is used.
3224 	 *   1) CPU could have been running below the maximum TSC rate
3225 	 *   2) Broken TSC compensation resets the base at each VCPU
3226 	 *      entry to avoid unknown leaps of TSC even when running
3227 	 *      again on the same CPU.  This may cause apparent elapsed
3228 	 *      time to disappear, and the guest to stand still or run
3229 	 *	very slowly.
3230 	 */
3231 	if (vcpu->tsc_catchup) {
3232 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3233 		if (tsc > tsc_timestamp) {
3234 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3235 			tsc_timestamp = tsc;
3236 		}
3237 	}
3238 
3239 	local_irq_restore(flags);
3240 
3241 	/* With all the info we got, fill in the values */
3242 
3243 	if (kvm_caps.has_tsc_control)
3244 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3245 					    v->arch.l1_tsc_scaling_ratio);
3246 
3247 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3248 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3249 				   &vcpu->hv_clock.tsc_shift,
3250 				   &vcpu->hv_clock.tsc_to_system_mul);
3251 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3252 		kvm_xen_update_tsc_info(v);
3253 	}
3254 
3255 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3256 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3257 	vcpu->last_guest_tsc = tsc_timestamp;
3258 
3259 	/* If the host uses TSC clocksource, then it is stable */
3260 	pvclock_flags = 0;
3261 	if (use_master_clock)
3262 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3263 
3264 	vcpu->hv_clock.flags = pvclock_flags;
3265 
3266 	if (vcpu->pv_time.active)
3267 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3268 #ifdef CONFIG_KVM_XEN
3269 	if (vcpu->xen.vcpu_info_cache.active)
3270 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3271 					offsetof(struct compat_vcpu_info, time),
3272 					xen_pvclock_tsc_unstable);
3273 	if (vcpu->xen.vcpu_time_info_cache.active)
3274 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3275 					xen_pvclock_tsc_unstable);
3276 #endif
3277 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3278 	return 0;
3279 }
3280 
3281 /*
3282  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3283  * which it started (i.e. its epoch, when its kvmclock was zero).
3284  *
3285  * In fact those clocks are subtly different; wall clock frequency is
3286  * adjusted by NTP and has leap seconds, while the kvmclock is a
3287  * simple function of the TSC without any such adjustment.
3288  *
3289  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3290  * that and kvmclock, but even that would be subject to change over
3291  * time.
3292  *
3293  * Attempt to calculate the epoch at a given moment using the *same*
3294  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3295  * wallclock and kvmclock times, and subtracting one from the other.
3296  *
3297  * Fall back to using their values at slightly different moments by
3298  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3299  */
3300 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3301 {
3302 #ifdef CONFIG_X86_64
3303 	struct pvclock_vcpu_time_info hv_clock;
3304 	struct kvm_arch *ka = &kvm->arch;
3305 	unsigned long seq, local_tsc_khz;
3306 	struct timespec64 ts;
3307 	uint64_t host_tsc;
3308 
3309 	do {
3310 		seq = read_seqcount_begin(&ka->pvclock_sc);
3311 
3312 		local_tsc_khz = 0;
3313 		if (!ka->use_master_clock)
3314 			break;
3315 
3316 		/*
3317 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3318 		 * on the same CPU.
3319 		 */
3320 		get_cpu();
3321 
3322 		local_tsc_khz = get_cpu_tsc_khz();
3323 
3324 		if (local_tsc_khz &&
3325 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3326 			local_tsc_khz = 0; /* Fall back to old method */
3327 
3328 		put_cpu();
3329 
3330 		/*
3331 		 * These values must be snapshotted within the seqcount loop.
3332 		 * After that, it's just mathematics which can happen on any
3333 		 * CPU at any time.
3334 		 */
3335 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3336 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3337 
3338 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3339 
3340 	/*
3341 	 * If the conditions were right, and obtaining the wallclock+TSC was
3342 	 * successful, calculate the KVM clock at the corresponding time and
3343 	 * subtract one from the other to get the guest's epoch in nanoseconds
3344 	 * since 1970-01-01.
3345 	 */
3346 	if (local_tsc_khz) {
3347 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3348 				   &hv_clock.tsc_shift,
3349 				   &hv_clock.tsc_to_system_mul);
3350 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3351 			__pvclock_read_cycles(&hv_clock, host_tsc);
3352 	}
3353 #endif
3354 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3355 }
3356 
3357 /*
3358  * kvmclock updates which are isolated to a given vcpu, such as
3359  * vcpu->cpu migration, should not allow system_timestamp from
3360  * the rest of the vcpus to remain static. Otherwise ntp frequency
3361  * correction applies to one vcpu's system_timestamp but not
3362  * the others.
3363  *
3364  * So in those cases, request a kvmclock update for all vcpus.
3365  * We need to rate-limit these requests though, as they can
3366  * considerably slow guests that have a large number of vcpus.
3367  * The time for a remote vcpu to update its kvmclock is bound
3368  * by the delay we use to rate-limit the updates.
3369  */
3370 
3371 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3372 
3373 static void kvmclock_update_fn(struct work_struct *work)
3374 {
3375 	unsigned long i;
3376 	struct delayed_work *dwork = to_delayed_work(work);
3377 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3378 					   kvmclock_update_work);
3379 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3380 	struct kvm_vcpu *vcpu;
3381 
3382 	kvm_for_each_vcpu(i, vcpu, kvm) {
3383 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3384 		kvm_vcpu_kick(vcpu);
3385 	}
3386 }
3387 
3388 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3389 {
3390 	struct kvm *kvm = v->kvm;
3391 
3392 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3393 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3394 					KVMCLOCK_UPDATE_DELAY);
3395 }
3396 
3397 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3398 
3399 static void kvmclock_sync_fn(struct work_struct *work)
3400 {
3401 	struct delayed_work *dwork = to_delayed_work(work);
3402 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3403 					   kvmclock_sync_work);
3404 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3405 
3406 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3407 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3408 					KVMCLOCK_SYNC_PERIOD);
3409 }
3410 
3411 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3412 static bool is_mci_control_msr(u32 msr)
3413 {
3414 	return (msr & 3) == 0;
3415 }
3416 static bool is_mci_status_msr(u32 msr)
3417 {
3418 	return (msr & 3) == 1;
3419 }
3420 
3421 /*
3422  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3423  */
3424 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3425 {
3426 	/* McStatusWrEn enabled? */
3427 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3428 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3429 
3430 	return false;
3431 }
3432 
3433 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3434 {
3435 	u64 mcg_cap = vcpu->arch.mcg_cap;
3436 	unsigned bank_num = mcg_cap & 0xff;
3437 	u32 msr = msr_info->index;
3438 	u64 data = msr_info->data;
3439 	u32 offset, last_msr;
3440 
3441 	switch (msr) {
3442 	case MSR_IA32_MCG_STATUS:
3443 		vcpu->arch.mcg_status = data;
3444 		break;
3445 	case MSR_IA32_MCG_CTL:
3446 		if (!(mcg_cap & MCG_CTL_P) &&
3447 		    (data || !msr_info->host_initiated))
3448 			return 1;
3449 		if (data != 0 && data != ~(u64)0)
3450 			return 1;
3451 		vcpu->arch.mcg_ctl = data;
3452 		break;
3453 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3454 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3455 		if (msr > last_msr)
3456 			return 1;
3457 
3458 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3459 			return 1;
3460 		/* An attempt to write a 1 to a reserved bit raises #GP */
3461 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3462 			return 1;
3463 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3464 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3465 		vcpu->arch.mci_ctl2_banks[offset] = data;
3466 		break;
3467 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3468 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3469 		if (msr > last_msr)
3470 			return 1;
3471 
3472 		/*
3473 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3474 		 * values are architecturally undefined.  But, some Linux
3475 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3476 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3477 		 * other bits in order to avoid an uncaught #GP in the guest.
3478 		 *
3479 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3480 		 * single-bit ECC data errors.
3481 		 */
3482 		if (is_mci_control_msr(msr) &&
3483 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3484 			return 1;
3485 
3486 		/*
3487 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3488 		 * AMD-based CPUs allow non-zero values, but if and only if
3489 		 * HWCR[McStatusWrEn] is set.
3490 		 */
3491 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3492 		    data != 0 && !can_set_mci_status(vcpu))
3493 			return 1;
3494 
3495 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3496 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3497 		vcpu->arch.mce_banks[offset] = data;
3498 		break;
3499 	default:
3500 		return 1;
3501 	}
3502 	return 0;
3503 }
3504 
3505 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3506 {
3507 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3508 
3509 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3510 }
3511 
3512 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3513 {
3514 	gpa_t gpa = data & ~0x3f;
3515 
3516 	/* Bits 4:5 are reserved, Should be zero */
3517 	if (data & 0x30)
3518 		return 1;
3519 
3520 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3521 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3522 		return 1;
3523 
3524 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3525 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3526 		return 1;
3527 
3528 	if (!lapic_in_kernel(vcpu))
3529 		return data ? 1 : 0;
3530 
3531 	vcpu->arch.apf.msr_en_val = data;
3532 
3533 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3534 		kvm_clear_async_pf_completion_queue(vcpu);
3535 		kvm_async_pf_hash_reset(vcpu);
3536 		return 0;
3537 	}
3538 
3539 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3540 					sizeof(u64)))
3541 		return 1;
3542 
3543 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3544 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3545 
3546 	kvm_async_pf_wakeup_all(vcpu);
3547 
3548 	return 0;
3549 }
3550 
3551 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3552 {
3553 	/* Bits 8-63 are reserved */
3554 	if (data >> 8)
3555 		return 1;
3556 
3557 	if (!lapic_in_kernel(vcpu))
3558 		return 1;
3559 
3560 	vcpu->arch.apf.msr_int_val = data;
3561 
3562 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3563 
3564 	return 0;
3565 }
3566 
3567 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3568 {
3569 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3570 	vcpu->arch.time = 0;
3571 }
3572 
3573 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3574 {
3575 	++vcpu->stat.tlb_flush;
3576 	static_call(kvm_x86_flush_tlb_all)(vcpu);
3577 
3578 	/* Flushing all ASIDs flushes the current ASID... */
3579 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3580 }
3581 
3582 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3583 {
3584 	++vcpu->stat.tlb_flush;
3585 
3586 	if (!tdp_enabled) {
3587 		/*
3588 		 * A TLB flush on behalf of the guest is equivalent to
3589 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3590 		 * a forced sync of the shadow page tables.  Ensure all the
3591 		 * roots are synced and the guest TLB in hardware is clean.
3592 		 */
3593 		kvm_mmu_sync_roots(vcpu);
3594 		kvm_mmu_sync_prev_roots(vcpu);
3595 	}
3596 
3597 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3598 
3599 	/*
3600 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3601 	 * grained flushing.
3602 	 */
3603 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3604 }
3605 
3606 
3607 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3608 {
3609 	++vcpu->stat.tlb_flush;
3610 	static_call(kvm_x86_flush_tlb_current)(vcpu);
3611 }
3612 
3613 /*
3614  * Service "local" TLB flush requests, which are specific to the current MMU
3615  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3616  * TLB flushes that are targeted at an MMU context also need to be serviced
3617  * prior before nested VM-Enter/VM-Exit.
3618  */
3619 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3620 {
3621 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3622 		kvm_vcpu_flush_tlb_current(vcpu);
3623 
3624 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3625 		kvm_vcpu_flush_tlb_guest(vcpu);
3626 }
3627 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3628 
3629 static void record_steal_time(struct kvm_vcpu *vcpu)
3630 {
3631 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3632 	struct kvm_steal_time __user *st;
3633 	struct kvm_memslots *slots;
3634 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3635 	u64 steal;
3636 	u32 version;
3637 
3638 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3639 		kvm_xen_runstate_set_running(vcpu);
3640 		return;
3641 	}
3642 
3643 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3644 		return;
3645 
3646 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3647 		return;
3648 
3649 	slots = kvm_memslots(vcpu->kvm);
3650 
3651 	if (unlikely(slots->generation != ghc->generation ||
3652 		     gpa != ghc->gpa ||
3653 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3654 		/* We rely on the fact that it fits in a single page. */
3655 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3656 
3657 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3658 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3659 			return;
3660 	}
3661 
3662 	st = (struct kvm_steal_time __user *)ghc->hva;
3663 	/*
3664 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3665 	 * expensive IPIs.
3666 	 */
3667 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3668 		u8 st_preempted = 0;
3669 		int err = -EFAULT;
3670 
3671 		if (!user_access_begin(st, sizeof(*st)))
3672 			return;
3673 
3674 		asm volatile("1: xchgb %0, %2\n"
3675 			     "xor %1, %1\n"
3676 			     "2:\n"
3677 			     _ASM_EXTABLE_UA(1b, 2b)
3678 			     : "+q" (st_preempted),
3679 			       "+&r" (err),
3680 			       "+m" (st->preempted));
3681 		if (err)
3682 			goto out;
3683 
3684 		user_access_end();
3685 
3686 		vcpu->arch.st.preempted = 0;
3687 
3688 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3689 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3690 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3691 			kvm_vcpu_flush_tlb_guest(vcpu);
3692 
3693 		if (!user_access_begin(st, sizeof(*st)))
3694 			goto dirty;
3695 	} else {
3696 		if (!user_access_begin(st, sizeof(*st)))
3697 			return;
3698 
3699 		unsafe_put_user(0, &st->preempted, out);
3700 		vcpu->arch.st.preempted = 0;
3701 	}
3702 
3703 	unsafe_get_user(version, &st->version, out);
3704 	if (version & 1)
3705 		version += 1;  /* first time write, random junk */
3706 
3707 	version += 1;
3708 	unsafe_put_user(version, &st->version, out);
3709 
3710 	smp_wmb();
3711 
3712 	unsafe_get_user(steal, &st->steal, out);
3713 	steal += current->sched_info.run_delay -
3714 		vcpu->arch.st.last_steal;
3715 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3716 	unsafe_put_user(steal, &st->steal, out);
3717 
3718 	version += 1;
3719 	unsafe_put_user(version, &st->version, out);
3720 
3721  out:
3722 	user_access_end();
3723  dirty:
3724 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3725 }
3726 
3727 static bool kvm_is_msr_to_save(u32 msr_index)
3728 {
3729 	unsigned int i;
3730 
3731 	for (i = 0; i < num_msrs_to_save; i++) {
3732 		if (msrs_to_save[i] == msr_index)
3733 			return true;
3734 	}
3735 
3736 	return false;
3737 }
3738 
3739 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3740 {
3741 	u32 msr = msr_info->index;
3742 	u64 data = msr_info->data;
3743 
3744 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3745 		return kvm_xen_write_hypercall_page(vcpu, data);
3746 
3747 	switch (msr) {
3748 	case MSR_AMD64_NB_CFG:
3749 	case MSR_IA32_UCODE_WRITE:
3750 	case MSR_VM_HSAVE_PA:
3751 	case MSR_AMD64_PATCH_LOADER:
3752 	case MSR_AMD64_BU_CFG2:
3753 	case MSR_AMD64_DC_CFG:
3754 	case MSR_AMD64_TW_CFG:
3755 	case MSR_F15H_EX_CFG:
3756 		break;
3757 
3758 	case MSR_IA32_UCODE_REV:
3759 		if (msr_info->host_initiated)
3760 			vcpu->arch.microcode_version = data;
3761 		break;
3762 	case MSR_IA32_ARCH_CAPABILITIES:
3763 		if (!msr_info->host_initiated)
3764 			return 1;
3765 		vcpu->arch.arch_capabilities = data;
3766 		break;
3767 	case MSR_IA32_PERF_CAPABILITIES:
3768 		if (!msr_info->host_initiated)
3769 			return 1;
3770 		if (data & ~kvm_caps.supported_perf_cap)
3771 			return 1;
3772 
3773 		/*
3774 		 * Note, this is not just a performance optimization!  KVM
3775 		 * disallows changing feature MSRs after the vCPU has run; PMU
3776 		 * refresh will bug the VM if called after the vCPU has run.
3777 		 */
3778 		if (vcpu->arch.perf_capabilities == data)
3779 			break;
3780 
3781 		vcpu->arch.perf_capabilities = data;
3782 		kvm_pmu_refresh(vcpu);
3783 		break;
3784 	case MSR_IA32_PRED_CMD: {
3785 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3786 
3787 		if (!msr_info->host_initiated) {
3788 			if ((!guest_has_pred_cmd_msr(vcpu)))
3789 				return 1;
3790 
3791 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3792 			    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3793 				reserved_bits |= PRED_CMD_IBPB;
3794 
3795 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
3796 				reserved_bits |= PRED_CMD_SBPB;
3797 		}
3798 
3799 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3800 			reserved_bits |= PRED_CMD_IBPB;
3801 
3802 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3803 			reserved_bits |= PRED_CMD_SBPB;
3804 
3805 		if (data & reserved_bits)
3806 			return 1;
3807 
3808 		if (!data)
3809 			break;
3810 
3811 		wrmsrl(MSR_IA32_PRED_CMD, data);
3812 		break;
3813 	}
3814 	case MSR_IA32_FLUSH_CMD:
3815 		if (!msr_info->host_initiated &&
3816 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3817 			return 1;
3818 
3819 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3820 			return 1;
3821 		if (!data)
3822 			break;
3823 
3824 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3825 		break;
3826 	case MSR_EFER:
3827 		return set_efer(vcpu, msr_info);
3828 	case MSR_K7_HWCR:
3829 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3830 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3831 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3832 
3833 		/*
3834 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3835 		 * through at least v6.6 whine if TscFreqSel is clear,
3836 		 * depending on F/M/S.
3837 		 */
3838 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3839 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3840 			return 1;
3841 		}
3842 		vcpu->arch.msr_hwcr = data;
3843 		break;
3844 	case MSR_FAM10H_MMIO_CONF_BASE:
3845 		if (data != 0) {
3846 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3847 			return 1;
3848 		}
3849 		break;
3850 	case MSR_IA32_CR_PAT:
3851 		if (!kvm_pat_valid(data))
3852 			return 1;
3853 
3854 		vcpu->arch.pat = data;
3855 		break;
3856 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3857 	case MSR_MTRRdefType:
3858 		return kvm_mtrr_set_msr(vcpu, msr, data);
3859 	case MSR_IA32_APICBASE:
3860 		return kvm_set_apic_base(vcpu, msr_info);
3861 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3862 		return kvm_x2apic_msr_write(vcpu, msr, data);
3863 	case MSR_IA32_TSC_DEADLINE:
3864 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3865 		break;
3866 	case MSR_IA32_TSC_ADJUST:
3867 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3868 			if (!msr_info->host_initiated) {
3869 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3870 				adjust_tsc_offset_guest(vcpu, adj);
3871 				/* Before back to guest, tsc_timestamp must be adjusted
3872 				 * as well, otherwise guest's percpu pvclock time could jump.
3873 				 */
3874 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3875 			}
3876 			vcpu->arch.ia32_tsc_adjust_msr = data;
3877 		}
3878 		break;
3879 	case MSR_IA32_MISC_ENABLE: {
3880 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3881 
3882 		if (!msr_info->host_initiated) {
3883 			/* RO bits */
3884 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3885 				return 1;
3886 
3887 			/* R bits, i.e. writes are ignored, but don't fault. */
3888 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3889 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3890 		}
3891 
3892 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3893 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3894 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3895 				return 1;
3896 			vcpu->arch.ia32_misc_enable_msr = data;
3897 			kvm_update_cpuid_runtime(vcpu);
3898 		} else {
3899 			vcpu->arch.ia32_misc_enable_msr = data;
3900 		}
3901 		break;
3902 	}
3903 	case MSR_IA32_SMBASE:
3904 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3905 			return 1;
3906 		vcpu->arch.smbase = data;
3907 		break;
3908 	case MSR_IA32_POWER_CTL:
3909 		vcpu->arch.msr_ia32_power_ctl = data;
3910 		break;
3911 	case MSR_IA32_TSC:
3912 		if (msr_info->host_initiated) {
3913 			kvm_synchronize_tsc(vcpu, &data);
3914 		} else {
3915 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3916 			adjust_tsc_offset_guest(vcpu, adj);
3917 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3918 		}
3919 		break;
3920 	case MSR_IA32_XSS:
3921 		if (!msr_info->host_initiated &&
3922 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3923 			return 1;
3924 		/*
3925 		 * KVM supports exposing PT to the guest, but does not support
3926 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3927 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3928 		 */
3929 		if (data & ~kvm_caps.supported_xss)
3930 			return 1;
3931 		vcpu->arch.ia32_xss = data;
3932 		kvm_update_cpuid_runtime(vcpu);
3933 		break;
3934 	case MSR_SMI_COUNT:
3935 		if (!msr_info->host_initiated)
3936 			return 1;
3937 		vcpu->arch.smi_count = data;
3938 		break;
3939 	case MSR_KVM_WALL_CLOCK_NEW:
3940 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3941 			return 1;
3942 
3943 		vcpu->kvm->arch.wall_clock = data;
3944 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3945 		break;
3946 	case MSR_KVM_WALL_CLOCK:
3947 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3948 			return 1;
3949 
3950 		vcpu->kvm->arch.wall_clock = data;
3951 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3952 		break;
3953 	case MSR_KVM_SYSTEM_TIME_NEW:
3954 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3955 			return 1;
3956 
3957 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3958 		break;
3959 	case MSR_KVM_SYSTEM_TIME:
3960 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3961 			return 1;
3962 
3963 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3964 		break;
3965 	case MSR_KVM_ASYNC_PF_EN:
3966 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3967 			return 1;
3968 
3969 		if (kvm_pv_enable_async_pf(vcpu, data))
3970 			return 1;
3971 		break;
3972 	case MSR_KVM_ASYNC_PF_INT:
3973 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3974 			return 1;
3975 
3976 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3977 			return 1;
3978 		break;
3979 	case MSR_KVM_ASYNC_PF_ACK:
3980 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3981 			return 1;
3982 		if (data & 0x1) {
3983 			vcpu->arch.apf.pageready_pending = false;
3984 			kvm_check_async_pf_completion(vcpu);
3985 		}
3986 		break;
3987 	case MSR_KVM_STEAL_TIME:
3988 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3989 			return 1;
3990 
3991 		if (unlikely(!sched_info_on()))
3992 			return 1;
3993 
3994 		if (data & KVM_STEAL_RESERVED_MASK)
3995 			return 1;
3996 
3997 		vcpu->arch.st.msr_val = data;
3998 
3999 		if (!(data & KVM_MSR_ENABLED))
4000 			break;
4001 
4002 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4003 
4004 		break;
4005 	case MSR_KVM_PV_EOI_EN:
4006 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4007 			return 1;
4008 
4009 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4010 			return 1;
4011 		break;
4012 
4013 	case MSR_KVM_POLL_CONTROL:
4014 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4015 			return 1;
4016 
4017 		/* only enable bit supported */
4018 		if (data & (-1ULL << 1))
4019 			return 1;
4020 
4021 		vcpu->arch.msr_kvm_poll_control = data;
4022 		break;
4023 
4024 	case MSR_IA32_MCG_CTL:
4025 	case MSR_IA32_MCG_STATUS:
4026 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4027 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4028 		return set_msr_mce(vcpu, msr_info);
4029 
4030 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4031 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4032 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4033 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4034 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4035 			return kvm_pmu_set_msr(vcpu, msr_info);
4036 
4037 		if (data)
4038 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4039 		break;
4040 	case MSR_K7_CLK_CTL:
4041 		/*
4042 		 * Ignore all writes to this no longer documented MSR.
4043 		 * Writes are only relevant for old K7 processors,
4044 		 * all pre-dating SVM, but a recommended workaround from
4045 		 * AMD for these chips. It is possible to specify the
4046 		 * affected processor models on the command line, hence
4047 		 * the need to ignore the workaround.
4048 		 */
4049 		break;
4050 #ifdef CONFIG_KVM_HYPERV
4051 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4052 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4053 	case HV_X64_MSR_SYNDBG_OPTIONS:
4054 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4055 	case HV_X64_MSR_CRASH_CTL:
4056 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4057 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4058 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4059 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4060 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4061 		return kvm_hv_set_msr_common(vcpu, msr, data,
4062 					     msr_info->host_initiated);
4063 #endif
4064 	case MSR_IA32_BBL_CR_CTL3:
4065 		/* Drop writes to this legacy MSR -- see rdmsr
4066 		 * counterpart for further detail.
4067 		 */
4068 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4069 		break;
4070 	case MSR_AMD64_OSVW_ID_LENGTH:
4071 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4072 			return 1;
4073 		vcpu->arch.osvw.length = data;
4074 		break;
4075 	case MSR_AMD64_OSVW_STATUS:
4076 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4077 			return 1;
4078 		vcpu->arch.osvw.status = data;
4079 		break;
4080 	case MSR_PLATFORM_INFO:
4081 		if (!msr_info->host_initiated ||
4082 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
4083 		     cpuid_fault_enabled(vcpu)))
4084 			return 1;
4085 		vcpu->arch.msr_platform_info = data;
4086 		break;
4087 	case MSR_MISC_FEATURES_ENABLES:
4088 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4089 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4090 		     !supports_cpuid_fault(vcpu)))
4091 			return 1;
4092 		vcpu->arch.msr_misc_features_enables = data;
4093 		break;
4094 #ifdef CONFIG_X86_64
4095 	case MSR_IA32_XFD:
4096 		if (!msr_info->host_initiated &&
4097 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4098 			return 1;
4099 
4100 		if (data & ~kvm_guest_supported_xfd(vcpu))
4101 			return 1;
4102 
4103 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4104 		break;
4105 	case MSR_IA32_XFD_ERR:
4106 		if (!msr_info->host_initiated &&
4107 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4108 			return 1;
4109 
4110 		if (data & ~kvm_guest_supported_xfd(vcpu))
4111 			return 1;
4112 
4113 		vcpu->arch.guest_fpu.xfd_err = data;
4114 		break;
4115 #endif
4116 	default:
4117 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4118 			return kvm_pmu_set_msr(vcpu, msr_info);
4119 
4120 		/*
4121 		 * Userspace is allowed to write '0' to MSRs that KVM reports
4122 		 * as to-be-saved, even if an MSRs isn't fully supported.
4123 		 */
4124 		if (msr_info->host_initiated && !data &&
4125 		    kvm_is_msr_to_save(msr))
4126 			break;
4127 
4128 		return KVM_MSR_RET_INVALID;
4129 	}
4130 	return 0;
4131 }
4132 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4133 
4134 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4135 {
4136 	u64 data;
4137 	u64 mcg_cap = vcpu->arch.mcg_cap;
4138 	unsigned bank_num = mcg_cap & 0xff;
4139 	u32 offset, last_msr;
4140 
4141 	switch (msr) {
4142 	case MSR_IA32_P5_MC_ADDR:
4143 	case MSR_IA32_P5_MC_TYPE:
4144 		data = 0;
4145 		break;
4146 	case MSR_IA32_MCG_CAP:
4147 		data = vcpu->arch.mcg_cap;
4148 		break;
4149 	case MSR_IA32_MCG_CTL:
4150 		if (!(mcg_cap & MCG_CTL_P) && !host)
4151 			return 1;
4152 		data = vcpu->arch.mcg_ctl;
4153 		break;
4154 	case MSR_IA32_MCG_STATUS:
4155 		data = vcpu->arch.mcg_status;
4156 		break;
4157 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4158 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4159 		if (msr > last_msr)
4160 			return 1;
4161 
4162 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4163 			return 1;
4164 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4165 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4166 		data = vcpu->arch.mci_ctl2_banks[offset];
4167 		break;
4168 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4169 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4170 		if (msr > last_msr)
4171 			return 1;
4172 
4173 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4174 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4175 		data = vcpu->arch.mce_banks[offset];
4176 		break;
4177 	default:
4178 		return 1;
4179 	}
4180 	*pdata = data;
4181 	return 0;
4182 }
4183 
4184 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4185 {
4186 	switch (msr_info->index) {
4187 	case MSR_IA32_PLATFORM_ID:
4188 	case MSR_IA32_EBL_CR_POWERON:
4189 	case MSR_IA32_LASTBRANCHFROMIP:
4190 	case MSR_IA32_LASTBRANCHTOIP:
4191 	case MSR_IA32_LASTINTFROMIP:
4192 	case MSR_IA32_LASTINTTOIP:
4193 	case MSR_AMD64_SYSCFG:
4194 	case MSR_K8_TSEG_ADDR:
4195 	case MSR_K8_TSEG_MASK:
4196 	case MSR_VM_HSAVE_PA:
4197 	case MSR_K8_INT_PENDING_MSG:
4198 	case MSR_AMD64_NB_CFG:
4199 	case MSR_FAM10H_MMIO_CONF_BASE:
4200 	case MSR_AMD64_BU_CFG2:
4201 	case MSR_IA32_PERF_CTL:
4202 	case MSR_AMD64_DC_CFG:
4203 	case MSR_AMD64_TW_CFG:
4204 	case MSR_F15H_EX_CFG:
4205 	/*
4206 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4207 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4208 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4209 	 * so for existing CPU-specific MSRs.
4210 	 */
4211 	case MSR_RAPL_POWER_UNIT:
4212 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4213 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4214 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4215 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4216 		msr_info->data = 0;
4217 		break;
4218 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4219 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4220 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4221 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4222 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4223 			return kvm_pmu_get_msr(vcpu, msr_info);
4224 		msr_info->data = 0;
4225 		break;
4226 	case MSR_IA32_UCODE_REV:
4227 		msr_info->data = vcpu->arch.microcode_version;
4228 		break;
4229 	case MSR_IA32_ARCH_CAPABILITIES:
4230 		if (!msr_info->host_initiated &&
4231 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4232 			return 1;
4233 		msr_info->data = vcpu->arch.arch_capabilities;
4234 		break;
4235 	case MSR_IA32_PERF_CAPABILITIES:
4236 		if (!msr_info->host_initiated &&
4237 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4238 			return 1;
4239 		msr_info->data = vcpu->arch.perf_capabilities;
4240 		break;
4241 	case MSR_IA32_POWER_CTL:
4242 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4243 		break;
4244 	case MSR_IA32_TSC: {
4245 		/*
4246 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4247 		 * even when not intercepted. AMD manual doesn't explicitly
4248 		 * state this but appears to behave the same.
4249 		 *
4250 		 * On userspace reads and writes, however, we unconditionally
4251 		 * return L1's TSC value to ensure backwards-compatible
4252 		 * behavior for migration.
4253 		 */
4254 		u64 offset, ratio;
4255 
4256 		if (msr_info->host_initiated) {
4257 			offset = vcpu->arch.l1_tsc_offset;
4258 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4259 		} else {
4260 			offset = vcpu->arch.tsc_offset;
4261 			ratio = vcpu->arch.tsc_scaling_ratio;
4262 		}
4263 
4264 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4265 		break;
4266 	}
4267 	case MSR_IA32_CR_PAT:
4268 		msr_info->data = vcpu->arch.pat;
4269 		break;
4270 	case MSR_MTRRcap:
4271 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4272 	case MSR_MTRRdefType:
4273 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4274 	case 0xcd: /* fsb frequency */
4275 		msr_info->data = 3;
4276 		break;
4277 		/*
4278 		 * MSR_EBC_FREQUENCY_ID
4279 		 * Conservative value valid for even the basic CPU models.
4280 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4281 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4282 		 * and 266MHz for model 3, or 4. Set Core Clock
4283 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4284 		 * 31:24) even though these are only valid for CPU
4285 		 * models > 2, however guests may end up dividing or
4286 		 * multiplying by zero otherwise.
4287 		 */
4288 	case MSR_EBC_FREQUENCY_ID:
4289 		msr_info->data = 1 << 24;
4290 		break;
4291 	case MSR_IA32_APICBASE:
4292 		msr_info->data = kvm_get_apic_base(vcpu);
4293 		break;
4294 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4295 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4296 	case MSR_IA32_TSC_DEADLINE:
4297 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4298 		break;
4299 	case MSR_IA32_TSC_ADJUST:
4300 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4301 		break;
4302 	case MSR_IA32_MISC_ENABLE:
4303 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4304 		break;
4305 	case MSR_IA32_SMBASE:
4306 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4307 			return 1;
4308 		msr_info->data = vcpu->arch.smbase;
4309 		break;
4310 	case MSR_SMI_COUNT:
4311 		msr_info->data = vcpu->arch.smi_count;
4312 		break;
4313 	case MSR_IA32_PERF_STATUS:
4314 		/* TSC increment by tick */
4315 		msr_info->data = 1000ULL;
4316 		/* CPU multiplier */
4317 		msr_info->data |= (((uint64_t)4ULL) << 40);
4318 		break;
4319 	case MSR_EFER:
4320 		msr_info->data = vcpu->arch.efer;
4321 		break;
4322 	case MSR_KVM_WALL_CLOCK:
4323 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4324 			return 1;
4325 
4326 		msr_info->data = vcpu->kvm->arch.wall_clock;
4327 		break;
4328 	case MSR_KVM_WALL_CLOCK_NEW:
4329 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4330 			return 1;
4331 
4332 		msr_info->data = vcpu->kvm->arch.wall_clock;
4333 		break;
4334 	case MSR_KVM_SYSTEM_TIME:
4335 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4336 			return 1;
4337 
4338 		msr_info->data = vcpu->arch.time;
4339 		break;
4340 	case MSR_KVM_SYSTEM_TIME_NEW:
4341 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4342 			return 1;
4343 
4344 		msr_info->data = vcpu->arch.time;
4345 		break;
4346 	case MSR_KVM_ASYNC_PF_EN:
4347 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4348 			return 1;
4349 
4350 		msr_info->data = vcpu->arch.apf.msr_en_val;
4351 		break;
4352 	case MSR_KVM_ASYNC_PF_INT:
4353 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4354 			return 1;
4355 
4356 		msr_info->data = vcpu->arch.apf.msr_int_val;
4357 		break;
4358 	case MSR_KVM_ASYNC_PF_ACK:
4359 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4360 			return 1;
4361 
4362 		msr_info->data = 0;
4363 		break;
4364 	case MSR_KVM_STEAL_TIME:
4365 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4366 			return 1;
4367 
4368 		msr_info->data = vcpu->arch.st.msr_val;
4369 		break;
4370 	case MSR_KVM_PV_EOI_EN:
4371 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4372 			return 1;
4373 
4374 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4375 		break;
4376 	case MSR_KVM_POLL_CONTROL:
4377 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4378 			return 1;
4379 
4380 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4381 		break;
4382 	case MSR_IA32_P5_MC_ADDR:
4383 	case MSR_IA32_P5_MC_TYPE:
4384 	case MSR_IA32_MCG_CAP:
4385 	case MSR_IA32_MCG_CTL:
4386 	case MSR_IA32_MCG_STATUS:
4387 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4388 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4389 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4390 				   msr_info->host_initiated);
4391 	case MSR_IA32_XSS:
4392 		if (!msr_info->host_initiated &&
4393 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4394 			return 1;
4395 		msr_info->data = vcpu->arch.ia32_xss;
4396 		break;
4397 	case MSR_K7_CLK_CTL:
4398 		/*
4399 		 * Provide expected ramp-up count for K7. All other
4400 		 * are set to zero, indicating minimum divisors for
4401 		 * every field.
4402 		 *
4403 		 * This prevents guest kernels on AMD host with CPU
4404 		 * type 6, model 8 and higher from exploding due to
4405 		 * the rdmsr failing.
4406 		 */
4407 		msr_info->data = 0x20000000;
4408 		break;
4409 #ifdef CONFIG_KVM_HYPERV
4410 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4411 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4412 	case HV_X64_MSR_SYNDBG_OPTIONS:
4413 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4414 	case HV_X64_MSR_CRASH_CTL:
4415 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4416 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4417 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4418 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4419 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4420 		return kvm_hv_get_msr_common(vcpu,
4421 					     msr_info->index, &msr_info->data,
4422 					     msr_info->host_initiated);
4423 #endif
4424 	case MSR_IA32_BBL_CR_CTL3:
4425 		/* This legacy MSR exists but isn't fully documented in current
4426 		 * silicon.  It is however accessed by winxp in very narrow
4427 		 * scenarios where it sets bit #19, itself documented as
4428 		 * a "reserved" bit.  Best effort attempt to source coherent
4429 		 * read data here should the balance of the register be
4430 		 * interpreted by the guest:
4431 		 *
4432 		 * L2 cache control register 3: 64GB range, 256KB size,
4433 		 * enabled, latency 0x1, configured
4434 		 */
4435 		msr_info->data = 0xbe702111;
4436 		break;
4437 	case MSR_AMD64_OSVW_ID_LENGTH:
4438 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4439 			return 1;
4440 		msr_info->data = vcpu->arch.osvw.length;
4441 		break;
4442 	case MSR_AMD64_OSVW_STATUS:
4443 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4444 			return 1;
4445 		msr_info->data = vcpu->arch.osvw.status;
4446 		break;
4447 	case MSR_PLATFORM_INFO:
4448 		if (!msr_info->host_initiated &&
4449 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4450 			return 1;
4451 		msr_info->data = vcpu->arch.msr_platform_info;
4452 		break;
4453 	case MSR_MISC_FEATURES_ENABLES:
4454 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4455 		break;
4456 	case MSR_K7_HWCR:
4457 		msr_info->data = vcpu->arch.msr_hwcr;
4458 		break;
4459 #ifdef CONFIG_X86_64
4460 	case MSR_IA32_XFD:
4461 		if (!msr_info->host_initiated &&
4462 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4463 			return 1;
4464 
4465 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4466 		break;
4467 	case MSR_IA32_XFD_ERR:
4468 		if (!msr_info->host_initiated &&
4469 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4470 			return 1;
4471 
4472 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4473 		break;
4474 #endif
4475 	default:
4476 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4477 			return kvm_pmu_get_msr(vcpu, msr_info);
4478 
4479 		/*
4480 		 * Userspace is allowed to read MSRs that KVM reports as
4481 		 * to-be-saved, even if an MSR isn't fully supported.
