xref: /linux/arch/x86/kvm/x86.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56 
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 
72 #define emul_to_vcpu(ctxt) \
73 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74 
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85 
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92 
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95 
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98 
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101 
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106 
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110 
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114 
115 static bool backwards_tsc_observed = false;
116 
117 #define KVM_NR_SHARED_MSRS 16
118 
119 struct kvm_shared_msrs_global {
120 	int nr;
121 	u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123 
124 struct kvm_shared_msrs {
125 	struct user_return_notifier urn;
126 	bool registered;
127 	struct kvm_shared_msr_values {
128 		u64 host;
129 		u64 curr;
130 	} values[KVM_NR_SHARED_MSRS];
131 };
132 
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135 
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
138 	{ "pf_guest", VCPU_STAT(pf_guest) },
139 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
140 	{ "invlpg", VCPU_STAT(invlpg) },
141 	{ "exits", VCPU_STAT(exits) },
142 	{ "io_exits", VCPU_STAT(io_exits) },
143 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
144 	{ "signal_exits", VCPU_STAT(signal_exits) },
145 	{ "irq_window", VCPU_STAT(irq_window_exits) },
146 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
147 	{ "halt_exits", VCPU_STAT(halt_exits) },
148 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
150 	{ "hypercalls", VCPU_STAT(hypercalls) },
151 	{ "request_irq", VCPU_STAT(request_irq_exits) },
152 	{ "irq_exits", VCPU_STAT(irq_exits) },
153 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
154 	{ "efer_reload", VCPU_STAT(efer_reload) },
155 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
156 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
157 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158 	{ "irq_injections", VCPU_STAT(irq_injections) },
159 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
160 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
162 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
165 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
166 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
168 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169 	{ "largepages", VM_STAT(lpages) },
170 	{ NULL }
171 };
172 
173 u64 __read_mostly host_xcr0;
174 
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176 
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179 	int i;
180 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181 		vcpu->arch.apf.gfns[i] = ~0;
182 }
183 
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186 	unsigned slot;
187 	struct kvm_shared_msrs *locals
188 		= container_of(urn, struct kvm_shared_msrs, urn);
189 	struct kvm_shared_msr_values *values;
190 
191 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192 		values = &locals->values[slot];
193 		if (values->host != values->curr) {
194 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
195 			values->curr = values->host;
196 		}
197 	}
198 	locals->registered = false;
199 	user_return_notifier_unregister(urn);
200 }
201 
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204 	u64 value;
205 	unsigned int cpu = smp_processor_id();
206 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207 
208 	/* only read, and nobody should modify it at this time,
209 	 * so don't need lock */
210 	if (slot >= shared_msrs_global.nr) {
211 		printk(KERN_ERR "kvm: invalid MSR slot!");
212 		return;
213 	}
214 	rdmsrl_safe(msr, &value);
215 	smsr->values[slot].host = value;
216 	smsr->values[slot].curr = value;
217 }
218 
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222 	if (slot >= shared_msrs_global.nr)
223 		shared_msrs_global.nr = slot + 1;
224 	shared_msrs_global.msrs[slot] = msr;
225 	/* we need ensured the shared_msr_global have been updated */
226 	smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229 
230 static void kvm_shared_msr_cpu_online(void)
231 {
232 	unsigned i;
233 
234 	for (i = 0; i < shared_msrs_global.nr; ++i)
235 		shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237 
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240 	unsigned int cpu = smp_processor_id();
241 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242 	int err;
243 
244 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
245 		return 0;
246 	smsr->values[slot].curr = value;
247 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248 	if (err)
249 		return 1;
250 
251 	if (!smsr->registered) {
252 		smsr->urn.on_user_return = kvm_on_user_return;
253 		user_return_notifier_register(&smsr->urn);
254 		smsr->registered = true;
255 	}
256 	return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259 
260 static void drop_user_return_notifiers(void)
261 {
262 	unsigned int cpu = smp_processor_id();
263 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264 
265 	if (smsr->registered)
266 		kvm_on_user_return(&smsr->urn);
267 }
268 
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271 	return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274 
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277 	u64 old_state = vcpu->arch.apic_base &
278 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279 	u64 new_state = msr_info->data &
280 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283 
284 	if (!msr_info->host_initiated &&
285 	    ((msr_info->data & reserved_bits) != 0 ||
286 	     new_state == X2APIC_ENABLE ||
287 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
288 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290 	      old_state == 0)))
291 		return 1;
292 
293 	kvm_lapic_set_base(vcpu, msr_info->data);
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297 
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300 	/* Fault while not rebooting.  We want the trace. */
301 	BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304 
305 #define EXCPT_BENIGN		0
306 #define EXCPT_CONTRIBUTORY	1
307 #define EXCPT_PF		2
308 
309 static int exception_class(int vector)
310 {
311 	switch (vector) {
312 	case PF_VECTOR:
313 		return EXCPT_PF;
314 	case DE_VECTOR:
315 	case TS_VECTOR:
316 	case NP_VECTOR:
317 	case SS_VECTOR:
318 	case GP_VECTOR:
319 		return EXCPT_CONTRIBUTORY;
320 	default:
321 		break;
322 	}
323 	return EXCPT_BENIGN;
324 }
325 
326 #define EXCPT_FAULT		0
327 #define EXCPT_TRAP		1
328 #define EXCPT_ABORT		2
329 #define EXCPT_INTERRUPT		3
330 
331 static int exception_type(int vector)
332 {
333 	unsigned int mask;
334 
335 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336 		return EXCPT_INTERRUPT;
337 
338 	mask = 1 << vector;
339 
340 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
341 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342 		return EXCPT_TRAP;
343 
344 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345 		return EXCPT_ABORT;
346 
347 	/* Reserved exceptions will result in fault */
348 	return EXCPT_FAULT;
349 }
350 
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352 		unsigned nr, bool has_error, u32 error_code,
353 		bool reinject)
354 {
355 	u32 prev_nr;
356 	int class1, class2;
357 
358 	kvm_make_request(KVM_REQ_EVENT, vcpu);
359 
360 	if (!vcpu->arch.exception.pending) {
361 	queue:
362 		if (has_error && !is_protmode(vcpu))
363 			has_error = false;
364 		vcpu->arch.exception.pending = true;
365 		vcpu->arch.exception.has_error_code = has_error;
366 		vcpu->arch.exception.nr = nr;
367 		vcpu->arch.exception.error_code = error_code;
368 		vcpu->arch.exception.reinject = reinject;
369 		return;
370 	}
371 
372 	/* to check exception */
373 	prev_nr = vcpu->arch.exception.nr;
374 	if (prev_nr == DF_VECTOR) {
375 		/* triple fault -> shutdown */
376 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377 		return;
378 	}
379 	class1 = exception_class(prev_nr);
380 	class2 = exception_class(nr);
381 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383 		/* generate double fault per SDM Table 5-5 */
384 		vcpu->arch.exception.pending = true;
385 		vcpu->arch.exception.has_error_code = true;
386 		vcpu->arch.exception.nr = DF_VECTOR;
387 		vcpu->arch.exception.error_code = 0;
388 	} else
389 		/* replace previous exception with a new one in a hope
390 		   that instruction re-execution will regenerate lost
391 		   exception */
392 		goto queue;
393 }
394 
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397 	kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400 
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403 	kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406 
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409 	if (err)
410 		kvm_inject_gp(vcpu, 0);
411 	else
412 		kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415 
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418 	++vcpu->stat.pf_guest;
419 	vcpu->arch.cr2 = fault->address;
420 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423 
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428 	else
429 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430 
431 	return fault->nested_page_fault;
432 }
433 
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436 	atomic_inc(&vcpu->arch.nmi_queued);
437 	kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440 
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446 
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452 
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460 		return true;
461 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462 	return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465 
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469 		return true;
470 
471 	kvm_queue_exception(vcpu, UD_VECTOR);
472 	return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475 
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482 			    gfn_t ngfn, void *data, int offset, int len,
483 			    u32 access)
484 {
485 	struct x86_exception exception;
486 	gfn_t real_gfn;
487 	gpa_t ngpa;
488 
489 	ngpa     = gfn_to_gpa(ngfn);
490 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491 	if (real_gfn == UNMAPPED_GVA)
492 		return -EFAULT;
493 
494 	real_gfn = gpa_to_gfn(real_gfn);
495 
496 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499 
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501 			       void *data, int offset, int len, u32 access)
502 {
503 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504 				       data, offset, len, access);
505 }
506 
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514 	int i;
515 	int ret;
516 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517 
518 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519 				      offset * sizeof(u64), sizeof(pdpte),
520 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
521 	if (ret < 0) {
522 		ret = 0;
523 		goto out;
524 	}
525 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526 		if (is_present_gpte(pdpte[i]) &&
527 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528 			ret = 0;
529 			goto out;
530 		}
531 	}
532 	ret = 1;
533 
534 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535 	__set_bit(VCPU_EXREG_PDPTR,
536 		  (unsigned long *)&vcpu->arch.regs_avail);
537 	__set_bit(VCPU_EXREG_PDPTR,
538 		  (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544 
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548 	bool changed = true;
549 	int offset;
550 	gfn_t gfn;
551 	int r;
552 
553 	if (is_long_mode(vcpu) || !is_pae(vcpu))
554 		return false;
555 
556 	if (!test_bit(VCPU_EXREG_PDPTR,
557 		      (unsigned long *)&vcpu->arch.regs_avail))
558 		return true;
559 
560 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
564 	if (r < 0)
565 		goto out;
566 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568 
569 	return changed;
570 }
571 
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
575 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576 				    X86_CR0_CD | X86_CR0_NW;
577 
578 	cr0 |= X86_CR0_ET;
579 
580 #ifdef CONFIG_X86_64
581 	if (cr0 & 0xffffffff00000000UL)
582 		return 1;
583 #endif
584 
585 	cr0 &= ~CR0_RESERVED_BITS;
586 
587 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588 		return 1;
589 
590 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591 		return 1;
592 
593 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595 		if ((vcpu->arch.efer & EFER_LME)) {
596 			int cs_db, cs_l;
597 
598 			if (!is_pae(vcpu))
599 				return 1;
600 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601 			if (cs_l)
602 				return 1;
603 		} else
604 #endif
605 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606 						 kvm_read_cr3(vcpu)))
607 			return 1;
608 	}
609 
610 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611 		return 1;
612 
613 	kvm_x86_ops->set_cr0(vcpu, cr0);
614 
615 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616 		kvm_clear_async_pf_completion_queue(vcpu);
617 		kvm_async_pf_hash_reset(vcpu);
618 	}
619 
620 	if ((cr0 ^ old_cr0) & update_bits)
621 		kvm_mmu_reset_context(vcpu);
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625 
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631 
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635 			!vcpu->guest_xcr0_loaded) {
636 		/* kvm_set_xcr() also depends on this */
637 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638 		vcpu->guest_xcr0_loaded = 1;
639 	}
640 }
641 
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644 	if (vcpu->guest_xcr0_loaded) {
645 		if (vcpu->arch.xcr0 != host_xcr0)
646 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647 		vcpu->guest_xcr0_loaded = 0;
648 	}
649 }
650 
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653 	u64 xcr0 = xcr;
654 	u64 old_xcr0 = vcpu->arch.xcr0;
655 	u64 valid_bits;
656 
657 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
658 	if (index != XCR_XFEATURE_ENABLED_MASK)
659 		return 1;
660 	if (!(xcr0 & XSTATE_FP))
661 		return 1;
662 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663 		return 1;
664 
665 	/*
666 	 * Do not allow the guest to set bits that we do not support
667 	 * saving.  However, xcr0 bit 0 is always set, even if the
668 	 * emulated CPU does not support XSAVE (see fx_init).
669 	 */
670 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671 	if (xcr0 & ~valid_bits)
672 		return 1;
673 
674 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675 		return 1;
676 
677 	if (xcr0 & XSTATE_AVX512) {
678 		if (!(xcr0 & XSTATE_YMM))
679 			return 1;
680 		if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681 			return 1;
682 	}
683 	kvm_put_guest_xcr0(vcpu);
684 	vcpu->arch.xcr0 = xcr0;
685 
686 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687 		kvm_update_cpuid(vcpu);
688 	return 0;
689 }
690 
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694 	    __kvm_set_xcr(vcpu, index, xcr)) {
695 		kvm_inject_gp(vcpu, 0);
696 		return 1;
697 	}
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701 
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
705 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
706 				   X86_CR4_PAE | X86_CR4_SMEP;
707 	if (cr4 & CR4_RESERVED_BITS)
708 		return 1;
709 
710 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711 		return 1;
712 
713 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714 		return 1;
715 
716 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717 		return 1;
718 
719 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720 		return 1;
721 
722 	if (is_long_mode(vcpu)) {
723 		if (!(cr4 & X86_CR4_PAE))
724 			return 1;
725 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726 		   && ((cr4 ^ old_cr4) & pdptr_bits)
727 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728 				   kvm_read_cr3(vcpu)))
729 		return 1;
730 
731 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732 		if (!guest_cpuid_has_pcid(vcpu))
733 			return 1;
734 
735 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737 			return 1;
738 	}
739 
740 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
741 		return 1;
742 
743 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
744 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745 		kvm_mmu_reset_context(vcpu);
746 
747 	if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
748 		update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
749 
750 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751 		kvm_update_cpuid(vcpu);
752 
753 	return 0;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cr4);
756 
757 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758 {
759 #ifdef CONFIG_X86_64
760 	cr3 &= ~CR3_PCID_INVD;
761 #endif
762 
763 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764 		kvm_mmu_sync_roots(vcpu);
765 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766 		return 0;
767 	}
768 
769 	if (is_long_mode(vcpu)) {
770 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
771 			return 1;
772 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
773 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774 		return 1;
775 
776 	vcpu->arch.cr3 = cr3;
777 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778 	kvm_mmu_new_cr3(vcpu);
779 	return 0;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_cr3);
782 
783 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784 {
785 	if (cr8 & CR8_RESERVED_BITS)
786 		return 1;
787 	if (irqchip_in_kernel(vcpu->kvm))
788 		kvm_lapic_set_tpr(vcpu, cr8);
789 	else
790 		vcpu->arch.cr8 = cr8;
791 	return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr8);
794 
795 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796 {
797 	if (irqchip_in_kernel(vcpu->kvm))
798 		return kvm_lapic_get_cr8(vcpu);
799 	else
800 		return vcpu->arch.cr8;
801 }
802 EXPORT_SYMBOL_GPL(kvm_get_cr8);
803 
804 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
805 {
806 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
807 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
808 }
809 
810 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
811 {
812 	unsigned long dr7;
813 
814 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
815 		dr7 = vcpu->arch.guest_debug_dr7;
816 	else
817 		dr7 = vcpu->arch.dr7;
818 	kvm_x86_ops->set_dr7(vcpu, dr7);
819 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
820 	if (dr7 & DR7_BP_EN_MASK)
821 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
822 }
823 
824 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
825 {
826 	u64 fixed = DR6_FIXED_1;
827 
828 	if (!guest_cpuid_has_rtm(vcpu))
829 		fixed |= DR6_RTM;
830 	return fixed;
831 }
832 
833 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
834 {
835 	switch (dr) {
836 	case 0 ... 3:
837 		vcpu->arch.db[dr] = val;
838 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839 			vcpu->arch.eff_db[dr] = val;
840 		break;
841 	case 4:
842 		/* fall through */
843 	case 6:
844 		if (val & 0xffffffff00000000ULL)
845 			return -1; /* #GP */
846 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
847 		kvm_update_dr6(vcpu);
848 		break;
849 	case 5:
850 		/* fall through */
851 	default: /* 7 */
852 		if (val & 0xffffffff00000000ULL)
853 			return -1; /* #GP */
854 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
855 		kvm_update_dr7(vcpu);
856 		break;
857 	}
858 
859 	return 0;
860 }
861 
862 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
863 {
864 	if (__kvm_set_dr(vcpu, dr, val)) {
865 		kvm_inject_gp(vcpu, 0);
866 		return 1;
867 	}
868 	return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_dr);
871 
872 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
873 {
874 	switch (dr) {
875 	case 0 ... 3:
876 		*val = vcpu->arch.db[dr];
877 		break;
878 	case 4:
879 		/* fall through */
880 	case 6:
881 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
882 			*val = vcpu->arch.dr6;
883 		else
884 			*val = kvm_x86_ops->get_dr6(vcpu);
885 		break;
886 	case 5:
887 		/* fall through */
888 	default: /* 7 */
889 		*val = vcpu->arch.dr7;
890 		break;
891 	}
892 	return 0;
893 }
894 EXPORT_SYMBOL_GPL(kvm_get_dr);
895 
896 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
897 {
898 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
899 	u64 data;
900 	int err;
901 
902 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
903 	if (err)
904 		return err;
905 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
906 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
907 	return err;
908 }
909 EXPORT_SYMBOL_GPL(kvm_rdpmc);
910 
911 /*
912  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
913  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
914  *
915  * This list is modified at module load time to reflect the
916  * capabilities of the host cpu. This capabilities test skips MSRs that are
917  * kvm-specific. Those are put in the beginning of the list.
918  */
919 
920 #define KVM_SAVE_MSRS_BEGIN	12
921 static u32 msrs_to_save[] = {
922 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
923 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
924 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
925 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
926 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
927 	MSR_KVM_PV_EOI_EN,
928 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
929 	MSR_STAR,
930 #ifdef CONFIG_X86_64
931 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
932 #endif
933 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
934 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
935 };
936 
937 static unsigned num_msrs_to_save;
938 
939 static const u32 emulated_msrs[] = {
940 	MSR_IA32_TSC_ADJUST,
941 	MSR_IA32_TSCDEADLINE,
942 	MSR_IA32_MISC_ENABLE,
943 	MSR_IA32_MCG_STATUS,
944 	MSR_IA32_MCG_CTL,
945 };
946 
947 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
948 {
949 	if (efer & efer_reserved_bits)
950 		return false;
951 
952 	if (efer & EFER_FFXSR) {
953 		struct kvm_cpuid_entry2 *feat;
954 
955 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
956 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
957 			return false;
958 	}
959 
960 	if (efer & EFER_SVME) {
961 		struct kvm_cpuid_entry2 *feat;
962 
963 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
964 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
965 			return false;
966 	}
967 
968 	return true;
969 }
970 EXPORT_SYMBOL_GPL(kvm_valid_efer);
971 
972 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
973 {
974 	u64 old_efer = vcpu->arch.efer;
975 
976 	if (!kvm_valid_efer(vcpu, efer))
977 		return 1;
978 
979 	if (is_paging(vcpu)
980 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
981 		return 1;
982 
983 	efer &= ~EFER_LMA;
984 	efer |= vcpu->arch.efer & EFER_LMA;
985 
986 	kvm_x86_ops->set_efer(vcpu, efer);
987 
988 	/* Update reserved bits */
989 	if ((efer ^ old_efer) & EFER_NX)
990 		kvm_mmu_reset_context(vcpu);
991 
992 	return 0;
993 }
994 
995 void kvm_enable_efer_bits(u64 mask)
996 {
997        efer_reserved_bits &= ~mask;
998 }
999 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1000 
1001 /*
1002  * Writes msr value into into the appropriate "register".
1003  * Returns 0 on success, non-0 otherwise.
1004  * Assumes vcpu_load() was already called.
1005  */
1006 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1007 {
1008 	switch (msr->index) {
1009 	case MSR_FS_BASE:
1010 	case MSR_GS_BASE:
1011 	case MSR_KERNEL_GS_BASE:
1012 	case MSR_CSTAR:
1013 	case MSR_LSTAR:
1014 		if (is_noncanonical_address(msr->data))
1015 			return 1;
1016 		break;
1017 	case MSR_IA32_SYSENTER_EIP:
1018 	case MSR_IA32_SYSENTER_ESP:
1019 		/*
1020 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1021 		 * non-canonical address is written on Intel but not on
1022 		 * AMD (which ignores the top 32-bits, because it does
1023 		 * not implement 64-bit SYSENTER).
1024 		 *
1025 		 * 64-bit code should hence be able to write a non-canonical
1026 		 * value on AMD.  Making the address canonical ensures that
1027 		 * vmentry does not fail on Intel after writing a non-canonical
1028 		 * value, and that something deterministic happens if the guest
1029 		 * invokes 64-bit SYSENTER.
1030 		 */
1031 		msr->data = get_canonical(msr->data);
1032 	}
1033 	return kvm_x86_ops->set_msr(vcpu, msr);
1034 }
1035 EXPORT_SYMBOL_GPL(kvm_set_msr);
1036 
1037 /*
1038  * Adapt set_msr() to msr_io()'s calling convention
1039  */
1040 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1041 {
1042 	struct msr_data msr;
1043 
1044 	msr.data = *data;
1045 	msr.index = index;
1046 	msr.host_initiated = true;
1047 	return kvm_set_msr(vcpu, &msr);
1048 }
1049 
1050 #ifdef CONFIG_X86_64
1051 struct pvclock_gtod_data {
1052 	seqcount_t	seq;
1053 
1054 	struct { /* extract of a clocksource struct */
1055 		int vclock_mode;
1056 		cycle_t	cycle_last;
1057 		cycle_t	mask;
1058 		u32	mult;
1059 		u32	shift;
1060 	} clock;
1061 
1062 	u64		boot_ns;
1063 	u64		nsec_base;
1064 };
1065 
1066 static struct pvclock_gtod_data pvclock_gtod_data;
1067 
1068 static void update_pvclock_gtod(struct timekeeper *tk)
1069 {
1070 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1071 	u64 boot_ns;
1072 
1073 	boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1074 
1075 	write_seqcount_begin(&vdata->seq);
1076 
1077 	/* copy pvclock gtod data */
1078 	vdata->clock.vclock_mode	= tk->tkr.clock->archdata.vclock_mode;
1079 	vdata->clock.cycle_last		= tk->tkr.cycle_last;
1080 	vdata->clock.mask		= tk->tkr.mask;
1081 	vdata->clock.mult		= tk->tkr.mult;
1082 	vdata->clock.shift		= tk->tkr.shift;
1083 
1084 	vdata->boot_ns			= boot_ns;
1085 	vdata->nsec_base		= tk->tkr.xtime_nsec;
1086 
1087 	write_seqcount_end(&vdata->seq);
1088 }
1089 #endif
1090 
1091 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1092 {
1093 	/*
1094 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1095 	 * vcpu_enter_guest.  This function is only called from
1096 	 * the physical CPU that is running vcpu.
1097 	 */
1098 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1099 }
1100 
1101 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1102 {
1103 	int version;
1104 	int r;
1105 	struct pvclock_wall_clock wc;
1106 	struct timespec boot;
1107 
1108 	if (!wall_clock)
1109 		return;
1110 
1111 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1112 	if (r)
1113 		return;
1114 
1115 	if (version & 1)
1116 		++version;  /* first time write, random junk */
1117 
1118 	++version;
1119 
1120 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1121 
1122 	/*
1123 	 * The guest calculates current wall clock time by adding
1124 	 * system time (updated by kvm_guest_time_update below) to the
1125 	 * wall clock specified here.  guest system time equals host
1126 	 * system time for us, thus we must fill in host boot time here.
1127 	 */
1128 	getboottime(&boot);
1129 
1130 	if (kvm->arch.kvmclock_offset) {
1131 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1132 		boot = timespec_sub(boot, ts);
1133 	}
1134 	wc.sec = boot.tv_sec;
1135 	wc.nsec = boot.tv_nsec;
1136 	wc.version = version;
1137 
1138 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1139 
1140 	version++;
1141 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1142 }
1143 
1144 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1145 {
1146 	uint32_t quotient, remainder;
1147 
1148 	/* Don't try to replace with do_div(), this one calculates
1149 	 * "(dividend << 32) / divisor" */
1150 	__asm__ ( "divl %4"
1151 		  : "=a" (quotient), "=d" (remainder)
1152 		  : "0" (0), "1" (dividend), "r" (divisor) );
1153 	return quotient;
1154 }
1155 
1156 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1157 			       s8 *pshift, u32 *pmultiplier)
1158 {
1159 	uint64_t scaled64;
1160 	int32_t  shift = 0;
1161 	uint64_t tps64;
1162 	uint32_t tps32;
1163 
1164 	tps64 = base_khz * 1000LL;
1165 	scaled64 = scaled_khz * 1000LL;
1166 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1167 		tps64 >>= 1;
1168 		shift--;
1169 	}
1170 
1171 	tps32 = (uint32_t)tps64;
1172 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1173 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1174 			scaled64 >>= 1;
1175 		else
1176 			tps32 <<= 1;
1177 		shift++;
1178 	}
1179 
1180 	*pshift = shift;
1181 	*pmultiplier = div_frac(scaled64, tps32);
1182 
1183 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1184 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1185 }
1186 
1187 static inline u64 get_kernel_ns(void)
1188 {
1189 	return ktime_get_boot_ns();
1190 }
1191 
1192 #ifdef CONFIG_X86_64
1193 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1194 #endif
1195 
1196 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1197 static unsigned long max_tsc_khz;
1198 
1199 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1200 {
1201 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1202 				   vcpu->arch.virtual_tsc_shift);
1203 }
1204 
1205 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1206 {
1207 	u64 v = (u64)khz * (1000000 + ppm);
1208 	do_div(v, 1000000);
1209 	return v;
1210 }
1211 
1212 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1213 {
1214 	u32 thresh_lo, thresh_hi;
1215 	int use_scaling = 0;
1216 
1217 	/* tsc_khz can be zero if TSC calibration fails */
1218 	if (this_tsc_khz == 0)
1219 		return;
1220 
1221 	/* Compute a scale to convert nanoseconds in TSC cycles */
1222 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1223 			   &vcpu->arch.virtual_tsc_shift,
1224 			   &vcpu->arch.virtual_tsc_mult);
1225 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1226 
1227 	/*
1228 	 * Compute the variation in TSC rate which is acceptable
1229 	 * within the range of tolerance and decide if the
1230 	 * rate being applied is within that bounds of the hardware
1231 	 * rate.  If so, no scaling or compensation need be done.
1232 	 */
1233 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1234 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1235 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1236 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1237 		use_scaling = 1;
1238 	}
1239 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1240 }
1241 
1242 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1243 {
1244 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1245 				      vcpu->arch.virtual_tsc_mult,
1246 				      vcpu->arch.virtual_tsc_shift);
1247 	tsc += vcpu->arch.this_tsc_write;
1248 	return tsc;
1249 }
1250 
1251 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1252 {
1253 #ifdef CONFIG_X86_64
1254 	bool vcpus_matched;
1255 	struct kvm_arch *ka = &vcpu->kvm->arch;
1256 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1257 
1258 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1259 			 atomic_read(&vcpu->kvm->online_vcpus));
1260 
1261 	/*
1262 	 * Once the masterclock is enabled, always perform request in
1263 	 * order to update it.
1264 	 *
1265 	 * In order to enable masterclock, the host clocksource must be TSC
1266 	 * and the vcpus need to have matched TSCs.  When that happens,
1267 	 * perform request to enable masterclock.
