1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/mem_encrypt.h> 58 59 #include <trace/events/kvm.h> 60 61 #include <asm/debugreg.h> 62 #include <asm/msr.h> 63 #include <asm/desc.h> 64 #include <asm/mce.h> 65 #include <linux/kernel_stat.h> 66 #include <asm/fpu/internal.h> /* Ugh! */ 67 #include <asm/pvclock.h> 68 #include <asm/div64.h> 69 #include <asm/irq_remapping.h> 70 71 #define CREATE_TRACE_POINTS 72 #include "trace.h" 73 74 #define MAX_IO_MSRS 256 75 #define KVM_MAX_MCE_BANKS 32 76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 78 79 #define emul_to_vcpu(ctxt) \ 80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 81 82 /* EFER defaults: 83 * - enable syscall per default because its emulated by KVM 84 * - enable LME and LMA per default on 64 bit KVM 85 */ 86 #ifdef CONFIG_X86_64 87 static 88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 89 #else 90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 91 #endif 92 93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 95 96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 98 99 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 100 static void process_nmi(struct kvm_vcpu *vcpu); 101 static void enter_smm(struct kvm_vcpu *vcpu); 102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 103 104 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 105 EXPORT_SYMBOL_GPL(kvm_x86_ops); 106 107 static bool __read_mostly ignore_msrs = 0; 108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 109 110 unsigned int min_timer_period_us = 500; 111 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 112 113 static bool __read_mostly kvmclock_periodic_sync = true; 114 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 115 116 bool __read_mostly kvm_has_tsc_control; 117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 118 u32 __read_mostly kvm_max_guest_tsc_khz; 119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 120 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 122 u64 __read_mostly kvm_max_tsc_scaling_ratio; 123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 124 u64 __read_mostly kvm_default_tsc_scaling_ratio; 125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 126 127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 128 static u32 __read_mostly tsc_tolerance_ppm = 250; 129 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 130 131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */ 132 unsigned int __read_mostly lapic_timer_advance_ns = 0; 133 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); 134 135 static bool __read_mostly vector_hashing = true; 136 module_param(vector_hashing, bool, S_IRUGO); 137 138 #define KVM_NR_SHARED_MSRS 16 139 140 struct kvm_shared_msrs_global { 141 int nr; 142 u32 msrs[KVM_NR_SHARED_MSRS]; 143 }; 144 145 struct kvm_shared_msrs { 146 struct user_return_notifier urn; 147 bool registered; 148 struct kvm_shared_msr_values { 149 u64 host; 150 u64 curr; 151 } values[KVM_NR_SHARED_MSRS]; 152 }; 153 154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 155 static struct kvm_shared_msrs __percpu *shared_msrs; 156 157 struct kvm_stats_debugfs_item debugfs_entries[] = { 158 { "pf_fixed", VCPU_STAT(pf_fixed) }, 159 { "pf_guest", VCPU_STAT(pf_guest) }, 160 { "tlb_flush", VCPU_STAT(tlb_flush) }, 161 { "invlpg", VCPU_STAT(invlpg) }, 162 { "exits", VCPU_STAT(exits) }, 163 { "io_exits", VCPU_STAT(io_exits) }, 164 { "mmio_exits", VCPU_STAT(mmio_exits) }, 165 { "signal_exits", VCPU_STAT(signal_exits) }, 166 { "irq_window", VCPU_STAT(irq_window_exits) }, 167 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 168 { "halt_exits", VCPU_STAT(halt_exits) }, 169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 172 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 173 { "hypercalls", VCPU_STAT(hypercalls) }, 174 { "request_irq", VCPU_STAT(request_irq_exits) }, 175 { "irq_exits", VCPU_STAT(irq_exits) }, 176 { "host_state_reload", VCPU_STAT(host_state_reload) }, 177 { "efer_reload", VCPU_STAT(efer_reload) }, 178 { "fpu_reload", VCPU_STAT(fpu_reload) }, 179 { "insn_emulation", VCPU_STAT(insn_emulation) }, 180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 181 { "irq_injections", VCPU_STAT(irq_injections) }, 182 { "nmi_injections", VCPU_STAT(nmi_injections) }, 183 { "req_event", VCPU_STAT(req_event) }, 184 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 185 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 186 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 187 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 188 { "mmu_flooded", VM_STAT(mmu_flooded) }, 189 { "mmu_recycled", VM_STAT(mmu_recycled) }, 190 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 191 { "mmu_unsync", VM_STAT(mmu_unsync) }, 192 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 193 { "largepages", VM_STAT(lpages) }, 194 { "max_mmu_page_hash_collisions", 195 VM_STAT(max_mmu_page_hash_collisions) }, 196 { NULL } 197 }; 198 199 u64 __read_mostly host_xcr0; 200 201 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 202 203 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 204 { 205 int i; 206 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 207 vcpu->arch.apf.gfns[i] = ~0; 208 } 209 210 static void kvm_on_user_return(struct user_return_notifier *urn) 211 { 212 unsigned slot; 213 struct kvm_shared_msrs *locals 214 = container_of(urn, struct kvm_shared_msrs, urn); 215 struct kvm_shared_msr_values *values; 216 unsigned long flags; 217 218 /* 219 * Disabling irqs at this point since the following code could be 220 * interrupted and executed through kvm_arch_hardware_disable() 221 */ 222 local_irq_save(flags); 223 if (locals->registered) { 224 locals->registered = false; 225 user_return_notifier_unregister(urn); 226 } 227 local_irq_restore(flags); 228 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 229 values = &locals->values[slot]; 230 if (values->host != values->curr) { 231 wrmsrl(shared_msrs_global.msrs[slot], values->host); 232 