xref: /linux/arch/x86/kvm/x86.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71 
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76 
77 #define emul_to_vcpu(ctxt) \
78 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79 
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90 
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93 
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96 
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101 
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104 
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107 
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110 
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113 
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124 
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128 
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132 
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135 
136 static bool __read_mostly backwards_tsc_observed = false;
137 
138 #define KVM_NR_SHARED_MSRS 16
139 
140 struct kvm_shared_msrs_global {
141 	int nr;
142 	u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144 
145 struct kvm_shared_msrs {
146 	struct user_return_notifier urn;
147 	bool registered;
148 	struct kvm_shared_msr_values {
149 		u64 host;
150 		u64 curr;
151 	} values[KVM_NR_SHARED_MSRS];
152 };
153 
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156 
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
159 	{ "pf_guest", VCPU_STAT(pf_guest) },
160 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
161 	{ "invlpg", VCPU_STAT(invlpg) },
162 	{ "exits", VCPU_STAT(exits) },
163 	{ "io_exits", VCPU_STAT(io_exits) },
164 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
165 	{ "signal_exits", VCPU_STAT(signal_exits) },
166 	{ "irq_window", VCPU_STAT(irq_window_exits) },
167 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
168 	{ "halt_exits", VCPU_STAT(halt_exits) },
169 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 	{ "hypercalls", VCPU_STAT(hypercalls) },
174 	{ "request_irq", VCPU_STAT(request_irq_exits) },
175 	{ "irq_exits", VCPU_STAT(irq_exits) },
176 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
177 	{ "efer_reload", VCPU_STAT(efer_reload) },
178 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
179 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
180 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 	{ "irq_injections", VCPU_STAT(irq_injections) },
182 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
183 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
185 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
188 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
189 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
191 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192 	{ "largepages", VM_STAT(lpages) },
193 	{ NULL }
194 };
195 
196 u64 __read_mostly host_xcr0;
197 
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199 
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202 	int i;
203 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204 		vcpu->arch.apf.gfns[i] = ~0;
205 }
206 
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209 	unsigned slot;
210 	struct kvm_shared_msrs *locals
211 		= container_of(urn, struct kvm_shared_msrs, urn);
212 	struct kvm_shared_msr_values *values;
213 	unsigned long flags;
214 
215 	/*
216 	 * Disabling irqs at this point since the following code could be
217 	 * interrupted and executed through kvm_arch_hardware_disable()
218 	 */
219 	local_irq_save(flags);
220 	if (locals->registered) {
221 		locals->registered = false;
222 		user_return_notifier_unregister(urn);
223 	}
224 	local_irq_restore(flags);
225 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
226 		values = &locals->values[slot];
227 		if (values->host != values->curr) {
228 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
229 			values->curr = values->host;
230 		}
231 	}
232 }
233 
234 static void shared_msr_update(unsigned slot, u32 msr)
235 {
236 	u64 value;
237 	unsigned int cpu = smp_processor_id();
238 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
239 
240 	/* only read, and nobody should modify it at this time,
241 	 * so don't need lock */
242 	if (slot >= shared_msrs_global.nr) {
243 		printk(KERN_ERR "kvm: invalid MSR slot!");
244 		return;
245 	}
246 	rdmsrl_safe(msr, &value);
247 	smsr->values[slot].host = value;
248 	smsr->values[slot].curr = value;
249 }
250 
251 void kvm_define_shared_msr(unsigned slot, u32 msr)
252 {
253 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
254 	shared_msrs_global.msrs[slot] = msr;
255 	if (slot >= shared_msrs_global.nr)
256 		shared_msrs_global.nr = slot + 1;
257 }
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
259 
260 static void kvm_shared_msr_cpu_online(void)
261 {
262 	unsigned i;
263 
264 	for (i = 0; i < shared_msrs_global.nr; ++i)
265 		shared_msr_update(i, shared_msrs_global.msrs[i]);
266 }
267 
268 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
269 {
270 	unsigned int cpu = smp_processor_id();
271 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
272 	int err;
273 
274 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
275 		return 0;
276 	smsr->values[slot].curr = value;
277 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
278 	if (err)
279 		return 1;
280 
281 	if (!smsr->registered) {
282 		smsr->urn.on_user_return = kvm_on_user_return;
283 		user_return_notifier_register(&smsr->urn);
284 		smsr->registered = true;
285 	}
286 	return 0;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
289 
290 static void drop_user_return_notifiers(void)
291 {
292 	unsigned int cpu = smp_processor_id();
293 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294 
295 	if (smsr->registered)
296 		kvm_on_user_return(&smsr->urn);
297 }
298 
299 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
300 {
301 	return vcpu->arch.apic_base;
302 }
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
304 
305 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
306 {
307 	u64 old_state = vcpu->arch.apic_base &
308 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
309 	u64 new_state = msr_info->data &
310 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
312 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
313 
314 	if (!msr_info->host_initiated &&
315 	    ((msr_info->data & reserved_bits) != 0 ||
316 	     new_state == X2APIC_ENABLE ||
317 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
318 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
319 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
320 	      old_state == 0)))
321 		return 1;
322 
323 	kvm_lapic_set_base(vcpu, msr_info->data);
324 	return 0;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
327 
328 asmlinkage __visible void kvm_spurious_fault(void)
329 {
330 	/* Fault while not rebooting.  We want the trace. */
331 	BUG();
332 }
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
334 
335 #define EXCPT_BENIGN		0
336 #define EXCPT_CONTRIBUTORY	1
337 #define EXCPT_PF		2
338 
339 static int exception_class(int vector)
340 {
341 	switch (vector) {
342 	case PF_VECTOR:
343 		return EXCPT_PF;
344 	case DE_VECTOR:
345 	case TS_VECTOR:
346 	case NP_VECTOR:
347 	case SS_VECTOR:
348 	case GP_VECTOR:
349 		return EXCPT_CONTRIBUTORY;
350 	default:
351 		break;
352 	}
353 	return EXCPT_BENIGN;
354 }
355 
356 #define EXCPT_FAULT		0
357 #define EXCPT_TRAP		1
358 #define EXCPT_ABORT		2
359 #define EXCPT_INTERRUPT		3
360 
361 static int exception_type(int vector)
362 {
363 	unsigned int mask;
364 
365 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
366 		return EXCPT_INTERRUPT;
367 
368 	mask = 1 << vector;
369 
370 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
371 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
372 		return EXCPT_TRAP;
373 
374 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
375 		return EXCPT_ABORT;
376 
377 	/* Reserved exceptions will result in fault */
378 	return EXCPT_FAULT;
379 }
380 
381 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
382 		unsigned nr, bool has_error, u32 error_code,
383 		bool reinject)
384 {
385 	u32 prev_nr;
386 	int class1, class2;
387 
388 	kvm_make_request(KVM_REQ_EVENT, vcpu);
389 
390 	if (!vcpu->arch.exception.pending) {
391 	queue:
392 		if (has_error && !is_protmode(vcpu))
393 			has_error = false;
394 		vcpu->arch.exception.pending = true;
395 		vcpu->arch.exception.has_error_code = has_error;
396 		vcpu->arch.exception.nr = nr;
397 		vcpu->arch.exception.error_code = error_code;
398 		vcpu->arch.exception.reinject = reinject;
399 		return;
400 	}
401 
402 	/* to check exception */
403 	prev_nr = vcpu->arch.exception.nr;
404 	if (prev_nr == DF_VECTOR) {
405 		/* triple fault -> shutdown */
406 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
407 		return;
408 	}
409 	class1 = exception_class(prev_nr);
410 	class2 = exception_class(nr);
411 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
412 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
413 		/* generate double fault per SDM Table 5-5 */
414 		vcpu->arch.exception.pending = true;
415 		vcpu->arch.exception.has_error_code = true;
416 		vcpu->arch.exception.nr = DF_VECTOR;
417 		vcpu->arch.exception.error_code = 0;
418 	} else
419 		/* replace previous exception with a new one in a hope
420 		   that instruction re-execution will regenerate lost
421 		   exception */
422 		goto queue;
423 }
424 
425 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
426 {
427 	kvm_multiple_exception(vcpu, nr, false, 0, false);
428 }
429 EXPORT_SYMBOL_GPL(kvm_queue_exception);
430 
431 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
432 {
433 	kvm_multiple_exception(vcpu, nr, false, 0, true);
434 }
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
436 
437 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
438 {
439 	if (err)
440 		kvm_inject_gp(vcpu, 0);
441 	else
442 		return kvm_skip_emulated_instruction(vcpu);
443 
444 	return 1;
445 }
446 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
447 
448 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
449 {
450 	++vcpu->stat.pf_guest;
451 	vcpu->arch.cr2 = fault->address;
452 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
455 
456 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
457 {
458 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
459 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
460 	else
461 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
462 
463 	return fault->nested_page_fault;
464 }
465 
466 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
467 {
468 	atomic_inc(&vcpu->arch.nmi_queued);
469 	kvm_make_request(KVM_REQ_NMI, vcpu);
470 }
471 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
472 
473 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
474 {
475 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
476 }
477 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
478 
479 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
480 {
481 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
482 }
483 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
484 
485 /*
486  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
487  * a #GP and return false.
488  */
489 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
490 {
491 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
492 		return true;
493 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
494 	return false;
495 }
496 EXPORT_SYMBOL_GPL(kvm_require_cpl);
497 
498 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
499 {
500 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
501 		return true;
502 
503 	kvm_queue_exception(vcpu, UD_VECTOR);
504 	return false;
505 }
506 EXPORT_SYMBOL_GPL(kvm_require_dr);
507 
508 /*
509  * This function will be used to read from the physical memory of the currently
510  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
511  * can read from guest physical or from the guest's guest physical memory.
512  */
513 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
514 			    gfn_t ngfn, void *data, int offset, int len,
515 			    u32 access)
516 {
517 	struct x86_exception exception;
518 	gfn_t real_gfn;
519 	gpa_t ngpa;
520 
521 	ngpa     = gfn_to_gpa(ngfn);
522 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
523 	if (real_gfn == UNMAPPED_GVA)
524 		return -EFAULT;
525 
526 	real_gfn = gpa_to_gfn(real_gfn);
527 
528 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
529 }
530 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
531 
532 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
533 			       void *data, int offset, int len, u32 access)
534 {
535 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
536 				       data, offset, len, access);
537 }
538 
539 /*
540  * Load the pae pdptrs.  Return true is they are all valid.
541  */
542 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
543 {
544 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
545 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
546 	int i;
547 	int ret;
548 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
549 
550 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
551 				      offset * sizeof(u64), sizeof(pdpte),
552 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
553 	if (ret < 0) {
554 		ret = 0;
555 		goto out;
556 	}
557 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
558 		if ((pdpte[i] & PT_PRESENT_MASK) &&
559 		    (pdpte[i] &
560 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
561 			ret = 0;
562 			goto out;
563 		}
564 	}
565 	ret = 1;
566 
567 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
568 	__set_bit(VCPU_EXREG_PDPTR,
569 		  (unsigned long *)&vcpu->arch.regs_avail);
570 	__set_bit(VCPU_EXREG_PDPTR,
571 		  (unsigned long *)&vcpu->arch.regs_dirty);
572 out:
573 
574 	return ret;
575 }
576 EXPORT_SYMBOL_GPL(load_pdptrs);
577 
578 bool pdptrs_changed(struct kvm_vcpu *vcpu)
579 {
580 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
581 	bool changed = true;
582 	int offset;
583 	gfn_t gfn;
584 	int r;
585 
586 	if (is_long_mode(vcpu) || !is_pae(vcpu))
587 		return false;
588 
589 	if (!test_bit(VCPU_EXREG_PDPTR,
590 		      (unsigned long *)&vcpu->arch.regs_avail))
591 		return true;
592 
593 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
594 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
595 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
596 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
597 	if (r < 0)
598 		goto out;
599 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
600 out:
601 
602 	return changed;
603 }
604 EXPORT_SYMBOL_GPL(pdptrs_changed);
605 
606 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
607 {
608 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
609 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
610 
611 	cr0 |= X86_CR0_ET;
612 
613 #ifdef CONFIG_X86_64
614 	if (cr0 & 0xffffffff00000000UL)
615 		return 1;
616 #endif
617 
618 	cr0 &= ~CR0_RESERVED_BITS;
619 
620 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
621 		return 1;
622 
623 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
624 		return 1;
625 
626 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
627 #ifdef CONFIG_X86_64
628 		if ((vcpu->arch.efer & EFER_LME)) {
629 			int cs_db, cs_l;
630 
631 			if (!is_pae(vcpu))
632 				return 1;
633 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
634 			if (cs_l)
635 				return 1;
636 		} else
637 #endif
638 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
639 						 kvm_read_cr3(vcpu)))
640 			return 1;
641 	}
642 
643 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
644 		return 1;
645 
646 	kvm_x86_ops->set_cr0(vcpu, cr0);
647 
648 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
649 		kvm_clear_async_pf_completion_queue(vcpu);
650 		kvm_async_pf_hash_reset(vcpu);
651 	}
652 
653 	if ((cr0 ^ old_cr0) & update_bits)
654 		kvm_mmu_reset_context(vcpu);
655 
656 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
657 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
658 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
659 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
660 
661 	return 0;
662 }
663 EXPORT_SYMBOL_GPL(kvm_set_cr0);
664 
665 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
666 {
667 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
668 }
669 EXPORT_SYMBOL_GPL(kvm_lmsw);
670 
671 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
672 {
673 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
674 			!vcpu->guest_xcr0_loaded) {
675 		/* kvm_set_xcr() also depends on this */
676 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
677 		vcpu->guest_xcr0_loaded = 1;
678 	}
679 }
680 
681 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
682 {
683 	if (vcpu->guest_xcr0_loaded) {
684 		if (vcpu->arch.xcr0 != host_xcr0)
685 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
686 		vcpu->guest_xcr0_loaded = 0;
687 	}
688 }
689 
690 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692 	u64 xcr0 = xcr;
693 	u64 old_xcr0 = vcpu->arch.xcr0;
694 	u64 valid_bits;
695 
696 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
697 	if (index != XCR_XFEATURE_ENABLED_MASK)
698 		return 1;
699 	if (!(xcr0 & XFEATURE_MASK_FP))
700 		return 1;
701 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
702 		return 1;
703 
704 	/*
705 	 * Do not allow the guest to set bits that we do not support
706 	 * saving.  However, xcr0 bit 0 is always set, even if the
707 	 * emulated CPU does not support XSAVE (see fx_init).
708 	 */
709 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
710 	if (xcr0 & ~valid_bits)
711 		return 1;
712 
713 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
714 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
715 		return 1;
716 
717 	if (xcr0 & XFEATURE_MASK_AVX512) {
718 		if (!(xcr0 & XFEATURE_MASK_YMM))
719 			return 1;
720 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
721 			return 1;
722 	}
723 	vcpu->arch.xcr0 = xcr0;
724 
725 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
726 		kvm_update_cpuid(vcpu);
727 	return 0;
728 }
729 
730 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
733 	    __kvm_set_xcr(vcpu, index, xcr)) {
734 		kvm_inject_gp(vcpu, 0);
735 		return 1;
736 	}
737 	return 0;
738 }
739 EXPORT_SYMBOL_GPL(kvm_set_xcr);
740 
741 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
742 {
743 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
744 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
745 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
746 
747 	if (cr4 & CR4_RESERVED_BITS)
748 		return 1;
749 
750 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
751 		return 1;
752 
753 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
754 		return 1;
755 
756 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
757 		return 1;
758 
759 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
760 		return 1;
761 
762 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
763 		return 1;
764 
765 	if (is_long_mode(vcpu)) {
766 		if (!(cr4 & X86_CR4_PAE))
767 			return 1;
768 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
769 		   && ((cr4 ^ old_cr4) & pdptr_bits)
770 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771 				   kvm_read_cr3(vcpu)))
772 		return 1;
773 
774 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
775 		if (!guest_cpuid_has_pcid(vcpu))
776 			return 1;
777 
778 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
779 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
780 			return 1;
781 	}
782 
783 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
784 		return 1;
785 
786 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
787 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
788 		kvm_mmu_reset_context(vcpu);
789 
790 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
791 		kvm_update_cpuid(vcpu);
792 
793 	return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr4);
796 
797 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
798 {
799 #ifdef CONFIG_X86_64
800 	cr3 &= ~CR3_PCID_INVD;
801 #endif
802 
803 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
804 		kvm_mmu_sync_roots(vcpu);
805 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
806 		return 0;
807 	}
808 
809 	if (is_long_mode(vcpu)) {
810 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
811 			return 1;
812 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
813 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
814 		return 1;
815 
816 	vcpu->arch.cr3 = cr3;
817 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
818 	kvm_mmu_new_cr3(vcpu);
819 	return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr3);
822 
823 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
824 {
825 	if (cr8 & CR8_RESERVED_BITS)
826 		return 1;
827 	if (lapic_in_kernel(vcpu))
828 		kvm_lapic_set_tpr(vcpu, cr8);
829 	else
830 		vcpu->arch.cr8 = cr8;
831 	return 0;
832 }
833 EXPORT_SYMBOL_GPL(kvm_set_cr8);
834 
835 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
836 {
837 	if (lapic_in_kernel(vcpu))
838 		return kvm_lapic_get_cr8(vcpu);
839 	else
840 		return vcpu->arch.cr8;
841 }
842 EXPORT_SYMBOL_GPL(kvm_get_cr8);
843 
844 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
845 {
846 	int i;
847 
848 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
849 		for (i = 0; i < KVM_NR_DB_REGS; i++)
850 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
851 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
852 	}
853 }
854 
855 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
856 {
857 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
858 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
859 }
860 
861 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
862 {
863 	unsigned long dr7;
864 
865 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
866 		dr7 = vcpu->arch.guest_debug_dr7;
867 	else
868 		dr7 = vcpu->arch.dr7;
869 	kvm_x86_ops->set_dr7(vcpu, dr7);
870 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
871 	if (dr7 & DR7_BP_EN_MASK)
872 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
873 }
874 
875 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
876 {
877 	u64 fixed = DR6_FIXED_1;
878 
879 	if (!guest_cpuid_has_rtm(vcpu))
880 		fixed |= DR6_RTM;
881 	return fixed;
882 }
883 
884 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
885 {
886 	switch (dr) {
887 	case 0 ... 3:
888 		vcpu->arch.db[dr] = val;
889 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890 			vcpu->arch.eff_db[dr] = val;
891 		break;
892 	case 4:
893 		/* fall through */
894 	case 6:
895 		if (val & 0xffffffff00000000ULL)
896 			return -1; /* #GP */
897 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
898 		kvm_update_dr6(vcpu);
899 		break;
900 	case 5:
901 		/* fall through */
902 	default: /* 7 */
903 		if (val & 0xffffffff00000000ULL)
904 			return -1; /* #GP */
905 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
906 		kvm_update_dr7(vcpu);
907 		break;
908 	}
909 
910 	return 0;
911 }
912 
913 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915 	if (__kvm_set_dr(vcpu, dr, val)) {
916 		kvm_inject_gp(vcpu, 0);
917 		return 1;
918 	}
919 	return 0;
920 }
921 EXPORT_SYMBOL_GPL(kvm_set_dr);
922 
923 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
924 {
925 	switch (dr) {
926 	case 0 ... 3:
927 		*val = vcpu->arch.db[dr];
928 		break;
929 	case 4:
930 		/* fall through */
931 	case 6:
932 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
933 			*val = vcpu->arch.dr6;
934 		else
935 			*val = kvm_x86_ops->get_dr6(vcpu);
936 		break;
937 	case 5:
938 		/* fall through */
939 	default: /* 7 */
940 		*val = vcpu->arch.dr7;
941 		break;
942 	}
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(kvm_get_dr);
946 
947 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
948 {
949 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
950 	u64 data;
951 	int err;
952 
953 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
954 	if (err)
955 		return err;
956 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
957 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
958 	return err;
959 }
960 EXPORT_SYMBOL_GPL(kvm_rdpmc);
961 
962 /*
963  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
964  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
965  *
966  * This list is modified at module load time to reflect the
967  * capabilities of the host cpu. This capabilities test skips MSRs that are
968  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
969  * may depend on host virtualization features rather than host cpu features.
970  */
971 
972 static u32 msrs_to_save[] = {
973 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
974 	MSR_STAR,
975 #ifdef CONFIG_X86_64
976 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
977 #endif
978 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
979 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
980 };
981 
982 static unsigned num_msrs_to_save;
983 
984 static u32 emulated_msrs[] = {
985 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
986 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
987 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
988 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
989 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
990 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
991 	HV_X64_MSR_RESET,
992 	HV_X64_MSR_VP_INDEX,
993 	HV_X64_MSR_VP_RUNTIME,
994 	HV_X64_MSR_SCONTROL,
995 	HV_X64_MSR_STIMER0_CONFIG,
996 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
997 	MSR_KVM_PV_EOI_EN,
998 
999 	MSR_IA32_TSC_ADJUST,
1000 	MSR_IA32_TSCDEADLINE,
1001 	MSR_IA32_MISC_ENABLE,
1002 	MSR_IA32_MCG_STATUS,
1003 	MSR_IA32_MCG_CTL,
1004 	MSR_IA32_MCG_EXT_CTL,
1005 	MSR_IA32_SMBASE,
1006 };
1007 
1008 static unsigned num_emulated_msrs;
1009 
1010 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1011 {
1012 	if (efer & efer_reserved_bits)
1013 		return false;
1014 
1015 	if (efer & EFER_FFXSR) {
1016 		struct kvm_cpuid_entry2 *feat;
1017 
1018 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1019 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1020 			return false;
1021 	}
1022 
1023 	if (efer & EFER_SVME) {
1024 		struct kvm_cpuid_entry2 *feat;
1025 
1026 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1027 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1028 			return false;
1029 	}
1030 
1031 	return true;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1034 
1035 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1036 {
1037 	u64 old_efer = vcpu->arch.efer;
1038 
1039 	if (!kvm_valid_efer(vcpu, efer))
1040 		return 1;
1041 
1042 	if (is_paging(vcpu)
1043 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1044 		return 1;
1045 
1046 	efer &= ~EFER_LMA;
1047 	efer |= vcpu->arch.efer & EFER_LMA;
1048 
1049 	kvm_x86_ops->set_efer(vcpu, efer);
1050 
1051 	/* Update reserved bits */
1052 	if ((efer ^ old_efer) & EFER_NX)
1053 		kvm_mmu_reset_context(vcpu);
1054 
1055 	return 0;
1056 }
1057 
1058 void kvm_enable_efer_bits(u64 mask)
1059 {
1060        efer_reserved_bits &= ~mask;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1063 
1064 /*
1065  * Writes msr value into into the appropriate "register".
1066  * Returns 0 on success, non-0 otherwise.
1067  * Assumes vcpu_load() was already called.
1068  */
1069 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1070 {
1071 	switch (msr->index) {
1072 	case MSR_FS_BASE:
1073 	case MSR_GS_BASE:
1074 	case MSR_KERNEL_GS_BASE:
1075 	case MSR_CSTAR:
1076 	case MSR_LSTAR:
1077 		if (is_noncanonical_address(msr->data))
1078 			return 1;
1079 		break;
1080 	case MSR_IA32_SYSENTER_EIP:
1081 	case MSR_IA32_SYSENTER_ESP:
1082 		/*
1083 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1084 		 * non-canonical address is written on Intel but not on
1085 		 * AMD (which ignores the top 32-bits, because it does
1086 		 * not implement 64-bit SYSENTER).
1087 		 *
1088 		 * 64-bit code should hence be able to write a non-canonical
1089 		 * value on AMD.  Making the address canonical ensures that
1090 		 * vmentry does not fail on Intel after writing a non-canonical
1091 		 * value, and that something deterministic happens if the guest
1092 		 * invokes 64-bit SYSENTER.
1093 		 */
1094 		msr->data = get_canonical(msr->data);
1095 	}
1096 	return kvm_x86_ops->set_msr(vcpu, msr);
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_msr);
1099 
1100 /*
1101  * Adapt set_msr() to msr_io()'s calling convention
1102  */
1103 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1104 {
1105 	struct msr_data msr;
1106 	int r;
1107 
1108 	msr.index = index;
1109 	msr.host_initiated = true;
1110 	r = kvm_get_msr(vcpu, &msr);
1111 	if (r)
1112 		return r;
1113 
1114 	*data = msr.data;
1115 	return 0;
1116 }
1117 
1118 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1119 {
1120 	struct msr_data msr;
1121 
1122 	msr.data = *data;
1123 	msr.index = index;
1124 	msr.host_initiated = true;
1125 	return kvm_set_msr(vcpu, &msr);
1126 }
1127 
1128 #ifdef CONFIG_X86_64
1129 struct pvclock_gtod_data {
1130 	seqcount_t	seq;
1131 
1132 	struct { /* extract of a clocksource struct */
1133 		int vclock_mode;
1134 		cycle_t	cycle_last;
1135 		cycle_t	mask;
1136 		u32	mult;
1137 		u32	shift;
1138 	} clock;
1139 
1140 	u64		boot_ns;
1141 	u64		nsec_base;
1142 };
1143 
1144 static struct pvclock_gtod_data pvclock_gtod_data;
1145 
1146 static void update_pvclock_gtod(struct timekeeper *tk)
1147 {
1148 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1149 	u64 boot_ns;
1150 
1151 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1152 
1153 	write_seqcount_begin(&vdata->seq);
1154 
1155 	/* copy pvclock gtod data */
1156 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1157 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1158 	vdata->clock.mask		= tk->tkr_mono.mask;
1159 	vdata->clock.mult		= tk->tkr_mono.mult;
1160 	vdata->clock.shift		= tk->tkr_mono.shift;
1161 
1162 	vdata->boot_ns			= boot_ns;
1163 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1164 
1165 	write_seqcount_end(&vdata->seq);
1166 }
1167 #endif
1168 
1169 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1170 {
1171 	/*
1172 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1173 	 * vcpu_enter_guest.  This function is only called from
1174 	 * the physical CPU that is running vcpu.
1175 	 */
1176 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1177 }
1178 
1179 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1180 {
1181 	int version;
1182 	int r;
1183 	struct pvclock_wall_clock wc;
1184 	struct timespec64 boot;
1185 
1186 	if (!wall_clock)
1187 		return;
1188 
1189 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1190 	if (r)
1191 		return;
1192 
1193 	if (version & 1)
1194 		++version;  /* first time write, random junk */
1195 
1196 	++version;
1197 
1198 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1199 		return;
1200 
1201 	/*
1202 	 * The guest calculates current wall clock time by adding
1203 	 * system time (updated by kvm_guest_time_update below) to the
1204 	 * wall clock specified here.  guest system time equals host
1205 	 * system time for us, thus we must fill in host boot time here.
1206 	 */
1207 	getboottime64(&boot);
1208 
1209 	if (kvm->arch.kvmclock_offset) {
1210 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1211 		boot = timespec64_sub(boot, ts);
1212 	}
1213 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1214 	wc.nsec = boot.tv_nsec;
1215 	wc.version = version;
1216 
1217 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1218 
1219 	version++;
1220 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1221 }
1222 
1223 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1224 {
1225 	do_shl32_div32(dividend, divisor);
1226 	return dividend;
1227 }
1228 
1229 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1230 			       s8 *pshift, u32 *pmultiplier)
1231 {
1232 	uint64_t scaled64;
1233 	int32_t  shift = 0;
1234 	uint64_t tps64;
1235 	uint32_t tps32;
1236 
1237 	tps64 = base_hz;
1238 	scaled64 = scaled_hz;
1239 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1240 		tps64 >>= 1;
1241 		shift--;
1242 	}
1243 
1244 	tps32 = (uint32_t)tps64;
1245 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1246 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1247 			scaled64 >>= 1;
1248 		else
1249 			tps32 <<= 1;
1250 		shift++;
1251 	}
1252 
1253 	*pshift = shift;
1254 	*pmultiplier = div_frac(scaled64, tps32);
1255 
1256 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1257 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1258 }
1259 
1260 #ifdef CONFIG_X86_64
1261 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1262 #endif
1263 
1264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1265 static unsigned long max_tsc_khz;
1266 
1267 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1268 {
1269 	u64 v = (u64)khz * (1000000 + ppm);
1270 	do_div(v, 1000000);
1271 	return v;
1272 }
1273 
1274 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1275 {
1276 	u64 ratio;
1277 
1278 	/* Guest TSC same frequency as host TSC? */
1279 	if (!scale) {
1280 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1281 		return 0;
1282 	}
1283 
1284 	/* TSC scaling supported? */
1285 	if (!kvm_has_tsc_control) {
1286 		if (user_tsc_khz > tsc_khz) {
1287 			vcpu->arch.tsc_catchup = 1;
1288 			vcpu->arch.tsc_always_catchup = 1;
1289 			return 0;
1290 		} else {
1291 			WARN(1, "user requested TSC rate below hardware speed\n");
1292 			return -1;
1293 		}
1294 	}
1295 
1296 	/* TSC scaling required  - calculate ratio */
1297 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1298 				user_tsc_khz, tsc_khz);
1299 
1300 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1301 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1302 			  user_tsc_khz);
1303 		return -1;
1304 	}
1305 
1306 	vcpu->arch.tsc_scaling_ratio = ratio;
1307 	return 0;
1308 }
1309 
1310 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1311 {
1312 	u32 thresh_lo, thresh_hi;
1313 	int use_scaling = 0;
1314 
1315 	/* tsc_khz can be zero if TSC calibration fails */
1316 	if (user_tsc_khz == 0) {
1317 		/* set tsc_scaling_ratio to a safe value */
1318 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1319 		return -1;
1320 	}
1321 
1322 	/* Compute a scale to convert nanoseconds in TSC cycles */
1323 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1324 			   &vcpu->arch.virtual_tsc_shift,
1325 			   &vcpu->arch.virtual_tsc_mult);
1326 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1327 
1328 	/*
1329 	 * Compute the variation in TSC rate which is acceptable
1330 	 * within the range of tolerance and decide if the
1331 	 * rate being applied is within that bounds of the hardware
1332 	 * rate.  If so, no scaling or compensation need be done.