1268 	 */
1269 	if (ka->use_master_clock ||
1270 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1271 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1272 
1273 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1274 			    atomic_read(&vcpu->kvm->online_vcpus),
1275 		            ka->use_master_clock, gtod->clock.vclock_mode);
1276 #endif
1277 }
1278 
1279 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1280 {
1281 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1282 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1283 }
1284 
1285 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1286 {
1287 	struct kvm *kvm = vcpu->kvm;
1288 	u64 offset, ns, elapsed;
1289 	unsigned long flags;
1290 	s64 usdiff;
1291 	bool matched;
1292 	bool already_matched;
1293 	u64 data = msr->data;
1294 
1295 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1296 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1297 	ns = get_kernel_ns();
1298 	elapsed = ns - kvm->arch.last_tsc_nsec;
1299 
1300 	if (vcpu->arch.virtual_tsc_khz) {
1301 		int faulted = 0;
1302 
1303 		/* n.b - signed multiplication and division required */
1304 		usdiff = data - kvm->arch.last_tsc_write;
1305 #ifdef CONFIG_X86_64
1306 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1307 #else
1308 		/* do_div() only does unsigned */
1309 		asm("1: idivl %[divisor]\n"
1310 		    "2: xor %%edx, %%edx\n"
1311 		    "   movl $0, %[faulted]\n"
1312 		    "3:\n"
1313 		    ".section .fixup,\"ax\"\n"
1314 		    "4: movl $1, %[faulted]\n"
1315 		    "   jmp  3b\n"
1316 		    ".previous\n"
1317 
1318 		_ASM_EXTABLE(1b, 4b)
1319 
1320 		: "=A"(usdiff), [faulted] "=r" (faulted)
1321 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1322 
1323 #endif
1324 		do_div(elapsed, 1000);
1325 		usdiff -= elapsed;
1326 		if (usdiff < 0)
1327 			usdiff = -usdiff;
1328 
1329 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1330 		if (faulted)
1331 			usdiff = USEC_PER_SEC;
1332 	} else
1333 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1334 
1335 	/*
1336 	 * Special case: TSC write with a small delta (1 second) of virtual
1337 	 * cycle time against real time is interpreted as an attempt to
1338 	 * synchronize the CPU.
1339          *
1340 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1341 	 * TSC, we add elapsed time in this computation.  We could let the
1342 	 * compensation code attempt to catch up if we fall behind, but
1343 	 * it's better to try to match offsets from the beginning.
1344          */
1345 	if (usdiff < USEC_PER_SEC &&
1346 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1347 		if (!check_tsc_unstable()) {
1348 			offset = kvm->arch.cur_tsc_offset;
1349 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1350 		} else {
1351 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1352 			data += delta;
1353 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1354 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1355 		}
1356 		matched = true;
1357 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1358 	} else {
1359 		/*
1360 		 * We split periods of matched TSC writes into generations.
1361 		 * For each generation, we track the original measured
1362 		 * nanosecond time, offset, and write, so if TSCs are in
1363 		 * sync, we can match exact offset, and if not, we can match
1364 		 * exact software computation in compute_guest_tsc()
1365 		 *
1366 		 * These values are tracked in kvm->arch.cur_xxx variables.
1367 		 */
1368 		kvm->arch.cur_tsc_generation++;
1369 		kvm->arch.cur_tsc_nsec = ns;
1370 		kvm->arch.cur_tsc_write = data;
1371 		kvm->arch.cur_tsc_offset = offset;
1372 		matched = false;
1373 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1374 			 kvm->arch.cur_tsc_generation, data);
1375 	}
1376 
1377 	/*
1378 	 * We also track th most recent recorded KHZ, write and time to
1379 	 * allow the matching interval to be extended at each write.
1380 	 */
1381 	kvm->arch.last_tsc_nsec = ns;
1382 	kvm->arch.last_tsc_write = data;
1383 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1384 
1385 	vcpu->arch.last_guest_tsc = data;
1386 
1387 	/* Keep track of which generation this VCPU has synchronized to */
1388 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1389 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1390 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1391 
1392 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1393 		update_ia32_tsc_adjust_msr(vcpu, offset);
1394 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1395 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1396 
1397 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1398 	if (!matched) {
1399 		kvm->arch.nr_vcpus_matched_tsc = 0;
1400 	} else if (!already_matched) {
1401 		kvm->arch.nr_vcpus_matched_tsc++;
1402 	}
1403 
1404 	kvm_track_tsc_matching(vcpu);
1405 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1406 }
1407 
1408 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1409 
1410 #ifdef CONFIG_X86_64
1411 
1412 static cycle_t read_tsc(void)
1413 {
1414 	cycle_t ret;
1415 	u64 last;
1416 
1417 	/*
1418 	 * Empirically, a fence (of type that depends on the CPU)
1419 	 * before rdtsc is enough to ensure that rdtsc is ordered
1420 	 * with respect to loads.  The various CPU manuals are unclear
1421 	 * as to whether rdtsc can be reordered with later loads,
1422 	 * but no one has ever seen it happen.
1423 	 */
1424 	rdtsc_barrier();
1425 	ret = (cycle_t)vget_cycles();
1426 
1427 	last = pvclock_gtod_data.clock.cycle_last;
1428 
1429 	if (likely(ret >= last))
1430 		return ret;
1431 
1432 	/*
1433 	 * GCC likes to generate cmov here, but this branch is extremely
1434 	 * predictable (it's just a funciton of time and the likely is
1435 	 * very likely) and there's a data dependence, so force GCC
1436 	 * to generate a branch instead.  I don't barrier() because
1437 	 * we don't actually need a barrier, and if this function
1438 	 * ever gets inlined it will generate worse code.
1439 	 */
1440 	asm volatile ("");
1441 	return last;
1442 }
1443 
1444 static inline u64 vgettsc(cycle_t *cycle_now)
1445 {
1446 	long v;
1447 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1448 
1449 	*cycle_now = read_tsc();
1450 
1451 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1452 	return v * gtod->clock.mult;
1453 }
1454 
1455 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1456 {
1457 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1458 	unsigned long seq;
1459 	int mode;
1460 	u64 ns;
1461 
1462 	do {
1463 		seq = read_seqcount_begin(&gtod->seq);
1464 		mode = gtod->clock.vclock_mode;
1465 		ns = gtod->nsec_base;
1466 		ns += vgettsc(cycle_now);
1467 		ns >>= gtod->clock.shift;
1468 		ns += gtod->boot_ns;
1469 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1470 	*t = ns;
1471 
1472 	return mode;
1473 }
1474 
1475 /* returns true if host is using tsc clocksource */
1476 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1477 {
1478 	/* checked again under seqlock below */
1479 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1480 		return false;
1481 
1482 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1483 }
1484 #endif
1485 
1486 /*
1487  *
1488  * Assuming a stable TSC across physical CPUS, and a stable TSC
1489  * across virtual CPUs, the following condition is possible.
1490  * Each numbered line represents an event visible to both
1491  * CPUs at the next numbered event.
1492  *
1493  * "timespecX" represents host monotonic time. "tscX" represents
1494  * RDTSC value.
1495  *
1496  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1497  *
1498  * 1.  read timespec0,tsc0
1499  * 2.					| timespec1 = timespec0 + N
1500  * 					| tsc1 = tsc0 + M
1501  * 3. transition to guest		| transition to guest
1502  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1503  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1504  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1505  *
1506  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1507  *
1508  * 	- ret0 < ret1
1509  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1510  *		...
1511  *	- 0 < N - M => M < N
1512  *
1513  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1514  * always the case (the difference between two distinct xtime instances
1515  * might be smaller then the difference between corresponding TSC reads,
1516  * when updating guest vcpus pvclock areas).
1517  *
1518  * To avoid that problem, do not allow visibility of distinct
1519  * system_timestamp/tsc_timestamp values simultaneously: use a master
1520  * copy of host monotonic time values. Update that master copy
1521  * in lockstep.
1522  *
1523  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1524  *
1525  */
1526 
1527 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1528 {
1529 #ifdef CONFIG_X86_64
1530 	struct kvm_arch *ka = &kvm->arch;
1531 	int vclock_mode;
1532 	bool host_tsc_clocksource, vcpus_matched;
1533 
1534 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1535 			atomic_read(&kvm->online_vcpus));
1536 
1537 	/*
1538 	 * If the host uses TSC clock, then passthrough TSC as stable
1539 	 * to the guest.
1540 	 */
1541 	host_tsc_clocksource = kvm_get_time_and_clockread(
1542 					&ka->master_kernel_ns,
1543 					&ka->master_cycle_now);
1544 
1545 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1546 				&& !backwards_tsc_observed
1547 				&& !ka->boot_vcpu_runs_old_kvmclock;
1548 
1549 	if (ka->use_master_clock)
1550 		atomic_set(&kvm_guest_has_master_clock, 1);
1551 
1552 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1553 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1554 					vcpus_matched);
1555 #endif
1556 }
1557 
1558 static void kvm_gen_update_masterclock(struct kvm *kvm)
1559 {
1560 #ifdef CONFIG_X86_64
1561 	int i;
1562 	struct kvm_vcpu *vcpu;
1563 	struct kvm_arch *ka = &kvm->arch;
1564 
1565 	spin_lock(&ka->pvclock_gtod_sync_lock);
1566 	kvm_make_mclock_inprogress_request(kvm);
1567 	/* no guest entries from this point */
1568 	pvclock_update_vm_gtod_copy(kvm);
1569 
1570 	kvm_for_each_vcpu(i, vcpu, kvm)
1571 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1572 
1573 	/* guest entries allowed */
1574 	kvm_for_each_vcpu(i, vcpu, kvm)
1575 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1576 
1577 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1578 #endif
1579 }
1580 
1581 static int kvm_guest_time_update(struct kvm_vcpu *v)
1582 {
1583 	unsigned long flags, this_tsc_khz;
1584 	struct kvm_vcpu_arch *vcpu = &v->arch;
1585 	struct kvm_arch *ka = &v->kvm->arch;
1586 	s64 kernel_ns;
1587 	u64 tsc_timestamp, host_tsc;
1588 	struct pvclock_vcpu_time_info guest_hv_clock;
1589 	u8 pvclock_flags;
1590 	bool use_master_clock;
1591 
1592 	kernel_ns = 0;
1593 	host_tsc = 0;
1594 
1595 	/*
1596 	 * If the host uses TSC clock, then passthrough TSC as stable
1597 	 * to the guest.
1598 	 */
1599 	spin_lock(&ka->pvclock_gtod_sync_lock);
1600 	use_master_clock = ka->use_master_clock;
1601 	if (use_master_clock) {
1602 		host_tsc = ka->master_cycle_now;
1603 		kernel_ns = ka->master_kernel_ns;
1604 	}
1605 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1606 
1607 	/* Keep irq disabled to prevent changes to the clock */
1608 	local_irq_save(flags);
1609 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1610 	if (unlikely(this_tsc_khz == 0)) {
1611 		local_irq_restore(flags);
1612 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1613 		return 1;
1614 	}
1615 	if (!use_master_clock) {
1616 		host_tsc = native_read_tsc();
1617 		kernel_ns = get_kernel_ns();
1618 	}
1619 
1620 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1621 
1622 	/*
1623 	 * We may have to catch up the TSC to match elapsed wall clock
1624 	 * time for two reasons, even if kvmclock is used.
1625 	 *   1) CPU could have been running below the maximum TSC rate
1626 	 *   2) Broken TSC compensation resets the base at each VCPU
1627 	 *      entry to avoid unknown leaps of TSC even when running
1628 	 *      again on the same CPU.  This may cause apparent elapsed
1629 	 *      time to disappear, and the guest to stand still or run
1630 	 *	very slowly.
1631 	 */
1632 	if (vcpu->tsc_catchup) {
1633 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1634 		if (tsc > tsc_timestamp) {
1635 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1636 			tsc_timestamp = tsc;
1637 		}
1638 	}
1639 
1640 	local_irq_restore(flags);
1641 
1642 	if (!vcpu->pv_time_enabled)
1643 		return 0;
1644 
1645 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1646 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1647 				   &vcpu->hv_clock.tsc_shift,
1648 				   &vcpu->hv_clock.tsc_to_system_mul);
1649 		vcpu->hw_tsc_khz = this_tsc_khz;
1650 	}
1651 
1652 	/* With all the info we got, fill in the values */
1653 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1654 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1655 	vcpu->last_guest_tsc = tsc_timestamp;
1656 
1657 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1658 		&guest_hv_clock, sizeof(guest_hv_clock))))
1659 		return 0;
1660 
1661 	/*
1662 	 * The interface expects us to write an even number signaling that the
1663 	 * update is finished. Since the guest won't see the intermediate
1664 	 * state, we just increase by 2 at the end.
1665 	 */
1666 	vcpu->hv_clock.version = guest_hv_clock.version + 2;
1667 
1668 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1669 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1670 
1671 	if (vcpu->pvclock_set_guest_stopped_request) {
1672 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1673 		vcpu->pvclock_set_guest_stopped_request = false;
1674 	}
1675 
1676 	/* If the host uses TSC clocksource, then it is stable */
1677 	if (use_master_clock)
1678 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1679 
1680 	vcpu->hv_clock.flags = pvclock_flags;
1681 
1682 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1683 
1684 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1685 				&vcpu->hv_clock,
1686 				sizeof(vcpu->hv_clock));
1687 	return 0;
1688 }
1689 
1690 /*
1691  * kvmclock updates which are isolated to a given vcpu, such as
1692  * vcpu->cpu migration, should not allow system_timestamp from
1693  * the rest of the vcpus to remain static. Otherwise ntp frequency
1694  * correction applies to one vcpu's system_timestamp but not
1695  * the others.
1696  *
1697  * So in those cases, request a kvmclock update for all vcpus.
1698  * We need to rate-limit these requests though, as they can
1699  * considerably slow guests that have a large number of vcpus.
1700  * The time for a remote vcpu to update its kvmclock is bound
1701  * by the delay we use to rate-limit the updates.
1702  */
1703 
1704 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1705 
1706 static void kvmclock_update_fn(struct work_struct *work)
1707 {
1708 	int i;
1709 	struct delayed_work *dwork = to_delayed_work(work);
1710 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1711 					   kvmclock_update_work);
1712 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1713 	struct kvm_vcpu *vcpu;
1714 
1715 	kvm_for_each_vcpu(i, vcpu, kvm) {
1716 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1717 		kvm_vcpu_kick(vcpu);
1718 	}
1719 }
1720 
1721 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1722 {
1723 	struct kvm *kvm = v->kvm;
1724 
1725 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1726 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1727 					KVMCLOCK_UPDATE_DELAY);
1728 }
1729 
1730 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1731 
1732 static void kvmclock_sync_fn(struct work_struct *work)
1733 {
1734 	struct delayed_work *dwork = to_delayed_work(work);
1735 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1736 					   kvmclock_sync_work);
1737 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1738 
1739 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1740 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1741 					KVMCLOCK_SYNC_PERIOD);
1742 }
1743 
1744 static bool msr_mtrr_valid(unsigned msr)
1745 {
1746 	switch (msr) {
1747 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1748 	case MSR_MTRRfix64K_00000:
1749 	case MSR_MTRRfix16K_80000:
1750 	case MSR_MTRRfix16K_A0000:
1751 	case MSR_MTRRfix4K_C0000:
1752 	case MSR_MTRRfix4K_C8000:
1753 	case MSR_MTRRfix4K_D0000:
1754 	case MSR_MTRRfix4K_D8000:
1755 	case MSR_MTRRfix4K_E0000:
1756 	case MSR_MTRRfix4K_E8000:
1757 	case MSR_MTRRfix4K_F0000:
1758 	case MSR_MTRRfix4K_F8000:
1759 	case MSR_MTRRdefType:
1760 	case MSR_IA32_CR_PAT:
1761 		return true;
1762 	case 0x2f8:
1763 		return true;
1764 	}
1765 	return false;
1766 }
1767 
1768 static bool valid_pat_type(unsigned t)
1769 {
1770 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1771 }
1772 
1773 static bool valid_mtrr_type(unsigned t)
1774 {
1775 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1776 }
1777 
1778 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1779 {
1780 	int i;
1781 	u64 mask;
1782 
1783 	if (!msr_mtrr_valid(msr))
1784 		return false;
1785 
1786 	if (msr == MSR_IA32_CR_PAT) {
1787 		for (i = 0; i < 8; i++)
1788 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1789 				return false;
1790 		return true;
1791 	} else if (msr == MSR_MTRRdefType) {
1792 		if (data & ~0xcff)
1793 			return false;
1794 		return valid_mtrr_type(data & 0xff);
1795 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1796 		for (i = 0; i < 8 ; i++)
1797 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1798 				return false;
1799 		return true;
1800 	}
1801 
1802 	/* variable MTRRs */
1803 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1804 
1805 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1806 	if ((msr & 1) == 0) {
1807 		/* MTRR base */
1808 		if (!valid_mtrr_type(data & 0xff))
1809 			return false;
1810 		mask |= 0xf00;
1811 	} else
1812 		/* MTRR mask */
1813 		mask |= 0x7ff;
1814 	if (data & mask) {
1815 		kvm_inject_gp(vcpu, 0);
1816 		return false;
1817 	}
1818 
1819 	return true;
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1822 
1823 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1824 {
1825 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1826 
1827 	if (!kvm_mtrr_valid(vcpu, msr, data))
1828 		return 1;
1829 
1830 	if (msr == MSR_MTRRdefType) {
1831 		vcpu->arch.mtrr_state.def_type = data;
1832 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1833 	} else if (msr == MSR_MTRRfix64K_00000)
1834 		p[0] = data;
1835 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1836 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1837 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1838 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1839 	else if (msr == MSR_IA32_CR_PAT)
1840 		vcpu->arch.pat = data;
1841 	else {	/* Variable MTRRs */
1842 		int idx, is_mtrr_mask;
1843 		u64 *pt;
1844 
1845 		idx = (msr - 0x200) / 2;
1846 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1847 		if (!is_mtrr_mask)
1848 			pt =
1849 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1850 		else
1851 			pt =
1852 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1853 		*pt = data;
1854 	}
1855 
1856 	kvm_mmu_reset_context(vcpu);
1857 	return 0;
1858 }
1859 
1860 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1861 {
1862 	u64 mcg_cap = vcpu->arch.mcg_cap;
1863 	unsigned bank_num = mcg_cap & 0xff;
1864 
1865 	switch (msr) {
1866 	case MSR_IA32_MCG_STATUS:
1867 		vcpu->arch.mcg_status = data;
1868 		break;
1869 	case MSR_IA32_MCG_CTL:
1870 		if (!(mcg_cap & MCG_CTL_P))
1871 			return 1;
1872 		if (data != 0 && data != ~(u64)0)
1873 			return -1;
1874 		vcpu->arch.mcg_ctl = data;
1875 		break;
1876 	default:
1877 		if (msr >= MSR_IA32_MC0_CTL &&
1878 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1879 			u32 offset = msr - MSR_IA32_MC0_CTL;
1880 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1881 			 * some Linux kernels though clear bit 10 in bank 4 to
1882 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1883 			 * this to avoid an uncatched #GP in the guest
1884 			 */
1885 			if ((offset & 0x3) == 0 &&
1886 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1887 				return -1;
1888 			vcpu->arch.mce_banks[offset] = data;
1889 			break;
1890 		}
1891 		return 1;
1892 	}
1893 	return 0;
1894 }
1895 
1896 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1897 {
1898 	struct kvm *kvm = vcpu->kvm;
1899 	int lm = is_long_mode(vcpu);
1900 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1901 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1902 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1903 		: kvm->arch.xen_hvm_config.blob_size_32;
1904 	u32 page_num = data & ~PAGE_MASK;
1905 	u64 page_addr = data & PAGE_MASK;
1906 	u8 *page;
1907 	int r;
1908 
1909 	r = -E2BIG;
1910 	if (page_num >= blob_size)
1911 		goto out;
1912 	r = -ENOMEM;
1913 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1914 	if (IS_ERR(page)) {
1915 		r = PTR_ERR(page);
1916 		goto out;
1917 	}
1918 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1919 		goto out_free;
1920 	r = 0;
1921 out_free:
1922 	kfree(page);
1923 out:
1924 	return r;
1925 }
1926 
1927 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1928 {
1929 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1930 }
1931 
1932 static bool kvm_hv_msr_partition_wide(u32 msr)
1933 {
1934 	bool r = false;
1935 	switch (msr) {
1936 	case HV_X64_MSR_GUEST_OS_ID:
1937 	case HV_X64_MSR_HYPERCALL:
1938 	case HV_X64_MSR_REFERENCE_TSC:
1939 	case HV_X64_MSR_TIME_REF_COUNT:
1940 		r = true;
1941 		break;
1942 	}
1943 
1944 	return r;
1945 }
1946 
1947 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1948 {
1949 	struct kvm *kvm = vcpu->kvm;
1950 
1951 	switch (msr) {
1952 	case HV_X64_MSR_GUEST_OS_ID:
1953 		kvm->arch.hv_guest_os_id = data;
1954 		/* setting guest os id to zero disables hypercall page */
1955 		if (!kvm->arch.hv_guest_os_id)
1956 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1957 		break;
1958 	case HV_X64_MSR_HYPERCALL: {
1959 		u64 gfn;
1960 		unsigned long addr;
1961 		u8 instructions[4];
1962 
1963 		/* if guest os id is not set hypercall should remain disabled */
1964 		if (!kvm->arch.hv_guest_os_id)
1965 			break;
1966 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1967 			kvm->arch.hv_hypercall = data;
1968 			break;
1969 		}
1970 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1971 		addr = gfn_to_hva(kvm, gfn);
1972 		if (kvm_is_error_hva(addr))
1973 			return 1;
1974 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1975 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1976 		if (__copy_to_user((void __user *)addr, instructions, 4))
1977 			return 1;
1978 		kvm->arch.hv_hypercall = data;
1979 		mark_page_dirty(kvm, gfn);
1980 		break;
1981 	}
1982 	case HV_X64_MSR_REFERENCE_TSC: {
1983 		u64 gfn;
1984 		HV_REFERENCE_TSC_PAGE tsc_ref;
1985 		memset(&tsc_ref, 0, sizeof(tsc_ref));
1986 		kvm->arch.hv_tsc_page = data;
1987 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1988 			break;
1989 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1990 		if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1991 			&tsc_ref, sizeof(tsc_ref)))
1992 			return 1;
1993 		mark_page_dirty(kvm, gfn);
1994 		break;
1995 	}
1996 	default:
1997 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1998 			    "data 0x%llx\n", msr, data);
1999 		return 1;
2000 	}
2001 	return 0;
2002 }
2003 
2004 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2005 {
2006 	switch (msr) {
2007 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
2008 		u64 gfn;
2009 		unsigned long addr;
2010 
2011 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2012 			vcpu->arch.hv_vapic = data;
2013 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2014 				return 1;
2015 			break;
2016 		}
2017 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2018 		addr = gfn_to_hva(vcpu->kvm, gfn);
2019 		if (kvm_is_error_hva(addr))
2020 			return 1;
2021 		if (__clear_user((void __user *)addr, PAGE_SIZE))
2022 			return 1;
2023 		vcpu->arch.hv_vapic = data;
2024 		mark_page_dirty(vcpu->kvm, gfn);
2025 		if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2026 			return 1;
2027 		break;
2028 	}
2029 	case HV_X64_MSR_EOI:
2030 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2031 	case HV_X64_MSR_ICR:
2032 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2033 	case HV_X64_MSR_TPR:
2034 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2035 	default:
2036 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2037 			    "data 0x%llx\n", msr, data);
2038 		return 1;
2039 	}
2040 
2041 	return 0;
2042 }
2043 
2044 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2045 {
2046 	gpa_t gpa = data & ~0x3f;
2047 
2048 	/* Bits 2:5 are reserved, Should be zero */
2049 	if (data & 0x3c)
2050 		return 1;
2051 
2052 	vcpu->arch.apf.msr_val = data;
2053 
2054 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2055 		kvm_clear_async_pf_completion_queue(vcpu);
2056 		kvm_async_pf_hash_reset(vcpu);
2057 		return 0;
2058 	}
2059 
2060 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2061 					sizeof(u32)))
2062 		return 1;
2063 
2064 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2065 	kvm_async_pf_wakeup_all(vcpu);
2066 	return 0;
2067 }
2068 
2069 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2070 {
2071 	vcpu->arch.pv_time_enabled = false;
2072 }
2073 
2074 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2075 {
2076 	u64 delta;
2077 
2078 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2079 		return;
2080 
2081 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2082 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2083 	vcpu->arch.st.accum_steal = delta;
2084 }
2085 
2086 static void record_steal_time(struct kvm_vcpu *vcpu)
2087 {
2088 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2089 		return;
2090 
2091 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2092 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2093 		return;
2094 
2095 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2096 	vcpu->arch.st.steal.version += 2;
2097 	vcpu->arch.st.accum_steal = 0;
2098 
2099 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2100 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2101 }
2102 
2103 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2104 {
2105 	bool pr = false;
2106 	u32 msr = msr_info->index;
2107 	u64 data = msr_info->data;
2108 
2109 	switch (msr) {
2110 	case MSR_AMD64_NB_CFG:
2111 	case MSR_IA32_UCODE_REV:
2112 	case MSR_IA32_UCODE_WRITE:
2113 	case MSR_VM_HSAVE_PA:
2114 	case MSR_AMD64_PATCH_LOADER:
2115 	case MSR_AMD64_BU_CFG2:
2116 		break;
2117 
2118 	case MSR_EFER:
2119 		return set_efer(vcpu, data);
2120 	case MSR_K7_HWCR:
2121 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2122 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2123 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2124 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2125 		if (data != 0) {
2126 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2127 				    data);
2128 			return 1;
2129 		}
2130 		break;
2131 	case MSR_FAM10H_MMIO_CONF_BASE:
2132 		if (data != 0) {
2133 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2134 				    "0x%llx\n", data);
2135 			return 1;
2136 		}
2137 		break;
2138 	case MSR_IA32_DEBUGCTLMSR:
2139 		if (!data) {
2140 			/* We support the non-activated case already */
2141 			break;
2142 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2143 			/* Values other than LBR and BTF are vendor-specific,
2144 			   thus reserved and should throw a #GP */
2145 			return 1;
2146 		}
2147 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2148 			    __func__, data);
2149 		break;
2150 	case 0x200 ... 0x2ff:
2151 		return set_msr_mtrr(vcpu, msr, data);
2152 	case MSR_IA32_APICBASE:
2153 		return kvm_set_apic_base(vcpu, msr_info);
2154 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2155 		return kvm_x2apic_msr_write(vcpu, msr, data);
2156 	case MSR_IA32_TSCDEADLINE:
2157 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2158 		break;
2159 	case MSR_IA32_TSC_ADJUST:
2160 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2161 			if (!msr_info->host_initiated) {
2162 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2163 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2164 			}
2165 			vcpu->arch.ia32_tsc_adjust_msr = data;
2166 		}
2167 		break;
2168 	case MSR_IA32_MISC_ENABLE:
2169 		vcpu->arch.ia32_misc_enable_msr = data;
2170 		break;
2171 	case MSR_KVM_WALL_CLOCK_NEW:
2172 	case MSR_KVM_WALL_CLOCK:
2173 		vcpu->kvm->arch.wall_clock = data;
2174 		kvm_write_wall_clock(vcpu->kvm, data);
2175 		break;
2176 	case MSR_KVM_SYSTEM_TIME_NEW:
2177 	case MSR_KVM_SYSTEM_TIME: {
2178 		u64 gpa_offset;
2179 		struct kvm_arch *ka = &vcpu->kvm->arch;
2180 
2181 		kvmclock_reset(vcpu);
2182 
2183 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2184 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2185 
2186 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2187 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2188 					&vcpu->requests);
2189 
2190 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2191 		}
2192 
2193 		vcpu->arch.time = data;
2194 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2195 
2196 		/* we verify if the enable bit is set... */
2197 		if (!(data & 1))
2198 			break;
2199 
2200 		gpa_offset = data & ~(PAGE_MASK | 1);
2201 
2202 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2203 		     &vcpu->arch.pv_time, data & ~1ULL,
2204 		     sizeof(struct pvclock_vcpu_time_info)))
2205 			vcpu->arch.pv_time_enabled = false;
2206 		else
2207 			vcpu->arch.pv_time_enabled = true;
2208 
2209 		break;
2210 	}
2211 	case MSR_KVM_ASYNC_PF_EN:
2212 		if (kvm_pv_enable_async_pf(vcpu, data))
2213 			return 1;
2214 		break;
2215 	case MSR_KVM_STEAL_TIME:
2216 
2217 		if (unlikely(!sched_info_on()))
2218 			return 1;
2219 
2220 		if (data & KVM_STEAL_RESERVED_MASK)
2221 			return 1;
2222 
2223 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2224 						data & KVM_STEAL_VALID_BITS,
2225 						sizeof(struct kvm_steal_time)))
2226 			return 1;
2227 
2228 		vcpu->arch.st.msr_val = data;
2229 
2230 		if (!(data & KVM_MSR_ENABLED))
2231 			break;
2232 
2233 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
2234 
2235 		preempt_disable();
2236 		accumulate_steal_time(vcpu);
2237 		preempt_enable();
2238 
2239 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2240 
2241 		break;
2242 	case MSR_KVM_PV_EOI_EN:
2243 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2244 			return 1;
2245 		break;
2246 
2247 	case MSR_IA32_MCG_CTL:
2248 	case MSR_IA32_MCG_STATUS:
2249 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2250 		return set_msr_mce(vcpu, msr, data);
2251 
2252 	/* Performance counters are not protected by a CPUID bit,
2253 	 * so we should check all of them in the generic path for the sake of
2254 	 * cross vendor migration.
