1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kvm_host.h> 21 #include "irq.h" 22 #include "ioapic.h" 23 #include "mmu.h" 24 #include "i8254.h" 25 #include "tss.h" 26 #include "kvm_cache_regs.h" 27 #include "kvm_emulate.h" 28 #include "mmu/page_track.h" 29 #include "x86.h" 30 #include "cpuid.h" 31 #include "pmu.h" 32 #include "hyperv.h" 33 #include "lapic.h" 34 #include "xen.h" 35 #include "smm.h" 36 37 #include <linux/clocksource.h> 38 #include <linux/interrupt.h> 39 #include <linux/kvm.h> 40 #include <linux/fs.h> 41 #include <linux/vmalloc.h> 42 #include <linux/export.h> 43 #include <linux/moduleparam.h> 44 #include <linux/mman.h> 45 #include <linux/highmem.h> 46 #include <linux/iommu.h> 47 #include <linux/cpufreq.h> 48 #include <linux/user-return-notifier.h> 49 #include <linux/srcu.h> 50 #include <linux/slab.h> 51 #include <linux/perf_event.h> 52 #include <linux/uaccess.h> 53 #include <linux/hash.h> 54 #include <linux/pci.h> 55 #include <linux/timekeeper_internal.h> 56 #include <linux/pvclock_gtod.h> 57 #include <linux/kvm_irqfd.h> 58 #include <linux/irqbypass.h> 59 #include <linux/sched/stat.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/mem_encrypt.h> 62 #include <linux/entry-kvm.h> 63 #include <linux/suspend.h> 64 #include <linux/smp.h> 65 66 #include <trace/events/ipi.h> 67 #include <trace/events/kvm.h> 68 69 #include <asm/debugreg.h> 70 #include <asm/msr.h> 71 #include <asm/desc.h> 72 #include <asm/mce.h> 73 #include <asm/pkru.h> 74 #include <linux/kernel_stat.h> 75 #include <asm/fpu/api.h> 76 #include <asm/fpu/xcr.h> 77 #include <asm/fpu/xstate.h> 78 #include <asm/pvclock.h> 79 #include <asm/div64.h> 80 #include <asm/irq_remapping.h> 81 #include <asm/mshyperv.h> 82 #include <asm/hypervisor.h> 83 #include <asm/tlbflush.h> 84 #include <asm/intel_pt.h> 85 #include <asm/emulate_prefix.h> 86 #include <asm/sgx.h> 87 #include <clocksource/hyperv_timer.h> 88 89 #define CREATE_TRACE_POINTS 90 #include "trace.h" 91 92 #define MAX_IO_MSRS 256 93 #define KVM_MAX_MCE_BANKS 32 94 95 /* 96 * Note, kvm_caps fields should *never* have default values, all fields must be 97 * recomputed from scratch during vendor module load, e.g. to account for a 98 * vendor module being reloaded with different module parameters. 99 */ 100 struct kvm_caps kvm_caps __read_mostly; 101 EXPORT_SYMBOL_GPL(kvm_caps); 102 103 struct kvm_host_values kvm_host __read_mostly; 104 EXPORT_SYMBOL_GPL(kvm_host); 105 106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 107 108 #define emul_to_vcpu(ctxt) \ 109 ((struct kvm_vcpu *)(ctxt)->vcpu) 110 111 /* EFER defaults: 112 * - enable syscall per default because its emulated by KVM 113 * - enable LME and LMA per default on 64 bit KVM 114 */ 115 #ifdef CONFIG_X86_64 116 static 117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 118 #else 119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 120 #endif 121 122 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 123 124 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 125 126 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 127 128 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 129 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 130 131 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 132 static void process_nmi(struct kvm_vcpu *vcpu); 133 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 134 static void store_regs(struct kvm_vcpu *vcpu); 135 static int sync_regs(struct kvm_vcpu *vcpu); 136 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 137 138 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 139 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 140 141 static DEFINE_MUTEX(vendor_module_lock); 142 struct kvm_x86_ops kvm_x86_ops __read_mostly; 143 144 #define KVM_X86_OP(func) \ 145 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 146 *(((struct kvm_x86_ops *)0)->func)); 147 #define KVM_X86_OP_OPTIONAL KVM_X86_OP 148 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 149 #include <asm/kvm-x86-ops.h> 150 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 151 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 152 153 static bool __read_mostly ignore_msrs = 0; 154 module_param(ignore_msrs, bool, 0644); 155 156 bool __read_mostly report_ignored_msrs = true; 157 module_param(report_ignored_msrs, bool, 0644); 158 EXPORT_SYMBOL_GPL(report_ignored_msrs); 159 160 unsigned int min_timer_period_us = 200; 161 module_param(min_timer_period_us, uint, 0644); 162 163 static bool __read_mostly kvmclock_periodic_sync = true; 164 module_param(kvmclock_periodic_sync, bool, 0444); 165 166 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 167 static u32 __read_mostly tsc_tolerance_ppm = 250; 168 module_param(tsc_tolerance_ppm, uint, 0644); 169 170 static bool __read_mostly vector_hashing = true; 171 module_param(vector_hashing, bool, 0444); 172 173 bool __read_mostly enable_vmware_backdoor = false; 174 module_param(enable_vmware_backdoor, bool, 0444); 175 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 176 177 /* 178 * Flags to manipulate forced emulation behavior (any non-zero value will 179 * enable forced emulation). 180 */ 181 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) 182 static int __read_mostly force_emulation_prefix; 183 module_param(force_emulation_prefix, int, 0644); 184 185 int __read_mostly pi_inject_timer = -1; 186 module_param(pi_inject_timer, bint, 0644); 187 188 /* Enable/disable PMU virtualization */ 189 bool __read_mostly enable_pmu = true; 190 EXPORT_SYMBOL_GPL(enable_pmu); 191 module_param(enable_pmu, bool, 0444); 192 193 bool __read_mostly eager_page_split = true; 194 module_param(eager_page_split, bool, 0644); 195 196 /* Enable/disable SMT_RSB bug mitigation */ 197 static bool __read_mostly mitigate_smt_rsb; 198 module_param(mitigate_smt_rsb, bool, 0444); 199 200 /* 201 * Restoring the host value for MSRs that are only consumed when running in 202 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 203 * returns to userspace, i.e. the kernel can run with the guest's value. 204 */ 205 #define KVM_MAX_NR_USER_RETURN_MSRS 16 206 207 struct kvm_user_return_msrs { 208 struct user_return_notifier urn; 209 bool registered; 210 struct kvm_user_return_msr_values { 211 u64 host; 212 u64 curr; 213 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 214 }; 215 216 u32 __read_mostly kvm_nr_uret_msrs; 217 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 218 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 219 static struct kvm_user_return_msrs __percpu *user_return_msrs; 220 221 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 222 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 223 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 224 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 225 226 bool __read_mostly allow_smaller_maxphyaddr = 0; 227 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 228 229 bool __read_mostly enable_apicv = true; 230 EXPORT_SYMBOL_GPL(enable_apicv); 231 232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 233 KVM_GENERIC_VM_STATS(), 234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 235 STATS_DESC_COUNTER(VM, mmu_pte_write), 236 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 237 STATS_DESC_COUNTER(VM, mmu_flooded), 238 STATS_DESC_COUNTER(VM, mmu_recycled), 239 STATS_DESC_COUNTER(VM, mmu_cache_miss), 240 STATS_DESC_ICOUNTER(VM, mmu_unsync), 241 STATS_DESC_ICOUNTER(VM, pages_4k), 242 STATS_DESC_ICOUNTER(VM, pages_2m), 243 STATS_DESC_ICOUNTER(VM, pages_1g), 244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 247 }; 248 249 const struct kvm_stats_header kvm_vm_stats_header = { 250 .name_size = KVM_STATS_NAME_SIZE, 251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 252 .id_offset = sizeof(struct kvm_stats_header), 253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 255 sizeof(kvm_vm_stats_desc), 256 }; 257 258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 259 KVM_GENERIC_VCPU_STATS(), 260 STATS_DESC_COUNTER(VCPU, pf_taken), 261 STATS_DESC_COUNTER(VCPU, pf_fixed), 262 STATS_DESC_COUNTER(VCPU, pf_emulate), 263 STATS_DESC_COUNTER(VCPU, pf_spurious), 264 STATS_DESC_COUNTER(VCPU, pf_fast), 265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 266 STATS_DESC_COUNTER(VCPU, pf_guest), 267 STATS_DESC_COUNTER(VCPU, tlb_flush), 268 STATS_DESC_COUNTER(VCPU, invlpg), 269 STATS_DESC_COUNTER(VCPU, exits), 270 STATS_DESC_COUNTER(VCPU, io_exits), 271 STATS_DESC_COUNTER(VCPU, mmio_exits), 272 STATS_DESC_COUNTER(VCPU, signal_exits), 273 STATS_DESC_COUNTER(VCPU, irq_window_exits), 274 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 275 STATS_DESC_COUNTER(VCPU, l1d_flush), 276 STATS_DESC_COUNTER(VCPU, halt_exits), 277 STATS_DESC_COUNTER(VCPU, request_irq_exits), 278 STATS_DESC_COUNTER(VCPU, irq_exits), 279 STATS_DESC_COUNTER(VCPU, host_state_reload), 280 STATS_DESC_COUNTER(VCPU, fpu_reload), 281 STATS_DESC_COUNTER(VCPU, insn_emulation), 282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 283 STATS_DESC_COUNTER(VCPU, hypercalls), 284 STATS_DESC_COUNTER(VCPU, irq_injections), 285 STATS_DESC_COUNTER(VCPU, nmi_injections), 286 STATS_DESC_COUNTER(VCPU, req_event), 287 STATS_DESC_COUNTER(VCPU, nested_run), 288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 289 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 290 STATS_DESC_COUNTER(VCPU, preemption_reported), 291 STATS_DESC_COUNTER(VCPU, preemption_other), 292 STATS_DESC_IBOOLEAN(VCPU, guest_mode), 293 STATS_DESC_COUNTER(VCPU, notify_window_exits), 294 }; 295 296 const struct kvm_stats_header kvm_vcpu_stats_header = { 297 .name_size = KVM_STATS_NAME_SIZE, 298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 299 .id_offset = sizeof(struct kvm_stats_header), 300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 302 sizeof(kvm_vcpu_stats_desc), 303 }; 304 305 static struct kmem_cache *x86_emulator_cache; 306 307 /* 308 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track 309 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, 310 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that 311 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds 312 * MSRs that KVM emulates without strictly requiring host support. 313 * msr_based_features holds MSRs that enumerate features, i.e. are effectively 314 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with 315 * msrs_to_save and emulated_msrs. 316 */ 317 318 static const u32 msrs_to_save_base[] = { 319 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 320 MSR_STAR, 321 #ifdef CONFIG_X86_64 322 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 323 #endif 324 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 325 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 326 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, 327 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 328 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 329 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 330 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 331 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 332 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 333 MSR_IA32_UMWAIT_CONTROL, 334 335 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 336 }; 337 338 static const u32 msrs_to_save_pmu[] = { 339 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 340 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 341 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 342 MSR_CORE_PERF_GLOBAL_CTRL, 343 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, 344 345 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ 346 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 347 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 348 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 349 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 350 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 351 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 352 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 353 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 354 355 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 356 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 357 358 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ 359 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 360 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 361 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 362 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 363 364 MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 365 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, 366 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, 367 }; 368 369 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + 370 ARRAY_SIZE(msrs_to_save_pmu)]; 371 static unsigned num_msrs_to_save; 372 373 static const u32 emulated_msrs_all[] = { 374 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 375 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 376 377 #ifdef CONFIG_KVM_HYPERV 378 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 379 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 380 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 381 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 382 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 383 HV_X64_MSR_RESET, 384 HV_X64_MSR_VP_INDEX, 385 HV_X64_MSR_VP_RUNTIME, 386 HV_X64_MSR_SCONTROL, 387 HV_X64_MSR_STIMER0_CONFIG, 388 HV_X64_MSR_VP_ASSIST_PAGE, 389 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 390 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, 391 HV_X64_MSR_SYNDBG_OPTIONS, 392 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 393 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 394 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 395 #endif 396 397 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 398 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 399 400 MSR_IA32_TSC_ADJUST, 401 MSR_IA32_TSC_DEADLINE, 402 MSR_IA32_ARCH_CAPABILITIES, 403 MSR_IA32_PERF_CAPABILITIES, 404 MSR_IA32_MISC_ENABLE, 405 MSR_IA32_MCG_STATUS, 406 MSR_IA32_MCG_CTL, 407 MSR_IA32_MCG_EXT_CTL, 408 MSR_IA32_SMBASE, 409 MSR_SMI_COUNT, 410 MSR_PLATFORM_INFO, 411 MSR_MISC_FEATURES_ENABLES, 412 MSR_AMD64_VIRT_SPEC_CTRL, 413 MSR_AMD64_TSC_RATIO, 414 MSR_IA32_POWER_CTL, 415 MSR_IA32_UCODE_REV, 416 417 /* 418 * KVM always supports the "true" VMX control MSRs, even if the host 419 * does not. The VMX MSRs as a whole are considered "emulated" as KVM 420 * doesn't strictly require them to exist in the host (ignoring that 421 * KVM would refuse to load in the first place if the core set of MSRs 422 * aren't supported). 423 */ 424 MSR_IA32_VMX_BASIC, 425 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 426 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 427 MSR_IA32_VMX_TRUE_EXIT_CTLS, 428 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 429 MSR_IA32_VMX_MISC, 430 MSR_IA32_VMX_CR0_FIXED0, 431 MSR_IA32_VMX_CR4_FIXED0, 432 MSR_IA32_VMX_VMCS_ENUM, 433 MSR_IA32_VMX_PROCBASED_CTLS2, 434 MSR_IA32_VMX_EPT_VPID_CAP, 435 MSR_IA32_VMX_VMFUNC, 436 437 MSR_K7_HWCR, 438 MSR_KVM_POLL_CONTROL, 439 }; 440 441 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 442 static unsigned num_emulated_msrs; 443 444 /* 445 * List of MSRs that control the existence of MSR-based features, i.e. MSRs 446 * that are effectively CPUID leafs. VMX MSRs are also included in the set of 447 * feature MSRs, but are handled separately to allow expedited lookups. 448 */ 449 static const u32 msr_based_features_all_except_vmx[] = { 450 MSR_AMD64_DE_CFG, 451 MSR_IA32_UCODE_REV, 452 MSR_IA32_ARCH_CAPABILITIES, 453 MSR_IA32_PERF_CAPABILITIES, 454 }; 455 456 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + 457 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; 458 static unsigned int num_msr_based_features; 459 460 /* 461 * All feature MSRs except uCode revID, which tracks the currently loaded uCode 462 * patch, are immutable once the vCPU model is defined. 463 */ 464 static bool kvm_is_immutable_feature_msr(u32 msr) 465 { 466 int i; 467 468 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) 469 return true; 470 471 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { 472 if (msr == msr_based_features_all_except_vmx[i]) 473 return msr != MSR_IA32_UCODE_REV; 474 } 475 476 return false; 477 } 478 479 static bool kvm_is_advertised_msr(u32 msr_index) 480 { 481 unsigned int i; 482 483 for (i = 0; i < num_msrs_to_save; i++) { 484 if (msrs_to_save[i] == msr_index) 485 return true; 486 } 487 488 for (i = 0; i < num_emulated_msrs; i++) { 489 if (emulated_msrs[i] == msr_index) 490 return true; 491 } 492 493 return false; 494 } 495 496 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data, 497 bool host_initiated); 498 499 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr, 500 u64 *data, bool host_initiated, 501 enum kvm_msr_access rw, 502 msr_access_t msr_access_fn) 503 { 504 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr"; 505 int ret; 506 507 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W); 508 509 /* 510 * Zero the data on read failures to avoid leaking stack data to the 511 * guest and/or userspace, e.g. if the failure is ignored below. 512 */ 513 ret = msr_access_fn(vcpu, msr, data, host_initiated); 514 if (ret && rw == MSR_TYPE_R) 515 *data = 0; 516 517 if (ret != KVM_MSR_RET_UNSUPPORTED) 518 return ret; 519 520 /* 521 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM 522 * advertises to userspace, even if an MSR isn't fully supported. 523 * Simply check that @data is '0', which covers both the write '0' case 524 * and all reads (in which case @data is zeroed on failure; see above). 525 */ 526 if (host_initiated && !*data && kvm_is_advertised_msr(msr)) 527 return 0; 528 529 if (!ignore_msrs) { 530 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 531 op, msr, *data); 532 return ret; 533 } 534 535 if (report_ignored_msrs) 536 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data); 537 538 return 0; 539 } 540 541 static struct kmem_cache *kvm_alloc_emulator_cache(void) 542 { 543 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 544 unsigned int size = sizeof(struct x86_emulate_ctxt); 545 546 return kmem_cache_create_usercopy("x86_emulator", size, 547 __alignof__(struct x86_emulate_ctxt), 548 SLAB_ACCOUNT, useroffset, 549 size - useroffset, NULL); 550 } 551 552 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 553 554 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 555 { 556 int i; 557 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 558 vcpu->arch.apf.gfns[i] = ~0; 559 } 560 561 static void kvm_on_user_return(struct user_return_notifier *urn) 562 { 563 unsigned slot; 564 struct kvm_user_return_msrs *msrs 565 = container_of(urn, struct kvm_user_return_msrs, urn); 566 struct kvm_user_return_msr_values *values; 567 unsigned long flags; 568 569 /* 570 * Disabling irqs at this point since the following code could be 571 * interrupted and executed through kvm_arch_disable_virtualization_cpu() 572 */ 573 local_irq_save(flags); 574 if (msrs->registered) { 575 msrs->registered = false; 576 user_return_notifier_unregister(urn); 577 } 578 local_irq_restore(flags); 579 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 580 values = &msrs->values[slot]; 581 if (values->host != values->curr) { 582 wrmsrl(kvm_uret_msrs_list[slot], values->host); 583 values->curr = values->host; 584 } 585 } 586 } 587 588 static int kvm_probe_user_return_msr(u32 msr) 589 { 590 u64 val; 591 int ret; 592 593 preempt_disable(); 594 ret = rdmsrl_safe(msr, &val); 595 if (ret) 596 goto out; 597 ret = wrmsrl_safe(msr, val); 598 out: 599 preempt_enable(); 600 return ret; 601 } 602 603 int kvm_add_user_return_msr(u32 msr) 604 { 605 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 606 607 if (kvm_probe_user_return_msr(msr)) 608 return -1; 609 610 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 611 return kvm_nr_uret_msrs++; 612 } 613 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 614 615 int kvm_find_user_return_msr(u32 msr) 616 { 617 int i; 618 619 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 620 if (kvm_uret_msrs_list[i] == msr) 621 return i; 622 } 623 return -1; 624 } 625 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 626 627 static void kvm_user_return_msr_cpu_online(void) 628 { 629 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 630 u64 value; 631 int i; 632 633 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 634 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 635 msrs->values[i].host = value; 636 msrs->values[i].curr = value; 637 } 638 } 639 640 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 641 { 642 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 643 int err; 644 645 value = (value & mask) | (msrs->values[slot].host & ~mask); 646 if (value == msrs->values[slot].curr) 647 return 0; 648 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 649 if (err) 650 return 1; 651 652 msrs->values[slot].curr = value; 653 if (!msrs->registered) { 654 msrs->urn.on_user_return = kvm_on_user_return; 655 user_return_notifier_register(&msrs->urn); 656 msrs->registered = true; 657 } 658 return 0; 659 } 660 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 661 662 static void drop_user_return_notifiers(void) 663 { 664 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); 665 666 if (msrs->registered) 667 kvm_on_user_return(&msrs->urn); 668 } 669 670 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 671 { 672 return vcpu->arch.apic_base; 673 } 674 675 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 676 { 677 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 678 } 679 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 680 681 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 682 { 683 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 684 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 685 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 686 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 687 688 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 689 return 1; 690 if (!msr_info->host_initiated) { 691 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 692 return 1; 693 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 694 return 1; 695 } 696 697 kvm_lapic_set_base(vcpu, msr_info->data); 698 kvm_recalculate_apic_map(vcpu->kvm); 699 return 0; 700 } 701 702 /* 703 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 704 * 705 * Hardware virtualization extension instructions may fault if a reboot turns 706 * off virtualization while processes are running. Usually after catching the 707 * fault we just panic; during reboot instead the instruction is ignored. 708 */ 709 noinstr void kvm_spurious_fault(void) 710 { 711 /* Fault while not rebooting. We want the trace. */ 712 BUG_ON(!kvm_rebooting); 713 } 714 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 715 716 #define EXCPT_BENIGN 0 717 #define EXCPT_CONTRIBUTORY 1 718 #define EXCPT_PF 2 719 720 static int exception_class(int vector) 721 { 722 switch (vector) { 723 case PF_VECTOR: 724 return EXCPT_PF; 725 case DE_VECTOR: 726 case TS_VECTOR: 727 case NP_VECTOR: 728 case SS_VECTOR: 729 case GP_VECTOR: 730 return EXCPT_CONTRIBUTORY; 731 default: 732 break; 733 } 734 return EXCPT_BENIGN; 735 } 736 737 #define EXCPT_FAULT 0 738 #define EXCPT_TRAP 1 739 #define EXCPT_ABORT 2 740 #define EXCPT_INTERRUPT 3 741 #define EXCPT_DB 4 742 743 static int exception_type(int vector) 744 { 745 unsigned int mask; 746 747 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 748 return EXCPT_INTERRUPT; 749 750 mask = 1 << vector; 751 752 /* 753 * #DBs can be trap-like or fault-like, the caller must check other CPU 754 * state, e.g. DR6, to determine whether a #DB is a trap or fault. 755 */ 756 if (mask & (1 << DB_VECTOR)) 757 return EXCPT_DB; 758 759 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) 760 return EXCPT_TRAP; 761 762 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 763 return EXCPT_ABORT; 764 765 /* Reserved exceptions will result in fault */ 766 return EXCPT_FAULT; 767 } 768 769 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, 770 struct kvm_queued_exception *ex) 771 { 772 if (!ex->has_payload) 773 return; 774 775 switch (ex->vector) { 776 case DB_VECTOR: 777 /* 778 * "Certain debug exceptions may clear bit 0-3. The 779 * remaining contents of the DR6 register are never 780 * cleared by the processor". 781 */ 782 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 783 /* 784 * In order to reflect the #DB exception payload in guest 785 * dr6, three components need to be considered: active low 786 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 787 * DR6_BS and DR6_BT) 788 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 789 * In the target guest dr6: 790 * FIXED_1 bits should always be set. 791 * Active low bits should be cleared if 1-setting in payload. 792 * Active high bits should be set if 1-setting in payload. 793 * 794 * Note, the payload is compatible with the pending debug 795 * exceptions/exit qualification under VMX, that active_low bits 796 * are active high in payload. 797 * So they need to be flipped for DR6. 798 */ 799 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 800 vcpu->arch.dr6 |= ex->payload; 801 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; 802 803 /* 804 * The #DB payload is defined as compatible with the 'pending 805 * debug exceptions' field under VMX, not DR6. While bit 12 is 806 * defined in the 'pending debug exceptions' field (enabled 807 * breakpoint), it is reserved and must be zero in DR6. 808 */ 809 vcpu->arch.dr6 &= ~BIT(12); 810 break; 811 case PF_VECTOR: 812 vcpu->arch.cr2 = ex->payload; 813 break; 814 } 815 816 ex->has_payload = false; 817 ex->payload = 0; 818 } 819 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 820 821 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, 822 bool has_error_code, u32 error_code, 823 bool has_payload, unsigned long payload) 824 { 825 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 826 827 ex->vector = vector; 828 ex->injected = false; 829 ex->pending = true; 830 ex->has_error_code = has_error_code; 831 ex->error_code = error_code; 832 ex->has_payload = has_payload; 833 ex->payload = payload; 834 } 835 836 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 837 unsigned nr, bool has_error, u32 error_code, 838 bool has_payload, unsigned long payload, bool reinject) 839 { 840 u32 prev_nr; 841 int class1, class2; 842 843 kvm_make_request(KVM_REQ_EVENT, vcpu); 844 845 /* 846 * If the exception is destined for L2 and isn't being reinjected, 847 * morph it to a VM-Exit if L1 wants to intercept the exception. A 848 * previously injected exception is not checked because it was checked 849 * when it was original queued, and re-checking is incorrect if _L1_ 850 * injected the exception, in which case it's exempt from interception. 851 */ 852 if (!reinject && is_guest_mode(vcpu) && 853 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { 854 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, 855 has_payload, payload); 856 return; 857 } 858 859 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 860 queue: 861 if (reinject) { 862 /* 863 * On VM-Entry, an exception can be pending if and only 864 * if event injection was blocked by nested_run_pending. 865 * In that case, however, vcpu_enter_guest() requests an 866 * immediate exit, and the guest shouldn't proceed far 867 * enough to need reinjection. 868 */ 869 WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); 870 vcpu->arch.exception.injected = true; 871 if (WARN_ON_ONCE(has_payload)) { 872 /* 873 * A reinjected event has already 874 * delivered its payload. 875 */ 876 has_payload = false; 877 payload = 0; 878 } 879 } else { 880 vcpu->arch.exception.pending = true; 881 vcpu->arch.exception.injected = false; 882 } 883 vcpu->arch.exception.has_error_code = has_error; 884 vcpu->arch.exception.vector = nr; 885 vcpu->arch.exception.error_code = error_code; 886 vcpu->arch.exception.has_payload = has_payload; 887 vcpu->arch.exception.payload = payload; 888 if (!is_guest_mode(vcpu)) 889 kvm_deliver_exception_payload(vcpu, 890 &vcpu->arch.exception); 891 return; 892 } 893 894 /* to check exception */ 895 prev_nr = vcpu->arch.exception.vector; 896 if (prev_nr == DF_VECTOR) { 897 /* triple fault -> shutdown */ 898 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 899 return; 900 } 901 class1 = exception_class(prev_nr); 902 class2 = exception_class(nr); 903 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || 904 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 905 /* 906 * Synthesize #DF. Clear the previously injected or pending 907 * exception so as not to incorrectly trigger shutdown. 908 */ 909 vcpu->arch.exception.injected = false; 910 vcpu->arch.exception.pending = false; 911 912 kvm_queue_exception_e(vcpu, DF_VECTOR, 0); 913 } else { 914 /* replace previous exception with a new one in a hope 915 that instruction re-execution will regenerate lost 916 exception */ 917 goto queue; 918 } 919 } 920 921 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 922 { 923 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 924 } 925 EXPORT_SYMBOL_GPL(kvm_queue_exception); 926 927 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 928 { 929 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 930 } 931 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 932 933 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 934 unsigned long payload) 935 { 936 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 937 } 938 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 939 940 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 941 u32 error_code, unsigned long payload) 942 { 943 kvm_multiple_exception(vcpu, nr, true, error_code, 944 true, payload, false); 945 } 946 947 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 948 { 949 if (err) 950 kvm_inject_gp(vcpu, 0); 951 else 952 return kvm_skip_emulated_instruction(vcpu); 953 954 return 1; 955 } 956 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 957 958 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 959 { 960 if (err) { 961 kvm_inject_gp(vcpu, 0); 962 return 1; 963 } 964 965 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 966 EMULTYPE_COMPLETE_USER_EXIT); 967 } 968 969 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 970 { 971 ++vcpu->stat.pf_guest; 972 973 /* 974 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of 975 * whether or not L1 wants to intercept "regular" #PF. 976 */ 977 if (is_guest_mode(vcpu) && fault->async_page_fault) 978 kvm_queue_exception_vmexit(vcpu, PF_VECTOR, 979 true, fault->error_code, 980 true, fault->address); 981 else 982 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 983 fault->address); 984 } 985 986 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 987 struct x86_exception *fault) 988 { 989 struct kvm_mmu *fault_mmu; 990 WARN_ON_ONCE(fault->vector != PF_VECTOR); 991 992 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 993 vcpu->arch.walk_mmu; 994 995 /* 996 * Invalidate the TLB entry for the faulting address, if it exists, 997 * else the access will fault indefinitely (and to emulate hardware). 998 */ 999 if ((fault->error_code & PFERR_PRESENT_MASK) && 1000 !(fault->error_code & PFERR_RSVD_MASK)) 1001 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, 1002 KVM_MMU_ROOT_CURRENT); 1003 1004 fault_mmu->inject_page_fault(vcpu, fault); 1005 } 1006 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 1007 1008 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 1009 { 1010 atomic_inc(&vcpu->arch.nmi_queued); 1011 kvm_make_request(KVM_REQ_NMI, vcpu); 1012 } 1013 1014 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 1015 { 1016 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 1017 } 1018 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 1019 1020 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 1021 { 1022 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 1023 } 1024 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 1025 1026 /* 1027 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 1028 * a #GP and return false. 1029 */ 1030 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 1031 { 1032 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) 1033 return true; 1034 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 1035 return false; 1036 } 1037 1038 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 1039 { 1040 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) 1041 return true; 1042 1043 kvm_queue_exception(vcpu, UD_VECTOR); 1044 return false; 1045 } 1046 EXPORT_SYMBOL_GPL(kvm_require_dr); 1047 1048 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 1049 { 1050 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 1051 } 1052 1053 /* 1054 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 1055 */ 1056 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 1057 { 1058 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 1059 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 1060 gpa_t real_gpa; 1061 int i; 1062 int ret; 1063 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 1064 1065 /* 1066 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 1067 * to an L1 GPA. 1068 */ 1069 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 1070 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 1071 if (real_gpa == INVALID_GPA) 1072 return 0; 1073 1074 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 1075 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 1076 cr3 & GENMASK(11, 5), sizeof(pdpte)); 1077 if (ret < 0) 1078 return 0; 1079 1080 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 1081 if ((pdpte[i] & PT_PRESENT_MASK) && 1082 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 1083 return 0; 1084 } 1085 } 1086 1087 /* 1088 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 1089 * Shadow page roots need to be reconstructed instead. 1090 */ 1091 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 1092 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 1093 1094 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 1095 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 1096 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 1097 vcpu->arch.pdptrs_from_userspace = false; 1098 1099 return 1; 1100 } 1101 EXPORT_SYMBOL_GPL(load_pdptrs); 1102 1103 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1104 { 1105 #ifdef CONFIG_X86_64 1106 if (cr0 & 0xffffffff00000000UL) 1107 return false; 1108 #endif 1109 1110 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 1111 return false; 1112 1113 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 1114 return false; 1115 1116 return kvm_x86_call(is_valid_cr0)(vcpu, cr0); 1117 } 1118 1119 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 1120 { 1121 /* 1122 * CR0.WP is incorporated into the MMU role, but only for non-nested, 1123 * indirect shadow MMUs. If paging is disabled, no updates are needed 1124 * as there are no permission bits to emulate. If TDP is enabled, the 1125 * MMU's metadata needs to be updated, e.g. so that emulating guest 1126 * translations does the right thing, but there's no need to unload the 1127 * root as CR0.WP doesn't affect SPTEs. 1128 */ 1129 if ((cr0 ^ old_cr0) == X86_CR0_WP) { 1130 if (!(cr0 & X86_CR0_PG)) 1131 return; 1132 1133 if (tdp_enabled) { 1134 kvm_init_mmu(vcpu); 1135 return; 1136 } 1137 } 1138 1139 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 1140 kvm_clear_async_pf_completion_queue(vcpu); 1141 kvm_async_pf_hash_reset(vcpu); 1142 1143 /* 1144 * Clearing CR0.PG is defined to flush the TLB from the guest's 1145 * perspective. 1146 */ 1147 if (!(cr0 & X86_CR0_PG)) 1148 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1149 } 1150 1151 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 1152 kvm_mmu_reset_context(vcpu); 1153 } 1154 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 1155 1156 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1157 { 1158 unsigned long old_cr0 = kvm_read_cr0(vcpu); 1159 1160 if (!kvm_is_valid_cr0(vcpu, cr0)) 1161 return 1; 1162 1163 cr0 |= X86_CR0_ET; 1164 1165 /* Write to CR0 reserved bits are ignored, even on Intel. */ 1166 cr0 &= ~CR0_RESERVED_BITS; 1167 1168 #ifdef CONFIG_X86_64 1169 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 1170 (cr0 & X86_CR0_PG)) { 1171 int cs_db, cs_l; 1172 1173 if (!is_pae(vcpu)) 1174 return 1; 1175 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 1176 if (cs_l) 1177 return 1; 1178 } 1179 #endif 1180 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 1181 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 1182 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1183 return 1; 1184 1185 if (!(cr0 & X86_CR0_PG) && 1186 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) 1187 return 1; 1188 1189 kvm_x86_call(set_cr0)(vcpu, cr0); 1190 1191 kvm_post_set_cr0(vcpu, old_cr0, cr0); 1192 1193 return 0; 1194 } 1195 EXPORT_SYMBOL_GPL(kvm_set_cr0); 1196 1197 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 1198 { 1199 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 1200 } 1201 EXPORT_SYMBOL_GPL(kvm_lmsw); 1202 1203 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 1204 { 1205 if (vcpu->arch.guest_state_protected) 1206 return; 1207 1208 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1209 1210 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1211 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 1212 1213 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1214 vcpu->arch.ia32_xss != kvm_host.xss) 1215 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 1216 } 1217 1218 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1219 vcpu->arch.pkru != vcpu->arch.host_pkru && 1220 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1221 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) 1222 write_pkru(vcpu->arch.pkru); 1223 } 1224 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1225 1226 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1227 { 1228 if (vcpu->arch.guest_state_protected) 1229 return; 1230 1231 if (cpu_feature_enabled(X86_FEATURE_PKU) && 1232 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1233 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { 1234 vcpu->arch.pkru = rdpkru(); 1235 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1236 write_pkru(vcpu->arch.host_pkru); 1237 } 1238 1239 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { 1240 1241 if (vcpu->arch.xcr0 != kvm_host.xcr0) 1242 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); 1243 1244 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 1245 vcpu->arch.ia32_xss != kvm_host.xss) 1246 wrmsrl(MSR_IA32_XSS, kvm_host.xss); 1247 } 1248 1249 } 1250 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1251 1252 #ifdef CONFIG_X86_64 1253 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1254 { 1255 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; 1256 } 1257 #endif 1258 1259 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1260 { 1261 u64 xcr0 = xcr; 1262 u64 old_xcr0 = vcpu->arch.xcr0; 1263 u64 valid_bits; 1264 1265 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1266 if (index != XCR_XFEATURE_ENABLED_MASK) 1267 return 1; 1268 if (!(xcr0 & XFEATURE_MASK_FP)) 1269 return 1; 1270 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1271 return 1; 1272 1273 /* 1274 * Do not allow the guest to set bits that we do not support 1275 * saving. However, xcr0 bit 0 is always set, even if the 1276 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1277 */ 1278 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 1279 if (xcr0 & ~valid_bits) 1280 return 1; 1281 1282 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1283 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1284 return 1; 1285 1286 if (xcr0 & XFEATURE_MASK_AVX512) { 1287 if (!(xcr0 & XFEATURE_MASK_YMM)) 1288 return 1; 1289 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1290 return 1; 1291 } 1292 1293 if ((xcr0 & XFEATURE_MASK_XTILE) && 1294 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1295 return 1; 1296 1297 vcpu->arch.xcr0 = xcr0; 1298 1299 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1300 kvm_update_cpuid_runtime(vcpu); 1301 return 0; 1302 } 1303 1304 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1305 { 1306 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ 1307 if (kvm_x86_call(get_cpl)(vcpu) != 0 || 1308 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1309 kvm_inject_gp(vcpu, 0); 1310 return 1; 1311 } 1312 1313 return kvm_skip_emulated_instruction(vcpu); 1314 } 1315 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1316 1317 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1318 { 1319 if (cr4 & cr4_reserved_bits) 1320 return false; 1321 1322 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1323 return false; 1324 1325 return true; 1326 } 1327 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); 1328 1329 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1330 { 1331 return __kvm_is_valid_cr4(vcpu, cr4) && 1332 kvm_x86_call(is_valid_cr4)(vcpu, cr4); 1333 } 1334 1335 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1336 { 1337 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1338 kvm_mmu_reset_context(vcpu); 1339 1340 /* 1341 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1342 * according to the SDM; however, stale prev_roots could be reused 1343 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1344 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1345 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1346 * so fall through. 1347 */ 1348 if (!tdp_enabled && 1349 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1350 kvm_mmu_unload(vcpu); 1351 1352 /* 1353 * The TLB has to be flushed for all PCIDs if any of the following 1354 * (architecturally required) changes happen: 1355 * - CR4.PCIDE is changed from 1 to 0 1356 * - CR4.PGE is toggled 1357 * 1358 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1359 */ 1360 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1361 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1362 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1363 1364 /* 1365 * The TLB has to be flushed for the current PCID if any of the 1366 * following (architecturally required) changes happen: 1367 * - CR4.SMEP is changed from 0 to 1 1368 * - CR4.PAE is toggled 1369 */ 1370 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1371 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1372 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1373 1374 } 1375 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1376 1377 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1378 { 1379 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1380 1381 if (!kvm_is_valid_cr4(vcpu, cr4)) 1382 return 1; 1383 1384 if (is_long_mode(vcpu)) { 1385 if (!(cr4 & X86_CR4_PAE)) 1386 return 1; 1387 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1388 return 1; 1389 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1390 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1391 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1392 return 1; 1393 1394 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1395 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1396 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1397 return 1; 1398 } 1399 1400 kvm_x86_call(set_cr4)(vcpu, cr4); 1401 1402 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1403 1404 return 0; 1405 } 1406 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1407 1408 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1409 { 1410 struct kvm_mmu *mmu = vcpu->arch.mmu; 1411 unsigned long roots_to_free = 0; 1412 int i; 1413 1414 /* 1415 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1416 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1417 * also via the emulator. KVM's TDP page tables are not in the scope of 1418 * the invalidation, but the guest's TLB entries need to be flushed as 1419 * the CPU may have cached entries in its TLB for the target PCID. 1420 */ 1421 if (unlikely(tdp_enabled)) { 1422 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1423 return; 1424 } 1425 1426 /* 1427 * If neither the current CR3 nor any of the prev_roots use the given 1428 * PCID, then nothing needs to be done here because a resync will 1429 * happen anyway before switching to any other CR3. 1430 */ 1431 if (kvm_get_active_pcid(vcpu) == pcid) { 1432 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1433 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1434 } 1435 1436 /* 1437 * If PCID is disabled, there is no need to free prev_roots even if the 1438 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1439 * with PCIDE=0. 1440 */ 1441 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) 1442 return; 1443 1444 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1445 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1446 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1447 1448 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1449 } 1450 1451 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1452 { 1453 bool skip_tlb_flush = false; 1454 unsigned long pcid = 0; 1455 #ifdef CONFIG_X86_64 1456 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { 1457 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1458 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1459 pcid = cr3 & X86_CR3_PCID_MASK; 1460 } 1461 #endif 1462 1463 /* PDPTRs are always reloaded for PAE paging. */ 1464 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1465 goto handle_tlb_flush; 1466 1467 /* 1468 * Do not condition the GPA check on long mode, this helper is used to 1469 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1470 * the current vCPU mode is accurate. 1471 */ 1472 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) 1473 return 1; 1474 1475 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1476 return 1; 1477 1478 if (cr3 != kvm_read_cr3(vcpu)) 1479 kvm_mmu_new_pgd(vcpu, cr3); 1480 1481 vcpu->arch.cr3 = cr3; 1482 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1483 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1484 1485 handle_tlb_flush: 1486 /* 1487 * A load of CR3 that flushes the TLB flushes only the current PCID, 1488 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1489 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1490 * and it's impossible to use a non-zero PCID when PCID is disabled, 1491 * i.e. only PCID=0 can be relevant. 1492 */ 1493 if (!skip_tlb_flush) 1494 kvm_invalidate_pcid(vcpu, pcid); 1495 1496 return 0; 1497 } 1498 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1499 1500 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1501 { 1502 if (cr8 & CR8_RESERVED_BITS) 1503 return 1; 1504 if (lapic_in_kernel(vcpu)) 1505 kvm_lapic_set_tpr(vcpu, cr8); 1506 else 1507 vcpu->arch.cr8 = cr8; 1508 return 0; 1509 } 1510 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1511 1512 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1513 { 1514 if (lapic_in_kernel(vcpu)) 1515 return kvm_lapic_get_cr8(vcpu); 1516 else 1517 return vcpu->arch.cr8; 1518 } 1519 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1520 1521 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1522 { 1523 int i; 1524 1525 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1526 for (i = 0; i < KVM_NR_DB_REGS; i++) 1527 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1528 } 1529 } 1530 1531 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1532 { 1533 unsigned long dr7; 1534 1535 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1536 dr7 = vcpu->arch.guest_debug_dr7; 1537 else 1538 dr7 = vcpu->arch.dr7; 1539 kvm_x86_call(set_dr7)(vcpu, dr7); 1540 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1541 if (dr7 & DR7_BP_EN_MASK) 1542 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1543 } 1544 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1545 1546 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1547 { 1548 u64 fixed = DR6_FIXED_1; 1549 1550 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1551 fixed |= DR6_RTM; 1552 1553 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1554 fixed |= DR6_BUS_LOCK; 1555 return fixed; 1556 } 1557 1558 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1559 { 1560 size_t size = ARRAY_SIZE(vcpu->arch.db); 1561 1562 switch (dr) { 1563 case 0 ... 3: 1564 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1565 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1566 vcpu->arch.eff_db[dr] = val; 1567 break; 1568 case 4: 1569 case 6: 1570 if (!kvm_dr6_valid(val)) 1571 return 1; /* #GP */ 1572 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1573 break; 1574 case 5: 1575 default: /* 7 */ 1576 if (!kvm_dr7_valid(val)) 1577 return 1; /* #GP */ 1578 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1579 kvm_update_dr7(vcpu); 1580 break; 1581 } 1582 1583 return 0; 1584 } 1585 EXPORT_SYMBOL_GPL(kvm_set_dr); 1586 1587 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) 1588 { 1589 size_t size = ARRAY_SIZE(vcpu->arch.db); 1590 1591 switch (dr) { 1592 case 0 ... 3: 1593 return vcpu->arch.db[array_index_nospec(dr, size)]; 1594 case 4: 1595 case 6: 1596 return vcpu->arch.dr6; 1597 case 5: 1598 default: /* 7 */ 1599 return vcpu->arch.dr7; 1600 } 1601 } 1602 EXPORT_SYMBOL_GPL(kvm_get_dr); 1603 1604 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1605 { 1606 u32 ecx = kvm_rcx_read(vcpu); 1607 u64 data; 1608 1609 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1610 kvm_inject_gp(vcpu, 0); 1611 return 1; 1612 } 1613 1614 kvm_rax_write(vcpu, (u32)data); 1615 kvm_rdx_write(vcpu, data >> 32); 1616 return kvm_skip_emulated_instruction(vcpu); 1617 } 1618 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1619 1620 /* 1621 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM 1622 * does not yet virtualize. These include: 1623 * 10 - MISC_PACKAGE_CTRLS 1624 * 11 - ENERGY_FILTERING_CTL 1625 * 12 - DOITM 1626 * 18 - FB_CLEAR_CTRL 1627 * 21 - XAPIC_DISABLE_STATUS 1628 * 23 - OVERCLOCKING_STATUS 1629 */ 1630 1631 #define KVM_SUPPORTED_ARCH_CAP \ 1632 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ 1633 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ 1634 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ 1635 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ 1636 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ 1637 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO) 1638 1639 static u64 kvm_get_arch_capabilities(void) 1640 { 1641 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; 1642 1643 /* 1644 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1645 * the nested hypervisor runs with NX huge pages. If it is not, 1646 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1647 * L1 guests, so it need not worry about its own (L2) guests. 1648 */ 1649 data |= ARCH_CAP_PSCHANGE_MC_NO; 1650 1651 /* 1652 * If we're doing cache flushes (either "always" or "cond") 1653 * we will do one whenever the guest does a vmlaunch/vmresume. 1654 * If an outer hypervisor is doing the cache flush for us 1655 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that 1656 * capability to the guest too, and if EPT is disabled we're not 1657 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1658 * require a nested hypervisor to do a flush of its own. 1659 */ 1660 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1661 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1662 1663 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1664 data |= ARCH_CAP_RDCL_NO; 1665 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1666 data |= ARCH_CAP_SSB_NO; 1667 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1668 data |= ARCH_CAP_MDS_NO; 1669 if (!boot_cpu_has_bug(X86_BUG_RFDS)) 1670 data |= ARCH_CAP_RFDS_NO; 1671 1672 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1673 /* 1674 * If RTM=0 because the kernel has disabled TSX, the host might 1675 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1676 * and therefore knows that there cannot be TAA) but keep 1677 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1678 * and we want to allow migrating those guests to tsx=off hosts. 1679 */ 1680 data &= ~ARCH_CAP_TAA_NO; 1681 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1682 data |= ARCH_CAP_TAA_NO; 1683 } else { 1684 /* 1685 * Nothing to do here; we emulate TSX_CTRL if present on the 1686 * host so the guest can choose between disabling TSX or 1687 * using VERW to clear CPU buffers. 