values->curr = values->host; 233 } 234 } 235 } 236 237 static void shared_msr_update(unsigned slot, u32 msr) 238 { 239 u64 value; 240 unsigned int cpu = smp_processor_id(); 241 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 242 243 /* only read, and nobody should modify it at this time, 244 * so don't need lock */ 245 if (slot >= shared_msrs_global.nr) { 246 printk(KERN_ERR "kvm: invalid MSR slot!"); 247 return; 248 } 249 rdmsrl_safe(msr, &value); 250 smsr->values[slot].host = value; 251 smsr->values[slot].curr = value; 252 } 253 254 void kvm_define_shared_msr(unsigned slot, u32 msr) 255 { 256 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 257 shared_msrs_global.msrs[slot] = msr; 258 if (slot >= shared_msrs_global.nr) 259 shared_msrs_global.nr = slot + 1; 260 } 261 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 262 263 static void kvm_shared_msr_cpu_online(void) 264 { 265 unsigned i; 266 267 for (i = 0; i < shared_msrs_global.nr; ++i) 268 shared_msr_update(i, shared_msrs_global.msrs[i]); 269 } 270 271 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 272 { 273 unsigned int cpu = smp_processor_id(); 274 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 275 int err; 276 277 if (((value ^ smsr->values[slot].curr) & mask) == 0) 278 return 0; 279 smsr->values[slot].curr = value; 280 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 281 if (err) 282 return 1; 283 284 if (!smsr->registered) { 285 smsr->urn.on_user_return = kvm_on_user_return; 286 user_return_notifier_register(&smsr->urn); 287 smsr->registered = true; 288 } 289 return 0; 290 } 291 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 292 293 static void drop_user_return_notifiers(void) 294 { 295 unsigned int cpu = smp_processor_id(); 296 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 297 298 if (smsr->registered) 299 kvm_on_user_return(&smsr->urn); 300 } 301 302 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 303 { 304 return vcpu->arch.apic_base; 305 } 306 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 307 308 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 309 { 310 u64 old_state = vcpu->arch.apic_base & 311 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 312 u64 new_state = msr_info->data & 313 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 314 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 315 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE); 316 317 if (!msr_info->host_initiated && 318 ((msr_info->data & reserved_bits) != 0 || 319 new_state == X2APIC_ENABLE || 320 (new_state == MSR_IA32_APICBASE_ENABLE && 321 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 322 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 323 old_state == 0))) 324 return 1; 325 326 kvm_lapic_set_base(vcpu, msr_info->data); 327 return 0; 328 } 329 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 330 331 asmlinkage __visible void kvm_spurious_fault(void) 332 { 333 /* Fault while not rebooting. We want the trace. */ 334 BUG(); 335 } 336 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 337 338 #define EXCPT_BENIGN 0 339 #define EXCPT_CONTRIBUTORY 1 340 #define EXCPT_PF 2 341 342 static int exception_class(int vector) 343 { 344 switch (vector) { 345 case PF_VECTOR: 346 return EXCPT_PF; 347 case DE_VECTOR: 348 case TS_VECTOR: 349 case NP_VECTOR: 350 case SS_VECTOR: 351 case GP_VECTOR: 352 return EXCPT_CONTRIBUTORY; 353 default: 354 break; 355 } 356 return EXCPT_BENIGN; 357 } 358 359 #define EXCPT_FAULT 0 360 #define EXCPT_TRAP 1 361 #define EXCPT_ABORT 2 362 #define EXCPT_INTERRUPT 3 363 364 static int exception_type(int vector) 365 { 366 unsigned int mask; 367 368 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 369 return EXCPT_INTERRUPT; 370 371 mask = 1 << vector; 372 373 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 374 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 375 return EXCPT_TRAP; 376 377 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 378 return EXCPT_ABORT; 379 380 /* Reserved exceptions will result in fault */ 381 return EXCPT_FAULT; 382 } 383 384 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 385 unsigned nr, bool has_error, u32 error_code, 386 bool reinject) 387 { 388 u32 prev_nr; 389 int class1, class2; 390 391 kvm_make_request(KVM_REQ_EVENT, vcpu); 392 393 if (!vcpu->arch.exception.pending) { 394 queue: 395 if (has_error && !is_protmode(vcpu)) 396 has_error = false; 397 vcpu->arch.exception.pending = true; 398 vcpu->arch.exception.has_error_code = has_error; 399 vcpu->arch.exception.nr = nr; 400 vcpu->arch.exception.error_code = error_code; 401 vcpu->arch.exception.reinject = reinject; 402 return; 403 } 404 405 /* to check exception */ 406 prev_nr = vcpu->arch.exception.nr; 407 if (prev_nr == DF_VECTOR) { 408 /* triple fault -> shutdown */ 409 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 410 return; 411 } 412 class1 = exception_class(prev_nr); 413 class2 = exception_class(nr); 414 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 415 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 416 /* generate double fault per SDM Table 5-5 */ 417 vcpu->arch.exception.pending = true; 418 vcpu->arch.exception.has_error_code = true; 419 vcpu->arch.exception.nr = DF_VECTOR; 420 vcpu->arch.exception.error_code = 0; 421 } else 422 /* replace previous exception with a new one in a hope 423 that instruction re-execution will regenerate lost 424 exception */ 425 goto queue; 426 } 427 428 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 429 { 430 kvm_multiple_exception(vcpu, nr, false, 0, false); 431 } 432 EXPORT_SYMBOL_GPL(kvm_queue_exception); 433 434 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 435 { 436 kvm_multiple_exception(vcpu, nr, false, 0, true); 437 } 438 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 439 440 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 441 { 442 if (err) 443 kvm_inject_gp(vcpu, 0); 444 else 445 return kvm_skip_emulated_instruction(vcpu); 446 447 return 