1333 	 */
1334 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1335 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1336 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1337 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1338 		use_scaling = 1;
1339 	}
1340 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1341 }
1342 
1343 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1344 {
1345 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1346 				      vcpu->arch.virtual_tsc_mult,
1347 				      vcpu->arch.virtual_tsc_shift);
1348 	tsc += vcpu->arch.this_tsc_write;
1349 	return tsc;
1350 }
1351 
1352 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1353 {
1354 #ifdef CONFIG_X86_64
1355 	bool vcpus_matched;
1356 	struct kvm_arch *ka = &vcpu->kvm->arch;
1357 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1358 
1359 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1360 			 atomic_read(&vcpu->kvm->online_vcpus));
1361 
1362 	/*
1363 	 * Once the masterclock is enabled, always perform request in
1364 	 * order to update it.
1365 	 *
1366 	 * In order to enable masterclock, the host clocksource must be TSC
1367 	 * and the vcpus need to have matched TSCs.  When that happens,
1368 	 * perform request to enable masterclock.
1369 	 */
1370 	if (ka->use_master_clock ||
1371 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1372 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1373 
1374 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1375 			    atomic_read(&vcpu->kvm->online_vcpus),
1376 		            ka->use_master_clock, gtod->clock.vclock_mode);
1377 #endif
1378 }
1379 
1380 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1381 {
1382 	u64 curr_offset = vcpu->arch.tsc_offset;
1383 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1384 }
1385 
1386 /*
1387  * Multiply tsc by a fixed point number represented by ratio.
1388  *
1389  * The most significant 64-N bits (mult) of ratio represent the
1390  * integral part of the fixed point number; the remaining N bits
1391  * (frac) represent the fractional part, ie. ratio represents a fixed
1392  * point number (mult + frac * 2^(-N)).
1393  *
1394  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1395  */
1396 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1397 {
1398 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1399 }
1400 
1401 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1402 {
1403 	u64 _tsc = tsc;
1404 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1405 
1406 	if (ratio != kvm_default_tsc_scaling_ratio)
1407 		_tsc = __scale_tsc(ratio, tsc);
1408 
1409 	return _tsc;
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1412 
1413 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1414 {
1415 	u64 tsc;
1416 
1417 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1418 
1419 	return target_tsc - tsc;
1420 }
1421 
1422 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1423 {
1424 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1427 
1428 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1429 {
1430 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1431 	vcpu->arch.tsc_offset = offset;
1432 }
1433 
1434 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1435 {
1436 	struct kvm *kvm = vcpu->kvm;
1437 	u64 offset, ns, elapsed;
1438 	unsigned long flags;
1439 	s64 usdiff;
1440 	bool matched;
1441 	bool already_matched;
1442 	u64 data = msr->data;
1443 
1444 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1445 	offset = kvm_compute_tsc_offset(vcpu, data);
1446 	ns = ktime_get_boot_ns();
1447 	elapsed = ns - kvm->arch.last_tsc_nsec;
1448 
1449 	if (vcpu->arch.virtual_tsc_khz) {
1450 		int faulted = 0;
1451 
1452 		/* n.b - signed multiplication and division required */
1453 		usdiff = data - kvm->arch.last_tsc_write;
1454 #ifdef CONFIG_X86_64
1455 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1456 #else
1457 		/* do_div() only does unsigned */
1458 		asm("1: idivl %[divisor]\n"
1459 		    "2: xor %%edx, %%edx\n"
1460 		    "   movl $0, %[faulted]\n"
1461 		    "3:\n"
1462 		    ".section .fixup,\"ax\"\n"
1463 		    "4: movl $1, %[faulted]\n"
1464 		    "   jmp  3b\n"
1465 		    ".previous\n"
1466 
1467 		_ASM_EXTABLE(1b, 4b)
1468 
1469 		: "=A"(usdiff), [faulted] "=r" (faulted)
1470 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1471 
1472 #endif
1473 		do_div(elapsed, 1000);
1474 		usdiff -= elapsed;
1475 		if (usdiff < 0)
1476 			usdiff = -usdiff;
1477 
1478 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1479 		if (faulted)
1480 			usdiff = USEC_PER_SEC;
1481 	} else
1482 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1483 
1484 	/*
1485 	 * Special case: TSC write with a small delta (1 second) of virtual
1486 	 * cycle time against real time is interpreted as an attempt to
1487 	 * synchronize the CPU.
1488          *
1489 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1490 	 * TSC, we add elapsed time in this computation.  We could let the
1491 	 * compensation code attempt to catch up if we fall behind, but
1492 	 * it's better to try to match offsets from the beginning.
1493          */
1494 	if (usdiff < USEC_PER_SEC &&
1495 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1496 		if (!check_tsc_unstable()) {
1497 			offset = kvm->arch.cur_tsc_offset;
1498 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1499 		} else {
1500 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1501 			data += delta;
1502 			offset = kvm_compute_tsc_offset(vcpu, data);
1503 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1504 		}
1505 		matched = true;
1506 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1507 	} else {
1508 		/*
1509 		 * We split periods of matched TSC writes into generations.
1510 		 * For each generation, we track the original measured
1511 		 * nanosecond time, offset, and write, so if TSCs are in
1512 		 * sync, we can match exact offset, and if not, we can match
1513 		 * exact software computation in compute_guest_tsc()
1514 		 *
1515 		 * These values are tracked in kvm->arch.cur_xxx variables.
1516 		 */
1517 		kvm->arch.cur_tsc_generation++;
1518 		kvm->arch.cur_tsc_nsec = ns;
1519 		kvm->arch.cur_tsc_write = data;
1520 		kvm->arch.cur_tsc_offset = offset;
1521 		matched = false;
1522 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1523 			 kvm->arch.cur_tsc_generation, data);
1524 	}
1525 
1526 	/*
1527 	 * We also track th most recent recorded KHZ, write and time to
1528 	 * allow the matching interval to be extended at each write.
1529 	 */
1530 	kvm->arch.last_tsc_nsec = ns;
1531 	kvm->arch.last_tsc_write = data;
1532 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1533 
1534 	vcpu->arch.last_guest_tsc = data;
1535 
1536 	/* Keep track of which generation this VCPU has synchronized to */
1537 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1538 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1539 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1540 
1541 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1542 		update_ia32_tsc_adjust_msr(vcpu, offset);
1543 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1544 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1545 
1546 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1547 	if (!matched) {
1548 		kvm->arch.nr_vcpus_matched_tsc = 0;
1549 	} else if (!already_matched) {
1550 		kvm->arch.nr_vcpus_matched_tsc++;
1551 	}
1552 
1553 	kvm_track_tsc_matching(vcpu);
1554 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1555 }
1556 
1557 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1558 
1559 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1560 					   s64 adjustment)
1561 {
1562 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1563 }
1564 
1565 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1566 {
1567 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1568 		WARN_ON(adjustment < 0);
1569 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1570 	adjust_tsc_offset_guest(vcpu, adjustment);
1571 }
1572 
1573 #ifdef CONFIG_X86_64
1574 
1575 static cycle_t read_tsc(void)
1576 {
1577 	cycle_t ret = (cycle_t)rdtsc_ordered();
1578 	u64 last = pvclock_gtod_data.clock.cycle_last;
1579 
1580 	if (likely(ret >= last))
1581 		return ret;
1582 
1583 	/*
1584 	 * GCC likes to generate cmov here, but this branch is extremely
1585 	 * predictable (it's just a function of time and the likely is
1586 	 * very likely) and there's a data dependence, so force GCC
1587 	 * to generate a branch instead.  I don't barrier() because
1588 	 * we don't actually need a barrier, and if this function
1589 	 * ever gets inlined it will generate worse code.
1590 	 */
1591 	asm volatile ("");
1592 	return last;
1593 }
1594 
1595 static inline u64 vgettsc(cycle_t *cycle_now)
1596 {
1597 	long v;
1598 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1599 
1600 	*cycle_now = read_tsc();
1601 
1602 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1603 	return v * gtod->clock.mult;
1604 }
1605 
1606 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1607 {
1608 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1609 	unsigned long seq;
1610 	int mode;
1611 	u64 ns;
1612 
1613 	do {
1614 		seq = read_seqcount_begin(&gtod->seq);
1615 		mode = gtod->clock.vclock_mode;
1616 		ns = gtod->nsec_base;
1617 		ns += vgettsc(cycle_now);
1618 		ns >>= gtod->clock.shift;
1619 		ns += gtod->boot_ns;
1620 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1621 	*t = ns;
1622 
1623 	return mode;
1624 }
1625 
1626 /* returns true if host is using tsc clocksource */
1627 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1628 {
1629 	/* checked again under seqlock below */
1630 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1631 		return false;
1632 
1633 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1634 }
1635 #endif
1636 
1637 /*
1638  *
1639  * Assuming a stable TSC across physical CPUS, and a stable TSC
1640  * across virtual CPUs, the following condition is possible.
1641  * Each numbered line represents an event visible to both
1642  * CPUs at the next numbered event.
1643  *
1644  * "timespecX" represents host monotonic time. "tscX" represents
1645  * RDTSC value.
1646  *
1647  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1648  *
1649  * 1.  read timespec0,tsc0
1650  * 2.					| timespec1 = timespec0 + N
1651  * 					| tsc1 = tsc0 + M
1652  * 3. transition to guest		| transition to guest
1653  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1654  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1655  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1656  *
1657  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1658  *
1659  * 	- ret0 < ret1
1660  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1661  *		...
1662  *	- 0 < N - M => M < N
1663  *
1664  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1665  * always the case (the difference between two distinct xtime instances
1666  * might be smaller then the difference between corresponding TSC reads,
1667  * when updating guest vcpus pvclock areas).
1668  *
1669  * To avoid that problem, do not allow visibility of distinct
1670  * system_timestamp/tsc_timestamp values simultaneously: use a master
1671  * copy of host monotonic time values. Update that master copy
1672  * in lockstep.
1673  *
1674  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1675  *
1676  */
1677 
1678 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1679 {
1680 #ifdef CONFIG_X86_64
1681 	struct kvm_arch *ka = &kvm->arch;
1682 	int vclock_mode;
1683 	bool host_tsc_clocksource, vcpus_matched;
1684 
1685 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1686 			atomic_read(&kvm->online_vcpus));
1687 
1688 	/*
1689 	 * If the host uses TSC clock, then passthrough TSC as stable
1690 	 * to the guest.
1691 	 */
1692 	host_tsc_clocksource = kvm_get_time_and_clockread(
1693 					&ka->master_kernel_ns,
1694 					&ka->master_cycle_now);
1695 
1696 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1697 				&& !backwards_tsc_observed
1698 				&& !ka->boot_vcpu_runs_old_kvmclock;
1699 
1700 	if (ka->use_master_clock)
1701 		atomic_set(&kvm_guest_has_master_clock, 1);
1702 
1703 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1704 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1705 					vcpus_matched);
1706 #endif
1707 }
1708 
1709 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1710 {
1711 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1712 }
1713 
1714 static void kvm_gen_update_masterclock(struct kvm *kvm)
1715 {
1716 #ifdef CONFIG_X86_64
1717 	int i;
1718 	struct kvm_vcpu *vcpu;
1719 	struct kvm_arch *ka = &kvm->arch;
1720 
1721 	spin_lock(&ka->pvclock_gtod_sync_lock);
1722 	kvm_make_mclock_inprogress_request(kvm);
1723 	/* no guest entries from this point */
1724 	pvclock_update_vm_gtod_copy(kvm);
1725 
1726 	kvm_for_each_vcpu(i, vcpu, kvm)
1727 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1728 
1729 	/* guest entries allowed */
1730 	kvm_for_each_vcpu(i, vcpu, kvm)
1731 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1732 
1733 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1734 #endif
1735 }
1736 
1737 static u64 __get_kvmclock_ns(struct kvm *kvm)
1738 {
1739 	struct kvm_arch *ka = &kvm->arch;
1740 	struct pvclock_vcpu_time_info hv_clock;
1741 
1742 	spin_lock(&ka->pvclock_gtod_sync_lock);
1743 	if (!ka->use_master_clock) {
1744 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1745 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1746 	}
1747 
1748 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1749 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1750 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1751 
1752 	kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1753 			   &hv_clock.tsc_shift,
1754 			   &hv_clock.tsc_to_system_mul);
1755 	return __pvclock_read_cycles(&hv_clock, rdtsc());
1756 }
1757 
1758 u64 get_kvmclock_ns(struct kvm *kvm)
1759 {
1760 	unsigned long flags;
1761 	s64 ns;
1762 
1763 	local_irq_save(flags);
1764 	ns = __get_kvmclock_ns(kvm);
1765 	local_irq_restore(flags);
1766 
1767 	return ns;
1768 }
1769 
1770 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1771 {
1772 	struct kvm_vcpu_arch *vcpu = &v->arch;
1773 	struct pvclock_vcpu_time_info guest_hv_clock;
1774 
1775 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1776 		&guest_hv_clock, sizeof(guest_hv_clock))))
1777 		return;
1778 
1779 	/* This VCPU is paused, but it's legal for a guest to read another
1780 	 * VCPU's kvmclock, so we really have to follow the specification where
1781 	 * it says that version is odd if data is being modified, and even after
1782 	 * it is consistent.
1783 	 *
1784 	 * Version field updates must be kept separate.  This is because
1785 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1786 	 * writes within a string instruction are weakly ordered.  So there
1787 	 * are three writes overall.
1788 	 *
1789 	 * As a small optimization, only write the version field in the first
1790 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1791 	 * version field is the first in the struct.
1792 	 */
1793 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1794 
1795 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1796 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1797 				&vcpu->hv_clock,
1798 				sizeof(vcpu->hv_clock.version));
1799 
1800 	smp_wmb();
1801 
1802 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1803 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1804 
1805 	if (vcpu->pvclock_set_guest_stopped_request) {
1806 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1807 		vcpu->pvclock_set_guest_stopped_request = false;
1808 	}
1809 
1810 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1811 
1812 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813 				&vcpu->hv_clock,
1814 				sizeof(vcpu->hv_clock));
1815 
1816 	smp_wmb();
1817 
1818 	vcpu->hv_clock.version++;
1819 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1820 				&vcpu->hv_clock,
1821 				sizeof(vcpu->hv_clock.version));
1822 }
1823 
1824 static int kvm_guest_time_update(struct kvm_vcpu *v)
1825 {
1826 	unsigned long flags, tgt_tsc_khz;
1827 	struct kvm_vcpu_arch *vcpu = &v->arch;
1828 	struct kvm_arch *ka = &v->kvm->arch;
1829 	s64 kernel_ns;
1830 	u64 tsc_timestamp, host_tsc;
1831 	u8 pvclock_flags;
1832 	bool use_master_clock;
1833 
1834 	kernel_ns = 0;
1835 	host_tsc = 0;
1836 
1837 	/*
1838 	 * If the host uses TSC clock, then passthrough TSC as stable
1839 	 * to the guest.
1840 	 */
1841 	spin_lock(&ka->pvclock_gtod_sync_lock);
1842 	use_master_clock = ka->use_master_clock;
1843 	if (use_master_clock) {
1844 		host_tsc = ka->master_cycle_now;
1845 		kernel_ns = ka->master_kernel_ns;
1846 	}
1847 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1848 
1849 	/* Keep irq disabled to prevent changes to the clock */
1850 	local_irq_save(flags);
1851 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1852 	if (unlikely(tgt_tsc_khz == 0)) {
1853 		local_irq_restore(flags);
1854 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1855 		return 1;
1856 	}
1857 	if (!use_master_clock) {
1858 		host_tsc = rdtsc();
1859 		kernel_ns = ktime_get_boot_ns();
1860 	}
1861 
1862 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1863 
1864 	/*
1865 	 * We may have to catch up the TSC to match elapsed wall clock
1866 	 * time for two reasons, even if kvmclock is used.
1867 	 *   1) CPU could have been running below the maximum TSC rate
1868 	 *   2) Broken TSC compensation resets the base at each VCPU
1869 	 *      entry to avoid unknown leaps of TSC even when running
1870 	 *      again on the same CPU.  This may cause apparent elapsed
1871 	 *      time to disappear, and the guest to stand still or run
1872 	 *	very slowly.
1873 	 */
1874 	if (vcpu->tsc_catchup) {
1875 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1876 		if (tsc > tsc_timestamp) {
1877 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1878 			tsc_timestamp = tsc;
1879 		}
1880 	}
1881 
1882 	local_irq_restore(flags);
1883 
1884 	/* With all the info we got, fill in the values */
1885 
1886 	if (kvm_has_tsc_control)
1887 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1888 
1889 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1890 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1891 				   &vcpu->hv_clock.tsc_shift,
1892 				   &vcpu->hv_clock.tsc_to_system_mul);
1893 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1894 	}
1895 
1896 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1897 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1898 	vcpu->last_guest_tsc = tsc_timestamp;
1899 
1900 	/* If the host uses TSC clocksource, then it is stable */
1901 	pvclock_flags = 0;
1902 	if (use_master_clock)
1903 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1904 
1905 	vcpu->hv_clock.flags = pvclock_flags;
1906 
1907 	if (vcpu->pv_time_enabled)
1908 		kvm_setup_pvclock_page(v);
1909 	if (v == kvm_get_vcpu(v->kvm, 0))
1910 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1911 	return 0;
1912 }
1913 
1914 /*
1915  * kvmclock updates which are isolated to a given vcpu, such as
1916  * vcpu->cpu migration, should not allow system_timestamp from
1917  * the rest of the vcpus to remain static. Otherwise ntp frequency
1918  * correction applies to one vcpu's system_timestamp but not
1919  * the others.
1920  *
1921  * So in those cases, request a kvmclock update for all vcpus.
1922  * We need to rate-limit these requests though, as they can
1923  * considerably slow guests that have a large number of vcpus.
1924  * The time for a remote vcpu to update its kvmclock is bound
1925  * by the delay we use to rate-limit the updates.
1926  */
1927 
1928 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1929 
1930 static void kvmclock_update_fn(struct work_struct *work)
1931 {
1932 	int i;
1933 	struct delayed_work *dwork = to_delayed_work(work);
1934 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1935 					   kvmclock_update_work);
1936 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1937 	struct kvm_vcpu *vcpu;
1938 
1939 	kvm_for_each_vcpu(i, vcpu, kvm) {
1940 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1941 		kvm_vcpu_kick(vcpu);
1942 	}
1943 }
1944 
1945 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1946 {
1947 	struct kvm *kvm = v->kvm;
1948 
1949 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1950 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1951 					KVMCLOCK_UPDATE_DELAY);
1952 }
1953 
1954 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1955 
1956 static void kvmclock_sync_fn(struct work_struct *work)
1957 {
1958 	struct delayed_work *dwork = to_delayed_work(work);
1959 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960 					   kvmclock_sync_work);
1961 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1962 
1963 	if (!kvmclock_periodic_sync)
1964 		return;
1965 
1966 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1967 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1968 					KVMCLOCK_SYNC_PERIOD);
1969 }
1970 
1971 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1972 {
1973 	u64 mcg_cap = vcpu->arch.mcg_cap;
1974 	unsigned bank_num = mcg_cap & 0xff;
1975 
1976 	switch (msr) {
1977 	case MSR_IA32_MCG_STATUS:
1978 		vcpu->arch.mcg_status = data;
1979 		break;
1980 	case MSR_IA32_MCG_CTL:
1981 		if (!(mcg_cap & MCG_CTL_P))
1982 			return 1;
1983 		if (data != 0 && data != ~(u64)0)
1984 			return -1;
1985 		vcpu->arch.mcg_ctl = data;
1986 		break;
1987 	default:
1988 		if (msr >= MSR_IA32_MC0_CTL &&
1989 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1990 			u32 offset = msr - MSR_IA32_MC0_CTL;
1991 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1992 			 * some Linux kernels though clear bit 10 in bank 4 to
1993 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1994 			 * this to avoid an uncatched #GP in the guest
1995 			 */
1996 			if ((offset & 0x3) == 0 &&
1997 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1998 				return -1;
1999 			vcpu->arch.mce_banks[offset] = data;
2000 			break;
2001 		}
2002 		return 1;
2003 	}
2004 	return 0;
2005 }
2006 
2007 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2008 {
2009 	struct kvm *kvm = vcpu->kvm;
2010 	int lm = is_long_mode(vcpu);
2011 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2012 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2013 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2014 		: kvm->arch.xen_hvm_config.blob_size_32;
2015 	u32 page_num = data & ~PAGE_MASK;
2016 	u64 page_addr = data & PAGE_MASK;
2017 	u8 *page;
2018 	int r;
2019 
2020 	r = -E2BIG;
2021 	if (page_num >= blob_size)
2022 		goto out;
2023 	r = -ENOMEM;
2024 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2025 	if (IS_ERR(page)) {
2026 		r = PTR_ERR(page);
2027 		goto out;
2028 	}
2029 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2030 		goto out_free;
2031 	r = 0;
2032 out_free:
2033 	kfree(page);
2034 out:
2035 	return r;
2036 }
2037 
2038 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2039 {
2040 	gpa_t gpa = data & ~0x3f;
2041 
2042 	/* Bits 2:5 are reserved, Should be zero */
2043 	if (data & 0x3c)
2044 		return 1;
2045 
2046 	vcpu->arch.apf.msr_val = data;
2047 
2048 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2049 		kvm_clear_async_pf_completion_queue(vcpu);
2050 		kvm_async_pf_hash_reset(vcpu);
2051 		return 0;
2052 	}
2053 
2054 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2055 					sizeof(u32)))
2056 		return 1;
2057 
2058 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2059 	kvm_async_pf_wakeup_all(vcpu);
2060 	return 0;
2061 }
2062 
2063 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2064 {
2065 	vcpu->arch.pv_time_enabled = false;
2066 }
2067 
2068 static void record_steal_time(struct kvm_vcpu *vcpu)
2069 {
2070 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2071 		return;
2072 
2073 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2074 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2075 		return;
2076 
2077 	vcpu->arch.st.steal.preempted = 0;
2078 
2079 	if (vcpu->arch.st.steal.version & 1)
2080 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2081 
2082 	vcpu->arch.st.steal.version += 1;
2083 
2084 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2086 
2087 	smp_wmb();
2088 
2089 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2090 		vcpu->arch.st.last_steal;
2091 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2092 
2093 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2094 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2095 
2096 	smp_wmb();
2097 
2098 	vcpu->arch.st.steal.version += 1;
2099 
2100 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2101 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2102 }
2103 
2104 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2105 {
2106 	bool pr = false;
2107 	u32 msr = msr_info->index;
2108 	u64 data = msr_info->data;
2109 
2110 	switch (msr) {
2111 	case MSR_AMD64_NB_CFG:
2112 	case MSR_IA32_UCODE_REV:
2113 	case MSR_IA32_UCODE_WRITE:
2114 	case MSR_VM_HSAVE_PA:
2115 	case MSR_AMD64_PATCH_LOADER:
2116 	case MSR_AMD64_BU_CFG2:
2117 		break;
2118 
2119 	case MSR_EFER:
2120 		return set_efer(vcpu, data);
2121 	case MSR_K7_HWCR:
2122 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2123 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2124 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2125 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2126 		if (data != 0) {
2127 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2128 				    data);
2129 			return 1;
2130 		}
2131 		break;
2132 	case MSR_FAM10H_MMIO_CONF_BASE:
2133 		if (data != 0) {
2134 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2135 				    "0x%llx\n", data);
2136 			return 1;
2137 		}
2138 		break;
2139 	case MSR_IA32_DEBUGCTLMSR:
2140 		if (!data) {
2141 			/* We support the non-activated case already */
2142 			break;
2143 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2144 			/* Values other than LBR and BTF are vendor-specific,
2145 			   thus reserved and should throw a #GP */
2146 			return 1;
2147 		}
2148 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2149 			    __func__, data);
2150 		break;
2151 	case 0x200 ... 0x2ff:
2152 		return kvm_mtrr_set_msr(vcpu, msr, data);
2153 	case MSR_IA32_APICBASE:
2154 		return kvm_set_apic_base(vcpu, msr_info);
2155 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2156 		return kvm_x2apic_msr_write(vcpu, msr, data);
2157 	case MSR_IA32_TSCDEADLINE:
2158 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2159 		break;
2160 	case MSR_IA32_TSC_ADJUST:
2161 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2162 			if (!msr_info->host_initiated) {
2163 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2164 				adjust_tsc_offset_guest(vcpu, adj);
2165 			}
2166 			vcpu->arch.ia32_tsc_adjust_msr = data;
2167 		}
2168 		break;
2169 	case MSR_IA32_MISC_ENABLE:
2170 		vcpu->arch.ia32_misc_enable_msr = data;
2171 		break;
2172 	case MSR_IA32_SMBASE:
2173 		if (!msr_info->host_initiated)
2174 			return 1;
2175 		vcpu->arch.smbase = data;
2176 		break;
2177 	case MSR_KVM_WALL_CLOCK_NEW:
2178 	case MSR_KVM_WALL_CLOCK:
2179 		vcpu->kvm->arch.wall_clock = data;
2180 		kvm_write_wall_clock(vcpu->kvm, data);
2181 		break;
2182 	case MSR_KVM_SYSTEM_TIME_NEW:
2183 	case MSR_KVM_SYSTEM_TIME: {
2184 		struct kvm_arch *ka = &vcpu->kvm->arch;
2185 
2186 		kvmclock_reset(vcpu);
2187 
2188 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2189 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2190 
2191 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2192 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2193 					&vcpu->requests);
2194 
2195 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2196 		}
2197 
2198 		vcpu->arch.time = data;
2199 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2200 
2201 		/* we verify if the enable bit is set... */
2202 		if (!(data & 1))
2203 			break;
2204 
2205 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2206 		     &vcpu->arch.pv_time, data & ~1ULL,
2207 		     sizeof(struct pvclock_vcpu_time_info)))
2208 			vcpu->arch.pv_time_enabled = false;
2209 		else
2210 			vcpu->arch.pv_time_enabled = true;
2211 
2212 		break;
2213 	}
2214 	case MSR_KVM_ASYNC_PF_EN:
2215 		if (kvm_pv_enable_async_pf(vcpu, data))
2216 			return 1;
2217 		break;
2218 	case MSR_KVM_STEAL_TIME:
2219 
2220 		if (unlikely(!sched_info_on()))
2221 			return 1;
2222 
2223 		if (data & KVM_STEAL_RESERVED_MASK)
2224 			return 1;
2225 
2226 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2227 						data & KVM_STEAL_VALID_BITS,
2228 						sizeof(struct kvm_steal_time)))
2229 			return 1;
2230 
2231 		vcpu->arch.st.msr_val = data;
2232 
2233 		if (!(data & KVM_MSR_ENABLED))
2234 			break;
2235 
2236 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2237 
2238 		break;
2239 	case MSR_KVM_PV_EOI_EN:
2240 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2241 			return 1;
2242 		break;
2243 
2244 	case MSR_IA32_MCG_CTL:
2245 	case MSR_IA32_MCG_STATUS:
2246 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2247 		return set_msr_mce(vcpu, msr, data);
2248 
2249 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2250 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2251 		pr = true; /* fall through */
2252 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2253 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2254 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2255 			return kvm_pmu_set_msr(vcpu, msr_info);
2256 
2257 		if (pr || data != 0)
2258 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2259 				    "0x%x data 0x%llx\n", msr, data);
2260 		break;
2261 	case MSR_K7_CLK_CTL:
2262 		/*
2263 		 * Ignore all writes to this no longer documented MSR.
2264 		 * Writes are only relevant for old K7 processors,
2265 		 * all pre-dating SVM, but a recommended workaround from
2266 		 * AMD for these chips. It is possible to specify the
2267 		 * affected processor models on the command line, hence
2268 		 * the need to ignore the workaround.
2269 		 */
2270 		break;
2271 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2272 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2273 	case HV_X64_MSR_CRASH_CTL:
2274 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2275 		return kvm_hv_set_msr_common(vcpu, msr, data,
2276 					     msr_info->host_initiated);
2277 	case MSR_IA32_BBL_CR_CTL3:
2278 		/* Drop writes to this legacy MSR -- see rdmsr
2279 		 * counterpart for further detail.
2280 		 */
2281 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2282 		break;
2283 	case MSR_AMD64_OSVW_ID_LENGTH:
2284 		if (!guest_cpuid_has_osvw(vcpu))
2285 			return 1;
2286 		vcpu->arch.osvw.length = data;
2287 		break;
2288 	case MSR_AMD64_OSVW_STATUS:
2289 		if (!guest_cpuid_has_osvw(vcpu))
2290 			return 1;
2291 		vcpu->arch.osvw.status = data;
2292 		break;
2293 	default:
2294 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2295 			return xen_hvm_config(vcpu, data);
2296 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2297 			return kvm_pmu_set_msr(vcpu, msr_info);
2298 		if (!ignore_msrs) {
2299 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2300 				    msr, data);
2301 			return 1;
2302 		} else {
2303 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2304 				    msr, data);
2305 			break;
2306 		}
2307 	}
2308 	return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2311 
2312 
2313 /*
2314  * Reads an msr value (of 'msr_index') into 'pdata'.