1688 */ 1689 } 1690 1691 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) 1692 data |= ARCH_CAP_GDS_NO; 1693 1694 return data; 1695 } 1696 1697 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1698 bool host_initiated) 1699 { 1700 WARN_ON_ONCE(!host_initiated); 1701 1702 switch (index) { 1703 case MSR_IA32_ARCH_CAPABILITIES: 1704 *data = kvm_get_arch_capabilities(); 1705 break; 1706 case MSR_IA32_PERF_CAPABILITIES: 1707 *data = kvm_caps.supported_perf_cap; 1708 break; 1709 case MSR_IA32_UCODE_REV: 1710 rdmsrl_safe(index, data); 1711 break; 1712 default: 1713 return kvm_x86_call(get_feature_msr)(index, data); 1714 } 1715 return 0; 1716 } 1717 1718 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1719 { 1720 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R, 1721 kvm_get_feature_msr); 1722 } 1723 1724 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1725 { 1726 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) 1727 return false; 1728 1729 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1730 return false; 1731 1732 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1733 return false; 1734 1735 if (efer & (EFER_LME | EFER_LMA) && 1736 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1737 return false; 1738 1739 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1740 return false; 1741 1742 return true; 1743 1744 } 1745 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1746 { 1747 if (efer & efer_reserved_bits) 1748 return false; 1749 1750 return __kvm_valid_efer(vcpu, efer); 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1753 1754 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1755 { 1756 u64 old_efer = vcpu->arch.efer; 1757 u64 efer = msr_info->data; 1758 int r; 1759 1760 if (efer & efer_reserved_bits) 1761 return 1; 1762 1763 if (!msr_info->host_initiated) { 1764 if (!__kvm_valid_efer(vcpu, efer)) 1765 return 1; 1766 1767 if (is_paging(vcpu) && 1768 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1769 return 1; 1770 } 1771 1772 efer &= ~EFER_LMA; 1773 efer |= vcpu->arch.efer & EFER_LMA; 1774 1775 r = kvm_x86_call(set_efer)(vcpu, efer); 1776 if (r) { 1777 WARN_ON(r > 0); 1778 return r; 1779 } 1780 1781 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1782 kvm_mmu_reset_context(vcpu); 1783 1784 if (!static_cpu_has(X86_FEATURE_XSAVES) && 1785 (efer & EFER_SVME)) 1786 kvm_hv_xsaves_xsavec_maybe_warn(vcpu); 1787 1788 return 0; 1789 } 1790 1791 void kvm_enable_efer_bits(u64 mask) 1792 { 1793 efer_reserved_bits &= ~mask; 1794 } 1795 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1796 1797 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1798 { 1799 struct kvm_x86_msr_filter *msr_filter; 1800 struct msr_bitmap_range *ranges; 1801 struct kvm *kvm = vcpu->kvm; 1802 bool allowed; 1803 int idx; 1804 u32 i; 1805 1806 /* x2APIC MSRs do not support filtering. */ 1807 if (index >= 0x800 && index <= 0x8ff) 1808 return true; 1809 1810 idx = srcu_read_lock(&kvm->srcu); 1811 1812 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1813 if (!msr_filter) { 1814 allowed = true; 1815 goto out; 1816 } 1817 1818 allowed = msr_filter->default_allow; 1819 ranges = msr_filter->ranges; 1820 1821 for (i = 0; i < msr_filter->count; i++) { 1822 u32 start = ranges[i].base; 1823 u32 end = start + ranges[i].nmsrs; 1824 u32 flags = ranges[i].flags; 1825 unsigned long *bitmap = ranges[i].bitmap; 1826 1827 if ((index >= start) && (index < end) && (flags & type)) { 1828 allowed = test_bit(index - start, bitmap); 1829 break; 1830 } 1831 } 1832 1833 out: 1834 srcu_read_unlock(&kvm->srcu, idx); 1835 1836 return allowed; 1837 } 1838 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1839 1840 /* 1841 * Write @data into the MSR specified by @index. Select MSR specific fault 1842 * checks are bypassed if @host_initiated is %true. 1843 * Returns 0 on success, non-0 otherwise. 1844 * Assumes vcpu_load() was already called. 1845 */ 1846 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1847 bool host_initiated) 1848 { 1849 struct msr_data msr; 1850 1851 switch (index) { 1852 case MSR_FS_BASE: 1853 case MSR_GS_BASE: 1854 case MSR_KERNEL_GS_BASE: 1855 case MSR_CSTAR: 1856 case MSR_LSTAR: 1857 if (is_noncanonical_address(data, vcpu)) 1858 return 1; 1859 break; 1860 case MSR_IA32_SYSENTER_EIP: 1861 case MSR_IA32_SYSENTER_ESP: 1862 /* 1863 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1864 * non-canonical address is written on Intel but not on 1865 * AMD (which ignores the top 32-bits, because it does 1866 * not implement 64-bit SYSENTER). 1867 * 1868 * 64-bit code should hence be able to write a non-canonical 1869 * value on AMD. Making the address canonical ensures that 1870 * vmentry does not fail on Intel after writing a non-canonical 1871 * value, and that something deterministic happens if the guest 1872 * invokes 64-bit SYSENTER. 1873 */ 1874 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1875 break; 1876 case MSR_TSC_AUX: 1877 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1878 return 1; 1879 1880 if (!host_initiated && 1881 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1882 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1883 return 1; 1884 1885 /* 1886 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1887 * incomplete and conflicting architectural behavior. Current 1888 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1889 * reserved and always read as zeros. Enforce Intel's reserved 1890 * bits check if the guest CPU is Intel compatible, otherwise 1891 * clear the bits. This ensures cross-vendor migration will 1892 * provide consistent behavior for the guest. 1893 */ 1894 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) 1895 return 1; 1896 1897 data = (u32)data; 1898 break; 1899 } 1900 1901 msr.data = data; 1902 msr.index = index; 1903 msr.host_initiated = host_initiated; 1904 1905 return kvm_x86_call(set_msr)(vcpu, &msr); 1906 } 1907 1908 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1909 bool host_initiated) 1910 { 1911 return __kvm_set_msr(vcpu, index, *data, host_initiated); 1912 } 1913 1914 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1915 u32 index, u64 data, bool host_initiated) 1916 { 1917 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W, 1918 _kvm_set_msr); 1919 } 1920 1921 /* 1922 * Read the MSR specified by @index into @data. Select MSR specific fault 1923 * checks are bypassed if @host_initiated is %true. 1924 * Returns 0 on success, non-0 otherwise. 1925 * Assumes vcpu_load() was already called. 1926 */ 1927 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1928 bool host_initiated) 1929 { 1930 struct msr_data msr; 1931 int ret; 1932 1933 switch (index) { 1934 case MSR_TSC_AUX: 1935 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1936 return 1; 1937 1938 if (!host_initiated && 1939 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1940 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1941 return 1; 1942 break; 1943 } 1944 1945 msr.index = index; 1946 msr.host_initiated = host_initiated; 1947 1948 ret = kvm_x86_call(get_msr)(vcpu, &msr); 1949 if (!ret) 1950 *data = msr.data; 1951 return ret; 1952 } 1953 1954 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1955 u32 index, u64 *data, bool host_initiated) 1956 { 1957 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R, 1958 __kvm_get_msr); 1959 } 1960 1961 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1962 { 1963 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1964 return KVM_MSR_RET_FILTERED; 1965 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1966 } 1967 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter); 1968 1969 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1970 { 1971 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1972 return KVM_MSR_RET_FILTERED; 1973 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1974 } 1975 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter); 1976 1977 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1978 { 1979 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1980 } 1981 EXPORT_SYMBOL_GPL(kvm_get_msr); 1982 1983 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1984 { 1985 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1986 } 1987 EXPORT_SYMBOL_GPL(kvm_set_msr); 1988 1989 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1990 { 1991 if (!vcpu->run->msr.error) { 1992 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1993 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1994 } 1995 } 1996 1997 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1998 { 1999 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 2000 } 2001 2002 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 2003 { 2004 complete_userspace_rdmsr(vcpu); 2005 return complete_emulated_msr_access(vcpu); 2006 } 2007 2008 static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 2009 { 2010 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); 2011 } 2012 2013 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 2014 { 2015 complete_userspace_rdmsr(vcpu); 2016 return complete_fast_msr_access(vcpu); 2017 } 2018 2019 static u64 kvm_msr_reason(int r) 2020 { 2021 switch (r) { 2022 case KVM_MSR_RET_UNSUPPORTED: 2023 return KVM_MSR_EXIT_REASON_UNKNOWN; 2024 case KVM_MSR_RET_FILTERED: 2025 return KVM_MSR_EXIT_REASON_FILTER; 2026 default: 2027 return KVM_MSR_EXIT_REASON_INVAL; 2028 } 2029 } 2030 2031 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 2032 u32 exit_reason, u64 data, 2033 int (*completion)(struct kvm_vcpu *vcpu), 2034 int r) 2035 { 2036 u64 msr_reason = kvm_msr_reason(r); 2037 2038 /* Check if the user wanted to know about this MSR fault */ 2039 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 2040 return 0; 2041 2042 vcpu->run->exit_reason = exit_reason; 2043 vcpu->run->msr.error = 0; 2044 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 2045 vcpu->run->msr.reason = msr_reason; 2046 vcpu->run->msr.index = index; 2047 vcpu->run->msr.data = data; 2048 vcpu->arch.complete_userspace_io = completion; 2049 2050 return 1; 2051 } 2052 2053 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 2054 { 2055 u32 ecx = kvm_rcx_read(vcpu); 2056 u64 data; 2057 int r; 2058 2059 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2060 2061 if (!r) { 2062 trace_kvm_msr_read(ecx, data); 2063 2064 kvm_rax_write(vcpu, data & -1u); 2065 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2066 } else { 2067 /* MSR read failed? See if we should ask user space */ 2068 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2069 complete_fast_rdmsr, r)) 2070 return 0; 2071 trace_kvm_msr_read_ex(ecx); 2072 } 2073 2074 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2075 } 2076 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2077 2078 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2079 { 2080 u32 ecx = kvm_rcx_read(vcpu); 2081 u64 data = kvm_read_edx_eax(vcpu); 2082 int r; 2083 2084 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2085 2086 if (!r) { 2087 trace_kvm_msr_write(ecx, data); 2088 } else { 2089 /* MSR write failed? See if we should ask user space */ 2090 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2091 complete_fast_msr_access, r)) 2092 return 0; 2093 /* Signal all other negative errors to userspace */ 2094 if (r < 0) 2095 return r; 2096 trace_kvm_msr_write_ex(ecx, data); 2097 } 2098 2099 return kvm_x86_call(complete_emulated_msr)(vcpu, r); 2100 } 2101 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2102 2103 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2104 { 2105 return kvm_skip_emulated_instruction(vcpu); 2106 } 2107 2108 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2109 { 2110 /* Treat an INVD instruction as a NOP and just skip it. */ 2111 return kvm_emulate_as_nop(vcpu); 2112 } 2113 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2114 2115 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2116 { 2117 kvm_queue_exception(vcpu, UD_VECTOR); 2118 return 1; 2119 } 2120 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2121 2122 2123 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) 2124 { 2125 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && 2126 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) 2127 return kvm_handle_invalid_op(vcpu); 2128 2129 pr_warn_once("%s instruction emulated as NOP!\n", insn); 2130 return kvm_emulate_as_nop(vcpu); 2131 } 2132 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2133 { 2134 return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); 2135 } 2136 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2137 2138 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2139 { 2140 return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); 2141 } 2142 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2143 2144 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2145 { 2146 xfer_to_guest_mode_prepare(); 2147 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2148 xfer_to_guest_mode_work_pending(); 2149 } 2150 2151 /* 2152 * The fast path for frequent and performance sensitive wrmsr emulation, 2153 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2154 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2155 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2156 * other cases which must be called after interrupts are enabled on the host. 2157 */ 2158 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2159 { 2160 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2161 return 1; 2162 2163 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2164 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2165 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2166 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2167 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2168 2169 return 1; 2170 } 2171 2172 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2173 { 2174 if (!kvm_can_use_hv_timer(vcpu)) 2175 return 1; 2176 2177 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2178 return 0; 2179 } 2180 2181 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2182 { 2183 u32 msr = kvm_rcx_read(vcpu); 2184 u64 data; 2185 fastpath_t ret; 2186 bool handled; 2187 2188 kvm_vcpu_srcu_read_lock(vcpu); 2189 2190 switch (msr) { 2191 case APIC_BASE_MSR + (APIC_ICR >> 4): 2192 data = kvm_read_edx_eax(vcpu); 2193 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); 2194 break; 2195 case MSR_IA32_TSC_DEADLINE: 2196 data = kvm_read_edx_eax(vcpu); 2197 handled = !handle_fastpath_set_tscdeadline(vcpu, data); 2198 break; 2199 default: 2200 handled = false; 2201 break; 2202 } 2203 2204 if (handled) { 2205 if (!kvm_skip_emulated_instruction(vcpu)) 2206 ret = EXIT_FASTPATH_EXIT_USERSPACE; 2207 else 2208 ret = EXIT_FASTPATH_REENTER_GUEST; 2209 trace_kvm_msr_write(msr, data); 2210 } else { 2211 ret = EXIT_FASTPATH_NONE; 2212 } 2213 2214 kvm_vcpu_srcu_read_unlock(vcpu); 2215 2216 return ret; 2217 } 2218 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2219 2220 /* 2221 * Adapt set_msr() to msr_io()'s calling convention 2222 */ 2223 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2224 { 2225 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2226 } 2227 2228 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2229 { 2230 u64 val; 2231 2232 /* 2233 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does 2234 * not support modifying the guest vCPU model on the fly, e.g. changing 2235 * the nVMX capabilities while L2 is running is nonsensical. Allow 2236 * writes of the same value, e.g. to allow userspace to blindly stuff 2237 * all MSRs when emulating RESET. 2238 */ 2239 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && 2240 (do_get_msr(vcpu, index, &val) || *data != val)) 2241 return -EINVAL; 2242 2243 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2244 } 2245 2246 #ifdef CONFIG_X86_64 2247 struct pvclock_clock { 2248 int vclock_mode; 2249 u64 cycle_last; 2250 u64 mask; 2251 u32 mult; 2252 u32 shift; 2253 u64 base_cycles; 2254 u64 offset; 2255 }; 2256 2257 struct pvclock_gtod_data { 2258 seqcount_t seq; 2259 2260 struct pvclock_clock clock; /* extract of a clocksource struct */ 2261 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2262 2263 ktime_t offs_boot; 2264 u64 wall_time_sec; 2265 }; 2266 2267 static struct pvclock_gtod_data pvclock_gtod_data; 2268 2269 static void update_pvclock_gtod(struct timekeeper *tk) 2270 { 2271 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2272 2273 write_seqcount_begin(&vdata->seq); 2274 2275 /* copy pvclock gtod data */ 2276 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2277 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2278 vdata->clock.mask = tk->tkr_mono.mask; 2279 vdata->clock.mult = tk->tkr_mono.mult; 2280 vdata->clock.shift = tk->tkr_mono.shift; 2281 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2282 vdata->clock.offset = tk->tkr_mono.base; 2283 2284 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2285 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2286 vdata->raw_clock.mask = tk->tkr_raw.mask; 2287 vdata->raw_clock.mult = tk->tkr_raw.mult; 2288 vdata->raw_clock.shift = tk->tkr_raw.shift; 2289 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2290 vdata->raw_clock.offset = tk->tkr_raw.base; 2291 2292 vdata->wall_time_sec = tk->xtime_sec; 2293 2294 vdata->offs_boot = tk->offs_boot; 2295 2296 write_seqcount_end(&vdata->seq); 2297 } 2298 2299 static s64 get_kvmclock_base_ns(void) 2300 { 2301 /* Count up from boot time, but with the frequency of the raw clock. */ 2302 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2303 } 2304 #else 2305 static s64 get_kvmclock_base_ns(void) 2306 { 2307 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2308 return ktime_get_boottime_ns(); 2309 } 2310 #endif 2311 2312 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2313 { 2314 int version; 2315 int r; 2316 struct pvclock_wall_clock wc; 2317 u32 wc_sec_hi; 2318 u64 wall_nsec; 2319 2320 if (!wall_clock) 2321 return; 2322 2323 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2324 if (r) 2325 return; 2326 2327 if (version & 1) 2328 ++version; /* first time write, random junk */ 2329 2330 ++version; 2331 2332 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2333 return; 2334 2335 wall_nsec = kvm_get_wall_clock_epoch(kvm); 2336 2337 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); 2338 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2339 wc.version = version; 2340 2341 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2342 2343 if (sec_hi_ofs) { 2344 wc_sec_hi = wall_nsec >> 32; 2345 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2346 &wc_sec_hi, sizeof(wc_sec_hi)); 2347 } 2348 2349 version++; 2350 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2351 } 2352 2353 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2354 bool old_msr, bool host_initiated) 2355 { 2356 struct kvm_arch *ka = &vcpu->kvm->arch; 2357 2358 if (vcpu->vcpu_id == 0 && !host_initiated) { 2359 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2360 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2361 2362 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2363 } 2364 2365 vcpu->arch.time = system_time; 2366 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2367 2368 /* we verify if the enable bit is set... */ 2369 if (system_time & 1) 2370 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, 2371 sizeof(struct pvclock_vcpu_time_info)); 2372 else 2373 kvm_gpc_deactivate(&vcpu->arch.pv_time); 2374 2375 return; 2376 } 2377 2378 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2379 { 2380 do_shl32_div32(dividend, divisor); 2381 return dividend; 2382 } 2383 2384 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2385 s8 *pshift, u32 *pmultiplier) 2386 { 2387 uint64_t scaled64; 2388 int32_t shift = 0; 2389 uint64_t tps64; 2390 uint32_t tps32; 2391 2392 tps64 = base_hz; 2393 scaled64 = scaled_hz; 2394 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2395 tps64 >>= 1; 2396 shift--; 2397 } 2398 2399 tps32 = (uint32_t)tps64; 2400 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2401 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2402 scaled64 >>= 1; 2403 else 2404 tps32 <<= 1; 2405 shift++; 2406 } 2407 2408 *pshift = shift; 2409 *pmultiplier = div_frac(scaled64, tps32); 2410 } 2411 2412 #ifdef CONFIG_X86_64 2413 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2414 #endif 2415 2416 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2417 static unsigned long max_tsc_khz; 2418 2419 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2420 { 2421 u64 v = (u64)khz * (1000000 + ppm); 2422 do_div(v, 1000000); 2423 return v; 2424 } 2425 2426 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2427 2428 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2429 { 2430 u64 ratio; 2431 2432 /* Guest TSC same frequency as host TSC? */ 2433 if (!scale) { 2434 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2435 return 0; 2436 } 2437 2438 /* TSC scaling supported? */ 2439 if (!kvm_caps.has_tsc_control) { 2440 if (user_tsc_khz > tsc_khz) { 2441 vcpu->arch.tsc_catchup = 1; 2442 vcpu->arch.tsc_always_catchup = 1; 2443 return 0; 2444 } else { 2445 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2446 return -1; 2447 } 2448 } 2449 2450 /* TSC scaling required - calculate ratio */ 2451 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, 2452 user_tsc_khz, tsc_khz); 2453 2454 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { 2455 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2456 user_tsc_khz); 2457 return -1; 2458 } 2459 2460 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2461 return 0; 2462 } 2463 2464 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2465 { 2466 u32 thresh_lo, thresh_hi; 2467 int use_scaling = 0; 2468 2469 /* tsc_khz can be zero if TSC calibration fails */ 2470 if (user_tsc_khz == 0) { 2471 /* set tsc_scaling_ratio to a safe value */ 2472 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); 2473 return -1; 2474 } 2475 2476 /* Compute a scale to convert nanoseconds in TSC cycles */ 2477 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2478 &vcpu->arch.virtual_tsc_shift, 2479 &vcpu->arch.virtual_tsc_mult); 2480 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2481 2482 /* 2483 * Compute the variation in TSC rate which is acceptable 2484 * within the range of tolerance and decide if the 2485 * rate being applied is within that bounds of the hardware 2486 * rate. If so, no scaling or compensation need be done. 2487 */ 2488 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2489 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2490 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2491 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", 2492 user_tsc_khz, thresh_lo, thresh_hi); 2493 use_scaling = 1; 2494 } 2495 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2496 } 2497 2498 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2499 { 2500 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2501 vcpu->arch.virtual_tsc_mult, 2502 vcpu->arch.virtual_tsc_shift); 2503 tsc += vcpu->arch.this_tsc_write; 2504 return tsc; 2505 } 2506 2507 #ifdef CONFIG_X86_64 2508 static inline bool gtod_is_based_on_tsc(int mode) 2509 { 2510 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2511 } 2512 #endif 2513 2514 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) 2515 { 2516 #ifdef CONFIG_X86_64 2517 struct kvm_arch *ka = &vcpu->kvm->arch; 2518 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2519 2520 /* 2521 * To use the masterclock, the host clocksource must be based on TSC 2522 * and all vCPUs must have matching TSCs. Note, the count for matching 2523 * vCPUs doesn't include the reference vCPU, hence "+1". 2524 */ 2525 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == 2526 atomic_read(&vcpu->kvm->online_vcpus)) && 2527 gtod_is_based_on_tsc(gtod->clock.vclock_mode); 2528 2529 /* 2530 * Request a masterclock update if the masterclock needs to be toggled 2531 * on/off, or when starting a new generation and the masterclock is 2532 * enabled (compute_guest_tsc() requires the masterclock snapshot to be 2533 * taken _after_ the new generation is created). 2534 */ 2535 if ((ka->use_master_clock && new_generation) || 2536 (ka->use_master_clock != use_master_clock)) 2537 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2538 2539 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2540 atomic_read(&vcpu->kvm->online_vcpus), 2541 ka->use_master_clock, gtod->clock.vclock_mode); 2542 #endif 2543 } 2544 2545 /* 2546 * Multiply tsc by a fixed point number represented by ratio. 2547 * 2548 * The most significant 64-N bits (mult) of ratio represent the 2549 * integral part of the fixed point number; the remaining N bits 2550 * (frac) represent the fractional part, ie. ratio represents a fixed 2551 * point number (mult + frac * 2^(-N)). 2552 * 2553 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. 2554 */ 2555 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2556 { 2557 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); 2558 } 2559 2560 u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2561 { 2562 u64 _tsc = tsc; 2563 2564 if (ratio != kvm_caps.default_tsc_scaling_ratio) 2565 _tsc = __scale_tsc(ratio, tsc); 2566 2567 return _tsc; 2568 } 2569 2570 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2571 { 2572 u64 tsc; 2573 2574 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2575 2576 return target_tsc - tsc; 2577 } 2578 2579 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2580 { 2581 return vcpu->arch.l1_tsc_offset + 2582 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2583 } 2584 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2585 2586 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2587 { 2588 u64 nested_offset; 2589 2590 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) 2591 nested_offset = l1_offset; 2592 else 2593 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2594 kvm_caps.tsc_scaling_ratio_frac_bits); 2595 2596 nested_offset += l2_offset; 2597 return nested_offset; 2598 } 2599 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2600 2601 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2602 { 2603 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) 2604 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2605 kvm_caps.tsc_scaling_ratio_frac_bits); 2606 2607 return l1_multiplier; 2608 } 2609 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2610 2611 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2612 { 2613 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2614 vcpu->arch.l1_tsc_offset, 2615 l1_offset); 2616 2617 vcpu->arch.l1_tsc_offset = l1_offset; 2618 2619 /* 2620 * If we are here because L1 chose not to trap WRMSR to TSC then 2621 * according to the spec this should set L1's TSC (as opposed to 2622 * setting L1's offset for L2). 2623 */ 2624 if (is_guest_mode(vcpu)) 2625 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2626 l1_offset, 2627 kvm_x86_call(get_l2_tsc_offset)(vcpu), 2628 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2629 else 2630 vcpu->arch.tsc_offset = l1_offset; 2631 2632 kvm_x86_call(write_tsc_offset)(vcpu); 2633 } 2634 2635 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2636 { 2637 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2638 2639 /* Userspace is changing the multiplier while L2 is active */ 2640 if (is_guest_mode(vcpu)) 2641 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2642 l1_multiplier, 2643 kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); 2644 else 2645 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2646 2647 if (kvm_caps.has_tsc_control) 2648 kvm_x86_call(write_tsc_multiplier)(vcpu); 2649 } 2650 2651 static inline bool kvm_check_tsc_unstable(void) 2652 { 2653 #ifdef CONFIG_X86_64 2654 /* 2655 * TSC is marked unstable when we're running on Hyper-V, 2656 * 'TSC page' clocksource is good. 2657 */ 2658 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2659 return false; 2660 #endif 2661 return check_tsc_unstable(); 2662 } 2663 2664 /* 2665 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2666 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2667 * participates in. 2668 */ 2669 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2670 u64 ns, bool matched) 2671 { 2672 struct kvm *kvm = vcpu->kvm; 2673 2674 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2675 2676 /* 2677 * We also track th most recent recorded KHZ, write and time to 2678 * allow the matching interval to be extended at each write. 2679 */ 2680 kvm->arch.last_tsc_nsec = ns; 2681 kvm->arch.last_tsc_write = tsc; 2682 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2683 kvm->arch.last_tsc_offset = offset; 2684 2685 vcpu->arch.last_guest_tsc = tsc; 2686 2687 kvm_vcpu_write_tsc_offset(vcpu, offset); 2688 2689 if (!matched) { 2690 /* 2691 * We split periods of matched TSC writes into generations. 2692 * For each generation, we track the original measured 2693 * nanosecond time, offset, and write, so if TSCs are in 2694 * sync, we can match exact offset, and if not, we can match 2695 * exact software computation in compute_guest_tsc() 2696 * 2697 * These values are tracked in kvm->arch.cur_xxx variables. 2698 */ 2699 kvm->arch.cur_tsc_generation++; 2700 kvm->arch.cur_tsc_nsec = ns; 2701 kvm->arch.cur_tsc_write = tsc; 2702 kvm->arch.cur_tsc_offset = offset; 2703 kvm->arch.nr_vcpus_matched_tsc = 0; 2704 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2705 kvm->arch.nr_vcpus_matched_tsc++; 2706 } 2707 2708 /* Keep track of which generation this VCPU has synchronized to */ 2709 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2710 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2711 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2712 2713 kvm_track_tsc_matching(vcpu, !matched); 2714 } 2715 2716 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) 2717 { 2718 u64 data = user_value ? *user_value : 0; 2719 struct kvm *kvm = vcpu->kvm; 2720 u64 offset, ns, elapsed; 2721 unsigned long flags; 2722 bool matched = false; 2723 bool synchronizing = false; 2724 2725 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2726 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2727 ns = get_kvmclock_base_ns(); 2728 elapsed = ns - kvm->arch.last_tsc_nsec; 2729 2730 if (vcpu->arch.virtual_tsc_khz) { 2731 if (data == 0) { 2732 /* 2733 * Force synchronization when creating a vCPU, or when 2734 * userspace explicitly writes a zero value. 2735 */ 2736 synchronizing = true; 2737 } else if (kvm->arch.user_set_tsc) { 2738 u64 tsc_exp = kvm->arch.last_tsc_write + 2739 nsec_to_cycles(vcpu, elapsed); 2740 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2741 /* 2742 * Here lies UAPI baggage: when a user-initiated TSC write has 2743 * a small delta (1 second) of virtual cycle time against the 2744 * previously set vCPU, we assume that they were intended to be 2745 * in sync and the delta was only due to the racy nature of the 2746 * legacy API. 2747 * 2748 * This trick falls down when restoring a guest which genuinely 2749 * has been running for less time than the 1 second of imprecision 2750 * which we allow for in the legacy API. In this case, the first 2751 * value written by userspace (on any vCPU) should not be subject 2752 * to this 'correction' to make it sync up with values that only 2753 * come from the kernel's default vCPU creation. Make the 1-second 2754 * slop hack only trigger if the user_set_tsc flag is already set. 2755 */ 2756 synchronizing = data < tsc_exp + tsc_hz && 2757 data + tsc_hz > tsc_exp; 2758 } 2759 } 2760 2761 if (user_value) 2762 kvm->arch.user_set_tsc = true; 2763 2764 /* 2765 * For a reliable TSC, we can match TSC offsets, and for an unstable 2766 * TSC, we add elapsed time in this computation. We could let the 2767 * compensation code attempt to catch up if we fall behind, but 2768 * it's better to try to match offsets from the beginning. 2769 */ 2770 if (synchronizing && 2771 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2772 if (!kvm_check_tsc_unstable()) { 2773 offset = kvm->arch.cur_tsc_offset; 2774 } else { 2775 u64 delta = nsec_to_cycles(vcpu, elapsed); 2776 data += delta; 2777 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2778 } 2779 matched = true; 2780 } 2781 2782 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2783 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2784 } 2785 2786 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2787 s64 adjustment) 2788 { 2789 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2790 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2791 } 2792 2793 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2794 { 2795 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) 2796 WARN_ON(adjustment < 0); 2797 adjustment = kvm_scale_tsc((u64) adjustment, 2798 vcpu->arch.l1_tsc_scaling_ratio); 2799 adjust_tsc_offset_guest(vcpu, adjustment); 2800 } 2801 2802 #ifdef CONFIG_X86_64 2803 2804 static u64 read_tsc(void) 2805 { 2806 u64 ret = (u64)rdtsc_ordered(); 2807 u64 last = pvclock_gtod_data.clock.cycle_last; 2808 2809 if (likely(ret >= last)) 2810 return ret; 2811 2812 /* 2813 * GCC likes to generate cmov here, but this branch is extremely 2814 * predictable (it's just a function of time and the likely is 2815 * very likely) and there's a data dependence, so force GCC 2816 * to generate a branch instead. I don't barrier() because 2817 * we don't actually need a barrier, and if this function 2818 * ever gets inlined it will generate worse code. 2819 */ 2820 asm volatile (""); 2821 return last; 2822 } 2823 2824 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2825 int *mode) 2826 { 2827 u64 tsc_pg_val; 2828 long v; 2829 2830 switch (clock->vclock_mode) { 2831 case VDSO_CLOCKMODE_HVCLOCK: 2832 if (hv_read_tsc_page_tsc(hv_get_tsc_page(), 2833 tsc_timestamp, &tsc_pg_val)) { 2834 /* TSC page valid */ 2835 *mode = VDSO_CLOCKMODE_HVCLOCK; 2836 v = (tsc_pg_val - clock->cycle_last) & 2837 clock->mask; 2838 } else { 2839 /* TSC page invalid */ 2840 *mode = VDSO_CLOCKMODE_NONE; 2841 } 2842 break; 2843 case VDSO_CLOCKMODE_TSC: 2844 *mode = VDSO_CLOCKMODE_TSC; 2845 *tsc_timestamp = read_tsc(); 2846 v = (*tsc_timestamp - clock->cycle_last) & 2847 clock->mask; 2848 break; 2849 default: 2850 *mode = VDSO_CLOCKMODE_NONE; 2851 } 2852 2853 if (*mode == VDSO_CLOCKMODE_NONE) 2854 *tsc_timestamp = v = 0; 2855 2856 return v * clock->mult; 2857 } 2858 2859 /* 2860 * As with get_kvmclock_base_ns(), this counts from boot time, at the 2861 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). 2862 */ 2863 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) 2864 { 2865 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2866 unsigned long seq; 2867 int mode; 2868 u64 ns; 2869 2870 do { 2871 seq = read_seqcount_begin(>od->seq); 2872 ns = gtod->raw_clock.base_cycles; 2873 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2874 ns >>= gtod->raw_clock.shift; 2875 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2876 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2877 *t = ns; 2878 2879 return mode; 2880 } 2881 2882 /* 2883 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with 2884 * no boot time offset. 2885 */ 2886 static int do_monotonic(s64 *t, u64 *tsc_timestamp) 2887 { 2888 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2889 unsigned long seq; 2890 int mode; 2891 u64 ns; 2892 2893 do { 2894 seq = read_seqcount_begin(>od->seq); 2895 ns = gtod->clock.base_cycles; 2896 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2897 ns >>= gtod->clock.shift; 2898 ns += ktime_to_ns(gtod->clock.offset); 2899 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2900 *t = ns; 2901 2902 return mode; 2903 } 2904 2905 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2906 { 2907 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2908 unsigned long seq; 2909 int mode; 2910 u64 ns; 2911 2912 do { 2913 seq = read_seqcount_begin(>od->seq); 2914 ts->tv_sec = gtod->wall_time_sec; 2915 ns = gtod->clock.base_cycles; 2916 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2917 ns >>= gtod->clock.shift; 2918 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2919 2920 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2921 ts->tv_nsec = ns; 2922 2923 return mode; 2924 } 2925 2926 /* 2927 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and 2928 * reports the TSC value from which it do so. Returns true if host is 2929 * using TSC based clocksource. 2930 */ 2931 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2932 { 2933 /* checked again under seqlock below */ 2934 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2935 return false; 2936 2937 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, 2938 tsc_timestamp)); 2939 } 2940 2941 /* 2942 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did 2943 * so. Returns true if host is using TSC based clocksource. 2944 */ 2945 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2946 { 2947 /* checked again under seqlock below */ 2948 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2949 return false; 2950 2951 return gtod_is_based_on_tsc(do_monotonic(kernel_ns, 2952 tsc_timestamp)); 2953 } 2954 2955 /* 2956 * Calculates CLOCK_REALTIME and reports the TSC value from which it did 2957 * so. Returns true if host is using TSC based clocksource. 2958 * 2959 * DO NOT USE this for anything related to migration. You want CLOCK_TAI 2960 * for that. 2961 */ 2962 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2963 u64 *tsc_timestamp) 2964 { 2965 /* checked again under seqlock below */ 2966 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2967 return false; 2968 2969 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2970 } 2971 #endif 2972 2973 /* 2974 * 2975 * Assuming a stable TSC across physical CPUS, and a stable TSC 2976 * across virtual CPUs, the following condition is possible. 2977 * Each numbered line represents an event visible to both 2978 * CPUs at the next numbered event. 2979 * 2980 * "timespecX" represents host monotonic time. "tscX" represents 2981 * RDTSC value. 2982 * 2983 * VCPU0 on CPU0 | VCPU1 on CPU1 2984 * 2985 * 1. read timespec0,tsc0 2986 * 2. | timespec1 = timespec0 + N 2987 * | tsc1 = tsc0 + M 2988 * 3. transition to guest | transition to guest 2989 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2990 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2991 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2992 * 2993 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2994 * 2995 * - ret0 < ret1 2996 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2997 * ... 2998 * - 0 < N - M => M < N 2999 * 3000 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 3001 * always the case (the difference between two distinct xtime instances 3002 * might be smaller then the difference between corresponding TSC reads, 3003 * when updating guest vcpus pvclock areas). 3004 * 3005 * To avoid that problem, do not allow visibility of distinct 3006 * system_timestamp/tsc_timestamp values simultaneously: use a master 3007 * copy of host monotonic time values. Update that master copy 3008 * in lockstep. 3009 * 3010 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 3011 * 3012 */ 3013 3014 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 3015 { 3016 #ifdef CONFIG_X86_64 3017 struct kvm_arch *ka = &kvm->arch; 3018 int vclock_mode; 3019 bool host_tsc_clocksource, vcpus_matched; 3020 3021 lockdep_assert_held(&kvm->arch.tsc_write_lock); 3022 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 3023 atomic_read(&kvm->online_vcpus)); 3024 3025 /* 3026 * If the host uses TSC clock, then passthrough TSC as stable 3027 * to the guest. 3028 */ 3029 host_tsc_clocksource = kvm_get_time_and_clockread( 3030 &ka->master_kernel_ns, 3031 &ka->master_cycle_now); 3032 3033 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 3034 && !ka->backwards_tsc_observed 3035 && !ka->boot_vcpu_runs_old_kvmclock; 3036 3037 if (ka->use_master_clock) 3038 atomic_set(&kvm_guest_has_master_clock, 1); 3039 3040 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 3041 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 3042 vcpus_matched); 3043 #endif 3044 } 3045 3046 static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 3047 { 3048 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 3049 } 3050 3051 static void __kvm_start_pvclock_update(struct kvm *kvm) 3052 { 3053 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 3054 write_seqcount_begin(&kvm->arch.pvclock_sc); 3055 } 3056 3057 static void kvm_start_pvclock_update(struct kvm *kvm) 3058 { 3059 kvm_make_mclock_inprogress_request(kvm); 3060 3061 /* no guest entries from this point */ 3062 __kvm_start_pvclock_update(kvm); 3063 } 3064 3065 static void kvm_end_pvclock_update(struct kvm *kvm) 3066 { 3067 struct kvm_arch *ka = &kvm->arch; 3068 struct kvm_vcpu *vcpu; 3069 unsigned long i; 3070 3071 write_seqcount_end(&ka->pvclock_sc); 3072 raw_spin_unlock_irq(&ka->tsc_write_lock); 3073 kvm_for_each_vcpu(i, vcpu, kvm) 3074 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3075 3076 /* guest entries allowed */ 3077 kvm_for_each_vcpu(i, vcpu, kvm) 3078 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 3079 } 3080 3081 static void kvm_update_masterclock(struct kvm *kvm) 3082 { 3083 kvm_hv_request_tsc_page_update(kvm); 3084 kvm_start_pvclock_update(kvm); 3085 pvclock_update_vm_gtod_copy(kvm); 3086 kvm_end_pvclock_update(kvm); 3087 } 3088 3089 /* 3090 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's 3091 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz 3092 * can change during boot even if the TSC is constant, as it's possible for KVM 3093 * to be loaded before TSC calibration completes. Ideally, KVM would get a 3094 * notification when calibration completes, but practically speaking calibration 3095 * will complete before userspace is alive enough to create VMs. 3096 */ 3097 static unsigned long get_cpu_tsc_khz(void) 3098 { 3099 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) 3100 return tsc_khz; 3101 else 3102 return __this_cpu_read(cpu_tsc_khz); 3103 } 3104 3105 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 3106 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3107 { 3108 struct kvm_arch *ka = &kvm->arch; 3109 struct pvclock_vcpu_time_info hv_clock; 3110 3111 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 3112 get_cpu(); 3113 3114 data->flags = 0; 3115 if (ka->use_master_clock && 3116 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { 3117 #ifdef CONFIG_X86_64 3118 struct timespec64 ts; 3119 3120 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 3121 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 3122 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 3123 } else 3124 #endif 3125 data->host_tsc = rdtsc(); 3126 3127 data->flags |= KVM_CLOCK_TSC_STABLE; 3128 hv_clock.tsc_timestamp = ka->master_cycle_now; 3129 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3130 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, 3131 &hv_clock.tsc_shift, 3132 &hv_clock.tsc_to_system_mul); 3133 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 3134 } else { 3135 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 3136 } 3137 3138 put_cpu(); 3139 } 3140 3141 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 3142 { 3143 struct kvm_arch *ka = &kvm->arch; 3144 unsigned seq; 3145 3146 do { 3147 seq = read_seqcount_begin(&ka->pvclock_sc); 3148 __get_kvmclock(kvm, data); 3149 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3150 } 3151 3152 u64 get_kvmclock_ns(struct kvm *kvm) 3153 { 3154 struct kvm_clock_data data; 3155 3156 get_kvmclock(kvm, &data); 3157 return data.clock; 3158 } 3159 3160 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3161 struct gfn_to_pfn_cache *gpc, 3162 unsigned int offset, 3163 bool force_tsc_unstable) 3164 { 3165 struct kvm_vcpu_arch *vcpu = &v->arch; 3166 struct pvclock_vcpu_time_info *guest_hv_clock; 3167 unsigned long flags; 3168 3169 read_lock_irqsave(&gpc->lock, flags); 3170 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { 3171 read_unlock_irqrestore(&gpc->lock, flags); 3172 3173 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) 3174 return; 3175 3176 read_lock_irqsave(&gpc->lock, flags); 3177 } 3178 3179 guest_hv_clock = (void *)(gpc->khva + offset); 3180 3181 /* 3182 * This VCPU is paused, but it's legal for a guest to read another 3183 * VCPU's kvmclock, so we really have to follow the specification where 3184 * it says that version is odd if data is being modified, and even after 3185 * it is consistent. 3186 */ 3187 3188 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3189 smp_wmb(); 3190 3191 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3192 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3193 3194 if (vcpu->pvclock_set_guest_stopped_request) { 3195 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3196 vcpu->pvclock_set_guest_stopped_request = false; 3197 } 3198 3199 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3200 3201 if (force_tsc_unstable) 3202 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT; 3203 3204 smp_wmb(); 3205 3206 guest_hv_clock->version = ++vcpu->hv_clock.version; 3207 3208 kvm_gpc_mark_dirty_in_slot(gpc); 3209 read_unlock_irqrestore(&gpc->lock, flags); 3210 3211 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3212 } 3213 3214 static int kvm_guest_time_update(struct kvm_vcpu *v) 3215 { 3216 unsigned long flags, tgt_tsc_khz; 3217 unsigned seq; 3218 struct kvm_vcpu_arch *vcpu = &v->arch; 3219 struct kvm_arch *ka = &v->kvm->arch; 3220 s64 kernel_ns; 3221 u64 tsc_timestamp, host_tsc; 3222 u8 pvclock_flags; 3223 bool use_master_clock; 3224 #ifdef CONFIG_KVM_XEN 3225 /* 3226 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless 3227 * explicitly told to use TSC as its clocksource Xen will not set this bit. 3228 * This default behaviour led to bugs in some guest kernels which cause 3229 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. 3230 */ 3231 bool xen_pvclock_tsc_unstable = 3232 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE; 3233 #endif 3234 3235 kernel_ns = 0; 3236 host_tsc = 0; 3237 3238 /* 3239 * If the host uses TSC clock, then passthrough TSC as stable 3240 * to the guest. 3241 */ 3242 do { 3243 seq = read_seqcount_begin(&ka->pvclock_sc); 3244 use_master_clock = ka->use_master_clock; 3245 if (use_master_clock) { 3246 host_tsc = ka->master_cycle_now; 3247 kernel_ns = ka->master_kernel_ns; 3248 } 3249 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3250 3251 /* Keep irq disabled to prevent changes to the clock */ 3252 local_irq_save(flags); 3253 tgt_tsc_khz = get_cpu_tsc_khz(); 3254 if (unlikely(tgt_tsc_khz == 0)) { 3255 local_irq_restore(flags); 3256 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3257 return 1; 3258 } 3259 if (!use_master_clock) { 3260 host_tsc = rdtsc(); 3261 kernel_ns = get_kvmclock_base_ns(); 3262 } 3263 3264 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3265 3266 /* 3267 * We may have to catch up the TSC to match elapsed wall clock 3268 * time for two reasons, even if kvmclock is used. 3269 * 1) CPU could have been running below the maximum TSC rate 3270 * 2) Broken TSC compensation resets the base at each VCPU 3271 * entry to avoid unknown leaps of TSC even when running 3272 * again on the same CPU. This may cause apparent elapsed 3273 * time to disappear, and the guest to stand still or run 3274 * very slowly. 3275 */ 3276 if (vcpu->tsc_catchup) { 3277 u64 tsc = compute_guest_tsc(v, kernel_ns); 3278 if (tsc > tsc_timestamp) { 3279 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3280 tsc_timestamp = tsc; 3281 } 3282 } 3283 3284 local_irq_restore(flags); 3285 3286 /* With all the info we got, fill in the values */ 3287 3288 if (kvm_caps.has_tsc_control) 3289 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3290 v->arch.l1_tsc_scaling_ratio); 3291 3292 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3293 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3294 &vcpu->hv_clock.tsc_shift, 3295 &vcpu->hv_clock.tsc_to_system_mul); 3296 vcpu->hw_tsc_khz = tgt_tsc_khz; 3297 kvm_xen_update_tsc_info(v); 3298 } 3299 3300 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3301 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3302 vcpu->last_guest_tsc = tsc_timestamp; 3303 3304 /* If the host uses TSC clocksource, then it is stable */ 3305 pvclock_flags = 0; 3306 if (use_master_clock) 3307 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3308 3309 vcpu->hv_clock.flags = pvclock_flags; 3310 3311 if (vcpu->pv_time.active) 3312 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false); 3313 #ifdef CONFIG_KVM_XEN 3314 if (vcpu->xen.vcpu_info_cache.active) 3315 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3316 offsetof(struct compat_vcpu_info, time), 3317 xen_pvclock_tsc_unstable); 3318 if (vcpu->xen.vcpu_time_info_cache.active) 3319 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0, 3320 xen_pvclock_tsc_unstable); 3321 #endif 3322 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3323 return 0; 3324 } 3325 3326 /* 3327 * The pvclock_wall_clock ABI tells the guest the wall clock time at 3328 * which it started (i.e. its epoch, when its kvmclock was zero). 3329 * 3330 * In fact those clocks are subtly different; wall clock frequency is 3331 * adjusted by NTP and has leap seconds, while the kvmclock is a 3332 * simple function of the TSC without any such adjustment. 3333 * 3334 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between 3335 * that and kvmclock, but even that would be subject to change over 3336 * time. 3337 * 3338 * Attempt to calculate the epoch at a given moment using the *same* 3339 * TSC reading via kvm_get_walltime_and_clockread() to obtain both 3340 * wallclock and kvmclock times, and subtracting one from the other. 3341 * 3342 * Fall back to using their values at slightly different moments by 3343 * calling ktime_get_real_ns() and get_kvmclock_ns() separately. 3344 */ 3345 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) 3346 { 3347 #ifdef CONFIG_X86_64 3348 struct pvclock_vcpu_time_info hv_clock; 3349 struct kvm_arch *ka = &kvm->arch; 3350 unsigned long seq, local_tsc_khz; 3351 struct timespec64 ts; 3352 uint64_t host_tsc; 3353 3354 do { 3355 seq = read_seqcount_begin(&ka->pvclock_sc); 3356 3357 local_tsc_khz = 0; 3358 if (!ka->use_master_clock) 3359 break; 3360 3361 /* 3362 * The TSC read and the call to get_cpu_tsc_khz() must happen 3363 * on the same CPU. 3364 */ 3365 get_cpu(); 3366 3367 local_tsc_khz = get_cpu_tsc_khz(); 3368 3369 if (local_tsc_khz && 3370 !kvm_get_walltime_and_clockread(&ts, &host_tsc)) 3371 local_tsc_khz = 0; /* Fall back to old method */ 3372 3373 put_cpu(); 3374 3375 /* 3376 * These values must be snapshotted within the seqcount loop. 3377 * After that, it's just mathematics which can happen on any 3378 * CPU at any time. 3379 */ 3380 hv_clock.tsc_timestamp = ka->master_cycle_now; 3381 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 3382 3383 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3384 3385 /* 3386 * If the conditions were right, and obtaining the wallclock+TSC was 3387 * successful, calculate the KVM clock at the corresponding time and 3388 * subtract one from the other to get the guest's epoch in nanoseconds 3389 * since 1970-01-01. 3390 */ 3391 if (local_tsc_khz) { 3392 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, 3393 &hv_clock.tsc_shift, 3394 &hv_clock.tsc_to_system_mul); 3395 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - 3396 __pvclock_read_cycles(&hv_clock, host_tsc); 3397 } 3398 #endif 3399 return ktime_get_real_ns() - get_kvmclock_ns(kvm); 3400 } 3401 3402 /* 3403 * kvmclock updates which are isolated to a given vcpu, such as 3404 * vcpu->cpu migration, should not allow system_timestamp from 3405 * the rest of the vcpus to remain static. Otherwise ntp frequency 3406 * correction applies to one vcpu's system_timestamp but not 3407 * the others. 3408 * 3409 * So in those cases, request a kvmclock update for all vcpus. 3410 * We need to rate-limit these requests though, as they can 3411 * considerably slow guests that have a large number of vcpus. 3412 * The time for a remote vcpu to update its kvmclock is bound 3413 * by the delay we use to rate-limit the updates. 