1; 448 } 449 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 450 451 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 452 { 453 ++vcpu->stat.pf_guest; 454 vcpu->arch.exception.nested_apf = 455 is_guest_mode(vcpu) && fault->async_page_fault; 456 if (vcpu->arch.exception.nested_apf) 457 vcpu->arch.apf.nested_apf_token = fault->address; 458 else 459 vcpu->arch.cr2 = fault->address; 460 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 461 } 462 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 463 464 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 465 { 466 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 467 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 468 else 469 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 470 471 return fault->nested_page_fault; 472 } 473 474 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 475 { 476 atomic_inc(&vcpu->arch.nmi_queued); 477 kvm_make_request(KVM_REQ_NMI, vcpu); 478 } 479 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 480 481 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 482 { 483 kvm_multiple_exception(vcpu, nr, true, error_code, false); 484 } 485 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 486 487 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 488 { 489 kvm_multiple_exception(vcpu, nr, true, error_code, true); 490 } 491 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 492 493 /* 494 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 495 * a #GP and return false. 496 */ 497 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 498 { 499 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 500 return true; 501 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 502 return false; 503 } 504 EXPORT_SYMBOL_GPL(kvm_require_cpl); 505 506 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 507 { 508 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 509 return true; 510 511 kvm_queue_exception(vcpu, UD_VECTOR); 512 return false; 513 } 514 EXPORT_SYMBOL_GPL(kvm_require_dr); 515 516 /* 517 * This function will be used to read from the physical memory of the currently 518 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 519 * can read from guest physical or from the guest's guest physical memory. 520 */ 521 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 522 gfn_t ngfn, void *data, int offset, int len, 523 u32 access) 524 { 525 struct x86_exception exception; 526 gfn_t real_gfn; 527 gpa_t ngpa; 528 529 ngpa = gfn_to_gpa(ngfn); 530 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 531 if (real_gfn == UNMAPPED_GVA) 532 return -EFAULT; 533 534 real_gfn = gpa_to_gfn(real_gfn); 535 536 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 537 } 538 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 539 540 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 541 void *data, int offset, int len, u32 access) 542 { 543 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 544 data, offset, len, access); 545 } 546 547 /* 548 * Load the pae pdptrs. Return true is they are all valid. 549 */ 550 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 551 { 552 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 553 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 554 int i; 555 int ret; 556 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 557 558 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 559 offset * sizeof(u64), sizeof(pdpte), 560 PFERR_USER_MASK|PFERR_WRITE_MASK); 561 if (ret < 0) { 562 ret = 0; 563 goto out; 564 } 565 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 566 if ((pdpte[i] & PT_PRESENT_MASK) && 567 (pdpte[i] & 568 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { 569 ret = 0; 570 goto out; 571 } 572 } 573 ret = 1; 574 575 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 576 __set_bit(VCPU_EXREG_PDPTR, 577 (unsigned long *)&vcpu->arch.regs_avail); 578 __set_bit(VCPU_EXREG_PDPTR, 579 (unsigned long *)&vcpu->arch.regs_dirty); 580 out: 581 582 return ret; 583 } 584 EXPORT_SYMBOL_GPL(load_pdptrs); 585 586 bool pdptrs_changed(struct kvm_vcpu *vcpu) 587 { 588 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 589 bool changed = true; 590 int offset; 591 gfn_t gfn; 592 int r; 593 594 if (is_long_mode(vcpu) || !is_pae(vcpu)) 595 return false; 596 597 if (!test_bit(VCPU_EXREG_PDPTR, 598 (unsigned long *)&vcpu->arch.regs_avail)) 599 return true; 600 601 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 602 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 603 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 604 PFERR_USER_MASK | PFERR_WRITE_MASK); 605 if (r < 0) 606 goto out; 607 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 608 out: 609 610 return changed; 611 } 612 EXPORT_SYMBOL_GPL(pdptrs_changed); 613 614 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 615 { 616 unsigned long old_cr0 = kvm_read_cr0(vcpu); 617 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 618 619 cr0 |= X86_CR0_ET; 620 621 #ifdef CONFIG_X86_64 622 if (cr0 & 0xffffffff00000000UL) 623 return 1; 624 #endif 625 626 cr0 &= ~CR0_RESERVED_BITS; 627 628 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 629 return 1; 630 631 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 632 return 1; 633 634 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 635 #ifdef CONFIG_X86_64 636 if ((vcpu->arch.efer & EFER_LME)) { 637 int cs_db, cs_l; 638 639 if (!is_pae(vcpu)) 640 return 1; 641 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 642 if (cs_l) 643 return 1; 644 } else 645 #endif 646 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 647 kvm_read_cr3(vcpu))) 648 return 1; 649 } 650 651 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 652 return 1; 653 654 kvm_x86_ops->set_cr0(vcpu, cr0); 655 656 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 657 kvm_clear_async_pf_completion_queue(vcpu); 658 kvm_async_pf_hash_reset(vcpu); 659 } 660 661 if ((cr0 ^ old_cr0) & update_bits) 662 kvm_mmu_reset_context(vcpu); 