1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19 #include <linux/kvm_host.h> 20 #include "irq.h" 21 #include "ioapic.h" 22 #include "mmu.h" 23 #include "i8254.h" 24 #include "tss.h" 25 #include "kvm_cache_regs.h" 26 #include "kvm_emulate.h" 27 #include "x86.h" 28 #include "cpuid.h" 29 #include "pmu.h" 30 #include "hyperv.h" 31 #include "lapic.h" 32 #include "xen.h" 33 34 #include <linux/clocksource.h> 35 #include <linux/interrupt.h> 36 #include <linux/kvm.h> 37 #include <linux/fs.h> 38 #include <linux/vmalloc.h> 39 #include <linux/export.h> 40 #include <linux/moduleparam.h> 41 #include <linux/mman.h> 42 #include <linux/highmem.h> 43 #include <linux/iommu.h> 44 #include <linux/intel-iommu.h> 45 #include <linux/cpufreq.h> 46 #include <linux/user-return-notifier.h> 47 #include <linux/srcu.h> 48 #include <linux/slab.h> 49 #include <linux/perf_event.h> 50 #include <linux/uaccess.h> 51 #include <linux/hash.h> 52 #include <linux/pci.h> 53 #include <linux/timekeeper_internal.h> 54 #include <linux/pvclock_gtod.h> 55 #include <linux/kvm_irqfd.h> 56 #include <linux/irqbypass.h> 57 #include <linux/sched/stat.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/mem_encrypt.h> 60 #include <linux/entry-kvm.h> 61 #include <linux/suspend.h> 62 63 #include <trace/events/kvm.h> 64 65 #include <asm/debugreg.h> 66 #include <asm/msr.h> 67 #include <asm/desc.h> 68 #include <asm/mce.h> 69 #include <linux/kernel_stat.h> 70 #include <asm/fpu/internal.h> /* Ugh! */ 71 #include <asm/pvclock.h> 72 #include <asm/div64.h> 73 #include <asm/irq_remapping.h> 74 #include <asm/mshyperv.h> 75 #include <asm/hypervisor.h> 76 #include <asm/tlbflush.h> 77 #include <asm/intel_pt.h> 78 #include <asm/emulate_prefix.h> 79 #include <asm/sgx.h> 80 #include <clocksource/hyperv_timer.h> 81 82 #define CREATE_TRACE_POINTS 83 #include "trace.h" 84 85 #define MAX_IO_MSRS 256 86 #define KVM_MAX_MCE_BANKS 32 87 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 88 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 89 90 #define emul_to_vcpu(ctxt) \ 91 ((struct kvm_vcpu *)(ctxt)->vcpu) 92 93 /* EFER defaults: 94 * - enable syscall per default because its emulated by KVM 95 * - enable LME and LMA per default on 64 bit KVM 96 */ 97 #ifdef CONFIG_X86_64 98 static 99 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 100 #else 101 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 102 #endif 103 104 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 105 106 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 107 108 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 109 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 110 111 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 112 static void process_nmi(struct kvm_vcpu *vcpu); 113 static void process_smi(struct kvm_vcpu *vcpu); 114 static void enter_smm(struct kvm_vcpu *vcpu); 115 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 116 static void store_regs(struct kvm_vcpu *vcpu); 117 static int sync_regs(struct kvm_vcpu *vcpu); 118 119 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 120 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 121 122 struct kvm_x86_ops kvm_x86_ops __read_mostly; 123 EXPORT_SYMBOL_GPL(kvm_x86_ops); 124 125 #define KVM_X86_OP(func) \ 126 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 127 *(((struct kvm_x86_ops *)0)->func)); 128 #define KVM_X86_OP_NULL KVM_X86_OP 129 #include <asm/kvm-x86-ops.h> 130 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 131 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 132 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current); 133 134 static bool __read_mostly ignore_msrs = 0; 135 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 136 137 bool __read_mostly report_ignored_msrs = true; 138 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 139 EXPORT_SYMBOL_GPL(report_ignored_msrs); 140 141 unsigned int min_timer_period_us = 200; 142 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 143 144 static bool __read_mostly kvmclock_periodic_sync = true; 145 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 146 147 bool __read_mostly kvm_has_tsc_control; 148 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 149 u32 __read_mostly kvm_max_guest_tsc_khz; 150 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 151 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 152 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 153 u64 __read_mostly kvm_max_tsc_scaling_ratio; 154 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 155 u64 __read_mostly kvm_default_tsc_scaling_ratio; 156 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 157 bool __read_mostly kvm_has_bus_lock_exit; 158 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit); 159 160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 161 static u32 __read_mostly tsc_tolerance_ppm = 250; 162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 163 164 /* 165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 166 * adaptive tuning starting from default advancement of 1000ns. '0' disables 167 * advancement entirely. Any other value is used as-is and disables adaptive 168 * tuning, i.e. allows privileged userspace to set an exact advancement time. 169 */ 170 static int __read_mostly lapic_timer_advance_ns = -1; 171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 172 173 static bool __read_mostly vector_hashing = true; 174 module_param(vector_hashing, bool, S_IRUGO); 175 176 bool __read_mostly enable_vmware_backdoor = false; 177 module_param(enable_vmware_backdoor, bool, S_IRUGO); 178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 179 180 static bool __read_mostly force_emulation_prefix = false; 181 module_param(force_emulation_prefix, bool, S_IRUGO); 182 183 int __read_mostly pi_inject_timer = -1; 184 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 185 186 /* 187 * Restoring the host value for MSRs that are only consumed when running in 188 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 189 * returns to userspace, i.e. the kernel can run with the guest's value. 190 */ 191 #define KVM_MAX_NR_USER_RETURN_MSRS 16 192 193 struct kvm_user_return_msrs { 194 struct user_return_notifier urn; 195 bool registered; 196 struct kvm_user_return_msr_values { 197 u64 host; 198 u64 curr; 199 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 200 }; 201 202 u32 __read_mostly kvm_nr_uret_msrs; 203 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 204 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 205 static struct kvm_user_return_msrs __percpu *user_return_msrs; 206 207 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 208 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 209 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 210 | XFEATURE_MASK_PKRU) 211 212 u64 __read_mostly host_efer; 213 EXPORT_SYMBOL_GPL(host_efer); 214 215 bool __read_mostly allow_smaller_maxphyaddr = 0; 216 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 217 218 bool __read_mostly enable_apicv = true; 219 EXPORT_SYMBOL_GPL(enable_apicv); 220 221 u64 __read_mostly host_xss; 222 EXPORT_SYMBOL_GPL(host_xss); 223 u64 __read_mostly supported_xss; 224 EXPORT_SYMBOL_GPL(supported_xss); 225 226 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 227 KVM_GENERIC_VM_STATS(), 228 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 229 STATS_DESC_COUNTER(VM, mmu_pte_write), 230 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 231 STATS_DESC_COUNTER(VM, mmu_flooded), 232 STATS_DESC_COUNTER(VM, mmu_recycled), 233 STATS_DESC_COUNTER(VM, mmu_cache_miss), 234 STATS_DESC_ICOUNTER(VM, mmu_unsync), 235 STATS_DESC_ICOUNTER(VM, lpages), 236 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 237 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 238 }; 239 static_assert(ARRAY_SIZE(kvm_vm_stats_desc) == 240 sizeof(struct kvm_vm_stat) / sizeof(u64)); 241 242 const struct kvm_stats_header kvm_vm_stats_header = { 243 .name_size = KVM_STATS_NAME_SIZE, 244 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 245 .id_offset = sizeof(struct kvm_stats_header), 246 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 247 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 248 sizeof(kvm_vm_stats_desc), 249 }; 250 251 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 252 KVM_GENERIC_VCPU_STATS(), 253 STATS_DESC_COUNTER(VCPU, pf_fixed), 254 STATS_DESC_COUNTER(VCPU, pf_guest), 255 STATS_DESC_COUNTER(VCPU, tlb_flush), 256 STATS_DESC_COUNTER(VCPU, invlpg), 257 STATS_DESC_COUNTER(VCPU, exits), 258 STATS_DESC_COUNTER(VCPU, io_exits), 259 STATS_DESC_COUNTER(VCPU, mmio_exits), 260 STATS_DESC_COUNTER(VCPU, signal_exits), 261 STATS_DESC_COUNTER(VCPU, irq_window_exits), 262 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 263 STATS_DESC_COUNTER(VCPU, l1d_flush), 264 STATS_DESC_COUNTER(VCPU, halt_exits), 265 STATS_DESC_COUNTER(VCPU, request_irq_exits), 266 STATS_DESC_COUNTER(VCPU, irq_exits), 267 STATS_DESC_COUNTER(VCPU, host_state_reload), 268 STATS_DESC_COUNTER(VCPU, fpu_reload), 269 STATS_DESC_COUNTER(VCPU, insn_emulation), 270 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 271 STATS_DESC_COUNTER(VCPU, hypercalls), 272 STATS_DESC_COUNTER(VCPU, irq_injections), 273 STATS_DESC_COUNTER(VCPU, nmi_injections), 274 STATS_DESC_COUNTER(VCPU, req_event), 275 STATS_DESC_COUNTER(VCPU, nested_run), 276 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 277 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 278 STATS_DESC_ICOUNTER(VCPU, guest_mode) 279 }; 280 static_assert(ARRAY_SIZE(kvm_vcpu_stats_desc) == 281 sizeof(struct kvm_vcpu_stat) / sizeof(u64)); 282 283 const struct kvm_stats_header kvm_vcpu_stats_header = { 284 .name_size = KVM_STATS_NAME_SIZE, 285 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 286 .id_offset = sizeof(struct kvm_stats_header), 287 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 288 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 289 sizeof(kvm_vcpu_stats_desc), 290 }; 291 292 u64 __read_mostly host_xcr0; 293 u64 __read_mostly supported_xcr0; 294 EXPORT_SYMBOL_GPL(supported_xcr0); 295 296 static struct kmem_cache *x86_fpu_cache; 297 298 static struct kmem_cache *x86_emulator_cache; 299 300 /* 301 * When called, it means the previous get/set msr reached an invalid msr. 302 * Return true if we want to ignore/silent this failed msr access. 303 */ 304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 305 { 306 const char *op = write ? "wrmsr" : "rdmsr"; 307 308 if (ignore_msrs) { 309 if (report_ignored_msrs) 310 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 311 op, msr, data); 312 /* Mask the error */ 313 return true; 314 } else { 315 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 316 op, msr, data); 317 return false; 318 } 319 } 320 321 static struct kmem_cache *kvm_alloc_emulator_cache(void) 322 { 323 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 324 unsigned int size = sizeof(struct x86_emulate_ctxt); 325 326 return kmem_cache_create_usercopy("x86_emulator", size, 327 __alignof__(struct x86_emulate_ctxt), 328 SLAB_ACCOUNT, useroffset, 329 size - useroffset, NULL); 330 } 331 332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 333 334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 335 { 336 int i; 337 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 338 vcpu->arch.apf.gfns[i] = ~0; 339 } 340 341 static void kvm_on_user_return(struct user_return_notifier *urn) 342 { 343 unsigned slot; 344 struct kvm_user_return_msrs *msrs 345 = container_of(urn, struct kvm_user_return_msrs, urn); 346 struct kvm_user_return_msr_values *values; 347 unsigned long flags; 348 349 /* 350 * Disabling irqs at this point since the following code could be 351 * interrupted and executed through kvm_arch_hardware_disable() 352 */ 353 local_irq_save(flags); 354 if (msrs->registered) { 355 msrs->registered = false; 356 user_return_notifier_unregister(urn); 357 } 358 local_irq_restore(flags); 359 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 360 values = &msrs->values[slot]; 361 if (values->host != values->curr) { 362 wrmsrl(kvm_uret_msrs_list[slot], values->host); 363 values->curr = values->host; 364 } 365 } 366 } 367 368 static int kvm_probe_user_return_msr(u32 msr) 369 { 370 u64 val; 371 int ret; 372 373 preempt_disable(); 374 ret = rdmsrl_safe(msr, &val); 375 if (ret) 376 goto out; 377 ret = wrmsrl_safe(msr, val); 378 out: 379 preempt_enable(); 380 return ret; 381 } 382 383 int kvm_add_user_return_msr(u32 msr) 384 { 385 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 386 387 if (kvm_probe_user_return_msr(msr)) 388 return -1; 389 390 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 391 return kvm_nr_uret_msrs++; 392 } 393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 394 395 int kvm_find_user_return_msr(u32 msr) 396 { 397 int i; 398 399 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 400 if (kvm_uret_msrs_list[i] == msr) 401 return i; 402 } 403 return -1; 404 } 405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 406 407 static void kvm_user_return_msr_cpu_online(void) 408 { 409 unsigned int cpu = smp_processor_id(); 410 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 411 u64 value; 412 int i; 413 414 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 415 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 416 msrs->values[i].host = value; 417 msrs->values[i].curr = value; 418 } 419 } 420 421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 422 { 423 unsigned int cpu = smp_processor_id(); 424 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 425 int err; 426 427 value = (value & mask) | (msrs->values[slot].host & ~mask); 428 if (value == msrs->values[slot].curr) 429 return 0; 430 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 431 if (err) 432 return 1; 433 434 msrs->values[slot].curr = value; 435 if (!msrs->registered) { 436 msrs->urn.on_user_return = kvm_on_user_return; 437 user_return_notifier_register(&msrs->urn); 438 msrs->registered = true; 439 } 440 return 0; 441 } 442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 443 444 static void drop_user_return_notifiers(void) 445 { 446 unsigned int cpu = smp_processor_id(); 447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 448 449 if (msrs->registered) 450 kvm_on_user_return(&msrs->urn); 451 } 452 453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 454 { 455 return vcpu->arch.apic_base; 456 } 457 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 458 459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 460 { 461 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 462 } 463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 464 465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 466 { 467 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 468 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 469 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 470 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 471 472 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 473 return 1; 474 if (!msr_info->host_initiated) { 475 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 476 return 1; 477 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 478 return 1; 479 } 480 481 kvm_lapic_set_base(vcpu, msr_info->data); 482 kvm_recalculate_apic_map(vcpu->kvm); 483 return 0; 484 } 485 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 486 487 asmlinkage __visible noinstr void kvm_spurious_fault(void) 488 { 489 /* Fault while not rebooting. We want the trace. */ 490 BUG_ON(!kvm_rebooting); 491 } 492 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 493 494 #define EXCPT_BENIGN 0 495 #define EXCPT_CONTRIBUTORY 1 496 #define EXCPT_PF 2 497 498 static int exception_class(int vector) 499 { 500 switch (vector) { 501 case PF_VECTOR: 502 return EXCPT_PF; 503 case DE_VECTOR: 504 case TS_VECTOR: 505 case NP_VECTOR: 506 case SS_VECTOR: 507 case GP_VECTOR: 508 return EXCPT_CONTRIBUTORY; 509 default: 510 break; 511 } 512 return EXCPT_BENIGN; 513 } 514 515 #define EXCPT_FAULT 0 516 #define EXCPT_TRAP 1 517 #define EXCPT_ABORT 2 518 #define EXCPT_INTERRUPT 3 519 520 static int exception_type(int vector) 521 { 522 unsigned int mask; 523 524 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 525 return EXCPT_INTERRUPT; 526 527 mask = 1 << vector; 528 529 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 530 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 531 return EXCPT_TRAP; 532 533 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 534 return EXCPT_ABORT; 535 536 /* Reserved exceptions will result in fault */ 537 return EXCPT_FAULT; 538 } 539 540 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 541 { 542 unsigned nr = vcpu->arch.exception.nr; 543 bool has_payload = vcpu->arch.exception.has_payload; 544 unsigned long payload = vcpu->arch.exception.payload; 545 546 if (!has_payload) 547 return; 548 549 switch (nr) { 550 case DB_VECTOR: 551 /* 552 * "Certain debug exceptions may clear bit 0-3. The 553 * remaining contents of the DR6 register are never 554 * cleared by the processor". 555 */ 556 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 557 /* 558 * In order to reflect the #DB exception payload in guest 559 * dr6, three components need to be considered: active low 560 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 561 * DR6_BS and DR6_BT) 562 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 563 * In the target guest dr6: 564 * FIXED_1 bits should always be set. 565 * Active low bits should be cleared if 1-setting in payload. 566 * Active high bits should be set if 1-setting in payload. 567 * 568 * Note, the payload is compatible with the pending debug 569 * exceptions/exit qualification under VMX, that active_low bits 570 * are active high in payload. 571 * So they need to be flipped for DR6. 572 */ 573 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 574 vcpu->arch.dr6 |= payload; 575 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 576 577 /* 578 * The #DB payload is defined as compatible with the 'pending 579 * debug exceptions' field under VMX, not DR6. While bit 12 is 580 * defined in the 'pending debug exceptions' field (enabled 581 * breakpoint), it is reserved and must be zero in DR6. 582 */ 583 vcpu->arch.dr6 &= ~BIT(12); 584 break; 585 case PF_VECTOR: 586 vcpu->arch.cr2 = payload; 587 break; 588 } 589 590 vcpu->arch.exception.has_payload = false; 591 vcpu->arch.exception.payload = 0; 592 } 593 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 594 595 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 596 unsigned nr, bool has_error, u32 error_code, 597 bool has_payload, unsigned long payload, bool reinject) 598 { 599 u32 prev_nr; 600 int class1, class2; 601 602 kvm_make_request(KVM_REQ_EVENT, vcpu); 603 604 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 605 queue: 606 if (reinject) { 607 /* 608 * On vmentry, vcpu->arch.exception.pending is only 609 * true if an event injection was blocked by 610 * nested_run_pending. In that case, however, 611 * vcpu_enter_guest requests an immediate exit, 612 * and the guest shouldn't proceed far enough to 613 * need reinjection. 614 */ 615 WARN_ON_ONCE(vcpu->arch.exception.pending); 616 vcpu->arch.exception.injected = true; 617 if (WARN_ON_ONCE(has_payload)) { 618 /* 619 * A reinjected event has already 620 * delivered its payload. 621 */ 622 has_payload = false; 623 payload = 0; 624 } 625 } else { 626 vcpu->arch.exception.pending = true; 627 vcpu->arch.exception.injected = false; 628 } 629 vcpu->arch.exception.has_error_code = has_error; 630 vcpu->arch.exception.nr = nr; 631 vcpu->arch.exception.error_code = error_code; 632 vcpu->arch.exception.has_payload = has_payload; 633 vcpu->arch.exception.payload = payload; 634 if (!is_guest_mode(vcpu)) 635 kvm_deliver_exception_payload(vcpu); 636 return; 637 } 638 639 /* to check exception */ 640 prev_nr = vcpu->arch.exception.nr; 641 if (prev_nr == DF_VECTOR) { 642 /* triple fault -> shutdown */ 643 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 644 return; 645 } 646 class1 = exception_class(prev_nr); 647 class2 = exception_class(nr); 648 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 649 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 650 /* 651 * Generate double fault per SDM Table 5-5. Set 652 * exception.pending = true so that the double fault 653 * can trigger a nested vmexit. 654 */ 655 vcpu->arch.exception.pending = true; 656 vcpu->arch.exception.injected = false; 657 vcpu->arch.exception.has_error_code = true; 658 vcpu->arch.exception.nr = DF_VECTOR; 659 vcpu->arch.exception.error_code = 0; 660 vcpu->arch.exception.has_payload = false; 661 vcpu->arch.exception.payload = 0; 662 } else 663 /* replace previous exception with a new one in a hope 664 that instruction re-execution will regenerate lost 665 exception */ 666 goto queue; 667 } 668 669 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 670 { 671 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 672 } 673 EXPORT_SYMBOL_GPL(kvm_queue_exception); 674 675 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 676 { 677 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 678 } 679 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 680 681 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 682 unsigned long payload) 683 { 684 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 685 } 686 EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 687 688 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 689 u32 error_code, unsigned long payload) 690 { 691 kvm_multiple_exception(vcpu, nr, true, error_code, 692 true, payload, false); 693 } 694 695 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 696 { 697 if (err) 698 kvm_inject_gp(vcpu, 0); 699 else 700 return kvm_skip_emulated_instruction(vcpu); 701 702 return 1; 703 } 704 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 705 706 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 707 { 708 ++vcpu->stat.pf_guest; 709 vcpu->arch.exception.nested_apf = 710 is_guest_mode(vcpu) && fault->async_page_fault; 711 if (vcpu->arch.exception.nested_apf) { 712 vcpu->arch.apf.nested_apf_token = fault->address; 713 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 714 } else { 715 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 716 fault->address); 717 } 718 } 719 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 720 721 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 722 struct x86_exception *fault) 723 { 724 struct kvm_mmu *fault_mmu; 725 WARN_ON_ONCE(fault->vector != PF_VECTOR); 726 727 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 728 vcpu->arch.walk_mmu; 729 730 /* 731 * Invalidate the TLB entry for the faulting address, if it exists, 732 * else the access will fault indefinitely (and to emulate hardware). 733 */ 734 if ((fault->error_code & PFERR_PRESENT_MASK) && 735 !(fault->error_code & PFERR_RSVD_MASK)) 736 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 737 fault_mmu->root_hpa); 738 739 fault_mmu->inject_page_fault(vcpu, fault); 740 return fault->nested_page_fault; 741 } 742 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 743 744 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 745 { 746 atomic_inc(&vcpu->arch.nmi_queued); 747 kvm_make_request(KVM_REQ_NMI, vcpu); 748 } 749 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 750 751 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 752 { 753 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 754 } 755 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 756 757 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 758 { 759 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 760 } 761 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 762 763 /* 764 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 765 * a #GP and return false. 766 */ 767 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 768 { 769 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 770 return true; 771 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 772 return false; 773 } 774 EXPORT_SYMBOL_GPL(kvm_require_cpl); 775 776 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 777 { 778 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 779 return true; 780 781 kvm_queue_exception(vcpu, UD_VECTOR); 782 return false; 783 } 784 EXPORT_SYMBOL_GPL(kvm_require_dr); 785 786 /* 787 * This function will be used to read from the physical memory of the currently 788 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 789 * can read from guest physical or from the guest's guest physical memory. 790 */ 791 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 792 gfn_t ngfn, void *data, int offset, int len, 793 u32 access) 794 { 795 struct x86_exception exception; 796 gfn_t real_gfn; 797 gpa_t ngpa; 798 799 ngpa = gfn_to_gpa(ngfn); 800 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 801 if (real_gfn == UNMAPPED_GVA) 802 return -EFAULT; 803 804 real_gfn = gpa_to_gfn(real_gfn); 805 806 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 807 } 808 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 809 810 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 811 { 812 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 813 } 814 815 /* 816 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 817 */ 818 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 819 { 820 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 821 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 822 int i; 823 int ret; 824 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 825 826 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 827 offset * sizeof(u64), sizeof(pdpte), 828 PFERR_USER_MASK|PFERR_WRITE_MASK); 829 if (ret < 0) { 830 ret = 0; 831 goto out; 832 } 833 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 834 if ((pdpte[i] & PT_PRESENT_MASK) && 835 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 836 ret = 0; 837 goto out; 838 } 839 } 840 ret = 1; 841 842 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 843 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 844 vcpu->arch.pdptrs_from_userspace = false; 845 846 out: 847 848 return ret; 849 } 850 EXPORT_SYMBOL_GPL(load_pdptrs); 851 852 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 853 { 854 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 855 kvm_clear_async_pf_completion_queue(vcpu); 856 kvm_async_pf_hash_reset(vcpu); 857 } 858 859 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 860 kvm_mmu_reset_context(vcpu); 861 862 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 863 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 864 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 865 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 866 } 867 EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 868 869 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 870 { 871 unsigned long old_cr0 = kvm_read_cr0(vcpu); 872 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG; 873 874 cr0 |= X86_CR0_ET; 875 876 #ifdef CONFIG_X86_64 877 if (cr0 & 0xffffffff00000000UL) 878 return 1; 879 #endif 880 881 cr0 &= ~CR0_RESERVED_BITS; 882 883 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 884 return 1; 885 886 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 887 return 1; 888 889 #ifdef CONFIG_X86_64 890 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 891 (cr0 & X86_CR0_PG)) { 892 int cs_db, cs_l; 893 894 if (!is_pae(vcpu)) 895 return 1; 896 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 897 if (cs_l) 898 return 1; 899 } 900 #endif 901 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 902 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) && 903 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu))) 904 return 1; 905 906 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 907 return 1; 908 909 static_call(kvm_x86_set_cr0)(vcpu, cr0); 910 911 kvm_post_set_cr0(vcpu, old_cr0, cr0); 912 913 return 0; 914 } 915 EXPORT_SYMBOL_GPL(kvm_set_cr0); 916 917 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 918 { 919 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 920 } 921 EXPORT_SYMBOL_GPL(kvm_lmsw); 922 923 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 924 { 925 if (vcpu->arch.guest_state_protected) 926 return; 927 928 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 929 930 if (vcpu->arch.xcr0 != host_xcr0) 931 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 932 933 if (vcpu->arch.xsaves_enabled && 934 vcpu->arch.ia32_xss != host_xss) 935 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 936 } 937 938 if (static_cpu_has(X86_FEATURE_PKU) && 939 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 940 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) && 941 vcpu->arch.pkru != vcpu->arch.host_pkru) 942 __write_pkru(vcpu->arch.pkru); 943 } 944 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 945 946 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 947 { 948 if (vcpu->arch.guest_state_protected) 949 return; 950 951 if (static_cpu_has(X86_FEATURE_PKU) && 952 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || 953 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) { 954 vcpu->arch.pkru = rdpkru(); 955 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 956 __write_pkru(vcpu->arch.host_pkru); 957 } 958 959 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 960 961 if (vcpu->arch.xcr0 != host_xcr0) 962 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 963 964 if (vcpu->arch.xsaves_enabled && 965 vcpu->arch.ia32_xss != host_xss) 966 wrmsrl(MSR_IA32_XSS, host_xss); 967 } 968 969 } 970 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 971 972 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 973 { 974 u64 xcr0 = xcr; 975 u64 old_xcr0 = vcpu->arch.xcr0; 976 u64 valid_bits; 977 978 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 979 if (index != XCR_XFEATURE_ENABLED_MASK) 980 return 1; 981 if (!(xcr0 & XFEATURE_MASK_FP)) 982 return 1; 983 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 984 return 1; 985 986 /* 987 * Do not allow the guest to set bits that we do not support 988 * saving. However, xcr0 bit 0 is always set, even if the 989 * emulated CPU does not support XSAVE (see fx_init). 990 */ 991 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 992 if (xcr0 & ~valid_bits) 993 return 1; 994 995 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 996 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 997 return 1; 998 999 if (xcr0 & XFEATURE_MASK_AVX512) { 1000 if (!(xcr0 & XFEATURE_MASK_YMM)) 1001 return 1; 1002 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1003 return 1; 1004 } 1005 vcpu->arch.xcr0 = xcr0; 1006 1007 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1008 kvm_update_cpuid_runtime(vcpu); 1009 return 0; 1010 } 1011 1012 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1013 { 1014 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1015 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1016 kvm_inject_gp(vcpu, 0); 1017 return 1; 1018 } 1019 1020 return kvm_skip_emulated_instruction(vcpu); 1021 } 1022 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1023 1024 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1025 { 1026 if (cr4 & cr4_reserved_bits) 1027 return false; 1028 1029 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1030 return false; 1031 1032 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1033 } 1034 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4); 1035 1036 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1037 { 1038 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) || 1039 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1040 kvm_mmu_reset_context(vcpu); 1041 } 1042 EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1043 1044 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1045 { 1046 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1047 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 1048 X86_CR4_SMEP; 1049 1050 if (!kvm_is_valid_cr4(vcpu, cr4)) 1051 return 1; 1052 1053 if (is_long_mode(vcpu)) { 1054 if (!(cr4 & X86_CR4_PAE)) 1055 return 1; 1056 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1057 return 1; 1058 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1059 && ((cr4 ^ old_cr4) & pdptr_bits) 1060 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 1061 kvm_read_cr3(vcpu))) 1062 return 1; 1063 1064 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1065 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1066 return 1; 1067 1068 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1069 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1070 return 1; 1071 } 1072 1073 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1074 1075 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1076 1077 return 0; 1078 } 1079 EXPORT_SYMBOL_GPL(kvm_set_cr4); 1080 1081 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1082 { 1083 struct kvm_mmu *mmu = vcpu->arch.mmu; 1084 unsigned long roots_to_free = 0; 1085 int i; 1086 1087 /* 1088 * If neither the current CR3 nor any of the prev_roots use the given 1089 * PCID, then nothing needs to be done here because a resync will 1090 * happen anyway before switching to any other CR3. 1091 */ 1092 if (kvm_get_active_pcid(vcpu) == pcid) { 1093 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1094 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1095 } 1096 1097 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1098 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1099 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1100 1101 kvm_mmu_free_roots(vcpu, mmu, roots_to_free); 1102 } 1103 1104 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1105 { 1106 bool skip_tlb_flush = false; 1107 unsigned long pcid = 0; 1108 #ifdef CONFIG_X86_64 1109 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1110 1111 if (pcid_enabled) { 1112 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1113 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1114 pcid = cr3 & X86_CR3_PCID_MASK; 1115 } 1116 #endif 1117 1118 /* PDPTRs are always reloaded for PAE paging. */ 1119 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1120 goto handle_tlb_flush; 1121 1122 /* 1123 * Do not condition the GPA check on long mode, this helper is used to 1124 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1125 * the current vCPU mode is accurate. 1126 */ 1127 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1128 return 1; 1129 1130 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 1131 return 1; 1132 1133 if (cr3 != kvm_read_cr3(vcpu)) 1134 kvm_mmu_new_pgd(vcpu, cr3); 1135 1136 vcpu->arch.cr3 = cr3; 1137 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1138 1139 handle_tlb_flush: 1140 /* 1141 * A load of CR3 that flushes the TLB flushes only the current PCID, 1142 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1143 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1144 * and it's impossible to use a non-zero PCID when PCID is disabled, 1145 * i.e. only PCID=0 can be relevant. 1146 */ 1147 if (!skip_tlb_flush) 1148 kvm_invalidate_pcid(vcpu, pcid); 1149 1150 return 0; 1151 } 1152 EXPORT_SYMBOL_GPL(kvm_set_cr3); 1153 1154 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1155 { 1156 if (cr8 & CR8_RESERVED_BITS) 1157 return 1; 1158 if (lapic_in_kernel(vcpu)) 1159 kvm_lapic_set_tpr(vcpu, cr8); 1160 else 1161 vcpu->arch.cr8 = cr8; 1162 return 0; 1163 } 1164 EXPORT_SYMBOL_GPL(kvm_set_cr8); 1165 1166 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1167 { 1168 if (lapic_in_kernel(vcpu)) 1169 return kvm_lapic_get_cr8(vcpu); 1170 else 1171 return vcpu->arch.cr8; 1172 } 1173 EXPORT_SYMBOL_GPL(kvm_get_cr8); 1174 1175 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1176 { 1177 int i; 1178 1179 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1180 for (i = 0; i < KVM_NR_DB_REGS; i++) 1181 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1182 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 1183 } 1184 } 1185 1186 void kvm_update_dr7(struct kvm_vcpu *vcpu) 1187 { 1188 unsigned long dr7; 1189 1190 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1191 dr7 = vcpu->arch.guest_debug_dr7; 1192 else 1193 dr7 = vcpu->arch.dr7; 1194 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1195 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1196 if (dr7 & DR7_BP_EN_MASK) 1197 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1198 } 1199 EXPORT_SYMBOL_GPL(kvm_update_dr7); 1200 1201 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1202 { 1203 u64 fixed = DR6_FIXED_1; 1204 1205 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1206 fixed |= DR6_RTM; 1207 1208 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1209 fixed |= DR6_BUS_LOCK; 1210 return fixed; 1211 } 1212 1213 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1214 { 1215 size_t size = ARRAY_SIZE(vcpu->arch.db); 1216 1217 switch (dr) { 1218 case 0 ... 3: 1219 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1220 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1221 vcpu->arch.eff_db[dr] = val; 1222 break; 1223 case 4: 1224 case 6: 1225 if (!kvm_dr6_valid(val)) 1226 return 1; /* #GP */ 1227 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1228 break; 1229 case 5: 1230 default: /* 7 */ 1231 if (!kvm_dr7_valid(val)) 1232 return 1; /* #GP */ 1233 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1234 kvm_update_dr7(vcpu); 1235 break; 1236 } 1237 1238 return 0; 1239 } 1240 EXPORT_SYMBOL_GPL(kvm_set_dr); 1241 1242 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1243 { 1244 size_t size = ARRAY_SIZE(vcpu->arch.db); 1245 1246 switch (dr) { 1247 case 0 ... 3: 1248 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1249 break; 1250 case 4: 1251 case 6: 1252 *val = vcpu->arch.dr6; 1253 break; 1254 case 5: 1255 default: /* 7 */ 1256 *val = vcpu->arch.dr7; 1257 break; 1258 } 1259 } 1260 EXPORT_SYMBOL_GPL(kvm_get_dr); 1261 1262 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1263 { 1264 u32 ecx = kvm_rcx_read(vcpu); 1265 u64 data; 1266 1267 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1268 kvm_inject_gp(vcpu, 0); 1269 return 1; 1270 } 1271 1272 kvm_rax_write(vcpu, (u32)data); 1273 kvm_rdx_write(vcpu, data >> 32); 1274 return kvm_skip_emulated_instruction(vcpu); 1275 } 1276 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1277 1278 /* 1279 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1280 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1281 * 1282 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1283 * extract the supported MSRs from the related const lists. 1284 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1285 * capabilities of the host cpu. This capabilities test skips MSRs that are 1286 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1287 * may depend on host virtualization features rather than host cpu features. 1288 */ 1289 1290 static const u32 msrs_to_save_all[] = { 1291 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1292 MSR_STAR, 1293 #ifdef CONFIG_X86_64 1294 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1295 #endif 1296 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1297 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1298 MSR_IA32_SPEC_CTRL, 1299 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1300 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1301 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1302 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1303 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1304 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1305 MSR_IA32_UMWAIT_CONTROL, 1306 1307 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1308 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3, 1309 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1310 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1311 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1312 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1313 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1314 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1315 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1316 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1317 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1318 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1319 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1320 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1321 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1322 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1323 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1324 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1325 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1326 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1327 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1328 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1329 }; 1330 1331 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1332 static unsigned num_msrs_to_save; 1333 1334 static const u32 emulated_msrs_all[] = { 1335 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1336 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1337 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1338 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1339 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1340 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1341 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1342 HV_X64_MSR_RESET, 1343 HV_X64_MSR_VP_INDEX, 1344 HV_X64_MSR_VP_RUNTIME, 1345 HV_X64_MSR_SCONTROL, 1346 HV_X64_MSR_STIMER0_CONFIG, 1347 HV_X64_MSR_VP_ASSIST_PAGE, 1348 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1349 HV_X64_MSR_TSC_EMULATION_STATUS, 1350 HV_X64_MSR_SYNDBG_OPTIONS, 1351 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1352 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1353 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1354 1355 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1356 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1357 1358 MSR_IA32_TSC_ADJUST, 1359 MSR_IA32_TSC_DEADLINE, 1360 MSR_IA32_ARCH_CAPABILITIES, 1361 MSR_IA32_PERF_CAPABILITIES, 1362 MSR_IA32_MISC_ENABLE, 1363 MSR_IA32_MCG_STATUS, 1364 MSR_IA32_MCG_CTL, 1365 MSR_IA32_MCG_EXT_CTL, 1366 MSR_IA32_SMBASE, 1367 MSR_SMI_COUNT, 1368 MSR_PLATFORM_INFO, 1369 MSR_MISC_FEATURES_ENABLES, 1370 MSR_AMD64_VIRT_SPEC_CTRL, 1371 MSR_IA32_POWER_CTL, 1372 MSR_IA32_UCODE_REV, 1373 1374 /* 1375 * The following list leaves out MSRs whose values are determined 1376 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1377 * We always support the "true" VMX control MSRs, even if the host 1378 * processor does not, so I am putting these registers here rather 1379 * than in msrs_to_save_all. 1380 */ 1381 MSR_IA32_VMX_BASIC, 1382 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1383 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1384 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1385 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1386 MSR_IA32_VMX_MISC, 1387 MSR_IA32_VMX_CR0_FIXED0, 1388 MSR_IA32_VMX_CR4_FIXED0, 1389 MSR_IA32_VMX_VMCS_ENUM, 1390 MSR_IA32_VMX_PROCBASED_CTLS2, 1391 MSR_IA32_VMX_EPT_VPID_CAP, 1392 MSR_IA32_VMX_VMFUNC, 1393 1394 MSR_K7_HWCR, 1395 MSR_KVM_POLL_CONTROL, 1396 }; 1397 1398 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1399 static unsigned num_emulated_msrs; 1400 1401 /* 1402 * List of msr numbers which are used to expose MSR-based features that 1403 * can be used by a hypervisor to validate requested CPU features. 1404 */ 1405 static const u32 msr_based_features_all[] = { 1406 MSR_IA32_VMX_BASIC, 1407 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1408 MSR_IA32_VMX_PINBASED_CTLS, 1409 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1410 MSR_IA32_VMX_PROCBASED_CTLS, 1411 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1412 MSR_IA32_VMX_EXIT_CTLS, 1413 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1414 MSR_IA32_VMX_ENTRY_CTLS, 1415 MSR_IA32_VMX_MISC, 1416 MSR_IA32_VMX_CR0_FIXED0, 1417 MSR_IA32_VMX_CR0_FIXED1, 1418 MSR_IA32_VMX_CR4_FIXED0, 1419 MSR_IA32_VMX_CR4_FIXED1, 1420 MSR_IA32_VMX_VMCS_ENUM, 1421 MSR_IA32_VMX_PROCBASED_CTLS2, 1422 MSR_IA32_VMX_EPT_VPID_CAP, 1423 MSR_IA32_VMX_VMFUNC, 1424 1425 MSR_F10H_DECFG, 1426 MSR_IA32_UCODE_REV, 1427 MSR_IA32_ARCH_CAPABILITIES, 1428 MSR_IA32_PERF_CAPABILITIES, 1429 }; 1430 1431 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1432 static unsigned int num_msr_based_features; 1433 1434 static u64 kvm_get_arch_capabilities(void) 1435 { 1436 u64 data = 0; 1437 1438 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1439 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1440 1441 /* 1442 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1443 * the nested hypervisor runs with NX huge pages. If it is not, 1444 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1445 * L1 guests, so it need not worry about its own (L2) guests. 1446 */ 1447 data |= ARCH_CAP_PSCHANGE_MC_NO; 1448 1449 /* 1450 * If we're doing cache flushes (either "always" or "cond") 1451 * we will do one whenever the guest does a vmlaunch/vmresume. 1452 * If an outer hypervisor is doing the cache flush for us 1453 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1454 * capability to the guest too, and if EPT is disabled we're not 1455 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1456 * require a nested hypervisor to do a flush of its own. 1457 */ 1458 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1459 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1460 1461 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1462 data |= ARCH_CAP_RDCL_NO; 1463 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1464 data |= ARCH_CAP_SSB_NO; 1465 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1466 data |= ARCH_CAP_MDS_NO; 1467 1468 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1469 /* 1470 * If RTM=0 because the kernel has disabled TSX, the host might 1471 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1472 * and therefore knows that there cannot be TAA) but keep 1473 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1474 * and we want to allow migrating those guests to tsx=off hosts. 