2255 	 * Writing a zero into the event select MSRs disables them,
2256 	 * which we perfectly emulate ;-). Any other value should be at least
2257 	 * reported, some guests depend on them.
2258 	 */
2259 	case MSR_K7_EVNTSEL0:
2260 	case MSR_K7_EVNTSEL1:
2261 	case MSR_K7_EVNTSEL2:
2262 	case MSR_K7_EVNTSEL3:
2263 		if (data != 0)
2264 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2265 				    "0x%x data 0x%llx\n", msr, data);
2266 		break;
2267 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2268 	 * so we ignore writes to make it happy.
2269 	 */
2270 	case MSR_K7_PERFCTR0:
2271 	case MSR_K7_PERFCTR1:
2272 	case MSR_K7_PERFCTR2:
2273 	case MSR_K7_PERFCTR3:
2274 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2275 			    "0x%x data 0x%llx\n", msr, data);
2276 		break;
2277 	case MSR_P6_PERFCTR0:
2278 	case MSR_P6_PERFCTR1:
2279 		pr = true;
2280 	case MSR_P6_EVNTSEL0:
2281 	case MSR_P6_EVNTSEL1:
2282 		if (kvm_pmu_msr(vcpu, msr))
2283 			return kvm_pmu_set_msr(vcpu, msr_info);
2284 
2285 		if (pr || data != 0)
2286 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2287 				    "0x%x data 0x%llx\n", msr, data);
2288 		break;
2289 	case MSR_K7_CLK_CTL:
2290 		/*
2291 		 * Ignore all writes to this no longer documented MSR.
2292 		 * Writes are only relevant for old K7 processors,
2293 		 * all pre-dating SVM, but a recommended workaround from
2294 		 * AMD for these chips. It is possible to specify the
2295 		 * affected processor models on the command line, hence
2296 		 * the need to ignore the workaround.
2297 		 */
2298 		break;
2299 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2300 		if (kvm_hv_msr_partition_wide(msr)) {
2301 			int r;
2302 			mutex_lock(&vcpu->kvm->lock);
2303 			r = set_msr_hyperv_pw(vcpu, msr, data);
2304 			mutex_unlock(&vcpu->kvm->lock);
2305 			return r;
2306 		} else
2307 			return set_msr_hyperv(vcpu, msr, data);
2308 		break;
2309 	case MSR_IA32_BBL_CR_CTL3:
2310 		/* Drop writes to this legacy MSR -- see rdmsr
2311 		 * counterpart for further detail.
2312 		 */
2313 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2314 		break;
2315 	case MSR_AMD64_OSVW_ID_LENGTH:
2316 		if (!guest_cpuid_has_osvw(vcpu))
2317 			return 1;
2318 		vcpu->arch.osvw.length = data;
2319 		break;
2320 	case MSR_AMD64_OSVW_STATUS:
2321 		if (!guest_cpuid_has_osvw(vcpu))
2322 			return 1;
2323 		vcpu->arch.osvw.status = data;
2324 		break;
2325 	default:
2326 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2327 			return xen_hvm_config(vcpu, data);
2328 		if (kvm_pmu_msr(vcpu, msr))
2329 			return kvm_pmu_set_msr(vcpu, msr_info);
2330 		if (!ignore_msrs) {
2331 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2332 				    msr, data);
2333 			return 1;
2334 		} else {
2335 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2336 				    msr, data);
2337 			break;
2338 		}
2339 	}
2340 	return 0;
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2343 
2344 
2345 /*
2346  * Reads an msr value (of 'msr_index') into 'pdata'.
2347  * Returns 0 on success, non-0 otherwise.
2348  * Assumes vcpu_load() was already called.
2349  */
2350 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2351 {
2352 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2353 }
2354 EXPORT_SYMBOL_GPL(kvm_get_msr);
2355 
2356 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2357 {
2358 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2359 
2360 	if (!msr_mtrr_valid(msr))
2361 		return 1;
2362 
2363 	if (msr == MSR_MTRRdefType)
2364 		*pdata = vcpu->arch.mtrr_state.def_type +
2365 			 (vcpu->arch.mtrr_state.enabled << 10);
2366 	else if (msr == MSR_MTRRfix64K_00000)
2367 		*pdata = p[0];
2368 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2369 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2370 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2371 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2372 	else if (msr == MSR_IA32_CR_PAT)
2373 		*pdata = vcpu->arch.pat;
2374 	else {	/* Variable MTRRs */
2375 		int idx, is_mtrr_mask;
2376 		u64 *pt;
2377 
2378 		idx = (msr - 0x200) / 2;
2379 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2380 		if (!is_mtrr_mask)
2381 			pt =
2382 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2383 		else
2384 			pt =
2385 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2386 		*pdata = *pt;
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2393 {
2394 	u64 data;
2395 	u64 mcg_cap = vcpu->arch.mcg_cap;
2396 	unsigned bank_num = mcg_cap & 0xff;
2397 
2398 	switch (msr) {
2399 	case MSR_IA32_P5_MC_ADDR:
2400 	case MSR_IA32_P5_MC_TYPE:
2401 		data = 0;
2402 		break;
2403 	case MSR_IA32_MCG_CAP:
2404 		data = vcpu->arch.mcg_cap;
2405 		break;
2406 	case MSR_IA32_MCG_CTL:
2407 		if (!(mcg_cap & MCG_CTL_P))
2408 			return 1;
2409 		data = vcpu->arch.mcg_ctl;
2410 		break;
2411 	case MSR_IA32_MCG_STATUS:
2412 		data = vcpu->arch.mcg_status;
2413 		break;
2414 	default:
2415 		if (msr >= MSR_IA32_MC0_CTL &&
2416 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2417 			u32 offset = msr - MSR_IA32_MC0_CTL;
2418 			data = vcpu->arch.mce_banks[offset];
2419 			break;
2420 		}
2421 		return 1;
2422 	}
2423 	*pdata = data;
2424 	return 0;
2425 }
2426 
2427 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2428 {
2429 	u64 data = 0;
2430 	struct kvm *kvm = vcpu->kvm;
2431 
2432 	switch (msr) {
2433 	case HV_X64_MSR_GUEST_OS_ID:
2434 		data = kvm->arch.hv_guest_os_id;
2435 		break;
2436 	case HV_X64_MSR_HYPERCALL:
2437 		data = kvm->arch.hv_hypercall;
2438 		break;
2439 	case HV_X64_MSR_TIME_REF_COUNT: {
2440 		data =
2441 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2442 		break;
2443 	}
2444 	case HV_X64_MSR_REFERENCE_TSC:
2445 		data = kvm->arch.hv_tsc_page;
2446 		break;
2447 	default:
2448 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2449 		return 1;
2450 	}
2451 
2452 	*pdata = data;
2453 	return 0;
2454 }
2455 
2456 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2457 {
2458 	u64 data = 0;
2459 
2460 	switch (msr) {
2461 	case HV_X64_MSR_VP_INDEX: {
2462 		int r;
2463 		struct kvm_vcpu *v;
2464 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2465 			if (v == vcpu) {
2466 				data = r;
2467 				break;
2468 			}
2469 		}
2470 		break;
2471 	}
2472 	case HV_X64_MSR_EOI:
2473 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2474 	case HV_X64_MSR_ICR:
2475 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2476 	case HV_X64_MSR_TPR:
2477 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2478 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2479 		data = vcpu->arch.hv_vapic;
2480 		break;
2481 	default:
2482 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2483 		return 1;
2484 	}
2485 	*pdata = data;
2486 	return 0;
2487 }
2488 
2489 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2490 {
2491 	u64 data;
2492 
2493 	switch (msr) {
2494 	case MSR_IA32_PLATFORM_ID:
2495 	case MSR_IA32_EBL_CR_POWERON:
2496 	case MSR_IA32_DEBUGCTLMSR:
2497 	case MSR_IA32_LASTBRANCHFROMIP:
2498 	case MSR_IA32_LASTBRANCHTOIP:
2499 	case MSR_IA32_LASTINTFROMIP:
2500 	case MSR_IA32_LASTINTTOIP:
2501 	case MSR_K8_SYSCFG:
2502 	case MSR_K7_HWCR:
2503 	case MSR_VM_HSAVE_PA:
2504 	case MSR_K7_EVNTSEL0:
2505 	case MSR_K7_EVNTSEL1:
2506 	case MSR_K7_EVNTSEL2:
2507 	case MSR_K7_EVNTSEL3:
2508 	case MSR_K7_PERFCTR0:
2509 	case MSR_K7_PERFCTR1:
2510 	case MSR_K7_PERFCTR2:
2511 	case MSR_K7_PERFCTR3:
2512 	case MSR_K8_INT_PENDING_MSG:
2513 	case MSR_AMD64_NB_CFG:
2514 	case MSR_FAM10H_MMIO_CONF_BASE:
2515 	case MSR_AMD64_BU_CFG2:
2516 		data = 0;
2517 		break;
2518 	case MSR_P6_PERFCTR0:
2519 	case MSR_P6_PERFCTR1:
2520 	case MSR_P6_EVNTSEL0:
2521 	case MSR_P6_EVNTSEL1:
2522 		if (kvm_pmu_msr(vcpu, msr))
2523 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2524 		data = 0;
2525 		break;
2526 	case MSR_IA32_UCODE_REV:
2527 		data = 0x100000000ULL;
2528 		break;
2529 	case MSR_MTRRcap:
2530 		data = 0x500 | KVM_NR_VAR_MTRR;
2531 		break;
2532 	case 0x200 ... 0x2ff:
2533 		return get_msr_mtrr(vcpu, msr, pdata);
2534 	case 0xcd: /* fsb frequency */
2535 		data = 3;
2536 		break;
2537 		/*
2538 		 * MSR_EBC_FREQUENCY_ID
2539 		 * Conservative value valid for even the basic CPU models.
2540 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2541 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2542 		 * and 266MHz for model 3, or 4. Set Core Clock
2543 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2544 		 * 31:24) even though these are only valid for CPU
2545 		 * models > 2, however guests may end up dividing or
2546 		 * multiplying by zero otherwise.
2547 		 */
2548 	case MSR_EBC_FREQUENCY_ID:
2549 		data = 1 << 24;
2550 		break;
2551 	case MSR_IA32_APICBASE:
2552 		data = kvm_get_apic_base(vcpu);
2553 		break;
2554 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2555 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2556 		break;
2557 	case MSR_IA32_TSCDEADLINE:
2558 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2559 		break;
2560 	case MSR_IA32_TSC_ADJUST:
2561 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2562 		break;
2563 	case MSR_IA32_MISC_ENABLE:
2564 		data = vcpu->arch.ia32_misc_enable_msr;
2565 		break;
2566 	case MSR_IA32_PERF_STATUS:
2567 		/* TSC increment by tick */
2568 		data = 1000ULL;
2569 		/* CPU multiplier */
2570 		data |= (((uint64_t)4ULL) << 40);
2571 		break;
2572 	case MSR_EFER:
2573 		data = vcpu->arch.efer;
2574 		break;
2575 	case MSR_KVM_WALL_CLOCK:
2576 	case MSR_KVM_WALL_CLOCK_NEW:
2577 		data = vcpu->kvm->arch.wall_clock;
2578 		break;
2579 	case MSR_KVM_SYSTEM_TIME:
2580 	case MSR_KVM_SYSTEM_TIME_NEW:
2581 		data = vcpu->arch.time;
2582 		break;
2583 	case MSR_KVM_ASYNC_PF_EN:
2584 		data = vcpu->arch.apf.msr_val;
2585 		break;
2586 	case MSR_KVM_STEAL_TIME:
2587 		data = vcpu->arch.st.msr_val;
2588 		break;
2589 	case MSR_KVM_PV_EOI_EN:
2590 		data = vcpu->arch.pv_eoi.msr_val;
2591 		break;
2592 	case MSR_IA32_P5_MC_ADDR:
2593 	case MSR_IA32_P5_MC_TYPE:
2594 	case MSR_IA32_MCG_CAP:
2595 	case MSR_IA32_MCG_CTL:
2596 	case MSR_IA32_MCG_STATUS:
2597 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2598 		return get_msr_mce(vcpu, msr, pdata);
2599 	case MSR_K7_CLK_CTL:
2600 		/*
2601 		 * Provide expected ramp-up count for K7. All other
2602 		 * are set to zero, indicating minimum divisors for
2603 		 * every field.
2604 		 *
2605 		 * This prevents guest kernels on AMD host with CPU
2606 		 * type 6, model 8 and higher from exploding due to
2607 		 * the rdmsr failing.
2608 		 */
2609 		data = 0x20000000;
2610 		break;
2611 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2612 		if (kvm_hv_msr_partition_wide(msr)) {
2613 			int r;
2614 			mutex_lock(&vcpu->kvm->lock);
2615 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2616 			mutex_unlock(&vcpu->kvm->lock);
2617 			return r;
2618 		} else
2619 			return get_msr_hyperv(vcpu, msr, pdata);
2620 		break;
2621 	case MSR_IA32_BBL_CR_CTL3:
2622 		/* This legacy MSR exists but isn't fully documented in current
2623 		 * silicon.  It is however accessed by winxp in very narrow
2624 		 * scenarios where it sets bit #19, itself documented as
2625 		 * a "reserved" bit.  Best effort attempt to source coherent
2626 		 * read data here should the balance of the register be
2627 		 * interpreted by the guest:
2628 		 *
2629 		 * L2 cache control register 3: 64GB range, 256KB size,
2630 		 * enabled, latency 0x1, configured
2631 		 */
2632 		data = 0xbe702111;
2633 		break;
2634 	case MSR_AMD64_OSVW_ID_LENGTH:
2635 		if (!guest_cpuid_has_osvw(vcpu))
2636 			return 1;
2637 		data = vcpu->arch.osvw.length;
2638 		break;
2639 	case MSR_AMD64_OSVW_STATUS:
2640 		if (!guest_cpuid_has_osvw(vcpu))
2641 			return 1;
2642 		data = vcpu->arch.osvw.status;
2643 		break;
2644 	default:
2645 		if (kvm_pmu_msr(vcpu, msr))
2646 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2647 		if (!ignore_msrs) {
2648 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2649 			return 1;
2650 		} else {
2651 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2652 			data = 0;
2653 		}
2654 		break;
2655 	}
2656 	*pdata = data;
2657 	return 0;
2658 }
2659 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2660 
2661 /*
2662  * Read or write a bunch of msrs. All parameters are kernel addresses.
2663  *
2664  * @return number of msrs set successfully.
2665  */
2666 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2667 		    struct kvm_msr_entry *entries,
2668 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2669 				  unsigned index, u64 *data))
2670 {
2671 	int i, idx;
2672 
2673 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2674 	for (i = 0; i < msrs->nmsrs; ++i)
2675 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2676 			break;
2677 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2678 
2679 	return i;
2680 }
2681 
2682 /*
2683  * Read or write a bunch of msrs. Parameters are user addresses.
2684  *
2685  * @return number of msrs set successfully.
2686  */
2687 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2688 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2689 				unsigned index, u64 *data),
2690 		  int writeback)
2691 {
2692 	struct kvm_msrs msrs;
2693 	struct kvm_msr_entry *entries;
2694 	int r, n;
2695 	unsigned size;
2696 
2697 	r = -EFAULT;
2698 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2699 		goto out;
2700 
2701 	r = -E2BIG;
2702 	if (msrs.nmsrs >= MAX_IO_MSRS)
2703 		goto out;
2704 
2705 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2706 	entries = memdup_user(user_msrs->entries, size);
2707 	if (IS_ERR(entries)) {
2708 		r = PTR_ERR(entries);
2709 		goto out;
2710 	}
2711 
2712 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2713 	if (r < 0)
2714 		goto out_free;
2715 
2716 	r = -EFAULT;
2717 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2718 		goto out_free;
2719 
2720 	r = n;
2721 
2722 out_free:
2723 	kfree(entries);
2724 out:
2725 	return r;
2726 }
2727 
2728 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2729 {
2730 	int r;
2731 
2732 	switch (ext) {
2733 	case KVM_CAP_IRQCHIP:
2734 	case KVM_CAP_HLT:
2735 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2736 	case KVM_CAP_SET_TSS_ADDR:
2737 	case KVM_CAP_EXT_CPUID:
2738 	case KVM_CAP_EXT_EMUL_CPUID:
2739 	case KVM_CAP_CLOCKSOURCE:
2740 	case KVM_CAP_PIT:
2741 	case KVM_CAP_NOP_IO_DELAY:
2742 	case KVM_CAP_MP_STATE:
2743 	case KVM_CAP_SYNC_MMU:
2744 	case KVM_CAP_USER_NMI:
2745 	case KVM_CAP_REINJECT_CONTROL:
2746 	case KVM_CAP_IRQ_INJECT_STATUS:
2747 	case KVM_CAP_IOEVENTFD:
2748 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2749 	case KVM_CAP_PIT2:
2750 	case KVM_CAP_PIT_STATE2:
2751 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2752 	case KVM_CAP_XEN_HVM:
2753 	case KVM_CAP_ADJUST_CLOCK:
2754 	case KVM_CAP_VCPU_EVENTS:
2755 	case KVM_CAP_HYPERV:
2756 	case KVM_CAP_HYPERV_VAPIC:
2757 	case KVM_CAP_HYPERV_SPIN:
2758 	case KVM_CAP_PCI_SEGMENT:
2759 	case KVM_CAP_DEBUGREGS:
2760 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2761 	case KVM_CAP_XSAVE:
2762 	case KVM_CAP_ASYNC_PF:
2763 	case KVM_CAP_GET_TSC_KHZ:
2764 	case KVM_CAP_KVMCLOCK_CTRL:
2765 	case KVM_CAP_READONLY_MEM:
2766 	case KVM_CAP_HYPERV_TIME:
2767 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2768 	case KVM_CAP_TSC_DEADLINE_TIMER:
2769 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2770 	case KVM_CAP_ASSIGN_DEV_IRQ:
2771 	case KVM_CAP_PCI_2_3:
2772 #endif
2773 		r = 1;
2774 		break;
2775 	case KVM_CAP_COALESCED_MMIO:
2776 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2777 		break;
2778 	case KVM_CAP_VAPIC:
2779 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2780 		break;
2781 	case KVM_CAP_NR_VCPUS:
2782 		r = KVM_SOFT_MAX_VCPUS;
2783 		break;
2784 	case KVM_CAP_MAX_VCPUS:
2785 		r = KVM_MAX_VCPUS;
2786 		break;
2787 	case KVM_CAP_NR_MEMSLOTS:
2788 		r = KVM_USER_MEM_SLOTS;
2789 		break;
2790 	case KVM_CAP_PV_MMU:	/* obsolete */
2791 		r = 0;
2792 		break;
2793 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2794 	case KVM_CAP_IOMMU:
2795 		r = iommu_present(&pci_bus_type);
2796 		break;
2797 #endif
2798 	case KVM_CAP_MCE:
2799 		r = KVM_MAX_MCE_BANKS;
2800 		break;
2801 	case KVM_CAP_XCRS:
2802 		r = cpu_has_xsave;
2803 		break;
2804 	case KVM_CAP_TSC_CONTROL:
2805 		r = kvm_has_tsc_control;
2806 		break;
2807 	default:
2808 		r = 0;
2809 		break;
2810 	}
2811 	return r;
2812 
2813 }
2814 
2815 long kvm_arch_dev_ioctl(struct file *filp,
2816 			unsigned int ioctl, unsigned long arg)
2817 {
2818 	void __user *argp = (void __user *)arg;
2819 	long r;
2820 
2821 	switch (ioctl) {
2822 	case KVM_GET_MSR_INDEX_LIST: {
2823 		struct kvm_msr_list __user *user_msr_list = argp;
2824 		struct kvm_msr_list msr_list;
2825 		unsigned n;
2826 
2827 		r = -EFAULT;
2828 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2829 			goto out;
2830 		n = msr_list.nmsrs;
2831 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2832 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2833 			goto out;
2834 		r = -E2BIG;
2835 		if (n < msr_list.nmsrs)
2836 			goto out;
2837 		r = -EFAULT;
2838 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2839 				 num_msrs_to_save * sizeof(u32)))
2840 			goto out;
2841 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2842 				 &emulated_msrs,
2843 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2844 			goto out;
2845 		r = 0;
2846 		break;
2847 	}
2848 	case KVM_GET_SUPPORTED_CPUID:
2849 	case KVM_GET_EMULATED_CPUID: {
2850 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2851 		struct kvm_cpuid2 cpuid;
2852 
2853 		r = -EFAULT;
2854 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2855 			goto out;
2856 
2857 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2858 					    ioctl);
2859 		if (r)
2860 			goto out;
2861 
2862 		r = -EFAULT;
2863 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2864 			goto out;
2865 		r = 0;
2866 		break;
2867 	}
2868 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2869 		u64 mce_cap;
2870 
2871 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2872 		r = -EFAULT;
2873 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2874 			goto out;
2875 		r = 0;
2876 		break;
2877 	}
2878 	default:
2879 		r = -EINVAL;
2880 	}
2881 out:
2882 	return r;
2883 }
2884 
2885 static void wbinvd_ipi(void *garbage)
2886 {
2887 	wbinvd();
2888 }
2889 
2890 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2891 {
2892 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2893 }
2894 
2895 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2896 {
2897 	/* Address WBINVD may be executed by guest */
2898 	if (need_emulate_wbinvd(vcpu)) {
2899 		if (kvm_x86_ops->has_wbinvd_exit())
2900 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2901 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2902 			smp_call_function_single(vcpu->cpu,
2903 					wbinvd_ipi, NULL, 1);
2904 	}
2905 
2906 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2907 
2908 	/* Apply any externally detected TSC adjustments (due to suspend) */
2909 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2910 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2911 		vcpu->arch.tsc_offset_adjustment = 0;
2912 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2913 	}
2914 
2915 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2916 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2917 				native_read_tsc() - vcpu->arch.last_host_tsc;
2918 		if (tsc_delta < 0)
2919 			mark_tsc_unstable("KVM discovered backwards TSC");
2920 		if (check_tsc_unstable()) {
2921 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2922 						vcpu->arch.last_guest_tsc);
2923 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2924 			vcpu->arch.tsc_catchup = 1;
2925 		}
2926 		/*
2927 		 * On a host with synchronized TSC, there is no need to update
2928 		 * kvmclock on vcpu->cpu migration
2929 		 */
2930 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2931 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2932 		if (vcpu->cpu != cpu)
2933 			kvm_migrate_timers(vcpu);
2934 		vcpu->cpu = cpu;
2935 	}
2936 
2937 	accumulate_steal_time(vcpu);
2938 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2939 }
2940 
2941 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2942 {
2943 	kvm_x86_ops->vcpu_put(vcpu);
2944 	kvm_put_guest_fpu(vcpu);
2945 	vcpu->arch.last_host_tsc = native_read_tsc();
2946 }
2947 
2948 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2949 				    struct kvm_lapic_state *s)
2950 {
2951 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2952 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2953 
2954 	return 0;
2955 }
2956 
2957 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2958 				    struct kvm_lapic_state *s)
2959 {
2960 	kvm_apic_post_state_restore(vcpu, s);
2961 	update_cr8_intercept(vcpu);
2962 
2963 	return 0;
2964 }
2965 
2966 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2967 				    struct kvm_interrupt *irq)
2968 {
2969 	if (irq->irq >= KVM_NR_INTERRUPTS)
2970 		return -EINVAL;
2971 	if (irqchip_in_kernel(vcpu->kvm))
2972 		return -ENXIO;
2973 
2974 	kvm_queue_interrupt(vcpu, irq->irq, false);
2975 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2976 
2977 	return 0;
2978 }
2979 
2980 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2981 {
2982 	kvm_inject_nmi(vcpu);
2983 
2984 	return 0;
2985 }
2986 
2987 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2988 					   struct kvm_tpr_access_ctl *tac)
2989 {
2990 	if (tac->flags)
2991 		return -EINVAL;
2992 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2993 	return 0;
2994 }
2995 
2996 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2997 					u64 mcg_cap)
2998 {
2999 	int r;
3000 	unsigned bank_num = mcg_cap & 0xff, bank;
3001 
3002 	r = -EINVAL;
3003 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3004 		goto out;
3005 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3006 		goto out;
3007 	r = 0;
3008 	vcpu->arch.mcg_cap = mcg_cap;
3009 	/* Init IA32_MCG_CTL to all 1s */
3010 	if (mcg_cap & MCG_CTL_P)
3011 		vcpu->arch.mcg_ctl = ~(u64)0;
3012 	/* Init IA32_MCi_CTL to all 1s */
3013 	for (bank = 0; bank < bank_num; bank++)
3014 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3015 out:
3016 	return r;
3017 }
3018 
3019 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3020 				      struct kvm_x86_mce *mce)
3021 {
3022 	u64 mcg_cap = vcpu->arch.mcg_cap;
3023 	unsigned bank_num = mcg_cap & 0xff;
3024 	u64 *banks = vcpu->arch.mce_banks;
3025 
3026 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3027 		return -EINVAL;
3028 	/*
3029 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3030 	 * reporting is disabled
3031 	 */
3032 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3033 	    vcpu->arch.mcg_ctl != ~(u64)0)
3034 		return 0;
3035 	banks += 4 * mce->bank;
3036 	/*
3037 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3038 	 * reporting is disabled for the bank
3039 	 */
3040 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3041 		return 0;
3042 	if (mce->status & MCI_STATUS_UC) {
3043 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3044 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3045 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3046 			return 0;
3047 		}
3048 		if (banks[1] & MCI_STATUS_VAL)
3049 			mce->status |= MCI_STATUS_OVER;
3050 		banks[2] = mce->addr;
3051 		banks[3] = mce->misc;
3052 		vcpu->arch.mcg_status = mce->mcg_status;
3053 		banks[1] = mce->status;
3054 		kvm_queue_exception(vcpu, MC_VECTOR);
3055 	} else if (!(banks[1] & MCI_STATUS_VAL)
3056 		   || !(banks[1] & MCI_STATUS_UC)) {
3057 		if (banks[1] & MCI_STATUS_VAL)
3058 			mce->status |= MCI_STATUS_OVER;
3059 		banks[2] = mce->addr;
3060 		banks[3] = mce->misc;
3061 		banks[1] = mce->status;
3062 	} else
3063 		banks[1] |= MCI_STATUS_OVER;
3064 	return 0;
3065 }
3066 
3067 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3068 					       struct kvm_vcpu_events *events)
3069 {
3070 	process_nmi(vcpu);
3071 	events->exception.injected =
3072 		vcpu->arch.exception.pending &&
3073 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3074 	events->exception.nr = vcpu->arch.exception.nr;
3075 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3076 	events->exception.pad = 0;
3077 	events->exception.error_code = vcpu->arch.exception.error_code;
3078 
3079 	events->interrupt.injected =
3080 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3081 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3082 	events->interrupt.soft = 0;
3083 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3084 
3085 	events->nmi.injected = vcpu->arch.nmi_injected;
3086 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3087 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3088 	events->nmi.pad = 0;
3089 
3090 	events->sipi_vector = 0; /* never valid when reporting to user space */
3091 
3092 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3093 			 | KVM_VCPUEVENT_VALID_SHADOW);
3094 	memset(&events->reserved, 0, sizeof(events->reserved));
3095 }
3096 
3097 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3098 					      struct kvm_vcpu_events *events)
3099 {
3100 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3101 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3102 			      | KVM_VCPUEVENT_VALID_SHADOW))
3103 		return -EINVAL;
3104 
3105 	process_nmi(vcpu);
3106 	vcpu->arch.exception.pending = events->exception.injected;
3107 	vcpu->arch.exception.nr = events->exception.nr;
3108 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3109 	vcpu->arch.exception.error_code = events->exception.error_code;
3110 
3111 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3112 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3113 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3114 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3115 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3116 						  events->interrupt.shadow);
3117 
3118 	vcpu->arch.nmi_injected = events->nmi.injected;
3119 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3120 		vcpu->arch.nmi_pending = events->nmi.pending;
3121 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3122 
3123 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3124 	    kvm_vcpu_has_lapic(vcpu))
3125 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3126 
3127 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3128 
3129 	return 0;
3130 }
3131 
3132 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3133 					     struct kvm_debugregs *dbgregs)
3134 {
3135 	unsigned long val;
3136 
3137 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3138 	kvm_get_dr(vcpu, 6, &val);
3139 	dbgregs->dr6 = val;
3140 	dbgregs->dr7 = vcpu->arch.dr7;
3141 	dbgregs->flags = 0;
3142 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3143 }
3144 
3145 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3146 					    struct kvm_debugregs *dbgregs)
3147 {
3148 	if (dbgregs->flags)
3149 		return -EINVAL;
3150 
3151 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3152 	vcpu->arch.dr6 = dbgregs->dr6;
3153 	kvm_update_dr6(vcpu);
3154 	vcpu->arch.dr7 = dbgregs->dr7;
3155 	kvm_update_dr7(vcpu);
3156 
3157 	return 0;
3158 }
3159 
3160 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3161 
3162 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3163 {
3164 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3165 	u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3166 	u64 valid;
3167 
3168 	/*
3169 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3170 	 * leaves 0 and 1 in the loop below.