4482 		 */
4483 		if (msr_info->host_initiated &&
4484 		    kvm_is_msr_to_save(msr_info->index)) {
4485 			msr_info->data = 0;
4486 			break;
4487 		}
4488 
4489 		return KVM_MSR_RET_INVALID;
4490 	}
4491 	return 0;
4492 }
4493 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4494 
4495 /*
4496  * Read or write a bunch of msrs. All parameters are kernel addresses.
4497  *
4498  * @return number of msrs set successfully.
4499  */
4500 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4501 		    struct kvm_msr_entry *entries,
4502 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4503 				  unsigned index, u64 *data))
4504 {
4505 	int i;
4506 
4507 	for (i = 0; i < msrs->nmsrs; ++i)
4508 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4509 			break;
4510 
4511 	return i;
4512 }
4513 
4514 /*
4515  * Read or write a bunch of msrs. Parameters are user addresses.
4516  *
4517  * @return number of msrs set successfully.
4518  */
4519 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4520 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4521 				unsigned index, u64 *data),
4522 		  int writeback)
4523 {
4524 	struct kvm_msrs msrs;
4525 	struct kvm_msr_entry *entries;
4526 	unsigned size;
4527 	int r;
4528 
4529 	r = -EFAULT;
4530 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4531 		goto out;
4532 
4533 	r = -E2BIG;
4534 	if (msrs.nmsrs >= MAX_IO_MSRS)
4535 		goto out;
4536 
4537 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4538 	entries = memdup_user(user_msrs->entries, size);
4539 	if (IS_ERR(entries)) {
4540 		r = PTR_ERR(entries);
4541 		goto out;
4542 	}
4543 
4544 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4545 
4546 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4547 		r = -EFAULT;
4548 
4549 	kfree(entries);
4550 out:
4551 	return r;
4552 }
4553 
4554 static inline bool kvm_can_mwait_in_guest(void)
4555 {
4556 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4557 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4558 		boot_cpu_has(X86_FEATURE_ARAT);
4559 }
4560 
4561 #ifdef CONFIG_KVM_HYPERV
4562 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4563 					    struct kvm_cpuid2 __user *cpuid_arg)
4564 {
4565 	struct kvm_cpuid2 cpuid;
4566 	int r;
4567 
4568 	r = -EFAULT;
4569 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4570 		return r;
4571 
4572 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4573 	if (r)
4574 		return r;
4575 
4576 	r = -EFAULT;
4577 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4578 		return r;
4579 
4580 	return 0;
4581 }
4582 #endif
4583 
4584 static bool kvm_is_vm_type_supported(unsigned long type)
4585 {
4586 	return type == KVM_X86_DEFAULT_VM ||
4587 	       (type == KVM_X86_SW_PROTECTED_VM &&
4588 		IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_enabled);
4589 }
4590 
4591 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4592 {
4593 	int r = 0;
4594 
4595 	switch (ext) {
4596 	case KVM_CAP_IRQCHIP:
4597 	case KVM_CAP_HLT:
4598 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4599 	case KVM_CAP_SET_TSS_ADDR:
4600 	case KVM_CAP_EXT_CPUID:
4601 	case KVM_CAP_EXT_EMUL_CPUID:
4602 	case KVM_CAP_CLOCKSOURCE:
4603 	case KVM_CAP_PIT:
4604 	case KVM_CAP_NOP_IO_DELAY:
4605 	case KVM_CAP_MP_STATE:
4606 	case KVM_CAP_SYNC_MMU:
4607 	case KVM_CAP_USER_NMI:
4608 	case KVM_CAP_REINJECT_CONTROL:
4609 	case KVM_CAP_IRQ_INJECT_STATUS:
4610 	case KVM_CAP_IOEVENTFD:
4611 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4612 	case KVM_CAP_PIT2:
4613 	case KVM_CAP_PIT_STATE2:
4614 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4615 	case KVM_CAP_VCPU_EVENTS:
4616 #ifdef CONFIG_KVM_HYPERV
4617 	case KVM_CAP_HYPERV:
4618 	case KVM_CAP_HYPERV_VAPIC:
4619 	case KVM_CAP_HYPERV_SPIN:
4620 	case KVM_CAP_HYPERV_TIME:
4621 	case KVM_CAP_HYPERV_SYNIC:
4622 	case KVM_CAP_HYPERV_SYNIC2:
4623 	case KVM_CAP_HYPERV_VP_INDEX:
4624 	case KVM_CAP_HYPERV_EVENTFD:
4625 	case KVM_CAP_HYPERV_TLBFLUSH:
4626 	case KVM_CAP_HYPERV_SEND_IPI:
4627 	case KVM_CAP_HYPERV_CPUID:
4628 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4629 	case KVM_CAP_SYS_HYPERV_CPUID:
4630 #endif
4631 	case KVM_CAP_PCI_SEGMENT:
4632 	case KVM_CAP_DEBUGREGS:
4633 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4634 	case KVM_CAP_XSAVE:
4635 	case KVM_CAP_ASYNC_PF:
4636 	case KVM_CAP_ASYNC_PF_INT:
4637 	case KVM_CAP_GET_TSC_KHZ:
4638 	case KVM_CAP_KVMCLOCK_CTRL:
4639 	case KVM_CAP_READONLY_MEM:
4640 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4641 	case KVM_CAP_TSC_DEADLINE_TIMER:
4642 	case KVM_CAP_DISABLE_QUIRKS:
4643 	case KVM_CAP_SET_BOOT_CPU_ID:
4644  	case KVM_CAP_SPLIT_IRQCHIP:
4645 	case KVM_CAP_IMMEDIATE_EXIT:
4646 	case KVM_CAP_PMU_EVENT_FILTER:
4647 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4648 	case KVM_CAP_GET_MSR_FEATURES:
4649 	case KVM_CAP_MSR_PLATFORM_INFO:
4650 	case KVM_CAP_EXCEPTION_PAYLOAD:
4651 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4652 	case KVM_CAP_SET_GUEST_DEBUG:
4653 	case KVM_CAP_LAST_CPU:
4654 	case KVM_CAP_X86_USER_SPACE_MSR:
4655 	case KVM_CAP_X86_MSR_FILTER:
4656 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4657 #ifdef CONFIG_X86_SGX_KVM
4658 	case KVM_CAP_SGX_ATTRIBUTE:
4659 #endif
4660 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4661 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4662 	case KVM_CAP_SREGS2:
4663 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4664 	case KVM_CAP_VCPU_ATTRIBUTES:
4665 	case KVM_CAP_SYS_ATTRIBUTES:
4666 	case KVM_CAP_VAPIC:
4667 	case KVM_CAP_ENABLE_CAP:
4668 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4669 	case KVM_CAP_IRQFD_RESAMPLE:
4670 	case KVM_CAP_MEMORY_FAULT_INFO:
4671 		r = 1;
4672 		break;
4673 	case KVM_CAP_EXIT_HYPERCALL:
4674 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4675 		break;
4676 	case KVM_CAP_SET_GUEST_DEBUG2:
4677 		return KVM_GUESTDBG_VALID_MASK;
4678 #ifdef CONFIG_KVM_XEN
4679 	case KVM_CAP_XEN_HVM:
4680 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4681 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4682 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4683 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4684 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4685 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
4686 		if (sched_info_on())
4687 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4688 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4689 		break;
4690 #endif
4691 	case KVM_CAP_SYNC_REGS:
4692 		r = KVM_SYNC_X86_VALID_FIELDS;
4693 		break;
4694 	case KVM_CAP_ADJUST_CLOCK:
4695 		r = KVM_CLOCK_VALID_FLAGS;
4696 		break;
4697 	case KVM_CAP_X86_DISABLE_EXITS:
4698 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4699 
4700 		if (!mitigate_smt_rsb) {
4701 			r |= KVM_X86_DISABLE_EXITS_HLT |
4702 			     KVM_X86_DISABLE_EXITS_CSTATE;
4703 
4704 			if (kvm_can_mwait_in_guest())
4705 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4706 		}
4707 		break;
4708 	case KVM_CAP_X86_SMM:
4709 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4710 			break;
4711 
4712 		/* SMBASE is usually relocated above 1M on modern chipsets,
4713 		 * and SMM handlers might indeed rely on 4G segment limits,
4714 		 * so do not report SMM to be available if real mode is
4715 		 * emulated via vm86 mode.  Still, do not go to great lengths
4716 		 * to avoid userspace's usage of the feature, because it is a
4717 		 * fringe case that is not enabled except via specific settings
4718 		 * of the module parameters.
4719 		 */
4720 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4721 		break;
4722 	case KVM_CAP_NR_VCPUS:
4723 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4724 		break;
4725 	case KVM_CAP_MAX_VCPUS:
4726 		r = KVM_MAX_VCPUS;
4727 		break;
4728 	case KVM_CAP_MAX_VCPU_ID:
4729 		r = KVM_MAX_VCPU_IDS;
4730 		break;
4731 	case KVM_CAP_PV_MMU:	/* obsolete */
4732 		r = 0;
4733 		break;
4734 	case KVM_CAP_MCE:
4735 		r = KVM_MAX_MCE_BANKS;
4736 		break;
4737 	case KVM_CAP_XCRS:
4738 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4739 		break;
4740 	case KVM_CAP_TSC_CONTROL:
4741 	case KVM_CAP_VM_TSC_CONTROL:
4742 		r = kvm_caps.has_tsc_control;
4743 		break;
4744 	case KVM_CAP_X2APIC_API:
4745 		r = KVM_X2APIC_API_VALID_FLAGS;
4746 		break;
4747 	case KVM_CAP_NESTED_STATE:
4748 		r = kvm_x86_ops.nested_ops->get_state ?
4749 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4750 		break;
4751 #ifdef CONFIG_KVM_HYPERV
4752 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4753 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4754 		break;
4755 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4756 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4757 		break;
4758 #endif
4759 	case KVM_CAP_SMALLER_MAXPHYADDR:
4760 		r = (int) allow_smaller_maxphyaddr;
4761 		break;
4762 	case KVM_CAP_STEAL_TIME:
4763 		r = sched_info_on();
4764 		break;
4765 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4766 		if (kvm_caps.has_bus_lock_exit)
4767 			r = KVM_BUS_LOCK_DETECTION_OFF |
4768 			    KVM_BUS_LOCK_DETECTION_EXIT;
4769 		else
4770 			r = 0;
4771 		break;
4772 	case KVM_CAP_XSAVE2: {
4773 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4774 		if (r < sizeof(struct kvm_xsave))
4775 			r = sizeof(struct kvm_xsave);
4776 		break;
4777 	}
4778 	case KVM_CAP_PMU_CAPABILITY:
4779 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4780 		break;
4781 	case KVM_CAP_DISABLE_QUIRKS2:
4782 		r = KVM_X86_VALID_QUIRKS;
4783 		break;
4784 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4785 		r = kvm_caps.has_notify_vmexit;
4786 		break;
4787 	case KVM_CAP_VM_TYPES:
4788 		r = BIT(KVM_X86_DEFAULT_VM);
4789 		if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM))
4790 			r |= BIT(KVM_X86_SW_PROTECTED_VM);
4791 		break;
4792 	default:
4793 		break;
4794 	}
4795 	return r;
4796 }
4797 
4798 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4799 {
4800 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4801 
4802 	if ((u64)(unsigned long)uaddr != attr->addr)
4803 		return ERR_PTR_USR(-EFAULT);
4804 	return uaddr;
4805 }
4806 
4807 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4808 {
4809 	u64 __user *uaddr = kvm_get_attr_addr(attr);
4810 
4811 	if (attr->group)
4812 		return -ENXIO;
4813 
4814 	if (IS_ERR(uaddr))
4815 		return PTR_ERR(uaddr);
4816 
4817 	switch (attr->attr) {
4818 	case KVM_X86_XCOMP_GUEST_SUPP:
4819 		if (put_user(kvm_caps.supported_xcr0, uaddr))
4820 			return -EFAULT;
4821 		return 0;
4822 	default:
4823 		return -ENXIO;
4824 	}
4825 }
4826 
4827 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4828 {
4829 	if (attr->group)
4830 		return -ENXIO;
4831 
4832 	switch (attr->attr) {
4833 	case KVM_X86_XCOMP_GUEST_SUPP:
4834 		return 0;
4835 	default:
4836 		return -ENXIO;
4837 	}
4838 }
4839 
4840 long kvm_arch_dev_ioctl(struct file *filp,
4841 			unsigned int ioctl, unsigned long arg)
4842 {
4843 	void __user *argp = (void __user *)arg;
4844 	long r;
4845 
4846 	switch (ioctl) {
4847 	case KVM_GET_MSR_INDEX_LIST: {
4848 		struct kvm_msr_list __user *user_msr_list = argp;
4849 		struct kvm_msr_list msr_list;
4850 		unsigned n;
4851 
4852 		r = -EFAULT;
4853 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4854 			goto out;
4855 		n = msr_list.nmsrs;
4856 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4857 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4858 			goto out;
4859 		r = -E2BIG;
4860 		if (n < msr_list.nmsrs)
4861 			goto out;
4862 		r = -EFAULT;
4863 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4864 				 num_msrs_to_save * sizeof(u32)))
4865 			goto out;
4866 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4867 				 &emulated_msrs,
4868 				 num_emulated_msrs * sizeof(u32)))
4869 			goto out;
4870 		r = 0;
4871 		break;
4872 	}
4873 	case KVM_GET_SUPPORTED_CPUID:
4874 	case KVM_GET_EMULATED_CPUID: {
4875 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4876 		struct kvm_cpuid2 cpuid;
4877 
4878 		r = -EFAULT;
4879 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4880 			goto out;
4881 
4882 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4883 					    ioctl);
4884 		if (r)
4885 			goto out;
4886 
4887 		r = -EFAULT;
4888 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4889 			goto out;
4890 		r = 0;
4891 		break;
4892 	}
4893 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4894 		r = -EFAULT;
4895 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4896 				 sizeof(kvm_caps.supported_mce_cap)))
4897 			goto out;
4898 		r = 0;
4899 		break;
4900 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4901 		struct kvm_msr_list __user *user_msr_list = argp;
4902 		struct kvm_msr_list msr_list;
4903 		unsigned int n;
4904 
4905 		r = -EFAULT;
4906 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4907 			goto out;
4908 		n = msr_list.nmsrs;
4909 		msr_list.nmsrs = num_msr_based_features;
4910 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4911 			goto out;
4912 		r = -E2BIG;
4913 		if (n < msr_list.nmsrs)
4914 			goto out;
4915 		r = -EFAULT;
4916 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4917 				 num_msr_based_features * sizeof(u32)))
4918 			goto out;
4919 		r = 0;
4920 		break;
4921 	}
4922 	case KVM_GET_MSRS:
4923 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4924 		break;
4925 #ifdef CONFIG_KVM_HYPERV
4926 	case KVM_GET_SUPPORTED_HV_CPUID:
4927 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4928 		break;
4929 #endif
4930 	case KVM_GET_DEVICE_ATTR: {
4931 		struct kvm_device_attr attr;
4932 		r = -EFAULT;
4933 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4934 			break;
4935 		r = kvm_x86_dev_get_attr(&attr);
4936 		break;
4937 	}
4938 	case KVM_HAS_DEVICE_ATTR: {
4939 		struct kvm_device_attr attr;
4940 		r = -EFAULT;
4941 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4942 			break;
4943 		r = kvm_x86_dev_has_attr(&attr);
4944 		break;
4945 	}
4946 	default:
4947 		r = -EINVAL;
4948 		break;
4949 	}
4950 out:
4951 	return r;
4952 }
4953 
4954 static void wbinvd_ipi(void *garbage)
4955 {
4956 	wbinvd();
4957 }
4958 
4959 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4960 {
4961 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4962 }
4963 
4964 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4965 {
4966 	/* Address WBINVD may be executed by guest */
4967 	if (need_emulate_wbinvd(vcpu)) {
4968 		if (static_call(kvm_x86_has_wbinvd_exit)())
4969 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4970 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4971 			smp_call_function_single(vcpu->cpu,
4972 					wbinvd_ipi, NULL, 1);
4973 	}
4974 
4975 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4976 
4977 	/* Save host pkru register if supported */
4978 	vcpu->arch.host_pkru = read_pkru();
4979 
4980 	/* Apply any externally detected TSC adjustments (due to suspend) */
4981 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4982 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4983 		vcpu->arch.tsc_offset_adjustment = 0;
4984 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4985 	}
4986 
4987 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4988 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4989 				rdtsc() - vcpu->arch.last_host_tsc;
4990 		if (tsc_delta < 0)
4991 			mark_tsc_unstable("KVM discovered backwards TSC");
4992 
4993 		if (kvm_check_tsc_unstable()) {
4994 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4995 						vcpu->arch.last_guest_tsc);
4996 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4997 			vcpu->arch.tsc_catchup = 1;
4998 		}
4999 
5000 		if (kvm_lapic_hv_timer_in_use(vcpu))
5001 			kvm_lapic_restart_hv_timer(vcpu);
5002 
5003 		/*
5004 		 * On a host with synchronized TSC, there is no need to update
5005 		 * kvmclock on vcpu->cpu migration
5006 		 */
5007 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5008 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5009 		if (vcpu->cpu != cpu)
5010 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5011 		vcpu->cpu = cpu;
5012 	}
5013 
5014 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5015 }
5016 
5017 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5018 {
5019 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5020 	struct kvm_steal_time __user *st;
5021 	struct kvm_memslots *slots;
5022 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5023 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5024 
5025 	/*
5026 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5027 	 * an instruction boundary and will not trigger guest emulation of any
5028 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5029 	 * when this is true, for example allowing the vCPU to be marked
5030 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5031 	 */
5032 	if (!vcpu->arch.at_instruction_boundary) {
5033 		vcpu->stat.preemption_other++;
5034 		return;
5035 	}
5036 
5037 	vcpu->stat.preemption_reported++;
5038 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5039 		return;
5040 
5041 	if (vcpu->arch.st.preempted)
5042 		return;
5043 
5044 	/* This happens on process exit */
5045 	if (unlikely(current->mm != vcpu->kvm->mm))
5046 		return;
5047 
5048 	slots = kvm_memslots(vcpu->kvm);
5049 
5050 	if (unlikely(slots->generation != ghc->generation ||
5051 		     gpa != ghc->gpa ||
5052 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5053 		return;
5054 
5055 	st = (struct kvm_steal_time __user *)ghc->hva;
5056 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5057 
5058 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5059 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5060 
5061 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5062 }
5063 
5064 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5065 {
5066 	int idx;
5067 
5068 	if (vcpu->preempted) {
5069 		if (!vcpu->arch.guest_state_protected)
5070 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
5071 
5072 		/*
5073 		 * Take the srcu lock as memslots will be accessed to check the gfn
5074 		 * cache generation against the memslots generation.
5075 		 */
5076 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5077 		if (kvm_xen_msr_enabled(vcpu->kvm))
5078 			kvm_xen_runstate_set_preempted(vcpu);
5079 		else
5080 			kvm_steal_time_set_preempted(vcpu);
5081 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5082 	}
5083 
5084 	static_call(kvm_x86_vcpu_put)(vcpu);
5085 	vcpu->arch.last_host_tsc = rdtsc();
5086 }
5087 
5088 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5089 				    struct kvm_lapic_state *s)
5090 {
5091 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
5092 
5093 	return kvm_apic_get_state(vcpu, s);
5094 }
5095 
5096 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5097 				    struct kvm_lapic_state *s)
5098 {
5099 	int r;
5100 
5101 	r = kvm_apic_set_state(vcpu, s);
5102 	if (r)
5103 		return r;
5104 	update_cr8_intercept(vcpu);
5105 
5106 	return 0;
5107 }
5108 
5109 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5110 {
5111 	/*
5112 	 * We can accept userspace's request for interrupt injection
5113 	 * as long as we have a place to store the interrupt number.
5114 	 * The actual injection will happen when the CPU is able to
5115 	 * deliver the interrupt.
5116 	 */
5117 	if (kvm_cpu_has_extint(vcpu))
5118 		return false;
5119 
5120 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5121 	return (!lapic_in_kernel(vcpu) ||
5122 		kvm_apic_accept_pic_intr(vcpu));
5123 }
5124 
5125 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5126 {
5127 	/*
5128 	 * Do not cause an interrupt window exit if an exception
5129 	 * is pending or an event needs reinjection; userspace
5130 	 * might want to inject the interrupt manually using KVM_SET_REGS
5131 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5132 	 * instruction boundary and with no events half-injected.
5133 	 */
5134 	return (kvm_arch_interrupt_allowed(vcpu) &&
5135 		kvm_cpu_accept_dm_intr(vcpu) &&
5136 		!kvm_event_needs_reinjection(vcpu) &&
5137 		!kvm_is_exception_pending(vcpu));
5138 }
5139 
5140 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5141 				    struct kvm_interrupt *irq)
5142 {
5143 	if (irq->irq >= KVM_NR_INTERRUPTS)
5144 		return -EINVAL;
5145 
5146 	if (!irqchip_in_kernel(vcpu->kvm)) {
5147 		kvm_queue_interrupt(vcpu, irq->irq, false);
5148 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5149 		return 0;
5150 	}
5151 
5152 	/*
5153 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5154 	 * fail for in-kernel 8259.
5155 	 */
5156 	if (pic_in_kernel(vcpu->kvm))
5157 		return -ENXIO;
5158 
5159 	if (vcpu->arch.pending_external_vector != -1)
5160 		return -EEXIST;
5161 
5162 	vcpu->arch.pending_external_vector = irq->irq;
5163 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5164 	return 0;
5165 }
5166 
5167 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5168 {
5169 	kvm_inject_nmi(vcpu);
5170 
5171 	return 0;
5172 }
5173 
5174 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5175 					   struct kvm_tpr_access_ctl *tac)
5176 {
5177 	if (tac->flags)
5178 		return -EINVAL;
5179 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5180 	return 0;
5181 }
5182 
5183 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5184 					u64 mcg_cap)
5185 {
5186 	int r;
5187 	unsigned bank_num = mcg_cap & 0xff, bank;
5188 
5189 	r = -EINVAL;
5190 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5191 		goto out;
5192 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5193 		goto out;
5194 	r = 0;
5195 	vcpu->arch.mcg_cap = mcg_cap;
5196 	/* Init IA32_MCG_CTL to all 1s */
5197 	if (mcg_cap & MCG_CTL_P)
5198 		vcpu->arch.mcg_ctl = ~(u64)0;
5199 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5200 	for (bank = 0; bank < bank_num; bank++) {
5201 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5202 		if (mcg_cap & MCG_CMCI_P)
5203 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5204 	}
5205 
5206 	kvm_apic_after_set_mcg_cap(vcpu);
5207 
5208 	static_call(kvm_x86_setup_mce)(vcpu);
5209 out:
5210 	return r;
5211 }
5212 
5213 /*
5214  * Validate this is an UCNA (uncorrectable no action) error by checking the
5215  * MCG_STATUS and MCi_STATUS registers:
5216  * - none of the bits for Machine Check Exceptions are set
5217  * - both the VAL (valid) and UC (uncorrectable) bits are set
5218  * MCI_STATUS_PCC - Processor Context Corrupted
5219  * MCI_STATUS_S - Signaled as a Machine Check Exception
5220  * MCI_STATUS_AR - Software recoverable Action Required
5221  */
5222 static bool is_ucna(struct kvm_x86_mce *mce)
5223 {
5224 	return	!mce->mcg_status &&
5225 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5226 		(mce->status & MCI_STATUS_VAL) &&
5227 		(mce->status & MCI_STATUS_UC);
5228 }
5229 
5230 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5231 {
5232 	u64 mcg_cap = vcpu->arch.mcg_cap;
5233 
5234 	banks[1] = mce->status;
5235 	banks[2] = mce->addr;
5236 	banks[3] = mce->misc;
5237 	vcpu->arch.mcg_status = mce->mcg_status;
5238 
5239 	if (!(mcg_cap & MCG_CMCI_P) ||
5240 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5241 		return 0;
5242 
5243 	if (lapic_in_kernel(vcpu))
5244 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5245 
5246 	return 0;
5247 }
5248 
5249 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5250 				      struct kvm_x86_mce *mce)
5251 {
5252 	u64 mcg_cap = vcpu->arch.mcg_cap;
5253 	unsigned bank_num = mcg_cap & 0xff;
5254 	u64 *banks = vcpu->arch.mce_banks;
5255 
5256 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5257 		return -EINVAL;
5258 
5259 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5260 
5261 	if (is_ucna(mce))
5262 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5263 
5264 	/*
5265 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5266 	 * reporting is disabled
5267 	 */
5268 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5269 	    vcpu->arch.mcg_ctl != ~(u64)0)
5270 		return 0;
5271 	/*
5272 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5273 	 * reporting is disabled for the bank
5274 	 */
5275 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5276 		return 0;
5277 	if (mce->status & MCI_STATUS_UC) {
5278 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5279 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5280 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5281 			return 0;
5282 		}
5283 		if (banks[1] & MCI_STATUS_VAL)
5284 			mce->status |= MCI_STATUS_OVER;
5285 		banks[2] = mce->addr;
5286 		banks[3] = mce->misc;
5287 		vcpu->arch.mcg_status = mce->mcg_status;
5288 		banks[1] = mce->status;
5289 		kvm_queue_exception(vcpu, MC_VECTOR);
5290 	} else if (!(banks[1] & MCI_STATUS_VAL)
5291 		   || !(banks[1] & MCI_STATUS_UC)) {
5292 		if (banks[1] & MCI_STATUS_VAL)
5293 			mce->status |= MCI_STATUS_OVER;
5294 		banks[2] = mce->addr;
5295 		banks[3] = mce->misc;
5296 		banks[1] = mce->status;
5297 	} else
5298 		banks[1] |= MCI_STATUS_OVER;
5299 	return 0;
5300 }
5301 
5302 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5303 					       struct kvm_vcpu_events *events)
5304 {
5305 	struct kvm_queued_exception *ex;
5306 
5307 	process_nmi(vcpu);
5308 
5309 #ifdef CONFIG_KVM_SMM
5310 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5311 		process_smi(vcpu);
5312 #endif
5313 
5314 	/*
5315 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5316 	 * the only time there can be two queued exceptions is if there's a
5317 	 * non-exiting _injected_ exception, and a pending exiting exception.
5318 	 * In that case, ignore the VM-Exiting exception as it's an extension
5319 	 * of the injected exception.
5320 	 */
5321 	if (vcpu->arch.exception_vmexit.pending &&
5322 	    !vcpu->arch.exception.pending &&
5323 	    !vcpu->arch.exception.injected)
5324 		ex = &vcpu->arch.exception_vmexit;
5325 	else
5326 		ex = &vcpu->arch.exception;
5327 
5328 	/*
5329 	 * In guest mode, payload delivery should be deferred if the exception
5330 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5331 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5332 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5333 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5334 	 * the payload if the capability hasn't been requested.
5335 	 */
5336 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5337 	    ex->pending && ex->has_payload)
5338 		kvm_deliver_exception_payload(vcpu, ex);
5339 
5340 	memset(events, 0, sizeof(*events));
5341 
5342 	/*
5343 	 * The API doesn't provide the instruction length for software
5344 	 * exceptions, so don't report them. As long as the guest RIP
5345 	 * isn't advanced, we should expect to encounter the exception
5346 	 * again.
5347 	 */
5348 	if (!kvm_exception_is_soft(ex->vector)) {
5349 		events->exception.injected = ex->injected;
5350 		events->exception.pending = ex->pending;
5351 		/*
5352 		 * For ABI compatibility, deliberately conflate
5353 		 * pending and injected exceptions when
5354 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5355 		 */
5356 		if (!vcpu->kvm->arch.exception_payload_enabled)
5357 			events->exception.injected |= ex->pending;
5358 	}
5359 	events->exception.nr = ex->vector;
5360 	events->exception.has_error_code = ex->has_error_code;
5361 	events->exception.error_code = ex->error_code;
5362 	events->exception_has_payload = ex->has_payload;
5363 	events->exception_payload = ex->payload;
5364 
5365 	events->interrupt.injected =
5366 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5367 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5368 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5369 
5370 	events->nmi.injected = vcpu->arch.nmi_injected;
5371 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5372 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5373 
5374 	/* events->sipi_vector is never valid when reporting to user space */
5375 
5376 #ifdef CONFIG_KVM_SMM
5377 	events->smi.smm = is_smm(vcpu);
5378 	events->smi.pending = vcpu->arch.smi_pending;
5379 	events->smi.smm_inside_nmi =
5380 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5381 #endif
5382 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5383 
5384 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5385 			 | KVM_VCPUEVENT_VALID_SHADOW
5386 			 | KVM_VCPUEVENT_VALID_SMM);
5387 	if (vcpu->kvm->arch.exception_payload_enabled)
5388 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5389 	if (vcpu->kvm->arch.triple_fault_event) {
5390 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5391 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5392 	}
5393 }
5394 
5395 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5396 					      struct kvm_vcpu_events *events)
5397 {
5398 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5399 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5400 			      | KVM_VCPUEVENT_VALID_SHADOW
5401 			      | KVM_VCPUEVENT_VALID_SMM
5402 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5403 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5404 		return -EINVAL;
5405 
5406 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5407 		if (!vcpu->kvm->arch.exception_payload_enabled)
5408 			return -EINVAL;
5409 		if (events->exception.pending)
5410 			events->exception.injected = 0;
5411 		else
5412 			events->exception_has_payload = 0;
5413 	} else {
5414 		events->exception.pending = 0;
5415 		events->exception_has_payload = 0;
5416 	}
5417 
5418 	if ((events->exception.injected || events->exception.pending) &&
5419 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5420 		return -EINVAL;
5421 
5422 	/* INITs are latched while in SMM */
5423 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5424 	    (events->smi.smm || events->smi.pending) &&
5425 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5426 		return -EINVAL;
5427 
5428 	process_nmi(vcpu);
5429 
5430 	/*
5431 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5432 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5433 	 * pending exceptions, already-injected exceptions are not subject to
5434 	 * intercpetion.  Note, userspace that conflates pending and injected
5435 	 * is hosed, and will incorrectly convert an injected exception into a
5436 	 * pending exception, which in turn may cause a spurious VM-Exit.
5437 	 */
5438 	vcpu->arch.exception_from_userspace = events->exception.pending;
5439 
5440 	vcpu->arch.exception_vmexit.pending = false;
5441 
5442 	vcpu->arch.exception.injected = events->exception.injected;
5443 	vcpu->arch.exception.pending = events->exception.pending;
5444 	vcpu->arch.exception.vector = events->exception.nr;
5445 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5446 	vcpu->arch.exception.error_code = events->exception.error_code;
5447 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5448 	vcpu->arch.exception.payload = events->exception_payload;
5449 
5450 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5451 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5452 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5453 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5454 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5455 						events->interrupt.shadow);
5456 
5457 	vcpu->arch.nmi_injected = events->nmi.injected;
5458 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5459 		vcpu->arch.nmi_pending = 0;
5460 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5461 		kvm_make_request(KVM_REQ_NMI, vcpu);
5462 	}
5463 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5464 
5465 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5466 	    lapic_in_kernel(vcpu))
5467 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5468 
5469 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5470 #ifdef CONFIG_KVM_SMM
5471 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5472 			kvm_leave_nested(vcpu);
5473 			kvm_smm_changed(vcpu, events->smi.smm);
5474 		}
5475 
5476 		vcpu->arch.smi_pending = events->smi.pending;
5477 
5478 		if (events->smi.smm) {
5479 			if (events->smi.smm_inside_nmi)
5480 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5481 			else
5482 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5483 		}
5484 
5485 #else
5486 		if (events->smi.smm || events->smi.pending ||
5487 		    events->smi.smm_inside_nmi)
5488 			return -EINVAL;
5489 #endif
5490 
5491 		if (lapic_in_kernel(vcpu)) {
5492 			if (events->smi.latched_init)
5493 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5494 			else
5495 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5496 		}
5497 	}
5498 
5499 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5500 		if (!vcpu->kvm->arch.triple_fault_event)
5501 			return -EINVAL;
5502 		if (events->triple_fault.pending)
5503 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5504 		else
5505 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5506 	}
5507 
5508 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5509 
5510 	return 0;
5511 }
5512 
5513 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5514 					     struct kvm_debugregs *dbgregs)
5515 {
5516 	unsigned long val;
5517 
5518 	memset(dbgregs, 0, sizeof(*dbgregs));
5519 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5520 	kvm_get_dr(vcpu, 6, &val);
5521 	dbgregs->dr6 = val;
5522 	dbgregs->dr7 = vcpu->arch.dr7;
5523 }
5524 
5525 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5526 					    struct kvm_debugregs *dbgregs)
5527 {
5528 	if (dbgregs->flags)
5529 		return -EINVAL;
5530 
5531 	if (!kvm_dr6_valid(dbgregs->dr6))
5532 		return -EINVAL;
5533 	if (!kvm_dr7_valid(dbgregs->dr7))
5534 		return -EINVAL;
5535 
5536 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5537 	kvm_update_dr0123(vcpu);
5538 	vcpu->arch.dr6 = dbgregs->dr6;
5539 	vcpu->arch.dr7 = dbgregs->dr7;
5540 	kvm_update_dr7(vcpu);
5541 
5542 	return 0;
5543 }
5544 
5545 
5546 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5547 					  u8 *state, unsigned int size)
5548 {
5549 	/*
5550 	 * Only copy state for features that are enabled for the guest.  The
5551 	 * state itself isn't problematic, but setting bits in the header for
5552 	 * features that are supported in *this* host but not exposed to the
5553 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5554 	 * compatible host without the features that are NOT exposed to the
5555 	 * guest.
5556 	 *
5557 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5558 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5559 	 * supported by the host.
5560 	 */
5561 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5562 			     XFEATURE_MASK_FPSSE;
5563 
5564 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5565 		return;
5566 
5567 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5568 				       supported_xcr0, vcpu->arch.pkru);
5569 }
5570 
5571 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5572 					 struct kvm_xsave *guest_xsave)
5573 {
5574 	kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5575 				      sizeof(guest_xsave->region));
5576 }
5577 
5578 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5579 					struct kvm_xsave *guest_xsave)
5580 {
5581 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5582 		return 0;
5583 
5584 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5585 					      guest_xsave->region,
5586 					      kvm_caps.supported_xcr0,
5587 					      &vcpu->arch.pkru);
5588 }
5589 
5590 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5591 					struct kvm_xcrs *guest_xcrs)
5592 {
5593 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5594 		guest_xcrs->nr_xcrs = 0;
5595 		return;
5596 	}
5597 
5598 	guest_xcrs->nr_xcrs = 1;
5599 	guest_xcrs->flags = 0;
5600 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5601 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5602 }
5603 
5604 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5605 				       struct kvm_xcrs *guest_xcrs)
5606 {
5607 	int i, r = 0;
5608 
5609 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5610 		return -EINVAL;
5611 
5612 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5613 		return -EINVAL;
5614 
5615 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5616 		/* Only support XCR0 currently */
5617 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5618 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5619 				guest_xcrs->xcrs[i].value);
5620 			break;
5621 		}
5622 	if (r)
5623 		r = -EINVAL;
5624 	return r;
5625 }
5626 
5627 /*
5628  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5629  * stopped by the hypervisor.  This function will be called from the host only.
5630  * EINVAL is returned when the host attempts to set the flag for a guest that
5631  * does not support pv clocks.
