xref: /linux/arch/x86/kvm/x86.c (revision 2c684d892bb2ee31cc48f4a8b91e86a0f15e82f9)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74 
75 #define emul_to_vcpu(ctxt) \
76 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77 
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88 
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95 
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104 
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107 
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117 
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121 
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly backwards_tsc_observed = false;
127 
128 #define KVM_NR_SHARED_MSRS 16
129 
130 struct kvm_shared_msrs_global {
131 	int nr;
132 	u32 msrs[KVM_NR_SHARED_MSRS];
133 };
134 
135 struct kvm_shared_msrs {
136 	struct user_return_notifier urn;
137 	bool registered;
138 	struct kvm_shared_msr_values {
139 		u64 host;
140 		u64 curr;
141 	} values[KVM_NR_SHARED_MSRS];
142 };
143 
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
145 static struct kvm_shared_msrs __percpu *shared_msrs;
146 
147 struct kvm_stats_debugfs_item debugfs_entries[] = {
148 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
149 	{ "pf_guest", VCPU_STAT(pf_guest) },
150 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
151 	{ "invlpg", VCPU_STAT(invlpg) },
152 	{ "exits", VCPU_STAT(exits) },
153 	{ "io_exits", VCPU_STAT(io_exits) },
154 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
155 	{ "signal_exits", VCPU_STAT(signal_exits) },
156 	{ "irq_window", VCPU_STAT(irq_window_exits) },
157 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
158 	{ "halt_exits", VCPU_STAT(halt_exits) },
159 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
160 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
161 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
162 	{ "hypercalls", VCPU_STAT(hypercalls) },
163 	{ "request_irq", VCPU_STAT(request_irq_exits) },
164 	{ "irq_exits", VCPU_STAT(irq_exits) },
165 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
166 	{ "efer_reload", VCPU_STAT(efer_reload) },
167 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
168 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
169 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
170 	{ "irq_injections", VCPU_STAT(irq_injections) },
171 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
172 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
173 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
174 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
175 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
176 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
177 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
178 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
179 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
180 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
181 	{ "largepages", VM_STAT(lpages) },
182 	{ NULL }
183 };
184 
185 u64 __read_mostly host_xcr0;
186 
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
188 
189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
190 {
191 	int i;
192 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
193 		vcpu->arch.apf.gfns[i] = ~0;
194 }
195 
196 static void kvm_on_user_return(struct user_return_notifier *urn)
197 {
198 	unsigned slot;
199 	struct kvm_shared_msrs *locals
200 		= container_of(urn, struct kvm_shared_msrs, urn);
201 	struct kvm_shared_msr_values *values;
202 
203 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
204 		values = &locals->values[slot];
205 		if (values->host != values->curr) {
206 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
207 			values->curr = values->host;
208 		}
209 	}
210 	locals->registered = false;
211 	user_return_notifier_unregister(urn);
212 }
213 
214 static void shared_msr_update(unsigned slot, u32 msr)
215 {
216 	u64 value;
217 	unsigned int cpu = smp_processor_id();
218 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
219 
220 	/* only read, and nobody should modify it at this time,
221 	 * so don't need lock */
222 	if (slot >= shared_msrs_global.nr) {
223 		printk(KERN_ERR "kvm: invalid MSR slot!");
224 		return;
225 	}
226 	rdmsrl_safe(msr, &value);
227 	smsr->values[slot].host = value;
228 	smsr->values[slot].curr = value;
229 }
230 
231 void kvm_define_shared_msr(unsigned slot, u32 msr)
232 {
233 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
234 	shared_msrs_global.msrs[slot] = msr;
235 	if (slot >= shared_msrs_global.nr)
236 		shared_msrs_global.nr = slot + 1;
237 }
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
239 
240 static void kvm_shared_msr_cpu_online(void)
241 {
242 	unsigned i;
243 
244 	for (i = 0; i < shared_msrs_global.nr; ++i)
245 		shared_msr_update(i, shared_msrs_global.msrs[i]);
246 }
247 
248 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
249 {
250 	unsigned int cpu = smp_processor_id();
251 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
252 	int err;
253 
254 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
255 		return 0;
256 	smsr->values[slot].curr = value;
257 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
258 	if (err)
259 		return 1;
260 
261 	if (!smsr->registered) {
262 		smsr->urn.on_user_return = kvm_on_user_return;
263 		user_return_notifier_register(&smsr->urn);
264 		smsr->registered = true;
265 	}
266 	return 0;
267 }
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
269 
270 static void drop_user_return_notifiers(void)
271 {
272 	unsigned int cpu = smp_processor_id();
273 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274 
275 	if (smsr->registered)
276 		kvm_on_user_return(&smsr->urn);
277 }
278 
279 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
280 {
281 	return vcpu->arch.apic_base;
282 }
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
284 
285 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
286 {
287 	u64 old_state = vcpu->arch.apic_base &
288 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
289 	u64 new_state = msr_info->data &
290 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
291 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
292 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
293 
294 	if (!msr_info->host_initiated &&
295 	    ((msr_info->data & reserved_bits) != 0 ||
296 	     new_state == X2APIC_ENABLE ||
297 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
298 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
299 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
300 	      old_state == 0)))
301 		return 1;
302 
303 	kvm_lapic_set_base(vcpu, msr_info->data);
304 	return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
307 
308 asmlinkage __visible void kvm_spurious_fault(void)
309 {
310 	/* Fault while not rebooting.  We want the trace. */
311 	BUG();
312 }
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
314 
315 #define EXCPT_BENIGN		0
316 #define EXCPT_CONTRIBUTORY	1
317 #define EXCPT_PF		2
318 
319 static int exception_class(int vector)
320 {
321 	switch (vector) {
322 	case PF_VECTOR:
323 		return EXCPT_PF;
324 	case DE_VECTOR:
325 	case TS_VECTOR:
326 	case NP_VECTOR:
327 	case SS_VECTOR:
328 	case GP_VECTOR:
329 		return EXCPT_CONTRIBUTORY;
330 	default:
331 		break;
332 	}
333 	return EXCPT_BENIGN;
334 }
335 
336 #define EXCPT_FAULT		0
337 #define EXCPT_TRAP		1
338 #define EXCPT_ABORT		2
339 #define EXCPT_INTERRUPT		3
340 
341 static int exception_type(int vector)
342 {
343 	unsigned int mask;
344 
345 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
346 		return EXCPT_INTERRUPT;
347 
348 	mask = 1 << vector;
349 
350 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
351 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
352 		return EXCPT_TRAP;
353 
354 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
355 		return EXCPT_ABORT;
356 
357 	/* Reserved exceptions will result in fault */
358 	return EXCPT_FAULT;
359 }
360 
361 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
362 		unsigned nr, bool has_error, u32 error_code,
363 		bool reinject)
364 {
365 	u32 prev_nr;
366 	int class1, class2;
367 
368 	kvm_make_request(KVM_REQ_EVENT, vcpu);
369 
370 	if (!vcpu->arch.exception.pending) {
371 	queue:
372 		if (has_error && !is_protmode(vcpu))
373 			has_error = false;
374 		vcpu->arch.exception.pending = true;
375 		vcpu->arch.exception.has_error_code = has_error;
376 		vcpu->arch.exception.nr = nr;
377 		vcpu->arch.exception.error_code = error_code;
378 		vcpu->arch.exception.reinject = reinject;
379 		return;
380 	}
381 
382 	/* to check exception */
383 	prev_nr = vcpu->arch.exception.nr;
384 	if (prev_nr == DF_VECTOR) {
385 		/* triple fault -> shutdown */
386 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
387 		return;
388 	}
389 	class1 = exception_class(prev_nr);
390 	class2 = exception_class(nr);
391 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
392 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
393 		/* generate double fault per SDM Table 5-5 */
394 		vcpu->arch.exception.pending = true;
395 		vcpu->arch.exception.has_error_code = true;
396 		vcpu->arch.exception.nr = DF_VECTOR;
397 		vcpu->arch.exception.error_code = 0;
398 	} else
399 		/* replace previous exception with a new one in a hope
400 		   that instruction re-execution will regenerate lost
401 		   exception */
402 		goto queue;
403 }
404 
405 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
406 {
407 	kvm_multiple_exception(vcpu, nr, false, 0, false);
408 }
409 EXPORT_SYMBOL_GPL(kvm_queue_exception);
410 
411 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
412 {
413 	kvm_multiple_exception(vcpu, nr, false, 0, true);
414 }
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
416 
417 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
418 {
419 	if (err)
420 		kvm_inject_gp(vcpu, 0);
421 	else
422 		kvm_x86_ops->skip_emulated_instruction(vcpu);
423 }
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
425 
426 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 	++vcpu->stat.pf_guest;
429 	vcpu->arch.cr2 = fault->address;
430 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
431 }
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
433 
434 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
435 {
436 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
437 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
438 	else
439 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
440 
441 	return fault->nested_page_fault;
442 }
443 
444 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
445 {
446 	atomic_inc(&vcpu->arch.nmi_queued);
447 	kvm_make_request(KVM_REQ_NMI, vcpu);
448 }
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
450 
451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
452 {
453 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
454 }
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
456 
457 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
458 {
459 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
460 }
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
462 
463 /*
464  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
465  * a #GP and return false.
466  */
467 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
468 {
469 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
470 		return true;
471 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
472 	return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_cpl);
475 
476 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
477 {
478 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
479 		return true;
480 
481 	kvm_queue_exception(vcpu, UD_VECTOR);
482 	return false;
483 }
484 EXPORT_SYMBOL_GPL(kvm_require_dr);
485 
486 /*
487  * This function will be used to read from the physical memory of the currently
488  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489  * can read from guest physical or from the guest's guest physical memory.
490  */
491 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
492 			    gfn_t ngfn, void *data, int offset, int len,
493 			    u32 access)
494 {
495 	struct x86_exception exception;
496 	gfn_t real_gfn;
497 	gpa_t ngpa;
498 
499 	ngpa     = gfn_to_gpa(ngfn);
500 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
501 	if (real_gfn == UNMAPPED_GVA)
502 		return -EFAULT;
503 
504 	real_gfn = gpa_to_gfn(real_gfn);
505 
506 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
507 }
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
509 
510 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
511 			       void *data, int offset, int len, u32 access)
512 {
513 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
514 				       data, offset, len, access);
515 }
516 
517 /*
518  * Load the pae pdptrs.  Return true is they are all valid.
519  */
520 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
521 {
522 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
523 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
524 	int i;
525 	int ret;
526 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
527 
528 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
529 				      offset * sizeof(u64), sizeof(pdpte),
530 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
531 	if (ret < 0) {
532 		ret = 0;
533 		goto out;
534 	}
535 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
536 		if (is_present_gpte(pdpte[i]) &&
537 		    (pdpte[i] &
538 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
539 			ret = 0;
540 			goto out;
541 		}
542 	}
543 	ret = 1;
544 
545 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
546 	__set_bit(VCPU_EXREG_PDPTR,
547 		  (unsigned long *)&vcpu->arch.regs_avail);
548 	__set_bit(VCPU_EXREG_PDPTR,
549 		  (unsigned long *)&vcpu->arch.regs_dirty);
550 out:
551 
552 	return ret;
553 }
554 EXPORT_SYMBOL_GPL(load_pdptrs);
555 
556 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
557 {
558 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
559 	bool changed = true;
560 	int offset;
561 	gfn_t gfn;
562 	int r;
563 
564 	if (is_long_mode(vcpu) || !is_pae(vcpu))
565 		return false;
566 
567 	if (!test_bit(VCPU_EXREG_PDPTR,
568 		      (unsigned long *)&vcpu->arch.regs_avail))
569 		return true;
570 
571 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
572 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
573 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
574 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
575 	if (r < 0)
576 		goto out;
577 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
578 out:
579 
580 	return changed;
581 }
582 
583 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
584 {
585 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
586 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
587 
588 	cr0 |= X86_CR0_ET;
589 
590 #ifdef CONFIG_X86_64
591 	if (cr0 & 0xffffffff00000000UL)
592 		return 1;
593 #endif
594 
595 	cr0 &= ~CR0_RESERVED_BITS;
596 
597 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
598 		return 1;
599 
600 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
601 		return 1;
602 
603 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
604 #ifdef CONFIG_X86_64
605 		if ((vcpu->arch.efer & EFER_LME)) {
606 			int cs_db, cs_l;
607 
608 			if (!is_pae(vcpu))
609 				return 1;
610 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
611 			if (cs_l)
612 				return 1;
613 		} else
614 #endif
615 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616 						 kvm_read_cr3(vcpu)))
617 			return 1;
618 	}
619 
620 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
621 		return 1;
622 
623 	kvm_x86_ops->set_cr0(vcpu, cr0);
624 
625 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
626 		kvm_clear_async_pf_completion_queue(vcpu);
627 		kvm_async_pf_hash_reset(vcpu);
628 	}
629 
630 	if ((cr0 ^ old_cr0) & update_bits)
631 		kvm_mmu_reset_context(vcpu);
632 
633 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
634 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
635 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
636 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
637 
638 	return 0;
639 }
640 EXPORT_SYMBOL_GPL(kvm_set_cr0);
641 
642 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
643 {
644 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
645 }
646 EXPORT_SYMBOL_GPL(kvm_lmsw);
647 
648 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
651 			!vcpu->guest_xcr0_loaded) {
652 		/* kvm_set_xcr() also depends on this */
653 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
654 		vcpu->guest_xcr0_loaded = 1;
655 	}
656 }
657 
658 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
659 {
660 	if (vcpu->guest_xcr0_loaded) {
661 		if (vcpu->arch.xcr0 != host_xcr0)
662 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
663 		vcpu->guest_xcr0_loaded = 0;
664 	}
665 }
666 
667 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669 	u64 xcr0 = xcr;
670 	u64 old_xcr0 = vcpu->arch.xcr0;
671 	u64 valid_bits;
672 
673 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
674 	if (index != XCR_XFEATURE_ENABLED_MASK)
675 		return 1;
676 	if (!(xcr0 & XFEATURE_MASK_FP))
677 		return 1;
678 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
679 		return 1;
680 
681 	/*
682 	 * Do not allow the guest to set bits that we do not support
683 	 * saving.  However, xcr0 bit 0 is always set, even if the
684 	 * emulated CPU does not support XSAVE (see fx_init).
685 	 */
686 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
687 	if (xcr0 & ~valid_bits)
688 		return 1;
689 
690 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
691 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
692 		return 1;
693 
694 	if (xcr0 & XFEATURE_MASK_AVX512) {
695 		if (!(xcr0 & XFEATURE_MASK_YMM))
696 			return 1;
697 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
698 			return 1;
699 	}
700 	kvm_put_guest_xcr0(vcpu);
701 	vcpu->arch.xcr0 = xcr0;
702 
703 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
704 		kvm_update_cpuid(vcpu);
705 	return 0;
706 }
707 
708 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
709 {
710 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
711 	    __kvm_set_xcr(vcpu, index, xcr)) {
712 		kvm_inject_gp(vcpu, 0);
713 		return 1;
714 	}
715 	return 0;
716 }
717 EXPORT_SYMBOL_GPL(kvm_set_xcr);
718 
719 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
720 {
721 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
722 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
723 				   X86_CR4_SMEP | X86_CR4_SMAP;
724 
725 	if (cr4 & CR4_RESERVED_BITS)
726 		return 1;
727 
728 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
729 		return 1;
730 
731 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
732 		return 1;
733 
734 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
735 		return 1;
736 
737 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
738 		return 1;
739 
740 	if (is_long_mode(vcpu)) {
741 		if (!(cr4 & X86_CR4_PAE))
742 			return 1;
743 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
744 		   && ((cr4 ^ old_cr4) & pdptr_bits)
745 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
746 				   kvm_read_cr3(vcpu)))
747 		return 1;
748 
749 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
750 		if (!guest_cpuid_has_pcid(vcpu))
751 			return 1;
752 
753 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
754 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
755 			return 1;
756 	}
757 
758 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
759 		return 1;
760 
761 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
762 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
763 		kvm_mmu_reset_context(vcpu);
764 
765 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
766 		kvm_update_cpuid(vcpu);
767 
768 	return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_cr4);
771 
772 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
773 {
774 #ifdef CONFIG_X86_64
775 	cr3 &= ~CR3_PCID_INVD;
776 #endif
777 
778 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
779 		kvm_mmu_sync_roots(vcpu);
780 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
781 		return 0;
782 	}
783 
784 	if (is_long_mode(vcpu)) {
785 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
786 			return 1;
787 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
788 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
789 		return 1;
790 
791 	vcpu->arch.cr3 = cr3;
792 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
793 	kvm_mmu_new_cr3(vcpu);
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr3);
797 
798 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
799 {
800 	if (cr8 & CR8_RESERVED_BITS)
801 		return 1;
802 	if (lapic_in_kernel(vcpu))
803 		kvm_lapic_set_tpr(vcpu, cr8);
804 	else
805 		vcpu->arch.cr8 = cr8;
806 	return 0;
807 }
808 EXPORT_SYMBOL_GPL(kvm_set_cr8);
809 
810 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
811 {
812 	if (lapic_in_kernel(vcpu))
813 		return kvm_lapic_get_cr8(vcpu);
814 	else
815 		return vcpu->arch.cr8;
816 }
817 EXPORT_SYMBOL_GPL(kvm_get_cr8);
818 
819 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
820 {
821 	int i;
822 
823 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
824 		for (i = 0; i < KVM_NR_DB_REGS; i++)
825 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
826 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
827 	}
828 }
829 
830 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
831 {
832 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
833 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
834 }
835 
836 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
837 {
838 	unsigned long dr7;
839 
840 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
841 		dr7 = vcpu->arch.guest_debug_dr7;
842 	else
843 		dr7 = vcpu->arch.dr7;
844 	kvm_x86_ops->set_dr7(vcpu, dr7);
845 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
846 	if (dr7 & DR7_BP_EN_MASK)
847 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
848 }
849 
850 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
851 {
852 	u64 fixed = DR6_FIXED_1;
853 
854 	if (!guest_cpuid_has_rtm(vcpu))
855 		fixed |= DR6_RTM;
856 	return fixed;
857 }
858 
859 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
860 {
861 	switch (dr) {
862 	case 0 ... 3:
863 		vcpu->arch.db[dr] = val;
864 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865 			vcpu->arch.eff_db[dr] = val;
866 		break;
867 	case 4:
868 		/* fall through */
869 	case 6:
870 		if (val & 0xffffffff00000000ULL)
871 			return -1; /* #GP */
872 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
873 		kvm_update_dr6(vcpu);
874 		break;
875 	case 5:
876 		/* fall through */
877 	default: /* 7 */
878 		if (val & 0xffffffff00000000ULL)
879 			return -1; /* #GP */
880 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
881 		kvm_update_dr7(vcpu);
882 		break;
883 	}
884 
885 	return 0;
886 }
887 
888 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890 	if (__kvm_set_dr(vcpu, dr, val)) {
891 		kvm_inject_gp(vcpu, 0);
892 		return 1;
893 	}
894 	return 0;
895 }
896 EXPORT_SYMBOL_GPL(kvm_set_dr);
897 
898 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
899 {
900 	switch (dr) {
901 	case 0 ... 3:
902 		*val = vcpu->arch.db[dr];
903 		break;
904 	case 4:
905 		/* fall through */
906 	case 6:
907 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
908 			*val = vcpu->arch.dr6;
909 		else
910 			*val = kvm_x86_ops->get_dr6(vcpu);
911 		break;
912 	case 5:
913 		/* fall through */
914 	default: /* 7 */
915 		*val = vcpu->arch.dr7;
916 		break;
917 	}
918 	return 0;
919 }
920 EXPORT_SYMBOL_GPL(kvm_get_dr);
921 
922 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
923 {
924 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
925 	u64 data;
926 	int err;
927 
928 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
929 	if (err)
930 		return err;
931 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
932 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
933 	return err;
934 }
935 EXPORT_SYMBOL_GPL(kvm_rdpmc);
936 
937 /*
938  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
939  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
940  *
941  * This list is modified at module load time to reflect the
942  * capabilities of the host cpu. This capabilities test skips MSRs that are
943  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
944  * may depend on host virtualization features rather than host cpu features.
945  */
946 
947 static u32 msrs_to_save[] = {
948 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
949 	MSR_STAR,
950 #ifdef CONFIG_X86_64
951 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
952 #endif
953 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
954 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
955 };
956 
957 static unsigned num_msrs_to_save;
958 
959 static u32 emulated_msrs[] = {
960 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
961 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
962 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
963 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
964 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
965 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
966 	HV_X64_MSR_RESET,
967 	HV_X64_MSR_VP_INDEX,
968 	HV_X64_MSR_VP_RUNTIME,
969 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
970 	MSR_KVM_PV_EOI_EN,
971 
972 	MSR_IA32_TSC_ADJUST,
973 	MSR_IA32_TSCDEADLINE,
974 	MSR_IA32_MISC_ENABLE,
975 	MSR_IA32_MCG_STATUS,
976 	MSR_IA32_MCG_CTL,
977 	MSR_IA32_SMBASE,
978 };
979 
980 static unsigned num_emulated_msrs;
981 
982 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
983 {
984 	if (efer & efer_reserved_bits)
985 		return false;
986 
987 	if (efer & EFER_FFXSR) {
988 		struct kvm_cpuid_entry2 *feat;
989 
990 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
991 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
992 			return false;
993 	}
994 
995 	if (efer & EFER_SVME) {
996 		struct kvm_cpuid_entry2 *feat;
997 
998 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1000 			return false;
1001 	}
1002 
1003 	return true;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1006 
1007 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1008 {
1009 	u64 old_efer = vcpu->arch.efer;
1010 
1011 	if (!kvm_valid_efer(vcpu, efer))
1012 		return 1;
1013 
1014 	if (is_paging(vcpu)
1015 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1016 		return 1;
1017 
1018 	efer &= ~EFER_LMA;
1019 	efer |= vcpu->arch.efer & EFER_LMA;
1020 
1021 	kvm_x86_ops->set_efer(vcpu, efer);
1022 
1023 	/* Update reserved bits */
1024 	if ((efer ^ old_efer) & EFER_NX)
1025 		kvm_mmu_reset_context(vcpu);
1026 
1027 	return 0;
1028 }
1029 
1030 void kvm_enable_efer_bits(u64 mask)
1031 {
1032        efer_reserved_bits &= ~mask;
1033 }
1034 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1035 
1036 /*
1037  * Writes msr value into into the appropriate "register".
1038  * Returns 0 on success, non-0 otherwise.
1039  * Assumes vcpu_load() was already called.
1040  */
1041 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1042 {
1043 	switch (msr->index) {
1044 	case MSR_FS_BASE:
1045 	case MSR_GS_BASE:
1046 	case MSR_KERNEL_GS_BASE:
1047 	case MSR_CSTAR:
1048 	case MSR_LSTAR:
1049 		if (is_noncanonical_address(msr->data))
1050 			return 1;
1051 		break;
1052 	case MSR_IA32_SYSENTER_EIP:
1053 	case MSR_IA32_SYSENTER_ESP:
1054 		/*
1055 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1056 		 * non-canonical address is written on Intel but not on
1057 		 * AMD (which ignores the top 32-bits, because it does
1058 		 * not implement 64-bit SYSENTER).
1059 		 *
1060 		 * 64-bit code should hence be able to write a non-canonical
1061 		 * value on AMD.  Making the address canonical ensures that
1062 		 * vmentry does not fail on Intel after writing a non-canonical
1063 		 * value, and that something deterministic happens if the guest
1064 		 * invokes 64-bit SYSENTER.
1065 		 */
1066 		msr->data = get_canonical(msr->data);
1067 	}
1068 	return kvm_x86_ops->set_msr(vcpu, msr);
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_set_msr);
1071 
1072 /*
1073  * Adapt set_msr() to msr_io()'s calling convention
1074  */
1075 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1076 {
1077 	struct msr_data msr;
1078 	int r;
1079 
1080 	msr.index = index;
1081 	msr.host_initiated = true;
1082 	r = kvm_get_msr(vcpu, &msr);
1083 	if (r)
1084 		return r;
1085 
1086 	*data = msr.data;
1087 	return 0;
1088 }
1089 
1090 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1091 {
1092 	struct msr_data msr;
1093 
1094 	msr.data = *data;
1095 	msr.index = index;
1096 	msr.host_initiated = true;
1097 	return kvm_set_msr(vcpu, &msr);
1098 }
1099 
1100 #ifdef CONFIG_X86_64
1101 struct pvclock_gtod_data {
1102 	seqcount_t	seq;
1103 
1104 	struct { /* extract of a clocksource struct */
1105 		int vclock_mode;
1106 		cycle_t	cycle_last;
1107 		cycle_t	mask;
1108 		u32	mult;
1109 		u32	shift;
1110 	} clock;
1111 
1112 	u64		boot_ns;
1113 	u64		nsec_base;
1114 };
1115 
1116 static struct pvclock_gtod_data pvclock_gtod_data;
1117 
1118 static void update_pvclock_gtod(struct timekeeper *tk)
1119 {
1120 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1121 	u64 boot_ns;
1122 
1123 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1124 
1125 	write_seqcount_begin(&vdata->seq);
1126 
1127 	/* copy pvclock gtod data */
1128 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1129 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1130 	vdata->clock.mask		= tk->tkr_mono.mask;
1131 	vdata->clock.mult		= tk->tkr_mono.mult;
1132 	vdata->clock.shift		= tk->tkr_mono.shift;
1133 
1134 	vdata->boot_ns			= boot_ns;
1135 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1136 
1137 	write_seqcount_end(&vdata->seq);
1138 }
1139 #endif
1140 
1141 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1142 {
1143 	/*
1144 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1145 	 * vcpu_enter_guest.  This function is only called from
1146 	 * the physical CPU that is running vcpu.
1147 	 */
1148 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1149 }
1150 
1151 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1152 {
1153 	int version;
1154 	int r;
1155 	struct pvclock_wall_clock wc;
1156 	struct timespec boot;
1157 
1158 	if (!wall_clock)
1159 		return;
1160 
1161 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1162 	if (r)
1163 		return;
1164 
1165 	if (version & 1)
1166 		++version;  /* first time write, random junk */
1167 
1168 	++version;
1169 
1170 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1171 
1172 	/*
1173 	 * The guest calculates current wall clock time by adding
1174 	 * system time (updated by kvm_guest_time_update below) to the
1175 	 * wall clock specified here.  guest system time equals host
1176 	 * system time for us, thus we must fill in host boot time here.
1177 	 */
1178 	getboottime(&boot);
1179 
1180 	if (kvm->arch.kvmclock_offset) {
1181 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1182 		boot = timespec_sub(boot, ts);
1183 	}
1184 	wc.sec = boot.tv_sec;
1185 	wc.nsec = boot.tv_nsec;
1186 	wc.version = version;
1187 
1188 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1189 
1190 	version++;
1191 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1192 }
1193 
1194 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1195 {
1196 	uint32_t quotient, remainder;
1197 
1198 	/* Don't try to replace with do_div(), this one calculates
1199 	 * "(dividend << 32) / divisor" */
1200 	__asm__ ( "divl %4"
1201 		  : "=a" (quotient), "=d" (remainder)
1202 		  : "0" (0), "1" (dividend), "r" (divisor) );
1203 	return quotient;
1204 }
1205 
1206 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1207 			       s8 *pshift, u32 *pmultiplier)
1208 {
1209 	uint64_t scaled64;
1210 	int32_t  shift = 0;
1211 	uint64_t tps64;
1212 	uint32_t tps32;
1213 
1214 	tps64 = base_khz * 1000LL;
1215 	scaled64 = scaled_khz * 1000LL;
1216 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1217 		tps64 >>= 1;
1218 		shift--;
1219 	}
1220 
1221 	tps32 = (uint32_t)tps64;
1222 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1223 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1224 			scaled64 >>= 1;
1225 		else
1226 			tps32 <<= 1;
1227 		shift++;
1228 	}
1229 
1230 	*pshift = shift;
1231 	*pmultiplier = div_frac(scaled64, tps32);
1232 
1233 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1234 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1235 }
1236 
1237 #ifdef CONFIG_X86_64
1238 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1239 #endif
1240 
1241 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1242 static unsigned long max_tsc_khz;
1243 
1244 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1245 {
1246 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1247 				   vcpu->arch.virtual_tsc_shift);
1248 }
1249 
1250 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1251 {
1252 	u64 v = (u64)khz * (1000000 + ppm);
1253 	do_div(v, 1000000);
1254 	return v;
1255 }
1256 
1257 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1258 {
1259 	u64 ratio;
1260 
1261 	/* Guest TSC same frequency as host TSC? */
1262 	if (!scale) {
1263 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1264 		return 0;
1265 	}
1266 
1267 	/* TSC scaling supported? */
1268 	if (!kvm_has_tsc_control) {
1269 		if (user_tsc_khz > tsc_khz) {
1270 			vcpu->arch.tsc_catchup = 1;
1271 			vcpu->arch.tsc_always_catchup = 1;
1272 			return 0;
1273 		} else {
1274 			WARN(1, "user requested TSC rate below hardware speed\n");
1275 			return -1;
1276 		}
1277 	}
1278 
1279 	/* TSC scaling required  - calculate ratio */
1280 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1281 				user_tsc_khz, tsc_khz);
1282 
1283 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1284 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1285 			  user_tsc_khz);
1286 		return -1;
1287 	}
1288 
1289 	vcpu->arch.tsc_scaling_ratio = ratio;
1290 	return 0;
1291 }
1292 
1293 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1294 {
1295 	u32 thresh_lo, thresh_hi;
1296 	int use_scaling = 0;
1297 
1298 	/* tsc_khz can be zero if TSC calibration fails */
1299 	if (this_tsc_khz == 0) {
1300 		/* set tsc_scaling_ratio to a safe value */
1301 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1302 		return -1;
1303 	}
1304 
1305 	/* Compute a scale to convert nanoseconds in TSC cycles */
1306 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1307 			   &vcpu->arch.virtual_tsc_shift,
1308 			   &vcpu->arch.virtual_tsc_mult);
1309 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1310 
1311 	/*
1312 	 * Compute the variation in TSC rate which is acceptable
1313 	 * within the range of tolerance and decide if the
1314 	 * rate being applied is within that bounds of the hardware
1315 	 * rate.  If so, no scaling or compensation need be done.