3171 	 */
3172 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3173 
3174 	/* Set XSTATE_BV */
3175 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3176 
3177 	/*
3178 	 * Copy each region from the possibly compacted offset to the
3179 	 * non-compacted offset.
3180 	 */
3181 	valid = xstate_bv & ~XSTATE_FPSSE;
3182 	while (valid) {
3183 		u64 feature = valid & -valid;
3184 		int index = fls64(feature) - 1;
3185 		void *src = get_xsave_addr(xsave, feature);
3186 
3187 		if (src) {
3188 			u32 size, offset, ecx, edx;
3189 			cpuid_count(XSTATE_CPUID, index,
3190 				    &size, &offset, &ecx, &edx);
3191 			memcpy(dest + offset, src, size);
3192 		}
3193 
3194 		valid -= feature;
3195 	}
3196 }
3197 
3198 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3199 {
3200 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3201 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3202 	u64 valid;
3203 
3204 	/*
3205 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3206 	 * leaves 0 and 1 in the loop below.
3207 	 */
3208 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3209 
3210 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3211 	xsave->xsave_hdr.xstate_bv = xstate_bv;
3212 	if (cpu_has_xsaves)
3213 		xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3214 
3215 	/*
3216 	 * Copy each region from the non-compacted offset to the
3217 	 * possibly compacted offset.
3218 	 */
3219 	valid = xstate_bv & ~XSTATE_FPSSE;
3220 	while (valid) {
3221 		u64 feature = valid & -valid;
3222 		int index = fls64(feature) - 1;
3223 		void *dest = get_xsave_addr(xsave, feature);
3224 
3225 		if (dest) {
3226 			u32 size, offset, ecx, edx;
3227 			cpuid_count(XSTATE_CPUID, index,
3228 				    &size, &offset, &ecx, &edx);
3229 			memcpy(dest, src + offset, size);
3230 		} else
3231 			WARN_ON_ONCE(1);
3232 
3233 		valid -= feature;
3234 	}
3235 }
3236 
3237 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3238 					 struct kvm_xsave *guest_xsave)
3239 {
3240 	if (cpu_has_xsave) {
3241 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3242 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3243 	} else {
3244 		memcpy(guest_xsave->region,
3245 			&vcpu->arch.guest_fpu.state->fxsave,
3246 			sizeof(struct i387_fxsave_struct));
3247 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3248 			XSTATE_FPSSE;
3249 	}
3250 }
3251 
3252 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3253 					struct kvm_xsave *guest_xsave)
3254 {
3255 	u64 xstate_bv =
3256 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3257 
3258 	if (cpu_has_xsave) {
3259 		/*
3260 		 * Here we allow setting states that are not present in
3261 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3262 		 * with old userspace.
3263 		 */
3264 		if (xstate_bv & ~kvm_supported_xcr0())
3265 			return -EINVAL;
3266 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3267 	} else {
3268 		if (xstate_bv & ~XSTATE_FPSSE)
3269 			return -EINVAL;
3270 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3271 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3272 	}
3273 	return 0;
3274 }
3275 
3276 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3277 					struct kvm_xcrs *guest_xcrs)
3278 {
3279 	if (!cpu_has_xsave) {
3280 		guest_xcrs->nr_xcrs = 0;
3281 		return;
3282 	}
3283 
3284 	guest_xcrs->nr_xcrs = 1;
3285 	guest_xcrs->flags = 0;
3286 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3287 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3288 }
3289 
3290 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3291 				       struct kvm_xcrs *guest_xcrs)
3292 {
3293 	int i, r = 0;
3294 
3295 	if (!cpu_has_xsave)
3296 		return -EINVAL;
3297 
3298 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3299 		return -EINVAL;
3300 
3301 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3302 		/* Only support XCR0 currently */
3303 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3304 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3305 				guest_xcrs->xcrs[i].value);
3306 			break;
3307 		}
3308 	if (r)
3309 		r = -EINVAL;
3310 	return r;
3311 }
3312 
3313 /*
3314  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3315  * stopped by the hypervisor.  This function will be called from the host only.
3316  * EINVAL is returned when the host attempts to set the flag for a guest that
3317  * does not support pv clocks.
3318  */
3319 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3320 {
3321 	if (!vcpu->arch.pv_time_enabled)
3322 		return -EINVAL;
3323 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3324 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3325 	return 0;
3326 }
3327 
3328 long kvm_arch_vcpu_ioctl(struct file *filp,
3329 			 unsigned int ioctl, unsigned long arg)
3330 {
3331 	struct kvm_vcpu *vcpu = filp->private_data;
3332 	void __user *argp = (void __user *)arg;
3333 	int r;
3334 	union {
3335 		struct kvm_lapic_state *lapic;
3336 		struct kvm_xsave *xsave;
3337 		struct kvm_xcrs *xcrs;
3338 		void *buffer;
3339 	} u;
3340 
3341 	u.buffer = NULL;
3342 	switch (ioctl) {
3343 	case KVM_GET_LAPIC: {
3344 		r = -EINVAL;
3345 		if (!vcpu->arch.apic)
3346 			goto out;
3347 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3348 
3349 		r = -ENOMEM;
3350 		if (!u.lapic)
3351 			goto out;
3352 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3353 		if (r)
3354 			goto out;
3355 		r = -EFAULT;
3356 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3357 			goto out;
3358 		r = 0;
3359 		break;
3360 	}
3361 	case KVM_SET_LAPIC: {
3362 		r = -EINVAL;
3363 		if (!vcpu->arch.apic)
3364 			goto out;
3365 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3366 		if (IS_ERR(u.lapic))
3367 			return PTR_ERR(u.lapic);
3368 
3369 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3370 		break;
3371 	}
3372 	case KVM_INTERRUPT: {
3373 		struct kvm_interrupt irq;
3374 
3375 		r = -EFAULT;
3376 		if (copy_from_user(&irq, argp, sizeof irq))
3377 			goto out;
3378 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3379 		break;
3380 	}
3381 	case KVM_NMI: {
3382 		r = kvm_vcpu_ioctl_nmi(vcpu);
3383 		break;
3384 	}
3385 	case KVM_SET_CPUID: {
3386 		struct kvm_cpuid __user *cpuid_arg = argp;
3387 		struct kvm_cpuid cpuid;
3388 
3389 		r = -EFAULT;
3390 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3391 			goto out;
3392 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3393 		break;
3394 	}
3395 	case KVM_SET_CPUID2: {
3396 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3397 		struct kvm_cpuid2 cpuid;
3398 
3399 		r = -EFAULT;
3400 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3401 			goto out;
3402 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3403 					      cpuid_arg->entries);
3404 		break;
3405 	}
3406 	case KVM_GET_CPUID2: {
3407 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3408 		struct kvm_cpuid2 cpuid;
3409 
3410 		r = -EFAULT;
3411 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3412 			goto out;
3413 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3414 					      cpuid_arg->entries);
3415 		if (r)
3416 			goto out;
3417 		r = -EFAULT;
3418 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3419 			goto out;
3420 		r = 0;
3421 		break;
3422 	}
3423 	case KVM_GET_MSRS:
3424 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3425 		break;
3426 	case KVM_SET_MSRS:
3427 		r = msr_io(vcpu, argp, do_set_msr, 0);
3428 		break;
3429 	case KVM_TPR_ACCESS_REPORTING: {
3430 		struct kvm_tpr_access_ctl tac;
3431 
3432 		r = -EFAULT;
3433 		if (copy_from_user(&tac, argp, sizeof tac))
3434 			goto out;
3435 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3436 		if (r)
3437 			goto out;
3438 		r = -EFAULT;
3439 		if (copy_to_user(argp, &tac, sizeof tac))
3440 			goto out;
3441 		r = 0;
3442 		break;
3443 	};
3444 	case KVM_SET_VAPIC_ADDR: {
3445 		struct kvm_vapic_addr va;
3446 
3447 		r = -EINVAL;
3448 		if (!irqchip_in_kernel(vcpu->kvm))
3449 			goto out;
3450 		r = -EFAULT;
3451 		if (copy_from_user(&va, argp, sizeof va))
3452 			goto out;
3453 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3454 		break;
3455 	}
3456 	case KVM_X86_SETUP_MCE: {
3457 		u64 mcg_cap;
3458 
3459 		r = -EFAULT;
3460 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3461 			goto out;
3462 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3463 		break;
3464 	}
3465 	case KVM_X86_SET_MCE: {
3466 		struct kvm_x86_mce mce;
3467 
3468 		r = -EFAULT;
3469 		if (copy_from_user(&mce, argp, sizeof mce))
3470 			goto out;
3471 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3472 		break;
3473 	}
3474 	case KVM_GET_VCPU_EVENTS: {
3475 		struct kvm_vcpu_events events;
3476 
3477 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3478 
3479 		r = -EFAULT;
3480 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3481 			break;
3482 		r = 0;
3483 		break;
3484 	}
3485 	case KVM_SET_VCPU_EVENTS: {
3486 		struct kvm_vcpu_events events;
3487 
3488 		r = -EFAULT;
3489 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3490 			break;
3491 
3492 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3493 		break;
3494 	}
3495 	case KVM_GET_DEBUGREGS: {
3496 		struct kvm_debugregs dbgregs;
3497 
3498 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3499 
3500 		r = -EFAULT;
3501 		if (copy_to_user(argp, &dbgregs,
3502 				 sizeof(struct kvm_debugregs)))
3503 			break;
3504 		r = 0;
3505 		break;
3506 	}
3507 	case KVM_SET_DEBUGREGS: {
3508 		struct kvm_debugregs dbgregs;
3509 
3510 		r = -EFAULT;
3511 		if (copy_from_user(&dbgregs, argp,
3512 				   sizeof(struct kvm_debugregs)))
3513 			break;
3514 
3515 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3516 		break;
3517 	}
3518 	case KVM_GET_XSAVE: {
3519 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3520 		r = -ENOMEM;
3521 		if (!u.xsave)
3522 			break;
3523 
3524 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3525 
3526 		r = -EFAULT;
3527 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3528 			break;
3529 		r = 0;
3530 		break;
3531 	}
3532 	case KVM_SET_XSAVE: {
3533 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3534 		if (IS_ERR(u.xsave))
3535 			return PTR_ERR(u.xsave);
3536 
3537 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3538 		break;
3539 	}
3540 	case KVM_GET_XCRS: {
3541 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3542 		r = -ENOMEM;
3543 		if (!u.xcrs)
3544 			break;
3545 
3546 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3547 
3548 		r = -EFAULT;
3549 		if (copy_to_user(argp, u.xcrs,
3550 				 sizeof(struct kvm_xcrs)))
3551 			break;
3552 		r = 0;
3553 		break;
3554 	}
3555 	case KVM_SET_XCRS: {
3556 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3557 		if (IS_ERR(u.xcrs))
3558 			return PTR_ERR(u.xcrs);
3559 
3560 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3561 		break;
3562 	}
3563 	case KVM_SET_TSC_KHZ: {
3564 		u32 user_tsc_khz;
3565 
3566 		r = -EINVAL;
3567 		user_tsc_khz = (u32)arg;
3568 
3569 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3570 			goto out;
3571 
3572 		if (user_tsc_khz == 0)
3573 			user_tsc_khz = tsc_khz;
3574 
3575 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3576 
3577 		r = 0;
3578 		goto out;
3579 	}
3580 	case KVM_GET_TSC_KHZ: {
3581 		r = vcpu->arch.virtual_tsc_khz;
3582 		goto out;
3583 	}
3584 	case KVM_KVMCLOCK_CTRL: {
3585 		r = kvm_set_guest_paused(vcpu);
3586 		goto out;
3587 	}
3588 	default:
3589 		r = -EINVAL;
3590 	}
3591 out:
3592 	kfree(u.buffer);
3593 	return r;
3594 }
3595 
3596 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3597 {
3598 	return VM_FAULT_SIGBUS;
3599 }
3600 
3601 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3602 {
3603 	int ret;
3604 
3605 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3606 		return -EINVAL;
3607 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3608 	return ret;
3609 }
3610 
3611 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3612 					      u64 ident_addr)
3613 {
3614 	kvm->arch.ept_identity_map_addr = ident_addr;
3615 	return 0;
3616 }
3617 
3618 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3619 					  u32 kvm_nr_mmu_pages)
3620 {
3621 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3622 		return -EINVAL;
3623 
3624 	mutex_lock(&kvm->slots_lock);
3625 
3626 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3627 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3628 
3629 	mutex_unlock(&kvm->slots_lock);
3630 	return 0;
3631 }
3632 
3633 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3634 {
3635 	return kvm->arch.n_max_mmu_pages;
3636 }
3637 
3638 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3639 {
3640 	int r;
3641 
3642 	r = 0;
3643 	switch (chip->chip_id) {
3644 	case KVM_IRQCHIP_PIC_MASTER:
3645 		memcpy(&chip->chip.pic,
3646 			&pic_irqchip(kvm)->pics[0],
3647 			sizeof(struct kvm_pic_state));
3648 		break;
3649 	case KVM_IRQCHIP_PIC_SLAVE:
3650 		memcpy(&chip->chip.pic,
3651 			&pic_irqchip(kvm)->pics[1],
3652 			sizeof(struct kvm_pic_state));
3653 		break;
3654 	case KVM_IRQCHIP_IOAPIC:
3655 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3656 		break;
3657 	default:
3658 		r = -EINVAL;
3659 		break;
3660 	}
3661 	return r;
3662 }
3663 
3664 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3665 {
3666 	int r;
3667 
3668 	r = 0;
3669 	switch (chip->chip_id) {
3670 	case KVM_IRQCHIP_PIC_MASTER:
3671 		spin_lock(&pic_irqchip(kvm)->lock);
3672 		memcpy(&pic_irqchip(kvm)->pics[0],
3673 			&chip->chip.pic,
3674 			sizeof(struct kvm_pic_state));
3675 		spin_unlock(&pic_irqchip(kvm)->lock);
3676 		break;
3677 	case KVM_IRQCHIP_PIC_SLAVE:
3678 		spin_lock(&pic_irqchip(kvm)->lock);
3679 		memcpy(&pic_irqchip(kvm)->pics[1],
3680 			&chip->chip.pic,
3681 			sizeof(struct kvm_pic_state));
3682 		spin_unlock(&pic_irqchip(kvm)->lock);
3683 		break;
3684 	case KVM_IRQCHIP_IOAPIC:
3685 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3686 		break;
3687 	default:
3688 		r = -EINVAL;
3689 		break;
3690 	}
3691 	kvm_pic_update_irq(pic_irqchip(kvm));
3692 	return r;
3693 }
3694 
3695 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3696 {
3697 	int r = 0;
3698 
3699 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3700 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3701 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3702 	return r;
3703 }
3704 
3705 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3706 {
3707 	int r = 0;
3708 
3709 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3710 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3711 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3712 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3713 	return r;
3714 }
3715 
3716 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3717 {
3718 	int r = 0;
3719 
3720 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3721 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3722 		sizeof(ps->channels));
3723 	ps->flags = kvm->arch.vpit->pit_state.flags;
3724 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3725 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3726 	return r;
3727 }
3728 
3729 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3730 {
3731 	int r = 0, start = 0;
3732 	u32 prev_legacy, cur_legacy;
3733 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3734 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3735 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3736 	if (!prev_legacy && cur_legacy)
3737 		start = 1;
3738 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3739 	       sizeof(kvm->arch.vpit->pit_state.channels));
3740 	kvm->arch.vpit->pit_state.flags = ps->flags;
3741 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3742 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3743 	return r;
3744 }
3745 
3746 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3747 				 struct kvm_reinject_control *control)
3748 {
3749 	if (!kvm->arch.vpit)
3750 		return -ENXIO;
3751 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3752 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3753 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3754 	return 0;
3755 }
3756 
3757 /**
3758  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3759  * @kvm: kvm instance
3760  * @log: slot id and address to which we copy the log
3761  *
3762  * Steps 1-4 below provide general overview of dirty page logging. See
3763  * kvm_get_dirty_log_protect() function description for additional details.
3764  *
3765  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3766  * always flush the TLB (step 4) even if previous step failed  and the dirty
3767  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3768  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3769  * writes will be marked dirty for next log read.
3770  *
3771  *   1. Take a snapshot of the bit and clear it if needed.
3772  *   2. Write protect the corresponding page.
3773  *   3. Copy the snapshot to the userspace.
3774  *   4. Flush TLB's if needed.
3775  */
3776 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3777 {
3778 	bool is_dirty = false;
3779 	int r;
3780 
3781 	mutex_lock(&kvm->slots_lock);
3782 
3783 	/*
3784 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3785 	 */
3786 	if (kvm_x86_ops->flush_log_dirty)
3787 		kvm_x86_ops->flush_log_dirty(kvm);
3788 
3789 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3790 
3791 	/*
3792 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3793 	 * kvm_mmu_slot_remove_write_access().
3794 	 */
3795 	lockdep_assert_held(&kvm->slots_lock);
3796 	if (is_dirty)
3797 		kvm_flush_remote_tlbs(kvm);
3798 
3799 	mutex_unlock(&kvm->slots_lock);
3800 	return r;
3801 }
3802 
3803 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3804 			bool line_status)
3805 {
3806 	if (!irqchip_in_kernel(kvm))
3807 		return -ENXIO;
3808 
3809 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3810 					irq_event->irq, irq_event->level,
3811 					line_status);
3812 	return 0;
3813 }
3814 
3815 long kvm_arch_vm_ioctl(struct file *filp,
3816 		       unsigned int ioctl, unsigned long arg)
3817 {
3818 	struct kvm *kvm = filp->private_data;
3819 	void __user *argp = (void __user *)arg;
3820 	int r = -ENOTTY;
3821 	/*
3822 	 * This union makes it completely explicit to gcc-3.x
3823 	 * that these two variables' stack usage should be
3824 	 * combined, not added together.
3825 	 */
3826 	union {
3827 		struct kvm_pit_state ps;
3828 		struct kvm_pit_state2 ps2;
3829 		struct kvm_pit_config pit_config;
3830 	} u;
3831 
3832 	switch (ioctl) {
3833 	case KVM_SET_TSS_ADDR:
3834 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3835 		break;
3836 	case KVM_SET_IDENTITY_MAP_ADDR: {
3837 		u64 ident_addr;
3838 
3839 		r = -EFAULT;
3840 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3841 			goto out;
3842 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3843 		break;
3844 	}
3845 	case KVM_SET_NR_MMU_PAGES:
3846 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3847 		break;
3848 	case KVM_GET_NR_MMU_PAGES:
3849 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3850 		break;
3851 	case KVM_CREATE_IRQCHIP: {
3852 		struct kvm_pic *vpic;
3853 
3854 		mutex_lock(&kvm->lock);
3855 		r = -EEXIST;
3856 		if (kvm->arch.vpic)
3857 			goto create_irqchip_unlock;
3858 		r = -EINVAL;
3859 		if (atomic_read(&kvm->online_vcpus))
3860 			goto create_irqchip_unlock;
3861 		r = -ENOMEM;
3862 		vpic = kvm_create_pic(kvm);
3863 		if (vpic) {
3864 			r = kvm_ioapic_init(kvm);
3865 			if (r) {
3866 				mutex_lock(&kvm->slots_lock);
3867 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3868 							  &vpic->dev_master);
3869 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3870 							  &vpic->dev_slave);
3871 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3872 							  &vpic->dev_eclr);
3873 				mutex_unlock(&kvm->slots_lock);
3874 				kfree(vpic);
3875 				goto create_irqchip_unlock;
3876 			}
3877 		} else
3878 			goto create_irqchip_unlock;
3879 		smp_wmb();
3880 		kvm->arch.vpic = vpic;
3881 		smp_wmb();
3882 		r = kvm_setup_default_irq_routing(kvm);
3883 		if (r) {
3884 			mutex_lock(&kvm->slots_lock);
3885 			mutex_lock(&kvm->irq_lock);
3886 			kvm_ioapic_destroy(kvm);
3887 			kvm_destroy_pic(kvm);
3888 			mutex_unlock(&kvm->irq_lock);
3889 			mutex_unlock(&kvm->slots_lock);
3890 		}
3891 	create_irqchip_unlock:
3892 		mutex_unlock(&kvm->lock);
3893 		break;
3894 	}
3895 	case KVM_CREATE_PIT:
3896 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3897 		goto create_pit;
3898 	case KVM_CREATE_PIT2:
3899 		r = -EFAULT;
3900 		if (copy_from_user(&u.pit_config, argp,
3901 				   sizeof(struct kvm_pit_config)))
3902 			goto out;
3903 	create_pit:
3904 		mutex_lock(&kvm->slots_lock);
3905 		r = -EEXIST;
3906 		if (kvm->arch.vpit)
3907 			goto create_pit_unlock;
3908 		r = -ENOMEM;
3909 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3910 		if (kvm->arch.vpit)
3911 			r = 0;
3912 	create_pit_unlock:
3913 		mutex_unlock(&kvm->slots_lock);
3914 		break;
3915 	case KVM_GET_IRQCHIP: {
3916 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3917 		struct kvm_irqchip *chip;
3918 
3919 		chip = memdup_user(argp, sizeof(*chip));
3920 		if (IS_ERR(chip)) {
3921 			r = PTR_ERR(chip);
3922 			goto out;
3923 		}
3924 
3925 		r = -ENXIO;
3926 		if (!irqchip_in_kernel(kvm))
3927 			goto get_irqchip_out;
3928 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3929 		if (r)
3930 			goto get_irqchip_out;
3931 		r = -EFAULT;
3932 		if (copy_to_user(argp, chip, sizeof *chip))
3933 			goto get_irqchip_out;
3934 		r = 0;
3935 	get_irqchip_out:
3936 		kfree(chip);
3937 		break;
3938 	}
3939 	case KVM_SET_IRQCHIP: {
3940 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3941 		struct kvm_irqchip *chip;
3942 
3943 		chip = memdup_user(argp, sizeof(*chip));
3944 		if (IS_ERR(chip)) {
3945 			r = PTR_ERR(chip);
3946 			goto out;
3947 		}
3948 
3949 		r = -ENXIO;
3950 		if (!irqchip_in_kernel(kvm))
3951 			goto set_irqchip_out;
3952 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3953 		if (r)
3954 			goto set_irqchip_out;
3955 		r = 0;
3956 	set_irqchip_out:
3957 		kfree(chip);
3958 		break;
3959 	}
3960 	case KVM_GET_PIT: {
3961 		r = -EFAULT;
3962 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3963 			goto out;
3964 		r = -ENXIO;
3965 		if (!kvm->arch.vpit)
3966 			goto out;
3967 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3968 		if (r)
3969 			goto out;
3970 		r = -EFAULT;
3971 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3972 			goto out;
3973 		r = 0;
3974 		break;
3975 	}
3976 	case KVM_SET_PIT: {
3977 		r = -EFAULT;
3978 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3979 			goto out;
3980 		r = -ENXIO;
3981 		if (!kvm->arch.vpit)
3982 			goto out;
3983 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3984 		break;
3985 	}
3986 	case KVM_GET_PIT2: {
3987 		r = -ENXIO;
3988 		if (!kvm->arch.vpit)
3989 			goto out;
3990 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3991 		if (r)
3992 			goto out;
3993 		r = -EFAULT;
3994 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3995 			goto out;
3996 		r = 0;
3997 		break;
3998 	}
3999 	case KVM_SET_PIT2: {
4000 		r = -EFAULT;
4001 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4002 			goto out;
4003 		r = -ENXIO;
4004 		if (!kvm->arch.vpit)
4005 			goto out;
4006 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4007 		break;
4008 	}
4009 	case KVM_REINJECT_CONTROL: {
4010 		struct kvm_reinject_control control;
4011 		r =  -EFAULT;
4012 		if (copy_from_user(&control, argp, sizeof(control)))
4013 			goto out;
4014 		r = kvm_vm_ioctl_reinject(kvm, &control);
4015 		break;
4016 	}
4017 	case KVM_XEN_HVM_CONFIG: {
4018 		r = -EFAULT;
4019 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4020 				   sizeof(struct kvm_xen_hvm_config)))
4021 			goto out;
4022 		r = -EINVAL;
4023 		if (kvm->arch.xen_hvm_config.flags)
4024 			goto out;
4025 		r = 0;
4026 		break;
4027 	}
4028 	case KVM_SET_CLOCK: {
4029 		struct kvm_clock_data user_ns;
4030 		u64 now_ns;
4031 		s64 delta;
4032 
4033 		r = -EFAULT;
4034 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4035 			goto out;
4036 
4037 		r = -EINVAL;
4038 		if (user_ns.flags)
4039 			goto out;
4040 
4041 		r = 0;
4042 		local_irq_disable();
4043 		now_ns = get_kernel_ns();
4044 		delta = user_ns.clock - now_ns;
4045 		local_irq_enable();
4046 		kvm->arch.kvmclock_offset = delta;
4047 		kvm_gen_update_masterclock(kvm);
4048 		break;
4049 	}
4050 	case KVM_GET_CLOCK: {
4051 		struct kvm_clock_data user_ns;
4052 		u64 now_ns;
4053 
4054 		local_irq_disable();
4055 		now_ns = get_kernel_ns();
4056 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4057 		local_irq_enable();
4058 		user_ns.flags = 0;
4059 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4060 
4061 		r = -EFAULT;
4062 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4063 			goto out;
4064 		r = 0;
4065 		break;
4066 	}
4067 
4068 	default:
4069 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4070 	}
4071 out:
4072 	return r;
4073 }
4074 
4075 static void kvm_init_msr_list(void)
4076 {
4077 	u32 dummy[2];
4078 	unsigned i, j;
4079 
4080 	/* skip the first msrs in the list. KVM-specific */
4081 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4082 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4083 			continue;
4084 
4085 		/*
4086 		 * Even MSRs that are valid in the host may not be exposed
4087 		 * to the guests in some cases.  We could work around this
4088 		 * in VMX with the generic MSR save/load machinery, but it
4089 		 * is not really worthwhile since it will really only
4090 		 * happen with nested virtualization.