5632  */
5633 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5634 {
5635 	if (!vcpu->arch.pv_time.active)
5636 		return -EINVAL;
5637 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5638 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5639 	return 0;
5640 }
5641 
5642 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5643 				 struct kvm_device_attr *attr)
5644 {
5645 	int r;
5646 
5647 	switch (attr->attr) {
5648 	case KVM_VCPU_TSC_OFFSET:
5649 		r = 0;
5650 		break;
5651 	default:
5652 		r = -ENXIO;
5653 	}
5654 
5655 	return r;
5656 }
5657 
5658 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5659 				 struct kvm_device_attr *attr)
5660 {
5661 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5662 	int r;
5663 
5664 	if (IS_ERR(uaddr))
5665 		return PTR_ERR(uaddr);
5666 
5667 	switch (attr->attr) {
5668 	case KVM_VCPU_TSC_OFFSET:
5669 		r = -EFAULT;
5670 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5671 			break;
5672 		r = 0;
5673 		break;
5674 	default:
5675 		r = -ENXIO;
5676 	}
5677 
5678 	return r;
5679 }
5680 
5681 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5682 				 struct kvm_device_attr *attr)
5683 {
5684 	u64 __user *uaddr = kvm_get_attr_addr(attr);
5685 	struct kvm *kvm = vcpu->kvm;
5686 	int r;
5687 
5688 	if (IS_ERR(uaddr))
5689 		return PTR_ERR(uaddr);
5690 
5691 	switch (attr->attr) {
5692 	case KVM_VCPU_TSC_OFFSET: {
5693 		u64 offset, tsc, ns;
5694 		unsigned long flags;
5695 		bool matched;
5696 
5697 		r = -EFAULT;
5698 		if (get_user(offset, uaddr))
5699 			break;
5700 
5701 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5702 
5703 		matched = (vcpu->arch.virtual_tsc_khz &&
5704 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5705 			   kvm->arch.last_tsc_offset == offset);
5706 
5707 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5708 		ns = get_kvmclock_base_ns();
5709 
5710 		kvm->arch.user_set_tsc = true;
5711 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5712 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5713 
5714 		r = 0;
5715 		break;
5716 	}
5717 	default:
5718 		r = -ENXIO;
5719 	}
5720 
5721 	return r;
5722 }
5723 
5724 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5725 				      unsigned int ioctl,
5726 				      void __user *argp)
5727 {
5728 	struct kvm_device_attr attr;
5729 	int r;
5730 
5731 	if (copy_from_user(&attr, argp, sizeof(attr)))
5732 		return -EFAULT;
5733 
5734 	if (attr.group != KVM_VCPU_TSC_CTRL)
5735 		return -ENXIO;
5736 
5737 	switch (ioctl) {
5738 	case KVM_HAS_DEVICE_ATTR:
5739 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5740 		break;
5741 	case KVM_GET_DEVICE_ATTR:
5742 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5743 		break;
5744 	case KVM_SET_DEVICE_ATTR:
5745 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5746 		break;
5747 	}
5748 
5749 	return r;
5750 }
5751 
5752 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5753 				     struct kvm_enable_cap *cap)
5754 {
5755 	if (cap->flags)
5756 		return -EINVAL;
5757 
5758 	switch (cap->cap) {
5759 #ifdef CONFIG_KVM_HYPERV
5760 	case KVM_CAP_HYPERV_SYNIC2:
5761 		if (cap->args[0])
5762 			return -EINVAL;
5763 		fallthrough;
5764 
5765 	case KVM_CAP_HYPERV_SYNIC:
5766 		if (!irqchip_in_kernel(vcpu->kvm))
5767 			return -EINVAL;
5768 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5769 					     KVM_CAP_HYPERV_SYNIC2);
5770 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5771 		{
5772 			int r;
5773 			uint16_t vmcs_version;
5774 			void __user *user_ptr;
5775 
5776 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5777 				return -ENOTTY;
5778 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5779 			if (!r) {
5780 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5781 				if (copy_to_user(user_ptr, &vmcs_version,
5782 						 sizeof(vmcs_version)))
5783 					r = -EFAULT;
5784 			}
5785 			return r;
5786 		}
5787 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5788 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5789 			return -ENOTTY;
5790 
5791 		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5792 
5793 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5794 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5795 #endif
5796 
5797 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5798 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5799 		if (vcpu->arch.pv_cpuid.enforce)
5800 			kvm_update_pv_runtime(vcpu);
5801 
5802 		return 0;
5803 	default:
5804 		return -EINVAL;
5805 	}
5806 }
5807 
5808 long kvm_arch_vcpu_ioctl(struct file *filp,
5809 			 unsigned int ioctl, unsigned long arg)
5810 {
5811 	struct kvm_vcpu *vcpu = filp->private_data;
5812 	void __user *argp = (void __user *)arg;
5813 	int r;
5814 	union {
5815 		struct kvm_sregs2 *sregs2;
5816 		struct kvm_lapic_state *lapic;
5817 		struct kvm_xsave *xsave;
5818 		struct kvm_xcrs *xcrs;
5819 		void *buffer;
5820 	} u;
5821 
5822 	vcpu_load(vcpu);
5823 
5824 	u.buffer = NULL;
5825 	switch (ioctl) {
5826 	case KVM_GET_LAPIC: {
5827 		r = -EINVAL;
5828 		if (!lapic_in_kernel(vcpu))
5829 			goto out;
5830 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5831 				GFP_KERNEL_ACCOUNT);
5832 
5833 		r = -ENOMEM;
5834 		if (!u.lapic)
5835 			goto out;
5836 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5837 		if (r)
5838 			goto out;
5839 		r = -EFAULT;
5840 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5841 			goto out;
5842 		r = 0;
5843 		break;
5844 	}
5845 	case KVM_SET_LAPIC: {
5846 		r = -EINVAL;
5847 		if (!lapic_in_kernel(vcpu))
5848 			goto out;
5849 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5850 		if (IS_ERR(u.lapic)) {
5851 			r = PTR_ERR(u.lapic);
5852 			goto out_nofree;
5853 		}
5854 
5855 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5856 		break;
5857 	}
5858 	case KVM_INTERRUPT: {
5859 		struct kvm_interrupt irq;
5860 
5861 		r = -EFAULT;
5862 		if (copy_from_user(&irq, argp, sizeof(irq)))
5863 			goto out;
5864 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5865 		break;
5866 	}
5867 	case KVM_NMI: {
5868 		r = kvm_vcpu_ioctl_nmi(vcpu);
5869 		break;
5870 	}
5871 	case KVM_SMI: {
5872 		r = kvm_inject_smi(vcpu);
5873 		break;
5874 	}
5875 	case KVM_SET_CPUID: {
5876 		struct kvm_cpuid __user *cpuid_arg = argp;
5877 		struct kvm_cpuid cpuid;
5878 
5879 		r = -EFAULT;
5880 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5881 			goto out;
5882 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5883 		break;
5884 	}
5885 	case KVM_SET_CPUID2: {
5886 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5887 		struct kvm_cpuid2 cpuid;
5888 
5889 		r = -EFAULT;
5890 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5891 			goto out;
5892 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5893 					      cpuid_arg->entries);
5894 		break;
5895 	}
5896 	case KVM_GET_CPUID2: {
5897 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5898 		struct kvm_cpuid2 cpuid;
5899 
5900 		r = -EFAULT;
5901 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5902 			goto out;
5903 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5904 					      cpuid_arg->entries);
5905 		if (r)
5906 			goto out;
5907 		r = -EFAULT;
5908 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5909 			goto out;
5910 		r = 0;
5911 		break;
5912 	}
5913 	case KVM_GET_MSRS: {
5914 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5915 		r = msr_io(vcpu, argp, do_get_msr, 1);
5916 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5917 		break;
5918 	}
5919 	case KVM_SET_MSRS: {
5920 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5921 		r = msr_io(vcpu, argp, do_set_msr, 0);
5922 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5923 		break;
5924 	}
5925 	case KVM_TPR_ACCESS_REPORTING: {
5926 		struct kvm_tpr_access_ctl tac;
5927 
5928 		r = -EFAULT;
5929 		if (copy_from_user(&tac, argp, sizeof(tac)))
5930 			goto out;
5931 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5932 		if (r)
5933 			goto out;
5934 		r = -EFAULT;
5935 		if (copy_to_user(argp, &tac, sizeof(tac)))
5936 			goto out;
5937 		r = 0;
5938 		break;
5939 	};
5940 	case KVM_SET_VAPIC_ADDR: {
5941 		struct kvm_vapic_addr va;
5942 		int idx;
5943 
5944 		r = -EINVAL;
5945 		if (!lapic_in_kernel(vcpu))
5946 			goto out;
5947 		r = -EFAULT;
5948 		if (copy_from_user(&va, argp, sizeof(va)))
5949 			goto out;
5950 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5951 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5952 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5953 		break;
5954 	}
5955 	case KVM_X86_SETUP_MCE: {
5956 		u64 mcg_cap;
5957 
5958 		r = -EFAULT;
5959 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5960 			goto out;
5961 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5962 		break;
5963 	}
5964 	case KVM_X86_SET_MCE: {
5965 		struct kvm_x86_mce mce;
5966 
5967 		r = -EFAULT;
5968 		if (copy_from_user(&mce, argp, sizeof(mce)))
5969 			goto out;
5970 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5971 		break;
5972 	}
5973 	case KVM_GET_VCPU_EVENTS: {
5974 		struct kvm_vcpu_events events;
5975 
5976 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5977 
5978 		r = -EFAULT;
5979 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5980 			break;
5981 		r = 0;
5982 		break;
5983 	}
5984 	case KVM_SET_VCPU_EVENTS: {
5985 		struct kvm_vcpu_events events;
5986 
5987 		r = -EFAULT;
5988 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5989 			break;
5990 
5991 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5992 		break;
5993 	}
5994 	case KVM_GET_DEBUGREGS: {
5995 		struct kvm_debugregs dbgregs;
5996 
5997 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5998 
5999 		r = -EFAULT;
6000 		if (copy_to_user(argp, &dbgregs,
6001 				 sizeof(struct kvm_debugregs)))
6002 			break;
6003 		r = 0;
6004 		break;
6005 	}
6006 	case KVM_SET_DEBUGREGS: {
6007 		struct kvm_debugregs dbgregs;
6008 
6009 		r = -EFAULT;
6010 		if (copy_from_user(&dbgregs, argp,
6011 				   sizeof(struct kvm_debugregs)))
6012 			break;
6013 
6014 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6015 		break;
6016 	}
6017 	case KVM_GET_XSAVE: {
6018 		r = -EINVAL;
6019 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6020 			break;
6021 
6022 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
6023 		r = -ENOMEM;
6024 		if (!u.xsave)
6025 			break;
6026 
6027 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6028 
6029 		r = -EFAULT;
6030 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6031 			break;
6032 		r = 0;
6033 		break;
6034 	}
6035 	case KVM_SET_XSAVE: {
6036 		int size = vcpu->arch.guest_fpu.uabi_size;
6037 
6038 		u.xsave = memdup_user(argp, size);
6039 		if (IS_ERR(u.xsave)) {
6040 			r = PTR_ERR(u.xsave);
6041 			goto out_nofree;
6042 		}
6043 
6044 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6045 		break;
6046 	}
6047 
6048 	case KVM_GET_XSAVE2: {
6049 		int size = vcpu->arch.guest_fpu.uabi_size;
6050 
6051 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
6052 		r = -ENOMEM;
6053 		if (!u.xsave)
6054 			break;
6055 
6056 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6057 
6058 		r = -EFAULT;
6059 		if (copy_to_user(argp, u.xsave, size))
6060 			break;
6061 
6062 		r = 0;
6063 		break;
6064 	}
6065 
6066 	case KVM_GET_XCRS: {
6067 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
6068 		r = -ENOMEM;
6069 		if (!u.xcrs)
6070 			break;
6071 
6072 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6073 
6074 		r = -EFAULT;
6075 		if (copy_to_user(argp, u.xcrs,
6076 				 sizeof(struct kvm_xcrs)))
6077 			break;
6078 		r = 0;
6079 		break;
6080 	}
6081 	case KVM_SET_XCRS: {
6082 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6083 		if (IS_ERR(u.xcrs)) {
6084 			r = PTR_ERR(u.xcrs);
6085 			goto out_nofree;
6086 		}
6087 
6088 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6089 		break;
6090 	}
6091 	case KVM_SET_TSC_KHZ: {
6092 		u32 user_tsc_khz;
6093 
6094 		r = -EINVAL;
6095 		user_tsc_khz = (u32)arg;
6096 
6097 		if (kvm_caps.has_tsc_control &&
6098 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6099 			goto out;
6100 
6101 		if (user_tsc_khz == 0)
6102 			user_tsc_khz = tsc_khz;
6103 
6104 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6105 			r = 0;
6106 
6107 		goto out;
6108 	}
6109 	case KVM_GET_TSC_KHZ: {
6110 		r = vcpu->arch.virtual_tsc_khz;
6111 		goto out;
6112 	}
6113 	case KVM_KVMCLOCK_CTRL: {
6114 		r = kvm_set_guest_paused(vcpu);
6115 		goto out;
6116 	}
6117 	case KVM_ENABLE_CAP: {
6118 		struct kvm_enable_cap cap;
6119 
6120 		r = -EFAULT;
6121 		if (copy_from_user(&cap, argp, sizeof(cap)))
6122 			goto out;
6123 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6124 		break;
6125 	}
6126 	case KVM_GET_NESTED_STATE: {
6127 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6128 		u32 user_data_size;
6129 
6130 		r = -EINVAL;
6131 		if (!kvm_x86_ops.nested_ops->get_state)
6132 			break;
6133 
6134 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6135 		r = -EFAULT;
6136 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6137 			break;
6138 
6139 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6140 						     user_data_size);
6141 		if (r < 0)
6142 			break;
6143 
6144 		if (r > user_data_size) {
6145 			if (put_user(r, &user_kvm_nested_state->size))
6146 				r = -EFAULT;
6147 			else
6148 				r = -E2BIG;
6149 			break;
6150 		}
6151 
6152 		r = 0;
6153 		break;
6154 	}
6155 	case KVM_SET_NESTED_STATE: {
6156 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6157 		struct kvm_nested_state kvm_state;
6158 		int idx;
6159 
6160 		r = -EINVAL;
6161 		if (!kvm_x86_ops.nested_ops->set_state)
6162 			break;
6163 
6164 		r = -EFAULT;
6165 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6166 			break;
6167 
6168 		r = -EINVAL;
6169 		if (kvm_state.size < sizeof(kvm_state))
6170 			break;
6171 
6172 		if (kvm_state.flags &
6173 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6174 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6175 		      | KVM_STATE_NESTED_GIF_SET))
6176 			break;
6177 
6178 		/* nested_run_pending implies guest_mode.  */
6179 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6180 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6181 			break;
6182 
6183 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6184 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6185 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6186 		break;
6187 	}
6188 #ifdef CONFIG_KVM_HYPERV
6189 	case KVM_GET_SUPPORTED_HV_CPUID:
6190 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6191 		break;
6192 #endif
6193 #ifdef CONFIG_KVM_XEN
6194 	case KVM_XEN_VCPU_GET_ATTR: {
6195 		struct kvm_xen_vcpu_attr xva;
6196 
6197 		r = -EFAULT;
6198 		if (copy_from_user(&xva, argp, sizeof(xva)))
6199 			goto out;
6200 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6201 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6202 			r = -EFAULT;
6203 		break;
6204 	}
6205 	case KVM_XEN_VCPU_SET_ATTR: {
6206 		struct kvm_xen_vcpu_attr xva;
6207 
6208 		r = -EFAULT;
6209 		if (copy_from_user(&xva, argp, sizeof(xva)))
6210 			goto out;
6211 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6212 		break;
6213 	}
6214 #endif
6215 	case KVM_GET_SREGS2: {
6216 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6217 		r = -ENOMEM;
6218 		if (!u.sregs2)
6219 			goto out;
6220 		__get_sregs2(vcpu, u.sregs2);
6221 		r = -EFAULT;
6222 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6223 			goto out;
6224 		r = 0;
6225 		break;
6226 	}
6227 	case KVM_SET_SREGS2: {
6228 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6229 		if (IS_ERR(u.sregs2)) {
6230 			r = PTR_ERR(u.sregs2);
6231 			u.sregs2 = NULL;
6232 			goto out;
6233 		}
6234 		r = __set_sregs2(vcpu, u.sregs2);
6235 		break;
6236 	}
6237 	case KVM_HAS_DEVICE_ATTR:
6238 	case KVM_GET_DEVICE_ATTR:
6239 	case KVM_SET_DEVICE_ATTR:
6240 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6241 		break;
6242 	default:
6243 		r = -EINVAL;
6244 	}
6245 out:
6246 	kfree(u.buffer);
6247 out_nofree:
6248 	vcpu_put(vcpu);
6249 	return r;
6250 }
6251 
6252 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6253 {
6254 	return VM_FAULT_SIGBUS;
6255 }
6256 
6257 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6258 {
6259 	int ret;
6260 
6261 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6262 		return -EINVAL;
6263 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6264 	return ret;
6265 }
6266 
6267 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6268 					      u64 ident_addr)
6269 {
6270 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6271 }
6272 
6273 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6274 					 unsigned long kvm_nr_mmu_pages)
6275 {
6276 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6277 		return -EINVAL;
6278 
6279 	mutex_lock(&kvm->slots_lock);
6280 
6281 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6282 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6283 
6284 	mutex_unlock(&kvm->slots_lock);
6285 	return 0;
6286 }
6287 
6288 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6289 {
6290 	struct kvm_pic *pic = kvm->arch.vpic;
6291 	int r;
6292 
6293 	r = 0;
6294 	switch (chip->chip_id) {
6295 	case KVM_IRQCHIP_PIC_MASTER:
6296 		memcpy(&chip->chip.pic, &pic->pics[0],
6297 			sizeof(struct kvm_pic_state));
6298 		break;
6299 	case KVM_IRQCHIP_PIC_SLAVE:
6300 		memcpy(&chip->chip.pic, &pic->pics[1],
6301 			sizeof(struct kvm_pic_state));
6302 		break;
6303 	case KVM_IRQCHIP_IOAPIC:
6304 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6305 		break;
6306 	default:
6307 		r = -EINVAL;
6308 		break;
6309 	}
6310 	return r;
6311 }
6312 
6313 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6314 {
6315 	struct kvm_pic *pic = kvm->arch.vpic;
6316 	int r;
6317 
6318 	r = 0;
6319 	switch (chip->chip_id) {
6320 	case KVM_IRQCHIP_PIC_MASTER:
6321 		spin_lock(&pic->lock);
6322 		memcpy(&pic->pics[0], &chip->chip.pic,
6323 			sizeof(struct kvm_pic_state));
6324 		spin_unlock(&pic->lock);
6325 		break;
6326 	case KVM_IRQCHIP_PIC_SLAVE:
6327 		spin_lock(&pic->lock);
6328 		memcpy(&pic->pics[1], &chip->chip.pic,
6329 			sizeof(struct kvm_pic_state));
6330 		spin_unlock(&pic->lock);
6331 		break;
6332 	case KVM_IRQCHIP_IOAPIC:
6333 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6334 		break;
6335 	default:
6336 		r = -EINVAL;
6337 		break;
6338 	}
6339 	kvm_pic_update_irq(pic);
6340 	return r;
6341 }
6342 
6343 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6344 {
6345 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6346 
6347 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6348 
6349 	mutex_lock(&kps->lock);
6350 	memcpy(ps, &kps->channels, sizeof(*ps));
6351 	mutex_unlock(&kps->lock);
6352 	return 0;
6353 }
6354 
6355 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6356 {
6357 	int i;
6358 	struct kvm_pit *pit = kvm->arch.vpit;
6359 
6360 	mutex_lock(&pit->pit_state.lock);
6361 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6362 	for (i = 0; i < 3; i++)
6363 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6364 	mutex_unlock(&pit->pit_state.lock);
6365 	return 0;
6366 }
6367 
6368 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6369 {
6370 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6371 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6372 		sizeof(ps->channels));
6373 	ps->flags = kvm->arch.vpit->pit_state.flags;
6374 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6375 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6376 	return 0;
6377 }
6378 
6379 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6380 {
6381 	int start = 0;
6382 	int i;
6383 	u32 prev_legacy, cur_legacy;
6384 	struct kvm_pit *pit = kvm->arch.vpit;
6385 
6386 	mutex_lock(&pit->pit_state.lock);
6387 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6388 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6389 	if (!prev_legacy && cur_legacy)
6390 		start = 1;
6391 	memcpy(&pit->pit_state.channels, &ps->channels,
6392 	       sizeof(pit->pit_state.channels));
6393 	pit->pit_state.flags = ps->flags;
6394 	for (i = 0; i < 3; i++)
6395 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6396 				   start && i == 0);
6397 	mutex_unlock(&pit->pit_state.lock);
6398 	return 0;
6399 }
6400 
6401 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6402 				 struct kvm_reinject_control *control)
6403 {
6404 	struct kvm_pit *pit = kvm->arch.vpit;
6405 
6406 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6407 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6408 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6409 	 */
6410 	mutex_lock(&pit->pit_state.lock);
6411 	kvm_pit_set_reinject(pit, control->pit_reinject);
6412 	mutex_unlock(&pit->pit_state.lock);
6413 
6414 	return 0;
6415 }
6416 
6417 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6418 {
6419 
6420 	/*
6421 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6422 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6423 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6424 	 * VM-Exit.
6425 	 */
6426 	struct kvm_vcpu *vcpu;
6427 	unsigned long i;
6428 
6429 	if (!kvm_x86_ops.cpu_dirty_log_size)
6430 		return;
6431 
6432 	kvm_for_each_vcpu(i, vcpu, kvm)
6433 		kvm_vcpu_kick(vcpu);
6434 }
6435 
6436 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6437 			bool line_status)
6438 {
6439 	if (!irqchip_in_kernel(kvm))
6440 		return -ENXIO;
6441 
6442 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6443 					irq_event->irq, irq_event->level,
6444 					line_status);
6445 	return 0;
6446 }
6447 
6448 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6449 			    struct kvm_enable_cap *cap)
6450 {
6451 	int r;
6452 
6453 	if (cap->flags)
6454 		return -EINVAL;
6455 
6456 	switch (cap->cap) {
6457 	case KVM_CAP_DISABLE_QUIRKS2:
6458 		r = -EINVAL;
6459 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6460 			break;
6461 		fallthrough;
6462 	case KVM_CAP_DISABLE_QUIRKS:
6463 		kvm->arch.disabled_quirks = cap->args[0];
6464 		r = 0;
6465 		break;
6466 	case KVM_CAP_SPLIT_IRQCHIP: {
6467 		mutex_lock(&kvm->lock);
6468 		r = -EINVAL;
6469 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6470 			goto split_irqchip_unlock;
6471 		r = -EEXIST;
6472 		if (irqchip_in_kernel(kvm))
6473 			goto split_irqchip_unlock;
6474 		if (kvm->created_vcpus)
6475 			goto split_irqchip_unlock;
6476 		r = kvm_setup_empty_irq_routing(kvm);
6477 		if (r)
6478 			goto split_irqchip_unlock;
6479 		/* Pairs with irqchip_in_kernel. */
6480 		smp_wmb();
6481 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6482 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6483 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6484 		r = 0;
6485 split_irqchip_unlock:
6486 		mutex_unlock(&kvm->lock);
6487 		break;
6488 	}
6489 	case KVM_CAP_X2APIC_API:
6490 		r = -EINVAL;
6491 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6492 			break;
6493 
6494 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6495 			kvm->arch.x2apic_format = true;
6496 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6497 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6498 
6499 		r = 0;
6500 		break;
6501 	case KVM_CAP_X86_DISABLE_EXITS:
6502 		r = -EINVAL;
6503 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6504 			break;
6505 
6506 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6507 			kvm->arch.pause_in_guest = true;
6508 
6509 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6510 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6511 
6512 		if (!mitigate_smt_rsb) {
6513 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6514 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6515 				pr_warn_once(SMT_RSB_MSG);
6516 
6517 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6518 			    kvm_can_mwait_in_guest())
6519 				kvm->arch.mwait_in_guest = true;
6520 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6521 				kvm->arch.hlt_in_guest = true;
6522 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6523 				kvm->arch.cstate_in_guest = true;
6524 		}
6525 
6526 		r = 0;
6527 		break;
6528 	case KVM_CAP_MSR_PLATFORM_INFO:
6529 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6530 		r = 0;
6531 		break;
6532 	case KVM_CAP_EXCEPTION_PAYLOAD:
6533 		kvm->arch.exception_payload_enabled = cap->args[0];
6534 		r = 0;
6535 		break;
6536 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6537 		kvm->arch.triple_fault_event = cap->args[0];
6538 		r = 0;
6539 		break;
6540 	case KVM_CAP_X86_USER_SPACE_MSR:
6541 		r = -EINVAL;
6542 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6543 			break;
6544 		kvm->arch.user_space_msr_mask = cap->args[0];
6545 		r = 0;
6546 		break;
6547 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6548 		r = -EINVAL;
6549 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6550 			break;
6551 
6552 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6553 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6554 			break;
6555 
6556 		if (kvm_caps.has_bus_lock_exit &&
6557 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6558 			kvm->arch.bus_lock_detection_enabled = true;
6559 		r = 0;
6560 		break;
6561 #ifdef CONFIG_X86_SGX_KVM
6562 	case KVM_CAP_SGX_ATTRIBUTE: {
6563 		unsigned long allowed_attributes = 0;
6564 
6565 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6566 		if (r)
6567 			break;
6568 
6569 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6570 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6571 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6572 			kvm->arch.sgx_provisioning_allowed = true;
6573 		else
6574 			r = -EINVAL;
6575 		break;
6576 	}
6577 #endif
6578 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6579 		r = -EINVAL;
6580 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6581 			break;
6582 
6583 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6584 		break;
6585 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6586 		r = -EINVAL;
6587 		if (!kvm_x86_ops.vm_move_enc_context_from)
6588 			break;
6589 
6590 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6591 		break;
6592 	case KVM_CAP_EXIT_HYPERCALL:
6593 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6594 			r = -EINVAL;
6595 			break;
6596 		}
6597 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6598 		r = 0;
6599 		break;
6600 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6601 		r = -EINVAL;
6602 		if (cap->args[0] & ~1)
6603 			break;
6604 		kvm->arch.exit_on_emulation_error = cap->args[0];
6605 		r = 0;
6606 		break;
6607 	case KVM_CAP_PMU_CAPABILITY:
6608 		r = -EINVAL;
6609 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6610 			break;
6611 
6612 		mutex_lock(&kvm->lock);
6613 		if (!kvm->created_vcpus) {
6614 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6615 			r = 0;
6616 		}
6617 		mutex_unlock(&kvm->lock);
6618 		break;
6619 	case KVM_CAP_MAX_VCPU_ID:
6620 		r = -EINVAL;
6621 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6622 			break;
6623 
6624 		mutex_lock(&kvm->lock);
6625 		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6626 			r = 0;
6627 		} else if (!kvm->arch.max_vcpu_ids) {
6628 			kvm->arch.max_vcpu_ids = cap->args[0];
6629 			r = 0;
6630 		}
6631 		mutex_unlock(&kvm->lock);
6632 		break;
6633 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6634 		r = -EINVAL;
6635 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6636 			break;
6637 		if (!kvm_caps.has_notify_vmexit)
6638 			break;
6639 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6640 			break;
6641 		mutex_lock(&kvm->lock);
6642 		if (!kvm->created_vcpus) {
6643 			kvm->arch.notify_window = cap->args[0] >> 32;
6644 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6645 			r = 0;
6646 		}
6647 		mutex_unlock(&kvm->lock);
6648 		break;
6649 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6650 		r = -EINVAL;
6651 
6652 		/*
6653 		 * Since the risk of disabling NX hugepages is a guest crashing
6654 		 * the system, ensure the userspace process has permission to
6655 		 * reboot the system.
6656 		 *
6657 		 * Note that unlike the reboot() syscall, the process must have
6658 		 * this capability in the root namespace because exposing
6659 		 * /dev/kvm into a container does not limit the scope of the
6660 		 * iTLB multihit bug to that container. In other words,
6661 		 * this must use capable(), not ns_capable().
6662 		 */
6663 		if (!capable(CAP_SYS_BOOT)) {
6664 			r = -EPERM;
6665 			break;
6666 		}
6667 
6668 		if (cap->args[0])
6669 			break;
6670 
6671 		mutex_lock(&kvm->lock);
6672 		if (!kvm->created_vcpus) {
6673 			kvm->arch.disable_nx_huge_pages = true;
6674 			r = 0;
6675 		}
6676 		mutex_unlock(&kvm->lock);
6677 		break;
6678 	default:
6679 		r = -EINVAL;
6680 		break;
6681 	}
6682 	return r;
6683 }
6684 
6685 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6686 {
6687 	struct kvm_x86_msr_filter *msr_filter;
6688 
6689 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6690 	if (!msr_filter)
6691 		return NULL;
6692 
6693 	msr_filter->default_allow = default_allow;
6694 	return msr_filter;
6695 }
6696 
6697 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6698 {
6699 	u32 i;
6700 
6701 	if (!msr_filter)
6702 		return;
6703 
6704 	for (i = 0; i < msr_filter->count; i++)
6705 		kfree(msr_filter->ranges[i].bitmap);
6706 
6707 	kfree(msr_filter);
6708 }
6709 
6710 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6711 			      struct kvm_msr_filter_range *user_range)
6712 {
6713 	unsigned long *bitmap;
6714 	size_t bitmap_size;
6715 
6716 	if (!user_range->nmsrs)
6717 		return 0;
6718 
6719 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6720 		return -EINVAL;
6721 
6722 	if (!user_range->flags)
6723 		return -EINVAL;
6724 
6725 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6726 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6727 		return -EINVAL;
6728 
6729 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6730 	if (IS_ERR(bitmap))
6731 		return PTR_ERR(bitmap);
6732 
6733 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6734 		.flags = user_range->flags,
6735 		.base = user_range->base,
6736 		.nmsrs = user_range->nmsrs,
6737 		.bitmap = bitmap,
6738 	};
6739 
6740 	msr_filter->count++;
6741 	return 0;
6742 }
6743 
6744 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6745 				       struct kvm_msr_filter *filter)
6746 {
6747 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6748 	bool default_allow;
6749 	bool empty = true;
6750 	int r;
6751 	u32 i;
6752 
6753 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6754 		return -EINVAL;
6755 
6756 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6757 		empty &= !filter->ranges[i].nmsrs;
6758 
6759 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6760 	if (empty && !default_allow)
6761 		return -EINVAL;
6762 
6763 	new_filter = kvm_alloc_msr_filter(default_allow);
6764 	if (!new_filter)
6765 		return -ENOMEM;
6766 
6767 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6768 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6769 		if (r) {
6770 			kvm_free_msr_filter(new_filter);
6771 			return r;
6772 		}
6773 	}
6774 
6775 	mutex_lock(&kvm->lock);
6776 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6777 					 mutex_is_locked(&kvm->lock));
6778 	mutex_unlock(&kvm->lock);
6779 	synchronize_srcu(&kvm->srcu);
6780 
6781 	kvm_free_msr_filter(old_filter);
6782 
6783 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6784 
6785 	return 0;
6786 }
6787 
6788 #ifdef CONFIG_KVM_COMPAT
6789 /* for KVM_X86_SET_MSR_FILTER */
6790 struct kvm_msr_filter_range_compat {
6791 	__u32 flags;
6792 	__u32 nmsrs;
6793 	__u32 base;
6794 	__u32 bitmap;
6795 };
6796 
6797 struct kvm_msr_filter_compat {
6798 	__u32 flags;
6799 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6800 };
6801 
6802 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6803 
6804 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6805 			      unsigned long arg)
6806 {
6807 	void __user *argp = (void __user *)arg;
6808 	struct kvm *kvm = filp->private_data;
6809 	long r = -ENOTTY;
6810 
6811 	switch (ioctl) {
6812 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6813 		struct kvm_msr_filter __user *user_msr_filter = argp;
6814 		struct kvm_msr_filter_compat filter_compat;
6815 		struct kvm_msr_filter filter;
6816 		int i;
6817 
6818 		if (copy_from_user(&filter_compat, user_msr_filter,
6819 				   sizeof(filter_compat)))
6820 			return -EFAULT;
6821 
6822 		filter.flags = filter_compat.flags;
6823 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6824 			struct kvm_msr_filter_range_compat *cr;
6825 
6826 			cr = &filter_compat.ranges[i];
6827 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6828 				.flags = cr->flags,
6829 				.nmsrs = cr->nmsrs,
6830 				.base = cr->base,
6831 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6832 			};
6833 		}
6834 
6835 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6836 		break;
6837 	}
6838 	}
6839 
6840 	return r;
6841 }
6842 #endif
6843 
6844 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6845 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6846 {
6847 	struct kvm_vcpu *vcpu;
6848 	unsigned long i;
6849 	int ret = 0;
6850 
6851 	mutex_lock(&kvm->lock);
6852 	kvm_for_each_vcpu(i, vcpu, kvm) {
6853 		if (!vcpu->arch.pv_time.active)
6854 			continue;
6855 
6856 		ret = kvm_set_guest_paused(vcpu);
6857 		if (ret) {
6858 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6859 				vcpu->vcpu_id, ret);
6860 			break;
6861 		}
6862 	}
6863 	mutex_unlock(&kvm->lock);
6864 
6865 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6866 }
6867 
6868 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6869 {
6870 	switch (state) {
6871 	case PM_HIBERNATION_PREPARE:
6872 	case PM_SUSPEND_PREPARE:
6873 		return kvm_arch_suspend_notifier(kvm);
6874 	}
6875 
6876 	return NOTIFY_DONE;
6877 }
6878 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6879 
6880 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6881 {
6882 	struct kvm_clock_data data = { 0 };
6883 
6884 	get_kvmclock(kvm, &data);
6885 	if (copy_to_user(argp, &data, sizeof(data)))
6886 		return -EFAULT;
6887 
6888 	return 0;
6889 }
6890 
6891 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6892 {
6893 	struct kvm_arch *ka = &kvm->arch;
6894 	struct kvm_clock_data data;
6895 	u64 now_raw_ns;
6896 
6897 	if (copy_from_user(&data, argp, sizeof(data)))
6898 		return -EFAULT;
6899 
6900 	/*
6901 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6902 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6903 	 */
6904 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6905 		return -EINVAL;
6906 
6907 	kvm_hv_request_tsc_page_update(kvm);
6908 	kvm_start_pvclock_update(kvm);
6909 	pvclock_update_vm_gtod_copy(kvm);
6910 
6911 	/*
6912 	 * This pairs with kvm_guest_time_update(): when masterclock is
6913 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6914 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6915 	 * is slightly ahead) here we risk going negative on unsigned
6916 	 * 'system_time' when 'data.clock' is very small.
6917 	 */
6918 	if (data.flags & KVM_CLOCK_REALTIME) {
6919 		u64 now_real_ns = ktime_get_real_ns();
6920 
6921 		/*
6922 		 * Avoid stepping the kvmclock backwards.
6923 		 */
6924 		if (now_real_ns > data.realtime)
6925 			data.clock += now_real_ns - data.realtime;
6926 	}
6927 
6928 	if (ka->use_master_clock)
6929 		now_raw_ns = ka->master_kernel_ns;
6930 	else
6931 		now_raw_ns = get_kvmclock_base_ns();
6932 	ka->kvmclock_offset = data.clock - now_raw_ns;
6933 	kvm_end_pvclock_update(kvm);
6934 	return 0;
6935 }
6936 
6937 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6938 {
6939 	struct kvm *kvm = filp->private_data;
6940 	void __user *argp = (void __user *)arg;
6941 	int r = -ENOTTY;
6942 	/*
6943 	 * This union makes it completely explicit to gcc-3.x
6944 	 * that these two variables' stack usage should be
6945 	 * combined, not added together.
