xref: /linux/arch/x86/kvm/x86.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32 
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58 
59 #include <trace/events/kvm.h>
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73 
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78 
79 #define emul_to_vcpu(ctxt) \
80 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81 
82 /* EFER defaults:
83  * - enable syscall per default because its emulated by KVM
84  * - enable LME and LMA per default on 64 bit KVM
85  */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92 
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95 
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98 
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103 
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106 
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109 
110 unsigned int min_timer_period_us = 500;
111 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
112 
113 static bool __read_mostly kvmclock_periodic_sync = true;
114 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
115 
116 bool __read_mostly kvm_has_tsc_control;
117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
118 u32  __read_mostly kvm_max_guest_tsc_khz;
119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
120 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
122 u64  __read_mostly kvm_max_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
124 u64 __read_mostly kvm_default_tsc_scaling_ratio;
125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
126 
127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
128 static u32 __read_mostly tsc_tolerance_ppm = 250;
129 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
130 
131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
132 unsigned int __read_mostly lapic_timer_advance_ns = 0;
133 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
134 
135 static bool __read_mostly vector_hashing = true;
136 module_param(vector_hashing, bool, S_IRUGO);
137 
138 #define KVM_NR_SHARED_MSRS 16
139 
140 struct kvm_shared_msrs_global {
141 	int nr;
142 	u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144 
145 struct kvm_shared_msrs {
146 	struct user_return_notifier urn;
147 	bool registered;
148 	struct kvm_shared_msr_values {
149 		u64 host;
150 		u64 curr;
151 	} values[KVM_NR_SHARED_MSRS];
152 };
153 
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156 
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
159 	{ "pf_guest", VCPU_STAT(pf_guest) },
160 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
161 	{ "invlpg", VCPU_STAT(invlpg) },
162 	{ "exits", VCPU_STAT(exits) },
163 	{ "io_exits", VCPU_STAT(io_exits) },
164 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
165 	{ "signal_exits", VCPU_STAT(signal_exits) },
166 	{ "irq_window", VCPU_STAT(irq_window_exits) },
167 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
168 	{ "halt_exits", VCPU_STAT(halt_exits) },
169 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 	{ "hypercalls", VCPU_STAT(hypercalls) },
174 	{ "request_irq", VCPU_STAT(request_irq_exits) },
175 	{ "irq_exits", VCPU_STAT(irq_exits) },
176 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
177 	{ "efer_reload", VCPU_STAT(efer_reload) },
178 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
179 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
180 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 	{ "irq_injections", VCPU_STAT(irq_injections) },
182 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
183 	{ "req_event", VCPU_STAT(req_event) },
184 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
185 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
186 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
187 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
188 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
189 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
190 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
191 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
192 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
193 	{ "largepages", VM_STAT(lpages) },
194 	{ "max_mmu_page_hash_collisions",
195 		VM_STAT(max_mmu_page_hash_collisions) },
196 	{ NULL }
197 };
198 
199 u64 __read_mostly host_xcr0;
200 
201 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
202 
203 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
204 {
205 	int i;
206 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
207 		vcpu->arch.apf.gfns[i] = ~0;
208 }
209 
210 static void kvm_on_user_return(struct user_return_notifier *urn)
211 {
212 	unsigned slot;
213 	struct kvm_shared_msrs *locals
214 		= container_of(urn, struct kvm_shared_msrs, urn);
215 	struct kvm_shared_msr_values *values;
216 	unsigned long flags;
217 
218 	/*
219 	 * Disabling irqs at this point since the following code could be
220 	 * interrupted and executed through kvm_arch_hardware_disable()
221 	 */
222 	local_irq_save(flags);
223 	if (locals->registered) {
224 		locals->registered = false;
225 		user_return_notifier_unregister(urn);
226 	}
227 	local_irq_restore(flags);
228 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
229 		values = &locals->values[slot];
230 		if (values->host != values->curr) {
231 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
232 			values->curr = values->host;
233 		}
234 	}
235 }
236 
237 static void shared_msr_update(unsigned slot, u32 msr)
238 {
239 	u64 value;
240 	unsigned int cpu = smp_processor_id();
241 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242 
243 	/* only read, and nobody should modify it at this time,
244 	 * so don't need lock */
245 	if (slot >= shared_msrs_global.nr) {
246 		printk(KERN_ERR "kvm: invalid MSR slot!");
247 		return;
248 	}
249 	rdmsrl_safe(msr, &value);
250 	smsr->values[slot].host = value;
251 	smsr->values[slot].curr = value;
252 }
253 
254 void kvm_define_shared_msr(unsigned slot, u32 msr)
255 {
256 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
257 	shared_msrs_global.msrs[slot] = msr;
258 	if (slot >= shared_msrs_global.nr)
259 		shared_msrs_global.nr = slot + 1;
260 }
261 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
262 
263 static void kvm_shared_msr_cpu_online(void)
264 {
265 	unsigned i;
266 
267 	for (i = 0; i < shared_msrs_global.nr; ++i)
268 		shared_msr_update(i, shared_msrs_global.msrs[i]);
269 }
270 
271 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
272 {
273 	unsigned int cpu = smp_processor_id();
274 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
275 	int err;
276 
277 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
278 		return 0;
279 	smsr->values[slot].curr = value;
280 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
281 	if (err)
282 		return 1;
283 
284 	if (!smsr->registered) {
285 		smsr->urn.on_user_return = kvm_on_user_return;
286 		user_return_notifier_register(&smsr->urn);
287 		smsr->registered = true;
288 	}
289 	return 0;
290 }
291 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
292 
293 static void drop_user_return_notifiers(void)
294 {
295 	unsigned int cpu = smp_processor_id();
296 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
297 
298 	if (smsr->registered)
299 		kvm_on_user_return(&smsr->urn);
300 }
301 
302 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
303 {
304 	return vcpu->arch.apic_base;
305 }
306 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
307 
308 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
309 {
310 	u64 old_state = vcpu->arch.apic_base &
311 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
312 	u64 new_state = msr_info->data &
313 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
314 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
315 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
316 
317 	if (!msr_info->host_initiated &&
318 	    ((msr_info->data & reserved_bits) != 0 ||
319 	     new_state == X2APIC_ENABLE ||
320 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
321 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
322 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
323 	      old_state == 0)))
324 		return 1;
325 
326 	kvm_lapic_set_base(vcpu, msr_info->data);
327 	return 0;
328 }
329 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
330 
331 asmlinkage __visible void kvm_spurious_fault(void)
332 {
333 	/* Fault while not rebooting.  We want the trace. */
334 	BUG();
335 }
336 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
337 
338 #define EXCPT_BENIGN		0
339 #define EXCPT_CONTRIBUTORY	1
340 #define EXCPT_PF		2
341 
342 static int exception_class(int vector)
343 {
344 	switch (vector) {
345 	case PF_VECTOR:
346 		return EXCPT_PF;
347 	case DE_VECTOR:
348 	case TS_VECTOR:
349 	case NP_VECTOR:
350 	case SS_VECTOR:
351 	case GP_VECTOR:
352 		return EXCPT_CONTRIBUTORY;
353 	default:
354 		break;
355 	}
356 	return EXCPT_BENIGN;
357 }
358 
359 #define EXCPT_FAULT		0
360 #define EXCPT_TRAP		1
361 #define EXCPT_ABORT		2
362 #define EXCPT_INTERRUPT		3
363 
364 static int exception_type(int vector)
365 {
366 	unsigned int mask;
367 
368 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
369 		return EXCPT_INTERRUPT;
370 
371 	mask = 1 << vector;
372 
373 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
374 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
375 		return EXCPT_TRAP;
376 
377 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
378 		return EXCPT_ABORT;
379 
380 	/* Reserved exceptions will result in fault */
381 	return EXCPT_FAULT;
382 }
383 
384 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
385 		unsigned nr, bool has_error, u32 error_code,
386 		bool reinject)
387 {
388 	u32 prev_nr;
389 	int class1, class2;
390 
391 	kvm_make_request(KVM_REQ_EVENT, vcpu);
392 
393 	if (!vcpu->arch.exception.pending) {
394 	queue:
395 		if (has_error && !is_protmode(vcpu))
396 			has_error = false;
397 		vcpu->arch.exception.pending = true;
398 		vcpu->arch.exception.has_error_code = has_error;
399 		vcpu->arch.exception.nr = nr;
400 		vcpu->arch.exception.error_code = error_code;
401 		vcpu->arch.exception.reinject = reinject;
402 		return;
403 	}
404 
405 	/* to check exception */
406 	prev_nr = vcpu->arch.exception.nr;
407 	if (prev_nr == DF_VECTOR) {
408 		/* triple fault -> shutdown */
409 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
410 		return;
411 	}
412 	class1 = exception_class(prev_nr);
413 	class2 = exception_class(nr);
414 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
415 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
416 		/* generate double fault per SDM Table 5-5 */
417 		vcpu->arch.exception.pending = true;
418 		vcpu->arch.exception.has_error_code = true;
419 		vcpu->arch.exception.nr = DF_VECTOR;
420 		vcpu->arch.exception.error_code = 0;
421 	} else
422 		/* replace previous exception with a new one in a hope
423 		   that instruction re-execution will regenerate lost
424 		   exception */
425 		goto queue;
426 }
427 
428 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
429 {
430 	kvm_multiple_exception(vcpu, nr, false, 0, false);
431 }
432 EXPORT_SYMBOL_GPL(kvm_queue_exception);
433 
434 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
435 {
436 	kvm_multiple_exception(vcpu, nr, false, 0, true);
437 }
438 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
439 
440 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
441 {
442 	if (err)
443 		kvm_inject_gp(vcpu, 0);
444 	else
445 		return kvm_skip_emulated_instruction(vcpu);
446 
447 	return 1;
448 }
449 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
450 
451 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
452 {
453 	++vcpu->stat.pf_guest;
454 	vcpu->arch.exception.nested_apf =
455 		is_guest_mode(vcpu) && fault->async_page_fault;
456 	if (vcpu->arch.exception.nested_apf)
457 		vcpu->arch.apf.nested_apf_token = fault->address;
458 	else
459 		vcpu->arch.cr2 = fault->address;
460 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
461 }
462 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
463 
464 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
465 {
466 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
467 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
468 	else
469 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
470 
471 	return fault->nested_page_fault;
472 }
473 
474 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
475 {
476 	atomic_inc(&vcpu->arch.nmi_queued);
477 	kvm_make_request(KVM_REQ_NMI, vcpu);
478 }
479 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
480 
481 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
482 {
483 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
484 }
485 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
486 
487 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
488 {
489 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
490 }
491 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
492 
493 /*
494  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
495  * a #GP and return false.
496  */
497 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
498 {
499 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
500 		return true;
501 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
502 	return false;
503 }
504 EXPORT_SYMBOL_GPL(kvm_require_cpl);
505 
506 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
507 {
508 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
509 		return true;
510 
511 	kvm_queue_exception(vcpu, UD_VECTOR);
512 	return false;
513 }
514 EXPORT_SYMBOL_GPL(kvm_require_dr);
515 
516 /*
517  * This function will be used to read from the physical memory of the currently
518  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
519  * can read from guest physical or from the guest's guest physical memory.
520  */
521 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
522 			    gfn_t ngfn, void *data, int offset, int len,
523 			    u32 access)
524 {
525 	struct x86_exception exception;
526 	gfn_t real_gfn;
527 	gpa_t ngpa;
528 
529 	ngpa     = gfn_to_gpa(ngfn);
530 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
531 	if (real_gfn == UNMAPPED_GVA)
532 		return -EFAULT;
533 
534 	real_gfn = gpa_to_gfn(real_gfn);
535 
536 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
537 }
538 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
539 
540 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
541 			       void *data, int offset, int len, u32 access)
542 {
543 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
544 				       data, offset, len, access);
545 }
546 
547 /*
548  * Load the pae pdptrs.  Return true is they are all valid.
549  */
550 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
551 {
552 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
553 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
554 	int i;
555 	int ret;
556 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
557 
558 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
559 				      offset * sizeof(u64), sizeof(pdpte),
560 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
561 	if (ret < 0) {
562 		ret = 0;
563 		goto out;
564 	}
565 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
566 		if ((pdpte[i] & PT_PRESENT_MASK) &&
567 		    (pdpte[i] &
568 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
569 			ret = 0;
570 			goto out;
571 		}
572 	}
573 	ret = 1;
574 
575 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
576 	__set_bit(VCPU_EXREG_PDPTR,
577 		  (unsigned long *)&vcpu->arch.regs_avail);
578 	__set_bit(VCPU_EXREG_PDPTR,
579 		  (unsigned long *)&vcpu->arch.regs_dirty);
580 out:
581 
582 	return ret;
583 }
584 EXPORT_SYMBOL_GPL(load_pdptrs);
585 
586 bool pdptrs_changed(struct kvm_vcpu *vcpu)
587 {
588 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
589 	bool changed = true;
590 	int offset;
591 	gfn_t gfn;
592 	int r;
593 
594 	if (is_long_mode(vcpu) || !is_pae(vcpu))
595 		return false;
596 
597 	if (!test_bit(VCPU_EXREG_PDPTR,
598 		      (unsigned long *)&vcpu->arch.regs_avail))
599 		return true;
600 
601 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
602 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
603 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
604 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
605 	if (r < 0)
606 		goto out;
607 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
608 out:
609 
610 	return changed;
611 }
612 EXPORT_SYMBOL_GPL(pdptrs_changed);
613 
614 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
615 {
616 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
617 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
618 
619 	cr0 |= X86_CR0_ET;
620 
621 #ifdef CONFIG_X86_64
622 	if (cr0 & 0xffffffff00000000UL)
623 		return 1;
624 #endif
625 
626 	cr0 &= ~CR0_RESERVED_BITS;
627 
628 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
629 		return 1;
630 
631 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
632 		return 1;
633 
634 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
635 #ifdef CONFIG_X86_64
636 		if ((vcpu->arch.efer & EFER_LME)) {
637 			int cs_db, cs_l;
638 
639 			if (!is_pae(vcpu))
640 				return 1;
641 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
642 			if (cs_l)
643 				return 1;
644 		} else
645 #endif
646 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
647 						 kvm_read_cr3(vcpu)))
648 			return 1;
649 	}
650 
651 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
652 		return 1;
653 
654 	kvm_x86_ops->set_cr0(vcpu, cr0);
655 
656 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
657 		kvm_clear_async_pf_completion_queue(vcpu);
658 		kvm_async_pf_hash_reset(vcpu);
659 	}
660 
661 	if ((cr0 ^ old_cr0) & update_bits)
662 		kvm_mmu_reset_context(vcpu);
663 
664 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
665 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
666 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
667 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
668 
669 	return 0;
670 }
671 EXPORT_SYMBOL_GPL(kvm_set_cr0);
672 
673 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
674 {
675 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
676 }
677 EXPORT_SYMBOL_GPL(kvm_lmsw);
678 
679 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
680 {
681 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
682 			!vcpu->guest_xcr0_loaded) {
683 		/* kvm_set_xcr() also depends on this */
684 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
685 		vcpu->guest_xcr0_loaded = 1;
686 	}
687 }
688 
689 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
690 {
691 	if (vcpu->guest_xcr0_loaded) {
692 		if (vcpu->arch.xcr0 != host_xcr0)
693 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
694 		vcpu->guest_xcr0_loaded = 0;
695 	}
696 }
697 
698 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
699 {
700 	u64 xcr0 = xcr;
701 	u64 old_xcr0 = vcpu->arch.xcr0;
702 	u64 valid_bits;
703 
704 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
705 	if (index != XCR_XFEATURE_ENABLED_MASK)
706 		return 1;
707 	if (!(xcr0 & XFEATURE_MASK_FP))
708 		return 1;
709 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
710 		return 1;
711 
712 	/*
713 	 * Do not allow the guest to set bits that we do not support
714 	 * saving.  However, xcr0 bit 0 is always set, even if the
715 	 * emulated CPU does not support XSAVE (see fx_init).
716 	 */
717 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
718 	if (xcr0 & ~valid_bits)
719 		return 1;
720 
721 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
722 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
723 		return 1;
724 
725 	if (xcr0 & XFEATURE_MASK_AVX512) {
726 		if (!(xcr0 & XFEATURE_MASK_YMM))
727 			return 1;
728 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
729 			return 1;
730 	}
731 	vcpu->arch.xcr0 = xcr0;
732 
733 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
734 		kvm_update_cpuid(vcpu);
735 	return 0;
736 }
737 
738 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
739 {
740 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
741 	    __kvm_set_xcr(vcpu, index, xcr)) {
742 		kvm_inject_gp(vcpu, 0);
743 		return 1;
744 	}
745 	return 0;
746 }
747 EXPORT_SYMBOL_GPL(kvm_set_xcr);
748 
749 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
750 {
751 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
752 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
753 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
754 
755 	if (cr4 & CR4_RESERVED_BITS)
756 		return 1;
757 
758 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
759 		return 1;
760 
761 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
762 		return 1;
763 
764 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
765 		return 1;
766 
767 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
768 		return 1;
769 
770 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
771 		return 1;
772 
773 	if (is_long_mode(vcpu)) {
774 		if (!(cr4 & X86_CR4_PAE))
775 			return 1;
776 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
777 		   && ((cr4 ^ old_cr4) & pdptr_bits)
778 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
779 				   kvm_read_cr3(vcpu)))
780 		return 1;
781 
782 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
783 		if (!guest_cpuid_has_pcid(vcpu))
784 			return 1;
785 
786 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
787 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
788 			return 1;
789 	}
790 
791 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
792 		return 1;
793 
794 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
795 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
796 		kvm_mmu_reset_context(vcpu);
797 
798 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
799 		kvm_update_cpuid(vcpu);
800 
801 	return 0;
802 }
803 EXPORT_SYMBOL_GPL(kvm_set_cr4);
804 
805 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
806 {
807 #ifdef CONFIG_X86_64
808 	cr3 &= ~CR3_PCID_INVD;
809 #endif
810 
811 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
812 		kvm_mmu_sync_roots(vcpu);
813 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
814 		return 0;
815 	}
816 
817 	if (is_long_mode(vcpu)) {
818 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
819 			return 1;
820 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
821 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
822 		return 1;
823 
824 	vcpu->arch.cr3 = cr3;
825 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
826 	kvm_mmu_new_cr3(vcpu);
827 	return 0;
828 }
829 EXPORT_SYMBOL_GPL(kvm_set_cr3);
830 
831 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
832 {
833 	if (cr8 & CR8_RESERVED_BITS)
834 		return 1;
835 	if (lapic_in_kernel(vcpu))
836 		kvm_lapic_set_tpr(vcpu, cr8);
837 	else
838 		vcpu->arch.cr8 = cr8;
839 	return 0;
840 }
841 EXPORT_SYMBOL_GPL(kvm_set_cr8);
842 
843 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
844 {
845 	if (lapic_in_kernel(vcpu))
846 		return kvm_lapic_get_cr8(vcpu);
847 	else
848 		return vcpu->arch.cr8;
849 }
850 EXPORT_SYMBOL_GPL(kvm_get_cr8);
851 
852 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
853 {
854 	int i;
855 
856 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
857 		for (i = 0; i < KVM_NR_DB_REGS; i++)
858 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
859 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
860 	}
861 }
862 
863 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
864 {
865 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
866 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
867 }
868 
869 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
870 {
871 	unsigned long dr7;
872 
873 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
874 		dr7 = vcpu->arch.guest_debug_dr7;
875 	else
876 		dr7 = vcpu->arch.dr7;
877 	kvm_x86_ops->set_dr7(vcpu, dr7);
878 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
879 	if (dr7 & DR7_BP_EN_MASK)
880 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
881 }
882 
883 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
884 {
885 	u64 fixed = DR6_FIXED_1;
886 
887 	if (!guest_cpuid_has_rtm(vcpu))
888 		fixed |= DR6_RTM;
889 	return fixed;
890 }
891 
892 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
893 {
894 	switch (dr) {
895 	case 0 ... 3:
896 		vcpu->arch.db[dr] = val;
897 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
898 			vcpu->arch.eff_db[dr] = val;
899 		break;
900 	case 4:
901 		/* fall through */
902 	case 6:
903 		if (val & 0xffffffff00000000ULL)
904 			return -1; /* #GP */
905 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
906 		kvm_update_dr6(vcpu);
907 		break;
908 	case 5:
909 		/* fall through */
910 	default: /* 7 */
911 		if (val & 0xffffffff00000000ULL)
912 			return -1; /* #GP */
913 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
914 		kvm_update_dr7(vcpu);
915 		break;
916 	}
917 
918 	return 0;
919 }
920 
921 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
922 {
923 	if (__kvm_set_dr(vcpu, dr, val)) {
924 		kvm_inject_gp(vcpu, 0);
925 		return 1;
926 	}
927 	return 0;
928 }
929 EXPORT_SYMBOL_GPL(kvm_set_dr);
930 
931 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
932 {
933 	switch (dr) {
934 	case 0 ... 3:
935 		*val = vcpu->arch.db[dr];
936 		break;
937 	case 4:
938 		/* fall through */
939 	case 6:
940 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
941 			*val = vcpu->arch.dr6;
942 		else
943 			*val = kvm_x86_ops->get_dr6(vcpu);
944 		break;
945 	case 5:
946 		/* fall through */
947 	default: /* 7 */
948 		*val = vcpu->arch.dr7;
949 		break;
950 	}
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_get_dr);
954 
955 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
956 {
957 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
958 	u64 data;
959 	int err;
960 
961 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
962 	if (err)
963 		return err;
964 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
965 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
966 	return err;
967 }
968 EXPORT_SYMBOL_GPL(kvm_rdpmc);
969 
970 /*
971  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
972  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
973  *
974  * This list is modified at module load time to reflect the
975  * capabilities of the host cpu. This capabilities test skips MSRs that are
976  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
977  * may depend on host virtualization features rather than host cpu features.
978  */
979 
980 static u32 msrs_to_save[] = {
981 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
982 	MSR_STAR,
983 #ifdef CONFIG_X86_64
984 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
985 #endif
986 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
987 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
988 };
989 
990 static unsigned num_msrs_to_save;
991 
992 static u32 emulated_msrs[] = {
993 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
994 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
995 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
996 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
997 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
998 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
999 	HV_X64_MSR_RESET,
1000 	HV_X64_MSR_VP_INDEX,
1001 	HV_X64_MSR_VP_RUNTIME,
1002 	HV_X64_MSR_SCONTROL,
1003 	HV_X64_MSR_STIMER0_CONFIG,
1004 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1005 	MSR_KVM_PV_EOI_EN,
1006 
1007 	MSR_IA32_TSC_ADJUST,
1008 	MSR_IA32_TSCDEADLINE,
1009 	MSR_IA32_MISC_ENABLE,
1010 	MSR_IA32_MCG_STATUS,
1011 	MSR_IA32_MCG_CTL,
1012 	MSR_IA32_MCG_EXT_CTL,
1013 	MSR_IA32_SMBASE,
1014 	MSR_PLATFORM_INFO,
1015 	MSR_MISC_FEATURES_ENABLES,
1016 };
1017 
1018 static unsigned num_emulated_msrs;
1019 
1020 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1021 {
1022 	if (efer & efer_reserved_bits)
1023 		return false;
1024 
1025 	if (efer & EFER_FFXSR) {
1026 		struct kvm_cpuid_entry2 *feat;
1027 
1028 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1029 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1030 			return false;
1031 	}
1032 
1033 	if (efer & EFER_SVME) {
1034 		struct kvm_cpuid_entry2 *feat;
1035 
1036 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1037 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1038 			return false;
1039 	}
1040 
1041 	return true;
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1044 
1045 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1046 {
1047 	u64 old_efer = vcpu->arch.efer;
1048 
1049 	if (!kvm_valid_efer(vcpu, efer))
1050 		return 1;
1051 
1052 	if (is_paging(vcpu)
1053 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1054 		return 1;
1055 
1056 	efer &= ~EFER_LMA;
1057 	efer |= vcpu->arch.efer & EFER_LMA;
1058 
1059 	kvm_x86_ops->set_efer(vcpu, efer);
1060 
1061 	/* Update reserved bits */
1062 	if ((efer ^ old_efer) & EFER_NX)
1063 		kvm_mmu_reset_context(vcpu);
1064 
1065 	return 0;
1066 }
1067 
1068 void kvm_enable_efer_bits(u64 mask)
1069 {
1070        efer_reserved_bits &= ~mask;
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1073 
1074 /*
1075  * Writes msr value into into the appropriate "register".
1076  * Returns 0 on success, non-0 otherwise.
1077  * Assumes vcpu_load() was already called.
1078  */
1079 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1080 {
1081 	switch (msr->index) {
1082 	case MSR_FS_BASE:
1083 	case MSR_GS_BASE:
1084 	case MSR_KERNEL_GS_BASE:
1085 	case MSR_CSTAR:
1086 	case MSR_LSTAR:
1087 		if (is_noncanonical_address(msr->data))
1088 			return 1;
1089 		break;
1090 	case MSR_IA32_SYSENTER_EIP:
1091 	case MSR_IA32_SYSENTER_ESP:
1092 		/*
1093 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1094 		 * non-canonical address is written on Intel but not on
1095 		 * AMD (which ignores the top 32-bits, because it does
1096 		 * not implement 64-bit SYSENTER).
1097 		 *
1098 		 * 64-bit code should hence be able to write a non-canonical
1099 		 * value on AMD.  Making the address canonical ensures that
1100 		 * vmentry does not fail on Intel after writing a non-canonical
1101 		 * value, and that something deterministic happens if the guest
1102 		 * invokes 64-bit SYSENTER.
1103 		 */
1104 		msr->data = get_canonical(msr->data);
1105 	}
1106 	return kvm_x86_ops->set_msr(vcpu, msr);
1107 }
1108 EXPORT_SYMBOL_GPL(kvm_set_msr);
1109 
1110 /*
1111  * Adapt set_msr() to msr_io()'s calling convention
1112  */
1113 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1114 {
1115 	struct msr_data msr;
1116 	int r;
1117 
1118 	msr.index = index;
1119 	msr.host_initiated = true;
1120 	r = kvm_get_msr(vcpu, &msr);
1121 	if (r)
1122 		return r;
1123 
1124 	*data = msr.data;
1125 	return 0;
1126 }
1127 
1128 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1129 {
1130 	struct msr_data msr;
1131 
1132 	msr.data = *data;
1133 	msr.index = index;
1134 	msr.host_initiated = true;
1135 	return kvm_set_msr(vcpu, &msr);
1136 }
1137 
1138 #ifdef CONFIG_X86_64
1139 struct pvclock_gtod_data {
1140 	seqcount_t	seq;
1141 
1142 	struct { /* extract of a clocksource struct */
1143 		int vclock_mode;
1144 		u64	cycle_last;
1145 		u64	mask;
1146 		u32	mult;
1147 		u32	shift;
1148 	} clock;
1149 
1150 	u64		boot_ns;
1151 	u64		nsec_base;
1152 	u64		wall_time_sec;
1153 };
1154 
1155 static struct pvclock_gtod_data pvclock_gtod_data;
1156 
1157 static void update_pvclock_gtod(struct timekeeper *tk)
1158 {
1159 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1160 	u64 boot_ns;
1161 
1162 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1163 
1164 	write_seqcount_begin(&vdata->seq);
1165 
1166 	/* copy pvclock gtod data */
1167 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1168 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1169 	vdata->clock.mask		= tk->tkr_mono.mask;
1170 	vdata->clock.mult		= tk->tkr_mono.mult;
1171 	vdata->clock.shift		= tk->tkr_mono.shift;
1172 
1173 	vdata->boot_ns			= boot_ns;
1174 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1175 
1176 	vdata->wall_time_sec            = tk->xtime_sec;
1177 
1178 	write_seqcount_end(&vdata->seq);
1179 }
1180 #endif
1181 
1182 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1183 {
1184 	/*
1185 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1186 	 * vcpu_enter_guest.  This function is only called from
1187 	 * the physical CPU that is running vcpu.
1188 	 */
1189 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1190 }
1191 
1192 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1193 {
1194 	int version;
1195 	int r;
1196 	struct pvclock_wall_clock wc;
1197 	struct timespec64 boot;
1198 
1199 	if (!wall_clock)
1200 		return;
1201 
1202 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1203 	if (r)
1204 		return;
1205 
1206 	if (version & 1)
1207 		++version;  /* first time write, random junk */
1208 
1209 	++version;
1210 
1211 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1212 		return;
1213 
1214 	/*
1215 	 * The guest calculates current wall clock time by adding
1216 	 * system time (updated by kvm_guest_time_update below) to the
1217 	 * wall clock specified here.  guest system time equals host
1218 	 * system time for us, thus we must fill in host boot time here.