4091 		 */
4092 		switch (msrs_to_save[i]) {
4093 		case MSR_IA32_BNDCFGS:
4094 			if (!kvm_x86_ops->mpx_supported())
4095 				continue;
4096 			break;
4097 		default:
4098 			break;
4099 		}
4100 
4101 		if (j < i)
4102 			msrs_to_save[j] = msrs_to_save[i];
4103 		j++;
4104 	}
4105 	num_msrs_to_save = j;
4106 }
4107 
4108 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4109 			   const void *v)
4110 {
4111 	int handled = 0;
4112 	int n;
4113 
4114 	do {
4115 		n = min(len, 8);
4116 		if (!(vcpu->arch.apic &&
4117 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4118 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4119 			break;
4120 		handled += n;
4121 		addr += n;
4122 		len -= n;
4123 		v += n;
4124 	} while (len);
4125 
4126 	return handled;
4127 }
4128 
4129 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4130 {
4131 	int handled = 0;
4132 	int n;
4133 
4134 	do {
4135 		n = min(len, 8);
4136 		if (!(vcpu->arch.apic &&
4137 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4138 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4139 			break;
4140 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4141 		handled += n;
4142 		addr += n;
4143 		len -= n;
4144 		v += n;
4145 	} while (len);
4146 
4147 	return handled;
4148 }
4149 
4150 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4151 			struct kvm_segment *var, int seg)
4152 {
4153 	kvm_x86_ops->set_segment(vcpu, var, seg);
4154 }
4155 
4156 void kvm_get_segment(struct kvm_vcpu *vcpu,
4157 		     struct kvm_segment *var, int seg)
4158 {
4159 	kvm_x86_ops->get_segment(vcpu, var, seg);
4160 }
4161 
4162 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4163 			   struct x86_exception *exception)
4164 {
4165 	gpa_t t_gpa;
4166 
4167 	BUG_ON(!mmu_is_nested(vcpu));
4168 
4169 	/* NPT walks are always user-walks */
4170 	access |= PFERR_USER_MASK;
4171 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4172 
4173 	return t_gpa;
4174 }
4175 
4176 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4177 			      struct x86_exception *exception)
4178 {
4179 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4180 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4181 }
4182 
4183  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4184 				struct x86_exception *exception)
4185 {
4186 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4187 	access |= PFERR_FETCH_MASK;
4188 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4189 }
4190 
4191 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4192 			       struct x86_exception *exception)
4193 {
4194 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4195 	access |= PFERR_WRITE_MASK;
4196 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4197 }
4198 
4199 /* uses this to access any guest's mapped memory without checking CPL */
4200 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4201 				struct x86_exception *exception)
4202 {
4203 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4204 }
4205 
4206 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4207 				      struct kvm_vcpu *vcpu, u32 access,
4208 				      struct x86_exception *exception)
4209 {
4210 	void *data = val;
4211 	int r = X86EMUL_CONTINUE;
4212 
4213 	while (bytes) {
4214 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4215 							    exception);
4216 		unsigned offset = addr & (PAGE_SIZE-1);
4217 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4218 		int ret;
4219 
4220 		if (gpa == UNMAPPED_GVA)
4221 			return X86EMUL_PROPAGATE_FAULT;
4222 		ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4223 					  offset, toread);
4224 		if (ret < 0) {
4225 			r = X86EMUL_IO_NEEDED;
4226 			goto out;
4227 		}
4228 
4229 		bytes -= toread;
4230 		data += toread;
4231 		addr += toread;
4232 	}
4233 out:
4234 	return r;
4235 }
4236 
4237 /* used for instruction fetching */
4238 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4239 				gva_t addr, void *val, unsigned int bytes,
4240 				struct x86_exception *exception)
4241 {
4242 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4243 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4244 	unsigned offset;
4245 	int ret;
4246 
4247 	/* Inline kvm_read_guest_virt_helper for speed.  */
4248 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4249 						    exception);
4250 	if (unlikely(gpa == UNMAPPED_GVA))
4251 		return X86EMUL_PROPAGATE_FAULT;
4252 
4253 	offset = addr & (PAGE_SIZE-1);
4254 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4255 		bytes = (unsigned)PAGE_SIZE - offset;
4256 	ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4257 				  offset, bytes);
4258 	if (unlikely(ret < 0))
4259 		return X86EMUL_IO_NEEDED;
4260 
4261 	return X86EMUL_CONTINUE;
4262 }
4263 
4264 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4265 			       gva_t addr, void *val, unsigned int bytes,
4266 			       struct x86_exception *exception)
4267 {
4268 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4269 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4270 
4271 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4272 					  exception);
4273 }
4274 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4275 
4276 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4277 				      gva_t addr, void *val, unsigned int bytes,
4278 				      struct x86_exception *exception)
4279 {
4280 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4281 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4282 }
4283 
4284 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4285 				       gva_t addr, void *val,
4286 				       unsigned int bytes,
4287 				       struct x86_exception *exception)
4288 {
4289 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4290 	void *data = val;
4291 	int r = X86EMUL_CONTINUE;
4292 
4293 	while (bytes) {
4294 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4295 							     PFERR_WRITE_MASK,
4296 							     exception);
4297 		unsigned offset = addr & (PAGE_SIZE-1);
4298 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4299 		int ret;
4300 
4301 		if (gpa == UNMAPPED_GVA)
4302 			return X86EMUL_PROPAGATE_FAULT;
4303 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4304 		if (ret < 0) {
4305 			r = X86EMUL_IO_NEEDED;
4306 			goto out;
4307 		}
4308 
4309 		bytes -= towrite;
4310 		data += towrite;
4311 		addr += towrite;
4312 	}
4313 out:
4314 	return r;
4315 }
4316 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4317 
4318 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4319 				gpa_t *gpa, struct x86_exception *exception,
4320 				bool write)
4321 {
4322 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4323 		| (write ? PFERR_WRITE_MASK : 0);
4324 
4325 	if (vcpu_match_mmio_gva(vcpu, gva)
4326 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4327 				 vcpu->arch.access, access)) {
4328 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4329 					(gva & (PAGE_SIZE - 1));
4330 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4331 		return 1;
4332 	}
4333 
4334 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4335 
4336 	if (*gpa == UNMAPPED_GVA)
4337 		return -1;
4338 
4339 	/* For APIC access vmexit */
4340 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4341 		return 1;
4342 
4343 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4344 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4345 		return 1;
4346 	}
4347 
4348 	return 0;
4349 }
4350 
4351 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4352 			const void *val, int bytes)
4353 {
4354 	int ret;
4355 
4356 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4357 	if (ret < 0)
4358 		return 0;
4359 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4360 	return 1;
4361 }
4362 
4363 struct read_write_emulator_ops {
4364 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4365 				  int bytes);
4366 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4367 				  void *val, int bytes);
4368 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4369 			       int bytes, void *val);
4370 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4371 				    void *val, int bytes);
4372 	bool write;
4373 };
4374 
4375 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4376 {
4377 	if (vcpu->mmio_read_completed) {
4378 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4379 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4380 		vcpu->mmio_read_completed = 0;
4381 		return 1;
4382 	}
4383 
4384 	return 0;
4385 }
4386 
4387 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4388 			void *val, int bytes)
4389 {
4390 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4391 }
4392 
4393 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4394 			 void *val, int bytes)
4395 {
4396 	return emulator_write_phys(vcpu, gpa, val, bytes);
4397 }
4398 
4399 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4400 {
4401 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4402 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4403 }
4404 
4405 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4406 			  void *val, int bytes)
4407 {
4408 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4409 	return X86EMUL_IO_NEEDED;
4410 }
4411 
4412 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4413 			   void *val, int bytes)
4414 {
4415 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4416 
4417 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4418 	return X86EMUL_CONTINUE;
4419 }
4420 
4421 static const struct read_write_emulator_ops read_emultor = {
4422 	.read_write_prepare = read_prepare,
4423 	.read_write_emulate = read_emulate,
4424 	.read_write_mmio = vcpu_mmio_read,
4425 	.read_write_exit_mmio = read_exit_mmio,
4426 };
4427 
4428 static const struct read_write_emulator_ops write_emultor = {
4429 	.read_write_emulate = write_emulate,
4430 	.read_write_mmio = write_mmio,
4431 	.read_write_exit_mmio = write_exit_mmio,
4432 	.write = true,
4433 };
4434 
4435 static int emulator_read_write_onepage(unsigned long addr, void *val,
4436 				       unsigned int bytes,
4437 				       struct x86_exception *exception,
4438 				       struct kvm_vcpu *vcpu,
4439 				       const struct read_write_emulator_ops *ops)
4440 {
4441 	gpa_t gpa;
4442 	int handled, ret;
4443 	bool write = ops->write;
4444 	struct kvm_mmio_fragment *frag;
4445 
4446 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4447 
4448 	if (ret < 0)
4449 		return X86EMUL_PROPAGATE_FAULT;
4450 
4451 	/* For APIC access vmexit */
4452 	if (ret)
4453 		goto mmio;
4454 
4455 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4456 		return X86EMUL_CONTINUE;
4457 
4458 mmio:
4459 	/*
4460 	 * Is this MMIO handled locally?
4461 	 */
4462 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4463 	if (handled == bytes)
4464 		return X86EMUL_CONTINUE;
4465 
4466 	gpa += handled;
4467 	bytes -= handled;
4468 	val += handled;
4469 
4470 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4471 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4472 	frag->gpa = gpa;
4473 	frag->data = val;
4474 	frag->len = bytes;
4475 	return X86EMUL_CONTINUE;
4476 }
4477 
4478 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4479 			void *val, unsigned int bytes,
4480 			struct x86_exception *exception,
4481 			const struct read_write_emulator_ops *ops)
4482 {
4483 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4484 	gpa_t gpa;
4485 	int rc;
4486 
4487 	if (ops->read_write_prepare &&
4488 		  ops->read_write_prepare(vcpu, val, bytes))
4489 		return X86EMUL_CONTINUE;
4490 
4491 	vcpu->mmio_nr_fragments = 0;
4492 
4493 	/* Crossing a page boundary? */
4494 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4495 		int now;
4496 
4497 		now = -addr & ~PAGE_MASK;
4498 		rc = emulator_read_write_onepage(addr, val, now, exception,
4499 						 vcpu, ops);
4500 
4501 		if (rc != X86EMUL_CONTINUE)
4502 			return rc;
4503 		addr += now;
4504 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4505 			addr = (u32)addr;
4506 		val += now;
4507 		bytes -= now;
4508 	}
4509 
4510 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4511 					 vcpu, ops);
4512 	if (rc != X86EMUL_CONTINUE)
4513 		return rc;
4514 
4515 	if (!vcpu->mmio_nr_fragments)
4516 		return rc;
4517 
4518 	gpa = vcpu->mmio_fragments[0].gpa;
4519 
4520 	vcpu->mmio_needed = 1;
4521 	vcpu->mmio_cur_fragment = 0;
4522 
4523 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4524 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4525 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4526 	vcpu->run->mmio.phys_addr = gpa;
4527 
4528 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4529 }
4530 
4531 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4532 				  unsigned long addr,
4533 				  void *val,
4534 				  unsigned int bytes,
4535 				  struct x86_exception *exception)
4536 {
4537 	return emulator_read_write(ctxt, addr, val, bytes,
4538 				   exception, &read_emultor);
4539 }
4540 
4541 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4542 			    unsigned long addr,
4543 			    const void *val,
4544 			    unsigned int bytes,
4545 			    struct x86_exception *exception)
4546 {
4547 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4548 				   exception, &write_emultor);
4549 }
4550 
4551 #define CMPXCHG_TYPE(t, ptr, old, new) \
4552 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4553 
4554 #ifdef CONFIG_X86_64
4555 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4556 #else
4557 #  define CMPXCHG64(ptr, old, new) \
4558 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4559 #endif
4560 
4561 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4562 				     unsigned long addr,
4563 				     const void *old,
4564 				     const void *new,
4565 				     unsigned int bytes,
4566 				     struct x86_exception *exception)
4567 {
4568 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4569 	gpa_t gpa;
4570 	struct page *page;
4571 	char *kaddr;
4572 	bool exchanged;
4573 
4574 	/* guests cmpxchg8b have to be emulated atomically */
4575 	if (bytes > 8 || (bytes & (bytes - 1)))
4576 		goto emul_write;
4577 
4578 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4579 
4580 	if (gpa == UNMAPPED_GVA ||
4581 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4582 		goto emul_write;
4583 
4584 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4585 		goto emul_write;
4586 
4587 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4588 	if (is_error_page(page))
4589 		goto emul_write;
4590 
4591 	kaddr = kmap_atomic(page);
4592 	kaddr += offset_in_page(gpa);
4593 	switch (bytes) {
4594 	case 1:
4595 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4596 		break;
4597 	case 2:
4598 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4599 		break;
4600 	case 4:
4601 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4602 		break;
4603 	case 8:
4604 		exchanged = CMPXCHG64(kaddr, old, new);
4605 		break;
4606 	default:
4607 		BUG();
4608 	}
4609 	kunmap_atomic(kaddr);
4610 	kvm_release_page_dirty(page);
4611 
4612 	if (!exchanged)
4613 		return X86EMUL_CMPXCHG_FAILED;
4614 
4615 	mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4616 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4617 
4618 	return X86EMUL_CONTINUE;
4619 
4620 emul_write:
4621 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4622 
4623 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4624 }
4625 
4626 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4627 {
4628 	/* TODO: String I/O for in kernel device */
4629 	int r;
4630 
4631 	if (vcpu->arch.pio.in)
4632 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4633 				    vcpu->arch.pio.size, pd);
4634 	else
4635 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4636 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4637 				     pd);
4638 	return r;
4639 }
4640 
4641 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4642 			       unsigned short port, void *val,
4643 			       unsigned int count, bool in)
4644 {
4645 	vcpu->arch.pio.port = port;
4646 	vcpu->arch.pio.in = in;
4647 	vcpu->arch.pio.count  = count;
4648 	vcpu->arch.pio.size = size;
4649 
4650 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4651 		vcpu->arch.pio.count = 0;
4652 		return 1;
4653 	}
4654 
4655 	vcpu->run->exit_reason = KVM_EXIT_IO;
4656 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4657 	vcpu->run->io.size = size;
4658 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4659 	vcpu->run->io.count = count;
4660 	vcpu->run->io.port = port;
4661 
4662 	return 0;
4663 }
4664 
4665 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4666 				    int size, unsigned short port, void *val,
4667 				    unsigned int count)
4668 {
4669 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4670 	int ret;
4671 
4672 	if (vcpu->arch.pio.count)
4673 		goto data_avail;
4674 
4675 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4676 	if (ret) {
4677 data_avail:
4678 		memcpy(val, vcpu->arch.pio_data, size * count);
4679 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4680 		vcpu->arch.pio.count = 0;
4681 		return 1;
4682 	}
4683 
4684 	return 0;
4685 }
4686 
4687 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4688 				     int size, unsigned short port,
4689 				     const void *val, unsigned int count)
4690 {
4691 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4692 
4693 	memcpy(vcpu->arch.pio_data, val, size * count);
4694 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4695 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4696 }
4697 
4698 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4699 {
4700 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4701 }
4702 
4703 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4704 {
4705 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4706 }
4707 
4708 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4709 {
4710 	if (!need_emulate_wbinvd(vcpu))
4711 		return X86EMUL_CONTINUE;
4712 
4713 	if (kvm_x86_ops->has_wbinvd_exit()) {
4714 		int cpu = get_cpu();
4715 
4716 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4717 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4718 				wbinvd_ipi, NULL, 1);
4719 		put_cpu();
4720 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4721 	} else
4722 		wbinvd();
4723 	return X86EMUL_CONTINUE;
4724 }
4725 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4726 
4727 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4728 {
4729 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4730 }
4731 
4732 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4733 {
4734 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4735 }
4736 
4737 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4738 {
4739 
4740 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4741 }
4742 
4743 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4744 {
4745 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4746 }
4747 
4748 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4749 {
4750 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4751 	unsigned long value;
4752 
4753 	switch (cr) {
4754 	case 0:
4755 		value = kvm_read_cr0(vcpu);
4756 		break;
4757 	case 2:
4758 		value = vcpu->arch.cr2;
4759 		break;
4760 	case 3:
4761 		value = kvm_read_cr3(vcpu);
4762 		break;
4763 	case 4:
4764 		value = kvm_read_cr4(vcpu);
4765 		break;
4766 	case 8:
4767 		value = kvm_get_cr8(vcpu);
4768 		break;
4769 	default:
4770 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4771 		return 0;
4772 	}
4773 
4774 	return value;
4775 }
4776 
4777 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4778 {
4779 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4780 	int res = 0;
4781 
4782 	switch (cr) {
4783 	case 0:
4784 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4785 		break;
4786 	case 2:
4787 		vcpu->arch.cr2 = val;
4788 		break;
4789 	case 3:
4790 		res = kvm_set_cr3(vcpu, val);
4791 		break;
4792 	case 4:
4793 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4794 		break;
4795 	case 8:
4796 		res = kvm_set_cr8(vcpu, val);
4797 		break;
4798 	default:
4799 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4800 		res = -1;
4801 	}
4802 
4803 	return res;
4804 }
4805 
4806 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4807 {
4808 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4809 }
4810 
4811 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4812 {
4813 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4814 }
4815 
4816 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4817 {
4818 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4819 }
4820 
4821 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4822 {
4823 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4824 }
4825 
4826 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4827 {
4828 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4829 }
4830 
4831 static unsigned long emulator_get_cached_segment_base(
4832 	struct x86_emulate_ctxt *ctxt, int seg)
4833 {
4834 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4835 }
4836 
4837 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4838 				 struct desc_struct *desc, u32 *base3,
4839 				 int seg)
4840 {
4841 	struct kvm_segment var;
4842 
4843 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4844 	*selector = var.selector;
4845 
4846 	if (var.unusable) {
4847 		memset(desc, 0, sizeof(*desc));
4848 		return false;
4849 	}
4850 
4851 	if (var.g)
4852 		var.limit >>= 12;
4853 	set_desc_limit(desc, var.limit);
4854 	set_desc_base(desc, (unsigned long)var.base);
4855 #ifdef CONFIG_X86_64
4856 	if (base3)
4857 		*base3 = var.base >> 32;
4858 #endif
4859 	desc->type = var.type;
4860 	desc->s = var.s;
4861 	desc->dpl = var.dpl;
4862 	desc->p = var.present;
4863 	desc->avl = var.avl;
4864 	desc->l = var.l;
4865 	desc->d = var.db;
4866 	desc->g = var.g;
4867 
4868 	return true;
4869 }
4870 
4871 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4872 				 struct desc_struct *desc, u32 base3,
4873 				 int seg)
4874 {
4875 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4876 	struct kvm_segment var;
4877 
4878 	var.selector = selector;
4879 	var.base = get_desc_base(desc);
4880 #ifdef CONFIG_X86_64
4881 	var.base |= ((u64)base3) << 32;
4882 #endif
4883 	var.limit = get_desc_limit(desc);
4884 	if (desc->g)
4885 		var.limit = (var.limit << 12) | 0xfff;
4886 	var.type = desc->type;
4887 	var.dpl = desc->dpl;
4888 	var.db = desc->d;
4889 	var.s = desc->s;
4890 	var.l = desc->l;
4891 	var.g = desc->g;
4892 	var.avl = desc->avl;
4893 	var.present = desc->p;
4894 	var.unusable = !var.present;
4895 	var.padding = 0;
4896 
4897 	kvm_set_segment(vcpu, &var, seg);
4898 	return;
4899 }
4900 
4901 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4902 			    u32 msr_index, u64 *pdata)
4903 {
4904 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4905 }
4906 
4907 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4908 			    u32 msr_index, u64 data)
4909 {
4910 	struct msr_data msr;
4911 
4912 	msr.data = data;
4913 	msr.index = msr_index;
4914 	msr.host_initiated = false;
4915 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4916 }
4917 
4918 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4919 			      u32 pmc)
4920 {
4921 	return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4922 }
4923 
4924 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4925 			     u32 pmc, u64 *pdata)
4926 {
4927 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4928 }
4929 
4930 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4931 {
4932 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4933 }
4934 
4935 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4936 {
4937 	preempt_disable();
4938 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4939 	/*
4940 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4941 	 * so it may be clear at this point.
4942 	 */
4943 	clts();
4944 }
4945 
4946 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4947 {
4948 	preempt_enable();
4949 }
4950 
4951 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4952 			      struct x86_instruction_info *info,
4953 			      enum x86_intercept_stage stage)
4954 {
4955 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4956 }
4957 
4958 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4959 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4960 {
4961 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4962 }
4963 
4964 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4965 {
4966 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4967 }
4968 
4969 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4970 {
4971 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4972 }
4973 
4974 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4975 {
4976 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4977 }
4978 
4979 static const struct x86_emulate_ops emulate_ops = {
4980 	.read_gpr            = emulator_read_gpr,
4981 	.write_gpr           = emulator_write_gpr,
4982 	.read_std            = kvm_read_guest_virt_system,
4983 	.write_std           = kvm_write_guest_virt_system,
4984 	.fetch               = kvm_fetch_guest_virt,
4985 	.read_emulated       = emulator_read_emulated,
4986 	.write_emulated      = emulator_write_emulated,
4987 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4988 	.invlpg              = emulator_invlpg,
4989 	.pio_in_emulated     = emulator_pio_in_emulated,
4990 	.pio_out_emulated    = emulator_pio_out_emulated,
4991 	.get_segment         = emulator_get_segment,
4992 	.set_segment         = emulator_set_segment,
4993 	.get_cached_segment_base = emulator_get_cached_segment_base,
4994 	.get_gdt             = emulator_get_gdt,
4995 	.get_idt	     = emulator_get_idt,
4996 	.set_gdt             = emulator_set_gdt,
4997 	.set_idt	     = emulator_set_idt,
4998 	.get_cr              = emulator_get_cr,
4999 	.set_cr              = emulator_set_cr,
5000 	.cpl                 = emulator_get_cpl,
5001 	.get_dr              = emulator_get_dr,
5002 	.set_dr              = emulator_set_dr,
5003 	.set_msr             = emulator_set_msr,
5004 	.get_msr             = emulator_get_msr,
5005 	.check_pmc	     = emulator_check_pmc,
5006 	.read_pmc            = emulator_read_pmc,
5007 	.halt                = emulator_halt,
5008 	.wbinvd              = emulator_wbinvd,
5009 	.fix_hypercall       = emulator_fix_hypercall,
5010 	.get_fpu             = emulator_get_fpu,
5011 	.put_fpu             = emulator_put_fpu,
5012 	.intercept           = emulator_intercept,
5013 	.get_cpuid           = emulator_get_cpuid,
5014 	.set_nmi_mask        = emulator_set_nmi_mask,
5015 };
5016 
5017 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5018 {
5019 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5020 	/*
5021 	 * an sti; sti; sequence only disable interrupts for the first
5022 	 * instruction. So, if the last instruction, be it emulated or
5023 	 * not, left the system with the INT_STI flag enabled, it
5024 	 * means that the last instruction is an sti. We should not
5025 	 * leave the flag on in this case. The same goes for mov ss
5026 	 */
5027 	if (int_shadow & mask)
5028 		mask = 0;
5029 	if (unlikely(int_shadow || mask)) {
5030 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5031 		if (!mask)
5032 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5033 	}
5034 }
5035 
5036 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5037 {
5038 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5039 	if (ctxt->exception.vector == PF_VECTOR)
5040 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5041 
5042 	if (ctxt->exception.error_code_valid)
5043 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5044 				      ctxt->exception.error_code);
5045 	else
5046 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5047 	return false;
5048 }
5049 
5050 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5051 {
5052 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5053 	int cs_db, cs_l;
5054 
5055 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5056 
5057 	ctxt->eflags = kvm_get_rflags(vcpu);
5058 	ctxt->eip = kvm_rip_read(vcpu);
5059 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5060 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5061 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5062 		     cs_db				? X86EMUL_MODE_PROT32 :
5063 							  X86EMUL_MODE_PROT16;
5064 	ctxt->guest_mode = is_guest_mode(vcpu);
5065 
5066 	init_decode_cache(ctxt);
5067 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5068 }
5069 
5070 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5071 {
5072 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5073 	int ret;
5074 
5075 	init_emulate_ctxt(vcpu);
5076 
5077 	ctxt->op_bytes = 2;
5078 	ctxt->ad_bytes = 2;
5079 	ctxt->_eip = ctxt->eip + inc_eip;
5080 	ret = emulate_int_real(ctxt, irq);
5081 
5082 	if (ret != X86EMUL_CONTINUE)
5083 		return EMULATE_FAIL;
5084 
5085 	ctxt->eip = ctxt->_eip;
5086 	kvm_rip_write(vcpu, ctxt->eip);
5087 	kvm_set_rflags(vcpu, ctxt->eflags);
5088 
5089 	if (irq == NMI_VECTOR)
5090 		vcpu->arch.nmi_pending = 0;
5091 	else
5092 		vcpu->arch.interrupt.pending = false;
5093 
5094 	return EMULATE_DONE;
5095 }
5096 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5097 
5098 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5099 {
5100 	int r = EMULATE_DONE;
5101 
5102 	++vcpu->stat.insn_emulation_fail;
5103 	trace_kvm_emulate_insn_failed(vcpu);
5104 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5105 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5106 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5107 		vcpu->run->internal.ndata = 0;
5108 		r = EMULATE_FAIL;
5109 	}
5110 	kvm_queue_exception(vcpu, UD_VECTOR);
5111 
5112 	return r;
5113 }
5114 
5115 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5116 				  bool write_fault_to_shadow_pgtable,
5117 				  int emulation_type)
5118 {
5119 	gpa_t gpa = cr2;
5120 	pfn_t pfn;
5121 
5122 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5123 		return false;
5124 
5125 	if (!vcpu->arch.mmu.direct_map) {
5126 		/*
5127 		 * Write permission should be allowed since only
5128 		 * write access need to be emulated.