6946 	 */
6947 	union {
6948 		struct kvm_pit_state ps;
6949 		struct kvm_pit_state2 ps2;
6950 		struct kvm_pit_config pit_config;
6951 	} u;
6952 
6953 	switch (ioctl) {
6954 	case KVM_SET_TSS_ADDR:
6955 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6956 		break;
6957 	case KVM_SET_IDENTITY_MAP_ADDR: {
6958 		u64 ident_addr;
6959 
6960 		mutex_lock(&kvm->lock);
6961 		r = -EINVAL;
6962 		if (kvm->created_vcpus)
6963 			goto set_identity_unlock;
6964 		r = -EFAULT;
6965 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6966 			goto set_identity_unlock;
6967 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6968 set_identity_unlock:
6969 		mutex_unlock(&kvm->lock);
6970 		break;
6971 	}
6972 	case KVM_SET_NR_MMU_PAGES:
6973 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6974 		break;
6975 	case KVM_CREATE_IRQCHIP: {
6976 		mutex_lock(&kvm->lock);
6977 
6978 		r = -EEXIST;
6979 		if (irqchip_in_kernel(kvm))
6980 			goto create_irqchip_unlock;
6981 
6982 		r = -EINVAL;
6983 		if (kvm->created_vcpus)
6984 			goto create_irqchip_unlock;
6985 
6986 		r = kvm_pic_init(kvm);
6987 		if (r)
6988 			goto create_irqchip_unlock;
6989 
6990 		r = kvm_ioapic_init(kvm);
6991 		if (r) {
6992 			kvm_pic_destroy(kvm);
6993 			goto create_irqchip_unlock;
6994 		}
6995 
6996 		r = kvm_setup_default_irq_routing(kvm);
6997 		if (r) {
6998 			kvm_ioapic_destroy(kvm);
6999 			kvm_pic_destroy(kvm);
7000 			goto create_irqchip_unlock;
7001 		}
7002 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7003 		smp_wmb();
7004 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7005 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7006 	create_irqchip_unlock:
7007 		mutex_unlock(&kvm->lock);
7008 		break;
7009 	}
7010 	case KVM_CREATE_PIT:
7011 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7012 		goto create_pit;
7013 	case KVM_CREATE_PIT2:
7014 		r = -EFAULT;
7015 		if (copy_from_user(&u.pit_config, argp,
7016 				   sizeof(struct kvm_pit_config)))
7017 			goto out;
7018 	create_pit:
7019 		mutex_lock(&kvm->lock);
7020 		r = -EEXIST;
7021 		if (kvm->arch.vpit)
7022 			goto create_pit_unlock;
7023 		r = -ENOENT;
7024 		if (!pic_in_kernel(kvm))
7025 			goto create_pit_unlock;
7026 		r = -ENOMEM;
7027 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7028 		if (kvm->arch.vpit)
7029 			r = 0;
7030 	create_pit_unlock:
7031 		mutex_unlock(&kvm->lock);
7032 		break;
7033 	case KVM_GET_IRQCHIP: {
7034 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7035 		struct kvm_irqchip *chip;
7036 
7037 		chip = memdup_user(argp, sizeof(*chip));
7038 		if (IS_ERR(chip)) {
7039 			r = PTR_ERR(chip);
7040 			goto out;
7041 		}
7042 
7043 		r = -ENXIO;
7044 		if (!irqchip_kernel(kvm))
7045 			goto get_irqchip_out;
7046 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7047 		if (r)
7048 			goto get_irqchip_out;
7049 		r = -EFAULT;
7050 		if (copy_to_user(argp, chip, sizeof(*chip)))
7051 			goto get_irqchip_out;
7052 		r = 0;
7053 	get_irqchip_out:
7054 		kfree(chip);
7055 		break;
7056 	}
7057 	case KVM_SET_IRQCHIP: {
7058 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7059 		struct kvm_irqchip *chip;
7060 
7061 		chip = memdup_user(argp, sizeof(*chip));
7062 		if (IS_ERR(chip)) {
7063 			r = PTR_ERR(chip);
7064 			goto out;
7065 		}
7066 
7067 		r = -ENXIO;
7068 		if (!irqchip_kernel(kvm))
7069 			goto set_irqchip_out;
7070 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7071 	set_irqchip_out:
7072 		kfree(chip);
7073 		break;
7074 	}
7075 	case KVM_GET_PIT: {
7076 		r = -EFAULT;
7077 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7078 			goto out;
7079 		r = -ENXIO;
7080 		if (!kvm->arch.vpit)
7081 			goto out;
7082 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7083 		if (r)
7084 			goto out;
7085 		r = -EFAULT;
7086 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7087 			goto out;
7088 		r = 0;
7089 		break;
7090 	}
7091 	case KVM_SET_PIT: {
7092 		r = -EFAULT;
7093 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7094 			goto out;
7095 		mutex_lock(&kvm->lock);
7096 		r = -ENXIO;
7097 		if (!kvm->arch.vpit)
7098 			goto set_pit_out;
7099 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7100 set_pit_out:
7101 		mutex_unlock(&kvm->lock);
7102 		break;
7103 	}
7104 	case KVM_GET_PIT2: {
7105 		r = -ENXIO;
7106 		if (!kvm->arch.vpit)
7107 			goto out;
7108 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7109 		if (r)
7110 			goto out;
7111 		r = -EFAULT;
7112 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7113 			goto out;
7114 		r = 0;
7115 		break;
7116 	}
7117 	case KVM_SET_PIT2: {
7118 		r = -EFAULT;
7119 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7120 			goto out;
7121 		mutex_lock(&kvm->lock);
7122 		r = -ENXIO;
7123 		if (!kvm->arch.vpit)
7124 			goto set_pit2_out;
7125 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7126 set_pit2_out:
7127 		mutex_unlock(&kvm->lock);
7128 		break;
7129 	}
7130 	case KVM_REINJECT_CONTROL: {
7131 		struct kvm_reinject_control control;
7132 		r =  -EFAULT;
7133 		if (copy_from_user(&control, argp, sizeof(control)))
7134 			goto out;
7135 		r = -ENXIO;
7136 		if (!kvm->arch.vpit)
7137 			goto out;
7138 		r = kvm_vm_ioctl_reinject(kvm, &control);
7139 		break;
7140 	}
7141 	case KVM_SET_BOOT_CPU_ID:
7142 		r = 0;
7143 		mutex_lock(&kvm->lock);
7144 		if (kvm->created_vcpus)
7145 			r = -EBUSY;
7146 		else
7147 			kvm->arch.bsp_vcpu_id = arg;
7148 		mutex_unlock(&kvm->lock);
7149 		break;
7150 #ifdef CONFIG_KVM_XEN
7151 	case KVM_XEN_HVM_CONFIG: {
7152 		struct kvm_xen_hvm_config xhc;
7153 		r = -EFAULT;
7154 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7155 			goto out;
7156 		r = kvm_xen_hvm_config(kvm, &xhc);
7157 		break;
7158 	}
7159 	case KVM_XEN_HVM_GET_ATTR: {
7160 		struct kvm_xen_hvm_attr xha;
7161 
7162 		r = -EFAULT;
7163 		if (copy_from_user(&xha, argp, sizeof(xha)))
7164 			goto out;
7165 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7166 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7167 			r = -EFAULT;
7168 		break;
7169 	}
7170 	case KVM_XEN_HVM_SET_ATTR: {
7171 		struct kvm_xen_hvm_attr xha;
7172 
7173 		r = -EFAULT;
7174 		if (copy_from_user(&xha, argp, sizeof(xha)))
7175 			goto out;
7176 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7177 		break;
7178 	}
7179 	case KVM_XEN_HVM_EVTCHN_SEND: {
7180 		struct kvm_irq_routing_xen_evtchn uxe;
7181 
7182 		r = -EFAULT;
7183 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7184 			goto out;
7185 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7186 		break;
7187 	}
7188 #endif
7189 	case KVM_SET_CLOCK:
7190 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7191 		break;
7192 	case KVM_GET_CLOCK:
7193 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7194 		break;
7195 	case KVM_SET_TSC_KHZ: {
7196 		u32 user_tsc_khz;
7197 
7198 		r = -EINVAL;
7199 		user_tsc_khz = (u32)arg;
7200 
7201 		if (kvm_caps.has_tsc_control &&
7202 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7203 			goto out;
7204 
7205 		if (user_tsc_khz == 0)
7206 			user_tsc_khz = tsc_khz;
7207 
7208 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7209 		r = 0;
7210 
7211 		goto out;
7212 	}
7213 	case KVM_GET_TSC_KHZ: {
7214 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7215 		goto out;
7216 	}
7217 	case KVM_MEMORY_ENCRYPT_OP: {
7218 		r = -ENOTTY;
7219 		if (!kvm_x86_ops.mem_enc_ioctl)
7220 			goto out;
7221 
7222 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7223 		break;
7224 	}
7225 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7226 		struct kvm_enc_region region;
7227 
7228 		r = -EFAULT;
7229 		if (copy_from_user(&region, argp, sizeof(region)))
7230 			goto out;
7231 
7232 		r = -ENOTTY;
7233 		if (!kvm_x86_ops.mem_enc_register_region)
7234 			goto out;
7235 
7236 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7237 		break;
7238 	}
7239 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7240 		struct kvm_enc_region region;
7241 
7242 		r = -EFAULT;
7243 		if (copy_from_user(&region, argp, sizeof(region)))
7244 			goto out;
7245 
7246 		r = -ENOTTY;
7247 		if (!kvm_x86_ops.mem_enc_unregister_region)
7248 			goto out;
7249 
7250 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7251 		break;
7252 	}
7253 #ifdef CONFIG_KVM_HYPERV
7254 	case KVM_HYPERV_EVENTFD: {
7255 		struct kvm_hyperv_eventfd hvevfd;
7256 
7257 		r = -EFAULT;
7258 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7259 			goto out;
7260 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7261 		break;
7262 	}
7263 #endif
7264 	case KVM_SET_PMU_EVENT_FILTER:
7265 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7266 		break;
7267 	case KVM_X86_SET_MSR_FILTER: {
7268 		struct kvm_msr_filter __user *user_msr_filter = argp;
7269 		struct kvm_msr_filter filter;
7270 
7271 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7272 			return -EFAULT;
7273 
7274 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7275 		break;
7276 	}
7277 	default:
7278 		r = -ENOTTY;
7279 	}
7280 out:
7281 	return r;
7282 }
7283 
7284 static void kvm_probe_feature_msr(u32 msr_index)
7285 {
7286 	struct kvm_msr_entry msr = {
7287 		.index = msr_index,
7288 	};
7289 
7290 	if (kvm_get_msr_feature(&msr))
7291 		return;
7292 
7293 	msr_based_features[num_msr_based_features++] = msr_index;
7294 }
7295 
7296 static void kvm_probe_msr_to_save(u32 msr_index)
7297 {
7298 	u32 dummy[2];
7299 
7300 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7301 		return;
7302 
7303 	/*
7304 	 * Even MSRs that are valid in the host may not be exposed to guests in
7305 	 * some cases.
7306 	 */
7307 	switch (msr_index) {
7308 	case MSR_IA32_BNDCFGS:
7309 		if (!kvm_mpx_supported())
7310 			return;
7311 		break;
7312 	case MSR_TSC_AUX:
7313 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7314 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7315 			return;
7316 		break;
7317 	case MSR_IA32_UMWAIT_CONTROL:
7318 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7319 			return;
7320 		break;
7321 	case MSR_IA32_RTIT_CTL:
7322 	case MSR_IA32_RTIT_STATUS:
7323 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7324 			return;
7325 		break;
7326 	case MSR_IA32_RTIT_CR3_MATCH:
7327 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7328 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7329 			return;
7330 		break;
7331 	case MSR_IA32_RTIT_OUTPUT_BASE:
7332 	case MSR_IA32_RTIT_OUTPUT_MASK:
7333 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7334 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7335 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7336 			return;
7337 		break;
7338 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7339 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7340 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7341 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7342 			return;
7343 		break;
7344 	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7345 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7346 		    kvm_pmu_cap.num_counters_gp)
7347 			return;
7348 		break;
7349 	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7350 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7351 		    kvm_pmu_cap.num_counters_gp)
7352 			return;
7353 		break;
7354 	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7355 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7356 		    kvm_pmu_cap.num_counters_fixed)
7357 			return;
7358 		break;
7359 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7360 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7361 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7362 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7363 			return;
7364 		break;
7365 	case MSR_IA32_XFD:
7366 	case MSR_IA32_XFD_ERR:
7367 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7368 			return;
7369 		break;
7370 	case MSR_IA32_TSX_CTRL:
7371 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7372 			return;
7373 		break;
7374 	default:
7375 		break;
7376 	}
7377 
7378 	msrs_to_save[num_msrs_to_save++] = msr_index;
7379 }
7380 
7381 static void kvm_init_msr_lists(void)
7382 {
7383 	unsigned i;
7384 
7385 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7386 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7387 
7388 	num_msrs_to_save = 0;
7389 	num_emulated_msrs = 0;
7390 	num_msr_based_features = 0;
7391 
7392 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7393 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7394 
7395 	if (enable_pmu) {
7396 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7397 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7398 	}
7399 
7400 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7401 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7402 			continue;
7403 
7404 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7405 	}
7406 
7407 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7408 		kvm_probe_feature_msr(i);
7409 
7410 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7411 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7412 }
7413 
7414 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7415 			   const void *v)
7416 {
7417 	int handled = 0;
7418 	int n;
7419 
7420 	do {
7421 		n = min(len, 8);
7422 		if (!(lapic_in_kernel(vcpu) &&
7423 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7424 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7425 			break;
7426 		handled += n;
7427 		addr += n;
7428 		len -= n;
7429 		v += n;
7430 	} while (len);
7431 
7432 	return handled;
7433 }
7434 
7435 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7436 {
7437 	int handled = 0;
7438 	int n;
7439 
7440 	do {
7441 		n = min(len, 8);
7442 		if (!(lapic_in_kernel(vcpu) &&
7443 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7444 					 addr, n, v))
7445 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7446 			break;
7447 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7448 		handled += n;
7449 		addr += n;
7450 		len -= n;
7451 		v += n;
7452 	} while (len);
7453 
7454 	return handled;
7455 }
7456 
7457 void kvm_set_segment(struct kvm_vcpu *vcpu,
7458 		     struct kvm_segment *var, int seg)
7459 {
7460 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7461 }
7462 
7463 void kvm_get_segment(struct kvm_vcpu *vcpu,
7464 		     struct kvm_segment *var, int seg)
7465 {
7466 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7467 }
7468 
7469 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7470 			   struct x86_exception *exception)
7471 {
7472 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7473 	gpa_t t_gpa;
7474 
7475 	BUG_ON(!mmu_is_nested(vcpu));
7476 
7477 	/* NPT walks are always user-walks */
7478 	access |= PFERR_USER_MASK;
7479 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7480 
7481 	return t_gpa;
7482 }
7483 
7484 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7485 			      struct x86_exception *exception)
7486 {
7487 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7488 
7489 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7490 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7491 }
7492 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7493 
7494 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7495 			       struct x86_exception *exception)
7496 {
7497 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7498 
7499 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7500 	access |= PFERR_WRITE_MASK;
7501 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7502 }
7503 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7504 
7505 /* uses this to access any guest's mapped memory without checking CPL */
7506 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7507 				struct x86_exception *exception)
7508 {
7509 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7510 
7511 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7512 }
7513 
7514 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7515 				      struct kvm_vcpu *vcpu, u64 access,
7516 				      struct x86_exception *exception)
7517 {
7518 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7519 	void *data = val;
7520 	int r = X86EMUL_CONTINUE;
7521 
7522 	while (bytes) {
7523 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7524 		unsigned offset = addr & (PAGE_SIZE-1);
7525 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7526 		int ret;
7527 
7528 		if (gpa == INVALID_GPA)
7529 			return X86EMUL_PROPAGATE_FAULT;
7530 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7531 					       offset, toread);
7532 		if (ret < 0) {
7533 			r = X86EMUL_IO_NEEDED;
7534 			goto out;
7535 		}
7536 
7537 		bytes -= toread;
7538 		data += toread;
7539 		addr += toread;
7540 	}
7541 out:
7542 	return r;
7543 }
7544 
7545 /* used for instruction fetching */
7546 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7547 				gva_t addr, void *val, unsigned int bytes,
7548 				struct x86_exception *exception)
7549 {
7550 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7551 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7552 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7553 	unsigned offset;
7554 	int ret;
7555 
7556 	/* Inline kvm_read_guest_virt_helper for speed.  */
7557 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7558 				    exception);
7559 	if (unlikely(gpa == INVALID_GPA))
7560 		return X86EMUL_PROPAGATE_FAULT;
7561 
7562 	offset = addr & (PAGE_SIZE-1);
7563 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7564 		bytes = (unsigned)PAGE_SIZE - offset;
7565 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7566 				       offset, bytes);
7567 	if (unlikely(ret < 0))
7568 		return X86EMUL_IO_NEEDED;
7569 
7570 	return X86EMUL_CONTINUE;
7571 }
7572 
7573 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7574 			       gva_t addr, void *val, unsigned int bytes,
7575 			       struct x86_exception *exception)
7576 {
7577 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7578 
7579 	/*
7580 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7581 	 * is returned, but our callers are not ready for that and they blindly
7582 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7583 	 * uninitialized kernel stack memory into cr2 and error code.
7584 	 */
7585 	memset(exception, 0, sizeof(*exception));
7586 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7587 					  exception);
7588 }
7589 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7590 
7591 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7592 			     gva_t addr, void *val, unsigned int bytes,
7593 			     struct x86_exception *exception, bool system)
7594 {
7595 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7596 	u64 access = 0;
7597 
7598 	if (system)
7599 		access |= PFERR_IMPLICIT_ACCESS;
7600 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7601 		access |= PFERR_USER_MASK;
7602 
7603 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7604 }
7605 
7606 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7607 				      struct kvm_vcpu *vcpu, u64 access,
7608 				      struct x86_exception *exception)
7609 {
7610 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7611 	void *data = val;
7612 	int r = X86EMUL_CONTINUE;
7613 
7614 	while (bytes) {
7615 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7616 		unsigned offset = addr & (PAGE_SIZE-1);
7617 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7618 		int ret;
7619 
7620 		if (gpa == INVALID_GPA)
7621 			return X86EMUL_PROPAGATE_FAULT;
7622 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7623 		if (ret < 0) {
7624 			r = X86EMUL_IO_NEEDED;
7625 			goto out;
7626 		}
7627 
7628 		bytes -= towrite;
7629 		data += towrite;
7630 		addr += towrite;
7631 	}
7632 out:
7633 	return r;
7634 }
7635 
7636 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7637 			      unsigned int bytes, struct x86_exception *exception,
7638 			      bool system)
7639 {
7640 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7641 	u64 access = PFERR_WRITE_MASK;
7642 
7643 	if (system)
7644 		access |= PFERR_IMPLICIT_ACCESS;
7645 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7646 		access |= PFERR_USER_MASK;
7647 
7648 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7649 					   access, exception);
7650 }
7651 
7652 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7653 				unsigned int bytes, struct x86_exception *exception)
7654 {
7655 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7656 	vcpu->arch.l1tf_flush_l1d = true;
7657 
7658 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7659 					   PFERR_WRITE_MASK, exception);
7660 }
7661 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7662 
7663 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7664 				  void *insn, int insn_len)
7665 {
7666 	return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type,
7667 							      insn, insn_len);
7668 }
7669 
7670 int handle_ud(struct kvm_vcpu *vcpu)
7671 {
7672 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7673 	int fep_flags = READ_ONCE(force_emulation_prefix);
7674 	int emul_type = EMULTYPE_TRAP_UD;
7675 	char sig[5]; /* ud2; .ascii "kvm" */
7676 	struct x86_exception e;
7677 	int r;
7678 
7679 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7680 	if (r != X86EMUL_CONTINUE)
7681 		return 1;
7682 
7683 	if (fep_flags &&
7684 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7685 				sig, sizeof(sig), &e) == 0 &&
7686 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7687 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7688 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7689 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7690 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7691 	}
7692 
7693 	return kvm_emulate_instruction(vcpu, emul_type);
7694 }
7695 EXPORT_SYMBOL_GPL(handle_ud);
7696 
7697 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7698 			    gpa_t gpa, bool write)
7699 {
7700 	/* For APIC access vmexit */
7701 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7702 		return 1;
7703 
7704 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7705 		trace_vcpu_match_mmio(gva, gpa, write, true);
7706 		return 1;
7707 	}
7708 
7709 	return 0;
7710 }
7711 
7712 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7713 				gpa_t *gpa, struct x86_exception *exception,
7714 				bool write)
7715 {
7716 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7717 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7718 		| (write ? PFERR_WRITE_MASK : 0);
7719 
7720 	/*
7721 	 * currently PKRU is only applied to ept enabled guest so
7722 	 * there is no pkey in EPT page table for L1 guest or EPT
7723 	 * shadow page table for L2 guest.
7724 	 */
7725 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7726 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7727 			      vcpu->arch.mmio_access, 0, access))) {
7728 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7729 					(gva & (PAGE_SIZE - 1));
7730 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7731 		return 1;
7732 	}
7733 
7734 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7735 
7736 	if (*gpa == INVALID_GPA)
7737 		return -1;
7738 
7739 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7740 }
7741 
7742 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7743 			const void *val, int bytes)
7744 {
7745 	int ret;
7746 
7747 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7748 	if (ret < 0)
7749 		return 0;
7750 	kvm_page_track_write(vcpu, gpa, val, bytes);
7751 	return 1;
7752 }
7753 
7754 struct read_write_emulator_ops {
7755 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7756 				  int bytes);
7757 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7758 				  void *val, int bytes);
7759 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7760 			       int bytes, void *val);
7761 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7762 				    void *val, int bytes);
7763 	bool write;
7764 };
7765 
7766 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7767 {
7768 	if (vcpu->mmio_read_completed) {
7769 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7770 			       vcpu->mmio_fragments[0].gpa, val);
7771 		vcpu->mmio_read_completed = 0;
7772 		return 1;
7773 	}
7774 
7775 	return 0;
7776 }
7777 
7778 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7779 			void *val, int bytes)
7780 {
7781 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7782 }
7783 
7784 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7785 			 void *val, int bytes)
7786 {
7787 	return emulator_write_phys(vcpu, gpa, val, bytes);
7788 }
7789 
7790 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7791 {
7792 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7793 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7794 }
7795 
7796 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7797 			  void *val, int bytes)
7798 {
7799 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7800 	return X86EMUL_IO_NEEDED;
7801 }
7802 
7803 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7804 			   void *val, int bytes)
7805 {
7806 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7807 
7808 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7809 	return X86EMUL_CONTINUE;
7810 }
7811 
7812 static const struct read_write_emulator_ops read_emultor = {
7813 	.read_write_prepare = read_prepare,
7814 	.read_write_emulate = read_emulate,
7815 	.read_write_mmio = vcpu_mmio_read,
7816 	.read_write_exit_mmio = read_exit_mmio,
7817 };
7818 
7819 static const struct read_write_emulator_ops write_emultor = {
7820 	.read_write_emulate = write_emulate,
7821 	.read_write_mmio = write_mmio,
7822 	.read_write_exit_mmio = write_exit_mmio,
7823 	.write = true,
7824 };
7825 
7826 static int emulator_read_write_onepage(unsigned long addr, void *val,
7827 				       unsigned int bytes,
7828 				       struct x86_exception *exception,
7829 				       struct kvm_vcpu *vcpu,
7830 				       const struct read_write_emulator_ops *ops)
7831 {
7832 	gpa_t gpa;
7833 	int handled, ret;
7834 	bool write = ops->write;
7835 	struct kvm_mmio_fragment *frag;
7836 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7837 
7838 	/*
7839 	 * If the exit was due to a NPF we may already have a GPA.
7840 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7841 	 * Note, this cannot be used on string operations since string
7842 	 * operation using rep will only have the initial GPA from the NPF
7843 	 * occurred.
7844 	 */
7845 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7846 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7847 		gpa = ctxt->gpa_val;
7848 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7849 	} else {
7850 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7851 		if (ret < 0)
7852 			return X86EMUL_PROPAGATE_FAULT;
7853 	}
7854 
7855 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7856 		return X86EMUL_CONTINUE;
7857 
7858 	/*
7859 	 * Is this MMIO handled locally?
7860 	 */
7861 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7862 	if (handled == bytes)
7863 		return X86EMUL_CONTINUE;
7864 
7865 	gpa += handled;
7866 	bytes -= handled;
7867 	val += handled;
7868 
7869 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7870 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7871 	frag->gpa = gpa;
7872 	frag->data = val;
7873 	frag->len = bytes;
7874 	return X86EMUL_CONTINUE;
7875 }
7876 
7877 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7878 			unsigned long addr,
7879 			void *val, unsigned int bytes,
7880 			struct x86_exception *exception,
7881 			const struct read_write_emulator_ops *ops)
7882 {
7883 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7884 	gpa_t gpa;
7885 	int rc;
7886 
7887 	if (ops->read_write_prepare &&
7888 		  ops->read_write_prepare(vcpu, val, bytes))
7889 		return X86EMUL_CONTINUE;
7890 
7891 	vcpu->mmio_nr_fragments = 0;
7892 
7893 	/* Crossing a page boundary? */
7894 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7895 		int now;
7896 
7897 		now = -addr & ~PAGE_MASK;
7898 		rc = emulator_read_write_onepage(addr, val, now, exception,
7899 						 vcpu, ops);
7900 
7901 		if (rc != X86EMUL_CONTINUE)
7902 			return rc;
7903 		addr += now;
7904 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7905 			addr = (u32)addr;
7906 		val += now;
7907 		bytes -= now;
7908 	}
7909 
7910 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7911 					 vcpu, ops);
7912 	if (rc != X86EMUL_CONTINUE)
7913 		return rc;
7914 
7915 	if (!vcpu->mmio_nr_fragments)
7916 		return rc;
7917 
7918 	gpa = vcpu->mmio_fragments[0].gpa;
7919 
7920 	vcpu->mmio_needed = 1;
7921 	vcpu->mmio_cur_fragment = 0;
7922 
7923 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7924 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7925 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7926 	vcpu->run->mmio.phys_addr = gpa;
7927 
7928 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7929 }
7930 
7931 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7932 				  unsigned long addr,
7933 				  void *val,
7934 				  unsigned int bytes,
7935 				  struct x86_exception *exception)
7936 {
7937 	return emulator_read_write(ctxt, addr, val, bytes,
7938 				   exception, &read_emultor);
7939 }
7940 
7941 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7942 			    unsigned long addr,
7943 			    const void *val,
7944 			    unsigned int bytes,
7945 			    struct x86_exception *exception)
7946 {
7947 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7948 				   exception, &write_emultor);
7949 }
7950 
7951 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7952 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7953 
7954 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7955 				     unsigned long addr,
7956 				     const void *old,
7957 				     const void *new,
7958 				     unsigned int bytes,
7959 				     struct x86_exception *exception)
7960 {
7961 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7962 	u64 page_line_mask;
7963 	unsigned long hva;
7964 	gpa_t gpa;
7965 	int r;
7966 
7967 	/* guests cmpxchg8b have to be emulated atomically */
7968 	if (bytes > 8 || (bytes & (bytes - 1)))
7969 		goto emul_write;
7970 
7971 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7972 
7973 	if (gpa == INVALID_GPA ||
7974 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7975 		goto emul_write;
7976 
7977 	/*
7978 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7979 	 * enabled in the host and the access splits a cache line.
7980 	 */
7981 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7982 		page_line_mask = ~(cache_line_size() - 1);
7983 	else
7984 		page_line_mask = PAGE_MASK;
7985 
7986 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7987 		goto emul_write;
7988 
7989 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7990 	if (kvm_is_error_hva(hva))
7991 		goto emul_write;
7992 
7993 	hva += offset_in_page(gpa);
7994 
7995 	switch (bytes) {
7996 	case 1:
7997 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7998 		break;
7999 	case 2:
8000 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8001 		break;
8002 	case 4:
8003 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8004 		break;
8005 	case 8:
8006 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8007 		break;
8008 	default:
8009 		BUG();
8010 	}
8011 
8012 	if (r < 0)
8013 		return X86EMUL_UNHANDLEABLE;
8014 	if (r)
8015 		return X86EMUL_CMPXCHG_FAILED;
8016 
8017 	kvm_page_track_write(vcpu, gpa, new, bytes);
8018 
8019 	return X86EMUL_CONTINUE;
8020 
8021 emul_write:
8022 	pr_warn_once("emulating exchange as write\n");
8023 
8024 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8025 }
8026 
8027 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8028 			       unsigned short port, void *data,
8029 			       unsigned int count, bool in)
8030 {
8031 	unsigned i;
8032 	int r;
8033 
8034 	WARN_ON_ONCE(vcpu->arch.pio.count);
8035 	for (i = 0; i < count; i++) {
8036 		if (in)
8037 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8038 		else
8039 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8040 
8041 		if (r) {
8042 			if (i == 0)
8043 				goto userspace_io;
8044 
8045 			/*
8046 			 * Userspace must have unregistered the device while PIO
8047 			 * was running.  Drop writes / read as 0.
8048 			 */
8049 			if (in)
8050 				memset(data, 0, size * (count - i));
8051 			break;
8052 		}
8053 
8054 		data += size;
8055 	}
8056 	return 1;
8057 
8058 userspace_io:
8059 	vcpu->arch.pio.port = port;
8060 	vcpu->arch.pio.in = in;
8061 	vcpu->arch.pio.count = count;
8062 	vcpu->arch.pio.size = size;
8063 
8064 	if (in)
8065 		memset(vcpu->arch.pio_data, 0, size * count);
8066 	else
8067 		memcpy(vcpu->arch.pio_data, data, size * count);
8068 
8069 	vcpu->run->exit_reason = KVM_EXIT_IO;
8070 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8071 	vcpu->run->io.size = size;
8072 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8073 	vcpu->run->io.count = count;
8074 	vcpu->run->io.port = port;
8075 	return 0;
8076 }
8077 
8078 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8079       			   unsigned short port, void *val, unsigned int count)
8080 {
8081 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8082 	if (r)
8083 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8084 
8085 	return r;
8086 }
8087 
8088 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8089 {
8090 	int size = vcpu->arch.pio.size;
8091 	unsigned int count = vcpu->arch.pio.count;
8092 	memcpy(val, vcpu->arch.pio_data, size * count);
8093 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8094 	vcpu->arch.pio.count = 0;
8095 }
8096 
8097 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8098 				    int size, unsigned short port, void *val,
8099 				    unsigned int count)
8100 {
8101 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8102 	if (vcpu->arch.pio.count) {
8103 		/*
8104 		 * Complete a previous iteration that required userspace I/O.
8105 		 * Note, @count isn't guaranteed to match pio.count as userspace
8106 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8107 		 * shenanigans as KVM doesn't support modifying the rep count,
8108 		 * and the emulator ensures @count doesn't overflow the buffer.
8109 		 */
8110 		complete_emulator_pio_in(vcpu, val);
8111 		return 1;
8112 	}
8113 
8114 	return emulator_pio_in(vcpu, size, port, val, count);
8115 }
8116 
8117 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8118 			    unsigned short port, const void *val,
8119 			    unsigned int count)
8120 {
8121 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8122 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8123 }
8124 
8125 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8126 				     int size, unsigned short port,
8127 				     const void *val, unsigned int count)
8128 {
8129 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8130 }
8131 
8132 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8133 {
8134 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
8135 }
8136 
8137 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8138 {
8139 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8140 }
8141 
8142 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8143 {
8144 	if (!need_emulate_wbinvd(vcpu))
8145 		return X86EMUL_CONTINUE;
8146 
8147 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
8148 		int cpu = get_cpu();
8149 
8150 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8151 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8152 				wbinvd_ipi, NULL, 1);
8153 		put_cpu();
8154 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8155 	} else
8156 		wbinvd();
8157 	return X86EMUL_CONTINUE;
8158 }
8159 
8160 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8161 {
8162 	kvm_emulate_wbinvd_noskip(vcpu);
8163 	return kvm_skip_emulated_instruction(vcpu);
8164 }
8165 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8166 
8167 
8168 
8169 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8170 {
8171 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8172 }
8173 
8174 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8175 			    unsigned long *dest)
8176 {
8177 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8178 }
8179 
8180 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8181 			   unsigned long value)
8182 {
8183 
8184 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8185 }
8186 
8187 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8188 {
8189 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8190 }
8191 
8192 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8193 {
8194 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8195 	unsigned long value;
8196 
8197 	switch (cr) {
8198 	case 0:
8199 		value = kvm_read_cr0(vcpu);
8200 		break;
8201 	case 2:
8202 		value = vcpu->arch.cr2;
8203 		break;
8204 	case 3:
8205 		value = kvm_read_cr3(vcpu);
8206 		break;
8207 	case 4:
8208 		value = kvm_read_cr4(vcpu);
8209 		break;
8210 	case 8:
8211 		value = kvm_get_cr8(vcpu);
8212 		break;
8213 	default:
8214 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8215 		return 0;
8216 	}
8217 
8218 	return value;
8219 }
8220 
8221 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8222 {
8223 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8224 	int res = 0;
8225 
8226 	switch (cr) {
8227 	case 0:
8228 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8229 		break;
8230 	case 2:
8231 		vcpu->arch.cr2 = val;
8232 		break;
8233 	case 3:
8234 		res = kvm_set_cr3(vcpu, val);
8235 		break;
8236 	case 4:
8237 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8238 		break;
8239 	case 8:
8240 		res = kvm_set_cr8(vcpu, val);
8241 		break;
8242 	default:
8243 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8244 		res = -1;
8245 	}
8246 
8247 	return res;
8248 }
8249 
8250 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8251 {
8252 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8253 }
8254 
8255 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8256 {
8257 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8258 }
8259 
8260 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8261 {
8262 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8263 }
8264 
8265 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8266 {
8267 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8268 }
8269 
8270 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8271 {
8272 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8273 }
8274 
8275 static unsigned long emulator_get_cached_segment_base(
8276 	struct x86_emulate_ctxt *ctxt, int seg)
8277 {
8278 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8279 }
8280 
8281 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8282 				 struct desc_struct *desc, u32 *base3,
8283 				 int seg)
8284 {
8285 	struct kvm_segment var;
8286 
8287 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8288 	*selector = var.selector;
8289 
8290 	if (var.unusable) {
8291 		memset(desc, 0, sizeof(*desc));
8292 		if (base3)
8293 			*base3 = 0;
8294 		return false;
8295 	}
8296 
8297 	if (var.g)
8298 		var.limit >>= 12;
8299 	set_desc_limit(desc, var.limit);
8300 	set_desc_base(desc, (unsigned long)var.base);
8301 #ifdef CONFIG_X86_64
8302 	if (base3)
8303 		*base3 = var.base >> 32;
8304 #endif
8305 	desc->type = var.type;
8306 	desc->s = var.s;
8307 	desc->dpl = var.dpl;
8308 	desc->p = var.present;
8309 	desc->avl = var.avl;
8310 	desc->l = var.l;
8311 	desc->d = var.db;
8312 	desc->g = var.g;
8313 
8314 	return true;
8315 }
8316 
8317 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8318 				 struct desc_struct *desc, u32 base3,
8319 				 int seg)
8320 {
8321 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8322 	struct kvm_segment var;
8323 
8324 	var.selector = selector;
8325 	var.base = get_desc_base(desc);
8326 #ifdef CONFIG_X86_64
8327 	var.base |= ((u64)base3) << 32;
8328 #endif
8329 	var.limit = get_desc_limit(desc);
8330 	if (desc->g)
8331 		var.limit = (var.limit << 12) | 0xfff;
8332 	var.type = desc->type;
8333 	var.dpl = desc->dpl;
8334 	var.db = desc->d;
8335 	var.s = desc->s;
8336 	var.l = desc->l;
8337 	var.g = desc->g;
8338 	var.avl = desc->avl;
8339 	var.present = desc->p;
8340 	var.unusable = !var.present;
8341 	var.padding = 0;
8342 
8343 	kvm_set_segment(vcpu, &var, seg);
8344 	return;
8345 }
8346 
8347 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8348 					u32 msr_index, u64 *pdata)
8349 {
8350 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8351 	int r;
8352 
8353 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8354 	if (r < 0)
8355 		return X86EMUL_UNHANDLEABLE;
8356 
8357 	if (r) {
8358 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8359 				       complete_emulated_rdmsr, r))
8360 			return X86EMUL_IO_NEEDED;
8361 
8362 		trace_kvm_msr_read_ex(msr_index);
8363 		return X86EMUL_PROPAGATE_FAULT;
8364 	}
8365 
8366 	trace_kvm_msr_read(msr_index, *pdata);
8367 	return X86EMUL_CONTINUE;
8368 }
8369 
8370 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8371 					u32 msr_index, u64 data)
8372 {
8373 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8374 	int r;
8375 
8376 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8377 	if (r < 0)
8378 		return X86EMUL_UNHANDLEABLE;
8379 
8380 	if (r) {
8381 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8382 				       complete_emulated_msr_access, r))
8383 			return X86EMUL_IO_NEEDED;
8384 
8385 		trace_kvm_msr_write_ex(msr_index, data);
8386 		return X86EMUL_PROPAGATE_FAULT;
8387 	}
8388 
8389 	trace_kvm_msr_write(msr_index, data);
8390 	return X86EMUL_CONTINUE;
8391 }
8392 
8393 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8394 			    u32 msr_index, u64 *pdata)
8395 {
8396 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8397 }
8398 
8399 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8400 			      u32 pmc)
8401 {
8402 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8403 		return 0;
8404 	return -EINVAL;
8405 }
8406 
8407 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8408 			     u32 pmc, u64 *pdata)
8409 {
8410 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8411 }
8412 
8413 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8414 {
8415 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8416 }
8417 
8418 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8419 			      struct x86_instruction_info *info,
8420 			      enum x86_intercept_stage stage)
8421 {
8422 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8423 					    &ctxt->exception);
8424 }
8425 
8426 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8427 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8428 			      bool exact_only)
8429 {
8430 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8431 }
8432 
8433 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8434 {
8435 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8436 }
8437 
8438 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8439 {
8440 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8441 }
8442 
8443 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8444 {
8445 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8446 }
8447 
8448 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8449 {
8450 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8451 }
8452 
8453 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8454 {
8455 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8456 }
8457 
8458 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8459 {
8460 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8461 }
8462 
8463 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8464 {
8465 	return is_smm(emul_to_vcpu(ctxt));
8466 }
8467 
8468 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8469 {
8470 	return is_guest_mode(emul_to_vcpu(ctxt));
8471 }
8472 
8473 #ifndef CONFIG_KVM_SMM
8474 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8475 {
8476 	WARN_ON_ONCE(1);
8477 	return X86EMUL_UNHANDLEABLE;
8478 }
8479 #endif
8480 
8481 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8482 {
8483 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8484 }
8485 
8486 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8487 {
8488 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8489 }
8490 
8491 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8492 {
8493 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8494 
8495 	if (!kvm->vm_bugged)
8496 		kvm_vm_bugged(kvm);
8497 }
8498 
8499 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8500 					gva_t addr, unsigned int flags)
8501 {
8502 	if (!kvm_x86_ops.get_untagged_addr)
8503 		return addr;
8504 
8505 	return static_call(kvm_x86_get_untagged_addr)(emul_to_vcpu(ctxt), addr, flags);
8506 }
8507 
8508 static const struct x86_emulate_ops emulate_ops = {
8509 	.vm_bugged           = emulator_vm_bugged,
8510 	.read_gpr            = emulator_read_gpr,
8511 	.write_gpr           = emulator_write_gpr,
8512 	.read_std            = emulator_read_std,
8513 	.write_std           = emulator_write_std,
8514 	.fetch               = kvm_fetch_guest_virt,
8515 	.read_emulated       = emulator_read_emulated,
8516 	.write_emulated      = emulator_write_emulated,
8517 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8518 	.invlpg              = emulator_invlpg,
8519 	.pio_in_emulated     = emulator_pio_in_emulated,
8520 	.pio_out_emulated    = emulator_pio_out_emulated,
8521 	.get_segment         = emulator_get_segment,
8522 	.set_segment         = emulator_set_segment,
8523 	.get_cached_segment_base = emulator_get_cached_segment_base,
8524 	.get_gdt             = emulator_get_gdt,
8525 	.get_idt	     = emulator_get_idt,
8526 	.set_gdt             = emulator_set_gdt,
8527 	.set_idt	     = emulator_set_idt,
8528 	.get_cr              = emulator_get_cr,
8529 	.set_cr              = emulator_set_cr,
8530 	.cpl                 = emulator_get_cpl,
8531 	.get_dr              = emulator_get_dr,
8532 	.set_dr              = emulator_set_dr,
8533 	.set_msr_with_filter = emulator_set_msr_with_filter,
8534 	.get_msr_with_filter = emulator_get_msr_with_filter,
8535 	.get_msr             = emulator_get_msr,
8536 	.check_pmc	     = emulator_check_pmc,
8537 	.read_pmc            = emulator_read_pmc,
8538 	.halt                = emulator_halt,
8539 	.wbinvd              = emulator_wbinvd,
8540 	.fix_hypercall       = emulator_fix_hypercall,
8541 	.intercept           = emulator_intercept,
8542 	.get_cpuid           = emulator_get_cpuid,
8543 	.guest_has_movbe     = emulator_guest_has_movbe,
8544 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8545 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8546 	.set_nmi_mask        = emulator_set_nmi_mask,
8547 	.is_smm              = emulator_is_smm,
8548 	.is_guest_mode       = emulator_is_guest_mode,
8549 	.leave_smm           = emulator_leave_smm,
8550 	.triple_fault        = emulator_triple_fault,
8551 	.set_xcr             = emulator_set_xcr,
8552 	.get_untagged_addr   = emulator_get_untagged_addr,
8553 };
8554 
8555 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8556 {
8557 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8558 	/*
8559 	 * an sti; sti; sequence only disable interrupts for the first
8560 	 * instruction. So, if the last instruction, be it emulated or
8561 	 * not, left the system with the INT_STI flag enabled, it
8562 	 * means that the last instruction is an sti. We should not
8563 	 * leave the flag on in this case. The same goes for mov ss
8564 	 */
8565 	if (int_shadow & mask)
8566 		mask = 0;
8567 	if (unlikely(int_shadow || mask)) {
8568 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8569 		if (!mask)
8570 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8571 	}
8572 }
8573 
8574 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8575 {
8576 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8577 
8578 	if (ctxt->exception.vector == PF_VECTOR)
8579 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8580 	else if (ctxt->exception.error_code_valid)
8581 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8582 				      ctxt->exception.error_code);
8583 	else
8584 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8585 }
8586 
8587 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8588 {
8589 	struct x86_emulate_ctxt *ctxt;
8590 
8591 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8592 	if (!ctxt) {
8593 		pr_err("failed to allocate vcpu's emulator\n");
8594 		return NULL;
8595 	}
8596 
8597 	ctxt->vcpu = vcpu;
8598 	ctxt->ops = &emulate_ops;
8599 	vcpu->arch.emulate_ctxt = ctxt;
8600 
8601 	return ctxt;
8602 }
8603 
8604 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8605 {
8606 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8607 	int cs_db, cs_l;
8608 
8609 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8610 
8611 	ctxt->gpa_available = false;
8612 	ctxt->eflags = kvm_get_rflags(vcpu);
8613 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8614 
8615 	ctxt->eip = kvm_rip_read(vcpu);
8616 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8617 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8618 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8619 		     cs_db				? X86EMUL_MODE_PROT32 :
8620 							  X86EMUL_MODE_PROT16;
8621 	ctxt->interruptibility = 0;
8622 	ctxt->have_exception = false;
8623 	ctxt->exception.vector = -1;
8624 	ctxt->perm_ok = false;
8625 
8626 	init_decode_cache(ctxt);
8627 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8628 }
8629 
8630 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8631 {
8632 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8633 	int ret;
8634 
8635 	init_emulate_ctxt(vcpu);
8636 
8637 	ctxt->op_bytes = 2;
8638 	ctxt->ad_bytes = 2;
8639 	ctxt->_eip = ctxt->eip + inc_eip;
8640 	ret = emulate_int_real(ctxt, irq);
8641 
8642 	if (ret != X86EMUL_CONTINUE) {
8643 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8644 	} else {
8645 		ctxt->eip = ctxt->_eip;
8646 		kvm_rip_write(vcpu, ctxt->eip);
8647 		kvm_set_rflags(vcpu, ctxt->eflags);
8648 	}
8649 }
8650 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8651 
8652 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8653 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8654 {
8655 	struct kvm_run *run = vcpu->run;
8656 	u64 info[5];
8657 	u8 info_start;
8658 
8659 	/*
8660 	 * Zero the whole array used to retrieve the exit info, as casting to
8661 	 * u32 for select entries will leave some chunks uninitialized.