3414 */ 3415 3416 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3417 3418 static void kvmclock_update_fn(struct work_struct *work) 3419 { 3420 unsigned long i; 3421 struct delayed_work *dwork = to_delayed_work(work); 3422 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3423 kvmclock_update_work); 3424 struct kvm *kvm = container_of(ka, struct kvm, arch); 3425 struct kvm_vcpu *vcpu; 3426 3427 kvm_for_each_vcpu(i, vcpu, kvm) { 3428 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3429 kvm_vcpu_kick(vcpu); 3430 } 3431 } 3432 3433 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3434 { 3435 struct kvm *kvm = v->kvm; 3436 3437 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3438 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3439 KVMCLOCK_UPDATE_DELAY); 3440 } 3441 3442 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3443 3444 static void kvmclock_sync_fn(struct work_struct *work) 3445 { 3446 struct delayed_work *dwork = to_delayed_work(work); 3447 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3448 kvmclock_sync_work); 3449 struct kvm *kvm = container_of(ka, struct kvm, arch); 3450 3451 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3452 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3453 KVMCLOCK_SYNC_PERIOD); 3454 } 3455 3456 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ 3457 static bool is_mci_control_msr(u32 msr) 3458 { 3459 return (msr & 3) == 0; 3460 } 3461 static bool is_mci_status_msr(u32 msr) 3462 { 3463 return (msr & 3) == 1; 3464 } 3465 3466 /* 3467 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3468 */ 3469 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3470 { 3471 /* McStatusWrEn enabled? */ 3472 if (guest_cpuid_is_amd_compatible(vcpu)) 3473 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3474 3475 return false; 3476 } 3477 3478 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3479 { 3480 u64 mcg_cap = vcpu->arch.mcg_cap; 3481 unsigned bank_num = mcg_cap & 0xff; 3482 u32 msr = msr_info->index; 3483 u64 data = msr_info->data; 3484 u32 offset, last_msr; 3485 3486 switch (msr) { 3487 case MSR_IA32_MCG_STATUS: 3488 vcpu->arch.mcg_status = data; 3489 break; 3490 case MSR_IA32_MCG_CTL: 3491 if (!(mcg_cap & MCG_CTL_P) && 3492 (data || !msr_info->host_initiated)) 3493 return 1; 3494 if (data != 0 && data != ~(u64)0) 3495 return 1; 3496 vcpu->arch.mcg_ctl = data; 3497 break; 3498 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 3499 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 3500 if (msr > last_msr) 3501 return 1; 3502 3503 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) 3504 return 1; 3505 /* An attempt to write a 1 to a reserved bit raises #GP */ 3506 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) 3507 return 1; 3508 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 3509 last_msr + 1 - MSR_IA32_MC0_CTL2); 3510 vcpu->arch.mci_ctl2_banks[offset] = data; 3511 break; 3512 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3513 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 3514 if (msr > last_msr) 3515 return 1; 3516 3517 /* 3518 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other 3519 * values are architecturally undefined. But, some Linux 3520 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB 3521 * issue on AMD K8s, allow bit 10 to be clear when setting all 3522 * other bits in order to avoid an uncaught #GP in the guest. 3523 * 3524 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, 3525 * single-bit ECC data errors. 3526 */ 3527 if (is_mci_control_msr(msr) && 3528 data != 0 && (data | (1 << 10) | 1) != ~(u64)0) 3529 return 1; 3530 3531 /* 3532 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. 3533 * AMD-based CPUs allow non-zero values, but if and only if 3534 * HWCR[McStatusWrEn] is set. 3535 */ 3536 if (!msr_info->host_initiated && is_mci_status_msr(msr) && 3537 data != 0 && !can_set_mci_status(vcpu)) 3538 return 1; 3539 3540 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 3541 last_msr + 1 - MSR_IA32_MC0_CTL); 3542 vcpu->arch.mce_banks[offset] = data; 3543 break; 3544 default: 3545 return 1; 3546 } 3547 return 0; 3548 } 3549 3550 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3551 { 3552 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3553 3554 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3555 } 3556 3557 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3558 { 3559 gpa_t gpa = data & ~0x3f; 3560 3561 /* Bits 4:5 are reserved, Should be zero */ 3562 if (data & 0x30) 3563 return 1; 3564 3565 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3566 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3567 return 1; 3568 3569 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3570 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3571 return 1; 3572 3573 if (!lapic_in_kernel(vcpu)) 3574 return data ? 1 : 0; 3575 3576 vcpu->arch.apf.msr_en_val = data; 3577 3578 if (!kvm_pv_async_pf_enabled(vcpu)) { 3579 kvm_clear_async_pf_completion_queue(vcpu); 3580 kvm_async_pf_hash_reset(vcpu); 3581 return 0; 3582 } 3583 3584 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3585 sizeof(u64))) 3586 return 1; 3587 3588 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3589 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3590 3591 kvm_async_pf_wakeup_all(vcpu); 3592 3593 return 0; 3594 } 3595 3596 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3597 { 3598 /* Bits 8-63 are reserved */ 3599 if (data >> 8) 3600 return 1; 3601 3602 if (!lapic_in_kernel(vcpu)) 3603 return 1; 3604 3605 vcpu->arch.apf.msr_int_val = data; 3606 3607 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3608 3609 return 0; 3610 } 3611 3612 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3613 { 3614 kvm_gpc_deactivate(&vcpu->arch.pv_time); 3615 vcpu->arch.time = 0; 3616 } 3617 3618 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3619 { 3620 ++vcpu->stat.tlb_flush; 3621 kvm_x86_call(flush_tlb_all)(vcpu); 3622 3623 /* Flushing all ASIDs flushes the current ASID... */ 3624 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3625 } 3626 3627 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3628 { 3629 ++vcpu->stat.tlb_flush; 3630 3631 if (!tdp_enabled) { 3632 /* 3633 * A TLB flush on behalf of the guest is equivalent to 3634 * INVPCID(all), toggling CR4.PGE, etc., which requires 3635 * a forced sync of the shadow page tables. Ensure all the 3636 * roots are synced and the guest TLB in hardware is clean. 3637 */ 3638 kvm_mmu_sync_roots(vcpu); 3639 kvm_mmu_sync_prev_roots(vcpu); 3640 } 3641 3642 kvm_x86_call(flush_tlb_guest)(vcpu); 3643 3644 /* 3645 * Flushing all "guest" TLB is always a superset of Hyper-V's fine 3646 * grained flushing. 3647 */ 3648 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3649 } 3650 3651 3652 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3653 { 3654 ++vcpu->stat.tlb_flush; 3655 kvm_x86_call(flush_tlb_current)(vcpu); 3656 } 3657 3658 /* 3659 * Service "local" TLB flush requests, which are specific to the current MMU 3660 * context. In addition to the generic event handling in vcpu_enter_guest(), 3661 * TLB flushes that are targeted at an MMU context also need to be serviced 3662 * prior before nested VM-Enter/VM-Exit. 3663 */ 3664 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3665 { 3666 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3667 kvm_vcpu_flush_tlb_current(vcpu); 3668 3669 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3670 kvm_vcpu_flush_tlb_guest(vcpu); 3671 } 3672 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3673 3674 static void record_steal_time(struct kvm_vcpu *vcpu) 3675 { 3676 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3677 struct kvm_steal_time __user *st; 3678 struct kvm_memslots *slots; 3679 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3680 u64 steal; 3681 u32 version; 3682 3683 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3684 kvm_xen_runstate_set_running(vcpu); 3685 return; 3686 } 3687 3688 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3689 return; 3690 3691 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3692 return; 3693 3694 slots = kvm_memslots(vcpu->kvm); 3695 3696 if (unlikely(slots->generation != ghc->generation || 3697 gpa != ghc->gpa || 3698 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3699 /* We rely on the fact that it fits in a single page. */ 3700 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3701 3702 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || 3703 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3704 return; 3705 } 3706 3707 st = (struct kvm_steal_time __user *)ghc->hva; 3708 /* 3709 * Doing a TLB flush here, on the guest's behalf, can avoid 3710 * expensive IPIs. 3711 */ 3712 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3713 u8 st_preempted = 0; 3714 int err = -EFAULT; 3715 3716 if (!user_access_begin(st, sizeof(*st))) 3717 return; 3718 3719 asm volatile("1: xchgb %0, %2\n" 3720 "xor %1, %1\n" 3721 "2:\n" 3722 _ASM_EXTABLE_UA(1b, 2b) 3723 : "+q" (st_preempted), 3724 "+&r" (err), 3725 "+m" (st->preempted)); 3726 if (err) 3727 goto out; 3728 3729 user_access_end(); 3730 3731 vcpu->arch.st.preempted = 0; 3732 3733 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3734 st_preempted & KVM_VCPU_FLUSH_TLB); 3735 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3736 kvm_vcpu_flush_tlb_guest(vcpu); 3737 3738 if (!user_access_begin(st, sizeof(*st))) 3739 goto dirty; 3740 } else { 3741 if (!user_access_begin(st, sizeof(*st))) 3742 return; 3743 3744 unsafe_put_user(0, &st->preempted, out); 3745 vcpu->arch.st.preempted = 0; 3746 } 3747 3748 unsafe_get_user(version, &st->version, out); 3749 if (version & 1) 3750 version += 1; /* first time write, random junk */ 3751 3752 version += 1; 3753 unsafe_put_user(version, &st->version, out); 3754 3755 smp_wmb(); 3756 3757 unsafe_get_user(steal, &st->steal, out); 3758 steal += current->sched_info.run_delay - 3759 vcpu->arch.st.last_steal; 3760 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3761 unsafe_put_user(steal, &st->steal, out); 3762 3763 version += 1; 3764 unsafe_put_user(version, &st->version, out); 3765 3766 out: 3767 user_access_end(); 3768 dirty: 3769 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3770 } 3771 3772 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3773 { 3774 u32 msr = msr_info->index; 3775 u64 data = msr_info->data; 3776 3777 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3778 return kvm_xen_write_hypercall_page(vcpu, data); 3779 3780 switch (msr) { 3781 case MSR_AMD64_NB_CFG: 3782 case MSR_IA32_UCODE_WRITE: 3783 case MSR_VM_HSAVE_PA: 3784 case MSR_AMD64_PATCH_LOADER: 3785 case MSR_AMD64_BU_CFG2: 3786 case MSR_AMD64_DC_CFG: 3787 case MSR_AMD64_TW_CFG: 3788 case MSR_F15H_EX_CFG: 3789 break; 3790 3791 case MSR_IA32_UCODE_REV: 3792 if (msr_info->host_initiated) 3793 vcpu->arch.microcode_version = data; 3794 break; 3795 case MSR_IA32_ARCH_CAPABILITIES: 3796 if (!msr_info->host_initiated) 3797 return 1; 3798 vcpu->arch.arch_capabilities = data; 3799 break; 3800 case MSR_IA32_PERF_CAPABILITIES: 3801 if (!msr_info->host_initiated) 3802 return 1; 3803 if (data & ~kvm_caps.supported_perf_cap) 3804 return 1; 3805 3806 /* 3807 * Note, this is not just a performance optimization! KVM 3808 * disallows changing feature MSRs after the vCPU has run; PMU 3809 * refresh will bug the VM if called after the vCPU has run. 3810 */ 3811 if (vcpu->arch.perf_capabilities == data) 3812 break; 3813 3814 vcpu->arch.perf_capabilities = data; 3815 kvm_pmu_refresh(vcpu); 3816 break; 3817 case MSR_IA32_PRED_CMD: { 3818 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); 3819 3820 if (!msr_info->host_initiated) { 3821 if ((!guest_has_pred_cmd_msr(vcpu))) 3822 return 1; 3823 3824 if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 3825 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 3826 reserved_bits |= PRED_CMD_IBPB; 3827 3828 if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) 3829 reserved_bits |= PRED_CMD_SBPB; 3830 } 3831 3832 if (!boot_cpu_has(X86_FEATURE_IBPB)) 3833 reserved_bits |= PRED_CMD_IBPB; 3834 3835 if (!boot_cpu_has(X86_FEATURE_SBPB)) 3836 reserved_bits |= PRED_CMD_SBPB; 3837 3838 if (data & reserved_bits) 3839 return 1; 3840 3841 if (!data) 3842 break; 3843 3844 wrmsrl(MSR_IA32_PRED_CMD, data); 3845 break; 3846 } 3847 case MSR_IA32_FLUSH_CMD: 3848 if (!msr_info->host_initiated && 3849 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) 3850 return 1; 3851 3852 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) 3853 return 1; 3854 if (!data) 3855 break; 3856 3857 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 3858 break; 3859 case MSR_EFER: 3860 return set_efer(vcpu, msr_info); 3861 case MSR_K7_HWCR: 3862 data &= ~(u64)0x40; /* ignore flush filter disable */ 3863 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3864 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3865 3866 /* 3867 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 3868 * through at least v6.6 whine if TscFreqSel is clear, 3869 * depending on F/M/S. 3870 */ 3871 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { 3872 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3873 return 1; 3874 } 3875 vcpu->arch.msr_hwcr = data; 3876 break; 3877 case MSR_FAM10H_MMIO_CONF_BASE: 3878 if (data != 0) { 3879 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 3880 return 1; 3881 } 3882 break; 3883 case MSR_IA32_CR_PAT: 3884 if (!kvm_pat_valid(data)) 3885 return 1; 3886 3887 vcpu->arch.pat = data; 3888 break; 3889 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 3890 case MSR_MTRRdefType: 3891 return kvm_mtrr_set_msr(vcpu, msr, data); 3892 case MSR_IA32_APICBASE: 3893 return kvm_set_apic_base(vcpu, msr_info); 3894 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3895 return kvm_x2apic_msr_write(vcpu, msr, data); 3896 case MSR_IA32_TSC_DEADLINE: 3897 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3898 break; 3899 case MSR_IA32_TSC_ADJUST: 3900 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3901 if (!msr_info->host_initiated) { 3902 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3903 adjust_tsc_offset_guest(vcpu, adj); 3904 /* Before back to guest, tsc_timestamp must be adjusted 3905 * as well, otherwise guest's percpu pvclock time could jump. 3906 */ 3907 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3908 } 3909 vcpu->arch.ia32_tsc_adjust_msr = data; 3910 } 3911 break; 3912 case MSR_IA32_MISC_ENABLE: { 3913 u64 old_val = vcpu->arch.ia32_misc_enable_msr; 3914 3915 if (!msr_info->host_initiated) { 3916 /* RO bits */ 3917 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) 3918 return 1; 3919 3920 /* R bits, i.e. writes are ignored, but don't fault. */ 3921 data = data & ~MSR_IA32_MISC_ENABLE_EMON; 3922 data |= old_val & MSR_IA32_MISC_ENABLE_EMON; 3923 } 3924 3925 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3926 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3927 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3928 return 1; 3929 vcpu->arch.ia32_misc_enable_msr = data; 3930 kvm_update_cpuid_runtime(vcpu); 3931 } else { 3932 vcpu->arch.ia32_misc_enable_msr = data; 3933 } 3934 break; 3935 } 3936 case MSR_IA32_SMBASE: 3937 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 3938 return 1; 3939 vcpu->arch.smbase = data; 3940 break; 3941 case MSR_IA32_POWER_CTL: 3942 vcpu->arch.msr_ia32_power_ctl = data; 3943 break; 3944 case MSR_IA32_TSC: 3945 if (msr_info->host_initiated) { 3946 kvm_synchronize_tsc(vcpu, &data); 3947 } else { 3948 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3949 adjust_tsc_offset_guest(vcpu, adj); 3950 vcpu->arch.ia32_tsc_adjust_msr += adj; 3951 } 3952 break; 3953 case MSR_IA32_XSS: 3954 if (!msr_info->host_initiated && 3955 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3956 return 1; 3957 /* 3958 * KVM supports exposing PT to the guest, but does not support 3959 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3960 * XSAVES/XRSTORS to save/restore PT MSRs. 3961 */ 3962 if (data & ~kvm_caps.supported_xss) 3963 return 1; 3964 vcpu->arch.ia32_xss = data; 3965 kvm_update_cpuid_runtime(vcpu); 3966 break; 3967 case MSR_SMI_COUNT: 3968 if (!msr_info->host_initiated) 3969 return 1; 3970 vcpu->arch.smi_count = data; 3971 break; 3972 case MSR_KVM_WALL_CLOCK_NEW: 3973 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3974 return 1; 3975 3976 vcpu->kvm->arch.wall_clock = data; 3977 kvm_write_wall_clock(vcpu->kvm, data, 0); 3978 break; 3979 case MSR_KVM_WALL_CLOCK: 3980 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3981 return 1; 3982 3983 vcpu->kvm->arch.wall_clock = data; 3984 kvm_write_wall_clock(vcpu->kvm, data, 0); 3985 break; 3986 case MSR_KVM_SYSTEM_TIME_NEW: 3987 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3988 return 1; 3989 3990 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3991 break; 3992 case MSR_KVM_SYSTEM_TIME: 3993 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3994 return 1; 3995 3996 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3997 break; 3998 case MSR_KVM_ASYNC_PF_EN: 3999 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4000 return 1; 4001 4002 if (kvm_pv_enable_async_pf(vcpu, data)) 4003 return 1; 4004 break; 4005 case MSR_KVM_ASYNC_PF_INT: 4006 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4007 return 1; 4008 4009 if (kvm_pv_enable_async_pf_int(vcpu, data)) 4010 return 1; 4011 break; 4012 case MSR_KVM_ASYNC_PF_ACK: 4013 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4014 return 1; 4015 if (data & 0x1) { 4016 vcpu->arch.apf.pageready_pending = false; 4017 kvm_check_async_pf_completion(vcpu); 4018 } 4019 break; 4020 case MSR_KVM_STEAL_TIME: 4021 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4022 return 1; 4023 4024 if (unlikely(!sched_info_on())) 4025 return 1; 4026 4027 if (data & KVM_STEAL_RESERVED_MASK) 4028 return 1; 4029 4030 vcpu->arch.st.msr_val = data; 4031 4032 if (!(data & KVM_MSR_ENABLED)) 4033 break; 4034 4035 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4036 4037 break; 4038 case MSR_KVM_PV_EOI_EN: 4039 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4040 return 1; 4041 4042 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 4043 return 1; 4044 break; 4045 4046 case MSR_KVM_POLL_CONTROL: 4047 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4048 return 1; 4049 4050 /* only enable bit supported */ 4051 if (data & (-1ULL << 1)) 4052 return 1; 4053 4054 vcpu->arch.msr_kvm_poll_control = data; 4055 break; 4056 4057 case MSR_IA32_MCG_CTL: 4058 case MSR_IA32_MCG_STATUS: 4059 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4060 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4061 return set_msr_mce(vcpu, msr_info); 4062 4063 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4064 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4065 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4066 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4067 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4068 return kvm_pmu_set_msr(vcpu, msr_info); 4069 4070 if (data) 4071 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4072 break; 4073 case MSR_K7_CLK_CTL: 4074 /* 4075 * Ignore all writes to this no longer documented MSR. 4076 * Writes are only relevant for old K7 processors, 4077 * all pre-dating SVM, but a recommended workaround from 4078 * AMD for these chips. It is possible to specify the 4079 * affected processor models on the command line, hence 4080 * the need to ignore the workaround. 4081 */ 4082 break; 4083 #ifdef CONFIG_KVM_HYPERV 4084 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4085 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4086 case HV_X64_MSR_SYNDBG_OPTIONS: 4087 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4088 case HV_X64_MSR_CRASH_CTL: 4089 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4090 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4091 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4092 case HV_X64_MSR_TSC_EMULATION_STATUS: 4093 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4094 return kvm_hv_set_msr_common(vcpu, msr, data, 4095 msr_info->host_initiated); 4096 #endif 4097 case MSR_IA32_BBL_CR_CTL3: 4098 /* Drop writes to this legacy MSR -- see rdmsr 4099 * counterpart for further detail. 4100 */ 4101 kvm_pr_unimpl_wrmsr(vcpu, msr, data); 4102 break; 4103 case MSR_AMD64_OSVW_ID_LENGTH: 4104 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4105 return 1; 4106 vcpu->arch.osvw.length = data; 4107 break; 4108 case MSR_AMD64_OSVW_STATUS: 4109 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4110 return 1; 4111 vcpu->arch.osvw.status = data; 4112 break; 4113 case MSR_PLATFORM_INFO: 4114 if (!msr_info->host_initiated || 4115 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 4116 cpuid_fault_enabled(vcpu))) 4117 return 1; 4118 vcpu->arch.msr_platform_info = data; 4119 break; 4120 case MSR_MISC_FEATURES_ENABLES: 4121 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 4122 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 4123 !supports_cpuid_fault(vcpu))) 4124 return 1; 4125 vcpu->arch.msr_misc_features_enables = data; 4126 break; 4127 #ifdef CONFIG_X86_64 4128 case MSR_IA32_XFD: 4129 if (!msr_info->host_initiated && 4130 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4131 return 1; 4132 4133 if (data & ~kvm_guest_supported_xfd(vcpu)) 4134 return 1; 4135 4136 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 4137 break; 4138 case MSR_IA32_XFD_ERR: 4139 if (!msr_info->host_initiated && 4140 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4141 return 1; 4142 4143 if (data & ~kvm_guest_supported_xfd(vcpu)) 4144 return 1; 4145 4146 vcpu->arch.guest_fpu.xfd_err = data; 4147 break; 4148 #endif 4149 default: 4150 if (kvm_pmu_is_valid_msr(vcpu, msr)) 4151 return kvm_pmu_set_msr(vcpu, msr_info); 4152 4153 return KVM_MSR_RET_UNSUPPORTED; 4154 } 4155 return 0; 4156 } 4157 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 4158 4159 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 4160 { 4161 u64 data; 4162 u64 mcg_cap = vcpu->arch.mcg_cap; 4163 unsigned bank_num = mcg_cap & 0xff; 4164 u32 offset, last_msr; 4165 4166 switch (msr) { 4167 case MSR_IA32_P5_MC_ADDR: 4168 case MSR_IA32_P5_MC_TYPE: 4169 data = 0; 4170 break; 4171 case MSR_IA32_MCG_CAP: 4172 data = vcpu->arch.mcg_cap; 4173 break; 4174 case MSR_IA32_MCG_CTL: 4175 if (!(mcg_cap & MCG_CTL_P) && !host) 4176 return 1; 4177 data = vcpu->arch.mcg_ctl; 4178 break; 4179 case MSR_IA32_MCG_STATUS: 4180 data = vcpu->arch.mcg_status; 4181 break; 4182 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4183 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; 4184 if (msr > last_msr) 4185 return 1; 4186 4187 if (!(mcg_cap & MCG_CMCI_P) && !host) 4188 return 1; 4189 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, 4190 last_msr + 1 - MSR_IA32_MC0_CTL2); 4191 data = vcpu->arch.mci_ctl2_banks[offset]; 4192 break; 4193 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4194 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; 4195 if (msr > last_msr) 4196 return 1; 4197 4198 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, 4199 last_msr + 1 - MSR_IA32_MC0_CTL); 4200 data = vcpu->arch.mce_banks[offset]; 4201 break; 4202 default: 4203 return 1; 4204 } 4205 *pdata = data; 4206 return 0; 4207 } 4208 4209 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 4210 { 4211 switch (msr_info->index) { 4212 case MSR_IA32_PLATFORM_ID: 4213 case MSR_IA32_EBL_CR_POWERON: 4214 case MSR_IA32_LASTBRANCHFROMIP: 4215 case MSR_IA32_LASTBRANCHTOIP: 4216 case MSR_IA32_LASTINTFROMIP: 4217 case MSR_IA32_LASTINTTOIP: 4218 case MSR_AMD64_SYSCFG: 4219 case MSR_K8_TSEG_ADDR: 4220 case MSR_K8_TSEG_MASK: 4221 case MSR_VM_HSAVE_PA: 4222 case MSR_K8_INT_PENDING_MSG: 4223 case MSR_AMD64_NB_CFG: 4224 case MSR_FAM10H_MMIO_CONF_BASE: 4225 case MSR_AMD64_BU_CFG2: 4226 case MSR_IA32_PERF_CTL: 4227 case MSR_AMD64_DC_CFG: 4228 case MSR_AMD64_TW_CFG: 4229 case MSR_F15H_EX_CFG: 4230 /* 4231 * Intel Sandy Bridge CPUs must support the RAPL (running average power 4232 * limit) MSRs. Just return 0, as we do not want to expose the host 4233 * data here. Do not conditionalize this on CPUID, as KVM does not do 4234 * so for existing CPU-specific MSRs. 4235 */ 4236 case MSR_RAPL_POWER_UNIT: 4237 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 4238 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 4239 case MSR_PKG_ENERGY_STATUS: /* Total package */ 4240 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 4241 msr_info->data = 0; 4242 break; 4243 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 4244 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 4245 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 4246 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 4247 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4248 return kvm_pmu_get_msr(vcpu, msr_info); 4249 msr_info->data = 0; 4250 break; 4251 case MSR_IA32_UCODE_REV: 4252 msr_info->data = vcpu->arch.microcode_version; 4253 break; 4254 case MSR_IA32_ARCH_CAPABILITIES: 4255 if (!msr_info->host_initiated && 4256 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 4257 return 1; 4258 msr_info->data = vcpu->arch.arch_capabilities; 4259 break; 4260 case MSR_IA32_PERF_CAPABILITIES: 4261 if (!msr_info->host_initiated && 4262 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 4263 return 1; 4264 msr_info->data = vcpu->arch.perf_capabilities; 4265 break; 4266 case MSR_IA32_POWER_CTL: 4267 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 4268 break; 4269 case MSR_IA32_TSC: { 4270 /* 4271 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 4272 * even when not intercepted. AMD manual doesn't explicitly 4273 * state this but appears to behave the same. 4274 * 4275 * On userspace reads and writes, however, we unconditionally 4276 * return L1's TSC value to ensure backwards-compatible 4277 * behavior for migration. 4278 */ 4279 u64 offset, ratio; 4280 4281 if (msr_info->host_initiated) { 4282 offset = vcpu->arch.l1_tsc_offset; 4283 ratio = vcpu->arch.l1_tsc_scaling_ratio; 4284 } else { 4285 offset = vcpu->arch.tsc_offset; 4286 ratio = vcpu->arch.tsc_scaling_ratio; 4287 } 4288 4289 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 4290 break; 4291 } 4292 case MSR_IA32_CR_PAT: 4293 msr_info->data = vcpu->arch.pat; 4294 break; 4295 case MSR_MTRRcap: 4296 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 4297 case MSR_MTRRdefType: 4298 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 4299 case 0xcd: /* fsb frequency */ 4300 msr_info->data = 3; 4301 break; 4302 /* 4303 * MSR_EBC_FREQUENCY_ID 4304 * Conservative value valid for even the basic CPU models. 4305 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 4306 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 4307 * and 266MHz for model 3, or 4. Set Core Clock 4308 * Frequency to System Bus Frequency Ratio to 1 (bits 4309 * 31:24) even though these are only valid for CPU 4310 * models > 2, however guests may end up dividing or 4311 * multiplying by zero otherwise. 4312 */ 4313 case MSR_EBC_FREQUENCY_ID: 4314 msr_info->data = 1 << 24; 4315 break; 4316 case MSR_IA32_APICBASE: 4317 msr_info->data = kvm_get_apic_base(vcpu); 4318 break; 4319 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 4320 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 4321 case MSR_IA32_TSC_DEADLINE: 4322 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 4323 break; 4324 case MSR_IA32_TSC_ADJUST: 4325 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 4326 break; 4327 case MSR_IA32_MISC_ENABLE: 4328 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 4329 break; 4330 case MSR_IA32_SMBASE: 4331 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) 4332 return 1; 4333 msr_info->data = vcpu->arch.smbase; 4334 break; 4335 case MSR_SMI_COUNT: 4336 msr_info->data = vcpu->arch.smi_count; 4337 break; 4338 case MSR_IA32_PERF_STATUS: 4339 /* TSC increment by tick */ 4340 msr_info->data = 1000ULL; 4341 /* CPU multiplier */ 4342 msr_info->data |= (((uint64_t)4ULL) << 40); 4343 break; 4344 case MSR_EFER: 4345 msr_info->data = vcpu->arch.efer; 4346 break; 4347 case MSR_KVM_WALL_CLOCK: 4348 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4349 return 1; 4350 4351 msr_info->data = vcpu->kvm->arch.wall_clock; 4352 break; 4353 case MSR_KVM_WALL_CLOCK_NEW: 4354 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4355 return 1; 4356 4357 msr_info->data = vcpu->kvm->arch.wall_clock; 4358 break; 4359 case MSR_KVM_SYSTEM_TIME: 4360 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 4361 return 1; 4362 4363 msr_info->data = vcpu->arch.time; 4364 break; 4365 case MSR_KVM_SYSTEM_TIME_NEW: 4366 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 4367 return 1; 4368 4369 msr_info->data = vcpu->arch.time; 4370 break; 4371 case MSR_KVM_ASYNC_PF_EN: 4372 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4373 return 1; 4374 4375 msr_info->data = vcpu->arch.apf.msr_en_val; 4376 break; 4377 case MSR_KVM_ASYNC_PF_INT: 4378 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4379 return 1; 4380 4381 msr_info->data = vcpu->arch.apf.msr_int_val; 4382 break; 4383 case MSR_KVM_ASYNC_PF_ACK: 4384 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4385 return 1; 4386 4387 msr_info->data = 0; 4388 break; 4389 case MSR_KVM_STEAL_TIME: 4390 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4391 return 1; 4392 4393 msr_info->data = vcpu->arch.st.msr_val; 4394 break; 4395 case MSR_KVM_PV_EOI_EN: 4396 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4397 return 1; 4398 4399 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4400 break; 4401 case MSR_KVM_POLL_CONTROL: 4402 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4403 return 1; 4404 4405 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4406 break; 4407 case MSR_IA32_P5_MC_ADDR: 4408 case MSR_IA32_P5_MC_TYPE: 4409 case MSR_IA32_MCG_CAP: 4410 case MSR_IA32_MCG_CTL: 4411 case MSR_IA32_MCG_STATUS: 4412 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4413 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 4414 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4415 msr_info->host_initiated); 4416 case MSR_IA32_XSS: 4417 if (!msr_info->host_initiated && 4418 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4419 return 1; 4420 msr_info->data = vcpu->arch.ia32_xss; 4421 break; 4422 case MSR_K7_CLK_CTL: 4423 /* 4424 * Provide expected ramp-up count for K7. All other 4425 * are set to zero, indicating minimum divisors for 4426 * every field. 4427 * 4428 * This prevents guest kernels on AMD host with CPU 4429 * type 6, model 8 and higher from exploding due to 4430 * the rdmsr failing. 4431 */ 4432 msr_info->data = 0x20000000; 4433 break; 4434 #ifdef CONFIG_KVM_HYPERV 4435 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4436 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4437 case HV_X64_MSR_SYNDBG_OPTIONS: 4438 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4439 case HV_X64_MSR_CRASH_CTL: 4440 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4441 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4442 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4443 case HV_X64_MSR_TSC_EMULATION_STATUS: 4444 case HV_X64_MSR_TSC_INVARIANT_CONTROL: 4445 return kvm_hv_get_msr_common(vcpu, 4446 msr_info->index, &msr_info->data, 4447 msr_info->host_initiated); 4448 #endif 4449 case MSR_IA32_BBL_CR_CTL3: 4450 /* This legacy MSR exists but isn't fully documented in current 4451 * silicon. It is however accessed by winxp in very narrow 4452 * scenarios where it sets bit #19, itself documented as 4453 * a "reserved" bit. Best effort attempt to source coherent 4454 * read data here should the balance of the register be 4455 * interpreted by the guest: 4456 * 4457 * L2 cache control register 3: 64GB range, 256KB size, 4458 * enabled, latency 0x1, configured 4459 */ 4460 msr_info->data = 0xbe702111; 4461 break; 4462 case MSR_AMD64_OSVW_ID_LENGTH: 4463 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4464 return 1; 4465 msr_info->data = vcpu->arch.osvw.length; 4466 break; 4467 case MSR_AMD64_OSVW_STATUS: 4468 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4469 return 1; 4470 msr_info->data = vcpu->arch.osvw.status; 4471 break; 4472 case MSR_PLATFORM_INFO: 4473 if (!msr_info->host_initiated && 4474 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4475 return 1; 4476 msr_info->data = vcpu->arch.msr_platform_info; 4477 break; 4478 case MSR_MISC_FEATURES_ENABLES: 4479 msr_info->data = vcpu->arch.msr_misc_features_enables; 4480 break; 4481 case MSR_K7_HWCR: 4482 msr_info->data = vcpu->arch.msr_hwcr; 4483 break; 4484 #ifdef CONFIG_X86_64 4485 case MSR_IA32_XFD: 4486 if (!msr_info->host_initiated && 4487 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4488 return 1; 4489 4490 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4491 break; 4492 case MSR_IA32_XFD_ERR: 4493 if (!msr_info->host_initiated && 4494 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4495 return 1; 4496 4497 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4498 break; 4499 #endif 4500 default: 4501 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4502 return kvm_pmu_get_msr(vcpu, msr_info); 4503 4504 return KVM_MSR_RET_UNSUPPORTED; 4505 } 4506 return 0; 4507 } 4508 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4509 4510 /* 4511 * Read or write a bunch of msrs. All parameters are kernel addresses. 4512 * 4513 * @return number of msrs set successfully. 4514 */ 4515 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4516 struct kvm_msr_entry *entries, 4517 int (*do_msr)(struct kvm_vcpu *vcpu, 4518 unsigned index, u64 *data)) 4519 { 4520 int i; 4521 4522 for (i = 0; i < msrs->nmsrs; ++i) 4523 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4524 break; 4525 4526 return i; 4527 } 4528 4529 /* 4530 * Read or write a bunch of msrs. Parameters are user addresses. 4531 * 4532 * @return number of msrs set successfully. 4533 */ 4534 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4535 int (*do_msr)(struct kvm_vcpu *vcpu, 4536 unsigned index, u64 *data), 4537 int writeback) 4538 { 4539 struct kvm_msrs msrs; 4540 struct kvm_msr_entry *entries; 4541 unsigned size; 4542 int r; 4543 4544 r = -EFAULT; 4545 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4546 goto out; 4547 4548 r = -E2BIG; 4549 if (msrs.nmsrs >= MAX_IO_MSRS) 4550 goto out; 4551 4552 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4553 entries = memdup_user(user_msrs->entries, size); 4554 if (IS_ERR(entries)) { 4555 r = PTR_ERR(entries); 4556 goto out; 4557 } 4558 4559 r = __msr_io(vcpu, &msrs, entries, do_msr); 4560 4561 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4562 r = -EFAULT; 4563 4564 kfree(entries); 4565 out: 4566 return r; 4567 } 4568 4569 static inline bool kvm_can_mwait_in_guest(void) 4570 { 4571 return boot_cpu_has(X86_FEATURE_MWAIT) && 4572 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4573 boot_cpu_has(X86_FEATURE_ARAT); 4574 } 4575 4576 #ifdef CONFIG_KVM_HYPERV 4577 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4578 struct kvm_cpuid2 __user *cpuid_arg) 4579 { 4580 struct kvm_cpuid2 cpuid; 4581 int r; 4582 4583 r = -EFAULT; 4584 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4585 return r; 4586 4587 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4588 if (r) 4589 return r; 4590 4591 r = -EFAULT; 4592 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4593 return r; 4594 4595 return 0; 4596 } 4597 #endif 4598 4599 static bool kvm_is_vm_type_supported(unsigned long type) 4600 { 4601 return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); 4602 } 4603 4604 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4605 { 4606 int r = 0; 4607 4608 switch (ext) { 4609 case KVM_CAP_IRQCHIP: 4610 case KVM_CAP_HLT: 4611 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4612 case KVM_CAP_SET_TSS_ADDR: 4613 case KVM_CAP_EXT_CPUID: 4614 case KVM_CAP_EXT_EMUL_CPUID: 4615 case KVM_CAP_CLOCKSOURCE: 4616 case KVM_CAP_PIT: 4617 case KVM_CAP_NOP_IO_DELAY: 4618 case KVM_CAP_MP_STATE: 4619 case KVM_CAP_SYNC_MMU: 4620 case KVM_CAP_USER_NMI: 4621 case KVM_CAP_REINJECT_CONTROL: 4622 case KVM_CAP_IRQ_INJECT_STATUS: 4623 case KVM_CAP_IOEVENTFD: 4624 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4625 case KVM_CAP_PIT2: 4626 case KVM_CAP_PIT_STATE2: 4627 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4628 case KVM_CAP_VCPU_EVENTS: 4629 #ifdef CONFIG_KVM_HYPERV 4630 case KVM_CAP_HYPERV: 4631 case KVM_CAP_HYPERV_VAPIC: 4632 case KVM_CAP_HYPERV_SPIN: 4633 case KVM_CAP_HYPERV_TIME: 4634 case KVM_CAP_HYPERV_SYNIC: 4635 case KVM_CAP_HYPERV_SYNIC2: 4636 case KVM_CAP_HYPERV_VP_INDEX: 4637 case KVM_CAP_HYPERV_EVENTFD: 4638 case KVM_CAP_HYPERV_TLBFLUSH: 4639 case KVM_CAP_HYPERV_SEND_IPI: 4640 case KVM_CAP_HYPERV_CPUID: 4641 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4642 case KVM_CAP_SYS_HYPERV_CPUID: 4643 #endif 4644 case KVM_CAP_PCI_SEGMENT: 4645 case KVM_CAP_DEBUGREGS: 4646 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4647 case KVM_CAP_XSAVE: 4648 case KVM_CAP_ASYNC_PF: 4649 case KVM_CAP_ASYNC_PF_INT: 4650 case KVM_CAP_GET_TSC_KHZ: 4651 case KVM_CAP_KVMCLOCK_CTRL: 4652 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4653 case KVM_CAP_TSC_DEADLINE_TIMER: 4654 case KVM_CAP_DISABLE_QUIRKS: 4655 case KVM_CAP_SET_BOOT_CPU_ID: 4656 case KVM_CAP_SPLIT_IRQCHIP: 4657 case KVM_CAP_IMMEDIATE_EXIT: 4658 case KVM_CAP_PMU_EVENT_FILTER: 4659 case KVM_CAP_PMU_EVENT_MASKED_EVENTS: 4660 case KVM_CAP_GET_MSR_FEATURES: 4661 case KVM_CAP_MSR_PLATFORM_INFO: 4662 case KVM_CAP_EXCEPTION_PAYLOAD: 4663 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 4664 case KVM_CAP_SET_GUEST_DEBUG: 4665 case KVM_CAP_LAST_CPU: 4666 case KVM_CAP_X86_USER_SPACE_MSR: 4667 case KVM_CAP_X86_MSR_FILTER: 4668 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4669 #ifdef CONFIG_X86_SGX_KVM 4670 case KVM_CAP_SGX_ATTRIBUTE: 4671 #endif 4672 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4673 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4674 case KVM_CAP_SREGS2: 4675 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4676 case KVM_CAP_VCPU_ATTRIBUTES: 4677 case KVM_CAP_SYS_ATTRIBUTES: 4678 case KVM_CAP_VAPIC: 4679 case KVM_CAP_ENABLE_CAP: 4680 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 4681 case KVM_CAP_IRQFD_RESAMPLE: 4682 case KVM_CAP_MEMORY_FAULT_INFO: 4683 case KVM_CAP_X86_GUEST_MODE: 4684 r = 1; 4685 break; 4686 case KVM_CAP_PRE_FAULT_MEMORY: 4687 r = tdp_enabled; 4688 break; 4689 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: 4690 r = APIC_BUS_CYCLE_NS_DEFAULT; 4691 break; 4692 case KVM_CAP_EXIT_HYPERCALL: 4693 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4694 break; 4695 case KVM_CAP_SET_GUEST_DEBUG2: 4696 return KVM_GUESTDBG_VALID_MASK; 4697 #ifdef CONFIG_KVM_XEN 4698 case KVM_CAP_XEN_HVM: 4699 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4700 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4701 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4702 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4703 KVM_XEN_HVM_CONFIG_EVTCHN_SEND | 4704 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | 4705 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; 4706 if (sched_info_on()) 4707 r |= KVM_XEN_HVM_CONFIG_RUNSTATE | 4708 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; 4709 break; 4710 #endif 4711 case KVM_CAP_SYNC_REGS: 4712 r = KVM_SYNC_X86_VALID_FIELDS; 4713 break; 4714 case KVM_CAP_ADJUST_CLOCK: 4715 r = KVM_CLOCK_VALID_FLAGS; 4716 break; 4717 case KVM_CAP_X86_DISABLE_EXITS: 4718 r = KVM_X86_DISABLE_EXITS_PAUSE; 4719 4720 if (!mitigate_smt_rsb) { 4721 r |= KVM_X86_DISABLE_EXITS_HLT | 4722 KVM_X86_DISABLE_EXITS_CSTATE; 4723 4724 if (kvm_can_mwait_in_guest()) 4725 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4726 } 4727 break; 4728 case KVM_CAP_X86_SMM: 4729 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4730 break; 4731 4732 /* SMBASE is usually relocated above 1M on modern chipsets, 4733 * and SMM handlers might indeed rely on 4G segment limits, 4734 * so do not report SMM to be available if real mode is 4735 * emulated via vm86 mode. Still, do not go to great lengths 4736 * to avoid userspace's usage of the feature, because it is a 4737 * fringe case that is not enabled except via specific settings 4738 * of the module parameters. 4739 */ 4740 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4741 break; 4742 case KVM_CAP_NR_VCPUS: 4743 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4744 break; 4745 case KVM_CAP_MAX_VCPUS: 4746 r = KVM_MAX_VCPUS; 4747 break; 4748 case KVM_CAP_MAX_VCPU_ID: 4749 r = KVM_MAX_VCPU_IDS; 4750 break; 4751 case KVM_CAP_PV_MMU: /* obsolete */ 4752 r = 0; 4753 break; 4754 case KVM_CAP_MCE: 4755 r = KVM_MAX_MCE_BANKS; 4756 break; 4757 case KVM_CAP_XCRS: 4758 r = boot_cpu_has(X86_FEATURE_XSAVE); 4759 break; 4760 case KVM_CAP_TSC_CONTROL: 4761 case KVM_CAP_VM_TSC_CONTROL: 4762 r = kvm_caps.has_tsc_control; 4763 break; 4764 case KVM_CAP_X2APIC_API: 4765 r = KVM_X2APIC_API_VALID_FLAGS; 4766 break; 4767 case KVM_CAP_NESTED_STATE: 4768 r = kvm_x86_ops.nested_ops->get_state ? 4769 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4770 break; 4771 #ifdef CONFIG_KVM_HYPERV 4772 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4773 r = kvm_x86_ops.enable_l2_tlb_flush != NULL; 4774 break; 4775 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4776 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4777 break; 4778 #endif 4779 case KVM_CAP_SMALLER_MAXPHYADDR: 4780 r = (int) allow_smaller_maxphyaddr; 4781 break; 4782 case KVM_CAP_STEAL_TIME: 4783 r = sched_info_on(); 4784 break; 4785 case KVM_CAP_X86_BUS_LOCK_EXIT: 4786 if (kvm_caps.has_bus_lock_exit) 4787 r = KVM_BUS_LOCK_DETECTION_OFF | 4788 KVM_BUS_LOCK_DETECTION_EXIT; 4789 else 4790 r = 0; 4791 break; 4792 case KVM_CAP_XSAVE2: { 4793 r = xstate_required_size(kvm_get_filtered_xcr0(), false); 4794 if (r < sizeof(struct kvm_xsave)) 4795 r = sizeof(struct kvm_xsave); 4796 break; 4797 } 4798 case KVM_CAP_PMU_CAPABILITY: 4799 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4800 break; 4801 case KVM_CAP_DISABLE_QUIRKS2: 4802 r = KVM_X86_VALID_QUIRKS; 4803 break; 4804 case KVM_CAP_X86_NOTIFY_VMEXIT: 4805 r = kvm_caps.has_notify_vmexit; 4806 break; 4807 case KVM_CAP_VM_TYPES: 4808 r = kvm_caps.supported_vm_types; 4809 break; 4810 case KVM_CAP_READONLY_MEM: 4811 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1; 4812 break; 4813 default: 4814 break; 4815 } 4816 return r; 4817 } 4818 4819 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) 4820 { 4821 if (attr->group) { 4822 if (kvm_x86_ops.dev_get_attr) 4823 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); 4824 return -ENXIO; 4825 } 4826 4827 switch (attr->attr) { 4828 case KVM_X86_XCOMP_GUEST_SUPP: 4829 *val = kvm_caps.supported_xcr0; 4830 return 0; 4831 default: 4832 return -ENXIO; 4833 } 4834 } 4835 4836 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4837 { 4838 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 4839 int r; 4840 u64 val; 4841 4842 r = __kvm_x86_dev_get_attr(attr, &val); 4843 if (r < 0) 4844 return r; 4845 4846 if (put_user(val, uaddr)) 4847 return -EFAULT; 4848 4849 return 0; 4850 } 4851 4852 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4853 { 4854 u64 val; 4855 4856 return __kvm_x86_dev_get_attr(attr, &val); 4857 } 4858 4859 long kvm_arch_dev_ioctl(struct file *filp, 4860 unsigned int ioctl, unsigned long arg) 4861 { 4862 void __user *argp = (void __user *)arg; 4863 long r; 4864 4865 switch (ioctl) { 4866 case KVM_GET_MSR_INDEX_LIST: { 4867 struct kvm_msr_list __user *user_msr_list = argp; 4868 struct kvm_msr_list msr_list; 4869 unsigned n; 4870 4871 r = -EFAULT; 4872 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4873 goto out; 4874 n = msr_list.nmsrs; 4875 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4876 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4877 goto out; 4878 r = -E2BIG; 4879 if (n < msr_list.nmsrs) 4880 goto out; 4881 r = -EFAULT; 4882 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4883 num_msrs_to_save * sizeof(u32))) 4884 goto out; 4885 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4886 &emulated_msrs, 4887 num_emulated_msrs * sizeof(u32))) 4888 goto out; 4889 r = 0; 4890 break; 4891 } 4892 case KVM_GET_SUPPORTED_CPUID: 4893 case KVM_GET_EMULATED_CPUID: { 4894 struct kvm_cpuid2 __user *cpuid_arg = argp; 4895 struct kvm_cpuid2 cpuid; 4896 4897 r = -EFAULT; 4898 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4899 goto out; 4900 4901 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4902 ioctl); 4903 if (r) 4904 goto out; 4905 4906 r = -EFAULT; 4907 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4908 goto out; 4909 r = 0; 4910 break; 4911 } 4912 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4913 r = -EFAULT; 4914 if (copy_to_user(argp, &kvm_caps.supported_mce_cap, 4915 sizeof(kvm_caps.supported_mce_cap))) 4916 goto out; 4917 r = 0; 4918 break; 4919 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4920 struct kvm_msr_list __user *user_msr_list = argp; 4921 struct kvm_msr_list msr_list; 4922 unsigned int n; 4923 4924 r = -EFAULT; 4925 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4926 goto out; 4927 n = msr_list.nmsrs; 4928 msr_list.nmsrs = num_msr_based_features; 4929 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4930 goto out; 4931 r = -E2BIG; 4932 if (n < msr_list.nmsrs) 4933 goto out; 4934 r = -EFAULT; 4935 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4936 num_msr_based_features * sizeof(u32))) 4937 goto out; 4938 r = 0; 4939 break; 4940 } 4941 case KVM_GET_MSRS: 4942 r = msr_io(NULL, argp, do_get_feature_msr, 1); 4943 break; 4944 #ifdef CONFIG_KVM_HYPERV 4945 case KVM_GET_SUPPORTED_HV_CPUID: 4946 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4947 break; 4948 #endif 4949 case KVM_GET_DEVICE_ATTR: { 4950 struct kvm_device_attr attr; 4951 r = -EFAULT; 4952 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4953 break; 4954 r = kvm_x86_dev_get_attr(&attr); 4955 break; 4956 } 4957 case KVM_HAS_DEVICE_ATTR: { 4958 struct kvm_device_attr attr; 4959 r = -EFAULT; 4960 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4961 break; 4962 r = kvm_x86_dev_has_attr(&attr); 4963 break; 4964 } 4965 default: 4966 r = -EINVAL; 4967 break; 4968 } 4969 out: 4970 return r; 4971 } 4972 4973 static void wbinvd_ipi(void *garbage) 4974 { 4975 wbinvd(); 4976 } 4977 4978 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4979 { 4980 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4981 } 4982 4983 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4984 { 4985 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 4986 4987 vcpu->arch.l1tf_flush_l1d = true; 4988 4989 if (vcpu->scheduled_out && pmu->version && pmu->event_count) { 4990 pmu->need_cleanup = true; 4991 kvm_make_request(KVM_REQ_PMU, vcpu); 4992 } 4993 4994 /* Address WBINVD may be executed by guest */ 4995 if (need_emulate_wbinvd(vcpu)) { 4996 if (kvm_x86_call(has_wbinvd_exit)()) 4997 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4998 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4999 smp_call_function_single(vcpu->cpu, 5000 wbinvd_ipi, NULL, 1); 5001 } 5002 5003 kvm_x86_call(vcpu_load)(vcpu, cpu); 5004 5005 /* Save host pkru register if supported */ 5006 vcpu->arch.host_pkru = read_pkru(); 5007 5008 /* Apply any externally detected TSC adjustments (due to suspend) */ 5009 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 5010 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 5011 vcpu->arch.tsc_offset_adjustment = 0; 5012 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5013 } 5014 5015 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 5016 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 5017 rdtsc() - vcpu->arch.last_host_tsc; 5018 if (tsc_delta < 0) 5019 mark_tsc_unstable("KVM discovered backwards TSC"); 5020 5021 if (kvm_check_tsc_unstable()) { 5022 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 5023 vcpu->arch.last_guest_tsc); 5024 kvm_vcpu_write_tsc_offset(vcpu, offset); 5025 vcpu->arch.tsc_catchup = 1; 5026 } 5027 5028 if (kvm_lapic_hv_timer_in_use(vcpu)) 5029 kvm_lapic_restart_hv_timer(vcpu); 5030 5031 /* 5032 * On a host with synchronized TSC, there is no need to update 5033 * kvmclock on vcpu->cpu migration 5034 */ 5035 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 5036 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 5037 if (vcpu->cpu != cpu) 5038 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 5039 vcpu->cpu = cpu; 5040 } 5041 5042 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 5043 } 5044 5045 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 5046 { 5047 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 5048 struct kvm_steal_time __user *st; 5049 struct kvm_memslots *slots; 5050 static const u8 preempted = KVM_VCPU_PREEMPTED; 5051 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 5052 5053 /* 5054 * The vCPU can be marked preempted if and only if the VM-Exit was on 5055 * an instruction boundary and will not trigger guest emulation of any 5056 * kind (see vcpu_run). Vendor specific code controls (conservatively) 5057 * when this is true, for example allowing the vCPU to be marked 5058 * preempted if and only if the VM-Exit was due to a host interrupt. 5059 */ 5060 if (!vcpu->arch.at_instruction_boundary) { 5061 vcpu->stat.preemption_other++; 5062 return; 5063 } 5064 5065 vcpu->stat.preemption_reported++; 5066 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 5067 return; 5068 5069 if (vcpu->arch.st.preempted) 5070 return; 5071 5072 /* This happens on process exit */ 5073 if (unlikely(current->mm != vcpu->kvm->mm)) 5074 return; 5075 5076 slots = kvm_memslots(vcpu->kvm); 5077 5078 if (unlikely(slots->generation != ghc->generation || 5079 gpa != ghc->gpa || 5080 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 5081 return; 5082 5083 st = (struct kvm_steal_time __user *)ghc->hva; 5084 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 5085 5086 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 5087 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 5088 5089 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 5090 } 5091 5092 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 5093 { 5094 int idx; 5095 5096 if (vcpu->preempted) { 5097 vcpu->arch.preempted_in_kernel = kvm_arch_vcpu_in_kernel(vcpu); 5098 5099 /* 5100 * Take the srcu lock as memslots will be accessed to check the gfn 5101 * cache generation against the memslots generation. 5102 */ 5103 idx = srcu_read_lock(&vcpu->kvm->srcu); 5104 if (kvm_xen_msr_enabled(vcpu->kvm)) 5105 kvm_xen_runstate_set_preempted(vcpu); 5106 else 5107 kvm_steal_time_set_preempted(vcpu); 5108 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5109 } 5110 5111 kvm_x86_call(vcpu_put)(vcpu); 5112 vcpu->arch.last_host_tsc = rdtsc(); 5113 } 5114 5115 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 5116 struct kvm_lapic_state *s) 5117 { 5118 kvm_x86_call(sync_pir_to_irr)(vcpu); 5119 5120 return kvm_apic_get_state(vcpu, s); 5121 } 5122 5123 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 5124 struct kvm_lapic_state *s) 5125 { 5126 int r; 5127 5128 r = kvm_apic_set_state(vcpu, s); 5129 if (r) 5130 return r; 5131 update_cr8_intercept(vcpu); 5132 5133 return 0; 5134 } 5135 5136 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 5137 { 5138 /* 5139 * We can accept userspace's request for interrupt injection 5140 * as long as we have a place to store the interrupt number. 5141 * The actual injection will happen when the CPU is able to 5142 * deliver the interrupt. 5143 */ 5144 if (kvm_cpu_has_extint(vcpu)) 5145 return false; 5146 5147 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 5148 return (!lapic_in_kernel(vcpu) || 5149 kvm_apic_accept_pic_intr(vcpu)); 5150 } 5151 5152 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 5153 { 5154 /* 5155 * Do not cause an interrupt window exit if an exception 5156 * is pending or an event needs reinjection; userspace 5157 * might want to inject the interrupt manually using KVM_SET_REGS 5158 * or KVM_SET_SREGS. For that to work, we must be at an 5159 * instruction boundary and with no events half-injected. 5160 */ 5161 return (kvm_arch_interrupt_allowed(vcpu) && 5162 kvm_cpu_accept_dm_intr(vcpu) && 5163 !kvm_event_needs_reinjection(vcpu) && 5164 !kvm_is_exception_pending(vcpu)); 5165 } 5166 5167 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 5168 struct kvm_interrupt *irq) 5169 { 5170 if (irq->irq >= KVM_NR_INTERRUPTS) 5171 return -EINVAL; 5172 5173 if (!irqchip_in_kernel(vcpu->kvm)) { 5174 kvm_queue_interrupt(vcpu, irq->irq, false); 5175 kvm_make_request(KVM_REQ_EVENT, vcpu); 5176 return 0; 5177 } 5178 5179 /* 5180 * With in-kernel LAPIC, we only use this to inject EXTINT, so 5181 * fail for in-kernel 8259. 5182 */ 5183 if (pic_in_kernel(vcpu->kvm)) 5184 return -ENXIO; 5185 5186 if (vcpu->arch.pending_external_vector != -1) 5187 return -EEXIST; 5188 5189 vcpu->arch.pending_external_vector = irq->irq; 5190 kvm_make_request(KVM_REQ_EVENT, vcpu); 5191 return 0; 5192 } 5193 5194 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 5195 { 5196 kvm_inject_nmi(vcpu); 5197 5198 return 0; 5199 } 5200 5201 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 5202 struct kvm_tpr_access_ctl *tac) 5203 { 5204 if (tac->flags) 5205 return -EINVAL; 5206 vcpu->arch.tpr_access_reporting = !!tac->enabled; 5207 return 0; 5208 } 5209 5210 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 5211 u64 mcg_cap) 5212 { 5213 int r; 5214 unsigned bank_num = mcg_cap & 0xff, bank; 5215 5216 r = -EINVAL; 5217 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 5218 goto out; 5219 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) 5220 goto out; 5221 r = 0; 5222 vcpu->arch.mcg_cap = mcg_cap; 5223 /* Init IA32_MCG_CTL to all 1s */ 5224 if (mcg_cap & MCG_CTL_P) 5225 vcpu->arch.mcg_ctl = ~(u64)0; 5226 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ 5227 for (bank = 0; bank < bank_num; bank++) { 5228 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 5229 if (mcg_cap & MCG_CMCI_P) 5230 vcpu->arch.mci_ctl2_banks[bank] = 0; 5231 } 5232 5233 kvm_apic_after_set_mcg_cap(vcpu); 5234 5235 kvm_x86_call(setup_mce)(vcpu); 5236 out: 5237 return r; 5238 } 5239 5240 /* 5241 * Validate this is an UCNA (uncorrectable no action) error by checking the 5242 * MCG_STATUS and MCi_STATUS registers: 5243 * - none of the bits for Machine Check Exceptions are set 5244 * - both the VAL (valid) and UC (uncorrectable) bits are set 5245 * MCI_STATUS_PCC - Processor Context Corrupted 5246 * MCI_STATUS_S - Signaled as a Machine Check Exception 5247 * MCI_STATUS_AR - Software recoverable Action Required 5248 */ 5249 static bool is_ucna(struct kvm_x86_mce *mce) 5250 { 5251 return !mce->mcg_status && 5252 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && 5253 (mce->status & MCI_STATUS_VAL) && 5254 (mce->status & MCI_STATUS_UC); 5255 } 5256 5257 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) 5258 { 5259 u64 mcg_cap = vcpu->arch.mcg_cap; 5260 5261 banks[1] = mce->status; 5262 banks[2] = mce->addr; 5263 banks[3] = mce->misc; 5264 vcpu->arch.mcg_status = mce->mcg_status; 5265 5266 if (!