663 664 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 665 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 666 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 667 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 668 669 return 0; 670 } 671 EXPORT_SYMBOL_GPL(kvm_set_cr0); 672 673 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 674 { 675 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 676 } 677 EXPORT_SYMBOL_GPL(kvm_lmsw); 678 679 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 680 { 681 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 682 !vcpu->guest_xcr0_loaded) { 683 /* kvm_set_xcr() also depends on this */ 684 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 685 vcpu->guest_xcr0_loaded = 1; 686 } 687 } 688 689 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 690 { 691 if (vcpu->guest_xcr0_loaded) { 692 if (vcpu->arch.xcr0 != host_xcr0) 693 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 694 vcpu->guest_xcr0_loaded = 0; 695 } 696 } 697 698 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 699 { 700 u64 xcr0 = xcr; 701 u64 old_xcr0 = vcpu->arch.xcr0; 702 u64 valid_bits; 703 704 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 705 if (index != XCR_XFEATURE_ENABLED_MASK) 706 return 1; 707 if (!(xcr0 & XFEATURE_MASK_FP)) 708 return 1; 709 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 710 return 1; 711 712 /* 713 * Do not allow the guest to set bits that we do not support 714 * saving. However, xcr0 bit 0 is always set, even if the 715 * emulated CPU does not support XSAVE (see fx_init). 716 */ 717 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 718 if (xcr0 & ~valid_bits) 719 return 1; 720 721 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 722 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 723 return 1; 724 725 if (xcr0 & XFEATURE_MASK_AVX512) { 726 if (!(xcr0 & XFEATURE_MASK_YMM)) 727 return 1; 728 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 729 return 1; 730 } 731 vcpu->arch.xcr0 = xcr0; 732 733 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 734 kvm_update_cpuid(vcpu); 735 return 0; 736 } 737 738 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 739 { 740 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 741 __kvm_set_xcr(vcpu, index, xcr)) { 742 kvm_inject_gp(vcpu, 0); 743 return 1; 744 } 745 return 0; 746 } 747 EXPORT_SYMBOL_GPL(kvm_set_xcr); 748 749 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 750 { 751 unsigned long old_cr4 = kvm_read_cr4(vcpu); 752 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 753 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 754 755 if (cr4 & CR4_RESERVED_BITS) 756 return 1; 757 758 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 759 return 1; 760 761 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 762 return 1; 763 764 if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP)) 765 return 1; 766 767 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE)) 768 return 1; 769 770 if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE)) 771 return 1; 772 773 if (is_long_mode(vcpu)) { 774 if (!(cr4 & X86_CR4_PAE)) 775 return 1; 776 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 777 && ((cr4 ^ old_cr4) & pdptr_bits) 778 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 779 kvm_read_cr3(vcpu))) 780 return 1; 781 782 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 783 if (!guest_cpuid_has_pcid(vcpu)) 784 return 1; 785 786 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 787 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 788 return 1; 789 } 790 791 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 792 return 1; 793 794 if (((cr4 ^ old_cr4) & pdptr_bits) || 795 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 796 kvm_mmu_reset_context(vcpu); 797 798 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 799 kvm_update_cpuid(vcpu); 800 801 return 0; 802 } 803 EXPORT_SYMBOL_GPL(kvm_set_cr4); 804 805 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 806 { 807 #ifdef CONFIG_X86_64 808 cr3 &= ~CR3_PCID_INVD; 809 #endif 810 811 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 812 kvm_mmu_sync_roots(vcpu); 813 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 814 return 0; 815 } 816 817 if (is_long_mode(vcpu)) { 818 if (cr3 & CR3_L_MODE_RESERVED_BITS) 819 return 1; 820 } else if (is_pae(vcpu) && is_paging(vcpu) && 821 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 822 return 1; 823 824 vcpu->arch.cr3 = cr3; 825 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 826 kvm_mmu_new_cr3(vcpu); 827 return 0; 828 } 829 EXPORT_SYMBOL_GPL(kvm_set_cr3); 830 831 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 832 { 833 if (cr8 & CR8_RESERVED_BITS) 834 return 1; 835 if (lapic_in_kernel(vcpu)) 836 kvm_lapic_set_tpr(vcpu, cr8); 837 else 838 vcpu->arch.cr8 = cr8; 839 return 0; 840 } 841 EXPORT_SYMBOL_GPL(kvm_set_cr8); 842 843 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 844 { 845 if (lapic_in_kernel(vcpu)) 846 return kvm_lapic_get_cr8(vcpu); 847 else 848 return vcpu->arch.cr8; 849 } 850 EXPORT_SYMBOL_GPL(kvm_get_cr8); 851 852 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 853 { 854 int i; 855 856 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 857 for (i = 0; i < KVM_NR_DB_REGS; i++) 858 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 859 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 860 } 861 } 862 863 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 864 { 865 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 866 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 867 } 868 869 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 870 { 871 unsigned long dr7; 872 873 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 874 dr7 = vcpu->arch.guest_debug_dr7; 875 else 876 dr7 = vcpu->arch.dr7; 877 kvm_x86_ops->set_dr7(vcpu, dr7); 878 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 879 if (dr7 & DR7_BP_EN_MASK) 880 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 881 } 882 883 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 884 { 885 u64 fixed = DR6_FIXED_1; 886 887 if (!guest_cpuid_has_rtm(vcpu)) 888 fixed |= DR6_RTM; 889 return fixed; 890 } 891 892 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 893 { 894 switch (dr) { 895 case 0 ... 