8662 	 */
8663 	memset(&info, 0, sizeof(info));
8664 
8665 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8666 					   &info[2], (u32 *)&info[3],
8667 					   (u32 *)&info[4]);
8668 
8669 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8670 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8671 
8672 	/*
8673 	 * There's currently space for 13 entries, but 5 are used for the exit
8674 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8675 	 * when expanding kvm_run.emulation_failure in the future.
8676 	 */
8677 	if (WARN_ON_ONCE(ndata > 4))
8678 		ndata = 4;
8679 
8680 	/* Always include the flags as a 'data' entry. */
8681 	info_start = 1;
8682 	run->emulation_failure.flags = 0;
8683 
8684 	if (insn_size) {
8685 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8686 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8687 		info_start += 2;
8688 		run->emulation_failure.flags |=
8689 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8690 		run->emulation_failure.insn_size = insn_size;
8691 		memset(run->emulation_failure.insn_bytes, 0x90,
8692 		       sizeof(run->emulation_failure.insn_bytes));
8693 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8694 	}
8695 
8696 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8697 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8698 	       ndata * sizeof(data[0]));
8699 
8700 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8701 }
8702 
8703 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8704 {
8705 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8706 
8707 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8708 				       ctxt->fetch.end - ctxt->fetch.data);
8709 }
8710 
8711 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8712 					  u8 ndata)
8713 {
8714 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8715 }
8716 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8717 
8718 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8719 {
8720 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8721 }
8722 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8723 
8724 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8725 {
8726 	struct kvm *kvm = vcpu->kvm;
8727 
8728 	++vcpu->stat.insn_emulation_fail;
8729 	trace_kvm_emulate_insn_failed(vcpu);
8730 
8731 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8732 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8733 		return 1;
8734 	}
8735 
8736 	if (kvm->arch.exit_on_emulation_error ||
8737 	    (emulation_type & EMULTYPE_SKIP)) {
8738 		prepare_emulation_ctxt_failure_exit(vcpu);
8739 		return 0;
8740 	}
8741 
8742 	kvm_queue_exception(vcpu, UD_VECTOR);
8743 
8744 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8745 		prepare_emulation_ctxt_failure_exit(vcpu);
8746 		return 0;
8747 	}
8748 
8749 	return 1;
8750 }
8751 
8752 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8753 				  int emulation_type)
8754 {
8755 	gpa_t gpa = cr2_or_gpa;
8756 	kvm_pfn_t pfn;
8757 
8758 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8759 		return false;
8760 
8761 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8762 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8763 		return false;
8764 
8765 	if (!vcpu->arch.mmu->root_role.direct) {
8766 		/*
8767 		 * Write permission should be allowed since only
8768 		 * write access need to be emulated.
8769 		 */
8770 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8771 
8772 		/*
8773 		 * If the mapping is invalid in guest, let cpu retry
8774 		 * it to generate fault.
8775 		 */
8776 		if (gpa == INVALID_GPA)
8777 			return true;
8778 	}
8779 
8780 	/*
8781 	 * Do not retry the unhandleable instruction if it faults on the
8782 	 * readonly host memory, otherwise it will goto a infinite loop:
8783 	 * retry instruction -> write #PF -> emulation fail -> retry
8784 	 * instruction -> ...
8785 	 */
8786 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8787 
8788 	/*
8789 	 * If the instruction failed on the error pfn, it can not be fixed,
8790 	 * report the error to userspace.
8791 	 */
8792 	if (is_error_noslot_pfn(pfn))
8793 		return false;
8794 
8795 	kvm_release_pfn_clean(pfn);
8796 
8797 	/* The instructions are well-emulated on direct mmu. */
8798 	if (vcpu->arch.mmu->root_role.direct) {
8799 		unsigned int indirect_shadow_pages;
8800 
8801 		write_lock(&vcpu->kvm->mmu_lock);
8802 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8803 		write_unlock(&vcpu->kvm->mmu_lock);
8804 
8805 		if (indirect_shadow_pages)
8806 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8807 
8808 		return true;
8809 	}
8810 
8811 	/*
8812 	 * if emulation was due to access to shadowed page table
8813 	 * and it failed try to unshadow page and re-enter the
8814 	 * guest to let CPU execute the instruction.
8815 	 */
8816 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8817 
8818 	/*
8819 	 * If the access faults on its page table, it can not
8820 	 * be fixed by unprotecting shadow page and it should
8821 	 * be reported to userspace.
8822 	 */
8823 	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8824 }
8825 
8826 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8827 			      gpa_t cr2_or_gpa,  int emulation_type)
8828 {
8829 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8830 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8831 
8832 	last_retry_eip = vcpu->arch.last_retry_eip;
8833 	last_retry_addr = vcpu->arch.last_retry_addr;
8834 
8835 	/*
8836 	 * If the emulation is caused by #PF and it is non-page_table
8837 	 * writing instruction, it means the VM-EXIT is caused by shadow
8838 	 * page protected, we can zap the shadow page and retry this
8839 	 * instruction directly.
8840 	 *
8841 	 * Note: if the guest uses a non-page-table modifying instruction
8842 	 * on the PDE that points to the instruction, then we will unmap
8843 	 * the instruction and go to an infinite loop. So, we cache the
8844 	 * last retried eip and the last fault address, if we meet the eip
8845 	 * and the address again, we can break out of the potential infinite
8846 	 * loop.
8847 	 */
8848 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8849 
8850 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8851 		return false;
8852 
8853 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8854 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8855 		return false;
8856 
8857 	if (x86_page_table_writing_insn(ctxt))
8858 		return false;
8859 
8860 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8861 		return false;
8862 
8863 	vcpu->arch.last_retry_eip = ctxt->eip;
8864 	vcpu->arch.last_retry_addr = cr2_or_gpa;
8865 
8866 	if (!vcpu->arch.mmu->root_role.direct)
8867 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8868 
8869 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8870 
8871 	return true;
8872 }
8873 
8874 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8875 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8876 
8877 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8878 				unsigned long *db)
8879 {
8880 	u32 dr6 = 0;
8881 	int i;
8882 	u32 enable, rwlen;
8883 
8884 	enable = dr7;
8885 	rwlen = dr7 >> 16;
8886 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8887 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8888 			dr6 |= (1 << i);
8889 	return dr6;
8890 }
8891 
8892 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8893 {
8894 	struct kvm_run *kvm_run = vcpu->run;
8895 
8896 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8897 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8898 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8899 		kvm_run->debug.arch.exception = DB_VECTOR;
8900 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8901 		return 0;
8902 	}
8903 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8904 	return 1;
8905 }
8906 
8907 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8908 {
8909 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8910 	int r;
8911 
8912 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8913 	if (unlikely(!r))
8914 		return 0;
8915 
8916 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8917 
8918 	/*
8919 	 * rflags is the old, "raw" value of the flags.  The new value has
8920 	 * not been saved yet.
8921 	 *
8922 	 * This is correct even for TF set by the guest, because "the
8923 	 * processor will not generate this exception after the instruction
8924 	 * that sets the TF flag".
8925 	 */
8926 	if (unlikely(rflags & X86_EFLAGS_TF))
8927 		r = kvm_vcpu_do_singlestep(vcpu);
8928 	return r;
8929 }
8930 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8931 
8932 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8933 {
8934 	u32 shadow;
8935 
8936 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8937 		return true;
8938 
8939 	/*
8940 	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8941 	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8942 	 * to avoid the relatively expensive CPUID lookup.
8943 	 */
8944 	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8945 	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8946 	       guest_cpuid_is_intel(vcpu);
8947 }
8948 
8949 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8950 					   int emulation_type, int *r)
8951 {
8952 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8953 
8954 	/*
8955 	 * Do not check for code breakpoints if hardware has already done the
8956 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8957 	 * the instruction has passed all exception checks, and all intercepted
8958 	 * exceptions that trigger emulation have lower priority than code
8959 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8960 	 * means any code breakpoints have already been serviced.
8961 	 *
8962 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8963 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8964 	 * the instruction being emulated.  The intent of forced emulation is
8965 	 * to behave as if KVM intercepted the instruction without an exception
8966 	 * and without a prefix.
8967 	 */
8968 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8969 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8970 		return false;
8971 
8972 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8973 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8974 		struct kvm_run *kvm_run = vcpu->run;
8975 		unsigned long eip = kvm_get_linear_rip(vcpu);
8976 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8977 					   vcpu->arch.guest_debug_dr7,
8978 					   vcpu->arch.eff_db);
8979 
8980 		if (dr6 != 0) {
8981 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8982 			kvm_run->debug.arch.pc = eip;
8983 			kvm_run->debug.arch.exception = DB_VECTOR;
8984 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8985 			*r = 0;
8986 			return true;
8987 		}
8988 	}
8989 
8990 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8991 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8992 		unsigned long eip = kvm_get_linear_rip(vcpu);
8993 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8994 					   vcpu->arch.dr7,
8995 					   vcpu->arch.db);
8996 
8997 		if (dr6 != 0) {
8998 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8999 			*r = 1;
9000 			return true;
9001 		}
9002 	}
9003 
9004 	return false;
9005 }
9006 
9007 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9008 {
9009 	switch (ctxt->opcode_len) {
9010 	case 1:
9011 		switch (ctxt->b) {
9012 		case 0xe4:	/* IN */
9013 		case 0xe5:
9014 		case 0xec:
9015 		case 0xed:
9016 		case 0xe6:	/* OUT */
9017 		case 0xe7:
9018 		case 0xee:
9019 		case 0xef:
9020 		case 0x6c:	/* INS */
9021 		case 0x6d:
9022 		case 0x6e:	/* OUTS */
9023 		case 0x6f:
9024 			return true;
9025 		}
9026 		break;
9027 	case 2:
9028 		switch (ctxt->b) {
9029 		case 0x33:	/* RDPMC */
9030 			return true;
9031 		}
9032 		break;
9033 	}
9034 
9035 	return false;
9036 }
9037 
9038 /*
9039  * Decode an instruction for emulation.  The caller is responsible for handling
9040  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9041  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9042  * code breakpoints have higher priority and thus have already been done by
9043  * hardware.
9044  *
9045  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9046  *     response to a machine check.
9047  */
9048 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9049 				    void *insn, int insn_len)
9050 {
9051 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9052 	int r;
9053 
9054 	init_emulate_ctxt(vcpu);
9055 
9056 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9057 
9058 	trace_kvm_emulate_insn_start(vcpu);
9059 	++vcpu->stat.insn_emulation;
9060 
9061 	return r;
9062 }
9063 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9064 
9065 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9066 			    int emulation_type, void *insn, int insn_len)
9067 {
9068 	int r;
9069 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9070 	bool writeback = true;
9071 
9072 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9073 	if (r != X86EMUL_CONTINUE) {
9074 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9075 			return 1;
9076 
9077 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9078 		return handle_emulation_failure(vcpu, emulation_type);
9079 	}
9080 
9081 	vcpu->arch.l1tf_flush_l1d = true;
9082 
9083 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9084 		kvm_clear_exception_queue(vcpu);
9085 
9086 		/*
9087 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9088 		 * are fault-like and are higher priority than any faults on
9089 		 * the code fetch itself.
9090 		 */
9091 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9092 			return r;
9093 
9094 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9095 						    insn, insn_len);
9096 		if (r != EMULATION_OK)  {
9097 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9098 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9099 				kvm_queue_exception(vcpu, UD_VECTOR);
9100 				return 1;
9101 			}
9102 			if (reexecute_instruction(vcpu, cr2_or_gpa,
9103 						  emulation_type))
9104 				return 1;
9105 
9106 			if (ctxt->have_exception &&
9107 			    !(emulation_type & EMULTYPE_SKIP)) {
9108 				/*
9109 				 * #UD should result in just EMULATION_FAILED, and trap-like
9110 				 * exception should not be encountered during decode.
9111 				 */
9112 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9113 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9114 				inject_emulated_exception(vcpu);
9115 				return 1;
9116 			}
9117 			return handle_emulation_failure(vcpu, emulation_type);
9118 		}
9119 	}
9120 
9121 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9122 	    !is_vmware_backdoor_opcode(ctxt)) {
9123 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9124 		return 1;
9125 	}
9126 
9127 	/*
9128 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9129 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9130 	 * The caller is responsible for updating interruptibility state and
9131 	 * injecting single-step #DBs.
9132 	 */
9133 	if (emulation_type & EMULTYPE_SKIP) {
9134 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9135 			ctxt->eip = (u32)ctxt->_eip;
9136 		else
9137 			ctxt->eip = ctxt->_eip;
9138 
9139 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9140 			r = 1;
9141 			goto writeback;
9142 		}
9143 
9144 		kvm_rip_write(vcpu, ctxt->eip);
9145 		if (ctxt->eflags & X86_EFLAGS_RF)
9146 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9147 		return 1;
9148 	}
9149 
9150 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
9151 		return 1;
9152 
9153 	/* this is needed for vmware backdoor interface to work since it
9154 	   changes registers values  during IO operation */
9155 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9156 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9157 		emulator_invalidate_register_cache(ctxt);
9158 	}
9159 
9160 restart:
9161 	if (emulation_type & EMULTYPE_PF) {
9162 		/* Save the faulting GPA (cr2) in the address field */
9163 		ctxt->exception.address = cr2_or_gpa;
9164 
9165 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9166 		if (vcpu->arch.mmu->root_role.direct) {
9167 			ctxt->gpa_available = true;
9168 			ctxt->gpa_val = cr2_or_gpa;
9169 		}
9170 	} else {
9171 		/* Sanitize the address out of an abundance of paranoia. */
9172 		ctxt->exception.address = 0;
9173 	}
9174 
9175 	r = x86_emulate_insn(ctxt);
9176 
9177 	if (r == EMULATION_INTERCEPTED)
9178 		return 1;
9179 
9180 	if (r == EMULATION_FAILED) {
9181 		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9182 			return 1;
9183 
9184 		return handle_emulation_failure(vcpu, emulation_type);
9185 	}
9186 
9187 	if (ctxt->have_exception) {
9188 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9189 		vcpu->mmio_needed = false;
9190 		r = 1;
9191 		inject_emulated_exception(vcpu);
9192 	} else if (vcpu->arch.pio.count) {
9193 		if (!vcpu->arch.pio.in) {
9194 			/* FIXME: return into emulator if single-stepping.  */
9195 			vcpu->arch.pio.count = 0;
9196 		} else {
9197 			writeback = false;
9198 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9199 		}
9200 		r = 0;
9201 	} else if (vcpu->mmio_needed) {
9202 		++vcpu->stat.mmio_exits;
9203 
9204 		if (!vcpu->mmio_is_write)
9205 			writeback = false;
9206 		r = 0;
9207 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9208 	} else if (vcpu->arch.complete_userspace_io) {
9209 		writeback = false;
9210 		r = 0;
9211 	} else if (r == EMULATION_RESTART)
9212 		goto restart;
9213 	else
9214 		r = 1;
9215 
9216 writeback:
9217 	if (writeback) {
9218 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9219 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9220 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9221 
9222 		/*
9223 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9224 		 * only supports code breakpoints and general detect #DB, both
9225 		 * of which are fault-like.
9226 		 */
9227 		if (!ctxt->have_exception ||
9228 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9229 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9230 			if (ctxt->is_branch)
9231 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9232 			kvm_rip_write(vcpu, ctxt->eip);
9233 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9234 				r = kvm_vcpu_do_singlestep(vcpu);
9235 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9236 			__kvm_set_rflags(vcpu, ctxt->eflags);
9237 		}
9238 
9239 		/*
9240 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9241 		 * do nothing, and it will be requested again as soon as
9242 		 * the shadow expires.  But we still need to check here,
9243 		 * because POPF has no interrupt shadow.
9244 		 */
9245 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9246 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9247 	} else
9248 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9249 
9250 	return r;
9251 }
9252 
9253 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9254 {
9255 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9256 }
9257 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9258 
9259 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9260 					void *insn, int insn_len)
9261 {
9262 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9263 }
9264 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9265 
9266 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9267 {
9268 	vcpu->arch.pio.count = 0;
9269 	return 1;
9270 }
9271 
9272 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9273 {
9274 	vcpu->arch.pio.count = 0;
9275 
9276 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9277 		return 1;
9278 
9279 	return kvm_skip_emulated_instruction(vcpu);
9280 }
9281 
9282 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9283 			    unsigned short port)
9284 {
9285 	unsigned long val = kvm_rax_read(vcpu);
9286 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9287 
9288 	if (ret)
9289 		return ret;
9290 
9291 	/*
9292 	 * Workaround userspace that relies on old KVM behavior of %rip being
9293 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9294 	 */
9295 	if (port == 0x7e &&
9296 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9297 		vcpu->arch.complete_userspace_io =
9298 			complete_fast_pio_out_port_0x7e;
9299 		kvm_skip_emulated_instruction(vcpu);
9300 	} else {
9301 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9302 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9303 	}
9304 	return 0;
9305 }
9306 
9307 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9308 {
9309 	unsigned long val;
9310 
9311 	/* We should only ever be called with arch.pio.count equal to 1 */
9312 	BUG_ON(vcpu->arch.pio.count != 1);
9313 
9314 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9315 		vcpu->arch.pio.count = 0;
9316 		return 1;
9317 	}
9318 
9319 	/* For size less than 4 we merge, else we zero extend */
9320 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9321 
9322 	complete_emulator_pio_in(vcpu, &val);
9323 	kvm_rax_write(vcpu, val);
9324 
9325 	return kvm_skip_emulated_instruction(vcpu);
9326 }
9327 
9328 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9329 			   unsigned short port)
9330 {
9331 	unsigned long val;
9332 	int ret;
9333 
9334 	/* For size less than 4 we merge, else we zero extend */
9335 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9336 
9337 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9338 	if (ret) {
9339 		kvm_rax_write(vcpu, val);
9340 		return ret;
9341 	}
9342 
9343 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9344 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9345 
9346 	return 0;
9347 }
9348 
9349 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9350 {
9351 	int ret;
9352 
9353 	if (in)
9354 		ret = kvm_fast_pio_in(vcpu, size, port);
9355 	else
9356 		ret = kvm_fast_pio_out(vcpu, size, port);
9357 	return ret && kvm_skip_emulated_instruction(vcpu);
9358 }
9359 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9360 
9361 static int kvmclock_cpu_down_prep(unsigned int cpu)
9362 {
9363 	__this_cpu_write(cpu_tsc_khz, 0);
9364 	return 0;
9365 }
9366 
9367 static void tsc_khz_changed(void *data)
9368 {
9369 	struct cpufreq_freqs *freq = data;
9370 	unsigned long khz;
9371 
9372 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9373 
9374 	if (data)
9375 		khz = freq->new;
9376 	else
9377 		khz = cpufreq_quick_get(raw_smp_processor_id());
9378 	if (!khz)
9379 		khz = tsc_khz;
9380 	__this_cpu_write(cpu_tsc_khz, khz);
9381 }
9382 
9383 #ifdef CONFIG_X86_64
9384 static void kvm_hyperv_tsc_notifier(void)
9385 {
9386 	struct kvm *kvm;
9387 	int cpu;
9388 
9389 	mutex_lock(&kvm_lock);
9390 	list_for_each_entry(kvm, &vm_list, vm_list)
9391 		kvm_make_mclock_inprogress_request(kvm);
9392 
9393 	/* no guest entries from this point */
9394 	hyperv_stop_tsc_emulation();
9395 
9396 	/* TSC frequency always matches when on Hyper-V */
9397 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9398 		for_each_present_cpu(cpu)
9399 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9400 	}
9401 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9402 
9403 	list_for_each_entry(kvm, &vm_list, vm_list) {
9404 		__kvm_start_pvclock_update(kvm);
9405 		pvclock_update_vm_gtod_copy(kvm);
9406 		kvm_end_pvclock_update(kvm);
9407 	}
9408 
9409 	mutex_unlock(&kvm_lock);
9410 }
9411 #endif
9412 
9413 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9414 {
9415 	struct kvm *kvm;
9416 	struct kvm_vcpu *vcpu;
9417 	int send_ipi = 0;
9418 	unsigned long i;
9419 
9420 	/*
9421 	 * We allow guests to temporarily run on slowing clocks,
9422 	 * provided we notify them after, or to run on accelerating
9423 	 * clocks, provided we notify them before.  Thus time never
9424 	 * goes backwards.
9425 	 *
9426 	 * However, we have a problem.  We can't atomically update
9427 	 * the frequency of a given CPU from this function; it is
9428 	 * merely a notifier, which can be called from any CPU.
9429 	 * Changing the TSC frequency at arbitrary points in time
9430 	 * requires a recomputation of local variables related to
9431 	 * the TSC for each VCPU.  We must flag these local variables
9432 	 * to be updated and be sure the update takes place with the
9433 	 * new frequency before any guests proceed.
9434 	 *
9435 	 * Unfortunately, the combination of hotplug CPU and frequency
9436 	 * change creates an intractable locking scenario; the order
9437 	 * of when these callouts happen is undefined with respect to
9438 	 * CPU hotplug, and they can race with each other.  As such,
9439 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9440 	 * undefined; you can actually have a CPU frequency change take
9441 	 * place in between the computation of X and the setting of the
9442 	 * variable.  To protect against this problem, all updates of
9443 	 * the per_cpu tsc_khz variable are done in an interrupt
9444 	 * protected IPI, and all callers wishing to update the value
9445 	 * must wait for a synchronous IPI to complete (which is trivial
9446 	 * if the caller is on the CPU already).  This establishes the
9447 	 * necessary total order on variable updates.
9448 	 *
9449 	 * Note that because a guest time update may take place
9450 	 * anytime after the setting of the VCPU's request bit, the
9451 	 * correct TSC value must be set before the request.  However,
9452 	 * to ensure the update actually makes it to any guest which
9453 	 * starts running in hardware virtualization between the set
9454 	 * and the acquisition of the spinlock, we must also ping the
9455 	 * CPU after setting the request bit.
9456 	 *
9457 	 */
9458 
9459 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9460 
9461 	mutex_lock(&kvm_lock);
9462 	list_for_each_entry(kvm, &vm_list, vm_list) {
9463 		kvm_for_each_vcpu(i, vcpu, kvm) {
9464 			if (vcpu->cpu != cpu)
9465 				continue;
9466 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9467 			if (vcpu->cpu != raw_smp_processor_id())
9468 				send_ipi = 1;
9469 		}
9470 	}
9471 	mutex_unlock(&kvm_lock);
9472 
9473 	if (freq->old < freq->new && send_ipi) {
9474 		/*
9475 		 * We upscale the frequency.  Must make the guest
9476 		 * doesn't see old kvmclock values while running with
9477 		 * the new frequency, otherwise we risk the guest sees
9478 		 * time go backwards.
9479 		 *
9480 		 * In case we update the frequency for another cpu
9481 		 * (which might be in guest context) send an interrupt
9482 		 * to kick the cpu out of guest context.  Next time
9483 		 * guest context is entered kvmclock will be updated,
9484 		 * so the guest will not see stale values.
9485 		 */
9486 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9487 	}
9488 }
9489 
9490 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9491 				     void *data)
9492 {
9493 	struct cpufreq_freqs *freq = data;
9494 	int cpu;
9495 
9496 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9497 		return 0;
9498 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9499 		return 0;
9500 
9501 	for_each_cpu(cpu, freq->policy->cpus)
9502 		__kvmclock_cpufreq_notifier(freq, cpu);
9503 
9504 	return 0;
9505 }
9506 
9507 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9508 	.notifier_call  = kvmclock_cpufreq_notifier
9509 };
9510 
9511 static int kvmclock_cpu_online(unsigned int cpu)
9512 {
9513 	tsc_khz_changed(NULL);
9514 	return 0;
9515 }
9516 
9517 static void kvm_timer_init(void)
9518 {
9519 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9520 		max_tsc_khz = tsc_khz;
9521 
9522 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9523 			struct cpufreq_policy *policy;
9524 			int cpu;
9525 
9526 			cpu = get_cpu();
9527 			policy = cpufreq_cpu_get(cpu);
9528 			if (policy) {
9529 				if (policy->cpuinfo.max_freq)
9530 					max_tsc_khz = policy->cpuinfo.max_freq;
9531 				cpufreq_cpu_put(policy);
9532 			}
9533 			put_cpu();
9534 		}
9535 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9536 					  CPUFREQ_TRANSITION_NOTIFIER);
9537 
9538 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9539 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9540 	}
9541 }
9542 
9543 #ifdef CONFIG_X86_64
9544 static void pvclock_gtod_update_fn(struct work_struct *work)
9545 {
9546 	struct kvm *kvm;
9547 	struct kvm_vcpu *vcpu;
9548 	unsigned long i;
9549 
9550 	mutex_lock(&kvm_lock);
9551 	list_for_each_entry(kvm, &vm_list, vm_list)
9552 		kvm_for_each_vcpu(i, vcpu, kvm)
9553 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9554 	atomic_set(&kvm_guest_has_master_clock, 0);
9555 	mutex_unlock(&kvm_lock);
9556 }
9557 
9558 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9559 
9560 /*
9561  * Indirection to move queue_work() out of the tk_core.seq write held
9562  * region to prevent possible deadlocks against time accessors which
9563  * are invoked with work related locks held.
9564  */
9565 static void pvclock_irq_work_fn(struct irq_work *w)
9566 {
9567 	queue_work(system_long_wq, &pvclock_gtod_work);
9568 }
9569 
9570 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9571 
9572 /*
9573  * Notification about pvclock gtod data update.
9574  */
9575 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9576 			       void *priv)
9577 {
9578 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9579 	struct timekeeper *tk = priv;
9580 
9581 	update_pvclock_gtod(tk);
9582 
9583 	/*
9584 	 * Disable master clock if host does not trust, or does not use,
9585 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9586 	 * this is invoked with tk_core.seq write held.
9587 	 */
9588 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9589 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9590 		irq_work_queue(&pvclock_irq_work);
9591 	return 0;
9592 }
9593 
9594 static struct notifier_block pvclock_gtod_notifier = {
9595 	.notifier_call = pvclock_gtod_notify,
9596 };
9597 #endif
9598 
9599 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9600 {
9601 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9602 
9603 #define __KVM_X86_OP(func) \
9604 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9605 #define KVM_X86_OP(func) \
9606 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9607 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9608 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9609 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9610 					   (void *)__static_call_return0);
9611 #include <asm/kvm-x86-ops.h>
9612 #undef __KVM_X86_OP
9613 
9614 	kvm_pmu_ops_update(ops->pmu_ops);
9615 }
9616 
9617 static int kvm_x86_check_processor_compatibility(void)
9618 {
9619 	int cpu = smp_processor_id();
9620 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9621 
9622 	/*
9623 	 * Compatibility checks are done when loading KVM and when enabling
9624 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9625 	 * compatible, i.e. KVM should never perform a compatibility check on
9626 	 * an offline CPU.
9627 	 */
9628 	WARN_ON(!cpu_online(cpu));
9629 
9630 	if (__cr4_reserved_bits(cpu_has, c) !=
9631 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9632 		return -EIO;
9633 
9634 	return static_call(kvm_x86_check_processor_compatibility)();
9635 }
9636 
9637 static void kvm_x86_check_cpu_compat(void *ret)
9638 {
9639 	*(int *)ret = kvm_x86_check_processor_compatibility();
9640 }
9641 
9642 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9643 {
9644 	u64 host_pat;
9645 	int r, cpu;
9646 
9647 	if (kvm_x86_ops.hardware_enable) {
9648 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9649 		return -EEXIST;
9650 	}
9651 
9652 	/*
9653 	 * KVM explicitly assumes that the guest has an FPU and
9654 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9655 	 * vCPU's FPU state as a fxregs_state struct.
9656 	 */
9657 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9658 		pr_err("inadequate fpu\n");
9659 		return -EOPNOTSUPP;
9660 	}
9661 
9662 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9663 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9664 		return -EOPNOTSUPP;
9665 	}
9666 
9667 	/*
9668 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9669 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9670 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9671 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9672 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9673 	 */
9674 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9675 	    (host_pat & GENMASK(2, 0)) != 6) {
9676 		pr_err("host PAT[0] is not WB\n");
9677 		return -EIO;
9678 	}
9679 
9680 	x86_emulator_cache = kvm_alloc_emulator_cache();
9681 	if (!x86_emulator_cache) {
9682 		pr_err("failed to allocate cache for x86 emulator\n");
9683 		return -ENOMEM;
9684 	}
9685 
9686 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9687 	if (!user_return_msrs) {
9688 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9689 		r = -ENOMEM;
9690 		goto out_free_x86_emulator_cache;
9691 	}
9692 	kvm_nr_uret_msrs = 0;
9693 
9694 	r = kvm_mmu_vendor_module_init();
9695 	if (r)
9696 		goto out_free_percpu;
9697 
9698 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9699 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9700 		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9701 	}
9702 
9703 	rdmsrl_safe(MSR_EFER, &host_efer);
9704 
9705 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9706 		rdmsrl(MSR_IA32_XSS, host_xss);
9707 
9708 	kvm_init_pmu_capability(ops->pmu_ops);
9709 
9710 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9711 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9712 
9713 	r = ops->hardware_setup();
9714 	if (r != 0)
9715 		goto out_mmu_exit;
9716 
9717 	kvm_ops_update(ops);
9718 
9719 	for_each_online_cpu(cpu) {
9720 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9721 		if (r < 0)
9722 			goto out_unwind_ops;
9723 	}
9724 
9725 	/*
9726 	 * Point of no return!  DO NOT add error paths below this point unless
9727 	 * absolutely necessary, as most operations from this point forward
9728 	 * require unwinding.
9729 	 */
9730 	kvm_timer_init();
9731 
9732 	if (pi_inject_timer == -1)
9733 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9734 #ifdef CONFIG_X86_64
9735 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9736 
9737 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9738 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9739 #endif
9740 
9741 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9742 
9743 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9744 		kvm_caps.supported_xss = 0;
9745 
9746 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9747 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9748 #undef __kvm_cpu_cap_has
9749 
9750 	if (kvm_caps.has_tsc_control) {
9751 		/*
9752 		 * Make sure the user can only configure tsc_khz values that
9753 		 * fit into a signed integer.
9754 		 * A min value is not calculated because it will always
9755 		 * be 1 on all machines.
9756 		 */
9757 		u64 max = min(0x7fffffffULL,
9758 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9759 		kvm_caps.max_guest_tsc_khz = max;
9760 	}
9761 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9762 	kvm_init_msr_lists();
9763 	return 0;
9764 
9765 out_unwind_ops:
9766 	kvm_x86_ops.hardware_enable = NULL;
9767 	static_call(kvm_x86_hardware_unsetup)();
9768 out_mmu_exit:
9769 	kvm_mmu_vendor_module_exit();
9770 out_free_percpu:
9771 	free_percpu(user_return_msrs);
9772 out_free_x86_emulator_cache:
9773 	kmem_cache_destroy(x86_emulator_cache);
9774 	return r;
9775 }
9776 
9777 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9778 {
9779 	int r;
9780 
9781 	mutex_lock(&vendor_module_lock);
9782 	r = __kvm_x86_vendor_init(ops);
9783 	mutex_unlock(&vendor_module_lock);
9784 
9785 	return r;
9786 }
9787 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9788 
9789 void kvm_x86_vendor_exit(void)
9790 {
9791 	kvm_unregister_perf_callbacks();
9792 
9793 #ifdef CONFIG_X86_64
9794 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9795 		clear_hv_tscchange_cb();
9796 #endif
9797 	kvm_lapic_exit();
9798 
9799 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9800 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9801 					    CPUFREQ_TRANSITION_NOTIFIER);
9802 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9803 	}
9804 #ifdef CONFIG_X86_64
9805 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9806 	irq_work_sync(&pvclock_irq_work);
9807 	cancel_work_sync(&pvclock_gtod_work);
9808 #endif
9809 	static_call(kvm_x86_hardware_unsetup)();
9810 	kvm_mmu_vendor_module_exit();
9811 	free_percpu(user_return_msrs);
9812 	kmem_cache_destroy(x86_emulator_cache);
9813 #ifdef CONFIG_KVM_XEN
9814 	static_key_deferred_flush(&kvm_xen_enabled);
9815 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9816 #endif
9817 	mutex_lock(&vendor_module_lock);
9818 	kvm_x86_ops.hardware_enable = NULL;
9819 	mutex_unlock(&vendor_module_lock);
9820 }
9821 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9822 
9823 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9824 {
9825 	/*
9826 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9827 	 * local APIC is in-kernel, the run loop will detect the non-runnable
9828 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9829 	 * managed by userspace, in which case userspace is responsible for
9830 	 * handling wake events.
9831 	 */
9832 	++vcpu->stat.halt_exits;
9833 	if (lapic_in_kernel(vcpu)) {
9834 		vcpu->arch.mp_state = state;
9835 		return 1;
9836 	} else {
9837 		vcpu->run->exit_reason = reason;
9838 		return 0;
9839 	}
9840 }
9841 
9842 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9843 {
9844 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9845 }
9846 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9847 
9848 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9849 {
9850 	int ret = kvm_skip_emulated_instruction(vcpu);
9851 	/*
9852 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9853 	 * KVM_EXIT_DEBUG here.
9854 	 */
9855 	return kvm_emulate_halt_noskip(vcpu) && ret;
9856 }
9857 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9858 
9859 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9860 {
9861 	int ret = kvm_skip_emulated_instruction(vcpu);
9862 
9863 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9864 					KVM_EXIT_AP_RESET_HOLD) && ret;
9865 }
9866 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9867 
9868 #ifdef CONFIG_X86_64
9869 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9870 			        unsigned long clock_type)
9871 {
9872 	struct kvm_clock_pairing clock_pairing;
9873 	struct timespec64 ts;
9874 	u64 cycle;
9875 	int ret;
9876 
9877 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9878 		return -KVM_EOPNOTSUPP;
9879 
9880 	/*
9881 	 * When tsc is in permanent catchup mode guests won't be able to use
9882 	 * pvclock_read_retry loop to get consistent view of pvclock
9883 	 */
9884 	if (vcpu->arch.tsc_always_catchup)
9885 		return -KVM_EOPNOTSUPP;
9886 
9887 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9888 		return -KVM_EOPNOTSUPP;
9889 
9890 	clock_pairing.sec = ts.tv_sec;
9891 	clock_pairing.nsec = ts.tv_nsec;
9892 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9893 	clock_pairing.flags = 0;
9894 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9895 
9896 	ret = 0;
9897 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9898 			    sizeof(struct kvm_clock_pairing)))
9899 		ret = -KVM_EFAULT;
9900 
9901 	return ret;
9902 }
9903 #endif
9904 
9905 /*
9906  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9907  *
9908  * @apicid - apicid of vcpu to be kicked.