1475 */ 1476 data &= ~ARCH_CAP_TAA_NO; 1477 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1478 data |= ARCH_CAP_TAA_NO; 1479 } else { 1480 /* 1481 * Nothing to do here; we emulate TSX_CTRL if present on the 1482 * host so the guest can choose between disabling TSX or 1483 * using VERW to clear CPU buffers. 1484 */ 1485 } 1486 1487 return data; 1488 } 1489 1490 static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1491 { 1492 switch (msr->index) { 1493 case MSR_IA32_ARCH_CAPABILITIES: 1494 msr->data = kvm_get_arch_capabilities(); 1495 break; 1496 case MSR_IA32_UCODE_REV: 1497 rdmsrl_safe(msr->index, &msr->data); 1498 break; 1499 default: 1500 return static_call(kvm_x86_get_msr_feature)(msr); 1501 } 1502 return 0; 1503 } 1504 1505 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1506 { 1507 struct kvm_msr_entry msr; 1508 int r; 1509 1510 msr.index = index; 1511 r = kvm_get_msr_feature(&msr); 1512 1513 if (r == KVM_MSR_RET_INVALID) { 1514 /* Unconditionally clear the output for simplicity */ 1515 *data = 0; 1516 if (kvm_msr_ignored_check(index, 0, false)) 1517 r = 0; 1518 } 1519 1520 if (r) 1521 return r; 1522 1523 *data = msr.data; 1524 1525 return 0; 1526 } 1527 1528 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1529 { 1530 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1531 return false; 1532 1533 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1534 return false; 1535 1536 if (efer & (EFER_LME | EFER_LMA) && 1537 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1538 return false; 1539 1540 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1541 return false; 1542 1543 return true; 1544 1545 } 1546 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1547 { 1548 if (efer & efer_reserved_bits) 1549 return false; 1550 1551 return __kvm_valid_efer(vcpu, efer); 1552 } 1553 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1554 1555 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1556 { 1557 u64 old_efer = vcpu->arch.efer; 1558 u64 efer = msr_info->data; 1559 int r; 1560 1561 if (efer & efer_reserved_bits) 1562 return 1; 1563 1564 if (!msr_info->host_initiated) { 1565 if (!__kvm_valid_efer(vcpu, efer)) 1566 return 1; 1567 1568 if (is_paging(vcpu) && 1569 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1570 return 1; 1571 } 1572 1573 efer &= ~EFER_LMA; 1574 efer |= vcpu->arch.efer & EFER_LMA; 1575 1576 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1577 if (r) { 1578 WARN_ON(r > 0); 1579 return r; 1580 } 1581 1582 /* Update reserved bits */ 1583 if ((efer ^ old_efer) & EFER_NX) 1584 kvm_mmu_reset_context(vcpu); 1585 1586 return 0; 1587 } 1588 1589 void kvm_enable_efer_bits(u64 mask) 1590 { 1591 efer_reserved_bits &= ~mask; 1592 } 1593 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1594 1595 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1596 { 1597 struct kvm_x86_msr_filter *msr_filter; 1598 struct msr_bitmap_range *ranges; 1599 struct kvm *kvm = vcpu->kvm; 1600 bool allowed; 1601 int idx; 1602 u32 i; 1603 1604 /* x2APIC MSRs do not support filtering. */ 1605 if (index >= 0x800 && index <= 0x8ff) 1606 return true; 1607 1608 idx = srcu_read_lock(&kvm->srcu); 1609 1610 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1611 if (!msr_filter) { 1612 allowed = true; 1613 goto out; 1614 } 1615 1616 allowed = msr_filter->default_allow; 1617 ranges = msr_filter->ranges; 1618 1619 for (i = 0; i < msr_filter->count; i++) { 1620 u32 start = ranges[i].base; 1621 u32 end = start + ranges[i].nmsrs; 1622 u32 flags = ranges[i].flags; 1623 unsigned long *bitmap = ranges[i].bitmap; 1624 1625 if ((index >= start) && (index < end) && (flags & type)) { 1626 allowed = !!test_bit(index - start, bitmap); 1627 break; 1628 } 1629 } 1630 1631 out: 1632 srcu_read_unlock(&kvm->srcu, idx); 1633 1634 return allowed; 1635 } 1636 EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1637 1638 /* 1639 * Write @data into the MSR specified by @index. Select MSR specific fault 1640 * checks are bypassed if @host_initiated is %true. 1641 * Returns 0 on success, non-0 otherwise. 1642 * Assumes vcpu_load() was already called. 1643 */ 1644 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1645 bool host_initiated) 1646 { 1647 struct msr_data msr; 1648 1649 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1650 return KVM_MSR_RET_FILTERED; 1651 1652 switch (index) { 1653 case MSR_FS_BASE: 1654 case MSR_GS_BASE: 1655 case MSR_KERNEL_GS_BASE: 1656 case MSR_CSTAR: 1657 case MSR_LSTAR: 1658 if (is_noncanonical_address(data, vcpu)) 1659 return 1; 1660 break; 1661 case MSR_IA32_SYSENTER_EIP: 1662 case MSR_IA32_SYSENTER_ESP: 1663 /* 1664 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1665 * non-canonical address is written on Intel but not on 1666 * AMD (which ignores the top 32-bits, because it does 1667 * not implement 64-bit SYSENTER). 1668 * 1669 * 64-bit code should hence be able to write a non-canonical 1670 * value on AMD. Making the address canonical ensures that 1671 * vmentry does not fail on Intel after writing a non-canonical 1672 * value, and that something deterministic happens if the guest 1673 * invokes 64-bit SYSENTER. 1674 */ 1675 data = get_canonical(data, vcpu_virt_addr_bits(vcpu)); 1676 break; 1677 case MSR_TSC_AUX: 1678 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1679 return 1; 1680 1681 if (!host_initiated && 1682 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1683 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1684 return 1; 1685 1686 /* 1687 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1688 * incomplete and conflicting architectural behavior. Current 1689 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1690 * reserved and always read as zeros. Enforce Intel's reserved 1691 * bits check if and only if the guest CPU is Intel, and clear 1692 * the bits in all other cases. This ensures cross-vendor 1693 * migration will provide consistent behavior for the guest. 1694 */ 1695 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1696 return 1; 1697 1698 data = (u32)data; 1699 break; 1700 } 1701 1702 msr.data = data; 1703 msr.index = index; 1704 msr.host_initiated = host_initiated; 1705 1706 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1707 } 1708 1709 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1710 u32 index, u64 data, bool host_initiated) 1711 { 1712 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1713 1714 if (ret == KVM_MSR_RET_INVALID) 1715 if (kvm_msr_ignored_check(index, data, true)) 1716 ret = 0; 1717 1718 return ret; 1719 } 1720 1721 /* 1722 * Read the MSR specified by @index into @data. Select MSR specific fault 1723 * checks are bypassed if @host_initiated is %true. 1724 * Returns 0 on success, non-0 otherwise. 1725 * Assumes vcpu_load() was already called. 1726 */ 1727 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1728 bool host_initiated) 1729 { 1730 struct msr_data msr; 1731 int ret; 1732 1733 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1734 return KVM_MSR_RET_FILTERED; 1735 1736 switch (index) { 1737 case MSR_TSC_AUX: 1738 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1739 return 1; 1740 1741 if (!host_initiated && 1742 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1743 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1744 return 1; 1745 break; 1746 } 1747 1748 msr.index = index; 1749 msr.host_initiated = host_initiated; 1750 1751 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1752 if (!ret) 1753 *data = msr.data; 1754 return ret; 1755 } 1756 1757 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1758 u32 index, u64 *data, bool host_initiated) 1759 { 1760 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1761 1762 if (ret == KVM_MSR_RET_INVALID) { 1763 /* Unconditionally clear *data for simplicity */ 1764 *data = 0; 1765 if (kvm_msr_ignored_check(index, 0, false)) 1766 ret = 0; 1767 } 1768 1769 return ret; 1770 } 1771 1772 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1773 { 1774 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1775 } 1776 EXPORT_SYMBOL_GPL(kvm_get_msr); 1777 1778 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1779 { 1780 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1781 } 1782 EXPORT_SYMBOL_GPL(kvm_set_msr); 1783 1784 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1785 { 1786 int err = vcpu->run->msr.error; 1787 if (!err) { 1788 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1789 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1790 } 1791 1792 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err); 1793 } 1794 1795 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu) 1796 { 1797 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1798 } 1799 1800 static u64 kvm_msr_reason(int r) 1801 { 1802 switch (r) { 1803 case KVM_MSR_RET_INVALID: 1804 return KVM_MSR_EXIT_REASON_UNKNOWN; 1805 case KVM_MSR_RET_FILTERED: 1806 return KVM_MSR_EXIT_REASON_FILTER; 1807 default: 1808 return KVM_MSR_EXIT_REASON_INVAL; 1809 } 1810 } 1811 1812 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1813 u32 exit_reason, u64 data, 1814 int (*completion)(struct kvm_vcpu *vcpu), 1815 int r) 1816 { 1817 u64 msr_reason = kvm_msr_reason(r); 1818 1819 /* Check if the user wanted to know about this MSR fault */ 1820 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1821 return 0; 1822 1823 vcpu->run->exit_reason = exit_reason; 1824 vcpu->run->msr.error = 0; 1825 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1826 vcpu->run->msr.reason = msr_reason; 1827 vcpu->run->msr.index = index; 1828 vcpu->run->msr.data = data; 1829 vcpu->arch.complete_userspace_io = completion; 1830 1831 return 1; 1832 } 1833 1834 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r) 1835 { 1836 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0, 1837 complete_emulated_rdmsr, r); 1838 } 1839 1840 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r) 1841 { 1842 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data, 1843 complete_emulated_wrmsr, r); 1844 } 1845 1846 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1847 { 1848 u32 ecx = kvm_rcx_read(vcpu); 1849 u64 data; 1850 int r; 1851 1852 r = kvm_get_msr(vcpu, ecx, &data); 1853 1854 /* MSR read failed? See if we should ask user space */ 1855 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) { 1856 /* Bounce to user space */ 1857 return 0; 1858 } 1859 1860 if (!r) { 1861 trace_kvm_msr_read(ecx, data); 1862 1863 kvm_rax_write(vcpu, data & -1u); 1864 kvm_rdx_write(vcpu, (data >> 32) & -1u); 1865 } else { 1866 trace_kvm_msr_read_ex(ecx); 1867 } 1868 1869 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 1870 } 1871 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 1872 1873 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 1874 { 1875 u32 ecx = kvm_rcx_read(vcpu); 1876 u64 data = kvm_read_edx_eax(vcpu); 1877 int r; 1878 1879 r = kvm_set_msr(vcpu, ecx, data); 1880 1881 /* MSR write failed? See if we should ask user space */ 1882 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r)) 1883 /* Bounce to user space */ 1884 return 0; 1885 1886 /* Signal all other negative errors to userspace */ 1887 if (r < 0) 1888 return r; 1889 1890 if (!r) 1891 trace_kvm_msr_write(ecx, data); 1892 else 1893 trace_kvm_msr_write_ex(ecx, data); 1894 1895 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 1896 } 1897 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 1898 1899 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 1900 { 1901 return kvm_skip_emulated_instruction(vcpu); 1902 } 1903 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 1904 1905 int kvm_emulate_invd(struct kvm_vcpu *vcpu) 1906 { 1907 /* Treat an INVD instruction as a NOP and just skip it. */ 1908 return kvm_emulate_as_nop(vcpu); 1909 } 1910 EXPORT_SYMBOL_GPL(kvm_emulate_invd); 1911 1912 int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 1913 { 1914 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n"); 1915 return kvm_emulate_as_nop(vcpu); 1916 } 1917 EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 1918 1919 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 1920 { 1921 kvm_queue_exception(vcpu, UD_VECTOR); 1922 return 1; 1923 } 1924 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 1925 1926 int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 1927 { 1928 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n"); 1929 return kvm_emulate_as_nop(vcpu); 1930 } 1931 EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 1932 1933 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 1934 { 1935 xfer_to_guest_mode_prepare(); 1936 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 1937 xfer_to_guest_mode_work_pending(); 1938 } 1939 1940 /* 1941 * The fast path for frequent and performance sensitive wrmsr emulation, 1942 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 1943 * the latency of virtual IPI by avoiding the expensive bits of transitioning 1944 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 1945 * other cases which must be called after interrupts are enabled on the host. 1946 */ 1947 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 1948 { 1949 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 1950 return 1; 1951 1952 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 1953 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 1954 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 1955 ((u32)(data >> 32) != X2APIC_BROADCAST)) { 1956 1957 data &= ~(1 << 12); 1958 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32)); 1959 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32)); 1960 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data); 1961 trace_kvm_apic_write(APIC_ICR, (u32)data); 1962 return 0; 1963 } 1964 1965 return 1; 1966 } 1967 1968 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 1969 { 1970 if (!kvm_can_use_hv_timer(vcpu)) 1971 return 1; 1972 1973 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1974 return 0; 1975 } 1976 1977 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 1978 { 1979 u32 msr = kvm_rcx_read(vcpu); 1980 u64 data; 1981 fastpath_t ret = EXIT_FASTPATH_NONE; 1982 1983 switch (msr) { 1984 case APIC_BASE_MSR + (APIC_ICR >> 4): 1985 data = kvm_read_edx_eax(vcpu); 1986 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 1987 kvm_skip_emulated_instruction(vcpu); 1988 ret = EXIT_FASTPATH_EXIT_HANDLED; 1989 } 1990 break; 1991 case MSR_IA32_TSC_DEADLINE: 1992 data = kvm_read_edx_eax(vcpu); 1993 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 1994 kvm_skip_emulated_instruction(vcpu); 1995 ret = EXIT_FASTPATH_REENTER_GUEST; 1996 } 1997 break; 1998 default: 1999 break; 2000 } 2001 2002 if (ret != EXIT_FASTPATH_NONE) 2003 trace_kvm_msr_write(msr, data); 2004 2005 return ret; 2006 } 2007 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2008 2009 /* 2010 * Adapt set_msr() to msr_io()'s calling convention 2011 */ 2012 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2013 { 2014 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2015 } 2016 2017 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2018 { 2019 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2020 } 2021 2022 #ifdef CONFIG_X86_64 2023 struct pvclock_clock { 2024 int vclock_mode; 2025 u64 cycle_last; 2026 u64 mask; 2027 u32 mult; 2028 u32 shift; 2029 u64 base_cycles; 2030 u64 offset; 2031 }; 2032 2033 struct pvclock_gtod_data { 2034 seqcount_t seq; 2035 2036 struct pvclock_clock clock; /* extract of a clocksource struct */ 2037 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2038 2039 ktime_t offs_boot; 2040 u64 wall_time_sec; 2041 }; 2042 2043 static struct pvclock_gtod_data pvclock_gtod_data; 2044 2045 static void update_pvclock_gtod(struct timekeeper *tk) 2046 { 2047 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2048 2049 write_seqcount_begin(&vdata->seq); 2050 2051 /* copy pvclock gtod data */ 2052 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2053 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2054 vdata->clock.mask = tk->tkr_mono.mask; 2055 vdata->clock.mult = tk->tkr_mono.mult; 2056 vdata->clock.shift = tk->tkr_mono.shift; 2057 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2058 vdata->clock.offset = tk->tkr_mono.base; 2059 2060 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2061 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2062 vdata->raw_clock.mask = tk->tkr_raw.mask; 2063 vdata->raw_clock.mult = tk->tkr_raw.mult; 2064 vdata->raw_clock.shift = tk->tkr_raw.shift; 2065 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2066 vdata->raw_clock.offset = tk->tkr_raw.base; 2067 2068 vdata->wall_time_sec = tk->xtime_sec; 2069 2070 vdata->offs_boot = tk->offs_boot; 2071 2072 write_seqcount_end(&vdata->seq); 2073 } 2074 2075 static s64 get_kvmclock_base_ns(void) 2076 { 2077 /* Count up from boot time, but with the frequency of the raw clock. */ 2078 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2079 } 2080 #else 2081 static s64 get_kvmclock_base_ns(void) 2082 { 2083 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2084 return ktime_get_boottime_ns(); 2085 } 2086 #endif 2087 2088 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2089 { 2090 int version; 2091 int r; 2092 struct pvclock_wall_clock wc; 2093 u32 wc_sec_hi; 2094 u64 wall_nsec; 2095 2096 if (!wall_clock) 2097 return; 2098 2099 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2100 if (r) 2101 return; 2102 2103 if (version & 1) 2104 ++version; /* first time write, random junk */ 2105 2106 ++version; 2107 2108 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2109 return; 2110 2111 /* 2112 * The guest calculates current wall clock time by adding 2113 * system time (updated by kvm_guest_time_update below) to the 2114 * wall clock specified here. We do the reverse here. 2115 */ 2116 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2117 2118 wc.nsec = do_div(wall_nsec, 1000000000); 2119 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2120 wc.version = version; 2121 2122 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2123 2124 if (sec_hi_ofs) { 2125 wc_sec_hi = wall_nsec >> 32; 2126 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2127 &wc_sec_hi, sizeof(wc_sec_hi)); 2128 } 2129 2130 version++; 2131 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2132 } 2133 2134 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2135 bool old_msr, bool host_initiated) 2136 { 2137 struct kvm_arch *ka = &vcpu->kvm->arch; 2138 2139 if (vcpu->vcpu_id == 0 && !host_initiated) { 2140 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2141 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2142 2143 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2144 } 2145 2146 vcpu->arch.time = system_time; 2147 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2148 2149 /* we verify if the enable bit is set... */ 2150 vcpu->arch.pv_time_enabled = false; 2151 if (!(system_time & 1)) 2152 return; 2153 2154 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm, 2155 &vcpu->arch.pv_time, system_time & ~1ULL, 2156 sizeof(struct pvclock_vcpu_time_info))) 2157 vcpu->arch.pv_time_enabled = true; 2158 2159 return; 2160 } 2161 2162 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2163 { 2164 do_shl32_div32(dividend, divisor); 2165 return dividend; 2166 } 2167 2168 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2169 s8 *pshift, u32 *pmultiplier) 2170 { 2171 uint64_t scaled64; 2172 int32_t shift = 0; 2173 uint64_t tps64; 2174 uint32_t tps32; 2175 2176 tps64 = base_hz; 2177 scaled64 = scaled_hz; 2178 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2179 tps64 >>= 1; 2180 shift--; 2181 } 2182 2183 tps32 = (uint32_t)tps64; 2184 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2185 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2186 scaled64 >>= 1; 2187 else 2188 tps32 <<= 1; 2189 shift++; 2190 } 2191 2192 *pshift = shift; 2193 *pmultiplier = div_frac(scaled64, tps32); 2194 } 2195 2196 #ifdef CONFIG_X86_64 2197 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2198 #endif 2199 2200 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2201 static unsigned long max_tsc_khz; 2202 2203 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2204 { 2205 u64 v = (u64)khz * (1000000 + ppm); 2206 do_div(v, 1000000); 2207 return v; 2208 } 2209 2210 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2211 2212 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2213 { 2214 u64 ratio; 2215 2216 /* Guest TSC same frequency as host TSC? */ 2217 if (!scale) { 2218 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2219 return 0; 2220 } 2221 2222 /* TSC scaling supported? */ 2223 if (!kvm_has_tsc_control) { 2224 if (user_tsc_khz > tsc_khz) { 2225 vcpu->arch.tsc_catchup = 1; 2226 vcpu->arch.tsc_always_catchup = 1; 2227 return 0; 2228 } else { 2229 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2230 return -1; 2231 } 2232 } 2233 2234 /* TSC scaling required - calculate ratio */ 2235 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2236 user_tsc_khz, tsc_khz); 2237 2238 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2239 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2240 user_tsc_khz); 2241 return -1; 2242 } 2243 2244 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2245 return 0; 2246 } 2247 2248 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2249 { 2250 u32 thresh_lo, thresh_hi; 2251 int use_scaling = 0; 2252 2253 /* tsc_khz can be zero if TSC calibration fails */ 2254 if (user_tsc_khz == 0) { 2255 /* set tsc_scaling_ratio to a safe value */ 2256 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2257 return -1; 2258 } 2259 2260 /* Compute a scale to convert nanoseconds in TSC cycles */ 2261 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2262 &vcpu->arch.virtual_tsc_shift, 2263 &vcpu->arch.virtual_tsc_mult); 2264 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2265 2266 /* 2267 * Compute the variation in TSC rate which is acceptable 2268 * within the range of tolerance and decide if the 2269 * rate being applied is within that bounds of the hardware 2270 * rate. If so, no scaling or compensation need be done. 2271 */ 2272 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2273 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2274 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2275 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2276 use_scaling = 1; 2277 } 2278 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2279 } 2280 2281 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2282 { 2283 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2284 vcpu->arch.virtual_tsc_mult, 2285 vcpu->arch.virtual_tsc_shift); 2286 tsc += vcpu->arch.this_tsc_write; 2287 return tsc; 2288 } 2289 2290 static inline int gtod_is_based_on_tsc(int mode) 2291 { 2292 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2293 } 2294 2295 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2296 { 2297 #ifdef CONFIG_X86_64 2298 bool vcpus_matched; 2299 struct kvm_arch *ka = &vcpu->kvm->arch; 2300 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2301 2302 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2303 atomic_read(&vcpu->kvm->online_vcpus)); 2304 2305 /* 2306 * Once the masterclock is enabled, always perform request in 2307 * order to update it. 2308 * 2309 * In order to enable masterclock, the host clocksource must be TSC 2310 * and the vcpus need to have matched TSCs. When that happens, 2311 * perform request to enable masterclock. 2312 */ 2313 if (ka->use_master_clock || 2314 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2315 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2316 2317 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2318 atomic_read(&vcpu->kvm->online_vcpus), 2319 ka->use_master_clock, gtod->clock.vclock_mode); 2320 #endif 2321 } 2322 2323 /* 2324 * Multiply tsc by a fixed point number represented by ratio. 2325 * 2326 * The most significant 64-N bits (mult) of ratio represent the 2327 * integral part of the fixed point number; the remaining N bits 2328 * (frac) represent the fractional part, ie. ratio represents a fixed 2329 * point number (mult + frac * 2^(-N)). 2330 * 2331 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2332 */ 2333 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2334 { 2335 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2336 } 2337 2338 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio) 2339 { 2340 u64 _tsc = tsc; 2341 2342 if (ratio != kvm_default_tsc_scaling_ratio) 2343 _tsc = __scale_tsc(ratio, tsc); 2344 2345 return _tsc; 2346 } 2347 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2348 2349 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2350 { 2351 u64 tsc; 2352 2353 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2354 2355 return target_tsc - tsc; 2356 } 2357 2358 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2359 { 2360 return vcpu->arch.l1_tsc_offset + 2361 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2362 } 2363 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2364 2365 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2366 { 2367 u64 nested_offset; 2368 2369 if (l2_multiplier == kvm_default_tsc_scaling_ratio) 2370 nested_offset = l1_offset; 2371 else 2372 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2373 kvm_tsc_scaling_ratio_frac_bits); 2374 2375 nested_offset += l2_offset; 2376 return nested_offset; 2377 } 2378 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2379 2380 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2381 { 2382 if (l2_multiplier != kvm_default_tsc_scaling_ratio) 2383 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2384 kvm_tsc_scaling_ratio_frac_bits); 2385 2386 return l1_multiplier; 2387 } 2388 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2389 2390 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2391 { 2392 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2393 vcpu->arch.l1_tsc_offset, 2394 l1_offset); 2395 2396 vcpu->arch.l1_tsc_offset = l1_offset; 2397 2398 /* 2399 * If we are here because L1 chose not to trap WRMSR to TSC then 2400 * according to the spec this should set L1's TSC (as opposed to 2401 * setting L1's offset for L2). 2402 */ 2403 if (is_guest_mode(vcpu)) 2404 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2405 l1_offset, 2406 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2407 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2408 else 2409 vcpu->arch.tsc_offset = l1_offset; 2410 2411 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2412 } 2413 2414 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2415 { 2416 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2417 2418 /* Userspace is changing the multiplier while L2 is active */ 2419 if (is_guest_mode(vcpu)) 2420 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2421 l1_multiplier, 2422 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2423 else 2424 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2425 2426 if (kvm_has_tsc_control) 2427 static_call(kvm_x86_write_tsc_multiplier)( 2428 vcpu, vcpu->arch.tsc_scaling_ratio); 2429 } 2430 2431 static inline bool kvm_check_tsc_unstable(void) 2432 { 2433 #ifdef CONFIG_X86_64 2434 /* 2435 * TSC is marked unstable when we're running on Hyper-V, 2436 * 'TSC page' clocksource is good. 2437 */ 2438 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2439 return false; 2440 #endif 2441 return check_tsc_unstable(); 2442 } 2443 2444 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2445 { 2446 struct kvm *kvm = vcpu->kvm; 2447 u64 offset, ns, elapsed; 2448 unsigned long flags; 2449 bool matched; 2450 bool already_matched; 2451 bool synchronizing = false; 2452 2453 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2454 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2455 ns = get_kvmclock_base_ns(); 2456 elapsed = ns - kvm->arch.last_tsc_nsec; 2457 2458 if (vcpu->arch.virtual_tsc_khz) { 2459 if (data == 0) { 2460 /* 2461 * detection of vcpu initialization -- need to sync 2462 * with other vCPUs. This particularly helps to keep 2463 * kvm_clock stable after CPU hotplug 2464 */ 2465 synchronizing = true; 2466 } else { 2467 u64 tsc_exp = kvm->arch.last_tsc_write + 2468 nsec_to_cycles(vcpu, elapsed); 2469 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2470 /* 2471 * Special case: TSC write with a small delta (1 second) 2472 * of virtual cycle time against real time is 2473 * interpreted as an attempt to synchronize the CPU. 2474 */ 2475 synchronizing = data < tsc_exp + tsc_hz && 2476 data + tsc_hz > tsc_exp; 2477 } 2478 } 2479 2480 /* 2481 * For a reliable TSC, we can match TSC offsets, and for an unstable 2482 * TSC, we add elapsed time in this computation. We could let the 2483 * compensation code attempt to catch up if we fall behind, but 2484 * it's better to try to match offsets from the beginning. 2485 */ 2486 if (synchronizing && 2487 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2488 if (!kvm_check_tsc_unstable()) { 2489 offset = kvm->arch.cur_tsc_offset; 2490 } else { 2491 u64 delta = nsec_to_cycles(vcpu, elapsed); 2492 data += delta; 2493 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2494 } 2495 matched = true; 2496 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 2497 } else { 2498 /* 2499 * We split periods of matched TSC writes into generations. 2500 * For each generation, we track the original measured 2501 * nanosecond time, offset, and write, so if TSCs are in 2502 * sync, we can match exact offset, and if not, we can match 2503 * exact software computation in compute_guest_tsc() 2504 * 2505 * These values are tracked in kvm->arch.cur_xxx variables. 2506 */ 2507 kvm->arch.cur_tsc_generation++; 2508 kvm->arch.cur_tsc_nsec = ns; 2509 kvm->arch.cur_tsc_write = data; 2510 kvm->arch.cur_tsc_offset = offset; 2511 matched = false; 2512 } 2513 2514 /* 2515 * We also track th most recent recorded KHZ, write and time to 2516 * allow the matching interval to be extended at each write. 2517 */ 2518 kvm->arch.last_tsc_nsec = ns; 2519 kvm->arch.last_tsc_write = data; 2520 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2521 2522 vcpu->arch.last_guest_tsc = data; 2523 2524 /* Keep track of which generation this VCPU has synchronized to */ 2525 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2526 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2527 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2528 2529 kvm_vcpu_write_tsc_offset(vcpu, offset); 2530 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2531 2532 spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags); 2533 if (!matched) { 2534 kvm->arch.nr_vcpus_matched_tsc = 0; 2535 } else if (!already_matched) { 2536 kvm->arch.nr_vcpus_matched_tsc++; 2537 } 2538 2539 kvm_track_tsc_matching(vcpu); 2540 spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags); 2541 } 2542 2543 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2544 s64 adjustment) 2545 { 2546 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2547 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2548 } 2549 2550 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2551 { 2552 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2553 WARN_ON(adjustment < 0); 2554 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment, 2555 vcpu->arch.l1_tsc_scaling_ratio); 2556 adjust_tsc_offset_guest(vcpu, adjustment); 2557 } 2558 2559 #ifdef CONFIG_X86_64 2560 2561 static u64 read_tsc(void) 2562 { 2563 u64 ret = (u64)rdtsc_ordered(); 2564 u64 last = pvclock_gtod_data.clock.cycle_last; 2565 2566 if (likely(ret >= last)) 2567 return ret; 2568 2569 /* 2570 * GCC likes to generate cmov here, but this branch is extremely 2571 * predictable (it's just a function of time and the likely is 2572 * very likely) and there's a data dependence, so force GCC 2573 * to generate a branch instead. I don't barrier() because 2574 * we don't actually need a barrier, and if this function 2575 * ever gets inlined it will generate worse code. 2576 */ 2577 asm volatile (""); 2578 return last; 2579 } 2580 2581 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2582 int *mode) 2583 { 2584 long v; 2585 u64 tsc_pg_val; 2586 2587 switch (clock->vclock_mode) { 2588 case VDSO_CLOCKMODE_HVCLOCK: 2589 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2590 tsc_timestamp); 2591 if (tsc_pg_val != U64_MAX) { 2592 /* TSC page valid */ 2593 *mode = VDSO_CLOCKMODE_HVCLOCK; 2594 v = (tsc_pg_val - clock->cycle_last) & 2595 clock->mask; 2596 } else { 2597 /* TSC page invalid */ 2598 *mode = VDSO_CLOCKMODE_NONE; 2599 } 2600 break; 2601 case VDSO_CLOCKMODE_TSC: 2602 *mode = VDSO_CLOCKMODE_TSC; 2603 *tsc_timestamp = read_tsc(); 2604 v = (*tsc_timestamp - clock->cycle_last) & 2605 clock->mask; 2606 break; 2607 default: 2608 *mode = VDSO_CLOCKMODE_NONE; 2609 } 2610 2611 if (*mode == VDSO_CLOCKMODE_NONE) 2612 *tsc_timestamp = v = 0; 2613 2614 return v * clock->mult; 2615 } 2616 2617 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2618 { 2619 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2620 unsigned long seq; 2621 int mode; 2622 u64 ns; 2623 2624 do { 2625 seq = read_seqcount_begin(>od->seq); 2626 ns = gtod->raw_clock.base_cycles; 2627 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2628 ns >>= gtod->raw_clock.shift; 2629 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2630 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2631 *t = ns; 2632 2633 return mode; 2634 } 2635 2636 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2637 { 2638 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2639 unsigned long seq; 2640 int mode; 2641 u64 ns; 2642 2643 do { 2644 seq = read_seqcount_begin(>od->seq); 2645 ts->tv_sec = gtod->wall_time_sec; 2646 ns = gtod->clock.base_cycles; 2647 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2648 ns >>= gtod->clock.shift; 2649 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2650 2651 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2652 ts->tv_nsec = ns; 2653 2654 return mode; 2655 } 2656 2657 /* returns true if host is using TSC based clocksource */ 2658 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2659 { 2660 /* checked again under seqlock below */ 2661 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2662 return false; 2663 2664 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2665 tsc_timestamp)); 2666 } 2667 2668 /* returns true if host is using TSC based clocksource */ 2669 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2670 u64 *tsc_timestamp) 2671 { 2672 /* checked again under seqlock below */ 2673 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2674 return false; 2675 2676 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2677 } 2678 #endif 2679 2680 /* 2681 * 2682 * Assuming a stable TSC across physical CPUS, and a stable TSC 2683 * across virtual CPUs, the following condition is possible. 2684 * Each numbered line represents an event visible to both 2685 * CPUs at the next numbered event. 2686 * 2687 * "timespecX" represents host monotonic time. "tscX" represents 2688 * RDTSC value. 2689 * 2690 * VCPU0 on CPU0 | VCPU1 on CPU1 2691 * 2692 * 1. read timespec0,tsc0 2693 * 2. | timespec1 = timespec0 + N 2694 * | tsc1 = tsc0 + M 2695 * 3. transition to guest | transition to guest 2696 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2697 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2698 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2699 * 2700 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2701 * 2702 * - ret0 < ret1 2703 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2704 * ... 2705 * - 0 < N - M => M < N 2706 * 2707 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2708 * always the case (the difference between two distinct xtime instances 2709 * might be smaller then the difference between corresponding TSC reads, 2710 * when updating guest vcpus pvclock areas). 2711 * 2712 * To avoid that problem, do not allow visibility of distinct 2713 * system_timestamp/tsc_timestamp values simultaneously: use a master 2714 * copy of host monotonic time values. Update that master copy 2715 * in lockstep. 2716 * 2717 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2718 * 2719 */ 2720 2721 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2722 { 2723 #ifdef CONFIG_X86_64 2724 struct kvm_arch *ka = &kvm->arch; 2725 int vclock_mode; 2726 bool host_tsc_clocksource, vcpus_matched; 2727 2728 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2729 atomic_read(&kvm->online_vcpus)); 2730 2731 /* 2732 * If the host uses TSC clock, then passthrough TSC as stable 2733 * to the guest. 2734 */ 2735 host_tsc_clocksource = kvm_get_time_and_clockread( 2736 &ka->master_kernel_ns, 2737 &ka->master_cycle_now); 2738 2739 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2740 && !ka->backwards_tsc_observed 2741 && !ka->boot_vcpu_runs_old_kvmclock; 2742 2743 if (ka->use_master_clock) 2744 atomic_set(&kvm_guest_has_master_clock, 1); 2745 2746 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2747 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2748 vcpus_matched); 2749 #endif 2750 } 2751 2752 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2753 { 2754 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2755 } 2756 2757 static void kvm_gen_update_masterclock(struct kvm *kvm) 2758 { 2759 #ifdef CONFIG_X86_64 2760 int i; 2761 struct kvm_vcpu *vcpu; 2762 struct kvm_arch *ka = &kvm->arch; 2763 unsigned long flags; 2764 2765 kvm_hv_invalidate_tsc_page(kvm); 2766 2767 kvm_make_mclock_inprogress_request(kvm); 2768 2769 /* no guest entries from this point */ 2770 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags); 2771 pvclock_update_vm_gtod_copy(kvm); 2772 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags); 2773 2774 kvm_for_each_vcpu(i, vcpu, kvm) 2775 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2776 2777 /* guest entries allowed */ 2778 kvm_for_each_vcpu(i, vcpu, kvm) 2779 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2780 #endif 2781 } 2782 2783 u64 get_kvmclock_ns(struct kvm *kvm) 2784 { 2785 struct kvm_arch *ka = &kvm->arch; 2786 struct pvclock_vcpu_time_info hv_clock; 2787 unsigned long flags; 2788 u64 ret; 2789 2790 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags); 2791 if (!ka->use_master_clock) { 2792 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags); 2793 return get_kvmclock_base_ns() + ka->kvmclock_offset; 2794 } 2795 2796 hv_clock.tsc_timestamp = ka->master_cycle_now; 2797 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2798 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags); 2799 2800 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2801 get_cpu(); 2802 2803 if (__this_cpu_read(cpu_tsc_khz)) { 2804 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2805 &hv_clock.tsc_shift, 2806 &hv_clock.tsc_to_system_mul); 2807 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 2808 } else 2809 ret = get_kvmclock_base_ns() + ka->kvmclock_offset; 2810 2811 put_cpu(); 2812 2813 return ret; 2814 } 2815 2816 static void kvm_setup_pvclock_page(struct kvm_vcpu *v, 2817 struct gfn_to_hva_cache *cache, 2818 unsigned int offset) 2819 { 2820 struct kvm_vcpu_arch *vcpu = &v->arch; 2821 struct pvclock_vcpu_time_info guest_hv_clock; 2822 2823 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache, 2824 &guest_hv_clock, offset, sizeof(guest_hv_clock)))) 2825 return; 2826 2827 /* This VCPU is paused, but it's legal for a guest to read another 2828 * VCPU's kvmclock, so we really have to follow the specification where 2829 * it says that version is odd if data is being modified, and even after 2830 * it is consistent. 2831 * 2832 * Version field updates must be kept separate. This is because 2833 * kvm_write_guest_cached might use a "rep movs" instruction, and 2834 * writes within a string instruction are weakly ordered. So there 2835 * are three writes overall. 2836 * 2837 * As a small optimization, only write the version field in the first 2838 * and third write. The vcpu->pv_time cache is still valid, because the 2839 * version field is the first in the struct. 2840 */ 2841 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 2842 2843 if (guest_hv_clock.version & 1) 2844 ++guest_hv_clock.version; /* first time write, random junk */ 2845 2846 vcpu->hv_clock.version = guest_hv_clock.version + 1; 2847 kvm_write_guest_offset_cached(v->kvm, cache, 2848 &vcpu->hv_clock, offset, 2849 sizeof(vcpu->hv_clock.version)); 2850 2851 smp_wmb(); 2852 2853 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 2854 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 2855 2856 if (vcpu->pvclock_set_guest_stopped_request) { 2857 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 2858 vcpu->pvclock_set_guest_stopped_request = false; 2859 } 2860 2861 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 2862 2863 kvm_write_guest_offset_cached(v->kvm, cache, 2864 &vcpu->hv_clock, offset, 2865 sizeof(vcpu->hv_clock)); 2866 2867 smp_wmb(); 2868 2869 vcpu->hv_clock.version++; 2870 kvm_write_guest_offset_cached(v->kvm, cache, 2871 &vcpu->hv_clock, offset, 2872 sizeof(vcpu->hv_clock.version)); 2873 } 2874 2875 static int kvm_guest_time_update(struct kvm_vcpu *v) 2876 { 2877 unsigned long flags, tgt_tsc_khz; 2878 struct kvm_vcpu_arch *vcpu = &v->arch; 2879 struct kvm_arch *ka = &v->kvm->arch; 2880 s64 kernel_ns; 2881 u64 tsc_timestamp, host_tsc; 2882 u8 pvclock_flags; 2883 bool use_master_clock; 2884 2885 kernel_ns = 0; 2886 host_tsc = 0; 2887 2888 /* 2889 * If the host uses TSC clock, then passthrough TSC as stable 2890 * to the guest. 2891 */ 2892 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags); 2893 use_master_clock = ka->use_master_clock; 2894 if (use_master_clock) { 2895 host_tsc = ka->master_cycle_now; 2896 kernel_ns = ka->master_kernel_ns; 2897 } 2898 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags); 2899 2900 /* Keep irq disabled to prevent changes to the clock */ 2901 local_irq_save(flags); 2902 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 2903 if (unlikely(tgt_tsc_khz == 0)) { 2904 local_irq_restore(flags); 2905 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 2906 return 1; 2907 } 2908 if (!use_master_clock) { 2909 host_tsc = rdtsc(); 2910 kernel_ns = get_kvmclock_base_ns(); 2911 } 2912 2913 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 2914 2915 /* 2916 * We may have to catch up the TSC to match elapsed wall clock 2917 * time for two reasons, even if kvmclock is used. 2918 * 1) CPU could have been running below the maximum TSC rate 2919 * 2) Broken TSC compensation resets the base at each VCPU 2920 * entry to avoid unknown leaps of TSC even when running 2921 * again on the same CPU. This may cause apparent elapsed 2922 * time to disappear, and the guest to stand still or run 2923 * very slowly. 2924 */ 2925 if (vcpu->tsc_catchup) { 2926 u64 tsc = compute_guest_tsc(v, kernel_ns); 2927 if (tsc > tsc_timestamp) { 2928 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 2929 tsc_timestamp = tsc; 2930 } 2931 } 2932 2933 local_irq_restore(flags); 2934 2935 /* With all the info we got, fill in the values */ 2936 2937 if (kvm_has_tsc_control) 2938 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz, 2939 v->arch.l1_tsc_scaling_ratio); 2940 2941 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 2942 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 2943 &vcpu->hv_clock.tsc_shift, 2944 &vcpu->hv_clock.tsc_to_system_mul); 2945 vcpu->hw_tsc_khz = tgt_tsc_khz; 2946 } 2947 2948 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 2949 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 2950 vcpu->last_guest_tsc = tsc_timestamp; 2951 2952 /* If the host uses TSC clocksource, then it is stable */ 2953 pvclock_flags = 0; 2954 if (use_master_clock) 2955 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 2956 2957 vcpu->hv_clock.flags = pvclock_flags; 2958 2959 if (vcpu->pv_time_enabled) 2960 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0); 2961 if (vcpu->xen.vcpu_info_set) 2962 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache, 2963 offsetof(struct compat_vcpu_info, time)); 2964 if (vcpu->xen.vcpu_time_info_set) 2965 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0); 2966 if (v == kvm_get_vcpu(v->kvm, 0)) 2967 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 2968 return 0; 2969 } 2970 2971 /* 2972 * kvmclock updates which are isolated to a given vcpu, such as 2973 * vcpu->cpu migration, should not allow system_timestamp from 2974 * the rest of the vcpus to remain static. Otherwise ntp frequency 2975 * correction applies to one vcpu's system_timestamp but not 2976 * the others. 2977 * 2978 * So in those cases, request a kvmclock update for all vcpus. 2979 * We need to rate-limit these requests though, as they can 2980 * considerably slow guests that have a large number of vcpus. 2981 * The time for a remote vcpu to update its kvmclock is bound 2982 * by the delay we use to rate-limit the updates. 