5129 		 */
5130 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5131 
5132 		/*
5133 		 * If the mapping is invalid in guest, let cpu retry
5134 		 * it to generate fault.
5135 		 */
5136 		if (gpa == UNMAPPED_GVA)
5137 			return true;
5138 	}
5139 
5140 	/*
5141 	 * Do not retry the unhandleable instruction if it faults on the
5142 	 * readonly host memory, otherwise it will goto a infinite loop:
5143 	 * retry instruction -> write #PF -> emulation fail -> retry
5144 	 * instruction -> ...
5145 	 */
5146 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5147 
5148 	/*
5149 	 * If the instruction failed on the error pfn, it can not be fixed,
5150 	 * report the error to userspace.
5151 	 */
5152 	if (is_error_noslot_pfn(pfn))
5153 		return false;
5154 
5155 	kvm_release_pfn_clean(pfn);
5156 
5157 	/* The instructions are well-emulated on direct mmu. */
5158 	if (vcpu->arch.mmu.direct_map) {
5159 		unsigned int indirect_shadow_pages;
5160 
5161 		spin_lock(&vcpu->kvm->mmu_lock);
5162 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5163 		spin_unlock(&vcpu->kvm->mmu_lock);
5164 
5165 		if (indirect_shadow_pages)
5166 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5167 
5168 		return true;
5169 	}
5170 
5171 	/*
5172 	 * if emulation was due to access to shadowed page table
5173 	 * and it failed try to unshadow page and re-enter the
5174 	 * guest to let CPU execute the instruction.
5175 	 */
5176 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5177 
5178 	/*
5179 	 * If the access faults on its page table, it can not
5180 	 * be fixed by unprotecting shadow page and it should
5181 	 * be reported to userspace.
5182 	 */
5183 	return !write_fault_to_shadow_pgtable;
5184 }
5185 
5186 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5187 			      unsigned long cr2,  int emulation_type)
5188 {
5189 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5190 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5191 
5192 	last_retry_eip = vcpu->arch.last_retry_eip;
5193 	last_retry_addr = vcpu->arch.last_retry_addr;
5194 
5195 	/*
5196 	 * If the emulation is caused by #PF and it is non-page_table
5197 	 * writing instruction, it means the VM-EXIT is caused by shadow
5198 	 * page protected, we can zap the shadow page and retry this
5199 	 * instruction directly.
5200 	 *
5201 	 * Note: if the guest uses a non-page-table modifying instruction
5202 	 * on the PDE that points to the instruction, then we will unmap
5203 	 * the instruction and go to an infinite loop. So, we cache the
5204 	 * last retried eip and the last fault address, if we meet the eip
5205 	 * and the address again, we can break out of the potential infinite
5206 	 * loop.
5207 	 */
5208 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5209 
5210 	if (!(emulation_type & EMULTYPE_RETRY))
5211 		return false;
5212 
5213 	if (x86_page_table_writing_insn(ctxt))
5214 		return false;
5215 
5216 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5217 		return false;
5218 
5219 	vcpu->arch.last_retry_eip = ctxt->eip;
5220 	vcpu->arch.last_retry_addr = cr2;
5221 
5222 	if (!vcpu->arch.mmu.direct_map)
5223 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5224 
5225 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5226 
5227 	return true;
5228 }
5229 
5230 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5231 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5232 
5233 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5234 				unsigned long *db)
5235 {
5236 	u32 dr6 = 0;
5237 	int i;
5238 	u32 enable, rwlen;
5239 
5240 	enable = dr7;
5241 	rwlen = dr7 >> 16;
5242 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5243 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5244 			dr6 |= (1 << i);
5245 	return dr6;
5246 }
5247 
5248 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5249 {
5250 	struct kvm_run *kvm_run = vcpu->run;
5251 
5252 	/*
5253 	 * rflags is the old, "raw" value of the flags.  The new value has
5254 	 * not been saved yet.
5255 	 *
5256 	 * This is correct even for TF set by the guest, because "the
5257 	 * processor will not generate this exception after the instruction
5258 	 * that sets the TF flag".
5259 	 */
5260 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5261 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5262 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5263 						  DR6_RTM;
5264 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5265 			kvm_run->debug.arch.exception = DB_VECTOR;
5266 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5267 			*r = EMULATE_USER_EXIT;
5268 		} else {
5269 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5270 			/*
5271 			 * "Certain debug exceptions may clear bit 0-3.  The
5272 			 * remaining contents of the DR6 register are never
5273 			 * cleared by the processor".
5274 			 */
5275 			vcpu->arch.dr6 &= ~15;
5276 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5277 			kvm_queue_exception(vcpu, DB_VECTOR);
5278 		}
5279 	}
5280 }
5281 
5282 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5283 {
5284 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5285 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5286 		struct kvm_run *kvm_run = vcpu->run;
5287 		unsigned long eip = kvm_get_linear_rip(vcpu);
5288 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5289 					   vcpu->arch.guest_debug_dr7,
5290 					   vcpu->arch.eff_db);
5291 
5292 		if (dr6 != 0) {
5293 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5294 			kvm_run->debug.arch.pc = eip;
5295 			kvm_run->debug.arch.exception = DB_VECTOR;
5296 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5297 			*r = EMULATE_USER_EXIT;
5298 			return true;
5299 		}
5300 	}
5301 
5302 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5303 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5304 		unsigned long eip = kvm_get_linear_rip(vcpu);
5305 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5306 					   vcpu->arch.dr7,
5307 					   vcpu->arch.db);
5308 
5309 		if (dr6 != 0) {
5310 			vcpu->arch.dr6 &= ~15;
5311 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5312 			kvm_queue_exception(vcpu, DB_VECTOR);
5313 			*r = EMULATE_DONE;
5314 			return true;
5315 		}
5316 	}
5317 
5318 	return false;
5319 }
5320 
5321 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5322 			    unsigned long cr2,
5323 			    int emulation_type,
5324 			    void *insn,
5325 			    int insn_len)
5326 {
5327 	int r;
5328 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5329 	bool writeback = true;
5330 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5331 
5332 	/*
5333 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5334 	 * never reused.
5335 	 */
5336 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5337 	kvm_clear_exception_queue(vcpu);
5338 
5339 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5340 		init_emulate_ctxt(vcpu);
5341 
5342 		/*
5343 		 * We will reenter on the same instruction since
5344 		 * we do not set complete_userspace_io.  This does not
5345 		 * handle watchpoints yet, those would be handled in
5346 		 * the emulate_ops.
5347 		 */
5348 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5349 			return r;
5350 
5351 		ctxt->interruptibility = 0;
5352 		ctxt->have_exception = false;
5353 		ctxt->exception.vector = -1;
5354 		ctxt->perm_ok = false;
5355 
5356 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5357 
5358 		r = x86_decode_insn(ctxt, insn, insn_len);
5359 
5360 		trace_kvm_emulate_insn_start(vcpu);
5361 		++vcpu->stat.insn_emulation;
5362 		if (r != EMULATION_OK)  {
5363 			if (emulation_type & EMULTYPE_TRAP_UD)
5364 				return EMULATE_FAIL;
5365 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5366 						emulation_type))
5367 				return EMULATE_DONE;
5368 			if (emulation_type & EMULTYPE_SKIP)
5369 				return EMULATE_FAIL;
5370 			return handle_emulation_failure(vcpu);
5371 		}
5372 	}
5373 
5374 	if (emulation_type & EMULTYPE_SKIP) {
5375 		kvm_rip_write(vcpu, ctxt->_eip);
5376 		if (ctxt->eflags & X86_EFLAGS_RF)
5377 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5378 		return EMULATE_DONE;
5379 	}
5380 
5381 	if (retry_instruction(ctxt, cr2, emulation_type))
5382 		return EMULATE_DONE;
5383 
5384 	/* this is needed for vmware backdoor interface to work since it
5385 	   changes registers values  during IO operation */
5386 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5387 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5388 		emulator_invalidate_register_cache(ctxt);
5389 	}
5390 
5391 restart:
5392 	r = x86_emulate_insn(ctxt);
5393 
5394 	if (r == EMULATION_INTERCEPTED)
5395 		return EMULATE_DONE;
5396 
5397 	if (r == EMULATION_FAILED) {
5398 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5399 					emulation_type))
5400 			return EMULATE_DONE;
5401 
5402 		return handle_emulation_failure(vcpu);
5403 	}
5404 
5405 	if (ctxt->have_exception) {
5406 		r = EMULATE_DONE;
5407 		if (inject_emulated_exception(vcpu))
5408 			return r;
5409 	} else if (vcpu->arch.pio.count) {
5410 		if (!vcpu->arch.pio.in) {
5411 			/* FIXME: return into emulator if single-stepping.  */
5412 			vcpu->arch.pio.count = 0;
5413 		} else {
5414 			writeback = false;
5415 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5416 		}
5417 		r = EMULATE_USER_EXIT;
5418 	} else if (vcpu->mmio_needed) {
5419 		if (!vcpu->mmio_is_write)
5420 			writeback = false;
5421 		r = EMULATE_USER_EXIT;
5422 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5423 	} else if (r == EMULATION_RESTART)
5424 		goto restart;
5425 	else
5426 		r = EMULATE_DONE;
5427 
5428 	if (writeback) {
5429 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5430 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5431 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5432 		kvm_rip_write(vcpu, ctxt->eip);
5433 		if (r == EMULATE_DONE)
5434 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5435 		if (!ctxt->have_exception ||
5436 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5437 			__kvm_set_rflags(vcpu, ctxt->eflags);
5438 
5439 		/*
5440 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5441 		 * do nothing, and it will be requested again as soon as
5442 		 * the shadow expires.  But we still need to check here,
5443 		 * because POPF has no interrupt shadow.
5444 		 */
5445 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5446 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5447 	} else
5448 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5449 
5450 	return r;
5451 }
5452 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5453 
5454 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5455 {
5456 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5457 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5458 					    size, port, &val, 1);
5459 	/* do not return to emulator after return from userspace */
5460 	vcpu->arch.pio.count = 0;
5461 	return ret;
5462 }
5463 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5464 
5465 static void tsc_bad(void *info)
5466 {
5467 	__this_cpu_write(cpu_tsc_khz, 0);
5468 }
5469 
5470 static void tsc_khz_changed(void *data)
5471 {
5472 	struct cpufreq_freqs *freq = data;
5473 	unsigned long khz = 0;
5474 
5475 	if (data)
5476 		khz = freq->new;
5477 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5478 		khz = cpufreq_quick_get(raw_smp_processor_id());
5479 	if (!khz)
5480 		khz = tsc_khz;
5481 	__this_cpu_write(cpu_tsc_khz, khz);
5482 }
5483 
5484 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5485 				     void *data)
5486 {
5487 	struct cpufreq_freqs *freq = data;
5488 	struct kvm *kvm;
5489 	struct kvm_vcpu *vcpu;
5490 	int i, send_ipi = 0;
5491 
5492 	/*
5493 	 * We allow guests to temporarily run on slowing clocks,
5494 	 * provided we notify them after, or to run on accelerating
5495 	 * clocks, provided we notify them before.  Thus time never
5496 	 * goes backwards.
5497 	 *
5498 	 * However, we have a problem.  We can't atomically update
5499 	 * the frequency of a given CPU from this function; it is
5500 	 * merely a notifier, which can be called from any CPU.
5501 	 * Changing the TSC frequency at arbitrary points in time
5502 	 * requires a recomputation of local variables related to
5503 	 * the TSC for each VCPU.  We must flag these local variables
5504 	 * to be updated and be sure the update takes place with the
5505 	 * new frequency before any guests proceed.
5506 	 *
5507 	 * Unfortunately, the combination of hotplug CPU and frequency
5508 	 * change creates an intractable locking scenario; the order
5509 	 * of when these callouts happen is undefined with respect to
5510 	 * CPU hotplug, and they can race with each other.  As such,
5511 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5512 	 * undefined; you can actually have a CPU frequency change take
5513 	 * place in between the computation of X and the setting of the
5514 	 * variable.  To protect against this problem, all updates of
5515 	 * the per_cpu tsc_khz variable are done in an interrupt
5516 	 * protected IPI, and all callers wishing to update the value
5517 	 * must wait for a synchronous IPI to complete (which is trivial
5518 	 * if the caller is on the CPU already).  This establishes the
5519 	 * necessary total order on variable updates.
5520 	 *
5521 	 * Note that because a guest time update may take place
5522 	 * anytime after the setting of the VCPU's request bit, the
5523 	 * correct TSC value must be set before the request.  However,
5524 	 * to ensure the update actually makes it to any guest which
5525 	 * starts running in hardware virtualization between the set
5526 	 * and the acquisition of the spinlock, we must also ping the
5527 	 * CPU after setting the request bit.
5528 	 *
5529 	 */
5530 
5531 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5532 		return 0;
5533 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5534 		return 0;
5535 
5536 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5537 
5538 	spin_lock(&kvm_lock);
5539 	list_for_each_entry(kvm, &vm_list, vm_list) {
5540 		kvm_for_each_vcpu(i, vcpu, kvm) {
5541 			if (vcpu->cpu != freq->cpu)
5542 				continue;
5543 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5544 			if (vcpu->cpu != smp_processor_id())
5545 				send_ipi = 1;
5546 		}
5547 	}
5548 	spin_unlock(&kvm_lock);
5549 
5550 	if (freq->old < freq->new && send_ipi) {
5551 		/*
5552 		 * We upscale the frequency.  Must make the guest
5553 		 * doesn't see old kvmclock values while running with
5554 		 * the new frequency, otherwise we risk the guest sees
5555 		 * time go backwards.
5556 		 *
5557 		 * In case we update the frequency for another cpu
5558 		 * (which might be in guest context) send an interrupt
5559 		 * to kick the cpu out of guest context.  Next time
5560 		 * guest context is entered kvmclock will be updated,
5561 		 * so the guest will not see stale values.
5562 		 */
5563 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5564 	}
5565 	return 0;
5566 }
5567 
5568 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5569 	.notifier_call  = kvmclock_cpufreq_notifier
5570 };
5571 
5572 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5573 					unsigned long action, void *hcpu)
5574 {
5575 	unsigned int cpu = (unsigned long)hcpu;
5576 
5577 	switch (action) {
5578 		case CPU_ONLINE:
5579 		case CPU_DOWN_FAILED:
5580 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5581 			break;
5582 		case CPU_DOWN_PREPARE:
5583 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5584 			break;
5585 	}
5586 	return NOTIFY_OK;
5587 }
5588 
5589 static struct notifier_block kvmclock_cpu_notifier_block = {
5590 	.notifier_call  = kvmclock_cpu_notifier,
5591 	.priority = -INT_MAX
5592 };
5593 
5594 static void kvm_timer_init(void)
5595 {
5596 	int cpu;
5597 
5598 	max_tsc_khz = tsc_khz;
5599 
5600 	cpu_notifier_register_begin();
5601 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5602 #ifdef CONFIG_CPU_FREQ
5603 		struct cpufreq_policy policy;
5604 		memset(&policy, 0, sizeof(policy));
5605 		cpu = get_cpu();
5606 		cpufreq_get_policy(&policy, cpu);
5607 		if (policy.cpuinfo.max_freq)
5608 			max_tsc_khz = policy.cpuinfo.max_freq;
5609 		put_cpu();
5610 #endif
5611 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5612 					  CPUFREQ_TRANSITION_NOTIFIER);
5613 	}
5614 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5615 	for_each_online_cpu(cpu)
5616 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5617 
5618 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5619 	cpu_notifier_register_done();
5620 
5621 }
5622 
5623 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5624 
5625 int kvm_is_in_guest(void)
5626 {
5627 	return __this_cpu_read(current_vcpu) != NULL;
5628 }
5629 
5630 static int kvm_is_user_mode(void)
5631 {
5632 	int user_mode = 3;
5633 
5634 	if (__this_cpu_read(current_vcpu))
5635 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5636 
5637 	return user_mode != 0;
5638 }
5639 
5640 static unsigned long kvm_get_guest_ip(void)
5641 {
5642 	unsigned long ip = 0;
5643 
5644 	if (__this_cpu_read(current_vcpu))
5645 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5646 
5647 	return ip;
5648 }
5649 
5650 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5651 	.is_in_guest		= kvm_is_in_guest,
5652 	.is_user_mode		= kvm_is_user_mode,
5653 	.get_guest_ip		= kvm_get_guest_ip,
5654 };
5655 
5656 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5657 {
5658 	__this_cpu_write(current_vcpu, vcpu);
5659 }
5660 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5661 
5662 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5663 {
5664 	__this_cpu_write(current_vcpu, NULL);
5665 }
5666 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5667 
5668 static void kvm_set_mmio_spte_mask(void)
5669 {
5670 	u64 mask;
5671 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5672 
5673 	/*
5674 	 * Set the reserved bits and the present bit of an paging-structure
5675 	 * entry to generate page fault with PFER.RSV = 1.
5676 	 */
5677 	 /* Mask the reserved physical address bits. */
5678 	mask = rsvd_bits(maxphyaddr, 51);
5679 
5680 	/* Bit 62 is always reserved for 32bit host. */
5681 	mask |= 0x3ull << 62;
5682 
5683 	/* Set the present bit. */
5684 	mask |= 1ull;
5685 
5686 #ifdef CONFIG_X86_64
5687 	/*
5688 	 * If reserved bit is not supported, clear the present bit to disable
5689 	 * mmio page fault.
5690 	 */
5691 	if (maxphyaddr == 52)
5692 		mask &= ~1ull;
5693 #endif
5694 
5695 	kvm_mmu_set_mmio_spte_mask(mask);
5696 }
5697 
5698 #ifdef CONFIG_X86_64
5699 static void pvclock_gtod_update_fn(struct work_struct *work)
5700 {
5701 	struct kvm *kvm;
5702 
5703 	struct kvm_vcpu *vcpu;
5704 	int i;
5705 
5706 	spin_lock(&kvm_lock);
5707 	list_for_each_entry(kvm, &vm_list, vm_list)
5708 		kvm_for_each_vcpu(i, vcpu, kvm)
5709 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5710 	atomic_set(&kvm_guest_has_master_clock, 0);
5711 	spin_unlock(&kvm_lock);
5712 }
5713 
5714 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5715 
5716 /*
5717  * Notification about pvclock gtod data update.
5718  */
5719 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5720 			       void *priv)
5721 {
5722 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5723 	struct timekeeper *tk = priv;
5724 
5725 	update_pvclock_gtod(tk);
5726 
5727 	/* disable master clock if host does not trust, or does not
5728 	 * use, TSC clocksource
5729 	 */
5730 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5731 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5732 		queue_work(system_long_wq, &pvclock_gtod_work);
5733 
5734 	return 0;
5735 }
5736 
5737 static struct notifier_block pvclock_gtod_notifier = {
5738 	.notifier_call = pvclock_gtod_notify,
5739 };
5740 #endif
5741 
5742 int kvm_arch_init(void *opaque)
5743 {
5744 	int r;
5745 	struct kvm_x86_ops *ops = opaque;
5746 
5747 	if (kvm_x86_ops) {
5748 		printk(KERN_ERR "kvm: already loaded the other module\n");
5749 		r = -EEXIST;
5750 		goto out;
5751 	}
5752 
5753 	if (!ops->cpu_has_kvm_support()) {
5754 		printk(KERN_ERR "kvm: no hardware support\n");
5755 		r = -EOPNOTSUPP;
5756 		goto out;
5757 	}
5758 	if (ops->disabled_by_bios()) {
5759 		printk(KERN_ERR "kvm: disabled by bios\n");
5760 		r = -EOPNOTSUPP;
5761 		goto out;
5762 	}
5763 
5764 	r = -ENOMEM;
5765 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5766 	if (!shared_msrs) {
5767 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5768 		goto out;
5769 	}
5770 
5771 	r = kvm_mmu_module_init();
5772 	if (r)
5773 		goto out_free_percpu;
5774 
5775 	kvm_set_mmio_spte_mask();
5776 
5777 	kvm_x86_ops = ops;
5778 	kvm_init_msr_list();
5779 
5780 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5781 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5782 
5783 	kvm_timer_init();
5784 
5785 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5786 
5787 	if (cpu_has_xsave)
5788 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5789 
5790 	kvm_lapic_init();
5791 #ifdef CONFIG_X86_64
5792 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5793 #endif
5794 
5795 	return 0;
5796 
5797 out_free_percpu:
5798 	free_percpu(shared_msrs);
5799 out:
5800 	return r;
5801 }
5802 
5803 void kvm_arch_exit(void)
5804 {
5805 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5806 
5807 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5808 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5809 					    CPUFREQ_TRANSITION_NOTIFIER);
5810 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5811 #ifdef CONFIG_X86_64
5812 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5813 #endif
5814 	kvm_x86_ops = NULL;
5815 	kvm_mmu_module_exit();
5816 	free_percpu(shared_msrs);
5817 }
5818 
5819 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5820 {
5821 	++vcpu->stat.halt_exits;
5822 	if (irqchip_in_kernel(vcpu->kvm)) {
5823 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5824 		return 1;
5825 	} else {
5826 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5827 		return 0;
5828 	}
5829 }
5830 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5831 
5832 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5833 {
5834 	u64 param, ingpa, outgpa, ret;
5835 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5836 	bool fast, longmode;
5837 
5838 	/*
5839 	 * hypercall generates UD from non zero cpl and real mode
5840 	 * per HYPER-V spec
5841 	 */
5842 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5843 		kvm_queue_exception(vcpu, UD_VECTOR);
5844 		return 0;
5845 	}
5846 
5847 	longmode = is_64_bit_mode(vcpu);
5848 
5849 	if (!longmode) {
5850 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5851 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5852 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5853 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5854 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5855 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5856 	}
5857 #ifdef CONFIG_X86_64
5858 	else {
5859 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5860 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5861 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5862 	}
5863 #endif
5864 
5865 	code = param & 0xffff;
5866 	fast = (param >> 16) & 0x1;
5867 	rep_cnt = (param >> 32) & 0xfff;
5868 	rep_idx = (param >> 48) & 0xfff;
5869 
5870 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5871 
5872 	switch (code) {
5873 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5874 		kvm_vcpu_on_spin(vcpu);
5875 		break;
5876 	default:
5877 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5878 		break;
5879 	}
5880 
5881 	ret = res | (((u64)rep_done & 0xfff) << 32);
5882 	if (longmode) {
5883 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5884 	} else {
5885 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5886 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5887 	}
5888 
5889 	return 1;
5890 }
5891 
5892 /*
5893  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5894  *
5895  * @apicid - apicid of vcpu to be kicked.
5896  */
5897 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5898 {
5899 	struct kvm_lapic_irq lapic_irq;
5900 
5901 	lapic_irq.shorthand = 0;
5902 	lapic_irq.dest_mode = 0;
5903 	lapic_irq.dest_id = apicid;
5904 
5905 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5906 	kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5907 }
5908 
5909 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5910 {
5911 	unsigned long nr, a0, a1, a2, a3, ret;
5912 	int op_64_bit, r = 1;
5913 
5914 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5915 		return kvm_hv_hypercall(vcpu);
5916 
5917 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5918 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5919 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5920 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5921 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5922 
5923 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5924 
5925 	op_64_bit = is_64_bit_mode(vcpu);
5926 	if (!op_64_bit) {
5927 		nr &= 0xFFFFFFFF;
5928 		a0 &= 0xFFFFFFFF;
5929 		a1 &= 0xFFFFFFFF;
5930 		a2 &= 0xFFFFFFFF;
5931 		a3 &= 0xFFFFFFFF;
5932 	}
5933 
5934 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5935 		ret = -KVM_EPERM;
5936 		goto out;
5937 	}
5938 
5939 	switch (nr) {
5940 	case KVM_HC_VAPIC_POLL_IRQ:
5941 		ret = 0;
5942 		break;
5943 	case KVM_HC_KICK_CPU:
5944 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5945 		ret = 0;
5946 		break;
5947 	default:
5948 		ret = -KVM_ENOSYS;
5949 		break;
5950 	}
5951 out:
5952 	if (!op_64_bit)
5953 		ret = (u32)ret;
5954 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5955 	++vcpu->stat.hypercalls;
5956 	return r;
5957 }
5958 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5959 
5960 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5961 {
5962 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5963 	char instruction[3];
5964 	unsigned long rip = kvm_rip_read(vcpu);
5965 
5966 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5967 
5968 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5969 }
5970 
5971 /*
5972  * Check if userspace requested an interrupt window, and that the
5973  * interrupt window is open.