1316 	 */
1317 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1318 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1319 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1320 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1321 		use_scaling = 1;
1322 	}
1323 	return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1324 }
1325 
1326 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1327 {
1328 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1329 				      vcpu->arch.virtual_tsc_mult,
1330 				      vcpu->arch.virtual_tsc_shift);
1331 	tsc += vcpu->arch.this_tsc_write;
1332 	return tsc;
1333 }
1334 
1335 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1336 {
1337 #ifdef CONFIG_X86_64
1338 	bool vcpus_matched;
1339 	struct kvm_arch *ka = &vcpu->kvm->arch;
1340 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1341 
1342 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1343 			 atomic_read(&vcpu->kvm->online_vcpus));
1344 
1345 	/*
1346 	 * Once the masterclock is enabled, always perform request in
1347 	 * order to update it.
1348 	 *
1349 	 * In order to enable masterclock, the host clocksource must be TSC
1350 	 * and the vcpus need to have matched TSCs.  When that happens,
1351 	 * perform request to enable masterclock.
1352 	 */
1353 	if (ka->use_master_clock ||
1354 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1355 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1356 
1357 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1358 			    atomic_read(&vcpu->kvm->online_vcpus),
1359 		            ka->use_master_clock, gtod->clock.vclock_mode);
1360 #endif
1361 }
1362 
1363 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1364 {
1365 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1366 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1367 }
1368 
1369 /*
1370  * Multiply tsc by a fixed point number represented by ratio.
1371  *
1372  * The most significant 64-N bits (mult) of ratio represent the
1373  * integral part of the fixed point number; the remaining N bits
1374  * (frac) represent the fractional part, ie. ratio represents a fixed
1375  * point number (mult + frac * 2^(-N)).
1376  *
1377  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1378  */
1379 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1380 {
1381 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1382 }
1383 
1384 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1385 {
1386 	u64 _tsc = tsc;
1387 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1388 
1389 	if (ratio != kvm_default_tsc_scaling_ratio)
1390 		_tsc = __scale_tsc(ratio, tsc);
1391 
1392 	return _tsc;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1395 
1396 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1397 {
1398 	u64 tsc;
1399 
1400 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1401 
1402 	return target_tsc - tsc;
1403 }
1404 
1405 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1406 {
1407 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1408 }
1409 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1410 
1411 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1412 {
1413 	struct kvm *kvm = vcpu->kvm;
1414 	u64 offset, ns, elapsed;
1415 	unsigned long flags;
1416 	s64 usdiff;
1417 	bool matched;
1418 	bool already_matched;
1419 	u64 data = msr->data;
1420 
1421 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1422 	offset = kvm_compute_tsc_offset(vcpu, data);
1423 	ns = get_kernel_ns();
1424 	elapsed = ns - kvm->arch.last_tsc_nsec;
1425 
1426 	if (vcpu->arch.virtual_tsc_khz) {
1427 		int faulted = 0;
1428 
1429 		/* n.b - signed multiplication and division required */
1430 		usdiff = data - kvm->arch.last_tsc_write;
1431 #ifdef CONFIG_X86_64
1432 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1433 #else
1434 		/* do_div() only does unsigned */
1435 		asm("1: idivl %[divisor]\n"
1436 		    "2: xor %%edx, %%edx\n"
1437 		    "   movl $0, %[faulted]\n"
1438 		    "3:\n"
1439 		    ".section .fixup,\"ax\"\n"
1440 		    "4: movl $1, %[faulted]\n"
1441 		    "   jmp  3b\n"
1442 		    ".previous\n"
1443 
1444 		_ASM_EXTABLE(1b, 4b)
1445 
1446 		: "=A"(usdiff), [faulted] "=r" (faulted)
1447 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1448 
1449 #endif
1450 		do_div(elapsed, 1000);
1451 		usdiff -= elapsed;
1452 		if (usdiff < 0)
1453 			usdiff = -usdiff;
1454 
1455 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1456 		if (faulted)
1457 			usdiff = USEC_PER_SEC;
1458 	} else
1459 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1460 
1461 	/*
1462 	 * Special case: TSC write with a small delta (1 second) of virtual
1463 	 * cycle time against real time is interpreted as an attempt to
1464 	 * synchronize the CPU.
1465          *
1466 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1467 	 * TSC, we add elapsed time in this computation.  We could let the
1468 	 * compensation code attempt to catch up if we fall behind, but
1469 	 * it's better to try to match offsets from the beginning.
1470          */
1471 	if (usdiff < USEC_PER_SEC &&
1472 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1473 		if (!check_tsc_unstable()) {
1474 			offset = kvm->arch.cur_tsc_offset;
1475 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1476 		} else {
1477 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1478 			data += delta;
1479 			offset = kvm_compute_tsc_offset(vcpu, data);
1480 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1481 		}
1482 		matched = true;
1483 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1484 	} else {
1485 		/*
1486 		 * We split periods of matched TSC writes into generations.
1487 		 * For each generation, we track the original measured
1488 		 * nanosecond time, offset, and write, so if TSCs are in
1489 		 * sync, we can match exact offset, and if not, we can match
1490 		 * exact software computation in compute_guest_tsc()
1491 		 *
1492 		 * These values are tracked in kvm->arch.cur_xxx variables.
1493 		 */
1494 		kvm->arch.cur_tsc_generation++;
1495 		kvm->arch.cur_tsc_nsec = ns;
1496 		kvm->arch.cur_tsc_write = data;
1497 		kvm->arch.cur_tsc_offset = offset;
1498 		matched = false;
1499 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1500 			 kvm->arch.cur_tsc_generation, data);
1501 	}
1502 
1503 	/*
1504 	 * We also track th most recent recorded KHZ, write and time to
1505 	 * allow the matching interval to be extended at each write.
1506 	 */
1507 	kvm->arch.last_tsc_nsec = ns;
1508 	kvm->arch.last_tsc_write = data;
1509 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1510 
1511 	vcpu->arch.last_guest_tsc = data;
1512 
1513 	/* Keep track of which generation this VCPU has synchronized to */
1514 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1515 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1516 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1517 
1518 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1519 		update_ia32_tsc_adjust_msr(vcpu, offset);
1520 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1521 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1522 
1523 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1524 	if (!matched) {
1525 		kvm->arch.nr_vcpus_matched_tsc = 0;
1526 	} else if (!already_matched) {
1527 		kvm->arch.nr_vcpus_matched_tsc++;
1528 	}
1529 
1530 	kvm_track_tsc_matching(vcpu);
1531 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1532 }
1533 
1534 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1535 
1536 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1537 					   s64 adjustment)
1538 {
1539 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1540 }
1541 
1542 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1543 {
1544 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1545 		WARN_ON(adjustment < 0);
1546 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1547 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1548 }
1549 
1550 #ifdef CONFIG_X86_64
1551 
1552 static cycle_t read_tsc(void)
1553 {
1554 	cycle_t ret = (cycle_t)rdtsc_ordered();
1555 	u64 last = pvclock_gtod_data.clock.cycle_last;
1556 
1557 	if (likely(ret >= last))
1558 		return ret;
1559 
1560 	/*
1561 	 * GCC likes to generate cmov here, but this branch is extremely
1562 	 * predictable (it's just a funciton of time and the likely is
1563 	 * very likely) and there's a data dependence, so force GCC
1564 	 * to generate a branch instead.  I don't barrier() because
1565 	 * we don't actually need a barrier, and if this function
1566 	 * ever gets inlined it will generate worse code.
1567 	 */
1568 	asm volatile ("");
1569 	return last;
1570 }
1571 
1572 static inline u64 vgettsc(cycle_t *cycle_now)
1573 {
1574 	long v;
1575 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1576 
1577 	*cycle_now = read_tsc();
1578 
1579 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1580 	return v * gtod->clock.mult;
1581 }
1582 
1583 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1584 {
1585 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1586 	unsigned long seq;
1587 	int mode;
1588 	u64 ns;
1589 
1590 	do {
1591 		seq = read_seqcount_begin(&gtod->seq);
1592 		mode = gtod->clock.vclock_mode;
1593 		ns = gtod->nsec_base;
1594 		ns += vgettsc(cycle_now);
1595 		ns >>= gtod->clock.shift;
1596 		ns += gtod->boot_ns;
1597 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1598 	*t = ns;
1599 
1600 	return mode;
1601 }
1602 
1603 /* returns true if host is using tsc clocksource */
1604 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1605 {
1606 	/* checked again under seqlock below */
1607 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1608 		return false;
1609 
1610 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1611 }
1612 #endif
1613 
1614 /*
1615  *
1616  * Assuming a stable TSC across physical CPUS, and a stable TSC
1617  * across virtual CPUs, the following condition is possible.
1618  * Each numbered line represents an event visible to both
1619  * CPUs at the next numbered event.
1620  *
1621  * "timespecX" represents host monotonic time. "tscX" represents
1622  * RDTSC value.
1623  *
1624  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1625  *
1626  * 1.  read timespec0,tsc0
1627  * 2.					| timespec1 = timespec0 + N
1628  * 					| tsc1 = tsc0 + M
1629  * 3. transition to guest		| transition to guest
1630  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1631  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1632  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1633  *
1634  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1635  *
1636  * 	- ret0 < ret1
1637  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1638  *		...
1639  *	- 0 < N - M => M < N
1640  *
1641  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1642  * always the case (the difference between two distinct xtime instances
1643  * might be smaller then the difference between corresponding TSC reads,
1644  * when updating guest vcpus pvclock areas).
1645  *
1646  * To avoid that problem, do not allow visibility of distinct
1647  * system_timestamp/tsc_timestamp values simultaneously: use a master
1648  * copy of host monotonic time values. Update that master copy
1649  * in lockstep.
1650  *
1651  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1652  *
1653  */
1654 
1655 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1656 {
1657 #ifdef CONFIG_X86_64
1658 	struct kvm_arch *ka = &kvm->arch;
1659 	int vclock_mode;
1660 	bool host_tsc_clocksource, vcpus_matched;
1661 
1662 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1663 			atomic_read(&kvm->online_vcpus));
1664 
1665 	/*
1666 	 * If the host uses TSC clock, then passthrough TSC as stable
1667 	 * to the guest.
1668 	 */
1669 	host_tsc_clocksource = kvm_get_time_and_clockread(
1670 					&ka->master_kernel_ns,
1671 					&ka->master_cycle_now);
1672 
1673 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1674 				&& !backwards_tsc_observed
1675 				&& !ka->boot_vcpu_runs_old_kvmclock;
1676 
1677 	if (ka->use_master_clock)
1678 		atomic_set(&kvm_guest_has_master_clock, 1);
1679 
1680 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1681 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1682 					vcpus_matched);
1683 #endif
1684 }
1685 
1686 static void kvm_gen_update_masterclock(struct kvm *kvm)
1687 {
1688 #ifdef CONFIG_X86_64
1689 	int i;
1690 	struct kvm_vcpu *vcpu;
1691 	struct kvm_arch *ka = &kvm->arch;
1692 
1693 	spin_lock(&ka->pvclock_gtod_sync_lock);
1694 	kvm_make_mclock_inprogress_request(kvm);
1695 	/* no guest entries from this point */
1696 	pvclock_update_vm_gtod_copy(kvm);
1697 
1698 	kvm_for_each_vcpu(i, vcpu, kvm)
1699 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1700 
1701 	/* guest entries allowed */
1702 	kvm_for_each_vcpu(i, vcpu, kvm)
1703 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1704 
1705 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1706 #endif
1707 }
1708 
1709 static int kvm_guest_time_update(struct kvm_vcpu *v)
1710 {
1711 	unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1712 	struct kvm_vcpu_arch *vcpu = &v->arch;
1713 	struct kvm_arch *ka = &v->kvm->arch;
1714 	s64 kernel_ns;
1715 	u64 tsc_timestamp, host_tsc;
1716 	struct pvclock_vcpu_time_info guest_hv_clock;
1717 	u8 pvclock_flags;
1718 	bool use_master_clock;
1719 
1720 	kernel_ns = 0;
1721 	host_tsc = 0;
1722 
1723 	/*
1724 	 * If the host uses TSC clock, then passthrough TSC as stable
1725 	 * to the guest.
1726 	 */
1727 	spin_lock(&ka->pvclock_gtod_sync_lock);
1728 	use_master_clock = ka->use_master_clock;
1729 	if (use_master_clock) {
1730 		host_tsc = ka->master_cycle_now;
1731 		kernel_ns = ka->master_kernel_ns;
1732 	}
1733 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1734 
1735 	/* Keep irq disabled to prevent changes to the clock */
1736 	local_irq_save(flags);
1737 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1738 	if (unlikely(this_tsc_khz == 0)) {
1739 		local_irq_restore(flags);
1740 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1741 		return 1;
1742 	}
1743 	if (!use_master_clock) {
1744 		host_tsc = rdtsc();
1745 		kernel_ns = get_kernel_ns();
1746 	}
1747 
1748 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1749 
1750 	/*
1751 	 * We may have to catch up the TSC to match elapsed wall clock
1752 	 * time for two reasons, even if kvmclock is used.
1753 	 *   1) CPU could have been running below the maximum TSC rate
1754 	 *   2) Broken TSC compensation resets the base at each VCPU
1755 	 *      entry to avoid unknown leaps of TSC even when running
1756 	 *      again on the same CPU.  This may cause apparent elapsed
1757 	 *      time to disappear, and the guest to stand still or run
1758 	 *	very slowly.
1759 	 */
1760 	if (vcpu->tsc_catchup) {
1761 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1762 		if (tsc > tsc_timestamp) {
1763 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1764 			tsc_timestamp = tsc;
1765 		}
1766 	}
1767 
1768 	local_irq_restore(flags);
1769 
1770 	if (!vcpu->pv_time_enabled)
1771 		return 0;
1772 
1773 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1774 		tgt_tsc_khz = kvm_has_tsc_control ?
1775 			vcpu->virtual_tsc_khz : this_tsc_khz;
1776 		kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1777 				   &vcpu->hv_clock.tsc_shift,
1778 				   &vcpu->hv_clock.tsc_to_system_mul);
1779 		vcpu->hw_tsc_khz = this_tsc_khz;
1780 	}
1781 
1782 	/* With all the info we got, fill in the values */
1783 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1784 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1785 	vcpu->last_guest_tsc = tsc_timestamp;
1786 
1787 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1788 		&guest_hv_clock, sizeof(guest_hv_clock))))
1789 		return 0;
1790 
1791 	/* This VCPU is paused, but it's legal for a guest to read another
1792 	 * VCPU's kvmclock, so we really have to follow the specification where
1793 	 * it says that version is odd if data is being modified, and even after
1794 	 * it is consistent.
1795 	 *
1796 	 * Version field updates must be kept separate.  This is because
1797 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1798 	 * writes within a string instruction are weakly ordered.  So there
1799 	 * are three writes overall.
1800 	 *
1801 	 * As a small optimization, only write the version field in the first
1802 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1803 	 * version field is the first in the struct.
1804 	 */
1805 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1806 
1807 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1808 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1809 				&vcpu->hv_clock,
1810 				sizeof(vcpu->hv_clock.version));
1811 
1812 	smp_wmb();
1813 
1814 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1815 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1816 
1817 	if (vcpu->pvclock_set_guest_stopped_request) {
1818 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1819 		vcpu->pvclock_set_guest_stopped_request = false;
1820 	}
1821 
1822 	/* If the host uses TSC clocksource, then it is stable */
1823 	if (use_master_clock)
1824 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1825 
1826 	vcpu->hv_clock.flags = pvclock_flags;
1827 
1828 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1829 
1830 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1831 				&vcpu->hv_clock,
1832 				sizeof(vcpu->hv_clock));
1833 
1834 	smp_wmb();
1835 
1836 	vcpu->hv_clock.version++;
1837 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1838 				&vcpu->hv_clock,
1839 				sizeof(vcpu->hv_clock.version));
1840 	return 0;
1841 }
1842 
1843 /*
1844  * kvmclock updates which are isolated to a given vcpu, such as
1845  * vcpu->cpu migration, should not allow system_timestamp from
1846  * the rest of the vcpus to remain static. Otherwise ntp frequency
1847  * correction applies to one vcpu's system_timestamp but not
1848  * the others.
1849  *
1850  * So in those cases, request a kvmclock update for all vcpus.
1851  * We need to rate-limit these requests though, as they can
1852  * considerably slow guests that have a large number of vcpus.
1853  * The time for a remote vcpu to update its kvmclock is bound
1854  * by the delay we use to rate-limit the updates.
1855  */
1856 
1857 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1858 
1859 static void kvmclock_update_fn(struct work_struct *work)
1860 {
1861 	int i;
1862 	struct delayed_work *dwork = to_delayed_work(work);
1863 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1864 					   kvmclock_update_work);
1865 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1866 	struct kvm_vcpu *vcpu;
1867 
1868 	kvm_for_each_vcpu(i, vcpu, kvm) {
1869 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1870 		kvm_vcpu_kick(vcpu);
1871 	}
1872 }
1873 
1874 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1875 {
1876 	struct kvm *kvm = v->kvm;
1877 
1878 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1879 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1880 					KVMCLOCK_UPDATE_DELAY);
1881 }
1882 
1883 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1884 
1885 static void kvmclock_sync_fn(struct work_struct *work)
1886 {
1887 	struct delayed_work *dwork = to_delayed_work(work);
1888 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1889 					   kvmclock_sync_work);
1890 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1891 
1892 	if (!kvmclock_periodic_sync)
1893 		return;
1894 
1895 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1896 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1897 					KVMCLOCK_SYNC_PERIOD);
1898 }
1899 
1900 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1901 {
1902 	u64 mcg_cap = vcpu->arch.mcg_cap;
1903 	unsigned bank_num = mcg_cap & 0xff;
1904 
1905 	switch (msr) {
1906 	case MSR_IA32_MCG_STATUS:
1907 		vcpu->arch.mcg_status = data;
1908 		break;
1909 	case MSR_IA32_MCG_CTL:
1910 		if (!(mcg_cap & MCG_CTL_P))
1911 			return 1;
1912 		if (data != 0 && data != ~(u64)0)
1913 			return -1;
1914 		vcpu->arch.mcg_ctl = data;
1915 		break;
1916 	default:
1917 		if (msr >= MSR_IA32_MC0_CTL &&
1918 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1919 			u32 offset = msr - MSR_IA32_MC0_CTL;
1920 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1921 			 * some Linux kernels though clear bit 10 in bank 4 to
1922 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1923 			 * this to avoid an uncatched #GP in the guest
1924 			 */
1925 			if ((offset & 0x3) == 0 &&
1926 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1927 				return -1;
1928 			vcpu->arch.mce_banks[offset] = data;
1929 			break;
1930 		}
1931 		return 1;
1932 	}
1933 	return 0;
1934 }
1935 
1936 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1937 {
1938 	struct kvm *kvm = vcpu->kvm;
1939 	int lm = is_long_mode(vcpu);
1940 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1941 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1942 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1943 		: kvm->arch.xen_hvm_config.blob_size_32;
1944 	u32 page_num = data & ~PAGE_MASK;
1945 	u64 page_addr = data & PAGE_MASK;
1946 	u8 *page;
1947 	int r;
1948 
1949 	r = -E2BIG;
1950 	if (page_num >= blob_size)
1951 		goto out;
1952 	r = -ENOMEM;
1953 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1954 	if (IS_ERR(page)) {
1955 		r = PTR_ERR(page);
1956 		goto out;
1957 	}
1958 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1959 		goto out_free;
1960 	r = 0;
1961 out_free:
1962 	kfree(page);
1963 out:
1964 	return r;
1965 }
1966 
1967 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1968 {
1969 	gpa_t gpa = data & ~0x3f;
1970 
1971 	/* Bits 2:5 are reserved, Should be zero */
1972 	if (data & 0x3c)
1973 		return 1;
1974 
1975 	vcpu->arch.apf.msr_val = data;
1976 
1977 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1978 		kvm_clear_async_pf_completion_queue(vcpu);
1979 		kvm_async_pf_hash_reset(vcpu);
1980 		return 0;
1981 	}
1982 
1983 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1984 					sizeof(u32)))
1985 		return 1;
1986 
1987 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1988 	kvm_async_pf_wakeup_all(vcpu);
1989 	return 0;
1990 }
1991 
1992 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1993 {
1994 	vcpu->arch.pv_time_enabled = false;
1995 }
1996 
1997 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1998 {
1999 	u64 delta;
2000 
2001 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2002 		return;
2003 
2004 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2005 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2006 	vcpu->arch.st.accum_steal = delta;
2007 }
2008 
2009 static void record_steal_time(struct kvm_vcpu *vcpu)
2010 {
2011 	accumulate_steal_time(vcpu);
2012 
2013 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2014 		return;
2015 
2016 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2017 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2018 		return;
2019 
2020 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2021 	vcpu->arch.st.steal.version += 2;
2022 	vcpu->arch.st.accum_steal = 0;
2023 
2024 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2025 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2026 }
2027 
2028 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2029 {
2030 	bool pr = false;
2031 	u32 msr = msr_info->index;
2032 	u64 data = msr_info->data;
2033 
2034 	switch (msr) {
2035 	case MSR_AMD64_NB_CFG:
2036 	case MSR_IA32_UCODE_REV:
2037 	case MSR_IA32_UCODE_WRITE:
2038 	case MSR_VM_HSAVE_PA:
2039 	case MSR_AMD64_PATCH_LOADER:
2040 	case MSR_AMD64_BU_CFG2:
2041 		break;
2042 
2043 	case MSR_EFER:
2044 		return set_efer(vcpu, data);
2045 	case MSR_K7_HWCR:
2046 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2047 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2048 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2049 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2050 		if (data != 0) {
2051 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2052 				    data);
2053 			return 1;
2054 		}
2055 		break;
2056 	case MSR_FAM10H_MMIO_CONF_BASE:
2057 		if (data != 0) {
2058 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2059 				    "0x%llx\n", data);
2060 			return 1;
2061 		}
2062 		break;
2063 	case MSR_IA32_DEBUGCTLMSR:
2064 		if (!data) {
2065 			/* We support the non-activated case already */
2066 			break;
2067 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2068 			/* Values other than LBR and BTF are vendor-specific,
2069 			   thus reserved and should throw a #GP */
2070 			return 1;
2071 		}
2072 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2073 			    __func__, data);
2074 		break;
2075 	case 0x200 ... 0x2ff:
2076 		return kvm_mtrr_set_msr(vcpu, msr, data);
2077 	case MSR_IA32_APICBASE:
2078 		return kvm_set_apic_base(vcpu, msr_info);
2079 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2080 		return kvm_x2apic_msr_write(vcpu, msr, data);
2081 	case MSR_IA32_TSCDEADLINE:
2082 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2083 		break;
2084 	case MSR_IA32_TSC_ADJUST:
2085 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2086 			if (!msr_info->host_initiated) {
2087 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2088 				adjust_tsc_offset_guest(vcpu, adj);
2089 			}
2090 			vcpu->arch.ia32_tsc_adjust_msr = data;
2091 		}
2092 		break;
2093 	case MSR_IA32_MISC_ENABLE:
2094 		vcpu->arch.ia32_misc_enable_msr = data;
2095 		break;
2096 	case MSR_IA32_SMBASE:
2097 		if (!msr_info->host_initiated)
2098 			return 1;
2099 		vcpu->arch.smbase = data;
2100 		break;
2101 	case MSR_KVM_WALL_CLOCK_NEW:
2102 	case MSR_KVM_WALL_CLOCK:
2103 		vcpu->kvm->arch.wall_clock = data;
2104 		kvm_write_wall_clock(vcpu->kvm, data);
2105 		break;
2106 	case MSR_KVM_SYSTEM_TIME_NEW:
2107 	case MSR_KVM_SYSTEM_TIME: {
2108 		u64 gpa_offset;
2109 		struct kvm_arch *ka = &vcpu->kvm->arch;
2110 
2111 		kvmclock_reset(vcpu);
2112 
2113 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2114 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2115 
2116 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2117 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2118 					&vcpu->requests);
2119 
2120 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2121 		}
2122 
2123 		vcpu->arch.time = data;
2124 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2125 
2126 		/* we verify if the enable bit is set... */
2127 		if (!(data & 1))
2128 			break;
2129 
2130 		gpa_offset = data & ~(PAGE_MASK | 1);
2131 
2132 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2133 		     &vcpu->arch.pv_time, data & ~1ULL,
2134 		     sizeof(struct pvclock_vcpu_time_info)))
2135 			vcpu->arch.pv_time_enabled = false;
2136 		else
2137 			vcpu->arch.pv_time_enabled = true;
2138 
2139 		break;
2140 	}
2141 	case MSR_KVM_ASYNC_PF_EN:
2142 		if (kvm_pv_enable_async_pf(vcpu, data))
2143 			return 1;
2144 		break;
2145 	case MSR_KVM_STEAL_TIME:
2146 
2147 		if (unlikely(!sched_info_on()))
2148 			return 1;
2149 
2150 		if (data & KVM_STEAL_RESERVED_MASK)
2151 			return 1;
2152 
2153 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2154 						data & KVM_STEAL_VALID_BITS,
2155 						sizeof(struct kvm_steal_time)))
2156 			return 1;
2157 
2158 		vcpu->arch.st.msr_val = data;
2159 
2160 		if (!(data & KVM_MSR_ENABLED))
2161 			break;
2162 
2163 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2164 
2165 		break;
2166 	case MSR_KVM_PV_EOI_EN:
2167 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2168 			return 1;
2169 		break;
2170 
2171 	case MSR_IA32_MCG_CTL:
2172 	case MSR_IA32_MCG_STATUS:
2173 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2174 		return set_msr_mce(vcpu, msr, data);
2175 
2176 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2177 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2178 		pr = true; /* fall through */
2179 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2180 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2181 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2182 			return kvm_pmu_set_msr(vcpu, msr_info);
2183 
2184 		if (pr || data != 0)
2185 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2186 				    "0x%x data 0x%llx\n", msr, data);
2187 		break;
2188 	case MSR_K7_CLK_CTL:
2189 		/*
2190 		 * Ignore all writes to this no longer documented MSR.
2191 		 * Writes are only relevant for old K7 processors,
2192 		 * all pre-dating SVM, but a recommended workaround from
2193 		 * AMD for these chips. It is possible to specify the
2194 		 * affected processor models on the command line, hence
2195 		 * the need to ignore the workaround.
2196 		 */
2197 		break;
2198 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2199 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2200 	case HV_X64_MSR_CRASH_CTL:
2201 		return kvm_hv_set_msr_common(vcpu, msr, data,
2202 					     msr_info->host_initiated);
2203 	case MSR_IA32_BBL_CR_CTL3:
2204 		/* Drop writes to this legacy MSR -- see rdmsr
2205 		 * counterpart for further detail.