2315  * Returns 0 on success, non-0 otherwise.
2316  * Assumes vcpu_load() was already called.
2317  */
2318 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2319 {
2320 	return kvm_x86_ops->get_msr(vcpu, msr);
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_get_msr);
2323 
2324 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326 	u64 data;
2327 	u64 mcg_cap = vcpu->arch.mcg_cap;
2328 	unsigned bank_num = mcg_cap & 0xff;
2329 
2330 	switch (msr) {
2331 	case MSR_IA32_P5_MC_ADDR:
2332 	case MSR_IA32_P5_MC_TYPE:
2333 		data = 0;
2334 		break;
2335 	case MSR_IA32_MCG_CAP:
2336 		data = vcpu->arch.mcg_cap;
2337 		break;
2338 	case MSR_IA32_MCG_CTL:
2339 		if (!(mcg_cap & MCG_CTL_P))
2340 			return 1;
2341 		data = vcpu->arch.mcg_ctl;
2342 		break;
2343 	case MSR_IA32_MCG_STATUS:
2344 		data = vcpu->arch.mcg_status;
2345 		break;
2346 	default:
2347 		if (msr >= MSR_IA32_MC0_CTL &&
2348 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2349 			u32 offset = msr - MSR_IA32_MC0_CTL;
2350 			data = vcpu->arch.mce_banks[offset];
2351 			break;
2352 		}
2353 		return 1;
2354 	}
2355 	*pdata = data;
2356 	return 0;
2357 }
2358 
2359 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2360 {
2361 	switch (msr_info->index) {
2362 	case MSR_IA32_PLATFORM_ID:
2363 	case MSR_IA32_EBL_CR_POWERON:
2364 	case MSR_IA32_DEBUGCTLMSR:
2365 	case MSR_IA32_LASTBRANCHFROMIP:
2366 	case MSR_IA32_LASTBRANCHTOIP:
2367 	case MSR_IA32_LASTINTFROMIP:
2368 	case MSR_IA32_LASTINTTOIP:
2369 	case MSR_K8_SYSCFG:
2370 	case MSR_K8_TSEG_ADDR:
2371 	case MSR_K8_TSEG_MASK:
2372 	case MSR_K7_HWCR:
2373 	case MSR_VM_HSAVE_PA:
2374 	case MSR_K8_INT_PENDING_MSG:
2375 	case MSR_AMD64_NB_CFG:
2376 	case MSR_FAM10H_MMIO_CONF_BASE:
2377 	case MSR_AMD64_BU_CFG2:
2378 	case MSR_IA32_PERF_CTL:
2379 		msr_info->data = 0;
2380 		break;
2381 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2382 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2383 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2384 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2385 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2386 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2387 		msr_info->data = 0;
2388 		break;
2389 	case MSR_IA32_UCODE_REV:
2390 		msr_info->data = 0x100000000ULL;
2391 		break;
2392 	case MSR_MTRRcap:
2393 	case 0x200 ... 0x2ff:
2394 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2395 	case 0xcd: /* fsb frequency */
2396 		msr_info->data = 3;
2397 		break;
2398 		/*
2399 		 * MSR_EBC_FREQUENCY_ID
2400 		 * Conservative value valid for even the basic CPU models.
2401 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2402 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2403 		 * and 266MHz for model 3, or 4. Set Core Clock
2404 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2405 		 * 31:24) even though these are only valid for CPU
2406 		 * models > 2, however guests may end up dividing or
2407 		 * multiplying by zero otherwise.
2408 		 */
2409 	case MSR_EBC_FREQUENCY_ID:
2410 		msr_info->data = 1 << 24;
2411 		break;
2412 	case MSR_IA32_APICBASE:
2413 		msr_info->data = kvm_get_apic_base(vcpu);
2414 		break;
2415 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2416 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2417 		break;
2418 	case MSR_IA32_TSCDEADLINE:
2419 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2420 		break;
2421 	case MSR_IA32_TSC_ADJUST:
2422 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2423 		break;
2424 	case MSR_IA32_MISC_ENABLE:
2425 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2426 		break;
2427 	case MSR_IA32_SMBASE:
2428 		if (!msr_info->host_initiated)
2429 			return 1;
2430 		msr_info->data = vcpu->arch.smbase;
2431 		break;
2432 	case MSR_IA32_PERF_STATUS:
2433 		/* TSC increment by tick */
2434 		msr_info->data = 1000ULL;
2435 		/* CPU multiplier */
2436 		msr_info->data |= (((uint64_t)4ULL) << 40);
2437 		break;
2438 	case MSR_EFER:
2439 		msr_info->data = vcpu->arch.efer;
2440 		break;
2441 	case MSR_KVM_WALL_CLOCK:
2442 	case MSR_KVM_WALL_CLOCK_NEW:
2443 		msr_info->data = vcpu->kvm->arch.wall_clock;
2444 		break;
2445 	case MSR_KVM_SYSTEM_TIME:
2446 	case MSR_KVM_SYSTEM_TIME_NEW:
2447 		msr_info->data = vcpu->arch.time;
2448 		break;
2449 	case MSR_KVM_ASYNC_PF_EN:
2450 		msr_info->data = vcpu->arch.apf.msr_val;
2451 		break;
2452 	case MSR_KVM_STEAL_TIME:
2453 		msr_info->data = vcpu->arch.st.msr_val;
2454 		break;
2455 	case MSR_KVM_PV_EOI_EN:
2456 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2457 		break;
2458 	case MSR_IA32_P5_MC_ADDR:
2459 	case MSR_IA32_P5_MC_TYPE:
2460 	case MSR_IA32_MCG_CAP:
2461 	case MSR_IA32_MCG_CTL:
2462 	case MSR_IA32_MCG_STATUS:
2463 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2464 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2465 	case MSR_K7_CLK_CTL:
2466 		/*
2467 		 * Provide expected ramp-up count for K7. All other
2468 		 * are set to zero, indicating minimum divisors for
2469 		 * every field.
2470 		 *
2471 		 * This prevents guest kernels on AMD host with CPU
2472 		 * type 6, model 8 and higher from exploding due to
2473 		 * the rdmsr failing.
2474 		 */
2475 		msr_info->data = 0x20000000;
2476 		break;
2477 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2478 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2479 	case HV_X64_MSR_CRASH_CTL:
2480 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2481 		return kvm_hv_get_msr_common(vcpu,
2482 					     msr_info->index, &msr_info->data);
2483 		break;
2484 	case MSR_IA32_BBL_CR_CTL3:
2485 		/* This legacy MSR exists but isn't fully documented in current
2486 		 * silicon.  It is however accessed by winxp in very narrow
2487 		 * scenarios where it sets bit #19, itself documented as
2488 		 * a "reserved" bit.  Best effort attempt to source coherent
2489 		 * read data here should the balance of the register be
2490 		 * interpreted by the guest:
2491 		 *
2492 		 * L2 cache control register 3: 64GB range, 256KB size,
2493 		 * enabled, latency 0x1, configured
2494 		 */
2495 		msr_info->data = 0xbe702111;
2496 		break;
2497 	case MSR_AMD64_OSVW_ID_LENGTH:
2498 		if (!guest_cpuid_has_osvw(vcpu))
2499 			return 1;
2500 		msr_info->data = vcpu->arch.osvw.length;
2501 		break;
2502 	case MSR_AMD64_OSVW_STATUS:
2503 		if (!guest_cpuid_has_osvw(vcpu))
2504 			return 1;
2505 		msr_info->data = vcpu->arch.osvw.status;
2506 		break;
2507 	default:
2508 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2509 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2510 		if (!ignore_msrs) {
2511 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2512 					       msr_info->index);
2513 			return 1;
2514 		} else {
2515 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2516 			msr_info->data = 0;
2517 		}
2518 		break;
2519 	}
2520 	return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2523 
2524 /*
2525  * Read or write a bunch of msrs. All parameters are kernel addresses.
2526  *
2527  * @return number of msrs set successfully.
2528  */
2529 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2530 		    struct kvm_msr_entry *entries,
2531 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2532 				  unsigned index, u64 *data))
2533 {
2534 	int i, idx;
2535 
2536 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2537 	for (i = 0; i < msrs->nmsrs; ++i)
2538 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2539 			break;
2540 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2541 
2542 	return i;
2543 }
2544 
2545 /*
2546  * Read or write a bunch of msrs. Parameters are user addresses.
2547  *
2548  * @return number of msrs set successfully.
2549  */
2550 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2551 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2552 				unsigned index, u64 *data),
2553 		  int writeback)
2554 {
2555 	struct kvm_msrs msrs;
2556 	struct kvm_msr_entry *entries;
2557 	int r, n;
2558 	unsigned size;
2559 
2560 	r = -EFAULT;
2561 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2562 		goto out;
2563 
2564 	r = -E2BIG;
2565 	if (msrs.nmsrs >= MAX_IO_MSRS)
2566 		goto out;
2567 
2568 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2569 	entries = memdup_user(user_msrs->entries, size);
2570 	if (IS_ERR(entries)) {
2571 		r = PTR_ERR(entries);
2572 		goto out;
2573 	}
2574 
2575 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2576 	if (r < 0)
2577 		goto out_free;
2578 
2579 	r = -EFAULT;
2580 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2581 		goto out_free;
2582 
2583 	r = n;
2584 
2585 out_free:
2586 	kfree(entries);
2587 out:
2588 	return r;
2589 }
2590 
2591 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2592 {
2593 	int r;
2594 
2595 	switch (ext) {
2596 	case KVM_CAP_IRQCHIP:
2597 	case KVM_CAP_HLT:
2598 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2599 	case KVM_CAP_SET_TSS_ADDR:
2600 	case KVM_CAP_EXT_CPUID:
2601 	case KVM_CAP_EXT_EMUL_CPUID:
2602 	case KVM_CAP_CLOCKSOURCE:
2603 	case KVM_CAP_PIT:
2604 	case KVM_CAP_NOP_IO_DELAY:
2605 	case KVM_CAP_MP_STATE:
2606 	case KVM_CAP_SYNC_MMU:
2607 	case KVM_CAP_USER_NMI:
2608 	case KVM_CAP_REINJECT_CONTROL:
2609 	case KVM_CAP_IRQ_INJECT_STATUS:
2610 	case KVM_CAP_IOEVENTFD:
2611 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2612 	case KVM_CAP_PIT2:
2613 	case KVM_CAP_PIT_STATE2:
2614 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2615 	case KVM_CAP_XEN_HVM:
2616 	case KVM_CAP_VCPU_EVENTS:
2617 	case KVM_CAP_HYPERV:
2618 	case KVM_CAP_HYPERV_VAPIC:
2619 	case KVM_CAP_HYPERV_SPIN:
2620 	case KVM_CAP_HYPERV_SYNIC:
2621 	case KVM_CAP_PCI_SEGMENT:
2622 	case KVM_CAP_DEBUGREGS:
2623 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2624 	case KVM_CAP_XSAVE:
2625 	case KVM_CAP_ASYNC_PF:
2626 	case KVM_CAP_GET_TSC_KHZ:
2627 	case KVM_CAP_KVMCLOCK_CTRL:
2628 	case KVM_CAP_READONLY_MEM:
2629 	case KVM_CAP_HYPERV_TIME:
2630 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2631 	case KVM_CAP_TSC_DEADLINE_TIMER:
2632 	case KVM_CAP_ENABLE_CAP_VM:
2633 	case KVM_CAP_DISABLE_QUIRKS:
2634 	case KVM_CAP_SET_BOOT_CPU_ID:
2635  	case KVM_CAP_SPLIT_IRQCHIP:
2636 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2637 	case KVM_CAP_ASSIGN_DEV_IRQ:
2638 	case KVM_CAP_PCI_2_3:
2639 #endif
2640 		r = 1;
2641 		break;
2642 	case KVM_CAP_ADJUST_CLOCK:
2643 		r = KVM_CLOCK_TSC_STABLE;
2644 		break;
2645 	case KVM_CAP_X86_SMM:
2646 		/* SMBASE is usually relocated above 1M on modern chipsets,
2647 		 * and SMM handlers might indeed rely on 4G segment limits,
2648 		 * so do not report SMM to be available if real mode is
2649 		 * emulated via vm86 mode.  Still, do not go to great lengths
2650 		 * to avoid userspace's usage of the feature, because it is a
2651 		 * fringe case that is not enabled except via specific settings
2652 		 * of the module parameters.
2653 		 */
2654 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2655 		break;
2656 	case KVM_CAP_COALESCED_MMIO:
2657 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2658 		break;
2659 	case KVM_CAP_VAPIC:
2660 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2661 		break;
2662 	case KVM_CAP_NR_VCPUS:
2663 		r = KVM_SOFT_MAX_VCPUS;
2664 		break;
2665 	case KVM_CAP_MAX_VCPUS:
2666 		r = KVM_MAX_VCPUS;
2667 		break;
2668 	case KVM_CAP_NR_MEMSLOTS:
2669 		r = KVM_USER_MEM_SLOTS;
2670 		break;
2671 	case KVM_CAP_PV_MMU:	/* obsolete */
2672 		r = 0;
2673 		break;
2674 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2675 	case KVM_CAP_IOMMU:
2676 		r = iommu_present(&pci_bus_type);
2677 		break;
2678 #endif
2679 	case KVM_CAP_MCE:
2680 		r = KVM_MAX_MCE_BANKS;
2681 		break;
2682 	case KVM_CAP_XCRS:
2683 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2684 		break;
2685 	case KVM_CAP_TSC_CONTROL:
2686 		r = kvm_has_tsc_control;
2687 		break;
2688 	case KVM_CAP_X2APIC_API:
2689 		r = KVM_X2APIC_API_VALID_FLAGS;
2690 		break;
2691 	default:
2692 		r = 0;
2693 		break;
2694 	}
2695 	return r;
2696 
2697 }
2698 
2699 long kvm_arch_dev_ioctl(struct file *filp,
2700 			unsigned int ioctl, unsigned long arg)
2701 {
2702 	void __user *argp = (void __user *)arg;
2703 	long r;
2704 
2705 	switch (ioctl) {
2706 	case KVM_GET_MSR_INDEX_LIST: {
2707 		struct kvm_msr_list __user *user_msr_list = argp;
2708 		struct kvm_msr_list msr_list;
2709 		unsigned n;
2710 
2711 		r = -EFAULT;
2712 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2713 			goto out;
2714 		n = msr_list.nmsrs;
2715 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2716 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2717 			goto out;
2718 		r = -E2BIG;
2719 		if (n < msr_list.nmsrs)
2720 			goto out;
2721 		r = -EFAULT;
2722 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2723 				 num_msrs_to_save * sizeof(u32)))
2724 			goto out;
2725 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2726 				 &emulated_msrs,
2727 				 num_emulated_msrs * sizeof(u32)))
2728 			goto out;
2729 		r = 0;
2730 		break;
2731 	}
2732 	case KVM_GET_SUPPORTED_CPUID:
2733 	case KVM_GET_EMULATED_CPUID: {
2734 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2735 		struct kvm_cpuid2 cpuid;
2736 
2737 		r = -EFAULT;
2738 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2739 			goto out;
2740 
2741 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2742 					    ioctl);
2743 		if (r)
2744 			goto out;
2745 
2746 		r = -EFAULT;
2747 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2748 			goto out;
2749 		r = 0;
2750 		break;
2751 	}
2752 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2753 		r = -EFAULT;
2754 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2755 				 sizeof(kvm_mce_cap_supported)))
2756 			goto out;
2757 		r = 0;
2758 		break;
2759 	}
2760 	default:
2761 		r = -EINVAL;
2762 	}
2763 out:
2764 	return r;
2765 }
2766 
2767 static void wbinvd_ipi(void *garbage)
2768 {
2769 	wbinvd();
2770 }
2771 
2772 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2773 {
2774 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2775 }
2776 
2777 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2778 {
2779 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2780 }
2781 
2782 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2783 {
2784 	/* Address WBINVD may be executed by guest */
2785 	if (need_emulate_wbinvd(vcpu)) {
2786 		if (kvm_x86_ops->has_wbinvd_exit())
2787 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2788 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2789 			smp_call_function_single(vcpu->cpu,
2790 					wbinvd_ipi, NULL, 1);
2791 	}
2792 
2793 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2794 
2795 	/* Apply any externally detected TSC adjustments (due to suspend) */
2796 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2797 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2798 		vcpu->arch.tsc_offset_adjustment = 0;
2799 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2800 	}
2801 
2802 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2803 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2804 				rdtsc() - vcpu->arch.last_host_tsc;
2805 		if (tsc_delta < 0)
2806 			mark_tsc_unstable("KVM discovered backwards TSC");
2807 
2808 		if (check_tsc_unstable()) {
2809 			u64 offset = kvm_compute_tsc_offset(vcpu,
2810 						vcpu->arch.last_guest_tsc);
2811 			kvm_vcpu_write_tsc_offset(vcpu, offset);
2812 			vcpu->arch.tsc_catchup = 1;
2813 		}
2814 		if (kvm_lapic_hv_timer_in_use(vcpu) &&
2815 				kvm_x86_ops->set_hv_timer(vcpu,
2816 					kvm_get_lapic_target_expiration_tsc(vcpu)))
2817 			kvm_lapic_switch_to_sw_timer(vcpu);
2818 		/*
2819 		 * On a host with synchronized TSC, there is no need to update
2820 		 * kvmclock on vcpu->cpu migration
2821 		 */
2822 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2823 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2824 		if (vcpu->cpu != cpu)
2825 			kvm_migrate_timers(vcpu);
2826 		vcpu->cpu = cpu;
2827 	}
2828 
2829 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2830 }
2831 
2832 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2833 {
2834 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2835 		return;
2836 
2837 	vcpu->arch.st.steal.preempted = 1;
2838 
2839 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2840 			&vcpu->arch.st.steal.preempted,
2841 			offsetof(struct kvm_steal_time, preempted),
2842 			sizeof(vcpu->arch.st.steal.preempted));
2843 }
2844 
2845 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2846 {
2847 	kvm_steal_time_set_preempted(vcpu);
2848 	kvm_x86_ops->vcpu_put(vcpu);
2849 	kvm_put_guest_fpu(vcpu);
2850 	vcpu->arch.last_host_tsc = rdtsc();
2851 }
2852 
2853 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2854 				    struct kvm_lapic_state *s)
2855 {
2856 	if (vcpu->arch.apicv_active)
2857 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2858 
2859 	return kvm_apic_get_state(vcpu, s);
2860 }
2861 
2862 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2863 				    struct kvm_lapic_state *s)
2864 {
2865 	int r;
2866 
2867 	r = kvm_apic_set_state(vcpu, s);
2868 	if (r)
2869 		return r;
2870 	update_cr8_intercept(vcpu);
2871 
2872 	return 0;
2873 }
2874 
2875 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2876 {
2877 	return (!lapic_in_kernel(vcpu) ||
2878 		kvm_apic_accept_pic_intr(vcpu));
2879 }
2880 
2881 /*
2882  * if userspace requested an interrupt window, check that the
2883  * interrupt window is open.
2884  *
2885  * No need to exit to userspace if we already have an interrupt queued.
2886  */
2887 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2888 {
2889 	return kvm_arch_interrupt_allowed(vcpu) &&
2890 		!kvm_cpu_has_interrupt(vcpu) &&
2891 		!kvm_event_needs_reinjection(vcpu) &&
2892 		kvm_cpu_accept_dm_intr(vcpu);
2893 }
2894 
2895 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2896 				    struct kvm_interrupt *irq)
2897 {
2898 	if (irq->irq >= KVM_NR_INTERRUPTS)
2899 		return -EINVAL;
2900 
2901 	if (!irqchip_in_kernel(vcpu->kvm)) {
2902 		kvm_queue_interrupt(vcpu, irq->irq, false);
2903 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2904 		return 0;
2905 	}
2906 
2907 	/*
2908 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2909 	 * fail for in-kernel 8259.
2910 	 */
2911 	if (pic_in_kernel(vcpu->kvm))
2912 		return -ENXIO;
2913 
2914 	if (vcpu->arch.pending_external_vector != -1)
2915 		return -EEXIST;
2916 
2917 	vcpu->arch.pending_external_vector = irq->irq;
2918 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2919 	return 0;
2920 }
2921 
2922 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2923 {
2924 	kvm_inject_nmi(vcpu);
2925 
2926 	return 0;
2927 }
2928 
2929 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2930 {
2931 	kvm_make_request(KVM_REQ_SMI, vcpu);
2932 
2933 	return 0;
2934 }
2935 
2936 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2937 					   struct kvm_tpr_access_ctl *tac)
2938 {
2939 	if (tac->flags)
2940 		return -EINVAL;
2941 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2942 	return 0;
2943 }
2944 
2945 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2946 					u64 mcg_cap)
2947 {
2948 	int r;
2949 	unsigned bank_num = mcg_cap & 0xff, bank;
2950 
2951 	r = -EINVAL;
2952 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2953 		goto out;
2954 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2955 		goto out;
2956 	r = 0;
2957 	vcpu->arch.mcg_cap = mcg_cap;
2958 	/* Init IA32_MCG_CTL to all 1s */
2959 	if (mcg_cap & MCG_CTL_P)
2960 		vcpu->arch.mcg_ctl = ~(u64)0;
2961 	/* Init IA32_MCi_CTL to all 1s */
2962 	for (bank = 0; bank < bank_num; bank++)
2963 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2964 
2965 	if (kvm_x86_ops->setup_mce)
2966 		kvm_x86_ops->setup_mce(vcpu);
2967 out:
2968 	return r;
2969 }
2970 
2971 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2972 				      struct kvm_x86_mce *mce)
2973 {
2974 	u64 mcg_cap = vcpu->arch.mcg_cap;
2975 	unsigned bank_num = mcg_cap & 0xff;
2976 	u64 *banks = vcpu->arch.mce_banks;
2977 
2978 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2979 		return -EINVAL;
2980 	/*
2981 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2982 	 * reporting is disabled
2983 	 */
2984 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2985 	    vcpu->arch.mcg_ctl != ~(u64)0)
2986 		return 0;
2987 	banks += 4 * mce->bank;
2988 	/*
2989 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2990 	 * reporting is disabled for the bank
2991 	 */
2992 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2993 		return 0;
2994 	if (mce->status & MCI_STATUS_UC) {
2995 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2996 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2997 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2998 			return 0;
2999 		}
3000 		if (banks[1] & MCI_STATUS_VAL)
3001 			mce->status |= MCI_STATUS_OVER;
3002 		banks[2] = mce->addr;
3003 		banks[3] = mce->misc;
3004 		vcpu->arch.mcg_status = mce->mcg_status;
3005 		banks[1] = mce->status;
3006 		kvm_queue_exception(vcpu, MC_VECTOR);
3007 	} else if (!(banks[1] & MCI_STATUS_VAL)
3008 		   || !(banks[1] & MCI_STATUS_UC)) {
3009 		if (banks[1] & MCI_STATUS_VAL)
3010 			mce->status |= MCI_STATUS_OVER;
3011 		banks[2] = mce->addr;
3012 		banks[3] = mce->misc;
3013 		banks[1] = mce->status;
3014 	} else
3015 		banks[1] |= MCI_STATUS_OVER;
3016 	return 0;
3017 }
3018 
3019 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3020 					       struct kvm_vcpu_events *events)
3021 {
3022 	process_nmi(vcpu);
3023 	events->exception.injected =
3024 		vcpu->arch.exception.pending &&
3025 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3026 	events->exception.nr = vcpu->arch.exception.nr;
3027 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3028 	events->exception.pad = 0;
3029 	events->exception.error_code = vcpu->arch.exception.error_code;
3030 
3031 	events->interrupt.injected =
3032 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3033 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3034 	events->interrupt.soft = 0;
3035 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3036 
3037 	events->nmi.injected = vcpu->arch.nmi_injected;
3038 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3039 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3040 	events->nmi.pad = 0;
3041 
3042 	events->sipi_vector = 0; /* never valid when reporting to user space */
3043 
3044 	events->smi.smm = is_smm(vcpu);
3045 	events->smi.pending = vcpu->arch.smi_pending;
3046 	events->smi.smm_inside_nmi =
3047 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3048 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3049 
3050 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3051 			 | KVM_VCPUEVENT_VALID_SHADOW
3052 			 | KVM_VCPUEVENT_VALID_SMM);
3053 	memset(&events->reserved, 0, sizeof(events->reserved));
3054 }
3055 
3056 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3057 					      struct kvm_vcpu_events *events)
3058 {
3059 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3060 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3061 			      | KVM_VCPUEVENT_VALID_SHADOW
3062 			      | KVM_VCPUEVENT_VALID_SMM))
3063 		return -EINVAL;
3064 
3065 	if (events->exception.injected &&
3066 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3067 		return -EINVAL;
3068 
3069 	process_nmi(vcpu);
3070 	vcpu->arch.exception.pending = events->exception.injected;
3071 	vcpu->arch.exception.nr = events->exception.nr;
3072 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3073 	vcpu->arch.exception.error_code = events->exception.error_code;
3074 
3075 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3076 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3077 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3078 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3079 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3080 						  events->interrupt.shadow);
3081 
3082 	vcpu->arch.nmi_injected = events->nmi.injected;
3083 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3084 		vcpu->arch.nmi_pending = events->nmi.pending;
3085 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3086 
3087 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3088 	    lapic_in_kernel(vcpu))
3089 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3090 
3091 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3092 		if (events->smi.smm)
3093 			vcpu->arch.hflags |= HF_SMM_MASK;
3094 		else
3095 			vcpu->arch.hflags &= ~HF_SMM_MASK;
3096 		vcpu->arch.smi_pending = events->smi.pending;
3097 		if (events->smi.smm_inside_nmi)
3098 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3099 		else
3100 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3101 		if (lapic_in_kernel(vcpu)) {
3102 			if (events->smi.latched_init)
3103 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3104 			else
3105 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3106 		}
3107 	}
3108 
3109 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3110 
3111 	return 0;
3112 }
3113 
3114 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3115 					     struct kvm_debugregs *dbgregs)
3116 {
3117 	unsigned long val;
3118 
3119 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3120 	kvm_get_dr(vcpu, 6, &val);
3121 	dbgregs->dr6 = val;
3122 	dbgregs->dr7 = vcpu->arch.dr7;
3123 	dbgregs->flags = 0;
3124 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3125 }
3126 
3127 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3128 					    struct kvm_debugregs *dbgregs)
3129 {
3130 	if (dbgregs->flags)
3131 		return -EINVAL;
3132 
3133 	if (dbgregs->dr6 & ~0xffffffffull)
3134 		return -EINVAL;
3135 	if (dbgregs->dr7 & ~0xffffffffull)
3136 		return -EINVAL;
3137 
3138 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3139 	kvm_update_dr0123(vcpu);
3140 	vcpu->arch.dr6 = dbgregs->dr6;
3141 	kvm_update_dr6(vcpu);
3142 	vcpu->arch.dr7 = dbgregs->dr7;
3143 	kvm_update_dr7(vcpu);
3144 
3145 	return 0;
3146 }
3147 
3148 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3149 
3150 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3151 {
3152 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3153 	u64 xstate_bv = xsave->header.xfeatures;
3154 	u64 valid;
3155 
3156 	/*
3157 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3158 	 * leaves 0 and 1 in the loop below.
3159 	 */
3160 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3161 
3162 	/* Set XSTATE_BV */
3163 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3164 
3165 	/*
3166 	 * Copy each region from the possibly compacted offset to the
3167 	 * non-compacted offset.
3168 	 */
3169 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3170 	while (valid) {
3171 		u64 feature = valid & -valid;
3172 		int index = fls64(feature) - 1;
3173 		void *src = get_xsave_addr(xsave, feature);
3174 
3175 		if (src) {
3176 			u32 size, offset, ecx, edx;
3177 			cpuid_count(XSTATE_CPUID, index,
3178 				    &size, &offset, &ecx, &edx);
3179 			memcpy(dest + offset, src, size);
3180 		}
3181 
3182 		valid -= feature;
3183 	}
3184 }
3185 
3186 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3187 {
3188 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3189 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3190 	u64 valid;
3191 
3192 	/*
3193 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3194 	 * leaves 0 and 1 in the loop below.
3195 	 */
3196 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3197 
3198 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3199 	xsave->header.xfeatures = xstate_bv;
3200 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3201 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3202 
3203 	/*
3204 	 * Copy each region from the non-compacted offset to the
3205 	 * possibly compacted offset.
3206 	 */
3207 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3208 	while (valid) {
3209 		u64 feature = valid & -valid;
3210 		int index = fls64(feature) - 1;
3211 		void *dest = get_xsave_addr(xsave, feature);
3212 
3213 		if (dest) {
3214 			u32 size, offset, ecx, edx;
3215 			cpuid_count(XSTATE_CPUID, index,
3216 				    &size, &offset, &ecx, &edx);
3217 			memcpy(dest, src + offset, size);
3218 		}
3219 
3220 		valid -= feature;
3221 	}
3222 }
3223 
3224 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3225 					 struct kvm_xsave *guest_xsave)
3226 {
3227 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3228 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3229 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3230 	} else {
3231 		memcpy(guest_xsave->region,
3232 			&vcpu->arch.guest_fpu.state.fxsave,
3233 			sizeof(struct fxregs_state));
3234 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3235 			XFEATURE_MASK_FPSSE;
3236 	}
3237 }
3238 
3239 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3240 					struct kvm_xsave *guest_xsave)
3241 {
3242 	u64 xstate_bv =
3243 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3244 
3245 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3246 		/*
3247 		 * Here we allow setting states that are not present in
3248 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3249 		 * with old userspace.