(mcg_cap & MCG_CMCI_P) || 5267 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) 5268 return 0; 5269 5270 if (lapic_in_kernel(vcpu)) 5271 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); 5272 5273 return 0; 5274 } 5275 5276 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 5277 struct kvm_x86_mce *mce) 5278 { 5279 u64 mcg_cap = vcpu->arch.mcg_cap; 5280 unsigned bank_num = mcg_cap & 0xff; 5281 u64 *banks = vcpu->arch.mce_banks; 5282 5283 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 5284 return -EINVAL; 5285 5286 banks += array_index_nospec(4 * mce->bank, 4 * bank_num); 5287 5288 if (is_ucna(mce)) 5289 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); 5290 5291 /* 5292 * if IA32_MCG_CTL is not all 1s, the uncorrected error 5293 * reporting is disabled 5294 */ 5295 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 5296 vcpu->arch.mcg_ctl != ~(u64)0) 5297 return 0; 5298 /* 5299 * if IA32_MCi_CTL is not all 1s, the uncorrected error 5300 * reporting is disabled for the bank 5301 */ 5302 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 5303 return 0; 5304 if (mce->status & MCI_STATUS_UC) { 5305 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 5306 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { 5307 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5308 return 0; 5309 } 5310 if (banks[1] & MCI_STATUS_VAL) 5311 mce->status |= MCI_STATUS_OVER; 5312 banks[2] = mce->addr; 5313 banks[3] = mce->misc; 5314 vcpu->arch.mcg_status = mce->mcg_status; 5315 banks[1] = mce->status; 5316 kvm_queue_exception(vcpu, MC_VECTOR); 5317 } else if (!(banks[1] & MCI_STATUS_VAL) 5318 || !(banks[1] & MCI_STATUS_UC)) { 5319 if (banks[1] & MCI_STATUS_VAL) 5320 mce->status |= MCI_STATUS_OVER; 5321 banks[2] = mce->addr; 5322 banks[3] = mce->misc; 5323 banks[1] = mce->status; 5324 } else 5325 banks[1] |= MCI_STATUS_OVER; 5326 return 0; 5327 } 5328 5329 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 5330 struct kvm_vcpu_events *events) 5331 { 5332 struct kvm_queued_exception *ex; 5333 5334 process_nmi(vcpu); 5335 5336 #ifdef CONFIG_KVM_SMM 5337 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 5338 process_smi(vcpu); 5339 #endif 5340 5341 /* 5342 * KVM's ABI only allows for one exception to be migrated. Luckily, 5343 * the only time there can be two queued exceptions is if there's a 5344 * non-exiting _injected_ exception, and a pending exiting exception. 5345 * In that case, ignore the VM-Exiting exception as it's an extension 5346 * of the injected exception. 5347 */ 5348 if (vcpu->arch.exception_vmexit.pending && 5349 !vcpu->arch.exception.pending && 5350 !vcpu->arch.exception.injected) 5351 ex = &vcpu->arch.exception_vmexit; 5352 else 5353 ex = &vcpu->arch.exception; 5354 5355 /* 5356 * In guest mode, payload delivery should be deferred if the exception 5357 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 5358 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, 5359 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not 5360 * propagate the payload and so it cannot be safely deferred. Deliver 5361 * the payload if the capability hasn't been requested. 5362 */ 5363 if (!vcpu->kvm->arch.exception_payload_enabled && 5364 ex->pending && ex->has_payload) 5365 kvm_deliver_exception_payload(vcpu, ex); 5366 5367 memset(events, 0, sizeof(*events)); 5368 5369 /* 5370 * The API doesn't provide the instruction length for software 5371 * exceptions, so don't report them. As long as the guest RIP 5372 * isn't advanced, we should expect to encounter the exception 5373 * again. 5374 */ 5375 if (!kvm_exception_is_soft(ex->vector)) { 5376 events->exception.injected = ex->injected; 5377 events->exception.pending = ex->pending; 5378 /* 5379 * For ABI compatibility, deliberately conflate 5380 * pending and injected exceptions when 5381 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 5382 */ 5383 if (!vcpu->kvm->arch.exception_payload_enabled) 5384 events->exception.injected |= ex->pending; 5385 } 5386 events->exception.nr = ex->vector; 5387 events->exception.has_error_code = ex->has_error_code; 5388 events->exception.error_code = ex->error_code; 5389 events->exception_has_payload = ex->has_payload; 5390 events->exception_payload = ex->payload; 5391 5392 events->interrupt.injected = 5393 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 5394 events->interrupt.nr = vcpu->arch.interrupt.nr; 5395 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 5396 5397 events->nmi.injected = vcpu->arch.nmi_injected; 5398 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); 5399 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); 5400 5401 /* events->sipi_vector is never valid when reporting to user space */ 5402 5403 #ifdef CONFIG_KVM_SMM 5404 events->smi.smm = is_smm(vcpu); 5405 events->smi.pending = vcpu->arch.smi_pending; 5406 events->smi.smm_inside_nmi = 5407 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 5408 #endif 5409 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 5410 5411 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 5412 | KVM_VCPUEVENT_VALID_SHADOW 5413 | KVM_VCPUEVENT_VALID_SMM); 5414 if (vcpu->kvm->arch.exception_payload_enabled) 5415 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5416 if (vcpu->kvm->arch.triple_fault_event) { 5417 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5418 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5419 } 5420 } 5421 5422 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 5423 struct kvm_vcpu_events *events) 5424 { 5425 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 5426 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 5427 | KVM_VCPUEVENT_VALID_SHADOW 5428 | KVM_VCPUEVENT_VALID_SMM 5429 | KVM_VCPUEVENT_VALID_PAYLOAD 5430 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) 5431 return -EINVAL; 5432 5433 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5434 if (!vcpu->kvm->arch.exception_payload_enabled) 5435 return -EINVAL; 5436 if (events->exception.pending) 5437 events->exception.injected = 0; 5438 else 5439 events->exception_has_payload = 0; 5440 } else { 5441 events->exception.pending = 0; 5442 events->exception_has_payload = 0; 5443 } 5444 5445 if ((events->exception.injected || events->exception.pending) && 5446 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 5447 return -EINVAL; 5448 5449 /* INITs are latched while in SMM */ 5450 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 5451 (events->smi.smm || events->smi.pending) && 5452 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 5453 return -EINVAL; 5454 5455 process_nmi(vcpu); 5456 5457 /* 5458 * Flag that userspace is stuffing an exception, the next KVM_RUN will 5459 * morph the exception to a VM-Exit if appropriate. Do this only for 5460 * pending exceptions, already-injected exceptions are not subject to 5461 * intercpetion. Note, userspace that conflates pending and injected 5462 * is hosed, and will incorrectly convert an injected exception into a 5463 * pending exception, which in turn may cause a spurious VM-Exit. 5464 */ 5465 vcpu->arch.exception_from_userspace = events->exception.pending; 5466 5467 vcpu->arch.exception_vmexit.pending = false; 5468 5469 vcpu->arch.exception.injected = events->exception.injected; 5470 vcpu->arch.exception.pending = events->exception.pending; 5471 vcpu->arch.exception.vector = events->exception.nr; 5472 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 5473 vcpu->arch.exception.error_code = events->exception.error_code; 5474 vcpu->arch.exception.has_payload = events->exception_has_payload; 5475 vcpu->arch.exception.payload = events->exception_payload; 5476 5477 vcpu->arch.interrupt.injected = events->interrupt.injected; 5478 vcpu->arch.interrupt.nr = events->interrupt.nr; 5479 vcpu->arch.interrupt.soft = events->interrupt.soft; 5480 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 5481 kvm_x86_call(set_interrupt_shadow)(vcpu, 5482 events->interrupt.shadow); 5483 5484 vcpu->arch.nmi_injected = events->nmi.injected; 5485 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { 5486 vcpu->arch.nmi_pending = 0; 5487 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); 5488 if (events->nmi.pending) 5489 kvm_make_request(KVM_REQ_NMI, vcpu); 5490 } 5491 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); 5492 5493 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5494 lapic_in_kernel(vcpu)) 5495 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5496 5497 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5498 #ifdef CONFIG_KVM_SMM 5499 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5500 kvm_leave_nested(vcpu); 5501 kvm_smm_changed(vcpu, events->smi.smm); 5502 } 5503 5504 vcpu->arch.smi_pending = events->smi.pending; 5505 5506 if (events->smi.smm) { 5507 if (events->smi.smm_inside_nmi) 5508 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5509 else 5510 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5511 } 5512 5513 #else 5514 if (events->smi.smm || events->smi.pending || 5515 events->smi.smm_inside_nmi) 5516 return -EINVAL; 5517 #endif 5518 5519 if (lapic_in_kernel(vcpu)) { 5520 if (events->smi.latched_init) 5521 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5522 else 5523 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5524 } 5525 } 5526 5527 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5528 if (!vcpu->kvm->arch.triple_fault_event) 5529 return -EINVAL; 5530 if (events->triple_fault.pending) 5531 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5532 else 5533 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5534 } 5535 5536 kvm_make_request(KVM_REQ_EVENT, vcpu); 5537 5538 return 0; 5539 } 5540 5541 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5542 struct kvm_debugregs *dbgregs) 5543 { 5544 unsigned int i; 5545 5546 if (vcpu->kvm->arch.has_protected_state && 5547 vcpu->arch.guest_state_protected) 5548 return -EINVAL; 5549 5550 memset(dbgregs, 0, sizeof(*dbgregs)); 5551 5552 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); 5553 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5554 dbgregs->db[i] = vcpu->arch.db[i]; 5555 5556 dbgregs->dr6 = vcpu->arch.dr6; 5557 dbgregs->dr7 = vcpu->arch.dr7; 5558 return 0; 5559 } 5560 5561 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5562 struct kvm_debugregs *dbgregs) 5563 { 5564 unsigned int i; 5565 5566 if (vcpu->kvm->arch.has_protected_state && 5567 vcpu->arch.guest_state_protected) 5568 return -EINVAL; 5569 5570 if (dbgregs->flags) 5571 return -EINVAL; 5572 5573 if (!kvm_dr6_valid(dbgregs->dr6)) 5574 return -EINVAL; 5575 if (!kvm_dr7_valid(dbgregs->dr7)) 5576 return -EINVAL; 5577 5578 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) 5579 vcpu->arch.db[i] = dbgregs->db[i]; 5580 5581 kvm_update_dr0123(vcpu); 5582 vcpu->arch.dr6 = dbgregs->dr6; 5583 vcpu->arch.dr7 = dbgregs->dr7; 5584 kvm_update_dr7(vcpu); 5585 5586 return 0; 5587 } 5588 5589 5590 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5591 u8 *state, unsigned int size) 5592 { 5593 /* 5594 * Only copy state for features that are enabled for the guest. The 5595 * state itself isn't problematic, but setting bits in the header for 5596 * features that are supported in *this* host but not exposed to the 5597 * guest can result in KVM_SET_XSAVE failing when live migrating to a 5598 * compatible host without the features that are NOT exposed to the 5599 * guest. 5600 * 5601 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 5602 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 5603 * supported by the host. 5604 */ 5605 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | 5606 XFEATURE_MASK_FPSSE; 5607 5608 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5609 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5610 5611 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, 5612 supported_xcr0, vcpu->arch.pkru); 5613 return 0; 5614 } 5615 5616 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5617 struct kvm_xsave *guest_xsave) 5618 { 5619 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, 5620 sizeof(guest_xsave->region)); 5621 } 5622 5623 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5624 struct kvm_xsave *guest_xsave) 5625 { 5626 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5627 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 5628 5629 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5630 guest_xsave->region, 5631 kvm_caps.supported_xcr0, 5632 &vcpu->arch.pkru); 5633 } 5634 5635 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5636 struct kvm_xcrs *guest_xcrs) 5637 { 5638 if (vcpu->kvm->arch.has_protected_state && 5639 vcpu->arch.guest_state_protected) 5640 return -EINVAL; 5641 5642 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5643 guest_xcrs->nr_xcrs = 0; 5644 return 0; 5645 } 5646 5647 guest_xcrs->nr_xcrs = 1; 5648 guest_xcrs->flags = 0; 5649 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5650 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5651 return 0; 5652 } 5653 5654 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5655 struct kvm_xcrs *guest_xcrs) 5656 { 5657 int i, r = 0; 5658 5659 if (vcpu->kvm->arch.has_protected_state && 5660 vcpu->arch.guest_state_protected) 5661 return -EINVAL; 5662 5663 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5664 return -EINVAL; 5665 5666 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5667 return -EINVAL; 5668 5669 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5670 /* Only support XCR0 currently */ 5671 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5672 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5673 guest_xcrs->xcrs[i].value); 5674 break; 5675 } 5676 if (r) 5677 r = -EINVAL; 5678 return r; 5679 } 5680 5681 /* 5682 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5683 * stopped by the hypervisor. This function will be called from the host only. 5684 * EINVAL is returned when the host attempts to set the flag for a guest that 5685 * does not support pv clocks. 5686 */ 5687 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5688 { 5689 if (!vcpu->arch.pv_time.active) 5690 return -EINVAL; 5691 vcpu->arch.pvclock_set_guest_stopped_request = true; 5692 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5693 return 0; 5694 } 5695 5696 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5697 struct kvm_device_attr *attr) 5698 { 5699 int r; 5700 5701 switch (attr->attr) { 5702 case KVM_VCPU_TSC_OFFSET: 5703 r = 0; 5704 break; 5705 default: 5706 r = -ENXIO; 5707 } 5708 5709 return r; 5710 } 5711 5712 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5713 struct kvm_device_attr *attr) 5714 { 5715 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5716 int r; 5717 5718 switch (attr->attr) { 5719 case KVM_VCPU_TSC_OFFSET: 5720 r = -EFAULT; 5721 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5722 break; 5723 r = 0; 5724 break; 5725 default: 5726 r = -ENXIO; 5727 } 5728 5729 return r; 5730 } 5731 5732 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5733 struct kvm_device_attr *attr) 5734 { 5735 u64 __user *uaddr = u64_to_user_ptr(attr->addr); 5736 struct kvm *kvm = vcpu->kvm; 5737 int r; 5738 5739 switch (attr->attr) { 5740 case KVM_VCPU_TSC_OFFSET: { 5741 u64 offset, tsc, ns; 5742 unsigned long flags; 5743 bool matched; 5744 5745 r = -EFAULT; 5746 if (get_user(offset, uaddr)) 5747 break; 5748 5749 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5750 5751 matched = (vcpu->arch.virtual_tsc_khz && 5752 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5753 kvm->arch.last_tsc_offset == offset); 5754 5755 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5756 ns = get_kvmclock_base_ns(); 5757 5758 kvm->arch.user_set_tsc = true; 5759 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5760 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5761 5762 r = 0; 5763 break; 5764 } 5765 default: 5766 r = -ENXIO; 5767 } 5768 5769 return r; 5770 } 5771 5772 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5773 unsigned int ioctl, 5774 void __user *argp) 5775 { 5776 struct kvm_device_attr attr; 5777 int r; 5778 5779 if (copy_from_user(&attr, argp, sizeof(attr))) 5780 return -EFAULT; 5781 5782 if (attr.group != KVM_VCPU_TSC_CTRL) 5783 return -ENXIO; 5784 5785 switch (ioctl) { 5786 case KVM_HAS_DEVICE_ATTR: 5787 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5788 break; 5789 case KVM_GET_DEVICE_ATTR: 5790 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5791 break; 5792 case KVM_SET_DEVICE_ATTR: 5793 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5794 break; 5795 } 5796 5797 return r; 5798 } 5799 5800 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5801 struct kvm_enable_cap *cap) 5802 { 5803 if (cap->flags) 5804 return -EINVAL; 5805 5806 switch (cap->cap) { 5807 #ifdef CONFIG_KVM_HYPERV 5808 case KVM_CAP_HYPERV_SYNIC2: 5809 if (cap->args[0]) 5810 return -EINVAL; 5811 fallthrough; 5812 5813 case KVM_CAP_HYPERV_SYNIC: 5814 if (!irqchip_in_kernel(vcpu->kvm)) 5815 return -EINVAL; 5816 return kvm_hv_activate_synic(vcpu, cap->cap == 5817 KVM_CAP_HYPERV_SYNIC2); 5818 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5819 { 5820 int r; 5821 uint16_t vmcs_version; 5822 void __user *user_ptr; 5823 5824 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5825 return -ENOTTY; 5826 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5827 if (!r) { 5828 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5829 if (copy_to_user(user_ptr, &vmcs_version, 5830 sizeof(vmcs_version))) 5831 r = -EFAULT; 5832 } 5833 return r; 5834 } 5835 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5836 if (!kvm_x86_ops.enable_l2_tlb_flush) 5837 return -ENOTTY; 5838 5839 return kvm_x86_call(enable_l2_tlb_flush)(vcpu); 5840 5841 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5842 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5843 #endif 5844 5845 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5846 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5847 if (vcpu->arch.pv_cpuid.enforce) 5848 kvm_update_pv_runtime(vcpu); 5849 5850 return 0; 5851 default: 5852 return -EINVAL; 5853 } 5854 } 5855 5856 long kvm_arch_vcpu_ioctl(struct file *filp, 5857 unsigned int ioctl, unsigned long arg) 5858 { 5859 struct kvm_vcpu *vcpu = filp->private_data; 5860 void __user *argp = (void __user *)arg; 5861 int r; 5862 union { 5863 struct kvm_sregs2 *sregs2; 5864 struct kvm_lapic_state *lapic; 5865 struct kvm_xsave *xsave; 5866 struct kvm_xcrs *xcrs; 5867 void *buffer; 5868 } u; 5869 5870 vcpu_load(vcpu); 5871 5872 u.buffer = NULL; 5873 switch (ioctl) { 5874 case KVM_GET_LAPIC: { 5875 r = -EINVAL; 5876 if (!lapic_in_kernel(vcpu)) 5877 goto out; 5878 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 5879 5880 r = -ENOMEM; 5881 if (!u.lapic) 5882 goto out; 5883 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5884 if (r) 5885 goto out; 5886 r = -EFAULT; 5887 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5888 goto out; 5889 r = 0; 5890 break; 5891 } 5892 case KVM_SET_LAPIC: { 5893 r = -EINVAL; 5894 if (!lapic_in_kernel(vcpu)) 5895 goto out; 5896 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5897 if (IS_ERR(u.lapic)) { 5898 r = PTR_ERR(u.lapic); 5899 goto out_nofree; 5900 } 5901 5902 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5903 break; 5904 } 5905 case KVM_INTERRUPT: { 5906 struct kvm_interrupt irq; 5907 5908 r = -EFAULT; 5909 if (copy_from_user(&irq, argp, sizeof(irq))) 5910 goto out; 5911 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5912 break; 5913 } 5914 case KVM_NMI: { 5915 r = kvm_vcpu_ioctl_nmi(vcpu); 5916 break; 5917 } 5918 case KVM_SMI: { 5919 r = kvm_inject_smi(vcpu); 5920 break; 5921 } 5922 case KVM_SET_CPUID: { 5923 struct kvm_cpuid __user *cpuid_arg = argp; 5924 struct kvm_cpuid cpuid; 5925 5926 r = -EFAULT; 5927 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5928 goto out; 5929 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5930 break; 5931 } 5932 case KVM_SET_CPUID2: { 5933 struct kvm_cpuid2 __user *cpuid_arg = argp; 5934 struct kvm_cpuid2 cpuid; 5935 5936 r = -EFAULT; 5937 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5938 goto out; 5939 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5940 cpuid_arg->entries); 5941 break; 5942 } 5943 case KVM_GET_CPUID2: { 5944 struct kvm_cpuid2 __user *cpuid_arg = argp; 5945 struct kvm_cpuid2 cpuid; 5946 5947 r = -EFAULT; 5948 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5949 goto out; 5950 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5951 cpuid_arg->entries); 5952 if (r) 5953 goto out; 5954 r = -EFAULT; 5955 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5956 goto out; 5957 r = 0; 5958 break; 5959 } 5960 case KVM_GET_MSRS: { 5961 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5962 r = msr_io(vcpu, argp, do_get_msr, 1); 5963 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5964 break; 5965 } 5966 case KVM_SET_MSRS: { 5967 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5968 r = msr_io(vcpu, argp, do_set_msr, 0); 5969 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5970 break; 5971 } 5972 case KVM_TPR_ACCESS_REPORTING: { 5973 struct kvm_tpr_access_ctl tac; 5974 5975 r = -EFAULT; 5976 if (copy_from_user(&tac, argp, sizeof(tac))) 5977 goto out; 5978 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5979 if (r) 5980 goto out; 5981 r = -EFAULT; 5982 if (copy_to_user(argp, &tac, sizeof(tac))) 5983 goto out; 5984 r = 0; 5985 break; 5986 }; 5987 case KVM_SET_VAPIC_ADDR: { 5988 struct kvm_vapic_addr va; 5989 int idx; 5990 5991 r = -EINVAL; 5992 if (!lapic_in_kernel(vcpu)) 5993 goto out; 5994 r = -EFAULT; 5995 if (copy_from_user(&va, argp, sizeof(va))) 5996 goto out; 5997 idx = srcu_read_lock(&vcpu->kvm->srcu); 5998 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5999 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6000 break; 6001 } 6002 case KVM_X86_SETUP_MCE: { 6003 u64 mcg_cap; 6004 6005 r = -EFAULT; 6006 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 6007 goto out; 6008 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 6009 break; 6010 } 6011 case KVM_X86_SET_MCE: { 6012 struct kvm_x86_mce mce; 6013 6014 r = -EFAULT; 6015 if (copy_from_user(&mce, argp, sizeof(mce))) 6016 goto out; 6017 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 6018 break; 6019 } 6020 case KVM_GET_VCPU_EVENTS: { 6021 struct kvm_vcpu_events events; 6022 6023 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 6024 6025 r = -EFAULT; 6026 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 6027 break; 6028 r = 0; 6029 break; 6030 } 6031 case KVM_SET_VCPU_EVENTS: { 6032 struct kvm_vcpu_events events; 6033 6034 r = -EFAULT; 6035 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 6036 break; 6037 6038 kvm_vcpu_srcu_read_lock(vcpu); 6039 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 6040 kvm_vcpu_srcu_read_unlock(vcpu); 6041 break; 6042 } 6043 case KVM_GET_DEBUGREGS: { 6044 struct kvm_debugregs dbgregs; 6045 6046 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 6047 if (r < 0) 6048 break; 6049 6050 r = -EFAULT; 6051 if (copy_to_user(argp, &dbgregs, 6052 sizeof(struct kvm_debugregs))) 6053 break; 6054 r = 0; 6055 break; 6056 } 6057 case KVM_SET_DEBUGREGS: { 6058 struct kvm_debugregs dbgregs; 6059 6060 r = -EFAULT; 6061 if (copy_from_user(&dbgregs, argp, 6062 sizeof(struct kvm_debugregs))) 6063 break; 6064 6065 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 6066 break; 6067 } 6068 case KVM_GET_XSAVE: { 6069 r = -EINVAL; 6070 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 6071 break; 6072 6073 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 6074 r = -ENOMEM; 6075 if (!u.xsave) 6076 break; 6077 6078 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 6079 if (r < 0) 6080 break; 6081 6082 r = -EFAULT; 6083 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 6084 break; 6085 r = 0; 6086 break; 6087 } 6088 case KVM_SET_XSAVE: { 6089 int size = vcpu->arch.guest_fpu.uabi_size; 6090 6091 u.xsave = memdup_user(argp, size); 6092 if (IS_ERR(u.xsave)) { 6093 r = PTR_ERR(u.xsave); 6094 goto out_nofree; 6095 } 6096 6097 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 6098 break; 6099 } 6100 6101 case KVM_GET_XSAVE2: { 6102 int size = vcpu->arch.guest_fpu.uabi_size; 6103 6104 u.xsave = kzalloc(size, GFP_KERNEL); 6105 r = -ENOMEM; 6106 if (!u.xsave) 6107 break; 6108 6109 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 6110 if (r < 0) 6111 break; 6112 6113 r = -EFAULT; 6114 if (copy_to_user(argp, u.xsave, size)) 6115 break; 6116 6117 r = 0; 6118 break; 6119 } 6120 6121 case KVM_GET_XCRS: { 6122 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 6123 r = -ENOMEM; 6124 if (!u.xcrs) 6125 break; 6126 6127 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 6128 if (r < 0) 6129 break; 6130 6131 r = -EFAULT; 6132 if (copy_to_user(argp, u.xcrs, 6133 sizeof(struct kvm_xcrs))) 6134 break; 6135 r = 0; 6136 break; 6137 } 6138 case KVM_SET_XCRS: { 6139 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 6140 if (IS_ERR(u.xcrs)) { 6141 r = PTR_ERR(u.xcrs); 6142 goto out_nofree; 6143 } 6144 6145 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 6146 break; 6147 } 6148 case KVM_SET_TSC_KHZ: { 6149 u32 user_tsc_khz; 6150 6151 r = -EINVAL; 6152 user_tsc_khz = (u32)arg; 6153 6154 if (kvm_caps.has_tsc_control && 6155 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 6156 goto out; 6157 6158 if (user_tsc_khz == 0) 6159 user_tsc_khz = tsc_khz; 6160 6161 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 6162 r = 0; 6163 6164 goto out; 6165 } 6166 case KVM_GET_TSC_KHZ: { 6167 r = vcpu->arch.virtual_tsc_khz; 6168 goto out; 6169 } 6170 case KVM_KVMCLOCK_CTRL: { 6171 r = kvm_set_guest_paused(vcpu); 6172 goto out; 6173 } 6174 case KVM_ENABLE_CAP: { 6175 struct kvm_enable_cap cap; 6176 6177 r = -EFAULT; 6178 if (copy_from_user(&cap, argp, sizeof(cap))) 6179 goto out; 6180 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 6181 break; 6182 } 6183 case KVM_GET_NESTED_STATE: { 6184 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6185 u32 user_data_size; 6186 6187 r = -EINVAL; 6188 if (!kvm_x86_ops.nested_ops->get_state) 6189 break; 6190 6191 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 6192 r = -EFAULT; 6193 if (get_user(user_data_size, &user_kvm_nested_state->size)) 6194 break; 6195 6196 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 6197 user_data_size); 6198 if (r < 0) 6199 break; 6200 6201 if (r > user_data_size) { 6202 if (put_user(r, &user_kvm_nested_state->size)) 6203 r = -EFAULT; 6204 else 6205 r = -E2BIG; 6206 break; 6207 } 6208 6209 r = 0; 6210 break; 6211 } 6212 case KVM_SET_NESTED_STATE: { 6213 struct kvm_nested_state __user *user_kvm_nested_state = argp; 6214 struct kvm_nested_state kvm_state; 6215 int idx; 6216 6217 r = -EINVAL; 6218 if (!kvm_x86_ops.nested_ops->set_state) 6219 break; 6220 6221 r = -EFAULT; 6222 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 6223 break; 6224 6225 r = -EINVAL; 6226 if (kvm_state.size < sizeof(kvm_state)) 6227 break; 6228 6229 if (kvm_state.flags & 6230 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 6231 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 6232 | KVM_STATE_NESTED_GIF_SET)) 6233 break; 6234 6235 /* nested_run_pending implies guest_mode. */ 6236 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 6237 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 6238 break; 6239 6240 idx = srcu_read_lock(&vcpu->kvm->srcu); 6241 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 6242 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6243 break; 6244 } 6245 #ifdef CONFIG_KVM_HYPERV 6246 case KVM_GET_SUPPORTED_HV_CPUID: 6247 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 6248 break; 6249 #endif 6250 #ifdef CONFIG_KVM_XEN 6251 case KVM_XEN_VCPU_GET_ATTR: { 6252 struct kvm_xen_vcpu_attr xva; 6253 6254 r = -EFAULT; 6255 if (copy_from_user(&xva, argp, sizeof(xva))) 6256 goto out; 6257 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 6258 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 6259 r = -EFAULT; 6260 break; 6261 } 6262 case KVM_XEN_VCPU_SET_ATTR: { 6263 struct kvm_xen_vcpu_attr xva; 6264 6265 r = -EFAULT; 6266 if (copy_from_user(&xva, argp, sizeof(xva))) 6267 goto out; 6268 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 6269 break; 6270 } 6271 #endif 6272 case KVM_GET_SREGS2: { 6273 r = -EINVAL; 6274 if (vcpu->kvm->arch.has_protected_state && 6275 vcpu->arch.guest_state_protected) 6276 goto out; 6277 6278 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 6279 r = -ENOMEM; 6280 if (!u.sregs2) 6281 goto out; 6282 __get_sregs2(vcpu, u.sregs2); 6283 r = -EFAULT; 6284 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 6285 goto out; 6286 r = 0; 6287 break; 6288 } 6289 case KVM_SET_SREGS2: { 6290 r = -EINVAL; 6291 if (vcpu->kvm->arch.has_protected_state && 6292 vcpu->arch.guest_state_protected) 6293 goto out; 6294 6295 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 6296 if (IS_ERR(u.sregs2)) { 6297 r = PTR_ERR(u.sregs2); 6298 u.sregs2 = NULL; 6299 goto out; 6300 } 6301 r = __set_sregs2(vcpu, u.sregs2); 6302 break; 6303 } 6304 case KVM_HAS_DEVICE_ATTR: 6305 case KVM_GET_DEVICE_ATTR: 6306 case KVM_SET_DEVICE_ATTR: 6307 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 6308 break; 6309 default: 6310 r = -EINVAL; 6311 } 6312 out: 6313 kfree(u.buffer); 6314 out_nofree: 6315 vcpu_put(vcpu); 6316 return r; 6317 } 6318 6319 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 6320 { 6321 return VM_FAULT_SIGBUS; 6322 } 6323 6324 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 6325 { 6326 int ret; 6327 6328 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 6329 return -EINVAL; 6330 ret = kvm_x86_call(set_tss_addr)(kvm, addr); 6331 return ret; 6332 } 6333 6334 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 6335 u64 ident_addr) 6336 { 6337 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); 6338 } 6339 6340 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 6341 unsigned long kvm_nr_mmu_pages) 6342 { 6343 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 6344 return -EINVAL; 6345 6346 mutex_lock(&kvm->slots_lock); 6347 6348 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 6349 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 6350 6351 mutex_unlock(&kvm->slots_lock); 6352 return 0; 6353 } 6354 6355 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6356 { 6357 struct kvm_pic *pic = kvm->arch.vpic; 6358 int r; 6359 6360 r = 0; 6361 switch (chip->chip_id) { 6362 case KVM_IRQCHIP_PIC_MASTER: 6363 memcpy(&chip->chip.pic, &pic->pics[0], 6364 sizeof(struct kvm_pic_state)); 6365 break; 6366 case KVM_IRQCHIP_PIC_SLAVE: 6367 memcpy(&chip->chip.pic, &pic->pics[1], 6368 sizeof(struct kvm_pic_state)); 6369 break; 6370 case KVM_IRQCHIP_IOAPIC: 6371 kvm_get_ioapic(kvm, &chip->chip.ioapic); 6372 break; 6373 default: 6374 r = -EINVAL; 6375 break; 6376 } 6377 return r; 6378 } 6379 6380 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 6381 { 6382 struct kvm_pic *pic = kvm->arch.vpic; 6383 int r; 6384 6385 r = 0; 6386 switch (chip->chip_id) { 6387 case KVM_IRQCHIP_PIC_MASTER: 6388 spin_lock(&pic->lock); 6389 memcpy(&pic->pics[0], &chip->chip.pic, 6390 sizeof(struct kvm_pic_state)); 6391 spin_unlock(&pic->lock); 6392 break; 6393 case KVM_IRQCHIP_PIC_SLAVE: 6394 spin_lock(&pic->lock); 6395 memcpy(&pic->pics[1], &chip->chip.pic, 6396 sizeof(struct kvm_pic_state)); 6397 spin_unlock(&pic->lock); 6398 break; 6399 case KVM_IRQCHIP_IOAPIC: 6400 kvm_set_ioapic(kvm, &chip->chip.ioapic); 6401 break; 6402 default: 6403 r = -EINVAL; 6404 break; 6405 } 6406 kvm_pic_update_irq(pic); 6407 return r; 6408 } 6409 6410 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6411 { 6412 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 6413 6414 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 6415 6416 mutex_lock(&kps->lock); 6417 memcpy(ps, &kps->channels, sizeof(*ps)); 6418 mutex_unlock(&kps->lock); 6419 return 0; 6420 } 6421 6422 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 6423 { 6424 int i; 6425 struct kvm_pit *pit = kvm->arch.vpit; 6426 6427 mutex_lock(&pit->pit_state.lock); 6428 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 6429 for (i = 0; i < 3; i++) 6430 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 6431 mutex_unlock(&pit->pit_state.lock); 6432 return 0; 6433 } 6434 6435 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6436 { 6437 mutex_lock(&kvm->arch.vpit->pit_state.lock); 6438 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 6439 sizeof(ps->channels)); 6440 ps->flags = kvm->arch.vpit->pit_state.flags; 6441 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 6442 memset(&ps->reserved, 0, sizeof(ps->reserved)); 6443 return 0; 6444 } 6445 6446 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 6447 { 6448 int start = 0; 6449 int i; 6450 u32 prev_legacy, cur_legacy; 6451 struct kvm_pit *pit = kvm->arch.vpit; 6452 6453 mutex_lock(&pit->pit_state.lock); 6454 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 6455 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 6456 if (!prev_legacy && cur_legacy) 6457 start = 1; 6458 memcpy(&pit->pit_state.channels, &ps->channels, 6459 sizeof(pit->pit_state.channels)); 6460 pit->pit_state.flags = ps->flags; 6461 for (i = 0; i < 3; i++) 6462 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 6463 start && i == 0); 6464 mutex_unlock(&pit->pit_state.lock); 6465 return 0; 6466 } 6467 6468 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 6469 struct kvm_reinject_control *control) 6470 { 6471 struct kvm_pit *pit = kvm->arch.vpit; 6472 6473 /* pit->pit_state.lock was overloaded to prevent userspace from getting 6474 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 6475 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 6476 */ 6477 mutex_lock(&pit->pit_state.lock); 6478 kvm_pit_set_reinject(pit, control->pit_reinject); 6479 mutex_unlock(&pit->pit_state.lock); 6480 6481 return 0; 6482 } 6483 6484 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 6485 { 6486 6487 /* 6488 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 6489 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 6490 * on all VM-Exits, thus we only need to kick running vCPUs to force a 6491 * VM-Exit. 6492 */ 6493 struct kvm_vcpu *vcpu; 6494 unsigned long i; 6495 6496 if (!kvm_x86_ops.cpu_dirty_log_size) 6497 return; 6498 6499 kvm_for_each_vcpu(i, vcpu, kvm) 6500 kvm_vcpu_kick(vcpu); 6501 } 6502 6503 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 6504 bool line_status) 6505 { 6506 if (!irqchip_in_kernel(kvm)) 6507 return -ENXIO; 6508 6509 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 6510 irq_event->irq, irq_event->level, 6511 line_status); 6512 return 0; 6513 } 6514 6515 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 6516 struct kvm_enable_cap *cap) 6517 { 6518 int r; 6519 6520 if (cap->flags) 6521 return -EINVAL; 6522 6523 switch (cap->cap) { 6524 case KVM_CAP_DISABLE_QUIRKS2: 6525 r = -EINVAL; 6526 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 6527 break; 6528 fallthrough; 6529 case KVM_CAP_DISABLE_QUIRKS: 6530 kvm->arch.disabled_quirks = cap->args[0]; 6531 r = 0; 6532 break; 6533 case KVM_CAP_SPLIT_IRQCHIP: { 6534 mutex_lock(&kvm->lock); 6535 r = -EINVAL; 6536 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 6537 goto split_irqchip_unlock; 6538 r = -EEXIST; 6539 if (irqchip_in_kernel(kvm)) 6540 goto split_irqchip_unlock; 6541 if (kvm->created_vcpus) 6542 goto split_irqchip_unlock; 6543 /* Pairs with irqchip_in_kernel. */ 6544 smp_wmb(); 6545 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 6546 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 6547 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6548 r = 0; 6549 split_irqchip_unlock: 6550 mutex_unlock(&kvm->lock); 6551 break; 6552 } 6553 case KVM_CAP_X2APIC_API: 6554 r = -EINVAL; 6555 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6556 break; 6557 6558 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6559 kvm->arch.x2apic_format = true; 6560 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6561 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6562 6563 r = 0; 6564 break; 6565 case KVM_CAP_X86_DISABLE_EXITS: 6566 r = -EINVAL; 6567 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6568 break; 6569 6570 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6571 kvm->arch.pause_in_guest = true; 6572 6573 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ 6574 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." 6575 6576 if (!mitigate_smt_rsb) { 6577 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && 6578 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) 6579 pr_warn_once(SMT_RSB_MSG); 6580 6581 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6582 kvm_can_mwait_in_guest()) 6583 kvm->arch.mwait_in_guest = true; 6584 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6585 kvm->arch.hlt_in_guest = true; 6586 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6587 kvm->arch.cstate_in_guest = true; 6588 } 6589 6590 r = 0; 6591 break; 6592 case KVM_CAP_MSR_PLATFORM_INFO: 6593 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6594 r = 0; 6595 break; 6596 case KVM_CAP_EXCEPTION_PAYLOAD: 6597 kvm->arch.exception_payload_enabled = cap->args[0]; 6598 r = 0; 6599 break; 6600 case KVM_CAP_X86_TRIPLE_FAULT_EVENT: 6601 kvm->arch.triple_fault_event = cap->args[0]; 6602 r = 0; 6603 break; 6604 case KVM_CAP_X86_USER_SPACE_MSR: 6605 r = -EINVAL; 6606 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) 6607 break; 6608 kvm->arch.user_space_msr_mask = cap->args[0]; 6609 r = 0; 6610 break; 6611 case KVM_CAP_X86_BUS_LOCK_EXIT: 6612 r = -EINVAL; 6613 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6614 break; 6615 6616 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6617 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6618 break; 6619 6620 if (kvm_caps.has_bus_lock_exit && 6621 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6622 kvm->arch.bus_lock_detection_enabled = true; 6623 r = 0; 6624 break; 6625 #ifdef CONFIG_X86_SGX_KVM 6626 case KVM_CAP_SGX_ATTRIBUTE: { 6627 unsigned long allowed_attributes = 0; 6628 6629 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6630 if (r) 6631 break; 6632 6633 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6634 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6635 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6636 kvm->arch.sgx_provisioning_allowed = true; 6637 else 6638 r = -EINVAL; 6639 break; 6640 } 6641 #endif 6642 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6643 r = -EINVAL; 6644 if (!kvm_x86_ops.vm_copy_enc_context_from) 6645 break; 6646 6647 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); 6648 break; 6649 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6650 r = -EINVAL; 6651 if (!kvm_x86_ops.vm_move_enc_context_from) 6652 break; 6653 6654 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); 6655 break; 6656 case KVM_CAP_EXIT_HYPERCALL: 6657 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6658 r = -EINVAL; 6659 break; 6660 } 6661 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6662 r = 0; 6663 break; 6664 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6665 r = -EINVAL; 6666 if (cap->args[0] & ~1) 6667 break; 6668 kvm->arch.exit_on_emulation_error = cap->args[0]; 6669 r = 0; 6670 break; 6671 case KVM_CAP_PMU_CAPABILITY: 6672 r = -EINVAL; 6673 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6674 break; 6675 6676 mutex_lock(&kvm->lock); 6677 if (!kvm->created_vcpus) { 6678 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6679 r = 0; 6680 } 6681 mutex_unlock(&kvm->lock); 6682 break; 6683 case KVM_CAP_MAX_VCPU_ID: 6684 r = -EINVAL; 6685 if (cap->args[0] > KVM_MAX_VCPU_IDS) 6686 break; 6687 6688 mutex_lock(&kvm->lock); 6689 if (kvm->arch.bsp_vcpu_id > cap->args[0]) { 6690 ; 6691 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) { 6692 r = 0; 6693 } else if (!kvm->arch.max_vcpu_ids) { 6694 kvm->arch.max_vcpu_ids = cap->args[0]; 6695 r = 0; 6696 } 6697 mutex_unlock(&kvm->lock); 6698 break; 6699 case KVM_CAP_X86_NOTIFY_VMEXIT: 6700 r = -EINVAL; 6701 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) 6702 break; 6703 if (!kvm_caps.has_notify_vmexit) 6704 break; 6705 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) 6706 break; 6707 mutex_lock(&kvm->lock); 6708 if (!kvm->created_vcpus) { 6709 kvm->arch.notify_window = cap->args[0] >> 32; 6710 kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; 6711 r = 0; 6712 } 6713 mutex_unlock(&kvm->lock); 6714 break; 6715 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: 6716 r = -EINVAL; 6717 6718 /* 6719 * Since the risk of disabling NX hugepages is a guest crashing 6720 * the system, ensure the userspace process has permission to 6721 * reboot the system. 6722 * 6723 * Note that unlike the reboot() syscall, the process must have 6724 * this capability in the root namespace because exposing 6725 * /dev/kvm into a container does not limit the scope of the 6726 * iTLB multihit bug to that container. In other words, 6727 * this must use capable(), not ns_capable(). 6728 */ 6729 if (!capable(CAP_SYS_BOOT)) { 6730 r = -EPERM; 6731 break; 6732 } 6733 6734 if (cap->args[0]) 6735 break; 6736 6737 mutex_lock(&kvm->lock); 6738 if (!kvm->created_vcpus) { 6739 kvm->arch.disable_nx_huge_pages = true; 6740 r = 0; 6741 } 6742 mutex_unlock(&kvm->lock); 6743 break; 6744 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { 6745 u64 bus_cycle_ns = cap->args[0]; 6746 u64 unused; 6747 6748 /* 6749 * Guard against overflow in tmict_to_ns(). 128 is the highest 6750 * divide value that can be programmed in APIC_TDCR. 6751 */ 6752 r = -EINVAL; 6753 if (!bus_cycle_ns || 6754 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) 6755 break; 6756 6757 r = 0; 6758 mutex_lock(&kvm->lock); 6759 if (!irqchip_in_kernel(kvm)) 6760 r = -ENXIO; 6761 else if (kvm->created_vcpus) 6762 r = -EINVAL; 6763 else 6764 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; 6765 mutex_unlock(&kvm->lock); 6766 break; 6767 } 6768 default: 6769 r = -EINVAL; 6770 break; 6771 } 6772 return r; 6773 } 6774 6775 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6776 { 6777 struct kvm_x86_msr_filter *msr_filter; 6778 6779 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6780 if (!msr_filter) 6781 return NULL; 6782 6783 msr_filter->default_allow = default_allow; 6784 return msr_filter; 6785 } 6786 6787 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6788 { 6789 u32 i; 6790 6791 if (!msr_filter) 6792 return; 6793 6794 for (i = 0; i < msr_filter->count; i++) 6795 kfree(msr_filter->ranges[i].bitmap); 6796 6797 kfree(msr_filter); 6798 } 6799 6800 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6801 struct kvm_msr_filter_range *user_range) 6802 { 6803 unsigned long *bitmap; 6804 size_t bitmap_size; 6805 6806 if (!user_range->nmsrs) 6807 return 0; 6808 6809 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) 6810 return -EINVAL; 6811 6812 if (!user_range->flags) 6813 return -EINVAL; 6814 6815 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6816 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6817 return -EINVAL; 6818 6819 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6820 if (IS_ERR(bitmap)) 6821 return PTR_ERR(bitmap); 6822 6823 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6824 .flags = user_range->flags, 6825 .base = user_range->base, 6826 .nmsrs = user_range->nmsrs, 6827 .bitmap = bitmap, 6828 }; 6829 6830 msr_filter->count++; 6831 return 0; 6832 } 6833 6834 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, 6835 struct kvm_msr_filter *filter) 6836 { 6837 struct kvm_x86_msr_filter *new_filter, *old_filter; 6838 bool default_allow; 6839 bool empty = true; 6840 int r; 6841 u32 i; 6842 6843 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) 6844 return -EINVAL; 6845 6846 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) 6847 empty &= !filter->ranges[i].nmsrs; 6848 6849 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); 6850 if (empty && !default_allow) 6851 return -EINVAL; 6852 6853 new_filter = kvm_alloc_msr_filter(default_allow); 6854 if (!new_filter) 6855 return -ENOMEM; 6856 6857 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { 6858 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); 6859 if (r) { 6860 kvm_free_msr_filter(new_filter); 6861 return r; 6862 } 6863 } 6864 6865 mutex_lock(&kvm->lock); 6866 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, 6867 mutex_is_locked(&kvm->lock)); 6868 mutex_unlock(&kvm->lock); 6869 synchronize_srcu(&kvm->srcu); 6870 6871 kvm_free_msr_filter(old_filter); 6872 6873 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6874 6875 return 0; 6876 } 6877 6878 #ifdef CONFIG_KVM_COMPAT 6879 /* for KVM_X86_SET_MSR_FILTER */ 6880 struct kvm_msr_filter_range_compat { 6881 __u32 flags; 6882 __u32 nmsrs; 6883 __u32 base; 6884 __u32 bitmap; 6885 }; 6886 6887 struct kvm_msr_filter_compat { 6888 __u32 flags; 6889 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; 6890 }; 6891 6892 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) 6893 6894 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 6895 unsigned long arg) 6896 { 6897 void __user *argp = (void __user *)arg; 6898 struct kvm *kvm = filp->private_data; 6899 long r = -ENOTTY; 6900 6901 switch (ioctl) { 6902 case KVM_X86_SET_MSR_FILTER_COMPAT: { 6903 struct kvm_msr_filter __user *user_msr_filter = argp; 6904 struct kvm_msr_filter_compat filter_compat; 6905 struct kvm_msr_filter filter; 6906 int i; 6907 6908 if (copy_from_user(&filter_compat, user_msr_filter, 6909 sizeof(filter_compat))) 6910 return -EFAULT; 6911 6912 filter.flags = filter_compat.flags; 6913 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6914 struct kvm_msr_filter_range_compat *cr; 6915 6916 cr = &filter_compat.ranges[i]; 6917 filter.ranges[i] = (struct kvm_msr_filter_range) { 6918 .flags = cr->flags, 6919 .nmsrs = cr->nmsrs, 6920 .base = cr->base, 6921 .bitmap = (__u8 *)(ulong)cr->bitmap, 6922 }; 6923 } 6924 6925 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 6926 break; 6927 } 6928 } 6929 6930 return r; 6931 } 6932 #endif 6933 6934 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6935 static int kvm_arch_suspend_notifier(struct kvm *kvm) 6936 { 6937 struct kvm_vcpu *vcpu; 6938 unsigned long i; 6939 int ret = 0; 6940 6941 mutex_lock(&kvm->lock); 6942 kvm_for_each_vcpu(i, vcpu, kvm) { 6943 if (!vcpu->arch.pv_time.active) 6944 continue; 6945 6946 ret = kvm_set_guest_paused(vcpu); 6947 if (ret) { 6948 kvm_err("Failed to pause guest VCPU%d: %d\n", 6949 vcpu->vcpu_id, ret); 6950 break; 6951 } 6952 } 6953 mutex_unlock(&kvm->lock); 6954 6955 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6956 } 6957 6958 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6959 { 6960 switch (state) { 6961 case PM_HIBERNATION_PREPARE: 6962 case PM_SUSPEND_PREPARE: 6963 return kvm_arch_suspend_notifier(kvm); 6964 } 6965 6966 return NOTIFY_DONE; 6967 } 6968 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6969 6970 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6971 { 6972 struct kvm_clock_data data = { 0 }; 6973 6974 get_kvmclock(kvm, &data); 6975 if (copy_to_user(argp, &data, sizeof(data))) 6976 return -EFAULT; 6977 6978 return 0; 6979 } 6980 6981 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6982 { 6983 struct kvm_arch *ka = &kvm->arch; 6984 struct kvm_clock_data data; 6985 u64 now_raw_ns; 6986 6987 if (copy_from_user(&data, argp, sizeof(data))) 6988 return -EFAULT; 6989 6990 /* 6991 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6992 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6993 */ 6994 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6995 return -EINVAL; 6996 6997 kvm_hv_request_tsc_page_update(kvm); 6998 kvm_start_pvclock_update(kvm); 6999 pvclock_update_vm_gtod_copy(kvm); 7000 7001 /* 7002 * This pairs with kvm_guest_time_update(): when masterclock is 7003 * in use, we use master_kernel_ns + kvmclock_offset to set 7004 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 7005 * is slightly ahead) here we risk going negative on unsigned 7006 * 'system_time' when 'data.clock' is very small. 7007 */ 7008 if (data.flags & KVM_CLOCK_REALTIME) { 7009 u64 now_real_ns = ktime_get_real_ns(); 7010 7011 /* 7012 * Avoid stepping the kvmclock backwards. 7013 */ 7014 if (now_real_ns > data.realtime) 7015 data.clock += now_real_ns - data.realtime; 7016 } 7017 7018 if (ka->use_master_clock) 7019 now_raw_ns = ka->master_kernel_ns; 7020 else 7021 now_raw_ns = get_kvmclock_base_ns(); 7022 ka->kvmclock_offset = data.clock - now_raw_ns; 7023 kvm_end_pvclock_update(kvm); 7024 return 0; 7025 } 7026 7027 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 7028 { 7029 struct kvm *kvm = filp->private_data; 7030 void __user *argp = (void __user *)arg; 7031 int r = -ENOTTY; 7032 /* 7033 * This union makes it completely explicit to gcc-3.x 7034 * that these two variables' stack usage should be 7035 * combined, not added together. 