5974  *
5975  * No need to exit to userspace if we already have an interrupt queued.
5976  */
5977 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5978 {
5979 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5980 		vcpu->run->request_interrupt_window &&
5981 		kvm_arch_interrupt_allowed(vcpu));
5982 }
5983 
5984 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5985 {
5986 	struct kvm_run *kvm_run = vcpu->run;
5987 
5988 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5989 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5990 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5991 	if (irqchip_in_kernel(vcpu->kvm))
5992 		kvm_run->ready_for_interrupt_injection = 1;
5993 	else
5994 		kvm_run->ready_for_interrupt_injection =
5995 			kvm_arch_interrupt_allowed(vcpu) &&
5996 			!kvm_cpu_has_interrupt(vcpu) &&
5997 			!kvm_event_needs_reinjection(vcpu);
5998 }
5999 
6000 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6001 {
6002 	int max_irr, tpr;
6003 
6004 	if (!kvm_x86_ops->update_cr8_intercept)
6005 		return;
6006 
6007 	if (!vcpu->arch.apic)
6008 		return;
6009 
6010 	if (!vcpu->arch.apic->vapic_addr)
6011 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6012 	else
6013 		max_irr = -1;
6014 
6015 	if (max_irr != -1)
6016 		max_irr >>= 4;
6017 
6018 	tpr = kvm_lapic_get_cr8(vcpu);
6019 
6020 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6021 }
6022 
6023 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6024 {
6025 	int r;
6026 
6027 	/* try to reinject previous events if any */
6028 	if (vcpu->arch.exception.pending) {
6029 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6030 					vcpu->arch.exception.has_error_code,
6031 					vcpu->arch.exception.error_code);
6032 
6033 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6034 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6035 					     X86_EFLAGS_RF);
6036 
6037 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6038 		    (vcpu->arch.dr7 & DR7_GD)) {
6039 			vcpu->arch.dr7 &= ~DR7_GD;
6040 			kvm_update_dr7(vcpu);
6041 		}
6042 
6043 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6044 					  vcpu->arch.exception.has_error_code,
6045 					  vcpu->arch.exception.error_code,
6046 					  vcpu->arch.exception.reinject);
6047 		return 0;
6048 	}
6049 
6050 	if (vcpu->arch.nmi_injected) {
6051 		kvm_x86_ops->set_nmi(vcpu);
6052 		return 0;
6053 	}
6054 
6055 	if (vcpu->arch.interrupt.pending) {
6056 		kvm_x86_ops->set_irq(vcpu);
6057 		return 0;
6058 	}
6059 
6060 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6061 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6062 		if (r != 0)
6063 			return r;
6064 	}
6065 
6066 	/* try to inject new event if pending */
6067 	if (vcpu->arch.nmi_pending) {
6068 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
6069 			--vcpu->arch.nmi_pending;
6070 			vcpu->arch.nmi_injected = true;
6071 			kvm_x86_ops->set_nmi(vcpu);
6072 		}
6073 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6074 		/*
6075 		 * Because interrupts can be injected asynchronously, we are
6076 		 * calling check_nested_events again here to avoid a race condition.
6077 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6078 		 * proposal and current concerns.  Perhaps we should be setting
6079 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6080 		 */
6081 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6082 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6083 			if (r != 0)
6084 				return r;
6085 		}
6086 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6087 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6088 					    false);
6089 			kvm_x86_ops->set_irq(vcpu);
6090 		}
6091 	}
6092 	return 0;
6093 }
6094 
6095 static void process_nmi(struct kvm_vcpu *vcpu)
6096 {
6097 	unsigned limit = 2;
6098 
6099 	/*
6100 	 * x86 is limited to one NMI running, and one NMI pending after it.
6101 	 * If an NMI is already in progress, limit further NMIs to just one.
6102 	 * Otherwise, allow two (and we'll inject the first one immediately).
6103 	 */
6104 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6105 		limit = 1;
6106 
6107 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6108 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6109 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6110 }
6111 
6112 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6113 {
6114 	u64 eoi_exit_bitmap[4];
6115 	u32 tmr[8];
6116 
6117 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6118 		return;
6119 
6120 	memset(eoi_exit_bitmap, 0, 32);
6121 	memset(tmr, 0, 32);
6122 
6123 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6124 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6125 	kvm_apic_update_tmr(vcpu, tmr);
6126 }
6127 
6128 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6129 {
6130 	++vcpu->stat.tlb_flush;
6131 	kvm_x86_ops->tlb_flush(vcpu);
6132 }
6133 
6134 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6135 {
6136 	struct page *page = NULL;
6137 
6138 	if (!irqchip_in_kernel(vcpu->kvm))
6139 		return;
6140 
6141 	if (!kvm_x86_ops->set_apic_access_page_addr)
6142 		return;
6143 
6144 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6145 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6146 
6147 	/*
6148 	 * Do not pin apic access page in memory, the MMU notifier
6149 	 * will call us again if it is migrated or swapped out.
6150 	 */
6151 	put_page(page);
6152 }
6153 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6154 
6155 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6156 					   unsigned long address)
6157 {
6158 	/*
6159 	 * The physical address of apic access page is stored in the VMCS.
6160 	 * Update it when it becomes invalid.
6161 	 */
6162 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6163 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6164 }
6165 
6166 /*
6167  * Returns 1 to let __vcpu_run() continue the guest execution loop without
6168  * exiting to the userspace.  Otherwise, the value will be returned to the
6169  * userspace.
6170  */
6171 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6172 {
6173 	int r;
6174 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6175 		vcpu->run->request_interrupt_window;
6176 	bool req_immediate_exit = false;
6177 
6178 	if (vcpu->requests) {
6179 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6180 			kvm_mmu_unload(vcpu);
6181 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6182 			__kvm_migrate_timers(vcpu);
6183 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6184 			kvm_gen_update_masterclock(vcpu->kvm);
6185 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6186 			kvm_gen_kvmclock_update(vcpu);
6187 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6188 			r = kvm_guest_time_update(vcpu);
6189 			if (unlikely(r))
6190 				goto out;
6191 		}
6192 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6193 			kvm_mmu_sync_roots(vcpu);
6194 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6195 			kvm_vcpu_flush_tlb(vcpu);
6196 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6197 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6198 			r = 0;
6199 			goto out;
6200 		}
6201 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6202 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6203 			r = 0;
6204 			goto out;
6205 		}
6206 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6207 			vcpu->fpu_active = 0;
6208 			kvm_x86_ops->fpu_deactivate(vcpu);
6209 		}
6210 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6211 			/* Page is swapped out. Do synthetic halt */
6212 			vcpu->arch.apf.halted = true;
6213 			r = 1;
6214 			goto out;
6215 		}
6216 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6217 			record_steal_time(vcpu);
6218 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6219 			process_nmi(vcpu);
6220 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6221 			kvm_handle_pmu_event(vcpu);
6222 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6223 			kvm_deliver_pmi(vcpu);
6224 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6225 			vcpu_scan_ioapic(vcpu);
6226 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6227 			kvm_vcpu_reload_apic_access_page(vcpu);
6228 	}
6229 
6230 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6231 		kvm_apic_accept_events(vcpu);
6232 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6233 			r = 1;
6234 			goto out;
6235 		}
6236 
6237 		if (inject_pending_event(vcpu, req_int_win) != 0)
6238 			req_immediate_exit = true;
6239 		/* enable NMI/IRQ window open exits if needed */
6240 		else if (vcpu->arch.nmi_pending)
6241 			kvm_x86_ops->enable_nmi_window(vcpu);
6242 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6243 			kvm_x86_ops->enable_irq_window(vcpu);
6244 
6245 		if (kvm_lapic_enabled(vcpu)) {
6246 			/*
6247 			 * Update architecture specific hints for APIC
6248 			 * virtual interrupt delivery.
6249 			 */
6250 			if (kvm_x86_ops->hwapic_irr_update)
6251 				kvm_x86_ops->hwapic_irr_update(vcpu,
6252 					kvm_lapic_find_highest_irr(vcpu));
6253 			update_cr8_intercept(vcpu);
6254 			kvm_lapic_sync_to_vapic(vcpu);
6255 		}
6256 	}
6257 
6258 	r = kvm_mmu_reload(vcpu);
6259 	if (unlikely(r)) {
6260 		goto cancel_injection;
6261 	}
6262 
6263 	preempt_disable();
6264 
6265 	kvm_x86_ops->prepare_guest_switch(vcpu);
6266 	if (vcpu->fpu_active)
6267 		kvm_load_guest_fpu(vcpu);
6268 	kvm_load_guest_xcr0(vcpu);
6269 
6270 	vcpu->mode = IN_GUEST_MODE;
6271 
6272 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6273 
6274 	/* We should set ->mode before check ->requests,
6275 	 * see the comment in make_all_cpus_request.
6276 	 */
6277 	smp_mb__after_srcu_read_unlock();
6278 
6279 	local_irq_disable();
6280 
6281 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6282 	    || need_resched() || signal_pending(current)) {
6283 		vcpu->mode = OUTSIDE_GUEST_MODE;
6284 		smp_wmb();
6285 		local_irq_enable();
6286 		preempt_enable();
6287 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6288 		r = 1;
6289 		goto cancel_injection;
6290 	}
6291 
6292 	if (req_immediate_exit)
6293 		smp_send_reschedule(vcpu->cpu);
6294 
6295 	kvm_guest_enter();
6296 
6297 	if (unlikely(vcpu->arch.switch_db_regs)) {
6298 		set_debugreg(0, 7);
6299 		set_debugreg(vcpu->arch.eff_db[0], 0);
6300 		set_debugreg(vcpu->arch.eff_db[1], 1);
6301 		set_debugreg(vcpu->arch.eff_db[2], 2);
6302 		set_debugreg(vcpu->arch.eff_db[3], 3);
6303 		set_debugreg(vcpu->arch.dr6, 6);
6304 	}
6305 
6306 	trace_kvm_entry(vcpu->vcpu_id);
6307 	wait_lapic_expire(vcpu);
6308 	kvm_x86_ops->run(vcpu);
6309 
6310 	/*
6311 	 * Do this here before restoring debug registers on the host.  And
6312 	 * since we do this before handling the vmexit, a DR access vmexit
6313 	 * can (a) read the correct value of the debug registers, (b) set
6314 	 * KVM_DEBUGREG_WONT_EXIT again.
6315 	 */
6316 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6317 		int i;
6318 
6319 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6320 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6321 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6322 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6323 	}
6324 
6325 	/*
6326 	 * If the guest has used debug registers, at least dr7
6327 	 * will be disabled while returning to the host.
6328 	 * If we don't have active breakpoints in the host, we don't
6329 	 * care about the messed up debug address registers. But if
6330 	 * we have some of them active, restore the old state.
6331 	 */
6332 	if (hw_breakpoint_active())
6333 		hw_breakpoint_restore();
6334 
6335 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6336 							   native_read_tsc());
6337 
6338 	vcpu->mode = OUTSIDE_GUEST_MODE;
6339 	smp_wmb();
6340 
6341 	/* Interrupt is enabled by handle_external_intr() */
6342 	kvm_x86_ops->handle_external_intr(vcpu);
6343 
6344 	++vcpu->stat.exits;
6345 
6346 	/*
6347 	 * We must have an instruction between local_irq_enable() and
6348 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6349 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6350 	 * But we need to prevent reordering, hence this barrier():
6351 	 */
6352 	barrier();
6353 
6354 	kvm_guest_exit();
6355 
6356 	preempt_enable();
6357 
6358 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6359 
6360 	/*
6361 	 * Profile KVM exit RIPs:
6362 	 */
6363 	if (unlikely(prof_on == KVM_PROFILING)) {
6364 		unsigned long rip = kvm_rip_read(vcpu);
6365 		profile_hit(KVM_PROFILING, (void *)rip);
6366 	}
6367 
6368 	if (unlikely(vcpu->arch.tsc_always_catchup))
6369 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6370 
6371 	if (vcpu->arch.apic_attention)
6372 		kvm_lapic_sync_from_vapic(vcpu);
6373 
6374 	r = kvm_x86_ops->handle_exit(vcpu);
6375 	return r;
6376 
6377 cancel_injection:
6378 	kvm_x86_ops->cancel_injection(vcpu);
6379 	if (unlikely(vcpu->arch.apic_attention))
6380 		kvm_lapic_sync_from_vapic(vcpu);
6381 out:
6382 	return r;
6383 }
6384 
6385 
6386 static int __vcpu_run(struct kvm_vcpu *vcpu)
6387 {
6388 	int r;
6389 	struct kvm *kvm = vcpu->kvm;
6390 
6391 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6392 
6393 	r = 1;
6394 	while (r > 0) {
6395 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6396 		    !vcpu->arch.apf.halted)
6397 			r = vcpu_enter_guest(vcpu);
6398 		else {
6399 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6400 			kvm_vcpu_block(vcpu);
6401 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6402 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6403 				kvm_apic_accept_events(vcpu);
6404 				switch(vcpu->arch.mp_state) {
6405 				case KVM_MP_STATE_HALTED:
6406 					vcpu->arch.pv.pv_unhalted = false;
6407 					vcpu->arch.mp_state =
6408 						KVM_MP_STATE_RUNNABLE;
6409 				case KVM_MP_STATE_RUNNABLE:
6410 					vcpu->arch.apf.halted = false;
6411 					break;
6412 				case KVM_MP_STATE_INIT_RECEIVED:
6413 					break;
6414 				default:
6415 					r = -EINTR;
6416 					break;
6417 				}
6418 			}
6419 		}
6420 
6421 		if (r <= 0)
6422 			break;
6423 
6424 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6425 		if (kvm_cpu_has_pending_timer(vcpu))
6426 			kvm_inject_pending_timer_irqs(vcpu);
6427 
6428 		if (dm_request_for_irq_injection(vcpu)) {
6429 			r = -EINTR;
6430 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6431 			++vcpu->stat.request_irq_exits;
6432 		}
6433 
6434 		kvm_check_async_pf_completion(vcpu);
6435 
6436 		if (signal_pending(current)) {
6437 			r = -EINTR;
6438 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6439 			++vcpu->stat.signal_exits;
6440 		}
6441 		if (need_resched()) {
6442 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6443 			cond_resched();
6444 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6445 		}
6446 	}
6447 
6448 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6449 
6450 	return r;
6451 }
6452 
6453 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6454 {
6455 	int r;
6456 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6457 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6458 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6459 	if (r != EMULATE_DONE)
6460 		return 0;
6461 	return 1;
6462 }
6463 
6464 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6465 {
6466 	BUG_ON(!vcpu->arch.pio.count);
6467 
6468 	return complete_emulated_io(vcpu);
6469 }
6470 
6471 /*
6472  * Implements the following, as a state machine:
6473  *
6474  * read:
6475  *   for each fragment
6476  *     for each mmio piece in the fragment
6477  *       write gpa, len
6478  *       exit
6479  *       copy data
6480  *   execute insn
6481  *
6482  * write:
6483  *   for each fragment
6484  *     for each mmio piece in the fragment
6485  *       write gpa, len
6486  *       copy data
6487  *       exit
6488  */
6489 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6490 {
6491 	struct kvm_run *run = vcpu->run;
6492 	struct kvm_mmio_fragment *frag;
6493 	unsigned len;
6494 
6495 	BUG_ON(!vcpu->mmio_needed);
6496 
6497 	/* Complete previous fragment */
6498 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6499 	len = min(8u, frag->len);
6500 	if (!vcpu->mmio_is_write)
6501 		memcpy(frag->data, run->mmio.data, len);
6502 
6503 	if (frag->len <= 8) {
6504 		/* Switch to the next fragment. */
6505 		frag++;
6506 		vcpu->mmio_cur_fragment++;
6507 	} else {
6508 		/* Go forward to the next mmio piece. */
6509 		frag->data += len;
6510 		frag->gpa += len;
6511 		frag->len -= len;
6512 	}
6513 
6514 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6515 		vcpu->mmio_needed = 0;
6516 
6517 		/* FIXME: return into emulator if single-stepping.  */
6518 		if (vcpu->mmio_is_write)
6519 			return 1;
6520 		vcpu->mmio_read_completed = 1;
6521 		return complete_emulated_io(vcpu);
6522 	}
6523 
6524 	run->exit_reason = KVM_EXIT_MMIO;
6525 	run->mmio.phys_addr = frag->gpa;
6526 	if (vcpu->mmio_is_write)
6527 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6528 	run->mmio.len = min(8u, frag->len);
6529 	run->mmio.is_write = vcpu->mmio_is_write;
6530 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6531 	return 0;
6532 }
6533 
6534 
6535 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6536 {
6537 	int r;
6538 	sigset_t sigsaved;
6539 
6540 	if (!tsk_used_math(current) && init_fpu(current))
6541 		return -ENOMEM;
6542 
6543 	if (vcpu->sigset_active)
6544 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6545 
6546 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6547 		kvm_vcpu_block(vcpu);
6548 		kvm_apic_accept_events(vcpu);
6549 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6550 		r = -EAGAIN;
6551 		goto out;
6552 	}
6553 
6554 	/* re-sync apic's tpr */
6555 	if (!irqchip_in_kernel(vcpu->kvm)) {
6556 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6557 			r = -EINVAL;
6558 			goto out;
6559 		}
6560 	}
6561 
6562 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6563 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6564 		vcpu->arch.complete_userspace_io = NULL;
6565 		r = cui(vcpu);
6566 		if (r <= 0)
6567 			goto out;
6568 	} else
6569 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6570 
6571 	r = __vcpu_run(vcpu);
6572 
6573 out:
6574 	post_kvm_run_save(vcpu);
6575 	if (vcpu->sigset_active)
6576 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6577 
6578 	return r;
6579 }
6580 
6581 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6582 {
6583 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6584 		/*
6585 		 * We are here if userspace calls get_regs() in the middle of
6586 		 * instruction emulation. Registers state needs to be copied
6587 		 * back from emulation context to vcpu. Userspace shouldn't do
6588 		 * that usually, but some bad designed PV devices (vmware
6589 		 * backdoor interface) need this to work
6590 		 */
6591 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6592 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6593 	}
6594 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6595 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6596 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6597 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6598 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6599 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6600 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6601 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6602 #ifdef CONFIG_X86_64
6603 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6604 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6605 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6606 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6607 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6608 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6609 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6610 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6611 #endif
6612 
6613 	regs->rip = kvm_rip_read(vcpu);
6614 	regs->rflags = kvm_get_rflags(vcpu);
6615 
6616 	return 0;
6617 }
6618 
6619 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6620 {
6621 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6622 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6623 
6624 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6625 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6626 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6627 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6628 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6629 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6630 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6631 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6632 #ifdef CONFIG_X86_64
6633 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6634 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6635 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6636 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6637 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6638 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6639 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6640 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6641 #endif
6642 
6643 	kvm_rip_write(vcpu, regs->rip);
6644 	kvm_set_rflags(vcpu, regs->rflags);
6645 
6646 	vcpu->arch.exception.pending = false;
6647 
6648 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6649 
6650 	return 0;
6651 }
6652 
6653 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6654 {
6655 	struct kvm_segment cs;
6656 
6657 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6658 	*db = cs.db;
6659 	*l = cs.l;
6660 }
6661 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6662 
6663 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6664 				  struct kvm_sregs *sregs)
6665 {
6666 	struct desc_ptr dt;
6667 
6668 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6669 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6670 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6671 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6672 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6673 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6674 
6675 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6676 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6677 
6678 	kvm_x86_ops->get_idt(vcpu, &dt);
6679 	sregs->idt.limit = dt.size;
6680 	sregs->idt.base = dt.address;
6681 	kvm_x86_ops->get_gdt(vcpu, &dt);
6682 	sregs->gdt.limit = dt.size;
6683 	sregs->gdt.base = dt.address;
6684 
6685 	sregs->cr0 = kvm_read_cr0(vcpu);
6686 	sregs->cr2 = vcpu->arch.cr2;
6687 	sregs->cr3 = kvm_read_cr3(vcpu);
6688 	sregs->cr4 = kvm_read_cr4(vcpu);
6689 	sregs->cr8 = kvm_get_cr8(vcpu);
6690 	sregs->efer = vcpu->arch.efer;
6691 	sregs->apic_base = kvm_get_apic_base(vcpu);
6692 
6693 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6694 
6695 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6696 		set_bit(vcpu->arch.interrupt.nr,
6697 			(unsigned long *)sregs->interrupt_bitmap);
6698 
6699 	return 0;
6700 }
6701 
6702 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6703 				    struct kvm_mp_state *mp_state)
6704 {
6705 	kvm_apic_accept_events(vcpu);
6706 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6707 					vcpu->arch.pv.pv_unhalted)
6708 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6709 	else
6710 		mp_state->mp_state = vcpu->arch.mp_state;
6711 
6712 	return 0;
6713 }
6714 
6715 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6716 				    struct kvm_mp_state *mp_state)
6717 {
6718 	if (!kvm_vcpu_has_lapic(vcpu) &&
6719 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6720 		return -EINVAL;
6721 
6722 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6723 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6724 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6725 	} else
6726 		vcpu->arch.mp_state = mp_state->mp_state;
6727 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6728 	return 0;
6729 }
6730 
6731 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6732 		    int reason, bool has_error_code, u32 error_code)
6733 {
6734 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6735 	int ret;
6736 
6737 	init_emulate_ctxt(vcpu);
6738 
6739 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6740 				   has_error_code, error_code);
6741 
6742 	if (ret)
6743 		return EMULATE_FAIL;
6744 
6745 	kvm_rip_write(vcpu, ctxt->eip);
6746 	kvm_set_rflags(vcpu, ctxt->eflags);
6747 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6748 	return EMULATE_DONE;
6749 }
6750 EXPORT_SYMBOL_GPL(kvm_task_switch);
6751 
6752 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6753 				  struct kvm_sregs *sregs)
6754 {
6755 	struct msr_data apic_base_msr;
6756 	int mmu_reset_needed = 0;
6757 	int pending_vec, max_bits, idx;
6758 	struct desc_ptr dt;
6759 
6760 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6761 		return -EINVAL;
6762 
6763 	dt.size = sregs->idt.limit;
6764 	dt.address = sregs->idt.base;
6765 	kvm_x86_ops->set_idt(vcpu, &dt);
6766 	dt.size = sregs->gdt.limit;
6767 	dt.address = sregs->gdt.base;
6768 	kvm_x86_ops->set_gdt(vcpu, &dt);
6769 
6770 	vcpu->arch.cr2 = sregs->cr2;
6771 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6772 	vcpu->arch.cr3 = sregs->cr3;
6773 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6774 
6775 	kvm_set_cr8(vcpu, sregs->cr8);
6776 
6777 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6778 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6779 	apic_base_msr.data = sregs->apic_base;
6780 	apic_base_msr.host_initiated = true;
6781 	kvm_set_apic_base(vcpu, &apic_base_msr);
6782 
6783 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6784 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6785 	vcpu->arch.cr0 = sregs->cr0;
6786 
6787 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6788 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6789 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6790 		kvm_update_cpuid(vcpu);
6791 
6792 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6793 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6794 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6795 		mmu_reset_needed = 1;
6796 	}
6797 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6798 
6799 	if (mmu_reset_needed)
6800 		kvm_mmu_reset_context(vcpu);
6801 
6802 	max_bits = KVM_NR_INTERRUPTS;
6803 	pending_vec = find_first_bit(
6804 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6805 	if (pending_vec < max_bits) {
6806 		kvm_queue_interrupt(vcpu, pending_vec, false);
6807 		pr_debug("Set back pending irq %d\n", pending_vec);
6808 	}
6809 
6810 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6811 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6812 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6813 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6814 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6815 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6816 
6817 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6818 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6819 
6820 	update_cr8_intercept(vcpu);
6821 
6822 	/* Older userspace won't unhalt the vcpu on reset. */
6823 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6824 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6825 	    !is_protmode(vcpu))
6826 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6827 
6828 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6829 
6830 	return 0;
6831 }
6832 
6833 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6834 					struct kvm_guest_debug *dbg)
6835 {
6836 	unsigned long rflags;
6837 	int i, r;
6838 
6839 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6840 		r = -EBUSY;
6841 		if (vcpu->arch.exception.pending)
6842 			goto out;
6843 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6844 			kvm_queue_exception(vcpu, DB_VECTOR);
6845 		else
6846 			kvm_queue_exception(vcpu, BP_VECTOR);
6847 	}
6848 
6849 	/*
6850 	 * Read rflags as long as potentially injected trace flags are still
6851 	 * filtered out.
6852 	 */
6853 	rflags = kvm_get_rflags(vcpu);
6854 
6855 	vcpu->guest_debug = dbg->control;
6856 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6857 		vcpu->guest_debug = 0;
6858 
6859 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6860 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6861 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6862 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6863 	} else {
6864 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6865 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6866 	}
6867 	kvm_update_dr7(vcpu);
6868 
6869 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6870 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6871 			get_segment_base(vcpu, VCPU_SREG_CS);
6872 
6873 	/*
6874 	 * Trigger an rflags update that will inject or remove the trace
6875 	 * flags.
6876 	 */
6877 	kvm_set_rflags(vcpu, rflags);
6878 
6879 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6880 
6881 	r = 0;
6882 
6883 out:
6884 
6885 	return r;
6886 }
6887 
6888 /*
6889  * Translate a guest virtual address to a guest physical address.
6890  */
6891 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6892 				    struct kvm_translation *tr)
6893 {
6894 	unsigned long vaddr = tr->linear_address;
6895 	gpa_t gpa;
6896 	int idx;
6897 
6898 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6899 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6900 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6901 	tr->physical_address = gpa;
6902 	tr->valid = gpa != UNMAPPED_GVA;
6903 	tr->writeable = 1;
6904 	tr->usermode = 0;
6905 
6906 	return 0;
6907 }
6908 
6909 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6910 {
6911 	struct i387_fxsave_struct *fxsave =
6912 			&vcpu->arch.guest_fpu.state->fxsave;
6913 
6914 	memcpy(fpu->fpr, fxsave->st_space, 128);
6915 	fpu->fcw = fxsave->cwd;
6916 	fpu->fsw = fxsave->swd;
6917 	fpu->ftwx = fxsave->twd;
6918 	fpu->last_opcode = fxsave->fop;
6919 	fpu->last_ip = fxsave->rip;
6920 	fpu->last_dp = fxsave->rdp;
6921 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6922 
6923 	return 0;
6924 }
6925 
6926 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6927 {
6928 	struct i387_fxsave_struct *fxsave =
6929 			&vcpu->arch.guest_fpu.state->fxsave;
6930 
6931 	memcpy(fxsave->st_space, fpu->fpr, 128);
6932 	fxsave->cwd = fpu->fcw;
6933 	fxsave->swd = fpu->fsw;
6934 	fxsave->twd = fpu->ftwx;
6935 	fxsave->fop = fpu->last_opcode;
6936 	fxsave->rip = fpu->last_ip;
6937 	fxsave->rdp = fpu->last_dp;
6938 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6939 
6940 	return 0;
6941 }
6942 
6943 int fx_init(struct kvm_vcpu *vcpu)
6944 {
6945 	int err;
6946 
6947 	err = fpu_alloc(&vcpu->arch.guest_fpu);
6948 	if (err)
6949 		return err;
6950 
6951 	fpu_finit(&vcpu->arch.guest_fpu);
6952 	if (cpu_has_xsaves)
6953 		vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
6954 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
6955 
6956 	/*
6957 	 * Ensure guest xcr0 is valid for loading
6958 	 */
6959 	vcpu->arch.xcr0 = XSTATE_FP;
6960 
6961 	vcpu->arch.cr0 |= X86_CR0_ET;
6962 
6963 	return 0;
6964 }
6965 EXPORT_SYMBOL_GPL(fx_init);
6966 
6967 static void fx_free(struct kvm_vcpu *vcpu)
6968 {
6969 	fpu_free(&vcpu->arch.guest_fpu);
6970 }
6971 
6972 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6973 {
6974 	if (vcpu->guest_fpu_loaded)
6975 		return;
6976 
6977 	/*
6978 	 * Restore all possible states in the guest,
6979 	 * and assume host would use all available bits.