2983 */ 2984 2985 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 2986 2987 static void kvmclock_update_fn(struct work_struct *work) 2988 { 2989 int i; 2990 struct delayed_work *dwork = to_delayed_work(work); 2991 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2992 kvmclock_update_work); 2993 struct kvm *kvm = container_of(ka, struct kvm, arch); 2994 struct kvm_vcpu *vcpu; 2995 2996 kvm_for_each_vcpu(i, vcpu, kvm) { 2997 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2998 kvm_vcpu_kick(vcpu); 2999 } 3000 } 3001 3002 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3003 { 3004 struct kvm *kvm = v->kvm; 3005 3006 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3007 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3008 KVMCLOCK_UPDATE_DELAY); 3009 } 3010 3011 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3012 3013 static void kvmclock_sync_fn(struct work_struct *work) 3014 { 3015 struct delayed_work *dwork = to_delayed_work(work); 3016 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3017 kvmclock_sync_work); 3018 struct kvm *kvm = container_of(ka, struct kvm, arch); 3019 3020 if (!kvmclock_periodic_sync) 3021 return; 3022 3023 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3024 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3025 KVMCLOCK_SYNC_PERIOD); 3026 } 3027 3028 /* 3029 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3030 */ 3031 static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3032 { 3033 /* McStatusWrEn enabled? */ 3034 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3035 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3036 3037 return false; 3038 } 3039 3040 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3041 { 3042 u64 mcg_cap = vcpu->arch.mcg_cap; 3043 unsigned bank_num = mcg_cap & 0xff; 3044 u32 msr = msr_info->index; 3045 u64 data = msr_info->data; 3046 3047 switch (msr) { 3048 case MSR_IA32_MCG_STATUS: 3049 vcpu->arch.mcg_status = data; 3050 break; 3051 case MSR_IA32_MCG_CTL: 3052 if (!(mcg_cap & MCG_CTL_P) && 3053 (data || !msr_info->host_initiated)) 3054 return 1; 3055 if (data != 0 && data != ~(u64)0) 3056 return 1; 3057 vcpu->arch.mcg_ctl = data; 3058 break; 3059 default: 3060 if (msr >= MSR_IA32_MC0_CTL && 3061 msr < MSR_IA32_MCx_CTL(bank_num)) { 3062 u32 offset = array_index_nospec( 3063 msr - MSR_IA32_MC0_CTL, 3064 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3065 3066 /* only 0 or all 1s can be written to IA32_MCi_CTL 3067 * some Linux kernels though clear bit 10 in bank 4 to 3068 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 3069 * this to avoid an uncatched #GP in the guest 3070 */ 3071 if ((offset & 0x3) == 0 && 3072 data != 0 && (data | (1 << 10)) != ~(u64)0) 3073 return -1; 3074 3075 /* MCi_STATUS */ 3076 if (!msr_info->host_initiated && 3077 (offset & 0x3) == 1 && data != 0) { 3078 if (!can_set_mci_status(vcpu)) 3079 return -1; 3080 } 3081 3082 vcpu->arch.mce_banks[offset] = data; 3083 break; 3084 } 3085 return 1; 3086 } 3087 return 0; 3088 } 3089 3090 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3091 { 3092 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3093 3094 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3095 } 3096 3097 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3098 { 3099 gpa_t gpa = data & ~0x3f; 3100 3101 /* Bits 4:5 are reserved, Should be zero */ 3102 if (data & 0x30) 3103 return 1; 3104 3105 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3106 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3107 return 1; 3108 3109 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3110 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3111 return 1; 3112 3113 if (!lapic_in_kernel(vcpu)) 3114 return data ? 1 : 0; 3115 3116 vcpu->arch.apf.msr_en_val = data; 3117 3118 if (!kvm_pv_async_pf_enabled(vcpu)) { 3119 kvm_clear_async_pf_completion_queue(vcpu); 3120 kvm_async_pf_hash_reset(vcpu); 3121 return 0; 3122 } 3123 3124 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3125 sizeof(u64))) 3126 return 1; 3127 3128 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3129 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3130 3131 kvm_async_pf_wakeup_all(vcpu); 3132 3133 return 0; 3134 } 3135 3136 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3137 { 3138 /* Bits 8-63 are reserved */ 3139 if (data >> 8) 3140 return 1; 3141 3142 if (!lapic_in_kernel(vcpu)) 3143 return 1; 3144 3145 vcpu->arch.apf.msr_int_val = data; 3146 3147 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3148 3149 return 0; 3150 } 3151 3152 static void kvmclock_reset(struct kvm_vcpu *vcpu) 3153 { 3154 vcpu->arch.pv_time_enabled = false; 3155 vcpu->arch.time = 0; 3156 } 3157 3158 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3159 { 3160 ++vcpu->stat.tlb_flush; 3161 static_call(kvm_x86_tlb_flush_all)(vcpu); 3162 } 3163 3164 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3165 { 3166 ++vcpu->stat.tlb_flush; 3167 3168 if (!tdp_enabled) { 3169 /* 3170 * A TLB flush on behalf of the guest is equivalent to 3171 * INVPCID(all), toggling CR4.PGE, etc., which requires 3172 * a forced sync of the shadow page tables. Unload the 3173 * entire MMU here and the subsequent load will sync the 3174 * shadow page tables, and also flush the TLB. 3175 */ 3176 kvm_mmu_unload(vcpu); 3177 return; 3178 } 3179 3180 static_call(kvm_x86_tlb_flush_guest)(vcpu); 3181 } 3182 3183 static void record_steal_time(struct kvm_vcpu *vcpu) 3184 { 3185 struct kvm_host_map map; 3186 struct kvm_steal_time *st; 3187 3188 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3189 kvm_xen_runstate_set_running(vcpu); 3190 return; 3191 } 3192 3193 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3194 return; 3195 3196 /* -EAGAIN is returned in atomic context so we can just return. */ 3197 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, 3198 &map, &vcpu->arch.st.cache, false)) 3199 return; 3200 3201 st = map.hva + 3202 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 3203 3204 /* 3205 * Doing a TLB flush here, on the guest's behalf, can avoid 3206 * expensive IPIs. 3207 */ 3208 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3209 u8 st_preempted = xchg(&st->preempted, 0); 3210 3211 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3212 st_preempted & KVM_VCPU_FLUSH_TLB); 3213 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3214 kvm_vcpu_flush_tlb_guest(vcpu); 3215 } else { 3216 st->preempted = 0; 3217 } 3218 3219 vcpu->arch.st.preempted = 0; 3220 3221 if (st->version & 1) 3222 st->version += 1; /* first time write, random junk */ 3223 3224 st->version += 1; 3225 3226 smp_wmb(); 3227 3228 st->steal += current->sched_info.run_delay - 3229 vcpu->arch.st.last_steal; 3230 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3231 3232 smp_wmb(); 3233 3234 st->version += 1; 3235 3236 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false); 3237 } 3238 3239 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3240 { 3241 bool pr = false; 3242 u32 msr = msr_info->index; 3243 u64 data = msr_info->data; 3244 3245 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3246 return kvm_xen_write_hypercall_page(vcpu, data); 3247 3248 switch (msr) { 3249 case MSR_AMD64_NB_CFG: 3250 case MSR_IA32_UCODE_WRITE: 3251 case MSR_VM_HSAVE_PA: 3252 case MSR_AMD64_PATCH_LOADER: 3253 case MSR_AMD64_BU_CFG2: 3254 case MSR_AMD64_DC_CFG: 3255 case MSR_F15H_EX_CFG: 3256 break; 3257 3258 case MSR_IA32_UCODE_REV: 3259 if (msr_info->host_initiated) 3260 vcpu->arch.microcode_version = data; 3261 break; 3262 case MSR_IA32_ARCH_CAPABILITIES: 3263 if (!msr_info->host_initiated) 3264 return 1; 3265 vcpu->arch.arch_capabilities = data; 3266 break; 3267 case MSR_IA32_PERF_CAPABILITIES: { 3268 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3269 3270 if (!msr_info->host_initiated) 3271 return 1; 3272 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent)) 3273 return 1; 3274 if (data & ~msr_ent.data) 3275 return 1; 3276 3277 vcpu->arch.perf_capabilities = data; 3278 3279 return 0; 3280 } 3281 case MSR_EFER: 3282 return set_efer(vcpu, msr_info); 3283 case MSR_K7_HWCR: 3284 data &= ~(u64)0x40; /* ignore flush filter disable */ 3285 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3286 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3287 3288 /* Handle McStatusWrEn */ 3289 if (data == BIT_ULL(18)) { 3290 vcpu->arch.msr_hwcr = data; 3291 } else if (data != 0) { 3292 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3293 data); 3294 return 1; 3295 } 3296 break; 3297 case MSR_FAM10H_MMIO_CONF_BASE: 3298 if (data != 0) { 3299 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3300 "0x%llx\n", data); 3301 return 1; 3302 } 3303 break; 3304 case 0x200 ... 0x2ff: 3305 return kvm_mtrr_set_msr(vcpu, msr, data); 3306 case MSR_IA32_APICBASE: 3307 return kvm_set_apic_base(vcpu, msr_info); 3308 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3309 return kvm_x2apic_msr_write(vcpu, msr, data); 3310 case MSR_IA32_TSC_DEADLINE: 3311 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3312 break; 3313 case MSR_IA32_TSC_ADJUST: 3314 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3315 if (!msr_info->host_initiated) { 3316 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3317 adjust_tsc_offset_guest(vcpu, adj); 3318 } 3319 vcpu->arch.ia32_tsc_adjust_msr = data; 3320 } 3321 break; 3322 case MSR_IA32_MISC_ENABLE: 3323 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3324 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3325 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3326 return 1; 3327 vcpu->arch.ia32_misc_enable_msr = data; 3328 kvm_update_cpuid_runtime(vcpu); 3329 } else { 3330 vcpu->arch.ia32_misc_enable_msr = data; 3331 } 3332 break; 3333 case MSR_IA32_SMBASE: 3334 if (!msr_info->host_initiated) 3335 return 1; 3336 vcpu->arch.smbase = data; 3337 break; 3338 case MSR_IA32_POWER_CTL: 3339 vcpu->arch.msr_ia32_power_ctl = data; 3340 break; 3341 case MSR_IA32_TSC: 3342 if (msr_info->host_initiated) { 3343 kvm_synchronize_tsc(vcpu, data); 3344 } else { 3345 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3346 adjust_tsc_offset_guest(vcpu, adj); 3347 vcpu->arch.ia32_tsc_adjust_msr += adj; 3348 } 3349 break; 3350 case MSR_IA32_XSS: 3351 if (!msr_info->host_initiated && 3352 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3353 return 1; 3354 /* 3355 * KVM supports exposing PT to the guest, but does not support 3356 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3357 * XSAVES/XRSTORS to save/restore PT MSRs. 3358 */ 3359 if (data & ~supported_xss) 3360 return 1; 3361 vcpu->arch.ia32_xss = data; 3362 break; 3363 case MSR_SMI_COUNT: 3364 if (!msr_info->host_initiated) 3365 return 1; 3366 vcpu->arch.smi_count = data; 3367 break; 3368 case MSR_KVM_WALL_CLOCK_NEW: 3369 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3370 return 1; 3371 3372 vcpu->kvm->arch.wall_clock = data; 3373 kvm_write_wall_clock(vcpu->kvm, data, 0); 3374 break; 3375 case MSR_KVM_WALL_CLOCK: 3376 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3377 return 1; 3378 3379 vcpu->kvm->arch.wall_clock = data; 3380 kvm_write_wall_clock(vcpu->kvm, data, 0); 3381 break; 3382 case MSR_KVM_SYSTEM_TIME_NEW: 3383 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3384 return 1; 3385 3386 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3387 break; 3388 case MSR_KVM_SYSTEM_TIME: 3389 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3390 return 1; 3391 3392 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3393 break; 3394 case MSR_KVM_ASYNC_PF_EN: 3395 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3396 return 1; 3397 3398 if (kvm_pv_enable_async_pf(vcpu, data)) 3399 return 1; 3400 break; 3401 case MSR_KVM_ASYNC_PF_INT: 3402 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3403 return 1; 3404 3405 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3406 return 1; 3407 break; 3408 case MSR_KVM_ASYNC_PF_ACK: 3409 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3410 return 1; 3411 if (data & 0x1) { 3412 vcpu->arch.apf.pageready_pending = false; 3413 kvm_check_async_pf_completion(vcpu); 3414 } 3415 break; 3416 case MSR_KVM_STEAL_TIME: 3417 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3418 return 1; 3419 3420 if (unlikely(!sched_info_on())) 3421 return 1; 3422 3423 if (data & KVM_STEAL_RESERVED_MASK) 3424 return 1; 3425 3426 vcpu->arch.st.msr_val = data; 3427 3428 if (!(data & KVM_MSR_ENABLED)) 3429 break; 3430 3431 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3432 3433 break; 3434 case MSR_KVM_PV_EOI_EN: 3435 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3436 return 1; 3437 3438 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8))) 3439 return 1; 3440 break; 3441 3442 case MSR_KVM_POLL_CONTROL: 3443 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3444 return 1; 3445 3446 /* only enable bit supported */ 3447 if (data & (-1ULL << 1)) 3448 return 1; 3449 3450 vcpu->arch.msr_kvm_poll_control = data; 3451 break; 3452 3453 case MSR_IA32_MCG_CTL: 3454 case MSR_IA32_MCG_STATUS: 3455 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3456 return set_msr_mce(vcpu, msr_info); 3457 3458 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3459 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3460 pr = true; 3461 fallthrough; 3462 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3463 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3464 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3465 return kvm_pmu_set_msr(vcpu, msr_info); 3466 3467 if (pr || data != 0) 3468 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3469 "0x%x data 0x%llx\n", msr, data); 3470 break; 3471 case MSR_K7_CLK_CTL: 3472 /* 3473 * Ignore all writes to this no longer documented MSR. 3474 * Writes are only relevant for old K7 processors, 3475 * all pre-dating SVM, but a recommended workaround from 3476 * AMD for these chips. It is possible to specify the 3477 * affected processor models on the command line, hence 3478 * the need to ignore the workaround. 3479 */ 3480 break; 3481 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3482 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3483 case HV_X64_MSR_SYNDBG_OPTIONS: 3484 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3485 case HV_X64_MSR_CRASH_CTL: 3486 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3487 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3488 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3489 case HV_X64_MSR_TSC_EMULATION_STATUS: 3490 return kvm_hv_set_msr_common(vcpu, msr, data, 3491 msr_info->host_initiated); 3492 case MSR_IA32_BBL_CR_CTL3: 3493 /* Drop writes to this legacy MSR -- see rdmsr 3494 * counterpart for further detail. 3495 */ 3496 if (report_ignored_msrs) 3497 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3498 msr, data); 3499 break; 3500 case MSR_AMD64_OSVW_ID_LENGTH: 3501 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3502 return 1; 3503 vcpu->arch.osvw.length = data; 3504 break; 3505 case MSR_AMD64_OSVW_STATUS: 3506 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3507 return 1; 3508 vcpu->arch.osvw.status = data; 3509 break; 3510 case MSR_PLATFORM_INFO: 3511 if (!msr_info->host_initiated || 3512 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3513 cpuid_fault_enabled(vcpu))) 3514 return 1; 3515 vcpu->arch.msr_platform_info = data; 3516 break; 3517 case MSR_MISC_FEATURES_ENABLES: 3518 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3519 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3520 !supports_cpuid_fault(vcpu))) 3521 return 1; 3522 vcpu->arch.msr_misc_features_enables = data; 3523 break; 3524 default: 3525 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3526 return kvm_pmu_set_msr(vcpu, msr_info); 3527 return KVM_MSR_RET_INVALID; 3528 } 3529 return 0; 3530 } 3531 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3532 3533 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3534 { 3535 u64 data; 3536 u64 mcg_cap = vcpu->arch.mcg_cap; 3537 unsigned bank_num = mcg_cap & 0xff; 3538 3539 switch (msr) { 3540 case MSR_IA32_P5_MC_ADDR: 3541 case MSR_IA32_P5_MC_TYPE: 3542 data = 0; 3543 break; 3544 case MSR_IA32_MCG_CAP: 3545 data = vcpu->arch.mcg_cap; 3546 break; 3547 case MSR_IA32_MCG_CTL: 3548 if (!(mcg_cap & MCG_CTL_P) && !host) 3549 return 1; 3550 data = vcpu->arch.mcg_ctl; 3551 break; 3552 case MSR_IA32_MCG_STATUS: 3553 data = vcpu->arch.mcg_status; 3554 break; 3555 default: 3556 if (msr >= MSR_IA32_MC0_CTL && 3557 msr < MSR_IA32_MCx_CTL(bank_num)) { 3558 u32 offset = array_index_nospec( 3559 msr - MSR_IA32_MC0_CTL, 3560 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3561 3562 data = vcpu->arch.mce_banks[offset]; 3563 break; 3564 } 3565 return 1; 3566 } 3567 *pdata = data; 3568 return 0; 3569 } 3570 3571 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3572 { 3573 switch (msr_info->index) { 3574 case MSR_IA32_PLATFORM_ID: 3575 case MSR_IA32_EBL_CR_POWERON: 3576 case MSR_IA32_LASTBRANCHFROMIP: 3577 case MSR_IA32_LASTBRANCHTOIP: 3578 case MSR_IA32_LASTINTFROMIP: 3579 case MSR_IA32_LASTINTTOIP: 3580 case MSR_AMD64_SYSCFG: 3581 case MSR_K8_TSEG_ADDR: 3582 case MSR_K8_TSEG_MASK: 3583 case MSR_VM_HSAVE_PA: 3584 case MSR_K8_INT_PENDING_MSG: 3585 case MSR_AMD64_NB_CFG: 3586 case MSR_FAM10H_MMIO_CONF_BASE: 3587 case MSR_AMD64_BU_CFG2: 3588 case MSR_IA32_PERF_CTL: 3589 case MSR_AMD64_DC_CFG: 3590 case MSR_F15H_EX_CFG: 3591 /* 3592 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3593 * limit) MSRs. Just return 0, as we do not want to expose the host 3594 * data here. Do not conditionalize this on CPUID, as KVM does not do 3595 * so for existing CPU-specific MSRs. 3596 */ 3597 case MSR_RAPL_POWER_UNIT: 3598 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3599 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3600 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3601 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3602 msr_info->data = 0; 3603 break; 3604 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3605 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3606 return kvm_pmu_get_msr(vcpu, msr_info); 3607 if (!msr_info->host_initiated) 3608 return 1; 3609 msr_info->data = 0; 3610 break; 3611 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3612 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3613 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3614 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3615 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3616 return kvm_pmu_get_msr(vcpu, msr_info); 3617 msr_info->data = 0; 3618 break; 3619 case MSR_IA32_UCODE_REV: 3620 msr_info->data = vcpu->arch.microcode_version; 3621 break; 3622 case MSR_IA32_ARCH_CAPABILITIES: 3623 if (!msr_info->host_initiated && 3624 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3625 return 1; 3626 msr_info->data = vcpu->arch.arch_capabilities; 3627 break; 3628 case MSR_IA32_PERF_CAPABILITIES: 3629 if (!msr_info->host_initiated && 3630 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3631 return 1; 3632 msr_info->data = vcpu->arch.perf_capabilities; 3633 break; 3634 case MSR_IA32_POWER_CTL: 3635 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3636 break; 3637 case MSR_IA32_TSC: { 3638 /* 3639 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3640 * even when not intercepted. AMD manual doesn't explicitly 3641 * state this but appears to behave the same. 3642 * 3643 * On userspace reads and writes, however, we unconditionally 3644 * return L1's TSC value to ensure backwards-compatible 3645 * behavior for migration. 3646 */ 3647 u64 offset, ratio; 3648 3649 if (msr_info->host_initiated) { 3650 offset = vcpu->arch.l1_tsc_offset; 3651 ratio = vcpu->arch.l1_tsc_scaling_ratio; 3652 } else { 3653 offset = vcpu->arch.tsc_offset; 3654 ratio = vcpu->arch.tsc_scaling_ratio; 3655 } 3656 3657 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset; 3658 break; 3659 } 3660 case MSR_MTRRcap: 3661 case 0x200 ... 0x2ff: 3662 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3663 case 0xcd: /* fsb frequency */ 3664 msr_info->data = 3; 3665 break; 3666 /* 3667 * MSR_EBC_FREQUENCY_ID 3668 * Conservative value valid for even the basic CPU models. 3669 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3670 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3671 * and 266MHz for model 3, or 4. Set Core Clock 3672 * Frequency to System Bus Frequency Ratio to 1 (bits 3673 * 31:24) even though these are only valid for CPU 3674 * models > 2, however guests may end up dividing or 3675 * multiplying by zero otherwise. 3676 */ 3677 case MSR_EBC_FREQUENCY_ID: 3678 msr_info->data = 1 << 24; 3679 break; 3680 case MSR_IA32_APICBASE: 3681 msr_info->data = kvm_get_apic_base(vcpu); 3682 break; 3683 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3684 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3685 case MSR_IA32_TSC_DEADLINE: 3686 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3687 break; 3688 case MSR_IA32_TSC_ADJUST: 3689 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3690 break; 3691 case MSR_IA32_MISC_ENABLE: 3692 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3693 break; 3694 case MSR_IA32_SMBASE: 3695 if (!msr_info->host_initiated) 3696 return 1; 3697 msr_info->data = vcpu->arch.smbase; 3698 break; 3699 case MSR_SMI_COUNT: 3700 msr_info->data = vcpu->arch.smi_count; 3701 break; 3702 case MSR_IA32_PERF_STATUS: 3703 /* TSC increment by tick */ 3704 msr_info->data = 1000ULL; 3705 /* CPU multiplier */ 3706 msr_info->data |= (((uint64_t)4ULL) << 40); 3707 break; 3708 case MSR_EFER: 3709 msr_info->data = vcpu->arch.efer; 3710 break; 3711 case MSR_KVM_WALL_CLOCK: 3712 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3713 return 1; 3714 3715 msr_info->data = vcpu->kvm->arch.wall_clock; 3716 break; 3717 case MSR_KVM_WALL_CLOCK_NEW: 3718 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3719 return 1; 3720 3721 msr_info->data = vcpu->kvm->arch.wall_clock; 3722 break; 3723 case MSR_KVM_SYSTEM_TIME: 3724 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3725 return 1; 3726 3727 msr_info->data = vcpu->arch.time; 3728 break; 3729 case MSR_KVM_SYSTEM_TIME_NEW: 3730 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3731 return 1; 3732 3733 msr_info->data = vcpu->arch.time; 3734 break; 3735 case MSR_KVM_ASYNC_PF_EN: 3736 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3737 return 1; 3738 3739 msr_info->data = vcpu->arch.apf.msr_en_val; 3740 break; 3741 case MSR_KVM_ASYNC_PF_INT: 3742 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3743 return 1; 3744 3745 msr_info->data = vcpu->arch.apf.msr_int_val; 3746 break; 3747 case MSR_KVM_ASYNC_PF_ACK: 3748 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3749 return 1; 3750 3751 msr_info->data = 0; 3752 break; 3753 case MSR_KVM_STEAL_TIME: 3754 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3755 return 1; 3756 3757 msr_info->data = vcpu->arch.st.msr_val; 3758 break; 3759 case MSR_KVM_PV_EOI_EN: 3760 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3761 return 1; 3762 3763 msr_info->data = vcpu->arch.pv_eoi.msr_val; 3764 break; 3765 case MSR_KVM_POLL_CONTROL: 3766 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3767 return 1; 3768 3769 msr_info->data = vcpu->arch.msr_kvm_poll_control; 3770 break; 3771 case MSR_IA32_P5_MC_ADDR: 3772 case MSR_IA32_P5_MC_TYPE: 3773 case MSR_IA32_MCG_CAP: 3774 case MSR_IA32_MCG_CTL: 3775 case MSR_IA32_MCG_STATUS: 3776 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3777 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 3778 msr_info->host_initiated); 3779 case MSR_IA32_XSS: 3780 if (!msr_info->host_initiated && 3781 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3782 return 1; 3783 msr_info->data = vcpu->arch.ia32_xss; 3784 break; 3785 case MSR_K7_CLK_CTL: 3786 /* 3787 * Provide expected ramp-up count for K7. All other 3788 * are set to zero, indicating minimum divisors for 3789 * every field. 3790 * 3791 * This prevents guest kernels on AMD host with CPU 3792 * type 6, model 8 and higher from exploding due to 3793 * the rdmsr failing. 3794 */ 3795 msr_info->data = 0x20000000; 3796 break; 3797 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3798 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3799 case HV_X64_MSR_SYNDBG_OPTIONS: 3800 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3801 case HV_X64_MSR_CRASH_CTL: 3802 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3803 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3804 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3805 case HV_X64_MSR_TSC_EMULATION_STATUS: 3806 return kvm_hv_get_msr_common(vcpu, 3807 msr_info->index, &msr_info->data, 3808 msr_info->host_initiated); 3809 case MSR_IA32_BBL_CR_CTL3: 3810 /* This legacy MSR exists but isn't fully documented in current 3811 * silicon. It is however accessed by winxp in very narrow 3812 * scenarios where it sets bit #19, itself documented as 3813 * a "reserved" bit. Best effort attempt to source coherent 3814 * read data here should the balance of the register be 3815 * interpreted by the guest: 3816 * 3817 * L2 cache control register 3: 64GB range, 256KB size, 3818 * enabled, latency 0x1, configured 3819 */ 3820 msr_info->data = 0xbe702111; 3821 break; 3822 case MSR_AMD64_OSVW_ID_LENGTH: 3823 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3824 return 1; 3825 msr_info->data = vcpu->arch.osvw.length; 3826 break; 3827 case MSR_AMD64_OSVW_STATUS: 3828 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3829 return 1; 3830 msr_info->data = vcpu->arch.osvw.status; 3831 break; 3832 case MSR_PLATFORM_INFO: 3833 if (!msr_info->host_initiated && 3834 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 3835 return 1; 3836 msr_info->data = vcpu->arch.msr_platform_info; 3837 break; 3838 case MSR_MISC_FEATURES_ENABLES: 3839 msr_info->data = vcpu->arch.msr_misc_features_enables; 3840 break; 3841 case MSR_K7_HWCR: 3842 msr_info->data = vcpu->arch.msr_hwcr; 3843 break; 3844 default: 3845 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3846 return kvm_pmu_get_msr(vcpu, msr_info); 3847 return KVM_MSR_RET_INVALID; 3848 } 3849 return 0; 3850 } 3851 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 3852 3853 /* 3854 * Read or write a bunch of msrs. All parameters are kernel addresses. 3855 * 3856 * @return number of msrs set successfully. 3857 */ 3858 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 3859 struct kvm_msr_entry *entries, 3860 int (*do_msr)(struct kvm_vcpu *vcpu, 3861 unsigned index, u64 *data)) 3862 { 3863 int i; 3864 3865 for (i = 0; i < msrs->nmsrs; ++i) 3866 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 3867 break; 3868 3869 return i; 3870 } 3871 3872 /* 3873 * Read or write a bunch of msrs. Parameters are user addresses. 3874 * 3875 * @return number of msrs set successfully. 3876 */ 3877 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 3878 int (*do_msr)(struct kvm_vcpu *vcpu, 3879 unsigned index, u64 *data), 3880 int writeback) 3881 { 3882 struct kvm_msrs msrs; 3883 struct kvm_msr_entry *entries; 3884 int r, n; 3885 unsigned size; 3886 3887 r = -EFAULT; 3888 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 3889 goto out; 3890 3891 r = -E2BIG; 3892 if (msrs.nmsrs >= MAX_IO_MSRS) 3893 goto out; 3894 3895 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 3896 entries = memdup_user(user_msrs->entries, size); 3897 if (IS_ERR(entries)) { 3898 r = PTR_ERR(entries); 3899 goto out; 3900 } 3901 3902 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 3903 if (r < 0) 3904 goto out_free; 3905 3906 r = -EFAULT; 3907 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 3908 goto out_free; 3909 3910 r = n; 3911 3912 out_free: 3913 kfree(entries); 3914 out: 3915 return r; 3916 } 3917 3918 static inline bool kvm_can_mwait_in_guest(void) 3919 { 3920 return boot_cpu_has(X86_FEATURE_MWAIT) && 3921 !boot_cpu_has_bug(X86_BUG_MONITOR) && 3922 boot_cpu_has(X86_FEATURE_ARAT); 3923 } 3924 3925 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 3926 struct kvm_cpuid2 __user *cpuid_arg) 3927 { 3928 struct kvm_cpuid2 cpuid; 3929 int r; 3930 3931 r = -EFAULT; 3932 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 3933 return r; 3934 3935 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3936 if (r) 3937 return r; 3938 3939 r = -EFAULT; 3940 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 3941 return r; 3942 3943 return 0; 3944 } 3945 3946 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 3947 { 3948 int r = 0; 3949 3950 switch (ext) { 3951 case KVM_CAP_IRQCHIP: 3952 case KVM_CAP_HLT: 3953 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 3954 case KVM_CAP_SET_TSS_ADDR: 3955 case KVM_CAP_EXT_CPUID: 3956 case KVM_CAP_EXT_EMUL_CPUID: 3957 case KVM_CAP_CLOCKSOURCE: 3958 case KVM_CAP_PIT: 3959 case KVM_CAP_NOP_IO_DELAY: 3960 case KVM_CAP_MP_STATE: 3961 case KVM_CAP_SYNC_MMU: 3962 case KVM_CAP_USER_NMI: 3963 case KVM_CAP_REINJECT_CONTROL: 3964 case KVM_CAP_IRQ_INJECT_STATUS: 3965 case KVM_CAP_IOEVENTFD: 3966 case KVM_CAP_IOEVENTFD_NO_LENGTH: 3967 case KVM_CAP_PIT2: 3968 case KVM_CAP_PIT_STATE2: 3969 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 3970 case KVM_CAP_VCPU_EVENTS: 3971 case KVM_CAP_HYPERV: 3972 case KVM_CAP_HYPERV_VAPIC: 3973 case KVM_CAP_HYPERV_SPIN: 3974 case KVM_CAP_HYPERV_SYNIC: 3975 case KVM_CAP_HYPERV_SYNIC2: 3976 case KVM_CAP_HYPERV_VP_INDEX: 3977 case KVM_CAP_HYPERV_EVENTFD: 3978 case KVM_CAP_HYPERV_TLBFLUSH: 3979 case KVM_CAP_HYPERV_SEND_IPI: 3980 case KVM_CAP_HYPERV_CPUID: 3981 case KVM_CAP_HYPERV_ENFORCE_CPUID: 3982 case KVM_CAP_SYS_HYPERV_CPUID: 3983 case KVM_CAP_PCI_SEGMENT: 3984 case KVM_CAP_DEBUGREGS: 3985 case KVM_CAP_X86_ROBUST_SINGLESTEP: 3986 case KVM_CAP_XSAVE: 3987 case KVM_CAP_ASYNC_PF: 3988 case KVM_CAP_ASYNC_PF_INT: 3989 case KVM_CAP_GET_TSC_KHZ: 3990 case KVM_CAP_KVMCLOCK_CTRL: 3991 case KVM_CAP_READONLY_MEM: 3992 case KVM_CAP_HYPERV_TIME: 3993 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 3994 case KVM_CAP_TSC_DEADLINE_TIMER: 3995 case KVM_CAP_DISABLE_QUIRKS: 3996 case KVM_CAP_SET_BOOT_CPU_ID: 3997 case KVM_CAP_SPLIT_IRQCHIP: 3998 case KVM_CAP_IMMEDIATE_EXIT: 3999 case KVM_CAP_PMU_EVENT_FILTER: 4000 case KVM_CAP_GET_MSR_FEATURES: 4001 case KVM_CAP_MSR_PLATFORM_INFO: 4002 case KVM_CAP_EXCEPTION_PAYLOAD: 4003 case KVM_CAP_SET_GUEST_DEBUG: 4004 case KVM_CAP_LAST_CPU: 4005 case KVM_CAP_X86_USER_SPACE_MSR: 4006 case KVM_CAP_X86_MSR_FILTER: 4007 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4008 #ifdef CONFIG_X86_SGX_KVM 4009 case KVM_CAP_SGX_ATTRIBUTE: 4010 #endif 4011 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4012 case KVM_CAP_SREGS2: 4013 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4014 r = 1; 4015 break; 4016 case KVM_CAP_EXIT_HYPERCALL: 4017 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4018 break; 4019 case KVM_CAP_SET_GUEST_DEBUG2: 4020 return KVM_GUESTDBG_VALID_MASK; 4021 #ifdef CONFIG_KVM_XEN 4022 case KVM_CAP_XEN_HVM: 4023 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4024 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4025 KVM_XEN_HVM_CONFIG_SHARED_INFO; 4026 if (sched_info_on()) 4027 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4028 break; 4029 #endif 4030 case KVM_CAP_SYNC_REGS: 4031 r = KVM_SYNC_X86_VALID_FIELDS; 4032 break; 4033 case KVM_CAP_ADJUST_CLOCK: 4034 r = KVM_CLOCK_TSC_STABLE; 4035 break; 4036 case KVM_CAP_X86_DISABLE_EXITS: 4037 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4038 KVM_X86_DISABLE_EXITS_CSTATE; 4039 if(kvm_can_mwait_in_guest()) 4040 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4041 break; 4042 case KVM_CAP_X86_SMM: 4043 /* SMBASE is usually relocated above 1M on modern chipsets, 4044 * and SMM handlers might indeed rely on 4G segment limits, 4045 * so do not report SMM to be available if real mode is 4046 * emulated via vm86 mode. Still, do not go to great lengths 4047 * to avoid userspace's usage of the feature, because it is a 4048 * fringe case that is not enabled except via specific settings 4049 * of the module parameters. 4050 */ 4051 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4052 break; 4053 case KVM_CAP_VAPIC: 4054 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)(); 4055 break; 4056 case KVM_CAP_NR_VCPUS: 4057 r = KVM_SOFT_MAX_VCPUS; 4058 break; 4059 case KVM_CAP_MAX_VCPUS: 4060 r = KVM_MAX_VCPUS; 4061 break; 4062 case KVM_CAP_MAX_VCPU_ID: 4063 r = KVM_MAX_VCPU_ID; 4064 break; 4065 case KVM_CAP_PV_MMU: /* obsolete */ 4066 r = 0; 4067 break; 4068 case KVM_CAP_MCE: 4069 r = KVM_MAX_MCE_BANKS; 4070 break; 4071 case KVM_CAP_XCRS: 4072 r = boot_cpu_has(X86_FEATURE_XSAVE); 4073 break; 4074 case KVM_CAP_TSC_CONTROL: 4075 r = kvm_has_tsc_control; 4076 break; 4077 case KVM_CAP_X2APIC_API: 4078 r = KVM_X2APIC_API_VALID_FLAGS; 4079 break; 4080 case KVM_CAP_NESTED_STATE: 4081 r = kvm_x86_ops.nested_ops->get_state ? 4082 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4083 break; 4084 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4085 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4086 break; 4087 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4088 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4089 break; 4090 case KVM_CAP_SMALLER_MAXPHYADDR: 4091 r = (int) allow_smaller_maxphyaddr; 4092 break; 4093 case KVM_CAP_STEAL_TIME: 4094 r = sched_info_on(); 4095 break; 4096 case KVM_CAP_X86_BUS_LOCK_EXIT: 4097 if (kvm_has_bus_lock_exit) 4098 r = KVM_BUS_LOCK_DETECTION_OFF | 4099 KVM_BUS_LOCK_DETECTION_EXIT; 4100 else 4101 r = 0; 4102 break; 4103 default: 4104 break; 4105 } 4106 return r; 4107 4108 } 4109 4110 long kvm_arch_dev_ioctl(struct file *filp, 4111 unsigned int ioctl, unsigned long arg) 4112 { 4113 void __user *argp = (void __user *)arg; 4114 long r; 4115 4116 switch (ioctl) { 4117 case KVM_GET_MSR_INDEX_LIST: { 4118 struct kvm_msr_list __user *user_msr_list = argp; 4119 struct kvm_msr_list msr_list; 4120 unsigned n; 4121 4122 r = -EFAULT; 4123 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4124 goto out; 4125 n = msr_list.nmsrs; 4126 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4127 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4128 goto out; 4129 r = -E2BIG; 4130 if (n < msr_list.nmsrs) 4131 goto out; 4132 r = -EFAULT; 4133 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4134 num_msrs_to_save * sizeof(u32))) 4135 goto out; 4136 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4137 &emulated_msrs, 4138 num_emulated_msrs * sizeof(u32))) 4139 goto out; 4140 r = 0; 4141 break; 4142 } 4143 case KVM_GET_SUPPORTED_CPUID: 4144 case KVM_GET_EMULATED_CPUID: { 4145 struct kvm_cpuid2 __user *cpuid_arg = argp; 4146 struct kvm_cpuid2 cpuid; 4147 4148 r = -EFAULT; 4149 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4150 goto out; 4151 4152 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4153 ioctl); 4154 if (r) 4155 goto out; 4156 4157 r = -EFAULT; 4158 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4159 goto out; 4160 r = 0; 4161 break; 4162 } 4163 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4164 r = -EFAULT; 4165 if (copy_to_user(argp, &kvm_mce_cap_supported, 4166 sizeof(kvm_mce_cap_supported))) 4167 goto out; 4168 r = 0; 4169 break; 4170 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4171 struct kvm_msr_list __user *user_msr_list = argp; 4172 struct kvm_msr_list msr_list; 4173 unsigned int n; 4174 4175 r = -EFAULT; 4176 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4177 goto out; 4178 n = msr_list.nmsrs; 4179 msr_list.nmsrs = num_msr_based_features; 4180 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4181 goto out; 4182 r = -E2BIG; 4183 if (n < msr_list.nmsrs) 4184 goto out; 4185 r = -EFAULT; 4186 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4187 num_msr_based_features * sizeof(u32))) 4188 goto out; 4189 r = 0; 4190 break; 4191 } 4192 case KVM_GET_MSRS: 4193 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4194 break; 4195 case KVM_GET_SUPPORTED_HV_CPUID: 4196 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4197 break; 4198 default: 4199 r = -EINVAL; 4200 break; 4201 } 4202 out: 4203 return r; 4204 } 4205 4206 static void wbinvd_ipi(void *garbage) 4207 { 4208 wbinvd(); 4209 } 4210 4211 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4212 { 4213 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4214 } 4215 4216 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4217 { 4218 /* Address WBINVD may be executed by guest */ 4219 if (need_emulate_wbinvd(vcpu)) { 4220 if (static_call(kvm_x86_has_wbinvd_exit)()) 4221 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4222 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4223 smp_call_function_single(vcpu->cpu, 4224 wbinvd_ipi, NULL, 1); 4225 } 4226 4227 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4228 4229 /* Save host pkru register if supported */ 4230 vcpu->arch.host_pkru = read_pkru(); 4231 4232 /* Apply any externally detected TSC adjustments (due to suspend) */ 4233 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4234 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4235 vcpu->arch.tsc_offset_adjustment = 0; 4236 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4237 } 4238 4239 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4240 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4241 rdtsc() - vcpu->arch.last_host_tsc; 4242 if (tsc_delta < 0) 4243 mark_tsc_unstable("KVM discovered backwards TSC"); 4244 4245 if (kvm_check_tsc_unstable()) { 4246 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4247 vcpu->arch.last_guest_tsc); 4248 kvm_vcpu_write_tsc_offset(vcpu, offset); 4249 vcpu->arch.tsc_catchup = 1; 4250 } 4251 4252 if (kvm_lapic_hv_timer_in_use(vcpu)) 4253 kvm_lapic_restart_hv_timer(vcpu); 4254 4255 /* 4256 * On a host with synchronized TSC, there is no need to update 4257 * kvmclock on vcpu->cpu migration 4258 */ 4259 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4260 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4261 if (vcpu->cpu != cpu) 4262 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4263 vcpu->cpu = cpu; 4264 } 4265 4266 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4267 } 4268 4269 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4270 { 4271 struct kvm_host_map map; 4272 struct kvm_steal_time *st; 4273 4274 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4275 return; 4276 4277 if (vcpu->arch.st.preempted) 4278 return; 4279 4280 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map, 4281 &vcpu->arch.st.cache, true)) 4282 return; 4283 4284 st = map.hva + 4285 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS); 4286 4287 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4288 4289 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true); 4290 } 4291 4292 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4293 { 4294 int idx; 4295 4296 if (vcpu->preempted && !vcpu->arch.guest_state_protected) 4297 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4298 4299 /* 4300 * Take the srcu lock as memslots will be accessed to check the gfn 4301 * cache generation against the memslots generation. 4302 */ 4303 idx = srcu_read_lock(&vcpu->kvm->srcu); 4304 if (kvm_xen_msr_enabled(vcpu->kvm)) 4305 kvm_xen_runstate_set_preempted(vcpu); 4306 else 4307 kvm_steal_time_set_preempted(vcpu); 4308 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4309 4310 static_call(kvm_x86_vcpu_put)(vcpu); 4311 vcpu->arch.last_host_tsc = rdtsc(); 4312 /* 4313 * If userspace has set any breakpoints or watchpoints, dr6 is restored 4314 * on every vmexit, but if not, we might have a stale dr6 from the 4315 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 4316 */ 4317 set_debugreg(0, 6); 4318 } 4319 4320 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4321 struct kvm_lapic_state *s) 4322 { 4323 if (vcpu->arch.apicv_active) 4324 static_call(kvm_x86_sync_pir_to_irr)(vcpu); 4325 4326 return kvm_apic_get_state(vcpu, s); 4327 } 4328 4329 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4330 struct kvm_lapic_state *s) 4331 { 4332 int r; 4333 4334 r = kvm_apic_set_state(vcpu, s); 4335 if (r) 4336 return r; 4337 update_cr8_intercept(vcpu); 4338 4339 return 0; 4340 } 4341 4342 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4343 { 4344 /* 4345 * We can accept userspace's request for interrupt injection 4346 * as long as we have a place to store the interrupt number. 4347 * The actual injection will happen when the CPU is able to 4348 * deliver the interrupt. 4349 */ 4350 if (kvm_cpu_has_extint(vcpu)) 4351 return false; 4352 4353 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4354 return (!lapic_in_kernel(vcpu) || 4355 kvm_apic_accept_pic_intr(vcpu)); 4356 } 4357 4358 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4359 { 4360 return kvm_arch_interrupt_allowed(vcpu) && 4361 kvm_cpu_accept_dm_intr(vcpu); 4362 } 4363 4364 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4365 struct kvm_interrupt *irq) 4366 { 4367 if (irq->irq >= KVM_NR_INTERRUPTS) 4368 return -EINVAL; 4369 4370 if (!irqchip_in_kernel(vcpu->kvm)) { 4371 kvm_queue_interrupt(vcpu, irq->irq, false); 4372 kvm_make_request(KVM_REQ_EVENT, vcpu); 4373 return 0; 4374 } 4375 4376 /* 4377 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4378 * fail for in-kernel 8259. 4379 */ 4380 if (pic_in_kernel(vcpu->kvm)) 4381 return -ENXIO; 4382 4383 if (vcpu->arch.pending_external_vector != -1) 4384 return -EEXIST; 4385 4386 vcpu->arch.pending_external_vector = irq->irq; 4387 kvm_make_request(KVM_REQ_EVENT, vcpu); 4388 return 0; 4389 } 4390 4391 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4392 { 4393 kvm_inject_nmi(vcpu); 4394 4395 return 0; 4396 } 4397 4398 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4399 { 4400 kvm_make_request(KVM_REQ_SMI, vcpu); 4401 4402 return 0; 4403 } 4404 4405 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4406 struct kvm_tpr_access_ctl *tac) 4407 { 4408 if (tac->flags) 4409 return -EINVAL; 4410 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4411 return 0; 4412 } 4413 4414 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4415 u64 mcg_cap) 4416 { 4417 int r; 4418 unsigned bank_num = mcg_cap & 0xff, bank; 4419 4420 r = -EINVAL; 4421 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4422 goto out; 4423 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4424 goto out; 4425 r = 0; 4426 vcpu->arch.mcg_cap = mcg_cap; 4427 /* Init IA32_MCG_CTL to all 1s */ 4428 if (mcg_cap & MCG_CTL_P) 4429 vcpu->arch.mcg_ctl = ~(u64)0; 4430 /* Init IA32_MCi_CTL to all 1s */ 4431 for (bank = 0; bank < bank_num; bank++) 4432 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4433 4434 static_call(kvm_x86_setup_mce)(vcpu); 4435 out: 4436 return r; 4437 } 4438 4439 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4440 struct kvm_x86_mce *mce) 4441 { 4442 u64 mcg_cap = vcpu->arch.mcg_cap; 4443 unsigned bank_num = mcg_cap & 0xff; 4444 u64 *banks = vcpu->arch.mce_banks; 4445 4446 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4447 return -EINVAL; 4448 /* 4449 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4450 * reporting is disabled 4451 */ 4452 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4453 vcpu->arch.mcg_ctl != ~(u64)0) 4454 return 0; 4455 banks += 4 * mce->bank; 4456 /* 4457 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4458 * reporting is disabled for the bank 4459 */ 4460 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4461 return 0; 4462 if (mce->status & MCI_STATUS_UC) { 4463 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4464 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4465 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4466 return 0; 4467 } 4468 if (banks[1] & MCI_STATUS_VAL) 4469 mce->status |= MCI_STATUS_OVER; 4470 banks[2] = mce->addr; 4471 banks[3] = mce->misc; 4472 vcpu->arch.mcg_status = mce->mcg_status; 4473 banks[1] = mce->status; 4474 kvm_queue_exception(vcpu, MC_VECTOR); 4475 } else if (!(banks[1] & MCI_STATUS_VAL) 4476 || !(banks[1] & MCI_STATUS_UC)) { 4477 if (banks[1] & MCI_STATUS_VAL) 4478 mce->status |= MCI_STATUS_OVER; 4479 banks[2] = mce->addr; 4480 banks[3] = mce->misc; 4481 banks[1] = mce->status; 4482 } else 4483 banks[1] |= MCI_STATUS_OVER; 4484 return 0; 4485 } 4486 4487 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4488 struct kvm_vcpu_events *events) 4489 { 4490 process_nmi(vcpu); 4491 4492 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 4493 process_smi(vcpu); 4494 4495 /* 4496 * In guest mode, payload delivery should be deferred, 4497 * so that the L1 hypervisor can intercept #PF before 4498 * CR2 is modified (or intercept #DB before DR6 is 4499 * modified under nVMX). Unless the per-VM capability, 4500 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4501 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4502 * opportunistically defer the exception payload, deliver it if the 4503 * capability hasn't been requested before processing a 4504 * KVM_GET_VCPU_EVENTS. 4505 */ 4506 if (!vcpu->kvm->arch.exception_payload_enabled && 4507 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4508 kvm_deliver_exception_payload(vcpu); 4509 4510 /* 4511 * The API doesn't provide the instruction length for software 4512 * exceptions, so don't report them. As long as the guest RIP 4513 * isn't advanced, we should expect to encounter the exception 4514 * again. 