2206 		 */
2207 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2208 		break;
2209 	case MSR_AMD64_OSVW_ID_LENGTH:
2210 		if (!guest_cpuid_has_osvw(vcpu))
2211 			return 1;
2212 		vcpu->arch.osvw.length = data;
2213 		break;
2214 	case MSR_AMD64_OSVW_STATUS:
2215 		if (!guest_cpuid_has_osvw(vcpu))
2216 			return 1;
2217 		vcpu->arch.osvw.status = data;
2218 		break;
2219 	default:
2220 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2221 			return xen_hvm_config(vcpu, data);
2222 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2223 			return kvm_pmu_set_msr(vcpu, msr_info);
2224 		if (!ignore_msrs) {
2225 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2226 				    msr, data);
2227 			return 1;
2228 		} else {
2229 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2230 				    msr, data);
2231 			break;
2232 		}
2233 	}
2234 	return 0;
2235 }
2236 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2237 
2238 
2239 /*
2240  * Reads an msr value (of 'msr_index') into 'pdata'.
2241  * Returns 0 on success, non-0 otherwise.
2242  * Assumes vcpu_load() was already called.
2243  */
2244 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2245 {
2246 	return kvm_x86_ops->get_msr(vcpu, msr);
2247 }
2248 EXPORT_SYMBOL_GPL(kvm_get_msr);
2249 
2250 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2251 {
2252 	u64 data;
2253 	u64 mcg_cap = vcpu->arch.mcg_cap;
2254 	unsigned bank_num = mcg_cap & 0xff;
2255 
2256 	switch (msr) {
2257 	case MSR_IA32_P5_MC_ADDR:
2258 	case MSR_IA32_P5_MC_TYPE:
2259 		data = 0;
2260 		break;
2261 	case MSR_IA32_MCG_CAP:
2262 		data = vcpu->arch.mcg_cap;
2263 		break;
2264 	case MSR_IA32_MCG_CTL:
2265 		if (!(mcg_cap & MCG_CTL_P))
2266 			return 1;
2267 		data = vcpu->arch.mcg_ctl;
2268 		break;
2269 	case MSR_IA32_MCG_STATUS:
2270 		data = vcpu->arch.mcg_status;
2271 		break;
2272 	default:
2273 		if (msr >= MSR_IA32_MC0_CTL &&
2274 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2275 			u32 offset = msr - MSR_IA32_MC0_CTL;
2276 			data = vcpu->arch.mce_banks[offset];
2277 			break;
2278 		}
2279 		return 1;
2280 	}
2281 	*pdata = data;
2282 	return 0;
2283 }
2284 
2285 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2286 {
2287 	switch (msr_info->index) {
2288 	case MSR_IA32_PLATFORM_ID:
2289 	case MSR_IA32_EBL_CR_POWERON:
2290 	case MSR_IA32_DEBUGCTLMSR:
2291 	case MSR_IA32_LASTBRANCHFROMIP:
2292 	case MSR_IA32_LASTBRANCHTOIP:
2293 	case MSR_IA32_LASTINTFROMIP:
2294 	case MSR_IA32_LASTINTTOIP:
2295 	case MSR_K8_SYSCFG:
2296 	case MSR_K8_TSEG_ADDR:
2297 	case MSR_K8_TSEG_MASK:
2298 	case MSR_K7_HWCR:
2299 	case MSR_VM_HSAVE_PA:
2300 	case MSR_K8_INT_PENDING_MSG:
2301 	case MSR_AMD64_NB_CFG:
2302 	case MSR_FAM10H_MMIO_CONF_BASE:
2303 	case MSR_AMD64_BU_CFG2:
2304 		msr_info->data = 0;
2305 		break;
2306 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2307 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2308 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2309 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2310 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2311 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2312 		msr_info->data = 0;
2313 		break;
2314 	case MSR_IA32_UCODE_REV:
2315 		msr_info->data = 0x100000000ULL;
2316 		break;
2317 	case MSR_MTRRcap:
2318 	case 0x200 ... 0x2ff:
2319 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2320 	case 0xcd: /* fsb frequency */
2321 		msr_info->data = 3;
2322 		break;
2323 		/*
2324 		 * MSR_EBC_FREQUENCY_ID
2325 		 * Conservative value valid for even the basic CPU models.
2326 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2327 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2328 		 * and 266MHz for model 3, or 4. Set Core Clock
2329 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2330 		 * 31:24) even though these are only valid for CPU
2331 		 * models > 2, however guests may end up dividing or
2332 		 * multiplying by zero otherwise.
2333 		 */
2334 	case MSR_EBC_FREQUENCY_ID:
2335 		msr_info->data = 1 << 24;
2336 		break;
2337 	case MSR_IA32_APICBASE:
2338 		msr_info->data = kvm_get_apic_base(vcpu);
2339 		break;
2340 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2341 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2342 		break;
2343 	case MSR_IA32_TSCDEADLINE:
2344 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2345 		break;
2346 	case MSR_IA32_TSC_ADJUST:
2347 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2348 		break;
2349 	case MSR_IA32_MISC_ENABLE:
2350 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2351 		break;
2352 	case MSR_IA32_SMBASE:
2353 		if (!msr_info->host_initiated)
2354 			return 1;
2355 		msr_info->data = vcpu->arch.smbase;
2356 		break;
2357 	case MSR_IA32_PERF_STATUS:
2358 		/* TSC increment by tick */
2359 		msr_info->data = 1000ULL;
2360 		/* CPU multiplier */
2361 		msr_info->data |= (((uint64_t)4ULL) << 40);
2362 		break;
2363 	case MSR_EFER:
2364 		msr_info->data = vcpu->arch.efer;
2365 		break;
2366 	case MSR_KVM_WALL_CLOCK:
2367 	case MSR_KVM_WALL_CLOCK_NEW:
2368 		msr_info->data = vcpu->kvm->arch.wall_clock;
2369 		break;
2370 	case MSR_KVM_SYSTEM_TIME:
2371 	case MSR_KVM_SYSTEM_TIME_NEW:
2372 		msr_info->data = vcpu->arch.time;
2373 		break;
2374 	case MSR_KVM_ASYNC_PF_EN:
2375 		msr_info->data = vcpu->arch.apf.msr_val;
2376 		break;
2377 	case MSR_KVM_STEAL_TIME:
2378 		msr_info->data = vcpu->arch.st.msr_val;
2379 		break;
2380 	case MSR_KVM_PV_EOI_EN:
2381 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2382 		break;
2383 	case MSR_IA32_P5_MC_ADDR:
2384 	case MSR_IA32_P5_MC_TYPE:
2385 	case MSR_IA32_MCG_CAP:
2386 	case MSR_IA32_MCG_CTL:
2387 	case MSR_IA32_MCG_STATUS:
2388 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2389 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2390 	case MSR_K7_CLK_CTL:
2391 		/*
2392 		 * Provide expected ramp-up count for K7. All other
2393 		 * are set to zero, indicating minimum divisors for
2394 		 * every field.
2395 		 *
2396 		 * This prevents guest kernels on AMD host with CPU
2397 		 * type 6, model 8 and higher from exploding due to
2398 		 * the rdmsr failing.
2399 		 */
2400 		msr_info->data = 0x20000000;
2401 		break;
2402 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2403 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2404 	case HV_X64_MSR_CRASH_CTL:
2405 		return kvm_hv_get_msr_common(vcpu,
2406 					     msr_info->index, &msr_info->data);
2407 		break;
2408 	case MSR_IA32_BBL_CR_CTL3:
2409 		/* This legacy MSR exists but isn't fully documented in current
2410 		 * silicon.  It is however accessed by winxp in very narrow
2411 		 * scenarios where it sets bit #19, itself documented as
2412 		 * a "reserved" bit.  Best effort attempt to source coherent
2413 		 * read data here should the balance of the register be
2414 		 * interpreted by the guest:
2415 		 *
2416 		 * L2 cache control register 3: 64GB range, 256KB size,
2417 		 * enabled, latency 0x1, configured
2418 		 */
2419 		msr_info->data = 0xbe702111;
2420 		break;
2421 	case MSR_AMD64_OSVW_ID_LENGTH:
2422 		if (!guest_cpuid_has_osvw(vcpu))
2423 			return 1;
2424 		msr_info->data = vcpu->arch.osvw.length;
2425 		break;
2426 	case MSR_AMD64_OSVW_STATUS:
2427 		if (!guest_cpuid_has_osvw(vcpu))
2428 			return 1;
2429 		msr_info->data = vcpu->arch.osvw.status;
2430 		break;
2431 	default:
2432 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2433 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2434 		if (!ignore_msrs) {
2435 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2436 			return 1;
2437 		} else {
2438 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2439 			msr_info->data = 0;
2440 		}
2441 		break;
2442 	}
2443 	return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2446 
2447 /*
2448  * Read or write a bunch of msrs. All parameters are kernel addresses.
2449  *
2450  * @return number of msrs set successfully.
2451  */
2452 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2453 		    struct kvm_msr_entry *entries,
2454 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2455 				  unsigned index, u64 *data))
2456 {
2457 	int i, idx;
2458 
2459 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2460 	for (i = 0; i < msrs->nmsrs; ++i)
2461 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2462 			break;
2463 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2464 
2465 	return i;
2466 }
2467 
2468 /*
2469  * Read or write a bunch of msrs. Parameters are user addresses.
2470  *
2471  * @return number of msrs set successfully.
2472  */
2473 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2474 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2475 				unsigned index, u64 *data),
2476 		  int writeback)
2477 {
2478 	struct kvm_msrs msrs;
2479 	struct kvm_msr_entry *entries;
2480 	int r, n;
2481 	unsigned size;
2482 
2483 	r = -EFAULT;
2484 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2485 		goto out;
2486 
2487 	r = -E2BIG;
2488 	if (msrs.nmsrs >= MAX_IO_MSRS)
2489 		goto out;
2490 
2491 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2492 	entries = memdup_user(user_msrs->entries, size);
2493 	if (IS_ERR(entries)) {
2494 		r = PTR_ERR(entries);
2495 		goto out;
2496 	}
2497 
2498 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2499 	if (r < 0)
2500 		goto out_free;
2501 
2502 	r = -EFAULT;
2503 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2504 		goto out_free;
2505 
2506 	r = n;
2507 
2508 out_free:
2509 	kfree(entries);
2510 out:
2511 	return r;
2512 }
2513 
2514 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2515 {
2516 	int r;
2517 
2518 	switch (ext) {
2519 	case KVM_CAP_IRQCHIP:
2520 	case KVM_CAP_HLT:
2521 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2522 	case KVM_CAP_SET_TSS_ADDR:
2523 	case KVM_CAP_EXT_CPUID:
2524 	case KVM_CAP_EXT_EMUL_CPUID:
2525 	case KVM_CAP_CLOCKSOURCE:
2526 	case KVM_CAP_PIT:
2527 	case KVM_CAP_NOP_IO_DELAY:
2528 	case KVM_CAP_MP_STATE:
2529 	case KVM_CAP_SYNC_MMU:
2530 	case KVM_CAP_USER_NMI:
2531 	case KVM_CAP_REINJECT_CONTROL:
2532 	case KVM_CAP_IRQ_INJECT_STATUS:
2533 	case KVM_CAP_IOEVENTFD:
2534 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2535 	case KVM_CAP_PIT2:
2536 	case KVM_CAP_PIT_STATE2:
2537 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2538 	case KVM_CAP_XEN_HVM:
2539 	case KVM_CAP_ADJUST_CLOCK:
2540 	case KVM_CAP_VCPU_EVENTS:
2541 	case KVM_CAP_HYPERV:
2542 	case KVM_CAP_HYPERV_VAPIC:
2543 	case KVM_CAP_HYPERV_SPIN:
2544 	case KVM_CAP_PCI_SEGMENT:
2545 	case KVM_CAP_DEBUGREGS:
2546 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2547 	case KVM_CAP_XSAVE:
2548 	case KVM_CAP_ASYNC_PF:
2549 	case KVM_CAP_GET_TSC_KHZ:
2550 	case KVM_CAP_KVMCLOCK_CTRL:
2551 	case KVM_CAP_READONLY_MEM:
2552 	case KVM_CAP_HYPERV_TIME:
2553 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2554 	case KVM_CAP_TSC_DEADLINE_TIMER:
2555 	case KVM_CAP_ENABLE_CAP_VM:
2556 	case KVM_CAP_DISABLE_QUIRKS:
2557 	case KVM_CAP_SET_BOOT_CPU_ID:
2558  	case KVM_CAP_SPLIT_IRQCHIP:
2559 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2560 	case KVM_CAP_ASSIGN_DEV_IRQ:
2561 	case KVM_CAP_PCI_2_3:
2562 #endif
2563 		r = 1;
2564 		break;
2565 	case KVM_CAP_X86_SMM:
2566 		/* SMBASE is usually relocated above 1M on modern chipsets,
2567 		 * and SMM handlers might indeed rely on 4G segment limits,
2568 		 * so do not report SMM to be available if real mode is
2569 		 * emulated via vm86 mode.  Still, do not go to great lengths
2570 		 * to avoid userspace's usage of the feature, because it is a
2571 		 * fringe case that is not enabled except via specific settings
2572 		 * of the module parameters.
2573 		 */
2574 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2575 		break;
2576 	case KVM_CAP_COALESCED_MMIO:
2577 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2578 		break;
2579 	case KVM_CAP_VAPIC:
2580 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2581 		break;
2582 	case KVM_CAP_NR_VCPUS:
2583 		r = KVM_SOFT_MAX_VCPUS;
2584 		break;
2585 	case KVM_CAP_MAX_VCPUS:
2586 		r = KVM_MAX_VCPUS;
2587 		break;
2588 	case KVM_CAP_NR_MEMSLOTS:
2589 		r = KVM_USER_MEM_SLOTS;
2590 		break;
2591 	case KVM_CAP_PV_MMU:	/* obsolete */
2592 		r = 0;
2593 		break;
2594 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2595 	case KVM_CAP_IOMMU:
2596 		r = iommu_present(&pci_bus_type);
2597 		break;
2598 #endif
2599 	case KVM_CAP_MCE:
2600 		r = KVM_MAX_MCE_BANKS;
2601 		break;
2602 	case KVM_CAP_XCRS:
2603 		r = cpu_has_xsave;
2604 		break;
2605 	case KVM_CAP_TSC_CONTROL:
2606 		r = kvm_has_tsc_control;
2607 		break;
2608 	default:
2609 		r = 0;
2610 		break;
2611 	}
2612 	return r;
2613 
2614 }
2615 
2616 long kvm_arch_dev_ioctl(struct file *filp,
2617 			unsigned int ioctl, unsigned long arg)
2618 {
2619 	void __user *argp = (void __user *)arg;
2620 	long r;
2621 
2622 	switch (ioctl) {
2623 	case KVM_GET_MSR_INDEX_LIST: {
2624 		struct kvm_msr_list __user *user_msr_list = argp;
2625 		struct kvm_msr_list msr_list;
2626 		unsigned n;
2627 
2628 		r = -EFAULT;
2629 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2630 			goto out;
2631 		n = msr_list.nmsrs;
2632 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2633 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2634 			goto out;
2635 		r = -E2BIG;
2636 		if (n < msr_list.nmsrs)
2637 			goto out;
2638 		r = -EFAULT;
2639 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2640 				 num_msrs_to_save * sizeof(u32)))
2641 			goto out;
2642 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2643 				 &emulated_msrs,
2644 				 num_emulated_msrs * sizeof(u32)))
2645 			goto out;
2646 		r = 0;
2647 		break;
2648 	}
2649 	case KVM_GET_SUPPORTED_CPUID:
2650 	case KVM_GET_EMULATED_CPUID: {
2651 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2652 		struct kvm_cpuid2 cpuid;
2653 
2654 		r = -EFAULT;
2655 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2656 			goto out;
2657 
2658 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2659 					    ioctl);
2660 		if (r)
2661 			goto out;
2662 
2663 		r = -EFAULT;
2664 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2665 			goto out;
2666 		r = 0;
2667 		break;
2668 	}
2669 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2670 		u64 mce_cap;
2671 
2672 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2673 		r = -EFAULT;
2674 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2675 			goto out;
2676 		r = 0;
2677 		break;
2678 	}
2679 	default:
2680 		r = -EINVAL;
2681 	}
2682 out:
2683 	return r;
2684 }
2685 
2686 static void wbinvd_ipi(void *garbage)
2687 {
2688 	wbinvd();
2689 }
2690 
2691 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2692 {
2693 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2694 }
2695 
2696 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2697 {
2698 	/* Address WBINVD may be executed by guest */
2699 	if (need_emulate_wbinvd(vcpu)) {
2700 		if (kvm_x86_ops->has_wbinvd_exit())
2701 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2702 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2703 			smp_call_function_single(vcpu->cpu,
2704 					wbinvd_ipi, NULL, 1);
2705 	}
2706 
2707 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2708 
2709 	/* Apply any externally detected TSC adjustments (due to suspend) */
2710 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2711 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2712 		vcpu->arch.tsc_offset_adjustment = 0;
2713 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2714 	}
2715 
2716 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2717 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2718 				rdtsc() - vcpu->arch.last_host_tsc;
2719 		if (tsc_delta < 0)
2720 			mark_tsc_unstable("KVM discovered backwards TSC");
2721 		if (check_tsc_unstable()) {
2722 			u64 offset = kvm_compute_tsc_offset(vcpu,
2723 						vcpu->arch.last_guest_tsc);
2724 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2725 			vcpu->arch.tsc_catchup = 1;
2726 		}
2727 		/*
2728 		 * On a host with synchronized TSC, there is no need to update
2729 		 * kvmclock on vcpu->cpu migration
2730 		 */
2731 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2732 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2733 		if (vcpu->cpu != cpu)
2734 			kvm_migrate_timers(vcpu);
2735 		vcpu->cpu = cpu;
2736 	}
2737 
2738 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2739 }
2740 
2741 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2742 {
2743 	kvm_x86_ops->vcpu_put(vcpu);
2744 	kvm_put_guest_fpu(vcpu);
2745 	vcpu->arch.last_host_tsc = rdtsc();
2746 }
2747 
2748 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2749 				    struct kvm_lapic_state *s)
2750 {
2751 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2752 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2753 
2754 	return 0;
2755 }
2756 
2757 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2758 				    struct kvm_lapic_state *s)
2759 {
2760 	kvm_apic_post_state_restore(vcpu, s);
2761 	update_cr8_intercept(vcpu);
2762 
2763 	return 0;
2764 }
2765 
2766 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2767 {
2768 	return (!lapic_in_kernel(vcpu) ||
2769 		kvm_apic_accept_pic_intr(vcpu));
2770 }
2771 
2772 /*
2773  * if userspace requested an interrupt window, check that the
2774  * interrupt window is open.
2775  *
2776  * No need to exit to userspace if we already have an interrupt queued.
2777  */
2778 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2779 {
2780 	return kvm_arch_interrupt_allowed(vcpu) &&
2781 		!kvm_cpu_has_interrupt(vcpu) &&
2782 		!kvm_event_needs_reinjection(vcpu) &&
2783 		kvm_cpu_accept_dm_intr(vcpu);
2784 }
2785 
2786 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2787 				    struct kvm_interrupt *irq)
2788 {
2789 	if (irq->irq >= KVM_NR_INTERRUPTS)
2790 		return -EINVAL;
2791 
2792 	if (!irqchip_in_kernel(vcpu->kvm)) {
2793 		kvm_queue_interrupt(vcpu, irq->irq, false);
2794 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2795 		return 0;
2796 	}
2797 
2798 	/*
2799 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2800 	 * fail for in-kernel 8259.
2801 	 */
2802 	if (pic_in_kernel(vcpu->kvm))
2803 		return -ENXIO;
2804 
2805 	if (vcpu->arch.pending_external_vector != -1)
2806 		return -EEXIST;
2807 
2808 	vcpu->arch.pending_external_vector = irq->irq;
2809 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2810 	return 0;
2811 }
2812 
2813 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2814 {
2815 	kvm_inject_nmi(vcpu);
2816 
2817 	return 0;
2818 }
2819 
2820 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2821 {
2822 	kvm_make_request(KVM_REQ_SMI, vcpu);
2823 
2824 	return 0;
2825 }
2826 
2827 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2828 					   struct kvm_tpr_access_ctl *tac)
2829 {
2830 	if (tac->flags)
2831 		return -EINVAL;
2832 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2833 	return 0;
2834 }
2835 
2836 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2837 					u64 mcg_cap)
2838 {
2839 	int r;
2840 	unsigned bank_num = mcg_cap & 0xff, bank;
2841 
2842 	r = -EINVAL;
2843 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2844 		goto out;
2845 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2846 		goto out;
2847 	r = 0;
2848 	vcpu->arch.mcg_cap = mcg_cap;
2849 	/* Init IA32_MCG_CTL to all 1s */
2850 	if (mcg_cap & MCG_CTL_P)
2851 		vcpu->arch.mcg_ctl = ~(u64)0;
2852 	/* Init IA32_MCi_CTL to all 1s */
2853 	for (bank = 0; bank < bank_num; bank++)
2854 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2855 out:
2856 	return r;
2857 }
2858 
2859 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2860 				      struct kvm_x86_mce *mce)
2861 {
2862 	u64 mcg_cap = vcpu->arch.mcg_cap;
2863 	unsigned bank_num = mcg_cap & 0xff;
2864 	u64 *banks = vcpu->arch.mce_banks;
2865 
2866 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2867 		return -EINVAL;
2868 	/*
2869 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2870 	 * reporting is disabled
2871 	 */
2872 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2873 	    vcpu->arch.mcg_ctl != ~(u64)0)
2874 		return 0;
2875 	banks += 4 * mce->bank;
2876 	/*
2877 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2878 	 * reporting is disabled for the bank
2879 	 */
2880 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2881 		return 0;
2882 	if (mce->status & MCI_STATUS_UC) {
2883 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2884 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2885 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2886 			return 0;
2887 		}
2888 		if (banks[1] & MCI_STATUS_VAL)
2889 			mce->status |= MCI_STATUS_OVER;
2890 		banks[2] = mce->addr;
2891 		banks[3] = mce->misc;
2892 		vcpu->arch.mcg_status = mce->mcg_status;
2893 		banks[1] = mce->status;
2894 		kvm_queue_exception(vcpu, MC_VECTOR);
2895 	} else if (!(banks[1] & MCI_STATUS_VAL)
2896 		   || !(banks[1] & MCI_STATUS_UC)) {
2897 		if (banks[1] & MCI_STATUS_VAL)
2898 			mce->status |= MCI_STATUS_OVER;
2899 		banks[2] = mce->addr;
2900 		banks[3] = mce->misc;
2901 		banks[1] = mce->status;
2902 	} else
2903 		banks[1] |= MCI_STATUS_OVER;
2904 	return 0;
2905 }
2906 
2907 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2908 					       struct kvm_vcpu_events *events)
2909 {
2910 	process_nmi(vcpu);
2911 	events->exception.injected =
2912 		vcpu->arch.exception.pending &&
2913 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2914 	events->exception.nr = vcpu->arch.exception.nr;
2915 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2916 	events->exception.pad = 0;
2917 	events->exception.error_code = vcpu->arch.exception.error_code;
2918 
2919 	events->interrupt.injected =
2920 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2921 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2922 	events->interrupt.soft = 0;
2923 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2924 
2925 	events->nmi.injected = vcpu->arch.nmi_injected;
2926 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2927 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2928 	events->nmi.pad = 0;
2929 
2930 	events->sipi_vector = 0; /* never valid when reporting to user space */
2931 
2932 	events->smi.smm = is_smm(vcpu);
2933 	events->smi.pending = vcpu->arch.smi_pending;
2934 	events->smi.smm_inside_nmi =
2935 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2936 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2937 
2938 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2939 			 | KVM_VCPUEVENT_VALID_SHADOW
2940 			 | KVM_VCPUEVENT_VALID_SMM);
2941 	memset(&events->reserved, 0, sizeof(events->reserved));
2942 }
2943 
2944 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2945 					      struct kvm_vcpu_events *events)
2946 {
2947 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2948 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2949 			      | KVM_VCPUEVENT_VALID_SHADOW
2950 			      | KVM_VCPUEVENT_VALID_SMM))
2951 		return -EINVAL;
2952 
2953 	process_nmi(vcpu);
2954 	vcpu->arch.exception.pending = events->exception.injected;
2955 	vcpu->arch.exception.nr = events->exception.nr;
2956 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2957 	vcpu->arch.exception.error_code = events->exception.error_code;
2958 
2959 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2960 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2961 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2962 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2963 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2964 						  events->interrupt.shadow);
2965 
2966 	vcpu->arch.nmi_injected = events->nmi.injected;
2967 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2968 		vcpu->arch.nmi_pending = events->nmi.pending;
2969 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2970 
2971 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2972 	    kvm_vcpu_has_lapic(vcpu))
2973 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2974 
2975 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2976 		if (events->smi.smm)
2977 			vcpu->arch.hflags |= HF_SMM_MASK;
2978 		else
2979 			vcpu->arch.hflags &= ~HF_SMM_MASK;
2980 		vcpu->arch.smi_pending = events->smi.pending;
2981 		if (events->smi.smm_inside_nmi)
2982 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2983 		else
2984 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2985 		if (kvm_vcpu_has_lapic(vcpu)) {
2986 			if (events->smi.latched_init)
2987 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2988 			else
2989 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2990 		}
2991 	}
2992 
2993 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2994 
2995 	return 0;
2996 }
2997 
2998 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2999 					     struct kvm_debugregs *dbgregs)
3000 {
3001 	unsigned long val;
3002 
3003 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3004 	kvm_get_dr(vcpu, 6, &val);
3005 	dbgregs->dr6 = val;
3006 	dbgregs->dr7 = vcpu->arch.dr7;
3007 	dbgregs->flags = 0;
3008 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3009 }
3010 
3011 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3012 					    struct kvm_debugregs *dbgregs)
3013 {
3014 	if (dbgregs->flags)
3015 		return -EINVAL;
3016 
3017 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3018 	kvm_update_dr0123(vcpu);
3019 	vcpu->arch.dr6 = dbgregs->dr6;
3020 	kvm_update_dr6(vcpu);
3021 	vcpu->arch.dr7 = dbgregs->dr7;
3022 	kvm_update_dr7(vcpu);
3023 
3024 	return 0;
3025 }
3026 
3027 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3028 
3029 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3030 {
3031 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3032 	u64 xstate_bv = xsave->header.xfeatures;
3033 	u64 valid;
3034 
3035 	/*
3036 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3037 	 * leaves 0 and 1 in the loop below.
3038 	 */
3039 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3040 
3041 	/* Set XSTATE_BV */
3042 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3043 
3044 	/*
3045 	 * Copy each region from the possibly compacted offset to the
3046 	 * non-compacted offset.
3047 	 */
3048 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3049 	while (valid) {
3050 		u64 feature = valid & -valid;
3051 		int index = fls64(feature) - 1;
3052 		void *src = get_xsave_addr(xsave, feature);
3053 
3054 		if (src) {
3055 			u32 size, offset, ecx, edx;
3056 			cpuid_count(XSTATE_CPUID, index,
3057 				    &size, &offset, &ecx, &edx);
3058 			memcpy(dest + offset, src, size);
3059 		}
3060 
3061 		valid -= feature;
3062 	}
3063 }
3064 
3065 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3066 {
3067 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3068 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3069 	u64 valid;
3070 
3071 	/*
3072 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3073 	 * leaves 0 and 1 in the loop below.
3074 	 */
3075 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3076 
3077 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3078 	xsave->header.xfeatures = xstate_bv;
3079 	if (cpu_has_xsaves)
3080 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3081 
3082 	/*
3083 	 * Copy each region from the non-compacted offset to the
3084 	 * possibly compacted offset.
3085 	 */
3086 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3087 	while (valid) {
3088 		u64 feature = valid & -valid;
3089 		int index = fls64(feature) - 1;
3090 		void *dest = get_xsave_addr(xsave, feature);
3091 
3092 		if (dest) {
3093 			u32 size, offset, ecx, edx;
3094 			cpuid_count(XSTATE_CPUID, index,
3095 				    &size, &offset, &ecx, &edx);
3096 			memcpy(dest, src + offset, size);
3097 		}
3098 
3099 		valid -= feature;
3100 	}
3101 }
3102 
3103 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3104 					 struct kvm_xsave *guest_xsave)
3105 {
3106 	if (cpu_has_xsave) {
3107 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3108 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3109 	} else {
3110 		memcpy(guest_xsave->region,
3111 			&vcpu->arch.guest_fpu.state.fxsave,
3112 			sizeof(struct fxregs_state));
3113 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3114 			XFEATURE_MASK_FPSSE;
3115 	}
3116 }
3117 
3118 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3119 					struct kvm_xsave *guest_xsave)
3120 {
3121 	u64 xstate_bv =
3122 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3123 
3124 	if (cpu_has_xsave) {
3125 		/*
3126 		 * Here we allow setting states that are not present in
3127 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3128 		 * with old userspace.