1219 	 */
1220 	getboottime64(&boot);
1221 
1222 	if (kvm->arch.kvmclock_offset) {
1223 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1224 		boot = timespec64_sub(boot, ts);
1225 	}
1226 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1227 	wc.nsec = boot.tv_nsec;
1228 	wc.version = version;
1229 
1230 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1231 
1232 	version++;
1233 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1234 }
1235 
1236 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1237 {
1238 	do_shl32_div32(dividend, divisor);
1239 	return dividend;
1240 }
1241 
1242 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1243 			       s8 *pshift, u32 *pmultiplier)
1244 {
1245 	uint64_t scaled64;
1246 	int32_t  shift = 0;
1247 	uint64_t tps64;
1248 	uint32_t tps32;
1249 
1250 	tps64 = base_hz;
1251 	scaled64 = scaled_hz;
1252 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1253 		tps64 >>= 1;
1254 		shift--;
1255 	}
1256 
1257 	tps32 = (uint32_t)tps64;
1258 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1259 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1260 			scaled64 >>= 1;
1261 		else
1262 			tps32 <<= 1;
1263 		shift++;
1264 	}
1265 
1266 	*pshift = shift;
1267 	*pmultiplier = div_frac(scaled64, tps32);
1268 
1269 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1270 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1271 }
1272 
1273 #ifdef CONFIG_X86_64
1274 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1275 #endif
1276 
1277 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1278 static unsigned long max_tsc_khz;
1279 
1280 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1281 {
1282 	u64 v = (u64)khz * (1000000 + ppm);
1283 	do_div(v, 1000000);
1284 	return v;
1285 }
1286 
1287 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1288 {
1289 	u64 ratio;
1290 
1291 	/* Guest TSC same frequency as host TSC? */
1292 	if (!scale) {
1293 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1294 		return 0;
1295 	}
1296 
1297 	/* TSC scaling supported? */
1298 	if (!kvm_has_tsc_control) {
1299 		if (user_tsc_khz > tsc_khz) {
1300 			vcpu->arch.tsc_catchup = 1;
1301 			vcpu->arch.tsc_always_catchup = 1;
1302 			return 0;
1303 		} else {
1304 			WARN(1, "user requested TSC rate below hardware speed\n");
1305 			return -1;
1306 		}
1307 	}
1308 
1309 	/* TSC scaling required  - calculate ratio */
1310 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1311 				user_tsc_khz, tsc_khz);
1312 
1313 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1314 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1315 			  user_tsc_khz);
1316 		return -1;
1317 	}
1318 
1319 	vcpu->arch.tsc_scaling_ratio = ratio;
1320 	return 0;
1321 }
1322 
1323 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1324 {
1325 	u32 thresh_lo, thresh_hi;
1326 	int use_scaling = 0;
1327 
1328 	/* tsc_khz can be zero if TSC calibration fails */
1329 	if (user_tsc_khz == 0) {
1330 		/* set tsc_scaling_ratio to a safe value */
1331 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1332 		return -1;
1333 	}
1334 
1335 	/* Compute a scale to convert nanoseconds in TSC cycles */
1336 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1337 			   &vcpu->arch.virtual_tsc_shift,
1338 			   &vcpu->arch.virtual_tsc_mult);
1339 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1340 
1341 	/*
1342 	 * Compute the variation in TSC rate which is acceptable
1343 	 * within the range of tolerance and decide if the
1344 	 * rate being applied is within that bounds of the hardware
1345 	 * rate.  If so, no scaling or compensation need be done.
1346 	 */
1347 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1348 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1349 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1350 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1351 		use_scaling = 1;
1352 	}
1353 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1354 }
1355 
1356 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1357 {
1358 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1359 				      vcpu->arch.virtual_tsc_mult,
1360 				      vcpu->arch.virtual_tsc_shift);
1361 	tsc += vcpu->arch.this_tsc_write;
1362 	return tsc;
1363 }
1364 
1365 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1366 {
1367 #ifdef CONFIG_X86_64
1368 	bool vcpus_matched;
1369 	struct kvm_arch *ka = &vcpu->kvm->arch;
1370 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1371 
1372 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1373 			 atomic_read(&vcpu->kvm->online_vcpus));
1374 
1375 	/*
1376 	 * Once the masterclock is enabled, always perform request in
1377 	 * order to update it.
1378 	 *
1379 	 * In order to enable masterclock, the host clocksource must be TSC
1380 	 * and the vcpus need to have matched TSCs.  When that happens,
1381 	 * perform request to enable masterclock.
1382 	 */
1383 	if (ka->use_master_clock ||
1384 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1385 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1386 
1387 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1388 			    atomic_read(&vcpu->kvm->online_vcpus),
1389 		            ka->use_master_clock, gtod->clock.vclock_mode);
1390 #endif
1391 }
1392 
1393 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1394 {
1395 	u64 curr_offset = vcpu->arch.tsc_offset;
1396 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1397 }
1398 
1399 /*
1400  * Multiply tsc by a fixed point number represented by ratio.
1401  *
1402  * The most significant 64-N bits (mult) of ratio represent the
1403  * integral part of the fixed point number; the remaining N bits
1404  * (frac) represent the fractional part, ie. ratio represents a fixed
1405  * point number (mult + frac * 2^(-N)).
1406  *
1407  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1408  */
1409 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1410 {
1411 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1412 }
1413 
1414 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1415 {
1416 	u64 _tsc = tsc;
1417 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1418 
1419 	if (ratio != kvm_default_tsc_scaling_ratio)
1420 		_tsc = __scale_tsc(ratio, tsc);
1421 
1422 	return _tsc;
1423 }
1424 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1425 
1426 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1427 {
1428 	u64 tsc;
1429 
1430 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1431 
1432 	return target_tsc - tsc;
1433 }
1434 
1435 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1436 {
1437 	return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1438 }
1439 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1440 
1441 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1442 {
1443 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1444 	vcpu->arch.tsc_offset = offset;
1445 }
1446 
1447 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1448 {
1449 	struct kvm *kvm = vcpu->kvm;
1450 	u64 offset, ns, elapsed;
1451 	unsigned long flags;
1452 	bool matched;
1453 	bool already_matched;
1454 	u64 data = msr->data;
1455 	bool synchronizing = false;
1456 
1457 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1458 	offset = kvm_compute_tsc_offset(vcpu, data);
1459 	ns = ktime_get_boot_ns();
1460 	elapsed = ns - kvm->arch.last_tsc_nsec;
1461 
1462 	if (vcpu->arch.virtual_tsc_khz) {
1463 		if (data == 0 && msr->host_initiated) {
1464 			/*
1465 			 * detection of vcpu initialization -- need to sync
1466 			 * with other vCPUs. This particularly helps to keep
1467 			 * kvm_clock stable after CPU hotplug
1468 			 */
1469 			synchronizing = true;
1470 		} else {
1471 			u64 tsc_exp = kvm->arch.last_tsc_write +
1472 						nsec_to_cycles(vcpu, elapsed);
1473 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1474 			/*
1475 			 * Special case: TSC write with a small delta (1 second)
1476 			 * of virtual cycle time against real time is
1477 			 * interpreted as an attempt to synchronize the CPU.
1478 			 */
1479 			synchronizing = data < tsc_exp + tsc_hz &&
1480 					data + tsc_hz > tsc_exp;
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1486 	 * TSC, we add elapsed time in this computation.  We could let the
1487 	 * compensation code attempt to catch up if we fall behind, but
1488 	 * it's better to try to match offsets from the beginning.
1489          */
1490 	if (synchronizing &&
1491 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1492 		if (!check_tsc_unstable()) {
1493 			offset = kvm->arch.cur_tsc_offset;
1494 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1495 		} else {
1496 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1497 			data += delta;
1498 			offset = kvm_compute_tsc_offset(vcpu, data);
1499 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1500 		}
1501 		matched = true;
1502 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1503 	} else {
1504 		/*
1505 		 * We split periods of matched TSC writes into generations.
1506 		 * For each generation, we track the original measured
1507 		 * nanosecond time, offset, and write, so if TSCs are in
1508 		 * sync, we can match exact offset, and if not, we can match
1509 		 * exact software computation in compute_guest_tsc()
1510 		 *
1511 		 * These values are tracked in kvm->arch.cur_xxx variables.
1512 		 */
1513 		kvm->arch.cur_tsc_generation++;
1514 		kvm->arch.cur_tsc_nsec = ns;
1515 		kvm->arch.cur_tsc_write = data;
1516 		kvm->arch.cur_tsc_offset = offset;
1517 		matched = false;
1518 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1519 			 kvm->arch.cur_tsc_generation, data);
1520 	}
1521 
1522 	/*
1523 	 * We also track th most recent recorded KHZ, write and time to
1524 	 * allow the matching interval to be extended at each write.
1525 	 */
1526 	kvm->arch.last_tsc_nsec = ns;
1527 	kvm->arch.last_tsc_write = data;
1528 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1529 
1530 	vcpu->arch.last_guest_tsc = data;
1531 
1532 	/* Keep track of which generation this VCPU has synchronized to */
1533 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1534 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1535 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1536 
1537 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1538 		update_ia32_tsc_adjust_msr(vcpu, offset);
1539 	kvm_vcpu_write_tsc_offset(vcpu, offset);
1540 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1541 
1542 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1543 	if (!matched) {
1544 		kvm->arch.nr_vcpus_matched_tsc = 0;
1545 	} else if (!already_matched) {
1546 		kvm->arch.nr_vcpus_matched_tsc++;
1547 	}
1548 
1549 	kvm_track_tsc_matching(vcpu);
1550 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1551 }
1552 
1553 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1554 
1555 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1556 					   s64 adjustment)
1557 {
1558 	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1559 }
1560 
1561 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1562 {
1563 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1564 		WARN_ON(adjustment < 0);
1565 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1566 	adjust_tsc_offset_guest(vcpu, adjustment);
1567 }
1568 
1569 #ifdef CONFIG_X86_64
1570 
1571 static u64 read_tsc(void)
1572 {
1573 	u64 ret = (u64)rdtsc_ordered();
1574 	u64 last = pvclock_gtod_data.clock.cycle_last;
1575 
1576 	if (likely(ret >= last))
1577 		return ret;
1578 
1579 	/*
1580 	 * GCC likes to generate cmov here, but this branch is extremely
1581 	 * predictable (it's just a function of time and the likely is
1582 	 * very likely) and there's a data dependence, so force GCC
1583 	 * to generate a branch instead.  I don't barrier() because
1584 	 * we don't actually need a barrier, and if this function
1585 	 * ever gets inlined it will generate worse code.
1586 	 */
1587 	asm volatile ("");
1588 	return last;
1589 }
1590 
1591 static inline u64 vgettsc(u64 *cycle_now)
1592 {
1593 	long v;
1594 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1595 
1596 	*cycle_now = read_tsc();
1597 
1598 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1599 	return v * gtod->clock.mult;
1600 }
1601 
1602 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1603 {
1604 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1605 	unsigned long seq;
1606 	int mode;
1607 	u64 ns;
1608 
1609 	do {
1610 		seq = read_seqcount_begin(&gtod->seq);
1611 		mode = gtod->clock.vclock_mode;
1612 		ns = gtod->nsec_base;
1613 		ns += vgettsc(cycle_now);
1614 		ns >>= gtod->clock.shift;
1615 		ns += gtod->boot_ns;
1616 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1617 	*t = ns;
1618 
1619 	return mode;
1620 }
1621 
1622 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1623 {
1624 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1625 	unsigned long seq;
1626 	int mode;
1627 	u64 ns;
1628 
1629 	do {
1630 		seq = read_seqcount_begin(&gtod->seq);
1631 		mode = gtod->clock.vclock_mode;
1632 		ts->tv_sec = gtod->wall_time_sec;
1633 		ns = gtod->nsec_base;
1634 		ns += vgettsc(cycle_now);
1635 		ns >>= gtod->clock.shift;
1636 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1637 
1638 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1639 	ts->tv_nsec = ns;
1640 
1641 	return mode;
1642 }
1643 
1644 /* returns true if host is using tsc clocksource */
1645 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1646 {
1647 	/* checked again under seqlock below */
1648 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1649 		return false;
1650 
1651 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1652 }
1653 
1654 /* returns true if host is using tsc clocksource */
1655 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1656 					   u64 *cycle_now)
1657 {
1658 	/* checked again under seqlock below */
1659 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1660 		return false;
1661 
1662 	return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1663 }
1664 #endif
1665 
1666 /*
1667  *
1668  * Assuming a stable TSC across physical CPUS, and a stable TSC
1669  * across virtual CPUs, the following condition is possible.
1670  * Each numbered line represents an event visible to both
1671  * CPUs at the next numbered event.
1672  *
1673  * "timespecX" represents host monotonic time. "tscX" represents
1674  * RDTSC value.
1675  *
1676  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1677  *
1678  * 1.  read timespec0,tsc0
1679  * 2.					| timespec1 = timespec0 + N
1680  * 					| tsc1 = tsc0 + M
1681  * 3. transition to guest		| transition to guest
1682  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1683  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1684  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1685  *
1686  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1687  *
1688  * 	- ret0 < ret1
1689  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1690  *		...
1691  *	- 0 < N - M => M < N
1692  *
1693  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1694  * always the case (the difference between two distinct xtime instances
1695  * might be smaller then the difference between corresponding TSC reads,
1696  * when updating guest vcpus pvclock areas).
1697  *
1698  * To avoid that problem, do not allow visibility of distinct
1699  * system_timestamp/tsc_timestamp values simultaneously: use a master
1700  * copy of host monotonic time values. Update that master copy
1701  * in lockstep.
1702  *
1703  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1704  *
1705  */
1706 
1707 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1708 {
1709 #ifdef CONFIG_X86_64
1710 	struct kvm_arch *ka = &kvm->arch;
1711 	int vclock_mode;
1712 	bool host_tsc_clocksource, vcpus_matched;
1713 
1714 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1715 			atomic_read(&kvm->online_vcpus));
1716 
1717 	/*
1718 	 * If the host uses TSC clock, then passthrough TSC as stable
1719 	 * to the guest.
1720 	 */
1721 	host_tsc_clocksource = kvm_get_time_and_clockread(
1722 					&ka->master_kernel_ns,
1723 					&ka->master_cycle_now);
1724 
1725 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1726 				&& !ka->backwards_tsc_observed
1727 				&& !ka->boot_vcpu_runs_old_kvmclock;
1728 
1729 	if (ka->use_master_clock)
1730 		atomic_set(&kvm_guest_has_master_clock, 1);
1731 
1732 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1733 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1734 					vcpus_matched);
1735 #endif
1736 }
1737 
1738 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1739 {
1740 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1741 }
1742 
1743 static void kvm_gen_update_masterclock(struct kvm *kvm)
1744 {
1745 #ifdef CONFIG_X86_64
1746 	int i;
1747 	struct kvm_vcpu *vcpu;
1748 	struct kvm_arch *ka = &kvm->arch;
1749 
1750 	spin_lock(&ka->pvclock_gtod_sync_lock);
1751 	kvm_make_mclock_inprogress_request(kvm);
1752 	/* no guest entries from this point */
1753 	pvclock_update_vm_gtod_copy(kvm);
1754 
1755 	kvm_for_each_vcpu(i, vcpu, kvm)
1756 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1757 
1758 	/* guest entries allowed */
1759 	kvm_for_each_vcpu(i, vcpu, kvm)
1760 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1761 
1762 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1763 #endif
1764 }
1765 
1766 u64 get_kvmclock_ns(struct kvm *kvm)
1767 {
1768 	struct kvm_arch *ka = &kvm->arch;
1769 	struct pvclock_vcpu_time_info hv_clock;
1770 	u64 ret;
1771 
1772 	spin_lock(&ka->pvclock_gtod_sync_lock);
1773 	if (!ka->use_master_clock) {
1774 		spin_unlock(&ka->pvclock_gtod_sync_lock);
1775 		return ktime_get_boot_ns() + ka->kvmclock_offset;
1776 	}
1777 
1778 	hv_clock.tsc_timestamp = ka->master_cycle_now;
1779 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1780 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1781 
1782 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
1783 	get_cpu();
1784 
1785 	kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1786 			   &hv_clock.tsc_shift,
1787 			   &hv_clock.tsc_to_system_mul);
1788 	ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1789 
1790 	put_cpu();
1791 
1792 	return ret;
1793 }
1794 
1795 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1796 {
1797 	struct kvm_vcpu_arch *vcpu = &v->arch;
1798 	struct pvclock_vcpu_time_info guest_hv_clock;
1799 
1800 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1801 		&guest_hv_clock, sizeof(guest_hv_clock))))
1802 		return;
1803 
1804 	/* This VCPU is paused, but it's legal for a guest to read another
1805 	 * VCPU's kvmclock, so we really have to follow the specification where
1806 	 * it says that version is odd if data is being modified, and even after
1807 	 * it is consistent.
1808 	 *
1809 	 * Version field updates must be kept separate.  This is because
1810 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1811 	 * writes within a string instruction are weakly ordered.  So there
1812 	 * are three writes overall.
1813 	 *
1814 	 * As a small optimization, only write the version field in the first
1815 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1816 	 * version field is the first in the struct.
1817 	 */
1818 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1819 
1820 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1821 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1822 				&vcpu->hv_clock,
1823 				sizeof(vcpu->hv_clock.version));
1824 
1825 	smp_wmb();
1826 
1827 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1828 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1829 
1830 	if (vcpu->pvclock_set_guest_stopped_request) {
1831 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1832 		vcpu->pvclock_set_guest_stopped_request = false;
1833 	}
1834 
1835 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1836 
1837 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1838 				&vcpu->hv_clock,
1839 				sizeof(vcpu->hv_clock));
1840 
1841 	smp_wmb();
1842 
1843 	vcpu->hv_clock.version++;
1844 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1845 				&vcpu->hv_clock,
1846 				sizeof(vcpu->hv_clock.version));
1847 }
1848 
1849 static int kvm_guest_time_update(struct kvm_vcpu *v)
1850 {
1851 	unsigned long flags, tgt_tsc_khz;
1852 	struct kvm_vcpu_arch *vcpu = &v->arch;
1853 	struct kvm_arch *ka = &v->kvm->arch;
1854 	s64 kernel_ns;
1855 	u64 tsc_timestamp, host_tsc;
1856 	u8 pvclock_flags;
1857 	bool use_master_clock;
1858 
1859 	kernel_ns = 0;
1860 	host_tsc = 0;
1861 
1862 	/*
1863 	 * If the host uses TSC clock, then passthrough TSC as stable
1864 	 * to the guest.
1865 	 */
1866 	spin_lock(&ka->pvclock_gtod_sync_lock);
1867 	use_master_clock = ka->use_master_clock;
1868 	if (use_master_clock) {
1869 		host_tsc = ka->master_cycle_now;
1870 		kernel_ns = ka->master_kernel_ns;
1871 	}
1872 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1873 
1874 	/* Keep irq disabled to prevent changes to the clock */
1875 	local_irq_save(flags);
1876 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1877 	if (unlikely(tgt_tsc_khz == 0)) {
1878 		local_irq_restore(flags);
1879 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1880 		return 1;
1881 	}
1882 	if (!use_master_clock) {
1883 		host_tsc = rdtsc();
1884 		kernel_ns = ktime_get_boot_ns();
1885 	}
1886 
1887 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1888 
1889 	/*
1890 	 * We may have to catch up the TSC to match elapsed wall clock
1891 	 * time for two reasons, even if kvmclock is used.
1892 	 *   1) CPU could have been running below the maximum TSC rate
1893 	 *   2) Broken TSC compensation resets the base at each VCPU
1894 	 *      entry to avoid unknown leaps of TSC even when running
1895 	 *      again on the same CPU.  This may cause apparent elapsed
1896 	 *      time to disappear, and the guest to stand still or run
1897 	 *	very slowly.
1898 	 */
1899 	if (vcpu->tsc_catchup) {
1900 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1901 		if (tsc > tsc_timestamp) {
1902 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1903 			tsc_timestamp = tsc;
1904 		}
1905 	}
1906 
1907 	local_irq_restore(flags);
1908 
1909 	/* With all the info we got, fill in the values */
1910 
1911 	if (kvm_has_tsc_control)
1912 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1913 
1914 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1915 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1916 				   &vcpu->hv_clock.tsc_shift,
1917 				   &vcpu->hv_clock.tsc_to_system_mul);
1918 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1919 	}
1920 
1921 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1922 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1923 	vcpu->last_guest_tsc = tsc_timestamp;
1924 
1925 	/* If the host uses TSC clocksource, then it is stable */
1926 	pvclock_flags = 0;
1927 	if (use_master_clock)
1928 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1929 
1930 	vcpu->hv_clock.flags = pvclock_flags;
1931 
1932 	if (vcpu->pv_time_enabled)
1933 		kvm_setup_pvclock_page(v);
1934 	if (v == kvm_get_vcpu(v->kvm, 0))
1935 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1936 	return 0;
1937 }
1938 
1939 /*
1940  * kvmclock updates which are isolated to a given vcpu, such as
1941  * vcpu->cpu migration, should not allow system_timestamp from
1942  * the rest of the vcpus to remain static. Otherwise ntp frequency
1943  * correction applies to one vcpu's system_timestamp but not
1944  * the others.
1945  *
1946  * So in those cases, request a kvmclock update for all vcpus.
1947  * We need to rate-limit these requests though, as they can
1948  * considerably slow guests that have a large number of vcpus.
1949  * The time for a remote vcpu to update its kvmclock is bound
1950  * by the delay we use to rate-limit the updates.
1951  */
1952 
1953 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1954 
1955 static void kvmclock_update_fn(struct work_struct *work)
1956 {
1957 	int i;
1958 	struct delayed_work *dwork = to_delayed_work(work);
1959 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960 					   kvmclock_update_work);
1961 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1962 	struct kvm_vcpu *vcpu;
1963 
1964 	kvm_for_each_vcpu(i, vcpu, kvm) {
1965 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1966 		kvm_vcpu_kick(vcpu);
1967 	}
1968 }
1969 
1970 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1971 {
1972 	struct kvm *kvm = v->kvm;
1973 
1974 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1975 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1976 					KVMCLOCK_UPDATE_DELAY);
1977 }
1978 
1979 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1980 
1981 static void kvmclock_sync_fn(struct work_struct *work)
1982 {
1983 	struct delayed_work *dwork = to_delayed_work(work);
1984 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1985 					   kvmclock_sync_work);
1986 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1987 
1988 	if (!kvmclock_periodic_sync)
1989 		return;
1990 
1991 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1992 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1993 					KVMCLOCK_SYNC_PERIOD);
1994 }
1995 
1996 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1997 {
1998 	u64 mcg_cap = vcpu->arch.mcg_cap;
1999 	unsigned bank_num = mcg_cap & 0xff;
2000 
2001 	switch (msr) {
2002 	case MSR_IA32_MCG_STATUS:
2003 		vcpu->arch.mcg_status = data;
2004 		break;
2005 	case MSR_IA32_MCG_CTL:
2006 		if (!(mcg_cap & MCG_CTL_P))
2007 			return 1;
2008 		if (data != 0 && data != ~(u64)0)
2009 			return -1;
2010 		vcpu->arch.mcg_ctl = data;
2011 		break;
2012 	default:
2013 		if (msr >= MSR_IA32_MC0_CTL &&
2014 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2015 			u32 offset = msr - MSR_IA32_MC0_CTL;
2016 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2017 			 * some Linux kernels though clear bit 10 in bank 4 to
2018 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2019 			 * this to avoid an uncatched #GP in the guest
2020 			 */
2021 			if ((offset & 0x3) == 0 &&
2022 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2023 				return -1;
2024 			vcpu->arch.mce_banks[offset] = data;
2025 			break;
2026 		}
2027 		return 1;
2028 	}
2029 	return 0;
2030 }
2031 
2032 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2033 {
2034 	struct kvm *kvm = vcpu->kvm;
2035 	int lm = is_long_mode(vcpu);
2036 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2037 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2038 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2039 		: kvm->arch.xen_hvm_config.blob_size_32;
2040 	u32 page_num = data & ~PAGE_MASK;
2041 	u64 page_addr = data & PAGE_MASK;
2042 	u8 *page;
2043 	int r;
2044 
2045 	r = -E2BIG;
2046 	if (page_num >= blob_size)
2047 		goto out;
2048 	r = -ENOMEM;
2049 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2050 	if (IS_ERR(page)) {
2051 		r = PTR_ERR(page);
2052 		goto out;
2053 	}
2054 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2055 		goto out_free;
2056 	r = 0;
2057 out_free:
2058 	kfree(page);
2059 out:
2060 	return r;
2061 }
2062 
2063 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2064 {
2065 	gpa_t gpa = data & ~0x3f;
2066 
2067 	/* Bits 3:5 are reserved, Should be zero */
2068 	if (data & 0x38)
2069 		return 1;
2070 
2071 	vcpu->arch.apf.msr_val = data;
2072 
2073 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2074 		kvm_clear_async_pf_completion_queue(vcpu);
2075 		kvm_async_pf_hash_reset(vcpu);
2076 		return 0;
2077 	}
2078 
2079 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2080 					sizeof(u32)))
2081 		return 1;
2082 
2083 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2084 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2085 	kvm_async_pf_wakeup_all(vcpu);
2086 	return 0;
2087 }
2088 
2089 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2090 {
2091 	vcpu->arch.pv_time_enabled = false;
2092 }
2093 
2094 static void record_steal_time(struct kvm_vcpu *vcpu)
2095 {
2096 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2097 		return;
2098 
2099 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2100 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2101 		return;
2102 
2103 	vcpu->arch.st.steal.preempted = 0;
2104 
2105 	if (vcpu->arch.st.steal.version & 1)
2106 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2107 
2108 	vcpu->arch.st.steal.version += 1;
2109 
2110 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2111 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2112 
2113 	smp_wmb();
2114 
2115 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2116 		vcpu->arch.st.last_steal;
2117 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2118 
2119 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2120 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2121 
2122 	smp_wmb();
2123 
2124 	vcpu->arch.st.steal.version += 1;
2125 
2126 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2127 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2128 }
2129 
2130 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2131 {
2132 	bool pr = false;
2133 	u32 msr = msr_info->index;
2134 	u64 data = msr_info->data;
2135 
2136 	switch (msr) {
2137 	case MSR_AMD64_NB_CFG:
2138 	case MSR_IA32_UCODE_REV:
2139 	case MSR_IA32_UCODE_WRITE:
2140 	case MSR_VM_HSAVE_PA:
2141 	case MSR_AMD64_PATCH_LOADER:
2142 	case MSR_AMD64_BU_CFG2:
2143 	case MSR_AMD64_DC_CFG:
2144 		break;
2145 
2146 	case MSR_EFER:
2147 		return set_efer(vcpu, data);
2148 	case MSR_K7_HWCR:
2149 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2150 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2151 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2152 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2153 		if (data != 0) {
2154 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2155 				    data);
2156 			return 1;
2157 		}
2158 		break;
2159 	case MSR_FAM10H_MMIO_CONF_BASE:
2160 		if (data != 0) {
2161 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2162 				    "0x%llx\n", data);
2163 			return 1;
2164 		}
2165 		break;
2166 	case MSR_IA32_DEBUGCTLMSR:
2167 		if (!data) {
2168 			/* We support the non-activated case already */
2169 			break;
2170 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2171 			/* Values other than LBR and BTF are vendor-specific,
2172 			   thus reserved and should throw a #GP */
2173 			return 1;
2174 		}
2175 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2176 			    __func__, data);
2177 		break;
2178 	case 0x200 ... 0x2ff:
2179 		return kvm_mtrr_set_msr(vcpu, msr, data);
2180 	case MSR_IA32_APICBASE:
2181 		return kvm_set_apic_base(vcpu, msr_info);
2182 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2183 		return kvm_x2apic_msr_write(vcpu, msr, data);
2184 	case MSR_IA32_TSCDEADLINE:
2185 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2186 		break;
2187 	case MSR_IA32_TSC_ADJUST:
2188 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2189 			if (!msr_info->host_initiated) {
2190 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2191 				adjust_tsc_offset_guest(vcpu, adj);
2192 			}
2193 			vcpu->arch.ia32_tsc_adjust_msr = data;
2194 		}
2195 		break;
2196 	case MSR_IA32_MISC_ENABLE:
2197 		vcpu->arch.ia32_misc_enable_msr = data;
2198 		break;
2199 	case MSR_IA32_SMBASE:
2200 		if (!msr_info->host_initiated)
2201 			return 1;
2202 		vcpu->arch.smbase = data;
2203 		break;
2204 	case MSR_KVM_WALL_CLOCK_NEW:
2205 	case MSR_KVM_WALL_CLOCK:
2206 		vcpu->kvm->arch.wall_clock = data;
2207 		kvm_write_wall_clock(vcpu->kvm, data);
2208 		break;
2209 	case MSR_KVM_SYSTEM_TIME_NEW:
2210 	case MSR_KVM_SYSTEM_TIME: {
2211 		struct kvm_arch *ka = &vcpu->kvm->arch;
2212 
2213 		kvmclock_reset(vcpu);
2214 
2215 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2216 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2217 
2218 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2219 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2220 
2221 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2222 		}
2223 
2224 		vcpu->arch.time = data;
2225 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2226 
2227 		/* we verify if the enable bit is set... */
2228 		if (!(data & 1))
2229 			break;
2230 
2231 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2232 		     &vcpu->arch.pv_time, data & ~1ULL,
2233 		     sizeof(struct pvclock_vcpu_time_info)))
2234 			vcpu->arch.pv_time_enabled = false;
2235 		else
2236 			vcpu->arch.pv_time_enabled = true;
2237 
2238 		break;
2239 	}
2240 	case MSR_KVM_ASYNC_PF_EN:
2241 		if (kvm_pv_enable_async_pf(vcpu, data))
2242 			return 1;
2243 		break;
2244 	case MSR_KVM_STEAL_TIME:
2245 
2246 		if (unlikely(!sched_info_on()))
2247 			return 1;
2248 
2249 		if (data & KVM_STEAL_RESERVED_MASK)
2250 			return 1;
2251 
2252 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2253 						data & KVM_STEAL_VALID_BITS,
2254 						sizeof(struct kvm_steal_time)))
2255 			return 1;
2256 
2257 		vcpu->arch.st.msr_val = data;
2258 
2259 		if (!(data & KVM_MSR_ENABLED))
2260 			break;
2261 
2262 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2263 
2264 		break;
2265 	case MSR_KVM_PV_EOI_EN:
2266 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2267 			return 1;
2268 		break;
2269 
2270 	case MSR_IA32_MCG_CTL:
2271 	case MSR_IA32_MCG_STATUS:
2272 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2273 		return set_msr_mce(vcpu, msr, data);
2274 
2275 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2276 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2277 		pr = true; /* fall through */
2278 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2279 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2280 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2281 			return kvm_pmu_set_msr(vcpu, msr_info);
2282 
2283 		if (pr || data != 0)
2284 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2285 				    "0x%x data 0x%llx\n", msr, data);
2286 		break;
2287 	case MSR_K7_CLK_CTL:
2288 		/*
2289 		 * Ignore all writes to this no longer documented MSR.
2290 		 * Writes are only relevant for old K7 processors,
2291 		 * all pre-dating SVM, but a recommended workaround from
2292 		 * AMD for these chips. It is possible to specify the
2293 		 * affected processor models on the command line, hence
2294 		 * the need to ignore the workaround.
2295 		 */
2296 		break;
2297 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2298 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2299 	case HV_X64_MSR_CRASH_CTL:
2300 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2301 		return kvm_hv_set_msr_common(vcpu, msr, data,
2302 					     msr_info->host_initiated);
2303 	case MSR_IA32_BBL_CR_CTL3:
2304 		/* Drop writes to this legacy MSR -- see rdmsr
2305 		 * counterpart for further detail.