6980 	 * Guest xcr0 would be loaded later.
6981 	 */
6982 	kvm_put_guest_xcr0(vcpu);
6983 	vcpu->guest_fpu_loaded = 1;
6984 	__kernel_fpu_begin();
6985 	fpu_restore_checking(&vcpu->arch.guest_fpu);
6986 	trace_kvm_fpu(1);
6987 }
6988 
6989 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6990 {
6991 	kvm_put_guest_xcr0(vcpu);
6992 
6993 	if (!vcpu->guest_fpu_loaded)
6994 		return;
6995 
6996 	vcpu->guest_fpu_loaded = 0;
6997 	fpu_save_init(&vcpu->arch.guest_fpu);
6998 	__kernel_fpu_end();
6999 	++vcpu->stat.fpu_reload;
7000 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7001 	trace_kvm_fpu(0);
7002 }
7003 
7004 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7005 {
7006 	kvmclock_reset(vcpu);
7007 
7008 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7009 	fx_free(vcpu);
7010 	kvm_x86_ops->vcpu_free(vcpu);
7011 }
7012 
7013 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7014 						unsigned int id)
7015 {
7016 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7017 		printk_once(KERN_WARNING
7018 		"kvm: SMP vm created on host with unstable TSC; "
7019 		"guest TSC will not be reliable\n");
7020 	return kvm_x86_ops->vcpu_create(kvm, id);
7021 }
7022 
7023 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7024 {
7025 	int r;
7026 
7027 	vcpu->arch.mtrr_state.have_fixed = 1;
7028 	r = vcpu_load(vcpu);
7029 	if (r)
7030 		return r;
7031 	kvm_vcpu_reset(vcpu);
7032 	kvm_mmu_setup(vcpu);
7033 	vcpu_put(vcpu);
7034 
7035 	return r;
7036 }
7037 
7038 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7039 {
7040 	struct msr_data msr;
7041 	struct kvm *kvm = vcpu->kvm;
7042 
7043 	if (vcpu_load(vcpu))
7044 		return;
7045 	msr.data = 0x0;
7046 	msr.index = MSR_IA32_TSC;
7047 	msr.host_initiated = true;
7048 	kvm_write_tsc(vcpu, &msr);
7049 	vcpu_put(vcpu);
7050 
7051 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7052 					KVMCLOCK_SYNC_PERIOD);
7053 }
7054 
7055 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7056 {
7057 	int r;
7058 	vcpu->arch.apf.msr_val = 0;
7059 
7060 	r = vcpu_load(vcpu);
7061 	BUG_ON(r);
7062 	kvm_mmu_unload(vcpu);
7063 	vcpu_put(vcpu);
7064 
7065 	fx_free(vcpu);
7066 	kvm_x86_ops->vcpu_free(vcpu);
7067 }
7068 
7069 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7070 {
7071 	atomic_set(&vcpu->arch.nmi_queued, 0);
7072 	vcpu->arch.nmi_pending = 0;
7073 	vcpu->arch.nmi_injected = false;
7074 	kvm_clear_interrupt_queue(vcpu);
7075 	kvm_clear_exception_queue(vcpu);
7076 
7077 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7078 	vcpu->arch.dr6 = DR6_INIT;
7079 	kvm_update_dr6(vcpu);
7080 	vcpu->arch.dr7 = DR7_FIXED_1;
7081 	kvm_update_dr7(vcpu);
7082 
7083 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7084 	vcpu->arch.apf.msr_val = 0;
7085 	vcpu->arch.st.msr_val = 0;
7086 
7087 	kvmclock_reset(vcpu);
7088 
7089 	kvm_clear_async_pf_completion_queue(vcpu);
7090 	kvm_async_pf_hash_reset(vcpu);
7091 	vcpu->arch.apf.halted = false;
7092 
7093 	kvm_pmu_reset(vcpu);
7094 
7095 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7096 	vcpu->arch.regs_avail = ~0;
7097 	vcpu->arch.regs_dirty = ~0;
7098 
7099 	kvm_x86_ops->vcpu_reset(vcpu);
7100 }
7101 
7102 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7103 {
7104 	struct kvm_segment cs;
7105 
7106 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7107 	cs.selector = vector << 8;
7108 	cs.base = vector << 12;
7109 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7110 	kvm_rip_write(vcpu, 0);
7111 }
7112 
7113 int kvm_arch_hardware_enable(void)
7114 {
7115 	struct kvm *kvm;
7116 	struct kvm_vcpu *vcpu;
7117 	int i;
7118 	int ret;
7119 	u64 local_tsc;
7120 	u64 max_tsc = 0;
7121 	bool stable, backwards_tsc = false;
7122 
7123 	kvm_shared_msr_cpu_online();
7124 	ret = kvm_x86_ops->hardware_enable();
7125 	if (ret != 0)
7126 		return ret;
7127 
7128 	local_tsc = native_read_tsc();
7129 	stable = !check_tsc_unstable();
7130 	list_for_each_entry(kvm, &vm_list, vm_list) {
7131 		kvm_for_each_vcpu(i, vcpu, kvm) {
7132 			if (!stable && vcpu->cpu == smp_processor_id())
7133 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7134 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7135 				backwards_tsc = true;
7136 				if (vcpu->arch.last_host_tsc > max_tsc)
7137 					max_tsc = vcpu->arch.last_host_tsc;
7138 			}
7139 		}
7140 	}
7141 
7142 	/*
7143 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7144 	 * platforms that reset TSC during suspend or hibernate actions, but
7145 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7146 	 * detect that condition here, which happens early in CPU bringup,
7147 	 * before any KVM threads can be running.  Unfortunately, we can't
7148 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7149 	 * enough into CPU bringup that we know how much real time has actually
7150 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7151 	 * variables that haven't been updated yet.
7152 	 *
7153 	 * So we simply find the maximum observed TSC above, then record the
7154 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7155 	 * the adjustment will be applied.  Note that we accumulate
7156 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7157 	 * gets a chance to run again.  In the event that no KVM threads get a
7158 	 * chance to run, we will miss the entire elapsed period, as we'll have
7159 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7160 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7161 	 * uniform across all VCPUs (not to mention the scenario is extremely
7162 	 * unlikely). It is possible that a second hibernate recovery happens
7163 	 * much faster than a first, causing the observed TSC here to be
7164 	 * smaller; this would require additional padding adjustment, which is
7165 	 * why we set last_host_tsc to the local tsc observed here.
7166 	 *
7167 	 * N.B. - this code below runs only on platforms with reliable TSC,
7168 	 * as that is the only way backwards_tsc is set above.  Also note
7169 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7170 	 * have the same delta_cyc adjustment applied if backwards_tsc
7171 	 * is detected.  Note further, this adjustment is only done once,
7172 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7173 	 * called multiple times (one for each physical CPU bringup).
7174 	 *
7175 	 * Platforms with unreliable TSCs don't have to deal with this, they
7176 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7177 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7178 	 * guarantee that they stay in perfect synchronization.
7179 	 */
7180 	if (backwards_tsc) {
7181 		u64 delta_cyc = max_tsc - local_tsc;
7182 		backwards_tsc_observed = true;
7183 		list_for_each_entry(kvm, &vm_list, vm_list) {
7184 			kvm_for_each_vcpu(i, vcpu, kvm) {
7185 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7186 				vcpu->arch.last_host_tsc = local_tsc;
7187 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7188 			}
7189 
7190 			/*
7191 			 * We have to disable TSC offset matching.. if you were
7192 			 * booting a VM while issuing an S4 host suspend....
7193 			 * you may have some problem.  Solving this issue is
7194 			 * left as an exercise to the reader.
7195 			 */
7196 			kvm->arch.last_tsc_nsec = 0;
7197 			kvm->arch.last_tsc_write = 0;
7198 		}
7199 
7200 	}
7201 	return 0;
7202 }
7203 
7204 void kvm_arch_hardware_disable(void)
7205 {
7206 	kvm_x86_ops->hardware_disable();
7207 	drop_user_return_notifiers();
7208 }
7209 
7210 int kvm_arch_hardware_setup(void)
7211 {
7212 	return kvm_x86_ops->hardware_setup();
7213 }
7214 
7215 void kvm_arch_hardware_unsetup(void)
7216 {
7217 	kvm_x86_ops->hardware_unsetup();
7218 }
7219 
7220 void kvm_arch_check_processor_compat(void *rtn)
7221 {
7222 	kvm_x86_ops->check_processor_compatibility(rtn);
7223 }
7224 
7225 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7226 {
7227 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7228 }
7229 
7230 struct static_key kvm_no_apic_vcpu __read_mostly;
7231 
7232 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7233 {
7234 	struct page *page;
7235 	struct kvm *kvm;
7236 	int r;
7237 
7238 	BUG_ON(vcpu->kvm == NULL);
7239 	kvm = vcpu->kvm;
7240 
7241 	vcpu->arch.pv.pv_unhalted = false;
7242 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7243 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7244 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7245 	else
7246 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7247 
7248 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7249 	if (!page) {
7250 		r = -ENOMEM;
7251 		goto fail;
7252 	}
7253 	vcpu->arch.pio_data = page_address(page);
7254 
7255 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7256 
7257 	r = kvm_mmu_create(vcpu);
7258 	if (r < 0)
7259 		goto fail_free_pio_data;
7260 
7261 	if (irqchip_in_kernel(kvm)) {
7262 		r = kvm_create_lapic(vcpu);
7263 		if (r < 0)
7264 			goto fail_mmu_destroy;
7265 	} else
7266 		static_key_slow_inc(&kvm_no_apic_vcpu);
7267 
7268 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7269 				       GFP_KERNEL);
7270 	if (!vcpu->arch.mce_banks) {
7271 		r = -ENOMEM;
7272 		goto fail_free_lapic;
7273 	}
7274 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7275 
7276 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7277 		r = -ENOMEM;
7278 		goto fail_free_mce_banks;
7279 	}
7280 
7281 	r = fx_init(vcpu);
7282 	if (r)
7283 		goto fail_free_wbinvd_dirty_mask;
7284 
7285 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7286 	vcpu->arch.pv_time_enabled = false;
7287 
7288 	vcpu->arch.guest_supported_xcr0 = 0;
7289 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7290 
7291 	kvm_async_pf_hash_reset(vcpu);
7292 	kvm_pmu_init(vcpu);
7293 
7294 	return 0;
7295 fail_free_wbinvd_dirty_mask:
7296 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7297 fail_free_mce_banks:
7298 	kfree(vcpu->arch.mce_banks);
7299 fail_free_lapic:
7300 	kvm_free_lapic(vcpu);
7301 fail_mmu_destroy:
7302 	kvm_mmu_destroy(vcpu);
7303 fail_free_pio_data:
7304 	free_page((unsigned long)vcpu->arch.pio_data);
7305 fail:
7306 	return r;
7307 }
7308 
7309 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7310 {
7311 	int idx;
7312 
7313 	kvm_pmu_destroy(vcpu);
7314 	kfree(vcpu->arch.mce_banks);
7315 	kvm_free_lapic(vcpu);
7316 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7317 	kvm_mmu_destroy(vcpu);
7318 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7319 	free_page((unsigned long)vcpu->arch.pio_data);
7320 	if (!irqchip_in_kernel(vcpu->kvm))
7321 		static_key_slow_dec(&kvm_no_apic_vcpu);
7322 }
7323 
7324 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7325 {
7326 	kvm_x86_ops->sched_in(vcpu, cpu);
7327 }
7328 
7329 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7330 {
7331 	if (type)
7332 		return -EINVAL;
7333 
7334 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7335 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7336 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7337 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7338 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7339 
7340 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7341 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7342 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7343 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7344 		&kvm->arch.irq_sources_bitmap);
7345 
7346 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7347 	mutex_init(&kvm->arch.apic_map_lock);
7348 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7349 
7350 	pvclock_update_vm_gtod_copy(kvm);
7351 
7352 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7353 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7354 
7355 	return 0;
7356 }
7357 
7358 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7359 {
7360 	int r;
7361 	r = vcpu_load(vcpu);
7362 	BUG_ON(r);
7363 	kvm_mmu_unload(vcpu);
7364 	vcpu_put(vcpu);
7365 }
7366 
7367 static void kvm_free_vcpus(struct kvm *kvm)
7368 {
7369 	unsigned int i;
7370 	struct kvm_vcpu *vcpu;
7371 
7372 	/*
7373 	 * Unpin any mmu pages first.
7374 	 */
7375 	kvm_for_each_vcpu(i, vcpu, kvm) {
7376 		kvm_clear_async_pf_completion_queue(vcpu);
7377 		kvm_unload_vcpu_mmu(vcpu);
7378 	}
7379 	kvm_for_each_vcpu(i, vcpu, kvm)
7380 		kvm_arch_vcpu_free(vcpu);
7381 
7382 	mutex_lock(&kvm->lock);
7383 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7384 		kvm->vcpus[i] = NULL;
7385 
7386 	atomic_set(&kvm->online_vcpus, 0);
7387 	mutex_unlock(&kvm->lock);
7388 }
7389 
7390 void kvm_arch_sync_events(struct kvm *kvm)
7391 {
7392 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7393 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7394 	kvm_free_all_assigned_devices(kvm);
7395 	kvm_free_pit(kvm);
7396 }
7397 
7398 void kvm_arch_destroy_vm(struct kvm *kvm)
7399 {
7400 	if (current->mm == kvm->mm) {
7401 		/*
7402 		 * Free memory regions allocated on behalf of userspace,
7403 		 * unless the the memory map has changed due to process exit
7404 		 * or fd copying.
7405 		 */
7406 		struct kvm_userspace_memory_region mem;
7407 		memset(&mem, 0, sizeof(mem));
7408 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7409 		kvm_set_memory_region(kvm, &mem);
7410 
7411 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7412 		kvm_set_memory_region(kvm, &mem);
7413 
7414 		mem.slot = TSS_PRIVATE_MEMSLOT;
7415 		kvm_set_memory_region(kvm, &mem);
7416 	}
7417 	kvm_iommu_unmap_guest(kvm);
7418 	kfree(kvm->arch.vpic);
7419 	kfree(kvm->arch.vioapic);
7420 	kvm_free_vcpus(kvm);
7421 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7422 }
7423 
7424 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7425 			   struct kvm_memory_slot *dont)
7426 {
7427 	int i;
7428 
7429 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7430 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7431 			kvm_kvfree(free->arch.rmap[i]);
7432 			free->arch.rmap[i] = NULL;
7433 		}
7434 		if (i == 0)
7435 			continue;
7436 
7437 		if (!dont || free->arch.lpage_info[i - 1] !=
7438 			     dont->arch.lpage_info[i - 1]) {
7439 			kvm_kvfree(free->arch.lpage_info[i - 1]);
7440 			free->arch.lpage_info[i - 1] = NULL;
7441 		}
7442 	}
7443 }
7444 
7445 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7446 			    unsigned long npages)
7447 {
7448 	int i;
7449 
7450 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7451 		unsigned long ugfn;
7452 		int lpages;
7453 		int level = i + 1;
7454 
7455 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7456 				      slot->base_gfn, level) + 1;
7457 
7458 		slot->arch.rmap[i] =
7459 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7460 		if (!slot->arch.rmap[i])
7461 			goto out_free;
7462 		if (i == 0)
7463 			continue;
7464 
7465 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7466 					sizeof(*slot->arch.lpage_info[i - 1]));
7467 		if (!slot->arch.lpage_info[i - 1])
7468 			goto out_free;
7469 
7470 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7471 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7472 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7473 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7474 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7475 		/*
7476 		 * If the gfn and userspace address are not aligned wrt each
7477 		 * other, or if explicitly asked to, disable large page
7478 		 * support for this slot
7479 		 */
7480 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7481 		    !kvm_largepages_enabled()) {
7482 			unsigned long j;
7483 
7484 			for (j = 0; j < lpages; ++j)
7485 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7486 		}
7487 	}
7488 
7489 	return 0;
7490 
7491 out_free:
7492 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7493 		kvm_kvfree(slot->arch.rmap[i]);
7494 		slot->arch.rmap[i] = NULL;
7495 		if (i == 0)
7496 			continue;
7497 
7498 		kvm_kvfree(slot->arch.lpage_info[i - 1]);
7499 		slot->arch.lpage_info[i - 1] = NULL;
7500 	}
7501 	return -ENOMEM;
7502 }
7503 
7504 void kvm_arch_memslots_updated(struct kvm *kvm)
7505 {
7506 	/*
7507 	 * memslots->generation has been incremented.
7508 	 * mmio generation may have reached its maximum value.
7509 	 */
7510 	kvm_mmu_invalidate_mmio_sptes(kvm);
7511 }
7512 
7513 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7514 				struct kvm_memory_slot *memslot,
7515 				struct kvm_userspace_memory_region *mem,
7516 				enum kvm_mr_change change)
7517 {
7518 	/*
7519 	 * Only private memory slots need to be mapped here since
7520 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7521 	 */
7522 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7523 		unsigned long userspace_addr;
7524 
7525 		/*
7526 		 * MAP_SHARED to prevent internal slot pages from being moved
7527 		 * by fork()/COW.
7528 		 */
7529 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7530 					 PROT_READ | PROT_WRITE,
7531 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7532 
7533 		if (IS_ERR((void *)userspace_addr))
7534 			return PTR_ERR((void *)userspace_addr);
7535 
7536 		memslot->userspace_addr = userspace_addr;
7537 	}
7538 
7539 	return 0;
7540 }
7541 
7542 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7543 				     struct kvm_memory_slot *new)
7544 {
7545 	/* Still write protect RO slot */
7546 	if (new->flags & KVM_MEM_READONLY) {
7547 		kvm_mmu_slot_remove_write_access(kvm, new);
7548 		return;
7549 	}
7550 
7551 	/*
7552 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7553 	 *
7554 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7555 	 *
7556 	 *  - KVM_MR_CREATE with dirty logging is disabled
7557 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7558 	 *
7559 	 * The reason is, in case of PML, we need to set D-bit for any slots
7560 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7561 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7562 	 * guarantees leaving PML enabled during guest's lifetime won't have
7563 	 * any additonal overhead from PML when guest is running with dirty
7564 	 * logging disabled for memory slots.
7565 	 *
7566 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7567 	 * to dirty logging mode.
7568 	 *
7569 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7570 	 *
7571 	 * In case of write protect:
7572 	 *
7573 	 * Write protect all pages for dirty logging.
7574 	 *
7575 	 * All the sptes including the large sptes which point to this
7576 	 * slot are set to readonly. We can not create any new large
7577 	 * spte on this slot until the end of the logging.
7578 	 *
7579 	 * See the comments in fast_page_fault().
7580 	 */
7581 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7582 		if (kvm_x86_ops->slot_enable_log_dirty)
7583 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7584 		else
7585 			kvm_mmu_slot_remove_write_access(kvm, new);
7586 	} else {
7587 		if (kvm_x86_ops->slot_disable_log_dirty)
7588 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7589 	}
7590 }
7591 
7592 void kvm_arch_commit_memory_region(struct kvm *kvm,
7593 				struct kvm_userspace_memory_region *mem,
7594 				const struct kvm_memory_slot *old,
7595 				enum kvm_mr_change change)
7596 {
7597 	struct kvm_memory_slot *new;
7598 	int nr_mmu_pages = 0;
7599 
7600 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7601 		int ret;
7602 
7603 		ret = vm_munmap(old->userspace_addr,
7604 				old->npages * PAGE_SIZE);
7605 		if (ret < 0)
7606 			printk(KERN_WARNING
7607 			       "kvm_vm_ioctl_set_memory_region: "
7608 			       "failed to munmap memory\n");
7609 	}
7610 
7611 	if (!kvm->arch.n_requested_mmu_pages)
7612 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7613 
7614 	if (nr_mmu_pages)
7615 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7616 
7617 	/* It's OK to get 'new' slot here as it has already been installed */
7618 	new = id_to_memslot(kvm->memslots, mem->slot);
7619 
7620 	/*
7621 	 * Set up write protection and/or dirty logging for the new slot.
7622 	 *
7623 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7624 	 * been zapped so no dirty logging staff is needed for old slot. For
7625 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7626 	 * new and it's also covered when dealing with the new slot.
7627 	 */
7628 	if (change != KVM_MR_DELETE)
7629 		kvm_mmu_slot_apply_flags(kvm, new);
7630 }
7631 
7632 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7633 {
7634 	kvm_mmu_invalidate_zap_all_pages(kvm);
7635 }
7636 
7637 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7638 				   struct kvm_memory_slot *slot)
7639 {
7640 	kvm_mmu_invalidate_zap_all_pages(kvm);
7641 }
7642 
7643 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7644 {
7645 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7646 		kvm_x86_ops->check_nested_events(vcpu, false);
7647 
7648 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7649 		!vcpu->arch.apf.halted)
7650 		|| !list_empty_careful(&vcpu->async_pf.done)
7651 		|| kvm_apic_has_events(vcpu)
7652 		|| vcpu->arch.pv.pv_unhalted
7653 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7654 		(kvm_arch_interrupt_allowed(vcpu) &&
7655 		 kvm_cpu_has_interrupt(vcpu));
7656 }
7657 
7658 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7659 {
7660 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7661 }
7662 
7663 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7664 {
7665 	return kvm_x86_ops->interrupt_allowed(vcpu);
7666 }
7667 
7668 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7669 {
7670 	if (is_64_bit_mode(vcpu))
7671 		return kvm_rip_read(vcpu);
7672 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7673 		     kvm_rip_read(vcpu));
7674 }
7675 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7676 
7677 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7678 {
7679 	return kvm_get_linear_rip(vcpu) == linear_rip;
7680 }
7681 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7682 
7683 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7684 {
7685 	unsigned long rflags;
7686 
7687 	rflags = kvm_x86_ops->get_rflags(vcpu);
7688 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7689 		rflags &= ~X86_EFLAGS_TF;
7690 	return rflags;
7691 }
7692 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7693 
7694 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7695 {
7696 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7697 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7698 		rflags |= X86_EFLAGS_TF;
7699 	kvm_x86_ops->set_rflags(vcpu, rflags);
7700 }
7701 
7702 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7703 {
7704 	__kvm_set_rflags(vcpu, rflags);
7705 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7706 }
7707 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7708 
7709 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7710 {
7711 	int r;
7712 
7713 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7714 	      work->wakeup_all)
7715 		return;
7716 
7717 	r = kvm_mmu_reload(vcpu);
7718 	if (unlikely(r))
7719 		return;
7720 
7721 	if (!vcpu->arch.mmu.direct_map &&
7722 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7723 		return;
7724 
7725 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7726 }
7727 
7728 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7729 {
7730 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7731 }
7732 
7733 static inline u32 kvm_async_pf_next_probe(u32 key)
7734 {
7735 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7736 }
7737 
7738 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7739 {
7740 	u32 key = kvm_async_pf_hash_fn(gfn);
7741 
7742 	while (vcpu->arch.apf.gfns[key] != ~0)
7743 		key = kvm_async_pf_next_probe(key);
7744 
7745 	vcpu->arch.apf.gfns[key] = gfn;
7746 }
7747 
7748 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7749 {
7750 	int i;
7751 	u32 key = kvm_async_pf_hash_fn(gfn);
7752 
7753 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7754 		     (vcpu->arch.apf.gfns[key] != gfn &&
7755 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7756 		key = kvm_async_pf_next_probe(key);
7757 
7758 	return key;
7759 }
7760 
7761 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7762 {
7763 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7764 }
7765 
7766 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7767 {
7768 	u32 i, j, k;
7769 
7770 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7771 	while (true) {
7772 		vcpu->arch.apf.gfns[i] = ~0;
7773 		do {
7774 			j = kvm_async_pf_next_probe(j);
7775 			if (vcpu->arch.apf.gfns[j] == ~0)
7776 				return;
7777 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7778 			/*
7779 			 * k lies cyclically in ]i,j]
7780 			 * |    i.k.j |
7781 			 * |....j i.k.| or  |.k..j i...|
7782 			 */
7783 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7784 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7785 		i = j;
7786 	}
7787 }
7788 
7789 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7790 {
7791 
7792 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7793 				      sizeof(val));
7794 }
7795 
7796 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7797 				     struct kvm_async_pf *work)
7798 {
7799 	struct x86_exception fault;
7800 
7801 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7802 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7803 
7804 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7805 	    (vcpu->arch.apf.send_user_only &&
7806 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7807 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7808 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7809 		fault.vector = PF_VECTOR;
7810 		fault.error_code_valid = true;
7811 		fault.error_code = 0;
7812 		fault.nested_page_fault = false;
7813 		fault.address = work->arch.token;
7814 		kvm_inject_page_fault(vcpu, &fault);
7815 	}
7816 }
7817 
7818 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7819 				 struct kvm_async_pf *work)
7820 {
7821 	struct x86_exception fault;
7822 
7823 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7824 	if (work->wakeup_all)
7825 		work->arch.token = ~0; /* broadcast wakeup */
7826 	else
7827 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7828 
7829 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7830 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7831 		fault.vector = PF_VECTOR;
7832 		fault.error_code_valid = true;
7833 		fault.error_code = 0;
7834 		fault.nested_page_fault = false;
7835 		fault.address = work->arch.token;
7836 		kvm_inject_page_fault(vcpu, &fault);
7837 	}
7838 	vcpu->arch.apf.halted = false;
7839 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7840 }
7841 
7842 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7843 {
7844 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7845 		return true;
7846 	else
7847 		return !kvm_event_needs_reinjection(vcpu) &&
7848 			kvm_x86_ops->interrupt_allowed(vcpu);
7849 }
7850 
7851 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7852 {
7853 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7854 }
7855 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7856 
7857 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7858 {
7859 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7860 }
7861 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7862 
7863 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7864 {
7865 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7866 }
7867 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7868 
7869 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7870 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7872 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7873 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
7884