7036 */ 7037 union { 7038 struct kvm_pit_state ps; 7039 struct kvm_pit_state2 ps2; 7040 struct kvm_pit_config pit_config; 7041 } u; 7042 7043 switch (ioctl) { 7044 case KVM_SET_TSS_ADDR: 7045 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 7046 break; 7047 case KVM_SET_IDENTITY_MAP_ADDR: { 7048 u64 ident_addr; 7049 7050 mutex_lock(&kvm->lock); 7051 r = -EINVAL; 7052 if (kvm->created_vcpus) 7053 goto set_identity_unlock; 7054 r = -EFAULT; 7055 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 7056 goto set_identity_unlock; 7057 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 7058 set_identity_unlock: 7059 mutex_unlock(&kvm->lock); 7060 break; 7061 } 7062 case KVM_SET_NR_MMU_PAGES: 7063 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 7064 break; 7065 case KVM_CREATE_IRQCHIP: { 7066 mutex_lock(&kvm->lock); 7067 7068 r = -EEXIST; 7069 if (irqchip_in_kernel(kvm)) 7070 goto create_irqchip_unlock; 7071 7072 r = -EINVAL; 7073 if (kvm->created_vcpus) 7074 goto create_irqchip_unlock; 7075 7076 r = kvm_pic_init(kvm); 7077 if (r) 7078 goto create_irqchip_unlock; 7079 7080 r = kvm_ioapic_init(kvm); 7081 if (r) { 7082 kvm_pic_destroy(kvm); 7083 goto create_irqchip_unlock; 7084 } 7085 7086 r = kvm_setup_default_irq_routing(kvm); 7087 if (r) { 7088 kvm_ioapic_destroy(kvm); 7089 kvm_pic_destroy(kvm); 7090 goto create_irqchip_unlock; 7091 } 7092 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 7093 smp_wmb(); 7094 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 7095 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 7096 create_irqchip_unlock: 7097 mutex_unlock(&kvm->lock); 7098 break; 7099 } 7100 case KVM_CREATE_PIT: 7101 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 7102 goto create_pit; 7103 case KVM_CREATE_PIT2: 7104 r = -EFAULT; 7105 if (copy_from_user(&u.pit_config, argp, 7106 sizeof(struct kvm_pit_config))) 7107 goto out; 7108 create_pit: 7109 mutex_lock(&kvm->lock); 7110 r = -EEXIST; 7111 if (kvm->arch.vpit) 7112 goto create_pit_unlock; 7113 r = -ENOENT; 7114 if (!pic_in_kernel(kvm)) 7115 goto create_pit_unlock; 7116 r = -ENOMEM; 7117 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 7118 if (kvm->arch.vpit) 7119 r = 0; 7120 create_pit_unlock: 7121 mutex_unlock(&kvm->lock); 7122 break; 7123 case KVM_GET_IRQCHIP: { 7124 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7125 struct kvm_irqchip *chip; 7126 7127 chip = memdup_user(argp, sizeof(*chip)); 7128 if (IS_ERR(chip)) { 7129 r = PTR_ERR(chip); 7130 goto out; 7131 } 7132 7133 r = -ENXIO; 7134 if (!irqchip_kernel(kvm)) 7135 goto get_irqchip_out; 7136 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 7137 if (r) 7138 goto get_irqchip_out; 7139 r = -EFAULT; 7140 if (copy_to_user(argp, chip, sizeof(*chip))) 7141 goto get_irqchip_out; 7142 r = 0; 7143 get_irqchip_out: 7144 kfree(chip); 7145 break; 7146 } 7147 case KVM_SET_IRQCHIP: { 7148 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 7149 struct kvm_irqchip *chip; 7150 7151 chip = memdup_user(argp, sizeof(*chip)); 7152 if (IS_ERR(chip)) { 7153 r = PTR_ERR(chip); 7154 goto out; 7155 } 7156 7157 r = -ENXIO; 7158 if (!irqchip_kernel(kvm)) 7159 goto set_irqchip_out; 7160 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 7161 set_irqchip_out: 7162 kfree(chip); 7163 break; 7164 } 7165 case KVM_GET_PIT: { 7166 r = -EFAULT; 7167 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 7168 goto out; 7169 r = -ENXIO; 7170 if (!kvm->arch.vpit) 7171 goto out; 7172 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 7173 if (r) 7174 goto out; 7175 r = -EFAULT; 7176 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 7177 goto out; 7178 r = 0; 7179 break; 7180 } 7181 case KVM_SET_PIT: { 7182 r = -EFAULT; 7183 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 7184 goto out; 7185 mutex_lock(&kvm->lock); 7186 r = -ENXIO; 7187 if (!kvm->arch.vpit) 7188 goto set_pit_out; 7189 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 7190 set_pit_out: 7191 mutex_unlock(&kvm->lock); 7192 break; 7193 } 7194 case KVM_GET_PIT2: { 7195 r = -ENXIO; 7196 if (!kvm->arch.vpit) 7197 goto out; 7198 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 7199 if (r) 7200 goto out; 7201 r = -EFAULT; 7202 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 7203 goto out; 7204 r = 0; 7205 break; 7206 } 7207 case KVM_SET_PIT2: { 7208 r = -EFAULT; 7209 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 7210 goto out; 7211 mutex_lock(&kvm->lock); 7212 r = -ENXIO; 7213 if (!kvm->arch.vpit) 7214 goto set_pit2_out; 7215 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 7216 set_pit2_out: 7217 mutex_unlock(&kvm->lock); 7218 break; 7219 } 7220 case KVM_REINJECT_CONTROL: { 7221 struct kvm_reinject_control control; 7222 r = -EFAULT; 7223 if (copy_from_user(&control, argp, sizeof(control))) 7224 goto out; 7225 r = -ENXIO; 7226 if (!kvm->arch.vpit) 7227 goto out; 7228 r = kvm_vm_ioctl_reinject(kvm, &control); 7229 break; 7230 } 7231 case KVM_SET_BOOT_CPU_ID: 7232 r = 0; 7233 mutex_lock(&kvm->lock); 7234 if (kvm->created_vcpus) 7235 r = -EBUSY; 7236 else if (arg > KVM_MAX_VCPU_IDS || 7237 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) 7238 r = -EINVAL; 7239 else 7240 kvm->arch.bsp_vcpu_id = arg; 7241 mutex_unlock(&kvm->lock); 7242 break; 7243 #ifdef CONFIG_KVM_XEN 7244 case KVM_XEN_HVM_CONFIG: { 7245 struct kvm_xen_hvm_config xhc; 7246 r = -EFAULT; 7247 if (copy_from_user(&xhc, argp, sizeof(xhc))) 7248 goto out; 7249 r = kvm_xen_hvm_config(kvm, &xhc); 7250 break; 7251 } 7252 case KVM_XEN_HVM_GET_ATTR: { 7253 struct kvm_xen_hvm_attr xha; 7254 7255 r = -EFAULT; 7256 if (copy_from_user(&xha, argp, sizeof(xha))) 7257 goto out; 7258 r = kvm_xen_hvm_get_attr(kvm, &xha); 7259 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 7260 r = -EFAULT; 7261 break; 7262 } 7263 case KVM_XEN_HVM_SET_ATTR: { 7264 struct kvm_xen_hvm_attr xha; 7265 7266 r = -EFAULT; 7267 if (copy_from_user(&xha, argp, sizeof(xha))) 7268 goto out; 7269 r = kvm_xen_hvm_set_attr(kvm, &xha); 7270 break; 7271 } 7272 case KVM_XEN_HVM_EVTCHN_SEND: { 7273 struct kvm_irq_routing_xen_evtchn uxe; 7274 7275 r = -EFAULT; 7276 if (copy_from_user(&uxe, argp, sizeof(uxe))) 7277 goto out; 7278 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 7279 break; 7280 } 7281 #endif 7282 case KVM_SET_CLOCK: 7283 r = kvm_vm_ioctl_set_clock(kvm, argp); 7284 break; 7285 case KVM_GET_CLOCK: 7286 r = kvm_vm_ioctl_get_clock(kvm, argp); 7287 break; 7288 case KVM_SET_TSC_KHZ: { 7289 u32 user_tsc_khz; 7290 7291 r = -EINVAL; 7292 user_tsc_khz = (u32)arg; 7293 7294 if (kvm_caps.has_tsc_control && 7295 user_tsc_khz >= kvm_caps.max_guest_tsc_khz) 7296 goto out; 7297 7298 if (user_tsc_khz == 0) 7299 user_tsc_khz = tsc_khz; 7300 7301 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 7302 r = 0; 7303 7304 goto out; 7305 } 7306 case KVM_GET_TSC_KHZ: { 7307 r = READ_ONCE(kvm->arch.default_tsc_khz); 7308 goto out; 7309 } 7310 case KVM_MEMORY_ENCRYPT_OP: { 7311 r = -ENOTTY; 7312 if (!kvm_x86_ops.mem_enc_ioctl) 7313 goto out; 7314 7315 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); 7316 break; 7317 } 7318 case KVM_MEMORY_ENCRYPT_REG_REGION: { 7319 struct kvm_enc_region region; 7320 7321 r = -EFAULT; 7322 if (copy_from_user(®ion, argp, sizeof(region))) 7323 goto out; 7324 7325 r = -ENOTTY; 7326 if (!kvm_x86_ops.mem_enc_register_region) 7327 goto out; 7328 7329 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); 7330 break; 7331 } 7332 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 7333 struct kvm_enc_region region; 7334 7335 r = -EFAULT; 7336 if (copy_from_user(®ion, argp, sizeof(region))) 7337 goto out; 7338 7339 r = -ENOTTY; 7340 if (!kvm_x86_ops.mem_enc_unregister_region) 7341 goto out; 7342 7343 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); 7344 break; 7345 } 7346 #ifdef CONFIG_KVM_HYPERV 7347 case KVM_HYPERV_EVENTFD: { 7348 struct kvm_hyperv_eventfd hvevfd; 7349 7350 r = -EFAULT; 7351 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 7352 goto out; 7353 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 7354 break; 7355 } 7356 #endif 7357 case KVM_SET_PMU_EVENT_FILTER: 7358 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 7359 break; 7360 case KVM_X86_SET_MSR_FILTER: { 7361 struct kvm_msr_filter __user *user_msr_filter = argp; 7362 struct kvm_msr_filter filter; 7363 7364 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 7365 return -EFAULT; 7366 7367 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); 7368 break; 7369 } 7370 default: 7371 r = -ENOTTY; 7372 } 7373 out: 7374 return r; 7375 } 7376 7377 static void kvm_probe_feature_msr(u32 msr_index) 7378 { 7379 u64 data; 7380 7381 if (kvm_get_feature_msr(NULL, msr_index, &data, true)) 7382 return; 7383 7384 msr_based_features[num_msr_based_features++] = msr_index; 7385 } 7386 7387 static void kvm_probe_msr_to_save(u32 msr_index) 7388 { 7389 u32 dummy[2]; 7390 7391 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) 7392 return; 7393 7394 /* 7395 * Even MSRs that are valid in the host may not be exposed to guests in 7396 * some cases. 7397 */ 7398 switch (msr_index) { 7399 case MSR_IA32_BNDCFGS: 7400 if (!kvm_mpx_supported()) 7401 return; 7402 break; 7403 case MSR_TSC_AUX: 7404 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 7405 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 7406 return; 7407 break; 7408 case MSR_IA32_UMWAIT_CONTROL: 7409 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 7410 return; 7411 break; 7412 case MSR_IA32_RTIT_CTL: 7413 case MSR_IA32_RTIT_STATUS: 7414 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 7415 return; 7416 break; 7417 case MSR_IA32_RTIT_CR3_MATCH: 7418 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7419 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 7420 return; 7421 break; 7422 case MSR_IA32_RTIT_OUTPUT_BASE: 7423 case MSR_IA32_RTIT_OUTPUT_MASK: 7424 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7425 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 7426 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 7427 return; 7428 break; 7429 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 7430 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 7431 (msr_index - MSR_IA32_RTIT_ADDR0_A >= 7432 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) 7433 return; 7434 break; 7435 case MSR_ARCH_PERFMON_PERFCTR0 ... 7436 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: 7437 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= 7438 kvm_pmu_cap.num_counters_gp) 7439 return; 7440 break; 7441 case MSR_ARCH_PERFMON_EVENTSEL0 ... 7442 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: 7443 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= 7444 kvm_pmu_cap.num_counters_gp) 7445 return; 7446 break; 7447 case MSR_ARCH_PERFMON_FIXED_CTR0 ... 7448 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: 7449 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= 7450 kvm_pmu_cap.num_counters_fixed) 7451 return; 7452 break; 7453 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 7454 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 7455 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 7456 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) 7457 return; 7458 break; 7459 case MSR_IA32_XFD: 7460 case MSR_IA32_XFD_ERR: 7461 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 7462 return; 7463 break; 7464 case MSR_IA32_TSX_CTRL: 7465 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) 7466 return; 7467 break; 7468 default: 7469 break; 7470 } 7471 7472 msrs_to_save[num_msrs_to_save++] = msr_index; 7473 } 7474 7475 static void kvm_init_msr_lists(void) 7476 { 7477 unsigned i; 7478 7479 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, 7480 "Please update the fixed PMCs in msrs_to_save_pmu[]"); 7481 7482 num_msrs_to_save = 0; 7483 num_emulated_msrs = 0; 7484 num_msr_based_features = 0; 7485 7486 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) 7487 kvm_probe_msr_to_save(msrs_to_save_base[i]); 7488 7489 if (enable_pmu) { 7490 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) 7491 kvm_probe_msr_to_save(msrs_to_save_pmu[i]); 7492 } 7493 7494 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 7495 if (!kvm_x86_call(has_emulated_msr)(NULL, 7496 emulated_msrs_all[i])) 7497 continue; 7498 7499 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 7500 } 7501 7502 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) 7503 kvm_probe_feature_msr(i); 7504 7505 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) 7506 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); 7507 } 7508 7509 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 7510 const void *v) 7511 { 7512 int handled = 0; 7513 int n; 7514 7515 do { 7516 n = min(len, 8); 7517 if (!(lapic_in_kernel(vcpu) && 7518 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 7519 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 7520 break; 7521 handled += n; 7522 addr += n; 7523 len -= n; 7524 v += n; 7525 } while (len); 7526 7527 return handled; 7528 } 7529 7530 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 7531 { 7532 int handled = 0; 7533 int n; 7534 7535 do { 7536 n = min(len, 8); 7537 if (!(lapic_in_kernel(vcpu) && 7538 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 7539 addr, n, v)) 7540 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 7541 break; 7542 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 7543 handled += n; 7544 addr += n; 7545 len -= n; 7546 v += n; 7547 } while (len); 7548 7549 return handled; 7550 } 7551 7552 void kvm_set_segment(struct kvm_vcpu *vcpu, 7553 struct kvm_segment *var, int seg) 7554 { 7555 kvm_x86_call(set_segment)(vcpu, var, seg); 7556 } 7557 7558 void kvm_get_segment(struct kvm_vcpu *vcpu, 7559 struct kvm_segment *var, int seg) 7560 { 7561 kvm_x86_call(get_segment)(vcpu, var, seg); 7562 } 7563 7564 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 7565 struct x86_exception *exception) 7566 { 7567 struct kvm_mmu *mmu = vcpu->arch.mmu; 7568 gpa_t t_gpa; 7569 7570 BUG_ON(!mmu_is_nested(vcpu)); 7571 7572 /* NPT walks are always user-walks */ 7573 access |= PFERR_USER_MASK; 7574 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 7575 7576 return t_gpa; 7577 } 7578 7579 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 7580 struct x86_exception *exception) 7581 { 7582 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7583 7584 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7585 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7586 } 7587 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 7588 7589 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 7590 struct x86_exception *exception) 7591 { 7592 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7593 7594 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7595 access |= PFERR_WRITE_MASK; 7596 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7597 } 7598 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 7599 7600 /* uses this to access any guest's mapped memory without checking CPL */ 7601 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 7602 struct x86_exception *exception) 7603 { 7604 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7605 7606 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 7607 } 7608 7609 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7610 struct kvm_vcpu *vcpu, u64 access, 7611 struct x86_exception *exception) 7612 { 7613 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7614 void *data = val; 7615 int r = X86EMUL_CONTINUE; 7616 7617 while (bytes) { 7618 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7619 unsigned offset = addr & (PAGE_SIZE-1); 7620 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 7621 int ret; 7622 7623 if (gpa == INVALID_GPA) 7624 return X86EMUL_PROPAGATE_FAULT; 7625 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 7626 offset, toread); 7627 if (ret < 0) { 7628 r = X86EMUL_IO_NEEDED; 7629 goto out; 7630 } 7631 7632 bytes -= toread; 7633 data += toread; 7634 addr += toread; 7635 } 7636 out: 7637 return r; 7638 } 7639 7640 /* used for instruction fetching */ 7641 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 7642 gva_t addr, void *val, unsigned int bytes, 7643 struct x86_exception *exception) 7644 { 7645 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7646 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7647 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7648 unsigned offset; 7649 int ret; 7650 7651 /* Inline kvm_read_guest_virt_helper for speed. */ 7652 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 7653 exception); 7654 if (unlikely(gpa == INVALID_GPA)) 7655 return X86EMUL_PROPAGATE_FAULT; 7656 7657 offset = addr & (PAGE_SIZE-1); 7658 if (WARN_ON(offset + bytes > PAGE_SIZE)) 7659 bytes = (unsigned)PAGE_SIZE - offset; 7660 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 7661 offset, bytes); 7662 if (unlikely(ret < 0)) 7663 return X86EMUL_IO_NEEDED; 7664 7665 return X86EMUL_CONTINUE; 7666 } 7667 7668 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 7669 gva_t addr, void *val, unsigned int bytes, 7670 struct x86_exception *exception) 7671 { 7672 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 7673 7674 /* 7675 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 7676 * is returned, but our callers are not ready for that and they blindly 7677 * call kvm_inject_page_fault. Ensure that they at least do not leak 7678 * uninitialized kernel stack memory into cr2 and error code. 7679 */ 7680 memset(exception, 0, sizeof(*exception)); 7681 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 7682 exception); 7683 } 7684 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 7685 7686 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 7687 gva_t addr, void *val, unsigned int bytes, 7688 struct x86_exception *exception, bool system) 7689 { 7690 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7691 u64 access = 0; 7692 7693 if (system) 7694 access |= PFERR_IMPLICIT_ACCESS; 7695 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7696 access |= PFERR_USER_MASK; 7697 7698 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 7699 } 7700 7701 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 7702 struct kvm_vcpu *vcpu, u64 access, 7703 struct x86_exception *exception) 7704 { 7705 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7706 void *data = val; 7707 int r = X86EMUL_CONTINUE; 7708 7709 while (bytes) { 7710 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 7711 unsigned offset = addr & (PAGE_SIZE-1); 7712 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 7713 int ret; 7714 7715 if (gpa == INVALID_GPA) 7716 return X86EMUL_PROPAGATE_FAULT; 7717 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 7718 if (ret < 0) { 7719 r = X86EMUL_IO_NEEDED; 7720 goto out; 7721 } 7722 7723 bytes -= towrite; 7724 data += towrite; 7725 addr += towrite; 7726 } 7727 out: 7728 return r; 7729 } 7730 7731 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 7732 unsigned int bytes, struct x86_exception *exception, 7733 bool system) 7734 { 7735 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7736 u64 access = PFERR_WRITE_MASK; 7737 7738 if (system) 7739 access |= PFERR_IMPLICIT_ACCESS; 7740 else if (kvm_x86_call(get_cpl)(vcpu) == 3) 7741 access |= PFERR_USER_MASK; 7742 7743 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7744 access, exception); 7745 } 7746 7747 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7748 unsigned int bytes, struct x86_exception *exception) 7749 { 7750 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7751 vcpu->arch.l1tf_flush_l1d = true; 7752 7753 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7754 PFERR_WRITE_MASK, exception); 7755 } 7756 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7757 7758 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7759 void *insn, int insn_len) 7760 { 7761 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, 7762 insn, insn_len); 7763 } 7764 7765 int handle_ud(struct kvm_vcpu *vcpu) 7766 { 7767 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7768 int fep_flags = READ_ONCE(force_emulation_prefix); 7769 int emul_type = EMULTYPE_TRAP_UD; 7770 char sig[5]; /* ud2; .ascii "kvm" */ 7771 struct x86_exception e; 7772 int r; 7773 7774 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); 7775 if (r != X86EMUL_CONTINUE) 7776 return 1; 7777 7778 if (fep_flags && 7779 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7780 sig, sizeof(sig), &e) == 0 && 7781 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7782 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) 7783 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); 7784 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7785 emul_type = EMULTYPE_TRAP_UD_FORCED; 7786 } 7787 7788 return kvm_emulate_instruction(vcpu, emul_type); 7789 } 7790 EXPORT_SYMBOL_GPL(handle_ud); 7791 7792 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7793 gpa_t gpa, bool write) 7794 { 7795 /* For APIC access vmexit */ 7796 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7797 return 1; 7798 7799 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7800 trace_vcpu_match_mmio(gva, gpa, write, true); 7801 return 1; 7802 } 7803 7804 return 0; 7805 } 7806 7807 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7808 gpa_t *gpa, struct x86_exception *exception, 7809 bool write) 7810 { 7811 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7812 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7813 | (write ? PFERR_WRITE_MASK : 0); 7814 7815 /* 7816 * currently PKRU is only applied to ept enabled guest so 7817 * there is no pkey in EPT page table for L1 guest or EPT 7818 * shadow page table for L2 guest. 7819 */ 7820 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7821 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7822 vcpu->arch.mmio_access, 0, access))) { 7823 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7824 (gva & (PAGE_SIZE - 1)); 7825 trace_vcpu_match_mmio(gva, *gpa, write, false); 7826 return 1; 7827 } 7828 7829 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7830 7831 if (*gpa == INVALID_GPA) 7832 return -1; 7833 7834 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7835 } 7836 7837 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7838 const void *val, int bytes) 7839 { 7840 int ret; 7841 7842 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7843 if (ret < 0) 7844 return 0; 7845 kvm_page_track_write(vcpu, gpa, val, bytes); 7846 return 1; 7847 } 7848 7849 struct read_write_emulator_ops { 7850 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7851 int bytes); 7852 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7853 void *val, int bytes); 7854 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7855 int bytes, void *val); 7856 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7857 void *val, int bytes); 7858 bool write; 7859 }; 7860 7861 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7862 { 7863 if (vcpu->mmio_read_completed) { 7864 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7865 vcpu->mmio_fragments[0].gpa, val); 7866 vcpu->mmio_read_completed = 0; 7867 return 1; 7868 } 7869 7870 return 0; 7871 } 7872 7873 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7874 void *val, int bytes) 7875 { 7876 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7877 } 7878 7879 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7880 void *val, int bytes) 7881 { 7882 return emulator_write_phys(vcpu, gpa, val, bytes); 7883 } 7884 7885 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7886 { 7887 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7888 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7889 } 7890 7891 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7892 void *val, int bytes) 7893 { 7894 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7895 return X86EMUL_IO_NEEDED; 7896 } 7897 7898 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7899 void *val, int bytes) 7900 { 7901 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7902 7903 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7904 return X86EMUL_CONTINUE; 7905 } 7906 7907 static const struct read_write_emulator_ops read_emultor = { 7908 .read_write_prepare = read_prepare, 7909 .read_write_emulate = read_emulate, 7910 .read_write_mmio = vcpu_mmio_read, 7911 .read_write_exit_mmio = read_exit_mmio, 7912 }; 7913 7914 static const struct read_write_emulator_ops write_emultor = { 7915 .read_write_emulate = write_emulate, 7916 .read_write_mmio = write_mmio, 7917 .read_write_exit_mmio = write_exit_mmio, 7918 .write = true, 7919 }; 7920 7921 static int emulator_read_write_onepage(unsigned long addr, void *val, 7922 unsigned int bytes, 7923 struct x86_exception *exception, 7924 struct kvm_vcpu *vcpu, 7925 const struct read_write_emulator_ops *ops) 7926 { 7927 gpa_t gpa; 7928 int handled, ret; 7929 bool write = ops->write; 7930 struct kvm_mmio_fragment *frag; 7931 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7932 7933 /* 7934 * If the exit was due to a NPF we may already have a GPA. 7935 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7936 * Note, this cannot be used on string operations since string 7937 * operation using rep will only have the initial GPA from the NPF 7938 * occurred. 7939 */ 7940 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7941 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7942 gpa = ctxt->gpa_val; 7943 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7944 } else { 7945 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7946 if (ret < 0) 7947 return X86EMUL_PROPAGATE_FAULT; 7948 } 7949 7950 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7951 return X86EMUL_CONTINUE; 7952 7953 /* 7954 * Is this MMIO handled locally? 7955 */ 7956 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7957 if (handled == bytes) 7958 return X86EMUL_CONTINUE; 7959 7960 gpa += handled; 7961 bytes -= handled; 7962 val += handled; 7963 7964 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7965 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7966 frag->gpa = gpa; 7967 frag->data = val; 7968 frag->len = bytes; 7969 return X86EMUL_CONTINUE; 7970 } 7971 7972 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7973 unsigned long addr, 7974 void *val, unsigned int bytes, 7975 struct x86_exception *exception, 7976 const struct read_write_emulator_ops *ops) 7977 { 7978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7979 gpa_t gpa; 7980 int rc; 7981 7982 if (ops->read_write_prepare && 7983 ops->read_write_prepare(vcpu, val, bytes)) 7984 return X86EMUL_CONTINUE; 7985 7986 vcpu->mmio_nr_fragments = 0; 7987 7988 /* Crossing a page boundary? */ 7989 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7990 int now; 7991 7992 now = -addr & ~PAGE_MASK; 7993 rc = emulator_read_write_onepage(addr, val, now, exception, 7994 vcpu, ops); 7995 7996 if (rc != X86EMUL_CONTINUE) 7997 return rc; 7998 addr += now; 7999 if (ctxt->mode != X86EMUL_MODE_PROT64) 8000 addr = (u32)addr; 8001 val += now; 8002 bytes -= now; 8003 } 8004 8005 rc = emulator_read_write_onepage(addr, val, bytes, exception, 8006 vcpu, ops); 8007 if (rc != X86EMUL_CONTINUE) 8008 return rc; 8009 8010 if (!vcpu->mmio_nr_fragments) 8011 return rc; 8012 8013 gpa = vcpu->mmio_fragments[0].gpa; 8014 8015 vcpu->mmio_needed = 1; 8016 vcpu->mmio_cur_fragment = 0; 8017 8018 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 8019 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 8020 vcpu->run->exit_reason = KVM_EXIT_MMIO; 8021 vcpu->run->mmio.phys_addr = gpa; 8022 8023 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 8024 } 8025 8026 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 8027 unsigned long addr, 8028 void *val, 8029 unsigned int bytes, 8030 struct x86_exception *exception) 8031 { 8032 return emulator_read_write(ctxt, addr, val, bytes, 8033 exception, &read_emultor); 8034 } 8035 8036 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 8037 unsigned long addr, 8038 const void *val, 8039 unsigned int bytes, 8040 struct x86_exception *exception) 8041 { 8042 return emulator_read_write(ctxt, addr, (void *)val, bytes, 8043 exception, &write_emultor); 8044 } 8045 8046 #define emulator_try_cmpxchg_user(t, ptr, old, new) \ 8047 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 8048 8049 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 8050 unsigned long addr, 8051 const void *old, 8052 const void *new, 8053 unsigned int bytes, 8054 struct x86_exception *exception) 8055 { 8056 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8057 u64 page_line_mask; 8058 unsigned long hva; 8059 gpa_t gpa; 8060 int r; 8061 8062 /* guests cmpxchg8b have to be emulated atomically */ 8063 if (bytes > 8 || (bytes & (bytes - 1))) 8064 goto emul_write; 8065 8066 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 8067 8068 if (gpa == INVALID_GPA || 8069 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 8070 goto emul_write; 8071 8072 /* 8073 * Emulate the atomic as a straight write to avoid #AC if SLD is 8074 * enabled in the host and the access splits a cache line. 8075 */ 8076 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 8077 page_line_mask = ~(cache_line_size() - 1); 8078 else 8079 page_line_mask = PAGE_MASK; 8080 8081 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 8082 goto emul_write; 8083 8084 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 8085 if (kvm_is_error_hva(hva)) 8086 goto emul_write; 8087 8088 hva += offset_in_page(gpa); 8089 8090 switch (bytes) { 8091 case 1: 8092 r = emulator_try_cmpxchg_user(u8, hva, old, new); 8093 break; 8094 case 2: 8095 r = emulator_try_cmpxchg_user(u16, hva, old, new); 8096 break; 8097 case 4: 8098 r = emulator_try_cmpxchg_user(u32, hva, old, new); 8099 break; 8100 case 8: 8101 r = emulator_try_cmpxchg_user(u64, hva, old, new); 8102 break; 8103 default: 8104 BUG(); 8105 } 8106 8107 if (r < 0) 8108 return X86EMUL_UNHANDLEABLE; 8109 8110 /* 8111 * Mark the page dirty _before_ checking whether or not the CMPXCHG was 8112 * successful, as the old value is written back on failure. Note, for 8113 * live migration, this is unnecessarily conservative as CMPXCHG writes 8114 * back the original value and the access is atomic, but KVM's ABI is 8115 * that all writes are dirty logged, regardless of the value written. 8116 */ 8117 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); 8118 8119 if (r) 8120 return X86EMUL_CMPXCHG_FAILED; 8121 8122 kvm_page_track_write(vcpu, gpa, new, bytes); 8123 8124 return X86EMUL_CONTINUE; 8125 8126 emul_write: 8127 pr_warn_once("emulating exchange as write\n"); 8128 8129 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 8130 } 8131 8132 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 8133 unsigned short port, void *data, 8134 unsigned int count, bool in) 8135 { 8136 unsigned i; 8137 int r; 8138 8139 WARN_ON_ONCE(vcpu->arch.pio.count); 8140 for (i = 0; i < count; i++) { 8141 if (in) 8142 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); 8143 else 8144 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); 8145 8146 if (r) { 8147 if (i == 0) 8148 goto userspace_io; 8149 8150 /* 8151 * Userspace must have unregistered the device while PIO 8152 * was running. Drop writes / read as 0. 8153 */ 8154 if (in) 8155 memset(data, 0, size * (count - i)); 8156 break; 8157 } 8158 8159 data += size; 8160 } 8161 return 1; 8162 8163 userspace_io: 8164 vcpu->arch.pio.port = port; 8165 vcpu->arch.pio.in = in; 8166 vcpu->arch.pio.count = count; 8167 vcpu->arch.pio.size = size; 8168 8169 if (in) 8170 memset(vcpu->arch.pio_data, 0, size * count); 8171 else 8172 memcpy(vcpu->arch.pio_data, data, size * count); 8173 8174 vcpu->run->exit_reason = KVM_EXIT_IO; 8175 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 8176 vcpu->run->io.size = size; 8177 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 8178 vcpu->run->io.count = count; 8179 vcpu->run->io.port = port; 8180 return 0; 8181 } 8182 8183 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 8184 unsigned short port, void *val, unsigned int count) 8185 { 8186 int r = emulator_pio_in_out(vcpu, size, port, val, count, true); 8187 if (r) 8188 trace_kvm_pio(KVM_PIO_IN, port, size, count, val); 8189 8190 return r; 8191 } 8192 8193 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 8194 { 8195 int size = vcpu->arch.pio.size; 8196 unsigned int count = vcpu->arch.pio.count; 8197 memcpy(val, vcpu->arch.pio_data, size * count); 8198 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 8199 vcpu->arch.pio.count = 0; 8200 } 8201 8202 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 8203 int size, unsigned short port, void *val, 8204 unsigned int count) 8205 { 8206 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8207 if (vcpu->arch.pio.count) { 8208 /* 8209 * Complete a previous iteration that required userspace I/O. 8210 * Note, @count isn't guaranteed to match pio.count as userspace 8211 * can modify ECX before rerunning the vCPU. Ignore any such 8212 * shenanigans as KVM doesn't support modifying the rep count, 8213 * and the emulator ensures @count doesn't overflow the buffer. 8214 */ 8215 complete_emulator_pio_in(vcpu, val); 8216 return 1; 8217 } 8218 8219 return emulator_pio_in(vcpu, size, port, val, count); 8220 } 8221 8222 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 8223 unsigned short port, const void *val, 8224 unsigned int count) 8225 { 8226 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); 8227 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 8228 } 8229 8230 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 8231 int size, unsigned short port, 8232 const void *val, unsigned int count) 8233 { 8234 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 8235 } 8236 8237 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 8238 { 8239 return kvm_x86_call(get_segment_base)(vcpu, seg); 8240 } 8241 8242 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 8243 { 8244 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 8245 } 8246 8247 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 8248 { 8249 if (!need_emulate_wbinvd(vcpu)) 8250 return X86EMUL_CONTINUE; 8251 8252 if (kvm_x86_call(has_wbinvd_exit)()) { 8253 int cpu = get_cpu(); 8254 8255 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 8256 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 8257 wbinvd_ipi, NULL, 1); 8258 put_cpu(); 8259 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 8260 } else 8261 wbinvd(); 8262 return X86EMUL_CONTINUE; 8263 } 8264 8265 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 8266 { 8267 kvm_emulate_wbinvd_noskip(vcpu); 8268 return kvm_skip_emulated_instruction(vcpu); 8269 } 8270 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 8271 8272 8273 8274 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 8275 { 8276 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 8277 } 8278 8279 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) 8280 { 8281 return kvm_get_dr(emul_to_vcpu(ctxt), dr); 8282 } 8283 8284 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 8285 unsigned long value) 8286 { 8287 8288 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 8289 } 8290 8291 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 8292 { 8293 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 8294 } 8295 8296 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 8297 { 8298 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8299 unsigned long value; 8300 8301 switch (cr) { 8302 case 0: 8303 value = kvm_read_cr0(vcpu); 8304 break; 8305 case 2: 8306 value = vcpu->arch.cr2; 8307 break; 8308 case 3: 8309 value = kvm_read_cr3(vcpu); 8310 break; 8311 case 4: 8312 value = kvm_read_cr4(vcpu); 8313 break; 8314 case 8: 8315 value = kvm_get_cr8(vcpu); 8316 break; 8317 default: 8318 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8319 return 0; 8320 } 8321 8322 return value; 8323 } 8324 8325 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 8326 { 8327 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8328 int res = 0; 8329 8330 switch (cr) { 8331 case 0: 8332 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 8333 break; 8334 case 2: 8335 vcpu->arch.cr2 = val; 8336 break; 8337 case 3: 8338 res = kvm_set_cr3(vcpu, val); 8339 break; 8340 case 4: 8341 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 8342 break; 8343 case 8: 8344 res = kvm_set_cr8(vcpu, val); 8345 break; 8346 default: 8347 kvm_err("%s: unexpected cr %u\n", __func__, cr); 8348 res = -1; 8349 } 8350 8351 return res; 8352 } 8353 8354 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 8355 { 8356 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); 8357 } 8358 8359 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8360 { 8361 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); 8362 } 8363 8364 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8365 { 8366 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); 8367 } 8368 8369 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8370 { 8371 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); 8372 } 8373 8374 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 8375 { 8376 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); 8377 } 8378 8379 static unsigned long emulator_get_cached_segment_base( 8380 struct x86_emulate_ctxt *ctxt, int seg) 8381 { 8382 return get_segment_base(emul_to_vcpu(ctxt), seg); 8383 } 8384 8385 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 8386 struct desc_struct *desc, u32 *base3, 8387 int seg) 8388 { 8389 struct kvm_segment var; 8390 8391 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 8392 *selector = var.selector; 8393 8394 if (var.unusable) { 8395 memset(desc, 0, sizeof(*desc)); 8396 if (base3) 8397 *base3 = 0; 8398 return false; 8399 } 8400 8401 if (var.g) 8402 var.limit >>= 12; 8403 set_desc_limit(desc, var.limit); 8404 set_desc_base(desc, (unsigned long)var.base); 8405 #ifdef CONFIG_X86_64 8406 if (base3) 8407 *base3 = var.base >> 32; 8408 #endif 8409 desc->type = var.type; 8410 desc->s = var.s; 8411 desc->dpl = var.dpl; 8412 desc->p = var.present; 8413 desc->avl = var.avl; 8414 desc->l = var.l; 8415 desc->d = var.db; 8416 desc->g = var.g; 8417 8418 return true; 8419 } 8420 8421 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 8422 struct desc_struct *desc, u32 base3, 8423 int seg) 8424 { 8425 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8426 struct kvm_segment var; 8427 8428 var.selector = selector; 8429 var.base = get_desc_base(desc); 8430 #ifdef CONFIG_X86_64 8431 var.base |= ((u64)base3) << 32; 8432 #endif 8433 var.limit = get_desc_limit(desc); 8434 if (desc->g) 8435 var.limit = (var.limit << 12) | 0xfff; 8436 var.type = desc->type; 8437 var.dpl = desc->dpl; 8438 var.db = desc->d; 8439 var.s = desc->s; 8440 var.l = desc->l; 8441 var.g = desc->g; 8442 var.avl = desc->avl; 8443 var.present = desc->p; 8444 var.unusable = !var.present; 8445 var.padding = 0; 8446 8447 kvm_set_segment(vcpu, &var, seg); 8448 return; 8449 } 8450 8451 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8452 u32 msr_index, u64 *pdata) 8453 { 8454 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8455 int r; 8456 8457 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 8458 if (r < 0) 8459 return X86EMUL_UNHANDLEABLE; 8460 8461 if (r) { 8462 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 8463 complete_emulated_rdmsr, r)) 8464 return X86EMUL_IO_NEEDED; 8465 8466 trace_kvm_msr_read_ex(msr_index); 8467 return X86EMUL_PROPAGATE_FAULT; 8468 } 8469 8470 trace_kvm_msr_read(msr_index, *pdata); 8471 return X86EMUL_CONTINUE; 8472 } 8473 8474 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 8475 u32 msr_index, u64 data) 8476 { 8477 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8478 int r; 8479 8480 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 8481 if (r < 0) 8482 return X86EMUL_UNHANDLEABLE; 8483 8484 if (r) { 8485 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 8486 complete_emulated_msr_access, r)) 8487 return X86EMUL_IO_NEEDED; 8488 8489 trace_kvm_msr_write_ex(msr_index, data); 8490 return X86EMUL_PROPAGATE_FAULT; 8491 } 8492 8493 trace_kvm_msr_write(msr_index, data); 8494 return X86EMUL_CONTINUE; 8495 } 8496 8497 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 8498 u32 msr_index, u64 *pdata) 8499 { 8500 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 8501 } 8502 8503 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) 8504 { 8505 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); 8506 } 8507 8508 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 8509 u32 pmc, u64 *pdata) 8510 { 8511 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 8512 } 8513 8514 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 8515 { 8516 emul_to_vcpu(ctxt)->arch.halt_request = 1; 8517 } 8518 8519 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 8520 struct x86_instruction_info *info, 8521 enum x86_intercept_stage stage) 8522 { 8523 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, 8524 &ctxt->exception); 8525 } 8526 8527 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 8528 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 8529 bool exact_only) 8530 { 8531 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 8532 } 8533 8534 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 8535 { 8536 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 8537 } 8538 8539 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 8540 { 8541 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 8542 } 8543 8544 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 8545 { 8546 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 8547 } 8548 8549 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) 8550 { 8551 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); 8552 } 8553 8554 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 8555 { 8556 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 8557 } 8558 8559 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 8560 { 8561 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 8562 } 8563 8564 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 8565 { 8566 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); 8567 } 8568 8569 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) 8570 { 8571 return is_smm(emul_to_vcpu(ctxt)); 8572 } 8573 8574 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) 8575 { 8576 return is_guest_mode(emul_to_vcpu(ctxt)); 8577 } 8578 8579 #ifndef CONFIG_KVM_SMM 8580 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) 8581 { 8582 WARN_ON_ONCE(1); 8583 return X86EMUL_UNHANDLEABLE; 8584 } 8585 #endif 8586 8587 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 8588 { 8589 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 8590 } 8591 8592 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 8593 { 8594 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 8595 } 8596 8597 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) 8598 { 8599 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; 8600 8601 if (!kvm->vm_bugged) 8602 kvm_vm_bugged(kvm); 8603 } 8604 8605 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, 8606 gva_t addr, unsigned int flags) 8607 { 8608 if (!kvm_x86_ops.get_untagged_addr) 8609 return addr; 8610 8611 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), 8612 addr, flags); 8613 } 8614 8615 static const struct x86_emulate_ops emulate_ops = { 8616 .vm_bugged = emulator_vm_bugged, 8617 .read_gpr = emulator_read_gpr, 8618 .write_gpr = emulator_write_gpr, 8619 .read_std = emulator_read_std, 8620 .write_std = emulator_write_std, 8621 .fetch = kvm_fetch_guest_virt, 8622 .read_emulated = emulator_read_emulated, 8623 .write_emulated = emulator_write_emulated, 8624 .cmpxchg_emulated = emulator_cmpxchg_emulated, 8625 .invlpg = emulator_invlpg, 8626 .pio_in_emulated = emulator_pio_in_emulated, 8627 .pio_out_emulated = emulator_pio_out_emulated, 8628 .get_segment = emulator_get_segment, 8629 .set_segment = emulator_set_segment, 8630 .get_cached_segment_base = emulator_get_cached_segment_base, 8631 .get_gdt = emulator_get_gdt, 8632 .get_idt = emulator_get_idt, 8633 .set_gdt = emulator_set_gdt, 8634 .set_idt = emulator_set_idt, 8635 .get_cr = emulator_get_cr, 8636 .set_cr = emulator_set_cr, 8637 .cpl = emulator_get_cpl, 8638 .get_dr = emulator_get_dr, 8639 .set_dr = emulator_set_dr, 8640 .set_msr_with_filter = emulator_set_msr_with_filter, 8641 .get_msr_with_filter = emulator_get_msr_with_filter, 8642 .get_msr = emulator_get_msr, 8643 .check_rdpmc_early = emulator_check_rdpmc_early, 8644 .read_pmc = emulator_read_pmc, 8645 .halt = emulator_halt, 8646 .wbinvd = emulator_wbinvd, 8647 .fix_hypercall = emulator_fix_hypercall, 8648 .intercept = emulator_intercept, 8649 .get_cpuid = emulator_get_cpuid, 8650 .guest_has_movbe = emulator_guest_has_movbe, 8651 .guest_has_fxsr = emulator_guest_has_fxsr, 8652 .guest_has_rdpid = emulator_guest_has_rdpid, 8653 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, 8654 .set_nmi_mask = emulator_set_nmi_mask, 8655 .is_smm = emulator_is_smm, 8656 .is_guest_mode = emulator_is_guest_mode, 8657 .leave_smm = emulator_leave_smm, 8658 .triple_fault = emulator_triple_fault, 8659 .set_xcr = emulator_set_xcr, 8660 .get_untagged_addr = emulator_get_untagged_addr, 8661 }; 8662 8663 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 8664 { 8665 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); 8666 /* 8667 * an sti; sti; sequence only disable interrupts for the first 8668 * instruction. So, if the last instruction, be it emulated or 8669 * not, left the system with the INT_STI flag enabled, it 8670 * means that the last instruction is an sti. We should not 8671 * leave the flag on in this case. The same goes for mov ss 8672 */ 8673 if (int_shadow & mask) 8674 mask = 0; 8675 if (unlikely(int_shadow || mask)) { 8676 kvm_x86_call(set_interrupt_shadow)(vcpu, mask); 8677 if (!mask) 8678 kvm_make_request(KVM_REQ_EVENT, vcpu); 8679 } 8680 } 8681 8682 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 8683 { 8684 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8685 8686 if (ctxt->exception.vector == PF_VECTOR) 8687 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 8688 else if (ctxt->exception.error_code_valid) 8689 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 8690 ctxt->exception.error_code); 8691 else 8692 kvm_queue_exception(vcpu, ctxt->exception.vector); 8693 } 8694 8695 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 8696 { 8697 struct x86_emulate_ctxt *ctxt; 8698 8699 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 8700 if (!ctxt) { 8701 pr_err("failed to allocate vcpu's emulator\n"); 8702 return NULL; 8703 } 8704 8705 ctxt->vcpu = vcpu; 8706 ctxt->ops = &emulate_ops; 8707 vcpu->arch.emulate_ctxt = ctxt; 8708 8709 return ctxt; 8710 } 8711 8712 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 8713 { 8714 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8715 int cs_db, cs_l; 8716 8717 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 8718 8719 ctxt->gpa_available = false; 8720 ctxt->eflags = kvm_get_rflags(vcpu); 8721 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 8722 8723 ctxt->eip = kvm_rip_read(vcpu); 8724 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 8725 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 8726 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 8727 cs_db ? X86EMUL_MODE_PROT32 : 8728 X86EMUL_MODE_PROT16; 8729 ctxt->interruptibility = 0; 8730 ctxt->have_exception = false; 8731 ctxt->exception.vector = -1; 8732 ctxt->perm_ok = false; 8733 8734 init_decode_cache(ctxt); 8735 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8736 } 8737 8738 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 8739 { 8740 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8741 int ret; 8742 8743 init_emulate_ctxt(vcpu); 8744 8745 ctxt->op_bytes = 2; 8746 ctxt->ad_bytes = 2; 8747 ctxt->_eip = ctxt->eip + inc_eip; 8748 ret = emulate_int_real(ctxt, irq); 8749 8750 if (ret != X86EMUL_CONTINUE) { 8751 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8752 } else { 8753 ctxt->eip = ctxt->_eip; 8754 kvm_rip_write(vcpu, ctxt->eip); 8755 kvm_set_rflags(vcpu, ctxt->eflags); 8756 } 8757 } 8758 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8759 8760 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8761 u8 ndata, u8 *insn_bytes, u8 insn_size) 8762 { 8763 struct kvm_run *run = vcpu->run; 8764 u64 info[5]; 8765 u8 info_start; 8766 8767 /* 8768 * Zero the whole array used to retrieve the exit info, as casting to 8769 * u32 for select entries will leave some chunks uninitialized. 8770 */ 8771 memset(&info, 0, sizeof(info)); 8772 8773 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], 8774 (u32 *)&info[3], (u32 *)&info[4]); 8775 8776 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8777 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8778 8779 /* 8780 * There's currently space for 13 entries, but 5 are used for the exit 8781 * reason and info. Restrict to 4 to reduce the maintenance burden 8782 * when expanding kvm_run.emulation_failure in the future. 8783 */ 8784 if (WARN_ON_ONCE(ndata > 4)) 8785 ndata = 4; 8786 8787 /* Always include the flags as a 'data' entry. */ 8788 info_start = 1; 8789 run->emulation_failure.flags = 0; 8790 8791 if (insn_size) { 8792 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8793 sizeof(run->emulation_failure.insn_bytes) != 16)); 8794 info_start += 2; 8795 run->emulation_failure.flags |= 8796 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8797 run->emulation_failure.insn_size = insn_size; 8798 memset(run->emulation_failure.insn_bytes, 0x90, 8799 sizeof(run->emulation_failure.insn_bytes)); 8800 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8801 } 8802 8803 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8804 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8805 ndata * sizeof(data[0])); 8806 8807 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8808 } 8809 8810 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8811 { 8812 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8813 8814 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8815 ctxt->fetch.end - ctxt->fetch.data); 8816 } 8817 8818 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8819 u8 ndata) 8820 { 8821 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8822 } 8823 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8824 8825 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8826 { 8827 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8828 } 8829 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8830 8831 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8832 { 8833 struct kvm *kvm = vcpu->kvm; 8834 8835 ++vcpu->stat.insn_emulation_fail; 8836 trace_kvm_emulate_insn_failed(vcpu); 8837 8838 if (emulation_type & EMULTYPE_VMWARE_GP) { 8839 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8840 return 1; 8841 } 8842 8843 if (kvm->arch.exit_on_emulation_error || 8844 (emulation_type & EMULTYPE_SKIP)) { 8845 prepare_emulation_ctxt_failure_exit(vcpu); 8846 return 0; 8847 } 8848 8849 kvm_queue_exception(vcpu, UD_VECTOR); 8850 8851 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { 8852 prepare_emulation_ctxt_failure_exit(vcpu); 8853 return 0; 8854 } 8855 8856 return 1; 8857 } 8858 8859 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu, 8860 gpa_t cr2_or_gpa, 8861 int emulation_type) 8862 { 8863 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8864 return false; 8865 8866 /* 8867 * If the failed instruction faulted on an access to page tables that 8868 * are used to translate any part of the instruction, KVM can't resolve 8869 * the issue by unprotecting the gfn, as zapping the shadow page will 8870 * result in the instruction taking a !PRESENT page fault and thus put 8871 * the vCPU into an infinite loop of page faults. E.g. KVM will create 8872 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and 8873 * then zap the SPTE to unprotect the gfn, and then do it all over 8874 * again. Report the error to userspace. 8875 */ 8876 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP) 8877 return false; 8878 8879 /* 8880 * If emulation may have been triggered by a write to a shadowed page 8881 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the 8882 * guest to let the CPU re-execute the instruction in the hope that the 8883 * CPU can cleanly execute the instruction that KVM failed to emulate. 8884 */ 8885 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true); 8886 8887 /* 8888 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible 8889 * all SPTEs were already zapped by a different task. The alternative 8890 * is to report the error to userspace and likely terminate the guest, 8891 * and the last_retry_{eip,addr} checks will prevent retrying the page 8892 * fault indefinitely, i.e. there's nothing to lose by retrying. 8893 */ 8894 return true; 8895 } 8896 8897 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8898 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8899 8900 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8901 unsigned long *db) 8902 { 8903 u32 dr6 = 0; 8904 int i; 8905 u32 enable, rwlen; 8906 8907 enable = dr7; 8908 rwlen = dr7 >> 16; 8909 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8910 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8911 dr6 |= (1 << i); 8912 return dr6; 8913 } 8914 8915 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8916 { 8917 struct kvm_run *kvm_run = vcpu->run; 8918 8919 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8920 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8921 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8922 kvm_run->debug.arch.exception = DB_VECTOR; 8923 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8924 return 0; 8925 } 8926 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8927 return 1; 8928 } 8929 8930 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8931 { 8932 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 8933 int r; 8934 8935 r = kvm_x86_call(skip_emulated_instruction)(vcpu); 8936 if (unlikely(!r)) 8937 return 0; 8938 8939 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 8940 8941 /* 8942 * rflags is the old, "raw" value of the flags. The new value has 8943 * not been saved yet. 8944 * 8945 * This is correct even for TF set by the guest, because "the 8946 * processor will not generate this exception after the instruction 8947 * that sets the TF flag". 8948 */ 8949 if (unlikely(rflags & X86_EFLAGS_TF)) 8950 r = kvm_vcpu_do_singlestep(vcpu); 8951 return r; 8952 } 8953 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8954 8955 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) 8956 { 8957 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) 8958 return true; 8959 8960 /* 8961 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is 8962 * active, but AMD compatible CPUs do not. 8963 */ 8964 if (!guest_cpuid_is_intel_compatible(vcpu)) 8965 return false; 8966 8967 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; 8968 } 8969 8970 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, 8971 int emulation_type, int *r) 8972 { 8973 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); 8974 8975 /* 8976 * Do not check for code breakpoints if hardware has already done the 8977 * checks, as inferred from the emulation type. On NO_DECODE and SKIP, 8978 * the instruction has passed all exception checks, and all intercepted 8979 * exceptions that trigger emulation have lower priority than code 8980 * breakpoints, i.e. the fact that the intercepted exception occurred 8981 * means any code breakpoints have already been serviced. 