3129 		 */
3130 		if (xstate_bv & ~kvm_supported_xcr0())
3131 			return -EINVAL;
3132 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3133 	} else {
3134 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3135 			return -EINVAL;
3136 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3137 			guest_xsave->region, sizeof(struct fxregs_state));
3138 	}
3139 	return 0;
3140 }
3141 
3142 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3143 					struct kvm_xcrs *guest_xcrs)
3144 {
3145 	if (!cpu_has_xsave) {
3146 		guest_xcrs->nr_xcrs = 0;
3147 		return;
3148 	}
3149 
3150 	guest_xcrs->nr_xcrs = 1;
3151 	guest_xcrs->flags = 0;
3152 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3153 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3154 }
3155 
3156 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3157 				       struct kvm_xcrs *guest_xcrs)
3158 {
3159 	int i, r = 0;
3160 
3161 	if (!cpu_has_xsave)
3162 		return -EINVAL;
3163 
3164 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3165 		return -EINVAL;
3166 
3167 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3168 		/* Only support XCR0 currently */
3169 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3170 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3171 				guest_xcrs->xcrs[i].value);
3172 			break;
3173 		}
3174 	if (r)
3175 		r = -EINVAL;
3176 	return r;
3177 }
3178 
3179 /*
3180  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3181  * stopped by the hypervisor.  This function will be called from the host only.
3182  * EINVAL is returned when the host attempts to set the flag for a guest that
3183  * does not support pv clocks.
3184  */
3185 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3186 {
3187 	if (!vcpu->arch.pv_time_enabled)
3188 		return -EINVAL;
3189 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3190 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3191 	return 0;
3192 }
3193 
3194 long kvm_arch_vcpu_ioctl(struct file *filp,
3195 			 unsigned int ioctl, unsigned long arg)
3196 {
3197 	struct kvm_vcpu *vcpu = filp->private_data;
3198 	void __user *argp = (void __user *)arg;
3199 	int r;
3200 	union {
3201 		struct kvm_lapic_state *lapic;
3202 		struct kvm_xsave *xsave;
3203 		struct kvm_xcrs *xcrs;
3204 		void *buffer;
3205 	} u;
3206 
3207 	u.buffer = NULL;
3208 	switch (ioctl) {
3209 	case KVM_GET_LAPIC: {
3210 		r = -EINVAL;
3211 		if (!vcpu->arch.apic)
3212 			goto out;
3213 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3214 
3215 		r = -ENOMEM;
3216 		if (!u.lapic)
3217 			goto out;
3218 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3219 		if (r)
3220 			goto out;
3221 		r = -EFAULT;
3222 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3223 			goto out;
3224 		r = 0;
3225 		break;
3226 	}
3227 	case KVM_SET_LAPIC: {
3228 		r = -EINVAL;
3229 		if (!vcpu->arch.apic)
3230 			goto out;
3231 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3232 		if (IS_ERR(u.lapic))
3233 			return PTR_ERR(u.lapic);
3234 
3235 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3236 		break;
3237 	}
3238 	case KVM_INTERRUPT: {
3239 		struct kvm_interrupt irq;
3240 
3241 		r = -EFAULT;
3242 		if (copy_from_user(&irq, argp, sizeof irq))
3243 			goto out;
3244 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3245 		break;
3246 	}
3247 	case KVM_NMI: {
3248 		r = kvm_vcpu_ioctl_nmi(vcpu);
3249 		break;
3250 	}
3251 	case KVM_SMI: {
3252 		r = kvm_vcpu_ioctl_smi(vcpu);
3253 		break;
3254 	}
3255 	case KVM_SET_CPUID: {
3256 		struct kvm_cpuid __user *cpuid_arg = argp;
3257 		struct kvm_cpuid cpuid;
3258 
3259 		r = -EFAULT;
3260 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3261 			goto out;
3262 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3263 		break;
3264 	}
3265 	case KVM_SET_CPUID2: {
3266 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3267 		struct kvm_cpuid2 cpuid;
3268 
3269 		r = -EFAULT;
3270 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3271 			goto out;
3272 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3273 					      cpuid_arg->entries);
3274 		break;
3275 	}
3276 	case KVM_GET_CPUID2: {
3277 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3278 		struct kvm_cpuid2 cpuid;
3279 
3280 		r = -EFAULT;
3281 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3282 			goto out;
3283 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3284 					      cpuid_arg->entries);
3285 		if (r)
3286 			goto out;
3287 		r = -EFAULT;
3288 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3289 			goto out;
3290 		r = 0;
3291 		break;
3292 	}
3293 	case KVM_GET_MSRS:
3294 		r = msr_io(vcpu, argp, do_get_msr, 1);
3295 		break;
3296 	case KVM_SET_MSRS:
3297 		r = msr_io(vcpu, argp, do_set_msr, 0);
3298 		break;
3299 	case KVM_TPR_ACCESS_REPORTING: {
3300 		struct kvm_tpr_access_ctl tac;
3301 
3302 		r = -EFAULT;
3303 		if (copy_from_user(&tac, argp, sizeof tac))
3304 			goto out;
3305 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3306 		if (r)
3307 			goto out;
3308 		r = -EFAULT;
3309 		if (copy_to_user(argp, &tac, sizeof tac))
3310 			goto out;
3311 		r = 0;
3312 		break;
3313 	};
3314 	case KVM_SET_VAPIC_ADDR: {
3315 		struct kvm_vapic_addr va;
3316 
3317 		r = -EINVAL;
3318 		if (!lapic_in_kernel(vcpu))
3319 			goto out;
3320 		r = -EFAULT;
3321 		if (copy_from_user(&va, argp, sizeof va))
3322 			goto out;
3323 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3324 		break;
3325 	}
3326 	case KVM_X86_SETUP_MCE: {
3327 		u64 mcg_cap;
3328 
3329 		r = -EFAULT;
3330 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3331 			goto out;
3332 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3333 		break;
3334 	}
3335 	case KVM_X86_SET_MCE: {
3336 		struct kvm_x86_mce mce;
3337 
3338 		r = -EFAULT;
3339 		if (copy_from_user(&mce, argp, sizeof mce))
3340 			goto out;
3341 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3342 		break;
3343 	}
3344 	case KVM_GET_VCPU_EVENTS: {
3345 		struct kvm_vcpu_events events;
3346 
3347 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3348 
3349 		r = -EFAULT;
3350 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3351 			break;
3352 		r = 0;
3353 		break;
3354 	}
3355 	case KVM_SET_VCPU_EVENTS: {
3356 		struct kvm_vcpu_events events;
3357 
3358 		r = -EFAULT;
3359 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3360 			break;
3361 
3362 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3363 		break;
3364 	}
3365 	case KVM_GET_DEBUGREGS: {
3366 		struct kvm_debugregs dbgregs;
3367 
3368 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3369 
3370 		r = -EFAULT;
3371 		if (copy_to_user(argp, &dbgregs,
3372 				 sizeof(struct kvm_debugregs)))
3373 			break;
3374 		r = 0;
3375 		break;
3376 	}
3377 	case KVM_SET_DEBUGREGS: {
3378 		struct kvm_debugregs dbgregs;
3379 
3380 		r = -EFAULT;
3381 		if (copy_from_user(&dbgregs, argp,
3382 				   sizeof(struct kvm_debugregs)))
3383 			break;
3384 
3385 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3386 		break;
3387 	}
3388 	case KVM_GET_XSAVE: {
3389 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3390 		r = -ENOMEM;
3391 		if (!u.xsave)
3392 			break;
3393 
3394 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3395 
3396 		r = -EFAULT;
3397 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3398 			break;
3399 		r = 0;
3400 		break;
3401 	}
3402 	case KVM_SET_XSAVE: {
3403 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3404 		if (IS_ERR(u.xsave))
3405 			return PTR_ERR(u.xsave);
3406 
3407 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3408 		break;
3409 	}
3410 	case KVM_GET_XCRS: {
3411 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3412 		r = -ENOMEM;
3413 		if (!u.xcrs)
3414 			break;
3415 
3416 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3417 
3418 		r = -EFAULT;
3419 		if (copy_to_user(argp, u.xcrs,
3420 				 sizeof(struct kvm_xcrs)))
3421 			break;
3422 		r = 0;
3423 		break;
3424 	}
3425 	case KVM_SET_XCRS: {
3426 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3427 		if (IS_ERR(u.xcrs))
3428 			return PTR_ERR(u.xcrs);
3429 
3430 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3431 		break;
3432 	}
3433 	case KVM_SET_TSC_KHZ: {
3434 		u32 user_tsc_khz;
3435 
3436 		r = -EINVAL;
3437 		user_tsc_khz = (u32)arg;
3438 
3439 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3440 			goto out;
3441 
3442 		if (user_tsc_khz == 0)
3443 			user_tsc_khz = tsc_khz;
3444 
3445 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3446 			r = 0;
3447 
3448 		goto out;
3449 	}
3450 	case KVM_GET_TSC_KHZ: {
3451 		r = vcpu->arch.virtual_tsc_khz;
3452 		goto out;
3453 	}
3454 	case KVM_KVMCLOCK_CTRL: {
3455 		r = kvm_set_guest_paused(vcpu);
3456 		goto out;
3457 	}
3458 	default:
3459 		r = -EINVAL;
3460 	}
3461 out:
3462 	kfree(u.buffer);
3463 	return r;
3464 }
3465 
3466 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3467 {
3468 	return VM_FAULT_SIGBUS;
3469 }
3470 
3471 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3472 {
3473 	int ret;
3474 
3475 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3476 		return -EINVAL;
3477 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3478 	return ret;
3479 }
3480 
3481 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3482 					      u64 ident_addr)
3483 {
3484 	kvm->arch.ept_identity_map_addr = ident_addr;
3485 	return 0;
3486 }
3487 
3488 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3489 					  u32 kvm_nr_mmu_pages)
3490 {
3491 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3492 		return -EINVAL;
3493 
3494 	mutex_lock(&kvm->slots_lock);
3495 
3496 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3497 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3498 
3499 	mutex_unlock(&kvm->slots_lock);
3500 	return 0;
3501 }
3502 
3503 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3504 {
3505 	return kvm->arch.n_max_mmu_pages;
3506 }
3507 
3508 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3509 {
3510 	int r;
3511 
3512 	r = 0;
3513 	switch (chip->chip_id) {
3514 	case KVM_IRQCHIP_PIC_MASTER:
3515 		memcpy(&chip->chip.pic,
3516 			&pic_irqchip(kvm)->pics[0],
3517 			sizeof(struct kvm_pic_state));
3518 		break;
3519 	case KVM_IRQCHIP_PIC_SLAVE:
3520 		memcpy(&chip->chip.pic,
3521 			&pic_irqchip(kvm)->pics[1],
3522 			sizeof(struct kvm_pic_state));
3523 		break;
3524 	case KVM_IRQCHIP_IOAPIC:
3525 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3526 		break;
3527 	default:
3528 		r = -EINVAL;
3529 		break;
3530 	}
3531 	return r;
3532 }
3533 
3534 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3535 {
3536 	int r;
3537 
3538 	r = 0;
3539 	switch (chip->chip_id) {
3540 	case KVM_IRQCHIP_PIC_MASTER:
3541 		spin_lock(&pic_irqchip(kvm)->lock);
3542 		memcpy(&pic_irqchip(kvm)->pics[0],
3543 			&chip->chip.pic,
3544 			sizeof(struct kvm_pic_state));
3545 		spin_unlock(&pic_irqchip(kvm)->lock);
3546 		break;
3547 	case KVM_IRQCHIP_PIC_SLAVE:
3548 		spin_lock(&pic_irqchip(kvm)->lock);
3549 		memcpy(&pic_irqchip(kvm)->pics[1],
3550 			&chip->chip.pic,
3551 			sizeof(struct kvm_pic_state));
3552 		spin_unlock(&pic_irqchip(kvm)->lock);
3553 		break;
3554 	case KVM_IRQCHIP_IOAPIC:
3555 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3556 		break;
3557 	default:
3558 		r = -EINVAL;
3559 		break;
3560 	}
3561 	kvm_pic_update_irq(pic_irqchip(kvm));
3562 	return r;
3563 }
3564 
3565 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3566 {
3567 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3568 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3569 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3570 	return 0;
3571 }
3572 
3573 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3574 {
3575 	int i;
3576 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3577 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3578 	for (i = 0; i < 3; i++)
3579 		kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3580 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3581 	return 0;
3582 }
3583 
3584 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3585 {
3586 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3587 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3588 		sizeof(ps->channels));
3589 	ps->flags = kvm->arch.vpit->pit_state.flags;
3590 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3591 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3592 	return 0;
3593 }
3594 
3595 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3596 {
3597 	int start = 0;
3598 	int i;
3599 	u32 prev_legacy, cur_legacy;
3600 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3601 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3602 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3603 	if (!prev_legacy && cur_legacy)
3604 		start = 1;
3605 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3606 	       sizeof(kvm->arch.vpit->pit_state.channels));
3607 	kvm->arch.vpit->pit_state.flags = ps->flags;
3608 	for (i = 0; i < 3; i++)
3609 		kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count,
3610 				   start && i == 0);
3611 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3612 	return 0;
3613 }
3614 
3615 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3616 				 struct kvm_reinject_control *control)
3617 {
3618 	if (!kvm->arch.vpit)
3619 		return -ENXIO;
3620 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3621 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3622 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3623 	return 0;
3624 }
3625 
3626 /**
3627  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3628  * @kvm: kvm instance
3629  * @log: slot id and address to which we copy the log
3630  *
3631  * Steps 1-4 below provide general overview of dirty page logging. See
3632  * kvm_get_dirty_log_protect() function description for additional details.
3633  *
3634  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3635  * always flush the TLB (step 4) even if previous step failed  and the dirty
3636  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3637  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3638  * writes will be marked dirty for next log read.
3639  *
3640  *   1. Take a snapshot of the bit and clear it if needed.
3641  *   2. Write protect the corresponding page.
3642  *   3. Copy the snapshot to the userspace.
3643  *   4. Flush TLB's if needed.
3644  */
3645 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3646 {
3647 	bool is_dirty = false;
3648 	int r;
3649 
3650 	mutex_lock(&kvm->slots_lock);
3651 
3652 	/*
3653 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3654 	 */
3655 	if (kvm_x86_ops->flush_log_dirty)
3656 		kvm_x86_ops->flush_log_dirty(kvm);
3657 
3658 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3659 
3660 	/*
3661 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3662 	 * kvm_mmu_slot_remove_write_access().
3663 	 */
3664 	lockdep_assert_held(&kvm->slots_lock);
3665 	if (is_dirty)
3666 		kvm_flush_remote_tlbs(kvm);
3667 
3668 	mutex_unlock(&kvm->slots_lock);
3669 	return r;
3670 }
3671 
3672 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3673 			bool line_status)
3674 {
3675 	if (!irqchip_in_kernel(kvm))
3676 		return -ENXIO;
3677 
3678 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3679 					irq_event->irq, irq_event->level,
3680 					line_status);
3681 	return 0;
3682 }
3683 
3684 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3685 				   struct kvm_enable_cap *cap)
3686 {
3687 	int r;
3688 
3689 	if (cap->flags)
3690 		return -EINVAL;
3691 
3692 	switch (cap->cap) {
3693 	case KVM_CAP_DISABLE_QUIRKS:
3694 		kvm->arch.disabled_quirks = cap->args[0];
3695 		r = 0;
3696 		break;
3697 	case KVM_CAP_SPLIT_IRQCHIP: {
3698 		mutex_lock(&kvm->lock);
3699 		r = -EINVAL;
3700 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3701 			goto split_irqchip_unlock;
3702 		r = -EEXIST;
3703 		if (irqchip_in_kernel(kvm))
3704 			goto split_irqchip_unlock;
3705 		if (atomic_read(&kvm->online_vcpus))
3706 			goto split_irqchip_unlock;
3707 		r = kvm_setup_empty_irq_routing(kvm);
3708 		if (r)
3709 			goto split_irqchip_unlock;
3710 		/* Pairs with irqchip_in_kernel. */
3711 		smp_wmb();
3712 		kvm->arch.irqchip_split = true;
3713 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3714 		r = 0;
3715 split_irqchip_unlock:
3716 		mutex_unlock(&kvm->lock);
3717 		break;
3718 	}
3719 	default:
3720 		r = -EINVAL;
3721 		break;
3722 	}
3723 	return r;
3724 }
3725 
3726 long kvm_arch_vm_ioctl(struct file *filp,
3727 		       unsigned int ioctl, unsigned long arg)
3728 {
3729 	struct kvm *kvm = filp->private_data;
3730 	void __user *argp = (void __user *)arg;
3731 	int r = -ENOTTY;
3732 	/*
3733 	 * This union makes it completely explicit to gcc-3.x
3734 	 * that these two variables' stack usage should be
3735 	 * combined, not added together.
3736 	 */
3737 	union {
3738 		struct kvm_pit_state ps;
3739 		struct kvm_pit_state2 ps2;
3740 		struct kvm_pit_config pit_config;
3741 	} u;
3742 
3743 	switch (ioctl) {
3744 	case KVM_SET_TSS_ADDR:
3745 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3746 		break;
3747 	case KVM_SET_IDENTITY_MAP_ADDR: {
3748 		u64 ident_addr;
3749 
3750 		r = -EFAULT;
3751 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3752 			goto out;
3753 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3754 		break;
3755 	}
3756 	case KVM_SET_NR_MMU_PAGES:
3757 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3758 		break;
3759 	case KVM_GET_NR_MMU_PAGES:
3760 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3761 		break;
3762 	case KVM_CREATE_IRQCHIP: {
3763 		struct kvm_pic *vpic;
3764 
3765 		mutex_lock(&kvm->lock);
3766 		r = -EEXIST;
3767 		if (kvm->arch.vpic)
3768 			goto create_irqchip_unlock;
3769 		r = -EINVAL;
3770 		if (atomic_read(&kvm->online_vcpus))
3771 			goto create_irqchip_unlock;
3772 		r = -ENOMEM;
3773 		vpic = kvm_create_pic(kvm);
3774 		if (vpic) {
3775 			r = kvm_ioapic_init(kvm);
3776 			if (r) {
3777 				mutex_lock(&kvm->slots_lock);
3778 				kvm_destroy_pic(vpic);
3779 				mutex_unlock(&kvm->slots_lock);
3780 				goto create_irqchip_unlock;
3781 			}
3782 		} else
3783 			goto create_irqchip_unlock;
3784 		r = kvm_setup_default_irq_routing(kvm);
3785 		if (r) {
3786 			mutex_lock(&kvm->slots_lock);
3787 			mutex_lock(&kvm->irq_lock);
3788 			kvm_ioapic_destroy(kvm);
3789 			kvm_destroy_pic(vpic);
3790 			mutex_unlock(&kvm->irq_lock);
3791 			mutex_unlock(&kvm->slots_lock);
3792 			goto create_irqchip_unlock;
3793 		}
3794 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3795 		smp_wmb();
3796 		kvm->arch.vpic = vpic;
3797 	create_irqchip_unlock:
3798 		mutex_unlock(&kvm->lock);
3799 		break;
3800 	}
3801 	case KVM_CREATE_PIT:
3802 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3803 		goto create_pit;
3804 	case KVM_CREATE_PIT2:
3805 		r = -EFAULT;
3806 		if (copy_from_user(&u.pit_config, argp,
3807 				   sizeof(struct kvm_pit_config)))
3808 			goto out;
3809 	create_pit:
3810 		mutex_lock(&kvm->slots_lock);
3811 		r = -EEXIST;
3812 		if (kvm->arch.vpit)
3813 			goto create_pit_unlock;
3814 		r = -ENOMEM;
3815 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3816 		if (kvm->arch.vpit)
3817 			r = 0;
3818 	create_pit_unlock:
3819 		mutex_unlock(&kvm->slots_lock);
3820 		break;
3821 	case KVM_GET_IRQCHIP: {
3822 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3823 		struct kvm_irqchip *chip;
3824 
3825 		chip = memdup_user(argp, sizeof(*chip));
3826 		if (IS_ERR(chip)) {
3827 			r = PTR_ERR(chip);
3828 			goto out;
3829 		}
3830 
3831 		r = -ENXIO;
3832 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3833 			goto get_irqchip_out;
3834 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3835 		if (r)
3836 			goto get_irqchip_out;
3837 		r = -EFAULT;
3838 		if (copy_to_user(argp, chip, sizeof *chip))
3839 			goto get_irqchip_out;
3840 		r = 0;
3841 	get_irqchip_out:
3842 		kfree(chip);
3843 		break;
3844 	}
3845 	case KVM_SET_IRQCHIP: {
3846 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3847 		struct kvm_irqchip *chip;
3848 
3849 		chip = memdup_user(argp, sizeof(*chip));
3850 		if (IS_ERR(chip)) {
3851 			r = PTR_ERR(chip);
3852 			goto out;
3853 		}
3854 
3855 		r = -ENXIO;
3856 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3857 			goto set_irqchip_out;
3858 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3859 		if (r)
3860 			goto set_irqchip_out;
3861 		r = 0;
3862 	set_irqchip_out:
3863 		kfree(chip);
3864 		break;
3865 	}
3866 	case KVM_GET_PIT: {
3867 		r = -EFAULT;
3868 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3869 			goto out;
3870 		r = -ENXIO;
3871 		if (!kvm->arch.vpit)
3872 			goto out;
3873 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3874 		if (r)
3875 			goto out;
3876 		r = -EFAULT;
3877 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3878 			goto out;
3879 		r = 0;
3880 		break;
3881 	}
3882 	case KVM_SET_PIT: {
3883 		r = -EFAULT;
3884 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3885 			goto out;
3886 		r = -ENXIO;
3887 		if (!kvm->arch.vpit)
3888 			goto out;
3889 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3890 		break;
3891 	}
3892 	case KVM_GET_PIT2: {
3893 		r = -ENXIO;
3894 		if (!kvm->arch.vpit)
3895 			goto out;
3896 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3897 		if (r)
3898 			goto out;
3899 		r = -EFAULT;
3900 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3901 			goto out;
3902 		r = 0;
3903 		break;
3904 	}
3905 	case KVM_SET_PIT2: {
3906 		r = -EFAULT;
3907 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3908 			goto out;
3909 		r = -ENXIO;
3910 		if (!kvm->arch.vpit)
3911 			goto out;
3912 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3913 		break;
3914 	}
3915 	case KVM_REINJECT_CONTROL: {
3916 		struct kvm_reinject_control control;
3917 		r =  -EFAULT;
3918 		if (copy_from_user(&control, argp, sizeof(control)))
3919 			goto out;
3920 		r = kvm_vm_ioctl_reinject(kvm, &control);
3921 		break;
3922 	}
3923 	case KVM_SET_BOOT_CPU_ID:
3924 		r = 0;
3925 		mutex_lock(&kvm->lock);
3926 		if (atomic_read(&kvm->online_vcpus) != 0)
3927 			r = -EBUSY;
3928 		else
3929 			kvm->arch.bsp_vcpu_id = arg;
3930 		mutex_unlock(&kvm->lock);
3931 		break;
3932 	case KVM_XEN_HVM_CONFIG: {
3933 		r = -EFAULT;
3934 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3935 				   sizeof(struct kvm_xen_hvm_config)))
3936 			goto out;
3937 		r = -EINVAL;
3938 		if (kvm->arch.xen_hvm_config.flags)
3939 			goto out;
3940 		r = 0;
3941 		break;
3942 	}
3943 	case KVM_SET_CLOCK: {
3944 		struct kvm_clock_data user_ns;
3945 		u64 now_ns;
3946 		s64 delta;
3947 
3948 		r = -EFAULT;
3949 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3950 			goto out;
3951 
3952 		r = -EINVAL;
3953 		if (user_ns.flags)
3954 			goto out;
3955 
3956 		r = 0;
3957 		local_irq_disable();
3958 		now_ns = get_kernel_ns();
3959 		delta = user_ns.clock - now_ns;
3960 		local_irq_enable();
3961 		kvm->arch.kvmclock_offset = delta;
3962 		kvm_gen_update_masterclock(kvm);
3963 		break;
3964 	}
3965 	case KVM_GET_CLOCK: {
3966 		struct kvm_clock_data user_ns;
3967 		u64 now_ns;
3968 
3969 		local_irq_disable();
3970 		now_ns = get_kernel_ns();
3971 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3972 		local_irq_enable();
3973 		user_ns.flags = 0;
3974 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3975 
3976 		r = -EFAULT;
3977 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3978 			goto out;
3979 		r = 0;
3980 		break;
3981 	}
3982 	case KVM_ENABLE_CAP: {
3983 		struct kvm_enable_cap cap;
3984 
3985 		r = -EFAULT;
3986 		if (copy_from_user(&cap, argp, sizeof(cap)))
3987 			goto out;
3988 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3989 		break;
3990 	}
3991 	default:
3992 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3993 	}
3994 out:
3995 	return r;
3996 }
3997 
3998 static void kvm_init_msr_list(void)
3999 {
4000 	u32 dummy[2];
4001 	unsigned i, j;
4002 
4003 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4004 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4005 			continue;
4006 
4007 		/*
4008 		 * Even MSRs that are valid in the host may not be exposed
4009 		 * to the guests in some cases.  We could work around this
4010 		 * in VMX with the generic MSR save/load machinery, but it
4011 		 * is not really worthwhile since it will really only
4012 		 * happen with nested virtualization.