2306 		 */
2307 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2308 		break;
2309 	case MSR_AMD64_OSVW_ID_LENGTH:
2310 		if (!guest_cpuid_has_osvw(vcpu))
2311 			return 1;
2312 		vcpu->arch.osvw.length = data;
2313 		break;
2314 	case MSR_AMD64_OSVW_STATUS:
2315 		if (!guest_cpuid_has_osvw(vcpu))
2316 			return 1;
2317 		vcpu->arch.osvw.status = data;
2318 		break;
2319 	case MSR_PLATFORM_INFO:
2320 		if (!msr_info->host_initiated ||
2321 		    data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2322 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2323 		     cpuid_fault_enabled(vcpu)))
2324 			return 1;
2325 		vcpu->arch.msr_platform_info = data;
2326 		break;
2327 	case MSR_MISC_FEATURES_ENABLES:
2328 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2329 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2330 		     !supports_cpuid_fault(vcpu)))
2331 			return 1;
2332 		vcpu->arch.msr_misc_features_enables = data;
2333 		break;
2334 	default:
2335 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2336 			return xen_hvm_config(vcpu, data);
2337 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2338 			return kvm_pmu_set_msr(vcpu, msr_info);
2339 		if (!ignore_msrs) {
2340 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2341 				    msr, data);
2342 			return 1;
2343 		} else {
2344 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2345 				    msr, data);
2346 			break;
2347 		}
2348 	}
2349 	return 0;
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2352 
2353 
2354 /*
2355  * Reads an msr value (of 'msr_index') into 'pdata'.
2356  * Returns 0 on success, non-0 otherwise.
2357  * Assumes vcpu_load() was already called.
2358  */
2359 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2360 {
2361 	return kvm_x86_ops->get_msr(vcpu, msr);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_get_msr);
2364 
2365 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2366 {
2367 	u64 data;
2368 	u64 mcg_cap = vcpu->arch.mcg_cap;
2369 	unsigned bank_num = mcg_cap & 0xff;
2370 
2371 	switch (msr) {
2372 	case MSR_IA32_P5_MC_ADDR:
2373 	case MSR_IA32_P5_MC_TYPE:
2374 		data = 0;
2375 		break;
2376 	case MSR_IA32_MCG_CAP:
2377 		data = vcpu->arch.mcg_cap;
2378 		break;
2379 	case MSR_IA32_MCG_CTL:
2380 		if (!(mcg_cap & MCG_CTL_P))
2381 			return 1;
2382 		data = vcpu->arch.mcg_ctl;
2383 		break;
2384 	case MSR_IA32_MCG_STATUS:
2385 		data = vcpu->arch.mcg_status;
2386 		break;
2387 	default:
2388 		if (msr >= MSR_IA32_MC0_CTL &&
2389 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2390 			u32 offset = msr - MSR_IA32_MC0_CTL;
2391 			data = vcpu->arch.mce_banks[offset];
2392 			break;
2393 		}
2394 		return 1;
2395 	}
2396 	*pdata = data;
2397 	return 0;
2398 }
2399 
2400 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2401 {
2402 	switch (msr_info->index) {
2403 	case MSR_IA32_PLATFORM_ID:
2404 	case MSR_IA32_EBL_CR_POWERON:
2405 	case MSR_IA32_DEBUGCTLMSR:
2406 	case MSR_IA32_LASTBRANCHFROMIP:
2407 	case MSR_IA32_LASTBRANCHTOIP:
2408 	case MSR_IA32_LASTINTFROMIP:
2409 	case MSR_IA32_LASTINTTOIP:
2410 	case MSR_K8_SYSCFG:
2411 	case MSR_K8_TSEG_ADDR:
2412 	case MSR_K8_TSEG_MASK:
2413 	case MSR_K7_HWCR:
2414 	case MSR_VM_HSAVE_PA:
2415 	case MSR_K8_INT_PENDING_MSG:
2416 	case MSR_AMD64_NB_CFG:
2417 	case MSR_FAM10H_MMIO_CONF_BASE:
2418 	case MSR_AMD64_BU_CFG2:
2419 	case MSR_IA32_PERF_CTL:
2420 	case MSR_AMD64_DC_CFG:
2421 		msr_info->data = 0;
2422 		break;
2423 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2424 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2425 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2426 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2427 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2428 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2429 		msr_info->data = 0;
2430 		break;
2431 	case MSR_IA32_UCODE_REV:
2432 		msr_info->data = 0x100000000ULL;
2433 		break;
2434 	case MSR_MTRRcap:
2435 	case 0x200 ... 0x2ff:
2436 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2437 	case 0xcd: /* fsb frequency */
2438 		msr_info->data = 3;
2439 		break;
2440 		/*
2441 		 * MSR_EBC_FREQUENCY_ID
2442 		 * Conservative value valid for even the basic CPU models.
2443 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2444 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2445 		 * and 266MHz for model 3, or 4. Set Core Clock
2446 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2447 		 * 31:24) even though these are only valid for CPU
2448 		 * models > 2, however guests may end up dividing or
2449 		 * multiplying by zero otherwise.
2450 		 */
2451 	case MSR_EBC_FREQUENCY_ID:
2452 		msr_info->data = 1 << 24;
2453 		break;
2454 	case MSR_IA32_APICBASE:
2455 		msr_info->data = kvm_get_apic_base(vcpu);
2456 		break;
2457 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2458 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2459 		break;
2460 	case MSR_IA32_TSCDEADLINE:
2461 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2462 		break;
2463 	case MSR_IA32_TSC_ADJUST:
2464 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2465 		break;
2466 	case MSR_IA32_MISC_ENABLE:
2467 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2468 		break;
2469 	case MSR_IA32_SMBASE:
2470 		if (!msr_info->host_initiated)
2471 			return 1;
2472 		msr_info->data = vcpu->arch.smbase;
2473 		break;
2474 	case MSR_IA32_PERF_STATUS:
2475 		/* TSC increment by tick */
2476 		msr_info->data = 1000ULL;
2477 		/* CPU multiplier */
2478 		msr_info->data |= (((uint64_t)4ULL) << 40);
2479 		break;
2480 	case MSR_EFER:
2481 		msr_info->data = vcpu->arch.efer;
2482 		break;
2483 	case MSR_KVM_WALL_CLOCK:
2484 	case MSR_KVM_WALL_CLOCK_NEW:
2485 		msr_info->data = vcpu->kvm->arch.wall_clock;
2486 		break;
2487 	case MSR_KVM_SYSTEM_TIME:
2488 	case MSR_KVM_SYSTEM_TIME_NEW:
2489 		msr_info->data = vcpu->arch.time;
2490 		break;
2491 	case MSR_KVM_ASYNC_PF_EN:
2492 		msr_info->data = vcpu->arch.apf.msr_val;
2493 		break;
2494 	case MSR_KVM_STEAL_TIME:
2495 		msr_info->data = vcpu->arch.st.msr_val;
2496 		break;
2497 	case MSR_KVM_PV_EOI_EN:
2498 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2499 		break;
2500 	case MSR_IA32_P5_MC_ADDR:
2501 	case MSR_IA32_P5_MC_TYPE:
2502 	case MSR_IA32_MCG_CAP:
2503 	case MSR_IA32_MCG_CTL:
2504 	case MSR_IA32_MCG_STATUS:
2505 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2506 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2507 	case MSR_K7_CLK_CTL:
2508 		/*
2509 		 * Provide expected ramp-up count for K7. All other
2510 		 * are set to zero, indicating minimum divisors for
2511 		 * every field.
2512 		 *
2513 		 * This prevents guest kernels on AMD host with CPU
2514 		 * type 6, model 8 and higher from exploding due to
2515 		 * the rdmsr failing.
2516 		 */
2517 		msr_info->data = 0x20000000;
2518 		break;
2519 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2520 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2521 	case HV_X64_MSR_CRASH_CTL:
2522 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2523 		return kvm_hv_get_msr_common(vcpu,
2524 					     msr_info->index, &msr_info->data);
2525 		break;
2526 	case MSR_IA32_BBL_CR_CTL3:
2527 		/* This legacy MSR exists but isn't fully documented in current
2528 		 * silicon.  It is however accessed by winxp in very narrow
2529 		 * scenarios where it sets bit #19, itself documented as
2530 		 * a "reserved" bit.  Best effort attempt to source coherent
2531 		 * read data here should the balance of the register be
2532 		 * interpreted by the guest:
2533 		 *
2534 		 * L2 cache control register 3: 64GB range, 256KB size,
2535 		 * enabled, latency 0x1, configured
2536 		 */
2537 		msr_info->data = 0xbe702111;
2538 		break;
2539 	case MSR_AMD64_OSVW_ID_LENGTH:
2540 		if (!guest_cpuid_has_osvw(vcpu))
2541 			return 1;
2542 		msr_info->data = vcpu->arch.osvw.length;
2543 		break;
2544 	case MSR_AMD64_OSVW_STATUS:
2545 		if (!guest_cpuid_has_osvw(vcpu))
2546 			return 1;
2547 		msr_info->data = vcpu->arch.osvw.status;
2548 		break;
2549 	case MSR_PLATFORM_INFO:
2550 		msr_info->data = vcpu->arch.msr_platform_info;
2551 		break;
2552 	case MSR_MISC_FEATURES_ENABLES:
2553 		msr_info->data = vcpu->arch.msr_misc_features_enables;
2554 		break;
2555 	default:
2556 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2557 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2558 		if (!ignore_msrs) {
2559 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2560 					       msr_info->index);
2561 			return 1;
2562 		} else {
2563 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2564 			msr_info->data = 0;
2565 		}
2566 		break;
2567 	}
2568 	return 0;
2569 }
2570 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2571 
2572 /*
2573  * Read or write a bunch of msrs. All parameters are kernel addresses.
2574  *
2575  * @return number of msrs set successfully.
2576  */
2577 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2578 		    struct kvm_msr_entry *entries,
2579 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2580 				  unsigned index, u64 *data))
2581 {
2582 	int i, idx;
2583 
2584 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2585 	for (i = 0; i < msrs->nmsrs; ++i)
2586 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2587 			break;
2588 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2589 
2590 	return i;
2591 }
2592 
2593 /*
2594  * Read or write a bunch of msrs. Parameters are user addresses.
2595  *
2596  * @return number of msrs set successfully.
2597  */
2598 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2599 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2600 				unsigned index, u64 *data),
2601 		  int writeback)
2602 {
2603 	struct kvm_msrs msrs;
2604 	struct kvm_msr_entry *entries;
2605 	int r, n;
2606 	unsigned size;
2607 
2608 	r = -EFAULT;
2609 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2610 		goto out;
2611 
2612 	r = -E2BIG;
2613 	if (msrs.nmsrs >= MAX_IO_MSRS)
2614 		goto out;
2615 
2616 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2617 	entries = memdup_user(user_msrs->entries, size);
2618 	if (IS_ERR(entries)) {
2619 		r = PTR_ERR(entries);
2620 		goto out;
2621 	}
2622 
2623 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2624 	if (r < 0)
2625 		goto out_free;
2626 
2627 	r = -EFAULT;
2628 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2629 		goto out_free;
2630 
2631 	r = n;
2632 
2633 out_free:
2634 	kfree(entries);
2635 out:
2636 	return r;
2637 }
2638 
2639 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2640 {
2641 	int r;
2642 
2643 	switch (ext) {
2644 	case KVM_CAP_IRQCHIP:
2645 	case KVM_CAP_HLT:
2646 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2647 	case KVM_CAP_SET_TSS_ADDR:
2648 	case KVM_CAP_EXT_CPUID:
2649 	case KVM_CAP_EXT_EMUL_CPUID:
2650 	case KVM_CAP_CLOCKSOURCE:
2651 	case KVM_CAP_PIT:
2652 	case KVM_CAP_NOP_IO_DELAY:
2653 	case KVM_CAP_MP_STATE:
2654 	case KVM_CAP_SYNC_MMU:
2655 	case KVM_CAP_USER_NMI:
2656 	case KVM_CAP_REINJECT_CONTROL:
2657 	case KVM_CAP_IRQ_INJECT_STATUS:
2658 	case KVM_CAP_IOEVENTFD:
2659 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2660 	case KVM_CAP_PIT2:
2661 	case KVM_CAP_PIT_STATE2:
2662 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2663 	case KVM_CAP_XEN_HVM:
2664 	case KVM_CAP_VCPU_EVENTS:
2665 	case KVM_CAP_HYPERV:
2666 	case KVM_CAP_HYPERV_VAPIC:
2667 	case KVM_CAP_HYPERV_SPIN:
2668 	case KVM_CAP_HYPERV_SYNIC:
2669 	case KVM_CAP_HYPERV_SYNIC2:
2670 	case KVM_CAP_HYPERV_VP_INDEX:
2671 	case KVM_CAP_PCI_SEGMENT:
2672 	case KVM_CAP_DEBUGREGS:
2673 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2674 	case KVM_CAP_XSAVE:
2675 	case KVM_CAP_ASYNC_PF:
2676 	case KVM_CAP_GET_TSC_KHZ:
2677 	case KVM_CAP_KVMCLOCK_CTRL:
2678 	case KVM_CAP_READONLY_MEM:
2679 	case KVM_CAP_HYPERV_TIME:
2680 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2681 	case KVM_CAP_TSC_DEADLINE_TIMER:
2682 	case KVM_CAP_ENABLE_CAP_VM:
2683 	case KVM_CAP_DISABLE_QUIRKS:
2684 	case KVM_CAP_SET_BOOT_CPU_ID:
2685  	case KVM_CAP_SPLIT_IRQCHIP:
2686 	case KVM_CAP_IMMEDIATE_EXIT:
2687 		r = 1;
2688 		break;
2689 	case KVM_CAP_ADJUST_CLOCK:
2690 		r = KVM_CLOCK_TSC_STABLE;
2691 		break;
2692 	case KVM_CAP_X86_GUEST_MWAIT:
2693 		r = kvm_mwait_in_guest();
2694 		break;
2695 	case KVM_CAP_X86_SMM:
2696 		/* SMBASE is usually relocated above 1M on modern chipsets,
2697 		 * and SMM handlers might indeed rely on 4G segment limits,
2698 		 * so do not report SMM to be available if real mode is
2699 		 * emulated via vm86 mode.  Still, do not go to great lengths
2700 		 * to avoid userspace's usage of the feature, because it is a
2701 		 * fringe case that is not enabled except via specific settings
2702 		 * of the module parameters.
2703 		 */
2704 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2705 		break;
2706 	case KVM_CAP_VAPIC:
2707 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2708 		break;
2709 	case KVM_CAP_NR_VCPUS:
2710 		r = KVM_SOFT_MAX_VCPUS;
2711 		break;
2712 	case KVM_CAP_MAX_VCPUS:
2713 		r = KVM_MAX_VCPUS;
2714 		break;
2715 	case KVM_CAP_NR_MEMSLOTS:
2716 		r = KVM_USER_MEM_SLOTS;
2717 		break;
2718 	case KVM_CAP_PV_MMU:	/* obsolete */
2719 		r = 0;
2720 		break;
2721 	case KVM_CAP_MCE:
2722 		r = KVM_MAX_MCE_BANKS;
2723 		break;
2724 	case KVM_CAP_XCRS:
2725 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2726 		break;
2727 	case KVM_CAP_TSC_CONTROL:
2728 		r = kvm_has_tsc_control;
2729 		break;
2730 	case KVM_CAP_X2APIC_API:
2731 		r = KVM_X2APIC_API_VALID_FLAGS;
2732 		break;
2733 	default:
2734 		r = 0;
2735 		break;
2736 	}
2737 	return r;
2738 
2739 }
2740 
2741 long kvm_arch_dev_ioctl(struct file *filp,
2742 			unsigned int ioctl, unsigned long arg)
2743 {
2744 	void __user *argp = (void __user *)arg;
2745 	long r;
2746 
2747 	switch (ioctl) {
2748 	case KVM_GET_MSR_INDEX_LIST: {
2749 		struct kvm_msr_list __user *user_msr_list = argp;
2750 		struct kvm_msr_list msr_list;
2751 		unsigned n;
2752 
2753 		r = -EFAULT;
2754 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2755 			goto out;
2756 		n = msr_list.nmsrs;
2757 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2758 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2759 			goto out;
2760 		r = -E2BIG;
2761 		if (n < msr_list.nmsrs)
2762 			goto out;
2763 		r = -EFAULT;
2764 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2765 				 num_msrs_to_save * sizeof(u32)))
2766 			goto out;
2767 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2768 				 &emulated_msrs,
2769 				 num_emulated_msrs * sizeof(u32)))
2770 			goto out;
2771 		r = 0;
2772 		break;
2773 	}
2774 	case KVM_GET_SUPPORTED_CPUID:
2775 	case KVM_GET_EMULATED_CPUID: {
2776 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2777 		struct kvm_cpuid2 cpuid;
2778 
2779 		r = -EFAULT;
2780 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2781 			goto out;
2782 
2783 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2784 					    ioctl);
2785 		if (r)
2786 			goto out;
2787 
2788 		r = -EFAULT;
2789 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2790 			goto out;
2791 		r = 0;
2792 		break;
2793 	}
2794 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2795 		r = -EFAULT;
2796 		if (copy_to_user(argp, &kvm_mce_cap_supported,
2797 				 sizeof(kvm_mce_cap_supported)))
2798 			goto out;
2799 		r = 0;
2800 		break;
2801 	}
2802 	default:
2803 		r = -EINVAL;
2804 	}
2805 out:
2806 	return r;
2807 }
2808 
2809 static void wbinvd_ipi(void *garbage)
2810 {
2811 	wbinvd();
2812 }
2813 
2814 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2815 {
2816 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2817 }
2818 
2819 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2820 {
2821 	/* Address WBINVD may be executed by guest */
2822 	if (need_emulate_wbinvd(vcpu)) {
2823 		if (kvm_x86_ops->has_wbinvd_exit())
2824 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2825 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2826 			smp_call_function_single(vcpu->cpu,
2827 					wbinvd_ipi, NULL, 1);
2828 	}
2829 
2830 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2831 
2832 	/* Apply any externally detected TSC adjustments (due to suspend) */
2833 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2834 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2835 		vcpu->arch.tsc_offset_adjustment = 0;
2836 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2837 	}
2838 
2839 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2840 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2841 				rdtsc() - vcpu->arch.last_host_tsc;
2842 		if (tsc_delta < 0)
2843 			mark_tsc_unstable("KVM discovered backwards TSC");
2844 
2845 		if (check_tsc_unstable()) {
2846 			u64 offset = kvm_compute_tsc_offset(vcpu,
2847 						vcpu->arch.last_guest_tsc);
2848 			kvm_vcpu_write_tsc_offset(vcpu, offset);
2849 			vcpu->arch.tsc_catchup = 1;
2850 		}
2851 
2852 		if (kvm_lapic_hv_timer_in_use(vcpu))
2853 			kvm_lapic_restart_hv_timer(vcpu);
2854 
2855 		/*
2856 		 * On a host with synchronized TSC, there is no need to update
2857 		 * kvmclock on vcpu->cpu migration
2858 		 */
2859 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2860 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2861 		if (vcpu->cpu != cpu)
2862 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2863 		vcpu->cpu = cpu;
2864 	}
2865 
2866 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2867 }
2868 
2869 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2870 {
2871 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2872 		return;
2873 
2874 	vcpu->arch.st.steal.preempted = 1;
2875 
2876 	kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2877 			&vcpu->arch.st.steal.preempted,
2878 			offsetof(struct kvm_steal_time, preempted),
2879 			sizeof(vcpu->arch.st.steal.preempted));
2880 }
2881 
2882 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2883 {
2884 	int idx;
2885 	/*
2886 	 * Disable page faults because we're in atomic context here.
2887 	 * kvm_write_guest_offset_cached() would call might_fault()
2888 	 * that relies on pagefault_disable() to tell if there's a
2889 	 * bug. NOTE: the write to guest memory may not go through if
2890 	 * during postcopy live migration or if there's heavy guest
2891 	 * paging.
2892 	 */
2893 	pagefault_disable();
2894 	/*
2895 	 * kvm_memslots() will be called by
2896 	 * kvm_write_guest_offset_cached() so take the srcu lock.
2897 	 */
2898 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2899 	kvm_steal_time_set_preempted(vcpu);
2900 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2901 	pagefault_enable();
2902 	kvm_x86_ops->vcpu_put(vcpu);
2903 	kvm_put_guest_fpu(vcpu);
2904 	vcpu->arch.last_host_tsc = rdtsc();
2905 }
2906 
2907 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2908 				    struct kvm_lapic_state *s)
2909 {
2910 	if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2911 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2912 
2913 	return kvm_apic_get_state(vcpu, s);
2914 }
2915 
2916 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2917 				    struct kvm_lapic_state *s)
2918 {
2919 	int r;
2920 
2921 	r = kvm_apic_set_state(vcpu, s);
2922 	if (r)
2923 		return r;
2924 	update_cr8_intercept(vcpu);
2925 
2926 	return 0;
2927 }
2928 
2929 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2930 {
2931 	return (!lapic_in_kernel(vcpu) ||
2932 		kvm_apic_accept_pic_intr(vcpu));
2933 }
2934 
2935 /*
2936  * if userspace requested an interrupt window, check that the
2937  * interrupt window is open.
2938  *
2939  * No need to exit to userspace if we already have an interrupt queued.
2940  */
2941 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2942 {
2943 	return kvm_arch_interrupt_allowed(vcpu) &&
2944 		!kvm_cpu_has_interrupt(vcpu) &&
2945 		!kvm_event_needs_reinjection(vcpu) &&
2946 		kvm_cpu_accept_dm_intr(vcpu);
2947 }
2948 
2949 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2950 				    struct kvm_interrupt *irq)
2951 {
2952 	if (irq->irq >= KVM_NR_INTERRUPTS)
2953 		return -EINVAL;
2954 
2955 	if (!irqchip_in_kernel(vcpu->kvm)) {
2956 		kvm_queue_interrupt(vcpu, irq->irq, false);
2957 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2958 		return 0;
2959 	}
2960 
2961 	/*
2962 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2963 	 * fail for in-kernel 8259.
2964 	 */
2965 	if (pic_in_kernel(vcpu->kvm))
2966 		return -ENXIO;
2967 
2968 	if (vcpu->arch.pending_external_vector != -1)
2969 		return -EEXIST;
2970 
2971 	vcpu->arch.pending_external_vector = irq->irq;
2972 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2973 	return 0;
2974 }
2975 
2976 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2977 {
2978 	kvm_inject_nmi(vcpu);
2979 
2980 	return 0;
2981 }
2982 
2983 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2984 {
2985 	kvm_make_request(KVM_REQ_SMI, vcpu);
2986 
2987 	return 0;
2988 }
2989 
2990 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2991 					   struct kvm_tpr_access_ctl *tac)
2992 {
2993 	if (tac->flags)
2994 		return -EINVAL;
2995 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2996 	return 0;
2997 }
2998 
2999 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3000 					u64 mcg_cap)
3001 {
3002 	int r;
3003 	unsigned bank_num = mcg_cap & 0xff, bank;
3004 
3005 	r = -EINVAL;
3006 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3007 		goto out;
3008 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3009 		goto out;
3010 	r = 0;
3011 	vcpu->arch.mcg_cap = mcg_cap;
3012 	/* Init IA32_MCG_CTL to all 1s */
3013 	if (mcg_cap & MCG_CTL_P)
3014 		vcpu->arch.mcg_ctl = ~(u64)0;
3015 	/* Init IA32_MCi_CTL to all 1s */
3016 	for (bank = 0; bank < bank_num; bank++)
3017 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3018 
3019 	if (kvm_x86_ops->setup_mce)
3020 		kvm_x86_ops->setup_mce(vcpu);
3021 out:
3022 	return r;
3023 }
3024 
3025 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3026 				      struct kvm_x86_mce *mce)
3027 {
3028 	u64 mcg_cap = vcpu->arch.mcg_cap;
3029 	unsigned bank_num = mcg_cap & 0xff;
3030 	u64 *banks = vcpu->arch.mce_banks;
3031 
3032 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3033 		return -EINVAL;
3034 	/*
3035 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3036 	 * reporting is disabled
3037 	 */
3038 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3039 	    vcpu->arch.mcg_ctl != ~(u64)0)
3040 		return 0;
3041 	banks += 4 * mce->bank;
3042 	/*
3043 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3044 	 * reporting is disabled for the bank
3045 	 */
3046 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3047 		return 0;
3048 	if (mce->status & MCI_STATUS_UC) {
3049 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3050 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3051 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3052 			return 0;
3053 		}
3054 		if (banks[1] & MCI_STATUS_VAL)
3055 			mce->status |= MCI_STATUS_OVER;
3056 		banks[2] = mce->addr;
3057 		banks[3] = mce->misc;
3058 		vcpu->arch.mcg_status = mce->mcg_status;
3059 		banks[1] = mce->status;
3060 		kvm_queue_exception(vcpu, MC_VECTOR);
3061 	} else if (!(banks[1] & MCI_STATUS_VAL)
3062 		   || !(banks[1] & MCI_STATUS_UC)) {
3063 		if (banks[1] & MCI_STATUS_VAL)
3064 			mce->status |= MCI_STATUS_OVER;
3065 		banks[2] = mce->addr;
3066 		banks[3] = mce->misc;
3067 		banks[1] = mce->status;
3068 	} else
3069 		banks[1] |= MCI_STATUS_OVER;
3070 	return 0;
3071 }
3072 
3073 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3074 					       struct kvm_vcpu_events *events)
3075 {
3076 	process_nmi(vcpu);
3077 	events->exception.injected =
3078 		vcpu->arch.exception.pending &&
3079 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3080 	events->exception.nr = vcpu->arch.exception.nr;
3081 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3082 	events->exception.pad = 0;
3083 	events->exception.error_code = vcpu->arch.exception.error_code;
3084 
3085 	events->interrupt.injected =
3086 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3087 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3088 	events->interrupt.soft = 0;
3089 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3090 
3091 	events->nmi.injected = vcpu->arch.nmi_injected;
3092 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3093 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3094 	events->nmi.pad = 0;
3095 
3096 	events->sipi_vector = 0; /* never valid when reporting to user space */
3097 
3098 	events->smi.smm = is_smm(vcpu);
3099 	events->smi.pending = vcpu->arch.smi_pending;
3100 	events->smi.smm_inside_nmi =
3101 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3102 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3103 
3104 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3105 			 | KVM_VCPUEVENT_VALID_SHADOW
3106 			 | KVM_VCPUEVENT_VALID_SMM);
3107 	memset(&events->reserved, 0, sizeof(events->reserved));
3108 }
3109 
3110 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3111 
3112 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3113 					      struct kvm_vcpu_events *events)
3114 {
3115 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3116 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3117 			      | KVM_VCPUEVENT_VALID_SHADOW
3118 			      | KVM_VCPUEVENT_VALID_SMM))
3119 		return -EINVAL;
3120 
3121 	if (events->exception.injected &&
3122 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3123 	     is_guest_mode(vcpu)))
3124 		return -EINVAL;
3125 
3126 	/* INITs are latched while in SMM */
3127 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3128 	    (events->smi.smm || events->smi.pending) &&
3129 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3130 		return -EINVAL;
3131 
3132 	process_nmi(vcpu);
3133 	vcpu->arch.exception.pending = events->exception.injected;
3134 	vcpu->arch.exception.nr = events->exception.nr;
3135 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3136 	vcpu->arch.exception.error_code = events->exception.error_code;
3137 
3138 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3139 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3140 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3141 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3142 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3143 						  events->interrupt.shadow);
3144 
3145 	vcpu->arch.nmi_injected = events->nmi.injected;
3146 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3147 		vcpu->arch.nmi_pending = events->nmi.pending;
3148 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3149 
3150 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3151 	    lapic_in_kernel(vcpu))
3152 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3153 
3154 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3155 		u32 hflags = vcpu->arch.hflags;
3156 		if (events->smi.smm)
3157 			hflags |= HF_SMM_MASK;
3158 		else
3159 			hflags &= ~HF_SMM_MASK;
3160 		kvm_set_hflags(vcpu, hflags);
3161 
3162 		vcpu->arch.smi_pending = events->smi.pending;
3163 
3164 		if (events->smi.smm) {
3165 			if (events->smi.smm_inside_nmi)
3166 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3167 			else
3168 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3169 			if (lapic_in_kernel(vcpu)) {
3170 				if (events->smi.latched_init)
3171 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3172 				else
3173 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3174 			}
3175 		}
3176 	}
3177 
3178 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3179 
3180 	return 0;
3181 }
3182 
3183 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3184 					     struct kvm_debugregs *dbgregs)
3185 {
3186 	unsigned long val;
3187 
3188 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3189 	kvm_get_dr(vcpu, 6, &val);
3190 	dbgregs->dr6 = val;
3191 	dbgregs->dr7 = vcpu->arch.dr7;
3192 	dbgregs->flags = 0;
3193 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3194 }
3195 
3196 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3197 					    struct kvm_debugregs *dbgregs)
3198 {
3199 	if (dbgregs->flags)
3200 		return -EINVAL;
3201 
3202 	if (dbgregs->dr6 & ~0xffffffffull)
3203 		return -EINVAL;
3204 	if (dbgregs->dr7 & ~0xffffffffull)
3205 		return -EINVAL;
3206 
3207 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3208 	kvm_update_dr0123(vcpu);
3209 	vcpu->arch.dr6 = dbgregs->dr6;
3210 	kvm_update_dr6(vcpu);
3211 	vcpu->arch.dr7 = dbgregs->dr7;
3212 	kvm_update_dr7(vcpu);
3213 
3214 	return 0;
3215 }
3216 
3217 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3218 
3219 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3220 {
3221 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3222 	u64 xstate_bv = xsave->header.xfeatures;
3223 	u64 valid;
3224 
3225 	/*
3226 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3227 	 * leaves 0 and 1 in the loop below.
3228 	 */
3229 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3230 
3231 	/* Set XSTATE_BV */
3232 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3233 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3234 
3235 	/*
3236 	 * Copy each region from the possibly compacted offset to the
3237 	 * non-compacted offset.
3238 	 */
3239 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3240 	while (valid) {
3241 		u64 feature = valid & -valid;
3242 		int index = fls64(feature) - 1;
3243 		void *src = get_xsave_addr(xsave, feature);
3244 
3245 		if (src) {
3246 			u32 size, offset, ecx, edx;
3247 			cpuid_count(XSTATE_CPUID, index,
3248 				    &size, &offset, &ecx, &edx);
3249 			if (feature == XFEATURE_MASK_PKRU)
3250 				memcpy(dest + offset, &vcpu->arch.pkru,
3251 				       sizeof(vcpu->arch.pkru));
3252 			else
3253 				memcpy(dest + offset, src, size);
3254 
3255 		}
3256 
3257 		valid -= feature;
3258 	}
3259 }
3260 
3261 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3262 {
3263 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3264 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3265 	u64 valid;
3266 
3267 	/*
3268 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3269 	 * leaves 0 and 1 in the loop below.