4515 */ 4516 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4517 events->exception.injected = 0; 4518 events->exception.pending = 0; 4519 } else { 4520 events->exception.injected = vcpu->arch.exception.injected; 4521 events->exception.pending = vcpu->arch.exception.pending; 4522 /* 4523 * For ABI compatibility, deliberately conflate 4524 * pending and injected exceptions when 4525 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4526 */ 4527 if (!vcpu->kvm->arch.exception_payload_enabled) 4528 events->exception.injected |= 4529 vcpu->arch.exception.pending; 4530 } 4531 events->exception.nr = vcpu->arch.exception.nr; 4532 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4533 events->exception.error_code = vcpu->arch.exception.error_code; 4534 events->exception_has_payload = vcpu->arch.exception.has_payload; 4535 events->exception_payload = vcpu->arch.exception.payload; 4536 4537 events->interrupt.injected = 4538 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4539 events->interrupt.nr = vcpu->arch.interrupt.nr; 4540 events->interrupt.soft = 0; 4541 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 4542 4543 events->nmi.injected = vcpu->arch.nmi_injected; 4544 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4545 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 4546 events->nmi.pad = 0; 4547 4548 events->sipi_vector = 0; /* never valid when reporting to user space */ 4549 4550 events->smi.smm = is_smm(vcpu); 4551 events->smi.pending = vcpu->arch.smi_pending; 4552 events->smi.smm_inside_nmi = 4553 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4554 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4555 4556 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4557 | KVM_VCPUEVENT_VALID_SHADOW 4558 | KVM_VCPUEVENT_VALID_SMM); 4559 if (vcpu->kvm->arch.exception_payload_enabled) 4560 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4561 4562 memset(&events->reserved, 0, sizeof(events->reserved)); 4563 } 4564 4565 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 4566 4567 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4568 struct kvm_vcpu_events *events) 4569 { 4570 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4571 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4572 | KVM_VCPUEVENT_VALID_SHADOW 4573 | KVM_VCPUEVENT_VALID_SMM 4574 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4575 return -EINVAL; 4576 4577 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4578 if (!vcpu->kvm->arch.exception_payload_enabled) 4579 return -EINVAL; 4580 if (events->exception.pending) 4581 events->exception.injected = 0; 4582 else 4583 events->exception_has_payload = 0; 4584 } else { 4585 events->exception.pending = 0; 4586 events->exception_has_payload = 0; 4587 } 4588 4589 if ((events->exception.injected || events->exception.pending) && 4590 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4591 return -EINVAL; 4592 4593 /* INITs are latched while in SMM */ 4594 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4595 (events->smi.smm || events->smi.pending) && 4596 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4597 return -EINVAL; 4598 4599 process_nmi(vcpu); 4600 vcpu->arch.exception.injected = events->exception.injected; 4601 vcpu->arch.exception.pending = events->exception.pending; 4602 vcpu->arch.exception.nr = events->exception.nr; 4603 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4604 vcpu->arch.exception.error_code = events->exception.error_code; 4605 vcpu->arch.exception.has_payload = events->exception_has_payload; 4606 vcpu->arch.exception.payload = events->exception_payload; 4607 4608 vcpu->arch.interrupt.injected = events->interrupt.injected; 4609 vcpu->arch.interrupt.nr = events->interrupt.nr; 4610 vcpu->arch.interrupt.soft = events->interrupt.soft; 4611 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4612 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 4613 events->interrupt.shadow); 4614 4615 vcpu->arch.nmi_injected = events->nmi.injected; 4616 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 4617 vcpu->arch.nmi_pending = events->nmi.pending; 4618 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 4619 4620 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 4621 lapic_in_kernel(vcpu)) 4622 vcpu->arch.apic->sipi_vector = events->sipi_vector; 4623 4624 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 4625 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) 4626 kvm_smm_changed(vcpu, events->smi.smm); 4627 4628 vcpu->arch.smi_pending = events->smi.pending; 4629 4630 if (events->smi.smm) { 4631 if (events->smi.smm_inside_nmi) 4632 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 4633 else 4634 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 4635 } 4636 4637 if (lapic_in_kernel(vcpu)) { 4638 if (events->smi.latched_init) 4639 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4640 else 4641 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 4642 } 4643 } 4644 4645 kvm_make_request(KVM_REQ_EVENT, vcpu); 4646 4647 return 0; 4648 } 4649 4650 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 4651 struct kvm_debugregs *dbgregs) 4652 { 4653 unsigned long val; 4654 4655 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 4656 kvm_get_dr(vcpu, 6, &val); 4657 dbgregs->dr6 = val; 4658 dbgregs->dr7 = vcpu->arch.dr7; 4659 dbgregs->flags = 0; 4660 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 4661 } 4662 4663 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 4664 struct kvm_debugregs *dbgregs) 4665 { 4666 if (dbgregs->flags) 4667 return -EINVAL; 4668 4669 if (!kvm_dr6_valid(dbgregs->dr6)) 4670 return -EINVAL; 4671 if (!kvm_dr7_valid(dbgregs->dr7)) 4672 return -EINVAL; 4673 4674 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 4675 kvm_update_dr0123(vcpu); 4676 vcpu->arch.dr6 = dbgregs->dr6; 4677 vcpu->arch.dr7 = dbgregs->dr7; 4678 kvm_update_dr7(vcpu); 4679 4680 return 0; 4681 } 4682 4683 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 4684 4685 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 4686 { 4687 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4688 u64 xstate_bv = xsave->header.xfeatures; 4689 u64 valid; 4690 4691 /* 4692 * Copy legacy XSAVE area, to avoid complications with CPUID 4693 * leaves 0 and 1 in the loop below. 4694 */ 4695 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 4696 4697 /* Set XSTATE_BV */ 4698 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 4699 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 4700 4701 /* 4702 * Copy each region from the possibly compacted offset to the 4703 * non-compacted offset. 4704 */ 4705 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4706 while (valid) { 4707 u64 xfeature_mask = valid & -valid; 4708 int xfeature_nr = fls64(xfeature_mask) - 1; 4709 void *src = get_xsave_addr(xsave, xfeature_nr); 4710 4711 if (src) { 4712 u32 size, offset, ecx, edx; 4713 cpuid_count(XSTATE_CPUID, xfeature_nr, 4714 &size, &offset, &ecx, &edx); 4715 if (xfeature_nr == XFEATURE_PKRU) 4716 memcpy(dest + offset, &vcpu->arch.pkru, 4717 sizeof(vcpu->arch.pkru)); 4718 else 4719 memcpy(dest + offset, src, size); 4720 4721 } 4722 4723 valid -= xfeature_mask; 4724 } 4725 } 4726 4727 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 4728 { 4729 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; 4730 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 4731 u64 valid; 4732 4733 /* 4734 * Copy legacy XSAVE area, to avoid complications with CPUID 4735 * leaves 0 and 1 in the loop below. 4736 */ 4737 memcpy(xsave, src, XSAVE_HDR_OFFSET); 4738 4739 /* Set XSTATE_BV and possibly XCOMP_BV. */ 4740 xsave->header.xfeatures = xstate_bv; 4741 if (boot_cpu_has(X86_FEATURE_XSAVES)) 4742 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 4743 4744 /* 4745 * Copy each region from the non-compacted offset to the 4746 * possibly compacted offset. 4747 */ 4748 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 4749 while (valid) { 4750 u64 xfeature_mask = valid & -valid; 4751 int xfeature_nr = fls64(xfeature_mask) - 1; 4752 void *dest = get_xsave_addr(xsave, xfeature_nr); 4753 4754 if (dest) { 4755 u32 size, offset, ecx, edx; 4756 cpuid_count(XSTATE_CPUID, xfeature_nr, 4757 &size, &offset, &ecx, &edx); 4758 if (xfeature_nr == XFEATURE_PKRU) 4759 memcpy(&vcpu->arch.pkru, src + offset, 4760 sizeof(vcpu->arch.pkru)); 4761 else 4762 memcpy(dest, src + offset, size); 4763 } 4764 4765 valid -= xfeature_mask; 4766 } 4767 } 4768 4769 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 4770 struct kvm_xsave *guest_xsave) 4771 { 4772 if (!vcpu->arch.guest_fpu) 4773 return; 4774 4775 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4776 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 4777 fill_xsave((u8 *) guest_xsave->region, vcpu); 4778 } else { 4779 memcpy(guest_xsave->region, 4780 &vcpu->arch.guest_fpu->state.fxsave, 4781 sizeof(struct fxregs_state)); 4782 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 4783 XFEATURE_MASK_FPSSE; 4784 } 4785 } 4786 4787 #define XSAVE_MXCSR_OFFSET 24 4788 4789 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 4790 struct kvm_xsave *guest_xsave) 4791 { 4792 u64 xstate_bv; 4793 u32 mxcsr; 4794 4795 if (!vcpu->arch.guest_fpu) 4796 return 0; 4797 4798 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 4799 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 4800 4801 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 4802 /* 4803 * Here we allow setting states that are not present in 4804 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 4805 * with old userspace. 4806 */ 4807 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask) 4808 return -EINVAL; 4809 load_xsave(vcpu, (u8 *)guest_xsave->region); 4810 } else { 4811 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 4812 mxcsr & ~mxcsr_feature_mask) 4813 return -EINVAL; 4814 memcpy(&vcpu->arch.guest_fpu->state.fxsave, 4815 guest_xsave->region, sizeof(struct fxregs_state)); 4816 } 4817 return 0; 4818 } 4819 4820 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 4821 struct kvm_xcrs *guest_xcrs) 4822 { 4823 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 4824 guest_xcrs->nr_xcrs = 0; 4825 return; 4826 } 4827 4828 guest_xcrs->nr_xcrs = 1; 4829 guest_xcrs->flags = 0; 4830 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 4831 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 4832 } 4833 4834 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 4835 struct kvm_xcrs *guest_xcrs) 4836 { 4837 int i, r = 0; 4838 4839 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 4840 return -EINVAL; 4841 4842 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 4843 return -EINVAL; 4844 4845 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 4846 /* Only support XCR0 currently */ 4847 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 4848 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 4849 guest_xcrs->xcrs[i].value); 4850 break; 4851 } 4852 if (r) 4853 r = -EINVAL; 4854 return r; 4855 } 4856 4857 /* 4858 * kvm_set_guest_paused() indicates to the guest kernel that it has been 4859 * stopped by the hypervisor. This function will be called from the host only. 4860 * EINVAL is returned when the host attempts to set the flag for a guest that 4861 * does not support pv clocks. 4862 */ 4863 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 4864 { 4865 if (!vcpu->arch.pv_time_enabled) 4866 return -EINVAL; 4867 vcpu->arch.pvclock_set_guest_stopped_request = true; 4868 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4869 return 0; 4870 } 4871 4872 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4873 struct kvm_enable_cap *cap) 4874 { 4875 int r; 4876 uint16_t vmcs_version; 4877 void __user *user_ptr; 4878 4879 if (cap->flags) 4880 return -EINVAL; 4881 4882 switch (cap->cap) { 4883 case KVM_CAP_HYPERV_SYNIC2: 4884 if (cap->args[0]) 4885 return -EINVAL; 4886 fallthrough; 4887 4888 case KVM_CAP_HYPERV_SYNIC: 4889 if (!irqchip_in_kernel(vcpu->kvm)) 4890 return -EINVAL; 4891 return kvm_hv_activate_synic(vcpu, cap->cap == 4892 KVM_CAP_HYPERV_SYNIC2); 4893 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4894 if (!kvm_x86_ops.nested_ops->enable_evmcs) 4895 return -ENOTTY; 4896 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 4897 if (!r) { 4898 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 4899 if (copy_to_user(user_ptr, &vmcs_version, 4900 sizeof(vmcs_version))) 4901 r = -EFAULT; 4902 } 4903 return r; 4904 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4905 if (!kvm_x86_ops.enable_direct_tlbflush) 4906 return -ENOTTY; 4907 4908 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 4909 4910 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4911 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 4912 4913 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4914 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 4915 if (vcpu->arch.pv_cpuid.enforce) 4916 kvm_update_pv_runtime(vcpu); 4917 4918 return 0; 4919 default: 4920 return -EINVAL; 4921 } 4922 } 4923 4924 long kvm_arch_vcpu_ioctl(struct file *filp, 4925 unsigned int ioctl, unsigned long arg) 4926 { 4927 struct kvm_vcpu *vcpu = filp->private_data; 4928 void __user *argp = (void __user *)arg; 4929 int r; 4930 union { 4931 struct kvm_sregs2 *sregs2; 4932 struct kvm_lapic_state *lapic; 4933 struct kvm_xsave *xsave; 4934 struct kvm_xcrs *xcrs; 4935 void *buffer; 4936 } u; 4937 4938 vcpu_load(vcpu); 4939 4940 u.buffer = NULL; 4941 switch (ioctl) { 4942 case KVM_GET_LAPIC: { 4943 r = -EINVAL; 4944 if (!lapic_in_kernel(vcpu)) 4945 goto out; 4946 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 4947 GFP_KERNEL_ACCOUNT); 4948 4949 r = -ENOMEM; 4950 if (!u.lapic) 4951 goto out; 4952 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 4953 if (r) 4954 goto out; 4955 r = -EFAULT; 4956 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 4957 goto out; 4958 r = 0; 4959 break; 4960 } 4961 case KVM_SET_LAPIC: { 4962 r = -EINVAL; 4963 if (!lapic_in_kernel(vcpu)) 4964 goto out; 4965 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 4966 if (IS_ERR(u.lapic)) { 4967 r = PTR_ERR(u.lapic); 4968 goto out_nofree; 4969 } 4970 4971 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 4972 break; 4973 } 4974 case KVM_INTERRUPT: { 4975 struct kvm_interrupt irq; 4976 4977 r = -EFAULT; 4978 if (copy_from_user(&irq, argp, sizeof(irq))) 4979 goto out; 4980 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 4981 break; 4982 } 4983 case KVM_NMI: { 4984 r = kvm_vcpu_ioctl_nmi(vcpu); 4985 break; 4986 } 4987 case KVM_SMI: { 4988 r = kvm_vcpu_ioctl_smi(vcpu); 4989 break; 4990 } 4991 case KVM_SET_CPUID: { 4992 struct kvm_cpuid __user *cpuid_arg = argp; 4993 struct kvm_cpuid cpuid; 4994 4995 r = -EFAULT; 4996 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4997 goto out; 4998 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4999 break; 5000 } 5001 case KVM_SET_CPUID2: { 5002 struct kvm_cpuid2 __user *cpuid_arg = argp; 5003 struct kvm_cpuid2 cpuid; 5004 5005 r = -EFAULT; 5006 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5007 goto out; 5008 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5009 cpuid_arg->entries); 5010 break; 5011 } 5012 case KVM_GET_CPUID2: { 5013 struct kvm_cpuid2 __user *cpuid_arg = argp; 5014 struct kvm_cpuid2 cpuid; 5015 5016 r = -EFAULT; 5017 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5018 goto out; 5019 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5020 cpuid_arg->entries); 5021 if (r) 5022 goto out; 5023 r = -EFAULT; 5024 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5025 goto out; 5026 r = 0; 5027 break; 5028 } 5029 case KVM_GET_MSRS: { 5030 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5031 r = msr_io(vcpu, argp, do_get_msr, 1); 5032 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5033 break; 5034 } 5035 case KVM_SET_MSRS: { 5036 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5037 r = msr_io(vcpu, argp, do_set_msr, 0); 5038 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5039 break; 5040 } 5041 case KVM_TPR_ACCESS_REPORTING: { 5042 struct kvm_tpr_access_ctl tac; 5043 5044 r = -EFAULT; 5045 if (copy_from_user(&tac, argp, sizeof(tac))) 5046 goto out; 5047 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5048 if (r) 5049 goto out; 5050 r = -EFAULT; 5051 if (copy_to_user(argp, &tac, sizeof(tac))) 5052 goto out; 5053 r = 0; 5054 break; 5055 }; 5056 case KVM_SET_VAPIC_ADDR: { 5057 struct kvm_vapic_addr va; 5058 int idx; 5059 5060 r = -EINVAL; 5061 if (!lapic_in_kernel(vcpu)) 5062 goto out; 5063 r = -EFAULT; 5064 if (copy_from_user(&va, argp, sizeof(va))) 5065 goto out; 5066 idx = srcu_read_lock(&vcpu->kvm->srcu); 5067 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5068 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5069 break; 5070 } 5071 case KVM_X86_SETUP_MCE: { 5072 u64 mcg_cap; 5073 5074 r = -EFAULT; 5075 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5076 goto out; 5077 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5078 break; 5079 } 5080 case KVM_X86_SET_MCE: { 5081 struct kvm_x86_mce mce; 5082 5083 r = -EFAULT; 5084 if (copy_from_user(&mce, argp, sizeof(mce))) 5085 goto out; 5086 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5087 break; 5088 } 5089 case KVM_GET_VCPU_EVENTS: { 5090 struct kvm_vcpu_events events; 5091 5092 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5093 5094 r = -EFAULT; 5095 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5096 break; 5097 r = 0; 5098 break; 5099 } 5100 case KVM_SET_VCPU_EVENTS: { 5101 struct kvm_vcpu_events events; 5102 5103 r = -EFAULT; 5104 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5105 break; 5106 5107 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5108 break; 5109 } 5110 case KVM_GET_DEBUGREGS: { 5111 struct kvm_debugregs dbgregs; 5112 5113 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5114 5115 r = -EFAULT; 5116 if (copy_to_user(argp, &dbgregs, 5117 sizeof(struct kvm_debugregs))) 5118 break; 5119 r = 0; 5120 break; 5121 } 5122 case KVM_SET_DEBUGREGS: { 5123 struct kvm_debugregs dbgregs; 5124 5125 r = -EFAULT; 5126 if (copy_from_user(&dbgregs, argp, 5127 sizeof(struct kvm_debugregs))) 5128 break; 5129 5130 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5131 break; 5132 } 5133 case KVM_GET_XSAVE: { 5134 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5135 r = -ENOMEM; 5136 if (!u.xsave) 5137 break; 5138 5139 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5140 5141 r = -EFAULT; 5142 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5143 break; 5144 r = 0; 5145 break; 5146 } 5147 case KVM_SET_XSAVE: { 5148 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 5149 if (IS_ERR(u.xsave)) { 5150 r = PTR_ERR(u.xsave); 5151 goto out_nofree; 5152 } 5153 5154 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5155 break; 5156 } 5157 case KVM_GET_XCRS: { 5158 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5159 r = -ENOMEM; 5160 if (!u.xcrs) 5161 break; 5162 5163 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5164 5165 r = -EFAULT; 5166 if (copy_to_user(argp, u.xcrs, 5167 sizeof(struct kvm_xcrs))) 5168 break; 5169 r = 0; 5170 break; 5171 } 5172 case KVM_SET_XCRS: { 5173 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5174 if (IS_ERR(u.xcrs)) { 5175 r = PTR_ERR(u.xcrs); 5176 goto out_nofree; 5177 } 5178 5179 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5180 break; 5181 } 5182 case KVM_SET_TSC_KHZ: { 5183 u32 user_tsc_khz; 5184 5185 r = -EINVAL; 5186 user_tsc_khz = (u32)arg; 5187 5188 if (kvm_has_tsc_control && 5189 user_tsc_khz >= kvm_max_guest_tsc_khz) 5190 goto out; 5191 5192 if (user_tsc_khz == 0) 5193 user_tsc_khz = tsc_khz; 5194 5195 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5196 r = 0; 5197 5198 goto out; 5199 } 5200 case KVM_GET_TSC_KHZ: { 5201 r = vcpu->arch.virtual_tsc_khz; 5202 goto out; 5203 } 5204 case KVM_KVMCLOCK_CTRL: { 5205 r = kvm_set_guest_paused(vcpu); 5206 goto out; 5207 } 5208 case KVM_ENABLE_CAP: { 5209 struct kvm_enable_cap cap; 5210 5211 r = -EFAULT; 5212 if (copy_from_user(&cap, argp, sizeof(cap))) 5213 goto out; 5214 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5215 break; 5216 } 5217 case KVM_GET_NESTED_STATE: { 5218 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5219 u32 user_data_size; 5220 5221 r = -EINVAL; 5222 if (!kvm_x86_ops.nested_ops->get_state) 5223 break; 5224 5225 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5226 r = -EFAULT; 5227 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5228 break; 5229 5230 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5231 user_data_size); 5232 if (r < 0) 5233 break; 5234 5235 if (r > user_data_size) { 5236 if (put_user(r, &user_kvm_nested_state->size)) 5237 r = -EFAULT; 5238 else 5239 r = -E2BIG; 5240 break; 5241 } 5242 5243 r = 0; 5244 break; 5245 } 5246 case KVM_SET_NESTED_STATE: { 5247 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5248 struct kvm_nested_state kvm_state; 5249 int idx; 5250 5251 r = -EINVAL; 5252 if (!kvm_x86_ops.nested_ops->set_state) 5253 break; 5254 5255 r = -EFAULT; 5256 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5257 break; 5258 5259 r = -EINVAL; 5260 if (kvm_state.size < sizeof(kvm_state)) 5261 break; 5262 5263 if (kvm_state.flags & 5264 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5265 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5266 | KVM_STATE_NESTED_GIF_SET)) 5267 break; 5268 5269 /* nested_run_pending implies guest_mode. */ 5270 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5271 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5272 break; 5273 5274 idx = srcu_read_lock(&vcpu->kvm->srcu); 5275 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5276 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5277 break; 5278 } 5279 case KVM_GET_SUPPORTED_HV_CPUID: 5280 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5281 break; 5282 #ifdef CONFIG_KVM_XEN 5283 case KVM_XEN_VCPU_GET_ATTR: { 5284 struct kvm_xen_vcpu_attr xva; 5285 5286 r = -EFAULT; 5287 if (copy_from_user(&xva, argp, sizeof(xva))) 5288 goto out; 5289 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5290 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5291 r = -EFAULT; 5292 break; 5293 } 5294 case KVM_XEN_VCPU_SET_ATTR: { 5295 struct kvm_xen_vcpu_attr xva; 5296 5297 r = -EFAULT; 5298 if (copy_from_user(&xva, argp, sizeof(xva))) 5299 goto out; 5300 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5301 break; 5302 } 5303 #endif 5304 case KVM_GET_SREGS2: { 5305 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5306 r = -ENOMEM; 5307 if (!u.sregs2) 5308 goto out; 5309 __get_sregs2(vcpu, u.sregs2); 5310 r = -EFAULT; 5311 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5312 goto out; 5313 r = 0; 5314 break; 5315 } 5316 case KVM_SET_SREGS2: { 5317 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5318 if (IS_ERR(u.sregs2)) { 5319 r = PTR_ERR(u.sregs2); 5320 u.sregs2 = NULL; 5321 goto out; 5322 } 5323 r = __set_sregs2(vcpu, u.sregs2); 5324 break; 5325 } 5326 default: 5327 r = -EINVAL; 5328 } 5329 out: 5330 kfree(u.buffer); 5331 out_nofree: 5332 vcpu_put(vcpu); 5333 return r; 5334 } 5335 5336 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5337 { 5338 return VM_FAULT_SIGBUS; 5339 } 5340 5341 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5342 { 5343 int ret; 5344 5345 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5346 return -EINVAL; 5347 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5348 return ret; 5349 } 5350 5351 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5352 u64 ident_addr) 5353 { 5354 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5355 } 5356 5357 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5358 unsigned long kvm_nr_mmu_pages) 5359 { 5360 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5361 return -EINVAL; 5362 5363 mutex_lock(&kvm->slots_lock); 5364 5365 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5366 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5367 5368 mutex_unlock(&kvm->slots_lock); 5369 return 0; 5370 } 5371 5372 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5373 { 5374 return kvm->arch.n_max_mmu_pages; 5375 } 5376 5377 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5378 { 5379 struct kvm_pic *pic = kvm->arch.vpic; 5380 int r; 5381 5382 r = 0; 5383 switch (chip->chip_id) { 5384 case KVM_IRQCHIP_PIC_MASTER: 5385 memcpy(&chip->chip.pic, &pic->pics[0], 5386 sizeof(struct kvm_pic_state)); 5387 break; 5388 case KVM_IRQCHIP_PIC_SLAVE: 5389 memcpy(&chip->chip.pic, &pic->pics[1], 5390 sizeof(struct kvm_pic_state)); 5391 break; 5392 case KVM_IRQCHIP_IOAPIC: 5393 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5394 break; 5395 default: 5396 r = -EINVAL; 5397 break; 5398 } 5399 return r; 5400 } 5401 5402 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5403 { 5404 struct kvm_pic *pic = kvm->arch.vpic; 5405 int r; 5406 5407 r = 0; 5408 switch (chip->chip_id) { 5409 case KVM_IRQCHIP_PIC_MASTER: 5410 spin_lock(&pic->lock); 5411 memcpy(&pic->pics[0], &chip->chip.pic, 5412 sizeof(struct kvm_pic_state)); 5413 spin_unlock(&pic->lock); 5414 break; 5415 case KVM_IRQCHIP_PIC_SLAVE: 5416 spin_lock(&pic->lock); 5417 memcpy(&pic->pics[1], &chip->chip.pic, 5418 sizeof(struct kvm_pic_state)); 5419 spin_unlock(&pic->lock); 5420 break; 5421 case KVM_IRQCHIP_IOAPIC: 5422 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5423 break; 5424 default: 5425 r = -EINVAL; 5426 break; 5427 } 5428 kvm_pic_update_irq(pic); 5429 return r; 5430 } 5431 5432 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5433 { 5434 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5435 5436 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5437 5438 mutex_lock(&kps->lock); 5439 memcpy(ps, &kps->channels, sizeof(*ps)); 5440 mutex_unlock(&kps->lock); 5441 return 0; 5442 } 5443 5444 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5445 { 5446 int i; 5447 struct kvm_pit *pit = kvm->arch.vpit; 5448 5449 mutex_lock(&pit->pit_state.lock); 5450 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5451 for (i = 0; i < 3; i++) 5452 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5453 mutex_unlock(&pit->pit_state.lock); 5454 return 0; 5455 } 5456 5457 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5458 { 5459 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5460 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5461 sizeof(ps->channels)); 5462 ps->flags = kvm->arch.vpit->pit_state.flags; 5463 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5464 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5465 return 0; 5466 } 5467 5468 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5469 { 5470 int start = 0; 5471 int i; 5472 u32 prev_legacy, cur_legacy; 5473 struct kvm_pit *pit = kvm->arch.vpit; 5474 5475 mutex_lock(&pit->pit_state.lock); 5476 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5477 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5478 if (!prev_legacy && cur_legacy) 5479 start = 1; 5480 memcpy(&pit->pit_state.channels, &ps->channels, 5481 sizeof(pit->pit_state.channels)); 5482 pit->pit_state.flags = ps->flags; 5483 for (i = 0; i < 3; i++) 5484 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5485 start && i == 0); 5486 mutex_unlock(&pit->pit_state.lock); 5487 return 0; 5488 } 5489 5490 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5491 struct kvm_reinject_control *control) 5492 { 5493 struct kvm_pit *pit = kvm->arch.vpit; 5494 5495 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5496 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5497 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5498 */ 5499 mutex_lock(&pit->pit_state.lock); 5500 kvm_pit_set_reinject(pit, control->pit_reinject); 5501 mutex_unlock(&pit->pit_state.lock); 5502 5503 return 0; 5504 } 5505 5506 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5507 { 5508 5509 /* 5510 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 5511 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 5512 * on all VM-Exits, thus we only need to kick running vCPUs to force a 5513 * VM-Exit. 5514 */ 5515 struct kvm_vcpu *vcpu; 5516 int i; 5517 5518 kvm_for_each_vcpu(i, vcpu, kvm) 5519 kvm_vcpu_kick(vcpu); 5520 } 5521 5522 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5523 bool line_status) 5524 { 5525 if (!irqchip_in_kernel(kvm)) 5526 return -ENXIO; 5527 5528 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5529 irq_event->irq, irq_event->level, 5530 line_status); 5531 return 0; 5532 } 5533 5534 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5535 struct kvm_enable_cap *cap) 5536 { 5537 int r; 5538 5539 if (cap->flags) 5540 return -EINVAL; 5541 5542 switch (cap->cap) { 5543 case KVM_CAP_DISABLE_QUIRKS: 5544 kvm->arch.disabled_quirks = cap->args[0]; 5545 r = 0; 5546 break; 5547 case KVM_CAP_SPLIT_IRQCHIP: { 5548 mutex_lock(&kvm->lock); 5549 r = -EINVAL; 5550 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5551 goto split_irqchip_unlock; 5552 r = -EEXIST; 5553 if (irqchip_in_kernel(kvm)) 5554 goto split_irqchip_unlock; 5555 if (kvm->created_vcpus) 5556 goto split_irqchip_unlock; 5557 r = kvm_setup_empty_irq_routing(kvm); 5558 if (r) 5559 goto split_irqchip_unlock; 5560 /* Pairs with irqchip_in_kernel. */ 5561 smp_wmb(); 5562 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5563 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5564 r = 0; 5565 split_irqchip_unlock: 5566 mutex_unlock(&kvm->lock); 5567 break; 5568 } 5569 case KVM_CAP_X2APIC_API: 5570 r = -EINVAL; 5571 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 5572 break; 5573 5574 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 5575 kvm->arch.x2apic_format = true; 5576 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 5577 kvm->arch.x2apic_broadcast_quirk_disabled = true; 5578 5579 r = 0; 5580 break; 5581 case KVM_CAP_X86_DISABLE_EXITS: 5582 r = -EINVAL; 5583 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 5584 break; 5585 5586 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 5587 kvm_can_mwait_in_guest()) 5588 kvm->arch.mwait_in_guest = true; 5589 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 5590 kvm->arch.hlt_in_guest = true; 5591 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 5592 kvm->arch.pause_in_guest = true; 5593 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 5594 kvm->arch.cstate_in_guest = true; 5595 r = 0; 5596 break; 5597 case KVM_CAP_MSR_PLATFORM_INFO: 5598 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 5599 r = 0; 5600 break; 5601 case KVM_CAP_EXCEPTION_PAYLOAD: 5602 kvm->arch.exception_payload_enabled = cap->args[0]; 5603 r = 0; 5604 break; 5605 case KVM_CAP_X86_USER_SPACE_MSR: 5606 kvm->arch.user_space_msr_mask = cap->args[0]; 5607 r = 0; 5608 break; 5609 case KVM_CAP_X86_BUS_LOCK_EXIT: 5610 r = -EINVAL; 5611 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 5612 break; 5613 5614 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 5615 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 5616 break; 5617 5618 if (kvm_has_bus_lock_exit && 5619 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 5620 kvm->arch.bus_lock_detection_enabled = true; 5621 r = 0; 5622 break; 5623 #ifdef CONFIG_X86_SGX_KVM 5624 case KVM_CAP_SGX_ATTRIBUTE: { 5625 unsigned long allowed_attributes = 0; 5626 5627 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 5628 if (r) 5629 break; 5630 5631 /* KVM only supports the PROVISIONKEY privileged attribute. */ 5632 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 5633 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 5634 kvm->arch.sgx_provisioning_allowed = true; 5635 else 5636 r = -EINVAL; 5637 break; 5638 } 5639 #endif 5640 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 5641 r = -EINVAL; 5642 if (kvm_x86_ops.vm_copy_enc_context_from) 5643 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]); 5644 return r; 5645 case KVM_CAP_EXIT_HYPERCALL: 5646 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 5647 r = -EINVAL; 5648 break; 5649 } 5650 kvm->arch.hypercall_exit_enabled = cap->args[0]; 5651 r = 0; 5652 break; 5653 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 5654 r = -EINVAL; 5655 if (cap->args[0] & ~1) 5656 break; 5657 kvm->arch.exit_on_emulation_error = cap->args[0]; 5658 r = 0; 5659 break; 5660 default: 5661 r = -EINVAL; 5662 break; 5663 } 5664 return r; 5665 } 5666 5667 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 5668 { 5669 struct kvm_x86_msr_filter *msr_filter; 5670 5671 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 5672 if (!msr_filter) 5673 return NULL; 5674 5675 msr_filter->default_allow = default_allow; 5676 return msr_filter; 5677 } 5678 5679 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 5680 { 5681 u32 i; 5682 5683 if (!msr_filter) 5684 return; 5685 5686 for (i = 0; i < msr_filter->count; i++) 5687 kfree(msr_filter->ranges[i].bitmap); 5688 5689 kfree(msr_filter); 5690 } 5691 5692 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 5693 struct kvm_msr_filter_range *user_range) 5694 { 5695 unsigned long *bitmap = NULL; 5696 size_t bitmap_size; 5697 5698 if (!user_range->nmsrs) 5699 return 0; 5700 5701 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 5702 return -EINVAL; 5703 5704 if (!user_range->flags) 5705 return -EINVAL; 5706 5707 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 5708 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 5709 return -EINVAL; 5710 5711 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 5712 if (IS_ERR(bitmap)) 5713 return PTR_ERR(bitmap); 5714 5715 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 5716 .flags = user_range->flags, 5717 .base = user_range->base, 5718 .nmsrs = user_range->nmsrs, 5719 .bitmap = bitmap, 5720 }; 5721 5722 msr_filter->count++; 5723 return 0; 5724 } 5725 5726 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 5727 { 5728 struct kvm_msr_filter __user *user_msr_filter = argp; 5729 struct kvm_x86_msr_filter *new_filter, *old_filter; 5730 struct kvm_msr_filter filter; 5731 bool default_allow; 5732 bool empty = true; 5733 int r = 0; 5734 u32 i; 5735 5736 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 5737 return -EFAULT; 5738 5739 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 5740 empty &= !filter.ranges[i].nmsrs; 5741 5742 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 5743 if (empty && !default_allow) 5744 return -EINVAL; 5745 5746 new_filter = kvm_alloc_msr_filter(default_allow); 5747 if (!new_filter) 5748 return -ENOMEM; 5749 5750 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 5751 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 5752 if (r) { 5753 kvm_free_msr_filter(new_filter); 5754 return r; 5755 } 5756 } 5757 5758 mutex_lock(&kvm->lock); 5759 5760 /* The per-VM filter is protected by kvm->lock... */ 5761 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 5762 5763 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 5764 synchronize_srcu(&kvm->srcu); 5765 5766 kvm_free_msr_filter(old_filter); 5767 5768 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 5769 mutex_unlock(&kvm->lock); 5770 5771 return 0; 5772 } 5773 5774 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 5775 static int kvm_arch_suspend_notifier(struct kvm *kvm) 5776 { 5777 struct kvm_vcpu *vcpu; 5778 int i, ret = 0; 5779 5780 mutex_lock(&kvm->lock); 5781 kvm_for_each_vcpu(i, vcpu, kvm) { 5782 if (!vcpu->arch.pv_time_enabled) 5783 continue; 5784 5785 ret = kvm_set_guest_paused(vcpu); 5786 if (ret) { 5787 kvm_err("Failed to pause guest VCPU%d: %d\n", 5788 vcpu->vcpu_id, ret); 5789 break; 5790 } 5791 } 5792 mutex_unlock(&kvm->lock); 5793 5794 return ret ? NOTIFY_BAD : NOTIFY_DONE; 5795 } 5796 5797 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 5798 { 5799 switch (state) { 5800 case PM_HIBERNATION_PREPARE: 5801 case PM_SUSPEND_PREPARE: 5802 return kvm_arch_suspend_notifier(kvm); 5803 } 5804 5805 return NOTIFY_DONE; 5806 } 5807 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 5808 5809 long kvm_arch_vm_ioctl(struct file *filp, 5810 unsigned int ioctl, unsigned long arg) 5811 { 5812 struct kvm *kvm = filp->private_data; 5813 void __user *argp = (void __user *)arg; 5814 int r = -ENOTTY; 5815 /* 5816 * This union makes it completely explicit to gcc-3.x 5817 * that these two variables' stack usage should be 5818 * combined, not added together. 5819 */ 5820 union { 5821 struct kvm_pit_state ps; 5822 struct kvm_pit_state2 ps2; 5823 struct kvm_pit_config pit_config; 5824 } u; 5825 5826 switch (ioctl) { 5827 case KVM_SET_TSS_ADDR: 5828 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 5829 break; 5830 case KVM_SET_IDENTITY_MAP_ADDR: { 5831 u64 ident_addr; 5832 5833 mutex_lock(&kvm->lock); 5834 r = -EINVAL; 5835 if (kvm->created_vcpus) 5836 goto set_identity_unlock; 5837 r = -EFAULT; 5838 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 5839 goto set_identity_unlock; 5840 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 5841 set_identity_unlock: 5842 mutex_unlock(&kvm->lock); 5843 break; 5844 } 5845 case KVM_SET_NR_MMU_PAGES: 5846 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 5847 break; 5848 case KVM_GET_NR_MMU_PAGES: 5849 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 5850 break; 5851 case KVM_CREATE_IRQCHIP: { 5852 mutex_lock(&kvm->lock); 5853 5854 r = -EEXIST; 5855 if (irqchip_in_kernel(kvm)) 5856 goto create_irqchip_unlock; 5857 5858 r = -EINVAL; 5859 if (kvm->created_vcpus) 5860 goto create_irqchip_unlock; 5861 5862 r = kvm_pic_init(kvm); 5863 if (r) 5864 goto create_irqchip_unlock; 5865 5866 r = kvm_ioapic_init(kvm); 5867 if (r) { 5868 kvm_pic_destroy(kvm); 5869 goto create_irqchip_unlock; 5870 } 5871 5872 r = kvm_setup_default_irq_routing(kvm); 5873 if (r) { 5874 kvm_ioapic_destroy(kvm); 5875 kvm_pic_destroy(kvm); 5876 goto create_irqchip_unlock; 5877 } 5878 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 5879 smp_wmb(); 5880 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 5881 create_irqchip_unlock: 5882 mutex_unlock(&kvm->lock); 5883 break; 5884 } 5885 case KVM_CREATE_PIT: 5886 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 5887 goto create_pit; 5888 case KVM_CREATE_PIT2: 5889 r = -EFAULT; 5890 if (copy_from_user(&u.pit_config, argp, 5891 sizeof(struct kvm_pit_config))) 5892 goto out; 5893 create_pit: 5894 mutex_lock(&kvm->lock); 5895 r = -EEXIST; 5896 if (kvm->arch.vpit) 5897 goto create_pit_unlock; 5898 r = -ENOMEM; 5899 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 5900 if (kvm->arch.vpit) 5901 r = 0; 5902 create_pit_unlock: 5903 mutex_unlock(&kvm->lock); 5904 break; 5905 case KVM_GET_IRQCHIP: { 5906 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5907 struct kvm_irqchip *chip; 5908 5909 chip = memdup_user(argp, sizeof(*chip)); 5910 if (IS_ERR(chip)) { 5911 r = PTR_ERR(chip); 5912 goto out; 5913 } 5914 5915 r = -ENXIO; 5916 if (!irqchip_kernel(kvm)) 5917 goto get_irqchip_out; 5918 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 5919 if (r) 5920 goto get_irqchip_out; 5921 r = -EFAULT; 5922 if (copy_to_user(argp, chip, sizeof(*chip))) 5923 goto get_irqchip_out; 5924 r = 0; 5925 get_irqchip_out: 5926 kfree(chip); 5927 break; 5928 } 5929 case KVM_SET_IRQCHIP: { 5930 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 5931 struct kvm_irqchip *chip; 5932 5933 chip = memdup_user(argp, sizeof(*chip)); 5934 if (IS_ERR(chip)) { 5935 r = PTR_ERR(chip); 5936 goto out; 5937 } 5938 5939 r = -ENXIO; 5940 if (!irqchip_kernel(kvm)) 5941 goto set_irqchip_out; 5942 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 5943 set_irqchip_out: 5944 kfree(chip); 5945 break; 5946 } 5947 case KVM_GET_PIT: { 5948 r = -EFAULT; 5949 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 5950 goto out; 5951 r = -ENXIO; 5952 if (!kvm->arch.vpit) 5953 goto out; 5954 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 5955 if (r) 5956 goto out; 5957 r = -EFAULT; 5958 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 5959 goto out; 5960 r = 0; 5961 break; 5962 } 5963 case KVM_SET_PIT: { 5964 r = -EFAULT; 5965 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 5966 goto out; 5967 mutex_lock(&kvm->lock); 5968 r = -ENXIO; 5969 if (!kvm->arch.vpit) 5970 goto set_pit_out; 5971 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 5972 set_pit_out: 5973 mutex_unlock(&kvm->lock); 5974 break; 5975 } 5976 case KVM_GET_PIT2: { 5977 r = -ENXIO; 5978 if (!kvm->arch.vpit) 5979 goto out; 5980 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 5981 if (r) 5982 goto out; 5983 r = -EFAULT; 5984 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 5985 goto out; 5986 r = 0; 5987 break; 5988 } 5989 case KVM_SET_PIT2: { 5990 r = -EFAULT; 5991 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 5992 goto out; 5993 mutex_lock(&kvm->lock); 5994 r = -ENXIO; 5995 if (!kvm->arch.vpit) 5996 goto set_pit2_out; 5997 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 5998 set_pit2_out: 5999 mutex_unlock(&kvm->lock); 6000 break; 6001 } 6002 case KVM_REINJECT_CONTROL: { 6003 struct kvm_reinject_control control; 6004 r = -EFAULT; 6005 if (copy_from_user(&control, argp, sizeof(control))) 6006 goto out; 6007 r = -ENXIO; 6008 if (!kvm->arch.vpit) 6009 goto out; 6010 r = kvm_vm_ioctl_reinject(kvm, &control); 6011 break; 6012 } 6013 case KVM_SET_BOOT_CPU_ID: 6014 r = 0; 6015 mutex_lock(&kvm->lock); 6016 if (kvm->created_vcpus) 6017 r = -EBUSY; 6018 else 6019 kvm->arch.bsp_vcpu_id = arg; 6020 mutex_unlock(&kvm->lock); 6021 break; 6022 #ifdef CONFIG_KVM_XEN 6023 case KVM_XEN_HVM_CONFIG: { 6024 struct kvm_xen_hvm_config xhc; 6025 r = -EFAULT; 6026 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6027 goto out; 6028 r = kvm_xen_hvm_config(kvm, &xhc); 6029 break; 6030 } 6031 case KVM_XEN_HVM_GET_ATTR: { 6032 struct kvm_xen_hvm_attr xha; 6033 6034 r = -EFAULT; 6035 if (copy_from_user(&xha, argp, sizeof(xha))) 6036 goto out; 6037 r = kvm_xen_hvm_get_attr(kvm, &xha); 6038 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6039 r = -EFAULT; 6040 break; 6041 } 6042 case KVM_XEN_HVM_SET_ATTR: { 6043 struct kvm_xen_hvm_attr xha; 6044 6045 r = -EFAULT; 6046 if (copy_from_user(&xha, argp, sizeof(xha))) 6047 goto out; 6048 r = kvm_xen_hvm_set_attr(kvm, &xha); 6049 break; 6050 } 6051 #endif 6052 case KVM_SET_CLOCK: { 6053 struct kvm_arch *ka = &kvm->arch; 6054 struct kvm_clock_data user_ns; 6055 u64 now_ns; 6056 6057 r = -EFAULT; 6058 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 6059 goto out; 6060 6061 r = -EINVAL; 6062 if (user_ns.flags) 6063 goto out; 6064 6065 r = 0; 6066 /* 6067 * TODO: userspace has to take care of races with VCPU_RUN, so 6068 * kvm_gen_update_masterclock() can be cut down to locked 6069 * pvclock_update_vm_gtod_copy(). 6070 */ 6071 kvm_gen_update_masterclock(kvm); 6072 6073 /* 6074 * This pairs with kvm_guest_time_update(): when masterclock is 6075 * in use, we use master_kernel_ns + kvmclock_offset to set 6076 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6077 * is slightly ahead) here we risk going negative on unsigned 6078 * 'system_time' when 'user_ns.clock' is very small. 6079 */ 6080 spin_lock_irq(&ka->pvclock_gtod_sync_lock); 6081 if (kvm->arch.use_master_clock) 6082 now_ns = ka->master_kernel_ns; 6083 else 6084 now_ns = get_kvmclock_base_ns(); 6085 ka->kvmclock_offset = user_ns.clock - now_ns; 6086 spin_unlock_irq(&ka->pvclock_gtod_sync_lock); 6087 6088 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 6089 break; 6090 } 6091 case KVM_GET_CLOCK: { 6092 struct kvm_clock_data user_ns; 6093 u64 now_ns; 6094 6095 now_ns = get_kvmclock_ns(kvm); 6096 user_ns.clock = now_ns; 6097 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 6098 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 6099 6100 r = -EFAULT; 6101 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 6102 goto out; 6103 r = 0; 6104 break; 6105 } 6106 case KVM_MEMORY_ENCRYPT_OP: { 6107 r = -ENOTTY; 6108 if (kvm_x86_ops.mem_enc_op) 6109 r = static_call(kvm_x86_mem_enc_op)(kvm, argp); 6110 break; 6111 } 6112 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6113 struct kvm_enc_region region; 6114 6115 r = -EFAULT; 6116 if (copy_from_user(®ion, argp, sizeof(region))) 6117 goto out; 6118 6119 r = -ENOTTY; 6120 if (kvm_x86_ops.mem_enc_reg_region) 6121 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, ®ion); 6122 break; 6123 } 6124 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6125 struct kvm_enc_region region; 6126 6127 r = -EFAULT; 6128 if (copy_from_user(®ion, argp, sizeof(region))) 6129 goto out; 6130 6131 r = -ENOTTY; 6132 if (kvm_x86_ops.mem_enc_unreg_region) 6133 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, ®ion); 6134 break; 6135 } 6136 case KVM_HYPERV_EVENTFD: { 6137 struct kvm_hyperv_eventfd hvevfd; 6138 6139 r = -EFAULT; 6140 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6141 goto out; 6142 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6143 break; 6144 } 6145 case KVM_SET_PMU_EVENT_FILTER: 6146 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6147 break; 6148 case KVM_X86_SET_MSR_FILTER: 6149 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6150 break; 6151 default: 6152 r = -ENOTTY; 6153 } 6154 out: 6155 return r; 6156 } 6157 6158 static void kvm_init_msr_list(void) 6159 { 6160 struct x86_pmu_capability x86_pmu; 6161 u32 dummy[2]; 6162 unsigned i; 6163 6164 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4, 6165 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6166 6167 perf_get_x86_pmu_capability(&x86_pmu); 6168 6169 num_msrs_to_save = 0; 6170 num_emulated_msrs = 0; 6171 num_msr_based_features = 0; 6172 6173 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6174 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6175 continue; 6176 6177 /* 6178 * Even MSRs that are valid in the host may not be exposed 6179 * to the guests in some cases. 6180 */ 6181 switch (msrs_to_save_all[i]) { 6182 case MSR_IA32_BNDCFGS: 6183 if (!kvm_mpx_supported()) 6184 continue; 6185 break; 6186 case MSR_TSC_AUX: 6187 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6188 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6189 continue; 6190 break; 6191 case MSR_IA32_UMWAIT_CONTROL: 6192 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6193 continue; 6194 break; 6195 case MSR_IA32_RTIT_CTL: 6196 case MSR_IA32_RTIT_STATUS: 6197 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6198 continue; 6199 break; 6200 case MSR_IA32_RTIT_CR3_MATCH: 6201 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6202 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6203 continue; 6204 break; 6205 case MSR_IA32_RTIT_OUTPUT_BASE: 6206 case MSR_IA32_RTIT_OUTPUT_MASK: 6207 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6208 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6209 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6210 continue; 6211 break; 6212 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6213 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6214 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6215 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6216 continue; 6217 break; 6218 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6219 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6220 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6221 continue; 6222 break; 6223 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6224 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6225 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6226 continue; 6227 break; 6228 default: 6229 break; 6230 } 6231 6232 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6233 } 6234 6235 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6236 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 6237 continue; 6238 6239 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6240 } 6241 6242 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6243 struct kvm_msr_entry msr; 6244 6245 msr.index = msr_based_features_all[i]; 6246 if (kvm_get_msr_feature(&msr)) 6247 continue; 6248 6249 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6250 } 6251 } 6252 6253 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6254 const void *v) 6255 { 6256 int handled = 0; 6257 int n; 6258 6259 do { 6260 n = min(len, 8); 6261 if (!