3: 896 vcpu->arch.db[dr] = val; 897 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 898 vcpu->arch.eff_db[dr] = val; 899 break; 900 case 4: 901 /* fall through */ 902 case 6: 903 if (val & 0xffffffff00000000ULL) 904 return -1; /* #GP */ 905 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 906 kvm_update_dr6(vcpu); 907 break; 908 case 5: 909 /* fall through */ 910 default: /* 7 */ 911 if (val & 0xffffffff00000000ULL) 912 return -1; /* #GP */ 913 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 914 kvm_update_dr7(vcpu); 915 break; 916 } 917 918 return 0; 919 } 920 921 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 922 { 923 if (__kvm_set_dr(vcpu, dr, val)) { 924 kvm_inject_gp(vcpu, 0); 925 return 1; 926 } 927 return 0; 928 } 929 EXPORT_SYMBOL_GPL(kvm_set_dr); 930 931 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 932 { 933 switch (dr) { 934 case 0 ... 3: 935 *val = vcpu->arch.db[dr]; 936 break; 937 case 4: 938 /* fall through */ 939 case 6: 940 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 941 *val = vcpu->arch.dr6; 942 else 943 *val = kvm_x86_ops->get_dr6(vcpu); 944 break; 945 case 5: 946 /* fall through */ 947 default: /* 7 */ 948 *val = vcpu->arch.dr7; 949 break; 950 } 951 return 0; 952 } 953 EXPORT_SYMBOL_GPL(kvm_get_dr); 954 955 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 956 { 957 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 958 u64 data; 959 int err; 960 961 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 962 if (err) 963 return err; 964 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 965 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 966 return err; 967 } 968 EXPORT_SYMBOL_GPL(kvm_rdpmc); 969 970 /* 971 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 972 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 973 * 974 * This list is modified at module load time to reflect the 975 * capabilities of the host cpu. This capabilities test skips MSRs that are 976 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 977 * may depend on host virtualization features rather than host cpu features. 978 */ 979 980 static u32 msrs_to_save[] = { 981 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 982 MSR_STAR, 983 #ifdef CONFIG_X86_64 984 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 985 #endif 986 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 987 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 988 }; 989 990 static unsigned num_msrs_to_save; 991 992 static u32 emulated_msrs[] = { 993 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 994 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 995 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 996 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 997 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 998 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 999 HV_X64_MSR_RESET, 1000 HV_X64_MSR_VP_INDEX, 1001 HV_X64_MSR_VP_RUNTIME, 1002 HV_X64_MSR_SCONTROL, 1003 HV_X64_MSR_STIMER0_CONFIG, 1004 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1005 MSR_KVM_PV_EOI_EN, 1006 1007 MSR_IA32_TSC_ADJUST, 1008 MSR_IA32_TSCDEADLINE, 1009 MSR_IA32_MISC_ENABLE, 1010 MSR_IA32_MCG_STATUS, 1011 MSR_IA32_MCG_CTL, 1012 MSR_IA32_MCG_EXT_CTL, 1013 MSR_IA32_SMBASE, 1014 MSR_PLATFORM_INFO, 1015 MSR_MISC_FEATURES_ENABLES, 1016 }; 1017 1018 static unsigned num_emulated_msrs; 1019 1020 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1021 { 1022 if (efer & efer_reserved_bits) 1023 return false; 1024 1025 if (efer & EFER_FFXSR) { 1026 struct kvm_cpuid_entry2 *feat; 1027 1028 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1029 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 1030 return false; 1031 } 1032 1033 if (efer & EFER_SVME) { 1034 struct kvm_cpuid_entry2 *feat; 1035 1036 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 1037 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 1038 return false; 1039 } 1040 1041 return true; 1042 } 1043 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1044 1045 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 1046 { 1047 u64 old_efer = vcpu->arch.efer; 1048 1049 if (!kvm_valid_efer(vcpu, efer)) 1050 return 1; 1051 1052 if (is_paging(vcpu) 1053 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1054 return 1; 1055 1056 efer &= ~EFER_LMA; 1057 efer |= vcpu->arch.efer & EFER_LMA; 1058 1059 kvm_x86_ops->set_efer(vcpu, efer); 1060 1061 /* Update reserved bits */ 1062 if ((efer ^ old_efer) & EFER_NX) 1063 kvm_mmu_reset_context(vcpu); 1064 1065 return 0; 1066 } 1067 1068 void kvm_enable_efer_bits(u64 mask) 1069 { 1070 efer_reserved_bits &= ~mask; 1071 } 1072 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1073 1074 /* 1075 * Writes msr value into into the appropriate "register". 1076 * Returns 0 on success, non-0 otherwise. 1077 * Assumes vcpu_load() was already called. 1078 */ 1079 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1080 { 1081 switch (msr->index) { 1082 case MSR_FS_BASE: 1083 case MSR_GS_BASE: 1084 case MSR_KERNEL_GS_BASE: 1085 case MSR_CSTAR: 1086 case MSR_LSTAR: 1087 if (is_noncanonical_address(msr->data)) 1088 return 1; 1089 break; 1090 case MSR_IA32_SYSENTER_EIP: 1091 case MSR_IA32_SYSENTER_ESP: 1092 /* 1093 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1094 * non-canonical address is written on Intel but not on 1095 * AMD (which ignores the top 32-bits, because it does 1096 * not implement 64-bit SYSENTER). 1097 * 1098 * 64-bit code should hence be able to write a non-canonical 1099 * value on AMD. Making the address canonical ensures that 1100 * vmentry does not fail on Intel after writing a non-canonical 1101 * value, and that something deterministic happens if the guest 1102 * invokes 64-bit SYSENTER. 