4013 		 */
4014 		switch (msrs_to_save[i]) {
4015 		case MSR_IA32_BNDCFGS:
4016 			if (!kvm_x86_ops->mpx_supported())
4017 				continue;
4018 			break;
4019 		default:
4020 			break;
4021 		}
4022 
4023 		if (j < i)
4024 			msrs_to_save[j] = msrs_to_save[i];
4025 		j++;
4026 	}
4027 	num_msrs_to_save = j;
4028 
4029 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4030 		switch (emulated_msrs[i]) {
4031 		case MSR_IA32_SMBASE:
4032 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4033 				continue;
4034 			break;
4035 		default:
4036 			break;
4037 		}
4038 
4039 		if (j < i)
4040 			emulated_msrs[j] = emulated_msrs[i];
4041 		j++;
4042 	}
4043 	num_emulated_msrs = j;
4044 }
4045 
4046 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4047 			   const void *v)
4048 {
4049 	int handled = 0;
4050 	int n;
4051 
4052 	do {
4053 		n = min(len, 8);
4054 		if (!(vcpu->arch.apic &&
4055 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4056 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4057 			break;
4058 		handled += n;
4059 		addr += n;
4060 		len -= n;
4061 		v += n;
4062 	} while (len);
4063 
4064 	return handled;
4065 }
4066 
4067 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4068 {
4069 	int handled = 0;
4070 	int n;
4071 
4072 	do {
4073 		n = min(len, 8);
4074 		if (!(vcpu->arch.apic &&
4075 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4076 					 addr, n, v))
4077 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4078 			break;
4079 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4080 		handled += n;
4081 		addr += n;
4082 		len -= n;
4083 		v += n;
4084 	} while (len);
4085 
4086 	return handled;
4087 }
4088 
4089 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4090 			struct kvm_segment *var, int seg)
4091 {
4092 	kvm_x86_ops->set_segment(vcpu, var, seg);
4093 }
4094 
4095 void kvm_get_segment(struct kvm_vcpu *vcpu,
4096 		     struct kvm_segment *var, int seg)
4097 {
4098 	kvm_x86_ops->get_segment(vcpu, var, seg);
4099 }
4100 
4101 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4102 			   struct x86_exception *exception)
4103 {
4104 	gpa_t t_gpa;
4105 
4106 	BUG_ON(!mmu_is_nested(vcpu));
4107 
4108 	/* NPT walks are always user-walks */
4109 	access |= PFERR_USER_MASK;
4110 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4111 
4112 	return t_gpa;
4113 }
4114 
4115 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4116 			      struct x86_exception *exception)
4117 {
4118 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4119 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4120 }
4121 
4122  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4123 				struct x86_exception *exception)
4124 {
4125 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4126 	access |= PFERR_FETCH_MASK;
4127 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4128 }
4129 
4130 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4131 			       struct x86_exception *exception)
4132 {
4133 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4134 	access |= PFERR_WRITE_MASK;
4135 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4136 }
4137 
4138 /* uses this to access any guest's mapped memory without checking CPL */
4139 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4140 				struct x86_exception *exception)
4141 {
4142 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4143 }
4144 
4145 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4146 				      struct kvm_vcpu *vcpu, u32 access,
4147 				      struct x86_exception *exception)
4148 {
4149 	void *data = val;
4150 	int r = X86EMUL_CONTINUE;
4151 
4152 	while (bytes) {
4153 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4154 							    exception);
4155 		unsigned offset = addr & (PAGE_SIZE-1);
4156 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4157 		int ret;
4158 
4159 		if (gpa == UNMAPPED_GVA)
4160 			return X86EMUL_PROPAGATE_FAULT;
4161 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4162 					       offset, toread);
4163 		if (ret < 0) {
4164 			r = X86EMUL_IO_NEEDED;
4165 			goto out;
4166 		}
4167 
4168 		bytes -= toread;
4169 		data += toread;
4170 		addr += toread;
4171 	}
4172 out:
4173 	return r;
4174 }
4175 
4176 /* used for instruction fetching */
4177 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4178 				gva_t addr, void *val, unsigned int bytes,
4179 				struct x86_exception *exception)
4180 {
4181 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4182 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4183 	unsigned offset;
4184 	int ret;
4185 
4186 	/* Inline kvm_read_guest_virt_helper for speed.  */
4187 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4188 						    exception);
4189 	if (unlikely(gpa == UNMAPPED_GVA))
4190 		return X86EMUL_PROPAGATE_FAULT;
4191 
4192 	offset = addr & (PAGE_SIZE-1);
4193 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4194 		bytes = (unsigned)PAGE_SIZE - offset;
4195 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4196 				       offset, bytes);
4197 	if (unlikely(ret < 0))
4198 		return X86EMUL_IO_NEEDED;
4199 
4200 	return X86EMUL_CONTINUE;
4201 }
4202 
4203 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4204 			       gva_t addr, void *val, unsigned int bytes,
4205 			       struct x86_exception *exception)
4206 {
4207 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4208 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4209 
4210 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4211 					  exception);
4212 }
4213 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4214 
4215 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4216 				      gva_t addr, void *val, unsigned int bytes,
4217 				      struct x86_exception *exception)
4218 {
4219 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4220 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4221 }
4222 
4223 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4224 		unsigned long addr, void *val, unsigned int bytes)
4225 {
4226 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4227 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4228 
4229 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4230 }
4231 
4232 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4233 				       gva_t addr, void *val,
4234 				       unsigned int bytes,
4235 				       struct x86_exception *exception)
4236 {
4237 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4238 	void *data = val;
4239 	int r = X86EMUL_CONTINUE;
4240 
4241 	while (bytes) {
4242 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4243 							     PFERR_WRITE_MASK,
4244 							     exception);
4245 		unsigned offset = addr & (PAGE_SIZE-1);
4246 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4247 		int ret;
4248 
4249 		if (gpa == UNMAPPED_GVA)
4250 			return X86EMUL_PROPAGATE_FAULT;
4251 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4252 		if (ret < 0) {
4253 			r = X86EMUL_IO_NEEDED;
4254 			goto out;
4255 		}
4256 
4257 		bytes -= towrite;
4258 		data += towrite;
4259 		addr += towrite;
4260 	}
4261 out:
4262 	return r;
4263 }
4264 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4265 
4266 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4267 				gpa_t *gpa, struct x86_exception *exception,
4268 				bool write)
4269 {
4270 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4271 		| (write ? PFERR_WRITE_MASK : 0);
4272 
4273 	if (vcpu_match_mmio_gva(vcpu, gva)
4274 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4275 				 vcpu->arch.access, access)) {
4276 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4277 					(gva & (PAGE_SIZE - 1));
4278 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4279 		return 1;
4280 	}
4281 
4282 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4283 
4284 	if (*gpa == UNMAPPED_GVA)
4285 		return -1;
4286 
4287 	/* For APIC access vmexit */
4288 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4289 		return 1;
4290 
4291 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4292 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4293 		return 1;
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4300 			const void *val, int bytes)
4301 {
4302 	int ret;
4303 
4304 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4305 	if (ret < 0)
4306 		return 0;
4307 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4308 	return 1;
4309 }
4310 
4311 struct read_write_emulator_ops {
4312 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4313 				  int bytes);
4314 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4315 				  void *val, int bytes);
4316 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4317 			       int bytes, void *val);
4318 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4319 				    void *val, int bytes);
4320 	bool write;
4321 };
4322 
4323 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4324 {
4325 	if (vcpu->mmio_read_completed) {
4326 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4327 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4328 		vcpu->mmio_read_completed = 0;
4329 		return 1;
4330 	}
4331 
4332 	return 0;
4333 }
4334 
4335 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4336 			void *val, int bytes)
4337 {
4338 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4339 }
4340 
4341 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4342 			 void *val, int bytes)
4343 {
4344 	return emulator_write_phys(vcpu, gpa, val, bytes);
4345 }
4346 
4347 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4348 {
4349 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4350 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4351 }
4352 
4353 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4354 			  void *val, int bytes)
4355 {
4356 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4357 	return X86EMUL_IO_NEEDED;
4358 }
4359 
4360 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4361 			   void *val, int bytes)
4362 {
4363 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4364 
4365 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4366 	return X86EMUL_CONTINUE;
4367 }
4368 
4369 static const struct read_write_emulator_ops read_emultor = {
4370 	.read_write_prepare = read_prepare,
4371 	.read_write_emulate = read_emulate,
4372 	.read_write_mmio = vcpu_mmio_read,
4373 	.read_write_exit_mmio = read_exit_mmio,
4374 };
4375 
4376 static const struct read_write_emulator_ops write_emultor = {
4377 	.read_write_emulate = write_emulate,
4378 	.read_write_mmio = write_mmio,
4379 	.read_write_exit_mmio = write_exit_mmio,
4380 	.write = true,
4381 };
4382 
4383 static int emulator_read_write_onepage(unsigned long addr, void *val,
4384 				       unsigned int bytes,
4385 				       struct x86_exception *exception,
4386 				       struct kvm_vcpu *vcpu,
4387 				       const struct read_write_emulator_ops *ops)
4388 {
4389 	gpa_t gpa;
4390 	int handled, ret;
4391 	bool write = ops->write;
4392 	struct kvm_mmio_fragment *frag;
4393 
4394 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4395 
4396 	if (ret < 0)
4397 		return X86EMUL_PROPAGATE_FAULT;
4398 
4399 	/* For APIC access vmexit */
4400 	if (ret)
4401 		goto mmio;
4402 
4403 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4404 		return X86EMUL_CONTINUE;
4405 
4406 mmio:
4407 	/*
4408 	 * Is this MMIO handled locally?
4409 	 */
4410 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4411 	if (handled == bytes)
4412 		return X86EMUL_CONTINUE;
4413 
4414 	gpa += handled;
4415 	bytes -= handled;
4416 	val += handled;
4417 
4418 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4419 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4420 	frag->gpa = gpa;
4421 	frag->data = val;
4422 	frag->len = bytes;
4423 	return X86EMUL_CONTINUE;
4424 }
4425 
4426 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4427 			unsigned long addr,
4428 			void *val, unsigned int bytes,
4429 			struct x86_exception *exception,
4430 			const struct read_write_emulator_ops *ops)
4431 {
4432 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4433 	gpa_t gpa;
4434 	int rc;
4435 
4436 	if (ops->read_write_prepare &&
4437 		  ops->read_write_prepare(vcpu, val, bytes))
4438 		return X86EMUL_CONTINUE;
4439 
4440 	vcpu->mmio_nr_fragments = 0;
4441 
4442 	/* Crossing a page boundary? */
4443 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4444 		int now;
4445 
4446 		now = -addr & ~PAGE_MASK;
4447 		rc = emulator_read_write_onepage(addr, val, now, exception,
4448 						 vcpu, ops);
4449 
4450 		if (rc != X86EMUL_CONTINUE)
4451 			return rc;
4452 		addr += now;
4453 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4454 			addr = (u32)addr;
4455 		val += now;
4456 		bytes -= now;
4457 	}
4458 
4459 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4460 					 vcpu, ops);
4461 	if (rc != X86EMUL_CONTINUE)
4462 		return rc;
4463 
4464 	if (!vcpu->mmio_nr_fragments)
4465 		return rc;
4466 
4467 	gpa = vcpu->mmio_fragments[0].gpa;
4468 
4469 	vcpu->mmio_needed = 1;
4470 	vcpu->mmio_cur_fragment = 0;
4471 
4472 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4473 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4474 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4475 	vcpu->run->mmio.phys_addr = gpa;
4476 
4477 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4478 }
4479 
4480 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4481 				  unsigned long addr,
4482 				  void *val,
4483 				  unsigned int bytes,
4484 				  struct x86_exception *exception)
4485 {
4486 	return emulator_read_write(ctxt, addr, val, bytes,
4487 				   exception, &read_emultor);
4488 }
4489 
4490 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4491 			    unsigned long addr,
4492 			    const void *val,
4493 			    unsigned int bytes,
4494 			    struct x86_exception *exception)
4495 {
4496 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4497 				   exception, &write_emultor);
4498 }
4499 
4500 #define CMPXCHG_TYPE(t, ptr, old, new) \
4501 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4502 
4503 #ifdef CONFIG_X86_64
4504 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4505 #else
4506 #  define CMPXCHG64(ptr, old, new) \
4507 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4508 #endif
4509 
4510 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4511 				     unsigned long addr,
4512 				     const void *old,
4513 				     const void *new,
4514 				     unsigned int bytes,
4515 				     struct x86_exception *exception)
4516 {
4517 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4518 	gpa_t gpa;
4519 	struct page *page;
4520 	char *kaddr;
4521 	bool exchanged;
4522 
4523 	/* guests cmpxchg8b have to be emulated atomically */
4524 	if (bytes > 8 || (bytes & (bytes - 1)))
4525 		goto emul_write;
4526 
4527 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4528 
4529 	if (gpa == UNMAPPED_GVA ||
4530 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4531 		goto emul_write;
4532 
4533 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4534 		goto emul_write;
4535 
4536 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4537 	if (is_error_page(page))
4538 		goto emul_write;
4539 
4540 	kaddr = kmap_atomic(page);
4541 	kaddr += offset_in_page(gpa);
4542 	switch (bytes) {
4543 	case 1:
4544 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4545 		break;
4546 	case 2:
4547 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4548 		break;
4549 	case 4:
4550 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4551 		break;
4552 	case 8:
4553 		exchanged = CMPXCHG64(kaddr, old, new);
4554 		break;
4555 	default:
4556 		BUG();
4557 	}
4558 	kunmap_atomic(kaddr);
4559 	kvm_release_page_dirty(page);
4560 
4561 	if (!exchanged)
4562 		return X86EMUL_CMPXCHG_FAILED;
4563 
4564 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4565 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4566 
4567 	return X86EMUL_CONTINUE;
4568 
4569 emul_write:
4570 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4571 
4572 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4573 }
4574 
4575 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4576 {
4577 	/* TODO: String I/O for in kernel device */
4578 	int r;
4579 
4580 	if (vcpu->arch.pio.in)
4581 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4582 				    vcpu->arch.pio.size, pd);
4583 	else
4584 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4585 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4586 				     pd);
4587 	return r;
4588 }
4589 
4590 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4591 			       unsigned short port, void *val,
4592 			       unsigned int count, bool in)
4593 {
4594 	vcpu->arch.pio.port = port;
4595 	vcpu->arch.pio.in = in;
4596 	vcpu->arch.pio.count  = count;
4597 	vcpu->arch.pio.size = size;
4598 
4599 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4600 		vcpu->arch.pio.count = 0;
4601 		return 1;
4602 	}
4603 
4604 	vcpu->run->exit_reason = KVM_EXIT_IO;
4605 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4606 	vcpu->run->io.size = size;
4607 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4608 	vcpu->run->io.count = count;
4609 	vcpu->run->io.port = port;
4610 
4611 	return 0;
4612 }
4613 
4614 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4615 				    int size, unsigned short port, void *val,
4616 				    unsigned int count)
4617 {
4618 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4619 	int ret;
4620 
4621 	if (vcpu->arch.pio.count)
4622 		goto data_avail;
4623 
4624 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4625 	if (ret) {
4626 data_avail:
4627 		memcpy(val, vcpu->arch.pio_data, size * count);
4628 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4629 		vcpu->arch.pio.count = 0;
4630 		return 1;
4631 	}
4632 
4633 	return 0;
4634 }
4635 
4636 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4637 				     int size, unsigned short port,
4638 				     const void *val, unsigned int count)
4639 {
4640 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4641 
4642 	memcpy(vcpu->arch.pio_data, val, size * count);
4643 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4644 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4645 }
4646 
4647 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4648 {
4649 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4650 }
4651 
4652 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4653 {
4654 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4655 }
4656 
4657 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4658 {
4659 	if (!need_emulate_wbinvd(vcpu))
4660 		return X86EMUL_CONTINUE;
4661 
4662 	if (kvm_x86_ops->has_wbinvd_exit()) {
4663 		int cpu = get_cpu();
4664 
4665 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4666 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4667 				wbinvd_ipi, NULL, 1);
4668 		put_cpu();
4669 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4670 	} else
4671 		wbinvd();
4672 	return X86EMUL_CONTINUE;
4673 }
4674 
4675 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4676 {
4677 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4678 	return kvm_emulate_wbinvd_noskip(vcpu);
4679 }
4680 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4681 
4682 
4683 
4684 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4685 {
4686 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4687 }
4688 
4689 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4690 			   unsigned long *dest)
4691 {
4692 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4693 }
4694 
4695 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4696 			   unsigned long value)
4697 {
4698 
4699 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4700 }
4701 
4702 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4703 {
4704 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4705 }
4706 
4707 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4708 {
4709 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4710 	unsigned long value;
4711 
4712 	switch (cr) {
4713 	case 0:
4714 		value = kvm_read_cr0(vcpu);
4715 		break;
4716 	case 2:
4717 		value = vcpu->arch.cr2;
4718 		break;
4719 	case 3:
4720 		value = kvm_read_cr3(vcpu);
4721 		break;
4722 	case 4:
4723 		value = kvm_read_cr4(vcpu);
4724 		break;
4725 	case 8:
4726 		value = kvm_get_cr8(vcpu);
4727 		break;
4728 	default:
4729 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4730 		return 0;
4731 	}
4732 
4733 	return value;
4734 }
4735 
4736 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4737 {
4738 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4739 	int res = 0;
4740 
4741 	switch (cr) {
4742 	case 0:
4743 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4744 		break;
4745 	case 2:
4746 		vcpu->arch.cr2 = val;
4747 		break;
4748 	case 3:
4749 		res = kvm_set_cr3(vcpu, val);
4750 		break;
4751 	case 4:
4752 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4753 		break;
4754 	case 8:
4755 		res = kvm_set_cr8(vcpu, val);
4756 		break;
4757 	default:
4758 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4759 		res = -1;
4760 	}
4761 
4762 	return res;
4763 }
4764 
4765 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4766 {
4767 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4768 }
4769 
4770 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4771 {
4772 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4773 }
4774 
4775 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4776 {
4777 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4778 }
4779 
4780 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4781 {
4782 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4783 }
4784 
4785 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4786 {
4787 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4788 }
4789 
4790 static unsigned long emulator_get_cached_segment_base(
4791 	struct x86_emulate_ctxt *ctxt, int seg)
4792 {
4793 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4794 }
4795 
4796 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4797 				 struct desc_struct *desc, u32 *base3,
4798 				 int seg)
4799 {
4800 	struct kvm_segment var;
4801 
4802 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4803 	*selector = var.selector;
4804 
4805 	if (var.unusable) {
4806 		memset(desc, 0, sizeof(*desc));
4807 		return false;
4808 	}
4809 
4810 	if (var.g)
4811 		var.limit >>= 12;
4812 	set_desc_limit(desc, var.limit);
4813 	set_desc_base(desc, (unsigned long)var.base);
4814 #ifdef CONFIG_X86_64
4815 	if (base3)
4816 		*base3 = var.base >> 32;
4817 #endif
4818 	desc->type = var.type;
4819 	desc->s = var.s;
4820 	desc->dpl = var.dpl;
4821 	desc->p = var.present;
4822 	desc->avl = var.avl;
4823 	desc->l = var.l;
4824 	desc->d = var.db;
4825 	desc->g = var.g;
4826 
4827 	return true;
4828 }
4829 
4830 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4831 				 struct desc_struct *desc, u32 base3,
4832 				 int seg)
4833 {
4834 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4835 	struct kvm_segment var;
4836 
4837 	var.selector = selector;
4838 	var.base = get_desc_base(desc);
4839 #ifdef CONFIG_X86_64
4840 	var.base |= ((u64)base3) << 32;
4841 #endif
4842 	var.limit = get_desc_limit(desc);
4843 	if (desc->g)
4844 		var.limit = (var.limit << 12) | 0xfff;
4845 	var.type = desc->type;
4846 	var.dpl = desc->dpl;
4847 	var.db = desc->d;
4848 	var.s = desc->s;
4849 	var.l = desc->l;
4850 	var.g = desc->g;
4851 	var.avl = desc->avl;
4852 	var.present = desc->p;
4853 	var.unusable = !var.present;
4854 	var.padding = 0;
4855 
4856 	kvm_set_segment(vcpu, &var, seg);
4857 	return;
4858 }
4859 
4860 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4861 			    u32 msr_index, u64 *pdata)
4862 {
4863 	struct msr_data msr;
4864 	int r;
4865 
4866 	msr.index = msr_index;
4867 	msr.host_initiated = false;
4868 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4869 	if (r)
4870 		return r;
4871 
4872 	*pdata = msr.data;
4873 	return 0;
4874 }
4875 
4876 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4877 			    u32 msr_index, u64 data)
4878 {
4879 	struct msr_data msr;
4880 
4881 	msr.data = data;
4882 	msr.index = msr_index;
4883 	msr.host_initiated = false;
4884 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4885 }
4886 
4887 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4888 {
4889 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4890 
4891 	return vcpu->arch.smbase;
4892 }
4893 
4894 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4895 {
4896 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4897 
4898 	vcpu->arch.smbase = smbase;
4899 }
4900 
4901 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4902 			      u32 pmc)
4903 {
4904 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4905 }
4906 
4907 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4908 			     u32 pmc, u64 *pdata)
4909 {
4910 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4911 }
4912 
4913 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4914 {
4915 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4916 }
4917 
4918 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4919 {
4920 	preempt_disable();
4921 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4922 	/*
4923 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4924 	 * so it may be clear at this point.
4925 	 */
4926 	clts();
4927 }
4928 
4929 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4930 {
4931 	preempt_enable();
4932 }
4933 
4934 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4935 			      struct x86_instruction_info *info,
4936 			      enum x86_intercept_stage stage)
4937 {
4938 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4939 }
4940 
4941 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4942 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4943 {
4944 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4945 }
4946 
4947 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4948 {
4949 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4950 }
4951 
4952 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4953 {
4954 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4955 }
4956 
4957 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4958 {
4959 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4960 }
4961 
4962 static const struct x86_emulate_ops emulate_ops = {
4963 	.read_gpr            = emulator_read_gpr,
4964 	.write_gpr           = emulator_write_gpr,
4965 	.read_std            = kvm_read_guest_virt_system,
4966 	.write_std           = kvm_write_guest_virt_system,
4967 	.read_phys           = kvm_read_guest_phys_system,
4968 	.fetch               = kvm_fetch_guest_virt,
4969 	.read_emulated       = emulator_read_emulated,
4970 	.write_emulated      = emulator_write_emulated,
4971 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4972 	.invlpg              = emulator_invlpg,
4973 	.pio_in_emulated     = emulator_pio_in_emulated,
4974 	.pio_out_emulated    = emulator_pio_out_emulated,
4975 	.get_segment         = emulator_get_segment,
4976 	.set_segment         = emulator_set_segment,
4977 	.get_cached_segment_base = emulator_get_cached_segment_base,
4978 	.get_gdt             = emulator_get_gdt,
4979 	.get_idt	     = emulator_get_idt,
4980 	.set_gdt             = emulator_set_gdt,
4981 	.set_idt	     = emulator_set_idt,
4982 	.get_cr              = emulator_get_cr,
4983 	.set_cr              = emulator_set_cr,
4984 	.cpl                 = emulator_get_cpl,
4985 	.get_dr              = emulator_get_dr,
4986 	.set_dr              = emulator_set_dr,
4987 	.get_smbase          = emulator_get_smbase,
4988 	.set_smbase          = emulator_set_smbase,
4989 	.set_msr             = emulator_set_msr,
4990 	.get_msr             = emulator_get_msr,
4991 	.check_pmc	     = emulator_check_pmc,
4992 	.read_pmc            = emulator_read_pmc,
4993 	.halt                = emulator_halt,
4994 	.wbinvd              = emulator_wbinvd,
4995 	.fix_hypercall       = emulator_fix_hypercall,
4996 	.get_fpu             = emulator_get_fpu,
4997 	.put_fpu             = emulator_put_fpu,
4998 	.intercept           = emulator_intercept,
4999 	.get_cpuid           = emulator_get_cpuid,
5000 	.set_nmi_mask        = emulator_set_nmi_mask,
5001 };
5002 
5003 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5004 {
5005 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5006 	/*
5007 	 * an sti; sti; sequence only disable interrupts for the first
5008 	 * instruction. So, if the last instruction, be it emulated or
5009 	 * not, left the system with the INT_STI flag enabled, it
5010 	 * means that the last instruction is an sti. We should not
5011 	 * leave the flag on in this case. The same goes for mov ss
5012 	 */
5013 	if (int_shadow & mask)
5014 		mask = 0;
5015 	if (unlikely(int_shadow || mask)) {
5016 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5017 		if (!mask)
5018 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5019 	}
5020 }
5021 
5022 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5023 {
5024 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5025 	if (ctxt->exception.vector == PF_VECTOR)
5026 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5027 
5028 	if (ctxt->exception.error_code_valid)
5029 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5030 				      ctxt->exception.error_code);
5031 	else
5032 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5033 	return false;
5034 }
5035 
5036 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5037 {
5038 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5039 	int cs_db, cs_l;
5040 
5041 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5042 
5043 	ctxt->eflags = kvm_get_rflags(vcpu);
5044 	ctxt->eip = kvm_rip_read(vcpu);
5045 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5046 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5047 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5048 		     cs_db				? X86EMUL_MODE_PROT32 :
5049 							  X86EMUL_MODE_PROT16;
5050 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5051 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5052 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5053 	ctxt->emul_flags = vcpu->arch.hflags;
5054 
5055 	init_decode_cache(ctxt);
5056 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5057 }
5058 
5059 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5060 {
5061 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5062 	int ret;
5063 
5064 	init_emulate_ctxt(vcpu);
5065 
5066 	ctxt->op_bytes = 2;
5067 	ctxt->ad_bytes = 2;
5068 	ctxt->_eip = ctxt->eip + inc_eip;
5069 	ret = emulate_int_real(ctxt, irq);
5070 
5071 	if (ret != X86EMUL_CONTINUE)
5072 		return EMULATE_FAIL;
5073 
5074 	ctxt->eip = ctxt->_eip;
5075 	kvm_rip_write(vcpu, ctxt->eip);
5076 	kvm_set_rflags(vcpu, ctxt->eflags);
5077 
5078 	if (irq == NMI_VECTOR)
5079 		vcpu->arch.nmi_pending = 0;
5080 	else
5081 		vcpu->arch.interrupt.pending = false;
5082 
5083 	return EMULATE_DONE;
5084 }
5085 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5086 
5087 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5088 {
5089 	int r = EMULATE_DONE;
5090 
5091 	++vcpu->stat.insn_emulation_fail;
5092 	trace_kvm_emulate_insn_failed(vcpu);
5093 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5094 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5095 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5096 		vcpu->run->internal.ndata = 0;
5097 		r = EMULATE_FAIL;
5098 	}
5099 	kvm_queue_exception(vcpu, UD_VECTOR);
5100 
5101 	return r;
5102 }
5103 
5104 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5105 				  bool write_fault_to_shadow_pgtable,
5106 				  int emulation_type)
5107 {
5108 	gpa_t gpa = cr2;
5109 	pfn_t pfn;
5110 
5111 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5112 		return false;
5113 
5114 	if (!vcpu->arch.mmu.direct_map) {
5115 		/*
5116 		 * Write permission should be allowed since only
5117 		 * write access need to be emulated.
5118 		 */
5119 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5120 
5121 		/*
5122 		 * If the mapping is invalid in guest, let cpu retry
5123 		 * it to generate fault.
5124 		 */
5125 		if (gpa == UNMAPPED_GVA)
5126 			return true;
5127 	}
5128 
5129 	/*
5130 	 * Do not retry the unhandleable instruction if it faults on the
5131 	 * readonly host memory, otherwise it will goto a infinite loop:
5132 	 * retry instruction -> write #PF -> emulation fail -> retry
5133 	 * instruction -> ...
5134 	 */
5135 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5136 
5137 	/*
5138 	 * If the instruction failed on the error pfn, it can not be fixed,
5139 	 * report the error to userspace.
5140 	 */
5141 	if (is_error_noslot_pfn(pfn))
5142 		return false;
5143 
5144 	kvm_release_pfn_clean(pfn);
5145 
5146 	/* The instructions are well-emulated on direct mmu. */
5147 	if (vcpu->arch.mmu.direct_map) {
5148 		unsigned int indirect_shadow_pages;
5149 
5150 		spin_lock(&vcpu->kvm->mmu_lock);
5151 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5152 		spin_unlock(&vcpu->kvm->mmu_lock);
5153 
5154 		if (indirect_shadow_pages)
5155 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5156 
5157 		return true;
5158 	}
5159 
5160 	/*
5161 	 * if emulation was due to access to shadowed page table
5162 	 * and it failed try to unshadow page and re-enter the
5163 	 * guest to let CPU execute the instruction.
5164 	 */
5165 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5166 
5167 	/*
5168 	 * If the access faults on its page table, it can not
5169 	 * be fixed by unprotecting shadow page and it should
5170 	 * be reported to userspace.
5171 	 */
5172 	return !write_fault_to_shadow_pgtable;
5173 }
5174 
5175 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5176 			      unsigned long cr2,  int emulation_type)
5177 {
5178 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5179 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5180 
5181 	last_retry_eip = vcpu->arch.last_retry_eip;
5182 	last_retry_addr = vcpu->arch.last_retry_addr;
5183 
5184 	/*
5185 	 * If the emulation is caused by #PF and it is non-page_table
5186 	 * writing instruction, it means the VM-EXIT is caused by shadow
5187 	 * page protected, we can zap the shadow page and retry this
5188 	 * instruction directly.
5189 	 *
5190 	 * Note: if the guest uses a non-page-table modifying instruction
5191 	 * on the PDE that points to the instruction, then we will unmap
5192 	 * the instruction and go to an infinite loop. So, we cache the
5193 	 * last retried eip and the last fault address, if we meet the eip
5194 	 * and the address again, we can break out of the potential infinite
5195 	 * loop.
5196 	 */
5197 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5198 
5199 	if (!(emulation_type & EMULTYPE_RETRY))
5200 		return false;
5201 
5202 	if (x86_page_table_writing_insn(ctxt))
5203 		return false;
5204 
5205 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5206 		return false;
5207 
5208 	vcpu->arch.last_retry_eip = ctxt->eip;
5209 	vcpu->arch.last_retry_addr = cr2;
5210 
5211 	if (!vcpu->arch.mmu.direct_map)
5212 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5213 
5214 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5215 
5216 	return true;
5217 }
5218 
5219 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5220 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5221 
5222 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5223 {
5224 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5225 		/* This is a good place to trace that we are exiting SMM.  */
5226 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5227 
5228 		if (unlikely(vcpu->arch.smi_pending)) {
5229 			kvm_make_request(KVM_REQ_SMI, vcpu);
5230 			vcpu->arch.smi_pending = 0;
5231 		} else {
5232 			/* Process a latched INIT, if any.  */
5233 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5234 		}
5235 	}
5236 
5237 	kvm_mmu_reset_context(vcpu);
5238 }
5239 
5240 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5241 {
5242 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5243 
5244 	vcpu->arch.hflags = emul_flags;
5245 
5246 	if (changed & HF_SMM_MASK)
5247 		kvm_smm_changed(vcpu);
5248 }
5249 
5250 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5251 				unsigned long *db)
5252 {
5253 	u32 dr6 = 0;
5254 	int i;
5255 	u32 enable, rwlen;
5256 
5257 	enable = dr7;
5258 	rwlen = dr7 >> 16;
5259 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5260 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5261 			dr6 |= (1 << i);
5262 	return dr6;
5263 }
5264 
5265 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5266 {
5267 	struct kvm_run *kvm_run = vcpu->run;
5268 
5269 	/*
5270 	 * rflags is the old, "raw" value of the flags.  The new value has
5271 	 * not been saved yet.