3250 		 */
3251 		if (xstate_bv & ~kvm_supported_xcr0())
3252 			return -EINVAL;
3253 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3254 	} else {
3255 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3256 			return -EINVAL;
3257 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3258 			guest_xsave->region, sizeof(struct fxregs_state));
3259 	}
3260 	return 0;
3261 }
3262 
3263 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3264 					struct kvm_xcrs *guest_xcrs)
3265 {
3266 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3267 		guest_xcrs->nr_xcrs = 0;
3268 		return;
3269 	}
3270 
3271 	guest_xcrs->nr_xcrs = 1;
3272 	guest_xcrs->flags = 0;
3273 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3274 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3275 }
3276 
3277 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3278 				       struct kvm_xcrs *guest_xcrs)
3279 {
3280 	int i, r = 0;
3281 
3282 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3283 		return -EINVAL;
3284 
3285 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3286 		return -EINVAL;
3287 
3288 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3289 		/* Only support XCR0 currently */
3290 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3291 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3292 				guest_xcrs->xcrs[i].value);
3293 			break;
3294 		}
3295 	if (r)
3296 		r = -EINVAL;
3297 	return r;
3298 }
3299 
3300 /*
3301  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3302  * stopped by the hypervisor.  This function will be called from the host only.
3303  * EINVAL is returned when the host attempts to set the flag for a guest that
3304  * does not support pv clocks.
3305  */
3306 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3307 {
3308 	if (!vcpu->arch.pv_time_enabled)
3309 		return -EINVAL;
3310 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3311 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3312 	return 0;
3313 }
3314 
3315 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3316 				     struct kvm_enable_cap *cap)
3317 {
3318 	if (cap->flags)
3319 		return -EINVAL;
3320 
3321 	switch (cap->cap) {
3322 	case KVM_CAP_HYPERV_SYNIC:
3323 		return kvm_hv_activate_synic(vcpu);
3324 	default:
3325 		return -EINVAL;
3326 	}
3327 }
3328 
3329 long kvm_arch_vcpu_ioctl(struct file *filp,
3330 			 unsigned int ioctl, unsigned long arg)
3331 {
3332 	struct kvm_vcpu *vcpu = filp->private_data;
3333 	void __user *argp = (void __user *)arg;
3334 	int r;
3335 	union {
3336 		struct kvm_lapic_state *lapic;
3337 		struct kvm_xsave *xsave;
3338 		struct kvm_xcrs *xcrs;
3339 		void *buffer;
3340 	} u;
3341 
3342 	u.buffer = NULL;
3343 	switch (ioctl) {
3344 	case KVM_GET_LAPIC: {
3345 		r = -EINVAL;
3346 		if (!lapic_in_kernel(vcpu))
3347 			goto out;
3348 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3349 
3350 		r = -ENOMEM;
3351 		if (!u.lapic)
3352 			goto out;
3353 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3354 		if (r)
3355 			goto out;
3356 		r = -EFAULT;
3357 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3358 			goto out;
3359 		r = 0;
3360 		break;
3361 	}
3362 	case KVM_SET_LAPIC: {
3363 		r = -EINVAL;
3364 		if (!lapic_in_kernel(vcpu))
3365 			goto out;
3366 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3367 		if (IS_ERR(u.lapic))
3368 			return PTR_ERR(u.lapic);
3369 
3370 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3371 		break;
3372 	}
3373 	case KVM_INTERRUPT: {
3374 		struct kvm_interrupt irq;
3375 
3376 		r = -EFAULT;
3377 		if (copy_from_user(&irq, argp, sizeof irq))
3378 			goto out;
3379 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3380 		break;
3381 	}
3382 	case KVM_NMI: {
3383 		r = kvm_vcpu_ioctl_nmi(vcpu);
3384 		break;
3385 	}
3386 	case KVM_SMI: {
3387 		r = kvm_vcpu_ioctl_smi(vcpu);
3388 		break;
3389 	}
3390 	case KVM_SET_CPUID: {
3391 		struct kvm_cpuid __user *cpuid_arg = argp;
3392 		struct kvm_cpuid cpuid;
3393 
3394 		r = -EFAULT;
3395 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3396 			goto out;
3397 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3398 		break;
3399 	}
3400 	case KVM_SET_CPUID2: {
3401 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3402 		struct kvm_cpuid2 cpuid;
3403 
3404 		r = -EFAULT;
3405 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3406 			goto out;
3407 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3408 					      cpuid_arg->entries);
3409 		break;
3410 	}
3411 	case KVM_GET_CPUID2: {
3412 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3413 		struct kvm_cpuid2 cpuid;
3414 
3415 		r = -EFAULT;
3416 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3417 			goto out;
3418 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3419 					      cpuid_arg->entries);
3420 		if (r)
3421 			goto out;
3422 		r = -EFAULT;
3423 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3424 			goto out;
3425 		r = 0;
3426 		break;
3427 	}
3428 	case KVM_GET_MSRS:
3429 		r = msr_io(vcpu, argp, do_get_msr, 1);
3430 		break;
3431 	case KVM_SET_MSRS:
3432 		r = msr_io(vcpu, argp, do_set_msr, 0);
3433 		break;
3434 	case KVM_TPR_ACCESS_REPORTING: {
3435 		struct kvm_tpr_access_ctl tac;
3436 
3437 		r = -EFAULT;
3438 		if (copy_from_user(&tac, argp, sizeof tac))
3439 			goto out;
3440 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3441 		if (r)
3442 			goto out;
3443 		r = -EFAULT;
3444 		if (copy_to_user(argp, &tac, sizeof tac))
3445 			goto out;
3446 		r = 0;
3447 		break;
3448 	};
3449 	case KVM_SET_VAPIC_ADDR: {
3450 		struct kvm_vapic_addr va;
3451 		int idx;
3452 
3453 		r = -EINVAL;
3454 		if (!lapic_in_kernel(vcpu))
3455 			goto out;
3456 		r = -EFAULT;
3457 		if (copy_from_user(&va, argp, sizeof va))
3458 			goto out;
3459 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3460 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3461 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3462 		break;
3463 	}
3464 	case KVM_X86_SETUP_MCE: {
3465 		u64 mcg_cap;
3466 
3467 		r = -EFAULT;
3468 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3469 			goto out;
3470 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3471 		break;
3472 	}
3473 	case KVM_X86_SET_MCE: {
3474 		struct kvm_x86_mce mce;
3475 
3476 		r = -EFAULT;
3477 		if (copy_from_user(&mce, argp, sizeof mce))
3478 			goto out;
3479 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3480 		break;
3481 	}
3482 	case KVM_GET_VCPU_EVENTS: {
3483 		struct kvm_vcpu_events events;
3484 
3485 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3486 
3487 		r = -EFAULT;
3488 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3489 			break;
3490 		r = 0;
3491 		break;
3492 	}
3493 	case KVM_SET_VCPU_EVENTS: {
3494 		struct kvm_vcpu_events events;
3495 
3496 		r = -EFAULT;
3497 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3498 			break;
3499 
3500 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3501 		break;
3502 	}
3503 	case KVM_GET_DEBUGREGS: {
3504 		struct kvm_debugregs dbgregs;
3505 
3506 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3507 
3508 		r = -EFAULT;
3509 		if (copy_to_user(argp, &dbgregs,
3510 				 sizeof(struct kvm_debugregs)))
3511 			break;
3512 		r = 0;
3513 		break;
3514 	}
3515 	case KVM_SET_DEBUGREGS: {
3516 		struct kvm_debugregs dbgregs;
3517 
3518 		r = -EFAULT;
3519 		if (copy_from_user(&dbgregs, argp,
3520 				   sizeof(struct kvm_debugregs)))
3521 			break;
3522 
3523 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3524 		break;
3525 	}
3526 	case KVM_GET_XSAVE: {
3527 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3528 		r = -ENOMEM;
3529 		if (!u.xsave)
3530 			break;
3531 
3532 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3533 
3534 		r = -EFAULT;
3535 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3536 			break;
3537 		r = 0;
3538 		break;
3539 	}
3540 	case KVM_SET_XSAVE: {
3541 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3542 		if (IS_ERR(u.xsave))
3543 			return PTR_ERR(u.xsave);
3544 
3545 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3546 		break;
3547 	}
3548 	case KVM_GET_XCRS: {
3549 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3550 		r = -ENOMEM;
3551 		if (!u.xcrs)
3552 			break;
3553 
3554 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3555 
3556 		r = -EFAULT;
3557 		if (copy_to_user(argp, u.xcrs,
3558 				 sizeof(struct kvm_xcrs)))
3559 			break;
3560 		r = 0;
3561 		break;
3562 	}
3563 	case KVM_SET_XCRS: {
3564 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3565 		if (IS_ERR(u.xcrs))
3566 			return PTR_ERR(u.xcrs);
3567 
3568 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3569 		break;
3570 	}
3571 	case KVM_SET_TSC_KHZ: {
3572 		u32 user_tsc_khz;
3573 
3574 		r = -EINVAL;
3575 		user_tsc_khz = (u32)arg;
3576 
3577 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3578 			goto out;
3579 
3580 		if (user_tsc_khz == 0)
3581 			user_tsc_khz = tsc_khz;
3582 
3583 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3584 			r = 0;
3585 
3586 		goto out;
3587 	}
3588 	case KVM_GET_TSC_KHZ: {
3589 		r = vcpu->arch.virtual_tsc_khz;
3590 		goto out;
3591 	}
3592 	case KVM_KVMCLOCK_CTRL: {
3593 		r = kvm_set_guest_paused(vcpu);
3594 		goto out;
3595 	}
3596 	case KVM_ENABLE_CAP: {
3597 		struct kvm_enable_cap cap;
3598 
3599 		r = -EFAULT;
3600 		if (copy_from_user(&cap, argp, sizeof(cap)))
3601 			goto out;
3602 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3603 		break;
3604 	}
3605 	default:
3606 		r = -EINVAL;
3607 	}
3608 out:
3609 	kfree(u.buffer);
3610 	return r;
3611 }
3612 
3613 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3614 {
3615 	return VM_FAULT_SIGBUS;
3616 }
3617 
3618 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3619 {
3620 	int ret;
3621 
3622 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3623 		return -EINVAL;
3624 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3625 	return ret;
3626 }
3627 
3628 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3629 					      u64 ident_addr)
3630 {
3631 	kvm->arch.ept_identity_map_addr = ident_addr;
3632 	return 0;
3633 }
3634 
3635 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3636 					  u32 kvm_nr_mmu_pages)
3637 {
3638 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3639 		return -EINVAL;
3640 
3641 	mutex_lock(&kvm->slots_lock);
3642 
3643 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3644 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3645 
3646 	mutex_unlock(&kvm->slots_lock);
3647 	return 0;
3648 }
3649 
3650 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3651 {
3652 	return kvm->arch.n_max_mmu_pages;
3653 }
3654 
3655 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3656 {
3657 	int r;
3658 
3659 	r = 0;
3660 	switch (chip->chip_id) {
3661 	case KVM_IRQCHIP_PIC_MASTER:
3662 		memcpy(&chip->chip.pic,
3663 			&pic_irqchip(kvm)->pics[0],
3664 			sizeof(struct kvm_pic_state));
3665 		break;
3666 	case KVM_IRQCHIP_PIC_SLAVE:
3667 		memcpy(&chip->chip.pic,
3668 			&pic_irqchip(kvm)->pics[1],
3669 			sizeof(struct kvm_pic_state));
3670 		break;
3671 	case KVM_IRQCHIP_IOAPIC:
3672 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3673 		break;
3674 	default:
3675 		r = -EINVAL;
3676 		break;
3677 	}
3678 	return r;
3679 }
3680 
3681 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3682 {
3683 	int r;
3684 
3685 	r = 0;
3686 	switch (chip->chip_id) {
3687 	case KVM_IRQCHIP_PIC_MASTER:
3688 		spin_lock(&pic_irqchip(kvm)->lock);
3689 		memcpy(&pic_irqchip(kvm)->pics[0],
3690 			&chip->chip.pic,
3691 			sizeof(struct kvm_pic_state));
3692 		spin_unlock(&pic_irqchip(kvm)->lock);
3693 		break;
3694 	case KVM_IRQCHIP_PIC_SLAVE:
3695 		spin_lock(&pic_irqchip(kvm)->lock);
3696 		memcpy(&pic_irqchip(kvm)->pics[1],
3697 			&chip->chip.pic,
3698 			sizeof(struct kvm_pic_state));
3699 		spin_unlock(&pic_irqchip(kvm)->lock);
3700 		break;
3701 	case KVM_IRQCHIP_IOAPIC:
3702 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3703 		break;
3704 	default:
3705 		r = -EINVAL;
3706 		break;
3707 	}
3708 	kvm_pic_update_irq(pic_irqchip(kvm));
3709 	return r;
3710 }
3711 
3712 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3713 {
3714 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3715 
3716 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3717 
3718 	mutex_lock(&kps->lock);
3719 	memcpy(ps, &kps->channels, sizeof(*ps));
3720 	mutex_unlock(&kps->lock);
3721 	return 0;
3722 }
3723 
3724 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3725 {
3726 	int i;
3727 	struct kvm_pit *pit = kvm->arch.vpit;
3728 
3729 	mutex_lock(&pit->pit_state.lock);
3730 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3731 	for (i = 0; i < 3; i++)
3732 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3733 	mutex_unlock(&pit->pit_state.lock);
3734 	return 0;
3735 }
3736 
3737 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3738 {
3739 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3740 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3741 		sizeof(ps->channels));
3742 	ps->flags = kvm->arch.vpit->pit_state.flags;
3743 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3744 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3745 	return 0;
3746 }
3747 
3748 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3749 {
3750 	int start = 0;
3751 	int i;
3752 	u32 prev_legacy, cur_legacy;
3753 	struct kvm_pit *pit = kvm->arch.vpit;
3754 
3755 	mutex_lock(&pit->pit_state.lock);
3756 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3757 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3758 	if (!prev_legacy && cur_legacy)
3759 		start = 1;
3760 	memcpy(&pit->pit_state.channels, &ps->channels,
3761 	       sizeof(pit->pit_state.channels));
3762 	pit->pit_state.flags = ps->flags;
3763 	for (i = 0; i < 3; i++)
3764 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3765 				   start && i == 0);
3766 	mutex_unlock(&pit->pit_state.lock);
3767 	return 0;
3768 }
3769 
3770 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3771 				 struct kvm_reinject_control *control)
3772 {
3773 	struct kvm_pit *pit = kvm->arch.vpit;
3774 
3775 	if (!pit)
3776 		return -ENXIO;
3777 
3778 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3779 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3780 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3781 	 */
3782 	mutex_lock(&pit->pit_state.lock);
3783 	kvm_pit_set_reinject(pit, control->pit_reinject);
3784 	mutex_unlock(&pit->pit_state.lock);
3785 
3786 	return 0;
3787 }
3788 
3789 /**
3790  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3791  * @kvm: kvm instance
3792  * @log: slot id and address to which we copy the log
3793  *
3794  * Steps 1-4 below provide general overview of dirty page logging. See
3795  * kvm_get_dirty_log_protect() function description for additional details.
3796  *
3797  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3798  * always flush the TLB (step 4) even if previous step failed  and the dirty
3799  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3800  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3801  * writes will be marked dirty for next log read.
3802  *
3803  *   1. Take a snapshot of the bit and clear it if needed.
3804  *   2. Write protect the corresponding page.
3805  *   3. Copy the snapshot to the userspace.
3806  *   4. Flush TLB's if needed.
3807  */
3808 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3809 {
3810 	bool is_dirty = false;
3811 	int r;
3812 
3813 	mutex_lock(&kvm->slots_lock);
3814 
3815 	/*
3816 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3817 	 */
3818 	if (kvm_x86_ops->flush_log_dirty)
3819 		kvm_x86_ops->flush_log_dirty(kvm);
3820 
3821 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3822 
3823 	/*
3824 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3825 	 * kvm_mmu_slot_remove_write_access().
3826 	 */
3827 	lockdep_assert_held(&kvm->slots_lock);
3828 	if (is_dirty)
3829 		kvm_flush_remote_tlbs(kvm);
3830 
3831 	mutex_unlock(&kvm->slots_lock);
3832 	return r;
3833 }
3834 
3835 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3836 			bool line_status)
3837 {
3838 	if (!irqchip_in_kernel(kvm))
3839 		return -ENXIO;
3840 
3841 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3842 					irq_event->irq, irq_event->level,
3843 					line_status);
3844 	return 0;
3845 }
3846 
3847 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3848 				   struct kvm_enable_cap *cap)
3849 {
3850 	int r;
3851 
3852 	if (cap->flags)
3853 		return -EINVAL;
3854 
3855 	switch (cap->cap) {
3856 	case KVM_CAP_DISABLE_QUIRKS:
3857 		kvm->arch.disabled_quirks = cap->args[0];
3858 		r = 0;
3859 		break;
3860 	case KVM_CAP_SPLIT_IRQCHIP: {
3861 		mutex_lock(&kvm->lock);
3862 		r = -EINVAL;
3863 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3864 			goto split_irqchip_unlock;
3865 		r = -EEXIST;
3866 		if (irqchip_in_kernel(kvm))
3867 			goto split_irqchip_unlock;
3868 		if (kvm->created_vcpus)
3869 			goto split_irqchip_unlock;
3870 		r = kvm_setup_empty_irq_routing(kvm);
3871 		if (r)
3872 			goto split_irqchip_unlock;
3873 		/* Pairs with irqchip_in_kernel. */
3874 		smp_wmb();
3875 		kvm->arch.irqchip_split = true;
3876 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3877 		r = 0;
3878 split_irqchip_unlock:
3879 		mutex_unlock(&kvm->lock);
3880 		break;
3881 	}
3882 	case KVM_CAP_X2APIC_API:
3883 		r = -EINVAL;
3884 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3885 			break;
3886 
3887 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3888 			kvm->arch.x2apic_format = true;
3889 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3890 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
3891 
3892 		r = 0;
3893 		break;
3894 	default:
3895 		r = -EINVAL;
3896 		break;
3897 	}
3898 	return r;
3899 }
3900 
3901 long kvm_arch_vm_ioctl(struct file *filp,
3902 		       unsigned int ioctl, unsigned long arg)
3903 {
3904 	struct kvm *kvm = filp->private_data;
3905 	void __user *argp = (void __user *)arg;
3906 	int r = -ENOTTY;
3907 	/*
3908 	 * This union makes it completely explicit to gcc-3.x
3909 	 * that these two variables' stack usage should be
3910 	 * combined, not added together.
3911 	 */
3912 	union {
3913 		struct kvm_pit_state ps;
3914 		struct kvm_pit_state2 ps2;
3915 		struct kvm_pit_config pit_config;
3916 	} u;
3917 
3918 	switch (ioctl) {
3919 	case KVM_SET_TSS_ADDR:
3920 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3921 		break;
3922 	case KVM_SET_IDENTITY_MAP_ADDR: {
3923 		u64 ident_addr;
3924 
3925 		r = -EFAULT;
3926 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3927 			goto out;
3928 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3929 		break;
3930 	}
3931 	case KVM_SET_NR_MMU_PAGES:
3932 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3933 		break;
3934 	case KVM_GET_NR_MMU_PAGES:
3935 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3936 		break;
3937 	case KVM_CREATE_IRQCHIP: {
3938 		struct kvm_pic *vpic;
3939 
3940 		mutex_lock(&kvm->lock);
3941 		r = -EEXIST;
3942 		if (kvm->arch.vpic)
3943 			goto create_irqchip_unlock;
3944 		r = -EINVAL;
3945 		if (kvm->created_vcpus)
3946 			goto create_irqchip_unlock;
3947 		r = -ENOMEM;
3948 		vpic = kvm_create_pic(kvm);
3949 		if (vpic) {
3950 			r = kvm_ioapic_init(kvm);
3951 			if (r) {
3952 				mutex_lock(&kvm->slots_lock);
3953 				kvm_destroy_pic(vpic);
3954 				mutex_unlock(&kvm->slots_lock);
3955 				goto create_irqchip_unlock;
3956 			}
3957 		} else
3958 			goto create_irqchip_unlock;
3959 		r = kvm_setup_default_irq_routing(kvm);
3960 		if (r) {
3961 			mutex_lock(&kvm->slots_lock);
3962 			mutex_lock(&kvm->irq_lock);
3963 			kvm_ioapic_destroy(kvm);
3964 			kvm_destroy_pic(vpic);
3965 			mutex_unlock(&kvm->irq_lock);
3966 			mutex_unlock(&kvm->slots_lock);
3967 			goto create_irqchip_unlock;
3968 		}
3969 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3970 		smp_wmb();
3971 		kvm->arch.vpic = vpic;
3972 	create_irqchip_unlock:
3973 		mutex_unlock(&kvm->lock);
3974 		break;
3975 	}
3976 	case KVM_CREATE_PIT:
3977 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3978 		goto create_pit;
3979 	case KVM_CREATE_PIT2:
3980 		r = -EFAULT;
3981 		if (copy_from_user(&u.pit_config, argp,
3982 				   sizeof(struct kvm_pit_config)))
3983 			goto out;
3984 	create_pit:
3985 		mutex_lock(&kvm->lock);
3986 		r = -EEXIST;
3987 		if (kvm->arch.vpit)
3988 			goto create_pit_unlock;
3989 		r = -ENOMEM;
3990 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3991 		if (kvm->arch.vpit)
3992 			r = 0;
3993 	create_pit_unlock:
3994 		mutex_unlock(&kvm->lock);
3995 		break;
3996 	case KVM_GET_IRQCHIP: {
3997 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3998 		struct kvm_irqchip *chip;
3999 
4000 		chip = memdup_user(argp, sizeof(*chip));
4001 		if (IS_ERR(chip)) {
4002 			r = PTR_ERR(chip);
4003 			goto out;
4004 		}
4005 
4006 		r = -ENXIO;
4007 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4008 			goto get_irqchip_out;
4009 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4010 		if (r)
4011 			goto get_irqchip_out;
4012 		r = -EFAULT;
4013 		if (copy_to_user(argp, chip, sizeof *chip))
4014 			goto get_irqchip_out;
4015 		r = 0;
4016 	get_irqchip_out:
4017 		kfree(chip);
4018 		break;
4019 	}
4020 	case KVM_SET_IRQCHIP: {
4021 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4022 		struct kvm_irqchip *chip;
4023 
4024 		chip = memdup_user(argp, sizeof(*chip));
4025 		if (IS_ERR(chip)) {
4026 			r = PTR_ERR(chip);
4027 			goto out;
4028 		}
4029 
4030 		r = -ENXIO;
4031 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4032 			goto set_irqchip_out;
4033 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4034 		if (r)
4035 			goto set_irqchip_out;
4036 		r = 0;
4037 	set_irqchip_out:
4038 		kfree(chip);
4039 		break;
4040 	}
4041 	case KVM_GET_PIT: {
4042 		r = -EFAULT;
4043 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4044 			goto out;
4045 		r = -ENXIO;
4046 		if (!kvm->arch.vpit)
4047 			goto out;
4048 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4049 		if (r)
4050 			goto out;
4051 		r = -EFAULT;
4052 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4053 			goto out;
4054 		r = 0;
4055 		break;
4056 	}
4057 	case KVM_SET_PIT: {
4058 		r = -EFAULT;
4059 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4060 			goto out;
4061 		r = -ENXIO;
4062 		if (!kvm->arch.vpit)
4063 			goto out;
4064 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4065 		break;
4066 	}
4067 	case KVM_GET_PIT2: {
4068 		r = -ENXIO;
4069 		if (!kvm->arch.vpit)
4070 			goto out;
4071 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4072 		if (r)
4073 			goto out;
4074 		r = -EFAULT;
4075 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4076 			goto out;
4077 		r = 0;
4078 		break;
4079 	}
4080 	case KVM_SET_PIT2: {
4081 		r = -EFAULT;
4082 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4083 			goto out;
4084 		r = -ENXIO;
4085 		if (!kvm->arch.vpit)
4086 			goto out;
4087 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4088 		break;
4089 	}
4090 	case KVM_REINJECT_CONTROL: {
4091 		struct kvm_reinject_control control;
4092 		r =  -EFAULT;
4093 		if (copy_from_user(&control, argp, sizeof(control)))
4094 			goto out;
4095 		r = kvm_vm_ioctl_reinject(kvm, &control);
4096 		break;
4097 	}
4098 	case KVM_SET_BOOT_CPU_ID:
4099 		r = 0;
4100 		mutex_lock(&kvm->lock);
4101 		if (kvm->created_vcpus)
4102 			r = -EBUSY;
4103 		else
4104 			kvm->arch.bsp_vcpu_id = arg;
4105 		mutex_unlock(&kvm->lock);
4106 		break;
4107 	case KVM_XEN_HVM_CONFIG: {
4108 		r = -EFAULT;
4109 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4110 				   sizeof(struct kvm_xen_hvm_config)))
4111 			goto out;
4112 		r = -EINVAL;
4113 		if (kvm->arch.xen_hvm_config.flags)
4114 			goto out;
4115 		r = 0;
4116 		break;
4117 	}
4118 	case KVM_SET_CLOCK: {
4119 		struct kvm_clock_data user_ns;
4120 		u64 now_ns;
4121 
4122 		r = -EFAULT;
4123 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4124 			goto out;
4125 
4126 		r = -EINVAL;
4127 		if (user_ns.flags)
4128 			goto out;
4129 
4130 		r = 0;
4131 		local_irq_disable();
4132 		now_ns = __get_kvmclock_ns(kvm);
4133 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4134 		local_irq_enable();
4135 		kvm_gen_update_masterclock(kvm);
4136 		break;
4137 	}
4138 	case KVM_GET_CLOCK: {
4139 		struct kvm_clock_data user_ns;
4140 		u64 now_ns;
4141 
4142 		local_irq_disable();
4143 		now_ns = __get_kvmclock_ns(kvm);
4144 		user_ns.clock = now_ns;
4145 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4146 		local_irq_enable();
4147 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4148 
4149 		r = -EFAULT;
4150 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4151 			goto out;
4152 		r = 0;
4153 		break;
4154 	}
4155 	case KVM_ENABLE_CAP: {
4156 		struct kvm_enable_cap cap;
4157 
4158 		r = -EFAULT;
4159 		if (copy_from_user(&cap, argp, sizeof(cap)))
4160 			goto out;
4161 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4162 		break;
4163 	}
4164 	default:
4165 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4166 	}
4167 out:
4168 	return r;
4169 }
4170 
4171 static void kvm_init_msr_list(void)
4172 {
4173 	u32 dummy[2];
4174 	unsigned i, j;
4175 
4176 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4177 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4178 			continue;
4179 
4180 		/*
4181 		 * Even MSRs that are valid in the host may not be exposed
4182 		 * to the guests in some cases.