9909  */
9910 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9911 {
9912 	/*
9913 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9914 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9915 	 */
9916 	struct kvm_lapic_irq lapic_irq = {
9917 		.delivery_mode = APIC_DM_REMRD,
9918 		.dest_mode = APIC_DEST_PHYSICAL,
9919 		.shorthand = APIC_DEST_NOSHORT,
9920 		.dest_id = apicid,
9921 	};
9922 
9923 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9924 }
9925 
9926 bool kvm_apicv_activated(struct kvm *kvm)
9927 {
9928 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9929 }
9930 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9931 
9932 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9933 {
9934 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9935 	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9936 
9937 	return (vm_reasons | vcpu_reasons) == 0;
9938 }
9939 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9940 
9941 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9942 				       enum kvm_apicv_inhibit reason, bool set)
9943 {
9944 	if (set)
9945 		__set_bit(reason, inhibits);
9946 	else
9947 		__clear_bit(reason, inhibits);
9948 
9949 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9950 }
9951 
9952 static void kvm_apicv_init(struct kvm *kvm)
9953 {
9954 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9955 
9956 	init_rwsem(&kvm->arch.apicv_update_lock);
9957 
9958 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9959 
9960 	if (!enable_apicv)
9961 		set_or_clear_apicv_inhibit(inhibits,
9962 					   APICV_INHIBIT_REASON_DISABLE, true);
9963 }
9964 
9965 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9966 {
9967 	struct kvm_vcpu *target = NULL;
9968 	struct kvm_apic_map *map;
9969 
9970 	vcpu->stat.directed_yield_attempted++;
9971 
9972 	if (single_task_running())
9973 		goto no_yield;
9974 
9975 	rcu_read_lock();
9976 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9977 
9978 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9979 		target = map->phys_map[dest_id]->vcpu;
9980 
9981 	rcu_read_unlock();
9982 
9983 	if (!target || !READ_ONCE(target->ready))
9984 		goto no_yield;
9985 
9986 	/* Ignore requests to yield to self */
9987 	if (vcpu == target)
9988 		goto no_yield;
9989 
9990 	if (kvm_vcpu_yield_to(target) <= 0)
9991 		goto no_yield;
9992 
9993 	vcpu->stat.directed_yield_successful++;
9994 
9995 no_yield:
9996 	return;
9997 }
9998 
9999 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10000 {
10001 	u64 ret = vcpu->run->hypercall.ret;
10002 
10003 	if (!is_64_bit_mode(vcpu))
10004 		ret = (u32)ret;
10005 	kvm_rax_write(vcpu, ret);
10006 	++vcpu->stat.hypercalls;
10007 	return kvm_skip_emulated_instruction(vcpu);
10008 }
10009 
10010 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10011 {
10012 	unsigned long nr, a0, a1, a2, a3, ret;
10013 	int op_64_bit;
10014 
10015 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10016 		return kvm_xen_hypercall(vcpu);
10017 
10018 	if (kvm_hv_hypercall_enabled(vcpu))
10019 		return kvm_hv_hypercall(vcpu);
10020 
10021 	nr = kvm_rax_read(vcpu);
10022 	a0 = kvm_rbx_read(vcpu);
10023 	a1 = kvm_rcx_read(vcpu);
10024 	a2 = kvm_rdx_read(vcpu);
10025 	a3 = kvm_rsi_read(vcpu);
10026 
10027 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10028 
10029 	op_64_bit = is_64_bit_hypercall(vcpu);
10030 	if (!op_64_bit) {
10031 		nr &= 0xFFFFFFFF;
10032 		a0 &= 0xFFFFFFFF;
10033 		a1 &= 0xFFFFFFFF;
10034 		a2 &= 0xFFFFFFFF;
10035 		a3 &= 0xFFFFFFFF;
10036 	}
10037 
10038 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
10039 		ret = -KVM_EPERM;
10040 		goto out;
10041 	}
10042 
10043 	ret = -KVM_ENOSYS;
10044 
10045 	switch (nr) {
10046 	case KVM_HC_VAPIC_POLL_IRQ:
10047 		ret = 0;
10048 		break;
10049 	case KVM_HC_KICK_CPU:
10050 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10051 			break;
10052 
10053 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10054 		kvm_sched_yield(vcpu, a1);
10055 		ret = 0;
10056 		break;
10057 #ifdef CONFIG_X86_64
10058 	case KVM_HC_CLOCK_PAIRING:
10059 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10060 		break;
10061 #endif
10062 	case KVM_HC_SEND_IPI:
10063 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10064 			break;
10065 
10066 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10067 		break;
10068 	case KVM_HC_SCHED_YIELD:
10069 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10070 			break;
10071 
10072 		kvm_sched_yield(vcpu, a0);
10073 		ret = 0;
10074 		break;
10075 	case KVM_HC_MAP_GPA_RANGE: {
10076 		u64 gpa = a0, npages = a1, attrs = a2;
10077 
10078 		ret = -KVM_ENOSYS;
10079 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
10080 			break;
10081 
10082 		if (!PAGE_ALIGNED(gpa) || !npages ||
10083 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10084 			ret = -KVM_EINVAL;
10085 			break;
10086 		}
10087 
10088 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10089 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10090 		vcpu->run->hypercall.args[0]  = gpa;
10091 		vcpu->run->hypercall.args[1]  = npages;
10092 		vcpu->run->hypercall.args[2]  = attrs;
10093 		vcpu->run->hypercall.flags    = 0;
10094 		if (op_64_bit)
10095 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10096 
10097 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10098 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
10099 		return 0;
10100 	}
10101 	default:
10102 		ret = -KVM_ENOSYS;
10103 		break;
10104 	}
10105 out:
10106 	if (!op_64_bit)
10107 		ret = (u32)ret;
10108 	kvm_rax_write(vcpu, ret);
10109 
10110 	++vcpu->stat.hypercalls;
10111 	return kvm_skip_emulated_instruction(vcpu);
10112 }
10113 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10114 
10115 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10116 {
10117 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10118 	char instruction[3];
10119 	unsigned long rip = kvm_rip_read(vcpu);
10120 
10121 	/*
10122 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10123 	 * the pieces.
10124 	 */
10125 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10126 		ctxt->exception.error_code_valid = false;
10127 		ctxt->exception.vector = UD_VECTOR;
10128 		ctxt->have_exception = true;
10129 		return X86EMUL_PROPAGATE_FAULT;
10130 	}
10131 
10132 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
10133 
10134 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10135 		&ctxt->exception);
10136 }
10137 
10138 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10139 {
10140 	return vcpu->run->request_interrupt_window &&
10141 		likely(!pic_in_kernel(vcpu->kvm));
10142 }
10143 
10144 /* Called within kvm->srcu read side.  */
10145 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10146 {
10147 	struct kvm_run *kvm_run = vcpu->run;
10148 
10149 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
10150 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10151 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
10152 
10153 	kvm_run->ready_for_interrupt_injection =
10154 		pic_in_kernel(vcpu->kvm) ||
10155 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10156 
10157 	if (is_smm(vcpu))
10158 		kvm_run->flags |= KVM_RUN_X86_SMM;
10159 }
10160 
10161 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10162 {
10163 	int max_irr, tpr;
10164 
10165 	if (!kvm_x86_ops.update_cr8_intercept)
10166 		return;
10167 
10168 	if (!lapic_in_kernel(vcpu))
10169 		return;
10170 
10171 	if (vcpu->arch.apic->apicv_active)
10172 		return;
10173 
10174 	if (!vcpu->arch.apic->vapic_addr)
10175 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10176 	else
10177 		max_irr = -1;
10178 
10179 	if (max_irr != -1)
10180 		max_irr >>= 4;
10181 
10182 	tpr = kvm_lapic_get_cr8(vcpu);
10183 
10184 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10185 }
10186 
10187 
10188 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10189 {
10190 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10191 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10192 		return 1;
10193 	}
10194 
10195 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10196 }
10197 
10198 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10199 {
10200 	/*
10201 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10202 	 * exceptions don't report error codes.  The presence of an error code
10203 	 * is carried with the exception and only stripped when the exception
10204 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10205 	 * report an error code despite the CPU being in Real Mode.
10206 	 */
10207 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10208 
10209 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10210 				vcpu->arch.exception.has_error_code,
10211 				vcpu->arch.exception.error_code,
10212 				vcpu->arch.exception.injected);
10213 
10214 	static_call(kvm_x86_inject_exception)(vcpu);
10215 }
10216 
10217 /*
10218  * Check for any event (interrupt or exception) that is ready to be injected,
10219  * and if there is at least one event, inject the event with the highest
10220  * priority.  This handles both "pending" events, i.e. events that have never
10221  * been injected into the guest, and "injected" events, i.e. events that were
10222  * injected as part of a previous VM-Enter, but weren't successfully delivered
10223  * and need to be re-injected.
10224  *
10225  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10226  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10227  * be able to inject exceptions in the "middle" of an instruction, and so must
10228  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10229  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10230  * boundaries is necessary and correct.
10231  *
10232  * For simplicity, KVM uses a single path to inject all events (except events
10233  * that are injected directly from L1 to L2) and doesn't explicitly track
10234  * instruction boundaries for asynchronous events.  However, because VM-Exits
10235  * that can occur during instruction execution typically result in KVM skipping
10236  * the instruction or injecting an exception, e.g. instruction and exception
10237  * intercepts, and because pending exceptions have higher priority than pending
10238  * interrupts, KVM still honors instruction boundaries in most scenarios.
10239  *
10240  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10241  * the instruction or inject an exception, then KVM can incorrecty inject a new
10242  * asynchronous event if the event became pending after the CPU fetched the
10243  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10244  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10245  * injected on the restarted instruction instead of being deferred until the
10246  * instruction completes.
10247  *
10248  * In practice, this virtualization hole is unlikely to be observed by the
10249  * guest, and even less likely to cause functional problems.  To detect the
10250  * hole, the guest would have to trigger an event on a side effect of an early
10251  * phase of instruction execution, e.g. on the instruction fetch from memory.
10252  * And for it to be a functional problem, the guest would need to depend on the
10253  * ordering between that side effect, the instruction completing, _and_ the
10254  * delivery of the asynchronous event.
10255  */
10256 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10257 				       bool *req_immediate_exit)
10258 {
10259 	bool can_inject;
10260 	int r;
10261 
10262 	/*
10263 	 * Process nested events first, as nested VM-Exit supersedes event
10264 	 * re-injection.  If there's an event queued for re-injection, it will
10265 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10266 	 */
10267 	if (is_guest_mode(vcpu))
10268 		r = kvm_check_nested_events(vcpu);
10269 	else
10270 		r = 0;
10271 
10272 	/*
10273 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10274 	 * to/from L2 is needed, as any event that has already been injected
10275 	 * into L2 needs to complete its lifecycle before injecting a new event.
10276 	 *
10277 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10278 	 * This collision arises if an exception occurred while vectoring the
10279 	 * injected event, KVM intercepted said exception, and KVM ultimately
10280 	 * determined the fault belongs to the guest and queues the exception
10281 	 * for injection back into the guest.
10282 	 *
10283 	 * "Injected" interrupts can also collide with pending exceptions if
10284 	 * userspace ignores the "ready for injection" flag and blindly queues
10285 	 * an interrupt.  In that case, prioritizing the exception is correct,
10286 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10287 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10288 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10289 	 * priority, they're only generated (pended) during instruction
10290 	 * execution, and interrupts are recognized at instruction boundaries.
10291 	 * Thus a pending fault-like exception means the fault occurred on the
10292 	 * *previous* instruction and must be serviced prior to recognizing any
10293 	 * new events in order to fully complete the previous instruction.
10294 	 */
10295 	if (vcpu->arch.exception.injected)
10296 		kvm_inject_exception(vcpu);
10297 	else if (kvm_is_exception_pending(vcpu))
10298 		; /* see above */
10299 	else if (vcpu->arch.nmi_injected)
10300 		static_call(kvm_x86_inject_nmi)(vcpu);
10301 	else if (vcpu->arch.interrupt.injected)
10302 		static_call(kvm_x86_inject_irq)(vcpu, true);
10303 
10304 	/*
10305 	 * Exceptions that morph to VM-Exits are handled above, and pending
10306 	 * exceptions on top of injected exceptions that do not VM-Exit should
10307 	 * either morph to #DF or, sadly, override the injected exception.
10308 	 */
10309 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10310 		     vcpu->arch.exception.pending);
10311 
10312 	/*
10313 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10314 	 * nested VM-Enter or event re-injection so that a different pending
10315 	 * event can be serviced (or if KVM needs to exit to userspace).
10316 	 *
10317 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10318 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10319 	 * there may now be events that can be injected into L1.
10320 	 */
10321 	if (r < 0)
10322 		goto out;
10323 
10324 	/*
10325 	 * A pending exception VM-Exit should either result in nested VM-Exit
10326 	 * or force an immediate re-entry and exit to/from L2, and exception
10327 	 * VM-Exits cannot be injected (flag should _never_ be set).
10328 	 */
10329 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10330 		     vcpu->arch.exception_vmexit.pending);
10331 
10332 	/*
10333 	 * New events, other than exceptions, cannot be injected if KVM needs
10334 	 * to re-inject a previous event.  See above comments on re-injecting
10335 	 * for why pending exceptions get priority.
10336 	 */
10337 	can_inject = !kvm_event_needs_reinjection(vcpu);
10338 
10339 	if (vcpu->arch.exception.pending) {
10340 		/*
10341 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10342 		 * value pushed on the stack.  Trap-like exception and all #DBs
10343 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10344 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10345 		 *
10346 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10347 		 * describe the behavior of General Detect #DBs, which are
10348 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10349 		 */
10350 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10351 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10352 					     X86_EFLAGS_RF);
10353 
10354 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10355 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10356 			if (vcpu->arch.dr7 & DR7_GD) {
10357 				vcpu->arch.dr7 &= ~DR7_GD;
10358 				kvm_update_dr7(vcpu);
10359 			}
10360 		}
10361 
10362 		kvm_inject_exception(vcpu);
10363 
10364 		vcpu->arch.exception.pending = false;
10365 		vcpu->arch.exception.injected = true;
10366 
10367 		can_inject = false;
10368 	}
10369 
10370 	/* Don't inject interrupts if the user asked to avoid doing so */
10371 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10372 		return 0;
10373 
10374 	/*
10375 	 * Finally, inject interrupt events.  If an event cannot be injected
10376 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10377 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10378 	 * and can architecturally be injected, but we cannot do it right now:
10379 	 * an interrupt could have arrived just now and we have to inject it
10380 	 * as a vmexit, or there could already an event in the queue, which is
10381 	 * indicated by can_inject.  In that case we request an immediate exit
10382 	 * in order to make progress and get back here for another iteration.
10383 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10384 	 */
10385 #ifdef CONFIG_KVM_SMM
10386 	if (vcpu->arch.smi_pending) {
10387 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10388 		if (r < 0)
10389 			goto out;
10390 		if (r) {
10391 			vcpu->arch.smi_pending = false;
10392 			++vcpu->arch.smi_count;
10393 			enter_smm(vcpu);
10394 			can_inject = false;
10395 		} else
10396 			static_call(kvm_x86_enable_smi_window)(vcpu);
10397 	}
10398 #endif
10399 
10400 	if (vcpu->arch.nmi_pending) {
10401 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10402 		if (r < 0)
10403 			goto out;
10404 		if (r) {
10405 			--vcpu->arch.nmi_pending;
10406 			vcpu->arch.nmi_injected = true;
10407 			static_call(kvm_x86_inject_nmi)(vcpu);
10408 			can_inject = false;
10409 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10410 		}
10411 		if (vcpu->arch.nmi_pending)
10412 			static_call(kvm_x86_enable_nmi_window)(vcpu);
10413 	}
10414 
10415 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10416 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10417 		if (r < 0)
10418 			goto out;
10419 		if (r) {
10420 			int irq = kvm_cpu_get_interrupt(vcpu);
10421 
10422 			if (!WARN_ON_ONCE(irq == -1)) {
10423 				kvm_queue_interrupt(vcpu, irq, false);
10424 				static_call(kvm_x86_inject_irq)(vcpu, false);
10425 				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10426 			}
10427 		}
10428 		if (kvm_cpu_has_injectable_intr(vcpu))
10429 			static_call(kvm_x86_enable_irq_window)(vcpu);
10430 	}
10431 
10432 	if (is_guest_mode(vcpu) &&
10433 	    kvm_x86_ops.nested_ops->has_events &&
10434 	    kvm_x86_ops.nested_ops->has_events(vcpu))
10435 		*req_immediate_exit = true;
10436 
10437 	/*
10438 	 * KVM must never queue a new exception while injecting an event; KVM
10439 	 * is done emulating and should only propagate the to-be-injected event
10440 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10441 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10442 	 * exception and start the cycle all over.
10443 	 *
10444 	 * Exempt triple faults as they have special handling and won't put the
10445 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10446 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10447 	 * Mode events (see kvm_inject_realmode_interrupt()).
10448 	 */
10449 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10450 		     vcpu->arch.exception_vmexit.pending);
10451 	return 0;
10452 
10453 out:
10454 	if (r == -EBUSY) {
10455 		*req_immediate_exit = true;
10456 		r = 0;
10457 	}
10458 	return r;
10459 }
10460 
10461 static void process_nmi(struct kvm_vcpu *vcpu)
10462 {
10463 	unsigned int limit;
10464 
10465 	/*
10466 	 * x86 is limited to one NMI pending, but because KVM can't react to
10467 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10468 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10469 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10470 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10471 	 * waiting for a previous NMI injection to complete (which effectively
10472 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10473 	 * will request an NMI window to handle the second NMI.
10474 	 */
10475 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10476 		limit = 1;
10477 	else
10478 		limit = 2;
10479 
10480 	/*
10481 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10482 	 * tracked in vcpu->arch.nmi_pending.
10483 	 */
10484 	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10485 		limit--;
10486 
10487 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10488 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10489 
10490 	if (vcpu->arch.nmi_pending &&
10491 	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10492 		vcpu->arch.nmi_pending--;
10493 
10494 	if (vcpu->arch.nmi_pending)
10495 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10496 }
10497 
10498 /* Return total number of NMIs pending injection to the VM */
10499 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10500 {
10501 	return vcpu->arch.nmi_pending +
10502 	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10503 }
10504 
10505 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10506 				       unsigned long *vcpu_bitmap)
10507 {
10508 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10509 }
10510 
10511 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10512 {
10513 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10514 }
10515 
10516 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10517 {
10518 	struct kvm_lapic *apic = vcpu->arch.apic;
10519 	bool activate;
10520 
10521 	if (!lapic_in_kernel(vcpu))
10522 		return;
10523 
10524 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10525 	preempt_disable();
10526 
10527 	/* Do not activate APICV when APIC is disabled */
10528 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10529 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10530 
10531 	if (apic->apicv_active == activate)
10532 		goto out;
10533 
10534 	apic->apicv_active = activate;
10535 	kvm_apic_update_apicv(vcpu);
10536 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10537 
10538 	/*
10539 	 * When APICv gets disabled, we may still have injected interrupts
10540 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10541 	 * still active when the interrupt got accepted. Make sure
10542 	 * kvm_check_and_inject_events() is called to check for that.
10543 	 */
10544 	if (!apic->apicv_active)
10545 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10546 
10547 out:
10548 	preempt_enable();
10549 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10550 }
10551 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10552 
10553 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10554 {
10555 	if (!lapic_in_kernel(vcpu))
10556 		return;
10557 
10558 	/*
10559 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10560 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10561 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10562 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10563 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10564 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10565 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10566 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10567 	 * access page is sticky.
10568 	 */
10569 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10570 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10571 		kvm_inhibit_apic_access_page(vcpu);
10572 
10573 	__kvm_vcpu_update_apicv(vcpu);
10574 }
10575 
10576 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10577 				      enum kvm_apicv_inhibit reason, bool set)
10578 {
10579 	unsigned long old, new;
10580 
10581 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10582 
10583 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10584 		return;
10585 
10586 	old = new = kvm->arch.apicv_inhibit_reasons;
10587 
10588 	set_or_clear_apicv_inhibit(&new, reason, set);
10589 
10590 	if (!!old != !!new) {
10591 		/*
10592 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10593 		 * false positives in the sanity check WARN in svm_vcpu_run().
10594 		 * This task will wait for all vCPUs to ack the kick IRQ before
10595 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10596 		 * block on acquiring apicv_update_lock so that vCPUs can't
10597 		 * redo svm_vcpu_run() without seeing the new inhibit state.
10598 		 *
10599 		 * Note, holding apicv_update_lock and taking it in the read
10600 		 * side (handling the request) also prevents other vCPUs from
10601 		 * servicing the request with a stale apicv_inhibit_reasons.
10602 		 */
10603 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10604 		kvm->arch.apicv_inhibit_reasons = new;
10605 		if (new) {
10606 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10607 			int idx = srcu_read_lock(&kvm->srcu);
10608 
10609 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10610 			srcu_read_unlock(&kvm->srcu, idx);
10611 		}
10612 	} else {
10613 		kvm->arch.apicv_inhibit_reasons = new;
10614 	}
10615 }
10616 
10617 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10618 				    enum kvm_apicv_inhibit reason, bool set)
10619 {
10620 	if (!enable_apicv)
10621 		return;
10622 
10623 	down_write(&kvm->arch.apicv_update_lock);
10624 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10625 	up_write(&kvm->arch.apicv_update_lock);
10626 }
10627 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10628 
10629 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10630 {
10631 	if (!kvm_apic_present(vcpu))
10632 		return;
10633 
10634 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10635 
10636 	if (irqchip_split(vcpu->kvm))
10637 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10638 	else {
10639 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10640 		if (ioapic_in_kernel(vcpu->kvm))
10641 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10642 	}
10643 
10644 	if (is_guest_mode(vcpu))
10645 		vcpu->arch.load_eoi_exitmap_pending = true;
10646 	else
10647 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10648 }
10649 
10650 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10651 {
10652 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10653 		return;
10654 
10655 #ifdef CONFIG_KVM_HYPERV
10656 	if (to_hv_vcpu(vcpu)) {
10657 		u64 eoi_exit_bitmap[4];
10658 
10659 		bitmap_or((ulong *)eoi_exit_bitmap,
10660 			  vcpu->arch.ioapic_handled_vectors,
10661 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10662 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10663 		return;
10664 	}
10665 #endif
10666 	static_call_cond(kvm_x86_load_eoi_exitmap)(
10667 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10668 }
10669 
10670 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10671 {
10672 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10673 }
10674 
10675 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10676 {
10677 	if (!lapic_in_kernel(vcpu))
10678 		return;
10679 
10680 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10681 }
10682 
10683 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10684 {
10685 	smp_send_reschedule(vcpu->cpu);
10686 }
10687 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10688 
10689 /*
10690  * Called within kvm->srcu read side.
10691  * Returns 1 to let vcpu_run() continue the guest execution loop without
10692  * exiting to the userspace.  Otherwise, the value will be returned to the
10693  * userspace.
10694  */
10695 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10696 {
10697 	int r;
10698 	bool req_int_win =
10699 		dm_request_for_irq_injection(vcpu) &&
10700 		kvm_cpu_accept_dm_intr(vcpu);
10701 	fastpath_t exit_fastpath;
10702 
10703 	bool req_immediate_exit = false;
10704 
10705 	if (kvm_request_pending(vcpu)) {
10706 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10707 			r = -EIO;
10708 			goto out;
10709 		}
10710 
10711 		if (kvm_dirty_ring_check_request(vcpu)) {
10712 			r = 0;
10713 			goto out;
10714 		}
10715 
10716 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10717 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10718 				r = 0;
10719 				goto out;
10720 			}
10721 		}
10722 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10723 			kvm_mmu_free_obsolete_roots(vcpu);
10724 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10725 			__kvm_migrate_timers(vcpu);
10726 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10727 			kvm_update_masterclock(vcpu->kvm);
10728 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10729 			kvm_gen_kvmclock_update(vcpu);
10730 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10731 			r = kvm_guest_time_update(vcpu);
10732 			if (unlikely(r))
10733 				goto out;
10734 		}
10735 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10736 			kvm_mmu_sync_roots(vcpu);
10737 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10738 			kvm_mmu_load_pgd(vcpu);
10739 
10740 		/*
10741 		 * Note, the order matters here, as flushing "all" TLB entries
10742 		 * also flushes the "current" TLB entries, i.e. servicing the
10743 		 * flush "all" will clear any request to flush "current".
10744 		 */
10745 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10746 			kvm_vcpu_flush_tlb_all(vcpu);
10747 
10748 		kvm_service_local_tlb_flush_requests(vcpu);
10749 
10750 		/*
10751 		 * Fall back to a "full" guest flush if Hyper-V's precise
10752 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10753 		 * the flushes are considered "remote" and not "local" because
10754 		 * the requests can be initiated from other vCPUs.
10755 		 */
10756 #ifdef CONFIG_KVM_HYPERV
10757 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10758 		    kvm_hv_vcpu_flush_tlb(vcpu))
10759 			kvm_vcpu_flush_tlb_guest(vcpu);
10760 #endif
10761 
10762 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10763 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10764 			r = 0;
10765 			goto out;
10766 		}
10767 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10768 			if (is_guest_mode(vcpu))
10769 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10770 
10771 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10772 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10773 				vcpu->mmio_needed = 0;
10774 				r = 0;
10775 				goto out;
10776 			}
10777 		}
10778 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10779 			/* Page is swapped out. Do synthetic halt */
10780 			vcpu->arch.apf.halted = true;
10781 			r = 1;
10782 			goto out;
10783 		}
10784 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10785 			record_steal_time(vcpu);
10786 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10787 			kvm_pmu_handle_event(vcpu);
10788 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10789 			kvm_pmu_deliver_pmi(vcpu);
10790 #ifdef CONFIG_KVM_SMM
10791 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10792 			process_smi(vcpu);
10793 #endif
10794 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10795 			process_nmi(vcpu);
10796 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10797 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10798 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10799 				     vcpu->arch.ioapic_handled_vectors)) {
10800 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10801 				vcpu->run->eoi.vector =
10802 						vcpu->arch.pending_ioapic_eoi;
10803 				r = 0;
10804 				goto out;
10805 			}
10806 		}
10807 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10808 			vcpu_scan_ioapic(vcpu);
10809 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10810 			vcpu_load_eoi_exitmap(vcpu);
10811 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10812 			kvm_vcpu_reload_apic_access_page(vcpu);
10813 #ifdef CONFIG_KVM_HYPERV
10814 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10815 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10816 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10817 			vcpu->run->system_event.ndata = 0;
10818 			r = 0;
10819 			goto out;
10820 		}
10821 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10822 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10823 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10824 			vcpu->run->system_event.ndata = 0;
10825 			r = 0;
10826 			goto out;
10827 		}
10828 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10829 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10830 
10831 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10832 			vcpu->run->hyperv = hv_vcpu->exit;
10833 			r = 0;
10834 			goto out;
10835 		}
10836 
10837 		/*
10838 		 * KVM_REQ_HV_STIMER has to be processed after
10839 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10840 		 * depend on the guest clock being up-to-date
10841 		 */
10842 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10843 			kvm_hv_process_stimers(vcpu);
10844 #endif
10845 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10846 			kvm_vcpu_update_apicv(vcpu);
10847 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10848 			kvm_check_async_pf_completion(vcpu);
10849 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10850 			static_call(kvm_x86_msr_filter_changed)(vcpu);
10851 
10852 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10853 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10854 	}
10855 
10856 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10857 	    kvm_xen_has_interrupt(vcpu)) {
10858 		++vcpu->stat.req_event;
10859 		r = kvm_apic_accept_events(vcpu);
10860 		if (r < 0) {
10861 			r = 0;
10862 			goto out;
10863 		}
10864 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10865 			r = 1;
10866 			goto out;
10867 		}
10868 
10869 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10870 		if (r < 0) {
10871 			r = 0;
10872 			goto out;
10873 		}
10874 		if (req_int_win)
10875 			static_call(kvm_x86_enable_irq_window)(vcpu);
10876 
10877 		if (kvm_lapic_enabled(vcpu)) {
10878 			update_cr8_intercept(vcpu);
10879 			kvm_lapic_sync_to_vapic(vcpu);
10880 		}
10881 	}
10882 
10883 	r = kvm_mmu_reload(vcpu);
10884 	if (unlikely(r)) {
10885 		goto cancel_injection;
10886 	}
10887 
10888 	preempt_disable();
10889 
10890 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10891 
10892 	/*
10893 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10894 	 * IPI are then delayed after guest entry, which ensures that they
10895 	 * result in virtual interrupt delivery.
10896 	 */
10897 	local_irq_disable();
10898 
10899 	/* Store vcpu->apicv_active before vcpu->mode.  */
10900 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10901 
10902 	kvm_vcpu_srcu_read_unlock(vcpu);
10903 
10904 	/*
10905 	 * 1) We should set ->mode before checking ->requests.  Please see
10906 	 * the comment in kvm_vcpu_exiting_guest_mode().
10907 	 *
10908 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10909 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10910 	 * (see vmx_deliver_posted_interrupt).
10911 	 *
10912 	 * 3) This also orders the write to mode from any reads to the page
10913 	 * tables done while the VCPU is running.  Please see the comment
10914 	 * in kvm_flush_remote_tlbs.
10915 	 */
10916 	smp_mb__after_srcu_read_unlock();
10917 
10918 	/*
10919 	 * Process pending posted interrupts to handle the case where the
10920 	 * notification IRQ arrived in the host, or was never sent (because the
10921 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10922 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10923 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10924 	 */
10925 	if (kvm_lapic_enabled(vcpu))
10926 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10927 
10928 	if (kvm_vcpu_exit_request(vcpu)) {
10929 		vcpu->mode = OUTSIDE_GUEST_MODE;
10930 		smp_wmb();
10931 		local_irq_enable();
10932 		preempt_enable();
10933 		kvm_vcpu_srcu_read_lock(vcpu);
10934 		r = 1;
10935 		goto cancel_injection;
10936 	}
10937 
10938 	if (req_immediate_exit) {
10939 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10940 		static_call(kvm_x86_request_immediate_exit)(vcpu);
10941 	}
10942 
10943 	fpregs_assert_state_consistent();
10944 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10945 		switch_fpu_return();
10946 
10947 	if (vcpu->arch.guest_fpu.xfd_err)
10948 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10949 
10950 	if (unlikely(vcpu->arch.switch_db_regs)) {
10951 		set_debugreg(0, 7);
10952 		set_debugreg(vcpu->arch.eff_db[0], 0);
10953 		set_debugreg(vcpu->arch.eff_db[1], 1);
10954 		set_debugreg(vcpu->arch.eff_db[2], 2);
10955 		set_debugreg(vcpu->arch.eff_db[3], 3);
10956 	} else if (unlikely(hw_breakpoint_active())) {
10957 		set_debugreg(0, 7);
10958 	}
10959 
10960 	guest_timing_enter_irqoff();
10961 
10962 	for (;;) {
10963 		/*
10964 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10965 		 * update must kick and wait for all vCPUs before toggling the
10966 		 * per-VM state, and responding vCPUs must wait for the update
10967 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10968 		 */
10969 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10970 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10971 
10972 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10973 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10974 			break;
10975 
10976 		if (kvm_lapic_enabled(vcpu))
10977 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10978 
10979 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10980 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10981 			break;
10982 		}
10983 
10984 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10985 		++vcpu->stat.exits;
10986 	}
10987 
10988 	/*
10989 	 * Do this here before restoring debug registers on the host.  And
10990 	 * since we do this before handling the vmexit, a DR access vmexit
10991 	 * can (a) read the correct value of the debug registers, (b) set
10992 	 * KVM_DEBUGREG_WONT_EXIT again.
10993 	 */
10994 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10995 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10996 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10997 		kvm_update_dr0123(vcpu);
10998 		kvm_update_dr7(vcpu);
10999 	}
11000 
11001 	/*
11002 	 * If the guest has used debug registers, at least dr7
11003 	 * will be disabled while returning to the host.
11004 	 * If we don't have active breakpoints in the host, we don't
11005 	 * care about the messed up debug address registers. But if
11006 	 * we have some of them active, restore the old state.
11007 	 */
11008 	if (hw_breakpoint_active())
11009 		hw_breakpoint_restore();
11010 
11011 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11012 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11013 
11014 	vcpu->mode = OUTSIDE_GUEST_MODE;
11015 	smp_wmb();
11016 
11017 	/*
11018 	 * Sync xfd before calling handle_exit_irqoff() which may
11019 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11020 	 * in #NM irqoff handler).
11021 	 */
11022 	if (vcpu->arch.xfd_no_write_intercept)
11023 		fpu_sync_guest_vmexit_xfd_state();
11024 
11025 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
11026 
11027 	if (vcpu->arch.guest_fpu.xfd_err)
11028 		wrmsrl(MSR_IA32_XFD_ERR, 0);
11029 
11030 	/*
11031 	 * Consume any pending interrupts, including the possible source of
11032 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11033 	 * An instruction is required after local_irq_enable() to fully unblock
11034 	 * interrupts on processors that implement an interrupt shadow, the
11035 	 * stat.exits increment will do nicely.
11036 	 */
11037 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11038 	local_irq_enable();
11039 	++vcpu->stat.exits;
11040 	local_irq_disable();
11041 	kvm_after_interrupt(vcpu);
11042 
11043 	/*
11044 	 * Wait until after servicing IRQs to account guest time so that any
11045 	 * ticks that occurred while running the guest are properly accounted
11046 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11047 	 * of accounting via context tracking, but the loss of accuracy is
11048 	 * acceptable for all known use cases.
11049 	 */
11050 	guest_timing_exit_irqoff();
11051 
11052 	local_irq_enable();
11053 	preempt_enable();
11054 
11055 	kvm_vcpu_srcu_read_lock(vcpu);
11056 
11057 	/*
11058 	 * Profile KVM exit RIPs:
11059 	 */
11060 	if (unlikely(prof_on == KVM_PROFILING)) {
11061 		unsigned long rip = kvm_rip_read(vcpu);
11062 		profile_hit(KVM_PROFILING, (void *)rip);
11063 	}
11064 
11065 	if (unlikely(vcpu->arch.tsc_always_catchup))
11066 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11067 
11068 	if (vcpu->arch.apic_attention)
11069 		kvm_lapic_sync_from_vapic(vcpu);
11070 
11071 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
11072 	return r;
11073 
11074 cancel_injection:
11075 	if (req_immediate_exit)
11076 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11077 	static_call(kvm_x86_cancel_injection)(vcpu);
11078 	if (unlikely(vcpu->arch.apic_attention))
11079 		kvm_lapic_sync_from_vapic(vcpu);
11080 out:
11081 	return r;
11082 }
11083 
11084 /* Called within kvm->srcu read side.  */
11085 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11086 {
11087 	bool hv_timer;
11088 
11089 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11090 		/*
11091 		 * Switch to the software timer before halt-polling/blocking as
11092 		 * the guest's timer may be a break event for the vCPU, and the
11093 		 * hypervisor timer runs only when the CPU is in guest mode.
11094 		 * Switch before halt-polling so that KVM recognizes an expired
11095 		 * timer before blocking.
11096 		 */
11097 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11098 		if (hv_timer)
11099 			kvm_lapic_switch_to_sw_timer(vcpu);
11100 
11101 		kvm_vcpu_srcu_read_unlock(vcpu);
11102 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11103 			kvm_vcpu_halt(vcpu);
11104 		else
11105 			kvm_vcpu_block(vcpu);
11106 		kvm_vcpu_srcu_read_lock(vcpu);
11107 
11108 		if (hv_timer)
11109 			kvm_lapic_switch_to_hv_timer(vcpu);
11110 
11111 		/*
11112 		 * If the vCPU is not runnable, a signal or another host event
11113 		 * of some kind is pending; service it without changing the
11114 		 * vCPU's activity state.
11115 		 */
11116 		if (!kvm_arch_vcpu_runnable(vcpu))
11117 			return 1;
11118 	}
11119 
11120 	/*
11121 	 * Evaluate nested events before exiting the halted state.  This allows
11122 	 * the halt state to be recorded properly in the VMCS12's activity
11123 	 * state field (AMD does not have a similar field and a VM-Exit always
11124 	 * causes a spurious wakeup from HLT).
11125 	 */
11126 	if (is_guest_mode(vcpu)) {
11127 		if (kvm_check_nested_events(vcpu) < 0)
11128 			return 0;
11129 	}
11130 
11131 	if (kvm_apic_accept_events(vcpu) < 0)
11132 		return 0;
11133 	switch(vcpu->arch.mp_state) {
11134 	case KVM_MP_STATE_HALTED:
11135 	case KVM_MP_STATE_AP_RESET_HOLD:
11136 		vcpu->arch.pv.pv_unhalted = false;
11137 		vcpu->arch.mp_state =
11138 			KVM_MP_STATE_RUNNABLE;
11139 		fallthrough;
11140 	case KVM_MP_STATE_RUNNABLE:
11141 		vcpu->arch.apf.halted = false;
11142 		break;
11143 	case KVM_MP_STATE_INIT_RECEIVED:
11144 		break;
11145 	default:
11146 		WARN_ON_ONCE(1);
11147 		break;
11148 	}
11149 	return 1;
11150 }
11151 
11152 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11153 {
11154 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11155 		!vcpu->arch.apf.halted);
11156 }
11157 
11158 /* Called within kvm->srcu read side.  */
11159 static int vcpu_run(struct kvm_vcpu *vcpu)
11160 {
11161 	int r;
11162 
11163 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11164 	vcpu->arch.l1tf_flush_l1d = true;
11165 
11166 	for (;;) {
11167 		/*
11168 		 * If another guest vCPU requests a PV TLB flush in the middle
11169 		 * of instruction emulation, the rest of the emulation could
11170 		 * use a stale page translation. Assume that any code after
11171 		 * this point can start executing an instruction.