5272 	 *
5273 	 * This is correct even for TF set by the guest, because "the
5274 	 * processor will not generate this exception after the instruction
5275 	 * that sets the TF flag".
5276 	 */
5277 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5278 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5279 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5280 						  DR6_RTM;
5281 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5282 			kvm_run->debug.arch.exception = DB_VECTOR;
5283 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5284 			*r = EMULATE_USER_EXIT;
5285 		} else {
5286 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5287 			/*
5288 			 * "Certain debug exceptions may clear bit 0-3.  The
5289 			 * remaining contents of the DR6 register are never
5290 			 * cleared by the processor".
5291 			 */
5292 			vcpu->arch.dr6 &= ~15;
5293 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5294 			kvm_queue_exception(vcpu, DB_VECTOR);
5295 		}
5296 	}
5297 }
5298 
5299 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5300 {
5301 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5302 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5303 		struct kvm_run *kvm_run = vcpu->run;
5304 		unsigned long eip = kvm_get_linear_rip(vcpu);
5305 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5306 					   vcpu->arch.guest_debug_dr7,
5307 					   vcpu->arch.eff_db);
5308 
5309 		if (dr6 != 0) {
5310 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5311 			kvm_run->debug.arch.pc = eip;
5312 			kvm_run->debug.arch.exception = DB_VECTOR;
5313 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5314 			*r = EMULATE_USER_EXIT;
5315 			return true;
5316 		}
5317 	}
5318 
5319 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5320 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5321 		unsigned long eip = kvm_get_linear_rip(vcpu);
5322 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5323 					   vcpu->arch.dr7,
5324 					   vcpu->arch.db);
5325 
5326 		if (dr6 != 0) {
5327 			vcpu->arch.dr6 &= ~15;
5328 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5329 			kvm_queue_exception(vcpu, DB_VECTOR);
5330 			*r = EMULATE_DONE;
5331 			return true;
5332 		}
5333 	}
5334 
5335 	return false;
5336 }
5337 
5338 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5339 			    unsigned long cr2,
5340 			    int emulation_type,
5341 			    void *insn,
5342 			    int insn_len)
5343 {
5344 	int r;
5345 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5346 	bool writeback = true;
5347 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5348 
5349 	/*
5350 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5351 	 * never reused.
5352 	 */
5353 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5354 	kvm_clear_exception_queue(vcpu);
5355 
5356 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5357 		init_emulate_ctxt(vcpu);
5358 
5359 		/*
5360 		 * We will reenter on the same instruction since
5361 		 * we do not set complete_userspace_io.  This does not
5362 		 * handle watchpoints yet, those would be handled in
5363 		 * the emulate_ops.
5364 		 */
5365 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5366 			return r;
5367 
5368 		ctxt->interruptibility = 0;
5369 		ctxt->have_exception = false;
5370 		ctxt->exception.vector = -1;
5371 		ctxt->perm_ok = false;
5372 
5373 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5374 
5375 		r = x86_decode_insn(ctxt, insn, insn_len);
5376 
5377 		trace_kvm_emulate_insn_start(vcpu);
5378 		++vcpu->stat.insn_emulation;
5379 		if (r != EMULATION_OK)  {
5380 			if (emulation_type & EMULTYPE_TRAP_UD)
5381 				return EMULATE_FAIL;
5382 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5383 						emulation_type))
5384 				return EMULATE_DONE;
5385 			if (emulation_type & EMULTYPE_SKIP)
5386 				return EMULATE_FAIL;
5387 			return handle_emulation_failure(vcpu);
5388 		}
5389 	}
5390 
5391 	if (emulation_type & EMULTYPE_SKIP) {
5392 		kvm_rip_write(vcpu, ctxt->_eip);
5393 		if (ctxt->eflags & X86_EFLAGS_RF)
5394 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5395 		return EMULATE_DONE;
5396 	}
5397 
5398 	if (retry_instruction(ctxt, cr2, emulation_type))
5399 		return EMULATE_DONE;
5400 
5401 	/* this is needed for vmware backdoor interface to work since it
5402 	   changes registers values  during IO operation */
5403 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5404 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5405 		emulator_invalidate_register_cache(ctxt);
5406 	}
5407 
5408 restart:
5409 	r = x86_emulate_insn(ctxt);
5410 
5411 	if (r == EMULATION_INTERCEPTED)
5412 		return EMULATE_DONE;
5413 
5414 	if (r == EMULATION_FAILED) {
5415 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5416 					emulation_type))
5417 			return EMULATE_DONE;
5418 
5419 		return handle_emulation_failure(vcpu);
5420 	}
5421 
5422 	if (ctxt->have_exception) {
5423 		r = EMULATE_DONE;
5424 		if (inject_emulated_exception(vcpu))
5425 			return r;
5426 	} else if (vcpu->arch.pio.count) {
5427 		if (!vcpu->arch.pio.in) {
5428 			/* FIXME: return into emulator if single-stepping.  */
5429 			vcpu->arch.pio.count = 0;
5430 		} else {
5431 			writeback = false;
5432 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5433 		}
5434 		r = EMULATE_USER_EXIT;
5435 	} else if (vcpu->mmio_needed) {
5436 		if (!vcpu->mmio_is_write)
5437 			writeback = false;
5438 		r = EMULATE_USER_EXIT;
5439 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5440 	} else if (r == EMULATION_RESTART)
5441 		goto restart;
5442 	else
5443 		r = EMULATE_DONE;
5444 
5445 	if (writeback) {
5446 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5447 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5448 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5449 		if (vcpu->arch.hflags != ctxt->emul_flags)
5450 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5451 		kvm_rip_write(vcpu, ctxt->eip);
5452 		if (r == EMULATE_DONE)
5453 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5454 		if (!ctxt->have_exception ||
5455 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5456 			__kvm_set_rflags(vcpu, ctxt->eflags);
5457 
5458 		/*
5459 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5460 		 * do nothing, and it will be requested again as soon as
5461 		 * the shadow expires.  But we still need to check here,
5462 		 * because POPF has no interrupt shadow.
5463 		 */
5464 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5465 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5466 	} else
5467 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5468 
5469 	return r;
5470 }
5471 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5472 
5473 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5474 {
5475 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5476 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5477 					    size, port, &val, 1);
5478 	/* do not return to emulator after return from userspace */
5479 	vcpu->arch.pio.count = 0;
5480 	return ret;
5481 }
5482 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5483 
5484 static void tsc_bad(void *info)
5485 {
5486 	__this_cpu_write(cpu_tsc_khz, 0);
5487 }
5488 
5489 static void tsc_khz_changed(void *data)
5490 {
5491 	struct cpufreq_freqs *freq = data;
5492 	unsigned long khz = 0;
5493 
5494 	if (data)
5495 		khz = freq->new;
5496 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5497 		khz = cpufreq_quick_get(raw_smp_processor_id());
5498 	if (!khz)
5499 		khz = tsc_khz;
5500 	__this_cpu_write(cpu_tsc_khz, khz);
5501 }
5502 
5503 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5504 				     void *data)
5505 {
5506 	struct cpufreq_freqs *freq = data;
5507 	struct kvm *kvm;
5508 	struct kvm_vcpu *vcpu;
5509 	int i, send_ipi = 0;
5510 
5511 	/*
5512 	 * We allow guests to temporarily run on slowing clocks,
5513 	 * provided we notify them after, or to run on accelerating
5514 	 * clocks, provided we notify them before.  Thus time never
5515 	 * goes backwards.
5516 	 *
5517 	 * However, we have a problem.  We can't atomically update
5518 	 * the frequency of a given CPU from this function; it is
5519 	 * merely a notifier, which can be called from any CPU.
5520 	 * Changing the TSC frequency at arbitrary points in time
5521 	 * requires a recomputation of local variables related to
5522 	 * the TSC for each VCPU.  We must flag these local variables
5523 	 * to be updated and be sure the update takes place with the
5524 	 * new frequency before any guests proceed.
5525 	 *
5526 	 * Unfortunately, the combination of hotplug CPU and frequency
5527 	 * change creates an intractable locking scenario; the order
5528 	 * of when these callouts happen is undefined with respect to
5529 	 * CPU hotplug, and they can race with each other.  As such,
5530 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5531 	 * undefined; you can actually have a CPU frequency change take
5532 	 * place in between the computation of X and the setting of the
5533 	 * variable.  To protect against this problem, all updates of
5534 	 * the per_cpu tsc_khz variable are done in an interrupt
5535 	 * protected IPI, and all callers wishing to update the value
5536 	 * must wait for a synchronous IPI to complete (which is trivial
5537 	 * if the caller is on the CPU already).  This establishes the
5538 	 * necessary total order on variable updates.
5539 	 *
5540 	 * Note that because a guest time update may take place
5541 	 * anytime after the setting of the VCPU's request bit, the
5542 	 * correct TSC value must be set before the request.  However,
5543 	 * to ensure the update actually makes it to any guest which
5544 	 * starts running in hardware virtualization between the set
5545 	 * and the acquisition of the spinlock, we must also ping the
5546 	 * CPU after setting the request bit.
5547 	 *
5548 	 */
5549 
5550 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5551 		return 0;
5552 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5553 		return 0;
5554 
5555 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5556 
5557 	spin_lock(&kvm_lock);
5558 	list_for_each_entry(kvm, &vm_list, vm_list) {
5559 		kvm_for_each_vcpu(i, vcpu, kvm) {
5560 			if (vcpu->cpu != freq->cpu)
5561 				continue;
5562 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5563 			if (vcpu->cpu != smp_processor_id())
5564 				send_ipi = 1;
5565 		}
5566 	}
5567 	spin_unlock(&kvm_lock);
5568 
5569 	if (freq->old < freq->new && send_ipi) {
5570 		/*
5571 		 * We upscale the frequency.  Must make the guest
5572 		 * doesn't see old kvmclock values while running with
5573 		 * the new frequency, otherwise we risk the guest sees
5574 		 * time go backwards.
5575 		 *
5576 		 * In case we update the frequency for another cpu
5577 		 * (which might be in guest context) send an interrupt
5578 		 * to kick the cpu out of guest context.  Next time
5579 		 * guest context is entered kvmclock will be updated,
5580 		 * so the guest will not see stale values.
5581 		 */
5582 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5583 	}
5584 	return 0;
5585 }
5586 
5587 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5588 	.notifier_call  = kvmclock_cpufreq_notifier
5589 };
5590 
5591 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5592 					unsigned long action, void *hcpu)
5593 {
5594 	unsigned int cpu = (unsigned long)hcpu;
5595 
5596 	switch (action) {
5597 		case CPU_ONLINE:
5598 		case CPU_DOWN_FAILED:
5599 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5600 			break;
5601 		case CPU_DOWN_PREPARE:
5602 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5603 			break;
5604 	}
5605 	return NOTIFY_OK;
5606 }
5607 
5608 static struct notifier_block kvmclock_cpu_notifier_block = {
5609 	.notifier_call  = kvmclock_cpu_notifier,
5610 	.priority = -INT_MAX
5611 };
5612 
5613 static void kvm_timer_init(void)
5614 {
5615 	int cpu;
5616 
5617 	max_tsc_khz = tsc_khz;
5618 
5619 	cpu_notifier_register_begin();
5620 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5621 #ifdef CONFIG_CPU_FREQ
5622 		struct cpufreq_policy policy;
5623 		memset(&policy, 0, sizeof(policy));
5624 		cpu = get_cpu();
5625 		cpufreq_get_policy(&policy, cpu);
5626 		if (policy.cpuinfo.max_freq)
5627 			max_tsc_khz = policy.cpuinfo.max_freq;
5628 		put_cpu();
5629 #endif
5630 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5631 					  CPUFREQ_TRANSITION_NOTIFIER);
5632 	}
5633 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5634 	for_each_online_cpu(cpu)
5635 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5636 
5637 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5638 	cpu_notifier_register_done();
5639 
5640 }
5641 
5642 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5643 
5644 int kvm_is_in_guest(void)
5645 {
5646 	return __this_cpu_read(current_vcpu) != NULL;
5647 }
5648 
5649 static int kvm_is_user_mode(void)
5650 {
5651 	int user_mode = 3;
5652 
5653 	if (__this_cpu_read(current_vcpu))
5654 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5655 
5656 	return user_mode != 0;
5657 }
5658 
5659 static unsigned long kvm_get_guest_ip(void)
5660 {
5661 	unsigned long ip = 0;
5662 
5663 	if (__this_cpu_read(current_vcpu))
5664 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5665 
5666 	return ip;
5667 }
5668 
5669 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5670 	.is_in_guest		= kvm_is_in_guest,
5671 	.is_user_mode		= kvm_is_user_mode,
5672 	.get_guest_ip		= kvm_get_guest_ip,
5673 };
5674 
5675 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5676 {
5677 	__this_cpu_write(current_vcpu, vcpu);
5678 }
5679 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5680 
5681 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5682 {
5683 	__this_cpu_write(current_vcpu, NULL);
5684 }
5685 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5686 
5687 static void kvm_set_mmio_spte_mask(void)
5688 {
5689 	u64 mask;
5690 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5691 
5692 	/*
5693 	 * Set the reserved bits and the present bit of an paging-structure
5694 	 * entry to generate page fault with PFER.RSV = 1.
5695 	 */
5696 	 /* Mask the reserved physical address bits. */
5697 	mask = rsvd_bits(maxphyaddr, 51);
5698 
5699 	/* Bit 62 is always reserved for 32bit host. */
5700 	mask |= 0x3ull << 62;
5701 
5702 	/* Set the present bit. */
5703 	mask |= 1ull;
5704 
5705 #ifdef CONFIG_X86_64
5706 	/*
5707 	 * If reserved bit is not supported, clear the present bit to disable
5708 	 * mmio page fault.
5709 	 */
5710 	if (maxphyaddr == 52)
5711 		mask &= ~1ull;
5712 #endif
5713 
5714 	kvm_mmu_set_mmio_spte_mask(mask);
5715 }
5716 
5717 #ifdef CONFIG_X86_64
5718 static void pvclock_gtod_update_fn(struct work_struct *work)
5719 {
5720 	struct kvm *kvm;
5721 
5722 	struct kvm_vcpu *vcpu;
5723 	int i;
5724 
5725 	spin_lock(&kvm_lock);
5726 	list_for_each_entry(kvm, &vm_list, vm_list)
5727 		kvm_for_each_vcpu(i, vcpu, kvm)
5728 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5729 	atomic_set(&kvm_guest_has_master_clock, 0);
5730 	spin_unlock(&kvm_lock);
5731 }
5732 
5733 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5734 
5735 /*
5736  * Notification about pvclock gtod data update.
5737  */
5738 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5739 			       void *priv)
5740 {
5741 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5742 	struct timekeeper *tk = priv;
5743 
5744 	update_pvclock_gtod(tk);
5745 
5746 	/* disable master clock if host does not trust, or does not
5747 	 * use, TSC clocksource
5748 	 */
5749 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5750 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5751 		queue_work(system_long_wq, &pvclock_gtod_work);
5752 
5753 	return 0;
5754 }
5755 
5756 static struct notifier_block pvclock_gtod_notifier = {
5757 	.notifier_call = pvclock_gtod_notify,
5758 };
5759 #endif
5760 
5761 int kvm_arch_init(void *opaque)
5762 {
5763 	int r;
5764 	struct kvm_x86_ops *ops = opaque;
5765 
5766 	if (kvm_x86_ops) {
5767 		printk(KERN_ERR "kvm: already loaded the other module\n");
5768 		r = -EEXIST;
5769 		goto out;
5770 	}
5771 
5772 	if (!ops->cpu_has_kvm_support()) {
5773 		printk(KERN_ERR "kvm: no hardware support\n");
5774 		r = -EOPNOTSUPP;
5775 		goto out;
5776 	}
5777 	if (ops->disabled_by_bios()) {
5778 		printk(KERN_ERR "kvm: disabled by bios\n");
5779 		r = -EOPNOTSUPP;
5780 		goto out;
5781 	}
5782 
5783 	r = -ENOMEM;
5784 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5785 	if (!shared_msrs) {
5786 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5787 		goto out;
5788 	}
5789 
5790 	r = kvm_mmu_module_init();
5791 	if (r)
5792 		goto out_free_percpu;
5793 
5794 	kvm_set_mmio_spte_mask();
5795 
5796 	kvm_x86_ops = ops;
5797 
5798 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5799 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5800 
5801 	kvm_timer_init();
5802 
5803 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5804 
5805 	if (cpu_has_xsave)
5806 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5807 
5808 	kvm_lapic_init();
5809 #ifdef CONFIG_X86_64
5810 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5811 #endif
5812 
5813 	return 0;
5814 
5815 out_free_percpu:
5816 	free_percpu(shared_msrs);
5817 out:
5818 	return r;
5819 }
5820 
5821 void kvm_arch_exit(void)
5822 {
5823 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5824 
5825 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5826 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5827 					    CPUFREQ_TRANSITION_NOTIFIER);
5828 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5829 #ifdef CONFIG_X86_64
5830 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5831 #endif
5832 	kvm_x86_ops = NULL;
5833 	kvm_mmu_module_exit();
5834 	free_percpu(shared_msrs);
5835 }
5836 
5837 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5838 {
5839 	++vcpu->stat.halt_exits;
5840 	if (lapic_in_kernel(vcpu)) {
5841 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5842 		return 1;
5843 	} else {
5844 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5845 		return 0;
5846 	}
5847 }
5848 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5849 
5850 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5851 {
5852 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5853 	return kvm_vcpu_halt(vcpu);
5854 }
5855 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5856 
5857 /*
5858  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5859  *
5860  * @apicid - apicid of vcpu to be kicked.
5861  */
5862 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5863 {
5864 	struct kvm_lapic_irq lapic_irq;
5865 
5866 	lapic_irq.shorthand = 0;
5867 	lapic_irq.dest_mode = 0;
5868 	lapic_irq.dest_id = apicid;
5869 	lapic_irq.msi_redir_hint = false;
5870 
5871 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5872 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5873 }
5874 
5875 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5876 {
5877 	unsigned long nr, a0, a1, a2, a3, ret;
5878 	int op_64_bit, r = 1;
5879 
5880 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5881 
5882 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5883 		return kvm_hv_hypercall(vcpu);
5884 
5885 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5886 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5887 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5888 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5889 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5890 
5891 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5892 
5893 	op_64_bit = is_64_bit_mode(vcpu);
5894 	if (!op_64_bit) {
5895 		nr &= 0xFFFFFFFF;
5896 		a0 &= 0xFFFFFFFF;
5897 		a1 &= 0xFFFFFFFF;
5898 		a2 &= 0xFFFFFFFF;
5899 		a3 &= 0xFFFFFFFF;
5900 	}
5901 
5902 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5903 		ret = -KVM_EPERM;
5904 		goto out;
5905 	}
5906 
5907 	switch (nr) {
5908 	case KVM_HC_VAPIC_POLL_IRQ:
5909 		ret = 0;
5910 		break;
5911 	case KVM_HC_KICK_CPU:
5912 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5913 		ret = 0;
5914 		break;
5915 	default:
5916 		ret = -KVM_ENOSYS;
5917 		break;
5918 	}
5919 out:
5920 	if (!op_64_bit)
5921 		ret = (u32)ret;
5922 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5923 	++vcpu->stat.hypercalls;
5924 	return r;
5925 }
5926 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5927 
5928 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5929 {
5930 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5931 	char instruction[3];
5932 	unsigned long rip = kvm_rip_read(vcpu);
5933 
5934 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5935 
5936 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5937 }
5938 
5939 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5940 {
5941 	return vcpu->run->request_interrupt_window &&
5942 		likely(!pic_in_kernel(vcpu->kvm));
5943 }
5944 
5945 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5946 {
5947 	struct kvm_run *kvm_run = vcpu->run;
5948 
5949 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5950 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5951 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5952 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5953 	kvm_run->ready_for_interrupt_injection =
5954 		pic_in_kernel(vcpu->kvm) ||
5955 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
5956 }
5957 
5958 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5959 {
5960 	int max_irr, tpr;
5961 
5962 	if (!kvm_x86_ops->update_cr8_intercept)
5963 		return;
5964 
5965 	if (!vcpu->arch.apic)
5966 		return;
5967 
5968 	if (!vcpu->arch.apic->vapic_addr)
5969 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5970 	else
5971 		max_irr = -1;
5972 
5973 	if (max_irr != -1)
5974 		max_irr >>= 4;
5975 
5976 	tpr = kvm_lapic_get_cr8(vcpu);
5977 
5978 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5979 }
5980 
5981 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5982 {
5983 	int r;
5984 
5985 	/* try to reinject previous events if any */
5986 	if (vcpu->arch.exception.pending) {
5987 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5988 					vcpu->arch.exception.has_error_code,
5989 					vcpu->arch.exception.error_code);
5990 
5991 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5992 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5993 					     X86_EFLAGS_RF);
5994 
5995 		if (vcpu->arch.exception.nr == DB_VECTOR &&
5996 		    (vcpu->arch.dr7 & DR7_GD)) {
5997 			vcpu->arch.dr7 &= ~DR7_GD;
5998 			kvm_update_dr7(vcpu);
5999 		}
6000 
6001 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6002 					  vcpu->arch.exception.has_error_code,
6003 					  vcpu->arch.exception.error_code,
6004 					  vcpu->arch.exception.reinject);
6005 		return 0;
6006 	}
6007 
6008 	if (vcpu->arch.nmi_injected) {
6009 		kvm_x86_ops->set_nmi(vcpu);
6010 		return 0;
6011 	}
6012 
6013 	if (vcpu->arch.interrupt.pending) {
6014 		kvm_x86_ops->set_irq(vcpu);
6015 		return 0;
6016 	}
6017 
6018 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6019 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6020 		if (r != 0)
6021 			return r;
6022 	}
6023 
6024 	/* try to inject new event if pending */
6025 	if (vcpu->arch.nmi_pending) {
6026 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
6027 			--vcpu->arch.nmi_pending;
6028 			vcpu->arch.nmi_injected = true;
6029 			kvm_x86_ops->set_nmi(vcpu);
6030 		}
6031 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6032 		/*
6033 		 * Because interrupts can be injected asynchronously, we are
6034 		 * calling check_nested_events again here to avoid a race condition.
6035 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6036 		 * proposal and current concerns.  Perhaps we should be setting
6037 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6038 		 */
6039 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6040 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6041 			if (r != 0)
6042 				return r;
6043 		}
6044 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6045 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6046 					    false);
6047 			kvm_x86_ops->set_irq(vcpu);
6048 		}
6049 	}
6050 	return 0;
6051 }
6052 
6053 static void process_nmi(struct kvm_vcpu *vcpu)
6054 {
6055 	unsigned limit = 2;
6056 
6057 	/*
6058 	 * x86 is limited to one NMI running, and one NMI pending after it.
6059 	 * If an NMI is already in progress, limit further NMIs to just one.
6060 	 * Otherwise, allow two (and we'll inject the first one immediately).
6061 	 */
6062 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6063 		limit = 1;
6064 
6065 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6066 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6067 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6068 }
6069 
6070 #define put_smstate(type, buf, offset, val)			  \
6071 	*(type *)((buf) + (offset) - 0x7e00) = val
6072 
6073 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6074 {
6075 	u32 flags = 0;
6076 	flags |= seg->g       << 23;
6077 	flags |= seg->db      << 22;
6078 	flags |= seg->l       << 21;
6079 	flags |= seg->avl     << 20;
6080 	flags |= seg->present << 15;
6081 	flags |= seg->dpl     << 13;
6082 	flags |= seg->s       << 12;
6083 	flags |= seg->type    << 8;
6084 	return flags;
6085 }
6086 
6087 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6088 {
6089 	struct kvm_segment seg;
6090 	int offset;
6091 
6092 	kvm_get_segment(vcpu, &seg, n);
6093 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6094 
6095 	if (n < 3)
6096 		offset = 0x7f84 + n * 12;
6097 	else
6098 		offset = 0x7f2c + (n - 3) * 12;
6099 
6100 	put_smstate(u32, buf, offset + 8, seg.base);
6101 	put_smstate(u32, buf, offset + 4, seg.limit);
6102 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6103 }
6104 
6105 #ifdef CONFIG_X86_64
6106 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6107 {
6108 	struct kvm_segment seg;
6109 	int offset;
6110 	u16 flags;
6111 
6112 	kvm_get_segment(vcpu, &seg, n);
6113 	offset = 0x7e00 + n * 16;
6114 
6115 	flags = process_smi_get_segment_flags(&seg) >> 8;
6116 	put_smstate(u16, buf, offset, seg.selector);
6117 	put_smstate(u16, buf, offset + 2, flags);
6118 	put_smstate(u32, buf, offset + 4, seg.limit);
6119 	put_smstate(u64, buf, offset + 8, seg.base);
6120 }
6121 #endif
6122 
6123 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6124 {
6125 	struct desc_ptr dt;
6126 	struct kvm_segment seg;
6127 	unsigned long val;
6128 	int i;
6129 
6130 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6131 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6132 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6133 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6134 
6135 	for (i = 0; i < 8; i++)
6136 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6137 
6138 	kvm_get_dr(vcpu, 6, &val);
6139 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6140 	kvm_get_dr(vcpu, 7, &val);
6141 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6142 
6143 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6144 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6145 	put_smstate(u32, buf, 0x7f64, seg.base);
6146 	put_smstate(u32, buf, 0x7f60, seg.limit);
6147 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6148 
6149 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6150 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6151 	put_smstate(u32, buf, 0x7f80, seg.base);
6152 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6153 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6154 
6155 	kvm_x86_ops->get_gdt(vcpu, &dt);
6156 	put_smstate(u32, buf, 0x7f74, dt.address);
6157 	put_smstate(u32, buf, 0x7f70, dt.size);
6158 
6159 	kvm_x86_ops->get_idt(vcpu, &dt);
6160 	put_smstate(u32, buf, 0x7f58, dt.address);
6161 	put_smstate(u32, buf, 0x7f54, dt.size);
6162 
6163 	for (i = 0; i < 6; i++)
6164 		process_smi_save_seg_32(vcpu, buf, i);
6165 
6166 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6167 
6168 	/* revision id */
6169 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6170 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6171 }
6172 
6173 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6174 {
6175 #ifdef CONFIG_X86_64
6176 	struct desc_ptr dt;
6177 	struct kvm_segment seg;
6178 	unsigned long val;
6179 	int i;
6180 
6181 	for (i = 0; i < 16; i++)
6182 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6183 
6184 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6185 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6186 
6187 	kvm_get_dr(vcpu, 6, &val);
6188 	put_smstate(u64, buf, 0x7f68, val);
6189 	kvm_get_dr(vcpu, 7, &val);
6190 	put_smstate(u64, buf, 0x7f60, val);
6191 
6192 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6193 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6194 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6195 
6196 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6197 
6198 	/* revision id */
6199 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6200 
6201 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6202 
6203 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6204 	put_smstate(u16, buf, 0x7e90, seg.selector);
6205 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6206 	put_smstate(u32, buf, 0x7e94, seg.limit);
6207 	put_smstate(u64, buf, 0x7e98, seg.base);
6208 
6209 	kvm_x86_ops->get_idt(vcpu, &dt);
6210 	put_smstate(u32, buf, 0x7e84, dt.size);
6211 	put_smstate(u64, buf, 0x7e88, dt.address);
6212 
6213 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6214 	put_smstate(u16, buf, 0x7e70, seg.selector);
6215 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6216 	put_smstate(u32, buf, 0x7e74, seg.limit);
6217 	put_smstate(u64, buf, 0x7e78, seg.base);
6218 
6219 	kvm_x86_ops->get_gdt(vcpu, &dt);
6220 	put_smstate(u32, buf, 0x7e64, dt.size);
6221 	put_smstate(u64, buf, 0x7e68, dt.address);
6222 
6223 	for (i = 0; i < 6; i++)
6224 		process_smi_save_seg_64(vcpu, buf, i);
6225 #else
6226 	WARN_ON_ONCE(1);
6227 #endif
6228 }
6229 
6230 static void process_smi(struct kvm_vcpu *vcpu)
6231 {
6232 	struct kvm_segment cs, ds;
6233 	struct desc_ptr dt;
6234 	char buf[512];
6235 	u32 cr0;
6236 
6237 	if (is_smm(vcpu)) {
6238 		vcpu->arch.smi_pending = true;
6239 		return;
6240 	}
6241 
6242 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6243 	vcpu->arch.hflags |= HF_SMM_MASK;
6244 	memset(buf, 0, 512);
6245 	if (guest_cpuid_has_longmode(vcpu))
6246 		process_smi_save_state_64(vcpu, buf);
6247 	else
6248 		process_smi_save_state_32(vcpu, buf);
6249 
6250 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6251 
6252 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6253 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6254 	else
6255 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6256 
6257 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6258 	kvm_rip_write(vcpu, 0x8000);
6259 
6260 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6261 	kvm_x86_ops->set_cr0(vcpu, cr0);
6262 	vcpu->arch.cr0 = cr0;
6263 
6264 	kvm_x86_ops->set_cr4(vcpu, 0);
6265 
6266 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6267 	dt.address = dt.size = 0;
6268 	kvm_x86_ops->set_idt(vcpu, &dt);
6269 
6270 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6271 
6272 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6273 	cs.base = vcpu->arch.smbase;
6274 
6275 	ds.selector = 0;
6276 	ds.base = 0;
6277 
6278 	cs.limit    = ds.limit = 0xffffffff;
6279 	cs.type     = ds.type = 0x3;
6280 	cs.dpl      = ds.dpl = 0;
6281 	cs.db       = ds.db = 0;
6282 	cs.s        = ds.s = 1;
6283 	cs.l        = ds.l = 0;
6284 	cs.g        = ds.g = 1;
6285 	cs.avl      = ds.avl = 0;
6286 	cs.present  = ds.present = 1;
6287 	cs.unusable = ds.unusable = 0;
6288 	cs.padding  = ds.padding = 0;
6289 
6290 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6291 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6292 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6293 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6294 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6295 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6296 
6297 	if (guest_cpuid_has_longmode(vcpu))
6298 		kvm_x86_ops->set_efer(vcpu, 0);
6299 
6300 	kvm_update_cpuid(vcpu);
6301 	kvm_mmu_reset_context(vcpu);
6302 }
6303 
6304 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6305 {
6306 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6307 		return;
6308 
6309 	memset(vcpu->arch.eoi_exit_bitmap, 0, 256 / 8);
6310 
6311 	if (irqchip_split(vcpu->kvm))
6312 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.eoi_exit_bitmap);
6313 	else {
6314 		kvm_x86_ops->sync_pir_to_irr(vcpu);
6315 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.eoi_exit_bitmap);
6316 	}
6317 	kvm_x86_ops->load_eoi_exitmap(vcpu);
6318 }
6319 
6320 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6321 {
6322 	++vcpu->stat.tlb_flush;
6323 	kvm_x86_ops->tlb_flush(vcpu);
6324 }
6325 
6326 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6327 {
6328 	struct page *page = NULL;
6329 
6330 	if (!lapic_in_kernel(vcpu))
6331 		return;
6332 
6333 	if (!kvm_x86_ops->set_apic_access_page_addr)
6334 		return;
6335 
6336 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6337 	if (is_error_page(page))
6338 		return;
6339 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6340 
6341 	/*
6342 	 * Do not pin apic access page in memory, the MMU notifier
6343 	 * will call us again if it is migrated or swapped out.