4183 		 */
4184 		switch (msrs_to_save[i]) {
4185 		case MSR_IA32_BNDCFGS:
4186 			if (!kvm_x86_ops->mpx_supported())
4187 				continue;
4188 			break;
4189 		case MSR_TSC_AUX:
4190 			if (!kvm_x86_ops->rdtscp_supported())
4191 				continue;
4192 			break;
4193 		default:
4194 			break;
4195 		}
4196 
4197 		if (j < i)
4198 			msrs_to_save[j] = msrs_to_save[i];
4199 		j++;
4200 	}
4201 	num_msrs_to_save = j;
4202 
4203 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4204 		switch (emulated_msrs[i]) {
4205 		case MSR_IA32_SMBASE:
4206 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4207 				continue;
4208 			break;
4209 		default:
4210 			break;
4211 		}
4212 
4213 		if (j < i)
4214 			emulated_msrs[j] = emulated_msrs[i];
4215 		j++;
4216 	}
4217 	num_emulated_msrs = j;
4218 }
4219 
4220 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4221 			   const void *v)
4222 {
4223 	int handled = 0;
4224 	int n;
4225 
4226 	do {
4227 		n = min(len, 8);
4228 		if (!(lapic_in_kernel(vcpu) &&
4229 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4230 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4231 			break;
4232 		handled += n;
4233 		addr += n;
4234 		len -= n;
4235 		v += n;
4236 	} while (len);
4237 
4238 	return handled;
4239 }
4240 
4241 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4242 {
4243 	int handled = 0;
4244 	int n;
4245 
4246 	do {
4247 		n = min(len, 8);
4248 		if (!(lapic_in_kernel(vcpu) &&
4249 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4250 					 addr, n, v))
4251 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4252 			break;
4253 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4254 		handled += n;
4255 		addr += n;
4256 		len -= n;
4257 		v += n;
4258 	} while (len);
4259 
4260 	return handled;
4261 }
4262 
4263 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4264 			struct kvm_segment *var, int seg)
4265 {
4266 	kvm_x86_ops->set_segment(vcpu, var, seg);
4267 }
4268 
4269 void kvm_get_segment(struct kvm_vcpu *vcpu,
4270 		     struct kvm_segment *var, int seg)
4271 {
4272 	kvm_x86_ops->get_segment(vcpu, var, seg);
4273 }
4274 
4275 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4276 			   struct x86_exception *exception)
4277 {
4278 	gpa_t t_gpa;
4279 
4280 	BUG_ON(!mmu_is_nested(vcpu));
4281 
4282 	/* NPT walks are always user-walks */
4283 	access |= PFERR_USER_MASK;
4284 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4285 
4286 	return t_gpa;
4287 }
4288 
4289 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4290 			      struct x86_exception *exception)
4291 {
4292 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4293 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4294 }
4295 
4296  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4297 				struct x86_exception *exception)
4298 {
4299 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4300 	access |= PFERR_FETCH_MASK;
4301 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4302 }
4303 
4304 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4305 			       struct x86_exception *exception)
4306 {
4307 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4308 	access |= PFERR_WRITE_MASK;
4309 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4310 }
4311 
4312 /* uses this to access any guest's mapped memory without checking CPL */
4313 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4314 				struct x86_exception *exception)
4315 {
4316 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4317 }
4318 
4319 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4320 				      struct kvm_vcpu *vcpu, u32 access,
4321 				      struct x86_exception *exception)
4322 {
4323 	void *data = val;
4324 	int r = X86EMUL_CONTINUE;
4325 
4326 	while (bytes) {
4327 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4328 							    exception);
4329 		unsigned offset = addr & (PAGE_SIZE-1);
4330 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4331 		int ret;
4332 
4333 		if (gpa == UNMAPPED_GVA)
4334 			return X86EMUL_PROPAGATE_FAULT;
4335 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4336 					       offset, toread);
4337 		if (ret < 0) {
4338 			r = X86EMUL_IO_NEEDED;
4339 			goto out;
4340 		}
4341 
4342 		bytes -= toread;
4343 		data += toread;
4344 		addr += toread;
4345 	}
4346 out:
4347 	return r;
4348 }
4349 
4350 /* used for instruction fetching */
4351 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4352 				gva_t addr, void *val, unsigned int bytes,
4353 				struct x86_exception *exception)
4354 {
4355 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4356 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4357 	unsigned offset;
4358 	int ret;
4359 
4360 	/* Inline kvm_read_guest_virt_helper for speed.  */
4361 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4362 						    exception);
4363 	if (unlikely(gpa == UNMAPPED_GVA))
4364 		return X86EMUL_PROPAGATE_FAULT;
4365 
4366 	offset = addr & (PAGE_SIZE-1);
4367 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4368 		bytes = (unsigned)PAGE_SIZE - offset;
4369 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4370 				       offset, bytes);
4371 	if (unlikely(ret < 0))
4372 		return X86EMUL_IO_NEEDED;
4373 
4374 	return X86EMUL_CONTINUE;
4375 }
4376 
4377 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4378 			       gva_t addr, void *val, unsigned int bytes,
4379 			       struct x86_exception *exception)
4380 {
4381 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4382 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4383 
4384 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4385 					  exception);
4386 }
4387 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4388 
4389 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4390 				      gva_t addr, void *val, unsigned int bytes,
4391 				      struct x86_exception *exception)
4392 {
4393 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4394 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4395 }
4396 
4397 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4398 		unsigned long addr, void *val, unsigned int bytes)
4399 {
4400 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4401 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4402 
4403 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4404 }
4405 
4406 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4407 				       gva_t addr, void *val,
4408 				       unsigned int bytes,
4409 				       struct x86_exception *exception)
4410 {
4411 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4412 	void *data = val;
4413 	int r = X86EMUL_CONTINUE;
4414 
4415 	while (bytes) {
4416 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4417 							     PFERR_WRITE_MASK,
4418 							     exception);
4419 		unsigned offset = addr & (PAGE_SIZE-1);
4420 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4421 		int ret;
4422 
4423 		if (gpa == UNMAPPED_GVA)
4424 			return X86EMUL_PROPAGATE_FAULT;
4425 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4426 		if (ret < 0) {
4427 			r = X86EMUL_IO_NEEDED;
4428 			goto out;
4429 		}
4430 
4431 		bytes -= towrite;
4432 		data += towrite;
4433 		addr += towrite;
4434 	}
4435 out:
4436 	return r;
4437 }
4438 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4439 
4440 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4441 				gpa_t *gpa, struct x86_exception *exception,
4442 				bool write)
4443 {
4444 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4445 		| (write ? PFERR_WRITE_MASK : 0);
4446 
4447 	/*
4448 	 * currently PKRU is only applied to ept enabled guest so
4449 	 * there is no pkey in EPT page table for L1 guest or EPT
4450 	 * shadow page table for L2 guest.
4451 	 */
4452 	if (vcpu_match_mmio_gva(vcpu, gva)
4453 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4454 				 vcpu->arch.access, 0, access)) {
4455 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4456 					(gva & (PAGE_SIZE - 1));
4457 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4458 		return 1;
4459 	}
4460 
4461 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4462 
4463 	if (*gpa == UNMAPPED_GVA)
4464 		return -1;
4465 
4466 	/* For APIC access vmexit */
4467 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4468 		return 1;
4469 
4470 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4471 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4472 		return 1;
4473 	}
4474 
4475 	return 0;
4476 }
4477 
4478 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4479 			const void *val, int bytes)
4480 {
4481 	int ret;
4482 
4483 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4484 	if (ret < 0)
4485 		return 0;
4486 	kvm_page_track_write(vcpu, gpa, val, bytes);
4487 	return 1;
4488 }
4489 
4490 struct read_write_emulator_ops {
4491 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4492 				  int bytes);
4493 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4494 				  void *val, int bytes);
4495 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4496 			       int bytes, void *val);
4497 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4498 				    void *val, int bytes);
4499 	bool write;
4500 };
4501 
4502 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4503 {
4504 	if (vcpu->mmio_read_completed) {
4505 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4506 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4507 		vcpu->mmio_read_completed = 0;
4508 		return 1;
4509 	}
4510 
4511 	return 0;
4512 }
4513 
4514 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4515 			void *val, int bytes)
4516 {
4517 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4518 }
4519 
4520 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4521 			 void *val, int bytes)
4522 {
4523 	return emulator_write_phys(vcpu, gpa, val, bytes);
4524 }
4525 
4526 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4527 {
4528 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4529 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4530 }
4531 
4532 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4533 			  void *val, int bytes)
4534 {
4535 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4536 	return X86EMUL_IO_NEEDED;
4537 }
4538 
4539 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4540 			   void *val, int bytes)
4541 {
4542 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4543 
4544 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4545 	return X86EMUL_CONTINUE;
4546 }
4547 
4548 static const struct read_write_emulator_ops read_emultor = {
4549 	.read_write_prepare = read_prepare,
4550 	.read_write_emulate = read_emulate,
4551 	.read_write_mmio = vcpu_mmio_read,
4552 	.read_write_exit_mmio = read_exit_mmio,
4553 };
4554 
4555 static const struct read_write_emulator_ops write_emultor = {
4556 	.read_write_emulate = write_emulate,
4557 	.read_write_mmio = write_mmio,
4558 	.read_write_exit_mmio = write_exit_mmio,
4559 	.write = true,
4560 };
4561 
4562 static int emulator_read_write_onepage(unsigned long addr, void *val,
4563 				       unsigned int bytes,
4564 				       struct x86_exception *exception,
4565 				       struct kvm_vcpu *vcpu,
4566 				       const struct read_write_emulator_ops *ops)
4567 {
4568 	gpa_t gpa;
4569 	int handled, ret;
4570 	bool write = ops->write;
4571 	struct kvm_mmio_fragment *frag;
4572 
4573 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4574 
4575 	if (ret < 0)
4576 		return X86EMUL_PROPAGATE_FAULT;
4577 
4578 	/* For APIC access vmexit */
4579 	if (ret)
4580 		goto mmio;
4581 
4582 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4583 		return X86EMUL_CONTINUE;
4584 
4585 mmio:
4586 	/*
4587 	 * Is this MMIO handled locally?
4588 	 */
4589 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4590 	if (handled == bytes)
4591 		return X86EMUL_CONTINUE;
4592 
4593 	gpa += handled;
4594 	bytes -= handled;
4595 	val += handled;
4596 
4597 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4598 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4599 	frag->gpa = gpa;
4600 	frag->data = val;
4601 	frag->len = bytes;
4602 	return X86EMUL_CONTINUE;
4603 }
4604 
4605 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4606 			unsigned long addr,
4607 			void *val, unsigned int bytes,
4608 			struct x86_exception *exception,
4609 			const struct read_write_emulator_ops *ops)
4610 {
4611 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4612 	gpa_t gpa;
4613 	int rc;
4614 
4615 	if (ops->read_write_prepare &&
4616 		  ops->read_write_prepare(vcpu, val, bytes))
4617 		return X86EMUL_CONTINUE;
4618 
4619 	vcpu->mmio_nr_fragments = 0;
4620 
4621 	/* Crossing a page boundary? */
4622 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4623 		int now;
4624 
4625 		now = -addr & ~PAGE_MASK;
4626 		rc = emulator_read_write_onepage(addr, val, now, exception,
4627 						 vcpu, ops);
4628 
4629 		if (rc != X86EMUL_CONTINUE)
4630 			return rc;
4631 		addr += now;
4632 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4633 			addr = (u32)addr;
4634 		val += now;
4635 		bytes -= now;
4636 	}
4637 
4638 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4639 					 vcpu, ops);
4640 	if (rc != X86EMUL_CONTINUE)
4641 		return rc;
4642 
4643 	if (!vcpu->mmio_nr_fragments)
4644 		return rc;
4645 
4646 	gpa = vcpu->mmio_fragments[0].gpa;
4647 
4648 	vcpu->mmio_needed = 1;
4649 	vcpu->mmio_cur_fragment = 0;
4650 
4651 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4652 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4653 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4654 	vcpu->run->mmio.phys_addr = gpa;
4655 
4656 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4657 }
4658 
4659 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4660 				  unsigned long addr,
4661 				  void *val,
4662 				  unsigned int bytes,
4663 				  struct x86_exception *exception)
4664 {
4665 	return emulator_read_write(ctxt, addr, val, bytes,
4666 				   exception, &read_emultor);
4667 }
4668 
4669 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4670 			    unsigned long addr,
4671 			    const void *val,
4672 			    unsigned int bytes,
4673 			    struct x86_exception *exception)
4674 {
4675 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4676 				   exception, &write_emultor);
4677 }
4678 
4679 #define CMPXCHG_TYPE(t, ptr, old, new) \
4680 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4681 
4682 #ifdef CONFIG_X86_64
4683 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4684 #else
4685 #  define CMPXCHG64(ptr, old, new) \
4686 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4687 #endif
4688 
4689 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4690 				     unsigned long addr,
4691 				     const void *old,
4692 				     const void *new,
4693 				     unsigned int bytes,
4694 				     struct x86_exception *exception)
4695 {
4696 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4697 	gpa_t gpa;
4698 	struct page *page;
4699 	char *kaddr;
4700 	bool exchanged;
4701 
4702 	/* guests cmpxchg8b have to be emulated atomically */
4703 	if (bytes > 8 || (bytes & (bytes - 1)))
4704 		goto emul_write;
4705 
4706 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4707 
4708 	if (gpa == UNMAPPED_GVA ||
4709 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4710 		goto emul_write;
4711 
4712 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4713 		goto emul_write;
4714 
4715 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4716 	if (is_error_page(page))
4717 		goto emul_write;
4718 
4719 	kaddr = kmap_atomic(page);
4720 	kaddr += offset_in_page(gpa);
4721 	switch (bytes) {
4722 	case 1:
4723 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4724 		break;
4725 	case 2:
4726 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4727 		break;
4728 	case 4:
4729 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4730 		break;
4731 	case 8:
4732 		exchanged = CMPXCHG64(kaddr, old, new);
4733 		break;
4734 	default:
4735 		BUG();
4736 	}
4737 	kunmap_atomic(kaddr);
4738 	kvm_release_page_dirty(page);
4739 
4740 	if (!exchanged)
4741 		return X86EMUL_CMPXCHG_FAILED;
4742 
4743 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4744 	kvm_page_track_write(vcpu, gpa, new, bytes);
4745 
4746 	return X86EMUL_CONTINUE;
4747 
4748 emul_write:
4749 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4750 
4751 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4752 }
4753 
4754 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4755 {
4756 	/* TODO: String I/O for in kernel device */
4757 	int r;
4758 
4759 	if (vcpu->arch.pio.in)
4760 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4761 				    vcpu->arch.pio.size, pd);
4762 	else
4763 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4764 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4765 				     pd);
4766 	return r;
4767 }
4768 
4769 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4770 			       unsigned short port, void *val,
4771 			       unsigned int count, bool in)
4772 {
4773 	vcpu->arch.pio.port = port;
4774 	vcpu->arch.pio.in = in;
4775 	vcpu->arch.pio.count  = count;
4776 	vcpu->arch.pio.size = size;
4777 
4778 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4779 		vcpu->arch.pio.count = 0;
4780 		return 1;
4781 	}
4782 
4783 	vcpu->run->exit_reason = KVM_EXIT_IO;
4784 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4785 	vcpu->run->io.size = size;
4786 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4787 	vcpu->run->io.count = count;
4788 	vcpu->run->io.port = port;
4789 
4790 	return 0;
4791 }
4792 
4793 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4794 				    int size, unsigned short port, void *val,
4795 				    unsigned int count)
4796 {
4797 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798 	int ret;
4799 
4800 	if (vcpu->arch.pio.count)
4801 		goto data_avail;
4802 
4803 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4804 	if (ret) {
4805 data_avail:
4806 		memcpy(val, vcpu->arch.pio_data, size * count);
4807 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4808 		vcpu->arch.pio.count = 0;
4809 		return 1;
4810 	}
4811 
4812 	return 0;
4813 }
4814 
4815 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4816 				     int size, unsigned short port,
4817 				     const void *val, unsigned int count)
4818 {
4819 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4820 
4821 	memcpy(vcpu->arch.pio_data, val, size * count);
4822 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4823 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4824 }
4825 
4826 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4827 {
4828 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4829 }
4830 
4831 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4832 {
4833 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4834 }
4835 
4836 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4837 {
4838 	if (!need_emulate_wbinvd(vcpu))
4839 		return X86EMUL_CONTINUE;
4840 
4841 	if (kvm_x86_ops->has_wbinvd_exit()) {
4842 		int cpu = get_cpu();
4843 
4844 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4845 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4846 				wbinvd_ipi, NULL, 1);
4847 		put_cpu();
4848 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4849 	} else
4850 		wbinvd();
4851 	return X86EMUL_CONTINUE;
4852 }
4853 
4854 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4855 {
4856 	kvm_emulate_wbinvd_noskip(vcpu);
4857 	return kvm_skip_emulated_instruction(vcpu);
4858 }
4859 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4860 
4861 
4862 
4863 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4864 {
4865 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4866 }
4867 
4868 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4869 			   unsigned long *dest)
4870 {
4871 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4872 }
4873 
4874 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4875 			   unsigned long value)
4876 {
4877 
4878 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4879 }
4880 
4881 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4882 {
4883 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4884 }
4885 
4886 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4887 {
4888 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4889 	unsigned long value;
4890 
4891 	switch (cr) {
4892 	case 0:
4893 		value = kvm_read_cr0(vcpu);
4894 		break;
4895 	case 2:
4896 		value = vcpu->arch.cr2;
4897 		break;
4898 	case 3:
4899 		value = kvm_read_cr3(vcpu);
4900 		break;
4901 	case 4:
4902 		value = kvm_read_cr4(vcpu);
4903 		break;
4904 	case 8:
4905 		value = kvm_get_cr8(vcpu);
4906 		break;
4907 	default:
4908 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4909 		return 0;
4910 	}
4911 
4912 	return value;
4913 }
4914 
4915 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4916 {
4917 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4918 	int res = 0;
4919 
4920 	switch (cr) {
4921 	case 0:
4922 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4923 		break;
4924 	case 2:
4925 		vcpu->arch.cr2 = val;
4926 		break;
4927 	case 3:
4928 		res = kvm_set_cr3(vcpu, val);
4929 		break;
4930 	case 4:
4931 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4932 		break;
4933 	case 8:
4934 		res = kvm_set_cr8(vcpu, val);
4935 		break;
4936 	default:
4937 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4938 		res = -1;
4939 	}
4940 
4941 	return res;
4942 }
4943 
4944 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4945 {
4946 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4947 }
4948 
4949 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4950 {
4951 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4952 }
4953 
4954 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4955 {
4956 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4957 }
4958 
4959 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4960 {
4961 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4962 }
4963 
4964 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4965 {
4966 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4967 }
4968 
4969 static unsigned long emulator_get_cached_segment_base(
4970 	struct x86_emulate_ctxt *ctxt, int seg)
4971 {
4972 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4973 }
4974 
4975 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4976 				 struct desc_struct *desc, u32 *base3,
4977 				 int seg)
4978 {
4979 	struct kvm_segment var;
4980 
4981 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4982 	*selector = var.selector;
4983 
4984 	if (var.unusable) {
4985 		memset(desc, 0, sizeof(*desc));
4986 		return false;
4987 	}
4988 
4989 	if (var.g)
4990 		var.limit >>= 12;
4991 	set_desc_limit(desc, var.limit);
4992 	set_desc_base(desc, (unsigned long)var.base);
4993 #ifdef CONFIG_X86_64
4994 	if (base3)
4995 		*base3 = var.base >> 32;
4996 #endif
4997 	desc->type = var.type;
4998 	desc->s = var.s;
4999 	desc->dpl = var.dpl;
5000 	desc->p = var.present;
5001 	desc->avl = var.avl;
5002 	desc->l = var.l;
5003 	desc->d = var.db;
5004 	desc->g = var.g;
5005 
5006 	return true;
5007 }
5008 
5009 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5010 				 struct desc_struct *desc, u32 base3,
5011 				 int seg)
5012 {
5013 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5014 	struct kvm_segment var;
5015 
5016 	var.selector = selector;
5017 	var.base = get_desc_base(desc);
5018 #ifdef CONFIG_X86_64
5019 	var.base |= ((u64)base3) << 32;
5020 #endif
5021 	var.limit = get_desc_limit(desc);
5022 	if (desc->g)
5023 		var.limit = (var.limit << 12) | 0xfff;
5024 	var.type = desc->type;
5025 	var.dpl = desc->dpl;
5026 	var.db = desc->d;
5027 	var.s = desc->s;
5028 	var.l = desc->l;
5029 	var.g = desc->g;
5030 	var.avl = desc->avl;
5031 	var.present = desc->p;
5032 	var.unusable = !var.present;
5033 	var.padding = 0;
5034 
5035 	kvm_set_segment(vcpu, &var, seg);
5036 	return;
5037 }
5038 
5039 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5040 			    u32 msr_index, u64 *pdata)
5041 {
5042 	struct msr_data msr;
5043 	int r;
5044 
5045 	msr.index = msr_index;
5046 	msr.host_initiated = false;
5047 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5048 	if (r)
5049 		return r;
5050 
5051 	*pdata = msr.data;
5052 	return 0;
5053 }
5054 
5055 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5056 			    u32 msr_index, u64 data)
5057 {
5058 	struct msr_data msr;
5059 
5060 	msr.data = data;
5061 	msr.index = msr_index;
5062 	msr.host_initiated = false;
5063 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5064 }
5065 
5066 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5067 {
5068 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5069 
5070 	return vcpu->arch.smbase;
5071 }
5072 
5073 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5074 {
5075 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5076 
5077 	vcpu->arch.smbase = smbase;
5078 }
5079 
5080 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5081 			      u32 pmc)
5082 {
5083 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5084 }
5085 
5086 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5087 			     u32 pmc, u64 *pdata)
5088 {
5089 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5090 }
5091 
5092 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5093 {
5094 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5095 }
5096 
5097 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5098 {
5099 	preempt_disable();
5100 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5101 }
5102 
5103 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5104 {
5105 	preempt_enable();
5106 }
5107 
5108 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5109 			      struct x86_instruction_info *info,
5110 			      enum x86_intercept_stage stage)
5111 {
5112 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5113 }
5114 
5115 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5116 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5117 {
5118 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5119 }
5120 
5121 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5122 {
5123 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5124 }
5125 
5126 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5127 {
5128 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5129 }
5130 
5131 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5132 {
5133 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5134 }
5135 
5136 static const struct x86_emulate_ops emulate_ops = {
5137 	.read_gpr            = emulator_read_gpr,
5138 	.write_gpr           = emulator_write_gpr,
5139 	.read_std            = kvm_read_guest_virt_system,
5140 	.write_std           = kvm_write_guest_virt_system,
5141 	.read_phys           = kvm_read_guest_phys_system,
5142 	.fetch               = kvm_fetch_guest_virt,
5143 	.read_emulated       = emulator_read_emulated,
5144 	.write_emulated      = emulator_write_emulated,
5145 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5146 	.invlpg              = emulator_invlpg,
5147 	.pio_in_emulated     = emulator_pio_in_emulated,
5148 	.pio_out_emulated    = emulator_pio_out_emulated,
5149 	.get_segment         = emulator_get_segment,
5150 	.set_segment         = emulator_set_segment,
5151 	.get_cached_segment_base = emulator_get_cached_segment_base,
5152 	.get_gdt             = emulator_get_gdt,
5153 	.get_idt	     = emulator_get_idt,
5154 	.set_gdt             = emulator_set_gdt,
5155 	.set_idt	     = emulator_set_idt,
5156 	.get_cr              = emulator_get_cr,
5157 	.set_cr              = emulator_set_cr,
5158 	.cpl                 = emulator_get_cpl,
5159 	.get_dr              = emulator_get_dr,
5160 	.set_dr              = emulator_set_dr,
5161 	.get_smbase          = emulator_get_smbase,
5162 	.set_smbase          = emulator_set_smbase,
5163 	.set_msr             = emulator_set_msr,
5164 	.get_msr             = emulator_get_msr,
5165 	.check_pmc	     = emulator_check_pmc,
5166 	.read_pmc            = emulator_read_pmc,
5167 	.halt                = emulator_halt,
5168 	.wbinvd              = emulator_wbinvd,
5169 	.fix_hypercall       = emulator_fix_hypercall,
5170 	.get_fpu             = emulator_get_fpu,
5171 	.put_fpu             = emulator_put_fpu,
5172 	.intercept           = emulator_intercept,
5173 	.get_cpuid           = emulator_get_cpuid,
5174 	.set_nmi_mask        = emulator_set_nmi_mask,
5175 };
5176 
5177 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5178 {
5179 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5180 	/*
5181 	 * an sti; sti; sequence only disable interrupts for the first
5182 	 * instruction. So, if the last instruction, be it emulated or
5183 	 * not, left the system with the INT_STI flag enabled, it
5184 	 * means that the last instruction is an sti. We should not
5185 	 * leave the flag on in this case. The same goes for mov ss
5186 	 */
5187 	if (int_shadow & mask)
5188 		mask = 0;
5189 	if (unlikely(int_shadow || mask)) {
5190 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5191 		if (!mask)
5192 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5193 	}
5194 }
5195 
5196 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5197 {
5198 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5199 	if (ctxt->exception.vector == PF_VECTOR)
5200 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5201 
5202 	if (ctxt->exception.error_code_valid)
5203 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5204 				      ctxt->exception.error_code);
5205 	else
5206 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5207 	return false;
5208 }
5209 
5210 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5211 {
5212 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5213 	int cs_db, cs_l;
5214 
5215 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5216 
5217 	ctxt->eflags = kvm_get_rflags(vcpu);
5218 	ctxt->eip = kvm_rip_read(vcpu);
5219 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5220 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5221 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5222 		     cs_db				? X86EMUL_MODE_PROT32 :
5223 							  X86EMUL_MODE_PROT16;
5224 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5225 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5226 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5227 	ctxt->emul_flags = vcpu->arch.hflags;
5228 
5229 	init_decode_cache(ctxt);
5230 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5231 }
5232 
5233 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5234 {
5235 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5236 	int ret;
5237 
5238 	init_emulate_ctxt(vcpu);
5239 
5240 	ctxt->op_bytes = 2;
5241 	ctxt->ad_bytes = 2;
5242 	ctxt->_eip = ctxt->eip + inc_eip;
5243 	ret = emulate_int_real(ctxt, irq);
5244 
5245 	if (ret != X86EMUL_CONTINUE)
5246 		return EMULATE_FAIL;
5247 
5248 	ctxt->eip = ctxt->_eip;
5249 	kvm_rip_write(vcpu, ctxt->eip);
5250 	kvm_set_rflags(vcpu, ctxt->eflags);
5251 
5252 	if (irq == NMI_VECTOR)
5253 		vcpu->arch.nmi_pending = 0;
5254 	else
5255 		vcpu->arch.interrupt.pending = false;
5256 
5257 	return EMULATE_DONE;
5258 }
5259 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5260 
5261 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5262 {
5263 	int r = EMULATE_DONE;
5264 
5265 	++vcpu->stat.insn_emulation_fail;
5266 	trace_kvm_emulate_insn_failed(vcpu);
5267 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5268 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5269 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5270 		vcpu->run->internal.ndata = 0;
5271 		r = EMULATE_FAIL;
5272 	}
5273 	kvm_queue_exception(vcpu, UD_VECTOR);
5274 
5275 	return r;
5276 }
5277 
5278 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5279 				  bool write_fault_to_shadow_pgtable,
5280 				  int emulation_type)
5281 {
5282 	gpa_t gpa = cr2;
5283 	kvm_pfn_t pfn;
5284 
5285 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5286 		return false;
5287 
5288 	if (!vcpu->arch.mmu.direct_map) {
5289 		/*
5290 		 * Write permission should be allowed since only
5291 		 * write access need to be emulated.
5292 		 */
5293 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5294 
5295 		/*
5296 		 * If the mapping is invalid in guest, let cpu retry
5297 		 * it to generate fault.
5298 		 */
5299 		if (gpa == UNMAPPED_GVA)
5300 			return true;
5301 	}
5302 
5303 	/*
5304 	 * Do not retry the unhandleable instruction if it faults on the
5305 	 * readonly host memory, otherwise it will goto a infinite loop:
5306 	 * retry instruction -> write #PF -> emulation fail -> retry
5307 	 * instruction -> ...
5308 	 */
5309 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5310 
5311 	/*
5312 	 * If the instruction failed on the error pfn, it can not be fixed,
5313 	 * report the error to userspace.
5314 	 */
5315 	if (is_error_noslot_pfn(pfn))
5316 		return false;
5317 
5318 	kvm_release_pfn_clean(pfn);
5319 
5320 	/* The instructions are well-emulated on direct mmu. */
5321 	if (vcpu->arch.mmu.direct_map) {
5322 		unsigned int indirect_shadow_pages;
5323 
5324 		spin_lock(&vcpu->kvm->mmu_lock);
5325 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5326 		spin_unlock(&vcpu->kvm->mmu_lock);
5327 
5328 		if (indirect_shadow_pages)
5329 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5330 
5331 		return true;
5332 	}
5333 
5334 	/*
5335 	 * if emulation was due to access to shadowed page table
5336 	 * and it failed try to unshadow page and re-enter the
5337 	 * guest to let CPU execute the instruction.
5338 	 */
5339 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5340 
5341 	/*
5342 	 * If the access faults on its page table, it can not
5343 	 * be fixed by unprotecting shadow page and it should
5344 	 * be reported to userspace.
5345 	 */
5346 	return !write_fault_to_shadow_pgtable;
5347 }
5348 
5349 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5350 			      unsigned long cr2,  int emulation_type)
5351 {
5352 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5353 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5354 
5355 	last_retry_eip = vcpu->arch.last_retry_eip;
5356 	last_retry_addr = vcpu->arch.last_retry_addr;
5357 
5358 	/*
5359 	 * If the emulation is caused by #PF and it is non-page_table
5360 	 * writing instruction, it means the VM-EXIT is caused by shadow
5361 	 * page protected, we can zap the shadow page and retry this
5362 	 * instruction directly.
5363 	 *
5364 	 * Note: if the guest uses a non-page-table modifying instruction
5365 	 * on the PDE that points to the instruction, then we will unmap
5366 	 * the instruction and go to an infinite loop. So, we cache the
5367 	 * last retried eip and the last fault address, if we meet the eip
5368 	 * and the address again, we can break out of the potential infinite
5369 	 * loop.
5370 	 */
5371 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5372 
5373 	if (!(emulation_type & EMULTYPE_RETRY))
5374 		return false;
5375 
5376 	if (x86_page_table_writing_insn(ctxt))
5377 		return false;
5378 
5379 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5380 		return false;
5381 
5382 	vcpu->arch.last_retry_eip = ctxt->eip;
5383 	vcpu->arch.last_retry_addr = cr2;
5384 
5385 	if (!vcpu->arch.mmu.direct_map)
5386 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5387 
5388 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5389 
5390 	return true;
5391 }
5392 
5393 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5394 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5395 
5396 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5397 {
5398 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5399 		/* This is a good place to trace that we are exiting SMM.  */
5400 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5401 
5402 		/* Process a latched INIT or SMI, if any.  */
5403 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5404 	}
5405 
5406 	kvm_mmu_reset_context(vcpu);
5407 }
5408 
5409 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5410 {
5411 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5412 
5413 	vcpu->arch.hflags = emul_flags;
5414 
5415 	if (changed & HF_SMM_MASK)
5416 		kvm_smm_changed(vcpu);
5417 }
5418 
5419 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5420 				unsigned long *db)
5421 {
5422 	u32 dr6 = 0;
5423 	int i;
5424 	u32 enable, rwlen;
5425 
5426 	enable = dr7;
5427 	rwlen = dr7 >> 16;
5428 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5429 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5430 			dr6 |= (1 << i);
5431 	return dr6;
5432 }
5433 
5434 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5435 {
5436 	struct kvm_run *kvm_run = vcpu->run;
5437 
5438 	/*
5439 	 * rflags is the old, "raw" value of the flags.  The new value has
5440 	 * not been saved yet.