1103 */ 1104 msr->data = get_canonical(msr->data); 1105 } 1106 return kvm_x86_ops->set_msr(vcpu, msr); 1107 } 1108 EXPORT_SYMBOL_GPL(kvm_set_msr); 1109 1110 /* 1111 * Adapt set_msr() to msr_io()'s calling convention 1112 */ 1113 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1114 { 1115 struct msr_data msr; 1116 int r; 1117 1118 msr.index = index; 1119 msr.host_initiated = true; 1120 r = kvm_get_msr(vcpu, &msr); 1121 if (r) 1122 return r; 1123 1124 *data = msr.data; 1125 return 0; 1126 } 1127 1128 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1129 { 1130 struct msr_data msr; 1131 1132 msr.data = *data; 1133 msr.index = index; 1134 msr.host_initiated = true; 1135 return kvm_set_msr(vcpu, &msr); 1136 } 1137 1138 #ifdef CONFIG_X86_64 1139 struct pvclock_gtod_data { 1140 seqcount_t seq; 1141 1142 struct { /* extract of a clocksource struct */ 1143 int vclock_mode; 1144 u64 cycle_last; 1145 u64 mask; 1146 u32 mult; 1147 u32 shift; 1148 } clock; 1149 1150 u64 boot_ns; 1151 u64 nsec_base; 1152 u64 wall_time_sec; 1153 }; 1154 1155 static struct pvclock_gtod_data pvclock_gtod_data; 1156 1157 static void update_pvclock_gtod(struct timekeeper *tk) 1158 { 1159 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1160 u64 boot_ns; 1161 1162 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1163 1164 write_seqcount_begin(&vdata->seq); 1165 1166 /* copy pvclock gtod data */ 1167 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1168 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1169 vdata->clock.mask = tk->tkr_mono.mask; 1170 vdata->clock.mult = tk->tkr_mono.mult; 1171 vdata->clock.shift = tk->tkr_mono.shift; 1172 1173 vdata->boot_ns = boot_ns; 1174 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1175 1176 vdata->wall_time_sec = tk->xtime_sec; 1177 1178 write_seqcount_end(&vdata->seq); 1179 } 1180 #endif 1181 1182 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1183 { 1184 /* 1185 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in 1186 * vcpu_enter_guest. This function is only called from 1187 * the physical CPU that is running vcpu. 1188 */ 1189 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1190 } 1191 1192 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1193 { 1194 int version; 1195 int r; 1196 struct pvclock_wall_clock wc; 1197 struct timespec64 boot; 1198 1199 if (!wall_clock) 1200 return; 1201 1202 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1203 if (r) 1204 return; 1205 1206 if (version & 1) 1207 ++version; /* first time write, random junk */ 1208 1209 ++version; 1210 1211 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1212 return; 1213 1214 /* 1215 * The guest calculates current wall clock time by adding 1216 * system time (updated by kvm_guest_time_update below) to the 1217 * wall clock specified here. guest system time equals host 1218 * system time for us, thus we must fill in host boot time here. 1219 */ 1220 getboottime64(&boot); 1221 1222 if (kvm->arch.kvmclock_offset) { 1223 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1224 boot = timespec64_sub(boot, ts); 1225 } 1226 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1227 wc.nsec = boot.tv_nsec; 1228 wc.version = version; 1229 1230 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1231 1232 version++; 1233 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1234 } 1235 1236 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1237 { 1238 do_shl32_div32(dividend, divisor); 1239 return dividend; 1240 } 1241 1242 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1243 s8 *pshift, u32 *pmultiplier) 1244 { 1245 uint64_t scaled64; 1246 int32_t shift = 0; 1247 uint64_t tps64; 1248 uint32_t tps32; 1249 1250 tps64 = base_hz; 1251 scaled64 = scaled_hz; 1252 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1253 tps64 >>= 1; 1254 shift--; 1255 } 1256 1257 tps32 = (uint32_t)tps64; 1258 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1259 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1260 scaled64 >>= 1; 1261 else 1262 tps32 <<= 1; 1263 shift++; 1264 } 1265 1266 *pshift = shift; 1267 *pmultiplier = div_frac(scaled64, tps32); 1268 1269 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", 1270 __func__, base_hz, scaled_hz, shift, *pmultiplier); 1271 } 1272 1273 #ifdef CONFIG_X86_64 1274 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1275 #endif 1276 1277 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1278 static unsigned long max_tsc_khz; 1279 1280 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1281 { 1282 u64 v = (u64)khz * (1000000 + ppm); 1283 do_div(v, 1000000); 1284 return v; 1285 } 1286 1287 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1288 { 1289 u64 ratio; 1290 1291 /* Guest TSC same frequency as host TSC? */ 1292 if (!scale) { 1293 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1294 return 0; 1295 } 1296 1297 /* TSC scaling supported? */ 1298 if (!kvm_has_tsc_control) { 1299 if (user_tsc_khz > tsc_khz) { 1300 vcpu->arch.tsc_catchup = 1; 1301 vcpu->arch.tsc_always_catchup = 1; 1302 return 0; 1303 } else { 1304 WARN(1, "user requested TSC rate below hardware speed\n"); 1305 return -1; 1306 } 1307 } 1308 1309 /* TSC scaling required - calculate ratio */ 1310 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1311 user_tsc_khz, tsc_khz); 1312 1313 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1314 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1315 user_tsc_khz); 1316 return -1; 1317 } 1318 1319 vcpu->arch.tsc_scaling_ratio = ratio; 1320 return 0; 1321 } 1322 1323 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1324 { 1325 u32 thresh_lo, thresh_hi; 1326 int use_scaling = 0; 1327 1328 /* tsc_khz can be zero if TSC calibration fails */ 1329 if (user_tsc_khz == 0) { 1330 /* set tsc_scaling_ratio to a safe value */ 1331 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1332 return -1; 1333 } 1334 1335 /* Compute a scale to convert nanoseconds in TSC cycles */ 1336 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1337 &vcpu->arch.virtual_tsc_shift, 1338 &vcpu->arch.virtual_tsc_mult); 1339 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1340 1341 /* 1342 * Compute the variation in TSC rate which is acceptable 1343 * within the range of tolerance and decide if the 1344 * rate being applied is within that bounds of the hardware 1345 * rate. If so, no scaling or compensation need be done. 1346 */ 1347 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1348 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1349 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1350 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1351 use_scaling = 1; 1352 } 1353 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1354 } 1355 1356 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1357 { 1358 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1359 vcpu->arch.virtual_tsc_mult, 1360 vcpu->arch.virtual_tsc_shift); 1361 tsc += vcpu->arch.this_tsc_write; 1362 return tsc; 1363 } 1364 1365 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1366 { 1367 #ifdef CONFIG_X86_64 1368 bool vcpus_matched; 1369 struct kvm_arch *ka = &vcpu->kvm->arch; 1370 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1371 1372 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1373 atomic_read(&vcpu->kvm->online_vcpus)); 1374 1375 /* 1376 * Once the masterclock is enabled, always perform request in 1377 * order to update it. 1378 * 1379 * In order to enable masterclock, the host clocksource must be TSC 1380 * and the vcpus need to have matched TSCs. When that happens, 1381 * perform request to enable masterclock. 1382 */ 1383 if (ka->use_master_clock || 1384 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched)) 1385 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1386 1387 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1388 atomic_read(&vcpu->kvm->online_vcpus), 1389 ka->use_master_clock, gtod->clock.vclock_mode); 1390 #endif 1391 } 1392 1393 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1394 { 1395 u64 curr_offset = vcpu->arch.tsc_offset; 1396 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1397 } 1398 1399 /* 1400 * Multiply tsc by a fixed point number represented by ratio. 1401 * 1402 * The most significant 64-N bits (mult) of ratio represent the 1403 * integral part of the fixed point number; the remaining N bits 1404 * (frac) represent the fractional part, ie. ratio represents a fixed 1405 * point number (mult + frac * 2^(-N)). 1406 * 1407 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1408 */ 1409 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1410 { 1411 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1412 } 1413 1414 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1415 { 1416 u64 _tsc = tsc; 1417 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1418 1419 if (ratio != kvm_default_tsc_scaling_ratio) 1420 _tsc = __scale_tsc(ratio, tsc); 1421 1422 return _tsc; 1423 } 1424 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1425 1426 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1427 { 1428 u64 tsc; 1429 1430 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1431 1432 return target_tsc - tsc; 1433 } 1434 1435 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1436 { 1437 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1438 } 1439 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1440 1441 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1442 { 1443 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1444 vcpu->arch.tsc_offset = offset; 1445 } 1446 1447 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1448 { 1449 struct kvm *kvm = vcpu->kvm; 1450 u64 offset, ns, elapsed; 1451 unsigned long flags; 1452 bool matched; 1453 bool already_matched; 1454 u64 data = msr->data; 1455 bool synchronizing = false; 1456 1457 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1458 offset = kvm_compute_tsc_offset(vcpu, data); 1459 ns = ktime_get_boot_ns(); 1460 elapsed = ns - kvm->arch.last_tsc_nsec; 1461 1462 if (vcpu->arch.virtual_tsc_khz) { 1463 if (data == 0 && msr->host_initiated) { 1464 /* 1465 * detection of vcpu initialization -- need to sync 1466 * with other vCPUs. This particularly helps to keep 1467 * kvm_clock stable after CPU hotplug 1468 */ 1469 synchronizing = true; 1470 } else { 1471 u64 tsc_exp = kvm->arch.last_tsc_write + 1472 nsec_to_cycles(vcpu, elapsed); 1473 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 1474 /* 1475 * Special case: TSC write with a small delta (1 second) 1476 * of virtual cycle time against real time is 1477 * interpreted as an attempt to synchronize the CPU. 1478 */ 1479 synchronizing = data < tsc_exp + tsc_hz && 1480 data + tsc_hz > tsc_exp; 1481 } 1482 } 1483 1484 /* 1485 * For a reliable TSC, we can match TSC offsets, and for an unstable 1486 * TSC, we add elapsed time in this computation. We could let the 1487 * compensation code attempt to catch up if we fall behind, but 1488 * it's better to try to match offsets from the beginning. 1489 */ 1490 if (synchronizing && 1491 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1492 if (!check_tsc_unstable()) { 1493 offset = kvm->arch.cur_tsc_offset; 1494 pr_debug("kvm: matched tsc offset for %llu\n", data); 1495 } else { 1496 u64 delta = nsec_to_cycles(vcpu, elapsed); 1497 data += delta; 1498 offset = kvm_compute_tsc_offset(vcpu, data); 1499 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1500 } 1501 matched = true; 1502 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1503 } else { 1504 /* 1505 * We split periods of matched TSC writes into generations. 1506 * For each generation, we track the original measured 1507 * nanosecond time, offset, and write, so if TSCs are in 1508 * sync, we can match exact offset, and if not, we can match 1509 * exact software computation in compute_guest_tsc() 1510 * 1511 * These values are tracked in kvm->arch.cur_xxx variables. 