6344 	 */
6345 	put_page(page);
6346 }
6347 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6348 
6349 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6350 					   unsigned long address)
6351 {
6352 	/*
6353 	 * The physical address of apic access page is stored in the VMCS.
6354 	 * Update it when it becomes invalid.
6355 	 */
6356 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6357 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6358 }
6359 
6360 /*
6361  * Returns 1 to let vcpu_run() continue the guest execution loop without
6362  * exiting to the userspace.  Otherwise, the value will be returned to the
6363  * userspace.
6364  */
6365 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6366 {
6367 	int r;
6368 	bool req_int_win =
6369 		dm_request_for_irq_injection(vcpu) &&
6370 		kvm_cpu_accept_dm_intr(vcpu);
6371 
6372 	bool req_immediate_exit = false;
6373 
6374 	if (vcpu->requests) {
6375 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6376 			kvm_mmu_unload(vcpu);
6377 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6378 			__kvm_migrate_timers(vcpu);
6379 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6380 			kvm_gen_update_masterclock(vcpu->kvm);
6381 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6382 			kvm_gen_kvmclock_update(vcpu);
6383 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6384 			r = kvm_guest_time_update(vcpu);
6385 			if (unlikely(r))
6386 				goto out;
6387 		}
6388 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6389 			kvm_mmu_sync_roots(vcpu);
6390 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6391 			kvm_vcpu_flush_tlb(vcpu);
6392 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6393 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6394 			r = 0;
6395 			goto out;
6396 		}
6397 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6398 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6399 			r = 0;
6400 			goto out;
6401 		}
6402 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6403 			vcpu->fpu_active = 0;
6404 			kvm_x86_ops->fpu_deactivate(vcpu);
6405 		}
6406 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6407 			/* Page is swapped out. Do synthetic halt */
6408 			vcpu->arch.apf.halted = true;
6409 			r = 1;
6410 			goto out;
6411 		}
6412 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6413 			record_steal_time(vcpu);
6414 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6415 			process_smi(vcpu);
6416 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6417 			process_nmi(vcpu);
6418 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6419 			kvm_pmu_handle_event(vcpu);
6420 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6421 			kvm_pmu_deliver_pmi(vcpu);
6422 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6423 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6424 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6425 				     (void *) vcpu->arch.eoi_exit_bitmap)) {
6426 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6427 				vcpu->run->eoi.vector =
6428 						vcpu->arch.pending_ioapic_eoi;
6429 				r = 0;
6430 				goto out;
6431 			}
6432 		}
6433 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6434 			vcpu_scan_ioapic(vcpu);
6435 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6436 			kvm_vcpu_reload_apic_access_page(vcpu);
6437 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6438 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6439 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6440 			r = 0;
6441 			goto out;
6442 		}
6443 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6444 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6445 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6446 			r = 0;
6447 			goto out;
6448 		}
6449 	}
6450 
6451 	/*
6452 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6453 	 * VT-d hardware, so we have to update RVI unconditionally.
6454 	 */
6455 	if (kvm_lapic_enabled(vcpu)) {
6456 		/*
6457 		 * Update architecture specific hints for APIC
6458 		 * virtual interrupt delivery.
6459 		 */
6460 		if (kvm_x86_ops->hwapic_irr_update)
6461 			kvm_x86_ops->hwapic_irr_update(vcpu,
6462 				kvm_lapic_find_highest_irr(vcpu));
6463 	}
6464 
6465 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6466 		kvm_apic_accept_events(vcpu);
6467 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6468 			r = 1;
6469 			goto out;
6470 		}
6471 
6472 		if (inject_pending_event(vcpu, req_int_win) != 0)
6473 			req_immediate_exit = true;
6474 		/* enable NMI/IRQ window open exits if needed */
6475 		else if (vcpu->arch.nmi_pending)
6476 			kvm_x86_ops->enable_nmi_window(vcpu);
6477 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6478 			kvm_x86_ops->enable_irq_window(vcpu);
6479 
6480 		if (kvm_lapic_enabled(vcpu)) {
6481 			update_cr8_intercept(vcpu);
6482 			kvm_lapic_sync_to_vapic(vcpu);
6483 		}
6484 	}
6485 
6486 	r = kvm_mmu_reload(vcpu);
6487 	if (unlikely(r)) {
6488 		goto cancel_injection;
6489 	}
6490 
6491 	preempt_disable();
6492 
6493 	kvm_x86_ops->prepare_guest_switch(vcpu);
6494 	if (vcpu->fpu_active)
6495 		kvm_load_guest_fpu(vcpu);
6496 	kvm_load_guest_xcr0(vcpu);
6497 
6498 	vcpu->mode = IN_GUEST_MODE;
6499 
6500 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6501 
6502 	/* We should set ->mode before check ->requests,
6503 	 * see the comment in make_all_cpus_request.
6504 	 */
6505 	smp_mb__after_srcu_read_unlock();
6506 
6507 	local_irq_disable();
6508 
6509 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6510 	    || need_resched() || signal_pending(current)) {
6511 		vcpu->mode = OUTSIDE_GUEST_MODE;
6512 		smp_wmb();
6513 		local_irq_enable();
6514 		preempt_enable();
6515 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6516 		r = 1;
6517 		goto cancel_injection;
6518 	}
6519 
6520 	if (req_immediate_exit)
6521 		smp_send_reschedule(vcpu->cpu);
6522 
6523 	trace_kvm_entry(vcpu->vcpu_id);
6524 	wait_lapic_expire(vcpu);
6525 	__kvm_guest_enter();
6526 
6527 	if (unlikely(vcpu->arch.switch_db_regs)) {
6528 		set_debugreg(0, 7);
6529 		set_debugreg(vcpu->arch.eff_db[0], 0);
6530 		set_debugreg(vcpu->arch.eff_db[1], 1);
6531 		set_debugreg(vcpu->arch.eff_db[2], 2);
6532 		set_debugreg(vcpu->arch.eff_db[3], 3);
6533 		set_debugreg(vcpu->arch.dr6, 6);
6534 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6535 	}
6536 
6537 	kvm_x86_ops->run(vcpu);
6538 
6539 	/*
6540 	 * Do this here before restoring debug registers on the host.  And
6541 	 * since we do this before handling the vmexit, a DR access vmexit
6542 	 * can (a) read the correct value of the debug registers, (b) set
6543 	 * KVM_DEBUGREG_WONT_EXIT again.
6544 	 */
6545 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6546 		int i;
6547 
6548 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6549 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6550 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6551 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6552 	}
6553 
6554 	/*
6555 	 * If the guest has used debug registers, at least dr7
6556 	 * will be disabled while returning to the host.
6557 	 * If we don't have active breakpoints in the host, we don't
6558 	 * care about the messed up debug address registers. But if
6559 	 * we have some of them active, restore the old state.
6560 	 */
6561 	if (hw_breakpoint_active())
6562 		hw_breakpoint_restore();
6563 
6564 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6565 
6566 	vcpu->mode = OUTSIDE_GUEST_MODE;
6567 	smp_wmb();
6568 
6569 	/* Interrupt is enabled by handle_external_intr() */
6570 	kvm_x86_ops->handle_external_intr(vcpu);
6571 
6572 	++vcpu->stat.exits;
6573 
6574 	/*
6575 	 * We must have an instruction between local_irq_enable() and
6576 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6577 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6578 	 * But we need to prevent reordering, hence this barrier():
6579 	 */
6580 	barrier();
6581 
6582 	kvm_guest_exit();
6583 
6584 	preempt_enable();
6585 
6586 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6587 
6588 	/*
6589 	 * Profile KVM exit RIPs:
6590 	 */
6591 	if (unlikely(prof_on == KVM_PROFILING)) {
6592 		unsigned long rip = kvm_rip_read(vcpu);
6593 		profile_hit(KVM_PROFILING, (void *)rip);
6594 	}
6595 
6596 	if (unlikely(vcpu->arch.tsc_always_catchup))
6597 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6598 
6599 	if (vcpu->arch.apic_attention)
6600 		kvm_lapic_sync_from_vapic(vcpu);
6601 
6602 	r = kvm_x86_ops->handle_exit(vcpu);
6603 	return r;
6604 
6605 cancel_injection:
6606 	kvm_x86_ops->cancel_injection(vcpu);
6607 	if (unlikely(vcpu->arch.apic_attention))
6608 		kvm_lapic_sync_from_vapic(vcpu);
6609 out:
6610 	return r;
6611 }
6612 
6613 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6614 {
6615 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6616 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6617 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6618 		kvm_vcpu_block(vcpu);
6619 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6620 
6621 		if (kvm_x86_ops->post_block)
6622 			kvm_x86_ops->post_block(vcpu);
6623 
6624 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6625 			return 1;
6626 	}
6627 
6628 	kvm_apic_accept_events(vcpu);
6629 	switch(vcpu->arch.mp_state) {
6630 	case KVM_MP_STATE_HALTED:
6631 		vcpu->arch.pv.pv_unhalted = false;
6632 		vcpu->arch.mp_state =
6633 			KVM_MP_STATE_RUNNABLE;
6634 	case KVM_MP_STATE_RUNNABLE:
6635 		vcpu->arch.apf.halted = false;
6636 		break;
6637 	case KVM_MP_STATE_INIT_RECEIVED:
6638 		break;
6639 	default:
6640 		return -EINTR;
6641 		break;
6642 	}
6643 	return 1;
6644 }
6645 
6646 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6647 {
6648 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6649 		!vcpu->arch.apf.halted);
6650 }
6651 
6652 static int vcpu_run(struct kvm_vcpu *vcpu)
6653 {
6654 	int r;
6655 	struct kvm *kvm = vcpu->kvm;
6656 
6657 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6658 
6659 	for (;;) {
6660 		if (kvm_vcpu_running(vcpu)) {
6661 			r = vcpu_enter_guest(vcpu);
6662 		} else {
6663 			r = vcpu_block(kvm, vcpu);
6664 		}
6665 
6666 		if (r <= 0)
6667 			break;
6668 
6669 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6670 		if (kvm_cpu_has_pending_timer(vcpu))
6671 			kvm_inject_pending_timer_irqs(vcpu);
6672 
6673 		if (dm_request_for_irq_injection(vcpu) &&
6674 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6675 			r = 0;
6676 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6677 			++vcpu->stat.request_irq_exits;
6678 			break;
6679 		}
6680 
6681 		kvm_check_async_pf_completion(vcpu);
6682 
6683 		if (signal_pending(current)) {
6684 			r = -EINTR;
6685 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6686 			++vcpu->stat.signal_exits;
6687 			break;
6688 		}
6689 		if (need_resched()) {
6690 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6691 			cond_resched();
6692 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6693 		}
6694 	}
6695 
6696 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6697 
6698 	return r;
6699 }
6700 
6701 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6702 {
6703 	int r;
6704 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6705 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6706 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6707 	if (r != EMULATE_DONE)
6708 		return 0;
6709 	return 1;
6710 }
6711 
6712 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6713 {
6714 	BUG_ON(!vcpu->arch.pio.count);
6715 
6716 	return complete_emulated_io(vcpu);
6717 }
6718 
6719 /*
6720  * Implements the following, as a state machine:
6721  *
6722  * read:
6723  *   for each fragment
6724  *     for each mmio piece in the fragment
6725  *       write gpa, len
6726  *       exit
6727  *       copy data
6728  *   execute insn
6729  *
6730  * write:
6731  *   for each fragment
6732  *     for each mmio piece in the fragment
6733  *       write gpa, len
6734  *       copy data
6735  *       exit
6736  */
6737 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6738 {
6739 	struct kvm_run *run = vcpu->run;
6740 	struct kvm_mmio_fragment *frag;
6741 	unsigned len;
6742 
6743 	BUG_ON(!vcpu->mmio_needed);
6744 
6745 	/* Complete previous fragment */
6746 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6747 	len = min(8u, frag->len);
6748 	if (!vcpu->mmio_is_write)
6749 		memcpy(frag->data, run->mmio.data, len);
6750 
6751 	if (frag->len <= 8) {
6752 		/* Switch to the next fragment. */
6753 		frag++;
6754 		vcpu->mmio_cur_fragment++;
6755 	} else {
6756 		/* Go forward to the next mmio piece. */
6757 		frag->data += len;
6758 		frag->gpa += len;
6759 		frag->len -= len;
6760 	}
6761 
6762 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6763 		vcpu->mmio_needed = 0;
6764 
6765 		/* FIXME: return into emulator if single-stepping.  */
6766 		if (vcpu->mmio_is_write)
6767 			return 1;
6768 		vcpu->mmio_read_completed = 1;
6769 		return complete_emulated_io(vcpu);
6770 	}
6771 
6772 	run->exit_reason = KVM_EXIT_MMIO;
6773 	run->mmio.phys_addr = frag->gpa;
6774 	if (vcpu->mmio_is_write)
6775 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6776 	run->mmio.len = min(8u, frag->len);
6777 	run->mmio.is_write = vcpu->mmio_is_write;
6778 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6779 	return 0;
6780 }
6781 
6782 
6783 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6784 {
6785 	struct fpu *fpu = &current->thread.fpu;
6786 	int r;
6787 	sigset_t sigsaved;
6788 
6789 	fpu__activate_curr(fpu);
6790 
6791 	if (vcpu->sigset_active)
6792 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6793 
6794 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6795 		kvm_vcpu_block(vcpu);
6796 		kvm_apic_accept_events(vcpu);
6797 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6798 		r = -EAGAIN;
6799 		goto out;
6800 	}
6801 
6802 	/* re-sync apic's tpr */
6803 	if (!lapic_in_kernel(vcpu)) {
6804 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6805 			r = -EINVAL;
6806 			goto out;
6807 		}
6808 	}
6809 
6810 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6811 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6812 		vcpu->arch.complete_userspace_io = NULL;
6813 		r = cui(vcpu);
6814 		if (r <= 0)
6815 			goto out;
6816 	} else
6817 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6818 
6819 	r = vcpu_run(vcpu);
6820 
6821 out:
6822 	post_kvm_run_save(vcpu);
6823 	if (vcpu->sigset_active)
6824 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6825 
6826 	return r;
6827 }
6828 
6829 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6830 {
6831 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6832 		/*
6833 		 * We are here if userspace calls get_regs() in the middle of
6834 		 * instruction emulation. Registers state needs to be copied
6835 		 * back from emulation context to vcpu. Userspace shouldn't do
6836 		 * that usually, but some bad designed PV devices (vmware
6837 		 * backdoor interface) need this to work
6838 		 */
6839 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6840 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6841 	}
6842 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6843 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6844 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6845 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6846 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6847 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6848 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6849 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6850 #ifdef CONFIG_X86_64
6851 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6852 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6853 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6854 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6855 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6856 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6857 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6858 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6859 #endif
6860 
6861 	regs->rip = kvm_rip_read(vcpu);
6862 	regs->rflags = kvm_get_rflags(vcpu);
6863 
6864 	return 0;
6865 }
6866 
6867 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6868 {
6869 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6870 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6871 
6872 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6873 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6874 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6875 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6876 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6877 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6878 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6879 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6880 #ifdef CONFIG_X86_64
6881 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6882 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6883 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6884 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6885 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6886 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6887 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6888 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6889 #endif
6890 
6891 	kvm_rip_write(vcpu, regs->rip);
6892 	kvm_set_rflags(vcpu, regs->rflags);
6893 
6894 	vcpu->arch.exception.pending = false;
6895 
6896 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6897 
6898 	return 0;
6899 }
6900 
6901 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6902 {
6903 	struct kvm_segment cs;
6904 
6905 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6906 	*db = cs.db;
6907 	*l = cs.l;
6908 }
6909 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6910 
6911 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6912 				  struct kvm_sregs *sregs)
6913 {
6914 	struct desc_ptr dt;
6915 
6916 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6917 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6918 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6919 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6920 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6921 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6922 
6923 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6924 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6925 
6926 	kvm_x86_ops->get_idt(vcpu, &dt);
6927 	sregs->idt.limit = dt.size;
6928 	sregs->idt.base = dt.address;
6929 	kvm_x86_ops->get_gdt(vcpu, &dt);
6930 	sregs->gdt.limit = dt.size;
6931 	sregs->gdt.base = dt.address;
6932 
6933 	sregs->cr0 = kvm_read_cr0(vcpu);
6934 	sregs->cr2 = vcpu->arch.cr2;
6935 	sregs->cr3 = kvm_read_cr3(vcpu);
6936 	sregs->cr4 = kvm_read_cr4(vcpu);
6937 	sregs->cr8 = kvm_get_cr8(vcpu);
6938 	sregs->efer = vcpu->arch.efer;
6939 	sregs->apic_base = kvm_get_apic_base(vcpu);
6940 
6941 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6942 
6943 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6944 		set_bit(vcpu->arch.interrupt.nr,
6945 			(unsigned long *)sregs->interrupt_bitmap);
6946 
6947 	return 0;
6948 }
6949 
6950 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6951 				    struct kvm_mp_state *mp_state)
6952 {
6953 	kvm_apic_accept_events(vcpu);
6954 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6955 					vcpu->arch.pv.pv_unhalted)
6956 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6957 	else
6958 		mp_state->mp_state = vcpu->arch.mp_state;
6959 
6960 	return 0;
6961 }
6962 
6963 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6964 				    struct kvm_mp_state *mp_state)
6965 {
6966 	if (!kvm_vcpu_has_lapic(vcpu) &&
6967 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6968 		return -EINVAL;
6969 
6970 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6971 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6972 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6973 	} else
6974 		vcpu->arch.mp_state = mp_state->mp_state;
6975 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6976 	return 0;
6977 }
6978 
6979 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6980 		    int reason, bool has_error_code, u32 error_code)
6981 {
6982 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6983 	int ret;
6984 
6985 	init_emulate_ctxt(vcpu);
6986 
6987 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6988 				   has_error_code, error_code);
6989 
6990 	if (ret)
6991 		return EMULATE_FAIL;
6992 
6993 	kvm_rip_write(vcpu, ctxt->eip);
6994 	kvm_set_rflags(vcpu, ctxt->eflags);
6995 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6996 	return EMULATE_DONE;
6997 }
6998 EXPORT_SYMBOL_GPL(kvm_task_switch);
6999 
7000 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7001 				  struct kvm_sregs *sregs)
7002 {
7003 	struct msr_data apic_base_msr;
7004 	int mmu_reset_needed = 0;
7005 	int pending_vec, max_bits, idx;
7006 	struct desc_ptr dt;
7007 
7008 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7009 		return -EINVAL;
7010 
7011 	dt.size = sregs->idt.limit;
7012 	dt.address = sregs->idt.base;
7013 	kvm_x86_ops->set_idt(vcpu, &dt);
7014 	dt.size = sregs->gdt.limit;
7015 	dt.address = sregs->gdt.base;
7016 	kvm_x86_ops->set_gdt(vcpu, &dt);
7017 
7018 	vcpu->arch.cr2 = sregs->cr2;
7019 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7020 	vcpu->arch.cr3 = sregs->cr3;
7021 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7022 
7023 	kvm_set_cr8(vcpu, sregs->cr8);
7024 
7025 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7026 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7027 	apic_base_msr.data = sregs->apic_base;
7028 	apic_base_msr.host_initiated = true;
7029 	kvm_set_apic_base(vcpu, &apic_base_msr);
7030 
7031 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7032 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7033 	vcpu->arch.cr0 = sregs->cr0;
7034 
7035 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7036 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7037 	if (sregs->cr4 & X86_CR4_OSXSAVE)
7038 		kvm_update_cpuid(vcpu);
7039 
7040 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7041 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7042 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7043 		mmu_reset_needed = 1;
7044 	}
7045 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7046 
7047 	if (mmu_reset_needed)
7048 		kvm_mmu_reset_context(vcpu);
7049 
7050 	max_bits = KVM_NR_INTERRUPTS;
7051 	pending_vec = find_first_bit(
7052 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7053 	if (pending_vec < max_bits) {
7054 		kvm_queue_interrupt(vcpu, pending_vec, false);
7055 		pr_debug("Set back pending irq %d\n", pending_vec);
7056 	}
7057 
7058 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7059 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7060 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7061 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7062 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7063 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7064 
7065 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7066 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7067 
7068 	update_cr8_intercept(vcpu);
7069 
7070 	/* Older userspace won't unhalt the vcpu on reset. */
7071 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7072 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7073 	    !is_protmode(vcpu))
7074 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7075 
7076 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7077 
7078 	return 0;
7079 }
7080 
7081 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7082 					struct kvm_guest_debug *dbg)
7083 {
7084 	unsigned long rflags;
7085 	int i, r;
7086 
7087 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7088 		r = -EBUSY;
7089 		if (vcpu->arch.exception.pending)
7090 			goto out;
7091 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7092 			kvm_queue_exception(vcpu, DB_VECTOR);
7093 		else
7094 			kvm_queue_exception(vcpu, BP_VECTOR);
7095 	}
7096 
7097 	/*
7098 	 * Read rflags as long as potentially injected trace flags are still
7099 	 * filtered out.
7100 	 */
7101 	rflags = kvm_get_rflags(vcpu);
7102 
7103 	vcpu->guest_debug = dbg->control;
7104 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7105 		vcpu->guest_debug = 0;
7106 
7107 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7108 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7109 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7110 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7111 	} else {
7112 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7113 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7114 	}
7115 	kvm_update_dr7(vcpu);
7116 
7117 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7118 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7119 			get_segment_base(vcpu, VCPU_SREG_CS);
7120 
7121 	/*
7122 	 * Trigger an rflags update that will inject or remove the trace
7123 	 * flags.
7124 	 */
7125 	kvm_set_rflags(vcpu, rflags);
7126 
7127 	kvm_x86_ops->update_bp_intercept(vcpu);
7128 
7129 	r = 0;
7130 
7131 out:
7132 
7133 	return r;
7134 }
7135 
7136 /*
7137  * Translate a guest virtual address to a guest physical address.
7138  */
7139 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7140 				    struct kvm_translation *tr)
7141 {
7142 	unsigned long vaddr = tr->linear_address;
7143 	gpa_t gpa;
7144 	int idx;
7145 
7146 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7147 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7148 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7149 	tr->physical_address = gpa;
7150 	tr->valid = gpa != UNMAPPED_GVA;
7151 	tr->writeable = 1;
7152 	tr->usermode = 0;
7153 
7154 	return 0;
7155 }
7156 
7157 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7158 {
7159 	struct fxregs_state *fxsave =
7160 			&vcpu->arch.guest_fpu.state.fxsave;
7161 
7162 	memcpy(fpu->fpr, fxsave->st_space, 128);
7163 	fpu->fcw = fxsave->cwd;
7164 	fpu->fsw = fxsave->swd;
7165 	fpu->ftwx = fxsave->twd;
7166 	fpu->last_opcode = fxsave->fop;
7167 	fpu->last_ip = fxsave->rip;
7168 	fpu->last_dp = fxsave->rdp;
7169 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7170 
7171 	return 0;
7172 }
7173 
7174 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7175 {
7176 	struct fxregs_state *fxsave =
7177 			&vcpu->arch.guest_fpu.state.fxsave;
7178 
7179 	memcpy(fxsave->st_space, fpu->fpr, 128);
7180 	fxsave->cwd = fpu->fcw;
7181 	fxsave->swd = fpu->fsw;
7182 	fxsave->twd = fpu->ftwx;
7183 	fxsave->fop = fpu->last_opcode;
7184 	fxsave->rip = fpu->last_ip;
7185 	fxsave->rdp = fpu->last_dp;
7186 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7187 
7188 	return 0;
7189 }
7190 
7191 static void fx_init(struct kvm_vcpu *vcpu)
7192 {
7193 	fpstate_init(&vcpu->arch.guest_fpu.state);
7194 	if (cpu_has_xsaves)
7195 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7196 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7197 
7198 	/*
7199 	 * Ensure guest xcr0 is valid for loading
7200 	 */
7201 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7202 
7203 	vcpu->arch.cr0 |= X86_CR0_ET;
7204 }
7205 
7206 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7207 {
7208 	if (vcpu->guest_fpu_loaded)
7209 		return;
7210 
7211 	/*
7212 	 * Restore all possible states in the guest,
7213 	 * and assume host would use all available bits.
7214 	 * Guest xcr0 would be loaded later.
7215 	 */
7216 	kvm_put_guest_xcr0(vcpu);
7217 	vcpu->guest_fpu_loaded = 1;
7218 	__kernel_fpu_begin();
7219 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7220 	trace_kvm_fpu(1);
7221 }
7222 
7223 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7224 {
7225 	kvm_put_guest_xcr0(vcpu);
7226 
7227 	if (!vcpu->guest_fpu_loaded) {
7228 		vcpu->fpu_counter = 0;
7229 		return;
7230 	}
7231 
7232 	vcpu->guest_fpu_loaded = 0;
7233 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7234 	__kernel_fpu_end();
7235 	++vcpu->stat.fpu_reload;
7236 	/*
7237 	 * If using eager FPU mode, or if the guest is a frequent user
7238 	 * of the FPU, just leave the FPU active for next time.
7239 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7240 	 * the FPU in bursts will revert to loading it on demand.