5441 	 *
5442 	 * This is correct even for TF set by the guest, because "the
5443 	 * processor will not generate this exception after the instruction
5444 	 * that sets the TF flag".
5445 	 */
5446 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5447 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5448 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5449 						  DR6_RTM;
5450 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5451 			kvm_run->debug.arch.exception = DB_VECTOR;
5452 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5453 			*r = EMULATE_USER_EXIT;
5454 		} else {
5455 			/*
5456 			 * "Certain debug exceptions may clear bit 0-3.  The
5457 			 * remaining contents of the DR6 register are never
5458 			 * cleared by the processor".
5459 			 */
5460 			vcpu->arch.dr6 &= ~15;
5461 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5462 			kvm_queue_exception(vcpu, DB_VECTOR);
5463 		}
5464 	}
5465 }
5466 
5467 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5468 {
5469 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5470 	int r = EMULATE_DONE;
5471 
5472 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5473 	kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5474 	return r == EMULATE_DONE;
5475 }
5476 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5477 
5478 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5479 {
5480 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5481 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5482 		struct kvm_run *kvm_run = vcpu->run;
5483 		unsigned long eip = kvm_get_linear_rip(vcpu);
5484 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5485 					   vcpu->arch.guest_debug_dr7,
5486 					   vcpu->arch.eff_db);
5487 
5488 		if (dr6 != 0) {
5489 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5490 			kvm_run->debug.arch.pc = eip;
5491 			kvm_run->debug.arch.exception = DB_VECTOR;
5492 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5493 			*r = EMULATE_USER_EXIT;
5494 			return true;
5495 		}
5496 	}
5497 
5498 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5499 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5500 		unsigned long eip = kvm_get_linear_rip(vcpu);
5501 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5502 					   vcpu->arch.dr7,
5503 					   vcpu->arch.db);
5504 
5505 		if (dr6 != 0) {
5506 			vcpu->arch.dr6 &= ~15;
5507 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5508 			kvm_queue_exception(vcpu, DB_VECTOR);
5509 			*r = EMULATE_DONE;
5510 			return true;
5511 		}
5512 	}
5513 
5514 	return false;
5515 }
5516 
5517 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5518 			    unsigned long cr2,
5519 			    int emulation_type,
5520 			    void *insn,
5521 			    int insn_len)
5522 {
5523 	int r;
5524 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5525 	bool writeback = true;
5526 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5527 
5528 	/*
5529 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5530 	 * never reused.
5531 	 */
5532 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5533 	kvm_clear_exception_queue(vcpu);
5534 
5535 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5536 		init_emulate_ctxt(vcpu);
5537 
5538 		/*
5539 		 * We will reenter on the same instruction since
5540 		 * we do not set complete_userspace_io.  This does not
5541 		 * handle watchpoints yet, those would be handled in
5542 		 * the emulate_ops.
5543 		 */
5544 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5545 			return r;
5546 
5547 		ctxt->interruptibility = 0;
5548 		ctxt->have_exception = false;
5549 		ctxt->exception.vector = -1;
5550 		ctxt->perm_ok = false;
5551 
5552 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5553 
5554 		r = x86_decode_insn(ctxt, insn, insn_len);
5555 
5556 		trace_kvm_emulate_insn_start(vcpu);
5557 		++vcpu->stat.insn_emulation;
5558 		if (r != EMULATION_OK)  {
5559 			if (emulation_type & EMULTYPE_TRAP_UD)
5560 				return EMULATE_FAIL;
5561 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5562 						emulation_type))
5563 				return EMULATE_DONE;
5564 			if (emulation_type & EMULTYPE_SKIP)
5565 				return EMULATE_FAIL;
5566 			return handle_emulation_failure(vcpu);
5567 		}
5568 	}
5569 
5570 	if (emulation_type & EMULTYPE_SKIP) {
5571 		kvm_rip_write(vcpu, ctxt->_eip);
5572 		if (ctxt->eflags & X86_EFLAGS_RF)
5573 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5574 		return EMULATE_DONE;
5575 	}
5576 
5577 	if (retry_instruction(ctxt, cr2, emulation_type))
5578 		return EMULATE_DONE;
5579 
5580 	/* this is needed for vmware backdoor interface to work since it
5581 	   changes registers values  during IO operation */
5582 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5583 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5584 		emulator_invalidate_register_cache(ctxt);
5585 	}
5586 
5587 restart:
5588 	r = x86_emulate_insn(ctxt);
5589 
5590 	if (r == EMULATION_INTERCEPTED)
5591 		return EMULATE_DONE;
5592 
5593 	if (r == EMULATION_FAILED) {
5594 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5595 					emulation_type))
5596 			return EMULATE_DONE;
5597 
5598 		return handle_emulation_failure(vcpu);
5599 	}
5600 
5601 	if (ctxt->have_exception) {
5602 		r = EMULATE_DONE;
5603 		if (inject_emulated_exception(vcpu))
5604 			return r;
5605 	} else if (vcpu->arch.pio.count) {
5606 		if (!vcpu->arch.pio.in) {
5607 			/* FIXME: return into emulator if single-stepping.  */
5608 			vcpu->arch.pio.count = 0;
5609 		} else {
5610 			writeback = false;
5611 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5612 		}
5613 		r = EMULATE_USER_EXIT;
5614 	} else if (vcpu->mmio_needed) {
5615 		if (!vcpu->mmio_is_write)
5616 			writeback = false;
5617 		r = EMULATE_USER_EXIT;
5618 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5619 	} else if (r == EMULATION_RESTART)
5620 		goto restart;
5621 	else
5622 		r = EMULATE_DONE;
5623 
5624 	if (writeback) {
5625 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5626 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5627 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5628 		if (vcpu->arch.hflags != ctxt->emul_flags)
5629 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5630 		kvm_rip_write(vcpu, ctxt->eip);
5631 		if (r == EMULATE_DONE)
5632 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5633 		if (!ctxt->have_exception ||
5634 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5635 			__kvm_set_rflags(vcpu, ctxt->eflags);
5636 
5637 		/*
5638 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5639 		 * do nothing, and it will be requested again as soon as
5640 		 * the shadow expires.  But we still need to check here,
5641 		 * because POPF has no interrupt shadow.
5642 		 */
5643 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5644 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5645 	} else
5646 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5647 
5648 	return r;
5649 }
5650 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5651 
5652 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5653 {
5654 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5655 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5656 					    size, port, &val, 1);
5657 	/* do not return to emulator after return from userspace */
5658 	vcpu->arch.pio.count = 0;
5659 	return ret;
5660 }
5661 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5662 
5663 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5664 {
5665 	unsigned long val;
5666 
5667 	/* We should only ever be called with arch.pio.count equal to 1 */
5668 	BUG_ON(vcpu->arch.pio.count != 1);
5669 
5670 	/* For size less than 4 we merge, else we zero extend */
5671 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5672 					: 0;
5673 
5674 	/*
5675 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5676 	 * the copy and tracing
5677 	 */
5678 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5679 				 vcpu->arch.pio.port, &val, 1);
5680 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5681 
5682 	return 1;
5683 }
5684 
5685 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5686 {
5687 	unsigned long val;
5688 	int ret;
5689 
5690 	/* For size less than 4 we merge, else we zero extend */
5691 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5692 
5693 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5694 				       &val, 1);
5695 	if (ret) {
5696 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5697 		return ret;
5698 	}
5699 
5700 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5701 
5702 	return 0;
5703 }
5704 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5705 
5706 static int kvmclock_cpu_down_prep(unsigned int cpu)
5707 {
5708 	__this_cpu_write(cpu_tsc_khz, 0);
5709 	return 0;
5710 }
5711 
5712 static void tsc_khz_changed(void *data)
5713 {
5714 	struct cpufreq_freqs *freq = data;
5715 	unsigned long khz = 0;
5716 
5717 	if (data)
5718 		khz = freq->new;
5719 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5720 		khz = cpufreq_quick_get(raw_smp_processor_id());
5721 	if (!khz)
5722 		khz = tsc_khz;
5723 	__this_cpu_write(cpu_tsc_khz, khz);
5724 }
5725 
5726 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5727 				     void *data)
5728 {
5729 	struct cpufreq_freqs *freq = data;
5730 	struct kvm *kvm;
5731 	struct kvm_vcpu *vcpu;
5732 	int i, send_ipi = 0;
5733 
5734 	/*
5735 	 * We allow guests to temporarily run on slowing clocks,
5736 	 * provided we notify them after, or to run on accelerating
5737 	 * clocks, provided we notify them before.  Thus time never
5738 	 * goes backwards.
5739 	 *
5740 	 * However, we have a problem.  We can't atomically update
5741 	 * the frequency of a given CPU from this function; it is
5742 	 * merely a notifier, which can be called from any CPU.
5743 	 * Changing the TSC frequency at arbitrary points in time
5744 	 * requires a recomputation of local variables related to
5745 	 * the TSC for each VCPU.  We must flag these local variables
5746 	 * to be updated and be sure the update takes place with the
5747 	 * new frequency before any guests proceed.
5748 	 *
5749 	 * Unfortunately, the combination of hotplug CPU and frequency
5750 	 * change creates an intractable locking scenario; the order
5751 	 * of when these callouts happen is undefined with respect to
5752 	 * CPU hotplug, and they can race with each other.  As such,
5753 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5754 	 * undefined; you can actually have a CPU frequency change take
5755 	 * place in between the computation of X and the setting of the
5756 	 * variable.  To protect against this problem, all updates of
5757 	 * the per_cpu tsc_khz variable are done in an interrupt
5758 	 * protected IPI, and all callers wishing to update the value
5759 	 * must wait for a synchronous IPI to complete (which is trivial
5760 	 * if the caller is on the CPU already).  This establishes the
5761 	 * necessary total order on variable updates.
5762 	 *
5763 	 * Note that because a guest time update may take place
5764 	 * anytime after the setting of the VCPU's request bit, the
5765 	 * correct TSC value must be set before the request.  However,
5766 	 * to ensure the update actually makes it to any guest which
5767 	 * starts running in hardware virtualization between the set
5768 	 * and the acquisition of the spinlock, we must also ping the
5769 	 * CPU after setting the request bit.
5770 	 *
5771 	 */
5772 
5773 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5774 		return 0;
5775 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5776 		return 0;
5777 
5778 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5779 
5780 	spin_lock(&kvm_lock);
5781 	list_for_each_entry(kvm, &vm_list, vm_list) {
5782 		kvm_for_each_vcpu(i, vcpu, kvm) {
5783 			if (vcpu->cpu != freq->cpu)
5784 				continue;
5785 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5786 			if (vcpu->cpu != smp_processor_id())
5787 				send_ipi = 1;
5788 		}
5789 	}
5790 	spin_unlock(&kvm_lock);
5791 
5792 	if (freq->old < freq->new && send_ipi) {
5793 		/*
5794 		 * We upscale the frequency.  Must make the guest
5795 		 * doesn't see old kvmclock values while running with
5796 		 * the new frequency, otherwise we risk the guest sees
5797 		 * time go backwards.
5798 		 *
5799 		 * In case we update the frequency for another cpu
5800 		 * (which might be in guest context) send an interrupt
5801 		 * to kick the cpu out of guest context.  Next time
5802 		 * guest context is entered kvmclock will be updated,
5803 		 * so the guest will not see stale values.
5804 		 */
5805 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5806 	}
5807 	return 0;
5808 }
5809 
5810 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5811 	.notifier_call  = kvmclock_cpufreq_notifier
5812 };
5813 
5814 static int kvmclock_cpu_online(unsigned int cpu)
5815 {
5816 	tsc_khz_changed(NULL);
5817 	return 0;
5818 }
5819 
5820 static void kvm_timer_init(void)
5821 {
5822 	max_tsc_khz = tsc_khz;
5823 
5824 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5825 #ifdef CONFIG_CPU_FREQ
5826 		struct cpufreq_policy policy;
5827 		int cpu;
5828 
5829 		memset(&policy, 0, sizeof(policy));
5830 		cpu = get_cpu();
5831 		cpufreq_get_policy(&policy, cpu);
5832 		if (policy.cpuinfo.max_freq)
5833 			max_tsc_khz = policy.cpuinfo.max_freq;
5834 		put_cpu();
5835 #endif
5836 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5837 					  CPUFREQ_TRANSITION_NOTIFIER);
5838 	}
5839 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5840 
5841 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5842 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
5843 }
5844 
5845 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5846 
5847 int kvm_is_in_guest(void)
5848 {
5849 	return __this_cpu_read(current_vcpu) != NULL;
5850 }
5851 
5852 static int kvm_is_user_mode(void)
5853 {
5854 	int user_mode = 3;
5855 
5856 	if (__this_cpu_read(current_vcpu))
5857 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5858 
5859 	return user_mode != 0;
5860 }
5861 
5862 static unsigned long kvm_get_guest_ip(void)
5863 {
5864 	unsigned long ip = 0;
5865 
5866 	if (__this_cpu_read(current_vcpu))
5867 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5868 
5869 	return ip;
5870 }
5871 
5872 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5873 	.is_in_guest		= kvm_is_in_guest,
5874 	.is_user_mode		= kvm_is_user_mode,
5875 	.get_guest_ip		= kvm_get_guest_ip,
5876 };
5877 
5878 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5879 {
5880 	__this_cpu_write(current_vcpu, vcpu);
5881 }
5882 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5883 
5884 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5885 {
5886 	__this_cpu_write(current_vcpu, NULL);
5887 }
5888 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5889 
5890 static void kvm_set_mmio_spte_mask(void)
5891 {
5892 	u64 mask;
5893 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5894 
5895 	/*
5896 	 * Set the reserved bits and the present bit of an paging-structure
5897 	 * entry to generate page fault with PFER.RSV = 1.
5898 	 */
5899 	 /* Mask the reserved physical address bits. */
5900 	mask = rsvd_bits(maxphyaddr, 51);
5901 
5902 	/* Bit 62 is always reserved for 32bit host. */
5903 	mask |= 0x3ull << 62;
5904 
5905 	/* Set the present bit. */
5906 	mask |= 1ull;
5907 
5908 #ifdef CONFIG_X86_64
5909 	/*
5910 	 * If reserved bit is not supported, clear the present bit to disable
5911 	 * mmio page fault.
5912 	 */
5913 	if (maxphyaddr == 52)
5914 		mask &= ~1ull;
5915 #endif
5916 
5917 	kvm_mmu_set_mmio_spte_mask(mask);
5918 }
5919 
5920 #ifdef CONFIG_X86_64
5921 static void pvclock_gtod_update_fn(struct work_struct *work)
5922 {
5923 	struct kvm *kvm;
5924 
5925 	struct kvm_vcpu *vcpu;
5926 	int i;
5927 
5928 	spin_lock(&kvm_lock);
5929 	list_for_each_entry(kvm, &vm_list, vm_list)
5930 		kvm_for_each_vcpu(i, vcpu, kvm)
5931 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5932 	atomic_set(&kvm_guest_has_master_clock, 0);
5933 	spin_unlock(&kvm_lock);
5934 }
5935 
5936 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5937 
5938 /*
5939  * Notification about pvclock gtod data update.
5940  */
5941 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5942 			       void *priv)
5943 {
5944 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5945 	struct timekeeper *tk = priv;
5946 
5947 	update_pvclock_gtod(tk);
5948 
5949 	/* disable master clock if host does not trust, or does not
5950 	 * use, TSC clocksource
5951 	 */
5952 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5953 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5954 		queue_work(system_long_wq, &pvclock_gtod_work);
5955 
5956 	return 0;
5957 }
5958 
5959 static struct notifier_block pvclock_gtod_notifier = {
5960 	.notifier_call = pvclock_gtod_notify,
5961 };
5962 #endif
5963 
5964 int kvm_arch_init(void *opaque)
5965 {
5966 	int r;
5967 	struct kvm_x86_ops *ops = opaque;
5968 
5969 	if (kvm_x86_ops) {
5970 		printk(KERN_ERR "kvm: already loaded the other module\n");
5971 		r = -EEXIST;
5972 		goto out;
5973 	}
5974 
5975 	if (!ops->cpu_has_kvm_support()) {
5976 		printk(KERN_ERR "kvm: no hardware support\n");
5977 		r = -EOPNOTSUPP;
5978 		goto out;
5979 	}
5980 	if (ops->disabled_by_bios()) {
5981 		printk(KERN_ERR "kvm: disabled by bios\n");
5982 		r = -EOPNOTSUPP;
5983 		goto out;
5984 	}
5985 
5986 	r = -ENOMEM;
5987 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5988 	if (!shared_msrs) {
5989 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5990 		goto out;
5991 	}
5992 
5993 	r = kvm_mmu_module_init();
5994 	if (r)
5995 		goto out_free_percpu;
5996 
5997 	kvm_set_mmio_spte_mask();
5998 
5999 	kvm_x86_ops = ops;
6000 
6001 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6002 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6003 			PT_PRESENT_MASK);
6004 	kvm_timer_init();
6005 
6006 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6007 
6008 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6009 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6010 
6011 	kvm_lapic_init();
6012 #ifdef CONFIG_X86_64
6013 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6014 #endif
6015 
6016 	return 0;
6017 
6018 out_free_percpu:
6019 	free_percpu(shared_msrs);
6020 out:
6021 	return r;
6022 }
6023 
6024 void kvm_arch_exit(void)
6025 {
6026 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6027 
6028 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6029 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6030 					    CPUFREQ_TRANSITION_NOTIFIER);
6031 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6032 #ifdef CONFIG_X86_64
6033 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6034 #endif
6035 	kvm_x86_ops = NULL;
6036 	kvm_mmu_module_exit();
6037 	free_percpu(shared_msrs);
6038 }
6039 
6040 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6041 {
6042 	++vcpu->stat.halt_exits;
6043 	if (lapic_in_kernel(vcpu)) {
6044 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6045 		return 1;
6046 	} else {
6047 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6048 		return 0;
6049 	}
6050 }
6051 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6052 
6053 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6054 {
6055 	int ret = kvm_skip_emulated_instruction(vcpu);
6056 	/*
6057 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6058 	 * KVM_EXIT_DEBUG here.
6059 	 */
6060 	return kvm_vcpu_halt(vcpu) && ret;
6061 }
6062 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6063 
6064 /*
6065  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6066  *
6067  * @apicid - apicid of vcpu to be kicked.
6068  */
6069 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6070 {
6071 	struct kvm_lapic_irq lapic_irq;
6072 
6073 	lapic_irq.shorthand = 0;
6074 	lapic_irq.dest_mode = 0;
6075 	lapic_irq.dest_id = apicid;
6076 	lapic_irq.msi_redir_hint = false;
6077 
6078 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6079 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6080 }
6081 
6082 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6083 {
6084 	vcpu->arch.apicv_active = false;
6085 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6086 }
6087 
6088 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6089 {
6090 	unsigned long nr, a0, a1, a2, a3, ret;
6091 	int op_64_bit, r;
6092 
6093 	r = kvm_skip_emulated_instruction(vcpu);
6094 
6095 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6096 		return kvm_hv_hypercall(vcpu);
6097 
6098 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6099 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6100 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6101 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6102 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6103 
6104 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6105 
6106 	op_64_bit = is_64_bit_mode(vcpu);
6107 	if (!op_64_bit) {
6108 		nr &= 0xFFFFFFFF;
6109 		a0 &= 0xFFFFFFFF;
6110 		a1 &= 0xFFFFFFFF;
6111 		a2 &= 0xFFFFFFFF;
6112 		a3 &= 0xFFFFFFFF;
6113 	}
6114 
6115 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6116 		ret = -KVM_EPERM;
6117 		goto out;
6118 	}
6119 
6120 	switch (nr) {
6121 	case KVM_HC_VAPIC_POLL_IRQ:
6122 		ret = 0;
6123 		break;
6124 	case KVM_HC_KICK_CPU:
6125 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6126 		ret = 0;
6127 		break;
6128 	default:
6129 		ret = -KVM_ENOSYS;
6130 		break;
6131 	}
6132 out:
6133 	if (!op_64_bit)
6134 		ret = (u32)ret;
6135 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6136 	++vcpu->stat.hypercalls;
6137 	return r;
6138 }
6139 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6140 
6141 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6142 {
6143 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6144 	char instruction[3];
6145 	unsigned long rip = kvm_rip_read(vcpu);
6146 
6147 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6148 
6149 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6150 }
6151 
6152 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6153 {
6154 	return vcpu->run->request_interrupt_window &&
6155 		likely(!pic_in_kernel(vcpu->kvm));
6156 }
6157 
6158 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6159 {
6160 	struct kvm_run *kvm_run = vcpu->run;
6161 
6162 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6163 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6164 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6165 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6166 	kvm_run->ready_for_interrupt_injection =
6167 		pic_in_kernel(vcpu->kvm) ||
6168 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6169 }
6170 
6171 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6172 {
6173 	int max_irr, tpr;
6174 
6175 	if (!kvm_x86_ops->update_cr8_intercept)
6176 		return;
6177 
6178 	if (!lapic_in_kernel(vcpu))
6179 		return;
6180 
6181 	if (vcpu->arch.apicv_active)
6182 		return;
6183 
6184 	if (!vcpu->arch.apic->vapic_addr)
6185 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6186 	else
6187 		max_irr = -1;
6188 
6189 	if (max_irr != -1)
6190 		max_irr >>= 4;
6191 
6192 	tpr = kvm_lapic_get_cr8(vcpu);
6193 
6194 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6195 }
6196 
6197 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6198 {
6199 	int r;
6200 
6201 	/* try to reinject previous events if any */
6202 	if (vcpu->arch.exception.pending) {
6203 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6204 					vcpu->arch.exception.has_error_code,
6205 					vcpu->arch.exception.error_code);
6206 
6207 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6208 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6209 					     X86_EFLAGS_RF);
6210 
6211 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6212 		    (vcpu->arch.dr7 & DR7_GD)) {
6213 			vcpu->arch.dr7 &= ~DR7_GD;
6214 			kvm_update_dr7(vcpu);
6215 		}
6216 
6217 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6218 					  vcpu->arch.exception.has_error_code,
6219 					  vcpu->arch.exception.error_code,
6220 					  vcpu->arch.exception.reinject);
6221 		return 0;
6222 	}
6223 
6224 	if (vcpu->arch.nmi_injected) {
6225 		kvm_x86_ops->set_nmi(vcpu);
6226 		return 0;
6227 	}
6228 
6229 	if (vcpu->arch.interrupt.pending) {
6230 		kvm_x86_ops->set_irq(vcpu);
6231 		return 0;
6232 	}
6233 
6234 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6235 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6236 		if (r != 0)
6237 			return r;
6238 	}
6239 
6240 	/* try to inject new event if pending */
6241 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6242 		vcpu->arch.smi_pending = false;
6243 		enter_smm(vcpu);
6244 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6245 		--vcpu->arch.nmi_pending;
6246 		vcpu->arch.nmi_injected = true;
6247 		kvm_x86_ops->set_nmi(vcpu);
6248 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6249 		/*
6250 		 * Because interrupts can be injected asynchronously, we are
6251 		 * calling check_nested_events again here to avoid a race condition.
6252 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6253 		 * proposal and current concerns.  Perhaps we should be setting
6254 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6255 		 */
6256 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6257 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6258 			if (r != 0)
6259 				return r;
6260 		}
6261 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6262 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6263 					    false);
6264 			kvm_x86_ops->set_irq(vcpu);
6265 		}
6266 	}
6267 
6268 	return 0;
6269 }
6270 
6271 static void process_nmi(struct kvm_vcpu *vcpu)
6272 {
6273 	unsigned limit = 2;
6274 
6275 	/*
6276 	 * x86 is limited to one NMI running, and one NMI pending after it.
6277 	 * If an NMI is already in progress, limit further NMIs to just one.
6278 	 * Otherwise, allow two (and we'll inject the first one immediately).
6279 	 */
6280 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6281 		limit = 1;
6282 
6283 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6284 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6285 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6286 }
6287 
6288 #define put_smstate(type, buf, offset, val)			  \
6289 	*(type *)((buf) + (offset) - 0x7e00) = val
6290 
6291 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6292 {
6293 	u32 flags = 0;
6294 	flags |= seg->g       << 23;
6295 	flags |= seg->db      << 22;
6296 	flags |= seg->l       << 21;
6297 	flags |= seg->avl     << 20;
6298 	flags |= seg->present << 15;
6299 	flags |= seg->dpl     << 13;
6300 	flags |= seg->s       << 12;
6301 	flags |= seg->type    << 8;
6302 	return flags;
6303 }
6304 
6305 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6306 {
6307 	struct kvm_segment seg;
6308 	int offset;
6309 
6310 	kvm_get_segment(vcpu, &seg, n);
6311 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6312 
6313 	if (n < 3)
6314 		offset = 0x7f84 + n * 12;
6315 	else
6316 		offset = 0x7f2c + (n - 3) * 12;
6317 
6318 	put_smstate(u32, buf, offset + 8, seg.base);
6319 	put_smstate(u32, buf, offset + 4, seg.limit);
6320 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6321 }
6322 
6323 #ifdef CONFIG_X86_64
6324 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6325 {
6326 	struct kvm_segment seg;
6327 	int offset;
6328 	u16 flags;
6329 
6330 	kvm_get_segment(vcpu, &seg, n);
6331 	offset = 0x7e00 + n * 16;
6332 
6333 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6334 	put_smstate(u16, buf, offset, seg.selector);
6335 	put_smstate(u16, buf, offset + 2, flags);
6336 	put_smstate(u32, buf, offset + 4, seg.limit);
6337 	put_smstate(u64, buf, offset + 8, seg.base);
6338 }
6339 #endif
6340 
6341 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6342 {
6343 	struct desc_ptr dt;
6344 	struct kvm_segment seg;
6345 	unsigned long val;
6346 	int i;
6347 
6348 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6349 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6350 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6351 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6352 
6353 	for (i = 0; i < 8; i++)
6354 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6355 
6356 	kvm_get_dr(vcpu, 6, &val);
6357 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6358 	kvm_get_dr(vcpu, 7, &val);
6359 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6360 
6361 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6362 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6363 	put_smstate(u32, buf, 0x7f64, seg.base);
6364 	put_smstate(u32, buf, 0x7f60, seg.limit);
6365 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6366 
6367 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6368 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6369 	put_smstate(u32, buf, 0x7f80, seg.base);
6370 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6371 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6372 
6373 	kvm_x86_ops->get_gdt(vcpu, &dt);
6374 	put_smstate(u32, buf, 0x7f74, dt.address);
6375 	put_smstate(u32, buf, 0x7f70, dt.size);
6376 
6377 	kvm_x86_ops->get_idt(vcpu, &dt);
6378 	put_smstate(u32, buf, 0x7f58, dt.address);
6379 	put_smstate(u32, buf, 0x7f54, dt.size);
6380 
6381 	for (i = 0; i < 6; i++)
6382 		enter_smm_save_seg_32(vcpu, buf, i);
6383 
6384 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6385 
6386 	/* revision id */
6387 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6388 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6389 }
6390 
6391 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6392 {
6393 #ifdef CONFIG_X86_64
6394 	struct desc_ptr dt;
6395 	struct kvm_segment seg;
6396 	unsigned long val;
6397 	int i;
6398 
6399 	for (i = 0; i < 16; i++)
6400 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6401 
6402 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6403 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6404 
6405 	kvm_get_dr(vcpu, 6, &val);
6406 	put_smstate(u64, buf, 0x7f68, val);
6407 	kvm_get_dr(vcpu, 7, &val);
6408 	put_smstate(u64, buf, 0x7f60, val);
6409 
6410 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6411 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6412 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6413 
6414 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6415 
6416 	/* revision id */
6417 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6418 
6419 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6420 
6421 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6422 	put_smstate(u16, buf, 0x7e90, seg.selector);
6423 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6424 	put_smstate(u32, buf, 0x7e94, seg.limit);
6425 	put_smstate(u64, buf, 0x7e98, seg.base);
6426 
6427 	kvm_x86_ops->get_idt(vcpu, &dt);
6428 	put_smstate(u32, buf, 0x7e84, dt.size);
6429 	put_smstate(u64, buf, 0x7e88, dt.address);
6430 
6431 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6432 	put_smstate(u16, buf, 0x7e70, seg.selector);
6433 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6434 	put_smstate(u32, buf, 0x7e74, seg.limit);
6435 	put_smstate(u64, buf, 0x7e78, seg.base);
6436 
6437 	kvm_x86_ops->get_gdt(vcpu, &dt);
6438 	put_smstate(u32, buf, 0x7e64, dt.size);
6439 	put_smstate(u64, buf, 0x7e68, dt.address);
6440 
6441 	for (i = 0; i < 6; i++)
6442 		enter_smm_save_seg_64(vcpu, buf, i);
6443 #else
6444 	WARN_ON_ONCE(1);
6445 #endif
6446 }
6447 
6448 static void enter_smm(struct kvm_vcpu *vcpu)
6449 {
6450 	struct kvm_segment cs, ds;
6451 	struct desc_ptr dt;
6452 	char buf[512];
6453 	u32 cr0;
6454 
6455 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6456 	vcpu->arch.hflags |= HF_SMM_MASK;
6457 	memset(buf, 0, 512);
6458 	if (guest_cpuid_has_longmode(vcpu))
6459 		enter_smm_save_state_64(vcpu, buf);
6460 	else
6461 		enter_smm_save_state_32(vcpu, buf);
6462 
6463 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6464 
6465 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6466 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6467 	else
6468 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6469 
6470 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6471 	kvm_rip_write(vcpu, 0x8000);
6472 
6473 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6474 	kvm_x86_ops->set_cr0(vcpu, cr0);
6475 	vcpu->arch.cr0 = cr0;
6476 
6477 	kvm_x86_ops->set_cr4(vcpu, 0);
6478 
6479 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6480 	dt.address = dt.size = 0;
6481 	kvm_x86_ops->set_idt(vcpu, &dt);
6482 
6483 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6484 
6485 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6486 	cs.base = vcpu->arch.smbase;
6487 
6488 	ds.selector = 0;
6489 	ds.base = 0;
6490 
6491 	cs.limit    = ds.limit = 0xffffffff;
6492 	cs.type     = ds.type = 0x3;
6493 	cs.dpl      = ds.dpl = 0;
6494 	cs.db       = ds.db = 0;
6495 	cs.s        = ds.s = 1;
6496 	cs.l        = ds.l = 0;
6497 	cs.g        = ds.g = 1;
6498 	cs.avl      = ds.avl = 0;
6499 	cs.present  = ds.present = 1;
6500 	cs.unusable = ds.unusable = 0;
6501 	cs.padding  = ds.padding = 0;
6502 
6503 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6504 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6505 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6506 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6507 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6508 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6509 
6510 	if (guest_cpuid_has_longmode(vcpu))
6511 		kvm_x86_ops->set_efer(vcpu, 0);
6512 
6513 	kvm_update_cpuid(vcpu);
6514 	kvm_mmu_reset_context(vcpu);
6515 }
6516 
6517 static void process_smi(struct kvm_vcpu *vcpu)
6518 {
6519 	vcpu->arch.smi_pending = true;
6520 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6521 }
6522 
6523 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6524 {
6525 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6526 }
6527 
6528 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6529 {
6530 	u64 eoi_exit_bitmap[4];
6531 
6532 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6533 		return;
6534 
6535 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6536 
6537 	if (irqchip_split(vcpu->kvm))
6538 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6539 	else {
6540 		if (vcpu->arch.apicv_active)
6541 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6542 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6543 	}
6544 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6545 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6546 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6547 }
6548 
6549 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6550 {
6551 	++vcpu->stat.tlb_flush;
6552 	kvm_x86_ops->tlb_flush(vcpu);
6553 }
6554 
6555 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6556 {
6557 	struct page *page = NULL;
6558 
6559 	if (!lapic_in_kernel(vcpu))
6560 		return;
6561 
6562 	if (!kvm_x86_ops->set_apic_access_page_addr)
6563 		return;
6564 
6565 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6566 	if (is_error_page(page))
6567 		return;
6568 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6569 
6570 	/*
6571 	 * Do not pin apic access page in memory, the MMU notifier
6572 	 * will call us again if it is migrated or swapped out.