11172 		 */
11173 		vcpu->arch.at_instruction_boundary = false;
11174 		if (kvm_vcpu_running(vcpu)) {
11175 			r = vcpu_enter_guest(vcpu);
11176 		} else {
11177 			r = vcpu_block(vcpu);
11178 		}
11179 
11180 		if (r <= 0)
11181 			break;
11182 
11183 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11184 		if (kvm_xen_has_pending_events(vcpu))
11185 			kvm_xen_inject_pending_events(vcpu);
11186 
11187 		if (kvm_cpu_has_pending_timer(vcpu))
11188 			kvm_inject_pending_timer_irqs(vcpu);
11189 
11190 		if (dm_request_for_irq_injection(vcpu) &&
11191 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11192 			r = 0;
11193 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11194 			++vcpu->stat.request_irq_exits;
11195 			break;
11196 		}
11197 
11198 		if (__xfer_to_guest_mode_work_pending()) {
11199 			kvm_vcpu_srcu_read_unlock(vcpu);
11200 			r = xfer_to_guest_mode_handle_work(vcpu);
11201 			kvm_vcpu_srcu_read_lock(vcpu);
11202 			if (r)
11203 				return r;
11204 		}
11205 	}
11206 
11207 	return r;
11208 }
11209 
11210 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11211 {
11212 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11213 }
11214 
11215 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11216 {
11217 	BUG_ON(!vcpu->arch.pio.count);
11218 
11219 	return complete_emulated_io(vcpu);
11220 }
11221 
11222 /*
11223  * Implements the following, as a state machine:
11224  *
11225  * read:
11226  *   for each fragment
11227  *     for each mmio piece in the fragment
11228  *       write gpa, len
11229  *       exit
11230  *       copy data
11231  *   execute insn
11232  *
11233  * write:
11234  *   for each fragment
11235  *     for each mmio piece in the fragment
11236  *       write gpa, len
11237  *       copy data
11238  *       exit
11239  */
11240 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11241 {
11242 	struct kvm_run *run = vcpu->run;
11243 	struct kvm_mmio_fragment *frag;
11244 	unsigned len;
11245 
11246 	BUG_ON(!vcpu->mmio_needed);
11247 
11248 	/* Complete previous fragment */
11249 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11250 	len = min(8u, frag->len);
11251 	if (!vcpu->mmio_is_write)
11252 		memcpy(frag->data, run->mmio.data, len);
11253 
11254 	if (frag->len <= 8) {
11255 		/* Switch to the next fragment. */
11256 		frag++;
11257 		vcpu->mmio_cur_fragment++;
11258 	} else {
11259 		/* Go forward to the next mmio piece. */
11260 		frag->data += len;
11261 		frag->gpa += len;
11262 		frag->len -= len;
11263 	}
11264 
11265 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11266 		vcpu->mmio_needed = 0;
11267 
11268 		/* FIXME: return into emulator if single-stepping.  */
11269 		if (vcpu->mmio_is_write)
11270 			return 1;
11271 		vcpu->mmio_read_completed = 1;
11272 		return complete_emulated_io(vcpu);
11273 	}
11274 
11275 	run->exit_reason = KVM_EXIT_MMIO;
11276 	run->mmio.phys_addr = frag->gpa;
11277 	if (vcpu->mmio_is_write)
11278 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11279 	run->mmio.len = min(8u, frag->len);
11280 	run->mmio.is_write = vcpu->mmio_is_write;
11281 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11282 	return 0;
11283 }
11284 
11285 /* Swap (qemu) user FPU context for the guest FPU context. */
11286 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11287 {
11288 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11289 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11290 	trace_kvm_fpu(1);
11291 }
11292 
11293 /* When vcpu_run ends, restore user space FPU context. */
11294 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11295 {
11296 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11297 	++vcpu->stat.fpu_reload;
11298 	trace_kvm_fpu(0);
11299 }
11300 
11301 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11302 {
11303 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11304 	struct kvm_run *kvm_run = vcpu->run;
11305 	int r;
11306 
11307 	vcpu_load(vcpu);
11308 	kvm_sigset_activate(vcpu);
11309 	kvm_run->flags = 0;
11310 	kvm_load_guest_fpu(vcpu);
11311 
11312 	kvm_vcpu_srcu_read_lock(vcpu);
11313 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11314 		if (kvm_run->immediate_exit) {
11315 			r = -EINTR;
11316 			goto out;
11317 		}
11318 
11319 		/*
11320 		 * Don't bother switching APIC timer emulation from the
11321 		 * hypervisor timer to the software timer, the only way for the
11322 		 * APIC timer to be active is if userspace stuffed vCPU state,
11323 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11324 		 * will transition the vCPU out of UNINITIALIZED (without more
11325 		 * state stuffing from userspace), which will reset the local
11326 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11327 		 * already expired).
11328 		 */
11329 		kvm_vcpu_srcu_read_unlock(vcpu);
11330 		kvm_vcpu_block(vcpu);
11331 		kvm_vcpu_srcu_read_lock(vcpu);
11332 
11333 		if (kvm_apic_accept_events(vcpu) < 0) {
11334 			r = 0;
11335 			goto out;
11336 		}
11337 		r = -EAGAIN;
11338 		if (signal_pending(current)) {
11339 			r = -EINTR;
11340 			kvm_run->exit_reason = KVM_EXIT_INTR;
11341 			++vcpu->stat.signal_exits;
11342 		}
11343 		goto out;
11344 	}
11345 
11346 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11347 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11348 		r = -EINVAL;
11349 		goto out;
11350 	}
11351 
11352 	if (kvm_run->kvm_dirty_regs) {
11353 		r = sync_regs(vcpu);
11354 		if (r != 0)
11355 			goto out;
11356 	}
11357 
11358 	/* re-sync apic's tpr */
11359 	if (!lapic_in_kernel(vcpu)) {
11360 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11361 			r = -EINVAL;
11362 			goto out;
11363 		}
11364 	}
11365 
11366 	/*
11367 	 * If userspace set a pending exception and L2 is active, convert it to
11368 	 * a pending VM-Exit if L1 wants to intercept the exception.
11369 	 */
11370 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11371 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11372 							ex->error_code)) {
11373 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11374 					   ex->has_error_code, ex->error_code,
11375 					   ex->has_payload, ex->payload);
11376 		ex->injected = false;
11377 		ex->pending = false;
11378 	}
11379 	vcpu->arch.exception_from_userspace = false;
11380 
11381 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11382 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11383 		vcpu->arch.complete_userspace_io = NULL;
11384 		r = cui(vcpu);
11385 		if (r <= 0)
11386 			goto out;
11387 	} else {
11388 		WARN_ON_ONCE(vcpu->arch.pio.count);
11389 		WARN_ON_ONCE(vcpu->mmio_needed);
11390 	}
11391 
11392 	if (kvm_run->immediate_exit) {
11393 		r = -EINTR;
11394 		goto out;
11395 	}
11396 
11397 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11398 	if (r <= 0)
11399 		goto out;
11400 
11401 	r = vcpu_run(vcpu);
11402 
11403 out:
11404 	kvm_put_guest_fpu(vcpu);
11405 	if (kvm_run->kvm_valid_regs)
11406 		store_regs(vcpu);
11407 	post_kvm_run_save(vcpu);
11408 	kvm_vcpu_srcu_read_unlock(vcpu);
11409 
11410 	kvm_sigset_deactivate(vcpu);
11411 	vcpu_put(vcpu);
11412 	return r;
11413 }
11414 
11415 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11416 {
11417 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11418 		/*
11419 		 * We are here if userspace calls get_regs() in the middle of
11420 		 * instruction emulation. Registers state needs to be copied
11421 		 * back from emulation context to vcpu. Userspace shouldn't do
11422 		 * that usually, but some bad designed PV devices (vmware
11423 		 * backdoor interface) need this to work
11424 		 */
11425 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11426 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11427 	}
11428 	regs->rax = kvm_rax_read(vcpu);
11429 	regs->rbx = kvm_rbx_read(vcpu);
11430 	regs->rcx = kvm_rcx_read(vcpu);
11431 	regs->rdx = kvm_rdx_read(vcpu);
11432 	regs->rsi = kvm_rsi_read(vcpu);
11433 	regs->rdi = kvm_rdi_read(vcpu);
11434 	regs->rsp = kvm_rsp_read(vcpu);
11435 	regs->rbp = kvm_rbp_read(vcpu);
11436 #ifdef CONFIG_X86_64
11437 	regs->r8 = kvm_r8_read(vcpu);
11438 	regs->r9 = kvm_r9_read(vcpu);
11439 	regs->r10 = kvm_r10_read(vcpu);
11440 	regs->r11 = kvm_r11_read(vcpu);
11441 	regs->r12 = kvm_r12_read(vcpu);
11442 	regs->r13 = kvm_r13_read(vcpu);
11443 	regs->r14 = kvm_r14_read(vcpu);
11444 	regs->r15 = kvm_r15_read(vcpu);
11445 #endif
11446 
11447 	regs->rip = kvm_rip_read(vcpu);
11448 	regs->rflags = kvm_get_rflags(vcpu);
11449 }
11450 
11451 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11452 {
11453 	vcpu_load(vcpu);
11454 	__get_regs(vcpu, regs);
11455 	vcpu_put(vcpu);
11456 	return 0;
11457 }
11458 
11459 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11460 {
11461 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11462 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11463 
11464 	kvm_rax_write(vcpu, regs->rax);
11465 	kvm_rbx_write(vcpu, regs->rbx);
11466 	kvm_rcx_write(vcpu, regs->rcx);
11467 	kvm_rdx_write(vcpu, regs->rdx);
11468 	kvm_rsi_write(vcpu, regs->rsi);
11469 	kvm_rdi_write(vcpu, regs->rdi);
11470 	kvm_rsp_write(vcpu, regs->rsp);
11471 	kvm_rbp_write(vcpu, regs->rbp);
11472 #ifdef CONFIG_X86_64
11473 	kvm_r8_write(vcpu, regs->r8);
11474 	kvm_r9_write(vcpu, regs->r9);
11475 	kvm_r10_write(vcpu, regs->r10);
11476 	kvm_r11_write(vcpu, regs->r11);
11477 	kvm_r12_write(vcpu, regs->r12);
11478 	kvm_r13_write(vcpu, regs->r13);
11479 	kvm_r14_write(vcpu, regs->r14);
11480 	kvm_r15_write(vcpu, regs->r15);
11481 #endif
11482 
11483 	kvm_rip_write(vcpu, regs->rip);
11484 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11485 
11486 	vcpu->arch.exception.pending = false;
11487 	vcpu->arch.exception_vmexit.pending = false;
11488 
11489 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11490 }
11491 
11492 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11493 {
11494 	vcpu_load(vcpu);
11495 	__set_regs(vcpu, regs);
11496 	vcpu_put(vcpu);
11497 	return 0;
11498 }
11499 
11500 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11501 {
11502 	struct desc_ptr dt;
11503 
11504 	if (vcpu->arch.guest_state_protected)
11505 		goto skip_protected_regs;
11506 
11507 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11508 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11509 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11510 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11511 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11512 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11513 
11514 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11515 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11516 
11517 	static_call(kvm_x86_get_idt)(vcpu, &dt);
11518 	sregs->idt.limit = dt.size;
11519 	sregs->idt.base = dt.address;
11520 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11521 	sregs->gdt.limit = dt.size;
11522 	sregs->gdt.base = dt.address;
11523 
11524 	sregs->cr2 = vcpu->arch.cr2;
11525 	sregs->cr3 = kvm_read_cr3(vcpu);
11526 
11527 skip_protected_regs:
11528 	sregs->cr0 = kvm_read_cr0(vcpu);
11529 	sregs->cr4 = kvm_read_cr4(vcpu);
11530 	sregs->cr8 = kvm_get_cr8(vcpu);
11531 	sregs->efer = vcpu->arch.efer;
11532 	sregs->apic_base = kvm_get_apic_base(vcpu);
11533 }
11534 
11535 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11536 {
11537 	__get_sregs_common(vcpu, sregs);
11538 
11539 	if (vcpu->arch.guest_state_protected)
11540 		return;
11541 
11542 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11543 		set_bit(vcpu->arch.interrupt.nr,
11544 			(unsigned long *)sregs->interrupt_bitmap);
11545 }
11546 
11547 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11548 {
11549 	int i;
11550 
11551 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11552 
11553 	if (vcpu->arch.guest_state_protected)
11554 		return;
11555 
11556 	if (is_pae_paging(vcpu)) {
11557 		for (i = 0 ; i < 4 ; i++)
11558 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11559 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11560 	}
11561 }
11562 
11563 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11564 				  struct kvm_sregs *sregs)
11565 {
11566 	vcpu_load(vcpu);
11567 	__get_sregs(vcpu, sregs);
11568 	vcpu_put(vcpu);
11569 	return 0;
11570 }
11571 
11572 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11573 				    struct kvm_mp_state *mp_state)
11574 {
11575 	int r;
11576 
11577 	vcpu_load(vcpu);
11578 	if (kvm_mpx_supported())
11579 		kvm_load_guest_fpu(vcpu);
11580 
11581 	r = kvm_apic_accept_events(vcpu);
11582 	if (r < 0)
11583 		goto out;
11584 	r = 0;
11585 
11586 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11587 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11588 	    vcpu->arch.pv.pv_unhalted)
11589 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11590 	else
11591 		mp_state->mp_state = vcpu->arch.mp_state;
11592 
11593 out:
11594 	if (kvm_mpx_supported())
11595 		kvm_put_guest_fpu(vcpu);
11596 	vcpu_put(vcpu);
11597 	return r;
11598 }
11599 
11600 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11601 				    struct kvm_mp_state *mp_state)
11602 {
11603 	int ret = -EINVAL;
11604 
11605 	vcpu_load(vcpu);
11606 
11607 	switch (mp_state->mp_state) {
11608 	case KVM_MP_STATE_UNINITIALIZED:
11609 	case KVM_MP_STATE_HALTED:
11610 	case KVM_MP_STATE_AP_RESET_HOLD:
11611 	case KVM_MP_STATE_INIT_RECEIVED:
11612 	case KVM_MP_STATE_SIPI_RECEIVED:
11613 		if (!lapic_in_kernel(vcpu))
11614 			goto out;
11615 		break;
11616 
11617 	case KVM_MP_STATE_RUNNABLE:
11618 		break;
11619 
11620 	default:
11621 		goto out;
11622 	}
11623 
11624 	/*
11625 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11626 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11627 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11628 	 * if an SMI is pending as well.
11629 	 */
11630 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11631 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11632 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11633 		goto out;
11634 
11635 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11636 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11637 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11638 	} else
11639 		vcpu->arch.mp_state = mp_state->mp_state;
11640 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11641 
11642 	ret = 0;
11643 out:
11644 	vcpu_put(vcpu);
11645 	return ret;
11646 }
11647 
11648 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11649 		    int reason, bool has_error_code, u32 error_code)
11650 {
11651 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11652 	int ret;
11653 
11654 	init_emulate_ctxt(vcpu);
11655 
11656 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11657 				   has_error_code, error_code);
11658 	if (ret) {
11659 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11660 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11661 		vcpu->run->internal.ndata = 0;
11662 		return 0;
11663 	}
11664 
11665 	kvm_rip_write(vcpu, ctxt->eip);
11666 	kvm_set_rflags(vcpu, ctxt->eflags);
11667 	return 1;
11668 }
11669 EXPORT_SYMBOL_GPL(kvm_task_switch);
11670 
11671 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11672 {
11673 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11674 		/*
11675 		 * When EFER.LME and CR0.PG are set, the processor is in
11676 		 * 64-bit mode (though maybe in a 32-bit code segment).
11677 		 * CR4.PAE and EFER.LMA must be set.
11678 		 */
11679 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11680 			return false;
11681 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11682 			return false;
11683 	} else {
11684 		/*
11685 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11686 		 * segment cannot be 64-bit.
11687 		 */
11688 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11689 			return false;
11690 	}
11691 
11692 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11693 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11694 }
11695 
11696 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11697 		int *mmu_reset_needed, bool update_pdptrs)
11698 {
11699 	struct msr_data apic_base_msr;
11700 	int idx;
11701 	struct desc_ptr dt;
11702 
11703 	if (!kvm_is_valid_sregs(vcpu, sregs))
11704 		return -EINVAL;
11705 
11706 	apic_base_msr.data = sregs->apic_base;
11707 	apic_base_msr.host_initiated = true;
11708 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11709 		return -EINVAL;
11710 
11711 	if (vcpu->arch.guest_state_protected)
11712 		return 0;
11713 
11714 	dt.size = sregs->idt.limit;
11715 	dt.address = sregs->idt.base;
11716 	static_call(kvm_x86_set_idt)(vcpu, &dt);
11717 	dt.size = sregs->gdt.limit;
11718 	dt.address = sregs->gdt.base;
11719 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11720 
11721 	vcpu->arch.cr2 = sregs->cr2;
11722 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11723 	vcpu->arch.cr3 = sregs->cr3;
11724 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11725 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11726 
11727 	kvm_set_cr8(vcpu, sregs->cr8);
11728 
11729 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11730 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11731 
11732 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11733 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11734 
11735 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11736 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11737 
11738 	if (update_pdptrs) {
11739 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11740 		if (is_pae_paging(vcpu)) {
11741 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11742 			*mmu_reset_needed = 1;
11743 		}
11744 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11745 	}
11746 
11747 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11748 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11749 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11750 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11751 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11752 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11753 
11754 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11755 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11756 
11757 	update_cr8_intercept(vcpu);
11758 
11759 	/* Older userspace won't unhalt the vcpu on reset. */
11760 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11761 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11762 	    !is_protmode(vcpu))
11763 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11764 
11765 	return 0;
11766 }
11767 
11768 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11769 {
11770 	int pending_vec, max_bits;
11771 	int mmu_reset_needed = 0;
11772 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11773 
11774 	if (ret)
11775 		return ret;
11776 
11777 	if (mmu_reset_needed) {
11778 		kvm_mmu_reset_context(vcpu);
11779 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11780 	}
11781 
11782 	max_bits = KVM_NR_INTERRUPTS;
11783 	pending_vec = find_first_bit(
11784 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11785 
11786 	if (pending_vec < max_bits) {
11787 		kvm_queue_interrupt(vcpu, pending_vec, false);
11788 		pr_debug("Set back pending irq %d\n", pending_vec);
11789 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11790 	}
11791 	return 0;
11792 }
11793 
11794 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11795 {
11796 	int mmu_reset_needed = 0;
11797 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11798 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11799 		!(sregs2->efer & EFER_LMA);
11800 	int i, ret;
11801 
11802 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11803 		return -EINVAL;
11804 
11805 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11806 		return -EINVAL;
11807 
11808 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11809 				 &mmu_reset_needed, !valid_pdptrs);
11810 	if (ret)
11811 		return ret;
11812 
11813 	if (valid_pdptrs) {
11814 		for (i = 0; i < 4 ; i++)
11815 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11816 
11817 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11818 		mmu_reset_needed = 1;
11819 		vcpu->arch.pdptrs_from_userspace = true;
11820 	}
11821 	if (mmu_reset_needed) {
11822 		kvm_mmu_reset_context(vcpu);
11823 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11824 	}
11825 	return 0;
11826 }
11827 
11828 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11829 				  struct kvm_sregs *sregs)
11830 {
11831 	int ret;
11832 
11833 	vcpu_load(vcpu);
11834 	ret = __set_sregs(vcpu, sregs);
11835 	vcpu_put(vcpu);
11836 	return ret;
11837 }
11838 
11839 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11840 {
11841 	bool set = false;
11842 	struct kvm_vcpu *vcpu;
11843 	unsigned long i;
11844 
11845 	if (!enable_apicv)
11846 		return;
11847 
11848 	down_write(&kvm->arch.apicv_update_lock);
11849 
11850 	kvm_for_each_vcpu(i, vcpu, kvm) {
11851 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11852 			set = true;
11853 			break;
11854 		}
11855 	}
11856 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11857 	up_write(&kvm->arch.apicv_update_lock);
11858 }
11859 
11860 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11861 					struct kvm_guest_debug *dbg)
11862 {
11863 	unsigned long rflags;
11864 	int i, r;
11865 
11866 	if (vcpu->arch.guest_state_protected)
11867 		return -EINVAL;
11868 
11869 	vcpu_load(vcpu);
11870 
11871 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11872 		r = -EBUSY;
11873 		if (kvm_is_exception_pending(vcpu))
11874 			goto out;
11875 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11876 			kvm_queue_exception(vcpu, DB_VECTOR);
11877 		else
11878 			kvm_queue_exception(vcpu, BP_VECTOR);
11879 	}
11880 
11881 	/*
11882 	 * Read rflags as long as potentially injected trace flags are still
11883 	 * filtered out.
11884 	 */
11885 	rflags = kvm_get_rflags(vcpu);
11886 
11887 	vcpu->guest_debug = dbg->control;
11888 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11889 		vcpu->guest_debug = 0;
11890 
11891 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11892 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11893 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11894 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11895 	} else {
11896 		for (i = 0; i < KVM_NR_DB_REGS; i++)
11897 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11898 	}
11899 	kvm_update_dr7(vcpu);
11900 
11901 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11902 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11903 
11904 	/*
11905 	 * Trigger an rflags update that will inject or remove the trace
11906 	 * flags.
11907 	 */
11908 	kvm_set_rflags(vcpu, rflags);
11909 
11910 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11911 
11912 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11913 
11914 	r = 0;
11915 
11916 out:
11917 	vcpu_put(vcpu);
11918 	return r;
11919 }
11920 
11921 /*
11922  * Translate a guest virtual address to a guest physical address.
11923  */
11924 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11925 				    struct kvm_translation *tr)
11926 {
11927 	unsigned long vaddr = tr->linear_address;
11928 	gpa_t gpa;
11929 	int idx;
11930 
11931 	vcpu_load(vcpu);
11932 
11933 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11934 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11935 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11936 	tr->physical_address = gpa;
11937 	tr->valid = gpa != INVALID_GPA;
11938 	tr->writeable = 1;
11939 	tr->usermode = 0;
11940 
11941 	vcpu_put(vcpu);
11942 	return 0;
11943 }
11944 
11945 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11946 {
11947 	struct fxregs_state *fxsave;
11948 
11949 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11950 		return 0;
11951 
11952 	vcpu_load(vcpu);
11953 
11954 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11955 	memcpy(fpu->fpr, fxsave->st_space, 128);
11956 	fpu->fcw = fxsave->cwd;
11957 	fpu->fsw = fxsave->swd;
11958 	fpu->ftwx = fxsave->twd;
11959 	fpu->last_opcode = fxsave->fop;
11960 	fpu->last_ip = fxsave->rip;
11961 	fpu->last_dp = fxsave->rdp;
11962 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11963 
11964 	vcpu_put(vcpu);
11965 	return 0;
11966 }
11967 
11968 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11969 {
11970 	struct fxregs_state *fxsave;
11971 
11972 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11973 		return 0;
11974 
11975 	vcpu_load(vcpu);
11976 
11977 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11978 
11979 	memcpy(fxsave->st_space, fpu->fpr, 128);
11980 	fxsave->cwd = fpu->fcw;
11981 	fxsave->swd = fpu->fsw;
11982 	fxsave->twd = fpu->ftwx;
11983 	fxsave->fop = fpu->last_opcode;
11984 	fxsave->rip = fpu->last_ip;
11985 	fxsave->rdp = fpu->last_dp;
11986 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11987 
11988 	vcpu_put(vcpu);
11989 	return 0;
11990 }
11991 
11992 static void store_regs(struct kvm_vcpu *vcpu)
11993 {
11994 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11995 
11996 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11997 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11998 
11999 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12000 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12001 
12002 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12003 		kvm_vcpu_ioctl_x86_get_vcpu_events(
12004 				vcpu, &vcpu->run->s.regs.events);
12005 }
12006 
12007 static int sync_regs(struct kvm_vcpu *vcpu)
12008 {
12009 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12010 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12011 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12012 	}
12013 
12014 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12015 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12016 
12017 		if (__set_sregs(vcpu, &sregs))
12018 			return -EINVAL;
12019 
12020 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12021 	}
12022 
12023 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12024 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12025 
12026 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12027 			return -EINVAL;
12028 
12029 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12030 	}
12031 
12032 	return 0;
12033 }
12034 
12035 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12036 {
12037 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12038 		pr_warn_once("SMP vm created on host with unstable TSC; "
12039 			     "guest TSC will not be reliable\n");
12040 
12041 	if (!kvm->arch.max_vcpu_ids)
12042 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12043 
12044 	if (id >= kvm->arch.max_vcpu_ids)
12045 		return -EINVAL;
12046 
12047 	return static_call(kvm_x86_vcpu_precreate)(kvm);
12048 }
12049 
12050 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12051 {
12052 	struct page *page;
12053 	int r;
12054 
12055 	vcpu->arch.last_vmentry_cpu = -1;
12056 	vcpu->arch.regs_avail = ~0;
12057 	vcpu->arch.regs_dirty = ~0;
12058 
12059 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
12060 
12061 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12062 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12063 	else
12064 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12065 
12066 	r = kvm_mmu_create(vcpu);
12067 	if (r < 0)
12068 		return r;
12069 
12070 	if (irqchip_in_kernel(vcpu->kvm)) {
12071 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
12072 		if (r < 0)
12073 			goto fail_mmu_destroy;
12074 
12075 		/*
12076 		 * Defer evaluating inhibits until the vCPU is first run, as
12077 		 * this vCPU will not get notified of any changes until this
12078 		 * vCPU is visible to other vCPUs (marked online and added to
12079 		 * the set of vCPUs).  Opportunistically mark APICv active as
12080 		 * VMX in particularly is highly unlikely to have inhibits.
12081 		 * Ignore the current per-VM APICv state so that vCPU creation
12082 		 * is guaranteed to run with a deterministic value, the request
12083 		 * will ensure the vCPU gets the correct state before VM-Entry.
12084 		 */
12085 		if (enable_apicv) {
12086 			vcpu->arch.apic->apicv_active = true;
12087 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
12088 		}
12089 	} else
12090 		static_branch_inc(&kvm_has_noapic_vcpu);
12091 
12092 	r = -ENOMEM;
12093 
12094 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12095 	if (!page)
12096 		goto fail_free_lapic;
12097 	vcpu->arch.pio_data = page_address(page);
12098 
12099 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12100 				       GFP_KERNEL_ACCOUNT);
12101 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12102 					    GFP_KERNEL_ACCOUNT);
12103 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12104 		goto fail_free_mce_banks;
12105 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12106 
12107 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12108 				GFP_KERNEL_ACCOUNT))
12109 		goto fail_free_mce_banks;
12110 
12111 	if (!alloc_emulate_ctxt(vcpu))
12112 		goto free_wbinvd_dirty_mask;
12113 
12114 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12115 		pr_err("failed to allocate vcpu's fpu\n");
12116 		goto free_emulate_ctxt;
12117 	}
12118 
12119 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
12120 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
12121 
12122 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12123 
12124 	kvm_async_pf_hash_reset(vcpu);
12125 
12126 	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12127 	kvm_pmu_init(vcpu);
12128 
12129 	vcpu->arch.pending_external_vector = -1;
12130 	vcpu->arch.preempted_in_kernel = false;
12131 
12132 #if IS_ENABLED(CONFIG_HYPERV)
12133 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12134 #endif
12135 
12136 	r = static_call(kvm_x86_vcpu_create)(vcpu);
12137 	if (r)
12138 		goto free_guest_fpu;
12139 
12140 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12141 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12142 	kvm_xen_init_vcpu(vcpu);
12143 	kvm_vcpu_mtrr_init(vcpu);
12144 	vcpu_load(vcpu);
12145 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12146 	kvm_vcpu_reset(vcpu, false);
12147 	kvm_init_mmu(vcpu);
12148 	vcpu_put(vcpu);
12149 	return 0;
12150 
12151 free_guest_fpu:
12152 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12153 free_emulate_ctxt:
12154 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12155 free_wbinvd_dirty_mask:
12156 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12157 fail_free_mce_banks:
12158 	kfree(vcpu->arch.mce_banks);
12159 	kfree(vcpu->arch.mci_ctl2_banks);
12160 	free_page((unsigned long)vcpu->arch.pio_data);
12161 fail_free_lapic:
12162 	kvm_free_lapic(vcpu);
12163 fail_mmu_destroy:
12164 	kvm_mmu_destroy(vcpu);
12165 	return r;
12166 }
12167 
12168 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12169 {
12170 	struct kvm *kvm = vcpu->kvm;
12171 
12172 	if (mutex_lock_killable(&vcpu->mutex))
12173 		return;
12174 	vcpu_load(vcpu);
12175 	kvm_synchronize_tsc(vcpu, NULL);
12176 	vcpu_put(vcpu);
12177 
12178 	/* poll control enabled by default */
12179 	vcpu->arch.msr_kvm_poll_control = 1;
12180 
12181 	mutex_unlock(&vcpu->mutex);
12182 
12183 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12184 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12185 						KVMCLOCK_SYNC_PERIOD);
12186 }
12187 
12188 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12189 {
12190 	int idx;
12191 
12192 	kvmclock_reset(vcpu);
12193 
12194 	static_call(kvm_x86_vcpu_free)(vcpu);
12195 
12196 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12197 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12198 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12199 
12200 	kvm_xen_destroy_vcpu(vcpu);
12201 	kvm_hv_vcpu_uninit(vcpu);
12202 	kvm_pmu_destroy(vcpu);
12203 	kfree(vcpu->arch.mce_banks);
12204 	kfree(vcpu->arch.mci_ctl2_banks);
12205 	kvm_free_lapic(vcpu);
12206 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12207 	kvm_mmu_destroy(vcpu);
12208 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12209 	free_page((unsigned long)vcpu->arch.pio_data);
12210 	kvfree(vcpu->arch.cpuid_entries);
12211 	if (!lapic_in_kernel(vcpu))
12212 		static_branch_dec(&kvm_has_noapic_vcpu);
12213 }
12214 
12215 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12216 {
12217 	struct kvm_cpuid_entry2 *cpuid_0x1;
12218 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12219 	unsigned long new_cr0;
12220 
12221 	/*
12222 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12223 	 * to handle side effects.  RESET emulation hits those flows and relies
12224 	 * on emulated/virtualized registers, including those that are loaded
12225 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12226 	 * to detect improper or missing initialization.
12227 	 */
12228 	WARN_ON_ONCE(!init_event &&
12229 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12230 
12231 	/*
12232 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12233 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12234 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12235 	 * bits), i.e. virtualization is disabled.
12236 	 */
12237 	if (is_guest_mode(vcpu))
12238 		kvm_leave_nested(vcpu);
12239 
12240 	kvm_lapic_reset(vcpu, init_event);
12241 
12242 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12243 	vcpu->arch.hflags = 0;
12244 
12245 	vcpu->arch.smi_pending = 0;
12246 	vcpu->arch.smi_count = 0;
12247 	atomic_set(&vcpu->arch.nmi_queued, 0);
12248 	vcpu->arch.nmi_pending = 0;
12249 	vcpu->arch.nmi_injected = false;
12250 	kvm_clear_interrupt_queue(vcpu);
12251 	kvm_clear_exception_queue(vcpu);
12252 
12253 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12254 	kvm_update_dr0123(vcpu);
12255 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12256 	vcpu->arch.dr7 = DR7_FIXED_1;
12257 	kvm_update_dr7(vcpu);
12258 
12259 	vcpu->arch.cr2 = 0;
12260 
12261 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12262 	vcpu->arch.apf.msr_en_val = 0;
12263 	vcpu->arch.apf.msr_int_val = 0;
12264 	vcpu->arch.st.msr_val = 0;
12265 
12266 	kvmclock_reset(vcpu);
12267 
12268 	kvm_clear_async_pf_completion_queue(vcpu);
12269 	kvm_async_pf_hash_reset(vcpu);
12270 	vcpu->arch.apf.halted = false;
12271 
12272 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12273 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12274 
12275 		/*
12276 		 * All paths that lead to INIT are required to load the guest's
12277 		 * FPU state (because most paths are buried in KVM_RUN).
12278 		 */
12279 		if (init_event)
12280 			kvm_put_guest_fpu(vcpu);
12281 
12282 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12283 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12284 
12285 		if (init_event)
12286 			kvm_load_guest_fpu(vcpu);
12287 	}
12288 
12289 	if (!init_event) {
12290 		vcpu->arch.smbase = 0x30000;
12291 
12292 		vcpu->arch.msr_misc_features_enables = 0;
12293 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12294 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12295 
12296 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12297 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12298 	}
12299 
12300 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12301 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12302 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12303 
12304 	/*
12305 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12306 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12307 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12308 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12309 	 * on RESET.  But, go through the motions in case that's ever remedied.
12310 	 */
12311 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12312 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12313 
12314 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12315 
12316 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12317 	kvm_rip_write(vcpu, 0xfff0);
12318 
12319 	vcpu->arch.cr3 = 0;
12320 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12321 
12322 	/*
12323 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12324 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12325 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12326 	 */
12327 	new_cr0 = X86_CR0_ET;
12328 	if (init_event)
12329 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12330 	else
12331 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12332 
12333 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12334 	static_call(kvm_x86_set_cr4)(vcpu, 0);
12335 	static_call(kvm_x86_set_efer)(vcpu, 0);
12336 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12337 
12338 	/*
12339 	 * On the standard CR0/CR4/EFER modification paths, there are several
12340 	 * complex conditions determining whether the MMU has to be reset and/or
12341 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12342 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12343 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12344 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12345 	 */
12346 	if (old_cr0 & X86_CR0_PG) {
12347 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12348 		kvm_mmu_reset_context(vcpu);
12349 	}
12350 
12351 	/*
12352 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12353 	 * APM states the TLBs are untouched by INIT, but it also states that
12354 	 * the TLBs are flushed on "External initialization of the processor."
12355 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12356 	 * benefit in relying on the guest to flush the TLB immediately after
12357 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12358 	 * performance perspective.
12359 	 */
12360 	if (init_event)
12361 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12362 }
12363 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12364 
12365 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12366 {
12367 	struct kvm_segment cs;
12368 
12369 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12370 	cs.selector = vector << 8;
12371 	cs.base = vector << 12;
12372 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12373 	kvm_rip_write(vcpu, 0);
12374 }
12375 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12376 
12377 int kvm_arch_hardware_enable(void)
12378 {
12379 	struct kvm *kvm;
12380 	struct kvm_vcpu *vcpu;
12381 	unsigned long i;
12382 	int ret;
12383 	u64 local_tsc;
12384 	u64 max_tsc = 0;
12385 	bool stable, backwards_tsc = false;
12386 
12387 	kvm_user_return_msr_cpu_online();
12388 
12389 	ret = kvm_x86_check_processor_compatibility();
12390 	if (ret)
12391 		return ret;
12392 
12393 	ret = static_call(kvm_x86_hardware_enable)();
12394 	if (ret != 0)
12395 		return ret;
12396 
12397 	local_tsc = rdtsc();
12398 	stable = !kvm_check_tsc_unstable();
12399 	list_for_each_entry(kvm, &vm_list, vm_list) {
12400 		kvm_for_each_vcpu(i, vcpu, kvm) {
12401 			if (!stable && vcpu->cpu == smp_processor_id())
12402 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12403 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12404 				backwards_tsc = true;
12405 				if (vcpu->arch.last_host_tsc > max_tsc)
12406 					max_tsc = vcpu->arch.last_host_tsc;
12407 			}
12408 		}
12409 	}
12410 
12411 	/*
12412 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12413 	 * platforms that reset TSC during suspend or hibernate actions, but
12414 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12415 	 * detect that condition here, which happens early in CPU bringup,
12416 	 * before any KVM threads can be running.  Unfortunately, we can't
12417 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12418 	 * enough into CPU bringup that we know how much real time has actually
12419 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12420 	 * variables that haven't been updated yet.
12421 	 *
12422 	 * So we simply find the maximum observed TSC above, then record the
12423 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12424 	 * the adjustment will be applied.  Note that we accumulate
12425 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12426 	 * gets a chance to run again.  In the event that no KVM threads get a
12427 	 * chance to run, we will miss the entire elapsed period, as we'll have
12428 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12429 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12430 	 * uniform across all VCPUs (not to mention the scenario is extremely
12431 	 * unlikely). It is possible that a second hibernate recovery happens
12432 	 * much faster than a first, causing the observed TSC here to be
12433 	 * smaller; this would require additional padding adjustment, which is
12434 	 * why we set last_host_tsc to the local tsc observed here.
12435 	 *
12436 	 * N.B. - this code below runs only on platforms with reliable TSC,
12437 	 * as that is the only way backwards_tsc is set above.  Also note
12438 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12439 	 * have the same delta_cyc adjustment applied if backwards_tsc
12440 	 * is detected.  Note further, this adjustment is only done once,
12441 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12442 	 * called multiple times (one for each physical CPU bringup).
12443 	 *
12444 	 * Platforms with unreliable TSCs don't have to deal with this, they
12445 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12446 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12447 	 * guarantee that they stay in perfect synchronization.
12448 	 */
12449 	if (backwards_tsc) {
12450 		u64 delta_cyc = max_tsc - local_tsc;
12451 		list_for_each_entry(kvm, &vm_list, vm_list) {
12452 			kvm->arch.backwards_tsc_observed = true;
12453 			kvm_for_each_vcpu(i, vcpu, kvm) {
12454 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12455 				vcpu->arch.last_host_tsc = local_tsc;
12456 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12457 			}
12458 
12459 			/*
12460 			 * We have to disable TSC offset matching.. if you were
12461 			 * booting a VM while issuing an S4 host suspend....
12462 			 * you may have some problem.  Solving this issue is
12463 			 * left as an exercise to the reader.