3270 	 */
3271 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3272 
3273 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3274 	xsave->header.xfeatures = xstate_bv;
3275 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3276 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3277 
3278 	/*
3279 	 * Copy each region from the non-compacted offset to the
3280 	 * possibly compacted offset.
3281 	 */
3282 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3283 	while (valid) {
3284 		u64 feature = valid & -valid;
3285 		int index = fls64(feature) - 1;
3286 		void *dest = get_xsave_addr(xsave, feature);
3287 
3288 		if (dest) {
3289 			u32 size, offset, ecx, edx;
3290 			cpuid_count(XSTATE_CPUID, index,
3291 				    &size, &offset, &ecx, &edx);
3292 			if (feature == XFEATURE_MASK_PKRU)
3293 				memcpy(&vcpu->arch.pkru, src + offset,
3294 				       sizeof(vcpu->arch.pkru));
3295 			else
3296 				memcpy(dest, src + offset, size);
3297 		}
3298 
3299 		valid -= feature;
3300 	}
3301 }
3302 
3303 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3304 					 struct kvm_xsave *guest_xsave)
3305 {
3306 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3307 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3308 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3309 	} else {
3310 		memcpy(guest_xsave->region,
3311 			&vcpu->arch.guest_fpu.state.fxsave,
3312 			sizeof(struct fxregs_state));
3313 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3314 			XFEATURE_MASK_FPSSE;
3315 	}
3316 }
3317 
3318 #define XSAVE_MXCSR_OFFSET 24
3319 
3320 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3321 					struct kvm_xsave *guest_xsave)
3322 {
3323 	u64 xstate_bv =
3324 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3325 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3326 
3327 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3328 		/*
3329 		 * Here we allow setting states that are not present in
3330 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3331 		 * with old userspace.
3332 		 */
3333 		if (xstate_bv & ~kvm_supported_xcr0() ||
3334 			mxcsr & ~mxcsr_feature_mask)
3335 			return -EINVAL;
3336 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3337 	} else {
3338 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3339 			mxcsr & ~mxcsr_feature_mask)
3340 			return -EINVAL;
3341 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3342 			guest_xsave->region, sizeof(struct fxregs_state));
3343 	}
3344 	return 0;
3345 }
3346 
3347 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3348 					struct kvm_xcrs *guest_xcrs)
3349 {
3350 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3351 		guest_xcrs->nr_xcrs = 0;
3352 		return;
3353 	}
3354 
3355 	guest_xcrs->nr_xcrs = 1;
3356 	guest_xcrs->flags = 0;
3357 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3358 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3359 }
3360 
3361 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3362 				       struct kvm_xcrs *guest_xcrs)
3363 {
3364 	int i, r = 0;
3365 
3366 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3367 		return -EINVAL;
3368 
3369 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3370 		return -EINVAL;
3371 
3372 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3373 		/* Only support XCR0 currently */
3374 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3375 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3376 				guest_xcrs->xcrs[i].value);
3377 			break;
3378 		}
3379 	if (r)
3380 		r = -EINVAL;
3381 	return r;
3382 }
3383 
3384 /*
3385  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3386  * stopped by the hypervisor.  This function will be called from the host only.
3387  * EINVAL is returned when the host attempts to set the flag for a guest that
3388  * does not support pv clocks.
3389  */
3390 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3391 {
3392 	if (!vcpu->arch.pv_time_enabled)
3393 		return -EINVAL;
3394 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3395 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3396 	return 0;
3397 }
3398 
3399 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3400 				     struct kvm_enable_cap *cap)
3401 {
3402 	if (cap->flags)
3403 		return -EINVAL;
3404 
3405 	switch (cap->cap) {
3406 	case KVM_CAP_HYPERV_SYNIC2:
3407 		if (cap->args[0])
3408 			return -EINVAL;
3409 	case KVM_CAP_HYPERV_SYNIC:
3410 		if (!irqchip_in_kernel(vcpu->kvm))
3411 			return -EINVAL;
3412 		return kvm_hv_activate_synic(vcpu, cap->cap ==
3413 					     KVM_CAP_HYPERV_SYNIC2);
3414 	default:
3415 		return -EINVAL;
3416 	}
3417 }
3418 
3419 long kvm_arch_vcpu_ioctl(struct file *filp,
3420 			 unsigned int ioctl, unsigned long arg)
3421 {
3422 	struct kvm_vcpu *vcpu = filp->private_data;
3423 	void __user *argp = (void __user *)arg;
3424 	int r;
3425 	union {
3426 		struct kvm_lapic_state *lapic;
3427 		struct kvm_xsave *xsave;
3428 		struct kvm_xcrs *xcrs;
3429 		void *buffer;
3430 	} u;
3431 
3432 	u.buffer = NULL;
3433 	switch (ioctl) {
3434 	case KVM_GET_LAPIC: {
3435 		r = -EINVAL;
3436 		if (!lapic_in_kernel(vcpu))
3437 			goto out;
3438 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3439 
3440 		r = -ENOMEM;
3441 		if (!u.lapic)
3442 			goto out;
3443 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3444 		if (r)
3445 			goto out;
3446 		r = -EFAULT;
3447 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3448 			goto out;
3449 		r = 0;
3450 		break;
3451 	}
3452 	case KVM_SET_LAPIC: {
3453 		r = -EINVAL;
3454 		if (!lapic_in_kernel(vcpu))
3455 			goto out;
3456 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3457 		if (IS_ERR(u.lapic))
3458 			return PTR_ERR(u.lapic);
3459 
3460 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3461 		break;
3462 	}
3463 	case KVM_INTERRUPT: {
3464 		struct kvm_interrupt irq;
3465 
3466 		r = -EFAULT;
3467 		if (copy_from_user(&irq, argp, sizeof irq))
3468 			goto out;
3469 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3470 		break;
3471 	}
3472 	case KVM_NMI: {
3473 		r = kvm_vcpu_ioctl_nmi(vcpu);
3474 		break;
3475 	}
3476 	case KVM_SMI: {
3477 		r = kvm_vcpu_ioctl_smi(vcpu);
3478 		break;
3479 	}
3480 	case KVM_SET_CPUID: {
3481 		struct kvm_cpuid __user *cpuid_arg = argp;
3482 		struct kvm_cpuid cpuid;
3483 
3484 		r = -EFAULT;
3485 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3486 			goto out;
3487 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3488 		break;
3489 	}
3490 	case KVM_SET_CPUID2: {
3491 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3492 		struct kvm_cpuid2 cpuid;
3493 
3494 		r = -EFAULT;
3495 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3496 			goto out;
3497 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3498 					      cpuid_arg->entries);
3499 		break;
3500 	}
3501 	case KVM_GET_CPUID2: {
3502 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3503 		struct kvm_cpuid2 cpuid;
3504 
3505 		r = -EFAULT;
3506 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3507 			goto out;
3508 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3509 					      cpuid_arg->entries);
3510 		if (r)
3511 			goto out;
3512 		r = -EFAULT;
3513 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3514 			goto out;
3515 		r = 0;
3516 		break;
3517 	}
3518 	case KVM_GET_MSRS:
3519 		r = msr_io(vcpu, argp, do_get_msr, 1);
3520 		break;
3521 	case KVM_SET_MSRS:
3522 		r = msr_io(vcpu, argp, do_set_msr, 0);
3523 		break;
3524 	case KVM_TPR_ACCESS_REPORTING: {
3525 		struct kvm_tpr_access_ctl tac;
3526 
3527 		r = -EFAULT;
3528 		if (copy_from_user(&tac, argp, sizeof tac))
3529 			goto out;
3530 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3531 		if (r)
3532 			goto out;
3533 		r = -EFAULT;
3534 		if (copy_to_user(argp, &tac, sizeof tac))
3535 			goto out;
3536 		r = 0;
3537 		break;
3538 	};
3539 	case KVM_SET_VAPIC_ADDR: {
3540 		struct kvm_vapic_addr va;
3541 		int idx;
3542 
3543 		r = -EINVAL;
3544 		if (!lapic_in_kernel(vcpu))
3545 			goto out;
3546 		r = -EFAULT;
3547 		if (copy_from_user(&va, argp, sizeof va))
3548 			goto out;
3549 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3550 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3551 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3552 		break;
3553 	}
3554 	case KVM_X86_SETUP_MCE: {
3555 		u64 mcg_cap;
3556 
3557 		r = -EFAULT;
3558 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3559 			goto out;
3560 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3561 		break;
3562 	}
3563 	case KVM_X86_SET_MCE: {
3564 		struct kvm_x86_mce mce;
3565 
3566 		r = -EFAULT;
3567 		if (copy_from_user(&mce, argp, sizeof mce))
3568 			goto out;
3569 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3570 		break;
3571 	}
3572 	case KVM_GET_VCPU_EVENTS: {
3573 		struct kvm_vcpu_events events;
3574 
3575 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3576 
3577 		r = -EFAULT;
3578 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3579 			break;
3580 		r = 0;
3581 		break;
3582 	}
3583 	case KVM_SET_VCPU_EVENTS: {
3584 		struct kvm_vcpu_events events;
3585 
3586 		r = -EFAULT;
3587 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3588 			break;
3589 
3590 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3591 		break;
3592 	}
3593 	case KVM_GET_DEBUGREGS: {
3594 		struct kvm_debugregs dbgregs;
3595 
3596 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3597 
3598 		r = -EFAULT;
3599 		if (copy_to_user(argp, &dbgregs,
3600 				 sizeof(struct kvm_debugregs)))
3601 			break;
3602 		r = 0;
3603 		break;
3604 	}
3605 	case KVM_SET_DEBUGREGS: {
3606 		struct kvm_debugregs dbgregs;
3607 
3608 		r = -EFAULT;
3609 		if (copy_from_user(&dbgregs, argp,
3610 				   sizeof(struct kvm_debugregs)))
3611 			break;
3612 
3613 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3614 		break;
3615 	}
3616 	case KVM_GET_XSAVE: {
3617 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3618 		r = -ENOMEM;
3619 		if (!u.xsave)
3620 			break;
3621 
3622 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3623 
3624 		r = -EFAULT;
3625 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3626 			break;
3627 		r = 0;
3628 		break;
3629 	}
3630 	case KVM_SET_XSAVE: {
3631 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3632 		if (IS_ERR(u.xsave))
3633 			return PTR_ERR(u.xsave);
3634 
3635 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3636 		break;
3637 	}
3638 	case KVM_GET_XCRS: {
3639 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3640 		r = -ENOMEM;
3641 		if (!u.xcrs)
3642 			break;
3643 
3644 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3645 
3646 		r = -EFAULT;
3647 		if (copy_to_user(argp, u.xcrs,
3648 				 sizeof(struct kvm_xcrs)))
3649 			break;
3650 		r = 0;
3651 		break;
3652 	}
3653 	case KVM_SET_XCRS: {
3654 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3655 		if (IS_ERR(u.xcrs))
3656 			return PTR_ERR(u.xcrs);
3657 
3658 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3659 		break;
3660 	}
3661 	case KVM_SET_TSC_KHZ: {
3662 		u32 user_tsc_khz;
3663 
3664 		r = -EINVAL;
3665 		user_tsc_khz = (u32)arg;
3666 
3667 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3668 			goto out;
3669 
3670 		if (user_tsc_khz == 0)
3671 			user_tsc_khz = tsc_khz;
3672 
3673 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3674 			r = 0;
3675 
3676 		goto out;
3677 	}
3678 	case KVM_GET_TSC_KHZ: {
3679 		r = vcpu->arch.virtual_tsc_khz;
3680 		goto out;
3681 	}
3682 	case KVM_KVMCLOCK_CTRL: {
3683 		r = kvm_set_guest_paused(vcpu);
3684 		goto out;
3685 	}
3686 	case KVM_ENABLE_CAP: {
3687 		struct kvm_enable_cap cap;
3688 
3689 		r = -EFAULT;
3690 		if (copy_from_user(&cap, argp, sizeof(cap)))
3691 			goto out;
3692 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3693 		break;
3694 	}
3695 	default:
3696 		r = -EINVAL;
3697 	}
3698 out:
3699 	kfree(u.buffer);
3700 	return r;
3701 }
3702 
3703 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3704 {
3705 	return VM_FAULT_SIGBUS;
3706 }
3707 
3708 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3709 {
3710 	int ret;
3711 
3712 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3713 		return -EINVAL;
3714 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3715 	return ret;
3716 }
3717 
3718 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3719 					      u64 ident_addr)
3720 {
3721 	kvm->arch.ept_identity_map_addr = ident_addr;
3722 	return 0;
3723 }
3724 
3725 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3726 					  u32 kvm_nr_mmu_pages)
3727 {
3728 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3729 		return -EINVAL;
3730 
3731 	mutex_lock(&kvm->slots_lock);
3732 
3733 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3734 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3735 
3736 	mutex_unlock(&kvm->slots_lock);
3737 	return 0;
3738 }
3739 
3740 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3741 {
3742 	return kvm->arch.n_max_mmu_pages;
3743 }
3744 
3745 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3746 {
3747 	struct kvm_pic *pic = kvm->arch.vpic;
3748 	int r;
3749 
3750 	r = 0;
3751 	switch (chip->chip_id) {
3752 	case KVM_IRQCHIP_PIC_MASTER:
3753 		memcpy(&chip->chip.pic, &pic->pics[0],
3754 			sizeof(struct kvm_pic_state));
3755 		break;
3756 	case KVM_IRQCHIP_PIC_SLAVE:
3757 		memcpy(&chip->chip.pic, &pic->pics[1],
3758 			sizeof(struct kvm_pic_state));
3759 		break;
3760 	case KVM_IRQCHIP_IOAPIC:
3761 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
3762 		break;
3763 	default:
3764 		r = -EINVAL;
3765 		break;
3766 	}
3767 	return r;
3768 }
3769 
3770 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3771 {
3772 	struct kvm_pic *pic = kvm->arch.vpic;
3773 	int r;
3774 
3775 	r = 0;
3776 	switch (chip->chip_id) {
3777 	case KVM_IRQCHIP_PIC_MASTER:
3778 		spin_lock(&pic->lock);
3779 		memcpy(&pic->pics[0], &chip->chip.pic,
3780 			sizeof(struct kvm_pic_state));
3781 		spin_unlock(&pic->lock);
3782 		break;
3783 	case KVM_IRQCHIP_PIC_SLAVE:
3784 		spin_lock(&pic->lock);
3785 		memcpy(&pic->pics[1], &chip->chip.pic,
3786 			sizeof(struct kvm_pic_state));
3787 		spin_unlock(&pic->lock);
3788 		break;
3789 	case KVM_IRQCHIP_IOAPIC:
3790 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
3791 		break;
3792 	default:
3793 		r = -EINVAL;
3794 		break;
3795 	}
3796 	kvm_pic_update_irq(pic);
3797 	return r;
3798 }
3799 
3800 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3801 {
3802 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3803 
3804 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3805 
3806 	mutex_lock(&kps->lock);
3807 	memcpy(ps, &kps->channels, sizeof(*ps));
3808 	mutex_unlock(&kps->lock);
3809 	return 0;
3810 }
3811 
3812 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3813 {
3814 	int i;
3815 	struct kvm_pit *pit = kvm->arch.vpit;
3816 
3817 	mutex_lock(&pit->pit_state.lock);
3818 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3819 	for (i = 0; i < 3; i++)
3820 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3821 	mutex_unlock(&pit->pit_state.lock);
3822 	return 0;
3823 }
3824 
3825 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3826 {
3827 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3828 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3829 		sizeof(ps->channels));
3830 	ps->flags = kvm->arch.vpit->pit_state.flags;
3831 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3832 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3833 	return 0;
3834 }
3835 
3836 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3837 {
3838 	int start = 0;
3839 	int i;
3840 	u32 prev_legacy, cur_legacy;
3841 	struct kvm_pit *pit = kvm->arch.vpit;
3842 
3843 	mutex_lock(&pit->pit_state.lock);
3844 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3845 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3846 	if (!prev_legacy && cur_legacy)
3847 		start = 1;
3848 	memcpy(&pit->pit_state.channels, &ps->channels,
3849 	       sizeof(pit->pit_state.channels));
3850 	pit->pit_state.flags = ps->flags;
3851 	for (i = 0; i < 3; i++)
3852 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3853 				   start && i == 0);
3854 	mutex_unlock(&pit->pit_state.lock);
3855 	return 0;
3856 }
3857 
3858 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3859 				 struct kvm_reinject_control *control)
3860 {
3861 	struct kvm_pit *pit = kvm->arch.vpit;
3862 
3863 	if (!pit)
3864 		return -ENXIO;
3865 
3866 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3867 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3868 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3869 	 */
3870 	mutex_lock(&pit->pit_state.lock);
3871 	kvm_pit_set_reinject(pit, control->pit_reinject);
3872 	mutex_unlock(&pit->pit_state.lock);
3873 
3874 	return 0;
3875 }
3876 
3877 /**
3878  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3879  * @kvm: kvm instance
3880  * @log: slot id and address to which we copy the log
3881  *
3882  * Steps 1-4 below provide general overview of dirty page logging. See
3883  * kvm_get_dirty_log_protect() function description for additional details.
3884  *
3885  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3886  * always flush the TLB (step 4) even if previous step failed  and the dirty
3887  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3888  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3889  * writes will be marked dirty for next log read.
3890  *
3891  *   1. Take a snapshot of the bit and clear it if needed.
3892  *   2. Write protect the corresponding page.
3893  *   3. Copy the snapshot to the userspace.
3894  *   4. Flush TLB's if needed.
3895  */
3896 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3897 {
3898 	bool is_dirty = false;
3899 	int r;
3900 
3901 	mutex_lock(&kvm->slots_lock);
3902 
3903 	/*
3904 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3905 	 */
3906 	if (kvm_x86_ops->flush_log_dirty)
3907 		kvm_x86_ops->flush_log_dirty(kvm);
3908 
3909 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3910 
3911 	/*
3912 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3913 	 * kvm_mmu_slot_remove_write_access().
3914 	 */
3915 	lockdep_assert_held(&kvm->slots_lock);
3916 	if (is_dirty)
3917 		kvm_flush_remote_tlbs(kvm);
3918 
3919 	mutex_unlock(&kvm->slots_lock);
3920 	return r;
3921 }
3922 
3923 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3924 			bool line_status)
3925 {
3926 	if (!irqchip_in_kernel(kvm))
3927 		return -ENXIO;
3928 
3929 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3930 					irq_event->irq, irq_event->level,
3931 					line_status);
3932 	return 0;
3933 }
3934 
3935 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3936 				   struct kvm_enable_cap *cap)
3937 {
3938 	int r;
3939 
3940 	if (cap->flags)
3941 		return -EINVAL;
3942 
3943 	switch (cap->cap) {
3944 	case KVM_CAP_DISABLE_QUIRKS:
3945 		kvm->arch.disabled_quirks = cap->args[0];
3946 		r = 0;
3947 		break;
3948 	case KVM_CAP_SPLIT_IRQCHIP: {
3949 		mutex_lock(&kvm->lock);
3950 		r = -EINVAL;
3951 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3952 			goto split_irqchip_unlock;
3953 		r = -EEXIST;
3954 		if (irqchip_in_kernel(kvm))
3955 			goto split_irqchip_unlock;
3956 		if (kvm->created_vcpus)
3957 			goto split_irqchip_unlock;
3958 		r = kvm_setup_empty_irq_routing(kvm);
3959 		if (r)
3960 			goto split_irqchip_unlock;
3961 		/* Pairs with irqchip_in_kernel. */
3962 		smp_wmb();
3963 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3964 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3965 		r = 0;
3966 split_irqchip_unlock:
3967 		mutex_unlock(&kvm->lock);
3968 		break;
3969 	}
3970 	case KVM_CAP_X2APIC_API:
3971 		r = -EINVAL;
3972 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3973 			break;
3974 
3975 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3976 			kvm->arch.x2apic_format = true;
3977 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3978 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
3979 
3980 		r = 0;
3981 		break;
3982 	default:
3983 		r = -EINVAL;
3984 		break;
3985 	}
3986 	return r;
3987 }
3988 
3989 long kvm_arch_vm_ioctl(struct file *filp,
3990 		       unsigned int ioctl, unsigned long arg)
3991 {
3992 	struct kvm *kvm = filp->private_data;
3993 	void __user *argp = (void __user *)arg;
3994 	int r = -ENOTTY;
3995 	/*
3996 	 * This union makes it completely explicit to gcc-3.x
3997 	 * that these two variables' stack usage should be
3998 	 * combined, not added together.
3999 	 */
4000 	union {
4001 		struct kvm_pit_state ps;
4002 		struct kvm_pit_state2 ps2;
4003 		struct kvm_pit_config pit_config;
4004 	} u;
4005 
4006 	switch (ioctl) {
4007 	case KVM_SET_TSS_ADDR:
4008 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4009 		break;
4010 	case KVM_SET_IDENTITY_MAP_ADDR: {
4011 		u64 ident_addr;
4012 
4013 		r = -EFAULT;
4014 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4015 			goto out;
4016 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4017 		break;
4018 	}
4019 	case KVM_SET_NR_MMU_PAGES:
4020 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4021 		break;
4022 	case KVM_GET_NR_MMU_PAGES:
4023 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4024 		break;
4025 	case KVM_CREATE_IRQCHIP: {
4026 		mutex_lock(&kvm->lock);
4027 
4028 		r = -EEXIST;
4029 		if (irqchip_in_kernel(kvm))
4030 			goto create_irqchip_unlock;
4031 
4032 		r = -EINVAL;
4033 		if (kvm->created_vcpus)
4034 			goto create_irqchip_unlock;
4035 
4036 		r = kvm_pic_init(kvm);
4037 		if (r)
4038 			goto create_irqchip_unlock;
4039 
4040 		r = kvm_ioapic_init(kvm);
4041 		if (r) {
4042 			kvm_pic_destroy(kvm);
4043 			goto create_irqchip_unlock;
4044 		}
4045 
4046 		r = kvm_setup_default_irq_routing(kvm);
4047 		if (r) {
4048 			kvm_ioapic_destroy(kvm);
4049 			kvm_pic_destroy(kvm);
4050 			goto create_irqchip_unlock;
4051 		}
4052 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4053 		smp_wmb();
4054 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4055 	create_irqchip_unlock:
4056 		mutex_unlock(&kvm->lock);
4057 		break;
4058 	}
4059 	case KVM_CREATE_PIT:
4060 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4061 		goto create_pit;
4062 	case KVM_CREATE_PIT2:
4063 		r = -EFAULT;
4064 		if (copy_from_user(&u.pit_config, argp,
4065 				   sizeof(struct kvm_pit_config)))
4066 			goto out;
4067 	create_pit:
4068 		mutex_lock(&kvm->lock);
4069 		r = -EEXIST;
4070 		if (kvm->arch.vpit)
4071 			goto create_pit_unlock;
4072 		r = -ENOMEM;
4073 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4074 		if (kvm->arch.vpit)
4075 			r = 0;
4076 	create_pit_unlock:
4077 		mutex_unlock(&kvm->lock);
4078 		break;
4079 	case KVM_GET_IRQCHIP: {
4080 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4081 		struct kvm_irqchip *chip;
4082 
4083 		chip = memdup_user(argp, sizeof(*chip));
4084 		if (IS_ERR(chip)) {
4085 			r = PTR_ERR(chip);
4086 			goto out;
4087 		}
4088 
4089 		r = -ENXIO;
4090 		if (!irqchip_kernel(kvm))
4091 			goto get_irqchip_out;
4092 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4093 		if (r)
4094 			goto get_irqchip_out;
4095 		r = -EFAULT;
4096 		if (copy_to_user(argp, chip, sizeof *chip))
4097 			goto get_irqchip_out;
4098 		r = 0;
4099 	get_irqchip_out:
4100 		kfree(chip);
4101 		break;
4102 	}
4103 	case KVM_SET_IRQCHIP: {
4104 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4105 		struct kvm_irqchip *chip;
4106 
4107 		chip = memdup_user(argp, sizeof(*chip));
4108 		if (IS_ERR(chip)) {
4109 			r = PTR_ERR(chip);
4110 			goto out;
4111 		}
4112 
4113 		r = -ENXIO;
4114 		if (!irqchip_kernel(kvm))
4115 			goto set_irqchip_out;
4116 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4117 		if (r)
4118 			goto set_irqchip_out;
4119 		r = 0;
4120 	set_irqchip_out:
4121 		kfree(chip);
4122 		break;
4123 	}
4124 	case KVM_GET_PIT: {
4125 		r = -EFAULT;
4126 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4127 			goto out;
4128 		r = -ENXIO;
4129 		if (!kvm->arch.vpit)
4130 			goto out;
4131 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4132 		if (r)
4133 			goto out;
4134 		r = -EFAULT;
4135 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4136 			goto out;
4137 		r = 0;
4138 		break;
4139 	}
4140 	case KVM_SET_PIT: {
4141 		r = -EFAULT;
4142 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4143 			goto out;
4144 		r = -ENXIO;
4145 		if (!kvm->arch.vpit)
4146 			goto out;
4147 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4148 		break;
4149 	}
4150 	case KVM_GET_PIT2: {
4151 		r = -ENXIO;
4152 		if (!kvm->arch.vpit)
4153 			goto out;
4154 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4155 		if (r)
4156 			goto out;
4157 		r = -EFAULT;
4158 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4159 			goto out;
4160 		r = 0;
4161 		break;
4162 	}
4163 	case KVM_SET_PIT2: {
4164 		r = -EFAULT;
4165 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4166 			goto out;
4167 		r = -ENXIO;
4168 		if (!kvm->arch.vpit)
4169 			goto out;
4170 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4171 		break;
4172 	}
4173 	case KVM_REINJECT_CONTROL: {
4174 		struct kvm_reinject_control control;
4175 		r =  -EFAULT;
4176 		if (copy_from_user(&control, argp, sizeof(control)))
4177 			goto out;
4178 		r = kvm_vm_ioctl_reinject(kvm, &control);
4179 		break;
4180 	}
4181 	case KVM_SET_BOOT_CPU_ID:
4182 		r = 0;
4183 		mutex_lock(&kvm->lock);
4184 		if (kvm->created_vcpus)
4185 			r = -EBUSY;
4186 		else
4187 			kvm->arch.bsp_vcpu_id = arg;
4188 		mutex_unlock(&kvm->lock);
4189 		break;
4190 	case KVM_XEN_HVM_CONFIG: {
4191 		r = -EFAULT;
4192 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4193 				   sizeof(struct kvm_xen_hvm_config)))
4194 			goto out;
4195 		r = -EINVAL;
4196 		if (kvm->arch.xen_hvm_config.flags)
4197 			goto out;
4198 		r = 0;
4199 		break;
4200 	}
4201 	case KVM_SET_CLOCK: {
4202 		struct kvm_clock_data user_ns;
4203 		u64 now_ns;
4204 
4205 		r = -EFAULT;
4206 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4207 			goto out;
4208 
4209 		r = -EINVAL;
4210 		if (user_ns.flags)
4211 			goto out;
4212 
4213 		r = 0;
4214 		/*
4215 		 * TODO: userspace has to take care of races with VCPU_RUN, so
4216 		 * kvm_gen_update_masterclock() can be cut down to locked
4217 		 * pvclock_update_vm_gtod_copy().
4218 		 */
4219 		kvm_gen_update_masterclock(kvm);
4220 		now_ns = get_kvmclock_ns(kvm);
4221 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4222 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4223 		break;
4224 	}
4225 	case KVM_GET_CLOCK: {
4226 		struct kvm_clock_data user_ns;
4227 		u64 now_ns;
4228 
4229 		now_ns = get_kvmclock_ns(kvm);
4230 		user_ns.clock = now_ns;
4231 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4232 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4233 
4234 		r = -EFAULT;
4235 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4236 			goto out;
4237 		r = 0;
4238 		break;
4239 	}
4240 	case KVM_ENABLE_CAP: {
4241 		struct kvm_enable_cap cap;
4242 
4243 		r = -EFAULT;
4244 		if (copy_from_user(&cap, argp, sizeof(cap)))
4245 			goto out;
4246 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4247 		break;
4248 	}
4249 	default:
4250 		r = -ENOTTY;
4251 	}
4252 out:
4253 	return r;
4254 }
4255 
4256 static void kvm_init_msr_list(void)
4257 {
4258 	u32 dummy[2];
4259 	unsigned i, j;
4260 
4261 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4262 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4263 			continue;
4264 
4265 		/*
4266 		 * Even MSRs that are valid in the host may not be exposed
4267 		 * to the guests in some cases.