(lapic_in_kernel(vcpu) && 6262 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6263 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6264 break; 6265 handled += n; 6266 addr += n; 6267 len -= n; 6268 v += n; 6269 } while (len); 6270 6271 return handled; 6272 } 6273 6274 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 6275 { 6276 int handled = 0; 6277 int n; 6278 6279 do { 6280 n = min(len, 8); 6281 if (!(lapic_in_kernel(vcpu) && 6282 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 6283 addr, n, v)) 6284 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 6285 break; 6286 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 6287 handled += n; 6288 addr += n; 6289 len -= n; 6290 v += n; 6291 } while (len); 6292 6293 return handled; 6294 } 6295 6296 static void kvm_set_segment(struct kvm_vcpu *vcpu, 6297 struct kvm_segment *var, int seg) 6298 { 6299 static_call(kvm_x86_set_segment)(vcpu, var, seg); 6300 } 6301 6302 void kvm_get_segment(struct kvm_vcpu *vcpu, 6303 struct kvm_segment *var, int seg) 6304 { 6305 static_call(kvm_x86_get_segment)(vcpu, var, seg); 6306 } 6307 6308 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 6309 struct x86_exception *exception) 6310 { 6311 gpa_t t_gpa; 6312 6313 BUG_ON(!mmu_is_nested(vcpu)); 6314 6315 /* NPT walks are always user-walks */ 6316 access |= PFERR_USER_MASK; 6317 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception); 6318 6319 return t_gpa; 6320 } 6321 6322 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 6323 struct x86_exception *exception) 6324 { 6325 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6326 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6327 } 6328 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 6329 6330 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 6331 struct x86_exception *exception) 6332 { 6333 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6334 access |= PFERR_FETCH_MASK; 6335 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6336 } 6337 6338 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 6339 struct x86_exception *exception) 6340 { 6341 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6342 access |= PFERR_WRITE_MASK; 6343 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6344 } 6345 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 6346 6347 /* uses this to access any guest's mapped memory without checking CPL */ 6348 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 6349 struct x86_exception *exception) 6350 { 6351 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 6352 } 6353 6354 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6355 struct kvm_vcpu *vcpu, u32 access, 6356 struct x86_exception *exception) 6357 { 6358 void *data = val; 6359 int r = X86EMUL_CONTINUE; 6360 6361 while (bytes) { 6362 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 6363 exception); 6364 unsigned offset = addr & (PAGE_SIZE-1); 6365 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 6366 int ret; 6367 6368 if (gpa == UNMAPPED_GVA) 6369 return X86EMUL_PROPAGATE_FAULT; 6370 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 6371 offset, toread); 6372 if (ret < 0) { 6373 r = X86EMUL_IO_NEEDED; 6374 goto out; 6375 } 6376 6377 bytes -= toread; 6378 data += toread; 6379 addr += toread; 6380 } 6381 out: 6382 return r; 6383 } 6384 6385 /* used for instruction fetching */ 6386 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 6387 gva_t addr, void *val, unsigned int bytes, 6388 struct x86_exception *exception) 6389 { 6390 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6391 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6392 unsigned offset; 6393 int ret; 6394 6395 /* Inline kvm_read_guest_virt_helper for speed. */ 6396 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 6397 exception); 6398 if (unlikely(gpa == UNMAPPED_GVA)) 6399 return X86EMUL_PROPAGATE_FAULT; 6400 6401 offset = addr & (PAGE_SIZE-1); 6402 if (WARN_ON(offset + bytes > PAGE_SIZE)) 6403 bytes = (unsigned)PAGE_SIZE - offset; 6404 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 6405 offset, bytes); 6406 if (unlikely(ret < 0)) 6407 return X86EMUL_IO_NEEDED; 6408 6409 return X86EMUL_CONTINUE; 6410 } 6411 6412 int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 6413 gva_t addr, void *val, unsigned int bytes, 6414 struct x86_exception *exception) 6415 { 6416 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6417 6418 /* 6419 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 6420 * is returned, but our callers are not ready for that and they blindly 6421 * call kvm_inject_page_fault. Ensure that they at least do not leak 6422 * uninitialized kernel stack memory into cr2 and error code. 6423 */ 6424 memset(exception, 0, sizeof(*exception)); 6425 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 6426 exception); 6427 } 6428 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 6429 6430 static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 6431 gva_t addr, void *val, unsigned int bytes, 6432 struct x86_exception *exception, bool system) 6433 { 6434 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6435 u32 access = 0; 6436 6437 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3) 6438 access |= PFERR_USER_MASK; 6439 6440 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6441 } 6442 6443 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6444 unsigned long addr, void *val, unsigned int bytes) 6445 { 6446 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6447 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6448 6449 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6450 } 6451 6452 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6453 struct kvm_vcpu *vcpu, u32 access, 6454 struct x86_exception *exception) 6455 { 6456 void *data = val; 6457 int r = X86EMUL_CONTINUE; 6458 6459 while (bytes) { 6460 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 6461 access, 6462 exception); 6463 unsigned offset = addr & (PAGE_SIZE-1); 6464 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6465 int ret; 6466 6467 if (gpa == UNMAPPED_GVA) 6468 return X86EMUL_PROPAGATE_FAULT; 6469 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6470 if (ret < 0) { 6471 r = X86EMUL_IO_NEEDED; 6472 goto out; 6473 } 6474 6475 bytes -= towrite; 6476 data += towrite; 6477 addr += towrite; 6478 } 6479 out: 6480 return r; 6481 } 6482 6483 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6484 unsigned int bytes, struct x86_exception *exception, 6485 bool system) 6486 { 6487 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6488 u32 access = PFERR_WRITE_MASK; 6489 6490 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3) 6491 access |= PFERR_USER_MASK; 6492 6493 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6494 access, exception); 6495 } 6496 6497 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 6498 unsigned int bytes, struct x86_exception *exception) 6499 { 6500 /* kvm_write_guest_virt_system can pull in tons of pages. */ 6501 vcpu->arch.l1tf_flush_l1d = true; 6502 6503 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 6504 PFERR_WRITE_MASK, exception); 6505 } 6506 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 6507 6508 int handle_ud(struct kvm_vcpu *vcpu) 6509 { 6510 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 6511 int emul_type = EMULTYPE_TRAP_UD; 6512 char sig[5]; /* ud2; .ascii "kvm" */ 6513 struct x86_exception e; 6514 6515 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0))) 6516 return 1; 6517 6518 if (force_emulation_prefix && 6519 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 6520 sig, sizeof(sig), &e) == 0 && 6521 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 6522 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 6523 emul_type = EMULTYPE_TRAP_UD_FORCED; 6524 } 6525 6526 return kvm_emulate_instruction(vcpu, emul_type); 6527 } 6528 EXPORT_SYMBOL_GPL(handle_ud); 6529 6530 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6531 gpa_t gpa, bool write) 6532 { 6533 /* For APIC access vmexit */ 6534 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6535 return 1; 6536 6537 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 6538 trace_vcpu_match_mmio(gva, gpa, write, true); 6539 return 1; 6540 } 6541 6542 return 0; 6543 } 6544 6545 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 6546 gpa_t *gpa, struct x86_exception *exception, 6547 bool write) 6548 { 6549 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 6550 | (write ? PFERR_WRITE_MASK : 0); 6551 6552 /* 6553 * currently PKRU is only applied to ept enabled guest so 6554 * there is no pkey in EPT page table for L1 guest or EPT 6555 * shadow page table for L2 guest. 6556 */ 6557 if (vcpu_match_mmio_gva(vcpu, gva) 6558 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 6559 vcpu->arch.mmio_access, 0, access)) { 6560 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 6561 (gva & (PAGE_SIZE - 1)); 6562 trace_vcpu_match_mmio(gva, *gpa, write, false); 6563 return 1; 6564 } 6565 6566 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 6567 6568 if (*gpa == UNMAPPED_GVA) 6569 return -1; 6570 6571 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 6572 } 6573 6574 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 6575 const void *val, int bytes) 6576 { 6577 int ret; 6578 6579 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 6580 if (ret < 0) 6581 return 0; 6582 kvm_page_track_write(vcpu, gpa, val, bytes); 6583 return 1; 6584 } 6585 6586 struct read_write_emulator_ops { 6587 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 6588 int bytes); 6589 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 6590 void *val, int bytes); 6591 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6592 int bytes, void *val); 6593 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 6594 void *val, int bytes); 6595 bool write; 6596 }; 6597 6598 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 6599 { 6600 if (vcpu->mmio_read_completed) { 6601 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 6602 vcpu->mmio_fragments[0].gpa, val); 6603 vcpu->mmio_read_completed = 0; 6604 return 1; 6605 } 6606 6607 return 0; 6608 } 6609 6610 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6611 void *val, int bytes) 6612 { 6613 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 6614 } 6615 6616 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 6617 void *val, int bytes) 6618 { 6619 return emulator_write_phys(vcpu, gpa, val, bytes); 6620 } 6621 6622 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 6623 { 6624 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 6625 return vcpu_mmio_write(vcpu, gpa, bytes, val); 6626 } 6627 6628 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6629 void *val, int bytes) 6630 { 6631 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 6632 return X86EMUL_IO_NEEDED; 6633 } 6634 6635 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 6636 void *val, int bytes) 6637 { 6638 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 6639 6640 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 6641 return X86EMUL_CONTINUE; 6642 } 6643 6644 static const struct read_write_emulator_ops read_emultor = { 6645 .read_write_prepare = read_prepare, 6646 .read_write_emulate = read_emulate, 6647 .read_write_mmio = vcpu_mmio_read, 6648 .read_write_exit_mmio = read_exit_mmio, 6649 }; 6650 6651 static const struct read_write_emulator_ops write_emultor = { 6652 .read_write_emulate = write_emulate, 6653 .read_write_mmio = write_mmio, 6654 .read_write_exit_mmio = write_exit_mmio, 6655 .write = true, 6656 }; 6657 6658 static int emulator_read_write_onepage(unsigned long addr, void *val, 6659 unsigned int bytes, 6660 struct x86_exception *exception, 6661 struct kvm_vcpu *vcpu, 6662 const struct read_write_emulator_ops *ops) 6663 { 6664 gpa_t gpa; 6665 int handled, ret; 6666 bool write = ops->write; 6667 struct kvm_mmio_fragment *frag; 6668 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 6669 6670 /* 6671 * If the exit was due to a NPF we may already have a GPA. 6672 * If the GPA is present, use it to avoid the GVA to GPA table walk. 6673 * Note, this cannot be used on string operations since string 6674 * operation using rep will only have the initial GPA from the NPF 6675 * occurred. 6676 */ 6677 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 6678 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 6679 gpa = ctxt->gpa_val; 6680 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 6681 } else { 6682 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 6683 if (ret < 0) 6684 return X86EMUL_PROPAGATE_FAULT; 6685 } 6686 6687 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 6688 return X86EMUL_CONTINUE; 6689 6690 /* 6691 * Is this MMIO handled locally? 6692 */ 6693 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 6694 if (handled == bytes) 6695 return X86EMUL_CONTINUE; 6696 6697 gpa += handled; 6698 bytes -= handled; 6699 val += handled; 6700 6701 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 6702 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 6703 frag->gpa = gpa; 6704 frag->data = val; 6705 frag->len = bytes; 6706 return X86EMUL_CONTINUE; 6707 } 6708 6709 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 6710 unsigned long addr, 6711 void *val, unsigned int bytes, 6712 struct x86_exception *exception, 6713 const struct read_write_emulator_ops *ops) 6714 { 6715 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6716 gpa_t gpa; 6717 int rc; 6718 6719 if (ops->read_write_prepare && 6720 ops->read_write_prepare(vcpu, val, bytes)) 6721 return X86EMUL_CONTINUE; 6722 6723 vcpu->mmio_nr_fragments = 0; 6724 6725 /* Crossing a page boundary? */ 6726 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 6727 int now; 6728 6729 now = -addr & ~PAGE_MASK; 6730 rc = emulator_read_write_onepage(addr, val, now, exception, 6731 vcpu, ops); 6732 6733 if (rc != X86EMUL_CONTINUE) 6734 return rc; 6735 addr += now; 6736 if (ctxt->mode != X86EMUL_MODE_PROT64) 6737 addr = (u32)addr; 6738 val += now; 6739 bytes -= now; 6740 } 6741 6742 rc = emulator_read_write_onepage(addr, val, bytes, exception, 6743 vcpu, ops); 6744 if (rc != X86EMUL_CONTINUE) 6745 return rc; 6746 6747 if (!vcpu->mmio_nr_fragments) 6748 return rc; 6749 6750 gpa = vcpu->mmio_fragments[0].gpa; 6751 6752 vcpu->mmio_needed = 1; 6753 vcpu->mmio_cur_fragment = 0; 6754 6755 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 6756 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 6757 vcpu->run->exit_reason = KVM_EXIT_MMIO; 6758 vcpu->run->mmio.phys_addr = gpa; 6759 6760 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 6761 } 6762 6763 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 6764 unsigned long addr, 6765 void *val, 6766 unsigned int bytes, 6767 struct x86_exception *exception) 6768 { 6769 return emulator_read_write(ctxt, addr, val, bytes, 6770 exception, &read_emultor); 6771 } 6772 6773 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 6774 unsigned long addr, 6775 const void *val, 6776 unsigned int bytes, 6777 struct x86_exception *exception) 6778 { 6779 return emulator_read_write(ctxt, addr, (void *)val, bytes, 6780 exception, &write_emultor); 6781 } 6782 6783 #define CMPXCHG_TYPE(t, ptr, old, new) \ 6784 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 6785 6786 #ifdef CONFIG_X86_64 6787 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 6788 #else 6789 # define CMPXCHG64(ptr, old, new) \ 6790 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 6791 #endif 6792 6793 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 6794 unsigned long addr, 6795 const void *old, 6796 const void *new, 6797 unsigned int bytes, 6798 struct x86_exception *exception) 6799 { 6800 struct kvm_host_map map; 6801 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6802 u64 page_line_mask; 6803 gpa_t gpa; 6804 char *kaddr; 6805 bool exchanged; 6806 6807 /* guests cmpxchg8b have to be emulated atomically */ 6808 if (bytes > 8 || (bytes & (bytes - 1))) 6809 goto emul_write; 6810 6811 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 6812 6813 if (gpa == UNMAPPED_GVA || 6814 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 6815 goto emul_write; 6816 6817 /* 6818 * Emulate the atomic as a straight write to avoid #AC if SLD is 6819 * enabled in the host and the access splits a cache line. 6820 */ 6821 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 6822 page_line_mask = ~(cache_line_size() - 1); 6823 else 6824 page_line_mask = PAGE_MASK; 6825 6826 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 6827 goto emul_write; 6828 6829 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map)) 6830 goto emul_write; 6831 6832 kaddr = map.hva + offset_in_page(gpa); 6833 6834 switch (bytes) { 6835 case 1: 6836 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 6837 break; 6838 case 2: 6839 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 6840 break; 6841 case 4: 6842 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 6843 break; 6844 case 8: 6845 exchanged = CMPXCHG64(kaddr, old, new); 6846 break; 6847 default: 6848 BUG(); 6849 } 6850 6851 kvm_vcpu_unmap(vcpu, &map, true); 6852 6853 if (!exchanged) 6854 return X86EMUL_CMPXCHG_FAILED; 6855 6856 kvm_page_track_write(vcpu, gpa, new, bytes); 6857 6858 return X86EMUL_CONTINUE; 6859 6860 emul_write: 6861 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 6862 6863 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 6864 } 6865 6866 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 6867 { 6868 int r = 0, i; 6869 6870 for (i = 0; i < vcpu->arch.pio.count; i++) { 6871 if (vcpu->arch.pio.in) 6872 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 6873 vcpu->arch.pio.size, pd); 6874 else 6875 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 6876 vcpu->arch.pio.port, vcpu->arch.pio.size, 6877 pd); 6878 if (r) 6879 break; 6880 pd += vcpu->arch.pio.size; 6881 } 6882 return r; 6883 } 6884 6885 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 6886 unsigned short port, void *val, 6887 unsigned int count, bool in) 6888 { 6889 vcpu->arch.pio.port = port; 6890 vcpu->arch.pio.in = in; 6891 vcpu->arch.pio.count = count; 6892 vcpu->arch.pio.size = size; 6893 6894 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 6895 vcpu->arch.pio.count = 0; 6896 return 1; 6897 } 6898 6899 vcpu->run->exit_reason = KVM_EXIT_IO; 6900 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 6901 vcpu->run->io.size = size; 6902 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 6903 vcpu->run->io.count = count; 6904 vcpu->run->io.port = port; 6905 6906 return 0; 6907 } 6908 6909 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 6910 unsigned short port, void *val, unsigned int count) 6911 { 6912 int ret; 6913 6914 if (vcpu->arch.pio.count) 6915 goto data_avail; 6916 6917 memset(vcpu->arch.pio_data, 0, size * count); 6918 6919 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 6920 if (ret) { 6921 data_avail: 6922 memcpy(val, vcpu->arch.pio_data, size * count); 6923 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 6924 vcpu->arch.pio.count = 0; 6925 return 1; 6926 } 6927 6928 return 0; 6929 } 6930 6931 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 6932 int size, unsigned short port, void *val, 6933 unsigned int count) 6934 { 6935 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 6936 6937 } 6938 6939 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 6940 unsigned short port, const void *val, 6941 unsigned int count) 6942 { 6943 memcpy(vcpu->arch.pio_data, val, size * count); 6944 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 6945 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 6946 } 6947 6948 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 6949 int size, unsigned short port, 6950 const void *val, unsigned int count) 6951 { 6952 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 6953 } 6954 6955 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 6956 { 6957 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 6958 } 6959 6960 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 6961 { 6962 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 6963 } 6964 6965 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 6966 { 6967 if (!need_emulate_wbinvd(vcpu)) 6968 return X86EMUL_CONTINUE; 6969 6970 if (static_call(kvm_x86_has_wbinvd_exit)()) { 6971 int cpu = get_cpu(); 6972 6973 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 6974 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 6975 wbinvd_ipi, NULL, 1); 6976 put_cpu(); 6977 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 6978 } else 6979 wbinvd(); 6980 return X86EMUL_CONTINUE; 6981 } 6982 6983 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 6984 { 6985 kvm_emulate_wbinvd_noskip(vcpu); 6986 return kvm_skip_emulated_instruction(vcpu); 6987 } 6988 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 6989 6990 6991 6992 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 6993 { 6994 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 6995 } 6996 6997 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 6998 unsigned long *dest) 6999 { 7000 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7001 } 7002 7003 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7004 unsigned long value) 7005 { 7006 7007 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7008 } 7009 7010 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7011 { 7012 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7013 } 7014 7015 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7016 { 7017 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7018 unsigned long value; 7019 7020 switch (cr) { 7021 case 0: 7022 value = kvm_read_cr0(vcpu); 7023 break; 7024 case 2: 7025 value = vcpu->arch.cr2; 7026 break; 7027 case 3: 7028 value = kvm_read_cr3(vcpu); 7029 break; 7030 case 4: 7031 value = kvm_read_cr4(vcpu); 7032 break; 7033 case 8: 7034 value = kvm_get_cr8(vcpu); 7035 break; 7036 default: 7037 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7038 return 0; 7039 } 7040 7041 return value; 7042 } 7043 7044 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7045 { 7046 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7047 int res = 0; 7048 7049 switch (cr) { 7050 case 0: 7051 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7052 break; 7053 case 2: 7054 vcpu->arch.cr2 = val; 7055 break; 7056 case 3: 7057 res = kvm_set_cr3(vcpu, val); 7058 break; 7059 case 4: 7060 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7061 break; 7062 case 8: 7063 res = kvm_set_cr8(vcpu, val); 7064 break; 7065 default: 7066 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7067 res = -1; 7068 } 7069 7070 return res; 7071 } 7072 7073 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7074 { 7075 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7076 } 7077 7078 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7079 { 7080 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7081 } 7082 7083 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7084 { 7085 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7086 } 7087 7088 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7089 { 7090 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7091 } 7092 7093 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7094 { 7095 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7096 } 7097 7098 static unsigned long emulator_get_cached_segment_base( 7099 struct x86_emulate_ctxt *ctxt, int seg) 7100 { 7101 return get_segment_base(emul_to_vcpu(ctxt), seg); 7102 } 7103 7104 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7105 struct desc_struct *desc, u32 *base3, 7106 int seg) 7107 { 7108 struct kvm_segment var; 7109 7110 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7111 *selector = var.selector; 7112 7113 if (var.unusable) { 7114 memset(desc, 0, sizeof(*desc)); 7115 if (base3) 7116 *base3 = 0; 7117 return false; 7118 } 7119 7120 if (var.g) 7121 var.limit >>= 12; 7122 set_desc_limit(desc, var.limit); 7123 set_desc_base(desc, (unsigned long)var.base); 7124 #ifdef CONFIG_X86_64 7125 if (base3) 7126 *base3 = var.base >> 32; 7127 #endif 7128 desc->type = var.type; 7129 desc->s = var.s; 7130 desc->dpl = var.dpl; 7131 desc->p = var.present; 7132 desc->avl = var.avl; 7133 desc->l = var.l; 7134 desc->d = var.db; 7135 desc->g = var.g; 7136 7137 return true; 7138 } 7139 7140 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7141 struct desc_struct *desc, u32 base3, 7142 int seg) 7143 { 7144 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7145 struct kvm_segment var; 7146 7147 var.selector = selector; 7148 var.base = get_desc_base(desc); 7149 #ifdef CONFIG_X86_64 7150 var.base |= ((u64)base3) << 32; 7151 #endif 7152 var.limit = get_desc_limit(desc); 7153 if (desc->g) 7154 var.limit = (var.limit << 12) | 0xfff; 7155 var.type = desc->type; 7156 var.dpl = desc->dpl; 7157 var.db = desc->d; 7158 var.s = desc->s; 7159 var.l = desc->l; 7160 var.g = desc->g; 7161 var.avl = desc->avl; 7162 var.present = desc->p; 7163 var.unusable = !var.present; 7164 var.padding = 0; 7165 7166 kvm_set_segment(vcpu, &var, seg); 7167 return; 7168 } 7169 7170 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 7171 u32 msr_index, u64 *pdata) 7172 { 7173 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7174 int r; 7175 7176 r = kvm_get_msr(vcpu, msr_index, pdata); 7177 7178 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) { 7179 /* Bounce to user space */ 7180 return X86EMUL_IO_NEEDED; 7181 } 7182 7183 return r; 7184 } 7185 7186 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 7187 u32 msr_index, u64 data) 7188 { 7189 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7190 int r; 7191 7192 r = kvm_set_msr(vcpu, msr_index, data); 7193 7194 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) { 7195 /* Bounce to user space */ 7196 return X86EMUL_IO_NEEDED; 7197 } 7198 7199 return r; 7200 } 7201 7202 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 7203 { 7204 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7205 7206 return vcpu->arch.smbase; 7207 } 7208 7209 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 7210 { 7211 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7212 7213 vcpu->arch.smbase = smbase; 7214 } 7215 7216 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7217 u32 pmc) 7218 { 7219 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc); 7220 } 7221 7222 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7223 u32 pmc, u64 *pdata) 7224 { 7225 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 7226 } 7227 7228 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 7229 { 7230 emul_to_vcpu(ctxt)->arch.halt_request = 1; 7231 } 7232 7233 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 7234 struct x86_instruction_info *info, 7235 enum x86_intercept_stage stage) 7236 { 7237 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 7238 &ctxt->exception); 7239 } 7240 7241 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 7242 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 7243 bool exact_only) 7244 { 7245 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 7246 } 7247 7248 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 7249 { 7250 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 7251 } 7252 7253 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 7254 { 7255 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 7256 } 7257 7258 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 7259 { 7260 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 7261 } 7262 7263 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 7264 { 7265 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 7266 } 7267 7268 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 7269 { 7270 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 7271 } 7272 7273 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 7274 { 7275 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 7276 } 7277 7278 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 7279 { 7280 return emul_to_vcpu(ctxt)->arch.hflags; 7281 } 7282 7283 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 7284 { 7285 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7286 7287 kvm_smm_changed(vcpu, false); 7288 } 7289 7290 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 7291 const char *smstate) 7292 { 7293 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 7294 } 7295 7296 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 7297 { 7298 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 7299 } 7300 7301 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 7302 { 7303 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 7304 } 7305 7306 static const struct x86_emulate_ops emulate_ops = { 7307 .read_gpr = emulator_read_gpr, 7308 .write_gpr = emulator_write_gpr, 7309 .read_std = emulator_read_std, 7310 .write_std = emulator_write_std, 7311 .read_phys = kvm_read_guest_phys_system, 7312 .fetch = kvm_fetch_guest_virt, 7313 .read_emulated = emulator_read_emulated, 7314 .write_emulated = emulator_write_emulated, 7315 .cmpxchg_emulated = emulator_cmpxchg_emulated, 7316 .invlpg = emulator_invlpg, 7317 .pio_in_emulated = emulator_pio_in_emulated, 7318 .pio_out_emulated = emulator_pio_out_emulated, 7319 .get_segment = emulator_get_segment, 7320 .set_segment = emulator_set_segment, 7321 .get_cached_segment_base = emulator_get_cached_segment_base, 7322 .get_gdt = emulator_get_gdt, 7323 .get_idt = emulator_get_idt, 7324 .set_gdt = emulator_set_gdt, 7325 .set_idt = emulator_set_idt, 7326 .get_cr = emulator_get_cr, 7327 .set_cr = emulator_set_cr, 7328 .cpl = emulator_get_cpl, 7329 .get_dr = emulator_get_dr, 7330 .set_dr = emulator_set_dr, 7331 .get_smbase = emulator_get_smbase, 7332 .set_smbase = emulator_set_smbase, 7333 .set_msr = emulator_set_msr, 7334 .get_msr = emulator_get_msr, 7335 .check_pmc = emulator_check_pmc, 7336 .read_pmc = emulator_read_pmc, 7337 .halt = emulator_halt, 7338 .wbinvd = emulator_wbinvd, 7339 .fix_hypercall = emulator_fix_hypercall, 7340 .intercept = emulator_intercept, 7341 .get_cpuid = emulator_get_cpuid, 7342 .guest_has_long_mode = emulator_guest_has_long_mode, 7343 .guest_has_movbe = emulator_guest_has_movbe, 7344 .guest_has_fxsr = emulator_guest_has_fxsr, 7345 .set_nmi_mask = emulator_set_nmi_mask, 7346 .get_hflags = emulator_get_hflags, 7347 .exiting_smm = emulator_exiting_smm, 7348 .leave_smm = emulator_leave_smm, 7349 .triple_fault = emulator_triple_fault, 7350 .set_xcr = emulator_set_xcr, 7351 }; 7352 7353 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 7354 { 7355 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 7356 /* 7357 * an sti; sti; sequence only disable interrupts for the first 7358 * instruction. So, if the last instruction, be it emulated or 7359 * not, left the system with the INT_STI flag enabled, it 7360 * means that the last instruction is an sti. We should not 7361 * leave the flag on in this case. The same goes for mov ss 7362 */ 7363 if (int_shadow & mask) 7364 mask = 0; 7365 if (unlikely(int_shadow || mask)) { 7366 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 7367 if (!mask) 7368 kvm_make_request(KVM_REQ_EVENT, vcpu); 7369 } 7370 } 7371 7372 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 7373 { 7374 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7375 if (ctxt->exception.vector == PF_VECTOR) 7376 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 7377 7378 if (ctxt->exception.error_code_valid) 7379 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 7380 ctxt->exception.error_code); 7381 else 7382 kvm_queue_exception(vcpu, ctxt->exception.vector); 7383 return false; 7384 } 7385 7386 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 7387 { 7388 struct x86_emulate_ctxt *ctxt; 7389 7390 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 7391 if (!ctxt) { 7392 pr_err("kvm: failed to allocate vcpu's emulator\n"); 7393 return NULL; 7394 } 7395 7396 ctxt->vcpu = vcpu; 7397 ctxt->ops = &emulate_ops; 7398 vcpu->arch.emulate_ctxt = ctxt; 7399 7400 return ctxt; 7401 } 7402 7403 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 7404 { 7405 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7406 int cs_db, cs_l; 7407 7408 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 7409 7410 ctxt->gpa_available = false; 7411 ctxt->eflags = kvm_get_rflags(vcpu); 7412 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 7413 7414 ctxt->eip = kvm_rip_read(vcpu); 7415 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 7416 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 7417 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 7418 cs_db ? X86EMUL_MODE_PROT32 : 7419 X86EMUL_MODE_PROT16; 7420 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 7421 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 7422 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 7423 7424 ctxt->interruptibility = 0; 7425 ctxt->have_exception = false; 7426 ctxt->exception.vector = -1; 7427 ctxt->perm_ok = false; 7428 7429 init_decode_cache(ctxt); 7430 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7431 } 7432 7433 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 7434 { 7435 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7436 int ret; 7437 7438 init_emulate_ctxt(vcpu); 7439 7440 ctxt->op_bytes = 2; 7441 ctxt->ad_bytes = 2; 7442 ctxt->_eip = ctxt->eip + inc_eip; 7443 ret = emulate_int_real(ctxt, irq); 7444 7445 if (ret != X86EMUL_CONTINUE) { 7446 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 7447 } else { 7448 ctxt->eip = ctxt->_eip; 7449 kvm_rip_write(vcpu, ctxt->eip); 7450 kvm_set_rflags(vcpu, ctxt->eflags); 7451 } 7452 } 7453 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 7454 7455 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 7456 { 7457 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7458 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data; 7459 struct kvm_run *run = vcpu->run; 7460 7461 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7462 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 7463 run->emulation_failure.ndata = 0; 7464 run->emulation_failure.flags = 0; 7465 7466 if (insn_size) { 7467 run->emulation_failure.ndata = 3; 7468 run->emulation_failure.flags |= 7469 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 7470 run->emulation_failure.insn_size = insn_size; 7471 memset(run->emulation_failure.insn_bytes, 0x90, 7472 sizeof(run->emulation_failure.insn_bytes)); 7473 memcpy(run->emulation_failure.insn_bytes, 7474 ctxt->fetch.data, insn_size); 7475 } 7476 } 7477 7478 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 7479 { 7480 struct kvm *kvm = vcpu->kvm; 7481 7482 ++vcpu->stat.insn_emulation_fail; 7483 trace_kvm_emulate_insn_failed(vcpu); 7484 7485 if (emulation_type & EMULTYPE_VMWARE_GP) { 7486 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7487 return 1; 7488 } 7489 7490 if (kvm->arch.exit_on_emulation_error || 7491 (emulation_type & EMULTYPE_SKIP)) { 7492 prepare_emulation_failure_exit(vcpu); 7493 return 0; 7494 } 7495 7496 kvm_queue_exception(vcpu, UD_VECTOR); 7497 7498 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 7499 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 7500 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 7501 vcpu->run->internal.ndata = 0; 7502 return 0; 7503 } 7504 7505 return 1; 7506 } 7507 7508 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7509 bool write_fault_to_shadow_pgtable, 7510 int emulation_type) 7511 { 7512 gpa_t gpa = cr2_or_gpa; 7513 kvm_pfn_t pfn; 7514 7515 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7516 return false; 7517 7518 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7519 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7520 return false; 7521 7522 if (!vcpu->arch.mmu->direct_map) { 7523 /* 7524 * Write permission should be allowed since only 7525 * write access need to be emulated. 7526 */ 7527 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7528 7529 /* 7530 * If the mapping is invalid in guest, let cpu retry 7531 * it to generate fault. 7532 */ 7533 if (gpa == UNMAPPED_GVA) 7534 return true; 7535 } 7536 7537 /* 7538 * Do not retry the unhandleable instruction if it faults on the 7539 * readonly host memory, otherwise it will goto a infinite loop: 7540 * retry instruction -> write #PF -> emulation fail -> retry 7541 * instruction -> ... 7542 */ 7543 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 7544 7545 /* 7546 * If the instruction failed on the error pfn, it can not be fixed, 7547 * report the error to userspace. 7548 */ 7549 if (is_error_noslot_pfn(pfn)) 7550 return false; 7551 7552 kvm_release_pfn_clean(pfn); 7553 7554 /* The instructions are well-emulated on direct mmu. */ 7555 if (vcpu->arch.mmu->direct_map) { 7556 unsigned int indirect_shadow_pages; 7557 7558 write_lock(&vcpu->kvm->mmu_lock); 7559 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 7560 write_unlock(&vcpu->kvm->mmu_lock); 7561 7562 if (indirect_shadow_pages) 7563 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7564 7565 return true; 7566 } 7567 7568 /* 7569 * if emulation was due to access to shadowed page table 7570 * and it failed try to unshadow page and re-enter the 7571 * guest to let CPU execute the instruction. 7572 */ 7573 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7574 7575 /* 7576 * If the access faults on its page table, it can not 7577 * be fixed by unprotecting shadow page and it should 7578 * be reported to userspace. 7579 */ 7580 return !write_fault_to_shadow_pgtable; 7581 } 7582 7583 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 7584 gpa_t cr2_or_gpa, int emulation_type) 7585 { 7586 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7587 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 7588 7589 last_retry_eip = vcpu->arch.last_retry_eip; 7590 last_retry_addr = vcpu->arch.last_retry_addr; 7591 7592 /* 7593 * If the emulation is caused by #PF and it is non-page_table 7594 * writing instruction, it means the VM-EXIT is caused by shadow 7595 * page protected, we can zap the shadow page and retry this 7596 * instruction directly. 7597 * 7598 * Note: if the guest uses a non-page-table modifying instruction 7599 * on the PDE that points to the instruction, then we will unmap 7600 * the instruction and go to an infinite loop. So, we cache the 7601 * last retried eip and the last fault address, if we meet the eip 7602 * and the address again, we can break out of the potential infinite 7603 * loop. 7604 */ 7605 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 7606 7607 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 7608 return false; 7609 7610 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 7611 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 7612 return false; 7613 7614 if (x86_page_table_writing_insn(ctxt)) 7615 return false; 7616 7617 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 7618 return false; 7619 7620 vcpu->arch.last_retry_eip = ctxt->eip; 7621 vcpu->arch.last_retry_addr = cr2_or_gpa; 7622 7623 if (!vcpu->arch.mmu->direct_map) 7624 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 7625 7626 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 7627 7628 return true; 7629 } 7630 7631 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 7632 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 7633 7634 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 7635 { 7636 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 7637 7638 if (entering_smm) { 7639 vcpu->arch.hflags |= HF_SMM_MASK; 7640 } else { 7641 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 7642 7643 /* Process a latched INIT or SMI, if any. */ 7644 kvm_make_request(KVM_REQ_EVENT, vcpu); 7645 } 7646 7647 kvm_mmu_reset_context(vcpu); 7648 } 7649 7650 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 7651 unsigned long *db) 7652 { 7653 u32 dr6 = 0; 7654 int i; 7655 u32 enable, rwlen; 7656 7657 enable = dr7; 7658 rwlen = dr7 >> 16; 7659 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 7660 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 7661 dr6 |= (1 << i); 7662 return dr6; 7663 } 7664 7665 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 7666 { 7667 struct kvm_run *kvm_run = vcpu->run; 7668 7669 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 7670 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 7671 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 7672 kvm_run->debug.arch.exception = DB_VECTOR; 7673 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7674 return 0; 7675 } 7676 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 7677 return 1; 7678 } 7679 7680 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 7681 { 7682 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 7683 int r; 7684 7685 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 7686 if (unlikely(!r)) 7687 return 0; 7688 7689 /* 7690 * rflags is the old, "raw" value of the flags. The new value has 7691 * not been saved yet. 7692 * 7693 * This is correct even for TF set by the guest, because "the 7694 * processor will not generate this exception after the instruction 7695 * that sets the TF flag". 7696 */ 7697 if (unlikely(rflags & X86_EFLAGS_TF)) 7698 r = kvm_vcpu_do_singlestep(vcpu); 7699 return r; 7700 } 7701 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 7702 7703 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 7704 { 7705 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 7706 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 7707 struct kvm_run *kvm_run = vcpu->run; 7708 unsigned long eip = kvm_get_linear_rip(vcpu); 7709 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7710 vcpu->arch.guest_debug_dr7, 7711 vcpu->arch.eff_db); 7712 7713 if (dr6 != 0) { 7714 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 7715 kvm_run->debug.arch.pc = eip; 7716 kvm_run->debug.arch.exception = DB_VECTOR; 7717 kvm_run->exit_reason = KVM_EXIT_DEBUG; 7718 *r = 0; 7719 return true; 7720 } 7721 } 7722 7723 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 7724 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 7725 unsigned long eip = kvm_get_linear_rip(vcpu); 7726 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 7727 vcpu->arch.dr7, 7728 vcpu->arch.db); 7729 7730 if (dr6 != 0) { 7731 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 7732 *r = 1; 7733 return true; 7734 } 7735 } 7736 7737 return false; 7738 } 7739 7740 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 7741 { 7742 switch (ctxt->opcode_len) { 7743 case 1: 7744 switch (ctxt->b) { 7745 case 0xe4: /* IN */ 7746 case 0xe5: 7747 case 0xec: 7748 case 0xed: 7749 case 0xe6: /* OUT */ 7750 case 0xe7: 7751 case 0xee: 7752 case 0xef: 7753 case 0x6c: /* INS */ 7754 case 0x6d: 7755 case 0x6e: /* OUTS */ 7756 case 0x6f: 7757 return true; 7758 } 7759 break; 7760 case 2: 7761 switch (ctxt->b) { 7762 case 0x33: /* RDPMC */ 7763 return true; 7764 } 7765 break; 7766 } 7767 7768 return false; 7769 } 7770 7771 /* 7772 * Decode to be emulated instruction. Return EMULATION_OK if success. 7773 */ 7774 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 7775 void *insn, int insn_len) 7776 { 7777 int r = EMULATION_OK; 7778 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7779 7780 init_emulate_ctxt(vcpu); 7781 7782 /* 7783 * We will reenter on the same instruction since we do not set 7784 * complete_userspace_io. This does not handle watchpoints yet, 7785 * those would be handled in the emulate_ops. 7786 */ 7787 if (!(emulation_type & EMULTYPE_SKIP) && 7788 kvm_vcpu_check_breakpoint(vcpu, &r)) 7789 return r; 7790 7791 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 7792 7793 trace_kvm_emulate_insn_start(vcpu); 7794 ++vcpu->stat.insn_emulation; 7795 7796 return r; 7797 } 7798 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 7799 7800 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 7801 int emulation_type, void *insn, int insn_len) 7802 { 7803 int r; 7804 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7805 bool writeback = true; 7806 bool write_fault_to_spt; 7807 7808 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len))) 7809 return 1; 7810 7811 vcpu->arch.l1tf_flush_l1d = true; 7812 7813 /* 7814 * Clear write_fault_to_shadow_pgtable here to ensure it is 7815 * never reused. 