8982 * 8983 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as 8984 * hardware has checked the RIP of the magic prefix, but not the RIP of 8985 * the instruction being emulated. The intent of forced emulation is 8986 * to behave as if KVM intercepted the instruction without an exception 8987 * and without a prefix. 8988 */ 8989 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 8990 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) 8991 return false; 8992 8993 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8994 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8995 struct kvm_run *kvm_run = vcpu->run; 8996 unsigned long eip = kvm_get_linear_rip(vcpu); 8997 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8998 vcpu->arch.guest_debug_dr7, 8999 vcpu->arch.eff_db); 9000 9001 if (dr6 != 0) { 9002 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 9003 kvm_run->debug.arch.pc = eip; 9004 kvm_run->debug.arch.exception = DB_VECTOR; 9005 kvm_run->exit_reason = KVM_EXIT_DEBUG; 9006 *r = 0; 9007 return true; 9008 } 9009 } 9010 9011 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 9012 !kvm_is_code_breakpoint_inhibited(vcpu)) { 9013 unsigned long eip = kvm_get_linear_rip(vcpu); 9014 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 9015 vcpu->arch.dr7, 9016 vcpu->arch.db); 9017 9018 if (dr6 != 0) { 9019 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 9020 *r = 1; 9021 return true; 9022 } 9023 } 9024 9025 return false; 9026 } 9027 9028 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 9029 { 9030 switch (ctxt->opcode_len) { 9031 case 1: 9032 switch (ctxt->b) { 9033 case 0xe4: /* IN */ 9034 case 0xe5: 9035 case 0xec: 9036 case 0xed: 9037 case 0xe6: /* OUT */ 9038 case 0xe7: 9039 case 0xee: 9040 case 0xef: 9041 case 0x6c: /* INS */ 9042 case 0x6d: 9043 case 0x6e: /* OUTS */ 9044 case 0x6f: 9045 return true; 9046 } 9047 break; 9048 case 2: 9049 switch (ctxt->b) { 9050 case 0x33: /* RDPMC */ 9051 return true; 9052 } 9053 break; 9054 } 9055 9056 return false; 9057 } 9058 9059 /* 9060 * Decode an instruction for emulation. The caller is responsible for handling 9061 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 9062 * (and wrong) when emulating on an intercepted fault-like exception[*], as 9063 * code breakpoints have higher priority and thus have already been done by 9064 * hardware. 9065 * 9066 * [*] Except #MC, which is higher priority, but KVM should never emulate in 9067 * response to a machine check. 9068 */ 9069 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 9070 void *insn, int insn_len) 9071 { 9072 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9073 int r; 9074 9075 init_emulate_ctxt(vcpu); 9076 9077 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 9078 9079 trace_kvm_emulate_insn_start(vcpu); 9080 ++vcpu->stat.insn_emulation; 9081 9082 return r; 9083 } 9084 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 9085 9086 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 9087 int emulation_type, void *insn, int insn_len) 9088 { 9089 int r; 9090 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 9091 bool writeback = true; 9092 9093 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9094 (WARN_ON_ONCE(is_guest_mode(vcpu)) || 9095 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))) 9096 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF; 9097 9098 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); 9099 if (r != X86EMUL_CONTINUE) { 9100 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) 9101 return 1; 9102 9103 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); 9104 return handle_emulation_failure(vcpu, emulation_type); 9105 } 9106 9107 vcpu->arch.l1tf_flush_l1d = true; 9108 9109 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 9110 kvm_clear_exception_queue(vcpu); 9111 9112 /* 9113 * Return immediately if RIP hits a code breakpoint, such #DBs 9114 * are fault-like and are higher priority than any faults on 9115 * the code fetch itself. 9116 */ 9117 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) 9118 return r; 9119 9120 r = x86_decode_emulated_instruction(vcpu, emulation_type, 9121 insn, insn_len); 9122 if (r != EMULATION_OK) { 9123 if ((emulation_type & EMULTYPE_TRAP_UD) || 9124 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 9125 kvm_queue_exception(vcpu, UD_VECTOR); 9126 return 1; 9127 } 9128 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9129 emulation_type)) 9130 return 1; 9131 9132 if (ctxt->have_exception && 9133 !(emulation_type & EMULTYPE_SKIP)) { 9134 /* 9135 * #UD should result in just EMULATION_FAILED, and trap-like 9136 * exception should not be encountered during decode. 9137 */ 9138 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 9139 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 9140 inject_emulated_exception(vcpu); 9141 return 1; 9142 } 9143 return handle_emulation_failure(vcpu, emulation_type); 9144 } 9145 } 9146 9147 if ((emulation_type & EMULTYPE_VMWARE_GP) && 9148 !is_vmware_backdoor_opcode(ctxt)) { 9149 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 9150 return 1; 9151 } 9152 9153 /* 9154 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 9155 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 9156 * The caller is responsible for updating interruptibility state and 9157 * injecting single-step #DBs. 9158 */ 9159 if (emulation_type & EMULTYPE_SKIP) { 9160 if (ctxt->mode != X86EMUL_MODE_PROT64) 9161 ctxt->eip = (u32)ctxt->_eip; 9162 else 9163 ctxt->eip = ctxt->_eip; 9164 9165 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 9166 r = 1; 9167 goto writeback; 9168 } 9169 9170 kvm_rip_write(vcpu, ctxt->eip); 9171 if (ctxt->eflags & X86_EFLAGS_RF) 9172 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 9173 return 1; 9174 } 9175 9176 /* 9177 * If emulation was caused by a write-protection #PF on a non-page_table 9178 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages, 9179 * and retry the instruction, as the vCPU is likely no longer using the 9180 * gfn as a page table. 9181 */ 9182 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && 9183 !x86_page_table_writing_insn(ctxt) && 9184 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) 9185 return 1; 9186 9187 /* this is needed for vmware backdoor interface to work since it 9188 changes registers values during IO operation */ 9189 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 9190 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 9191 emulator_invalidate_register_cache(ctxt); 9192 } 9193 9194 restart: 9195 if (emulation_type & EMULTYPE_PF) { 9196 /* Save the faulting GPA (cr2) in the address field */ 9197 ctxt->exception.address = cr2_or_gpa; 9198 9199 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 9200 if (vcpu->arch.mmu->root_role.direct) { 9201 ctxt->gpa_available = true; 9202 ctxt->gpa_val = cr2_or_gpa; 9203 } 9204 } else { 9205 /* Sanitize the address out of an abundance of paranoia. */ 9206 ctxt->exception.address = 0; 9207 } 9208 9209 r = x86_emulate_insn(ctxt); 9210 9211 if (r == EMULATION_INTERCEPTED) 9212 return 1; 9213 9214 if (r == EMULATION_FAILED) { 9215 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, 9216 emulation_type)) 9217 return 1; 9218 9219 return handle_emulation_failure(vcpu, emulation_type); 9220 } 9221 9222 if (ctxt->have_exception) { 9223 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); 9224 vcpu->mmio_needed = false; 9225 r = 1; 9226 inject_emulated_exception(vcpu); 9227 } else if (vcpu->arch.pio.count) { 9228 if (!vcpu->arch.pio.in) { 9229 /* FIXME: return into emulator if single-stepping. */ 9230 vcpu->arch.pio.count = 0; 9231 } else { 9232 writeback = false; 9233 vcpu->arch.complete_userspace_io = complete_emulated_pio; 9234 } 9235 r = 0; 9236 } else if (vcpu->mmio_needed) { 9237 ++vcpu->stat.mmio_exits; 9238 9239 if (!vcpu->mmio_is_write) 9240 writeback = false; 9241 r = 0; 9242 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9243 } else if (vcpu->arch.complete_userspace_io) { 9244 writeback = false; 9245 r = 0; 9246 } else if (r == EMULATION_RESTART) 9247 goto restart; 9248 else 9249 r = 1; 9250 9251 writeback: 9252 if (writeback) { 9253 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); 9254 toggle_interruptibility(vcpu, ctxt->interruptibility); 9255 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 9256 9257 /* 9258 * Note, EXCPT_DB is assumed to be fault-like as the emulator 9259 * only supports code breakpoints and general detect #DB, both 9260 * of which are fault-like. 9261 */ 9262 if (!ctxt->have_exception || 9263 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 9264 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); 9265 if (ctxt->is_branch) 9266 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 9267 kvm_rip_write(vcpu, ctxt->eip); 9268 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 9269 r = kvm_vcpu_do_singlestep(vcpu); 9270 kvm_x86_call(update_emulated_instruction)(vcpu); 9271 __kvm_set_rflags(vcpu, ctxt->eflags); 9272 } 9273 9274 /* 9275 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 9276 * do nothing, and it will be requested again as soon as 9277 * the shadow expires. But we still need to check here, 9278 * because POPF has no interrupt shadow. 9279 */ 9280 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 9281 kvm_make_request(KVM_REQ_EVENT, vcpu); 9282 } else 9283 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 9284 9285 return r; 9286 } 9287 9288 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 9289 { 9290 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 9291 } 9292 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 9293 9294 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 9295 void *insn, int insn_len) 9296 { 9297 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 9298 } 9299 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 9300 9301 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 9302 { 9303 vcpu->arch.pio.count = 0; 9304 return 1; 9305 } 9306 9307 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 9308 { 9309 vcpu->arch.pio.count = 0; 9310 9311 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 9312 return 1; 9313 9314 return kvm_skip_emulated_instruction(vcpu); 9315 } 9316 9317 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 9318 unsigned short port) 9319 { 9320 unsigned long val = kvm_rax_read(vcpu); 9321 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 9322 9323 if (ret) 9324 return ret; 9325 9326 /* 9327 * Workaround userspace that relies on old KVM behavior of %rip being 9328 * incremented prior to exiting to userspace to handle "OUT 0x7e". 9329 */ 9330 if (port == 0x7e && 9331 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 9332 vcpu->arch.complete_userspace_io = 9333 complete_fast_pio_out_port_0x7e; 9334 kvm_skip_emulated_instruction(vcpu); 9335 } else { 9336 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9337 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 9338 } 9339 return 0; 9340 } 9341 9342 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 9343 { 9344 unsigned long val; 9345 9346 /* We should only ever be called with arch.pio.count equal to 1 */ 9347 BUG_ON(vcpu->arch.pio.count != 1); 9348 9349 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 9350 vcpu->arch.pio.count = 0; 9351 return 1; 9352 } 9353 9354 /* For size less than 4 we merge, else we zero extend */ 9355 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 9356 9357 complete_emulator_pio_in(vcpu, &val); 9358 kvm_rax_write(vcpu, val); 9359 9360 return kvm_skip_emulated_instruction(vcpu); 9361 } 9362 9363 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 9364 unsigned short port) 9365 { 9366 unsigned long val; 9367 int ret; 9368 9369 /* For size less than 4 we merge, else we zero extend */ 9370 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 9371 9372 ret = emulator_pio_in(vcpu, size, port, &val, 1); 9373 if (ret) { 9374 kvm_rax_write(vcpu, val); 9375 return ret; 9376 } 9377 9378 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 9379 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 9380 9381 return 0; 9382 } 9383 9384 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 9385 { 9386 int ret; 9387 9388 if (in) 9389 ret = kvm_fast_pio_in(vcpu, size, port); 9390 else 9391 ret = kvm_fast_pio_out(vcpu, size, port); 9392 return ret && kvm_skip_emulated_instruction(vcpu); 9393 } 9394 EXPORT_SYMBOL_GPL(kvm_fast_pio); 9395 9396 static int kvmclock_cpu_down_prep(unsigned int cpu) 9397 { 9398 __this_cpu_write(cpu_tsc_khz, 0); 9399 return 0; 9400 } 9401 9402 static void tsc_khz_changed(void *data) 9403 { 9404 struct cpufreq_freqs *freq = data; 9405 unsigned long khz; 9406 9407 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); 9408 9409 if (data) 9410 khz = freq->new; 9411 else 9412 khz = cpufreq_quick_get(raw_smp_processor_id()); 9413 if (!khz) 9414 khz = tsc_khz; 9415 __this_cpu_write(cpu_tsc_khz, khz); 9416 } 9417 9418 #ifdef CONFIG_X86_64 9419 static void kvm_hyperv_tsc_notifier(void) 9420 { 9421 struct kvm *kvm; 9422 int cpu; 9423 9424 mutex_lock(&kvm_lock); 9425 list_for_each_entry(kvm, &vm_list, vm_list) 9426 kvm_make_mclock_inprogress_request(kvm); 9427 9428 /* no guest entries from this point */ 9429 hyperv_stop_tsc_emulation(); 9430 9431 /* TSC frequency always matches when on Hyper-V */ 9432 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9433 for_each_present_cpu(cpu) 9434 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 9435 } 9436 kvm_caps.max_guest_tsc_khz = tsc_khz; 9437 9438 list_for_each_entry(kvm, &vm_list, vm_list) { 9439 __kvm_start_pvclock_update(kvm); 9440 pvclock_update_vm_gtod_copy(kvm); 9441 kvm_end_pvclock_update(kvm); 9442 } 9443 9444 mutex_unlock(&kvm_lock); 9445 } 9446 #endif 9447 9448 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 9449 { 9450 struct kvm *kvm; 9451 struct kvm_vcpu *vcpu; 9452 int send_ipi = 0; 9453 unsigned long i; 9454 9455 /* 9456 * We allow guests to temporarily run on slowing clocks, 9457 * provided we notify them after, or to run on accelerating 9458 * clocks, provided we notify them before. Thus time never 9459 * goes backwards. 9460 * 9461 * However, we have a problem. We can't atomically update 9462 * the frequency of a given CPU from this function; it is 9463 * merely a notifier, which can be called from any CPU. 9464 * Changing the TSC frequency at arbitrary points in time 9465 * requires a recomputation of local variables related to 9466 * the TSC for each VCPU. We must flag these local variables 9467 * to be updated and be sure the update takes place with the 9468 * new frequency before any guests proceed. 9469 * 9470 * Unfortunately, the combination of hotplug CPU and frequency 9471 * change creates an intractable locking scenario; the order 9472 * of when these callouts happen is undefined with respect to 9473 * CPU hotplug, and they can race with each other. As such, 9474 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 9475 * undefined; you can actually have a CPU frequency change take 9476 * place in between the computation of X and the setting of the 9477 * variable. To protect against this problem, all updates of 9478 * the per_cpu tsc_khz variable are done in an interrupt 9479 * protected IPI, and all callers wishing to update the value 9480 * must wait for a synchronous IPI to complete (which is trivial 9481 * if the caller is on the CPU already). This establishes the 9482 * necessary total order on variable updates. 9483 * 9484 * Note that because a guest time update may take place 9485 * anytime after the setting of the VCPU's request bit, the 9486 * correct TSC value must be set before the request. However, 9487 * to ensure the update actually makes it to any guest which 9488 * starts running in hardware virtualization between the set 9489 * and the acquisition of the spinlock, we must also ping the 9490 * CPU after setting the request bit. 9491 * 9492 */ 9493 9494 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9495 9496 mutex_lock(&kvm_lock); 9497 list_for_each_entry(kvm, &vm_list, vm_list) { 9498 kvm_for_each_vcpu(i, vcpu, kvm) { 9499 if (vcpu->cpu != cpu) 9500 continue; 9501 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9502 if (vcpu->cpu != raw_smp_processor_id()) 9503 send_ipi = 1; 9504 } 9505 } 9506 mutex_unlock(&kvm_lock); 9507 9508 if (freq->old < freq->new && send_ipi) { 9509 /* 9510 * We upscale the frequency. Must make the guest 9511 * doesn't see old kvmclock values while running with 9512 * the new frequency, otherwise we risk the guest sees 9513 * time go backwards. 9514 * 9515 * In case we update the frequency for another cpu 9516 * (which might be in guest context) send an interrupt 9517 * to kick the cpu out of guest context. Next time 9518 * guest context is entered kvmclock will be updated, 9519 * so the guest will not see stale values. 9520 */ 9521 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 9522 } 9523 } 9524 9525 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 9526 void *data) 9527 { 9528 struct cpufreq_freqs *freq = data; 9529 int cpu; 9530 9531 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 9532 return 0; 9533 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 9534 return 0; 9535 9536 for_each_cpu(cpu, freq->policy->cpus) 9537 __kvmclock_cpufreq_notifier(freq, cpu); 9538 9539 return 0; 9540 } 9541 9542 static struct notifier_block kvmclock_cpufreq_notifier_block = { 9543 .notifier_call = kvmclock_cpufreq_notifier 9544 }; 9545 9546 static int kvmclock_cpu_online(unsigned int cpu) 9547 { 9548 tsc_khz_changed(NULL); 9549 return 0; 9550 } 9551 9552 static void kvm_timer_init(void) 9553 { 9554 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9555 max_tsc_khz = tsc_khz; 9556 9557 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 9558 struct cpufreq_policy *policy; 9559 int cpu; 9560 9561 cpu = get_cpu(); 9562 policy = cpufreq_cpu_get(cpu); 9563 if (policy) { 9564 if (policy->cpuinfo.max_freq) 9565 max_tsc_khz = policy->cpuinfo.max_freq; 9566 cpufreq_cpu_put(policy); 9567 } 9568 put_cpu(); 9569 } 9570 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 9571 CPUFREQ_TRANSITION_NOTIFIER); 9572 9573 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 9574 kvmclock_cpu_online, kvmclock_cpu_down_prep); 9575 } 9576 } 9577 9578 #ifdef CONFIG_X86_64 9579 static void pvclock_gtod_update_fn(struct work_struct *work) 9580 { 9581 struct kvm *kvm; 9582 struct kvm_vcpu *vcpu; 9583 unsigned long i; 9584 9585 mutex_lock(&kvm_lock); 9586 list_for_each_entry(kvm, &vm_list, vm_list) 9587 kvm_for_each_vcpu(i, vcpu, kvm) 9588 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 9589 atomic_set(&kvm_guest_has_master_clock, 0); 9590 mutex_unlock(&kvm_lock); 9591 } 9592 9593 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 9594 9595 /* 9596 * Indirection to move queue_work() out of the tk_core.seq write held 9597 * region to prevent possible deadlocks against time accessors which 9598 * are invoked with work related locks held. 9599 */ 9600 static void pvclock_irq_work_fn(struct irq_work *w) 9601 { 9602 queue_work(system_long_wq, &pvclock_gtod_work); 9603 } 9604 9605 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 9606 9607 /* 9608 * Notification about pvclock gtod data update. 9609 */ 9610 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 9611 void *priv) 9612 { 9613 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 9614 struct timekeeper *tk = priv; 9615 9616 update_pvclock_gtod(tk); 9617 9618 /* 9619 * Disable master clock if host does not trust, or does not use, 9620 * TSC based clocksource. Delegate queue_work() to irq_work as 9621 * this is invoked with tk_core.seq write held. 9622 */ 9623 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 9624 atomic_read(&kvm_guest_has_master_clock) != 0) 9625 irq_work_queue(&pvclock_irq_work); 9626 return 0; 9627 } 9628 9629 static struct notifier_block pvclock_gtod_notifier = { 9630 .notifier_call = pvclock_gtod_notify, 9631 }; 9632 #endif 9633 9634 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 9635 { 9636 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 9637 9638 #define __KVM_X86_OP(func) \ 9639 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 9640 #define KVM_X86_OP(func) \ 9641 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 9642 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP 9643 #define KVM_X86_OP_OPTIONAL_RET0(func) \ 9644 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 9645 (void *)__static_call_return0); 9646 #include <asm/kvm-x86-ops.h> 9647 #undef __KVM_X86_OP 9648 9649 kvm_pmu_ops_update(ops->pmu_ops); 9650 } 9651 9652 static int kvm_x86_check_processor_compatibility(void) 9653 { 9654 int cpu = smp_processor_id(); 9655 struct cpuinfo_x86 *c = &cpu_data(cpu); 9656 9657 /* 9658 * Compatibility checks are done when loading KVM and when enabling 9659 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are 9660 * compatible, i.e. KVM should never perform a compatibility check on 9661 * an offline CPU. 9662 */ 9663 WARN_ON(!cpu_online(cpu)); 9664 9665 if (__cr4_reserved_bits(cpu_has, c) != 9666 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 9667 return -EIO; 9668 9669 return kvm_x86_call(check_processor_compatibility)(); 9670 } 9671 9672 static void kvm_x86_check_cpu_compat(void *ret) 9673 { 9674 *(int *)ret = kvm_x86_check_processor_compatibility(); 9675 } 9676 9677 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) 9678 { 9679 u64 host_pat; 9680 int r, cpu; 9681 9682 guard(mutex)(&vendor_module_lock); 9683 9684 if (kvm_x86_ops.enable_virtualization_cpu) { 9685 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); 9686 return -EEXIST; 9687 } 9688 9689 /* 9690 * KVM explicitly assumes that the guest has an FPU and 9691 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 9692 * vCPU's FPU state as a fxregs_state struct. 9693 */ 9694 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 9695 pr_err("inadequate fpu\n"); 9696 return -EOPNOTSUPP; 9697 } 9698 9699 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9700 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 9701 return -EOPNOTSUPP; 9702 } 9703 9704 /* 9705 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes 9706 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something 9707 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother 9708 * with an exception. PAT[0] is set to WB on RESET and also by the 9709 * kernel, i.e. failure indicates a kernel bug or broken firmware. 9710 */ 9711 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || 9712 (host_pat & GENMASK(2, 0)) != 6) { 9713 pr_err("host PAT[0] is not WB\n"); 9714 return -EIO; 9715 } 9716 9717 memset(&kvm_caps, 0, sizeof(kvm_caps)); 9718 9719 x86_emulator_cache = kvm_alloc_emulator_cache(); 9720 if (!x86_emulator_cache) { 9721 pr_err("failed to allocate cache for x86 emulator\n"); 9722 return -ENOMEM; 9723 } 9724 9725 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 9726 if (!user_return_msrs) { 9727 pr_err("failed to allocate percpu kvm_user_return_msrs\n"); 9728 r = -ENOMEM; 9729 goto out_free_x86_emulator_cache; 9730 } 9731 kvm_nr_uret_msrs = 0; 9732 9733 r = kvm_mmu_vendor_module_init(); 9734 if (r) 9735 goto out_free_percpu; 9736 9737 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); 9738 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; 9739 9740 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9741 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9742 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; 9743 } 9744 9745 rdmsrl_safe(MSR_EFER, &kvm_host.efer); 9746 9747 if (boot_cpu_has(X86_FEATURE_XSAVES)) 9748 rdmsrl(MSR_IA32_XSS, kvm_host.xss); 9749 9750 kvm_init_pmu_capability(ops->pmu_ops); 9751 9752 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 9753 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); 9754 9755 r = ops->hardware_setup(); 9756 if (r != 0) 9757 goto out_mmu_exit; 9758 9759 kvm_ops_update(ops); 9760 9761 for_each_online_cpu(cpu) { 9762 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); 9763 if (r < 0) 9764 goto out_unwind_ops; 9765 } 9766 9767 /* 9768 * Point of no return! DO NOT add error paths below this point unless 9769 * absolutely necessary, as most operations from this point forward 9770 * require unwinding. 9771 */ 9772 kvm_timer_init(); 9773 9774 if (pi_inject_timer == -1) 9775 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9776 #ifdef CONFIG_X86_64 9777 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9778 9779 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9780 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9781 #endif 9782 9783 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 9784 9785 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) 9786 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); 9787 9788 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 9789 kvm_caps.supported_xss = 0; 9790 9791 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 9792 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 9793 #undef __kvm_cpu_cap_has 9794 9795 if (kvm_caps.has_tsc_control) { 9796 /* 9797 * Make sure the user can only configure tsc_khz values that 9798 * fit into a signed integer. 9799 * A min value is not calculated because it will always 9800 * be 1 on all machines. 9801 */ 9802 u64 max = min(0x7fffffffULL, 9803 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); 9804 kvm_caps.max_guest_tsc_khz = max; 9805 } 9806 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; 9807 kvm_init_msr_lists(); 9808 return 0; 9809 9810 out_unwind_ops: 9811 kvm_x86_ops.enable_virtualization_cpu = NULL; 9812 kvm_x86_call(hardware_unsetup)(); 9813 out_mmu_exit: 9814 kvm_mmu_vendor_module_exit(); 9815 out_free_percpu: 9816 free_percpu(user_return_msrs); 9817 out_free_x86_emulator_cache: 9818 kmem_cache_destroy(x86_emulator_cache); 9819 return r; 9820 } 9821 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); 9822 9823 void kvm_x86_vendor_exit(void) 9824 { 9825 kvm_unregister_perf_callbacks(); 9826 9827 #ifdef CONFIG_X86_64 9828 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9829 clear_hv_tscchange_cb(); 9830 #endif 9831 kvm_lapic_exit(); 9832 9833 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 9834 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9835 CPUFREQ_TRANSITION_NOTIFIER); 9836 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9837 } 9838 #ifdef CONFIG_X86_64 9839 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9840 irq_work_sync(&pvclock_irq_work); 9841 cancel_work_sync(&pvclock_gtod_work); 9842 #endif 9843 kvm_x86_call(hardware_unsetup)(); 9844 kvm_mmu_vendor_module_exit(); 9845 free_percpu(user_return_msrs); 9846 kmem_cache_destroy(x86_emulator_cache); 9847 #ifdef CONFIG_KVM_XEN 9848 static_key_deferred_flush(&kvm_xen_enabled); 9849 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9850 #endif 9851 mutex_lock(&vendor_module_lock); 9852 kvm_x86_ops.enable_virtualization_cpu = NULL; 9853 mutex_unlock(&vendor_module_lock); 9854 } 9855 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); 9856 9857 #ifdef CONFIG_X86_64 9858 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9859 unsigned long clock_type) 9860 { 9861 struct kvm_clock_pairing clock_pairing; 9862 struct timespec64 ts; 9863 u64 cycle; 9864 int ret; 9865 9866 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9867 return -KVM_EOPNOTSUPP; 9868 9869 /* 9870 * When tsc is in permanent catchup mode guests won't be able to use 9871 * pvclock_read_retry loop to get consistent view of pvclock 9872 */ 9873 if (vcpu->arch.tsc_always_catchup) 9874 return -KVM_EOPNOTSUPP; 9875 9876 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9877 return -KVM_EOPNOTSUPP; 9878 9879 clock_pairing.sec = ts.tv_sec; 9880 clock_pairing.nsec = ts.tv_nsec; 9881 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9882 clock_pairing.flags = 0; 9883 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9884 9885 ret = 0; 9886 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9887 sizeof(struct kvm_clock_pairing))) 9888 ret = -KVM_EFAULT; 9889 9890 return ret; 9891 } 9892 #endif 9893 9894 /* 9895 * kvm_pv_kick_cpu_op: Kick a vcpu. 9896 * 9897 * @apicid - apicid of vcpu to be kicked. 9898 */ 9899 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9900 { 9901 /* 9902 * All other fields are unused for APIC_DM_REMRD, but may be consumed by 9903 * common code, e.g. for tracing. Defer initialization to the compiler. 9904 */ 9905 struct kvm_lapic_irq lapic_irq = { 9906 .delivery_mode = APIC_DM_REMRD, 9907 .dest_mode = APIC_DEST_PHYSICAL, 9908 .shorthand = APIC_DEST_NOSHORT, 9909 .dest_id = apicid, 9910 }; 9911 9912 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9913 } 9914 9915 bool kvm_apicv_activated(struct kvm *kvm) 9916 { 9917 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9918 } 9919 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9920 9921 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9922 { 9923 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9924 ulong vcpu_reasons = 9925 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); 9926 9927 return (vm_reasons | vcpu_reasons) == 0; 9928 } 9929 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9930 9931 static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9932 enum kvm_apicv_inhibit reason, bool set) 9933 { 9934 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; 9935 9936 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); 9937 9938 if (set) 9939 __set_bit(reason, inhibits); 9940 else 9941 __clear_bit(reason, inhibits); 9942 9943 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9944 } 9945 9946 static void kvm_apicv_init(struct kvm *kvm) 9947 { 9948 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : 9949 APICV_INHIBIT_REASON_DISABLED; 9950 9951 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); 9952 9953 init_rwsem(&kvm->arch.apicv_update_lock); 9954 } 9955 9956 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9957 { 9958 struct kvm_vcpu *target = NULL; 9959 struct kvm_apic_map *map; 9960 9961 vcpu->stat.directed_yield_attempted++; 9962 9963 if (single_task_running()) 9964 goto no_yield; 9965 9966 rcu_read_lock(); 9967 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9968 9969 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9970 target = map->phys_map[dest_id]->vcpu; 9971 9972 rcu_read_unlock(); 9973 9974 if (!target || !READ_ONCE(target->ready)) 9975 goto no_yield; 9976 9977 /* Ignore requests to yield to self */ 9978 if (vcpu == target) 9979 goto no_yield; 9980 9981 if (kvm_vcpu_yield_to(target) <= 0) 9982 goto no_yield; 9983 9984 vcpu->stat.directed_yield_successful++; 9985 9986 no_yield: 9987 return; 9988 } 9989 9990 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9991 { 9992 u64 ret = vcpu->run->hypercall.ret; 9993 9994 if (!is_64_bit_mode(vcpu)) 9995 ret = (u32)ret; 9996 kvm_rax_write(vcpu, ret); 9997 ++vcpu->stat.hypercalls; 9998 return kvm_skip_emulated_instruction(vcpu); 9999 } 10000 10001 unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr, 10002 unsigned long a0, unsigned long a1, 10003 unsigned long a2, unsigned long a3, 10004 int op_64_bit, int cpl) 10005 { 10006 unsigned long ret; 10007 10008 trace_kvm_hypercall(nr, a0, a1, a2, a3); 10009 10010 if (!op_64_bit) { 10011 nr &= 0xFFFFFFFF; 10012 a0 &= 0xFFFFFFFF; 10013 a1 &= 0xFFFFFFFF; 10014 a2 &= 0xFFFFFFFF; 10015 a3 &= 0xFFFFFFFF; 10016 } 10017 10018 if (cpl) { 10019 ret = -KVM_EPERM; 10020 goto out; 10021 } 10022 10023 ret = -KVM_ENOSYS; 10024 10025 switch (nr) { 10026 case KVM_HC_VAPIC_POLL_IRQ: 10027 ret = 0; 10028 break; 10029 case KVM_HC_KICK_CPU: 10030 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 10031 break; 10032 10033 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 10034 kvm_sched_yield(vcpu, a1); 10035 ret = 0; 10036 break; 10037 #ifdef CONFIG_X86_64 10038 case KVM_HC_CLOCK_PAIRING: 10039 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 10040 break; 10041 #endif 10042 case KVM_HC_SEND_IPI: 10043 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 10044 break; 10045 10046 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 10047 break; 10048 case KVM_HC_SCHED_YIELD: 10049 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 10050 break; 10051 10052 kvm_sched_yield(vcpu, a0); 10053 ret = 0; 10054 break; 10055 case KVM_HC_MAP_GPA_RANGE: { 10056 u64 gpa = a0, npages = a1, attrs = a2; 10057 10058 ret = -KVM_ENOSYS; 10059 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 10060 break; 10061 10062 if (!PAGE_ALIGNED(gpa) || !npages || 10063 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 10064 ret = -KVM_EINVAL; 10065 break; 10066 } 10067 10068 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 10069 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 10070 vcpu->run->hypercall.args[0] = gpa; 10071 vcpu->run->hypercall.args[1] = npages; 10072 vcpu->run->hypercall.args[2] = attrs; 10073 vcpu->run->hypercall.flags = 0; 10074 if (op_64_bit) 10075 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; 10076 10077 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); 10078 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 10079 /* stat is incremented on completion. */ 10080 return 0; 10081 } 10082 default: 10083 ret = -KVM_ENOSYS; 10084 break; 10085 } 10086 10087 out: 10088 ++vcpu->stat.hypercalls; 10089 return ret; 10090 } 10091 EXPORT_SYMBOL_GPL(__kvm_emulate_hypercall); 10092 10093 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 10094 { 10095 unsigned long nr, a0, a1, a2, a3, ret; 10096 int op_64_bit; 10097 int cpl; 10098 10099 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 10100 return kvm_xen_hypercall(vcpu); 10101 10102 if (kvm_hv_hypercall_enabled(vcpu)) 10103 return kvm_hv_hypercall(vcpu); 10104 10105 nr = kvm_rax_read(vcpu); 10106 a0 = kvm_rbx_read(vcpu); 10107 a1 = kvm_rcx_read(vcpu); 10108 a2 = kvm_rdx_read(vcpu); 10109 a3 = kvm_rsi_read(vcpu); 10110 op_64_bit = is_64_bit_hypercall(vcpu); 10111 cpl = kvm_x86_call(get_cpl)(vcpu); 10112 10113 ret = __kvm_emulate_hypercall(vcpu, nr, a0, a1, a2, a3, op_64_bit, cpl); 10114 if (nr == KVM_HC_MAP_GPA_RANGE && !ret) 10115 /* MAP_GPA tosses the request to the user space. */ 10116 return 0; 10117 10118 if (!op_64_bit) 10119 ret = (u32)ret; 10120 kvm_rax_write(vcpu, ret); 10121 10122 return kvm_skip_emulated_instruction(vcpu); 10123 } 10124 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 10125 10126 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 10127 { 10128 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 10129 char instruction[3]; 10130 unsigned long rip = kvm_rip_read(vcpu); 10131 10132 /* 10133 * If the quirk is disabled, synthesize a #UD and let the guest pick up 10134 * the pieces. 10135 */ 10136 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 10137 ctxt->exception.error_code_valid = false; 10138 ctxt->exception.vector = UD_VECTOR; 10139 ctxt->have_exception = true; 10140 return X86EMUL_PROPAGATE_FAULT; 10141 } 10142 10143 kvm_x86_call(patch_hypercall)(vcpu, instruction); 10144 10145 return emulator_write_emulated(ctxt, rip, instruction, 3, 10146 &ctxt->exception); 10147 } 10148 10149 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 10150 { 10151 return vcpu->run->request_interrupt_window && 10152 likely(!pic_in_kernel(vcpu->kvm)); 10153 } 10154 10155 /* Called within kvm->srcu read side. */ 10156 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 10157 { 10158 struct kvm_run *kvm_run = vcpu->run; 10159 10160 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); 10161 kvm_run->cr8 = kvm_get_cr8(vcpu); 10162 kvm_run->apic_base = kvm_get_apic_base(vcpu); 10163 10164 kvm_run->ready_for_interrupt_injection = 10165 pic_in_kernel(vcpu->kvm) || 10166 kvm_vcpu_ready_for_interrupt_injection(vcpu); 10167 10168 if (is_smm(vcpu)) 10169 kvm_run->flags |= KVM_RUN_X86_SMM; 10170 if (is_guest_mode(vcpu)) 10171 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; 10172 } 10173 10174 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 10175 { 10176 int max_irr, tpr; 10177 10178 if (!kvm_x86_ops.update_cr8_intercept) 10179 return; 10180 10181 if (!lapic_in_kernel(vcpu)) 10182 return; 10183 10184 if (vcpu->arch.apic->apicv_active) 10185 return; 10186 10187 if (!vcpu->arch.apic->vapic_addr) 10188 max_irr = kvm_lapic_find_highest_irr(vcpu); 10189 else 10190 max_irr = -1; 10191 10192 if (max_irr != -1) 10193 max_irr >>= 4; 10194 10195 tpr = kvm_lapic_get_cr8(vcpu); 10196 10197 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); 10198 } 10199 10200 10201 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 10202 { 10203 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10204 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10205 return 1; 10206 } 10207 10208 return kvm_x86_ops.nested_ops->check_events(vcpu); 10209 } 10210 10211 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 10212 { 10213 /* 10214 * Suppress the error code if the vCPU is in Real Mode, as Real Mode 10215 * exceptions don't report error codes. The presence of an error code 10216 * is carried with the exception and only stripped when the exception 10217 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do 10218 * report an error code despite the CPU being in Real Mode. 10219 */ 10220 vcpu->arch.exception.has_error_code &= is_protmode(vcpu); 10221 10222 trace_kvm_inj_exception(vcpu->arch.exception.vector, 10223 vcpu->arch.exception.has_error_code, 10224 vcpu->arch.exception.error_code, 10225 vcpu->arch.exception.injected); 10226 10227 kvm_x86_call(inject_exception)(vcpu); 10228 } 10229 10230 /* 10231 * Check for any event (interrupt or exception) that is ready to be injected, 10232 * and if there is at least one event, inject the event with the highest 10233 * priority. This handles both "pending" events, i.e. events that have never 10234 * been injected into the guest, and "injected" events, i.e. events that were 10235 * injected as part of a previous VM-Enter, but weren't successfully delivered 10236 * and need to be re-injected. 10237 * 10238 * Note, this is not guaranteed to be invoked on a guest instruction boundary, 10239 * i.e. doesn't guarantee that there's an event window in the guest. KVM must 10240 * be able to inject exceptions in the "middle" of an instruction, and so must 10241 * also be able to re-inject NMIs and IRQs in the middle of an instruction. 10242 * I.e. for exceptions and re-injected events, NOT invoking this on instruction 10243 * boundaries is necessary and correct. 10244 * 10245 * For simplicity, KVM uses a single path to inject all events (except events 10246 * that are injected directly from L1 to L2) and doesn't explicitly track 10247 * instruction boundaries for asynchronous events. However, because VM-Exits 10248 * that can occur during instruction execution typically result in KVM skipping 10249 * the instruction or injecting an exception, e.g. instruction and exception 10250 * intercepts, and because pending exceptions have higher priority than pending 10251 * interrupts, KVM still honors instruction boundaries in most scenarios. 10252 * 10253 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip 10254 * the instruction or inject an exception, then KVM can incorrecty inject a new 10255 * asynchronous event if the event became pending after the CPU fetched the 10256 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) 10257 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be 10258 * injected on the restarted instruction instead of being deferred until the 10259 * instruction completes. 10260 * 10261 * In practice, this virtualization hole is unlikely to be observed by the 10262 * guest, and even less likely to cause functional problems. To detect the 10263 * hole, the guest would have to trigger an event on a side effect of an early 10264 * phase of instruction execution, e.g. on the instruction fetch from memory. 10265 * And for it to be a functional problem, the guest would need to depend on the 10266 * ordering between that side effect, the instruction completing, _and_ the 10267 * delivery of the asynchronous event. 10268 */ 10269 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, 10270 bool *req_immediate_exit) 10271 { 10272 bool can_inject; 10273 int r; 10274 10275 /* 10276 * Process nested events first, as nested VM-Exit supersedes event 10277 * re-injection. If there's an event queued for re-injection, it will 10278 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. 10279 */ 10280 if (is_guest_mode(vcpu)) 10281 r = kvm_check_nested_events(vcpu); 10282 else 10283 r = 0; 10284 10285 /* 10286 * Re-inject exceptions and events *especially* if immediate entry+exit 10287 * to/from L2 is needed, as any event that has already been injected 10288 * into L2 needs to complete its lifecycle before injecting a new event. 10289 * 10290 * Don't re-inject an NMI or interrupt if there is a pending exception. 10291 * This collision arises if an exception occurred while vectoring the 10292 * injected event, KVM intercepted said exception, and KVM ultimately 10293 * determined the fault belongs to the guest and queues the exception 10294 * for injection back into the guest. 10295 * 10296 * "Injected" interrupts can also collide with pending exceptions if 10297 * userspace ignores the "ready for injection" flag and blindly queues 10298 * an interrupt. In that case, prioritizing the exception is correct, 10299 * as the exception "occurred" before the exit to userspace. Trap-like 10300 * exceptions, e.g. most #DBs, have higher priority than interrupts. 10301 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest 10302 * priority, they're only generated (pended) during instruction 10303 * execution, and interrupts are recognized at instruction boundaries. 10304 * Thus a pending fault-like exception means the fault occurred on the 10305 * *previous* instruction and must be serviced prior to recognizing any 10306 * new events in order to fully complete the previous instruction. 10307 */ 10308 if (vcpu->arch.exception.injected) 10309 kvm_inject_exception(vcpu); 10310 else if (kvm_is_exception_pending(vcpu)) 10311 ; /* see above */ 10312 else if (vcpu->arch.nmi_injected) 10313 kvm_x86_call(inject_nmi)(vcpu); 10314 else if (vcpu->arch.interrupt.injected) 10315 kvm_x86_call(inject_irq)(vcpu, true); 10316 10317 /* 10318 * Exceptions that morph to VM-Exits are handled above, and pending 10319 * exceptions on top of injected exceptions that do not VM-Exit should 10320 * either morph to #DF or, sadly, override the injected exception. 10321 */ 10322 WARN_ON_ONCE(vcpu->arch.exception.injected && 10323 vcpu->arch.exception.pending); 10324 10325 /* 10326 * Bail if immediate entry+exit to/from the guest is needed to complete 10327 * nested VM-Enter or event re-injection so that a different pending 10328 * event can be serviced (or if KVM needs to exit to userspace). 10329 * 10330 * Otherwise, continue processing events even if VM-Exit occurred. The 10331 * VM-Exit will have cleared exceptions that were meant for L2, but 10332 * there may now be events that can be injected into L1. 10333 */ 10334 if (r < 0) 10335 goto out; 10336 10337 /* 10338 * A pending exception VM-Exit should either result in nested VM-Exit 10339 * or force an immediate re-entry and exit to/from L2, and exception 10340 * VM-Exits cannot be injected (flag should _never_ be set). 10341 */ 10342 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || 10343 vcpu->arch.exception_vmexit.pending); 10344 10345 /* 10346 * New events, other than exceptions, cannot be injected if KVM needs 10347 * to re-inject a previous event. See above comments on re-injecting 10348 * for why pending exceptions get priority. 10349 */ 10350 can_inject = !kvm_event_needs_reinjection(vcpu); 10351 10352 if (vcpu->arch.exception.pending) { 10353 /* 10354 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS 10355 * value pushed on the stack. Trap-like exception and all #DBs 10356 * leave RF as-is (KVM follows Intel's behavior in this regard; 10357 * AMD states that code breakpoint #DBs excplitly clear RF=0). 10358 * 10359 * Note, most versions of Intel's SDM and AMD's APM incorrectly 10360 * describe the behavior of General Detect #DBs, which are 10361 * fault-like. They do _not_ set RF, a la code breakpoints. 10362 */ 10363 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) 10364 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 10365 X86_EFLAGS_RF); 10366 10367 if (vcpu->arch.exception.vector == DB_VECTOR) { 10368 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); 10369 if (vcpu->arch.dr7 & DR7_GD) { 10370 vcpu->arch.dr7 &= ~DR7_GD; 10371 kvm_update_dr7(vcpu); 10372 } 10373 } 10374 10375 kvm_inject_exception(vcpu); 10376 10377 vcpu->arch.exception.pending = false; 10378 vcpu->arch.exception.injected = true; 10379 10380 can_inject = false; 10381 } 10382 10383 /* Don't inject interrupts if the user asked to avoid doing so */ 10384 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 10385 return 0; 10386 10387 /* 10388 * Finally, inject interrupt events. If an event cannot be injected 10389 * due to architectural conditions (e.g. IF=0) a window-open exit 10390 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 10391 * and can architecturally be injected, but we cannot do it right now: 10392 * an interrupt could have arrived just now and we have to inject it 10393 * as a vmexit, or there could already an event in the queue, which is 10394 * indicated by can_inject. In that case we request an immediate exit 10395 * in order to make progress and get back here for another iteration. 10396 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 10397 */ 10398 #ifdef CONFIG_KVM_SMM 10399 if (vcpu->arch.smi_pending) { 10400 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : 10401 -EBUSY; 10402 if (r < 0) 10403 goto out; 10404 if (r) { 10405 vcpu->arch.smi_pending = false; 10406 ++vcpu->arch.smi_count; 10407 enter_smm(vcpu); 10408 can_inject = false; 10409 } else 10410 kvm_x86_call(enable_smi_window)(vcpu); 10411 } 10412 #endif 10413 10414 if (vcpu->arch.nmi_pending) { 10415 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : 10416 -EBUSY; 10417 if (r < 0) 10418 goto out; 10419 if (r) { 10420 --vcpu->arch.nmi_pending; 10421 vcpu->arch.nmi_injected = true; 10422 kvm_x86_call(inject_nmi)(vcpu); 10423 can_inject = false; 10424 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); 10425 } 10426 if (vcpu->arch.nmi_pending) 10427 kvm_x86_call(enable_nmi_window)(vcpu); 10428 } 10429 10430 if (kvm_cpu_has_injectable_intr(vcpu)) { 10431 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : 10432 -EBUSY; 10433 if (r < 0) 10434 goto out; 10435 if (r) { 10436 int irq = kvm_cpu_get_interrupt(vcpu); 10437 10438 if (!WARN_ON_ONCE(irq == -1)) { 10439 kvm_queue_interrupt(vcpu, irq, false); 10440 kvm_x86_call(inject_irq)(vcpu, false); 10441 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); 10442 } 10443 } 10444 if (kvm_cpu_has_injectable_intr(vcpu)) 10445 kvm_x86_call(enable_irq_window)(vcpu); 10446 } 10447 10448 if (is_guest_mode(vcpu) && 10449 kvm_x86_ops.nested_ops->has_events && 10450 kvm_x86_ops.nested_ops->has_events(vcpu, true)) 10451 *req_immediate_exit = true; 10452 10453 /* 10454 * KVM must never queue a new exception while injecting an event; KVM 10455 * is done emulating and should only propagate the to-be-injected event 10456 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an 10457 * infinite loop as KVM will bail from VM-Enter to inject the pending 10458 * exception and start the cycle all over. 10459 * 10460 * Exempt triple faults as they have special handling and won't put the 10461 * vCPU into an infinite loop. Triple fault can be queued when running 10462 * VMX without unrestricted guest, as that requires KVM to emulate Real 10463 * Mode events (see kvm_inject_realmode_interrupt()). 10464 */ 10465 WARN_ON_ONCE(vcpu->arch.exception.pending || 10466 vcpu->arch.exception_vmexit.pending); 10467 return 0; 10468 10469 out: 10470 if (r == -EBUSY) { 10471 *req_immediate_exit = true; 10472 r = 0; 10473 } 10474 return r; 10475 } 10476 10477 static void process_nmi(struct kvm_vcpu *vcpu) 10478 { 10479 unsigned int limit; 10480 10481 /* 10482 * x86 is limited to one NMI pending, but because KVM can't react to 10483 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is 10484 * scheduled out, KVM needs to play nice with two queued NMIs showing 10485 * up at the same time. To handle this scenario, allow two NMIs to be 10486 * (temporarily) pending so long as NMIs are not blocked and KVM is not 10487 * waiting for a previous NMI injection to complete (which effectively 10488 * blocks NMIs). KVM will immediately inject one of the two NMIs, and 10489 * will request an NMI window to handle the second NMI. 10490 */ 10491 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 10492 limit = 1; 10493 else 10494 limit = 2; 10495 10496 /* 10497 * Adjust the limit to account for pending virtual NMIs, which aren't 10498 * tracked in vcpu->arch.nmi_pending. 10499 */ 10500 if (kvm_x86_call(is_vnmi_pending)(vcpu)) 10501 limit--; 10502 10503 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 10504 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 10505 10506 if (vcpu->arch.nmi_pending && 10507 (kvm_x86_call(set_vnmi_pending)(vcpu))) 10508 vcpu->arch.nmi_pending--; 10509 10510 if (vcpu->arch.nmi_pending) 10511 kvm_make_request(KVM_REQ_EVENT, vcpu); 10512 } 10513 10514 /* Return total number of NMIs pending injection to the VM */ 10515 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) 10516 { 10517 return vcpu->arch.nmi_pending + 10518 kvm_x86_call(is_vnmi_pending)(vcpu); 10519 } 10520 10521 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 10522 unsigned long *vcpu_bitmap) 10523 { 10524 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 10525 } 10526 10527 void kvm_make_scan_ioapic_request(struct kvm *kvm) 10528 { 10529 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 10530 } 10531 10532 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10533 { 10534 struct kvm_lapic *apic = vcpu->arch.apic; 10535 bool activate; 10536 10537 if (!lapic_in_kernel(vcpu)) 10538 return; 10539 10540 down_read(&vcpu->kvm->arch.apicv_update_lock); 10541 preempt_disable(); 10542 10543 /* Do not activate APICV when APIC is disabled */ 10544 activate = kvm_vcpu_apicv_activated(vcpu) && 10545 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); 10546 10547 if (apic->apicv_active == activate) 10548 goto out; 10549 10550 apic->apicv_active = activate; 10551 kvm_apic_update_apicv(vcpu); 10552 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); 10553 10554 /* 10555 * When APICv gets disabled, we may still have injected interrupts 10556 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 10557 * still active when the interrupt got accepted. Make sure 10558 * kvm_check_and_inject_events() is called to check for that. 10559 */ 10560 if (!apic->apicv_active) 10561 kvm_make_request(KVM_REQ_EVENT, vcpu); 10562 10563 out: 10564 preempt_enable(); 10565 up_read(&vcpu->kvm->arch.apicv_update_lock); 10566 } 10567 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); 10568 10569 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 10570 { 10571 if (!lapic_in_kernel(vcpu)) 10572 return; 10573 10574 /* 10575 * Due to sharing page tables across vCPUs, the xAPIC memslot must be 10576 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but 10577 * and hardware doesn't support x2APIC virtualization. E.g. some AMD 10578 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in 10579 * this case so that KVM can the AVIC doorbell to inject interrupts to 10580 * running vCPUs, but KVM must not create SPTEs for the APIC base as 10581 * the vCPU would incorrectly be able to access the vAPIC page via MMIO 10582 * despite being in x2APIC mode. For simplicity, inhibiting the APIC 10583 * access page is sticky. 10584 */ 10585 if (apic_x2apic_mode(vcpu->arch.apic) && 10586 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) 10587 kvm_inhibit_apic_access_page(vcpu); 10588 10589 __kvm_vcpu_update_apicv(vcpu); 10590 } 10591 10592 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10593 enum kvm_apicv_inhibit reason, bool set) 10594 { 10595 unsigned long old, new; 10596 10597 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 10598 10599 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) 10600 return; 10601 10602 old = new = kvm->arch.apicv_inhibit_reasons; 10603 10604 set_or_clear_apicv_inhibit(&new, reason, set); 10605 10606 if (!!old != !!new) { 10607 /* 10608 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 10609 * false positives in the sanity check WARN in svm_vcpu_run(). 10610 * This task will wait for all vCPUs to ack the kick IRQ before 10611 * updating apicv_inhibit_reasons, and all other vCPUs will 10612 * block on acquiring apicv_update_lock so that vCPUs can't 10613 * redo svm_vcpu_run() without seeing the new inhibit state. 10614 * 10615 * Note, holding apicv_update_lock and taking it in the read 10616 * side (handling the request) also prevents other vCPUs from 10617 * servicing the request with a stale apicv_inhibit_reasons. 