4268 		 */
4269 		switch (msrs_to_save[i]) {
4270 		case MSR_IA32_BNDCFGS:
4271 			if (!kvm_x86_ops->mpx_supported())
4272 				continue;
4273 			break;
4274 		case MSR_TSC_AUX:
4275 			if (!kvm_x86_ops->rdtscp_supported())
4276 				continue;
4277 			break;
4278 		default:
4279 			break;
4280 		}
4281 
4282 		if (j < i)
4283 			msrs_to_save[j] = msrs_to_save[i];
4284 		j++;
4285 	}
4286 	num_msrs_to_save = j;
4287 
4288 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4289 		switch (emulated_msrs[i]) {
4290 		case MSR_IA32_SMBASE:
4291 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4292 				continue;
4293 			break;
4294 		default:
4295 			break;
4296 		}
4297 
4298 		if (j < i)
4299 			emulated_msrs[j] = emulated_msrs[i];
4300 		j++;
4301 	}
4302 	num_emulated_msrs = j;
4303 }
4304 
4305 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4306 			   const void *v)
4307 {
4308 	int handled = 0;
4309 	int n;
4310 
4311 	do {
4312 		n = min(len, 8);
4313 		if (!(lapic_in_kernel(vcpu) &&
4314 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4315 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4316 			break;
4317 		handled += n;
4318 		addr += n;
4319 		len -= n;
4320 		v += n;
4321 	} while (len);
4322 
4323 	return handled;
4324 }
4325 
4326 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4327 {
4328 	int handled = 0;
4329 	int n;
4330 
4331 	do {
4332 		n = min(len, 8);
4333 		if (!(lapic_in_kernel(vcpu) &&
4334 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4335 					 addr, n, v))
4336 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4337 			break;
4338 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4339 		handled += n;
4340 		addr += n;
4341 		len -= n;
4342 		v += n;
4343 	} while (len);
4344 
4345 	return handled;
4346 }
4347 
4348 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4349 			struct kvm_segment *var, int seg)
4350 {
4351 	kvm_x86_ops->set_segment(vcpu, var, seg);
4352 }
4353 
4354 void kvm_get_segment(struct kvm_vcpu *vcpu,
4355 		     struct kvm_segment *var, int seg)
4356 {
4357 	kvm_x86_ops->get_segment(vcpu, var, seg);
4358 }
4359 
4360 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4361 			   struct x86_exception *exception)
4362 {
4363 	gpa_t t_gpa;
4364 
4365 	BUG_ON(!mmu_is_nested(vcpu));
4366 
4367 	/* NPT walks are always user-walks */
4368 	access |= PFERR_USER_MASK;
4369 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4370 
4371 	return t_gpa;
4372 }
4373 
4374 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4375 			      struct x86_exception *exception)
4376 {
4377 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4378 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4379 }
4380 
4381  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4382 				struct x86_exception *exception)
4383 {
4384 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4385 	access |= PFERR_FETCH_MASK;
4386 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4387 }
4388 
4389 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4390 			       struct x86_exception *exception)
4391 {
4392 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4393 	access |= PFERR_WRITE_MASK;
4394 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4395 }
4396 
4397 /* uses this to access any guest's mapped memory without checking CPL */
4398 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4399 				struct x86_exception *exception)
4400 {
4401 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4402 }
4403 
4404 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4405 				      struct kvm_vcpu *vcpu, u32 access,
4406 				      struct x86_exception *exception)
4407 {
4408 	void *data = val;
4409 	int r = X86EMUL_CONTINUE;
4410 
4411 	while (bytes) {
4412 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4413 							    exception);
4414 		unsigned offset = addr & (PAGE_SIZE-1);
4415 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4416 		int ret;
4417 
4418 		if (gpa == UNMAPPED_GVA)
4419 			return X86EMUL_PROPAGATE_FAULT;
4420 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4421 					       offset, toread);
4422 		if (ret < 0) {
4423 			r = X86EMUL_IO_NEEDED;
4424 			goto out;
4425 		}
4426 
4427 		bytes -= toread;
4428 		data += toread;
4429 		addr += toread;
4430 	}
4431 out:
4432 	return r;
4433 }
4434 
4435 /* used for instruction fetching */
4436 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4437 				gva_t addr, void *val, unsigned int bytes,
4438 				struct x86_exception *exception)
4439 {
4440 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4441 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4442 	unsigned offset;
4443 	int ret;
4444 
4445 	/* Inline kvm_read_guest_virt_helper for speed.  */
4446 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4447 						    exception);
4448 	if (unlikely(gpa == UNMAPPED_GVA))
4449 		return X86EMUL_PROPAGATE_FAULT;
4450 
4451 	offset = addr & (PAGE_SIZE-1);
4452 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4453 		bytes = (unsigned)PAGE_SIZE - offset;
4454 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4455 				       offset, bytes);
4456 	if (unlikely(ret < 0))
4457 		return X86EMUL_IO_NEEDED;
4458 
4459 	return X86EMUL_CONTINUE;
4460 }
4461 
4462 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4463 			       gva_t addr, void *val, unsigned int bytes,
4464 			       struct x86_exception *exception)
4465 {
4466 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4467 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4468 
4469 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4470 					  exception);
4471 }
4472 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4473 
4474 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4475 				      gva_t addr, void *val, unsigned int bytes,
4476 				      struct x86_exception *exception)
4477 {
4478 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4479 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4480 }
4481 
4482 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4483 		unsigned long addr, void *val, unsigned int bytes)
4484 {
4485 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4486 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4487 
4488 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4489 }
4490 
4491 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4492 				       gva_t addr, void *val,
4493 				       unsigned int bytes,
4494 				       struct x86_exception *exception)
4495 {
4496 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4497 	void *data = val;
4498 	int r = X86EMUL_CONTINUE;
4499 
4500 	while (bytes) {
4501 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4502 							     PFERR_WRITE_MASK,
4503 							     exception);
4504 		unsigned offset = addr & (PAGE_SIZE-1);
4505 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4506 		int ret;
4507 
4508 		if (gpa == UNMAPPED_GVA)
4509 			return X86EMUL_PROPAGATE_FAULT;
4510 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4511 		if (ret < 0) {
4512 			r = X86EMUL_IO_NEEDED;
4513 			goto out;
4514 		}
4515 
4516 		bytes -= towrite;
4517 		data += towrite;
4518 		addr += towrite;
4519 	}
4520 out:
4521 	return r;
4522 }
4523 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4524 
4525 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4526 			    gpa_t gpa, bool write)
4527 {
4528 	/* For APIC access vmexit */
4529 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4530 		return 1;
4531 
4532 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4533 		trace_vcpu_match_mmio(gva, gpa, write, true);
4534 		return 1;
4535 	}
4536 
4537 	return 0;
4538 }
4539 
4540 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4541 				gpa_t *gpa, struct x86_exception *exception,
4542 				bool write)
4543 {
4544 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4545 		| (write ? PFERR_WRITE_MASK : 0);
4546 
4547 	/*
4548 	 * currently PKRU is only applied to ept enabled guest so
4549 	 * there is no pkey in EPT page table for L1 guest or EPT
4550 	 * shadow page table for L2 guest.
4551 	 */
4552 	if (vcpu_match_mmio_gva(vcpu, gva)
4553 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4554 				 vcpu->arch.access, 0, access)) {
4555 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4556 					(gva & (PAGE_SIZE - 1));
4557 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4558 		return 1;
4559 	}
4560 
4561 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4562 
4563 	if (*gpa == UNMAPPED_GVA)
4564 		return -1;
4565 
4566 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4567 }
4568 
4569 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4570 			const void *val, int bytes)
4571 {
4572 	int ret;
4573 
4574 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4575 	if (ret < 0)
4576 		return 0;
4577 	kvm_page_track_write(vcpu, gpa, val, bytes);
4578 	return 1;
4579 }
4580 
4581 struct read_write_emulator_ops {
4582 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4583 				  int bytes);
4584 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4585 				  void *val, int bytes);
4586 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4587 			       int bytes, void *val);
4588 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4589 				    void *val, int bytes);
4590 	bool write;
4591 };
4592 
4593 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4594 {
4595 	if (vcpu->mmio_read_completed) {
4596 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4597 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4598 		vcpu->mmio_read_completed = 0;
4599 		return 1;
4600 	}
4601 
4602 	return 0;
4603 }
4604 
4605 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4606 			void *val, int bytes)
4607 {
4608 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4609 }
4610 
4611 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4612 			 void *val, int bytes)
4613 {
4614 	return emulator_write_phys(vcpu, gpa, val, bytes);
4615 }
4616 
4617 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4618 {
4619 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4620 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4621 }
4622 
4623 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4624 			  void *val, int bytes)
4625 {
4626 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4627 	return X86EMUL_IO_NEEDED;
4628 }
4629 
4630 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4631 			   void *val, int bytes)
4632 {
4633 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4634 
4635 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4636 	return X86EMUL_CONTINUE;
4637 }
4638 
4639 static const struct read_write_emulator_ops read_emultor = {
4640 	.read_write_prepare = read_prepare,
4641 	.read_write_emulate = read_emulate,
4642 	.read_write_mmio = vcpu_mmio_read,
4643 	.read_write_exit_mmio = read_exit_mmio,
4644 };
4645 
4646 static const struct read_write_emulator_ops write_emultor = {
4647 	.read_write_emulate = write_emulate,
4648 	.read_write_mmio = write_mmio,
4649 	.read_write_exit_mmio = write_exit_mmio,
4650 	.write = true,
4651 };
4652 
4653 static int emulator_read_write_onepage(unsigned long addr, void *val,
4654 				       unsigned int bytes,
4655 				       struct x86_exception *exception,
4656 				       struct kvm_vcpu *vcpu,
4657 				       const struct read_write_emulator_ops *ops)
4658 {
4659 	gpa_t gpa;
4660 	int handled, ret;
4661 	bool write = ops->write;
4662 	struct kvm_mmio_fragment *frag;
4663 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4664 
4665 	/*
4666 	 * If the exit was due to a NPF we may already have a GPA.
4667 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4668 	 * Note, this cannot be used on string operations since string
4669 	 * operation using rep will only have the initial GPA from the NPF
4670 	 * occurred.
4671 	 */
4672 	if (vcpu->arch.gpa_available &&
4673 	    emulator_can_use_gpa(ctxt) &&
4674 	    vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4675 	    (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4676 		gpa = exception->address;
4677 		goto mmio;
4678 	}
4679 
4680 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4681 
4682 	if (ret < 0)
4683 		return X86EMUL_PROPAGATE_FAULT;
4684 
4685 	/* For APIC access vmexit */
4686 	if (ret)
4687 		goto mmio;
4688 
4689 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4690 		return X86EMUL_CONTINUE;
4691 
4692 mmio:
4693 	/*
4694 	 * Is this MMIO handled locally?
4695 	 */
4696 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4697 	if (handled == bytes)
4698 		return X86EMUL_CONTINUE;
4699 
4700 	gpa += handled;
4701 	bytes -= handled;
4702 	val += handled;
4703 
4704 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4705 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4706 	frag->gpa = gpa;
4707 	frag->data = val;
4708 	frag->len = bytes;
4709 	return X86EMUL_CONTINUE;
4710 }
4711 
4712 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4713 			unsigned long addr,
4714 			void *val, unsigned int bytes,
4715 			struct x86_exception *exception,
4716 			const struct read_write_emulator_ops *ops)
4717 {
4718 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4719 	gpa_t gpa;
4720 	int rc;
4721 
4722 	if (ops->read_write_prepare &&
4723 		  ops->read_write_prepare(vcpu, val, bytes))
4724 		return X86EMUL_CONTINUE;
4725 
4726 	vcpu->mmio_nr_fragments = 0;
4727 
4728 	/* Crossing a page boundary? */
4729 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4730 		int now;
4731 
4732 		now = -addr & ~PAGE_MASK;
4733 		rc = emulator_read_write_onepage(addr, val, now, exception,
4734 						 vcpu, ops);
4735 
4736 		if (rc != X86EMUL_CONTINUE)
4737 			return rc;
4738 		addr += now;
4739 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4740 			addr = (u32)addr;
4741 		val += now;
4742 		bytes -= now;
4743 	}
4744 
4745 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4746 					 vcpu, ops);
4747 	if (rc != X86EMUL_CONTINUE)
4748 		return rc;
4749 
4750 	if (!vcpu->mmio_nr_fragments)
4751 		return rc;
4752 
4753 	gpa = vcpu->mmio_fragments[0].gpa;
4754 
4755 	vcpu->mmio_needed = 1;
4756 	vcpu->mmio_cur_fragment = 0;
4757 
4758 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4759 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4760 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4761 	vcpu->run->mmio.phys_addr = gpa;
4762 
4763 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4764 }
4765 
4766 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4767 				  unsigned long addr,
4768 				  void *val,
4769 				  unsigned int bytes,
4770 				  struct x86_exception *exception)
4771 {
4772 	return emulator_read_write(ctxt, addr, val, bytes,
4773 				   exception, &read_emultor);
4774 }
4775 
4776 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4777 			    unsigned long addr,
4778 			    const void *val,
4779 			    unsigned int bytes,
4780 			    struct x86_exception *exception)
4781 {
4782 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4783 				   exception, &write_emultor);
4784 }
4785 
4786 #define CMPXCHG_TYPE(t, ptr, old, new) \
4787 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4788 
4789 #ifdef CONFIG_X86_64
4790 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4791 #else
4792 #  define CMPXCHG64(ptr, old, new) \
4793 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4794 #endif
4795 
4796 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4797 				     unsigned long addr,
4798 				     const void *old,
4799 				     const void *new,
4800 				     unsigned int bytes,
4801 				     struct x86_exception *exception)
4802 {
4803 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4804 	gpa_t gpa;
4805 	struct page *page;
4806 	char *kaddr;
4807 	bool exchanged;
4808 
4809 	/* guests cmpxchg8b have to be emulated atomically */
4810 	if (bytes > 8 || (bytes & (bytes - 1)))
4811 		goto emul_write;
4812 
4813 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4814 
4815 	if (gpa == UNMAPPED_GVA ||
4816 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4817 		goto emul_write;
4818 
4819 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4820 		goto emul_write;
4821 
4822 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4823 	if (is_error_page(page))
4824 		goto emul_write;
4825 
4826 	kaddr = kmap_atomic(page);
4827 	kaddr += offset_in_page(gpa);
4828 	switch (bytes) {
4829 	case 1:
4830 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4831 		break;
4832 	case 2:
4833 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4834 		break;
4835 	case 4:
4836 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4837 		break;
4838 	case 8:
4839 		exchanged = CMPXCHG64(kaddr, old, new);
4840 		break;
4841 	default:
4842 		BUG();
4843 	}
4844 	kunmap_atomic(kaddr);
4845 	kvm_release_page_dirty(page);
4846 
4847 	if (!exchanged)
4848 		return X86EMUL_CMPXCHG_FAILED;
4849 
4850 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4851 	kvm_page_track_write(vcpu, gpa, new, bytes);
4852 
4853 	return X86EMUL_CONTINUE;
4854 
4855 emul_write:
4856 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4857 
4858 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4859 }
4860 
4861 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4862 {
4863 	int r = 0, i;
4864 
4865 	for (i = 0; i < vcpu->arch.pio.count; i++) {
4866 		if (vcpu->arch.pio.in)
4867 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4868 					    vcpu->arch.pio.size, pd);
4869 		else
4870 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4871 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
4872 					     pd);
4873 		if (r)
4874 			break;
4875 		pd += vcpu->arch.pio.size;
4876 	}
4877 	return r;
4878 }
4879 
4880 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4881 			       unsigned short port, void *val,
4882 			       unsigned int count, bool in)
4883 {
4884 	vcpu->arch.pio.port = port;
4885 	vcpu->arch.pio.in = in;
4886 	vcpu->arch.pio.count  = count;
4887 	vcpu->arch.pio.size = size;
4888 
4889 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4890 		vcpu->arch.pio.count = 0;
4891 		return 1;
4892 	}
4893 
4894 	vcpu->run->exit_reason = KVM_EXIT_IO;
4895 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4896 	vcpu->run->io.size = size;
4897 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4898 	vcpu->run->io.count = count;
4899 	vcpu->run->io.port = port;
4900 
4901 	return 0;
4902 }
4903 
4904 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4905 				    int size, unsigned short port, void *val,
4906 				    unsigned int count)
4907 {
4908 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4909 	int ret;
4910 
4911 	if (vcpu->arch.pio.count)
4912 		goto data_avail;
4913 
4914 	memset(vcpu->arch.pio_data, 0, size * count);
4915 
4916 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4917 	if (ret) {
4918 data_avail:
4919 		memcpy(val, vcpu->arch.pio_data, size * count);
4920 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4921 		vcpu->arch.pio.count = 0;
4922 		return 1;
4923 	}
4924 
4925 	return 0;
4926 }
4927 
4928 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4929 				     int size, unsigned short port,
4930 				     const void *val, unsigned int count)
4931 {
4932 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4933 
4934 	memcpy(vcpu->arch.pio_data, val, size * count);
4935 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4936 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4937 }
4938 
4939 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4940 {
4941 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4942 }
4943 
4944 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4945 {
4946 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4947 }
4948 
4949 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4950 {
4951 	if (!need_emulate_wbinvd(vcpu))
4952 		return X86EMUL_CONTINUE;
4953 
4954 	if (kvm_x86_ops->has_wbinvd_exit()) {
4955 		int cpu = get_cpu();
4956 
4957 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4958 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4959 				wbinvd_ipi, NULL, 1);
4960 		put_cpu();
4961 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4962 	} else
4963 		wbinvd();
4964 	return X86EMUL_CONTINUE;
4965 }
4966 
4967 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4968 {
4969 	kvm_emulate_wbinvd_noskip(vcpu);
4970 	return kvm_skip_emulated_instruction(vcpu);
4971 }
4972 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4973 
4974 
4975 
4976 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4977 {
4978 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4979 }
4980 
4981 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4982 			   unsigned long *dest)
4983 {
4984 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4985 }
4986 
4987 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4988 			   unsigned long value)
4989 {
4990 
4991 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4992 }
4993 
4994 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4995 {
4996 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4997 }
4998 
4999 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5000 {
5001 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5002 	unsigned long value;
5003 
5004 	switch (cr) {
5005 	case 0:
5006 		value = kvm_read_cr0(vcpu);
5007 		break;
5008 	case 2:
5009 		value = vcpu->arch.cr2;
5010 		break;
5011 	case 3:
5012 		value = kvm_read_cr3(vcpu);
5013 		break;
5014 	case 4:
5015 		value = kvm_read_cr4(vcpu);
5016 		break;
5017 	case 8:
5018 		value = kvm_get_cr8(vcpu);
5019 		break;
5020 	default:
5021 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5022 		return 0;
5023 	}
5024 
5025 	return value;
5026 }
5027 
5028 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5029 {
5030 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5031 	int res = 0;
5032 
5033 	switch (cr) {
5034 	case 0:
5035 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5036 		break;
5037 	case 2:
5038 		vcpu->arch.cr2 = val;
5039 		break;
5040 	case 3:
5041 		res = kvm_set_cr3(vcpu, val);
5042 		break;
5043 	case 4:
5044 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5045 		break;
5046 	case 8:
5047 		res = kvm_set_cr8(vcpu, val);
5048 		break;
5049 	default:
5050 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
5051 		res = -1;
5052 	}
5053 
5054 	return res;
5055 }
5056 
5057 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5058 {
5059 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5060 }
5061 
5062 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5063 {
5064 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5065 }
5066 
5067 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5068 {
5069 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5070 }
5071 
5072 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5073 {
5074 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5075 }
5076 
5077 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5078 {
5079 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5080 }
5081 
5082 static unsigned long emulator_get_cached_segment_base(
5083 	struct x86_emulate_ctxt *ctxt, int seg)
5084 {
5085 	return get_segment_base(emul_to_vcpu(ctxt), seg);
5086 }
5087 
5088 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5089 				 struct desc_struct *desc, u32 *base3,
5090 				 int seg)
5091 {
5092 	struct kvm_segment var;
5093 
5094 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5095 	*selector = var.selector;
5096 
5097 	if (var.unusable) {
5098 		memset(desc, 0, sizeof(*desc));
5099 		if (base3)
5100 			*base3 = 0;
5101 		return false;
5102 	}
5103 
5104 	if (var.g)
5105 		var.limit >>= 12;
5106 	set_desc_limit(desc, var.limit);
5107 	set_desc_base(desc, (unsigned long)var.base);
5108 #ifdef CONFIG_X86_64
5109 	if (base3)
5110 		*base3 = var.base >> 32;
5111 #endif
5112 	desc->type = var.type;
5113 	desc->s = var.s;
5114 	desc->dpl = var.dpl;
5115 	desc->p = var.present;
5116 	desc->avl = var.avl;
5117 	desc->l = var.l;
5118 	desc->d = var.db;
5119 	desc->g = var.g;
5120 
5121 	return true;
5122 }
5123 
5124 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5125 				 struct desc_struct *desc, u32 base3,
5126 				 int seg)
5127 {
5128 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5129 	struct kvm_segment var;
5130 
5131 	var.selector = selector;
5132 	var.base = get_desc_base(desc);
5133 #ifdef CONFIG_X86_64
5134 	var.base |= ((u64)base3) << 32;
5135 #endif
5136 	var.limit = get_desc_limit(desc);
5137 	if (desc->g)
5138 		var.limit = (var.limit << 12) | 0xfff;
5139 	var.type = desc->type;
5140 	var.dpl = desc->dpl;
5141 	var.db = desc->d;
5142 	var.s = desc->s;
5143 	var.l = desc->l;
5144 	var.g = desc->g;
5145 	var.avl = desc->avl;
5146 	var.present = desc->p;
5147 	var.unusable = !var.present;
5148 	var.padding = 0;
5149 
5150 	kvm_set_segment(vcpu, &var, seg);
5151 	return;
5152 }
5153 
5154 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5155 			    u32 msr_index, u64 *pdata)
5156 {
5157 	struct msr_data msr;
5158 	int r;
5159 
5160 	msr.index = msr_index;
5161 	msr.host_initiated = false;
5162 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5163 	if (r)
5164 		return r;
5165 
5166 	*pdata = msr.data;
5167 	return 0;
5168 }
5169 
5170 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5171 			    u32 msr_index, u64 data)
5172 {
5173 	struct msr_data msr;
5174 
5175 	msr.data = data;
5176 	msr.index = msr_index;
5177 	msr.host_initiated = false;
5178 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5179 }
5180 
5181 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5182 {
5183 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5184 
5185 	return vcpu->arch.smbase;
5186 }
5187 
5188 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5189 {
5190 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5191 
5192 	vcpu->arch.smbase = smbase;
5193 }
5194 
5195 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5196 			      u32 pmc)
5197 {
5198 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5199 }
5200 
5201 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5202 			     u32 pmc, u64 *pdata)
5203 {
5204 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5205 }
5206 
5207 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5208 {
5209 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
5210 }
5211 
5212 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5213 {
5214 	preempt_disable();
5215 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5216 }
5217 
5218 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5219 {
5220 	preempt_enable();
5221 }
5222 
5223 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5224 			      struct x86_instruction_info *info,
5225 			      enum x86_intercept_stage stage)
5226 {
5227 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5228 }
5229 
5230 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5231 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5232 {
5233 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5234 }
5235 
5236 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5237 {
5238 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5239 }
5240 
5241 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5242 {
5243 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5244 }
5245 
5246 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5247 {
5248 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5249 }
5250 
5251 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5252 {
5253 	return emul_to_vcpu(ctxt)->arch.hflags;
5254 }
5255 
5256 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5257 {
5258 	kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5259 }
5260 
5261 static const struct x86_emulate_ops emulate_ops = {
5262 	.read_gpr            = emulator_read_gpr,
5263 	.write_gpr           = emulator_write_gpr,
5264 	.read_std            = kvm_read_guest_virt_system,
5265 	.write_std           = kvm_write_guest_virt_system,
5266 	.read_phys           = kvm_read_guest_phys_system,
5267 	.fetch               = kvm_fetch_guest_virt,
5268 	.read_emulated       = emulator_read_emulated,
5269 	.write_emulated      = emulator_write_emulated,
5270 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5271 	.invlpg              = emulator_invlpg,
5272 	.pio_in_emulated     = emulator_pio_in_emulated,
5273 	.pio_out_emulated    = emulator_pio_out_emulated,
5274 	.get_segment         = emulator_get_segment,
5275 	.set_segment         = emulator_set_segment,
5276 	.get_cached_segment_base = emulator_get_cached_segment_base,
5277 	.get_gdt             = emulator_get_gdt,
5278 	.get_idt	     = emulator_get_idt,
5279 	.set_gdt             = emulator_set_gdt,
5280 	.set_idt	     = emulator_set_idt,
5281 	.get_cr              = emulator_get_cr,
5282 	.set_cr              = emulator_set_cr,
5283 	.cpl                 = emulator_get_cpl,
5284 	.get_dr              = emulator_get_dr,
5285 	.set_dr              = emulator_set_dr,
5286 	.get_smbase          = emulator_get_smbase,
5287 	.set_smbase          = emulator_set_smbase,
5288 	.set_msr             = emulator_set_msr,
5289 	.get_msr             = emulator_get_msr,
5290 	.check_pmc	     = emulator_check_pmc,
5291 	.read_pmc            = emulator_read_pmc,
5292 	.halt                = emulator_halt,
5293 	.wbinvd              = emulator_wbinvd,
5294 	.fix_hypercall       = emulator_fix_hypercall,
5295 	.get_fpu             = emulator_get_fpu,
5296 	.put_fpu             = emulator_put_fpu,
5297 	.intercept           = emulator_intercept,
5298 	.get_cpuid           = emulator_get_cpuid,
5299 	.set_nmi_mask        = emulator_set_nmi_mask,
5300 	.get_hflags          = emulator_get_hflags,
5301 	.set_hflags          = emulator_set_hflags,
5302 };
5303 
5304 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5305 {
5306 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5307 	/*
5308 	 * an sti; sti; sequence only disable interrupts for the first
5309 	 * instruction. So, if the last instruction, be it emulated or
5310 	 * not, left the system with the INT_STI flag enabled, it
5311 	 * means that the last instruction is an sti. We should not
5312 	 * leave the flag on in this case. The same goes for mov ss
5313 	 */
5314 	if (int_shadow & mask)
5315 		mask = 0;
5316 	if (unlikely(int_shadow || mask)) {
5317 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5318 		if (!mask)
5319 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5320 	}
5321 }
5322 
5323 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5324 {
5325 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5326 	if (ctxt->exception.vector == PF_VECTOR)
5327 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5328 
5329 	if (ctxt->exception.error_code_valid)
5330 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5331 				      ctxt->exception.error_code);
5332 	else
5333 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5334 	return false;
5335 }
5336 
5337 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5338 {
5339 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5340 	int cs_db, cs_l;
5341 
5342 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5343 
5344 	ctxt->eflags = kvm_get_rflags(vcpu);
5345 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5346 
5347 	ctxt->eip = kvm_rip_read(vcpu);
5348 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5349 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5350 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5351 		     cs_db				? X86EMUL_MODE_PROT32 :
5352 							  X86EMUL_MODE_PROT16;
5353 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5354 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5355 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5356 
5357 	init_decode_cache(ctxt);
5358 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5359 }
5360 
5361 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5362 {
5363 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5364 	int ret;
5365 
5366 	init_emulate_ctxt(vcpu);
5367 
5368 	ctxt->op_bytes = 2;
5369 	ctxt->ad_bytes = 2;
5370 	ctxt->_eip = ctxt->eip + inc_eip;
5371 	ret = emulate_int_real(ctxt, irq);
5372 
5373 	if (ret != X86EMUL_CONTINUE)
5374 		return EMULATE_FAIL;
5375 
5376 	ctxt->eip = ctxt->_eip;
5377 	kvm_rip_write(vcpu, ctxt->eip);
5378 	kvm_set_rflags(vcpu, ctxt->eflags);
5379 
5380 	if (irq == NMI_VECTOR)
5381 		vcpu->arch.nmi_pending = 0;
5382 	else
5383 		vcpu->arch.interrupt.pending = false;
5384 
5385 	return EMULATE_DONE;
5386 }
5387 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5388 
5389 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5390 {
5391 	int r = EMULATE_DONE;
5392 
5393 	++vcpu->stat.insn_emulation_fail;
5394 	trace_kvm_emulate_insn_failed(vcpu);
5395 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5396 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5397 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5398 		vcpu->run->internal.ndata = 0;
5399 		r = EMULATE_FAIL;
5400 	}
5401 	kvm_queue_exception(vcpu, UD_VECTOR);
5402 
5403 	return r;
5404 }
5405 
5406 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5407 				  bool write_fault_to_shadow_pgtable,
5408 				  int emulation_type)
5409 {
5410 	gpa_t gpa = cr2;
5411 	kvm_pfn_t pfn;
5412 
5413 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5414 		return false;
5415 
5416 	if (!vcpu->arch.mmu.direct_map) {
5417 		/*
5418 		 * Write permission should be allowed since only
5419 		 * write access need to be emulated.
5420 		 */
5421 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5422 
5423 		/*
5424 		 * If the mapping is invalid in guest, let cpu retry
5425 		 * it to generate fault.
5426 		 */
5427 		if (gpa == UNMAPPED_GVA)
5428 			return true;
5429 	}
5430 
5431 	/*
5432 	 * Do not retry the unhandleable instruction if it faults on the
5433 	 * readonly host memory, otherwise it will goto a infinite loop:
5434 	 * retry instruction -> write #PF -> emulation fail -> retry
5435 	 * instruction -> ...
5436 	 */
5437 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5438 
5439 	/*
5440 	 * If the instruction failed on the error pfn, it can not be fixed,
5441 	 * report the error to userspace.
5442 	 */
5443 	if (is_error_noslot_pfn(pfn))
5444 		return false;
5445 
5446 	kvm_release_pfn_clean(pfn);
5447 
5448 	/* The instructions are well-emulated on direct mmu. */
5449 	if (vcpu->arch.mmu.direct_map) {
5450 		unsigned int indirect_shadow_pages;
5451 
5452 		spin_lock(&vcpu->kvm->mmu_lock);
5453 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5454 		spin_unlock(&vcpu->kvm->mmu_lock);
5455 
5456 		if (indirect_shadow_pages)
5457 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5458 
5459 		return true;
5460 	}
5461 
5462 	/*
5463 	 * if emulation was due to access to shadowed page table
5464 	 * and it failed try to unshadow page and re-enter the
5465 	 * guest to let CPU execute the instruction.
5466 	 */
5467 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5468 
5469 	/*
5470 	 * If the access faults on its page table, it can not
5471 	 * be fixed by unprotecting shadow page and it should
5472 	 * be reported to userspace.
5473 	 */
5474 	return !write_fault_to_shadow_pgtable;
5475 }
5476 
5477 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5478 			      unsigned long cr2,  int emulation_type)
5479 {
5480 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5481 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5482 
5483 	last_retry_eip = vcpu->arch.last_retry_eip;
5484 	last_retry_addr = vcpu->arch.last_retry_addr;
5485 
5486 	/*
5487 	 * If the emulation is caused by #PF and it is non-page_table
5488 	 * writing instruction, it means the VM-EXIT is caused by shadow
5489 	 * page protected, we can zap the shadow page and retry this
5490 	 * instruction directly.
5491 	 *
5492 	 * Note: if the guest uses a non-page-table modifying instruction
5493 	 * on the PDE that points to the instruction, then we will unmap
5494 	 * the instruction and go to an infinite loop. So, we cache the
5495 	 * last retried eip and the last fault address, if we meet the eip
5496 	 * and the address again, we can break out of the potential infinite
5497 	 * loop.