7816 */ 7817 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 7818 vcpu->arch.write_fault_to_shadow_pgtable = false; 7819 7820 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 7821 kvm_clear_exception_queue(vcpu); 7822 7823 r = x86_decode_emulated_instruction(vcpu, emulation_type, 7824 insn, insn_len); 7825 if (r != EMULATION_OK) { 7826 if ((emulation_type & EMULTYPE_TRAP_UD) || 7827 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 7828 kvm_queue_exception(vcpu, UD_VECTOR); 7829 return 1; 7830 } 7831 if (reexecute_instruction(vcpu, cr2_or_gpa, 7832 write_fault_to_spt, 7833 emulation_type)) 7834 return 1; 7835 if (ctxt->have_exception) { 7836 /* 7837 * #UD should result in just EMULATION_FAILED, and trap-like 7838 * exception should not be encountered during decode. 7839 */ 7840 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 7841 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 7842 inject_emulated_exception(vcpu); 7843 return 1; 7844 } 7845 return handle_emulation_failure(vcpu, emulation_type); 7846 } 7847 } 7848 7849 if ((emulation_type & EMULTYPE_VMWARE_GP) && 7850 !is_vmware_backdoor_opcode(ctxt)) { 7851 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 7852 return 1; 7853 } 7854 7855 /* 7856 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks 7857 * for kvm_skip_emulated_instruction(). The caller is responsible for 7858 * updating interruptibility state and injecting single-step #DBs. 7859 */ 7860 if (emulation_type & EMULTYPE_SKIP) { 7861 kvm_rip_write(vcpu, ctxt->_eip); 7862 if (ctxt->eflags & X86_EFLAGS_RF) 7863 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 7864 return 1; 7865 } 7866 7867 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 7868 return 1; 7869 7870 /* this is needed for vmware backdoor interface to work since it 7871 changes registers values during IO operation */ 7872 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 7873 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7874 emulator_invalidate_register_cache(ctxt); 7875 } 7876 7877 restart: 7878 if (emulation_type & EMULTYPE_PF) { 7879 /* Save the faulting GPA (cr2) in the address field */ 7880 ctxt->exception.address = cr2_or_gpa; 7881 7882 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 7883 if (vcpu->arch.mmu->direct_map) { 7884 ctxt->gpa_available = true; 7885 ctxt->gpa_val = cr2_or_gpa; 7886 } 7887 } else { 7888 /* Sanitize the address out of an abundance of paranoia. */ 7889 ctxt->exception.address = 0; 7890 } 7891 7892 r = x86_emulate_insn(ctxt); 7893 7894 if (r == EMULATION_INTERCEPTED) 7895 return 1; 7896 7897 if (r == EMULATION_FAILED) { 7898 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 7899 emulation_type)) 7900 return 1; 7901 7902 return handle_emulation_failure(vcpu, emulation_type); 7903 } 7904 7905 if (ctxt->have_exception) { 7906 r = 1; 7907 if (inject_emulated_exception(vcpu)) 7908 return r; 7909 } else if (vcpu->arch.pio.count) { 7910 if (!vcpu->arch.pio.in) { 7911 /* FIXME: return into emulator if single-stepping. */ 7912 vcpu->arch.pio.count = 0; 7913 } else { 7914 writeback = false; 7915 vcpu->arch.complete_userspace_io = complete_emulated_pio; 7916 } 7917 r = 0; 7918 } else if (vcpu->mmio_needed) { 7919 ++vcpu->stat.mmio_exits; 7920 7921 if (!vcpu->mmio_is_write) 7922 writeback = false; 7923 r = 0; 7924 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7925 } else if (r == EMULATION_RESTART) 7926 goto restart; 7927 else 7928 r = 1; 7929 7930 if (writeback) { 7931 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 7932 toggle_interruptibility(vcpu, ctxt->interruptibility); 7933 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7934 if (!ctxt->have_exception || 7935 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 7936 kvm_rip_write(vcpu, ctxt->eip); 7937 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 7938 r = kvm_vcpu_do_singlestep(vcpu); 7939 if (kvm_x86_ops.update_emulated_instruction) 7940 static_call(kvm_x86_update_emulated_instruction)(vcpu); 7941 __kvm_set_rflags(vcpu, ctxt->eflags); 7942 } 7943 7944 /* 7945 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 7946 * do nothing, and it will be requested again as soon as 7947 * the shadow expires. But we still need to check here, 7948 * because POPF has no interrupt shadow. 7949 */ 7950 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 7951 kvm_make_request(KVM_REQ_EVENT, vcpu); 7952 } else 7953 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 7954 7955 return r; 7956 } 7957 7958 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 7959 { 7960 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 7961 } 7962 EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 7963 7964 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 7965 void *insn, int insn_len) 7966 { 7967 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 7968 } 7969 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 7970 7971 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 7972 { 7973 vcpu->arch.pio.count = 0; 7974 return 1; 7975 } 7976 7977 static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 7978 { 7979 vcpu->arch.pio.count = 0; 7980 7981 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 7982 return 1; 7983 7984 return kvm_skip_emulated_instruction(vcpu); 7985 } 7986 7987 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 7988 unsigned short port) 7989 { 7990 unsigned long val = kvm_rax_read(vcpu); 7991 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 7992 7993 if (ret) 7994 return ret; 7995 7996 /* 7997 * Workaround userspace that relies on old KVM behavior of %rip being 7998 * incremented prior to exiting to userspace to handle "OUT 0x7e". 7999 */ 8000 if (port == 0x7e && 8001 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8002 vcpu->arch.complete_userspace_io = 8003 complete_fast_pio_out_port_0x7e; 8004 kvm_skip_emulated_instruction(vcpu); 8005 } else { 8006 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8007 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8008 } 8009 return 0; 8010 } 8011 8012 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8013 { 8014 unsigned long val; 8015 8016 /* We should only ever be called with arch.pio.count equal to 1 */ 8017 BUG_ON(vcpu->arch.pio.count != 1); 8018 8019 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8020 vcpu->arch.pio.count = 0; 8021 return 1; 8022 } 8023 8024 /* For size less than 4 we merge, else we zero extend */ 8025 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8026 8027 /* 8028 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 8029 * the copy and tracing 8030 */ 8031 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 8032 kvm_rax_write(vcpu, val); 8033 8034 return kvm_skip_emulated_instruction(vcpu); 8035 } 8036 8037 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 8038 unsigned short port) 8039 { 8040 unsigned long val; 8041 int ret; 8042 8043 /* For size less than 4 we merge, else we zero extend */ 8044 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 8045 8046 ret = emulator_pio_in(vcpu, size, port, &val, 1); 8047 if (ret) { 8048 kvm_rax_write(vcpu, val); 8049 return ret; 8050 } 8051 8052 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8053 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 8054 8055 return 0; 8056 } 8057 8058 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 8059 { 8060 int ret; 8061 8062 if (in) 8063 ret = kvm_fast_pio_in(vcpu, size, port); 8064 else 8065 ret = kvm_fast_pio_out(vcpu, size, port); 8066 return ret && kvm_skip_emulated_instruction(vcpu); 8067 } 8068 EXPORT_SYMBOL_GPL(kvm_fast_pio); 8069 8070 static int kvmclock_cpu_down_prep(unsigned int cpu) 8071 { 8072 __this_cpu_write(cpu_tsc_khz, 0); 8073 return 0; 8074 } 8075 8076 static void tsc_khz_changed(void *data) 8077 { 8078 struct cpufreq_freqs *freq = data; 8079 unsigned long khz = 0; 8080 8081 if (data) 8082 khz = freq->new; 8083 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8084 khz = cpufreq_quick_get(raw_smp_processor_id()); 8085 if (!khz) 8086 khz = tsc_khz; 8087 __this_cpu_write(cpu_tsc_khz, khz); 8088 } 8089 8090 #ifdef CONFIG_X86_64 8091 static void kvm_hyperv_tsc_notifier(void) 8092 { 8093 struct kvm *kvm; 8094 struct kvm_vcpu *vcpu; 8095 int cpu; 8096 unsigned long flags; 8097 8098 mutex_lock(&kvm_lock); 8099 list_for_each_entry(kvm, &vm_list, vm_list) 8100 kvm_make_mclock_inprogress_request(kvm); 8101 8102 hyperv_stop_tsc_emulation(); 8103 8104 /* TSC frequency always matches when on Hyper-V */ 8105 for_each_present_cpu(cpu) 8106 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 8107 kvm_max_guest_tsc_khz = tsc_khz; 8108 8109 list_for_each_entry(kvm, &vm_list, vm_list) { 8110 struct kvm_arch *ka = &kvm->arch; 8111 8112 spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags); 8113 pvclock_update_vm_gtod_copy(kvm); 8114 spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags); 8115 8116 kvm_for_each_vcpu(cpu, vcpu, kvm) 8117 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8118 8119 kvm_for_each_vcpu(cpu, vcpu, kvm) 8120 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 8121 } 8122 mutex_unlock(&kvm_lock); 8123 } 8124 #endif 8125 8126 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 8127 { 8128 struct kvm *kvm; 8129 struct kvm_vcpu *vcpu; 8130 int i, send_ipi = 0; 8131 8132 /* 8133 * We allow guests to temporarily run on slowing clocks, 8134 * provided we notify them after, or to run on accelerating 8135 * clocks, provided we notify them before. Thus time never 8136 * goes backwards. 8137 * 8138 * However, we have a problem. We can't atomically update 8139 * the frequency of a given CPU from this function; it is 8140 * merely a notifier, which can be called from any CPU. 8141 * Changing the TSC frequency at arbitrary points in time 8142 * requires a recomputation of local variables related to 8143 * the TSC for each VCPU. We must flag these local variables 8144 * to be updated and be sure the update takes place with the 8145 * new frequency before any guests proceed. 8146 * 8147 * Unfortunately, the combination of hotplug CPU and frequency 8148 * change creates an intractable locking scenario; the order 8149 * of when these callouts happen is undefined with respect to 8150 * CPU hotplug, and they can race with each other. As such, 8151 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 8152 * undefined; you can actually have a CPU frequency change take 8153 * place in between the computation of X and the setting of the 8154 * variable. To protect against this problem, all updates of 8155 * the per_cpu tsc_khz variable are done in an interrupt 8156 * protected IPI, and all callers wishing to update the value 8157 * must wait for a synchronous IPI to complete (which is trivial 8158 * if the caller is on the CPU already). This establishes the 8159 * necessary total order on variable updates. 8160 * 8161 * Note that because a guest time update may take place 8162 * anytime after the setting of the VCPU's request bit, the 8163 * correct TSC value must be set before the request. However, 8164 * to ensure the update actually makes it to any guest which 8165 * starts running in hardware virtualization between the set 8166 * and the acquisition of the spinlock, we must also ping the 8167 * CPU after setting the request bit. 8168 * 8169 */ 8170 8171 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8172 8173 mutex_lock(&kvm_lock); 8174 list_for_each_entry(kvm, &vm_list, vm_list) { 8175 kvm_for_each_vcpu(i, vcpu, kvm) { 8176 if (vcpu->cpu != cpu) 8177 continue; 8178 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8179 if (vcpu->cpu != raw_smp_processor_id()) 8180 send_ipi = 1; 8181 } 8182 } 8183 mutex_unlock(&kvm_lock); 8184 8185 if (freq->old < freq->new && send_ipi) { 8186 /* 8187 * We upscale the frequency. Must make the guest 8188 * doesn't see old kvmclock values while running with 8189 * the new frequency, otherwise we risk the guest sees 8190 * time go backwards. 8191 * 8192 * In case we update the frequency for another cpu 8193 * (which might be in guest context) send an interrupt 8194 * to kick the cpu out of guest context. Next time 8195 * guest context is entered kvmclock will be updated, 8196 * so the guest will not see stale values. 8197 */ 8198 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8199 } 8200 } 8201 8202 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 8203 void *data) 8204 { 8205 struct cpufreq_freqs *freq = data; 8206 int cpu; 8207 8208 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 8209 return 0; 8210 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 8211 return 0; 8212 8213 for_each_cpu(cpu, freq->policy->cpus) 8214 __kvmclock_cpufreq_notifier(freq, cpu); 8215 8216 return 0; 8217 } 8218 8219 static struct notifier_block kvmclock_cpufreq_notifier_block = { 8220 .notifier_call = kvmclock_cpufreq_notifier 8221 }; 8222 8223 static int kvmclock_cpu_online(unsigned int cpu) 8224 { 8225 tsc_khz_changed(NULL); 8226 return 0; 8227 } 8228 8229 static void kvm_timer_init(void) 8230 { 8231 max_tsc_khz = tsc_khz; 8232 8233 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8234 #ifdef CONFIG_CPU_FREQ 8235 struct cpufreq_policy *policy; 8236 int cpu; 8237 8238 cpu = get_cpu(); 8239 policy = cpufreq_cpu_get(cpu); 8240 if (policy) { 8241 if (policy->cpuinfo.max_freq) 8242 max_tsc_khz = policy->cpuinfo.max_freq; 8243 cpufreq_cpu_put(policy); 8244 } 8245 put_cpu(); 8246 #endif 8247 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 8248 CPUFREQ_TRANSITION_NOTIFIER); 8249 } 8250 8251 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 8252 kvmclock_cpu_online, kvmclock_cpu_down_prep); 8253 } 8254 8255 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 8256 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu); 8257 8258 int kvm_is_in_guest(void) 8259 { 8260 return __this_cpu_read(current_vcpu) != NULL; 8261 } 8262 8263 static int kvm_is_user_mode(void) 8264 { 8265 int user_mode = 3; 8266 8267 if (__this_cpu_read(current_vcpu)) 8268 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu)); 8269 8270 return user_mode != 0; 8271 } 8272 8273 static unsigned long kvm_get_guest_ip(void) 8274 { 8275 unsigned long ip = 0; 8276 8277 if (__this_cpu_read(current_vcpu)) 8278 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 8279 8280 return ip; 8281 } 8282 8283 static void kvm_handle_intel_pt_intr(void) 8284 { 8285 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu); 8286 8287 kvm_make_request(KVM_REQ_PMI, vcpu); 8288 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8289 (unsigned long *)&vcpu->arch.pmu.global_status); 8290 } 8291 8292 static struct perf_guest_info_callbacks kvm_guest_cbs = { 8293 .is_in_guest = kvm_is_in_guest, 8294 .is_user_mode = kvm_is_user_mode, 8295 .get_guest_ip = kvm_get_guest_ip, 8296 .handle_intel_pt_intr = kvm_handle_intel_pt_intr, 8297 }; 8298 8299 #ifdef CONFIG_X86_64 8300 static void pvclock_gtod_update_fn(struct work_struct *work) 8301 { 8302 struct kvm *kvm; 8303 8304 struct kvm_vcpu *vcpu; 8305 int i; 8306 8307 mutex_lock(&kvm_lock); 8308 list_for_each_entry(kvm, &vm_list, vm_list) 8309 kvm_for_each_vcpu(i, vcpu, kvm) 8310 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8311 atomic_set(&kvm_guest_has_master_clock, 0); 8312 mutex_unlock(&kvm_lock); 8313 } 8314 8315 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 8316 8317 /* 8318 * Indirection to move queue_work() out of the tk_core.seq write held 8319 * region to prevent possible deadlocks against time accessors which 8320 * are invoked with work related locks held. 8321 */ 8322 static void pvclock_irq_work_fn(struct irq_work *w) 8323 { 8324 queue_work(system_long_wq, &pvclock_gtod_work); 8325 } 8326 8327 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 8328 8329 /* 8330 * Notification about pvclock gtod data update. 8331 */ 8332 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 8333 void *priv) 8334 { 8335 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 8336 struct timekeeper *tk = priv; 8337 8338 update_pvclock_gtod(tk); 8339 8340 /* 8341 * Disable master clock if host does not trust, or does not use, 8342 * TSC based clocksource. Delegate queue_work() to irq_work as 8343 * this is invoked with tk_core.seq write held. 8344 */ 8345 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 8346 atomic_read(&kvm_guest_has_master_clock) != 0) 8347 irq_work_queue(&pvclock_irq_work); 8348 return 0; 8349 } 8350 8351 static struct notifier_block pvclock_gtod_notifier = { 8352 .notifier_call = pvclock_gtod_notify, 8353 }; 8354 #endif 8355 8356 int kvm_arch_init(void *opaque) 8357 { 8358 struct kvm_x86_init_ops *ops = opaque; 8359 int r; 8360 8361 if (kvm_x86_ops.hardware_enable) { 8362 printk(KERN_ERR "kvm: already loaded the other module\n"); 8363 r = -EEXIST; 8364 goto out; 8365 } 8366 8367 if (!ops->cpu_has_kvm_support()) { 8368 pr_err_ratelimited("kvm: no hardware support\n"); 8369 r = -EOPNOTSUPP; 8370 goto out; 8371 } 8372 if (ops->disabled_by_bios()) { 8373 pr_err_ratelimited("kvm: disabled by bios\n"); 8374 r = -EOPNOTSUPP; 8375 goto out; 8376 } 8377 8378 /* 8379 * KVM explicitly assumes that the guest has an FPU and 8380 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 8381 * vCPU's FPU state as a fxregs_state struct. 8382 */ 8383 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 8384 printk(KERN_ERR "kvm: inadequate fpu\n"); 8385 r = -EOPNOTSUPP; 8386 goto out; 8387 } 8388 8389 r = -ENOMEM; 8390 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), 8391 __alignof__(struct fpu), SLAB_ACCOUNT, 8392 NULL); 8393 if (!x86_fpu_cache) { 8394 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); 8395 goto out; 8396 } 8397 8398 x86_emulator_cache = kvm_alloc_emulator_cache(); 8399 if (!x86_emulator_cache) { 8400 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 8401 goto out_free_x86_fpu_cache; 8402 } 8403 8404 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 8405 if (!user_return_msrs) { 8406 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 8407 goto out_free_x86_emulator_cache; 8408 } 8409 kvm_nr_uret_msrs = 0; 8410 8411 r = kvm_mmu_module_init(); 8412 if (r) 8413 goto out_free_percpu; 8414 8415 kvm_timer_init(); 8416 8417 perf_register_guest_info_callbacks(&kvm_guest_cbs); 8418 8419 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 8420 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 8421 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 8422 } 8423 8424 if (pi_inject_timer == -1) 8425 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER); 8426 #ifdef CONFIG_X86_64 8427 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 8428 8429 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8430 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 8431 #endif 8432 8433 return 0; 8434 8435 out_free_percpu: 8436 free_percpu(user_return_msrs); 8437 out_free_x86_emulator_cache: 8438 kmem_cache_destroy(x86_emulator_cache); 8439 out_free_x86_fpu_cache: 8440 kmem_cache_destroy(x86_fpu_cache); 8441 out: 8442 return r; 8443 } 8444 8445 void kvm_arch_exit(void) 8446 { 8447 #ifdef CONFIG_X86_64 8448 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 8449 clear_hv_tscchange_cb(); 8450 #endif 8451 kvm_lapic_exit(); 8452 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 8453 8454 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8455 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 8456 CPUFREQ_TRANSITION_NOTIFIER); 8457 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 8458 #ifdef CONFIG_X86_64 8459 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 8460 irq_work_sync(&pvclock_irq_work); 8461 cancel_work_sync(&pvclock_gtod_work); 8462 #endif 8463 kvm_x86_ops.hardware_enable = NULL; 8464 kvm_mmu_module_exit(); 8465 free_percpu(user_return_msrs); 8466 kmem_cache_destroy(x86_emulator_cache); 8467 kmem_cache_destroy(x86_fpu_cache); 8468 #ifdef CONFIG_KVM_XEN 8469 static_key_deferred_flush(&kvm_xen_enabled); 8470 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 8471 #endif 8472 } 8473 8474 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason) 8475 { 8476 ++vcpu->stat.halt_exits; 8477 if (lapic_in_kernel(vcpu)) { 8478 vcpu->arch.mp_state = state; 8479 return 1; 8480 } else { 8481 vcpu->run->exit_reason = reason; 8482 return 0; 8483 } 8484 } 8485 8486 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 8487 { 8488 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 8489 } 8490 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 8491 8492 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 8493 { 8494 int ret = kvm_skip_emulated_instruction(vcpu); 8495 /* 8496 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 8497 * KVM_EXIT_DEBUG here. 8498 */ 8499 return kvm_vcpu_halt(vcpu) && ret; 8500 } 8501 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 8502 8503 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 8504 { 8505 int ret = kvm_skip_emulated_instruction(vcpu); 8506 8507 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret; 8508 } 8509 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 8510 8511 #ifdef CONFIG_X86_64 8512 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 8513 unsigned long clock_type) 8514 { 8515 struct kvm_clock_pairing clock_pairing; 8516 struct timespec64 ts; 8517 u64 cycle; 8518 int ret; 8519 8520 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 8521 return -KVM_EOPNOTSUPP; 8522 8523 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 8524 return -KVM_EOPNOTSUPP; 8525 8526 clock_pairing.sec = ts.tv_sec; 8527 clock_pairing.nsec = ts.tv_nsec; 8528 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 8529 clock_pairing.flags = 0; 8530 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 8531 8532 ret = 0; 8533 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 8534 sizeof(struct kvm_clock_pairing))) 8535 ret = -KVM_EFAULT; 8536 8537 return ret; 8538 } 8539 #endif 8540 8541 /* 8542 * kvm_pv_kick_cpu_op: Kick a vcpu. 8543 * 8544 * @apicid - apicid of vcpu to be kicked. 8545 */ 8546 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 8547 { 8548 struct kvm_lapic_irq lapic_irq; 8549 8550 lapic_irq.shorthand = APIC_DEST_NOSHORT; 8551 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 8552 lapic_irq.level = 0; 8553 lapic_irq.dest_id = apicid; 8554 lapic_irq.msi_redir_hint = false; 8555 8556 lapic_irq.delivery_mode = APIC_DM_REMRD; 8557 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 8558 } 8559 8560 bool kvm_apicv_activated(struct kvm *kvm) 8561 { 8562 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 8563 } 8564 EXPORT_SYMBOL_GPL(kvm_apicv_activated); 8565 8566 static void kvm_apicv_init(struct kvm *kvm) 8567 { 8568 if (enable_apicv) 8569 clear_bit(APICV_INHIBIT_REASON_DISABLE, 8570 &kvm->arch.apicv_inhibit_reasons); 8571 else 8572 set_bit(APICV_INHIBIT_REASON_DISABLE, 8573 &kvm->arch.apicv_inhibit_reasons); 8574 } 8575 8576 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 8577 { 8578 struct kvm_vcpu *target = NULL; 8579 struct kvm_apic_map *map; 8580 8581 vcpu->stat.directed_yield_attempted++; 8582 8583 if (single_task_running()) 8584 goto no_yield; 8585 8586 rcu_read_lock(); 8587 map = rcu_dereference(vcpu->kvm->arch.apic_map); 8588 8589 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 8590 target = map->phys_map[dest_id]->vcpu; 8591 8592 rcu_read_unlock(); 8593 8594 if (!target || !READ_ONCE(target->ready)) 8595 goto no_yield; 8596 8597 /* Ignore requests to yield to self */ 8598 if (vcpu == target) 8599 goto no_yield; 8600 8601 if (kvm_vcpu_yield_to(target) <= 0) 8602 goto no_yield; 8603 8604 vcpu->stat.directed_yield_successful++; 8605 8606 no_yield: 8607 return; 8608 } 8609 8610 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 8611 { 8612 u64 ret = vcpu->run->hypercall.ret; 8613 8614 if (!is_64_bit_mode(vcpu)) 8615 ret = (u32)ret; 8616 kvm_rax_write(vcpu, ret); 8617 ++vcpu->stat.hypercalls; 8618 return kvm_skip_emulated_instruction(vcpu); 8619 } 8620 8621 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 8622 { 8623 unsigned long nr, a0, a1, a2, a3, ret; 8624 int op_64_bit; 8625 8626 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 8627 return kvm_xen_hypercall(vcpu); 8628 8629 if (kvm_hv_hypercall_enabled(vcpu)) 8630 return kvm_hv_hypercall(vcpu); 8631 8632 nr = kvm_rax_read(vcpu); 8633 a0 = kvm_rbx_read(vcpu); 8634 a1 = kvm_rcx_read(vcpu); 8635 a2 = kvm_rdx_read(vcpu); 8636 a3 = kvm_rsi_read(vcpu); 8637 8638 trace_kvm_hypercall(nr, a0, a1, a2, a3); 8639 8640 op_64_bit = is_64_bit_mode(vcpu); 8641 if (!op_64_bit) { 8642 nr &= 0xFFFFFFFF; 8643 a0 &= 0xFFFFFFFF; 8644 a1 &= 0xFFFFFFFF; 8645 a2 &= 0xFFFFFFFF; 8646 a3 &= 0xFFFFFFFF; 8647 } 8648 8649 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 8650 ret = -KVM_EPERM; 8651 goto out; 8652 } 8653 8654 ret = -KVM_ENOSYS; 8655 8656 switch (nr) { 8657 case KVM_HC_VAPIC_POLL_IRQ: 8658 ret = 0; 8659 break; 8660 case KVM_HC_KICK_CPU: 8661 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 8662 break; 8663 8664 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 8665 kvm_sched_yield(vcpu, a1); 8666 ret = 0; 8667 break; 8668 #ifdef CONFIG_X86_64 8669 case KVM_HC_CLOCK_PAIRING: 8670 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 8671 break; 8672 #endif 8673 case KVM_HC_SEND_IPI: 8674 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 8675 break; 8676 8677 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 8678 break; 8679 case KVM_HC_SCHED_YIELD: 8680 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 8681 break; 8682 8683 kvm_sched_yield(vcpu, a0); 8684 ret = 0; 8685 break; 8686 case KVM_HC_MAP_GPA_RANGE: { 8687 u64 gpa = a0, npages = a1, attrs = a2; 8688 8689 ret = -KVM_ENOSYS; 8690 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 8691 break; 8692 8693 if (!PAGE_ALIGNED(gpa) || !npages || 8694 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 8695 ret = -KVM_EINVAL; 8696 break; 8697 } 8698 8699 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 8700 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 8701 vcpu->run->hypercall.args[0] = gpa; 8702 vcpu->run->hypercall.args[1] = npages; 8703 vcpu->run->hypercall.args[2] = attrs; 8704 vcpu->run->hypercall.longmode = op_64_bit; 8705 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 8706 return 0; 8707 } 8708 default: 8709 ret = -KVM_ENOSYS; 8710 break; 8711 } 8712 out: 8713 if (!op_64_bit) 8714 ret = (u32)ret; 8715 kvm_rax_write(vcpu, ret); 8716 8717 ++vcpu->stat.hypercalls; 8718 return kvm_skip_emulated_instruction(vcpu); 8719 } 8720 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 8721 8722 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 8723 { 8724 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8725 char instruction[3]; 8726 unsigned long rip = kvm_rip_read(vcpu); 8727 8728 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 8729 8730 return emulator_write_emulated(ctxt, rip, instruction, 3, 8731 &ctxt->exception); 8732 } 8733 8734 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 8735 { 8736 return vcpu->run->request_interrupt_window && 8737 likely(!pic_in_kernel(vcpu->kvm)); 8738 } 8739 8740 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 8741 { 8742 struct kvm_run *kvm_run = vcpu->run; 8743 8744 /* 8745 * if_flag is obsolete and useless, so do not bother 8746 * setting it for SEV-ES guests. Userspace can just 8747 * use kvm_run->ready_for_interrupt_injection. 8748 */ 8749 kvm_run->if_flag = !vcpu->arch.guest_state_protected 8750 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 8751 8752 kvm_run->cr8 = kvm_get_cr8(vcpu); 8753 kvm_run->apic_base = kvm_get_apic_base(vcpu); 8754 kvm_run->ready_for_interrupt_injection = 8755 pic_in_kernel(vcpu->kvm) || 8756 kvm_vcpu_ready_for_interrupt_injection(vcpu); 8757 8758 if (is_smm(vcpu)) 8759 kvm_run->flags |= KVM_RUN_X86_SMM; 8760 } 8761 8762 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 8763 { 8764 int max_irr, tpr; 8765 8766 if (!kvm_x86_ops.update_cr8_intercept) 8767 return; 8768 8769 if (!lapic_in_kernel(vcpu)) 8770 return; 8771 8772 if (vcpu->arch.apicv_active) 8773 return; 8774 8775 if (!vcpu->arch.apic->vapic_addr) 8776 max_irr = kvm_lapic_find_highest_irr(vcpu); 8777 else 8778 max_irr = -1; 8779 8780 if (max_irr != -1) 8781 max_irr >>= 4; 8782 8783 tpr = kvm_lapic_get_cr8(vcpu); 8784 8785 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 8786 } 8787 8788 8789 int kvm_check_nested_events(struct kvm_vcpu *vcpu) 8790 { 8791 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 8792 kvm_x86_ops.nested_ops->triple_fault(vcpu); 8793 return 1; 8794 } 8795 8796 return kvm_x86_ops.nested_ops->check_events(vcpu); 8797 } 8798 8799 static void kvm_inject_exception(struct kvm_vcpu *vcpu) 8800 { 8801 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 8802 vcpu->arch.exception.error_code = false; 8803 static_call(kvm_x86_queue_exception)(vcpu); 8804 } 8805 8806 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 8807 { 8808 int r; 8809 bool can_inject = true; 8810 8811 /* try to reinject previous events if any */ 8812 8813 if (vcpu->arch.exception.injected) { 8814 kvm_inject_exception(vcpu); 8815 can_inject = false; 8816 } 8817 /* 8818 * Do not inject an NMI or interrupt if there is a pending 8819 * exception. Exceptions and interrupts are recognized at 8820 * instruction boundaries, i.e. the start of an instruction. 8821 * Trap-like exceptions, e.g. #DB, have higher priority than 8822 * NMIs and interrupts, i.e. traps are recognized before an 8823 * NMI/interrupt that's pending on the same instruction. 8824 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 8825 * priority, but are only generated (pended) during instruction 8826 * execution, i.e. a pending fault-like exception means the 8827 * fault occurred on the *previous* instruction and must be 8828 * serviced prior to recognizing any new events in order to 8829 * fully complete the previous instruction. 8830 */ 8831 else if (!vcpu->arch.exception.pending) { 8832 if (vcpu->arch.nmi_injected) { 8833 static_call(kvm_x86_set_nmi)(vcpu); 8834 can_inject = false; 8835 } else if (vcpu->arch.interrupt.injected) { 8836 static_call(kvm_x86_set_irq)(vcpu); 8837 can_inject = false; 8838 } 8839 } 8840 8841 WARN_ON_ONCE(vcpu->arch.exception.injected && 8842 vcpu->arch.exception.pending); 8843 8844 /* 8845 * Call check_nested_events() even if we reinjected a previous event 8846 * in order for caller to determine if it should require immediate-exit 8847 * from L2 to L1 due to pending L1 events which require exit 8848 * from L2 to L1. 8849 */ 8850 if (is_guest_mode(vcpu)) { 8851 r = kvm_check_nested_events(vcpu); 8852 if (r < 0) 8853 goto out; 8854 } 8855 8856 /* try to inject new event if pending */ 8857 if (vcpu->arch.exception.pending) { 8858 trace_kvm_inj_exception(vcpu->arch.exception.nr, 8859 vcpu->arch.exception.has_error_code, 8860 vcpu->arch.exception.error_code); 8861 8862 vcpu->arch.exception.pending = false; 8863 vcpu->arch.exception.injected = true; 8864 8865 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 8866 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 8867 X86_EFLAGS_RF); 8868 8869 if (vcpu->arch.exception.nr == DB_VECTOR) { 8870 kvm_deliver_exception_payload(vcpu); 8871 if (vcpu->arch.dr7 & DR7_GD) { 8872 vcpu->arch.dr7 &= ~DR7_GD; 8873 kvm_update_dr7(vcpu); 8874 } 8875 } 8876 8877 kvm_inject_exception(vcpu); 8878 can_inject = false; 8879 } 8880 8881 /* 8882 * Finally, inject interrupt events. If an event cannot be injected 8883 * due to architectural conditions (e.g. IF=0) a window-open exit 8884 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 8885 * and can architecturally be injected, but we cannot do it right now: 8886 * an interrupt could have arrived just now and we have to inject it 8887 * as a vmexit, or there could already an event in the queue, which is 8888 * indicated by can_inject. In that case we request an immediate exit 8889 * in order to make progress and get back here for another iteration. 8890 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 8891 */ 8892 if (vcpu->arch.smi_pending) { 8893 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 8894 if (r < 0) 8895 goto out; 8896 if (r) { 8897 vcpu->arch.smi_pending = false; 8898 ++vcpu->arch.smi_count; 8899 enter_smm(vcpu); 8900 can_inject = false; 8901 } else 8902 static_call(kvm_x86_enable_smi_window)(vcpu); 8903 } 8904 8905 if (vcpu->arch.nmi_pending) { 8906 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 8907 if (r < 0) 8908 goto out; 8909 if (r) { 8910 --vcpu->arch.nmi_pending; 8911 vcpu->arch.nmi_injected = true; 8912 static_call(kvm_x86_set_nmi)(vcpu); 8913 can_inject = false; 8914 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 8915 } 8916 if (vcpu->arch.nmi_pending) 8917 static_call(kvm_x86_enable_nmi_window)(vcpu); 8918 } 8919 8920 if (kvm_cpu_has_injectable_intr(vcpu)) { 8921 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 8922 if (r < 0) 8923 goto out; 8924 if (r) { 8925 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 8926 static_call(kvm_x86_set_irq)(vcpu); 8927 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 8928 } 8929 if (kvm_cpu_has_injectable_intr(vcpu)) 8930 static_call(kvm_x86_enable_irq_window)(vcpu); 8931 } 8932 8933 if (is_guest_mode(vcpu) && 8934 kvm_x86_ops.nested_ops->hv_timer_pending && 8935 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 8936 *req_immediate_exit = true; 8937 8938 WARN_ON(vcpu->arch.exception.pending); 8939 return 0; 8940 8941 out: 8942 if (r == -EBUSY) { 8943 *req_immediate_exit = true; 8944 r = 0; 8945 } 8946 return r; 8947 } 8948 8949 static void process_nmi(struct kvm_vcpu *vcpu) 8950 { 8951 unsigned limit = 2; 8952 8953 /* 8954 * x86 is limited to one NMI running, and one NMI pending after it. 8955 * If an NMI is already in progress, limit further NMIs to just one. 8956 * Otherwise, allow two (and we'll inject the first one immediately). 8957 */ 8958 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 8959 limit = 1; 8960 8961 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 8962 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 8963 kvm_make_request(KVM_REQ_EVENT, vcpu); 8964 } 8965 8966 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 8967 { 8968 u32 flags = 0; 8969 flags |= seg->g << 23; 8970 flags |= seg->db << 22; 8971 flags |= seg->l << 21; 8972 flags |= seg->avl << 20; 8973 flags |= seg->present << 15; 8974 flags |= seg->dpl << 13; 8975 flags |= seg->s << 12; 8976 flags |= seg->type << 8; 8977 return flags; 8978 } 8979 8980 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 8981 { 8982 struct kvm_segment seg; 8983 int offset; 8984 8985 kvm_get_segment(vcpu, &seg, n); 8986 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 8987 8988 if (n < 3) 8989 offset = 0x7f84 + n * 12; 8990 else 8991 offset = 0x7f2c + (n - 3) * 12; 8992 8993 put_smstate(u32, buf, offset + 8, seg.base); 8994 put_smstate(u32, buf, offset + 4, seg.limit); 8995 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 8996 } 8997 8998 #ifdef CONFIG_X86_64 8999 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 9000 { 9001 struct kvm_segment seg; 9002 int offset; 9003 u16 flags; 9004 9005 kvm_get_segment(vcpu, &seg, n); 9006 offset = 0x7e00 + n * 16; 9007 9008 flags = enter_smm_get_segment_flags(&seg) >> 8; 9009 put_smstate(u16, buf, offset, seg.selector); 9010 put_smstate(u16, buf, offset + 2, flags); 9011 put_smstate(u32, buf, offset + 4, seg.limit); 9012 put_smstate(u64, buf, offset + 8, seg.base); 9013 } 9014 #endif 9015 9016 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 9017 { 9018 struct desc_ptr dt; 9019 struct kvm_segment seg; 9020 unsigned long val; 9021 int i; 9022 9023 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 9024 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 9025 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 9026 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 9027 9028 for (i = 0; i < 8; i++) 9029 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 9030 9031 kvm_get_dr(vcpu, 6, &val); 9032 put_smstate(u32, buf, 0x7fcc, (u32)val); 9033 kvm_get_dr(vcpu, 7, &val); 9034 put_smstate(u32, buf, 0x7fc8, (u32)val); 9035 9036 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9037 put_smstate(u32, buf, 0x7fc4, seg.selector); 9038 put_smstate(u32, buf, 0x7f64, seg.base); 9039 put_smstate(u32, buf, 0x7f60, seg.limit); 9040 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 9041 9042 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9043 put_smstate(u32, buf, 0x7fc0, seg.selector); 9044 put_smstate(u32, buf, 0x7f80, seg.base); 9045 put_smstate(u32, buf, 0x7f7c, seg.limit); 9046 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 9047 9048 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9049 put_smstate(u32, buf, 0x7f74, dt.address); 9050 put_smstate(u32, buf, 0x7f70, dt.size); 9051 9052 static_call(kvm_x86_get_idt)(vcpu, &dt); 9053 put_smstate(u32, buf, 0x7f58, dt.address); 9054 put_smstate(u32, buf, 0x7f54, dt.size); 9055 9056 for (i = 0; i < 6; i++) 9057 enter_smm_save_seg_32(vcpu, buf, i); 9058 9059 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 9060 9061 /* revision id */ 9062 put_smstate(u32, buf, 0x7efc, 0x00020000); 9063 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 9064 } 9065 9066 #ifdef CONFIG_X86_64 9067 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 9068 { 9069 struct desc_ptr dt; 9070 struct kvm_segment seg; 9071 unsigned long val; 9072 int i; 9073 9074 for (i = 0; i < 16; i++) 9075 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 9076 9077 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 9078 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 9079 9080 kvm_get_dr(vcpu, 6, &val); 9081 put_smstate(u64, buf, 0x7f68, val); 9082 kvm_get_dr(vcpu, 7, &val); 9083 put_smstate(u64, buf, 0x7f60, val); 9084 9085 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 9086 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 9087 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 9088 9089 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 9090 9091 /* revision id */ 9092 put_smstate(u32, buf, 0x7efc, 0x00020064); 9093 9094 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 9095 9096 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9097 put_smstate(u16, buf, 0x7e90, seg.selector); 9098 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 9099 put_smstate(u32, buf, 0x7e94, seg.limit); 9100 put_smstate(u64, buf, 0x7e98, seg.base); 9101 9102 static_call(kvm_x86_get_idt)(vcpu, &dt); 9103 put_smstate(u32, buf, 0x7e84, dt.size); 9104 put_smstate(u64, buf, 0x7e88, dt.address); 9105 9106 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9107 put_smstate(u16, buf, 0x7e70, seg.selector); 9108 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 9109 put_smstate(u32, buf, 0x7e74, seg.limit); 9110 put_smstate(u64, buf, 0x7e78, seg.base); 9111 9112 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9113 put_smstate(u32, buf, 0x7e64, dt.size); 9114 put_smstate(u64, buf, 0x7e68, dt.address); 9115 9116 for (i = 0; i < 6; i++) 9117 enter_smm_save_seg_64(vcpu, buf, i); 9118 } 9119 #endif 9120 9121 static void enter_smm(struct kvm_vcpu *vcpu) 9122 { 9123 struct kvm_segment cs, ds; 9124 struct desc_ptr dt; 9125 unsigned long cr0; 9126 char buf[512]; 9127 9128 memset(buf, 0, 512); 9129 #ifdef CONFIG_X86_64 9130 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9131 enter_smm_save_state_64(vcpu, buf); 9132 else 9133 #endif 9134 enter_smm_save_state_32(vcpu, buf); 9135 9136 /* 9137 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 9138 * state (e.g. leave guest mode) after we've saved the state into the 9139 * SMM state-save area. 9140 */ 9141 static_call(kvm_x86_enter_smm)(vcpu, buf); 9142 9143 kvm_smm_changed(vcpu, true); 9144 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 9145 9146 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 9147 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 9148 else 9149 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 9150 9151 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 9152 kvm_rip_write(vcpu, 0x8000); 9153 9154 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 9155 static_call(kvm_x86_set_cr0)(vcpu, cr0); 9156 vcpu->arch.cr0 = cr0; 9157 9158 static_call(kvm_x86_set_cr4)(vcpu, 0); 9159 9160 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 9161 dt.address = dt.size = 0; 9162 static_call(kvm_x86_set_idt)(vcpu, &dt); 9163 9164 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 9165 9166 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 9167 cs.base = vcpu->arch.smbase; 9168 9169 ds.selector = 0; 9170 ds.base = 0; 9171 9172 cs.limit = ds.limit = 0xffffffff; 9173 cs.type = ds.type = 0x3; 9174 cs.dpl = ds.dpl = 0; 9175 cs.db = ds.db = 0; 9176 cs.s = ds.s = 1; 9177 cs.l = ds.l = 0; 9178 cs.g = ds.g = 1; 9179 cs.avl = ds.avl = 0; 9180 cs.present = ds.present = 1; 9181 cs.unusable = ds.unusable = 0; 9182 cs.padding = ds.padding = 0; 9183 9184 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9185 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 9186 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 9187 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 9188 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 9189 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 9190 9191 #ifdef CONFIG_X86_64 9192 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9193 static_call(kvm_x86_set_efer)(vcpu, 0); 9194 #endif 9195 9196 kvm_update_cpuid_runtime(vcpu); 9197 kvm_mmu_reset_context(vcpu); 9198 } 9199 9200 static void process_smi(struct kvm_vcpu *vcpu) 9201 { 9202 vcpu->arch.smi_pending = true; 9203 kvm_make_request(KVM_REQ_EVENT, vcpu); 9204 } 9205 9206 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 9207 unsigned long *vcpu_bitmap) 9208 { 9209 cpumask_var_t cpus; 9210 9211 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 9212 9213 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, 9214 NULL, vcpu_bitmap, cpus); 9215 9216 free_cpumask_var(cpus); 9217 } 9218 9219 void kvm_make_scan_ioapic_request(struct kvm *kvm) 9220 { 9221 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 9222 } 9223 9224 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 9225 { 9226 if (!lapic_in_kernel(vcpu)) 9227 return; 9228 9229 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm); 9230 kvm_apic_update_apicv(vcpu); 9231 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 9232 9233 /* 9234 * When APICv gets disabled, we may still have injected interrupts 9235 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 9236 * still active when the interrupt got accepted. Make sure 9237 * inject_pending_event() is called to check for that. 9238 */ 9239 if (!vcpu->arch.apicv_active) 9240 kvm_make_request(KVM_REQ_EVENT, vcpu); 9241 } 9242 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 9243 9244 /* 9245 * NOTE: Do not hold any lock prior to calling this. 9246 * 9247 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be 9248 * locked, because it calls __x86_set_memory_region() which does 9249 * synchronize_srcu(&kvm->srcu). 9250 */ 9251 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit) 9252 { 9253 struct kvm_vcpu *except; 9254 unsigned long old, new, expected; 9255 9256 if (!kvm_x86_ops.check_apicv_inhibit_reasons || 9257 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit)) 9258 return; 9259 9260 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons); 9261 do { 9262 expected = new = old; 9263 if (activate) 9264 __clear_bit(bit, &new); 9265 else 9266 __set_bit(bit, &new); 9267 if (new == old) 9268 break; 9269 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new); 9270 } while (old != expected); 9271 9272 if (!!old == !!new) 9273 return; 9274 9275 trace_kvm_apicv_update_request(activate, bit); 9276 if (kvm_x86_ops.pre_update_apicv_exec_ctrl) 9277 static_call(kvm_x86_pre_update_apicv_exec_ctrl)(kvm, activate); 9278 9279 /* 9280 * Sending request to update APICV for all other vcpus, 9281 * while update the calling vcpu immediately instead of 9282 * waiting for another #VMEXIT to handle the request. 9283 */ 9284 except = kvm_get_running_vcpu(); 9285 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE, 9286 except); 9287 if (except) 9288 kvm_vcpu_update_apicv(except); 9289 } 9290 EXPORT_SYMBOL_GPL(kvm_request_apicv_update); 9291 9292 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 9293 { 9294 if (!kvm_apic_present(vcpu)) 9295 return; 9296 9297 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 9298 9299 if (irqchip_split(vcpu->kvm)) 9300 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 9301 else { 9302 if (vcpu->arch.apicv_active) 9303 static_call(kvm_x86_sync_pir_to_irr)(vcpu); 9304 if (ioapic_in_kernel(vcpu->kvm)) 9305 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 9306 } 9307 9308 if (is_guest_mode(vcpu)) 9309 vcpu->arch.load_eoi_exitmap_pending = true; 9310 else 9311 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 9312 } 9313 9314 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 9315 { 9316 u64 eoi_exit_bitmap[4]; 9317 9318 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 9319 return; 9320 9321 if (to_hv_vcpu(vcpu)) 9322 bitmap_or((ulong *)eoi_exit_bitmap, 9323 vcpu->arch.ioapic_handled_vectors, 9324 to_hv_synic(vcpu)->vec_bitmap, 256); 9325 9326 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 9327 } 9328 9329 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 9330 unsigned long start, unsigned long end) 9331 { 9332 unsigned long apic_address; 9333 9334 /* 9335 * The physical address of apic access page is stored in the VMCS. 9336 * Update it when it becomes invalid. 9337 */ 9338 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 9339 if (start <= apic_address && apic_address < end) 9340 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 9341 } 9342 9343 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 9344 { 9345 if (!lapic_in_kernel(vcpu)) 9346 return; 9347 9348 if (!kvm_x86_ops.set_apic_access_page_addr) 9349 return; 9350 9351 static_call(kvm_x86_set_apic_access_page_addr)(vcpu); 9352 } 9353 9354 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 9355 { 9356 smp_send_reschedule(vcpu->cpu); 9357 } 9358 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 9359 9360 /* 9361 * Returns 1 to let vcpu_run() continue the guest execution loop without 9362 * exiting to the userspace. Otherwise, the value will be returned to the 9363 * userspace. 