7241 	 */
7242 	if (!vcpu->arch.eager_fpu) {
7243 		if (++vcpu->fpu_counter < 5)
7244 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7245 	}
7246 	trace_kvm_fpu(0);
7247 }
7248 
7249 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7250 {
7251 	kvmclock_reset(vcpu);
7252 
7253 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7254 	kvm_x86_ops->vcpu_free(vcpu);
7255 }
7256 
7257 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7258 						unsigned int id)
7259 {
7260 	struct kvm_vcpu *vcpu;
7261 
7262 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7263 		printk_once(KERN_WARNING
7264 		"kvm: SMP vm created on host with unstable TSC; "
7265 		"guest TSC will not be reliable\n");
7266 
7267 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7268 
7269 	return vcpu;
7270 }
7271 
7272 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7273 {
7274 	int r;
7275 
7276 	kvm_vcpu_mtrr_init(vcpu);
7277 	r = vcpu_load(vcpu);
7278 	if (r)
7279 		return r;
7280 	kvm_vcpu_reset(vcpu, false);
7281 	kvm_mmu_setup(vcpu);
7282 	vcpu_put(vcpu);
7283 	return r;
7284 }
7285 
7286 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7287 {
7288 	struct msr_data msr;
7289 	struct kvm *kvm = vcpu->kvm;
7290 
7291 	if (vcpu_load(vcpu))
7292 		return;
7293 	msr.data = 0x0;
7294 	msr.index = MSR_IA32_TSC;
7295 	msr.host_initiated = true;
7296 	kvm_write_tsc(vcpu, &msr);
7297 	vcpu_put(vcpu);
7298 
7299 	if (!kvmclock_periodic_sync)
7300 		return;
7301 
7302 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7303 					KVMCLOCK_SYNC_PERIOD);
7304 }
7305 
7306 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7307 {
7308 	int r;
7309 	vcpu->arch.apf.msr_val = 0;
7310 
7311 	r = vcpu_load(vcpu);
7312 	BUG_ON(r);
7313 	kvm_mmu_unload(vcpu);
7314 	vcpu_put(vcpu);
7315 
7316 	kvm_x86_ops->vcpu_free(vcpu);
7317 }
7318 
7319 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7320 {
7321 	vcpu->arch.hflags = 0;
7322 
7323 	atomic_set(&vcpu->arch.nmi_queued, 0);
7324 	vcpu->arch.nmi_pending = 0;
7325 	vcpu->arch.nmi_injected = false;
7326 	kvm_clear_interrupt_queue(vcpu);
7327 	kvm_clear_exception_queue(vcpu);
7328 
7329 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7330 	kvm_update_dr0123(vcpu);
7331 	vcpu->arch.dr6 = DR6_INIT;
7332 	kvm_update_dr6(vcpu);
7333 	vcpu->arch.dr7 = DR7_FIXED_1;
7334 	kvm_update_dr7(vcpu);
7335 
7336 	vcpu->arch.cr2 = 0;
7337 
7338 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7339 	vcpu->arch.apf.msr_val = 0;
7340 	vcpu->arch.st.msr_val = 0;
7341 
7342 	kvmclock_reset(vcpu);
7343 
7344 	kvm_clear_async_pf_completion_queue(vcpu);
7345 	kvm_async_pf_hash_reset(vcpu);
7346 	vcpu->arch.apf.halted = false;
7347 
7348 	if (!init_event) {
7349 		kvm_pmu_reset(vcpu);
7350 		vcpu->arch.smbase = 0x30000;
7351 	}
7352 
7353 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7354 	vcpu->arch.regs_avail = ~0;
7355 	vcpu->arch.regs_dirty = ~0;
7356 
7357 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7358 }
7359 
7360 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7361 {
7362 	struct kvm_segment cs;
7363 
7364 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7365 	cs.selector = vector << 8;
7366 	cs.base = vector << 12;
7367 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7368 	kvm_rip_write(vcpu, 0);
7369 }
7370 
7371 int kvm_arch_hardware_enable(void)
7372 {
7373 	struct kvm *kvm;
7374 	struct kvm_vcpu *vcpu;
7375 	int i;
7376 	int ret;
7377 	u64 local_tsc;
7378 	u64 max_tsc = 0;
7379 	bool stable, backwards_tsc = false;
7380 
7381 	kvm_shared_msr_cpu_online();
7382 	ret = kvm_x86_ops->hardware_enable();
7383 	if (ret != 0)
7384 		return ret;
7385 
7386 	local_tsc = rdtsc();
7387 	stable = !check_tsc_unstable();
7388 	list_for_each_entry(kvm, &vm_list, vm_list) {
7389 		kvm_for_each_vcpu(i, vcpu, kvm) {
7390 			if (!stable && vcpu->cpu == smp_processor_id())
7391 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7392 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7393 				backwards_tsc = true;
7394 				if (vcpu->arch.last_host_tsc > max_tsc)
7395 					max_tsc = vcpu->arch.last_host_tsc;
7396 			}
7397 		}
7398 	}
7399 
7400 	/*
7401 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7402 	 * platforms that reset TSC during suspend or hibernate actions, but
7403 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7404 	 * detect that condition here, which happens early in CPU bringup,
7405 	 * before any KVM threads can be running.  Unfortunately, we can't
7406 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7407 	 * enough into CPU bringup that we know how much real time has actually
7408 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7409 	 * variables that haven't been updated yet.
7410 	 *
7411 	 * So we simply find the maximum observed TSC above, then record the
7412 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7413 	 * the adjustment will be applied.  Note that we accumulate
7414 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7415 	 * gets a chance to run again.  In the event that no KVM threads get a
7416 	 * chance to run, we will miss the entire elapsed period, as we'll have
7417 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7418 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7419 	 * uniform across all VCPUs (not to mention the scenario is extremely
7420 	 * unlikely). It is possible that a second hibernate recovery happens
7421 	 * much faster than a first, causing the observed TSC here to be
7422 	 * smaller; this would require additional padding adjustment, which is
7423 	 * why we set last_host_tsc to the local tsc observed here.
7424 	 *
7425 	 * N.B. - this code below runs only on platforms with reliable TSC,
7426 	 * as that is the only way backwards_tsc is set above.  Also note
7427 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7428 	 * have the same delta_cyc adjustment applied if backwards_tsc
7429 	 * is detected.  Note further, this adjustment is only done once,
7430 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7431 	 * called multiple times (one for each physical CPU bringup).
7432 	 *
7433 	 * Platforms with unreliable TSCs don't have to deal with this, they
7434 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7435 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7436 	 * guarantee that they stay in perfect synchronization.
7437 	 */
7438 	if (backwards_tsc) {
7439 		u64 delta_cyc = max_tsc - local_tsc;
7440 		backwards_tsc_observed = true;
7441 		list_for_each_entry(kvm, &vm_list, vm_list) {
7442 			kvm_for_each_vcpu(i, vcpu, kvm) {
7443 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7444 				vcpu->arch.last_host_tsc = local_tsc;
7445 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7446 			}
7447 
7448 			/*
7449 			 * We have to disable TSC offset matching.. if you were
7450 			 * booting a VM while issuing an S4 host suspend....
7451 			 * you may have some problem.  Solving this issue is
7452 			 * left as an exercise to the reader.
7453 			 */
7454 			kvm->arch.last_tsc_nsec = 0;
7455 			kvm->arch.last_tsc_write = 0;
7456 		}
7457 
7458 	}
7459 	return 0;
7460 }
7461 
7462 void kvm_arch_hardware_disable(void)
7463 {
7464 	kvm_x86_ops->hardware_disable();
7465 	drop_user_return_notifiers();
7466 }
7467 
7468 int kvm_arch_hardware_setup(void)
7469 {
7470 	int r;
7471 
7472 	r = kvm_x86_ops->hardware_setup();
7473 	if (r != 0)
7474 		return r;
7475 
7476 	if (kvm_has_tsc_control) {
7477 		/*
7478 		 * Make sure the user can only configure tsc_khz values that
7479 		 * fit into a signed integer.
7480 		 * A min value is not calculated needed because it will always
7481 		 * be 1 on all machines.
7482 		 */
7483 		u64 max = min(0x7fffffffULL,
7484 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7485 		kvm_max_guest_tsc_khz = max;
7486 
7487 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7488 	}
7489 
7490 	kvm_init_msr_list();
7491 	return 0;
7492 }
7493 
7494 void kvm_arch_hardware_unsetup(void)
7495 {
7496 	kvm_x86_ops->hardware_unsetup();
7497 }
7498 
7499 void kvm_arch_check_processor_compat(void *rtn)
7500 {
7501 	kvm_x86_ops->check_processor_compatibility(rtn);
7502 }
7503 
7504 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7505 {
7506 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7507 }
7508 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7509 
7510 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7511 {
7512 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7513 }
7514 
7515 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7516 {
7517 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7518 }
7519 
7520 struct static_key kvm_no_apic_vcpu __read_mostly;
7521 
7522 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7523 {
7524 	struct page *page;
7525 	struct kvm *kvm;
7526 	int r;
7527 
7528 	BUG_ON(vcpu->kvm == NULL);
7529 	kvm = vcpu->kvm;
7530 
7531 	vcpu->arch.pv.pv_unhalted = false;
7532 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7533 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7534 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7535 	else
7536 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7537 
7538 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7539 	if (!page) {
7540 		r = -ENOMEM;
7541 		goto fail;
7542 	}
7543 	vcpu->arch.pio_data = page_address(page);
7544 
7545 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7546 
7547 	r = kvm_mmu_create(vcpu);
7548 	if (r < 0)
7549 		goto fail_free_pio_data;
7550 
7551 	if (irqchip_in_kernel(kvm)) {
7552 		r = kvm_create_lapic(vcpu);
7553 		if (r < 0)
7554 			goto fail_mmu_destroy;
7555 	} else
7556 		static_key_slow_inc(&kvm_no_apic_vcpu);
7557 
7558 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7559 				       GFP_KERNEL);
7560 	if (!vcpu->arch.mce_banks) {
7561 		r = -ENOMEM;
7562 		goto fail_free_lapic;
7563 	}
7564 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7565 
7566 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7567 		r = -ENOMEM;
7568 		goto fail_free_mce_banks;
7569 	}
7570 
7571 	fx_init(vcpu);
7572 
7573 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7574 	vcpu->arch.pv_time_enabled = false;
7575 
7576 	vcpu->arch.guest_supported_xcr0 = 0;
7577 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7578 
7579 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7580 
7581 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7582 
7583 	kvm_async_pf_hash_reset(vcpu);
7584 	kvm_pmu_init(vcpu);
7585 
7586 	vcpu->arch.pending_external_vector = -1;
7587 
7588 	return 0;
7589 
7590 fail_free_mce_banks:
7591 	kfree(vcpu->arch.mce_banks);
7592 fail_free_lapic:
7593 	kvm_free_lapic(vcpu);
7594 fail_mmu_destroy:
7595 	kvm_mmu_destroy(vcpu);
7596 fail_free_pio_data:
7597 	free_page((unsigned long)vcpu->arch.pio_data);
7598 fail:
7599 	return r;
7600 }
7601 
7602 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7603 {
7604 	int idx;
7605 
7606 	kvm_pmu_destroy(vcpu);
7607 	kfree(vcpu->arch.mce_banks);
7608 	kvm_free_lapic(vcpu);
7609 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7610 	kvm_mmu_destroy(vcpu);
7611 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7612 	free_page((unsigned long)vcpu->arch.pio_data);
7613 	if (!lapic_in_kernel(vcpu))
7614 		static_key_slow_dec(&kvm_no_apic_vcpu);
7615 }
7616 
7617 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7618 {
7619 	kvm_x86_ops->sched_in(vcpu, cpu);
7620 }
7621 
7622 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7623 {
7624 	if (type)
7625 		return -EINVAL;
7626 
7627 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7628 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7629 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7630 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7631 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7632 
7633 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7634 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7635 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7636 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7637 		&kvm->arch.irq_sources_bitmap);
7638 
7639 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7640 	mutex_init(&kvm->arch.apic_map_lock);
7641 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7642 
7643 	pvclock_update_vm_gtod_copy(kvm);
7644 
7645 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7646 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7647 
7648 	return 0;
7649 }
7650 
7651 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7652 {
7653 	int r;
7654 	r = vcpu_load(vcpu);
7655 	BUG_ON(r);
7656 	kvm_mmu_unload(vcpu);
7657 	vcpu_put(vcpu);
7658 }
7659 
7660 static void kvm_free_vcpus(struct kvm *kvm)
7661 {
7662 	unsigned int i;
7663 	struct kvm_vcpu *vcpu;
7664 
7665 	/*
7666 	 * Unpin any mmu pages first.
7667 	 */
7668 	kvm_for_each_vcpu(i, vcpu, kvm) {
7669 		kvm_clear_async_pf_completion_queue(vcpu);
7670 		kvm_unload_vcpu_mmu(vcpu);
7671 	}
7672 	kvm_for_each_vcpu(i, vcpu, kvm)
7673 		kvm_arch_vcpu_free(vcpu);
7674 
7675 	mutex_lock(&kvm->lock);
7676 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7677 		kvm->vcpus[i] = NULL;
7678 
7679 	atomic_set(&kvm->online_vcpus, 0);
7680 	mutex_unlock(&kvm->lock);
7681 }
7682 
7683 void kvm_arch_sync_events(struct kvm *kvm)
7684 {
7685 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7686 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7687 	kvm_free_all_assigned_devices(kvm);
7688 	kvm_free_pit(kvm);
7689 }
7690 
7691 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7692 {
7693 	int i, r;
7694 	unsigned long hva;
7695 	struct kvm_memslots *slots = kvm_memslots(kvm);
7696 	struct kvm_memory_slot *slot, old;
7697 
7698 	/* Called with kvm->slots_lock held.  */
7699 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7700 		return -EINVAL;
7701 
7702 	slot = id_to_memslot(slots, id);
7703 	if (size) {
7704 		if (WARN_ON(slot->npages))
7705 			return -EEXIST;
7706 
7707 		/*
7708 		 * MAP_SHARED to prevent internal slot pages from being moved
7709 		 * by fork()/COW.
7710 		 */
7711 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7712 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7713 		if (IS_ERR((void *)hva))
7714 			return PTR_ERR((void *)hva);
7715 	} else {
7716 		if (!slot->npages)
7717 			return 0;
7718 
7719 		hva = 0;
7720 	}
7721 
7722 	old = *slot;
7723 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7724 		struct kvm_userspace_memory_region m;
7725 
7726 		m.slot = id | (i << 16);
7727 		m.flags = 0;
7728 		m.guest_phys_addr = gpa;
7729 		m.userspace_addr = hva;
7730 		m.memory_size = size;
7731 		r = __kvm_set_memory_region(kvm, &m);
7732 		if (r < 0)
7733 			return r;
7734 	}
7735 
7736 	if (!size) {
7737 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7738 		WARN_ON(r < 0);
7739 	}
7740 
7741 	return 0;
7742 }
7743 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7744 
7745 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7746 {
7747 	int r;
7748 
7749 	mutex_lock(&kvm->slots_lock);
7750 	r = __x86_set_memory_region(kvm, id, gpa, size);
7751 	mutex_unlock(&kvm->slots_lock);
7752 
7753 	return r;
7754 }
7755 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7756 
7757 void kvm_arch_destroy_vm(struct kvm *kvm)
7758 {
7759 	if (current->mm == kvm->mm) {
7760 		/*
7761 		 * Free memory regions allocated on behalf of userspace,
7762 		 * unless the the memory map has changed due to process exit
7763 		 * or fd copying.
7764 		 */
7765 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7766 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7767 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7768 	}
7769 	kvm_iommu_unmap_guest(kvm);
7770 	kfree(kvm->arch.vpic);
7771 	kfree(kvm->arch.vioapic);
7772 	kvm_free_vcpus(kvm);
7773 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7774 }
7775 
7776 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7777 			   struct kvm_memory_slot *dont)
7778 {
7779 	int i;
7780 
7781 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7782 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7783 			kvfree(free->arch.rmap[i]);
7784 			free->arch.rmap[i] = NULL;
7785 		}
7786 		if (i == 0)
7787 			continue;
7788 
7789 		if (!dont || free->arch.lpage_info[i - 1] !=
7790 			     dont->arch.lpage_info[i - 1]) {
7791 			kvfree(free->arch.lpage_info[i - 1]);
7792 			free->arch.lpage_info[i - 1] = NULL;
7793 		}
7794 	}
7795 }
7796 
7797 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7798 			    unsigned long npages)
7799 {
7800 	int i;
7801 
7802 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7803 		unsigned long ugfn;
7804 		int lpages;
7805 		int level = i + 1;
7806 
7807 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7808 				      slot->base_gfn, level) + 1;
7809 
7810 		slot->arch.rmap[i] =
7811 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7812 		if (!slot->arch.rmap[i])
7813 			goto out_free;
7814 		if (i == 0)
7815 			continue;
7816 
7817 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7818 					sizeof(*slot->arch.lpage_info[i - 1]));
7819 		if (!slot->arch.lpage_info[i - 1])
7820 			goto out_free;
7821 
7822 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7823 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7824 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7825 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7826 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7827 		/*
7828 		 * If the gfn and userspace address are not aligned wrt each
7829 		 * other, or if explicitly asked to, disable large page
7830 		 * support for this slot
7831 		 */
7832 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7833 		    !kvm_largepages_enabled()) {
7834 			unsigned long j;
7835 
7836 			for (j = 0; j < lpages; ++j)
7837 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7838 		}
7839 	}
7840 
7841 	return 0;
7842 
7843 out_free:
7844 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7845 		kvfree(slot->arch.rmap[i]);
7846 		slot->arch.rmap[i] = NULL;
7847 		if (i == 0)
7848 			continue;
7849 
7850 		kvfree(slot->arch.lpage_info[i - 1]);
7851 		slot->arch.lpage_info[i - 1] = NULL;
7852 	}
7853 	return -ENOMEM;
7854 }
7855 
7856 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7857 {
7858 	/*
7859 	 * memslots->generation has been incremented.
7860 	 * mmio generation may have reached its maximum value.
7861 	 */
7862 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7863 }
7864 
7865 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7866 				struct kvm_memory_slot *memslot,
7867 				const struct kvm_userspace_memory_region *mem,
7868 				enum kvm_mr_change change)
7869 {
7870 	return 0;
7871 }
7872 
7873 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7874 				     struct kvm_memory_slot *new)
7875 {
7876 	/* Still write protect RO slot */
7877 	if (new->flags & KVM_MEM_READONLY) {
7878 		kvm_mmu_slot_remove_write_access(kvm, new);
7879 		return;
7880 	}
7881 
7882 	/*
7883 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7884 	 *
7885 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7886 	 *
7887 	 *  - KVM_MR_CREATE with dirty logging is disabled
7888 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7889 	 *
7890 	 * The reason is, in case of PML, we need to set D-bit for any slots
7891 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7892 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7893 	 * guarantees leaving PML enabled during guest's lifetime won't have
7894 	 * any additonal overhead from PML when guest is running with dirty
7895 	 * logging disabled for memory slots.
7896 	 *
7897 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7898 	 * to dirty logging mode.
7899 	 *
7900 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7901 	 *
7902 	 * In case of write protect:
7903 	 *
7904 	 * Write protect all pages for dirty logging.
7905 	 *
7906 	 * All the sptes including the large sptes which point to this
7907 	 * slot are set to readonly. We can not create any new large
7908 	 * spte on this slot until the end of the logging.
7909 	 *
7910 	 * See the comments in fast_page_fault().
7911 	 */
7912 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7913 		if (kvm_x86_ops->slot_enable_log_dirty)
7914 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7915 		else
7916 			kvm_mmu_slot_remove_write_access(kvm, new);
7917 	} else {
7918 		if (kvm_x86_ops->slot_disable_log_dirty)
7919 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7920 	}
7921 }
7922 
7923 void kvm_arch_commit_memory_region(struct kvm *kvm,
7924 				const struct kvm_userspace_memory_region *mem,
7925 				const struct kvm_memory_slot *old,
7926 				const struct kvm_memory_slot *new,
7927 				enum kvm_mr_change change)
7928 {
7929 	int nr_mmu_pages = 0;
7930 
7931 	if (!kvm->arch.n_requested_mmu_pages)
7932 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7933 
7934 	if (nr_mmu_pages)
7935 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7936 
7937 	/*
7938 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
7939 	 * sptes have to be split.  If live migration is successful, the guest
7940 	 * in the source machine will be destroyed and large sptes will be
7941 	 * created in the destination. However, if the guest continues to run
7942 	 * in the source machine (for example if live migration fails), small
7943 	 * sptes will remain around and cause bad performance.
7944 	 *
7945 	 * Scan sptes if dirty logging has been stopped, dropping those
7946 	 * which can be collapsed into a single large-page spte.  Later
7947 	 * page faults will create the large-page sptes.
7948 	 */
7949 	if ((change != KVM_MR_DELETE) &&
7950 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7951 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7952 		kvm_mmu_zap_collapsible_sptes(kvm, new);
7953 
7954 	/*
7955 	 * Set up write protection and/or dirty logging for the new slot.
7956 	 *
7957 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7958 	 * been zapped so no dirty logging staff is needed for old slot. For
7959 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7960 	 * new and it's also covered when dealing with the new slot.
7961 	 *
7962 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
7963 	 */
7964 	if (change != KVM_MR_DELETE)
7965 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7966 }
7967 
7968 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7969 {
7970 	kvm_mmu_invalidate_zap_all_pages(kvm);
7971 }
7972 
7973 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7974 				   struct kvm_memory_slot *slot)
7975 {
7976 	kvm_mmu_invalidate_zap_all_pages(kvm);
7977 }
7978 
7979 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
7980 {
7981 	if (!list_empty_careful(&vcpu->async_pf.done))
7982 		return true;
7983 
7984 	if (kvm_apic_has_events(vcpu))
7985 		return true;
7986 
7987 	if (vcpu->arch.pv.pv_unhalted)
7988 		return true;
7989 
7990 	if (atomic_read(&vcpu->arch.nmi_queued))
7991 		return true;
7992 
7993 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
7994 		return true;
7995 
7996 	if (kvm_arch_interrupt_allowed(vcpu) &&
7997 	    kvm_cpu_has_interrupt(vcpu))
7998 		return true;
7999 
8000 	return false;
8001 }
8002 
8003 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8004 {
8005 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8006 		kvm_x86_ops->check_nested_events(vcpu, false);
8007 
8008 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8009 }
8010 
8011 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8012 {
8013 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8014 }
8015 
8016 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8017 {
8018 	return kvm_x86_ops->interrupt_allowed(vcpu);
8019 }
8020 
8021 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8022 {
8023 	if (is_64_bit_mode(vcpu))
8024 		return kvm_rip_read(vcpu);
8025 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8026 		     kvm_rip_read(vcpu));
8027 }
8028 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8029 
8030 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8031 {
8032 	return kvm_get_linear_rip(vcpu) == linear_rip;
8033 }
8034 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8035 
8036 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8037 {
8038 	unsigned long rflags;
8039 
8040 	rflags = kvm_x86_ops->get_rflags(vcpu);
8041 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8042 		rflags &= ~X86_EFLAGS_TF;
8043 	return rflags;
8044 }
8045 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8046 
8047 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8048 {
8049 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8050 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8051 		rflags |= X86_EFLAGS_TF;
8052 	kvm_x86_ops->set_rflags(vcpu, rflags);
8053 }
8054 
8055 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8056 {
8057 	__kvm_set_rflags(vcpu, rflags);
8058 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8059 }
8060 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8061 
8062 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8063 {
8064 	int r;
8065 
8066 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8067 	      work->wakeup_all)
8068 		return;
8069 
8070 	r = kvm_mmu_reload(vcpu);
8071 	if (unlikely(r))
8072 		return;
8073 
8074 	if (!vcpu->arch.mmu.direct_map &&
8075 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8076 		return;
8077 
8078 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8079 }
8080 
8081 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8082 {
8083 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8084 }
8085 
8086 static inline u32 kvm_async_pf_next_probe(u32 key)
8087 {
8088 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8089 }
8090 
8091 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8092 {
8093 	u32 key = kvm_async_pf_hash_fn(gfn);
8094 
8095 	while (vcpu->arch.apf.gfns[key] != ~0)
8096 		key = kvm_async_pf_next_probe(key);
8097 
8098 	vcpu->arch.apf.gfns[key] = gfn;
8099 }
8100 
8101 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8102 {
8103 	int i;
8104 	u32 key = kvm_async_pf_hash_fn(gfn);
8105 
8106 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8107 		     (vcpu->arch.apf.gfns[key] != gfn &&
8108 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8109 		key = kvm_async_pf_next_probe(key);
8110 
8111 	return key;
8112 }
8113 
8114 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8115 {
8116 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8117 }
8118 
8119 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8120 {
8121 	u32 i, j, k;
8122 
8123 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8124 	while (true) {
8125 		vcpu->arch.apf.gfns[i] = ~0;
8126 		do {
8127 			j = kvm_async_pf_next_probe(j);
8128 			if (vcpu->arch.apf.gfns[j] == ~0)
8129 				return;
8130 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8131 			/*
8132 			 * k lies cyclically in ]i,j]
8133 			 * |    i.k.j |
8134 			 * |....j i.k.| or  |.k..j i...|
8135 			 */
8136 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8137 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8138 		i = j;
8139 	}
8140 }
8141 
8142 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8143 {
8144 
8145 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8146 				      sizeof(val));
8147 }
8148 
8149 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8150 				     struct kvm_async_pf *work)
8151 {
8152 	struct x86_exception fault;
8153 
8154 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8155 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8156 
8157 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8158 	    (vcpu->arch.apf.send_user_only &&
8159 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8160 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8161 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8162 		fault.vector = PF_VECTOR;
8163 		fault.error_code_valid = true;
8164 		fault.error_code = 0;
8165 		fault.nested_page_fault = false;
8166 		fault.address = work->arch.token;
8167 		kvm_inject_page_fault(vcpu, &fault);
8168 	}
8169 }
8170 
8171 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8172 				 struct kvm_async_pf *work)
8173 {
8174 	struct x86_exception fault;
8175 
8176 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8177 	if (work->wakeup_all)
8178 		work->arch.token = ~0; /* broadcast wakeup */
8179 	else
8180 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8181 
8182 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8183 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8184 		fault.vector = PF_VECTOR;
8185 		fault.error_code_valid = true;
8186 		fault.error_code = 0;
8187 		fault.nested_page_fault = false;
8188 		fault.address = work->arch.token;
8189 		kvm_inject_page_fault(vcpu, &fault);
8190 	}
8191 	vcpu->arch.apf.halted = false;
8192 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8193 }
8194 
8195 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8196 {
8197 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8198 		return true;
8199 	else
8200 		return !kvm_event_needs_reinjection(vcpu) &&
8201 			kvm_x86_ops->interrupt_allowed(vcpu);
8202 }
8203 
8204 void kvm_arch_start_assignment(struct kvm *kvm)
8205 {
8206 	atomic_inc(&kvm->arch.assigned_device_count);
8207 }
8208 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8209 
8210 void kvm_arch_end_assignment(struct kvm *kvm)
8211 {
8212 	atomic_dec(&kvm->arch.assigned_device_count);
8213 }
8214 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8215 
8216 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8217 {
8218 	return atomic_read(&kvm->arch.assigned_device_count);
8219 }
8220 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8221 
8222 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8223 {
8224 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8225 }
8226 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8227 
8228 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8229 {
8230 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8231 }
8232 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8233 
8234 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8235 {
8236 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8237 }
8238 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8239 
8240 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8241 				      struct irq_bypass_producer *prod)
8242 {
8243 	struct kvm_kernel_irqfd *irqfd =
8244 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8245 
8246 	if (kvm_x86_ops->update_pi_irte) {
8247 		irqfd->producer = prod;
8248 		return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8249 				prod->irq, irqfd->gsi, 1);
8250 	}
8251 
8252 	return -EINVAL;
8253 }
8254 
8255 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8256 				      struct irq_bypass_producer *prod)
8257 {
8258 	int ret;
8259 	struct kvm_kernel_irqfd *irqfd =
8260 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8261 
8262 	if (!kvm_x86_ops->update_pi_irte) {
8263 		WARN_ON(irqfd->producer != NULL);
8264 		return;
8265 	}
8266 
8267 	WARN_ON(irqfd->producer != prod);
8268 	irqfd->producer = NULL;
8269 
8270 	/*
8271 	 * When producer of consumer is unregistered, we change back to
8272 	 * remapped mode, so we can re-use the current implementation
8273 	 * when the irq is masked/disabed or the consumer side (KVM
8274 	 * int this case doesn't want to receive the interrupts.
8275 	*/
8276 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8277 	if (ret)
8278 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8279 		       " fails: %d\n", irqfd->consumer.token, ret);
8280 }
8281 
8282 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8283 				   uint32_t guest_irq, bool set)
8284 {
8285 	if (!kvm_x86_ops->update_pi_irte)
8286 		return -EINVAL;
8287 
8288 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8289 }
8290 
8291 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8292 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8293 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8294 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8295 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8308