5498 	 */
5499 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5500 
5501 	if (!(emulation_type & EMULTYPE_RETRY))
5502 		return false;
5503 
5504 	if (x86_page_table_writing_insn(ctxt))
5505 		return false;
5506 
5507 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5508 		return false;
5509 
5510 	vcpu->arch.last_retry_eip = ctxt->eip;
5511 	vcpu->arch.last_retry_addr = cr2;
5512 
5513 	if (!vcpu->arch.mmu.direct_map)
5514 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5515 
5516 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5517 
5518 	return true;
5519 }
5520 
5521 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5522 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5523 
5524 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5525 {
5526 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5527 		/* This is a good place to trace that we are exiting SMM.  */
5528 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5529 
5530 		/* Process a latched INIT or SMI, if any.  */
5531 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5532 	}
5533 
5534 	kvm_mmu_reset_context(vcpu);
5535 }
5536 
5537 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5538 {
5539 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5540 
5541 	vcpu->arch.hflags = emul_flags;
5542 
5543 	if (changed & HF_SMM_MASK)
5544 		kvm_smm_changed(vcpu);
5545 }
5546 
5547 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5548 				unsigned long *db)
5549 {
5550 	u32 dr6 = 0;
5551 	int i;
5552 	u32 enable, rwlen;
5553 
5554 	enable = dr7;
5555 	rwlen = dr7 >> 16;
5556 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5557 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5558 			dr6 |= (1 << i);
5559 	return dr6;
5560 }
5561 
5562 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5563 {
5564 	struct kvm_run *kvm_run = vcpu->run;
5565 
5566 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5567 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5568 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5569 		kvm_run->debug.arch.exception = DB_VECTOR;
5570 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5571 		*r = EMULATE_USER_EXIT;
5572 	} else {
5573 		/*
5574 		 * "Certain debug exceptions may clear bit 0-3.  The
5575 		 * remaining contents of the DR6 register are never
5576 		 * cleared by the processor".
5577 		 */
5578 		vcpu->arch.dr6 &= ~15;
5579 		vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5580 		kvm_queue_exception(vcpu, DB_VECTOR);
5581 	}
5582 }
5583 
5584 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5585 {
5586 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5587 	int r = EMULATE_DONE;
5588 
5589 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5590 
5591 	/*
5592 	 * rflags is the old, "raw" value of the flags.  The new value has
5593 	 * not been saved yet.
5594 	 *
5595 	 * This is correct even for TF set by the guest, because "the
5596 	 * processor will not generate this exception after the instruction
5597 	 * that sets the TF flag".
5598 	 */
5599 	if (unlikely(rflags & X86_EFLAGS_TF))
5600 		kvm_vcpu_do_singlestep(vcpu, &r);
5601 	return r == EMULATE_DONE;
5602 }
5603 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5604 
5605 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5606 {
5607 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5608 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5609 		struct kvm_run *kvm_run = vcpu->run;
5610 		unsigned long eip = kvm_get_linear_rip(vcpu);
5611 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5612 					   vcpu->arch.guest_debug_dr7,
5613 					   vcpu->arch.eff_db);
5614 
5615 		if (dr6 != 0) {
5616 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5617 			kvm_run->debug.arch.pc = eip;
5618 			kvm_run->debug.arch.exception = DB_VECTOR;
5619 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5620 			*r = EMULATE_USER_EXIT;
5621 			return true;
5622 		}
5623 	}
5624 
5625 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5626 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5627 		unsigned long eip = kvm_get_linear_rip(vcpu);
5628 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5629 					   vcpu->arch.dr7,
5630 					   vcpu->arch.db);
5631 
5632 		if (dr6 != 0) {
5633 			vcpu->arch.dr6 &= ~15;
5634 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5635 			kvm_queue_exception(vcpu, DB_VECTOR);
5636 			*r = EMULATE_DONE;
5637 			return true;
5638 		}
5639 	}
5640 
5641 	return false;
5642 }
5643 
5644 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5645 			    unsigned long cr2,
5646 			    int emulation_type,
5647 			    void *insn,
5648 			    int insn_len)
5649 {
5650 	int r;
5651 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5652 	bool writeback = true;
5653 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5654 
5655 	/*
5656 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5657 	 * never reused.
5658 	 */
5659 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5660 	kvm_clear_exception_queue(vcpu);
5661 
5662 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5663 		init_emulate_ctxt(vcpu);
5664 
5665 		/*
5666 		 * We will reenter on the same instruction since
5667 		 * we do not set complete_userspace_io.  This does not
5668 		 * handle watchpoints yet, those would be handled in
5669 		 * the emulate_ops.
5670 		 */
5671 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5672 			return r;
5673 
5674 		ctxt->interruptibility = 0;
5675 		ctxt->have_exception = false;
5676 		ctxt->exception.vector = -1;
5677 		ctxt->perm_ok = false;
5678 
5679 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5680 
5681 		r = x86_decode_insn(ctxt, insn, insn_len);
5682 
5683 		trace_kvm_emulate_insn_start(vcpu);
5684 		++vcpu->stat.insn_emulation;
5685 		if (r != EMULATION_OK)  {
5686 			if (emulation_type & EMULTYPE_TRAP_UD)
5687 				return EMULATE_FAIL;
5688 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5689 						emulation_type))
5690 				return EMULATE_DONE;
5691 			if (emulation_type & EMULTYPE_SKIP)
5692 				return EMULATE_FAIL;
5693 			return handle_emulation_failure(vcpu);
5694 		}
5695 	}
5696 
5697 	if (emulation_type & EMULTYPE_SKIP) {
5698 		kvm_rip_write(vcpu, ctxt->_eip);
5699 		if (ctxt->eflags & X86_EFLAGS_RF)
5700 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5701 		return EMULATE_DONE;
5702 	}
5703 
5704 	if (retry_instruction(ctxt, cr2, emulation_type))
5705 		return EMULATE_DONE;
5706 
5707 	/* this is needed for vmware backdoor interface to work since it
5708 	   changes registers values  during IO operation */
5709 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5710 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5711 		emulator_invalidate_register_cache(ctxt);
5712 	}
5713 
5714 restart:
5715 	/* Save the faulting GPA (cr2) in the address field */
5716 	ctxt->exception.address = cr2;
5717 
5718 	r = x86_emulate_insn(ctxt);
5719 
5720 	if (r == EMULATION_INTERCEPTED)
5721 		return EMULATE_DONE;
5722 
5723 	if (r == EMULATION_FAILED) {
5724 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5725 					emulation_type))
5726 			return EMULATE_DONE;
5727 
5728 		return handle_emulation_failure(vcpu);
5729 	}
5730 
5731 	if (ctxt->have_exception) {
5732 		r = EMULATE_DONE;
5733 		if (inject_emulated_exception(vcpu))
5734 			return r;
5735 	} else if (vcpu->arch.pio.count) {
5736 		if (!vcpu->arch.pio.in) {
5737 			/* FIXME: return into emulator if single-stepping.  */
5738 			vcpu->arch.pio.count = 0;
5739 		} else {
5740 			writeback = false;
5741 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5742 		}
5743 		r = EMULATE_USER_EXIT;
5744 	} else if (vcpu->mmio_needed) {
5745 		if (!vcpu->mmio_is_write)
5746 			writeback = false;
5747 		r = EMULATE_USER_EXIT;
5748 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5749 	} else if (r == EMULATION_RESTART)
5750 		goto restart;
5751 	else
5752 		r = EMULATE_DONE;
5753 
5754 	if (writeback) {
5755 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5756 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5757 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5758 		kvm_rip_write(vcpu, ctxt->eip);
5759 		if (r == EMULATE_DONE &&
5760 		    (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5761 			kvm_vcpu_do_singlestep(vcpu, &r);
5762 		if (!ctxt->have_exception ||
5763 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5764 			__kvm_set_rflags(vcpu, ctxt->eflags);
5765 
5766 		/*
5767 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5768 		 * do nothing, and it will be requested again as soon as
5769 		 * the shadow expires.  But we still need to check here,
5770 		 * because POPF has no interrupt shadow.
5771 		 */
5772 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5773 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5774 	} else
5775 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5776 
5777 	return r;
5778 }
5779 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5780 
5781 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5782 {
5783 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5784 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5785 					    size, port, &val, 1);
5786 	/* do not return to emulator after return from userspace */
5787 	vcpu->arch.pio.count = 0;
5788 	return ret;
5789 }
5790 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5791 
5792 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5793 {
5794 	unsigned long val;
5795 
5796 	/* We should only ever be called with arch.pio.count equal to 1 */
5797 	BUG_ON(vcpu->arch.pio.count != 1);
5798 
5799 	/* For size less than 4 we merge, else we zero extend */
5800 	val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5801 					: 0;
5802 
5803 	/*
5804 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5805 	 * the copy and tracing
5806 	 */
5807 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5808 				 vcpu->arch.pio.port, &val, 1);
5809 	kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5810 
5811 	return 1;
5812 }
5813 
5814 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5815 {
5816 	unsigned long val;
5817 	int ret;
5818 
5819 	/* For size less than 4 we merge, else we zero extend */
5820 	val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5821 
5822 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5823 				       &val, 1);
5824 	if (ret) {
5825 		kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5826 		return ret;
5827 	}
5828 
5829 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5830 
5831 	return 0;
5832 }
5833 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5834 
5835 static int kvmclock_cpu_down_prep(unsigned int cpu)
5836 {
5837 	__this_cpu_write(cpu_tsc_khz, 0);
5838 	return 0;
5839 }
5840 
5841 static void tsc_khz_changed(void *data)
5842 {
5843 	struct cpufreq_freqs *freq = data;
5844 	unsigned long khz = 0;
5845 
5846 	if (data)
5847 		khz = freq->new;
5848 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5849 		khz = cpufreq_quick_get(raw_smp_processor_id());
5850 	if (!khz)
5851 		khz = tsc_khz;
5852 	__this_cpu_write(cpu_tsc_khz, khz);
5853 }
5854 
5855 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5856 				     void *data)
5857 {
5858 	struct cpufreq_freqs *freq = data;
5859 	struct kvm *kvm;
5860 	struct kvm_vcpu *vcpu;
5861 	int i, send_ipi = 0;
5862 
5863 	/*
5864 	 * We allow guests to temporarily run on slowing clocks,
5865 	 * provided we notify them after, or to run on accelerating
5866 	 * clocks, provided we notify them before.  Thus time never
5867 	 * goes backwards.
5868 	 *
5869 	 * However, we have a problem.  We can't atomically update
5870 	 * the frequency of a given CPU from this function; it is
5871 	 * merely a notifier, which can be called from any CPU.
5872 	 * Changing the TSC frequency at arbitrary points in time
5873 	 * requires a recomputation of local variables related to
5874 	 * the TSC for each VCPU.  We must flag these local variables
5875 	 * to be updated and be sure the update takes place with the
5876 	 * new frequency before any guests proceed.
5877 	 *
5878 	 * Unfortunately, the combination of hotplug CPU and frequency
5879 	 * change creates an intractable locking scenario; the order
5880 	 * of when these callouts happen is undefined with respect to
5881 	 * CPU hotplug, and they can race with each other.  As such,
5882 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5883 	 * undefined; you can actually have a CPU frequency change take
5884 	 * place in between the computation of X and the setting of the
5885 	 * variable.  To protect against this problem, all updates of
5886 	 * the per_cpu tsc_khz variable are done in an interrupt
5887 	 * protected IPI, and all callers wishing to update the value
5888 	 * must wait for a synchronous IPI to complete (which is trivial
5889 	 * if the caller is on the CPU already).  This establishes the
5890 	 * necessary total order on variable updates.
5891 	 *
5892 	 * Note that because a guest time update may take place
5893 	 * anytime after the setting of the VCPU's request bit, the
5894 	 * correct TSC value must be set before the request.  However,
5895 	 * to ensure the update actually makes it to any guest which
5896 	 * starts running in hardware virtualization between the set
5897 	 * and the acquisition of the spinlock, we must also ping the
5898 	 * CPU after setting the request bit.
5899 	 *
5900 	 */
5901 
5902 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5903 		return 0;
5904 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5905 		return 0;
5906 
5907 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5908 
5909 	spin_lock(&kvm_lock);
5910 	list_for_each_entry(kvm, &vm_list, vm_list) {
5911 		kvm_for_each_vcpu(i, vcpu, kvm) {
5912 			if (vcpu->cpu != freq->cpu)
5913 				continue;
5914 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5915 			if (vcpu->cpu != smp_processor_id())
5916 				send_ipi = 1;
5917 		}
5918 	}
5919 	spin_unlock(&kvm_lock);
5920 
5921 	if (freq->old < freq->new && send_ipi) {
5922 		/*
5923 		 * We upscale the frequency.  Must make the guest
5924 		 * doesn't see old kvmclock values while running with
5925 		 * the new frequency, otherwise we risk the guest sees
5926 		 * time go backwards.
5927 		 *
5928 		 * In case we update the frequency for another cpu
5929 		 * (which might be in guest context) send an interrupt
5930 		 * to kick the cpu out of guest context.  Next time
5931 		 * guest context is entered kvmclock will be updated,
5932 		 * so the guest will not see stale values.
5933 		 */
5934 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5935 	}
5936 	return 0;
5937 }
5938 
5939 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5940 	.notifier_call  = kvmclock_cpufreq_notifier
5941 };
5942 
5943 static int kvmclock_cpu_online(unsigned int cpu)
5944 {
5945 	tsc_khz_changed(NULL);
5946 	return 0;
5947 }
5948 
5949 static void kvm_timer_init(void)
5950 {
5951 	max_tsc_khz = tsc_khz;
5952 
5953 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5954 #ifdef CONFIG_CPU_FREQ
5955 		struct cpufreq_policy policy;
5956 		int cpu;
5957 
5958 		memset(&policy, 0, sizeof(policy));
5959 		cpu = get_cpu();
5960 		cpufreq_get_policy(&policy, cpu);
5961 		if (policy.cpuinfo.max_freq)
5962 			max_tsc_khz = policy.cpuinfo.max_freq;
5963 		put_cpu();
5964 #endif
5965 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5966 					  CPUFREQ_TRANSITION_NOTIFIER);
5967 	}
5968 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5969 
5970 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5971 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
5972 }
5973 
5974 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5975 
5976 int kvm_is_in_guest(void)
5977 {
5978 	return __this_cpu_read(current_vcpu) != NULL;
5979 }
5980 
5981 static int kvm_is_user_mode(void)
5982 {
5983 	int user_mode = 3;
5984 
5985 	if (__this_cpu_read(current_vcpu))
5986 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5987 
5988 	return user_mode != 0;
5989 }
5990 
5991 static unsigned long kvm_get_guest_ip(void)
5992 {
5993 	unsigned long ip = 0;
5994 
5995 	if (__this_cpu_read(current_vcpu))
5996 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5997 
5998 	return ip;
5999 }
6000 
6001 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6002 	.is_in_guest		= kvm_is_in_guest,
6003 	.is_user_mode		= kvm_is_user_mode,
6004 	.get_guest_ip		= kvm_get_guest_ip,
6005 };
6006 
6007 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6008 {
6009 	__this_cpu_write(current_vcpu, vcpu);
6010 }
6011 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6012 
6013 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6014 {
6015 	__this_cpu_write(current_vcpu, NULL);
6016 }
6017 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6018 
6019 static void kvm_set_mmio_spte_mask(void)
6020 {
6021 	u64 mask;
6022 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
6023 
6024 	/*
6025 	 * Set the reserved bits and the present bit of an paging-structure
6026 	 * entry to generate page fault with PFER.RSV = 1.
6027 	 */
6028 	 /* Mask the reserved physical address bits. */
6029 	mask = rsvd_bits(maxphyaddr, 51);
6030 
6031 	/* Set the present bit. */
6032 	mask |= 1ull;
6033 
6034 #ifdef CONFIG_X86_64
6035 	/*
6036 	 * If reserved bit is not supported, clear the present bit to disable
6037 	 * mmio page fault.
6038 	 */
6039 	if (maxphyaddr == 52)
6040 		mask &= ~1ull;
6041 #endif
6042 
6043 	kvm_mmu_set_mmio_spte_mask(mask, mask);
6044 }
6045 
6046 #ifdef CONFIG_X86_64
6047 static void pvclock_gtod_update_fn(struct work_struct *work)
6048 {
6049 	struct kvm *kvm;
6050 
6051 	struct kvm_vcpu *vcpu;
6052 	int i;
6053 
6054 	spin_lock(&kvm_lock);
6055 	list_for_each_entry(kvm, &vm_list, vm_list)
6056 		kvm_for_each_vcpu(i, vcpu, kvm)
6057 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6058 	atomic_set(&kvm_guest_has_master_clock, 0);
6059 	spin_unlock(&kvm_lock);
6060 }
6061 
6062 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6063 
6064 /*
6065  * Notification about pvclock gtod data update.
6066  */
6067 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6068 			       void *priv)
6069 {
6070 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6071 	struct timekeeper *tk = priv;
6072 
6073 	update_pvclock_gtod(tk);
6074 
6075 	/* disable master clock if host does not trust, or does not
6076 	 * use, TSC clocksource
6077 	 */
6078 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6079 	    atomic_read(&kvm_guest_has_master_clock) != 0)
6080 		queue_work(system_long_wq, &pvclock_gtod_work);
6081 
6082 	return 0;
6083 }
6084 
6085 static struct notifier_block pvclock_gtod_notifier = {
6086 	.notifier_call = pvclock_gtod_notify,
6087 };
6088 #endif
6089 
6090 int kvm_arch_init(void *opaque)
6091 {
6092 	int r;
6093 	struct kvm_x86_ops *ops = opaque;
6094 
6095 	if (kvm_x86_ops) {
6096 		printk(KERN_ERR "kvm: already loaded the other module\n");
6097 		r = -EEXIST;
6098 		goto out;
6099 	}
6100 
6101 	if (!ops->cpu_has_kvm_support()) {
6102 		printk(KERN_ERR "kvm: no hardware support\n");
6103 		r = -EOPNOTSUPP;
6104 		goto out;
6105 	}
6106 	if (ops->disabled_by_bios()) {
6107 		printk(KERN_ERR "kvm: disabled by bios\n");
6108 		r = -EOPNOTSUPP;
6109 		goto out;
6110 	}
6111 
6112 	r = -ENOMEM;
6113 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6114 	if (!shared_msrs) {
6115 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6116 		goto out;
6117 	}
6118 
6119 	r = kvm_mmu_module_init();
6120 	if (r)
6121 		goto out_free_percpu;
6122 
6123 	kvm_set_mmio_spte_mask();
6124 
6125 	kvm_x86_ops = ops;
6126 
6127 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6128 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
6129 			PT_PRESENT_MASK, 0, sme_me_mask);
6130 	kvm_timer_init();
6131 
6132 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6133 
6134 	if (boot_cpu_has(X86_FEATURE_XSAVE))
6135 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6136 
6137 	kvm_lapic_init();
6138 #ifdef CONFIG_X86_64
6139 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6140 #endif
6141 
6142 	return 0;
6143 
6144 out_free_percpu:
6145 	free_percpu(shared_msrs);
6146 out:
6147 	return r;
6148 }
6149 
6150 void kvm_arch_exit(void)
6151 {
6152 	kvm_lapic_exit();
6153 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6154 
6155 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6156 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6157 					    CPUFREQ_TRANSITION_NOTIFIER);
6158 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6159 #ifdef CONFIG_X86_64
6160 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6161 #endif
6162 	kvm_x86_ops = NULL;
6163 	kvm_mmu_module_exit();
6164 	free_percpu(shared_msrs);
6165 }
6166 
6167 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6168 {
6169 	++vcpu->stat.halt_exits;
6170 	if (lapic_in_kernel(vcpu)) {
6171 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6172 		return 1;
6173 	} else {
6174 		vcpu->run->exit_reason = KVM_EXIT_HLT;
6175 		return 0;
6176 	}
6177 }
6178 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6179 
6180 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6181 {
6182 	int ret = kvm_skip_emulated_instruction(vcpu);
6183 	/*
6184 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6185 	 * KVM_EXIT_DEBUG here.
6186 	 */
6187 	return kvm_vcpu_halt(vcpu) && ret;
6188 }
6189 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6190 
6191 #ifdef CONFIG_X86_64
6192 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6193 			        unsigned long clock_type)
6194 {
6195 	struct kvm_clock_pairing clock_pairing;
6196 	struct timespec ts;
6197 	u64 cycle;
6198 	int ret;
6199 
6200 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6201 		return -KVM_EOPNOTSUPP;
6202 
6203 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6204 		return -KVM_EOPNOTSUPP;
6205 
6206 	clock_pairing.sec = ts.tv_sec;
6207 	clock_pairing.nsec = ts.tv_nsec;
6208 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6209 	clock_pairing.flags = 0;
6210 
6211 	ret = 0;
6212 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6213 			    sizeof(struct kvm_clock_pairing)))
6214 		ret = -KVM_EFAULT;
6215 
6216 	return ret;
6217 }
6218 #endif
6219 
6220 /*
6221  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6222  *
6223  * @apicid - apicid of vcpu to be kicked.
6224  */
6225 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6226 {
6227 	struct kvm_lapic_irq lapic_irq;
6228 
6229 	lapic_irq.shorthand = 0;
6230 	lapic_irq.dest_mode = 0;
6231 	lapic_irq.level = 0;
6232 	lapic_irq.dest_id = apicid;
6233 	lapic_irq.msi_redir_hint = false;
6234 
6235 	lapic_irq.delivery_mode = APIC_DM_REMRD;
6236 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6237 }
6238 
6239 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6240 {
6241 	vcpu->arch.apicv_active = false;
6242 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6243 }
6244 
6245 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6246 {
6247 	unsigned long nr, a0, a1, a2, a3, ret;
6248 	int op_64_bit, r;
6249 
6250 	r = kvm_skip_emulated_instruction(vcpu);
6251 
6252 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
6253 		return kvm_hv_hypercall(vcpu);
6254 
6255 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6256 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6257 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6258 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6259 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6260 
6261 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
6262 
6263 	op_64_bit = is_64_bit_mode(vcpu);
6264 	if (!op_64_bit) {
6265 		nr &= 0xFFFFFFFF;
6266 		a0 &= 0xFFFFFFFF;
6267 		a1 &= 0xFFFFFFFF;
6268 		a2 &= 0xFFFFFFFF;
6269 		a3 &= 0xFFFFFFFF;
6270 	}
6271 
6272 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6273 		ret = -KVM_EPERM;
6274 		goto out;
6275 	}
6276 
6277 	switch (nr) {
6278 	case KVM_HC_VAPIC_POLL_IRQ:
6279 		ret = 0;
6280 		break;
6281 	case KVM_HC_KICK_CPU:
6282 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6283 		ret = 0;
6284 		break;
6285 #ifdef CONFIG_X86_64
6286 	case KVM_HC_CLOCK_PAIRING:
6287 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6288 		break;
6289 #endif
6290 	default:
6291 		ret = -KVM_ENOSYS;
6292 		break;
6293 	}
6294 out:
6295 	if (!op_64_bit)
6296 		ret = (u32)ret;
6297 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6298 	++vcpu->stat.hypercalls;
6299 	return r;
6300 }
6301 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6302 
6303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6304 {
6305 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6306 	char instruction[3];
6307 	unsigned long rip = kvm_rip_read(vcpu);
6308 
6309 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6310 
6311 	return emulator_write_emulated(ctxt, rip, instruction, 3,
6312 		&ctxt->exception);
6313 }
6314 
6315 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6316 {
6317 	return vcpu->run->request_interrupt_window &&
6318 		likely(!pic_in_kernel(vcpu->kvm));
6319 }
6320 
6321 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6322 {
6323 	struct kvm_run *kvm_run = vcpu->run;
6324 
6325 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6326 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6327 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6328 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6329 	kvm_run->ready_for_interrupt_injection =
6330 		pic_in_kernel(vcpu->kvm) ||
6331 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6332 }
6333 
6334 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6335 {
6336 	int max_irr, tpr;
6337 
6338 	if (!kvm_x86_ops->update_cr8_intercept)
6339 		return;
6340 
6341 	if (!lapic_in_kernel(vcpu))
6342 		return;
6343 
6344 	if (vcpu->arch.apicv_active)
6345 		return;
6346 
6347 	if (!vcpu->arch.apic->vapic_addr)
6348 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6349 	else
6350 		max_irr = -1;
6351 
6352 	if (max_irr != -1)
6353 		max_irr >>= 4;
6354 
6355 	tpr = kvm_lapic_get_cr8(vcpu);
6356 
6357 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6358 }
6359 
6360 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6361 {
6362 	int r;
6363 
6364 	/* try to reinject previous events if any */
6365 	if (vcpu->arch.exception.pending) {
6366 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6367 					vcpu->arch.exception.has_error_code,
6368 					vcpu->arch.exception.error_code);
6369 
6370 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6371 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6372 					     X86_EFLAGS_RF);
6373 
6374 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6375 		    (vcpu->arch.dr7 & DR7_GD)) {
6376 			vcpu->arch.dr7 &= ~DR7_GD;
6377 			kvm_update_dr7(vcpu);
6378 		}
6379 
6380 		kvm_x86_ops->queue_exception(vcpu);
6381 		return 0;
6382 	}
6383 
6384 	if (vcpu->arch.nmi_injected) {
6385 		kvm_x86_ops->set_nmi(vcpu);
6386 		return 0;
6387 	}
6388 
6389 	if (vcpu->arch.interrupt.pending) {
6390 		kvm_x86_ops->set_irq(vcpu);
6391 		return 0;
6392 	}
6393 
6394 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6395 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6396 		if (r != 0)
6397 			return r;
6398 	}
6399 
6400 	/* try to inject new event if pending */
6401 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6402 		vcpu->arch.smi_pending = false;
6403 		enter_smm(vcpu);
6404 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6405 		--vcpu->arch.nmi_pending;
6406 		vcpu->arch.nmi_injected = true;
6407 		kvm_x86_ops->set_nmi(vcpu);
6408 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6409 		/*
6410 		 * Because interrupts can be injected asynchronously, we are
6411 		 * calling check_nested_events again here to avoid a race condition.
6412 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6413 		 * proposal and current concerns.  Perhaps we should be setting
6414 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6415 		 */
6416 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6417 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6418 			if (r != 0)
6419 				return r;
6420 		}
6421 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6422 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6423 					    false);
6424 			kvm_x86_ops->set_irq(vcpu);
6425 		}
6426 	}
6427 
6428 	return 0;
6429 }
6430 
6431 static void process_nmi(struct kvm_vcpu *vcpu)
6432 {
6433 	unsigned limit = 2;
6434 
6435 	/*
6436 	 * x86 is limited to one NMI running, and one NMI pending after it.
6437 	 * If an NMI is already in progress, limit further NMIs to just one.
6438 	 * Otherwise, allow two (and we'll inject the first one immediately).