10618 */ 10619 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 10620 kvm->arch.apicv_inhibit_reasons = new; 10621 if (new) { 10622 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 10623 int idx = srcu_read_lock(&kvm->srcu); 10624 10625 kvm_zap_gfn_range(kvm, gfn, gfn+1); 10626 srcu_read_unlock(&kvm->srcu, idx); 10627 } 10628 } else { 10629 kvm->arch.apicv_inhibit_reasons = new; 10630 } 10631 } 10632 10633 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 10634 enum kvm_apicv_inhibit reason, bool set) 10635 { 10636 if (!enable_apicv) 10637 return; 10638 10639 down_write(&kvm->arch.apicv_update_lock); 10640 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 10641 up_write(&kvm->arch.apicv_update_lock); 10642 } 10643 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 10644 10645 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 10646 { 10647 if (!kvm_apic_present(vcpu)) 10648 return; 10649 10650 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 10651 10652 kvm_x86_call(sync_pir_to_irr)(vcpu); 10653 10654 if (irqchip_split(vcpu->kvm)) 10655 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 10656 else if (ioapic_in_kernel(vcpu->kvm)) 10657 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 10658 10659 if (is_guest_mode(vcpu)) 10660 vcpu->arch.load_eoi_exitmap_pending = true; 10661 else 10662 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 10663 } 10664 10665 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 10666 { 10667 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 10668 return; 10669 10670 #ifdef CONFIG_KVM_HYPERV 10671 if (to_hv_vcpu(vcpu)) { 10672 u64 eoi_exit_bitmap[4]; 10673 10674 bitmap_or((ulong *)eoi_exit_bitmap, 10675 vcpu->arch.ioapic_handled_vectors, 10676 to_hv_synic(vcpu)->vec_bitmap, 256); 10677 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 10678 return; 10679 } 10680 #endif 10681 kvm_x86_call(load_eoi_exitmap)( 10682 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 10683 } 10684 10685 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 10686 { 10687 kvm_x86_call(guest_memory_reclaimed)(kvm); 10688 } 10689 10690 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10691 { 10692 if (!lapic_in_kernel(vcpu)) 10693 return; 10694 10695 kvm_x86_call(set_apic_access_page_addr)(vcpu); 10696 } 10697 10698 /* 10699 * Called within kvm->srcu read side. 10700 * Returns 1 to let vcpu_run() continue the guest execution loop without 10701 * exiting to the userspace. Otherwise, the value will be returned to the 10702 * userspace. 10703 */ 10704 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10705 { 10706 int r; 10707 bool req_int_win = 10708 dm_request_for_irq_injection(vcpu) && 10709 kvm_cpu_accept_dm_intr(vcpu); 10710 fastpath_t exit_fastpath; 10711 10712 bool req_immediate_exit = false; 10713 10714 if (kvm_request_pending(vcpu)) { 10715 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10716 r = -EIO; 10717 goto out; 10718 } 10719 10720 if (kvm_dirty_ring_check_request(vcpu)) { 10721 r = 0; 10722 goto out; 10723 } 10724 10725 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10726 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10727 r = 0; 10728 goto out; 10729 } 10730 } 10731 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10732 kvm_mmu_free_obsolete_roots(vcpu); 10733 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10734 __kvm_migrate_timers(vcpu); 10735 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10736 kvm_update_masterclock(vcpu->kvm); 10737 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10738 kvm_gen_kvmclock_update(vcpu); 10739 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10740 r = kvm_guest_time_update(vcpu); 10741 if (unlikely(r)) 10742 goto out; 10743 } 10744 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10745 kvm_mmu_sync_roots(vcpu); 10746 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10747 kvm_mmu_load_pgd(vcpu); 10748 10749 /* 10750 * Note, the order matters here, as flushing "all" TLB entries 10751 * also flushes the "current" TLB entries, i.e. servicing the 10752 * flush "all" will clear any request to flush "current". 10753 */ 10754 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 10755 kvm_vcpu_flush_tlb_all(vcpu); 10756 10757 kvm_service_local_tlb_flush_requests(vcpu); 10758 10759 /* 10760 * Fall back to a "full" guest flush if Hyper-V's precise 10761 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but 10762 * the flushes are considered "remote" and not "local" because 10763 * the requests can be initiated from other vCPUs. 10764 */ 10765 #ifdef CONFIG_KVM_HYPERV 10766 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && 10767 kvm_hv_vcpu_flush_tlb(vcpu)) 10768 kvm_vcpu_flush_tlb_guest(vcpu); 10769 #endif 10770 10771 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10772 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10773 r = 0; 10774 goto out; 10775 } 10776 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10777 if (is_guest_mode(vcpu)) 10778 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10779 10780 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10781 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10782 vcpu->mmio_needed = 0; 10783 r = 0; 10784 goto out; 10785 } 10786 } 10787 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10788 /* Page is swapped out. Do synthetic halt */ 10789 vcpu->arch.apf.halted = true; 10790 r = 1; 10791 goto out; 10792 } 10793 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10794 record_steal_time(vcpu); 10795 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10796 kvm_pmu_handle_event(vcpu); 10797 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10798 kvm_pmu_deliver_pmi(vcpu); 10799 #ifdef CONFIG_KVM_SMM 10800 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10801 process_smi(vcpu); 10802 #endif 10803 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10804 process_nmi(vcpu); 10805 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10806 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10807 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10808 vcpu->arch.ioapic_handled_vectors)) { 10809 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10810 vcpu->run->eoi.vector = 10811 vcpu->arch.pending_ioapic_eoi; 10812 r = 0; 10813 goto out; 10814 } 10815 } 10816 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10817 vcpu_scan_ioapic(vcpu); 10818 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10819 vcpu_load_eoi_exitmap(vcpu); 10820 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10821 kvm_vcpu_reload_apic_access_page(vcpu); 10822 #ifdef CONFIG_KVM_HYPERV 10823 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10824 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10825 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10826 vcpu->run->system_event.ndata = 0; 10827 r = 0; 10828 goto out; 10829 } 10830 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10831 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10832 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10833 vcpu->run->system_event.ndata = 0; 10834 r = 0; 10835 goto out; 10836 } 10837 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10838 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10839 10840 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10841 vcpu->run->hyperv = hv_vcpu->exit; 10842 r = 0; 10843 goto out; 10844 } 10845 10846 /* 10847 * KVM_REQ_HV_STIMER has to be processed after 10848 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10849 * depend on the guest clock being up-to-date 10850 */ 10851 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10852 kvm_hv_process_stimers(vcpu); 10853 #endif 10854 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10855 kvm_vcpu_update_apicv(vcpu); 10856 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10857 kvm_check_async_pf_completion(vcpu); 10858 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10859 kvm_x86_call(msr_filter_changed)(vcpu); 10860 10861 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10862 kvm_x86_call(update_cpu_dirty_logging)(vcpu); 10863 10864 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { 10865 kvm_vcpu_reset(vcpu, true); 10866 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { 10867 r = 1; 10868 goto out; 10869 } 10870 } 10871 } 10872 10873 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10874 kvm_xen_has_interrupt(vcpu)) { 10875 ++vcpu->stat.req_event; 10876 r = kvm_apic_accept_events(vcpu); 10877 if (r < 0) { 10878 r = 0; 10879 goto out; 10880 } 10881 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10882 r = 1; 10883 goto out; 10884 } 10885 10886 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); 10887 if (r < 0) { 10888 r = 0; 10889 goto out; 10890 } 10891 if (req_int_win) 10892 kvm_x86_call(enable_irq_window)(vcpu); 10893 10894 if (kvm_lapic_enabled(vcpu)) { 10895 update_cr8_intercept(vcpu); 10896 kvm_lapic_sync_to_vapic(vcpu); 10897 } 10898 } 10899 10900 r = kvm_mmu_reload(vcpu); 10901 if (unlikely(r)) { 10902 goto cancel_injection; 10903 } 10904 10905 preempt_disable(); 10906 10907 kvm_x86_call(prepare_switch_to_guest)(vcpu); 10908 10909 /* 10910 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10911 * IPI are then delayed after guest entry, which ensures that they 10912 * result in virtual interrupt delivery. 10913 */ 10914 local_irq_disable(); 10915 10916 /* Store vcpu->apicv_active before vcpu->mode. */ 10917 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10918 10919 kvm_vcpu_srcu_read_unlock(vcpu); 10920 10921 /* 10922 * 1) We should set ->mode before checking ->requests. Please see 10923 * the comment in kvm_vcpu_exiting_guest_mode(). 10924 * 10925 * 2) For APICv, we should set ->mode before checking PID.ON. This 10926 * pairs with the memory barrier implicit in pi_test_and_set_on 10927 * (see vmx_deliver_posted_interrupt). 10928 * 10929 * 3) This also orders the write to mode from any reads to the page 10930 * tables done while the VCPU is running. Please see the comment 10931 * in kvm_flush_remote_tlbs. 10932 */ 10933 smp_mb__after_srcu_read_unlock(); 10934 10935 /* 10936 * Process pending posted interrupts to handle the case where the 10937 * notification IRQ arrived in the host, or was never sent (because the 10938 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10939 * status, KVM doesn't update assigned devices when APICv is inhibited, 10940 * i.e. they can post interrupts even if APICv is temporarily disabled. 10941 */ 10942 if (kvm_lapic_enabled(vcpu)) 10943 kvm_x86_call(sync_pir_to_irr)(vcpu); 10944 10945 if (kvm_vcpu_exit_request(vcpu)) { 10946 vcpu->mode = OUTSIDE_GUEST_MODE; 10947 smp_wmb(); 10948 local_irq_enable(); 10949 preempt_enable(); 10950 kvm_vcpu_srcu_read_lock(vcpu); 10951 r = 1; 10952 goto cancel_injection; 10953 } 10954 10955 if (req_immediate_exit) 10956 kvm_make_request(KVM_REQ_EVENT, vcpu); 10957 10958 fpregs_assert_state_consistent(); 10959 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10960 switch_fpu_return(); 10961 10962 if (vcpu->arch.guest_fpu.xfd_err) 10963 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10964 10965 if (unlikely(vcpu->arch.switch_db_regs)) { 10966 set_debugreg(0, 7); 10967 set_debugreg(vcpu->arch.eff_db[0], 0); 10968 set_debugreg(vcpu->arch.eff_db[1], 1); 10969 set_debugreg(vcpu->arch.eff_db[2], 2); 10970 set_debugreg(vcpu->arch.eff_db[3], 3); 10971 } else if (unlikely(hw_breakpoint_active())) { 10972 set_debugreg(0, 7); 10973 } 10974 10975 guest_timing_enter_irqoff(); 10976 10977 for (;;) { 10978 /* 10979 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10980 * update must kick and wait for all vCPUs before toggling the 10981 * per-VM state, and responding vCPUs must wait for the update 10982 * to complete before servicing KVM_REQ_APICV_UPDATE. 10983 */ 10984 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && 10985 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); 10986 10987 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, 10988 req_immediate_exit); 10989 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10990 break; 10991 10992 if (kvm_lapic_enabled(vcpu)) 10993 kvm_x86_call(sync_pir_to_irr)(vcpu); 10994 10995 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10996 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10997 break; 10998 } 10999 11000 /* Note, VM-Exits that go down the "slow" path are accounted below. */ 11001 ++vcpu->stat.exits; 11002 } 11003 11004 /* 11005 * Do this here before restoring debug registers on the host. And 11006 * since we do this before handling the vmexit, a DR access vmexit 11007 * can (a) read the correct value of the debug registers, (b) set 11008 * KVM_DEBUGREG_WONT_EXIT again. 11009 */ 11010 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 11011 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 11012 kvm_x86_call(sync_dirty_debug_regs)(vcpu); 11013 kvm_update_dr0123(vcpu); 11014 kvm_update_dr7(vcpu); 11015 } 11016 11017 /* 11018 * If the guest has used debug registers, at least dr7 11019 * will be disabled while returning to the host. 11020 * If we don't have active breakpoints in the host, we don't 11021 * care about the messed up debug address registers. But if 11022 * we have some of them active, restore the old state. 11023 */ 11024 if (hw_breakpoint_active()) 11025 hw_breakpoint_restore(); 11026 11027 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 11028 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 11029 11030 vcpu->mode = OUTSIDE_GUEST_MODE; 11031 smp_wmb(); 11032 11033 /* 11034 * Sync xfd before calling handle_exit_irqoff() which may 11035 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 11036 * in #NM irqoff handler). 11037 */ 11038 if (vcpu->arch.xfd_no_write_intercept) 11039 fpu_sync_guest_vmexit_xfd_state(); 11040 11041 kvm_x86_call(handle_exit_irqoff)(vcpu); 11042 11043 if (vcpu->arch.guest_fpu.xfd_err) 11044 wrmsrl(MSR_IA32_XFD_ERR, 0); 11045 11046 /* 11047 * Consume any pending interrupts, including the possible source of 11048 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 11049 * An instruction is required after local_irq_enable() to fully unblock 11050 * interrupts on processors that implement an interrupt shadow, the 11051 * stat.exits increment will do nicely. 11052 */ 11053 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 11054 local_irq_enable(); 11055 ++vcpu->stat.exits; 11056 local_irq_disable(); 11057 kvm_after_interrupt(vcpu); 11058 11059 /* 11060 * Wait until after servicing IRQs to account guest time so that any 11061 * ticks that occurred while running the guest are properly accounted 11062 * to the guest. Waiting until IRQs are enabled degrades the accuracy 11063 * of accounting via context tracking, but the loss of accuracy is 11064 * acceptable for all known use cases. 11065 */ 11066 guest_timing_exit_irqoff(); 11067 11068 local_irq_enable(); 11069 preempt_enable(); 11070 11071 kvm_vcpu_srcu_read_lock(vcpu); 11072 11073 /* 11074 * Call this to ensure WC buffers in guest are evicted after each VM 11075 * Exit, so that the evicted WC writes can be snooped across all cpus 11076 */ 11077 smp_mb__after_srcu_read_lock(); 11078 11079 /* 11080 * Profile KVM exit RIPs: 11081 */ 11082 if (unlikely(prof_on == KVM_PROFILING)) { 11083 unsigned long rip = kvm_rip_read(vcpu); 11084 profile_hit(KVM_PROFILING, (void *)rip); 11085 } 11086 11087 if (unlikely(vcpu->arch.tsc_always_catchup)) 11088 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11089 11090 if (vcpu->arch.apic_attention) 11091 kvm_lapic_sync_from_vapic(vcpu); 11092 11093 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE)) 11094 return 0; 11095 11096 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); 11097 return r; 11098 11099 cancel_injection: 11100 if (req_immediate_exit) 11101 kvm_make_request(KVM_REQ_EVENT, vcpu); 11102 kvm_x86_call(cancel_injection)(vcpu); 11103 if (unlikely(vcpu->arch.apic_attention)) 11104 kvm_lapic_sync_from_vapic(vcpu); 11105 out: 11106 return r; 11107 } 11108 11109 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 11110 { 11111 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 11112 !vcpu->arch.apf.halted); 11113 } 11114 11115 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 11116 { 11117 if (!list_empty_careful(&vcpu->async_pf.done)) 11118 return true; 11119 11120 if (kvm_apic_has_pending_init_or_sipi(vcpu) && 11121 kvm_apic_init_sipi_allowed(vcpu)) 11122 return true; 11123 11124 if (vcpu->arch.pv.pv_unhalted) 11125 return true; 11126 11127 if (kvm_is_exception_pending(vcpu)) 11128 return true; 11129 11130 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11131 (vcpu->arch.nmi_pending && 11132 kvm_x86_call(nmi_allowed)(vcpu, false))) 11133 return true; 11134 11135 #ifdef CONFIG_KVM_SMM 11136 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 11137 (vcpu->arch.smi_pending && 11138 kvm_x86_call(smi_allowed)(vcpu, false))) 11139 return true; 11140 #endif 11141 11142 if (kvm_test_request(KVM_REQ_PMI, vcpu)) 11143 return true; 11144 11145 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) 11146 return true; 11147 11148 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) 11149 return true; 11150 11151 if (kvm_hv_has_stimer_pending(vcpu)) 11152 return true; 11153 11154 if (is_guest_mode(vcpu) && 11155 kvm_x86_ops.nested_ops->has_events && 11156 kvm_x86_ops.nested_ops->has_events(vcpu, false)) 11157 return true; 11158 11159 if (kvm_xen_has_pending_events(vcpu)) 11160 return true; 11161 11162 return false; 11163 } 11164 11165 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 11166 { 11167 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 11168 } 11169 11170 /* Called within kvm->srcu read side. */ 11171 static inline int vcpu_block(struct kvm_vcpu *vcpu) 11172 { 11173 bool hv_timer; 11174 11175 if (!kvm_arch_vcpu_runnable(vcpu)) { 11176 /* 11177 * Switch to the software timer before halt-polling/blocking as 11178 * the guest's timer may be a break event for the vCPU, and the 11179 * hypervisor timer runs only when the CPU is in guest mode. 11180 * Switch before halt-polling so that KVM recognizes an expired 11181 * timer before blocking. 11182 */ 11183 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 11184 if (hv_timer) 11185 kvm_lapic_switch_to_sw_timer(vcpu); 11186 11187 kvm_vcpu_srcu_read_unlock(vcpu); 11188 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 11189 kvm_vcpu_halt(vcpu); 11190 else 11191 kvm_vcpu_block(vcpu); 11192 kvm_vcpu_srcu_read_lock(vcpu); 11193 11194 if (hv_timer) 11195 kvm_lapic_switch_to_hv_timer(vcpu); 11196 11197 /* 11198 * If the vCPU is not runnable, a signal or another host event 11199 * of some kind is pending; service it without changing the 11200 * vCPU's activity state. 11201 */ 11202 if (!kvm_arch_vcpu_runnable(vcpu)) 11203 return 1; 11204 } 11205 11206 /* 11207 * Evaluate nested events before exiting the halted state. This allows 11208 * the halt state to be recorded properly in the VMCS12's activity 11209 * state field (AMD does not have a similar field and a VM-Exit always 11210 * causes a spurious wakeup from HLT). 11211 */ 11212 if (is_guest_mode(vcpu)) { 11213 int r = kvm_check_nested_events(vcpu); 11214 11215 WARN_ON_ONCE(r == -EBUSY); 11216 if (r < 0) 11217 return 0; 11218 } 11219 11220 if (kvm_apic_accept_events(vcpu) < 0) 11221 return 0; 11222 switch(vcpu->arch.mp_state) { 11223 case KVM_MP_STATE_HALTED: 11224 case KVM_MP_STATE_AP_RESET_HOLD: 11225 vcpu->arch.pv.pv_unhalted = false; 11226 vcpu->arch.mp_state = 11227 KVM_MP_STATE_RUNNABLE; 11228 fallthrough; 11229 case KVM_MP_STATE_RUNNABLE: 11230 vcpu->arch.apf.halted = false; 11231 break; 11232 case KVM_MP_STATE_INIT_RECEIVED: 11233 break; 11234 default: 11235 WARN_ON_ONCE(1); 11236 break; 11237 } 11238 return 1; 11239 } 11240 11241 /* Called within kvm->srcu read side. */ 11242 static int vcpu_run(struct kvm_vcpu *vcpu) 11243 { 11244 int r; 11245 11246 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 11247 11248 for (;;) { 11249 /* 11250 * If another guest vCPU requests a PV TLB flush in the middle 11251 * of instruction emulation, the rest of the emulation could 11252 * use a stale page translation. Assume that any code after 11253 * this point can start executing an instruction. 11254 */ 11255 vcpu->arch.at_instruction_boundary = false; 11256 if (kvm_vcpu_running(vcpu)) { 11257 r = vcpu_enter_guest(vcpu); 11258 } else { 11259 r = vcpu_block(vcpu); 11260 } 11261 11262 if (r <= 0) 11263 break; 11264 11265 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 11266 if (kvm_xen_has_pending_events(vcpu)) 11267 kvm_xen_inject_pending_events(vcpu); 11268 11269 if (kvm_cpu_has_pending_timer(vcpu)) 11270 kvm_inject_pending_timer_irqs(vcpu); 11271 11272 if (dm_request_for_irq_injection(vcpu) && 11273 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 11274 r = 0; 11275 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 11276 ++vcpu->stat.request_irq_exits; 11277 break; 11278 } 11279 11280 if (__xfer_to_guest_mode_work_pending()) { 11281 kvm_vcpu_srcu_read_unlock(vcpu); 11282 r = xfer_to_guest_mode_handle_work(vcpu); 11283 kvm_vcpu_srcu_read_lock(vcpu); 11284 if (r) 11285 return r; 11286 } 11287 } 11288 11289 return r; 11290 } 11291 11292 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 11293 { 11294 /* 11295 * The vCPU has halted, e.g. executed HLT. Update the run state if the 11296 * local APIC is in-kernel, the run loop will detect the non-runnable 11297 * state and halt the vCPU. Exit to userspace if the local APIC is 11298 * managed by userspace, in which case userspace is responsible for 11299 * handling wake events. 11300 */ 11301 ++vcpu->stat.halt_exits; 11302 if (lapic_in_kernel(vcpu)) { 11303 if (kvm_vcpu_has_events(vcpu)) 11304 vcpu->arch.pv.pv_unhalted = false; 11305 else 11306 vcpu->arch.mp_state = state; 11307 return 1; 11308 } else { 11309 vcpu->run->exit_reason = reason; 11310 return 0; 11311 } 11312 } 11313 11314 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 11315 { 11316 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 11317 } 11318 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 11319 11320 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 11321 { 11322 int ret = kvm_skip_emulated_instruction(vcpu); 11323 /* 11324 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 11325 * KVM_EXIT_DEBUG here. 11326 */ 11327 return kvm_emulate_halt_noskip(vcpu) && ret; 11328 } 11329 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 11330 11331 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu) 11332 { 11333 int ret; 11334 11335 kvm_vcpu_srcu_read_lock(vcpu); 11336 ret = kvm_emulate_halt(vcpu); 11337 kvm_vcpu_srcu_read_unlock(vcpu); 11338 11339 if (!ret) 11340 return EXIT_FASTPATH_EXIT_USERSPACE; 11341 11342 if (kvm_vcpu_running(vcpu)) 11343 return EXIT_FASTPATH_REENTER_GUEST; 11344 11345 return EXIT_FASTPATH_EXIT_HANDLED; 11346 } 11347 EXPORT_SYMBOL_GPL(handle_fastpath_hlt); 11348 11349 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 11350 { 11351 int ret = kvm_skip_emulated_instruction(vcpu); 11352 11353 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 11354 KVM_EXIT_AP_RESET_HOLD) && ret; 11355 } 11356 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 11357 11358 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 11359 { 11360 return kvm_vcpu_apicv_active(vcpu) && 11361 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); 11362 } 11363 11364 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) 11365 { 11366 return vcpu->arch.preempted_in_kernel; 11367 } 11368 11369 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 11370 { 11371 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 11372 return true; 11373 11374 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11375 #ifdef CONFIG_KVM_SMM 11376 kvm_test_request(KVM_REQ_SMI, vcpu) || 11377 #endif 11378 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11379 return true; 11380 11381 return kvm_arch_dy_has_pending_interrupt(vcpu); 11382 } 11383 11384 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 11385 { 11386 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 11387 } 11388 11389 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 11390 { 11391 BUG_ON(!vcpu->arch.pio.count); 11392 11393 return complete_emulated_io(vcpu); 11394 } 11395 11396 /* 11397 * Implements the following, as a state machine: 11398 * 11399 * read: 11400 * for each fragment 11401 * for each mmio piece in the fragment 11402 * write gpa, len 11403 * exit 11404 * copy data 11405 * execute insn 11406 * 11407 * write: 11408 * for each fragment 11409 * for each mmio piece in the fragment 11410 * write gpa, len 11411 * copy data 11412 * exit 11413 */ 11414 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 11415 { 11416 struct kvm_run *run = vcpu->run; 11417 struct kvm_mmio_fragment *frag; 11418 unsigned len; 11419 11420 BUG_ON(!vcpu->mmio_needed); 11421 11422 /* Complete previous fragment */ 11423 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 11424 len = min(8u, frag->len); 11425 if (!vcpu->mmio_is_write) 11426 memcpy(frag->data, run->mmio.data, len); 11427 11428 if (frag->len <= 8) { 11429 /* Switch to the next fragment. */ 11430 frag++; 11431 vcpu->mmio_cur_fragment++; 11432 } else { 11433 /* Go forward to the next mmio piece. */ 11434 frag->data += len; 11435 frag->gpa += len; 11436 frag->len -= len; 11437 } 11438 11439 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 11440 vcpu->mmio_needed = 0; 11441 11442 /* FIXME: return into emulator if single-stepping. */ 11443 if (vcpu->mmio_is_write) 11444 return 1; 11445 vcpu->mmio_read_completed = 1; 11446 return complete_emulated_io(vcpu); 11447 } 11448 11449 run->exit_reason = KVM_EXIT_MMIO; 11450 run->mmio.phys_addr = frag->gpa; 11451 if (vcpu->mmio_is_write) 11452 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 11453 run->mmio.len = min(8u, frag->len); 11454 run->mmio.is_write = vcpu->mmio_is_write; 11455 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 11456 return 0; 11457 } 11458 11459 /* Swap (qemu) user FPU context for the guest FPU context. */ 11460 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 11461 { 11462 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 11463 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 11464 trace_kvm_fpu(1); 11465 } 11466 11467 /* When vcpu_run ends, restore user space FPU context. */ 11468 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 11469 { 11470 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 11471 ++vcpu->stat.fpu_reload; 11472 trace_kvm_fpu(0); 11473 } 11474 11475 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 11476 { 11477 struct kvm_queued_exception *ex = &vcpu->arch.exception; 11478 struct kvm_run *kvm_run = vcpu->run; 11479 int r; 11480 11481 vcpu_load(vcpu); 11482 kvm_sigset_activate(vcpu); 11483 kvm_run->flags = 0; 11484 kvm_load_guest_fpu(vcpu); 11485 11486 kvm_vcpu_srcu_read_lock(vcpu); 11487 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 11488 if (!vcpu->wants_to_run) { 11489 r = -EINTR; 11490 goto out; 11491 } 11492 11493 /* 11494 * Don't bother switching APIC timer emulation from the 11495 * hypervisor timer to the software timer, the only way for the 11496 * APIC timer to be active is if userspace stuffed vCPU state, 11497 * i.e. put the vCPU into a nonsensical state. Only an INIT 11498 * will transition the vCPU out of UNINITIALIZED (without more 11499 * state stuffing from userspace), which will reset the local 11500 * APIC and thus cancel the timer or drop the IRQ (if the timer 11501 * already expired). 11502 */ 11503 kvm_vcpu_srcu_read_unlock(vcpu); 11504 kvm_vcpu_block(vcpu); 11505 kvm_vcpu_srcu_read_lock(vcpu); 11506 11507 if (kvm_apic_accept_events(vcpu) < 0) { 11508 r = 0; 11509 goto out; 11510 } 11511 r = -EAGAIN; 11512 if (signal_pending(current)) { 11513 r = -EINTR; 11514 kvm_run->exit_reason = KVM_EXIT_INTR; 11515 ++vcpu->stat.signal_exits; 11516 } 11517 goto out; 11518 } 11519 11520 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 11521 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 11522 r = -EINVAL; 11523 goto out; 11524 } 11525 11526 if (kvm_run->kvm_dirty_regs) { 11527 r = sync_regs(vcpu); 11528 if (r != 0) 11529 goto out; 11530 } 11531 11532 /* re-sync apic's tpr */ 11533 if (!lapic_in_kernel(vcpu)) { 11534 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 11535 r = -EINVAL; 11536 goto out; 11537 } 11538 } 11539 11540 /* 11541 * If userspace set a pending exception and L2 is active, convert it to 11542 * a pending VM-Exit if L1 wants to intercept the exception. 11543 */ 11544 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && 11545 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, 11546 ex->error_code)) { 11547 kvm_queue_exception_vmexit(vcpu, ex->vector, 11548 ex->has_error_code, ex->error_code, 11549 ex->has_payload, ex->payload); 11550 ex->injected = false; 11551 ex->pending = false; 11552 } 11553 vcpu->arch.exception_from_userspace = false; 11554 11555 if (unlikely(vcpu->arch.complete_userspace_io)) { 11556 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 11557 vcpu->arch.complete_userspace_io = NULL; 11558 r = cui(vcpu); 11559 if (r <= 0) 11560 goto out; 11561 } else { 11562 WARN_ON_ONCE(vcpu->arch.pio.count); 11563 WARN_ON_ONCE(vcpu->mmio_needed); 11564 } 11565 11566 if (!vcpu->wants_to_run) { 11567 r = -EINTR; 11568 goto out; 11569 } 11570 11571 r = kvm_x86_call(vcpu_pre_run)(vcpu); 11572 if (r <= 0) 11573 goto out; 11574 11575 r = vcpu_run(vcpu); 11576 11577 out: 11578 kvm_put_guest_fpu(vcpu); 11579 if (kvm_run->kvm_valid_regs) 11580 store_regs(vcpu); 11581 post_kvm_run_save(vcpu); 11582 kvm_vcpu_srcu_read_unlock(vcpu); 11583 11584 kvm_sigset_deactivate(vcpu); 11585 vcpu_put(vcpu); 11586 return r; 11587 } 11588 11589 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11590 { 11591 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 11592 /* 11593 * We are here if userspace calls get_regs() in the middle of 11594 * instruction emulation. Registers state needs to be copied 11595 * back from emulation context to vcpu. Userspace shouldn't do 11596 * that usually, but some bad designed PV devices (vmware 11597 * backdoor interface) need this to work 11598 */ 11599 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 11600 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11601 } 11602 regs->rax = kvm_rax_read(vcpu); 11603 regs->rbx = kvm_rbx_read(vcpu); 11604 regs->rcx = kvm_rcx_read(vcpu); 11605 regs->rdx = kvm_rdx_read(vcpu); 11606 regs->rsi = kvm_rsi_read(vcpu); 11607 regs->rdi = kvm_rdi_read(vcpu); 11608 regs->rsp = kvm_rsp_read(vcpu); 11609 regs->rbp = kvm_rbp_read(vcpu); 11610 #ifdef CONFIG_X86_64 11611 regs->r8 = kvm_r8_read(vcpu); 11612 regs->r9 = kvm_r9_read(vcpu); 11613 regs->r10 = kvm_r10_read(vcpu); 11614 regs->r11 = kvm_r11_read(vcpu); 11615 regs->r12 = kvm_r12_read(vcpu); 11616 regs->r13 = kvm_r13_read(vcpu); 11617 regs->r14 = kvm_r14_read(vcpu); 11618 regs->r15 = kvm_r15_read(vcpu); 11619 #endif 11620 11621 regs->rip = kvm_rip_read(vcpu); 11622 regs->rflags = kvm_get_rflags(vcpu); 11623 } 11624 11625 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11626 { 11627 if (vcpu->kvm->arch.has_protected_state && 11628 vcpu->arch.guest_state_protected) 11629 return -EINVAL; 11630 11631 vcpu_load(vcpu); 11632 __get_regs(vcpu, regs); 11633 vcpu_put(vcpu); 11634 return 0; 11635 } 11636 11637 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11638 { 11639 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 11640 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 11641 11642 kvm_rax_write(vcpu, regs->rax); 11643 kvm_rbx_write(vcpu, regs->rbx); 11644 kvm_rcx_write(vcpu, regs->rcx); 11645 kvm_rdx_write(vcpu, regs->rdx); 11646 kvm_rsi_write(vcpu, regs->rsi); 11647 kvm_rdi_write(vcpu, regs->rdi); 11648 kvm_rsp_write(vcpu, regs->rsp); 11649 kvm_rbp_write(vcpu, regs->rbp); 11650 #ifdef CONFIG_X86_64 11651 kvm_r8_write(vcpu, regs->r8); 11652 kvm_r9_write(vcpu, regs->r9); 11653 kvm_r10_write(vcpu, regs->r10); 11654 kvm_r11_write(vcpu, regs->r11); 11655 kvm_r12_write(vcpu, regs->r12); 11656 kvm_r13_write(vcpu, regs->r13); 11657 kvm_r14_write(vcpu, regs->r14); 11658 kvm_r15_write(vcpu, regs->r15); 11659 #endif 11660 11661 kvm_rip_write(vcpu, regs->rip); 11662 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 11663 11664 vcpu->arch.exception.pending = false; 11665 vcpu->arch.exception_vmexit.pending = false; 11666 11667 kvm_make_request(KVM_REQ_EVENT, vcpu); 11668 } 11669 11670 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 11671 { 11672 if (vcpu->kvm->arch.has_protected_state && 11673 vcpu->arch.guest_state_protected) 11674 return -EINVAL; 11675 11676 vcpu_load(vcpu); 11677 __set_regs(vcpu, regs); 11678 vcpu_put(vcpu); 11679 return 0; 11680 } 11681 11682 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11683 { 11684 struct desc_ptr dt; 11685 11686 if (vcpu->arch.guest_state_protected) 11687 goto skip_protected_regs; 11688 11689 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11690 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11691 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11692 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11693 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11694 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11695 11696 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11697 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11698 11699 kvm_x86_call(get_idt)(vcpu, &dt); 11700 sregs->idt.limit = dt.size; 11701 sregs->idt.base = dt.address; 11702 kvm_x86_call(get_gdt)(vcpu, &dt); 11703 sregs->gdt.limit = dt.size; 11704 sregs->gdt.base = dt.address; 11705 11706 sregs->cr2 = vcpu->arch.cr2; 11707 sregs->cr3 = kvm_read_cr3(vcpu); 11708 11709 skip_protected_regs: 11710 sregs->cr0 = kvm_read_cr0(vcpu); 11711 sregs->cr4 = kvm_read_cr4(vcpu); 11712 sregs->cr8 = kvm_get_cr8(vcpu); 11713 sregs->efer = vcpu->arch.efer; 11714 sregs->apic_base = kvm_get_apic_base(vcpu); 11715 } 11716 11717 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11718 { 11719 __get_sregs_common(vcpu, sregs); 11720 11721 if (vcpu->arch.guest_state_protected) 11722 return; 11723 11724 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 11725 set_bit(vcpu->arch.interrupt.nr, 11726 (unsigned long *)sregs->interrupt_bitmap); 11727 } 11728 11729 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11730 { 11731 int i; 11732 11733 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 11734 11735 if (vcpu->arch.guest_state_protected) 11736 return; 11737 11738 if (is_pae_paging(vcpu)) { 11739 for (i = 0 ; i < 4 ; i++) 11740 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 11741 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 11742 } 11743 } 11744 11745 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 11746 struct kvm_sregs *sregs) 11747 { 11748 if (vcpu->kvm->arch.has_protected_state && 11749 vcpu->arch.guest_state_protected) 11750 return -EINVAL; 11751 11752 vcpu_load(vcpu); 11753 __get_sregs(vcpu, sregs); 11754 vcpu_put(vcpu); 11755 return 0; 11756 } 11757 11758 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 11759 struct kvm_mp_state *mp_state) 11760 { 11761 int r; 11762 11763 vcpu_load(vcpu); 11764 if (kvm_mpx_supported()) 11765 kvm_load_guest_fpu(vcpu); 11766 11767 r = kvm_apic_accept_events(vcpu); 11768 if (r < 0) 11769 goto out; 11770 r = 0; 11771 11772 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 11773 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 11774 vcpu->arch.pv.pv_unhalted) 11775 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 11776 else 11777 mp_state->mp_state = vcpu->arch.mp_state; 11778 11779 out: 11780 if (kvm_mpx_supported()) 11781 kvm_put_guest_fpu(vcpu); 11782 vcpu_put(vcpu); 11783 return r; 11784 } 11785 11786 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 11787 struct kvm_mp_state *mp_state) 11788 { 11789 int ret = -EINVAL; 11790 11791 vcpu_load(vcpu); 11792 11793 switch (mp_state->mp_state) { 11794 case KVM_MP_STATE_UNINITIALIZED: 11795 case KVM_MP_STATE_HALTED: 11796 case KVM_MP_STATE_AP_RESET_HOLD: 11797 case KVM_MP_STATE_INIT_RECEIVED: 11798 case KVM_MP_STATE_SIPI_RECEIVED: 11799 if (!lapic_in_kernel(vcpu)) 11800 goto out; 11801 break; 11802 11803 case KVM_MP_STATE_RUNNABLE: 11804 break; 11805 11806 default: 11807 goto out; 11808 } 11809 11810 /* 11811 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow 11812 * forcing the guest into INIT/SIPI if those events are supposed to be 11813 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state 11814 * if an SMI is pending as well. 11815 */ 11816 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && 11817 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 11818 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 11819 goto out; 11820 11821 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 11822 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 11823 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 11824 } else 11825 vcpu->arch.mp_state = mp_state->mp_state; 11826 kvm_make_request(KVM_REQ_EVENT, vcpu); 11827 11828 ret = 0; 11829 out: 11830 vcpu_put(vcpu); 11831 return ret; 11832 } 11833 11834 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 11835 int reason, bool has_error_code, u32 error_code) 11836 { 11837 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 11838 int ret; 11839 11840 init_emulate_ctxt(vcpu); 11841 11842 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 11843 has_error_code, error_code); 11844 11845 /* 11846 * Report an error userspace if MMIO is needed, as KVM doesn't support 11847 * MMIO during a task switch (or any other complex operation). 11848 */ 11849 if (ret || vcpu->mmio_needed) { 11850 vcpu->mmio_needed = false; 11851 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 11852 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 11853 vcpu->run->internal.ndata = 0; 11854 return 0; 11855 } 11856 11857 kvm_rip_write(vcpu, ctxt->eip); 11858 kvm_set_rflags(vcpu, ctxt->eflags); 11859 return 1; 11860 } 11861 EXPORT_SYMBOL_GPL(kvm_task_switch); 11862 11863 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11864 { 11865 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 11866 /* 11867 * When EFER.LME and CR0.PG are set, the processor is in 11868 * 64-bit mode (though maybe in a 32-bit code segment). 11869 * CR4.PAE and EFER.LMA must be set. 11870 */ 11871 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 11872 return false; 11873 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) 11874 return false; 11875 } else { 11876 /* 11877 * Not in 64-bit mode: EFER.LMA is clear and the code 11878 * segment cannot be 64-bit. 11879 */ 11880 if (sregs->efer & EFER_LMA || sregs->cs.l) 11881 return false; 11882 } 11883 11884 return kvm_is_valid_cr4(vcpu, sregs->cr4) && 11885 kvm_is_valid_cr0(vcpu, sregs->cr0); 11886 } 11887 11888 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 11889 int *mmu_reset_needed, bool update_pdptrs) 11890 { 11891 struct msr_data apic_base_msr; 11892 int idx; 11893 struct desc_ptr dt; 11894 11895 if (!kvm_is_valid_sregs(vcpu, sregs)) 11896 return -EINVAL; 11897 11898 apic_base_msr.data = sregs->apic_base; 11899 apic_base_msr.host_initiated = true; 11900 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 11901 return -EINVAL; 11902 11903 if (vcpu->arch.guest_state_protected) 11904 return 0; 11905 11906 dt.size = sregs->idt.limit; 11907 dt.address = sregs->idt.base; 11908 kvm_x86_call(set_idt)(vcpu, &dt); 11909 dt.size = sregs->gdt.limit; 11910 dt.address = sregs->gdt.base; 11911 kvm_x86_call(set_gdt)(vcpu, &dt); 11912 11913 vcpu->arch.cr2 = sregs->cr2; 11914 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 11915 vcpu->arch.cr3 = sregs->cr3; 11916 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11917 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); 11918 11919 kvm_set_cr8(vcpu, sregs->cr8); 11920 11921 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 11922 kvm_x86_call(set_efer)(vcpu, sregs->efer); 11923 11924 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 11925 kvm_x86_call(set_cr0)(vcpu, sregs->cr0); 11926 11927 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 11928 kvm_x86_call(set_cr4)(vcpu, sregs->cr4); 11929 11930 if (update_pdptrs) { 11931 idx = srcu_read_lock(&vcpu->kvm->srcu); 11932 if (is_pae_paging(vcpu)) { 11933 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11934 *mmu_reset_needed = 1; 11935 } 11936 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11937 } 11938 11939 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11940 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11941 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11942 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11943 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11944 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11945 11946 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11947 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11948 11949 update_cr8_intercept(vcpu); 11950 11951 /* Older userspace won't unhalt the vcpu on reset. */ 11952 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11953 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11954 !is_protmode(vcpu)) 11955 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11956 11957 return 0; 11958 } 11959 11960 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11961 { 11962 int pending_vec, max_bits; 11963 int mmu_reset_needed = 0; 11964 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11965 11966 if (ret) 11967 return ret; 11968 11969 if (mmu_reset_needed) { 11970 kvm_mmu_reset_context(vcpu); 11971 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11972 } 11973 11974 max_bits = KVM_NR_INTERRUPTS; 11975 pending_vec = find_first_bit( 11976 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11977 11978 if (pending_vec < max_bits) { 11979 kvm_queue_interrupt(vcpu, pending_vec, false); 11980 pr_debug("Set back pending irq %d\n", pending_vec); 11981 kvm_make_request(KVM_REQ_EVENT, vcpu); 11982 } 11983 return 0; 11984 } 11985 11986 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11987 { 11988 int mmu_reset_needed = 0; 11989 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11990 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11991 !(sregs2->efer & EFER_LMA); 11992 int i, ret; 11993 11994 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11995 return -EINVAL; 11996 11997 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11998 return -EINVAL; 11999 12000 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 12001 &mmu_reset_needed, !valid_pdptrs); 12002 if (ret) 12003 return ret; 12004 12005 if (valid_pdptrs) { 12006 for (i = 0; i < 4 ; i++) 12007 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 12008 12009 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 12010 mmu_reset_needed = 1; 12011 vcpu->arch.pdptrs_from_userspace = true; 12012 } 12013 if (mmu_reset_needed) { 12014 kvm_mmu_reset_context(vcpu); 12015 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12016 } 12017 return 0; 12018 } 12019 12020 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 12021 struct kvm_sregs *sregs) 12022 { 12023 int ret; 12024 12025 if (vcpu->kvm->arch.has_protected_state && 12026 vcpu->arch.guest_state_protected) 12027 return -EINVAL; 12028 12029 vcpu_load(vcpu); 12030 ret = __set_sregs(vcpu, sregs); 12031 vcpu_put(vcpu); 12032 return ret; 12033 } 12034 12035 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 12036 { 12037 bool set = false; 12038 struct kvm_vcpu *vcpu; 12039 unsigned long i; 12040 12041 if (!enable_apicv) 12042 return; 12043 12044 down_write(&kvm->arch.apicv_update_lock); 12045 12046 kvm_for_each_vcpu(i, vcpu, kvm) { 12047 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 12048 set = true; 12049 break; 12050 } 12051 } 12052 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 12053 up_write(&kvm->arch.apicv_update_lock); 12054 } 12055 12056 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 12057 struct kvm_guest_debug *dbg) 12058 { 12059 unsigned long rflags; 12060 int i, r; 12061 12062 if (vcpu->arch.guest_state_protected) 12063 return -EINVAL; 12064 12065 vcpu_load(vcpu); 12066 12067 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 12068 r = -EBUSY; 12069 if (kvm_is_exception_pending(vcpu)) 12070 goto out; 12071 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 12072 kvm_queue_exception(vcpu, DB_VECTOR); 12073 else 12074 kvm_queue_exception(vcpu, BP_VECTOR); 12075 } 12076 12077 /* 12078 * Read rflags as long as potentially injected trace flags are still 12079 * filtered out. 12080 */ 12081 rflags = kvm_get_rflags(vcpu); 12082 12083 vcpu->guest_debug = dbg->control; 12084 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 12085 vcpu->guest_debug = 0; 12086 12087 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 12088 for (i = 0; i < KVM_NR_DB_REGS; ++i) 12089 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 12090 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 12091 } else { 12092 for (i = 0; i < KVM_NR_DB_REGS; i++) 12093 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 12094 } 12095 kvm_update_dr7(vcpu); 12096 12097 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12098 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 12099 12100 /* 12101 * Trigger an rflags update that will inject or remove the trace 12102 * flags. 12103 */ 12104 kvm_set_rflags(vcpu, rflags); 12105 12106 kvm_x86_call(update_exception_bitmap)(vcpu); 12107 12108 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 12109 12110 r = 0; 12111 12112 out: 12113 vcpu_put(vcpu); 12114 return r; 12115 } 12116 12117 /* 12118 * Translate a guest virtual address to a guest physical address. 12119 */ 12120 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 12121 struct kvm_translation *tr) 12122 { 12123 unsigned long vaddr = tr->linear_address; 12124 gpa_t gpa; 12125 int idx; 12126 12127 vcpu_load(vcpu); 12128 12129 idx = srcu_read_lock(&vcpu->kvm->srcu); 12130 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 12131 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12132 tr->physical_address = gpa; 12133 tr->valid = gpa != INVALID_GPA; 12134 tr->writeable = 1; 12135 tr->usermode = 0; 12136 12137 vcpu_put(vcpu); 12138 return 0; 12139 } 12140 12141 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12142 { 12143 struct fxregs_state *fxsave; 12144 12145 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12146 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12147 12148 vcpu_load(vcpu); 12149 12150 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12151 memcpy(fpu->fpr, fxsave->st_space, 128); 12152 fpu->fcw = fxsave->cwd; 12153 fpu->fsw = fxsave->swd; 12154 fpu->ftwx = fxsave->twd; 12155 fpu->last_opcode = fxsave->fop; 12156 fpu->last_ip = fxsave->rip; 12157 fpu->last_dp = fxsave->rdp; 12158 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 12159 12160 vcpu_put(vcpu); 12161 return 0; 12162 } 12163 12164 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 12165 { 12166 struct fxregs_state *fxsave; 12167 12168 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 12169 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 12170 12171 vcpu_load(vcpu); 12172 12173 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 12174 12175 memcpy(fxsave->st_space, fpu->fpr, 128); 12176 fxsave->cwd = fpu->fcw; 12177 fxsave->swd = fpu->fsw; 12178 fxsave->twd = fpu->ftwx; 12179 fxsave->fop = fpu->last_opcode; 12180 fxsave->rip = fpu->last_ip; 12181 fxsave->rdp = fpu->last_dp; 12182 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 12183 12184 vcpu_put(vcpu); 12185 return 0; 12186 } 12187 12188 static void store_regs(struct kvm_vcpu *vcpu) 12189 { 12190 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 12191 12192 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 12193 __get_regs(vcpu, &vcpu->run->s.regs.regs); 12194 12195 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 12196 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 12197 12198 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 12199 kvm_vcpu_ioctl_x86_get_vcpu_events( 12200 vcpu, &vcpu->run->s.regs.events); 12201 } 12202 12203 static int sync_regs(struct kvm_vcpu *vcpu) 12204 { 12205 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 12206 __set_regs(vcpu, &vcpu->run->s.regs.regs); 12207 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 12208 } 12209 12210 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 12211 struct kvm_sregs sregs = vcpu->run->s.regs.sregs; 12212 12213 if (__set_sregs(vcpu, &sregs)) 12214 return -EINVAL; 12215 12216 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 12217 } 12218 12219 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 12220 struct kvm_vcpu_events events = vcpu->run->s.regs.events; 12221 12222 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) 12223 return -EINVAL; 12224 12225 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 12226 } 12227 12228 return 0; 12229 } 12230 12231 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 12232 { 12233 if (kvm_check_tsc_unstable() && kvm->created_vcpus) 12234 pr_warn_once("SMP vm created on host with unstable TSC; " 12235 "guest TSC will not be reliable\n"); 12236 12237 if (!kvm->arch.max_vcpu_ids) 12238 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; 12239 12240 if (id >= kvm->arch.max_vcpu_ids) 12241 return -EINVAL; 12242 12243 return kvm_x86_call(vcpu_precreate)(kvm); 12244 } 12245 12246 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 12247 { 12248 struct page *page; 12249 int r; 12250 12251 vcpu->arch.last_vmentry_cpu = -1; 12252 vcpu->arch.regs_avail = ~0; 12253 vcpu->arch.regs_dirty = ~0; 12254 12255 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); 12256 12257 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 12258 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12259 else 12260 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 12261 12262 r = kvm_mmu_create(vcpu); 12263 if (r < 0) 12264 return r; 12265 12266 r = kvm_create_lapic(vcpu); 12267 if (r < 0) 12268 goto fail_mmu_destroy; 12269 12270 r = -ENOMEM; 12271 12272 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 12273 if (!page) 12274 goto fail_free_lapic; 12275 vcpu->arch.pio_data = page_address(page); 12276 12277 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), 12278 GFP_KERNEL_ACCOUNT); 12279 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), 12280 GFP_KERNEL_ACCOUNT); 12281 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) 12282 goto fail_free_mce_banks; 12283 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 12284 12285 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 12286 GFP_KERNEL_ACCOUNT)) 12287 goto fail_free_mce_banks; 12288 12289 if (!alloc_emulate_ctxt(vcpu)) 12290 goto free_wbinvd_dirty_mask; 12291 12292 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 12293 pr_err("failed to allocate vcpu's fpu\n"); 12294 goto free_emulate_ctxt; 12295 } 12296 12297 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 12298 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 12299 12300 kvm_async_pf_hash_reset(vcpu); 12301 12302 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; 12303 kvm_pmu_init(vcpu); 12304 12305 vcpu->arch.pending_external_vector = -1; 12306 vcpu->arch.preempted_in_kernel = false; 12307 12308 #if IS_ENABLED(CONFIG_HYPERV) 12309 vcpu->arch.hv_root_tdp = INVALID_PAGE; 12310 #endif 12311 12312 r = kvm_x86_call(vcpu_create)(vcpu); 12313 if (r) 12314 goto free_guest_fpu; 12315 12316 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 12317 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 12318 kvm_xen_init_vcpu(vcpu); 12319 vcpu_load(vcpu); 12320 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 12321 kvm_vcpu_reset(vcpu, false); 12322 kvm_init_mmu(vcpu); 12323 vcpu_put(vcpu); 12324 return 0; 12325 12326 free_guest_fpu: 12327 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12328 free_emulate_ctxt: 12329 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12330 free_wbinvd_dirty_mask: 12331 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12332 fail_free_mce_banks: 12333 kfree(vcpu->arch.mce_banks); 12334 kfree(vcpu->arch.mci_ctl2_banks); 12335 free_page((unsigned long)vcpu->arch.pio_data); 12336 fail_free_lapic: 12337 kvm_free_lapic(vcpu); 12338 fail_mmu_destroy: 12339 kvm_mmu_destroy(vcpu); 12340 return r; 12341 } 12342 12343 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 12344 { 12345 struct kvm *kvm = vcpu->kvm; 12346 12347 if (mutex_lock_killable(&vcpu->mutex)) 12348 return; 12349 vcpu_load(vcpu); 12350 kvm_synchronize_tsc(vcpu, NULL); 12351 vcpu_put(vcpu); 12352 12353 /* poll control enabled by default */ 12354 vcpu->arch.msr_kvm_poll_control = 1; 12355 12356 mutex_unlock(&vcpu->mutex); 12357 12358 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 12359 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 12360 KVMCLOCK_SYNC_PERIOD); 12361 } 12362 12363 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 12364 { 12365 int idx; 12366 12367 kvmclock_reset(vcpu); 12368 12369 kvm_x86_call(vcpu_free)(vcpu); 12370 12371 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 12372 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 12373 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 12374 12375 kvm_xen_destroy_vcpu(vcpu); 12376 kvm_hv_vcpu_uninit(vcpu); 12377 kvm_pmu_destroy(vcpu); 12378 kfree(vcpu->arch.mce_banks); 12379 kfree(vcpu->arch.mci_ctl2_banks); 12380 kvm_free_lapic(vcpu); 12381 idx = srcu_read_lock(&vcpu->kvm->srcu); 12382 kvm_mmu_destroy(vcpu); 12383 srcu_read_unlock(&vcpu->kvm->srcu, idx); 12384 free_page((unsigned long)vcpu->arch.pio_data); 12385 kvfree(vcpu->arch.cpuid_entries); 12386 } 12387 12388 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 12389 { 12390 struct kvm_cpuid_entry2 *cpuid_0x1; 12391 unsigned long old_cr0 = kvm_read_cr0(vcpu); 12392 unsigned long new_cr0; 12393 12394 /* 12395 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 12396 * to handle side effects. RESET emulation hits those flows and relies 12397 * on emulated/virtualized registers, including those that are loaded 12398 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 12399 * to detect improper or missing initialization. 