6573 	 */
6574 	put_page(page);
6575 }
6576 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6577 
6578 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6579 					   unsigned long address)
6580 {
6581 	/*
6582 	 * The physical address of apic access page is stored in the VMCS.
6583 	 * Update it when it becomes invalid.
6584 	 */
6585 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6586 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6587 }
6588 
6589 /*
6590  * Returns 1 to let vcpu_run() continue the guest execution loop without
6591  * exiting to the userspace.  Otherwise, the value will be returned to the
6592  * userspace.
6593  */
6594 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6595 {
6596 	int r;
6597 	bool req_int_win =
6598 		dm_request_for_irq_injection(vcpu) &&
6599 		kvm_cpu_accept_dm_intr(vcpu);
6600 
6601 	bool req_immediate_exit = false;
6602 
6603 	if (vcpu->requests) {
6604 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6605 			kvm_mmu_unload(vcpu);
6606 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6607 			__kvm_migrate_timers(vcpu);
6608 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6609 			kvm_gen_update_masterclock(vcpu->kvm);
6610 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6611 			kvm_gen_kvmclock_update(vcpu);
6612 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6613 			r = kvm_guest_time_update(vcpu);
6614 			if (unlikely(r))
6615 				goto out;
6616 		}
6617 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6618 			kvm_mmu_sync_roots(vcpu);
6619 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6620 			kvm_vcpu_flush_tlb(vcpu);
6621 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6622 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6623 			r = 0;
6624 			goto out;
6625 		}
6626 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6627 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6628 			r = 0;
6629 			goto out;
6630 		}
6631 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6632 			vcpu->fpu_active = 0;
6633 			kvm_x86_ops->fpu_deactivate(vcpu);
6634 		}
6635 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6636 			/* Page is swapped out. Do synthetic halt */
6637 			vcpu->arch.apf.halted = true;
6638 			r = 1;
6639 			goto out;
6640 		}
6641 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6642 			record_steal_time(vcpu);
6643 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6644 			process_smi(vcpu);
6645 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6646 			process_nmi(vcpu);
6647 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6648 			kvm_pmu_handle_event(vcpu);
6649 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6650 			kvm_pmu_deliver_pmi(vcpu);
6651 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6652 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6653 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6654 				     vcpu->arch.ioapic_handled_vectors)) {
6655 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6656 				vcpu->run->eoi.vector =
6657 						vcpu->arch.pending_ioapic_eoi;
6658 				r = 0;
6659 				goto out;
6660 			}
6661 		}
6662 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6663 			vcpu_scan_ioapic(vcpu);
6664 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6665 			kvm_vcpu_reload_apic_access_page(vcpu);
6666 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6667 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6668 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6669 			r = 0;
6670 			goto out;
6671 		}
6672 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6673 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6674 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6675 			r = 0;
6676 			goto out;
6677 		}
6678 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6679 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6680 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6681 			r = 0;
6682 			goto out;
6683 		}
6684 
6685 		/*
6686 		 * KVM_REQ_HV_STIMER has to be processed after
6687 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6688 		 * depend on the guest clock being up-to-date
6689 		 */
6690 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6691 			kvm_hv_process_stimers(vcpu);
6692 	}
6693 
6694 	/*
6695 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6696 	 * VT-d hardware, so we have to update RVI unconditionally.
6697 	 */
6698 	if (kvm_lapic_enabled(vcpu)) {
6699 		/*
6700 		 * Update architecture specific hints for APIC
6701 		 * virtual interrupt delivery.
6702 		 */
6703 		if (vcpu->arch.apicv_active)
6704 			kvm_x86_ops->hwapic_irr_update(vcpu,
6705 				kvm_lapic_find_highest_irr(vcpu));
6706 	}
6707 
6708 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6709 		kvm_apic_accept_events(vcpu);
6710 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6711 			r = 1;
6712 			goto out;
6713 		}
6714 
6715 		if (inject_pending_event(vcpu, req_int_win) != 0)
6716 			req_immediate_exit = true;
6717 		else {
6718 			/* Enable NMI/IRQ window open exits if needed.
6719 			 *
6720 			 * SMIs have two cases: 1) they can be nested, and
6721 			 * then there is nothing to do here because RSM will
6722 			 * cause a vmexit anyway; 2) or the SMI can be pending
6723 			 * because inject_pending_event has completed the
6724 			 * injection of an IRQ or NMI from the previous vmexit,
6725 			 * and then we request an immediate exit to inject the SMI.
6726 			 */
6727 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
6728 				req_immediate_exit = true;
6729 			if (vcpu->arch.nmi_pending)
6730 				kvm_x86_ops->enable_nmi_window(vcpu);
6731 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6732 				kvm_x86_ops->enable_irq_window(vcpu);
6733 		}
6734 
6735 		if (kvm_lapic_enabled(vcpu)) {
6736 			update_cr8_intercept(vcpu);
6737 			kvm_lapic_sync_to_vapic(vcpu);
6738 		}
6739 	}
6740 
6741 	r = kvm_mmu_reload(vcpu);
6742 	if (unlikely(r)) {
6743 		goto cancel_injection;
6744 	}
6745 
6746 	preempt_disable();
6747 
6748 	kvm_x86_ops->prepare_guest_switch(vcpu);
6749 	if (vcpu->fpu_active)
6750 		kvm_load_guest_fpu(vcpu);
6751 	vcpu->mode = IN_GUEST_MODE;
6752 
6753 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6754 
6755 	/*
6756 	 * We should set ->mode before check ->requests,
6757 	 * Please see the comment in kvm_make_all_cpus_request.
6758 	 * This also orders the write to mode from any reads
6759 	 * to the page tables done while the VCPU is running.
6760 	 * Please see the comment in kvm_flush_remote_tlbs.
6761 	 */
6762 	smp_mb__after_srcu_read_unlock();
6763 
6764 	local_irq_disable();
6765 
6766 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6767 	    || need_resched() || signal_pending(current)) {
6768 		vcpu->mode = OUTSIDE_GUEST_MODE;
6769 		smp_wmb();
6770 		local_irq_enable();
6771 		preempt_enable();
6772 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6773 		r = 1;
6774 		goto cancel_injection;
6775 	}
6776 
6777 	kvm_load_guest_xcr0(vcpu);
6778 
6779 	if (req_immediate_exit) {
6780 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6781 		smp_send_reschedule(vcpu->cpu);
6782 	}
6783 
6784 	trace_kvm_entry(vcpu->vcpu_id);
6785 	wait_lapic_expire(vcpu);
6786 	guest_enter_irqoff();
6787 
6788 	if (unlikely(vcpu->arch.switch_db_regs)) {
6789 		set_debugreg(0, 7);
6790 		set_debugreg(vcpu->arch.eff_db[0], 0);
6791 		set_debugreg(vcpu->arch.eff_db[1], 1);
6792 		set_debugreg(vcpu->arch.eff_db[2], 2);
6793 		set_debugreg(vcpu->arch.eff_db[3], 3);
6794 		set_debugreg(vcpu->arch.dr6, 6);
6795 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6796 	}
6797 
6798 	kvm_x86_ops->run(vcpu);
6799 
6800 	/*
6801 	 * Do this here before restoring debug registers on the host.  And
6802 	 * since we do this before handling the vmexit, a DR access vmexit
6803 	 * can (a) read the correct value of the debug registers, (b) set
6804 	 * KVM_DEBUGREG_WONT_EXIT again.
6805 	 */
6806 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6807 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6808 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6809 		kvm_update_dr0123(vcpu);
6810 		kvm_update_dr6(vcpu);
6811 		kvm_update_dr7(vcpu);
6812 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6813 	}
6814 
6815 	/*
6816 	 * If the guest has used debug registers, at least dr7
6817 	 * will be disabled while returning to the host.
6818 	 * If we don't have active breakpoints in the host, we don't
6819 	 * care about the messed up debug address registers. But if
6820 	 * we have some of them active, restore the old state.
6821 	 */
6822 	if (hw_breakpoint_active())
6823 		hw_breakpoint_restore();
6824 
6825 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6826 
6827 	vcpu->mode = OUTSIDE_GUEST_MODE;
6828 	smp_wmb();
6829 
6830 	kvm_put_guest_xcr0(vcpu);
6831 
6832 	kvm_x86_ops->handle_external_intr(vcpu);
6833 
6834 	++vcpu->stat.exits;
6835 
6836 	guest_exit_irqoff();
6837 
6838 	local_irq_enable();
6839 	preempt_enable();
6840 
6841 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6842 
6843 	/*
6844 	 * Profile KVM exit RIPs:
6845 	 */
6846 	if (unlikely(prof_on == KVM_PROFILING)) {
6847 		unsigned long rip = kvm_rip_read(vcpu);
6848 		profile_hit(KVM_PROFILING, (void *)rip);
6849 	}
6850 
6851 	if (unlikely(vcpu->arch.tsc_always_catchup))
6852 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6853 
6854 	if (vcpu->arch.apic_attention)
6855 		kvm_lapic_sync_from_vapic(vcpu);
6856 
6857 	r = kvm_x86_ops->handle_exit(vcpu);
6858 	return r;
6859 
6860 cancel_injection:
6861 	kvm_x86_ops->cancel_injection(vcpu);
6862 	if (unlikely(vcpu->arch.apic_attention))
6863 		kvm_lapic_sync_from_vapic(vcpu);
6864 out:
6865 	return r;
6866 }
6867 
6868 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6869 {
6870 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6871 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6872 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6873 		kvm_vcpu_block(vcpu);
6874 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6875 
6876 		if (kvm_x86_ops->post_block)
6877 			kvm_x86_ops->post_block(vcpu);
6878 
6879 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6880 			return 1;
6881 	}
6882 
6883 	kvm_apic_accept_events(vcpu);
6884 	switch(vcpu->arch.mp_state) {
6885 	case KVM_MP_STATE_HALTED:
6886 		vcpu->arch.pv.pv_unhalted = false;
6887 		vcpu->arch.mp_state =
6888 			KVM_MP_STATE_RUNNABLE;
6889 	case KVM_MP_STATE_RUNNABLE:
6890 		vcpu->arch.apf.halted = false;
6891 		break;
6892 	case KVM_MP_STATE_INIT_RECEIVED:
6893 		break;
6894 	default:
6895 		return -EINTR;
6896 		break;
6897 	}
6898 	return 1;
6899 }
6900 
6901 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6902 {
6903 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6904 		!vcpu->arch.apf.halted);
6905 }
6906 
6907 static int vcpu_run(struct kvm_vcpu *vcpu)
6908 {
6909 	int r;
6910 	struct kvm *kvm = vcpu->kvm;
6911 
6912 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6913 
6914 	for (;;) {
6915 		if (kvm_vcpu_running(vcpu)) {
6916 			r = vcpu_enter_guest(vcpu);
6917 		} else {
6918 			r = vcpu_block(kvm, vcpu);
6919 		}
6920 
6921 		if (r <= 0)
6922 			break;
6923 
6924 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6925 		if (kvm_cpu_has_pending_timer(vcpu))
6926 			kvm_inject_pending_timer_irqs(vcpu);
6927 
6928 		if (dm_request_for_irq_injection(vcpu) &&
6929 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6930 			r = 0;
6931 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6932 			++vcpu->stat.request_irq_exits;
6933 			break;
6934 		}
6935 
6936 		kvm_check_async_pf_completion(vcpu);
6937 
6938 		if (signal_pending(current)) {
6939 			r = -EINTR;
6940 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6941 			++vcpu->stat.signal_exits;
6942 			break;
6943 		}
6944 		if (need_resched()) {
6945 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6946 			cond_resched();
6947 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6948 		}
6949 	}
6950 
6951 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6952 
6953 	return r;
6954 }
6955 
6956 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6957 {
6958 	int r;
6959 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6960 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6961 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6962 	if (r != EMULATE_DONE)
6963 		return 0;
6964 	return 1;
6965 }
6966 
6967 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6968 {
6969 	BUG_ON(!vcpu->arch.pio.count);
6970 
6971 	return complete_emulated_io(vcpu);
6972 }
6973 
6974 /*
6975  * Implements the following, as a state machine:
6976  *
6977  * read:
6978  *   for each fragment
6979  *     for each mmio piece in the fragment
6980  *       write gpa, len
6981  *       exit
6982  *       copy data
6983  *   execute insn
6984  *
6985  * write:
6986  *   for each fragment
6987  *     for each mmio piece in the fragment
6988  *       write gpa, len
6989  *       copy data
6990  *       exit
6991  */
6992 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6993 {
6994 	struct kvm_run *run = vcpu->run;
6995 	struct kvm_mmio_fragment *frag;
6996 	unsigned len;
6997 
6998 	BUG_ON(!vcpu->mmio_needed);
6999 
7000 	/* Complete previous fragment */
7001 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7002 	len = min(8u, frag->len);
7003 	if (!vcpu->mmio_is_write)
7004 		memcpy(frag->data, run->mmio.data, len);
7005 
7006 	if (frag->len <= 8) {
7007 		/* Switch to the next fragment. */
7008 		frag++;
7009 		vcpu->mmio_cur_fragment++;
7010 	} else {
7011 		/* Go forward to the next mmio piece. */
7012 		frag->data += len;
7013 		frag->gpa += len;
7014 		frag->len -= len;
7015 	}
7016 
7017 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7018 		vcpu->mmio_needed = 0;
7019 
7020 		/* FIXME: return into emulator if single-stepping.  */
7021 		if (vcpu->mmio_is_write)
7022 			return 1;
7023 		vcpu->mmio_read_completed = 1;
7024 		return complete_emulated_io(vcpu);
7025 	}
7026 
7027 	run->exit_reason = KVM_EXIT_MMIO;
7028 	run->mmio.phys_addr = frag->gpa;
7029 	if (vcpu->mmio_is_write)
7030 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7031 	run->mmio.len = min(8u, frag->len);
7032 	run->mmio.is_write = vcpu->mmio_is_write;
7033 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7034 	return 0;
7035 }
7036 
7037 
7038 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7039 {
7040 	struct fpu *fpu = &current->thread.fpu;
7041 	int r;
7042 	sigset_t sigsaved;
7043 
7044 	fpu__activate_curr(fpu);
7045 
7046 	if (vcpu->sigset_active)
7047 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7048 
7049 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7050 		kvm_vcpu_block(vcpu);
7051 		kvm_apic_accept_events(vcpu);
7052 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7053 		r = -EAGAIN;
7054 		goto out;
7055 	}
7056 
7057 	/* re-sync apic's tpr */
7058 	if (!lapic_in_kernel(vcpu)) {
7059 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7060 			r = -EINVAL;
7061 			goto out;
7062 		}
7063 	}
7064 
7065 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7066 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7067 		vcpu->arch.complete_userspace_io = NULL;
7068 		r = cui(vcpu);
7069 		if (r <= 0)
7070 			goto out;
7071 	} else
7072 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7073 
7074 	r = vcpu_run(vcpu);
7075 
7076 out:
7077 	post_kvm_run_save(vcpu);
7078 	if (vcpu->sigset_active)
7079 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7080 
7081 	return r;
7082 }
7083 
7084 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7085 {
7086 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7087 		/*
7088 		 * We are here if userspace calls get_regs() in the middle of
7089 		 * instruction emulation. Registers state needs to be copied
7090 		 * back from emulation context to vcpu. Userspace shouldn't do
7091 		 * that usually, but some bad designed PV devices (vmware
7092 		 * backdoor interface) need this to work
7093 		 */
7094 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7095 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7096 	}
7097 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7098 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7099 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7100 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7101 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7102 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7103 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7104 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7105 #ifdef CONFIG_X86_64
7106 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7107 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7108 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7109 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7110 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7111 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7112 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7113 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7114 #endif
7115 
7116 	regs->rip = kvm_rip_read(vcpu);
7117 	regs->rflags = kvm_get_rflags(vcpu);
7118 
7119 	return 0;
7120 }
7121 
7122 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7123 {
7124 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7125 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7126 
7127 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7128 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7129 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7130 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7131 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7132 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7133 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7134 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7135 #ifdef CONFIG_X86_64
7136 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7137 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7138 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7139 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7140 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7141 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7142 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7143 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7144 #endif
7145 
7146 	kvm_rip_write(vcpu, regs->rip);
7147 	kvm_set_rflags(vcpu, regs->rflags);
7148 
7149 	vcpu->arch.exception.pending = false;
7150 
7151 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7152 
7153 	return 0;
7154 }
7155 
7156 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7157 {
7158 	struct kvm_segment cs;
7159 
7160 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7161 	*db = cs.db;
7162 	*l = cs.l;
7163 }
7164 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7165 
7166 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7167 				  struct kvm_sregs *sregs)
7168 {
7169 	struct desc_ptr dt;
7170 
7171 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7172 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7173 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7174 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7175 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7176 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7177 
7178 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7179 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7180 
7181 	kvm_x86_ops->get_idt(vcpu, &dt);
7182 	sregs->idt.limit = dt.size;
7183 	sregs->idt.base = dt.address;
7184 	kvm_x86_ops->get_gdt(vcpu, &dt);
7185 	sregs->gdt.limit = dt.size;
7186 	sregs->gdt.base = dt.address;
7187 
7188 	sregs->cr0 = kvm_read_cr0(vcpu);
7189 	sregs->cr2 = vcpu->arch.cr2;
7190 	sregs->cr3 = kvm_read_cr3(vcpu);
7191 	sregs->cr4 = kvm_read_cr4(vcpu);
7192 	sregs->cr8 = kvm_get_cr8(vcpu);
7193 	sregs->efer = vcpu->arch.efer;
7194 	sregs->apic_base = kvm_get_apic_base(vcpu);
7195 
7196 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7197 
7198 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7199 		set_bit(vcpu->arch.interrupt.nr,
7200 			(unsigned long *)sregs->interrupt_bitmap);
7201 
7202 	return 0;
7203 }
7204 
7205 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7206 				    struct kvm_mp_state *mp_state)
7207 {
7208 	kvm_apic_accept_events(vcpu);
7209 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7210 					vcpu->arch.pv.pv_unhalted)
7211 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7212 	else
7213 		mp_state->mp_state = vcpu->arch.mp_state;
7214 
7215 	return 0;
7216 }
7217 
7218 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7219 				    struct kvm_mp_state *mp_state)
7220 {
7221 	if (!lapic_in_kernel(vcpu) &&
7222 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7223 		return -EINVAL;
7224 
7225 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7226 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7227 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7228 	} else
7229 		vcpu->arch.mp_state = mp_state->mp_state;
7230 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7231 	return 0;
7232 }
7233 
7234 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7235 		    int reason, bool has_error_code, u32 error_code)
7236 {
7237 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7238 	int ret;
7239 
7240 	init_emulate_ctxt(vcpu);
7241 
7242 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7243 				   has_error_code, error_code);
7244 
7245 	if (ret)
7246 		return EMULATE_FAIL;
7247 
7248 	kvm_rip_write(vcpu, ctxt->eip);
7249 	kvm_set_rflags(vcpu, ctxt->eflags);
7250 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7251 	return EMULATE_DONE;
7252 }
7253 EXPORT_SYMBOL_GPL(kvm_task_switch);
7254 
7255 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7256 				  struct kvm_sregs *sregs)
7257 {
7258 	struct msr_data apic_base_msr;
7259 	int mmu_reset_needed = 0;
7260 	int pending_vec, max_bits, idx;
7261 	struct desc_ptr dt;
7262 
7263 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7264 		return -EINVAL;
7265 
7266 	dt.size = sregs->idt.limit;
7267 	dt.address = sregs->idt.base;
7268 	kvm_x86_ops->set_idt(vcpu, &dt);
7269 	dt.size = sregs->gdt.limit;
7270 	dt.address = sregs->gdt.base;
7271 	kvm_x86_ops->set_gdt(vcpu, &dt);
7272 
7273 	vcpu->arch.cr2 = sregs->cr2;
7274 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7275 	vcpu->arch.cr3 = sregs->cr3;
7276 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7277 
7278 	kvm_set_cr8(vcpu, sregs->cr8);
7279 
7280 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7281 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7282 	apic_base_msr.data = sregs->apic_base;
7283 	apic_base_msr.host_initiated = true;
7284 	kvm_set_apic_base(vcpu, &apic_base_msr);
7285 
7286 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7287 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7288 	vcpu->arch.cr0 = sregs->cr0;
7289 
7290 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7291 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7292 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7293 		kvm_update_cpuid(vcpu);
7294 
7295 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7296 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7297 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7298 		mmu_reset_needed = 1;
7299 	}
7300 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7301 
7302 	if (mmu_reset_needed)
7303 		kvm_mmu_reset_context(vcpu);
7304 
7305 	max_bits = KVM_NR_INTERRUPTS;
7306 	pending_vec = find_first_bit(
7307 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7308 	if (pending_vec < max_bits) {
7309 		kvm_queue_interrupt(vcpu, pending_vec, false);
7310 		pr_debug("Set back pending irq %d\n", pending_vec);
7311 	}
7312 
7313 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7314 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7315 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7316 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7317 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7318 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7319 
7320 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7321 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7322 
7323 	update_cr8_intercept(vcpu);
7324 
7325 	/* Older userspace won't unhalt the vcpu on reset. */
7326 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7327 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7328 	    !is_protmode(vcpu))
7329 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7330 
7331 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7332 
7333 	return 0;
7334 }
7335 
7336 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7337 					struct kvm_guest_debug *dbg)
7338 {
7339 	unsigned long rflags;
7340 	int i, r;
7341 
7342 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7343 		r = -EBUSY;
7344 		if (vcpu->arch.exception.pending)
7345 			goto out;
7346 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7347 			kvm_queue_exception(vcpu, DB_VECTOR);
7348 		else
7349 			kvm_queue_exception(vcpu, BP_VECTOR);
7350 	}
7351 
7352 	/*
7353 	 * Read rflags as long as potentially injected trace flags are still
7354 	 * filtered out.
7355 	 */
7356 	rflags = kvm_get_rflags(vcpu);
7357 
7358 	vcpu->guest_debug = dbg->control;
7359 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7360 		vcpu->guest_debug = 0;
7361 
7362 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7363 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7364 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7365 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7366 	} else {
7367 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7368 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7369 	}
7370 	kvm_update_dr7(vcpu);
7371 
7372 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7373 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7374 			get_segment_base(vcpu, VCPU_SREG_CS);
7375 
7376 	/*
7377 	 * Trigger an rflags update that will inject or remove the trace
7378 	 * flags.
7379 	 */
7380 	kvm_set_rflags(vcpu, rflags);
7381 
7382 	kvm_x86_ops->update_bp_intercept(vcpu);
7383 
7384 	r = 0;
7385 
7386 out:
7387 
7388 	return r;
7389 }
7390 
7391 /*
7392  * Translate a guest virtual address to a guest physical address.
7393  */
7394 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7395 				    struct kvm_translation *tr)
7396 {
7397 	unsigned long vaddr = tr->linear_address;
7398 	gpa_t gpa;
7399 	int idx;
7400 
7401 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7402 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7403 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7404 	tr->physical_address = gpa;
7405 	tr->valid = gpa != UNMAPPED_GVA;
7406 	tr->writeable = 1;
7407 	tr->usermode = 0;
7408 
7409 	return 0;
7410 }
7411 
7412 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7413 {
7414 	struct fxregs_state *fxsave =
7415 			&vcpu->arch.guest_fpu.state.fxsave;
7416 
7417 	memcpy(fpu->fpr, fxsave->st_space, 128);
7418 	fpu->fcw = fxsave->cwd;
7419 	fpu->fsw = fxsave->swd;
7420 	fpu->ftwx = fxsave->twd;
7421 	fpu->last_opcode = fxsave->fop;
7422 	fpu->last_ip = fxsave->rip;
7423 	fpu->last_dp = fxsave->rdp;
7424 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7425 
7426 	return 0;
7427 }
7428 
7429 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7430 {
7431 	struct fxregs_state *fxsave =
7432 			&vcpu->arch.guest_fpu.state.fxsave;
7433 
7434 	memcpy(fxsave->st_space, fpu->fpr, 128);
7435 	fxsave->cwd = fpu->fcw;
7436 	fxsave->swd = fpu->fsw;
7437 	fxsave->twd = fpu->ftwx;
7438 	fxsave->fop = fpu->last_opcode;
7439 	fxsave->rip = fpu->last_ip;
7440 	fxsave->rdp = fpu->last_dp;
7441 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7442 
7443 	return 0;
7444 }
7445 
7446 static void fx_init(struct kvm_vcpu *vcpu)
7447 {
7448 	fpstate_init(&vcpu->arch.guest_fpu.state);
7449 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7450 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7451 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7452 
7453 	/*
7454 	 * Ensure guest xcr0 is valid for loading
7455 	 */
7456 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7457 
7458 	vcpu->arch.cr0 |= X86_CR0_ET;
7459 }
7460 
7461 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7462 {
7463 	if (vcpu->guest_fpu_loaded)
7464 		return;
7465 
7466 	/*
7467 	 * Restore all possible states in the guest,
7468 	 * and assume host would use all available bits.
7469 	 * Guest xcr0 would be loaded later.