9364 */ 9365 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 9366 { 9367 int r; 9368 bool req_int_win = 9369 dm_request_for_irq_injection(vcpu) && 9370 kvm_cpu_accept_dm_intr(vcpu); 9371 fastpath_t exit_fastpath; 9372 9373 bool req_immediate_exit = false; 9374 9375 /* Forbid vmenter if vcpu dirty ring is soft-full */ 9376 if (unlikely(vcpu->kvm->dirty_ring_size && 9377 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 9378 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 9379 trace_kvm_dirty_ring_exit(vcpu); 9380 r = 0; 9381 goto out; 9382 } 9383 9384 if (kvm_request_pending(vcpu)) { 9385 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 9386 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 9387 r = 0; 9388 goto out; 9389 } 9390 } 9391 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 9392 kvm_mmu_unload(vcpu); 9393 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 9394 __kvm_migrate_timers(vcpu); 9395 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 9396 kvm_gen_update_masterclock(vcpu->kvm); 9397 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 9398 kvm_gen_kvmclock_update(vcpu); 9399 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 9400 r = kvm_guest_time_update(vcpu); 9401 if (unlikely(r)) 9402 goto out; 9403 } 9404 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 9405 kvm_mmu_sync_roots(vcpu); 9406 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 9407 kvm_mmu_load_pgd(vcpu); 9408 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 9409 kvm_vcpu_flush_tlb_all(vcpu); 9410 9411 /* Flushing all ASIDs flushes the current ASID... */ 9412 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 9413 } 9414 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 9415 kvm_vcpu_flush_tlb_current(vcpu); 9416 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 9417 kvm_vcpu_flush_tlb_guest(vcpu); 9418 9419 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 9420 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 9421 r = 0; 9422 goto out; 9423 } 9424 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9425 if (is_guest_mode(vcpu)) { 9426 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9427 } else { 9428 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 9429 vcpu->mmio_needed = 0; 9430 r = 0; 9431 goto out; 9432 } 9433 } 9434 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 9435 /* Page is swapped out. Do synthetic halt */ 9436 vcpu->arch.apf.halted = true; 9437 r = 1; 9438 goto out; 9439 } 9440 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 9441 record_steal_time(vcpu); 9442 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 9443 process_smi(vcpu); 9444 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 9445 process_nmi(vcpu); 9446 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 9447 kvm_pmu_handle_event(vcpu); 9448 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 9449 kvm_pmu_deliver_pmi(vcpu); 9450 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 9451 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 9452 if (test_bit(vcpu->arch.pending_ioapic_eoi, 9453 vcpu->arch.ioapic_handled_vectors)) { 9454 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 9455 vcpu->run->eoi.vector = 9456 vcpu->arch.pending_ioapic_eoi; 9457 r = 0; 9458 goto out; 9459 } 9460 } 9461 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 9462 vcpu_scan_ioapic(vcpu); 9463 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 9464 vcpu_load_eoi_exitmap(vcpu); 9465 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 9466 kvm_vcpu_reload_apic_access_page(vcpu); 9467 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 9468 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 9469 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 9470 r = 0; 9471 goto out; 9472 } 9473 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 9474 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 9475 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 9476 r = 0; 9477 goto out; 9478 } 9479 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 9480 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 9481 9482 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 9483 vcpu->run->hyperv = hv_vcpu->exit; 9484 r = 0; 9485 goto out; 9486 } 9487 9488 /* 9489 * KVM_REQ_HV_STIMER has to be processed after 9490 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 9491 * depend on the guest clock being up-to-date 9492 */ 9493 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 9494 kvm_hv_process_stimers(vcpu); 9495 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 9496 kvm_vcpu_update_apicv(vcpu); 9497 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 9498 kvm_check_async_pf_completion(vcpu); 9499 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 9500 static_call(kvm_x86_msr_filter_changed)(vcpu); 9501 9502 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 9503 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 9504 } 9505 9506 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 9507 kvm_xen_has_interrupt(vcpu)) { 9508 ++vcpu->stat.req_event; 9509 r = kvm_apic_accept_events(vcpu); 9510 if (r < 0) { 9511 r = 0; 9512 goto out; 9513 } 9514 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 9515 r = 1; 9516 goto out; 9517 } 9518 9519 r = inject_pending_event(vcpu, &req_immediate_exit); 9520 if (r < 0) { 9521 r = 0; 9522 goto out; 9523 } 9524 if (req_int_win) 9525 static_call(kvm_x86_enable_irq_window)(vcpu); 9526 9527 if (kvm_lapic_enabled(vcpu)) { 9528 update_cr8_intercept(vcpu); 9529 kvm_lapic_sync_to_vapic(vcpu); 9530 } 9531 } 9532 9533 r = kvm_mmu_reload(vcpu); 9534 if (unlikely(r)) { 9535 goto cancel_injection; 9536 } 9537 9538 preempt_disable(); 9539 9540 static_call(kvm_x86_prepare_guest_switch)(vcpu); 9541 9542 /* 9543 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 9544 * IPI are then delayed after guest entry, which ensures that they 9545 * result in virtual interrupt delivery. 9546 */ 9547 local_irq_disable(); 9548 vcpu->mode = IN_GUEST_MODE; 9549 9550 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9551 9552 /* 9553 * 1) We should set ->mode before checking ->requests. Please see 9554 * the comment in kvm_vcpu_exiting_guest_mode(). 9555 * 9556 * 2) For APICv, we should set ->mode before checking PID.ON. This 9557 * pairs with the memory barrier implicit in pi_test_and_set_on 9558 * (see vmx_deliver_posted_interrupt). 9559 * 9560 * 3) This also orders the write to mode from any reads to the page 9561 * tables done while the VCPU is running. Please see the comment 9562 * in kvm_flush_remote_tlbs. 9563 */ 9564 smp_mb__after_srcu_read_unlock(); 9565 9566 /* 9567 * This handles the case where a posted interrupt was 9568 * notified with kvm_vcpu_kick. 9569 */ 9570 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active) 9571 static_call(kvm_x86_sync_pir_to_irr)(vcpu); 9572 9573 if (kvm_vcpu_exit_request(vcpu)) { 9574 vcpu->mode = OUTSIDE_GUEST_MODE; 9575 smp_wmb(); 9576 local_irq_enable(); 9577 preempt_enable(); 9578 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9579 r = 1; 9580 goto cancel_injection; 9581 } 9582 9583 if (req_immediate_exit) { 9584 kvm_make_request(KVM_REQ_EVENT, vcpu); 9585 static_call(kvm_x86_request_immediate_exit)(vcpu); 9586 } 9587 9588 fpregs_assert_state_consistent(); 9589 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 9590 switch_fpu_return(); 9591 9592 if (unlikely(vcpu->arch.switch_db_regs)) { 9593 set_debugreg(0, 7); 9594 set_debugreg(vcpu->arch.eff_db[0], 0); 9595 set_debugreg(vcpu->arch.eff_db[1], 1); 9596 set_debugreg(vcpu->arch.eff_db[2], 2); 9597 set_debugreg(vcpu->arch.eff_db[3], 3); 9598 set_debugreg(vcpu->arch.dr6, 6); 9599 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 9600 } 9601 9602 for (;;) { 9603 exit_fastpath = static_call(kvm_x86_run)(vcpu); 9604 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 9605 break; 9606 9607 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 9608 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 9609 break; 9610 } 9611 9612 if (vcpu->arch.apicv_active) 9613 static_call(kvm_x86_sync_pir_to_irr)(vcpu); 9614 } 9615 9616 /* 9617 * Do this here before restoring debug registers on the host. And 9618 * since we do this before handling the vmexit, a DR access vmexit 9619 * can (a) read the correct value of the debug registers, (b) set 9620 * KVM_DEBUGREG_WONT_EXIT again. 9621 */ 9622 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 9623 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 9624 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 9625 kvm_update_dr0123(vcpu); 9626 kvm_update_dr7(vcpu); 9627 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 9628 } 9629 9630 /* 9631 * If the guest has used debug registers, at least dr7 9632 * will be disabled while returning to the host. 9633 * If we don't have active breakpoints in the host, we don't 9634 * care about the messed up debug address registers. But if 9635 * we have some of them active, restore the old state. 9636 */ 9637 if (hw_breakpoint_active()) 9638 hw_breakpoint_restore(); 9639 9640 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 9641 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 9642 9643 vcpu->mode = OUTSIDE_GUEST_MODE; 9644 smp_wmb(); 9645 9646 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 9647 9648 /* 9649 * Consume any pending interrupts, including the possible source of 9650 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 9651 * An instruction is required after local_irq_enable() to fully unblock 9652 * interrupts on processors that implement an interrupt shadow, the 9653 * stat.exits increment will do nicely. 9654 */ 9655 kvm_before_interrupt(vcpu); 9656 local_irq_enable(); 9657 ++vcpu->stat.exits; 9658 local_irq_disable(); 9659 kvm_after_interrupt(vcpu); 9660 9661 /* 9662 * Wait until after servicing IRQs to account guest time so that any 9663 * ticks that occurred while running the guest are properly accounted 9664 * to the guest. Waiting until IRQs are enabled degrades the accuracy 9665 * of accounting via context tracking, but the loss of accuracy is 9666 * acceptable for all known use cases. 9667 */ 9668 vtime_account_guest_exit(); 9669 9670 if (lapic_in_kernel(vcpu)) { 9671 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta; 9672 if (delta != S64_MIN) { 9673 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta); 9674 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN; 9675 } 9676 } 9677 9678 local_irq_enable(); 9679 preempt_enable(); 9680 9681 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9682 9683 /* 9684 * Profile KVM exit RIPs: 9685 */ 9686 if (unlikely(prof_on == KVM_PROFILING)) { 9687 unsigned long rip = kvm_rip_read(vcpu); 9688 profile_hit(KVM_PROFILING, (void *)rip); 9689 } 9690 9691 if (unlikely(vcpu->arch.tsc_always_catchup)) 9692 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 9693 9694 if (vcpu->arch.apic_attention) 9695 kvm_lapic_sync_from_vapic(vcpu); 9696 9697 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 9698 return r; 9699 9700 cancel_injection: 9701 if (req_immediate_exit) 9702 kvm_make_request(KVM_REQ_EVENT, vcpu); 9703 static_call(kvm_x86_cancel_injection)(vcpu); 9704 if (unlikely(vcpu->arch.apic_attention)) 9705 kvm_lapic_sync_from_vapic(vcpu); 9706 out: 9707 return r; 9708 } 9709 9710 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 9711 { 9712 if (!kvm_arch_vcpu_runnable(vcpu) && 9713 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) { 9714 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9715 kvm_vcpu_block(vcpu); 9716 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9717 9718 if (kvm_x86_ops.post_block) 9719 static_call(kvm_x86_post_block)(vcpu); 9720 9721 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 9722 return 1; 9723 } 9724 9725 if (kvm_apic_accept_events(vcpu) < 0) 9726 return 0; 9727 switch(vcpu->arch.mp_state) { 9728 case KVM_MP_STATE_HALTED: 9729 case KVM_MP_STATE_AP_RESET_HOLD: 9730 vcpu->arch.pv.pv_unhalted = false; 9731 vcpu->arch.mp_state = 9732 KVM_MP_STATE_RUNNABLE; 9733 fallthrough; 9734 case KVM_MP_STATE_RUNNABLE: 9735 vcpu->arch.apf.halted = false; 9736 break; 9737 case KVM_MP_STATE_INIT_RECEIVED: 9738 break; 9739 default: 9740 return -EINTR; 9741 } 9742 return 1; 9743 } 9744 9745 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 9746 { 9747 if (is_guest_mode(vcpu)) 9748 kvm_check_nested_events(vcpu); 9749 9750 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 9751 !vcpu->arch.apf.halted); 9752 } 9753 9754 static int vcpu_run(struct kvm_vcpu *vcpu) 9755 { 9756 int r; 9757 struct kvm *kvm = vcpu->kvm; 9758 9759 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9760 vcpu->arch.l1tf_flush_l1d = true; 9761 9762 for (;;) { 9763 if (kvm_vcpu_running(vcpu)) { 9764 r = vcpu_enter_guest(vcpu); 9765 } else { 9766 r = vcpu_block(kvm, vcpu); 9767 } 9768 9769 if (r <= 0) 9770 break; 9771 9772 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 9773 if (kvm_cpu_has_pending_timer(vcpu)) 9774 kvm_inject_pending_timer_irqs(vcpu); 9775 9776 if (dm_request_for_irq_injection(vcpu) && 9777 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 9778 r = 0; 9779 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 9780 ++vcpu->stat.request_irq_exits; 9781 break; 9782 } 9783 9784 if (__xfer_to_guest_mode_work_pending()) { 9785 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9786 r = xfer_to_guest_mode_handle_work(vcpu); 9787 if (r) 9788 return r; 9789 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 9790 } 9791 } 9792 9793 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 9794 9795 return r; 9796 } 9797 9798 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 9799 { 9800 int r; 9801 9802 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 9803 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 9804 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 9805 return r; 9806 } 9807 9808 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 9809 { 9810 BUG_ON(!vcpu->arch.pio.count); 9811 9812 return complete_emulated_io(vcpu); 9813 } 9814 9815 /* 9816 * Implements the following, as a state machine: 9817 * 9818 * read: 9819 * for each fragment 9820 * for each mmio piece in the fragment 9821 * write gpa, len 9822 * exit 9823 * copy data 9824 * execute insn 9825 * 9826 * write: 9827 * for each fragment 9828 * for each mmio piece in the fragment 9829 * write gpa, len 9830 * copy data 9831 * exit 9832 */ 9833 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 9834 { 9835 struct kvm_run *run = vcpu->run; 9836 struct kvm_mmio_fragment *frag; 9837 unsigned len; 9838 9839 BUG_ON(!vcpu->mmio_needed); 9840 9841 /* Complete previous fragment */ 9842 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 9843 len = min(8u, frag->len); 9844 if (!vcpu->mmio_is_write) 9845 memcpy(frag->data, run->mmio.data, len); 9846 9847 if (frag->len <= 8) { 9848 /* Switch to the next fragment. */ 9849 frag++; 9850 vcpu->mmio_cur_fragment++; 9851 } else { 9852 /* Go forward to the next mmio piece. */ 9853 frag->data += len; 9854 frag->gpa += len; 9855 frag->len -= len; 9856 } 9857 9858 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 9859 vcpu->mmio_needed = 0; 9860 9861 /* FIXME: return into emulator if single-stepping. */ 9862 if (vcpu->mmio_is_write) 9863 return 1; 9864 vcpu->mmio_read_completed = 1; 9865 return complete_emulated_io(vcpu); 9866 } 9867 9868 run->exit_reason = KVM_EXIT_MMIO; 9869 run->mmio.phys_addr = frag->gpa; 9870 if (vcpu->mmio_is_write) 9871 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 9872 run->mmio.len = min(8u, frag->len); 9873 run->mmio.is_write = vcpu->mmio_is_write; 9874 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 9875 return 0; 9876 } 9877 9878 static void kvm_save_current_fpu(struct fpu *fpu) 9879 { 9880 /* 9881 * If the target FPU state is not resident in the CPU registers, just 9882 * memcpy() from current, else save CPU state directly to the target. 9883 */ 9884 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 9885 memcpy(&fpu->state, ¤t->thread.fpu.state, 9886 fpu_kernel_xstate_size); 9887 else 9888 copy_fpregs_to_fpstate(fpu); 9889 } 9890 9891 /* Swap (qemu) user FPU context for the guest FPU context. */ 9892 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 9893 { 9894 fpregs_lock(); 9895 9896 kvm_save_current_fpu(vcpu->arch.user_fpu); 9897 9898 /* 9899 * Guests with protected state can't have it set by the hypervisor, 9900 * so skip trying to set it. 9901 */ 9902 if (vcpu->arch.guest_fpu) 9903 /* PKRU is separately restored in kvm_x86_ops.run. */ 9904 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, 9905 ~XFEATURE_MASK_PKRU); 9906 9907 fpregs_mark_activate(); 9908 fpregs_unlock(); 9909 9910 trace_kvm_fpu(1); 9911 } 9912 9913 /* When vcpu_run ends, restore user space FPU context. */ 9914 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 9915 { 9916 fpregs_lock(); 9917 9918 /* 9919 * Guests with protected state can't have it read by the hypervisor, 9920 * so skip trying to save it. 9921 */ 9922 if (vcpu->arch.guest_fpu) 9923 kvm_save_current_fpu(vcpu->arch.guest_fpu); 9924 9925 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state); 9926 9927 fpregs_mark_activate(); 9928 fpregs_unlock(); 9929 9930 ++vcpu->stat.fpu_reload; 9931 trace_kvm_fpu(0); 9932 } 9933 9934 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 9935 { 9936 struct kvm_run *kvm_run = vcpu->run; 9937 int r; 9938 9939 vcpu_load(vcpu); 9940 kvm_sigset_activate(vcpu); 9941 kvm_run->flags = 0; 9942 kvm_load_guest_fpu(vcpu); 9943 9944 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 9945 if (kvm_run->immediate_exit) { 9946 r = -EINTR; 9947 goto out; 9948 } 9949 kvm_vcpu_block(vcpu); 9950 if (kvm_apic_accept_events(vcpu) < 0) { 9951 r = 0; 9952 goto out; 9953 } 9954 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 9955 r = -EAGAIN; 9956 if (signal_pending(current)) { 9957 r = -EINTR; 9958 kvm_run->exit_reason = KVM_EXIT_INTR; 9959 ++vcpu->stat.signal_exits; 9960 } 9961 goto out; 9962 } 9963 9964 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) { 9965 r = -EINVAL; 9966 goto out; 9967 } 9968 9969 if (kvm_run->kvm_dirty_regs) { 9970 r = sync_regs(vcpu); 9971 if (r != 0) 9972 goto out; 9973 } 9974 9975 /* re-sync apic's tpr */ 9976 if (!lapic_in_kernel(vcpu)) { 9977 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 9978 r = -EINVAL; 9979 goto out; 9980 } 9981 } 9982 9983 if (unlikely(vcpu->arch.complete_userspace_io)) { 9984 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 9985 vcpu->arch.complete_userspace_io = NULL; 9986 r = cui(vcpu); 9987 if (r <= 0) 9988 goto out; 9989 } else 9990 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 9991 9992 if (kvm_run->immediate_exit) 9993 r = -EINTR; 9994 else 9995 r = vcpu_run(vcpu); 9996 9997 out: 9998 kvm_put_guest_fpu(vcpu); 9999 if (kvm_run->kvm_valid_regs) 10000 store_regs(vcpu); 10001 post_kvm_run_save(vcpu); 10002 kvm_sigset_deactivate(vcpu); 10003 10004 vcpu_put(vcpu); 10005 return r; 10006 } 10007 10008 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10009 { 10010 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10011 /* 10012 * We are here if userspace calls get_regs() in the middle of 10013 * instruction emulation. Registers state needs to be copied 10014 * back from emulation context to vcpu. Userspace shouldn't do 10015 * that usually, but some bad designed PV devices (vmware 10016 * backdoor interface) need this to work 10017 */ 10018 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10019 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10020 } 10021 regs->rax = kvm_rax_read(vcpu); 10022 regs->rbx = kvm_rbx_read(vcpu); 10023 regs->rcx = kvm_rcx_read(vcpu); 10024 regs->rdx = kvm_rdx_read(vcpu); 10025 regs->rsi = kvm_rsi_read(vcpu); 10026 regs->rdi = kvm_rdi_read(vcpu); 10027 regs->rsp = kvm_rsp_read(vcpu); 10028 regs->rbp = kvm_rbp_read(vcpu); 10029 #ifdef CONFIG_X86_64 10030 regs->r8 = kvm_r8_read(vcpu); 10031 regs->r9 = kvm_r9_read(vcpu); 10032 regs->r10 = kvm_r10_read(vcpu); 10033 regs->r11 = kvm_r11_read(vcpu); 10034 regs->r12 = kvm_r12_read(vcpu); 10035 regs->r13 = kvm_r13_read(vcpu); 10036 regs->r14 = kvm_r14_read(vcpu); 10037 regs->r15 = kvm_r15_read(vcpu); 10038 #endif 10039 10040 regs->rip = kvm_rip_read(vcpu); 10041 regs->rflags = kvm_get_rflags(vcpu); 10042 } 10043 10044 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10045 { 10046 vcpu_load(vcpu); 10047 __get_regs(vcpu, regs); 10048 vcpu_put(vcpu); 10049 return 0; 10050 } 10051 10052 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10053 { 10054 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10055 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10056 10057 kvm_rax_write(vcpu, regs->rax); 10058 kvm_rbx_write(vcpu, regs->rbx); 10059 kvm_rcx_write(vcpu, regs->rcx); 10060 kvm_rdx_write(vcpu, regs->rdx); 10061 kvm_rsi_write(vcpu, regs->rsi); 10062 kvm_rdi_write(vcpu, regs->rdi); 10063 kvm_rsp_write(vcpu, regs->rsp); 10064 kvm_rbp_write(vcpu, regs->rbp); 10065 #ifdef CONFIG_X86_64 10066 kvm_r8_write(vcpu, regs->r8); 10067 kvm_r9_write(vcpu, regs->r9); 10068 kvm_r10_write(vcpu, regs->r10); 10069 kvm_r11_write(vcpu, regs->r11); 10070 kvm_r12_write(vcpu, regs->r12); 10071 kvm_r13_write(vcpu, regs->r13); 10072 kvm_r14_write(vcpu, regs->r14); 10073 kvm_r15_write(vcpu, regs->r15); 10074 #endif 10075 10076 kvm_rip_write(vcpu, regs->rip); 10077 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10078 10079 vcpu->arch.exception.pending = false; 10080 10081 kvm_make_request(KVM_REQ_EVENT, vcpu); 10082 } 10083 10084 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10085 { 10086 vcpu_load(vcpu); 10087 __set_regs(vcpu, regs); 10088 vcpu_put(vcpu); 10089 return 0; 10090 } 10091 10092 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 10093 { 10094 struct kvm_segment cs; 10095 10096 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 10097 *db = cs.db; 10098 *l = cs.l; 10099 } 10100 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 10101 10102 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10103 { 10104 struct desc_ptr dt; 10105 10106 if (vcpu->arch.guest_state_protected) 10107 goto skip_protected_regs; 10108 10109 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10110 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10111 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10112 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10113 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10114 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10115 10116 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10117 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10118 10119 static_call(kvm_x86_get_idt)(vcpu, &dt); 10120 sregs->idt.limit = dt.size; 10121 sregs->idt.base = dt.address; 10122 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10123 sregs->gdt.limit = dt.size; 10124 sregs->gdt.base = dt.address; 10125 10126 sregs->cr2 = vcpu->arch.cr2; 10127 sregs->cr3 = kvm_read_cr3(vcpu); 10128 10129 skip_protected_regs: 10130 sregs->cr0 = kvm_read_cr0(vcpu); 10131 sregs->cr4 = kvm_read_cr4(vcpu); 10132 sregs->cr8 = kvm_get_cr8(vcpu); 10133 sregs->efer = vcpu->arch.efer; 10134 sregs->apic_base = kvm_get_apic_base(vcpu); 10135 } 10136 10137 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10138 { 10139 __get_sregs_common(vcpu, sregs); 10140 10141 if (vcpu->arch.guest_state_protected) 10142 return; 10143 10144 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 10145 set_bit(vcpu->arch.interrupt.nr, 10146 (unsigned long *)sregs->interrupt_bitmap); 10147 } 10148 10149 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10150 { 10151 int i; 10152 10153 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 10154 10155 if (vcpu->arch.guest_state_protected) 10156 return; 10157 10158 if (is_pae_paging(vcpu)) { 10159 for (i = 0 ; i < 4 ; i++) 10160 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 10161 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 10162 } 10163 } 10164 10165 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 10166 struct kvm_sregs *sregs) 10167 { 10168 vcpu_load(vcpu); 10169 __get_sregs(vcpu, sregs); 10170 vcpu_put(vcpu); 10171 return 0; 10172 } 10173 10174 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 10175 struct kvm_mp_state *mp_state) 10176 { 10177 int r; 10178 10179 vcpu_load(vcpu); 10180 if (kvm_mpx_supported()) 10181 kvm_load_guest_fpu(vcpu); 10182 10183 r = kvm_apic_accept_events(vcpu); 10184 if (r < 0) 10185 goto out; 10186 r = 0; 10187 10188 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 10189 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 10190 vcpu->arch.pv.pv_unhalted) 10191 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 10192 else 10193 mp_state->mp_state = vcpu->arch.mp_state; 10194 10195 out: 10196 if (kvm_mpx_supported()) 10197 kvm_put_guest_fpu(vcpu); 10198 vcpu_put(vcpu); 10199 return r; 10200 } 10201 10202 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 10203 struct kvm_mp_state *mp_state) 10204 { 10205 int ret = -EINVAL; 10206 10207 vcpu_load(vcpu); 10208 10209 if (!lapic_in_kernel(vcpu) && 10210 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 10211 goto out; 10212 10213 /* 10214 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 10215 * INIT state; latched init should be reported using 10216 * KVM_SET_VCPU_EVENTS, so reject it here. 10217 */ 10218 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 10219 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 10220 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 10221 goto out; 10222 10223 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 10224 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 10225 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 10226 } else 10227 vcpu->arch.mp_state = mp_state->mp_state; 10228 kvm_make_request(KVM_REQ_EVENT, vcpu); 10229 10230 ret = 0; 10231 out: 10232 vcpu_put(vcpu); 10233 return ret; 10234 } 10235 10236 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 10237 int reason, bool has_error_code, u32 error_code) 10238 { 10239 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 10240 int ret; 10241 10242 init_emulate_ctxt(vcpu); 10243 10244 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 10245 has_error_code, error_code); 10246 if (ret) { 10247 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 10248 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 10249 vcpu->run->internal.ndata = 0; 10250 return 0; 10251 } 10252 10253 kvm_rip_write(vcpu, ctxt->eip); 10254 kvm_set_rflags(vcpu, ctxt->eflags); 10255 return 1; 10256 } 10257 EXPORT_SYMBOL_GPL(kvm_task_switch); 10258 10259 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10260 { 10261 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 10262 /* 10263 * When EFER.LME and CR0.PG are set, the processor is in 10264 * 64-bit mode (though maybe in a 32-bit code segment). 10265 * CR4.PAE and EFER.LMA must be set. 10266 */ 10267 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 10268 return false; 10269 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 10270 return false; 10271 } else { 10272 /* 10273 * Not in 64-bit mode: EFER.LMA is clear and the code 10274 * segment cannot be 64-bit. 10275 */ 10276 if (sregs->efer & EFER_LMA || sregs->cs.l) 10277 return false; 10278 } 10279 10280 return kvm_is_valid_cr4(vcpu, sregs->cr4); 10281 } 10282 10283 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 10284 int *mmu_reset_needed, bool update_pdptrs) 10285 { 10286 struct msr_data apic_base_msr; 10287 int idx; 10288 struct desc_ptr dt; 10289 10290 if (!kvm_is_valid_sregs(vcpu, sregs)) 10291 return -EINVAL; 10292 10293 apic_base_msr.data = sregs->apic_base; 10294 apic_base_msr.host_initiated = true; 10295 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 10296 return -EINVAL; 10297 10298 if (vcpu->arch.guest_state_protected) 10299 return 0; 10300 10301 dt.size = sregs->idt.limit; 10302 dt.address = sregs->idt.base; 10303 static_call(kvm_x86_set_idt)(vcpu, &dt); 10304 dt.size = sregs->gdt.limit; 10305 dt.address = sregs->gdt.base; 10306 static_call(kvm_x86_set_gdt)(vcpu, &dt); 10307 10308 vcpu->arch.cr2 = sregs->cr2; 10309 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 10310 vcpu->arch.cr3 = sregs->cr3; 10311 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 10312 10313 kvm_set_cr8(vcpu, sregs->cr8); 10314 10315 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 10316 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 10317 10318 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 10319 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 10320 vcpu->arch.cr0 = sregs->cr0; 10321 10322 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 10323 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 10324 10325 if (update_pdptrs) { 10326 idx = srcu_read_lock(&vcpu->kvm->srcu); 10327 if (is_pae_paging(vcpu)) { 10328 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 10329 *mmu_reset_needed = 1; 10330 } 10331 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10332 } 10333 10334 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10335 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10336 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10337 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10338 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10339 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10340 10341 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10342 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10343 10344 update_cr8_intercept(vcpu); 10345 10346 /* Older userspace won't unhalt the vcpu on reset. */ 10347 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 10348 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 10349 !is_protmode(vcpu)) 10350 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10351 10352 return 0; 10353 } 10354 10355 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10356 { 10357 int pending_vec, max_bits; 10358 int mmu_reset_needed = 0; 10359 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 10360 10361 if (ret) 10362 return ret; 10363 10364 if (mmu_reset_needed) 10365 kvm_mmu_reset_context(vcpu); 10366 10367 max_bits = KVM_NR_INTERRUPTS; 10368 pending_vec = find_first_bit( 10369 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 10370 10371 if (pending_vec < max_bits) { 10372 kvm_queue_interrupt(vcpu, pending_vec, false); 10373 pr_debug("Set back pending irq %d\n", pending_vec); 10374 kvm_make_request(KVM_REQ_EVENT, vcpu); 10375 } 10376 return 0; 10377 } 10378 10379 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10380 { 10381 int mmu_reset_needed = 0; 10382 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 10383 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 10384 !(sregs2->efer & EFER_LMA); 10385 int i, ret; 10386 10387 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 10388 return -EINVAL; 10389 10390 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 10391 return -EINVAL; 10392 10393 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 10394 &mmu_reset_needed, !valid_pdptrs); 10395 if (ret) 10396 return ret; 10397 10398 if (valid_pdptrs) { 10399 for (i = 0; i < 4 ; i++) 10400 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 10401 10402 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 10403 mmu_reset_needed = 1; 10404 vcpu->arch.pdptrs_from_userspace = true; 10405 } 10406 if (mmu_reset_needed) 10407 kvm_mmu_reset_context(vcpu); 10408 return 0; 10409 } 10410 10411 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 10412 struct kvm_sregs *sregs) 10413 { 10414 int ret; 10415 10416 vcpu_load(vcpu); 10417 ret = __set_sregs(vcpu, sregs); 10418 vcpu_put(vcpu); 10419 return ret; 10420 } 10421 10422 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 10423 struct kvm_guest_debug *dbg) 10424 { 10425 unsigned long rflags; 10426 int i, r; 10427 10428 if (vcpu->arch.guest_state_protected) 10429 return -EINVAL; 10430 10431 vcpu_load(vcpu); 10432 10433 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 10434 r = -EBUSY; 10435 if (vcpu->arch.exception.pending) 10436 goto out; 10437 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 10438 kvm_queue_exception(vcpu, DB_VECTOR); 10439 else 10440 kvm_queue_exception(vcpu, BP_VECTOR); 10441 } 10442 10443 /* 10444 * Read rflags as long as potentially injected trace flags are still 10445 * filtered out. 10446 */ 10447 rflags = kvm_get_rflags(vcpu); 10448 10449 vcpu->guest_debug = dbg->control; 10450 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 10451 vcpu->guest_debug = 0; 10452 10453 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 10454 for (i = 0; i < KVM_NR_DB_REGS; ++i) 10455 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 10456 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 10457 } else { 10458 for (i = 0; i < KVM_NR_DB_REGS; i++) 10459 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 10460 } 10461 kvm_update_dr7(vcpu); 10462 10463 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 10464 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 10465 10466 /* 10467 * Trigger an rflags update that will inject or remove the trace 10468 * flags. 10469 */ 10470 kvm_set_rflags(vcpu, rflags); 10471 10472 static_call(kvm_x86_update_exception_bitmap)(vcpu); 10473 10474 r = 0; 10475 10476 out: 10477 vcpu_put(vcpu); 10478 return r; 10479 } 10480 10481 /* 10482 * Translate a guest virtual address to a guest physical address. 10483 */ 10484 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 10485 struct kvm_translation *tr) 10486 { 10487 unsigned long vaddr = tr->linear_address; 10488 gpa_t gpa; 10489 int idx; 10490 10491 vcpu_load(vcpu); 10492 10493 idx = srcu_read_lock(&vcpu->kvm->srcu); 10494 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 10495 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10496 tr->physical_address = gpa; 10497 tr->valid = gpa != UNMAPPED_GVA; 10498 tr->writeable = 1; 10499 tr->usermode = 0; 10500 10501 vcpu_put(vcpu); 10502 return 0; 10503 } 10504 10505 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 10506 { 10507 struct fxregs_state *fxsave; 10508 10509 if (!vcpu->arch.guest_fpu) 10510 return 0; 10511 10512 vcpu_load(vcpu); 10513 10514 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 10515 memcpy(fpu->fpr, fxsave->st_space, 128); 10516 fpu->fcw = fxsave->cwd; 10517 fpu->fsw = fxsave->swd; 10518 fpu->ftwx = fxsave->twd; 10519 fpu->last_opcode = fxsave->fop; 10520 fpu->last_ip = fxsave->rip; 10521 fpu->last_dp = fxsave->rdp; 10522 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 10523 10524 vcpu_put(vcpu); 10525 return 0; 10526 } 10527 10528 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 10529 { 10530 struct fxregs_state *fxsave; 10531 10532 if (!vcpu->arch.guest_fpu) 10533 return 0; 10534 10535 vcpu_load(vcpu); 10536 10537 fxsave = &vcpu->arch.guest_fpu->state.fxsave; 10538 10539 memcpy(fxsave->st_space, fpu->fpr, 128); 10540 fxsave->cwd = fpu->fcw; 10541 fxsave->swd = fpu->fsw; 10542 fxsave->twd = fpu->ftwx; 10543 fxsave->fop = fpu->last_opcode; 10544 fxsave->rip = fpu->last_ip; 10545 fxsave->rdp = fpu->last_dp; 10546 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 10547 10548 vcpu_put(vcpu); 10549 return 0; 10550 } 10551 10552 static void store_regs(struct kvm_vcpu *vcpu) 10553 { 10554 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 10555 10556 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 10557 __get_regs(vcpu, &vcpu->run->s.regs.regs); 10558 10559 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 10560 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 10561 10562 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 10563 kvm_vcpu_ioctl_x86_get_vcpu_events( 10564 vcpu, &vcpu->run->s.regs.events); 10565 } 10566 10567 static int sync_regs(struct kvm_vcpu *vcpu) 10568 { 10569 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS) 10570 return -EINVAL; 10571 10572 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 10573 __set_regs(vcpu, &vcpu->run->s.regs.regs); 10574 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 10575 } 10576 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 10577 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 10578 return -EINVAL; 10579 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 10580 } 10581 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 10582 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 10583 vcpu, &vcpu->run->s.regs.events)) 10584 return -EINVAL; 10585 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 10586 } 10587 10588 return 0; 10589 } 10590 10591 static void fx_init(struct kvm_vcpu *vcpu) 10592 { 10593 if (!vcpu->arch.guest_fpu) 10594 return; 10595 10596 fpstate_init(&vcpu->arch.guest_fpu->state); 10597 if (boot_cpu_has(X86_FEATURE_XSAVES)) 10598 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = 10599 host_xcr0 | XSTATE_COMPACTION_ENABLED; 10600 10601 /* 10602 * Ensure guest xcr0 is valid for loading 10603 */ 10604 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 10605 10606 vcpu->arch.cr0 |= X86_CR0_ET; 10607 } 10608 10609 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu) 10610 { 10611 if (vcpu->arch.guest_fpu) { 10612 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu); 10613 vcpu->arch.guest_fpu = NULL; 10614 } 10615 } 10616 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu); 10617 10618 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 10619 { 10620 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 10621 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 10622 "guest TSC will not be reliable\n"); 10623 10624 return 0; 10625 } 10626 10627 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 10628 { 10629 struct page *page; 10630 int r; 10631 10632 vcpu->arch.last_vmentry_cpu = -1; 10633 10634 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 10635 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 10636 else 10637 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 10638 10639 r = kvm_mmu_create(vcpu); 10640 if (r < 0) 10641 return r; 10642 10643 if (irqchip_in_kernel(vcpu->kvm)) { 10644 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 10645 if (r < 0) 10646 goto fail_mmu_destroy; 10647 if (kvm_apicv_activated(vcpu->kvm)) 10648 vcpu->arch.apicv_active = true; 10649 } else 10650 static_branch_inc(&kvm_has_noapic_vcpu); 10651 10652 r = -ENOMEM; 10653 10654 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 10655 if (!page) 10656 goto fail_free_lapic; 10657 vcpu->arch.pio_data = page_address(page); 10658 10659 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 10660 GFP_KERNEL_ACCOUNT); 10661 if (!vcpu->arch.mce_banks) 10662 goto fail_free_pio_data; 10663 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 10664 10665 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 10666 GFP_KERNEL_ACCOUNT)) 10667 goto fail_free_mce_banks; 10668 10669 if (!alloc_emulate_ctxt(vcpu)) 10670 goto free_wbinvd_dirty_mask; 10671 10672 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 10673 GFP_KERNEL_ACCOUNT); 10674 if (!vcpu->arch.user_fpu) { 10675 pr_err("kvm: failed to allocate userspace's fpu\n"); 10676 goto free_emulate_ctxt; 10677 } 10678 10679 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 10680 GFP_KERNEL_ACCOUNT); 10681 if (!vcpu->arch.guest_fpu) { 10682 pr_err("kvm: failed to allocate vcpu's fpu\n"); 10683 goto free_user_fpu; 10684 } 10685 fx_init(vcpu); 10686 10687 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 10688 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 10689 10690 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 10691 10692 kvm_async_pf_hash_reset(vcpu); 10693 kvm_pmu_init(vcpu); 10694 10695 vcpu->arch.pending_external_vector = -1; 10696 vcpu->arch.preempted_in_kernel = false; 10697 10698 #if IS_ENABLED(CONFIG_HYPERV) 10699 vcpu->arch.hv_root_tdp = INVALID_PAGE; 10700 #endif 10701 10702 r = static_call(kvm_x86_vcpu_create)(vcpu); 10703 if (r) 10704 goto free_guest_fpu; 10705 10706 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 10707 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 10708 kvm_vcpu_mtrr_init(vcpu); 10709 vcpu_load(vcpu); 10710 kvm_set_tsc_khz(vcpu, max_tsc_khz); 10711 kvm_vcpu_reset(vcpu, false); 10712 kvm_init_mmu(vcpu); 10713 vcpu_put(vcpu); 10714 return 0; 10715 10716 free_guest_fpu: 10717 kvm_free_guest_fpu(vcpu); 10718 free_user_fpu: 10719 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 10720 free_emulate_ctxt: 10721 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 10722 free_wbinvd_dirty_mask: 10723 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 10724 fail_free_mce_banks: 10725 kfree(vcpu->arch.mce_banks); 10726 fail_free_pio_data: 10727 free_page((unsigned long)vcpu->arch.pio_data); 10728 fail_free_lapic: 10729 kvm_free_lapic(vcpu); 10730 fail_mmu_destroy: 10731 kvm_mmu_destroy(vcpu); 10732 return r; 10733 } 10734 10735 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 10736 { 10737 struct kvm *kvm = vcpu->kvm; 10738 10739 if (mutex_lock_killable(&vcpu->mutex)) 10740 return; 10741 vcpu_load(vcpu); 10742 kvm_synchronize_tsc(vcpu, 0); 10743 vcpu_put(vcpu); 10744 10745 /* poll control enabled by default */ 10746 vcpu->arch.msr_kvm_poll_control = 1; 10747 10748 mutex_unlock(&vcpu->mutex); 10749 10750 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 10751 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 10752 KVMCLOCK_SYNC_PERIOD); 10753 } 10754 10755 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 10756 { 10757 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache; 10758 int idx; 10759 10760 kvm_release_pfn(cache->pfn, cache->dirty, cache); 10761 10762 kvmclock_reset(vcpu); 10763 10764 static_call(kvm_x86_vcpu_free)(vcpu); 10765 10766 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 10767 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 10768 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu); 10769 kvm_free_guest_fpu(vcpu); 10770 10771 kvm_hv_vcpu_uninit(vcpu); 10772 kvm_pmu_destroy(vcpu); 10773 kfree(vcpu->arch.mce_banks); 10774 kvm_free_lapic(vcpu); 10775 idx = srcu_read_lock(&vcpu->kvm->srcu); 10776 kvm_mmu_destroy(vcpu); 10777 srcu_read_unlock(&vcpu->kvm->srcu, idx); 10778 free_page((unsigned long)vcpu->arch.pio_data); 10779 kvfree(vcpu->arch.cpuid_entries); 10780 if (!lapic_in_kernel(vcpu)) 10781 static_branch_dec(&kvm_has_noapic_vcpu); 10782 } 10783 10784 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 10785 { 10786 unsigned long old_cr0 = kvm_read_cr0(vcpu); 10787 10788 kvm_lapic_reset(vcpu, init_event); 10789 10790 vcpu->arch.hflags = 0; 10791 10792 vcpu->arch.smi_pending = 0; 10793 vcpu->arch.smi_count = 0; 10794 atomic_set(&vcpu->arch.nmi_queued, 0); 10795 vcpu->arch.nmi_pending = 0; 10796 vcpu->arch.nmi_injected = false; 10797 kvm_clear_interrupt_queue(vcpu); 10798 kvm_clear_exception_queue(vcpu); 10799 10800 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 10801 kvm_update_dr0123(vcpu); 10802 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 10803 vcpu->arch.dr7 = DR7_FIXED_1; 10804 kvm_update_dr7(vcpu); 10805 10806 vcpu->arch.cr2 = 0; 10807 10808 kvm_make_request(KVM_REQ_EVENT, vcpu); 10809 vcpu->arch.apf.msr_en_val = 0; 10810 vcpu->arch.apf.msr_int_val = 0; 10811 vcpu->arch.st.msr_val = 0; 10812 10813 kvmclock_reset(vcpu); 10814 10815 kvm_clear_async_pf_completion_queue(vcpu); 10816 kvm_async_pf_hash_reset(vcpu); 10817 vcpu->arch.apf.halted = false; 10818 10819 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) { 10820 void *mpx_state_buffer; 10821 10822 /* 10823 * To avoid have the INIT path from kvm_apic_has_events() that be 10824 * called with loaded FPU and does not let userspace fix the state. 10825 */ 10826 if (init_event) 10827 kvm_put_guest_fpu(vcpu); 10828 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10829 XFEATURE_BNDREGS); 10830 if (mpx_state_buffer) 10831 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); 10832 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, 10833 XFEATURE_BNDCSR); 10834 if (mpx_state_buffer) 10835 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); 10836 if (init_event) 10837 kvm_load_guest_fpu(vcpu); 10838 } 10839 10840 if (!init_event) { 10841 kvm_pmu_reset(vcpu); 10842 vcpu->arch.smbase = 0x30000; 10843 10844 vcpu->arch.msr_misc_features_enables = 0; 10845 10846 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 10847 } 10848 10849 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 10850 vcpu->arch.regs_avail = ~0; 10851 vcpu->arch.regs_dirty = ~0; 10852 10853 vcpu->arch.ia32_xss = 0; 10854 10855 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 10856 10857 /* 10858 * Reset the MMU context if paging was enabled prior to INIT (which is 10859 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the 10860 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be 10861 * checked because it is unconditionally cleared on INIT and all other 10862 * paging related bits are ignored if paging is disabled, i.e. CR0.WP, 10863 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'. 