6439 	 */
6440 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6441 		limit = 1;
6442 
6443 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6444 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6445 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6446 }
6447 
6448 #define put_smstate(type, buf, offset, val)			  \
6449 	*(type *)((buf) + (offset) - 0x7e00) = val
6450 
6451 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6452 {
6453 	u32 flags = 0;
6454 	flags |= seg->g       << 23;
6455 	flags |= seg->db      << 22;
6456 	flags |= seg->l       << 21;
6457 	flags |= seg->avl     << 20;
6458 	flags |= seg->present << 15;
6459 	flags |= seg->dpl     << 13;
6460 	flags |= seg->s       << 12;
6461 	flags |= seg->type    << 8;
6462 	return flags;
6463 }
6464 
6465 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6466 {
6467 	struct kvm_segment seg;
6468 	int offset;
6469 
6470 	kvm_get_segment(vcpu, &seg, n);
6471 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6472 
6473 	if (n < 3)
6474 		offset = 0x7f84 + n * 12;
6475 	else
6476 		offset = 0x7f2c + (n - 3) * 12;
6477 
6478 	put_smstate(u32, buf, offset + 8, seg.base);
6479 	put_smstate(u32, buf, offset + 4, seg.limit);
6480 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6481 }
6482 
6483 #ifdef CONFIG_X86_64
6484 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6485 {
6486 	struct kvm_segment seg;
6487 	int offset;
6488 	u16 flags;
6489 
6490 	kvm_get_segment(vcpu, &seg, n);
6491 	offset = 0x7e00 + n * 16;
6492 
6493 	flags = enter_smm_get_segment_flags(&seg) >> 8;
6494 	put_smstate(u16, buf, offset, seg.selector);
6495 	put_smstate(u16, buf, offset + 2, flags);
6496 	put_smstate(u32, buf, offset + 4, seg.limit);
6497 	put_smstate(u64, buf, offset + 8, seg.base);
6498 }
6499 #endif
6500 
6501 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6502 {
6503 	struct desc_ptr dt;
6504 	struct kvm_segment seg;
6505 	unsigned long val;
6506 	int i;
6507 
6508 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6509 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6510 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6511 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6512 
6513 	for (i = 0; i < 8; i++)
6514 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6515 
6516 	kvm_get_dr(vcpu, 6, &val);
6517 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6518 	kvm_get_dr(vcpu, 7, &val);
6519 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6520 
6521 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6522 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6523 	put_smstate(u32, buf, 0x7f64, seg.base);
6524 	put_smstate(u32, buf, 0x7f60, seg.limit);
6525 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6526 
6527 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6528 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6529 	put_smstate(u32, buf, 0x7f80, seg.base);
6530 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6531 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6532 
6533 	kvm_x86_ops->get_gdt(vcpu, &dt);
6534 	put_smstate(u32, buf, 0x7f74, dt.address);
6535 	put_smstate(u32, buf, 0x7f70, dt.size);
6536 
6537 	kvm_x86_ops->get_idt(vcpu, &dt);
6538 	put_smstate(u32, buf, 0x7f58, dt.address);
6539 	put_smstate(u32, buf, 0x7f54, dt.size);
6540 
6541 	for (i = 0; i < 6; i++)
6542 		enter_smm_save_seg_32(vcpu, buf, i);
6543 
6544 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6545 
6546 	/* revision id */
6547 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6548 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6549 }
6550 
6551 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6552 {
6553 #ifdef CONFIG_X86_64
6554 	struct desc_ptr dt;
6555 	struct kvm_segment seg;
6556 	unsigned long val;
6557 	int i;
6558 
6559 	for (i = 0; i < 16; i++)
6560 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6561 
6562 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6563 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6564 
6565 	kvm_get_dr(vcpu, 6, &val);
6566 	put_smstate(u64, buf, 0x7f68, val);
6567 	kvm_get_dr(vcpu, 7, &val);
6568 	put_smstate(u64, buf, 0x7f60, val);
6569 
6570 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6571 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6572 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6573 
6574 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6575 
6576 	/* revision id */
6577 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6578 
6579 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6580 
6581 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6582 	put_smstate(u16, buf, 0x7e90, seg.selector);
6583 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6584 	put_smstate(u32, buf, 0x7e94, seg.limit);
6585 	put_smstate(u64, buf, 0x7e98, seg.base);
6586 
6587 	kvm_x86_ops->get_idt(vcpu, &dt);
6588 	put_smstate(u32, buf, 0x7e84, dt.size);
6589 	put_smstate(u64, buf, 0x7e88, dt.address);
6590 
6591 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6592 	put_smstate(u16, buf, 0x7e70, seg.selector);
6593 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6594 	put_smstate(u32, buf, 0x7e74, seg.limit);
6595 	put_smstate(u64, buf, 0x7e78, seg.base);
6596 
6597 	kvm_x86_ops->get_gdt(vcpu, &dt);
6598 	put_smstate(u32, buf, 0x7e64, dt.size);
6599 	put_smstate(u64, buf, 0x7e68, dt.address);
6600 
6601 	for (i = 0; i < 6; i++)
6602 		enter_smm_save_seg_64(vcpu, buf, i);
6603 #else
6604 	WARN_ON_ONCE(1);
6605 #endif
6606 }
6607 
6608 static void enter_smm(struct kvm_vcpu *vcpu)
6609 {
6610 	struct kvm_segment cs, ds;
6611 	struct desc_ptr dt;
6612 	char buf[512];
6613 	u32 cr0;
6614 
6615 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6616 	vcpu->arch.hflags |= HF_SMM_MASK;
6617 	memset(buf, 0, 512);
6618 	if (guest_cpuid_has_longmode(vcpu))
6619 		enter_smm_save_state_64(vcpu, buf);
6620 	else
6621 		enter_smm_save_state_32(vcpu, buf);
6622 
6623 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6624 
6625 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6626 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6627 	else
6628 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6629 
6630 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6631 	kvm_rip_write(vcpu, 0x8000);
6632 
6633 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6634 	kvm_x86_ops->set_cr0(vcpu, cr0);
6635 	vcpu->arch.cr0 = cr0;
6636 
6637 	kvm_x86_ops->set_cr4(vcpu, 0);
6638 
6639 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6640 	dt.address = dt.size = 0;
6641 	kvm_x86_ops->set_idt(vcpu, &dt);
6642 
6643 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6644 
6645 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6646 	cs.base = vcpu->arch.smbase;
6647 
6648 	ds.selector = 0;
6649 	ds.base = 0;
6650 
6651 	cs.limit    = ds.limit = 0xffffffff;
6652 	cs.type     = ds.type = 0x3;
6653 	cs.dpl      = ds.dpl = 0;
6654 	cs.db       = ds.db = 0;
6655 	cs.s        = ds.s = 1;
6656 	cs.l        = ds.l = 0;
6657 	cs.g        = ds.g = 1;
6658 	cs.avl      = ds.avl = 0;
6659 	cs.present  = ds.present = 1;
6660 	cs.unusable = ds.unusable = 0;
6661 	cs.padding  = ds.padding = 0;
6662 
6663 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6664 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6665 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6666 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6667 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6668 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6669 
6670 	if (guest_cpuid_has_longmode(vcpu))
6671 		kvm_x86_ops->set_efer(vcpu, 0);
6672 
6673 	kvm_update_cpuid(vcpu);
6674 	kvm_mmu_reset_context(vcpu);
6675 }
6676 
6677 static void process_smi(struct kvm_vcpu *vcpu)
6678 {
6679 	vcpu->arch.smi_pending = true;
6680 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6681 }
6682 
6683 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6684 {
6685 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6686 }
6687 
6688 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6689 {
6690 	u64 eoi_exit_bitmap[4];
6691 
6692 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6693 		return;
6694 
6695 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6696 
6697 	if (irqchip_split(vcpu->kvm))
6698 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6699 	else {
6700 		if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6701 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6702 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6703 	}
6704 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6705 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6706 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6707 }
6708 
6709 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6710 {
6711 	++vcpu->stat.tlb_flush;
6712 	kvm_x86_ops->tlb_flush(vcpu);
6713 }
6714 
6715 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6716 {
6717 	struct page *page = NULL;
6718 
6719 	if (!lapic_in_kernel(vcpu))
6720 		return;
6721 
6722 	if (!kvm_x86_ops->set_apic_access_page_addr)
6723 		return;
6724 
6725 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6726 	if (is_error_page(page))
6727 		return;
6728 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6729 
6730 	/*
6731 	 * Do not pin apic access page in memory, the MMU notifier
6732 	 * will call us again if it is migrated or swapped out.
6733 	 */
6734 	put_page(page);
6735 }
6736 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6737 
6738 /*
6739  * Returns 1 to let vcpu_run() continue the guest execution loop without
6740  * exiting to the userspace.  Otherwise, the value will be returned to the
6741  * userspace.
6742  */
6743 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6744 {
6745 	int r;
6746 	bool req_int_win =
6747 		dm_request_for_irq_injection(vcpu) &&
6748 		kvm_cpu_accept_dm_intr(vcpu);
6749 
6750 	bool req_immediate_exit = false;
6751 
6752 	if (kvm_request_pending(vcpu)) {
6753 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6754 			kvm_mmu_unload(vcpu);
6755 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6756 			__kvm_migrate_timers(vcpu);
6757 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6758 			kvm_gen_update_masterclock(vcpu->kvm);
6759 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6760 			kvm_gen_kvmclock_update(vcpu);
6761 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6762 			r = kvm_guest_time_update(vcpu);
6763 			if (unlikely(r))
6764 				goto out;
6765 		}
6766 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6767 			kvm_mmu_sync_roots(vcpu);
6768 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6769 			kvm_vcpu_flush_tlb(vcpu);
6770 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6771 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6772 			r = 0;
6773 			goto out;
6774 		}
6775 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6776 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6777 			r = 0;
6778 			goto out;
6779 		}
6780 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6781 			/* Page is swapped out. Do synthetic halt */
6782 			vcpu->arch.apf.halted = true;
6783 			r = 1;
6784 			goto out;
6785 		}
6786 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6787 			record_steal_time(vcpu);
6788 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6789 			process_smi(vcpu);
6790 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6791 			process_nmi(vcpu);
6792 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6793 			kvm_pmu_handle_event(vcpu);
6794 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6795 			kvm_pmu_deliver_pmi(vcpu);
6796 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6797 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6798 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6799 				     vcpu->arch.ioapic_handled_vectors)) {
6800 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6801 				vcpu->run->eoi.vector =
6802 						vcpu->arch.pending_ioapic_eoi;
6803 				r = 0;
6804 				goto out;
6805 			}
6806 		}
6807 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6808 			vcpu_scan_ioapic(vcpu);
6809 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6810 			kvm_vcpu_reload_apic_access_page(vcpu);
6811 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6812 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6813 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6814 			r = 0;
6815 			goto out;
6816 		}
6817 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6818 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6819 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6820 			r = 0;
6821 			goto out;
6822 		}
6823 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6824 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6825 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6826 			r = 0;
6827 			goto out;
6828 		}
6829 
6830 		/*
6831 		 * KVM_REQ_HV_STIMER has to be processed after
6832 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6833 		 * depend on the guest clock being up-to-date
6834 		 */
6835 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6836 			kvm_hv_process_stimers(vcpu);
6837 	}
6838 
6839 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6840 		++vcpu->stat.req_event;
6841 		kvm_apic_accept_events(vcpu);
6842 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6843 			r = 1;
6844 			goto out;
6845 		}
6846 
6847 		if (inject_pending_event(vcpu, req_int_win) != 0)
6848 			req_immediate_exit = true;
6849 		else {
6850 			/* Enable NMI/IRQ window open exits if needed.
6851 			 *
6852 			 * SMIs have two cases: 1) they can be nested, and
6853 			 * then there is nothing to do here because RSM will
6854 			 * cause a vmexit anyway; 2) or the SMI can be pending
6855 			 * because inject_pending_event has completed the
6856 			 * injection of an IRQ or NMI from the previous vmexit,
6857 			 * and then we request an immediate exit to inject the SMI.
6858 			 */
6859 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
6860 				req_immediate_exit = true;
6861 			if (vcpu->arch.nmi_pending)
6862 				kvm_x86_ops->enable_nmi_window(vcpu);
6863 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6864 				kvm_x86_ops->enable_irq_window(vcpu);
6865 		}
6866 
6867 		if (kvm_lapic_enabled(vcpu)) {
6868 			update_cr8_intercept(vcpu);
6869 			kvm_lapic_sync_to_vapic(vcpu);
6870 		}
6871 	}
6872 
6873 	r = kvm_mmu_reload(vcpu);
6874 	if (unlikely(r)) {
6875 		goto cancel_injection;
6876 	}
6877 
6878 	preempt_disable();
6879 
6880 	kvm_x86_ops->prepare_guest_switch(vcpu);
6881 	kvm_load_guest_fpu(vcpu);
6882 
6883 	/*
6884 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6885 	 * IPI are then delayed after guest entry, which ensures that they
6886 	 * result in virtual interrupt delivery.
6887 	 */
6888 	local_irq_disable();
6889 	vcpu->mode = IN_GUEST_MODE;
6890 
6891 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6892 
6893 	/*
6894 	 * 1) We should set ->mode before checking ->requests.  Please see
6895 	 * the comment in kvm_vcpu_exiting_guest_mode().
6896 	 *
6897 	 * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6898 	 * pairs with the memory barrier implicit in pi_test_and_set_on
6899 	 * (see vmx_deliver_posted_interrupt).
6900 	 *
6901 	 * 3) This also orders the write to mode from any reads to the page
6902 	 * tables done while the VCPU is running.  Please see the comment
6903 	 * in kvm_flush_remote_tlbs.
6904 	 */
6905 	smp_mb__after_srcu_read_unlock();
6906 
6907 	/*
6908 	 * This handles the case where a posted interrupt was
6909 	 * notified with kvm_vcpu_kick.
6910 	 */
6911 	if (kvm_lapic_enabled(vcpu)) {
6912 		if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6913 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6914 	}
6915 
6916 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6917 	    || need_resched() || signal_pending(current)) {
6918 		vcpu->mode = OUTSIDE_GUEST_MODE;
6919 		smp_wmb();
6920 		local_irq_enable();
6921 		preempt_enable();
6922 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6923 		r = 1;
6924 		goto cancel_injection;
6925 	}
6926 
6927 	kvm_load_guest_xcr0(vcpu);
6928 
6929 	if (req_immediate_exit) {
6930 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6931 		smp_send_reschedule(vcpu->cpu);
6932 	}
6933 
6934 	trace_kvm_entry(vcpu->vcpu_id);
6935 	wait_lapic_expire(vcpu);
6936 	guest_enter_irqoff();
6937 
6938 	if (unlikely(vcpu->arch.switch_db_regs)) {
6939 		set_debugreg(0, 7);
6940 		set_debugreg(vcpu->arch.eff_db[0], 0);
6941 		set_debugreg(vcpu->arch.eff_db[1], 1);
6942 		set_debugreg(vcpu->arch.eff_db[2], 2);
6943 		set_debugreg(vcpu->arch.eff_db[3], 3);
6944 		set_debugreg(vcpu->arch.dr6, 6);
6945 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6946 	}
6947 
6948 	kvm_x86_ops->run(vcpu);
6949 
6950 	/*
6951 	 * Do this here before restoring debug registers on the host.  And
6952 	 * since we do this before handling the vmexit, a DR access vmexit
6953 	 * can (a) read the correct value of the debug registers, (b) set
6954 	 * KVM_DEBUGREG_WONT_EXIT again.
6955 	 */
6956 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6957 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6958 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6959 		kvm_update_dr0123(vcpu);
6960 		kvm_update_dr6(vcpu);
6961 		kvm_update_dr7(vcpu);
6962 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6963 	}
6964 
6965 	/*
6966 	 * If the guest has used debug registers, at least dr7
6967 	 * will be disabled while returning to the host.
6968 	 * If we don't have active breakpoints in the host, we don't
6969 	 * care about the messed up debug address registers. But if
6970 	 * we have some of them active, restore the old state.
6971 	 */
6972 	if (hw_breakpoint_active())
6973 		hw_breakpoint_restore();
6974 
6975 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6976 
6977 	vcpu->mode = OUTSIDE_GUEST_MODE;
6978 	smp_wmb();
6979 
6980 	kvm_put_guest_xcr0(vcpu);
6981 
6982 	kvm_x86_ops->handle_external_intr(vcpu);
6983 
6984 	++vcpu->stat.exits;
6985 
6986 	guest_exit_irqoff();
6987 
6988 	local_irq_enable();
6989 	preempt_enable();
6990 
6991 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6992 
6993 	/*
6994 	 * Profile KVM exit RIPs:
6995 	 */
6996 	if (unlikely(prof_on == KVM_PROFILING)) {
6997 		unsigned long rip = kvm_rip_read(vcpu);
6998 		profile_hit(KVM_PROFILING, (void *)rip);
6999 	}
7000 
7001 	if (unlikely(vcpu->arch.tsc_always_catchup))
7002 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7003 
7004 	if (vcpu->arch.apic_attention)
7005 		kvm_lapic_sync_from_vapic(vcpu);
7006 
7007 	r = kvm_x86_ops->handle_exit(vcpu);
7008 	return r;
7009 
7010 cancel_injection:
7011 	kvm_x86_ops->cancel_injection(vcpu);
7012 	if (unlikely(vcpu->arch.apic_attention))
7013 		kvm_lapic_sync_from_vapic(vcpu);
7014 out:
7015 	return r;
7016 }
7017 
7018 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7019 {
7020 	if (!kvm_arch_vcpu_runnable(vcpu) &&
7021 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7022 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7023 		kvm_vcpu_block(vcpu);
7024 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7025 
7026 		if (kvm_x86_ops->post_block)
7027 			kvm_x86_ops->post_block(vcpu);
7028 
7029 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7030 			return 1;
7031 	}
7032 
7033 	kvm_apic_accept_events(vcpu);
7034 	switch(vcpu->arch.mp_state) {
7035 	case KVM_MP_STATE_HALTED:
7036 		vcpu->arch.pv.pv_unhalted = false;
7037 		vcpu->arch.mp_state =
7038 			KVM_MP_STATE_RUNNABLE;
7039 	case KVM_MP_STATE_RUNNABLE:
7040 		vcpu->arch.apf.halted = false;
7041 		break;
7042 	case KVM_MP_STATE_INIT_RECEIVED:
7043 		break;
7044 	default:
7045 		return -EINTR;
7046 		break;
7047 	}
7048 	return 1;
7049 }
7050 
7051 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7052 {
7053 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7054 		kvm_x86_ops->check_nested_events(vcpu, false);
7055 
7056 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7057 		!vcpu->arch.apf.halted);
7058 }
7059 
7060 static int vcpu_run(struct kvm_vcpu *vcpu)
7061 {
7062 	int r;
7063 	struct kvm *kvm = vcpu->kvm;
7064 
7065 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7066 
7067 	for (;;) {
7068 		if (kvm_vcpu_running(vcpu)) {
7069 			r = vcpu_enter_guest(vcpu);
7070 		} else {
7071 			r = vcpu_block(kvm, vcpu);
7072 		}
7073 
7074 		if (r <= 0)
7075 			break;
7076 
7077 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7078 		if (kvm_cpu_has_pending_timer(vcpu))
7079 			kvm_inject_pending_timer_irqs(vcpu);
7080 
7081 		if (dm_request_for_irq_injection(vcpu) &&
7082 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7083 			r = 0;
7084 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7085 			++vcpu->stat.request_irq_exits;
7086 			break;
7087 		}
7088 
7089 		kvm_check_async_pf_completion(vcpu);
7090 
7091 		if (signal_pending(current)) {
7092 			r = -EINTR;
7093 			vcpu->run->exit_reason = KVM_EXIT_INTR;
7094 			++vcpu->stat.signal_exits;
7095 			break;
7096 		}
7097 		if (need_resched()) {
7098 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7099 			cond_resched();
7100 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7101 		}
7102 	}
7103 
7104 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7105 
7106 	return r;
7107 }
7108 
7109 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7110 {
7111 	int r;
7112 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7113 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7114 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7115 	if (r != EMULATE_DONE)
7116 		return 0;
7117 	return 1;
7118 }
7119 
7120 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7121 {
7122 	BUG_ON(!vcpu->arch.pio.count);
7123 
7124 	return complete_emulated_io(vcpu);
7125 }
7126 
7127 /*
7128  * Implements the following, as a state machine:
7129  *
7130  * read:
7131  *   for each fragment
7132  *     for each mmio piece in the fragment
7133  *       write gpa, len
7134  *       exit
7135  *       copy data
7136  *   execute insn
7137  *
7138  * write:
7139  *   for each fragment
7140  *     for each mmio piece in the fragment
7141  *       write gpa, len
7142  *       copy data
7143  *       exit
7144  */
7145 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7146 {
7147 	struct kvm_run *run = vcpu->run;
7148 	struct kvm_mmio_fragment *frag;
7149 	unsigned len;
7150 
7151 	BUG_ON(!vcpu->mmio_needed);
7152 
7153 	/* Complete previous fragment */
7154 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7155 	len = min(8u, frag->len);
7156 	if (!vcpu->mmio_is_write)
7157 		memcpy(frag->data, run->mmio.data, len);
7158 
7159 	if (frag->len <= 8) {
7160 		/* Switch to the next fragment. */
7161 		frag++;
7162 		vcpu->mmio_cur_fragment++;
7163 	} else {
7164 		/* Go forward to the next mmio piece. */
7165 		frag->data += len;
7166 		frag->gpa += len;
7167 		frag->len -= len;
7168 	}
7169 
7170 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7171 		vcpu->mmio_needed = 0;
7172 
7173 		/* FIXME: return into emulator if single-stepping.  */
7174 		if (vcpu->mmio_is_write)
7175 			return 1;
7176 		vcpu->mmio_read_completed = 1;
7177 		return complete_emulated_io(vcpu);
7178 	}
7179 
7180 	run->exit_reason = KVM_EXIT_MMIO;
7181 	run->mmio.phys_addr = frag->gpa;
7182 	if (vcpu->mmio_is_write)
7183 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7184 	run->mmio.len = min(8u, frag->len);
7185 	run->mmio.is_write = vcpu->mmio_is_write;
7186 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7187 	return 0;
7188 }
7189 
7190 
7191 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7192 {
7193 	struct fpu *fpu = &current->thread.fpu;
7194 	int r;
7195 	sigset_t sigsaved;
7196 
7197 	fpu__activate_curr(fpu);
7198 
7199 	if (vcpu->sigset_active)
7200 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7201 
7202 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7203 		kvm_vcpu_block(vcpu);
7204 		kvm_apic_accept_events(vcpu);
7205 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7206 		r = -EAGAIN;
7207 		goto out;
7208 	}
7209 
7210 	/* re-sync apic's tpr */
7211 	if (!lapic_in_kernel(vcpu)) {
7212 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7213 			r = -EINVAL;
7214 			goto out;
7215 		}
7216 	}
7217 
7218 	if (unlikely(vcpu->arch.complete_userspace_io)) {
7219 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7220 		vcpu->arch.complete_userspace_io = NULL;
7221 		r = cui(vcpu);
7222 		if (r <= 0)
7223 			goto out;
7224 	} else
7225 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7226 
7227 	if (kvm_run->immediate_exit)
7228 		r = -EINTR;
7229 	else
7230 		r = vcpu_run(vcpu);
7231 
7232 out:
7233 	post_kvm_run_save(vcpu);
7234 	if (vcpu->sigset_active)
7235 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7236 
7237 	return r;
7238 }
7239 
7240 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7241 {
7242 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7243 		/*
7244 		 * We are here if userspace calls get_regs() in the middle of
7245 		 * instruction emulation. Registers state needs to be copied
7246 		 * back from emulation context to vcpu. Userspace shouldn't do
7247 		 * that usually, but some bad designed PV devices (vmware
7248 		 * backdoor interface) need this to work
7249 		 */
7250 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7251 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7252 	}
7253 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7254 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7255 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7256 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7257 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7258 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7259 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7260 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7261 #ifdef CONFIG_X86_64
7262 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7263 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7264 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7265 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7266 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7267 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7268 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7269 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7270 #endif
7271 
7272 	regs->rip = kvm_rip_read(vcpu);
7273 	regs->rflags = kvm_get_rflags(vcpu);
7274 
7275 	return 0;
7276 }
7277 
7278 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7279 {
7280 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7281 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7282 
7283 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7284 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7285 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7286 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7287 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7288 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7289 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7290 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7291 #ifdef CONFIG_X86_64
7292 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7293 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7294 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7295 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7296 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7297 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7298 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7299 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7300 #endif
7301 
7302 	kvm_rip_write(vcpu, regs->rip);
7303 	kvm_set_rflags(vcpu, regs->rflags);
7304 
7305 	vcpu->arch.exception.pending = false;
7306 
7307 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7308 
7309 	return 0;
7310 }
7311 
7312 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7313 {
7314 	struct kvm_segment cs;
7315 
7316 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7317 	*db = cs.db;
7318 	*l = cs.l;
7319 }
7320 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7321 
7322 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7323 				  struct kvm_sregs *sregs)
7324 {
7325 	struct desc_ptr dt;
7326 
7327 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7328 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7329 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7330 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7331 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7332 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7333 
7334 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7335 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7336 
7337 	kvm_x86_ops->get_idt(vcpu, &dt);
7338 	sregs->idt.limit = dt.size;
7339 	sregs->idt.base = dt.address;
7340 	kvm_x86_ops->get_gdt(vcpu, &dt);
7341 	sregs->gdt.limit = dt.size;
7342 	sregs->gdt.base = dt.address;
7343 
7344 	sregs->cr0 = kvm_read_cr0(vcpu);
7345 	sregs->cr2 = vcpu->arch.cr2;
7346 	sregs->cr3 = kvm_read_cr3(vcpu);
7347 	sregs->cr4 = kvm_read_cr4(vcpu);
7348 	sregs->cr8 = kvm_get_cr8(vcpu);
7349 	sregs->efer = vcpu->arch.efer;
7350 	sregs->apic_base = kvm_get_apic_base(vcpu);
7351 
7352 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7353 
7354 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7355 		set_bit(vcpu->arch.interrupt.nr,
7356 			(unsigned long *)sregs->interrupt_bitmap);
7357 
7358 	return 0;
7359 }
7360 
7361 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7362 				    struct kvm_mp_state *mp_state)
7363 {
7364 	kvm_apic_accept_events(vcpu);
7365 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7366 					vcpu->arch.pv.pv_unhalted)
7367 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7368 	else
7369 		mp_state->mp_state = vcpu->arch.mp_state;
7370 
7371 	return 0;
7372 }
7373 
7374 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7375 				    struct kvm_mp_state *mp_state)
7376 {
7377 	if (!lapic_in_kernel(vcpu) &&
7378 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7379 		return -EINVAL;
7380 
7381 	/* INITs are latched while in SMM */
7382 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7383 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7384 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7385 		return -EINVAL;
7386 
7387 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7388 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7389 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7390 	} else
7391 		vcpu->arch.mp_state = mp_state->mp_state;
7392 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7393 	return 0;
7394 }
7395 
7396 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7397 		    int reason, bool has_error_code, u32 error_code)
7398 {
7399 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7400 	int ret;
7401 
7402 	init_emulate_ctxt(vcpu);
7403 
7404 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7405 				   has_error_code, error_code);
7406 
7407 	if (ret)
7408 		return EMULATE_FAIL;
7409 
7410 	kvm_rip_write(vcpu, ctxt->eip);
7411 	kvm_set_rflags(vcpu, ctxt->eflags);
7412 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7413 	return EMULATE_DONE;
7414 }
7415 EXPORT_SYMBOL_GPL(kvm_task_switch);
7416 
7417 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7418 				  struct kvm_sregs *sregs)
7419 {
7420 	struct msr_data apic_base_msr;
7421 	int mmu_reset_needed = 0;
7422 	int pending_vec, max_bits, idx;
7423 	struct desc_ptr dt;
7424 
7425 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7426 		return -EINVAL;
7427 
7428 	dt.size = sregs->idt.limit;
7429 	dt.address = sregs->idt.base;
7430 	kvm_x86_ops->set_idt(vcpu, &dt);
7431 	dt.size = sregs->gdt.limit;
7432 	dt.address = sregs->gdt.base;
7433 	kvm_x86_ops->set_gdt(vcpu, &dt);
7434 
7435 	vcpu->arch.cr2 = sregs->cr2;
7436 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7437 	vcpu->arch.cr3 = sregs->cr3;
7438 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7439 
7440 	kvm_set_cr8(vcpu, sregs->cr8);
7441 
7442 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7443 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7444 	apic_base_msr.data = sregs->apic_base;
7445 	apic_base_msr.host_initiated = true;
7446 	kvm_set_apic_base(vcpu, &apic_base_msr);
7447 
7448 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7449 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7450 	vcpu->arch.cr0 = sregs->cr0;
7451 
7452 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7453 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7454 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7455 		kvm_update_cpuid(vcpu);
7456 
7457 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7458 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7459 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7460 		mmu_reset_needed = 1;
7461 	}
7462 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7463 
7464 	if (mmu_reset_needed)
7465 		kvm_mmu_reset_context(vcpu);
7466 
7467 	max_bits = KVM_NR_INTERRUPTS;
7468 	pending_vec = find_first_bit(
7469 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7470 	if (pending_vec < max_bits) {
7471 		kvm_queue_interrupt(vcpu, pending_vec, false);
7472 		pr_debug("Set back pending irq %d\n", pending_vec);
7473 	}
7474 
7475 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7476 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7477 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7478 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7479 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7480 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7481 
7482 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7483 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7484 
7485 	update_cr8_intercept(vcpu);
7486 
7487 	/* Older userspace won't unhalt the vcpu on reset. */
7488 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7489 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7490 	    !is_protmode(vcpu))
7491 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7492 
7493 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7494 
7495 	return 0;
7496 }
7497 
7498 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7499 					struct kvm_guest_debug *dbg)
7500 {
7501 	unsigned long rflags;
7502 	int i, r;
7503 
7504 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7505 		r = -EBUSY;
7506 		if (vcpu->arch.exception.pending)
7507 			goto out;
7508 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7509 			kvm_queue_exception(vcpu, DB_VECTOR);
7510 		else
7511 			kvm_queue_exception(vcpu, BP_VECTOR);
7512 	}
7513 
7514 	/*
7515 	 * Read rflags as long as potentially injected trace flags are still
7516 	 * filtered out.
7517 	 */
7518 	rflags = kvm_get_rflags(vcpu);
7519 
7520 	vcpu->guest_debug = dbg->control;
7521 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7522 		vcpu->guest_debug = 0;
7523 
7524 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7525 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7526 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7527 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7528 	} else {
7529 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7530 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7531 	}
7532 	kvm_update_dr7(vcpu);
7533 
7534 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7535 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7536 			get_segment_base(vcpu, VCPU_SREG_CS);
7537 
7538 	/*
7539 	 * Trigger an rflags update that will inject or remove the trace
7540 	 * flags.
7541 	 */
7542 	kvm_set_rflags(vcpu, rflags);
7543 
7544 	kvm_x86_ops->update_bp_intercept(vcpu);
7545 
7546 	r = 0;
7547 
7548 out:
7549 
7550 	return r;
7551 }
7552 
7553 /*
7554  * Translate a guest virtual address to a guest physical address.
7555  */
7556 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7557 				    struct kvm_translation *tr)
7558 {
7559 	unsigned long vaddr = tr->linear_address;
7560 	gpa_t gpa;
7561 	int idx;
7562 
7563 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7564 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7565 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7566 	tr->physical_address = gpa;
7567 	tr->valid = gpa != UNMAPPED_GVA;
7568 	tr->writeable = 1;
7569 	tr->usermode = 0;
7570 
7571 	return 0;
7572 }
7573 
7574 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7575 {
7576 	struct fxregs_state *fxsave =
7577 			&vcpu->arch.guest_fpu.state.fxsave;
7578 
7579 	memcpy(fpu->fpr, fxsave->st_space, 128);
7580 	fpu->fcw = fxsave->cwd;
7581 	fpu->fsw = fxsave->swd;
7582 	fpu->ftwx = fxsave->twd;
7583 	fpu->last_opcode = fxsave->fop;
7584 	fpu->last_ip = fxsave->rip;
7585 	fpu->last_dp = fxsave->rdp;
7586 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7587 
7588 	return 0;
7589 }
7590 
7591 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7592 {
7593 	struct fxregs_state *fxsave =
7594 			&vcpu->arch.guest_fpu.state.fxsave;
7595 
7596 	memcpy(fxsave->st_space, fpu->fpr, 128);
7597 	fxsave->cwd = fpu->fcw;
7598 	fxsave->swd = fpu->fsw;
7599 	fxsave->twd = fpu->ftwx;
7600 	fxsave->fop = fpu->last_opcode;
7601 	fxsave->rip = fpu->last_ip;
7602 	fxsave->rdp = fpu->last_dp;
7603 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7604 
7605 	return 0;
7606 }
7607 
7608 static void fx_init(struct kvm_vcpu *vcpu)
7609 {
7610 	fpstate_init(&vcpu->arch.guest_fpu.state);
7611 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7612 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7613 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7614 
7615 	/*
7616 	 * Ensure guest xcr0 is valid for loading
7617 	 */
7618 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7619 
7620 	vcpu->arch.cr0 |= X86_CR0_ET;
7621 }
7622 
7623 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7624 {
7625 	if (vcpu->guest_fpu_loaded)
7626 		return;
7627 
7628 	/*
7629 	 * Restore all possible states in the guest,
7630 	 * and assume host would use all available bits.
7631 	 * Guest xcr0 would be loaded later.