7470 	 */
7471 	vcpu->guest_fpu_loaded = 1;
7472 	__kernel_fpu_begin();
7473 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7474 	trace_kvm_fpu(1);
7475 }
7476 
7477 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7478 {
7479 	if (!vcpu->guest_fpu_loaded)
7480 		return;
7481 
7482 	vcpu->guest_fpu_loaded = 0;
7483 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7484 	__kernel_fpu_end();
7485 	++vcpu->stat.fpu_reload;
7486 	trace_kvm_fpu(0);
7487 }
7488 
7489 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7490 {
7491 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7492 
7493 	kvmclock_reset(vcpu);
7494 
7495 	kvm_x86_ops->vcpu_free(vcpu);
7496 	free_cpumask_var(wbinvd_dirty_mask);
7497 }
7498 
7499 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7500 						unsigned int id)
7501 {
7502 	struct kvm_vcpu *vcpu;
7503 
7504 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7505 		printk_once(KERN_WARNING
7506 		"kvm: SMP vm created on host with unstable TSC; "
7507 		"guest TSC will not be reliable\n");
7508 
7509 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7510 
7511 	return vcpu;
7512 }
7513 
7514 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7515 {
7516 	int r;
7517 
7518 	kvm_vcpu_mtrr_init(vcpu);
7519 	r = vcpu_load(vcpu);
7520 	if (r)
7521 		return r;
7522 	kvm_vcpu_reset(vcpu, false);
7523 	kvm_mmu_setup(vcpu);
7524 	vcpu_put(vcpu);
7525 	return r;
7526 }
7527 
7528 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7529 {
7530 	struct msr_data msr;
7531 	struct kvm *kvm = vcpu->kvm;
7532 
7533 	if (vcpu_load(vcpu))
7534 		return;
7535 	msr.data = 0x0;
7536 	msr.index = MSR_IA32_TSC;
7537 	msr.host_initiated = true;
7538 	kvm_write_tsc(vcpu, &msr);
7539 	vcpu_put(vcpu);
7540 
7541 	if (!kvmclock_periodic_sync)
7542 		return;
7543 
7544 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7545 					KVMCLOCK_SYNC_PERIOD);
7546 }
7547 
7548 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7549 {
7550 	int r;
7551 	vcpu->arch.apf.msr_val = 0;
7552 
7553 	r = vcpu_load(vcpu);
7554 	BUG_ON(r);
7555 	kvm_mmu_unload(vcpu);
7556 	vcpu_put(vcpu);
7557 
7558 	kvm_x86_ops->vcpu_free(vcpu);
7559 }
7560 
7561 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7562 {
7563 	vcpu->arch.hflags = 0;
7564 
7565 	vcpu->arch.smi_pending = 0;
7566 	atomic_set(&vcpu->arch.nmi_queued, 0);
7567 	vcpu->arch.nmi_pending = 0;
7568 	vcpu->arch.nmi_injected = false;
7569 	kvm_clear_interrupt_queue(vcpu);
7570 	kvm_clear_exception_queue(vcpu);
7571 
7572 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7573 	kvm_update_dr0123(vcpu);
7574 	vcpu->arch.dr6 = DR6_INIT;
7575 	kvm_update_dr6(vcpu);
7576 	vcpu->arch.dr7 = DR7_FIXED_1;
7577 	kvm_update_dr7(vcpu);
7578 
7579 	vcpu->arch.cr2 = 0;
7580 
7581 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7582 	vcpu->arch.apf.msr_val = 0;
7583 	vcpu->arch.st.msr_val = 0;
7584 
7585 	kvmclock_reset(vcpu);
7586 
7587 	kvm_clear_async_pf_completion_queue(vcpu);
7588 	kvm_async_pf_hash_reset(vcpu);
7589 	vcpu->arch.apf.halted = false;
7590 
7591 	if (!init_event) {
7592 		kvm_pmu_reset(vcpu);
7593 		vcpu->arch.smbase = 0x30000;
7594 	}
7595 
7596 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7597 	vcpu->arch.regs_avail = ~0;
7598 	vcpu->arch.regs_dirty = ~0;
7599 
7600 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7601 }
7602 
7603 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7604 {
7605 	struct kvm_segment cs;
7606 
7607 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7608 	cs.selector = vector << 8;
7609 	cs.base = vector << 12;
7610 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7611 	kvm_rip_write(vcpu, 0);
7612 }
7613 
7614 int kvm_arch_hardware_enable(void)
7615 {
7616 	struct kvm *kvm;
7617 	struct kvm_vcpu *vcpu;
7618 	int i;
7619 	int ret;
7620 	u64 local_tsc;
7621 	u64 max_tsc = 0;
7622 	bool stable, backwards_tsc = false;
7623 
7624 	kvm_shared_msr_cpu_online();
7625 	ret = kvm_x86_ops->hardware_enable();
7626 	if (ret != 0)
7627 		return ret;
7628 
7629 	local_tsc = rdtsc();
7630 	stable = !check_tsc_unstable();
7631 	list_for_each_entry(kvm, &vm_list, vm_list) {
7632 		kvm_for_each_vcpu(i, vcpu, kvm) {
7633 			if (!stable && vcpu->cpu == smp_processor_id())
7634 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7635 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7636 				backwards_tsc = true;
7637 				if (vcpu->arch.last_host_tsc > max_tsc)
7638 					max_tsc = vcpu->arch.last_host_tsc;
7639 			}
7640 		}
7641 	}
7642 
7643 	/*
7644 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7645 	 * platforms that reset TSC during suspend or hibernate actions, but
7646 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7647 	 * detect that condition here, which happens early in CPU bringup,
7648 	 * before any KVM threads can be running.  Unfortunately, we can't
7649 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7650 	 * enough into CPU bringup that we know how much real time has actually
7651 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7652 	 * variables that haven't been updated yet.
7653 	 *
7654 	 * So we simply find the maximum observed TSC above, then record the
7655 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7656 	 * the adjustment will be applied.  Note that we accumulate
7657 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7658 	 * gets a chance to run again.  In the event that no KVM threads get a
7659 	 * chance to run, we will miss the entire elapsed period, as we'll have
7660 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7661 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7662 	 * uniform across all VCPUs (not to mention the scenario is extremely
7663 	 * unlikely). It is possible that a second hibernate recovery happens
7664 	 * much faster than a first, causing the observed TSC here to be
7665 	 * smaller; this would require additional padding adjustment, which is
7666 	 * why we set last_host_tsc to the local tsc observed here.
7667 	 *
7668 	 * N.B. - this code below runs only on platforms with reliable TSC,
7669 	 * as that is the only way backwards_tsc is set above.  Also note
7670 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7671 	 * have the same delta_cyc adjustment applied if backwards_tsc
7672 	 * is detected.  Note further, this adjustment is only done once,
7673 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7674 	 * called multiple times (one for each physical CPU bringup).
7675 	 *
7676 	 * Platforms with unreliable TSCs don't have to deal with this, they
7677 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7678 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7679 	 * guarantee that they stay in perfect synchronization.
7680 	 */
7681 	if (backwards_tsc) {
7682 		u64 delta_cyc = max_tsc - local_tsc;
7683 		backwards_tsc_observed = true;
7684 		list_for_each_entry(kvm, &vm_list, vm_list) {
7685 			kvm_for_each_vcpu(i, vcpu, kvm) {
7686 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7687 				vcpu->arch.last_host_tsc = local_tsc;
7688 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7689 			}
7690 
7691 			/*
7692 			 * We have to disable TSC offset matching.. if you were
7693 			 * booting a VM while issuing an S4 host suspend....
7694 			 * you may have some problem.  Solving this issue is
7695 			 * left as an exercise to the reader.
7696 			 */
7697 			kvm->arch.last_tsc_nsec = 0;
7698 			kvm->arch.last_tsc_write = 0;
7699 		}
7700 
7701 	}
7702 	return 0;
7703 }
7704 
7705 void kvm_arch_hardware_disable(void)
7706 {
7707 	kvm_x86_ops->hardware_disable();
7708 	drop_user_return_notifiers();
7709 }
7710 
7711 int kvm_arch_hardware_setup(void)
7712 {
7713 	int r;
7714 
7715 	r = kvm_x86_ops->hardware_setup();
7716 	if (r != 0)
7717 		return r;
7718 
7719 	if (kvm_has_tsc_control) {
7720 		/*
7721 		 * Make sure the user can only configure tsc_khz values that
7722 		 * fit into a signed integer.
7723 		 * A min value is not calculated needed because it will always
7724 		 * be 1 on all machines.
7725 		 */
7726 		u64 max = min(0x7fffffffULL,
7727 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7728 		kvm_max_guest_tsc_khz = max;
7729 
7730 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7731 	}
7732 
7733 	kvm_init_msr_list();
7734 	return 0;
7735 }
7736 
7737 void kvm_arch_hardware_unsetup(void)
7738 {
7739 	kvm_x86_ops->hardware_unsetup();
7740 }
7741 
7742 void kvm_arch_check_processor_compat(void *rtn)
7743 {
7744 	kvm_x86_ops->check_processor_compatibility(rtn);
7745 }
7746 
7747 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7748 {
7749 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7750 }
7751 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7752 
7753 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7754 {
7755 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7756 }
7757 
7758 struct static_key kvm_no_apic_vcpu __read_mostly;
7759 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7760 
7761 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7762 {
7763 	struct page *page;
7764 	struct kvm *kvm;
7765 	int r;
7766 
7767 	BUG_ON(vcpu->kvm == NULL);
7768 	kvm = vcpu->kvm;
7769 
7770 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7771 	vcpu->arch.pv.pv_unhalted = false;
7772 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7773 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7774 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7775 	else
7776 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7777 
7778 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7779 	if (!page) {
7780 		r = -ENOMEM;
7781 		goto fail;
7782 	}
7783 	vcpu->arch.pio_data = page_address(page);
7784 
7785 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7786 
7787 	r = kvm_mmu_create(vcpu);
7788 	if (r < 0)
7789 		goto fail_free_pio_data;
7790 
7791 	if (irqchip_in_kernel(kvm)) {
7792 		r = kvm_create_lapic(vcpu);
7793 		if (r < 0)
7794 			goto fail_mmu_destroy;
7795 	} else
7796 		static_key_slow_inc(&kvm_no_apic_vcpu);
7797 
7798 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7799 				       GFP_KERNEL);
7800 	if (!vcpu->arch.mce_banks) {
7801 		r = -ENOMEM;
7802 		goto fail_free_lapic;
7803 	}
7804 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7805 
7806 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7807 		r = -ENOMEM;
7808 		goto fail_free_mce_banks;
7809 	}
7810 
7811 	fx_init(vcpu);
7812 
7813 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7814 	vcpu->arch.pv_time_enabled = false;
7815 
7816 	vcpu->arch.guest_supported_xcr0 = 0;
7817 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7818 
7819 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7820 
7821 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7822 
7823 	kvm_async_pf_hash_reset(vcpu);
7824 	kvm_pmu_init(vcpu);
7825 
7826 	vcpu->arch.pending_external_vector = -1;
7827 
7828 	kvm_hv_vcpu_init(vcpu);
7829 
7830 	return 0;
7831 
7832 fail_free_mce_banks:
7833 	kfree(vcpu->arch.mce_banks);
7834 fail_free_lapic:
7835 	kvm_free_lapic(vcpu);
7836 fail_mmu_destroy:
7837 	kvm_mmu_destroy(vcpu);
7838 fail_free_pio_data:
7839 	free_page((unsigned long)vcpu->arch.pio_data);
7840 fail:
7841 	return r;
7842 }
7843 
7844 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7845 {
7846 	int idx;
7847 
7848 	kvm_hv_vcpu_uninit(vcpu);
7849 	kvm_pmu_destroy(vcpu);
7850 	kfree(vcpu->arch.mce_banks);
7851 	kvm_free_lapic(vcpu);
7852 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7853 	kvm_mmu_destroy(vcpu);
7854 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7855 	free_page((unsigned long)vcpu->arch.pio_data);
7856 	if (!lapic_in_kernel(vcpu))
7857 		static_key_slow_dec(&kvm_no_apic_vcpu);
7858 }
7859 
7860 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7861 {
7862 	kvm_x86_ops->sched_in(vcpu, cpu);
7863 }
7864 
7865 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7866 {
7867 	if (type)
7868 		return -EINVAL;
7869 
7870 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7871 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7872 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7873 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7874 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7875 
7876 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7877 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7878 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7879 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7880 		&kvm->arch.irq_sources_bitmap);
7881 
7882 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7883 	mutex_init(&kvm->arch.apic_map_lock);
7884 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7885 
7886 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7887 	pvclock_update_vm_gtod_copy(kvm);
7888 
7889 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7890 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7891 
7892 	kvm_page_track_init(kvm);
7893 	kvm_mmu_init_vm(kvm);
7894 
7895 	if (kvm_x86_ops->vm_init)
7896 		return kvm_x86_ops->vm_init(kvm);
7897 
7898 	return 0;
7899 }
7900 
7901 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7902 {
7903 	int r;
7904 	r = vcpu_load(vcpu);
7905 	BUG_ON(r);
7906 	kvm_mmu_unload(vcpu);
7907 	vcpu_put(vcpu);
7908 }
7909 
7910 static void kvm_free_vcpus(struct kvm *kvm)
7911 {
7912 	unsigned int i;
7913 	struct kvm_vcpu *vcpu;
7914 
7915 	/*
7916 	 * Unpin any mmu pages first.
7917 	 */
7918 	kvm_for_each_vcpu(i, vcpu, kvm) {
7919 		kvm_clear_async_pf_completion_queue(vcpu);
7920 		kvm_unload_vcpu_mmu(vcpu);
7921 	}
7922 	kvm_for_each_vcpu(i, vcpu, kvm)
7923 		kvm_arch_vcpu_free(vcpu);
7924 
7925 	mutex_lock(&kvm->lock);
7926 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7927 		kvm->vcpus[i] = NULL;
7928 
7929 	atomic_set(&kvm->online_vcpus, 0);
7930 	mutex_unlock(&kvm->lock);
7931 }
7932 
7933 void kvm_arch_sync_events(struct kvm *kvm)
7934 {
7935 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7936 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7937 	kvm_free_all_assigned_devices(kvm);
7938 	kvm_free_pit(kvm);
7939 }
7940 
7941 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7942 {
7943 	int i, r;
7944 	unsigned long hva;
7945 	struct kvm_memslots *slots = kvm_memslots(kvm);
7946 	struct kvm_memory_slot *slot, old;
7947 
7948 	/* Called with kvm->slots_lock held.  */
7949 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7950 		return -EINVAL;
7951 
7952 	slot = id_to_memslot(slots, id);
7953 	if (size) {
7954 		if (slot->npages)
7955 			return -EEXIST;
7956 
7957 		/*
7958 		 * MAP_SHARED to prevent internal slot pages from being moved
7959 		 * by fork()/COW.
7960 		 */
7961 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7962 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7963 		if (IS_ERR((void *)hva))
7964 			return PTR_ERR((void *)hva);
7965 	} else {
7966 		if (!slot->npages)
7967 			return 0;
7968 
7969 		hva = 0;
7970 	}
7971 
7972 	old = *slot;
7973 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7974 		struct kvm_userspace_memory_region m;
7975 
7976 		m.slot = id | (i << 16);
7977 		m.flags = 0;
7978 		m.guest_phys_addr = gpa;
7979 		m.userspace_addr = hva;
7980 		m.memory_size = size;
7981 		r = __kvm_set_memory_region(kvm, &m);
7982 		if (r < 0)
7983 			return r;
7984 	}
7985 
7986 	if (!size) {
7987 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7988 		WARN_ON(r < 0);
7989 	}
7990 
7991 	return 0;
7992 }
7993 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7994 
7995 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7996 {
7997 	int r;
7998 
7999 	mutex_lock(&kvm->slots_lock);
8000 	r = __x86_set_memory_region(kvm, id, gpa, size);
8001 	mutex_unlock(&kvm->slots_lock);
8002 
8003 	return r;
8004 }
8005 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8006 
8007 void kvm_arch_destroy_vm(struct kvm *kvm)
8008 {
8009 	if (current->mm == kvm->mm) {
8010 		/*
8011 		 * Free memory regions allocated on behalf of userspace,
8012 		 * unless the the memory map has changed due to process exit
8013 		 * or fd copying.
8014 		 */
8015 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8016 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8017 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8018 	}
8019 	if (kvm_x86_ops->vm_destroy)
8020 		kvm_x86_ops->vm_destroy(kvm);
8021 	kvm_iommu_unmap_guest(kvm);
8022 	kfree(kvm->arch.vpic);
8023 	kfree(kvm->arch.vioapic);
8024 	kvm_free_vcpus(kvm);
8025 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8026 	kvm_mmu_uninit_vm(kvm);
8027 }
8028 
8029 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8030 			   struct kvm_memory_slot *dont)
8031 {
8032 	int i;
8033 
8034 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8035 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8036 			kvfree(free->arch.rmap[i]);
8037 			free->arch.rmap[i] = NULL;
8038 		}
8039 		if (i == 0)
8040 			continue;
8041 
8042 		if (!dont || free->arch.lpage_info[i - 1] !=
8043 			     dont->arch.lpage_info[i - 1]) {
8044 			kvfree(free->arch.lpage_info[i - 1]);
8045 			free->arch.lpage_info[i - 1] = NULL;
8046 		}
8047 	}
8048 
8049 	kvm_page_track_free_memslot(free, dont);
8050 }
8051 
8052 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8053 			    unsigned long npages)
8054 {
8055 	int i;
8056 
8057 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8058 		struct kvm_lpage_info *linfo;
8059 		unsigned long ugfn;
8060 		int lpages;
8061 		int level = i + 1;
8062 
8063 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8064 				      slot->base_gfn, level) + 1;
8065 
8066 		slot->arch.rmap[i] =
8067 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8068 		if (!slot->arch.rmap[i])
8069 			goto out_free;
8070 		if (i == 0)
8071 			continue;
8072 
8073 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8074 		if (!linfo)
8075 			goto out_free;
8076 
8077 		slot->arch.lpage_info[i - 1] = linfo;
8078 
8079 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8080 			linfo[0].disallow_lpage = 1;
8081 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8082 			linfo[lpages - 1].disallow_lpage = 1;
8083 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8084 		/*
8085 		 * If the gfn and userspace address are not aligned wrt each
8086 		 * other, or if explicitly asked to, disable large page
8087 		 * support for this slot
8088 		 */
8089 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8090 		    !kvm_largepages_enabled()) {
8091 			unsigned long j;
8092 
8093 			for (j = 0; j < lpages; ++j)
8094 				linfo[j].disallow_lpage = 1;
8095 		}
8096 	}
8097 
8098 	if (kvm_page_track_create_memslot(slot, npages))
8099 		goto out_free;
8100 
8101 	return 0;
8102 
8103 out_free:
8104 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8105 		kvfree(slot->arch.rmap[i]);
8106 		slot->arch.rmap[i] = NULL;
8107 		if (i == 0)
8108 			continue;
8109 
8110 		kvfree(slot->arch.lpage_info[i - 1]);
8111 		slot->arch.lpage_info[i - 1] = NULL;
8112 	}
8113 	return -ENOMEM;
8114 }
8115 
8116 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8117 {
8118 	/*
8119 	 * memslots->generation has been incremented.
8120 	 * mmio generation may have reached its maximum value.
8121 	 */
8122 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8123 }
8124 
8125 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8126 				struct kvm_memory_slot *memslot,
8127 				const struct kvm_userspace_memory_region *mem,
8128 				enum kvm_mr_change change)
8129 {
8130 	return 0;
8131 }
8132 
8133 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8134 				     struct kvm_memory_slot *new)
8135 {
8136 	/* Still write protect RO slot */
8137 	if (new->flags & KVM_MEM_READONLY) {
8138 		kvm_mmu_slot_remove_write_access(kvm, new);
8139 		return;
8140 	}
8141 
8142 	/*
8143 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8144 	 *
8145 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8146 	 *
8147 	 *  - KVM_MR_CREATE with dirty logging is disabled
8148 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8149 	 *
8150 	 * The reason is, in case of PML, we need to set D-bit for any slots
8151 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8152 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8153 	 * guarantees leaving PML enabled during guest's lifetime won't have
8154 	 * any additonal overhead from PML when guest is running with dirty
8155 	 * logging disabled for memory slots.
8156 	 *
8157 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8158 	 * to dirty logging mode.
8159 	 *
8160 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8161 	 *
8162 	 * In case of write protect:
8163 	 *
8164 	 * Write protect all pages for dirty logging.
8165 	 *
8166 	 * All the sptes including the large sptes which point to this
8167 	 * slot are set to readonly. We can not create any new large
8168 	 * spte on this slot until the end of the logging.
8169 	 *
8170 	 * See the comments in fast_page_fault().
8171 	 */
8172 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8173 		if (kvm_x86_ops->slot_enable_log_dirty)
8174 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8175 		else
8176 			kvm_mmu_slot_remove_write_access(kvm, new);
8177 	} else {
8178 		if (kvm_x86_ops->slot_disable_log_dirty)
8179 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8180 	}
8181 }
8182 
8183 void kvm_arch_commit_memory_region(struct kvm *kvm,
8184 				const struct kvm_userspace_memory_region *mem,
8185 				const struct kvm_memory_slot *old,
8186 				const struct kvm_memory_slot *new,
8187 				enum kvm_mr_change change)
8188 {
8189 	int nr_mmu_pages = 0;
8190 
8191 	if (!kvm->arch.n_requested_mmu_pages)
8192 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8193 
8194 	if (nr_mmu_pages)
8195 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8196 
8197 	/*
8198 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8199 	 * sptes have to be split.  If live migration is successful, the guest
8200 	 * in the source machine will be destroyed and large sptes will be
8201 	 * created in the destination. However, if the guest continues to run
8202 	 * in the source machine (for example if live migration fails), small
8203 	 * sptes will remain around and cause bad performance.
8204 	 *
8205 	 * Scan sptes if dirty logging has been stopped, dropping those
8206 	 * which can be collapsed into a single large-page spte.  Later
8207 	 * page faults will create the large-page sptes.
8208 	 */
8209 	if ((change != KVM_MR_DELETE) &&
8210 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8211 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8212 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8213 
8214 	/*
8215 	 * Set up write protection and/or dirty logging for the new slot.
8216 	 *
8217 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8218 	 * been zapped so no dirty logging staff is needed for old slot. For
8219 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8220 	 * new and it's also covered when dealing with the new slot.
8221 	 *
8222 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8223 	 */
8224 	if (change != KVM_MR_DELETE)
8225 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8226 }
8227 
8228 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8229 {
8230 	kvm_mmu_invalidate_zap_all_pages(kvm);
8231 }
8232 
8233 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8234 				   struct kvm_memory_slot *slot)
8235 {
8236 	kvm_page_track_flush_slot(kvm, slot);
8237 }
8238 
8239 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8240 {
8241 	if (!list_empty_careful(&vcpu->async_pf.done))
8242 		return true;
8243 
8244 	if (kvm_apic_has_events(vcpu))
8245 		return true;
8246 
8247 	if (vcpu->arch.pv.pv_unhalted)
8248 		return true;
8249 
8250 	if (atomic_read(&vcpu->arch.nmi_queued))
8251 		return true;
8252 
8253 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8254 		return true;
8255 
8256 	if (kvm_arch_interrupt_allowed(vcpu) &&
8257 	    kvm_cpu_has_interrupt(vcpu))
8258 		return true;
8259 
8260 	if (kvm_hv_has_stimer_pending(vcpu))
8261 		return true;
8262 
8263 	return false;
8264 }
8265 
8266 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8267 {
8268 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8269 		kvm_x86_ops->check_nested_events(vcpu, false);
8270 
8271 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8272 }
8273 
8274 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8275 {
8276 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8277 }
8278 
8279 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8280 {
8281 	return kvm_x86_ops->interrupt_allowed(vcpu);
8282 }
8283 
8284 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8285 {
8286 	if (is_64_bit_mode(vcpu))
8287 		return kvm_rip_read(vcpu);
8288 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8289 		     kvm_rip_read(vcpu));
8290 }
8291 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8292 
8293 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8294 {
8295 	return kvm_get_linear_rip(vcpu) == linear_rip;
8296 }
8297 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8298 
8299 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8300 {
8301 	unsigned long rflags;
8302 
8303 	rflags = kvm_x86_ops->get_rflags(vcpu);
8304 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8305 		rflags &= ~X86_EFLAGS_TF;
8306 	return rflags;
8307 }
8308 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8309 
8310 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8311 {
8312 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8313 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8314 		rflags |= X86_EFLAGS_TF;
8315 	kvm_x86_ops->set_rflags(vcpu, rflags);
8316 }
8317 
8318 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8319 {
8320 	__kvm_set_rflags(vcpu, rflags);
8321 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8322 }
8323 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8324 
8325 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8326 {
8327 	int r;
8328 
8329 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8330 	      work->wakeup_all)
8331 		return;
8332 
8333 	r = kvm_mmu_reload(vcpu);
8334 	if (unlikely(r))
8335 		return;
8336 
8337 	if (!vcpu->arch.mmu.direct_map &&
8338 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8339 		return;
8340 
8341 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8342 }
8343 
8344 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8345 {
8346 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8347 }
8348 
8349 static inline u32 kvm_async_pf_next_probe(u32 key)
8350 {
8351 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8352 }
8353 
8354 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8355 {
8356 	u32 key = kvm_async_pf_hash_fn(gfn);
8357 
8358 	while (vcpu->arch.apf.gfns[key] != ~0)
8359 		key = kvm_async_pf_next_probe(key);
8360 
8361 	vcpu->arch.apf.gfns[key] = gfn;
8362 }
8363 
8364 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8365 {
8366 	int i;
8367 	u32 key = kvm_async_pf_hash_fn(gfn);
8368 
8369 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8370 		     (vcpu->arch.apf.gfns[key] != gfn &&
8371 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8372 		key = kvm_async_pf_next_probe(key);
8373 
8374 	return key;
8375 }
8376 
8377 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8378 {
8379 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8380 }
8381 
8382 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8383 {
8384 	u32 i, j, k;
8385 
8386 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8387 	while (true) {
8388 		vcpu->arch.apf.gfns[i] = ~0;
8389 		do {
8390 			j = kvm_async_pf_next_probe(j);
8391 			if (vcpu->arch.apf.gfns[j] == ~0)
8392 				return;
8393 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8394 			/*
8395 			 * k lies cyclically in ]i,j]
8396 			 * |    i.k.j |
8397 			 * |....j i.k.| or  |.k..j i...|
8398 			 */
8399 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8400 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8401 		i = j;
8402 	}
8403 }
8404 
8405 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8406 {
8407 
8408 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8409 				      sizeof(val));
8410 }
8411 
8412 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8413 				     struct kvm_async_pf *work)
8414 {
8415 	struct x86_exception fault;
8416 
8417 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8418 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8419 
8420 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8421 	    (vcpu->arch.apf.send_user_only &&
8422 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8423 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8424 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8425 		fault.vector = PF_VECTOR;
8426 		fault.error_code_valid = true;
8427 		fault.error_code = 0;
8428 		fault.nested_page_fault = false;
8429 		fault.address = work->arch.token;
8430 		kvm_inject_page_fault(vcpu, &fault);
8431 	}
8432 }
8433 
8434 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8435 				 struct kvm_async_pf *work)
8436 {
8437 	struct x86_exception fault;
8438 
8439 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8440 	if (work->wakeup_all)
8441 		work->arch.token = ~0; /* broadcast wakeup */
8442 	else
8443 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8444 
8445 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8446 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8447 		fault.vector = PF_VECTOR;
8448 		fault.error_code_valid = true;
8449 		fault.error_code = 0;
8450 		fault.nested_page_fault = false;
8451 		fault.address = work->arch.token;
8452 		kvm_inject_page_fault(vcpu, &fault);
8453 	}
8454 	vcpu->arch.apf.halted = false;
8455 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8456 }
8457 
8458 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8459 {
8460 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8461 		return true;
8462 	else
8463 		return !kvm_event_needs_reinjection(vcpu) &&
8464 			kvm_x86_ops->interrupt_allowed(vcpu);
8465 }
8466 
8467 void kvm_arch_start_assignment(struct kvm *kvm)
8468 {
8469 	atomic_inc(&kvm->arch.assigned_device_count);
8470 }
8471 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8472 
8473 void kvm_arch_end_assignment(struct kvm *kvm)
8474 {
8475 	atomic_dec(&kvm->arch.assigned_device_count);
8476 }
8477 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8478 
8479 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8480 {
8481 	return atomic_read(&kvm->arch.assigned_device_count);
8482 }
8483 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8484 
8485 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8486 {
8487 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8488 }
8489 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8490 
8491 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8492 {
8493 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8494 }
8495 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8496 
8497 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8498 {
8499 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8500 }
8501 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8502 
8503 bool kvm_arch_has_irq_bypass(void)
8504 {
8505 	return kvm_x86_ops->update_pi_irte != NULL;
8506 }
8507 
8508 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8509 				      struct irq_bypass_producer *prod)
8510 {
8511 	struct kvm_kernel_irqfd *irqfd =
8512 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8513 
8514 	irqfd->producer = prod;
8515 
8516 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8517 					   prod->irq, irqfd->gsi, 1);
8518 }
8519 
8520 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8521 				      struct irq_bypass_producer *prod)
8522 {
8523 	int ret;
8524 	struct kvm_kernel_irqfd *irqfd =
8525 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8526 
8527 	WARN_ON(irqfd->producer != prod);
8528 	irqfd->producer = NULL;
8529 
8530 	/*
8531 	 * When producer of consumer is unregistered, we change back to
8532 	 * remapped mode, so we can re-use the current implementation
8533 	 * when the irq is masked/disabled or the consumer side (KVM
8534 	 * int this case doesn't want to receive the interrupts.
8535 	*/
8536 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8537 	if (ret)
8538 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8539 		       " fails: %d\n", irqfd->consumer.token, ret);
8540 }
8541 
8542 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8543 				   uint32_t guest_irq, bool set)
8544 {
8545 	if (!kvm_x86_ops->update_pi_irte)
8546 		return -EINVAL;
8547 
8548 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8549 }
8550 
8551 bool kvm_vector_hashing_enabled(void)
8552 {
8553 	return vector_hashing;
8554 }
8555 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8556 
8557 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8558 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8559 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8560 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8562 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8563 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8564 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8576