12400 */ 12401 WARN_ON_ONCE(!init_event && 12402 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 12403 12404 /* 12405 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's 12406 * possible to INIT the vCPU while L2 is active. Force the vCPU back 12407 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER 12408 * bits), i.e. virtualization is disabled. 12409 */ 12410 if (is_guest_mode(vcpu)) 12411 kvm_leave_nested(vcpu); 12412 12413 kvm_lapic_reset(vcpu, init_event); 12414 12415 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); 12416 vcpu->arch.hflags = 0; 12417 12418 vcpu->arch.smi_pending = 0; 12419 vcpu->arch.smi_count = 0; 12420 atomic_set(&vcpu->arch.nmi_queued, 0); 12421 vcpu->arch.nmi_pending = 0; 12422 vcpu->arch.nmi_injected = false; 12423 kvm_clear_interrupt_queue(vcpu); 12424 kvm_clear_exception_queue(vcpu); 12425 12426 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 12427 kvm_update_dr0123(vcpu); 12428 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 12429 vcpu->arch.dr7 = DR7_FIXED_1; 12430 kvm_update_dr7(vcpu); 12431 12432 vcpu->arch.cr2 = 0; 12433 12434 kvm_make_request(KVM_REQ_EVENT, vcpu); 12435 vcpu->arch.apf.msr_en_val = 0; 12436 vcpu->arch.apf.msr_int_val = 0; 12437 vcpu->arch.st.msr_val = 0; 12438 12439 kvmclock_reset(vcpu); 12440 12441 kvm_clear_async_pf_completion_queue(vcpu); 12442 kvm_async_pf_hash_reset(vcpu); 12443 vcpu->arch.apf.halted = false; 12444 12445 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 12446 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 12447 12448 /* 12449 * All paths that lead to INIT are required to load the guest's 12450 * FPU state (because most paths are buried in KVM_RUN). 12451 */ 12452 if (init_event) 12453 kvm_put_guest_fpu(vcpu); 12454 12455 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 12456 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 12457 12458 if (init_event) 12459 kvm_load_guest_fpu(vcpu); 12460 } 12461 12462 if (!init_event) { 12463 vcpu->arch.smbase = 0x30000; 12464 12465 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 12466 12467 vcpu->arch.msr_misc_features_enables = 0; 12468 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | 12469 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; 12470 12471 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 12472 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 12473 } 12474 12475 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 12476 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 12477 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 12478 12479 /* 12480 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 12481 * if no CPUID match is found. Note, it's impossible to get a match at 12482 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 12483 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 12484 * on RESET. But, go through the motions in case that's ever remedied. 12485 */ 12486 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); 12487 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 12488 12489 kvm_x86_call(vcpu_reset)(vcpu, init_event); 12490 12491 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 12492 kvm_rip_write(vcpu, 0xfff0); 12493 12494 vcpu->arch.cr3 = 0; 12495 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 12496 12497 /* 12498 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 12499 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 12500 * (or qualify) that with a footnote stating that CD/NW are preserved. 12501 */ 12502 new_cr0 = X86_CR0_ET; 12503 if (init_event) 12504 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 12505 else 12506 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 12507 12508 kvm_x86_call(set_cr0)(vcpu, new_cr0); 12509 kvm_x86_call(set_cr4)(vcpu, 0); 12510 kvm_x86_call(set_efer)(vcpu, 0); 12511 kvm_x86_call(update_exception_bitmap)(vcpu); 12512 12513 /* 12514 * On the standard CR0/CR4/EFER modification paths, there are several 12515 * complex conditions determining whether the MMU has to be reset and/or 12516 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 12517 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 12518 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 12519 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 12520 */ 12521 if (old_cr0 & X86_CR0_PG) { 12522 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12523 kvm_mmu_reset_context(vcpu); 12524 } 12525 12526 /* 12527 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 12528 * APM states the TLBs are untouched by INIT, but it also states that 12529 * the TLBs are flushed on "External initialization of the processor." 12530 * Flush the guest TLB regardless of vendor, there is no meaningful 12531 * benefit in relying on the guest to flush the TLB immediately after 12532 * INIT. A spurious TLB flush is benign and likely negligible from a 12533 * performance perspective. 12534 */ 12535 if (init_event) 12536 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12537 } 12538 EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 12539 12540 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 12541 { 12542 struct kvm_segment cs; 12543 12544 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 12545 cs.selector = vector << 8; 12546 cs.base = vector << 12; 12547 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 12548 kvm_rip_write(vcpu, 0); 12549 } 12550 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 12551 12552 void kvm_arch_enable_virtualization(void) 12553 { 12554 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12555 } 12556 12557 void kvm_arch_disable_virtualization(void) 12558 { 12559 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); 12560 } 12561 12562 int kvm_arch_enable_virtualization_cpu(void) 12563 { 12564 struct kvm *kvm; 12565 struct kvm_vcpu *vcpu; 12566 unsigned long i; 12567 int ret; 12568 u64 local_tsc; 12569 u64 max_tsc = 0; 12570 bool stable, backwards_tsc = false; 12571 12572 kvm_user_return_msr_cpu_online(); 12573 12574 ret = kvm_x86_check_processor_compatibility(); 12575 if (ret) 12576 return ret; 12577 12578 ret = kvm_x86_call(enable_virtualization_cpu)(); 12579 if (ret != 0) 12580 return ret; 12581 12582 local_tsc = rdtsc(); 12583 stable = !kvm_check_tsc_unstable(); 12584 list_for_each_entry(kvm, &vm_list, vm_list) { 12585 kvm_for_each_vcpu(i, vcpu, kvm) { 12586 if (!stable && vcpu->cpu == smp_processor_id()) 12587 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 12588 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 12589 backwards_tsc = true; 12590 if (vcpu->arch.last_host_tsc > max_tsc) 12591 max_tsc = vcpu->arch.last_host_tsc; 12592 } 12593 } 12594 } 12595 12596 /* 12597 * Sometimes, even reliable TSCs go backwards. This happens on 12598 * platforms that reset TSC during suspend or hibernate actions, but 12599 * maintain synchronization. We must compensate. Fortunately, we can 12600 * detect that condition here, which happens early in CPU bringup, 12601 * before any KVM threads can be running. Unfortunately, we can't 12602 * bring the TSCs fully up to date with real time, as we aren't yet far 12603 * enough into CPU bringup that we know how much real time has actually 12604 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 12605 * variables that haven't been updated yet. 12606 * 12607 * So we simply find the maximum observed TSC above, then record the 12608 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 12609 * the adjustment will be applied. Note that we accumulate 12610 * adjustments, in case multiple suspend cycles happen before some VCPU 12611 * gets a chance to run again. In the event that no KVM threads get a 12612 * chance to run, we will miss the entire elapsed period, as we'll have 12613 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 12614 * loose cycle time. This isn't too big a deal, since the loss will be 12615 * uniform across all VCPUs (not to mention the scenario is extremely 12616 * unlikely). It is possible that a second hibernate recovery happens 12617 * much faster than a first, causing the observed TSC here to be 12618 * smaller; this would require additional padding adjustment, which is 12619 * why we set last_host_tsc to the local tsc observed here. 12620 * 12621 * N.B. - this code below runs only on platforms with reliable TSC, 12622 * as that is the only way backwards_tsc is set above. Also note 12623 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 12624 * have the same delta_cyc adjustment applied if backwards_tsc 12625 * is detected. Note further, this adjustment is only done once, 12626 * as we reset last_host_tsc on all VCPUs to stop this from being 12627 * called multiple times (one for each physical CPU bringup). 12628 * 12629 * Platforms with unreliable TSCs don't have to deal with this, they 12630 * will be compensated by the logic in vcpu_load, which sets the TSC to 12631 * catchup mode. This will catchup all VCPUs to real time, but cannot 12632 * guarantee that they stay in perfect synchronization. 12633 */ 12634 if (backwards_tsc) { 12635 u64 delta_cyc = max_tsc - local_tsc; 12636 list_for_each_entry(kvm, &vm_list, vm_list) { 12637 kvm->arch.backwards_tsc_observed = true; 12638 kvm_for_each_vcpu(i, vcpu, kvm) { 12639 vcpu->arch.tsc_offset_adjustment += delta_cyc; 12640 vcpu->arch.last_host_tsc = local_tsc; 12641 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 12642 } 12643 12644 /* 12645 * We have to disable TSC offset matching.. if you were 12646 * booting a VM while issuing an S4 host suspend.... 12647 * you may have some problem. Solving this issue is 12648 * left as an exercise to the reader. 12649 */ 12650 kvm->arch.last_tsc_nsec = 0; 12651 kvm->arch.last_tsc_write = 0; 12652 } 12653 12654 } 12655 return 0; 12656 } 12657 12658 void kvm_arch_disable_virtualization_cpu(void) 12659 { 12660 kvm_x86_call(disable_virtualization_cpu)(); 12661 drop_user_return_notifiers(); 12662 } 12663 12664 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 12665 { 12666 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 12667 } 12668 12669 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 12670 { 12671 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 12672 } 12673 12674 void kvm_arch_free_vm(struct kvm *kvm) 12675 { 12676 #if IS_ENABLED(CONFIG_HYPERV) 12677 kfree(kvm->arch.hv_pa_pg); 12678 #endif 12679 __kvm_arch_free_vm(kvm); 12680 } 12681 12682 12683 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 12684 { 12685 int ret; 12686 unsigned long flags; 12687 12688 if (!kvm_is_vm_type_supported(type)) 12689 return -EINVAL; 12690 12691 kvm->arch.vm_type = type; 12692 kvm->arch.has_private_mem = 12693 (type == KVM_X86_SW_PROTECTED_VM); 12694 /* Decided by the vendor code for other VM types. */ 12695 kvm->arch.pre_fault_allowed = 12696 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; 12697 12698 ret = kvm_page_track_init(kvm); 12699 if (ret) 12700 goto out; 12701 12702 kvm_mmu_init_vm(kvm); 12703 12704 ret = kvm_x86_call(vm_init)(kvm); 12705 if (ret) 12706 goto out_uninit_mmu; 12707 12708 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 12709 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 12710 12711 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 12712 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 12713 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 12714 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 12715 &kvm->arch.irq_sources_bitmap); 12716 12717 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 12718 mutex_init(&kvm->arch.apic_map_lock); 12719 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 12720 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 12721 12722 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 12723 pvclock_update_vm_gtod_copy(kvm); 12724 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 12725 12726 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 12727 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; 12728 kvm->arch.guest_can_read_msr_platform_info = true; 12729 kvm->arch.enable_pmu = enable_pmu; 12730 12731 #if IS_ENABLED(CONFIG_HYPERV) 12732 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 12733 kvm->arch.hv_root_tdp = INVALID_PAGE; 12734 #endif 12735 12736 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 12737 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 12738 12739 kvm_apicv_init(kvm); 12740 kvm_hv_init_vm(kvm); 12741 kvm_xen_init_vm(kvm); 12742 12743 return 0; 12744 12745 out_uninit_mmu: 12746 kvm_mmu_uninit_vm(kvm); 12747 kvm_page_track_cleanup(kvm); 12748 out: 12749 return ret; 12750 } 12751 12752 int kvm_arch_post_init_vm(struct kvm *kvm) 12753 { 12754 return kvm_mmu_post_init_vm(kvm); 12755 } 12756 12757 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 12758 { 12759 vcpu_load(vcpu); 12760 kvm_mmu_unload(vcpu); 12761 vcpu_put(vcpu); 12762 } 12763 12764 static void kvm_unload_vcpu_mmus(struct kvm *kvm) 12765 { 12766 unsigned long i; 12767 struct kvm_vcpu *vcpu; 12768 12769 kvm_for_each_vcpu(i, vcpu, kvm) { 12770 kvm_clear_async_pf_completion_queue(vcpu); 12771 kvm_unload_vcpu_mmu(vcpu); 12772 } 12773 } 12774 12775 void kvm_arch_sync_events(struct kvm *kvm) 12776 { 12777 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 12778 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 12779 kvm_free_pit(kvm); 12780 } 12781 12782 /** 12783 * __x86_set_memory_region: Setup KVM internal memory slot 12784 * 12785 * @kvm: the kvm pointer to the VM. 12786 * @id: the slot ID to setup. 12787 * @gpa: the GPA to install the slot (unused when @size == 0). 12788 * @size: the size of the slot. Set to zero to uninstall a slot. 12789 * 12790 * This function helps to setup a KVM internal memory slot. Specify 12791 * @size > 0 to install a new slot, while @size == 0 to uninstall a 12792 * slot. The return code can be one of the following: 12793 * 12794 * HVA: on success (uninstall will return a bogus HVA) 12795 * -errno: on error 12796 * 12797 * The caller should always use IS_ERR() to check the return value 12798 * before use. Note, the KVM internal memory slots are guaranteed to 12799 * remain valid and unchanged until the VM is destroyed, i.e., the 12800 * GPA->HVA translation will not change. However, the HVA is a user 12801 * address, i.e. its accessibility is not guaranteed, and must be 12802 * accessed via __copy_{to,from}_user(). 12803 */ 12804 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 12805 u32 size) 12806 { 12807 int i, r; 12808 unsigned long hva, old_npages; 12809 struct kvm_memslots *slots = kvm_memslots(kvm); 12810 struct kvm_memory_slot *slot; 12811 12812 /* Called with kvm->slots_lock held. */ 12813 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 12814 return ERR_PTR_USR(-EINVAL); 12815 12816 slot = id_to_memslot(slots, id); 12817 if (size) { 12818 if (slot && slot->npages) 12819 return ERR_PTR_USR(-EEXIST); 12820 12821 /* 12822 * MAP_SHARED to prevent internal slot pages from being moved 12823 * by fork()/COW. 12824 */ 12825 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 12826 MAP_SHARED | MAP_ANONYMOUS, 0); 12827 if (IS_ERR_VALUE(hva)) 12828 return (void __user *)hva; 12829 } else { 12830 if (!slot || !slot->npages) 12831 return NULL; 12832 12833 old_npages = slot->npages; 12834 hva = slot->userspace_addr; 12835 } 12836 12837 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { 12838 struct kvm_userspace_memory_region2 m; 12839 12840 m.slot = id | (i << 16); 12841 m.flags = 0; 12842 m.guest_phys_addr = gpa; 12843 m.userspace_addr = hva; 12844 m.memory_size = size; 12845 r = __kvm_set_memory_region(kvm, &m); 12846 if (r < 0) 12847 return ERR_PTR_USR(r); 12848 } 12849 12850 if (!size) 12851 vm_munmap(hva, old_npages * PAGE_SIZE); 12852 12853 return (void __user *)hva; 12854 } 12855 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 12856 12857 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 12858 { 12859 kvm_mmu_pre_destroy_vm(kvm); 12860 } 12861 12862 void kvm_arch_destroy_vm(struct kvm *kvm) 12863 { 12864 if (current->mm == kvm->mm) { 12865 /* 12866 * Free memory regions allocated on behalf of userspace, 12867 * unless the memory map has changed due to process exit 12868 * or fd copying. 12869 */ 12870 mutex_lock(&kvm->slots_lock); 12871 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 12872 0, 0); 12873 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 12874 0, 0); 12875 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 12876 mutex_unlock(&kvm->slots_lock); 12877 } 12878 kvm_unload_vcpu_mmus(kvm); 12879 kvm_x86_call(vm_destroy)(kvm); 12880 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12881 kvm_pic_destroy(kvm); 12882 kvm_ioapic_destroy(kvm); 12883 kvm_destroy_vcpus(kvm); 12884 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12885 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12886 kvm_mmu_uninit_vm(kvm); 12887 kvm_page_track_cleanup(kvm); 12888 kvm_xen_destroy_vm(kvm); 12889 kvm_hv_destroy_vm(kvm); 12890 } 12891 12892 static void memslot_rmap_free(struct kvm_memory_slot *slot) 12893 { 12894 int i; 12895 12896 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12897 vfree(slot->arch.rmap[i]); 12898 slot->arch.rmap[i] = NULL; 12899 } 12900 } 12901 12902 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12903 { 12904 int i; 12905 12906 memslot_rmap_free(slot); 12907 12908 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12909 vfree(slot->arch.lpage_info[i - 1]); 12910 slot->arch.lpage_info[i - 1] = NULL; 12911 } 12912 12913 kvm_page_track_free_memslot(slot); 12914 } 12915 12916 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12917 { 12918 const int sz = sizeof(*slot->arch.rmap[0]); 12919 int i; 12920 12921 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12922 int level = i + 1; 12923 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12924 12925 if (slot->arch.rmap[i]) 12926 continue; 12927 12928 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12929 if (!slot->arch.rmap[i]) { 12930 memslot_rmap_free(slot); 12931 return -ENOMEM; 12932 } 12933 } 12934 12935 return 0; 12936 } 12937 12938 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12939 struct kvm_memory_slot *slot) 12940 { 12941 unsigned long npages = slot->npages; 12942 int i, r; 12943 12944 /* 12945 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12946 * old arrays will be freed by __kvm_set_memory_region() if installing 12947 * the new memslot is successful. 12948 */ 12949 memset(&slot->arch, 0, sizeof(slot->arch)); 12950 12951 if (kvm_memslots_have_rmaps(kvm)) { 12952 r = memslot_rmap_alloc(slot, npages); 12953 if (r) 12954 return r; 12955 } 12956 12957 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12958 struct kvm_lpage_info *linfo; 12959 unsigned long ugfn; 12960 int lpages; 12961 int level = i + 1; 12962 12963 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12964 12965 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12966 if (!linfo) 12967 goto out_free; 12968 12969 slot->arch.lpage_info[i - 1] = linfo; 12970 12971 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12972 linfo[0].disallow_lpage = 1; 12973 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12974 linfo[lpages - 1].disallow_lpage = 1; 12975 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12976 /* 12977 * If the gfn and userspace address are not aligned wrt each 12978 * other, disable large page support for this slot. 12979 */ 12980 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12981 unsigned long j; 12982 12983 for (j = 0; j < lpages; ++j) 12984 linfo[j].disallow_lpage = 1; 12985 } 12986 } 12987 12988 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES 12989 kvm_mmu_init_memslot_memory_attributes(kvm, slot); 12990 #endif 12991 12992 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12993 goto out_free; 12994 12995 return 0; 12996 12997 out_free: 12998 memslot_rmap_free(slot); 12999 13000 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 13001 vfree(slot->arch.lpage_info[i - 1]); 13002 slot->arch.lpage_info[i - 1] = NULL; 13003 } 13004 return -ENOMEM; 13005 } 13006 13007 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 13008 { 13009 struct kvm_vcpu *vcpu; 13010 unsigned long i; 13011 13012 /* 13013 * memslots->generation has been incremented. 13014 * mmio generation may have reached its maximum value. 13015 */ 13016 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 13017 13018 /* Force re-initialization of steal_time cache */ 13019 kvm_for_each_vcpu(i, vcpu, kvm) 13020 kvm_vcpu_kick(vcpu); 13021 } 13022 13023 int kvm_arch_prepare_memory_region(struct kvm *kvm, 13024 const struct kvm_memory_slot *old, 13025 struct kvm_memory_slot *new, 13026 enum kvm_mr_change change) 13027 { 13028 /* 13029 * KVM doesn't support moving memslots when there are external page 13030 * trackers attached to the VM, i.e. if KVMGT is in use. 13031 */ 13032 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) 13033 return -EINVAL; 13034 13035 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 13036 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 13037 return -EINVAL; 13038 13039 return kvm_alloc_memslot_metadata(kvm, new); 13040 } 13041 13042 if (change == KVM_MR_FLAGS_ONLY) 13043 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 13044 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 13045 return -EIO; 13046 13047 return 0; 13048 } 13049 13050 13051 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 13052 { 13053 int nr_slots; 13054 13055 if (!kvm_x86_ops.cpu_dirty_log_size) 13056 return; 13057 13058 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); 13059 if ((enable && nr_slots == 1) || !nr_slots) 13060 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 13061 } 13062 13063 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 13064 struct kvm_memory_slot *old, 13065 const struct kvm_memory_slot *new, 13066 enum kvm_mr_change change) 13067 { 13068 u32 old_flags = old ? old->flags : 0; 13069 u32 new_flags = new ? new->flags : 0; 13070 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 13071 13072 /* 13073 * Update CPU dirty logging if dirty logging is being toggled. This 13074 * applies to all operations. 13075 */ 13076 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 13077 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 13078 13079 /* 13080 * Nothing more to do for RO slots (which can't be dirtied and can't be 13081 * made writable) or CREATE/MOVE/DELETE of a slot. 13082 * 13083 * For a memslot with dirty logging disabled: 13084 * CREATE: No dirty mappings will already exist. 13085 * MOVE/DELETE: The old mappings will already have been cleaned up by 13086 * kvm_arch_flush_shadow_memslot() 13087 * 13088 * For a memslot with dirty logging enabled: 13089 * CREATE: No shadow pages exist, thus nothing to write-protect 13090 * and no dirty bits to clear. 13091 * MOVE/DELETE: The old mappings will already have been cleaned up by 13092 * kvm_arch_flush_shadow_memslot(). 13093 */ 13094 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 13095 return; 13096 13097 /* 13098 * READONLY and non-flags changes were filtered out above, and the only 13099 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 13100 * logging isn't being toggled on or off. 13101 */ 13102 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 13103 return; 13104 13105 if (!log_dirty_pages) { 13106 /* 13107 * Dirty logging tracks sptes in 4k granularity, meaning that 13108 * large sptes have to be split. If live migration succeeds, 13109 * the guest in the source machine will be destroyed and large 13110 * sptes will be created in the destination. However, if the 13111 * guest continues to run in the source machine (for example if 13112 * live migration fails), small sptes will remain around and 13113 * cause bad performance. 13114 * 13115 * Scan sptes if dirty logging has been stopped, dropping those 13116 * which can be collapsed into a single large-page spte. Later 13117 * page faults will create the large-page sptes. 13118 */ 13119 kvm_mmu_zap_collapsible_sptes(kvm, new); 13120 } else { 13121 /* 13122 * Initially-all-set does not require write protecting any page, 13123 * because they're all assumed to be dirty. 13124 */ 13125 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 13126 return; 13127 13128 if (READ_ONCE(eager_page_split)) 13129 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 13130 13131 if (kvm_x86_ops.cpu_dirty_log_size) { 13132 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 13133 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 13134 } else { 13135 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 13136 } 13137 13138 /* 13139 * Unconditionally flush the TLBs after enabling dirty logging. 13140 * A flush is almost always going to be necessary (see below), 13141 * and unconditionally flushing allows the helpers to omit 13142 * the subtly complex checks when removing write access. 13143 * 13144 * Do the flush outside of mmu_lock to reduce the amount of 13145 * time mmu_lock is held. Flushing after dropping mmu_lock is 13146 * safe as KVM only needs to guarantee the slot is fully 13147 * write-protected before returning to userspace, i.e. before 13148 * userspace can consume the dirty status. 13149 * 13150 * Flushing outside of mmu_lock requires KVM to be careful when 13151 * making decisions based on writable status of an SPTE, e.g. a 13152 * !writable SPTE doesn't guarantee a CPU can't perform writes. 13153 * 13154 * Specifically, KVM also write-protects guest page tables to 13155 * monitor changes when using shadow paging, and must guarantee 13156 * no CPUs can write to those page before mmu_lock is dropped. 13157 * Because CPUs may have stale TLB entries at this point, a 13158 * !writable SPTE doesn't guarantee CPUs can't perform writes. 13159 * 13160 * KVM also allows making SPTES writable outside of mmu_lock, 13161 * e.g. to allow dirty logging without taking mmu_lock. 13162 * 13163 * To handle these scenarios, KVM uses a separate software-only 13164 * bit (MMU-writable) to track if a SPTE is !writable due to 13165 * a guest page table being write-protected (KVM clears the 13166 * MMU-writable flag when write-protecting for shadow paging). 13167 * 13168 * The use of MMU-writable is also the primary motivation for 13169 * the unconditional flush. Because KVM must guarantee that a 13170 * CPU doesn't contain stale, writable TLB entries for a 13171 * !MMU-writable SPTE, KVM must flush if it encounters any 13172 * MMU-writable SPTE regardless of whether the actual hardware 13173 * writable bit was set. I.e. KVM is almost guaranteed to need 13174 * to flush, while unconditionally flushing allows the "remove 13175 * write access" helpers to ignore MMU-writable entirely. 13176 * 13177 * See is_writable_pte() for more details (the case involving 13178 * access-tracked SPTEs is particularly relevant). 13179 */ 13180 kvm_flush_remote_tlbs_memslot(kvm, new); 13181 } 13182 } 13183 13184 void kvm_arch_commit_memory_region(struct kvm *kvm, 13185 struct kvm_memory_slot *old, 13186 const struct kvm_memory_slot *new, 13187 enum kvm_mr_change change) 13188 { 13189 if (change == KVM_MR_DELETE) 13190 kvm_page_track_delete_slot(kvm, old); 13191 13192 if (!kvm->arch.n_requested_mmu_pages && 13193 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 13194 unsigned long nr_mmu_pages; 13195 13196 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 13197 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 13198 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 13199 } 13200 13201 kvm_mmu_slot_apply_flags(kvm, old, new, change); 13202 13203 /* Free the arrays associated with the old memslot. */ 13204 if (change == KVM_MR_MOVE) 13205 kvm_arch_free_memslot(kvm, old); 13206 } 13207 13208 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 13209 { 13210 if (vcpu->arch.guest_state_protected) 13211 return true; 13212 13213 return kvm_x86_call(get_cpl)(vcpu) == 0; 13214 } 13215 13216 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 13217 { 13218 return kvm_rip_read(vcpu); 13219 } 13220 13221 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 13222 { 13223 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 13224 } 13225 13226 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 13227 { 13228 return kvm_x86_call(interrupt_allowed)(vcpu, false); 13229 } 13230 13231 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 13232 { 13233 /* Can't read the RIP when guest state is protected, just return 0 */ 13234 if (vcpu->arch.guest_state_protected) 13235 return 0; 13236 13237 if (is_64_bit_mode(vcpu)) 13238 return kvm_rip_read(vcpu); 13239 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 13240 kvm_rip_read(vcpu)); 13241 } 13242 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 13243 13244 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 13245 { 13246 return kvm_get_linear_rip(vcpu) == linear_rip; 13247 } 13248 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 13249 13250 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 13251 { 13252 unsigned long rflags; 13253 13254 rflags = kvm_x86_call(get_rflags)(vcpu); 13255 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 13256 rflags &= ~X86_EFLAGS_TF; 13257 return rflags; 13258 } 13259 EXPORT_SYMBOL_GPL(kvm_get_rflags); 13260 13261 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13262 { 13263 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 13264 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 13265 rflags |= X86_EFLAGS_TF; 13266 kvm_x86_call(set_rflags)(vcpu, rflags); 13267 } 13268 13269 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 13270 { 13271 __kvm_set_rflags(vcpu, rflags); 13272 kvm_make_request(KVM_REQ_EVENT, vcpu); 13273 } 13274 EXPORT_SYMBOL_GPL(kvm_set_rflags); 13275 13276 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 13277 { 13278 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 13279 13280 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 13281 } 13282 13283 static inline u32 kvm_async_pf_next_probe(u32 key) 13284 { 13285 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 13286 } 13287 13288 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13289 { 13290 u32 key = kvm_async_pf_hash_fn(gfn); 13291 13292 while (vcpu->arch.apf.gfns[key] != ~0) 13293 key = kvm_async_pf_next_probe(key); 13294 13295 vcpu->arch.apf.gfns[key] = gfn; 13296 } 13297 13298 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 13299 { 13300 int i; 13301 u32 key = kvm_async_pf_hash_fn(gfn); 13302 13303 for (i = 0; i < ASYNC_PF_PER_VCPU && 13304 (vcpu->arch.apf.gfns[key] != gfn && 13305 vcpu->arch.apf.gfns[key] != ~0); i++) 13306 key = kvm_async_pf_next_probe(key); 13307 13308 return key; 13309 } 13310 13311 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13312 { 13313 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 13314 } 13315 13316 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 13317 { 13318 u32 i, j, k; 13319 13320 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 13321 13322 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 13323 return; 13324 13325 while (true) { 13326 vcpu->arch.apf.gfns[i] = ~0; 13327 do { 13328 j = kvm_async_pf_next_probe(j); 13329 if (vcpu->arch.apf.gfns[j] == ~0) 13330 return; 13331 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 13332 /* 13333 * k lies cyclically in ]i,j] 13334 * | i.k.j | 13335 * |....j i.k.| or |.k..j i...| 13336 */ 13337 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 13338 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 13339 i = j; 13340 } 13341 } 13342 13343 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 13344 { 13345 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 13346 13347 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 13348 sizeof(reason)); 13349 } 13350 13351 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 13352 { 13353 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13354 13355 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13356 &token, offset, sizeof(token)); 13357 } 13358 13359 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 13360 { 13361 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 13362 u32 val; 13363 13364 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 13365 &val, offset, sizeof(val))) 13366 return false; 13367 13368 return !val; 13369 } 13370 13371 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 13372 { 13373 13374 if (!kvm_pv_async_pf_enabled(vcpu)) 13375 return false; 13376 13377 if (vcpu->arch.apf.send_user_only && 13378 kvm_x86_call(get_cpl)(vcpu) == 0) 13379 return false; 13380 13381 if (is_guest_mode(vcpu)) { 13382 /* 13383 * L1 needs to opt into the special #PF vmexits that are 13384 * used to deliver async page faults. 13385 */ 13386 return vcpu->arch.apf.delivery_as_pf_vmexit; 13387 } else { 13388 /* 13389 * Play it safe in case the guest temporarily disables paging. 13390 * The real mode IDT in particular is unlikely to have a #PF 13391 * exception setup. 13392 */ 13393 return is_paging(vcpu); 13394 } 13395 } 13396 13397 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 13398 { 13399 if (unlikely(!lapic_in_kernel(vcpu) || 13400 kvm_event_needs_reinjection(vcpu) || 13401 kvm_is_exception_pending(vcpu))) 13402 return false; 13403 13404 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 13405 return false; 13406 13407 /* 13408 * If interrupts are off we cannot even use an artificial 13409 * halt state. 13410 */ 13411 return kvm_arch_interrupt_allowed(vcpu); 13412 } 13413 13414 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 13415 struct kvm_async_pf *work) 13416 { 13417 struct x86_exception fault; 13418 13419 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 13420 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 13421 13422 if (kvm_can_deliver_async_pf(vcpu) && 13423 !apf_put_user_notpresent(vcpu)) { 13424 fault.vector = PF_VECTOR; 13425 fault.error_code_valid = true; 13426 fault.error_code = 0; 13427 fault.nested_page_fault = false; 13428 fault.address = work->arch.token; 13429 fault.async_page_fault = true; 13430 kvm_inject_page_fault(vcpu, &fault); 13431 return true; 13432 } else { 13433 /* 13434 * It is not possible to deliver a paravirtualized asynchronous 13435 * page fault, but putting the guest in an artificial halt state 13436 * can be beneficial nevertheless: if an interrupt arrives, we 13437 * can deliver it timely and perhaps the guest will schedule 13438 * another process. When the instruction that triggered a page 13439 * fault is retried, hopefully the page will be ready in the host. 13440 */ 13441 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 13442 return false; 13443 } 13444 } 13445 13446 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 13447 struct kvm_async_pf *work) 13448 { 13449 struct kvm_lapic_irq irq = { 13450 .delivery_mode = APIC_DM_FIXED, 13451 .vector = vcpu->arch.apf.vec 13452 }; 13453 13454 if (work->wakeup_all) 13455 work->arch.token = ~0; /* broadcast wakeup */ 13456 else 13457 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 13458 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 13459 13460 if ((work->wakeup_all || work->notpresent_injected) && 13461 kvm_pv_async_pf_enabled(vcpu) && 13462 !apf_put_user_ready(vcpu, work->arch.token)) { 13463 vcpu->arch.apf.pageready_pending = true; 13464 kvm_apic_set_irq(vcpu, &irq, NULL); 13465 } 13466 13467 vcpu->arch.apf.halted = false; 13468 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 13469 } 13470 13471 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 13472 { 13473 kvm_make_request(KVM_REQ_APF_READY, vcpu); 13474 if (!vcpu->arch.apf.pageready_pending) 13475 kvm_vcpu_kick(vcpu); 13476 } 13477 13478 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 13479 { 13480 if (!kvm_pv_async_pf_enabled(vcpu)) 13481 return true; 13482 else 13483 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 13484 } 13485 13486 void kvm_arch_start_assignment(struct kvm *kvm) 13487 { 13488 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 13489 kvm_x86_call(pi_start_assignment)(kvm); 13490 } 13491 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 13492 13493 void kvm_arch_end_assignment(struct kvm *kvm) 13494 { 13495 atomic_dec(&kvm->arch.assigned_device_count); 13496 } 13497 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 13498 13499 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) 13500 { 13501 return raw_atomic_read(&kvm->arch.assigned_device_count); 13502 } 13503 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 13504 13505 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) 13506 { 13507 /* 13508 * Non-coherent DMA assignment and de-assignment may affect whether or 13509 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs 13510 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first 13511 * (or last) non-coherent device is (un)registered to so that new SPTEs 13512 * with the correct "ignore guest PAT" setting are created. 13513 */ 13514 if (kvm_mmu_may_ignore_guest_pat()) 13515 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); 13516 } 13517 13518 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 13519 { 13520 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) 13521 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13522 } 13523 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 13524 13525 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 13526 { 13527 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) 13528 kvm_noncoherent_dma_assignment_start_or_stop(kvm); 13529 } 13530 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 13531 13532 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 13533 { 13534 return atomic_read(&kvm->arch.noncoherent_dma_count); 13535 } 13536 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 13537 13538 bool kvm_arch_has_irq_bypass(void) 13539 { 13540 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); 13541 } 13542 13543 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 13544 struct irq_bypass_producer *prod) 13545 { 13546 struct kvm_kernel_irqfd *irqfd = 13547 container_of(cons, struct kvm_kernel_irqfd, consumer); 13548 int ret; 13549 13550 irqfd->producer = prod; 13551 kvm_arch_start_assignment(irqfd->kvm); 13552 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13553 prod->irq, irqfd->gsi, 1); 13554 if (ret) 13555 kvm_arch_end_assignment(irqfd->kvm); 13556 13557 return ret; 13558 } 13559 13560 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 13561 struct irq_bypass_producer *prod) 13562 { 13563 int ret; 13564 struct kvm_kernel_irqfd *irqfd = 13565 container_of(cons, struct kvm_kernel_irqfd, consumer); 13566 13567 WARN_ON(irqfd->producer != prod); 13568 irqfd->producer = NULL; 13569 13570 /* 13571 * When producer of consumer is unregistered, we change back to 13572 * remapped mode, so we can re-use the current implementation 13573 * when the irq is masked/disabled or the consumer side (KVM 13574 * int this case doesn't want to receive the interrupts. 13575 */ 13576 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, 13577 prod->irq, irqfd->gsi, 0); 13578 if (ret) 13579 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 13580 " fails: %d\n", irqfd->consumer.token, ret); 13581 13582 kvm_arch_end_assignment(irqfd->kvm); 13583 } 13584 13585 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 13586 uint32_t guest_irq, bool set) 13587 { 13588 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set); 13589 } 13590 13591 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 13592 struct kvm_kernel_irq_routing_entry *new) 13593 { 13594 if (new->type != KVM_IRQ_ROUTING_MSI) 13595 return true; 13596 13597 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 13598 } 13599 13600 bool kvm_vector_hashing_enabled(void) 13601 { 13602 return vector_hashing; 13603 } 13604 13605 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 13606 { 13607 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 13608 } 13609 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 13610 13611 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE 13612 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) 13613 { 13614 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); 13615 } 13616 #endif 13617 13618 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE 13619 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 13620 { 13621 kvm_x86_call(gmem_invalidate)(start, end); 13622 } 13623 #endif 13624 13625 int kvm_spec_ctrl_test_value(u64 value) 13626 { 13627 /* 13628 * test that setting IA32_SPEC_CTRL to given value 13629 * is allowed by the host processor 13630 */ 13631 13632 u64 saved_value; 13633 unsigned long flags; 13634 int ret = 0; 13635 13636 local_irq_save(flags); 13637 13638 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 13639 ret = 1; 13640 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 13641 ret = 1; 13642 else 13643 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 13644 13645 local_irq_restore(flags); 13646 13647 return ret; 13648 } 13649 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 13650 13651 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 13652 { 13653 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 13654 struct x86_exception fault; 13655 u64 access = error_code & 13656 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 13657 13658 if (!(error_code & PFERR_PRESENT_MASK) || 13659 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { 13660 /* 13661 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 13662 * tables probably do not match the TLB. Just proceed 13663 * with the error code that the processor gave. 13664 */ 13665 fault.vector = PF_VECTOR; 13666 fault.error_code_valid = true; 13667 fault.error_code = error_code; 13668 fault.nested_page_fault = false; 13669 fault.address = gva; 13670 fault.async_page_fault = false; 13671 } 13672 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 13673 } 13674 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 13675 13676 /* 13677 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 13678 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 13679 * indicates whether exit to userspace is needed. 13680 */ 13681 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 13682 struct x86_exception *e) 13683 { 13684 if (r == X86EMUL_PROPAGATE_FAULT) { 13685 if (KVM_BUG_ON(!e, vcpu->kvm)) 13686 return -EIO; 13687 13688 kvm_inject_emulated_page_fault(vcpu, e); 13689 return 1; 13690 } 13691 13692 /* 13693 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 13694 * while handling a VMX instruction KVM could've handled the request 13695 * correctly by exiting to userspace and performing I/O but there 13696 * doesn't seem to be a real use-case behind such requests, just return 13697 * KVM_EXIT_INTERNAL_ERROR for now. 13698 */ 13699 kvm_prepare_emulation_failure_exit(vcpu); 13700 13701 return 0; 13702 } 13703 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 13704 13705 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 13706 { 13707 bool pcid_enabled; 13708 struct x86_exception e; 13709 struct { 13710 u64 pcid; 13711 u64 gla; 13712 } operand; 13713 int r; 13714 13715 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 13716 if (r != X86EMUL_CONTINUE) 13717 return kvm_handle_memory_failure(vcpu, r, &e); 13718 13719 if (operand.pcid >> 12 != 0) { 13720 kvm_inject_gp(vcpu, 0); 13721 return 1; 13722 } 13723 13724 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); 13725 13726 switch (type) { 13727 case INVPCID_TYPE_INDIV_ADDR: 13728 /* 13729 * LAM doesn't apply to addresses that are inputs to TLB 13730 * invalidation. 13731 */ 13732 if ((!pcid_enabled && (operand.pcid != 0)) || 13733 is_noncanonical_address(operand.gla, vcpu)) { 13734 kvm_inject_gp(vcpu, 0); 13735 return 1; 13736 } 13737 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 13738 return kvm_skip_emulated_instruction(vcpu); 13739 13740 case INVPCID_TYPE_SINGLE_CTXT: 13741 if (!pcid_enabled && (operand.pcid != 0)) { 13742 kvm_inject_gp(vcpu, 0); 13743 return 1; 13744 } 13745 13746 kvm_invalidate_pcid(vcpu, operand.pcid); 13747 return kvm_skip_emulated_instruction(vcpu); 13748 13749 case INVPCID_TYPE_ALL_NON_GLOBAL: 13750 /* 13751 * Currently, KVM doesn't mark global entries in the shadow 13752 * page tables, so a non-global flush just degenerates to a 13753 * global flush. If needed, we could optimize this later by 13754 * keeping track of global entries in shadow page tables. 13755 */ 13756 13757 fallthrough; 13758 case INVPCID_TYPE_ALL_INCL_GLOBAL: 13759 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 13760 return kvm_skip_emulated_instruction(vcpu); 13761 13762 default: 13763 kvm_inject_gp(vcpu, 0); 13764 return 1; 13765 } 13766 } 13767 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 13768 13769 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 13770 { 13771 struct kvm_run *run = vcpu->run; 13772 struct kvm_mmio_fragment *frag; 13773 unsigned int len; 13774 13775 BUG_ON(!vcpu->mmio_needed); 13776 13777 /* Complete previous fragment */ 13778 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 13779 len = min(8u, frag->len); 13780 if (!vcpu->mmio_is_write) 13781 memcpy(frag->data, run->mmio.data, len); 13782 13783 if (frag->len <= 8) { 13784 /* Switch to the next fragment. */ 13785 frag++; 13786 vcpu->mmio_cur_fragment++; 13787 } else { 13788 /* Go forward to the next mmio piece. */ 13789 frag->data += len; 13790 frag->gpa += len; 13791 frag->len -= len; 13792 } 13793 13794 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 13795 vcpu->mmio_needed = 0; 13796 13797 // VMG change, at this point, we're always done 13798 // RIP has already been advanced 13799 return 1; 13800 } 13801 13802 // More MMIO is needed 13803 run->mmio.phys_addr = frag->gpa; 13804 run->mmio.len = min(8u, frag->len); 13805 run->mmio.is_write = vcpu->mmio_is_write; 13806 if (run->mmio.is_write) 13807 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 13808 run->exit_reason = KVM_EXIT_MMIO; 13809 13810 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13811 13812 return 0; 13813 } 13814 13815 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13816 void *data) 13817 { 13818 int handled; 13819 struct kvm_mmio_fragment *frag; 13820 13821 if (!data) 13822 return -EINVAL; 13823 13824 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13825 if (handled == bytes) 13826 return 1; 13827 13828 bytes -= handled; 13829 gpa += handled; 13830 data += handled; 13831 13832 /*TODO: Check if need to increment number of frags */ 13833 frag = vcpu->mmio_fragments; 13834 vcpu->mmio_nr_fragments = 1; 13835 frag->len = bytes; 13836 frag->gpa = gpa; 13837 frag->data = data; 13838 13839 vcpu->mmio_needed = 1; 13840 vcpu->mmio_cur_fragment = 0; 13841 13842 vcpu->run->mmio.phys_addr = gpa; 13843 vcpu->run->mmio.len = min(8u, frag->len); 13844 vcpu->run->mmio.is_write = 1; 13845 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 13846 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13847 13848 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13849 13850 return 0; 13851 } 13852 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 13853 13854 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 13855 void *data) 13856 { 13857 int handled; 13858 struct kvm_mmio_fragment *frag; 13859 13860 if (!data) 13861 return -EINVAL; 13862 13863 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 13864 if (handled == bytes) 13865 return 1; 13866 13867 bytes -= handled; 13868 gpa += handled; 13869 data += handled; 13870 13871 /*TODO: Check if need to increment number of frags */ 13872 frag = vcpu->mmio_fragments; 13873 vcpu->mmio_nr_fragments = 1; 13874 frag->len = bytes; 13875 frag->gpa = gpa; 13876 frag->data = data; 13877 13878 vcpu->mmio_needed = 1; 13879 vcpu->mmio_cur_fragment = 0; 13880 13881 vcpu->run->mmio.phys_addr = gpa; 13882 vcpu->run->mmio.len = min(8u, frag->len); 13883 vcpu->run->mmio.is_write = 0; 13884 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13885 13886 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13887 13888 return 0; 13889 } 13890 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13891 13892 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) 13893 { 13894 vcpu->arch.sev_pio_count -= count; 13895 vcpu->arch.sev_pio_data += count * size; 13896 } 13897 13898 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13899 unsigned int port); 13900 13901 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13902 { 13903 int size = vcpu->arch.pio.size; 13904 int port = vcpu->arch.pio.port; 13905 13906 vcpu->arch.pio.count = 0; 13907 if (vcpu->arch.sev_pio_count) 13908 return kvm_sev_es_outs(vcpu, size, port); 13909 return 1; 13910 } 13911 13912 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13913 unsigned int port) 13914 { 13915 for (;;) { 13916 unsigned int count = 13917 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13918 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13919 13920 /* memcpy done already by emulator_pio_out. */ 13921 advance_sev_es_emulated_pio(vcpu, count, size); 13922 if (!ret) 13923 break; 13924 13925 /* Emulation done by the kernel. */ 13926 if (!vcpu->arch.sev_pio_count) 13927 return 1; 13928 } 13929 13930 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13931 return 0; 13932 } 13933 13934 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13935 unsigned int port); 13936 13937 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13938 { 13939 unsigned count = vcpu->arch.pio.count; 13940 int size = vcpu->arch.pio.size; 13941 int port = vcpu->arch.pio.port; 13942 13943 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13944 advance_sev_es_emulated_pio(vcpu, count, size); 13945 if (vcpu->arch.sev_pio_count) 13946 return kvm_sev_es_ins(vcpu, size, port); 13947 return 1; 13948 } 13949 13950 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13951 unsigned int port) 13952 { 13953 for (;;) { 13954 unsigned int count = 13955 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13956 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) 13957 break; 13958 13959 /* Emulation done by the kernel. */ 13960 advance_sev_es_emulated_pio(vcpu, count, size); 13961 if (!vcpu->arch.sev_pio_count) 13962 return 1; 13963 } 13964 13965 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13966 return 0; 13967 } 13968 13969 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13970 unsigned int port, void *data, unsigned int count, 13971 int in) 13972 { 13973 vcpu->arch.sev_pio_data = data; 13974 vcpu->arch.sev_pio_count = count; 13975 return in ? kvm_sev_es_ins(vcpu, size, port) 13976 : kvm_sev_es_outs(vcpu, size, port); 13977 } 13978 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13979 13980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); 13988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 14000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 14001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 14002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 14003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); 14004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 14005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 14006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 14007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 14008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 14009 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); 14010 14011 static int __init kvm_x86_init(void) 14012 { 14013 kvm_mmu_x86_module_init(); 14014 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); 14015 return 0; 14016 } 14017 module_init(kvm_x86_init); 14018 14019 static void __exit kvm_x86_exit(void) 14020 { 14021 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); 14022 } 14023 module_exit(kvm_x86_exit); 14024