7632 	 */
7633 	vcpu->guest_fpu_loaded = 1;
7634 	__kernel_fpu_begin();
7635 	/* PKRU is separately restored in kvm_x86_ops->run.  */
7636 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7637 				~XFEATURE_MASK_PKRU);
7638 	trace_kvm_fpu(1);
7639 }
7640 
7641 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7642 {
7643 	if (!vcpu->guest_fpu_loaded)
7644 		return;
7645 
7646 	vcpu->guest_fpu_loaded = 0;
7647 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7648 	__kernel_fpu_end();
7649 	++vcpu->stat.fpu_reload;
7650 	trace_kvm_fpu(0);
7651 }
7652 
7653 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7654 {
7655 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7656 
7657 	kvmclock_reset(vcpu);
7658 
7659 	kvm_x86_ops->vcpu_free(vcpu);
7660 	free_cpumask_var(wbinvd_dirty_mask);
7661 }
7662 
7663 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7664 						unsigned int id)
7665 {
7666 	struct kvm_vcpu *vcpu;
7667 
7668 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7669 		printk_once(KERN_WARNING
7670 		"kvm: SMP vm created on host with unstable TSC; "
7671 		"guest TSC will not be reliable\n");
7672 
7673 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7674 
7675 	return vcpu;
7676 }
7677 
7678 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7679 {
7680 	int r;
7681 
7682 	kvm_vcpu_mtrr_init(vcpu);
7683 	r = vcpu_load(vcpu);
7684 	if (r)
7685 		return r;
7686 	kvm_vcpu_reset(vcpu, false);
7687 	kvm_mmu_setup(vcpu);
7688 	vcpu_put(vcpu);
7689 	return r;
7690 }
7691 
7692 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7693 {
7694 	struct msr_data msr;
7695 	struct kvm *kvm = vcpu->kvm;
7696 
7697 	kvm_hv_vcpu_postcreate(vcpu);
7698 
7699 	if (vcpu_load(vcpu))
7700 		return;
7701 	msr.data = 0x0;
7702 	msr.index = MSR_IA32_TSC;
7703 	msr.host_initiated = true;
7704 	kvm_write_tsc(vcpu, &msr);
7705 	vcpu_put(vcpu);
7706 
7707 	if (!kvmclock_periodic_sync)
7708 		return;
7709 
7710 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7711 					KVMCLOCK_SYNC_PERIOD);
7712 }
7713 
7714 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7715 {
7716 	int r;
7717 	vcpu->arch.apf.msr_val = 0;
7718 
7719 	r = vcpu_load(vcpu);
7720 	BUG_ON(r);
7721 	kvm_mmu_unload(vcpu);
7722 	vcpu_put(vcpu);
7723 
7724 	kvm_x86_ops->vcpu_free(vcpu);
7725 }
7726 
7727 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7728 {
7729 	vcpu->arch.hflags = 0;
7730 
7731 	vcpu->arch.smi_pending = 0;
7732 	atomic_set(&vcpu->arch.nmi_queued, 0);
7733 	vcpu->arch.nmi_pending = 0;
7734 	vcpu->arch.nmi_injected = false;
7735 	kvm_clear_interrupt_queue(vcpu);
7736 	kvm_clear_exception_queue(vcpu);
7737 
7738 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7739 	kvm_update_dr0123(vcpu);
7740 	vcpu->arch.dr6 = DR6_INIT;
7741 	kvm_update_dr6(vcpu);
7742 	vcpu->arch.dr7 = DR7_FIXED_1;
7743 	kvm_update_dr7(vcpu);
7744 
7745 	vcpu->arch.cr2 = 0;
7746 
7747 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7748 	vcpu->arch.apf.msr_val = 0;
7749 	vcpu->arch.st.msr_val = 0;
7750 
7751 	kvmclock_reset(vcpu);
7752 
7753 	kvm_clear_async_pf_completion_queue(vcpu);
7754 	kvm_async_pf_hash_reset(vcpu);
7755 	vcpu->arch.apf.halted = false;
7756 
7757 	if (!init_event) {
7758 		kvm_pmu_reset(vcpu);
7759 		vcpu->arch.smbase = 0x30000;
7760 
7761 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7762 		vcpu->arch.msr_misc_features_enables = 0;
7763 	}
7764 
7765 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7766 	vcpu->arch.regs_avail = ~0;
7767 	vcpu->arch.regs_dirty = ~0;
7768 
7769 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7770 }
7771 
7772 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7773 {
7774 	struct kvm_segment cs;
7775 
7776 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7777 	cs.selector = vector << 8;
7778 	cs.base = vector << 12;
7779 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7780 	kvm_rip_write(vcpu, 0);
7781 }
7782 
7783 int kvm_arch_hardware_enable(void)
7784 {
7785 	struct kvm *kvm;
7786 	struct kvm_vcpu *vcpu;
7787 	int i;
7788 	int ret;
7789 	u64 local_tsc;
7790 	u64 max_tsc = 0;
7791 	bool stable, backwards_tsc = false;
7792 
7793 	kvm_shared_msr_cpu_online();
7794 	ret = kvm_x86_ops->hardware_enable();
7795 	if (ret != 0)
7796 		return ret;
7797 
7798 	local_tsc = rdtsc();
7799 	stable = !check_tsc_unstable();
7800 	list_for_each_entry(kvm, &vm_list, vm_list) {
7801 		kvm_for_each_vcpu(i, vcpu, kvm) {
7802 			if (!stable && vcpu->cpu == smp_processor_id())
7803 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7804 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7805 				backwards_tsc = true;
7806 				if (vcpu->arch.last_host_tsc > max_tsc)
7807 					max_tsc = vcpu->arch.last_host_tsc;
7808 			}
7809 		}
7810 	}
7811 
7812 	/*
7813 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7814 	 * platforms that reset TSC during suspend or hibernate actions, but
7815 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7816 	 * detect that condition here, which happens early in CPU bringup,
7817 	 * before any KVM threads can be running.  Unfortunately, we can't
7818 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7819 	 * enough into CPU bringup that we know how much real time has actually
7820 	 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7821 	 * variables that haven't been updated yet.
7822 	 *
7823 	 * So we simply find the maximum observed TSC above, then record the
7824 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7825 	 * the adjustment will be applied.  Note that we accumulate
7826 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7827 	 * gets a chance to run again.  In the event that no KVM threads get a
7828 	 * chance to run, we will miss the entire elapsed period, as we'll have
7829 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7830 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7831 	 * uniform across all VCPUs (not to mention the scenario is extremely
7832 	 * unlikely). It is possible that a second hibernate recovery happens
7833 	 * much faster than a first, causing the observed TSC here to be
7834 	 * smaller; this would require additional padding adjustment, which is
7835 	 * why we set last_host_tsc to the local tsc observed here.
7836 	 *
7837 	 * N.B. - this code below runs only on platforms with reliable TSC,
7838 	 * as that is the only way backwards_tsc is set above.  Also note
7839 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7840 	 * have the same delta_cyc adjustment applied if backwards_tsc
7841 	 * is detected.  Note further, this adjustment is only done once,
7842 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7843 	 * called multiple times (one for each physical CPU bringup).
7844 	 *
7845 	 * Platforms with unreliable TSCs don't have to deal with this, they
7846 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7847 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7848 	 * guarantee that they stay in perfect synchronization.
7849 	 */
7850 	if (backwards_tsc) {
7851 		u64 delta_cyc = max_tsc - local_tsc;
7852 		list_for_each_entry(kvm, &vm_list, vm_list) {
7853 			kvm->arch.backwards_tsc_observed = true;
7854 			kvm_for_each_vcpu(i, vcpu, kvm) {
7855 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7856 				vcpu->arch.last_host_tsc = local_tsc;
7857 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7858 			}
7859 
7860 			/*
7861 			 * We have to disable TSC offset matching.. if you were
7862 			 * booting a VM while issuing an S4 host suspend....
7863 			 * you may have some problem.  Solving this issue is
7864 			 * left as an exercise to the reader.
7865 			 */
7866 			kvm->arch.last_tsc_nsec = 0;
7867 			kvm->arch.last_tsc_write = 0;
7868 		}
7869 
7870 	}
7871 	return 0;
7872 }
7873 
7874 void kvm_arch_hardware_disable(void)
7875 {
7876 	kvm_x86_ops->hardware_disable();
7877 	drop_user_return_notifiers();
7878 }
7879 
7880 int kvm_arch_hardware_setup(void)
7881 {
7882 	int r;
7883 
7884 	r = kvm_x86_ops->hardware_setup();
7885 	if (r != 0)
7886 		return r;
7887 
7888 	if (kvm_has_tsc_control) {
7889 		/*
7890 		 * Make sure the user can only configure tsc_khz values that
7891 		 * fit into a signed integer.
7892 		 * A min value is not calculated needed because it will always
7893 		 * be 1 on all machines.
7894 		 */
7895 		u64 max = min(0x7fffffffULL,
7896 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7897 		kvm_max_guest_tsc_khz = max;
7898 
7899 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7900 	}
7901 
7902 	kvm_init_msr_list();
7903 	return 0;
7904 }
7905 
7906 void kvm_arch_hardware_unsetup(void)
7907 {
7908 	kvm_x86_ops->hardware_unsetup();
7909 }
7910 
7911 void kvm_arch_check_processor_compat(void *rtn)
7912 {
7913 	kvm_x86_ops->check_processor_compatibility(rtn);
7914 }
7915 
7916 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7917 {
7918 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7919 }
7920 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7921 
7922 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7923 {
7924 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7925 }
7926 
7927 struct static_key kvm_no_apic_vcpu __read_mostly;
7928 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7929 
7930 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7931 {
7932 	struct page *page;
7933 	struct kvm *kvm;
7934 	int r;
7935 
7936 	BUG_ON(vcpu->kvm == NULL);
7937 	kvm = vcpu->kvm;
7938 
7939 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7940 	vcpu->arch.pv.pv_unhalted = false;
7941 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7942 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7943 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7944 	else
7945 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7946 
7947 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7948 	if (!page) {
7949 		r = -ENOMEM;
7950 		goto fail;
7951 	}
7952 	vcpu->arch.pio_data = page_address(page);
7953 
7954 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7955 
7956 	r = kvm_mmu_create(vcpu);
7957 	if (r < 0)
7958 		goto fail_free_pio_data;
7959 
7960 	if (irqchip_in_kernel(kvm)) {
7961 		r = kvm_create_lapic(vcpu);
7962 		if (r < 0)
7963 			goto fail_mmu_destroy;
7964 	} else
7965 		static_key_slow_inc(&kvm_no_apic_vcpu);
7966 
7967 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7968 				       GFP_KERNEL);
7969 	if (!vcpu->arch.mce_banks) {
7970 		r = -ENOMEM;
7971 		goto fail_free_lapic;
7972 	}
7973 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7974 
7975 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7976 		r = -ENOMEM;
7977 		goto fail_free_mce_banks;
7978 	}
7979 
7980 	fx_init(vcpu);
7981 
7982 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7983 	vcpu->arch.pv_time_enabled = false;
7984 
7985 	vcpu->arch.guest_supported_xcr0 = 0;
7986 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7987 
7988 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7989 
7990 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7991 
7992 	kvm_async_pf_hash_reset(vcpu);
7993 	kvm_pmu_init(vcpu);
7994 
7995 	vcpu->arch.pending_external_vector = -1;
7996 
7997 	kvm_hv_vcpu_init(vcpu);
7998 
7999 	return 0;
8000 
8001 fail_free_mce_banks:
8002 	kfree(vcpu->arch.mce_banks);
8003 fail_free_lapic:
8004 	kvm_free_lapic(vcpu);
8005 fail_mmu_destroy:
8006 	kvm_mmu_destroy(vcpu);
8007 fail_free_pio_data:
8008 	free_page((unsigned long)vcpu->arch.pio_data);
8009 fail:
8010 	return r;
8011 }
8012 
8013 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8014 {
8015 	int idx;
8016 
8017 	kvm_hv_vcpu_uninit(vcpu);
8018 	kvm_pmu_destroy(vcpu);
8019 	kfree(vcpu->arch.mce_banks);
8020 	kvm_free_lapic(vcpu);
8021 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8022 	kvm_mmu_destroy(vcpu);
8023 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8024 	free_page((unsigned long)vcpu->arch.pio_data);
8025 	if (!lapic_in_kernel(vcpu))
8026 		static_key_slow_dec(&kvm_no_apic_vcpu);
8027 }
8028 
8029 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8030 {
8031 	kvm_x86_ops->sched_in(vcpu, cpu);
8032 }
8033 
8034 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8035 {
8036 	if (type)
8037 		return -EINVAL;
8038 
8039 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8040 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8041 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8042 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8043 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8044 
8045 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8046 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8047 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8048 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8049 		&kvm->arch.irq_sources_bitmap);
8050 
8051 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8052 	mutex_init(&kvm->arch.apic_map_lock);
8053 	mutex_init(&kvm->arch.hyperv.hv_lock);
8054 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8055 
8056 	kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8057 	pvclock_update_vm_gtod_copy(kvm);
8058 
8059 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8060 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8061 
8062 	kvm_page_track_init(kvm);
8063 	kvm_mmu_init_vm(kvm);
8064 
8065 	if (kvm_x86_ops->vm_init)
8066 		return kvm_x86_ops->vm_init(kvm);
8067 
8068 	return 0;
8069 }
8070 
8071 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8072 {
8073 	int r;
8074 	r = vcpu_load(vcpu);
8075 	BUG_ON(r);
8076 	kvm_mmu_unload(vcpu);
8077 	vcpu_put(vcpu);
8078 }
8079 
8080 static void kvm_free_vcpus(struct kvm *kvm)
8081 {
8082 	unsigned int i;
8083 	struct kvm_vcpu *vcpu;
8084 
8085 	/*
8086 	 * Unpin any mmu pages first.
8087 	 */
8088 	kvm_for_each_vcpu(i, vcpu, kvm) {
8089 		kvm_clear_async_pf_completion_queue(vcpu);
8090 		kvm_unload_vcpu_mmu(vcpu);
8091 	}
8092 	kvm_for_each_vcpu(i, vcpu, kvm)
8093 		kvm_arch_vcpu_free(vcpu);
8094 
8095 	mutex_lock(&kvm->lock);
8096 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8097 		kvm->vcpus[i] = NULL;
8098 
8099 	atomic_set(&kvm->online_vcpus, 0);
8100 	mutex_unlock(&kvm->lock);
8101 }
8102 
8103 void kvm_arch_sync_events(struct kvm *kvm)
8104 {
8105 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8106 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8107 	kvm_free_pit(kvm);
8108 }
8109 
8110 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8111 {
8112 	int i, r;
8113 	unsigned long hva;
8114 	struct kvm_memslots *slots = kvm_memslots(kvm);
8115 	struct kvm_memory_slot *slot, old;
8116 
8117 	/* Called with kvm->slots_lock held.  */
8118 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8119 		return -EINVAL;
8120 
8121 	slot = id_to_memslot(slots, id);
8122 	if (size) {
8123 		if (slot->npages)
8124 			return -EEXIST;
8125 
8126 		/*
8127 		 * MAP_SHARED to prevent internal slot pages from being moved
8128 		 * by fork()/COW.
8129 		 */
8130 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8131 			      MAP_SHARED | MAP_ANONYMOUS, 0);
8132 		if (IS_ERR((void *)hva))
8133 			return PTR_ERR((void *)hva);
8134 	} else {
8135 		if (!slot->npages)
8136 			return 0;
8137 
8138 		hva = 0;
8139 	}
8140 
8141 	old = *slot;
8142 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8143 		struct kvm_userspace_memory_region m;
8144 
8145 		m.slot = id | (i << 16);
8146 		m.flags = 0;
8147 		m.guest_phys_addr = gpa;
8148 		m.userspace_addr = hva;
8149 		m.memory_size = size;
8150 		r = __kvm_set_memory_region(kvm, &m);
8151 		if (r < 0)
8152 			return r;
8153 	}
8154 
8155 	if (!size) {
8156 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8157 		WARN_ON(r < 0);
8158 	}
8159 
8160 	return 0;
8161 }
8162 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8163 
8164 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8165 {
8166 	int r;
8167 
8168 	mutex_lock(&kvm->slots_lock);
8169 	r = __x86_set_memory_region(kvm, id, gpa, size);
8170 	mutex_unlock(&kvm->slots_lock);
8171 
8172 	return r;
8173 }
8174 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8175 
8176 void kvm_arch_destroy_vm(struct kvm *kvm)
8177 {
8178 	if (current->mm == kvm->mm) {
8179 		/*
8180 		 * Free memory regions allocated on behalf of userspace,
8181 		 * unless the the memory map has changed due to process exit
8182 		 * or fd copying.
8183 		 */
8184 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8185 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8186 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8187 	}
8188 	if (kvm_x86_ops->vm_destroy)
8189 		kvm_x86_ops->vm_destroy(kvm);
8190 	kvm_pic_destroy(kvm);
8191 	kvm_ioapic_destroy(kvm);
8192 	kvm_free_vcpus(kvm);
8193 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8194 	kvm_mmu_uninit_vm(kvm);
8195 	kvm_page_track_cleanup(kvm);
8196 }
8197 
8198 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8199 			   struct kvm_memory_slot *dont)
8200 {
8201 	int i;
8202 
8203 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8204 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8205 			kvfree(free->arch.rmap[i]);
8206 			free->arch.rmap[i] = NULL;
8207 		}
8208 		if (i == 0)
8209 			continue;
8210 
8211 		if (!dont || free->arch.lpage_info[i - 1] !=
8212 			     dont->arch.lpage_info[i - 1]) {
8213 			kvfree(free->arch.lpage_info[i - 1]);
8214 			free->arch.lpage_info[i - 1] = NULL;
8215 		}
8216 	}
8217 
8218 	kvm_page_track_free_memslot(free, dont);
8219 }
8220 
8221 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8222 			    unsigned long npages)
8223 {
8224 	int i;
8225 
8226 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8227 		struct kvm_lpage_info *linfo;
8228 		unsigned long ugfn;
8229 		int lpages;
8230 		int level = i + 1;
8231 
8232 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
8233 				      slot->base_gfn, level) + 1;
8234 
8235 		slot->arch.rmap[i] =
8236 			kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8237 		if (!slot->arch.rmap[i])
8238 			goto out_free;
8239 		if (i == 0)
8240 			continue;
8241 
8242 		linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8243 		if (!linfo)
8244 			goto out_free;
8245 
8246 		slot->arch.lpage_info[i - 1] = linfo;
8247 
8248 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8249 			linfo[0].disallow_lpage = 1;
8250 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8251 			linfo[lpages - 1].disallow_lpage = 1;
8252 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
8253 		/*
8254 		 * If the gfn and userspace address are not aligned wrt each
8255 		 * other, or if explicitly asked to, disable large page
8256 		 * support for this slot
8257 		 */
8258 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8259 		    !kvm_largepages_enabled()) {
8260 			unsigned long j;
8261 
8262 			for (j = 0; j < lpages; ++j)
8263 				linfo[j].disallow_lpage = 1;
8264 		}
8265 	}
8266 
8267 	if (kvm_page_track_create_memslot(slot, npages))
8268 		goto out_free;
8269 
8270 	return 0;
8271 
8272 out_free:
8273 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8274 		kvfree(slot->arch.rmap[i]);
8275 		slot->arch.rmap[i] = NULL;
8276 		if (i == 0)
8277 			continue;
8278 
8279 		kvfree(slot->arch.lpage_info[i - 1]);
8280 		slot->arch.lpage_info[i - 1] = NULL;
8281 	}
8282 	return -ENOMEM;
8283 }
8284 
8285 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8286 {
8287 	/*
8288 	 * memslots->generation has been incremented.
8289 	 * mmio generation may have reached its maximum value.
8290 	 */
8291 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8292 }
8293 
8294 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8295 				struct kvm_memory_slot *memslot,
8296 				const struct kvm_userspace_memory_region *mem,
8297 				enum kvm_mr_change change)
8298 {
8299 	return 0;
8300 }
8301 
8302 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8303 				     struct kvm_memory_slot *new)
8304 {
8305 	/* Still write protect RO slot */
8306 	if (new->flags & KVM_MEM_READONLY) {
8307 		kvm_mmu_slot_remove_write_access(kvm, new);
8308 		return;
8309 	}
8310 
8311 	/*
8312 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8313 	 *
8314 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8315 	 *
8316 	 *  - KVM_MR_CREATE with dirty logging is disabled
8317 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8318 	 *
8319 	 * The reason is, in case of PML, we need to set D-bit for any slots
8320 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8321 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8322 	 * guarantees leaving PML enabled during guest's lifetime won't have
8323 	 * any additonal overhead from PML when guest is running with dirty
8324 	 * logging disabled for memory slots.
8325 	 *
8326 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8327 	 * to dirty logging mode.
8328 	 *
8329 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8330 	 *
8331 	 * In case of write protect:
8332 	 *
8333 	 * Write protect all pages for dirty logging.
8334 	 *
8335 	 * All the sptes including the large sptes which point to this
8336 	 * slot are set to readonly. We can not create any new large
8337 	 * spte on this slot until the end of the logging.
8338 	 *
8339 	 * See the comments in fast_page_fault().
8340 	 */
8341 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8342 		if (kvm_x86_ops->slot_enable_log_dirty)
8343 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8344 		else
8345 			kvm_mmu_slot_remove_write_access(kvm, new);
8346 	} else {
8347 		if (kvm_x86_ops->slot_disable_log_dirty)
8348 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8349 	}
8350 }
8351 
8352 void kvm_arch_commit_memory_region(struct kvm *kvm,
8353 				const struct kvm_userspace_memory_region *mem,
8354 				const struct kvm_memory_slot *old,
8355 				const struct kvm_memory_slot *new,
8356 				enum kvm_mr_change change)
8357 {
8358 	int nr_mmu_pages = 0;
8359 
8360 	if (!kvm->arch.n_requested_mmu_pages)
8361 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8362 
8363 	if (nr_mmu_pages)
8364 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8365 
8366 	/*
8367 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8368 	 * sptes have to be split.  If live migration is successful, the guest
8369 	 * in the source machine will be destroyed and large sptes will be
8370 	 * created in the destination. However, if the guest continues to run
8371 	 * in the source machine (for example if live migration fails), small
8372 	 * sptes will remain around and cause bad performance.
8373 	 *
8374 	 * Scan sptes if dirty logging has been stopped, dropping those
8375 	 * which can be collapsed into a single large-page spte.  Later
8376 	 * page faults will create the large-page sptes.
8377 	 */
8378 	if ((change != KVM_MR_DELETE) &&
8379 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8380 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8381 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8382 
8383 	/*
8384 	 * Set up write protection and/or dirty logging for the new slot.
8385 	 *
8386 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8387 	 * been zapped so no dirty logging staff is needed for old slot. For
8388 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8389 	 * new and it's also covered when dealing with the new slot.
8390 	 *
8391 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8392 	 */
8393 	if (change != KVM_MR_DELETE)
8394 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8395 }
8396 
8397 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8398 {
8399 	kvm_mmu_invalidate_zap_all_pages(kvm);
8400 }
8401 
8402 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8403 				   struct kvm_memory_slot *slot)
8404 {
8405 	kvm_page_track_flush_slot(kvm, slot);
8406 }
8407 
8408 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8409 {
8410 	if (!list_empty_careful(&vcpu->async_pf.done))
8411 		return true;
8412 
8413 	if (kvm_apic_has_events(vcpu))
8414 		return true;
8415 
8416 	if (vcpu->arch.pv.pv_unhalted)
8417 		return true;
8418 
8419 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8420 	    (vcpu->arch.nmi_pending &&
8421 	     kvm_x86_ops->nmi_allowed(vcpu)))
8422 		return true;
8423 
8424 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8425 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
8426 		return true;
8427 
8428 	if (kvm_arch_interrupt_allowed(vcpu) &&
8429 	    kvm_cpu_has_interrupt(vcpu))
8430 		return true;
8431 
8432 	if (kvm_hv_has_stimer_pending(vcpu))
8433 		return true;
8434 
8435 	return false;
8436 }
8437 
8438 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8439 {
8440 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8441 }
8442 
8443 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8444 {
8445 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8446 }
8447 
8448 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8449 {
8450 	return kvm_x86_ops->interrupt_allowed(vcpu);
8451 }
8452 
8453 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8454 {
8455 	if (is_64_bit_mode(vcpu))
8456 		return kvm_rip_read(vcpu);
8457 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8458 		     kvm_rip_read(vcpu));
8459 }
8460 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8461 
8462 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8463 {
8464 	return kvm_get_linear_rip(vcpu) == linear_rip;
8465 }
8466 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8467 
8468 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8469 {
8470 	unsigned long rflags;
8471 
8472 	rflags = kvm_x86_ops->get_rflags(vcpu);
8473 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8474 		rflags &= ~X86_EFLAGS_TF;
8475 	return rflags;
8476 }
8477 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8478 
8479 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8480 {
8481 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8482 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8483 		rflags |= X86_EFLAGS_TF;
8484 	kvm_x86_ops->set_rflags(vcpu, rflags);
8485 }
8486 
8487 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8488 {
8489 	__kvm_set_rflags(vcpu, rflags);
8490 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8491 }
8492 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8493 
8494 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8495 {
8496 	int r;
8497 
8498 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8499 	      work->wakeup_all)
8500 		return;
8501 
8502 	r = kvm_mmu_reload(vcpu);
8503 	if (unlikely(r))
8504 		return;
8505 
8506 	if (!vcpu->arch.mmu.direct_map &&
8507 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8508 		return;
8509 
8510 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8511 }
8512 
8513 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8514 {
8515 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8516 }
8517 
8518 static inline u32 kvm_async_pf_next_probe(u32 key)
8519 {
8520 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8521 }
8522 
8523 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8524 {
8525 	u32 key = kvm_async_pf_hash_fn(gfn);
8526 
8527 	while (vcpu->arch.apf.gfns[key] != ~0)
8528 		key = kvm_async_pf_next_probe(key);
8529 
8530 	vcpu->arch.apf.gfns[key] = gfn;
8531 }
8532 
8533 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8534 {
8535 	int i;
8536 	u32 key = kvm_async_pf_hash_fn(gfn);
8537 
8538 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8539 		     (vcpu->arch.apf.gfns[key] != gfn &&
8540 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8541 		key = kvm_async_pf_next_probe(key);
8542 
8543 	return key;
8544 }
8545 
8546 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8547 {
8548 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8549 }
8550 
8551 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8552 {
8553 	u32 i, j, k;
8554 
8555 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8556 	while (true) {
8557 		vcpu->arch.apf.gfns[i] = ~0;
8558 		do {
8559 			j = kvm_async_pf_next_probe(j);
8560 			if (vcpu->arch.apf.gfns[j] == ~0)
8561 				return;
8562 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8563 			/*
8564 			 * k lies cyclically in ]i,j]
8565 			 * |    i.k.j |
8566 			 * |....j i.k.| or  |.k..j i...|
8567 			 */
8568 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8569 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8570 		i = j;
8571 	}
8572 }
8573 
8574 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8575 {
8576 
8577 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8578 				      sizeof(val));
8579 }
8580 
8581 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8582 				     struct kvm_async_pf *work)
8583 {
8584 	struct x86_exception fault;
8585 
8586 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8587 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8588 
8589 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8590 	    (vcpu->arch.apf.send_user_only &&
8591 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8592 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8593 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8594 		fault.vector = PF_VECTOR;
8595 		fault.error_code_valid = true;
8596 		fault.error_code = 0;
8597 		fault.nested_page_fault = false;
8598 		fault.address = work->arch.token;
8599 		fault.async_page_fault = true;
8600 		kvm_inject_page_fault(vcpu, &fault);
8601 	}
8602 }
8603 
8604 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8605 				 struct kvm_async_pf *work)
8606 {
8607 	struct x86_exception fault;
8608 
8609 	if (work->wakeup_all)
8610 		work->arch.token = ~0; /* broadcast wakeup */
8611 	else
8612 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8613 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8614 
8615 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8616 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8617 		fault.vector = PF_VECTOR;
8618 		fault.error_code_valid = true;
8619 		fault.error_code = 0;
8620 		fault.nested_page_fault = false;
8621 		fault.address = work->arch.token;
8622 		fault.async_page_fault = true;
8623 		kvm_inject_page_fault(vcpu, &fault);
8624 	}
8625 	vcpu->arch.apf.halted = false;
8626 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8627 }
8628 
8629 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8630 {
8631 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8632 		return true;
8633 	else
8634 		return kvm_can_do_async_pf(vcpu);
8635 }
8636 
8637 void kvm_arch_start_assignment(struct kvm *kvm)
8638 {
8639 	atomic_inc(&kvm->arch.assigned_device_count);
8640 }
8641 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8642 
8643 void kvm_arch_end_assignment(struct kvm *kvm)
8644 {
8645 	atomic_dec(&kvm->arch.assigned_device_count);
8646 }
8647 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8648 
8649 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8650 {
8651 	return atomic_read(&kvm->arch.assigned_device_count);
8652 }
8653 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8654 
8655 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8656 {
8657 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8658 }
8659 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8660 
8661 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8662 {
8663 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8664 }
8665 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8666 
8667 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8668 {
8669 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8670 }
8671 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8672 
8673 bool kvm_arch_has_irq_bypass(void)
8674 {
8675 	return kvm_x86_ops->update_pi_irte != NULL;
8676 }
8677 
8678 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8679 				      struct irq_bypass_producer *prod)
8680 {
8681 	struct kvm_kernel_irqfd *irqfd =
8682 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8683 
8684 	irqfd->producer = prod;
8685 
8686 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8687 					   prod->irq, irqfd->gsi, 1);
8688 }
8689 
8690 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8691 				      struct irq_bypass_producer *prod)
8692 {
8693 	int ret;
8694 	struct kvm_kernel_irqfd *irqfd =
8695 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8696 
8697 	WARN_ON(irqfd->producer != prod);
8698 	irqfd->producer = NULL;
8699 
8700 	/*
8701 	 * When producer of consumer is unregistered, we change back to
8702 	 * remapped mode, so we can re-use the current implementation
8703 	 * when the irq is masked/disabled or the consumer side (KVM
8704 	 * int this case doesn't want to receive the interrupts.
8705 	*/
8706 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8707 	if (ret)
8708 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8709 		       " fails: %d\n", irqfd->consumer.token, ret);
8710 }
8711 
8712 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8713 				   uint32_t guest_irq, bool set)
8714 {
8715 	if (!kvm_x86_ops->update_pi_irte)
8716 		return -EINVAL;
8717 
8718 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8719 }
8720 
8721 bool kvm_vector_hashing_enabled(void)
8722 {
8723 	return vector_hashing;
8724 }
8725 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8726 
8727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8745 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8746