10864 */ 10865 if (old_cr0 & X86_CR0_PG) 10866 kvm_mmu_reset_context(vcpu); 10867 } 10868 10869 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 10870 { 10871 struct kvm_segment cs; 10872 10873 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 10874 cs.selector = vector << 8; 10875 cs.base = vector << 12; 10876 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 10877 kvm_rip_write(vcpu, 0); 10878 } 10879 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 10880 10881 int kvm_arch_hardware_enable(void) 10882 { 10883 struct kvm *kvm; 10884 struct kvm_vcpu *vcpu; 10885 int i; 10886 int ret; 10887 u64 local_tsc; 10888 u64 max_tsc = 0; 10889 bool stable, backwards_tsc = false; 10890 10891 kvm_user_return_msr_cpu_online(); 10892 ret = static_call(kvm_x86_hardware_enable)(); 10893 if (ret != 0) 10894 return ret; 10895 10896 local_tsc = rdtsc(); 10897 stable = !kvm_check_tsc_unstable(); 10898 list_for_each_entry(kvm, &vm_list, vm_list) { 10899 kvm_for_each_vcpu(i, vcpu, kvm) { 10900 if (!stable && vcpu->cpu == smp_processor_id()) 10901 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10902 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 10903 backwards_tsc = true; 10904 if (vcpu->arch.last_host_tsc > max_tsc) 10905 max_tsc = vcpu->arch.last_host_tsc; 10906 } 10907 } 10908 } 10909 10910 /* 10911 * Sometimes, even reliable TSCs go backwards. This happens on 10912 * platforms that reset TSC during suspend or hibernate actions, but 10913 * maintain synchronization. We must compensate. Fortunately, we can 10914 * detect that condition here, which happens early in CPU bringup, 10915 * before any KVM threads can be running. Unfortunately, we can't 10916 * bring the TSCs fully up to date with real time, as we aren't yet far 10917 * enough into CPU bringup that we know how much real time has actually 10918 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 10919 * variables that haven't been updated yet. 10920 * 10921 * So we simply find the maximum observed TSC above, then record the 10922 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 10923 * the adjustment will be applied. Note that we accumulate 10924 * adjustments, in case multiple suspend cycles happen before some VCPU 10925 * gets a chance to run again. In the event that no KVM threads get a 10926 * chance to run, we will miss the entire elapsed period, as we'll have 10927 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 10928 * loose cycle time. This isn't too big a deal, since the loss will be 10929 * uniform across all VCPUs (not to mention the scenario is extremely 10930 * unlikely). It is possible that a second hibernate recovery happens 10931 * much faster than a first, causing the observed TSC here to be 10932 * smaller; this would require additional padding adjustment, which is 10933 * why we set last_host_tsc to the local tsc observed here. 10934 * 10935 * N.B. - this code below runs only on platforms with reliable TSC, 10936 * as that is the only way backwards_tsc is set above. Also note 10937 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 10938 * have the same delta_cyc adjustment applied if backwards_tsc 10939 * is detected. Note further, this adjustment is only done once, 10940 * as we reset last_host_tsc on all VCPUs to stop this from being 10941 * called multiple times (one for each physical CPU bringup). 10942 * 10943 * Platforms with unreliable TSCs don't have to deal with this, they 10944 * will be compensated by the logic in vcpu_load, which sets the TSC to 10945 * catchup mode. This will catchup all VCPUs to real time, but cannot 10946 * guarantee that they stay in perfect synchronization. 10947 */ 10948 if (backwards_tsc) { 10949 u64 delta_cyc = max_tsc - local_tsc; 10950 list_for_each_entry(kvm, &vm_list, vm_list) { 10951 kvm->arch.backwards_tsc_observed = true; 10952 kvm_for_each_vcpu(i, vcpu, kvm) { 10953 vcpu->arch.tsc_offset_adjustment += delta_cyc; 10954 vcpu->arch.last_host_tsc = local_tsc; 10955 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 10956 } 10957 10958 /* 10959 * We have to disable TSC offset matching.. if you were 10960 * booting a VM while issuing an S4 host suspend.... 10961 * you may have some problem. Solving this issue is 10962 * left as an exercise to the reader. 10963 */ 10964 kvm->arch.last_tsc_nsec = 0; 10965 kvm->arch.last_tsc_write = 0; 10966 } 10967 10968 } 10969 return 0; 10970 } 10971 10972 void kvm_arch_hardware_disable(void) 10973 { 10974 static_call(kvm_x86_hardware_disable)(); 10975 drop_user_return_notifiers(); 10976 } 10977 10978 int kvm_arch_hardware_setup(void *opaque) 10979 { 10980 struct kvm_x86_init_ops *ops = opaque; 10981 int r; 10982 10983 rdmsrl_safe(MSR_EFER, &host_efer); 10984 if (WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_NX) && 10985 !(host_efer & EFER_NX))) 10986 return -EIO; 10987 10988 if (boot_cpu_has(X86_FEATURE_XSAVES)) 10989 rdmsrl(MSR_IA32_XSS, host_xss); 10990 10991 r = ops->hardware_setup(); 10992 if (r != 0) 10993 return r; 10994 10995 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 10996 kvm_ops_static_call_update(); 10997 10998 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 10999 supported_xss = 0; 11000 11001 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 11002 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 11003 #undef __kvm_cpu_cap_has 11004 11005 if (kvm_has_tsc_control) { 11006 /* 11007 * Make sure the user can only configure tsc_khz values that 11008 * fit into a signed integer. 11009 * A min value is not calculated because it will always 11010 * be 1 on all machines. 11011 */ 11012 u64 max = min(0x7fffffffULL, 11013 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 11014 kvm_max_guest_tsc_khz = max; 11015 11016 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 11017 } 11018 11019 kvm_init_msr_list(); 11020 return 0; 11021 } 11022 11023 void kvm_arch_hardware_unsetup(void) 11024 { 11025 static_call(kvm_x86_hardware_unsetup)(); 11026 } 11027 11028 int kvm_arch_check_processor_compat(void *opaque) 11029 { 11030 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 11031 struct kvm_x86_init_ops *ops = opaque; 11032 11033 WARN_ON(!irqs_disabled()); 11034 11035 if (__cr4_reserved_bits(cpu_has, c) != 11036 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 11037 return -EIO; 11038 11039 return ops->check_processor_compatibility(); 11040 } 11041 11042 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 11043 { 11044 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 11045 } 11046 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 11047 11048 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 11049 { 11050 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 11051 } 11052 11053 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 11054 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 11055 11056 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 11057 { 11058 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 11059 11060 vcpu->arch.l1tf_flush_l1d = true; 11061 if (pmu->version && unlikely(pmu->event_count)) { 11062 pmu->need_cleanup = true; 11063 kvm_make_request(KVM_REQ_PMU, vcpu); 11064 } 11065 static_call(kvm_x86_sched_in)(vcpu, cpu); 11066 } 11067 11068 void kvm_arch_free_vm(struct kvm *kvm) 11069 { 11070 kfree(to_kvm_hv(kvm)->hv_pa_pg); 11071 vfree(kvm); 11072 } 11073 11074 11075 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 11076 { 11077 if (type) 11078 return -EINVAL; 11079 11080 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 11081 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 11082 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 11083 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages); 11084 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 11085 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 11086 11087 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 11088 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 11089 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 11090 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 11091 &kvm->arch.irq_sources_bitmap); 11092 11093 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 11094 mutex_init(&kvm->arch.apic_map_lock); 11095 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 11096 11097 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 11098 pvclock_update_vm_gtod_copy(kvm); 11099 11100 kvm->arch.guest_can_read_msr_platform_info = true; 11101 11102 #if IS_ENABLED(CONFIG_HYPERV) 11103 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 11104 kvm->arch.hv_root_tdp = INVALID_PAGE; 11105 #endif 11106 11107 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 11108 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 11109 11110 kvm_apicv_init(kvm); 11111 kvm_hv_init_vm(kvm); 11112 kvm_page_track_init(kvm); 11113 kvm_mmu_init_vm(kvm); 11114 11115 return static_call(kvm_x86_vm_init)(kvm); 11116 } 11117 11118 int kvm_arch_post_init_vm(struct kvm *kvm) 11119 { 11120 return kvm_mmu_post_init_vm(kvm); 11121 } 11122 11123 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 11124 { 11125 vcpu_load(vcpu); 11126 kvm_mmu_unload(vcpu); 11127 vcpu_put(vcpu); 11128 } 11129 11130 static void kvm_free_vcpus(struct kvm *kvm) 11131 { 11132 unsigned int i; 11133 struct kvm_vcpu *vcpu; 11134 11135 /* 11136 * Unpin any mmu pages first. 11137 */ 11138 kvm_for_each_vcpu(i, vcpu, kvm) { 11139 kvm_clear_async_pf_completion_queue(vcpu); 11140 kvm_unload_vcpu_mmu(vcpu); 11141 } 11142 kvm_for_each_vcpu(i, vcpu, kvm) 11143 kvm_vcpu_destroy(vcpu); 11144 11145 mutex_lock(&kvm->lock); 11146 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 11147 kvm->vcpus[i] = NULL; 11148 11149 atomic_set(&kvm->online_vcpus, 0); 11150 mutex_unlock(&kvm->lock); 11151 } 11152 11153 void kvm_arch_sync_events(struct kvm *kvm) 11154 { 11155 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 11156 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 11157 kvm_free_pit(kvm); 11158 } 11159 11160 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 11161 11162 /** 11163 * __x86_set_memory_region: Setup KVM internal memory slot 11164 * 11165 * @kvm: the kvm pointer to the VM. 11166 * @id: the slot ID to setup. 11167 * @gpa: the GPA to install the slot (unused when @size == 0). 11168 * @size: the size of the slot. Set to zero to uninstall a slot. 11169 * 11170 * This function helps to setup a KVM internal memory slot. Specify 11171 * @size > 0 to install a new slot, while @size == 0 to uninstall a 11172 * slot. The return code can be one of the following: 11173 * 11174 * HVA: on success (uninstall will return a bogus HVA) 11175 * -errno: on error 11176 * 11177 * The caller should always use IS_ERR() to check the return value 11178 * before use. Note, the KVM internal memory slots are guaranteed to 11179 * remain valid and unchanged until the VM is destroyed, i.e., the 11180 * GPA->HVA translation will not change. However, the HVA is a user 11181 * address, i.e. its accessibility is not guaranteed, and must be 11182 * accessed via __copy_{to,from}_user(). 11183 */ 11184 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 11185 u32 size) 11186 { 11187 int i, r; 11188 unsigned long hva, old_npages; 11189 struct kvm_memslots *slots = kvm_memslots(kvm); 11190 struct kvm_memory_slot *slot; 11191 11192 /* Called with kvm->slots_lock held. */ 11193 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 11194 return ERR_PTR_USR(-EINVAL); 11195 11196 slot = id_to_memslot(slots, id); 11197 if (size) { 11198 if (slot && slot->npages) 11199 return ERR_PTR_USR(-EEXIST); 11200 11201 /* 11202 * MAP_SHARED to prevent internal slot pages from being moved 11203 * by fork()/COW. 11204 */ 11205 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 11206 MAP_SHARED | MAP_ANONYMOUS, 0); 11207 if (IS_ERR((void *)hva)) 11208 return (void __user *)hva; 11209 } else { 11210 if (!slot || !slot->npages) 11211 return NULL; 11212 11213 old_npages = slot->npages; 11214 hva = slot->userspace_addr; 11215 } 11216 11217 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 11218 struct kvm_userspace_memory_region m; 11219 11220 m.slot = id | (i << 16); 11221 m.flags = 0; 11222 m.guest_phys_addr = gpa; 11223 m.userspace_addr = hva; 11224 m.memory_size = size; 11225 r = __kvm_set_memory_region(kvm, &m); 11226 if (r < 0) 11227 return ERR_PTR_USR(r); 11228 } 11229 11230 if (!size) 11231 vm_munmap(hva, old_npages * PAGE_SIZE); 11232 11233 return (void __user *)hva; 11234 } 11235 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 11236 11237 void kvm_arch_pre_destroy_vm(struct kvm *kvm) 11238 { 11239 kvm_mmu_pre_destroy_vm(kvm); 11240 } 11241 11242 void kvm_arch_destroy_vm(struct kvm *kvm) 11243 { 11244 if (current->mm == kvm->mm) { 11245 /* 11246 * Free memory regions allocated on behalf of userspace, 11247 * unless the the memory map has changed due to process exit 11248 * or fd copying. 11249 */ 11250 mutex_lock(&kvm->slots_lock); 11251 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 11252 0, 0); 11253 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 11254 0, 0); 11255 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 11256 mutex_unlock(&kvm->slots_lock); 11257 } 11258 static_call_cond(kvm_x86_vm_destroy)(kvm); 11259 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 11260 kvm_pic_destroy(kvm); 11261 kvm_ioapic_destroy(kvm); 11262 kvm_free_vcpus(kvm); 11263 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 11264 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 11265 kvm_mmu_uninit_vm(kvm); 11266 kvm_page_track_cleanup(kvm); 11267 kvm_xen_destroy_vm(kvm); 11268 kvm_hv_destroy_vm(kvm); 11269 } 11270 11271 static void memslot_rmap_free(struct kvm_memory_slot *slot) 11272 { 11273 int i; 11274 11275 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11276 kvfree(slot->arch.rmap[i]); 11277 slot->arch.rmap[i] = NULL; 11278 } 11279 } 11280 11281 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 11282 { 11283 int i; 11284 11285 memslot_rmap_free(slot); 11286 11287 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11288 kvfree(slot->arch.lpage_info[i - 1]); 11289 slot->arch.lpage_info[i - 1] = NULL; 11290 } 11291 11292 kvm_page_track_free_memslot(slot); 11293 } 11294 11295 static int memslot_rmap_alloc(struct kvm_memory_slot *slot, 11296 unsigned long npages) 11297 { 11298 const int sz = sizeof(*slot->arch.rmap[0]); 11299 int i; 11300 11301 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 11302 int level = i + 1; 11303 int lpages = gfn_to_index(slot->base_gfn + npages - 1, 11304 slot->base_gfn, level) + 1; 11305 11306 WARN_ON(slot->arch.rmap[i]); 11307 11308 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 11309 if (!slot->arch.rmap[i]) { 11310 memslot_rmap_free(slot); 11311 return -ENOMEM; 11312 } 11313 } 11314 11315 return 0; 11316 } 11317 11318 int alloc_all_memslots_rmaps(struct kvm *kvm) 11319 { 11320 struct kvm_memslots *slots; 11321 struct kvm_memory_slot *slot; 11322 int r, i; 11323 11324 /* 11325 * Check if memslots alreday have rmaps early before acquiring 11326 * the slots_arch_lock below. 11327 */ 11328 if (kvm_memslots_have_rmaps(kvm)) 11329 return 0; 11330 11331 mutex_lock(&kvm->slots_arch_lock); 11332 11333 /* 11334 * Read memslots_have_rmaps again, under the slots arch lock, 11335 * before allocating the rmaps 11336 */ 11337 if (kvm_memslots_have_rmaps(kvm)) { 11338 mutex_unlock(&kvm->slots_arch_lock); 11339 return 0; 11340 } 11341 11342 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 11343 slots = __kvm_memslots(kvm, i); 11344 kvm_for_each_memslot(slot, slots) { 11345 r = memslot_rmap_alloc(slot, slot->npages); 11346 if (r) { 11347 mutex_unlock(&kvm->slots_arch_lock); 11348 return r; 11349 } 11350 } 11351 } 11352 11353 /* 11354 * Ensure that memslots_have_rmaps becomes true strictly after 11355 * all the rmap pointers are set. 11356 */ 11357 smp_store_release(&kvm->arch.memslots_have_rmaps, true); 11358 mutex_unlock(&kvm->slots_arch_lock); 11359 return 0; 11360 } 11361 11362 static int kvm_alloc_memslot_metadata(struct kvm *kvm, 11363 struct kvm_memory_slot *slot, 11364 unsigned long npages) 11365 { 11366 int i, r; 11367 11368 /* 11369 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 11370 * old arrays will be freed by __kvm_set_memory_region() if installing 11371 * the new memslot is successful. 11372 */ 11373 memset(&slot->arch, 0, sizeof(slot->arch)); 11374 11375 if (kvm_memslots_have_rmaps(kvm)) { 11376 r = memslot_rmap_alloc(slot, npages); 11377 if (r) 11378 return r; 11379 } 11380 11381 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11382 struct kvm_lpage_info *linfo; 11383 unsigned long ugfn; 11384 int lpages; 11385 int level = i + 1; 11386 11387 lpages = gfn_to_index(slot->base_gfn + npages - 1, 11388 slot->base_gfn, level) + 1; 11389 11390 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 11391 if (!linfo) 11392 goto out_free; 11393 11394 slot->arch.lpage_info[i - 1] = linfo; 11395 11396 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 11397 linfo[0].disallow_lpage = 1; 11398 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 11399 linfo[lpages - 1].disallow_lpage = 1; 11400 ugfn = slot->userspace_addr >> PAGE_SHIFT; 11401 /* 11402 * If the gfn and userspace address are not aligned wrt each 11403 * other, disable large page support for this slot. 11404 */ 11405 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 11406 unsigned long j; 11407 11408 for (j = 0; j < lpages; ++j) 11409 linfo[j].disallow_lpage = 1; 11410 } 11411 } 11412 11413 if (kvm_page_track_create_memslot(slot, npages)) 11414 goto out_free; 11415 11416 return 0; 11417 11418 out_free: 11419 memslot_rmap_free(slot); 11420 11421 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 11422 kvfree(slot->arch.lpage_info[i - 1]); 11423 slot->arch.lpage_info[i - 1] = NULL; 11424 } 11425 return -ENOMEM; 11426 } 11427 11428 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 11429 { 11430 struct kvm_vcpu *vcpu; 11431 int i; 11432 11433 /* 11434 * memslots->generation has been incremented. 11435 * mmio generation may have reached its maximum value. 11436 */ 11437 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 11438 11439 /* Force re-initialization of steal_time cache */ 11440 kvm_for_each_vcpu(i, vcpu, kvm) 11441 kvm_vcpu_kick(vcpu); 11442 } 11443 11444 int kvm_arch_prepare_memory_region(struct kvm *kvm, 11445 struct kvm_memory_slot *memslot, 11446 const struct kvm_userspace_memory_region *mem, 11447 enum kvm_mr_change change) 11448 { 11449 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) 11450 return kvm_alloc_memslot_metadata(kvm, memslot, 11451 mem->memory_size >> PAGE_SHIFT); 11452 return 0; 11453 } 11454 11455 11456 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 11457 { 11458 struct kvm_arch *ka = &kvm->arch; 11459 11460 if (!kvm_x86_ops.cpu_dirty_log_size) 11461 return; 11462 11463 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 11464 (!enable && --ka->cpu_dirty_logging_count == 0)) 11465 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 11466 11467 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 11468 } 11469 11470 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 11471 struct kvm_memory_slot *old, 11472 struct kvm_memory_slot *new, 11473 enum kvm_mr_change change) 11474 { 11475 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES; 11476 11477 /* 11478 * Update CPU dirty logging if dirty logging is being toggled. This 11479 * applies to all operations. 11480 */ 11481 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES) 11482 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 11483 11484 /* 11485 * Nothing more to do for RO slots (which can't be dirtied and can't be 11486 * made writable) or CREATE/MOVE/DELETE of a slot. 11487 * 11488 * For a memslot with dirty logging disabled: 11489 * CREATE: No dirty mappings will already exist. 11490 * MOVE/DELETE: The old mappings will already have been cleaned up by 11491 * kvm_arch_flush_shadow_memslot() 11492 * 11493 * For a memslot with dirty logging enabled: 11494 * CREATE: No shadow pages exist, thus nothing to write-protect 11495 * and no dirty bits to clear. 11496 * MOVE/DELETE: The old mappings will already have been cleaned up by 11497 * kvm_arch_flush_shadow_memslot(). 11498 */ 11499 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY)) 11500 return; 11501 11502 /* 11503 * READONLY and non-flags changes were filtered out above, and the only 11504 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 11505 * logging isn't being toggled on or off. 11506 */ 11507 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES))) 11508 return; 11509 11510 if (!log_dirty_pages) { 11511 /* 11512 * Dirty logging tracks sptes in 4k granularity, meaning that 11513 * large sptes have to be split. If live migration succeeds, 11514 * the guest in the source machine will be destroyed and large 11515 * sptes will be created in the destination. However, if the 11516 * guest continues to run in the source machine (for example if 11517 * live migration fails), small sptes will remain around and 11518 * cause bad performance. 11519 * 11520 * Scan sptes if dirty logging has been stopped, dropping those 11521 * which can be collapsed into a single large-page spte. Later 11522 * page faults will create the large-page sptes. 11523 */ 11524 kvm_mmu_zap_collapsible_sptes(kvm, new); 11525 } else { 11526 /* 11527 * Initially-all-set does not require write protecting any page, 11528 * because they're all assumed to be dirty. 11529 */ 11530 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 11531 return; 11532 11533 if (kvm_x86_ops.cpu_dirty_log_size) { 11534 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 11535 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 11536 } else { 11537 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 11538 } 11539 } 11540 } 11541 11542 void kvm_arch_commit_memory_region(struct kvm *kvm, 11543 const struct kvm_userspace_memory_region *mem, 11544 struct kvm_memory_slot *old, 11545 const struct kvm_memory_slot *new, 11546 enum kvm_mr_change change) 11547 { 11548 if (!kvm->arch.n_requested_mmu_pages) 11549 kvm_mmu_change_mmu_pages(kvm, 11550 kvm_mmu_calculate_default_mmu_pages(kvm)); 11551 11552 /* 11553 * FIXME: const-ify all uses of struct kvm_memory_slot. 11554 */ 11555 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change); 11556 11557 /* Free the arrays associated with the old memslot. */ 11558 if (change == KVM_MR_MOVE) 11559 kvm_arch_free_memslot(kvm, old); 11560 } 11561 11562 void kvm_arch_flush_shadow_all(struct kvm *kvm) 11563 { 11564 kvm_mmu_zap_all(kvm); 11565 } 11566 11567 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 11568 struct kvm_memory_slot *slot) 11569 { 11570 kvm_page_track_flush_slot(kvm, slot); 11571 } 11572 11573 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 11574 { 11575 return (is_guest_mode(vcpu) && 11576 kvm_x86_ops.guest_apic_has_interrupt && 11577 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 11578 } 11579 11580 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 11581 { 11582 if (!list_empty_careful(&vcpu->async_pf.done)) 11583 return true; 11584 11585 if (kvm_apic_has_events(vcpu)) 11586 return true; 11587 11588 if (vcpu->arch.pv.pv_unhalted) 11589 return true; 11590 11591 if (vcpu->arch.exception.pending) 11592 return true; 11593 11594 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11595 (vcpu->arch.nmi_pending && 11596 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 11597 return true; 11598 11599 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 11600 (vcpu->arch.smi_pending && 11601 static_call(kvm_x86_smi_allowed)(vcpu, false))) 11602 return true; 11603 11604 if (kvm_arch_interrupt_allowed(vcpu) && 11605 (kvm_cpu_has_interrupt(vcpu) || 11606 kvm_guest_apic_has_interrupt(vcpu))) 11607 return true; 11608 11609 if (kvm_hv_has_stimer_pending(vcpu)) 11610 return true; 11611 11612 if (is_guest_mode(vcpu) && 11613 kvm_x86_ops.nested_ops->hv_timer_pending && 11614 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 11615 return true; 11616 11617 return false; 11618 } 11619 11620 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 11621 { 11622 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 11623 } 11624 11625 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 11626 { 11627 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 11628 return true; 11629 11630 return false; 11631 } 11632 11633 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 11634 { 11635 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 11636 return true; 11637 11638 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 11639 kvm_test_request(KVM_REQ_SMI, vcpu) || 11640 kvm_test_request(KVM_REQ_EVENT, vcpu)) 11641 return true; 11642 11643 return kvm_arch_dy_has_pending_interrupt(vcpu); 11644 } 11645 11646 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 11647 { 11648 if (vcpu->arch.guest_state_protected) 11649 return true; 11650 11651 return vcpu->arch.preempted_in_kernel; 11652 } 11653 11654 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 11655 { 11656 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 11657 } 11658 11659 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 11660 { 11661 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 11662 } 11663 11664 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 11665 { 11666 /* Can't read the RIP when guest state is protected, just return 0 */ 11667 if (vcpu->arch.guest_state_protected) 11668 return 0; 11669 11670 if (is_64_bit_mode(vcpu)) 11671 return kvm_rip_read(vcpu); 11672 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 11673 kvm_rip_read(vcpu)); 11674 } 11675 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 11676 11677 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 11678 { 11679 return kvm_get_linear_rip(vcpu) == linear_rip; 11680 } 11681 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 11682 11683 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 11684 { 11685 unsigned long rflags; 11686 11687 rflags = static_call(kvm_x86_get_rflags)(vcpu); 11688 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11689 rflags &= ~X86_EFLAGS_TF; 11690 return rflags; 11691 } 11692 EXPORT_SYMBOL_GPL(kvm_get_rflags); 11693 11694 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 11695 { 11696 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 11697 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 11698 rflags |= X86_EFLAGS_TF; 11699 static_call(kvm_x86_set_rflags)(vcpu, rflags); 11700 } 11701 11702 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 11703 { 11704 __kvm_set_rflags(vcpu, rflags); 11705 kvm_make_request(KVM_REQ_EVENT, vcpu); 11706 } 11707 EXPORT_SYMBOL_GPL(kvm_set_rflags); 11708 11709 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 11710 { 11711 int r; 11712 11713 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) || 11714 work->wakeup_all) 11715 return; 11716 11717 r = kvm_mmu_reload(vcpu); 11718 if (unlikely(r)) 11719 return; 11720 11721 if (!vcpu->arch.mmu->direct_map && 11722 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu)) 11723 return; 11724 11725 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true); 11726 } 11727 11728 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 11729 { 11730 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 11731 11732 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 11733 } 11734 11735 static inline u32 kvm_async_pf_next_probe(u32 key) 11736 { 11737 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 11738 } 11739 11740 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 11741 { 11742 u32 key = kvm_async_pf_hash_fn(gfn); 11743 11744 while (vcpu->arch.apf.gfns[key] != ~0) 11745 key = kvm_async_pf_next_probe(key); 11746 11747 vcpu->arch.apf.gfns[key] = gfn; 11748 } 11749 11750 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 11751 { 11752 int i; 11753 u32 key = kvm_async_pf_hash_fn(gfn); 11754 11755 for (i = 0; i < ASYNC_PF_PER_VCPU && 11756 (vcpu->arch.apf.gfns[key] != gfn && 11757 vcpu->arch.apf.gfns[key] != ~0); i++) 11758 key = kvm_async_pf_next_probe(key); 11759 11760 return key; 11761 } 11762 11763 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 11764 { 11765 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 11766 } 11767 11768 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 11769 { 11770 u32 i, j, k; 11771 11772 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 11773 11774 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 11775 return; 11776 11777 while (true) { 11778 vcpu->arch.apf.gfns[i] = ~0; 11779 do { 11780 j = kvm_async_pf_next_probe(j); 11781 if (vcpu->arch.apf.gfns[j] == ~0) 11782 return; 11783 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 11784 /* 11785 * k lies cyclically in ]i,j] 11786 * | i.k.j | 11787 * |....j i.k.| or |.k..j i...| 11788 */ 11789 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 11790 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 11791 i = j; 11792 } 11793 } 11794 11795 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 11796 { 11797 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 11798 11799 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 11800 sizeof(reason)); 11801 } 11802 11803 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 11804 { 11805 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 11806 11807 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 11808 &token, offset, sizeof(token)); 11809 } 11810 11811 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 11812 { 11813 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 11814 u32 val; 11815 11816 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 11817 &val, offset, sizeof(val))) 11818 return false; 11819 11820 return !val; 11821 } 11822 11823 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 11824 { 11825 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) 11826 return false; 11827 11828 if (!kvm_pv_async_pf_enabled(vcpu) || 11829 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0)) 11830 return false; 11831 11832 return true; 11833 } 11834 11835 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 11836 { 11837 if (unlikely(!lapic_in_kernel(vcpu) || 11838 kvm_event_needs_reinjection(vcpu) || 11839 vcpu->arch.exception.pending)) 11840 return false; 11841 11842 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 11843 return false; 11844 11845 /* 11846 * If interrupts are off we cannot even use an artificial 11847 * halt state. 11848 */ 11849 return kvm_arch_interrupt_allowed(vcpu); 11850 } 11851 11852 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 11853 struct kvm_async_pf *work) 11854 { 11855 struct x86_exception fault; 11856 11857 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 11858 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 11859 11860 if (kvm_can_deliver_async_pf(vcpu) && 11861 !apf_put_user_notpresent(vcpu)) { 11862 fault.vector = PF_VECTOR; 11863 fault.error_code_valid = true; 11864 fault.error_code = 0; 11865 fault.nested_page_fault = false; 11866 fault.address = work->arch.token; 11867 fault.async_page_fault = true; 11868 kvm_inject_page_fault(vcpu, &fault); 11869 return true; 11870 } else { 11871 /* 11872 * It is not possible to deliver a paravirtualized asynchronous 11873 * page fault, but putting the guest in an artificial halt state 11874 * can be beneficial nevertheless: if an interrupt arrives, we 11875 * can deliver it timely and perhaps the guest will schedule 11876 * another process. When the instruction that triggered a page 11877 * fault is retried, hopefully the page will be ready in the host. 11878 */ 11879 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 11880 return false; 11881 } 11882 } 11883 11884 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 11885 struct kvm_async_pf *work) 11886 { 11887 struct kvm_lapic_irq irq = { 11888 .delivery_mode = APIC_DM_FIXED, 11889 .vector = vcpu->arch.apf.vec 11890 }; 11891 11892 if (work->wakeup_all) 11893 work->arch.token = ~0; /* broadcast wakeup */ 11894 else 11895 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 11896 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 11897 11898 if ((work->wakeup_all || work->notpresent_injected) && 11899 kvm_pv_async_pf_enabled(vcpu) && 11900 !apf_put_user_ready(vcpu, work->arch.token)) { 11901 vcpu->arch.apf.pageready_pending = true; 11902 kvm_apic_set_irq(vcpu, &irq, NULL); 11903 } 11904 11905 vcpu->arch.apf.halted = false; 11906 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11907 } 11908 11909 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 11910 { 11911 kvm_make_request(KVM_REQ_APF_READY, vcpu); 11912 if (!vcpu->arch.apf.pageready_pending) 11913 kvm_vcpu_kick(vcpu); 11914 } 11915 11916 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 11917 { 11918 if (!kvm_pv_async_pf_enabled(vcpu)) 11919 return true; 11920 else 11921 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 11922 } 11923 11924 void kvm_arch_start_assignment(struct kvm *kvm) 11925 { 11926 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 11927 static_call_cond(kvm_x86_start_assignment)(kvm); 11928 } 11929 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 11930 11931 void kvm_arch_end_assignment(struct kvm *kvm) 11932 { 11933 atomic_dec(&kvm->arch.assigned_device_count); 11934 } 11935 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 11936 11937 bool kvm_arch_has_assigned_device(struct kvm *kvm) 11938 { 11939 return atomic_read(&kvm->arch.assigned_device_count); 11940 } 11941 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 11942 11943 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 11944 { 11945 atomic_inc(&kvm->arch.noncoherent_dma_count); 11946 } 11947 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 11948 11949 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 11950 { 11951 atomic_dec(&kvm->arch.noncoherent_dma_count); 11952 } 11953 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 11954 11955 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 11956 { 11957 return atomic_read(&kvm->arch.noncoherent_dma_count); 11958 } 11959 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 11960 11961 bool kvm_arch_has_irq_bypass(void) 11962 { 11963 return true; 11964 } 11965 11966 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 11967 struct irq_bypass_producer *prod) 11968 { 11969 struct kvm_kernel_irqfd *irqfd = 11970 container_of(cons, struct kvm_kernel_irqfd, consumer); 11971 int ret; 11972 11973 irqfd->producer = prod; 11974 kvm_arch_start_assignment(irqfd->kvm); 11975 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, 11976 prod->irq, irqfd->gsi, 1); 11977 11978 if (ret) 11979 kvm_arch_end_assignment(irqfd->kvm); 11980 11981 return ret; 11982 } 11983 11984 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 11985 struct irq_bypass_producer *prod) 11986 { 11987 int ret; 11988 struct kvm_kernel_irqfd *irqfd = 11989 container_of(cons, struct kvm_kernel_irqfd, consumer); 11990 11991 WARN_ON(irqfd->producer != prod); 11992 irqfd->producer = NULL; 11993 11994 /* 11995 * When producer of consumer is unregistered, we change back to 11996 * remapped mode, so we can re-use the current implementation 11997 * when the irq is masked/disabled or the consumer side (KVM 11998 * int this case doesn't want to receive the interrupts. 11999 */ 12000 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 12001 if (ret) 12002 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 12003 " fails: %d\n", irqfd->consumer.token, ret); 12004 12005 kvm_arch_end_assignment(irqfd->kvm); 12006 } 12007 12008 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 12009 uint32_t guest_irq, bool set) 12010 { 12011 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set); 12012 } 12013 12014 bool kvm_vector_hashing_enabled(void) 12015 { 12016 return vector_hashing; 12017 } 12018 12019 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 12020 { 12021 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 12022 } 12023 EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 12024 12025 12026 int kvm_spec_ctrl_test_value(u64 value) 12027 { 12028 /* 12029 * test that setting IA32_SPEC_CTRL to given value 12030 * is allowed by the host processor 12031 */ 12032 12033 u64 saved_value; 12034 unsigned long flags; 12035 int ret = 0; 12036 12037 local_irq_save(flags); 12038 12039 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 12040 ret = 1; 12041 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 12042 ret = 1; 12043 else 12044 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 12045 12046 local_irq_restore(flags); 12047 12048 return ret; 12049 } 12050 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 12051 12052 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 12053 { 12054 struct x86_exception fault; 12055 u32 access = error_code & 12056 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 12057 12058 if (!(error_code & PFERR_PRESENT_MASK) || 12059 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) { 12060 /* 12061 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 12062 * tables probably do not match the TLB. Just proceed 12063 * with the error code that the processor gave. 12064 */ 12065 fault.vector = PF_VECTOR; 12066 fault.error_code_valid = true; 12067 fault.error_code = error_code; 12068 fault.nested_page_fault = false; 12069 fault.address = gva; 12070 } 12071 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 12072 } 12073 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 12074 12075 /* 12076 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 12077 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 12078 * indicates whether exit to userspace is needed. 12079 */ 12080 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 12081 struct x86_exception *e) 12082 { 12083 if (r == X86EMUL_PROPAGATE_FAULT) { 12084 kvm_inject_emulated_page_fault(vcpu, e); 12085 return 1; 12086 } 12087 12088 /* 12089 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 12090 * while handling a VMX instruction KVM could've handled the request 12091 * correctly by exiting to userspace and performing I/O but there 12092 * doesn't seem to be a real use-case behind such requests, just return 12093 * KVM_EXIT_INTERNAL_ERROR for now. 12094 */ 12095 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 12096 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 12097 vcpu->run->internal.ndata = 0; 12098 12099 return 0; 12100 } 12101 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 12102 12103 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 12104 { 12105 bool pcid_enabled; 12106 struct x86_exception e; 12107 struct { 12108 u64 pcid; 12109 u64 gla; 12110 } operand; 12111 int r; 12112 12113 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 12114 if (r != X86EMUL_CONTINUE) 12115 return kvm_handle_memory_failure(vcpu, r, &e); 12116 12117 if (operand.pcid >> 12 != 0) { 12118 kvm_inject_gp(vcpu, 0); 12119 return 1; 12120 } 12121 12122 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 12123 12124 switch (type) { 12125 case INVPCID_TYPE_INDIV_ADDR: 12126 if ((!pcid_enabled && (operand.pcid != 0)) || 12127 is_noncanonical_address(operand.gla, vcpu)) { 12128 kvm_inject_gp(vcpu, 0); 12129 return 1; 12130 } 12131 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 12132 return kvm_skip_emulated_instruction(vcpu); 12133 12134 case INVPCID_TYPE_SINGLE_CTXT: 12135 if (!pcid_enabled && (operand.pcid != 0)) { 12136 kvm_inject_gp(vcpu, 0); 12137 return 1; 12138 } 12139 12140 kvm_invalidate_pcid(vcpu, operand.pcid); 12141 return kvm_skip_emulated_instruction(vcpu); 12142 12143 case INVPCID_TYPE_ALL_NON_GLOBAL: 12144 /* 12145 * Currently, KVM doesn't mark global entries in the shadow 12146 * page tables, so a non-global flush just degenerates to a 12147 * global flush. If needed, we could optimize this later by 12148 * keeping track of global entries in shadow page tables. 12149 */ 12150 12151 fallthrough; 12152 case INVPCID_TYPE_ALL_INCL_GLOBAL: 12153 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12154 return kvm_skip_emulated_instruction(vcpu); 12155 12156 default: 12157 BUG(); /* We have already checked above that type <= 3 */ 12158 } 12159 } 12160 EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 12161 12162 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 12163 { 12164 struct kvm_run *run = vcpu->run; 12165 struct kvm_mmio_fragment *frag; 12166 unsigned int len; 12167 12168 BUG_ON(!vcpu->mmio_needed); 12169 12170 /* Complete previous fragment */ 12171 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 12172 len = min(8u, frag->len); 12173 if (!vcpu->mmio_is_write) 12174 memcpy(frag->data, run->mmio.data, len); 12175 12176 if (frag->len <= 8) { 12177 /* Switch to the next fragment. */ 12178 frag++; 12179 vcpu->mmio_cur_fragment++; 12180 } else { 12181 /* Go forward to the next mmio piece. */ 12182 frag->data += len; 12183 frag->gpa += len; 12184 frag->len -= len; 12185 } 12186 12187 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 12188 vcpu->mmio_needed = 0; 12189 12190 // VMG change, at this point, we're always done 12191 // RIP has already been advanced 12192 return 1; 12193 } 12194 12195 // More MMIO is needed 12196 run->mmio.phys_addr = frag->gpa; 12197 run->mmio.len = min(8u, frag->len); 12198 run->mmio.is_write = vcpu->mmio_is_write; 12199 if (run->mmio.is_write) 12200 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 12201 run->exit_reason = KVM_EXIT_MMIO; 12202 12203 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12204 12205 return 0; 12206 } 12207 12208 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12209 void *data) 12210 { 12211 int handled; 12212 struct kvm_mmio_fragment *frag; 12213 12214 if (!data) 12215 return -EINVAL; 12216 12217 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12218 if (handled == bytes) 12219 return 1; 12220 12221 bytes -= handled; 12222 gpa += handled; 12223 data += handled; 12224 12225 /*TODO: Check if need to increment number of frags */ 12226 frag = vcpu->mmio_fragments; 12227 vcpu->mmio_nr_fragments = 1; 12228 frag->len = bytes; 12229 frag->gpa = gpa; 12230 frag->data = data; 12231 12232 vcpu->mmio_needed = 1; 12233 vcpu->mmio_cur_fragment = 0; 12234 12235 vcpu->run->mmio.phys_addr = gpa; 12236 vcpu->run->mmio.len = min(8u, frag->len); 12237 vcpu->run->mmio.is_write = 1; 12238 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 12239 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12240 12241 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12242 12243 return 0; 12244 } 12245 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 12246 12247 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12248 void *data) 12249 { 12250 int handled; 12251 struct kvm_mmio_fragment *frag; 12252 12253 if (!data) 12254 return -EINVAL; 12255 12256 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12257 if (handled == bytes) 12258 return 1; 12259 12260 bytes -= handled; 12261 gpa += handled; 12262 data += handled; 12263 12264 /*TODO: Check if need to increment number of frags */ 12265 frag = vcpu->mmio_fragments; 12266 vcpu->mmio_nr_fragments = 1; 12267 frag->len = bytes; 12268 frag->gpa = gpa; 12269 frag->data = data; 12270 12271 vcpu->mmio_needed = 1; 12272 vcpu->mmio_cur_fragment = 0; 12273 12274 vcpu->run->mmio.phys_addr = gpa; 12275 vcpu->run->mmio.len = min(8u, frag->len); 12276 vcpu->run->mmio.is_write = 0; 12277 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12278 12279 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12280 12281 return 0; 12282 } 12283 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 12284 12285 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 12286 { 12287 memcpy(vcpu->arch.guest_ins_data, vcpu->arch.pio_data, 12288 vcpu->arch.pio.count * vcpu->arch.pio.size); 12289 vcpu->arch.pio.count = 0; 12290 12291 return 1; 12292 } 12293 12294 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 12295 unsigned int port, void *data, unsigned int count) 12296 { 12297 int ret; 12298 12299 ret = emulator_pio_out_emulated(vcpu->arch.emulate_ctxt, size, port, 12300 data, count); 12301 if (ret) 12302 return ret; 12303 12304 vcpu->arch.pio.count = 0; 12305 12306 return 0; 12307 } 12308 12309 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 12310 unsigned int port, void *data, unsigned int count) 12311 { 12312 int ret; 12313 12314 ret = emulator_pio_in_emulated(vcpu->arch.emulate_ctxt, size, port, 12315 data, count); 12316 if (ret) { 12317 vcpu->arch.pio.count = 0; 12318 } else { 12319 vcpu->arch.guest_ins_data = data; 12320 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 12321 } 12322 12323 return 0; 12324 } 12325 12326 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 12327 unsigned int port, void *data, unsigned int count, 12328 int in) 12329 { 12330 return in ? kvm_sev_es_ins(vcpu, size, port, data, count) 12331 : kvm_sev_es_outs(vcpu, size, port, data, count); 12332 } 12333 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 12334 12335 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 12336 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 12337 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 12338 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 12339 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 12340 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 12341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 12342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 12343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 12344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 12345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 12346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 12347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 12348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 12349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 12350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 12351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 12352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 12353 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 12354 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 12355 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 12356 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 12357 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request); 12358 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 12359 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 12360 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 12361 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 12362