12464 			 */
12465 			kvm->arch.last_tsc_nsec = 0;
12466 			kvm->arch.last_tsc_write = 0;
12467 		}
12468 
12469 	}
12470 	return 0;
12471 }
12472 
12473 void kvm_arch_hardware_disable(void)
12474 {
12475 	static_call(kvm_x86_hardware_disable)();
12476 	drop_user_return_notifiers();
12477 }
12478 
12479 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12480 {
12481 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12482 }
12483 
12484 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12485 {
12486 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12487 }
12488 
12489 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12490 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12491 
12492 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12493 {
12494 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12495 
12496 	vcpu->arch.l1tf_flush_l1d = true;
12497 	if (pmu->version && unlikely(pmu->event_count)) {
12498 		pmu->need_cleanup = true;
12499 		kvm_make_request(KVM_REQ_PMU, vcpu);
12500 	}
12501 	static_call(kvm_x86_sched_in)(vcpu, cpu);
12502 }
12503 
12504 void kvm_arch_free_vm(struct kvm *kvm)
12505 {
12506 #if IS_ENABLED(CONFIG_HYPERV)
12507 	kfree(kvm->arch.hv_pa_pg);
12508 #endif
12509 	__kvm_arch_free_vm(kvm);
12510 }
12511 
12512 
12513 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12514 {
12515 	int ret;
12516 	unsigned long flags;
12517 
12518 	if (!kvm_is_vm_type_supported(type))
12519 		return -EINVAL;
12520 
12521 	kvm->arch.vm_type = type;
12522 
12523 	ret = kvm_page_track_init(kvm);
12524 	if (ret)
12525 		goto out;
12526 
12527 	kvm_mmu_init_vm(kvm);
12528 
12529 	ret = static_call(kvm_x86_vm_init)(kvm);
12530 	if (ret)
12531 		goto out_uninit_mmu;
12532 
12533 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12534 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12535 
12536 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12537 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12538 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12539 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12540 		&kvm->arch.irq_sources_bitmap);
12541 
12542 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12543 	mutex_init(&kvm->arch.apic_map_lock);
12544 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12545 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12546 
12547 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12548 	pvclock_update_vm_gtod_copy(kvm);
12549 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12550 
12551 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12552 	kvm->arch.guest_can_read_msr_platform_info = true;
12553 	kvm->arch.enable_pmu = enable_pmu;
12554 
12555 #if IS_ENABLED(CONFIG_HYPERV)
12556 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12557 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12558 #endif
12559 
12560 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12561 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12562 
12563 	kvm_apicv_init(kvm);
12564 	kvm_hv_init_vm(kvm);
12565 	kvm_xen_init_vm(kvm);
12566 
12567 	return 0;
12568 
12569 out_uninit_mmu:
12570 	kvm_mmu_uninit_vm(kvm);
12571 	kvm_page_track_cleanup(kvm);
12572 out:
12573 	return ret;
12574 }
12575 
12576 int kvm_arch_post_init_vm(struct kvm *kvm)
12577 {
12578 	return kvm_mmu_post_init_vm(kvm);
12579 }
12580 
12581 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12582 {
12583 	vcpu_load(vcpu);
12584 	kvm_mmu_unload(vcpu);
12585 	vcpu_put(vcpu);
12586 }
12587 
12588 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12589 {
12590 	unsigned long i;
12591 	struct kvm_vcpu *vcpu;
12592 
12593 	kvm_for_each_vcpu(i, vcpu, kvm) {
12594 		kvm_clear_async_pf_completion_queue(vcpu);
12595 		kvm_unload_vcpu_mmu(vcpu);
12596 	}
12597 }
12598 
12599 void kvm_arch_sync_events(struct kvm *kvm)
12600 {
12601 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12602 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12603 	kvm_free_pit(kvm);
12604 }
12605 
12606 /**
12607  * __x86_set_memory_region: Setup KVM internal memory slot
12608  *
12609  * @kvm: the kvm pointer to the VM.
12610  * @id: the slot ID to setup.
12611  * @gpa: the GPA to install the slot (unused when @size == 0).
12612  * @size: the size of the slot. Set to zero to uninstall a slot.
12613  *
12614  * This function helps to setup a KVM internal memory slot.  Specify
12615  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12616  * slot.  The return code can be one of the following:
12617  *
12618  *   HVA:           on success (uninstall will return a bogus HVA)
12619  *   -errno:        on error
12620  *
12621  * The caller should always use IS_ERR() to check the return value
12622  * before use.  Note, the KVM internal memory slots are guaranteed to
12623  * remain valid and unchanged until the VM is destroyed, i.e., the
12624  * GPA->HVA translation will not change.  However, the HVA is a user
12625  * address, i.e. its accessibility is not guaranteed, and must be
12626  * accessed via __copy_{to,from}_user().
12627  */
12628 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12629 				      u32 size)
12630 {
12631 	int i, r;
12632 	unsigned long hva, old_npages;
12633 	struct kvm_memslots *slots = kvm_memslots(kvm);
12634 	struct kvm_memory_slot *slot;
12635 
12636 	/* Called with kvm->slots_lock held.  */
12637 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12638 		return ERR_PTR_USR(-EINVAL);
12639 
12640 	slot = id_to_memslot(slots, id);
12641 	if (size) {
12642 		if (slot && slot->npages)
12643 			return ERR_PTR_USR(-EEXIST);
12644 
12645 		/*
12646 		 * MAP_SHARED to prevent internal slot pages from being moved
12647 		 * by fork()/COW.
12648 		 */
12649 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12650 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12651 		if (IS_ERR_VALUE(hva))
12652 			return (void __user *)hva;
12653 	} else {
12654 		if (!slot || !slot->npages)
12655 			return NULL;
12656 
12657 		old_npages = slot->npages;
12658 		hva = slot->userspace_addr;
12659 	}
12660 
12661 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12662 		struct kvm_userspace_memory_region2 m;
12663 
12664 		m.slot = id | (i << 16);
12665 		m.flags = 0;
12666 		m.guest_phys_addr = gpa;
12667 		m.userspace_addr = hva;
12668 		m.memory_size = size;
12669 		r = __kvm_set_memory_region(kvm, &m);
12670 		if (r < 0)
12671 			return ERR_PTR_USR(r);
12672 	}
12673 
12674 	if (!size)
12675 		vm_munmap(hva, old_npages * PAGE_SIZE);
12676 
12677 	return (void __user *)hva;
12678 }
12679 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12680 
12681 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12682 {
12683 	kvm_mmu_pre_destroy_vm(kvm);
12684 }
12685 
12686 void kvm_arch_destroy_vm(struct kvm *kvm)
12687 {
12688 	if (current->mm == kvm->mm) {
12689 		/*
12690 		 * Free memory regions allocated on behalf of userspace,
12691 		 * unless the memory map has changed due to process exit
12692 		 * or fd copying.
12693 		 */
12694 		mutex_lock(&kvm->slots_lock);
12695 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12696 					0, 0);
12697 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12698 					0, 0);
12699 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12700 		mutex_unlock(&kvm->slots_lock);
12701 	}
12702 	kvm_unload_vcpu_mmus(kvm);
12703 	static_call_cond(kvm_x86_vm_destroy)(kvm);
12704 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12705 	kvm_pic_destroy(kvm);
12706 	kvm_ioapic_destroy(kvm);
12707 	kvm_destroy_vcpus(kvm);
12708 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12709 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12710 	kvm_mmu_uninit_vm(kvm);
12711 	kvm_page_track_cleanup(kvm);
12712 	kvm_xen_destroy_vm(kvm);
12713 	kvm_hv_destroy_vm(kvm);
12714 }
12715 
12716 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12717 {
12718 	int i;
12719 
12720 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12721 		kvfree(slot->arch.rmap[i]);
12722 		slot->arch.rmap[i] = NULL;
12723 	}
12724 }
12725 
12726 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12727 {
12728 	int i;
12729 
12730 	memslot_rmap_free(slot);
12731 
12732 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12733 		kvfree(slot->arch.lpage_info[i - 1]);
12734 		slot->arch.lpage_info[i - 1] = NULL;
12735 	}
12736 
12737 	kvm_page_track_free_memslot(slot);
12738 }
12739 
12740 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12741 {
12742 	const int sz = sizeof(*slot->arch.rmap[0]);
12743 	int i;
12744 
12745 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12746 		int level = i + 1;
12747 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12748 
12749 		if (slot->arch.rmap[i])
12750 			continue;
12751 
12752 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12753 		if (!slot->arch.rmap[i]) {
12754 			memslot_rmap_free(slot);
12755 			return -ENOMEM;
12756 		}
12757 	}
12758 
12759 	return 0;
12760 }
12761 
12762 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12763 				      struct kvm_memory_slot *slot)
12764 {
12765 	unsigned long npages = slot->npages;
12766 	int i, r;
12767 
12768 	/*
12769 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12770 	 * old arrays will be freed by __kvm_set_memory_region() if installing
12771 	 * the new memslot is successful.
12772 	 */
12773 	memset(&slot->arch, 0, sizeof(slot->arch));
12774 
12775 	if (kvm_memslots_have_rmaps(kvm)) {
12776 		r = memslot_rmap_alloc(slot, npages);
12777 		if (r)
12778 			return r;
12779 	}
12780 
12781 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12782 		struct kvm_lpage_info *linfo;
12783 		unsigned long ugfn;
12784 		int lpages;
12785 		int level = i + 1;
12786 
12787 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12788 
12789 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12790 		if (!linfo)
12791 			goto out_free;
12792 
12793 		slot->arch.lpage_info[i - 1] = linfo;
12794 
12795 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12796 			linfo[0].disallow_lpage = 1;
12797 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12798 			linfo[lpages - 1].disallow_lpage = 1;
12799 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12800 		/*
12801 		 * If the gfn and userspace address are not aligned wrt each
12802 		 * other, disable large page support for this slot.
12803 		 */
12804 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12805 			unsigned long j;
12806 
12807 			for (j = 0; j < lpages; ++j)
12808 				linfo[j].disallow_lpage = 1;
12809 		}
12810 	}
12811 
12812 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12813 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12814 #endif
12815 
12816 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12817 		goto out_free;
12818 
12819 	return 0;
12820 
12821 out_free:
12822 	memslot_rmap_free(slot);
12823 
12824 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12825 		kvfree(slot->arch.lpage_info[i - 1]);
12826 		slot->arch.lpage_info[i - 1] = NULL;
12827 	}
12828 	return -ENOMEM;
12829 }
12830 
12831 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12832 {
12833 	struct kvm_vcpu *vcpu;
12834 	unsigned long i;
12835 
12836 	/*
12837 	 * memslots->generation has been incremented.
12838 	 * mmio generation may have reached its maximum value.
12839 	 */
12840 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12841 
12842 	/* Force re-initialization of steal_time cache */
12843 	kvm_for_each_vcpu(i, vcpu, kvm)
12844 		kvm_vcpu_kick(vcpu);
12845 }
12846 
12847 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12848 				   const struct kvm_memory_slot *old,
12849 				   struct kvm_memory_slot *new,
12850 				   enum kvm_mr_change change)
12851 {
12852 	/*
12853 	 * KVM doesn't support moving memslots when there are external page
12854 	 * trackers attached to the VM, i.e. if KVMGT is in use.
12855 	 */
12856 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12857 		return -EINVAL;
12858 
12859 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12860 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12861 			return -EINVAL;
12862 
12863 		return kvm_alloc_memslot_metadata(kvm, new);
12864 	}
12865 
12866 	if (change == KVM_MR_FLAGS_ONLY)
12867 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12868 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12869 		return -EIO;
12870 
12871 	return 0;
12872 }
12873 
12874 
12875 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12876 {
12877 	int nr_slots;
12878 
12879 	if (!kvm_x86_ops.cpu_dirty_log_size)
12880 		return;
12881 
12882 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12883 	if ((enable && nr_slots == 1) || !nr_slots)
12884 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12885 }
12886 
12887 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12888 				     struct kvm_memory_slot *old,
12889 				     const struct kvm_memory_slot *new,
12890 				     enum kvm_mr_change change)
12891 {
12892 	u32 old_flags = old ? old->flags : 0;
12893 	u32 new_flags = new ? new->flags : 0;
12894 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12895 
12896 	/*
12897 	 * Update CPU dirty logging if dirty logging is being toggled.  This
12898 	 * applies to all operations.
12899 	 */
12900 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12901 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12902 
12903 	/*
12904 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12905 	 * made writable) or CREATE/MOVE/DELETE of a slot.
12906 	 *
12907 	 * For a memslot with dirty logging disabled:
12908 	 * CREATE:      No dirty mappings will already exist.
12909 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12910 	 *		kvm_arch_flush_shadow_memslot()
12911 	 *
12912 	 * For a memslot with dirty logging enabled:
12913 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12914 	 *		and no dirty bits to clear.
12915 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12916 	 *		kvm_arch_flush_shadow_memslot().
12917 	 */
12918 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12919 		return;
12920 
12921 	/*
12922 	 * READONLY and non-flags changes were filtered out above, and the only
12923 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12924 	 * logging isn't being toggled on or off.
12925 	 */
12926 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12927 		return;
12928 
12929 	if (!log_dirty_pages) {
12930 		/*
12931 		 * Dirty logging tracks sptes in 4k granularity, meaning that
12932 		 * large sptes have to be split.  If live migration succeeds,
12933 		 * the guest in the source machine will be destroyed and large
12934 		 * sptes will be created in the destination.  However, if the
12935 		 * guest continues to run in the source machine (for example if
12936 		 * live migration fails), small sptes will remain around and
12937 		 * cause bad performance.
12938 		 *
12939 		 * Scan sptes if dirty logging has been stopped, dropping those
12940 		 * which can be collapsed into a single large-page spte.  Later
12941 		 * page faults will create the large-page sptes.
12942 		 */
12943 		kvm_mmu_zap_collapsible_sptes(kvm, new);
12944 	} else {
12945 		/*
12946 		 * Initially-all-set does not require write protecting any page,
12947 		 * because they're all assumed to be dirty.
12948 		 */
12949 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12950 			return;
12951 
12952 		if (READ_ONCE(eager_page_split))
12953 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12954 
12955 		if (kvm_x86_ops.cpu_dirty_log_size) {
12956 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12957 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12958 		} else {
12959 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12960 		}
12961 
12962 		/*
12963 		 * Unconditionally flush the TLBs after enabling dirty logging.
12964 		 * A flush is almost always going to be necessary (see below),
12965 		 * and unconditionally flushing allows the helpers to omit
12966 		 * the subtly complex checks when removing write access.
12967 		 *
12968 		 * Do the flush outside of mmu_lock to reduce the amount of
12969 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12970 		 * safe as KVM only needs to guarantee the slot is fully
12971 		 * write-protected before returning to userspace, i.e. before
12972 		 * userspace can consume the dirty status.
12973 		 *
12974 		 * Flushing outside of mmu_lock requires KVM to be careful when
12975 		 * making decisions based on writable status of an SPTE, e.g. a
12976 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12977 		 *
12978 		 * Specifically, KVM also write-protects guest page tables to
12979 		 * monitor changes when using shadow paging, and must guarantee
12980 		 * no CPUs can write to those page before mmu_lock is dropped.
12981 		 * Because CPUs may have stale TLB entries at this point, a
12982 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12983 		 *
12984 		 * KVM also allows making SPTES writable outside of mmu_lock,
12985 		 * e.g. to allow dirty logging without taking mmu_lock.
12986 		 *
12987 		 * To handle these scenarios, KVM uses a separate software-only
12988 		 * bit (MMU-writable) to track if a SPTE is !writable due to
12989 		 * a guest page table being write-protected (KVM clears the
12990 		 * MMU-writable flag when write-protecting for shadow paging).
12991 		 *
12992 		 * The use of MMU-writable is also the primary motivation for
12993 		 * the unconditional flush.  Because KVM must guarantee that a
12994 		 * CPU doesn't contain stale, writable TLB entries for a
12995 		 * !MMU-writable SPTE, KVM must flush if it encounters any
12996 		 * MMU-writable SPTE regardless of whether the actual hardware
12997 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12998 		 * to flush, while unconditionally flushing allows the "remove
12999 		 * write access" helpers to ignore MMU-writable entirely.
13000 		 *
13001 		 * See is_writable_pte() for more details (the case involving
13002 		 * access-tracked SPTEs is particularly relevant).
13003 		 */
13004 		kvm_flush_remote_tlbs_memslot(kvm, new);
13005 	}
13006 }
13007 
13008 void kvm_arch_commit_memory_region(struct kvm *kvm,
13009 				struct kvm_memory_slot *old,
13010 				const struct kvm_memory_slot *new,
13011 				enum kvm_mr_change change)
13012 {
13013 	if (change == KVM_MR_DELETE)
13014 		kvm_page_track_delete_slot(kvm, old);
13015 
13016 	if (!kvm->arch.n_requested_mmu_pages &&
13017 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13018 		unsigned long nr_mmu_pages;
13019 
13020 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13021 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13022 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13023 	}
13024 
13025 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13026 
13027 	/* Free the arrays associated with the old memslot. */
13028 	if (change == KVM_MR_MOVE)
13029 		kvm_arch_free_memslot(kvm, old);
13030 }
13031 
13032 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
13033 {
13034 	return (is_guest_mode(vcpu) &&
13035 		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
13036 }
13037 
13038 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
13039 {
13040 	if (!list_empty_careful(&vcpu->async_pf.done))
13041 		return true;
13042 
13043 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
13044 	    kvm_apic_init_sipi_allowed(vcpu))
13045 		return true;
13046 
13047 	if (vcpu->arch.pv.pv_unhalted)
13048 		return true;
13049 
13050 	if (kvm_is_exception_pending(vcpu))
13051 		return true;
13052 
13053 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13054 	    (vcpu->arch.nmi_pending &&
13055 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
13056 		return true;
13057 
13058 #ifdef CONFIG_KVM_SMM
13059 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
13060 	    (vcpu->arch.smi_pending &&
13061 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
13062 		return true;
13063 #endif
13064 
13065 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
13066 		return true;
13067 
13068 	if (kvm_arch_interrupt_allowed(vcpu) &&
13069 	    (kvm_cpu_has_interrupt(vcpu) ||
13070 	    kvm_guest_apic_has_interrupt(vcpu)))
13071 		return true;
13072 
13073 	if (kvm_hv_has_stimer_pending(vcpu))
13074 		return true;
13075 
13076 	if (is_guest_mode(vcpu) &&
13077 	    kvm_x86_ops.nested_ops->has_events &&
13078 	    kvm_x86_ops.nested_ops->has_events(vcpu))
13079 		return true;
13080 
13081 	if (kvm_xen_has_pending_events(vcpu))
13082 		return true;
13083 
13084 	return false;
13085 }
13086 
13087 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
13088 {
13089 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
13090 }
13091 
13092 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
13093 {
13094 	if (kvm_vcpu_apicv_active(vcpu) &&
13095 	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
13096 		return true;
13097 
13098 	return false;
13099 }
13100 
13101 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
13102 {
13103 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
13104 		return true;
13105 
13106 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
13107 #ifdef CONFIG_KVM_SMM
13108 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
13109 #endif
13110 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
13111 		return true;
13112 
13113 	return kvm_arch_dy_has_pending_interrupt(vcpu);
13114 }
13115 
13116 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13117 {
13118 	if (vcpu->arch.guest_state_protected)
13119 		return true;
13120 
13121 	if (vcpu != kvm_get_running_vcpu())
13122 		return vcpu->arch.preempted_in_kernel;
13123 
13124 	return static_call(kvm_x86_get_cpl)(vcpu) == 0;
13125 }
13126 
13127 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13128 {
13129 	return kvm_rip_read(vcpu);
13130 }
13131 
13132 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13133 {
13134 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13135 }
13136 
13137 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13138 {
13139 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
13140 }
13141 
13142 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13143 {
13144 	/* Can't read the RIP when guest state is protected, just return 0 */
13145 	if (vcpu->arch.guest_state_protected)
13146 		return 0;
13147 
13148 	if (is_64_bit_mode(vcpu))
13149 		return kvm_rip_read(vcpu);
13150 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13151 		     kvm_rip_read(vcpu));
13152 }
13153 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13154 
13155 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13156 {
13157 	return kvm_get_linear_rip(vcpu) == linear_rip;
13158 }
13159 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13160 
13161 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13162 {
13163 	unsigned long rflags;
13164 
13165 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
13166 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13167 		rflags &= ~X86_EFLAGS_TF;
13168 	return rflags;
13169 }
13170 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13171 
13172 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13173 {
13174 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13175 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13176 		rflags |= X86_EFLAGS_TF;
13177 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
13178 }
13179 
13180 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13181 {
13182 	__kvm_set_rflags(vcpu, rflags);
13183 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13184 }
13185 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13186 
13187 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13188 {
13189 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13190 
13191 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13192 }
13193 
13194 static inline u32 kvm_async_pf_next_probe(u32 key)
13195 {
13196 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13197 }
13198 
13199 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13200 {
13201 	u32 key = kvm_async_pf_hash_fn(gfn);
13202 
13203 	while (vcpu->arch.apf.gfns[key] != ~0)
13204 		key = kvm_async_pf_next_probe(key);
13205 
13206 	vcpu->arch.apf.gfns[key] = gfn;
13207 }
13208 
13209 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13210 {
13211 	int i;
13212 	u32 key = kvm_async_pf_hash_fn(gfn);
13213 
13214 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13215 		     (vcpu->arch.apf.gfns[key] != gfn &&
13216 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13217 		key = kvm_async_pf_next_probe(key);
13218 
13219 	return key;
13220 }
13221 
13222 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13223 {
13224 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13225 }
13226 
13227 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13228 {
13229 	u32 i, j, k;
13230 
13231 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13232 
13233 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13234 		return;
13235 
13236 	while (true) {
13237 		vcpu->arch.apf.gfns[i] = ~0;
13238 		do {
13239 			j = kvm_async_pf_next_probe(j);
13240 			if (vcpu->arch.apf.gfns[j] == ~0)
13241 				return;
13242 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13243 			/*
13244 			 * k lies cyclically in ]i,j]
13245 			 * |    i.k.j |
13246 			 * |....j i.k.| or  |.k..j i...|
13247 			 */
13248 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13249 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13250 		i = j;
13251 	}
13252 }
13253 
13254 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13255 {
13256 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13257 
13258 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13259 				      sizeof(reason));
13260 }
13261 
13262 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13263 {
13264 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13265 
13266 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13267 					     &token, offset, sizeof(token));
13268 }
13269 
13270 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13271 {
13272 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13273 	u32 val;
13274 
13275 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13276 					 &val, offset, sizeof(val)))
13277 		return false;
13278 
13279 	return !val;
13280 }
13281 
13282 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13283 {
13284 
13285 	if (!kvm_pv_async_pf_enabled(vcpu))
13286 		return false;
13287 
13288 	if (vcpu->arch.apf.send_user_only &&
13289 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13290 		return false;
13291 
13292 	if (is_guest_mode(vcpu)) {
13293 		/*
13294 		 * L1 needs to opt into the special #PF vmexits that are
13295 		 * used to deliver async page faults.
13296 		 */
13297 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13298 	} else {
13299 		/*
13300 		 * Play it safe in case the guest temporarily disables paging.
13301 		 * The real mode IDT in particular is unlikely to have a #PF
13302 		 * exception setup.
13303 		 */
13304 		return is_paging(vcpu);
13305 	}
13306 }
13307 
13308 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13309 {
13310 	if (unlikely(!lapic_in_kernel(vcpu) ||
13311 		     kvm_event_needs_reinjection(vcpu) ||
13312 		     kvm_is_exception_pending(vcpu)))
13313 		return false;
13314 
13315 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13316 		return false;
13317 
13318 	/*
13319 	 * If interrupts are off we cannot even use an artificial
13320 	 * halt state.
13321 	 */
13322 	return kvm_arch_interrupt_allowed(vcpu);
13323 }
13324 
13325 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13326 				     struct kvm_async_pf *work)
13327 {
13328 	struct x86_exception fault;
13329 
13330 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13331 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13332 
13333 	if (kvm_can_deliver_async_pf(vcpu) &&
13334 	    !apf_put_user_notpresent(vcpu)) {
13335 		fault.vector = PF_VECTOR;
13336 		fault.error_code_valid = true;
13337 		fault.error_code = 0;
13338 		fault.nested_page_fault = false;
13339 		fault.address = work->arch.token;
13340 		fault.async_page_fault = true;
13341 		kvm_inject_page_fault(vcpu, &fault);
13342 		return true;
13343 	} else {
13344 		/*
13345 		 * It is not possible to deliver a paravirtualized asynchronous
13346 		 * page fault, but putting the guest in an artificial halt state
13347 		 * can be beneficial nevertheless: if an interrupt arrives, we
13348 		 * can deliver it timely and perhaps the guest will schedule
13349 		 * another process.  When the instruction that triggered a page
13350 		 * fault is retried, hopefully the page will be ready in the host.
13351 		 */
13352 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13353 		return false;
13354 	}
13355 }
13356 
13357 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13358 				 struct kvm_async_pf *work)
13359 {
13360 	struct kvm_lapic_irq irq = {
13361 		.delivery_mode = APIC_DM_FIXED,
13362 		.vector = vcpu->arch.apf.vec
13363 	};
13364 
13365 	if (work->wakeup_all)
13366 		work->arch.token = ~0; /* broadcast wakeup */
13367 	else
13368 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13369 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13370 
13371 	if ((work->wakeup_all || work->notpresent_injected) &&
13372 	    kvm_pv_async_pf_enabled(vcpu) &&
13373 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13374 		vcpu->arch.apf.pageready_pending = true;
13375 		kvm_apic_set_irq(vcpu, &irq, NULL);
13376 	}
13377 
13378 	vcpu->arch.apf.halted = false;
13379 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13380 }
13381 
13382 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13383 {
13384 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13385 	if (!vcpu->arch.apf.pageready_pending)
13386 		kvm_vcpu_kick(vcpu);
13387 }
13388 
13389 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13390 {
13391 	if (!kvm_pv_async_pf_enabled(vcpu))
13392 		return true;
13393 	else
13394 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13395 }
13396 
13397 void kvm_arch_start_assignment(struct kvm *kvm)
13398 {
13399 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13400 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13401 }
13402 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13403 
13404 void kvm_arch_end_assignment(struct kvm *kvm)
13405 {
13406 	atomic_dec(&kvm->arch.assigned_device_count);
13407 }
13408 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13409 
13410 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13411 {
13412 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13413 }
13414 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13415 
13416 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13417 {
13418 	/*
13419 	 * Non-coherent DMA assignment and de-assignment will affect
13420 	 * whether KVM honors guest MTRRs and cause changes in memtypes
13421 	 * in TDP.
13422 	 * So, pass %true unconditionally to indicate non-coherent DMA was,
13423 	 * or will be involved, and that zapping SPTEs might be necessary.
13424 	 */
13425 	if (__kvm_mmu_honors_guest_mtrrs(true))
13426 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13427 }
13428 
13429 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13430 {
13431 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13432 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13433 }
13434 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13435 
13436 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13437 {
13438 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13439 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13440 }
13441 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13442 
13443 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13444 {
13445 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13446 }
13447 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13448 
13449 bool kvm_arch_has_irq_bypass(void)
13450 {
13451 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13452 }
13453 
13454 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13455 				      struct irq_bypass_producer *prod)
13456 {
13457 	struct kvm_kernel_irqfd *irqfd =
13458 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13459 	int ret;
13460 
13461 	irqfd->producer = prod;
13462 	kvm_arch_start_assignment(irqfd->kvm);
13463 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13464 					 prod->irq, irqfd->gsi, 1);
13465 
13466 	if (ret)
13467 		kvm_arch_end_assignment(irqfd->kvm);
13468 
13469 	return ret;
13470 }
13471 
13472 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13473 				      struct irq_bypass_producer *prod)
13474 {
13475 	int ret;
13476 	struct kvm_kernel_irqfd *irqfd =
13477 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13478 
13479 	WARN_ON(irqfd->producer != prod);
13480 	irqfd->producer = NULL;
13481 
13482 	/*
13483 	 * When producer of consumer is unregistered, we change back to
13484 	 * remapped mode, so we can re-use the current implementation
13485 	 * when the irq is masked/disabled or the consumer side (KVM
13486 	 * int this case doesn't want to receive the interrupts.
13487 	*/
13488 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13489 	if (ret)
13490 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13491 		       " fails: %d\n", irqfd->consumer.token, ret);
13492 
13493 	kvm_arch_end_assignment(irqfd->kvm);
13494 }
13495 
13496 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13497 				   uint32_t guest_irq, bool set)
13498 {
13499 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13500 }
13501 
13502 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13503 				  struct kvm_kernel_irq_routing_entry *new)
13504 {
13505 	if (new->type != KVM_IRQ_ROUTING_MSI)
13506 		return true;
13507 
13508 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13509 }
13510 
13511 bool kvm_vector_hashing_enabled(void)
13512 {
13513 	return vector_hashing;
13514 }
13515 
13516 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13517 {
13518 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13519 }
13520 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13521 
13522 
13523 int kvm_spec_ctrl_test_value(u64 value)
13524 {
13525 	/*
13526 	 * test that setting IA32_SPEC_CTRL to given value
13527 	 * is allowed by the host processor
13528 	 */
13529 
13530 	u64 saved_value;
13531 	unsigned long flags;
13532 	int ret = 0;
13533 
13534 	local_irq_save(flags);
13535 
13536 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13537 		ret = 1;
13538 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13539 		ret = 1;
13540 	else
13541 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13542 
13543 	local_irq_restore(flags);
13544 
13545 	return ret;
13546 }
13547 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13548 
13549 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13550 {
13551 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13552 	struct x86_exception fault;
13553 	u64 access = error_code &
13554 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13555 
13556 	if (!(error_code & PFERR_PRESENT_MASK) ||
13557 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13558 		/*
13559 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13560 		 * tables probably do not match the TLB.  Just proceed
13561 		 * with the error code that the processor gave.
13562 		 */
13563 		fault.vector = PF_VECTOR;
13564 		fault.error_code_valid = true;
13565 		fault.error_code = error_code;
13566 		fault.nested_page_fault = false;
13567 		fault.address = gva;
13568 		fault.async_page_fault = false;
13569 	}
13570 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13571 }
13572 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13573 
13574 /*
13575  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13576  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13577  * indicates whether exit to userspace is needed.
13578  */
13579 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13580 			      struct x86_exception *e)
13581 {
13582 	if (r == X86EMUL_PROPAGATE_FAULT) {
13583 		if (KVM_BUG_ON(!e, vcpu->kvm))
13584 			return -EIO;
13585 
13586 		kvm_inject_emulated_page_fault(vcpu, e);
13587 		return 1;
13588 	}
13589 
13590 	/*
13591 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13592 	 * while handling a VMX instruction KVM could've handled the request
13593 	 * correctly by exiting to userspace and performing I/O but there
13594 	 * doesn't seem to be a real use-case behind such requests, just return
13595 	 * KVM_EXIT_INTERNAL_ERROR for now.
13596 	 */
13597 	kvm_prepare_emulation_failure_exit(vcpu);
13598 
13599 	return 0;
13600 }
13601 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13602 
13603 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13604 {
13605 	bool pcid_enabled;
13606 	struct x86_exception e;
13607 	struct {
13608 		u64 pcid;
13609 		u64 gla;
13610 	} operand;
13611 	int r;
13612 
13613 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13614 	if (r != X86EMUL_CONTINUE)
13615 		return kvm_handle_memory_failure(vcpu, r, &e);
13616 
13617 	if (operand.pcid >> 12 != 0) {
13618 		kvm_inject_gp(vcpu, 0);
13619 		return 1;
13620 	}
13621 
13622 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13623 
13624 	switch (type) {
13625 	case INVPCID_TYPE_INDIV_ADDR:
13626 		/*
13627 		 * LAM doesn't apply to addresses that are inputs to TLB
13628 		 * invalidation.
13629 		 */
13630 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13631 		    is_noncanonical_address(operand.gla, vcpu)) {
13632 			kvm_inject_gp(vcpu, 0);
13633 			return 1;
13634 		}
13635 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13636 		return kvm_skip_emulated_instruction(vcpu);
13637 
13638 	case INVPCID_TYPE_SINGLE_CTXT:
13639 		if (!pcid_enabled && (operand.pcid != 0)) {
13640 			kvm_inject_gp(vcpu, 0);
13641 			return 1;
13642 		}
13643 
13644 		kvm_invalidate_pcid(vcpu, operand.pcid);
13645 		return kvm_skip_emulated_instruction(vcpu);
13646 
13647 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13648 		/*
13649 		 * Currently, KVM doesn't mark global entries in the shadow
13650 		 * page tables, so a non-global flush just degenerates to a
13651 		 * global flush. If needed, we could optimize this later by
13652 		 * keeping track of global entries in shadow page tables.
13653 		 */
13654 
13655 		fallthrough;
13656 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13657 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13658 		return kvm_skip_emulated_instruction(vcpu);
13659 
13660 	default:
13661 		kvm_inject_gp(vcpu, 0);
13662 		return 1;
13663 	}
13664 }
13665 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13666 
13667 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13668 {
13669 	struct kvm_run *run = vcpu->run;
13670 	struct kvm_mmio_fragment *frag;
13671 	unsigned int len;
13672 
13673 	BUG_ON(!vcpu->mmio_needed);
13674 
13675 	/* Complete previous fragment */
13676 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13677 	len = min(8u, frag->len);
13678 	if (!vcpu->mmio_is_write)
13679 		memcpy(frag->data, run->mmio.data, len);
13680 
13681 	if (frag->len <= 8) {
13682 		/* Switch to the next fragment. */
13683 		frag++;
13684 		vcpu->mmio_cur_fragment++;
13685 	} else {
13686 		/* Go forward to the next mmio piece. */
13687 		frag->data += len;
13688 		frag->gpa += len;
13689 		frag->len -= len;
13690 	}
13691 
13692 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13693 		vcpu->mmio_needed = 0;
13694 
13695 		// VMG change, at this point, we're always done
13696 		// RIP has already been advanced
13697 		return 1;
13698 	}
13699 
13700 	// More MMIO is needed
13701 	run->mmio.phys_addr = frag->gpa;
13702 	run->mmio.len = min(8u, frag->len);
13703 	run->mmio.is_write = vcpu->mmio_is_write;
13704 	if (run->mmio.is_write)
13705 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13706 	run->exit_reason = KVM_EXIT_MMIO;
13707 
13708 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13709 
13710 	return 0;
13711 }
13712 
13713 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13714 			  void *data)
13715 {
13716 	int handled;
13717 	struct kvm_mmio_fragment *frag;
13718 
13719 	if (!data)
13720 		return -EINVAL;
13721 
13722 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13723 	if (handled == bytes)
13724 		return 1;
13725 
13726 	bytes -= handled;
13727 	gpa += handled;
13728 	data += handled;
13729 
13730 	/*TODO: Check if need to increment number of frags */
13731 	frag = vcpu->mmio_fragments;
13732 	vcpu->mmio_nr_fragments = 1;
13733 	frag->len = bytes;
13734 	frag->gpa = gpa;
13735 	frag->data = data;
13736 
13737 	vcpu->mmio_needed = 1;
13738 	vcpu->mmio_cur_fragment = 0;
13739 
13740 	vcpu->run->mmio.phys_addr = gpa;
13741 	vcpu->run->mmio.len = min(8u, frag->len);
13742 	vcpu->run->mmio.is_write = 1;
13743 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13744 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13745 
13746 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13747 
13748 	return 0;
13749 }
13750 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13751 
13752 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13753 			 void *data)
13754 {
13755 	int handled;
13756 	struct kvm_mmio_fragment *frag;
13757 
13758 	if (!data)
13759 		return -EINVAL;
13760 
13761 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13762 	if (handled == bytes)
13763 		return 1;
13764 
13765 	bytes -= handled;
13766 	gpa += handled;
13767 	data += handled;
13768 
13769 	/*TODO: Check if need to increment number of frags */
13770 	frag = vcpu->mmio_fragments;
13771 	vcpu->mmio_nr_fragments = 1;
13772 	frag->len = bytes;
13773 	frag->gpa = gpa;
13774 	frag->data = data;
13775 
13776 	vcpu->mmio_needed = 1;
13777 	vcpu->mmio_cur_fragment = 0;
13778 
13779 	vcpu->run->mmio.phys_addr = gpa;
13780 	vcpu->run->mmio.len = min(8u, frag->len);
13781 	vcpu->run->mmio.is_write = 0;
13782 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13783 
13784 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13785 
13786 	return 0;
13787 }
13788 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13789 
13790 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13791 {
13792 	vcpu->arch.sev_pio_count -= count;
13793 	vcpu->arch.sev_pio_data += count * size;
13794 }
13795 
13796 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13797 			   unsigned int port);
13798 
13799 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13800 {
13801 	int size = vcpu->arch.pio.size;
13802 	int port = vcpu->arch.pio.port;
13803 
13804 	vcpu->arch.pio.count = 0;
13805 	if (vcpu->arch.sev_pio_count)
13806 		return kvm_sev_es_outs(vcpu, size, port);
13807 	return 1;
13808 }
13809 
13810 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13811 			   unsigned int port)
13812 {
13813 	for (;;) {
13814 		unsigned int count =
13815 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13816 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13817 
13818 		/* memcpy done already by emulator_pio_out.  */
13819 		advance_sev_es_emulated_pio(vcpu, count, size);
13820 		if (!ret)
13821 			break;
13822 
13823 		/* Emulation done by the kernel.  */
13824 		if (!vcpu->arch.sev_pio_count)
13825 			return 1;
13826 	}
13827 
13828 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13829 	return 0;
13830 }
13831 
13832 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13833 			  unsigned int port);
13834 
13835 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13836 {
13837 	unsigned count = vcpu->arch.pio.count;
13838 	int size = vcpu->arch.pio.size;
13839 	int port = vcpu->arch.pio.port;
13840 
13841 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13842 	advance_sev_es_emulated_pio(vcpu, count, size);
13843 	if (vcpu->arch.sev_pio_count)
13844 		return kvm_sev_es_ins(vcpu, size, port);
13845 	return 1;
13846 }
13847 
13848 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13849 			  unsigned int port)
13850 {
13851 	for (;;) {
13852 		unsigned int count =
13853 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13854 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13855 			break;
13856 
13857 		/* Emulation done by the kernel.  */
13858 		advance_sev_es_emulated_pio(vcpu, count, size);
13859 		if (!vcpu->arch.sev_pio_count)
13860 			return 1;
13861 	}
13862 
13863 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13864 	return 0;
13865 }
13866 
13867 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13868 			 unsigned int port, void *data,  unsigned int count,
13869 			 int in)
13870 {
13871 	vcpu->arch.sev_pio_data = data;
13872 	vcpu->arch.sev_pio_count = count;
13873 	return in ? kvm_sev_es_ins(vcpu, size, port)
13874 		  : kvm_sev_es_outs(vcpu, size, port);
13875 }
13876 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13877 
13878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13907 
13908 static int __init kvm_x86_init(void)
13909 {
13910 	kvm_mmu_x86_module_init();
13911 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13912 	return 0;
13913 }
13914 module_init(kvm_x86_init);
13915 
13916 static void __exit kvm_x86_exit(void)
13917 {
13918 	/*
13919 	 * If module_init() is implemented, module_exit() must also be
13920 	 * implemented to allow module unload.
13921 	 */
13922 }
13923 module_exit(kvm_x86_exit);
13924