1512 */ 1513 kvm->arch.cur_tsc_generation++; 1514 kvm->arch.cur_tsc_nsec = ns; 1515 kvm->arch.cur_tsc_write = data; 1516 kvm->arch.cur_tsc_offset = offset; 1517 matched = false; 1518 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1519 kvm->arch.cur_tsc_generation, data); 1520 } 1521 1522 /* 1523 * We also track th most recent recorded KHZ, write and time to 1524 * allow the matching interval to be extended at each write. 1525 */ 1526 kvm->arch.last_tsc_nsec = ns; 1527 kvm->arch.last_tsc_write = data; 1528 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1529 1530 vcpu->arch.last_guest_tsc = data; 1531 1532 /* Keep track of which generation this VCPU has synchronized to */ 1533 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1534 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1535 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1536 1537 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) 1538 update_ia32_tsc_adjust_msr(vcpu, offset); 1539 kvm_vcpu_write_tsc_offset(vcpu, offset); 1540 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1541 1542 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1543 if (!matched) { 1544 kvm->arch.nr_vcpus_matched_tsc = 0; 1545 } else if (!already_matched) { 1546 kvm->arch.nr_vcpus_matched_tsc++; 1547 } 1548 1549 kvm_track_tsc_matching(vcpu); 1550 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1551 } 1552 1553 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1554 1555 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1556 s64 adjustment) 1557 { 1558 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); 1559 } 1560 1561 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1562 { 1563 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1564 WARN_ON(adjustment < 0); 1565 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1566 adjust_tsc_offset_guest(vcpu, adjustment); 1567 } 1568 1569 #ifdef CONFIG_X86_64 1570 1571 static u64 read_tsc(void) 1572 { 1573 u64 ret = (u64)rdtsc_ordered(); 1574 u64 last = pvclock_gtod_data.clock.cycle_last; 1575 1576 if (likely(ret >= last)) 1577 return ret; 1578 1579 /* 1580 * GCC likes to generate cmov here, but this branch is extremely 1581 * predictable (it's just a function of time and the likely is 1582 * very likely) and there's a data dependence, so force GCC 1583 * to generate a branch instead. I don't barrier() because 1584 * we don't actually need a barrier, and if this function 1585 * ever gets inlined it will generate worse code. 1586 */ 1587 asm volatile (""); 1588 return last; 1589 } 1590 1591 static inline u64 vgettsc(u64 *cycle_now) 1592 { 1593 long v; 1594 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1595 1596 *cycle_now = read_tsc(); 1597 1598 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1599 return v * gtod->clock.mult; 1600 } 1601 1602 static int do_monotonic_boot(s64 *t, u64 *cycle_now) 1603 { 1604 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1605 unsigned long seq; 1606 int mode; 1607 u64 ns; 1608 1609 do { 1610 seq = read_seqcount_begin(>od->seq); 1611 mode = gtod->clock.vclock_mode; 1612 ns = gtod->nsec_base; 1613 ns += vgettsc(cycle_now); 1614 ns >>= gtod->clock.shift; 1615 ns += gtod->boot_ns; 1616 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1617 *t = ns; 1618 1619 return mode; 1620 } 1621 1622 static int do_realtime(struct timespec *ts, u64 *cycle_now) 1623 { 1624 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1625 unsigned long seq; 1626 int mode; 1627 u64 ns; 1628 1629 do { 1630 seq = read_seqcount_begin(>od->seq); 1631 mode = gtod->clock.vclock_mode; 1632 ts->tv_sec = gtod->wall_time_sec; 1633 ns = gtod->nsec_base; 1634 ns += vgettsc(cycle_now); 1635 ns >>= gtod->clock.shift; 1636 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1637 1638 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 1639 ts->tv_nsec = ns; 1640 1641 return mode; 1642 } 1643 1644 /* returns true if host is using tsc clocksource */ 1645 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now) 1646 { 1647 /* checked again under seqlock below */ 1648 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1649 return false; 1650 1651 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; 1652 } 1653 1654 /* returns true if host is using tsc clocksource */ 1655 static bool kvm_get_walltime_and_clockread(struct timespec *ts, 1656 u64 *cycle_now) 1657 { 1658 /* checked again under seqlock below */ 1659 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1660 return false; 1661 1662 return do_realtime(ts, cycle_now) == VCLOCK_TSC; 1663 } 1664 #endif 1665 1666 /* 1667 * 1668 * Assuming a stable TSC across physical CPUS, and a stable TSC 1669 * across virtual CPUs, the following condition is possible. 1670 * Each numbered line represents an event visible to both 1671 * CPUs at the next numbered event. 1672 * 1673 * "timespecX" represents host monotonic time. "tscX" represents 1674 * RDTSC value. 1675 * 1676 * VCPU0 on CPU0 | VCPU1 on CPU1 1677 * 1678 * 1. read timespec0,tsc0 1679 * 2. | timespec1 = timespec0 + N 1680 * | tsc1 = tsc0 + M 1681 * 3. transition to guest | transition to guest 1682 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1683 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1684 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1685 * 1686 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1687 * 1688 * - ret0 < ret1 1689 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1690 * ... 1691 * - 0 < N - M => M < N 1692 * 1693 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1694 * always the case (the difference between two distinct xtime instances 1695 * might be smaller then the difference between corresponding TSC reads, 1696 * when updating guest vcpus pvclock areas). 1697 * 1698 * To avoid that problem, do not allow visibility of distinct 1699 * system_timestamp/tsc_timestamp values simultaneously: use a master 1700 * copy of host monotonic time values. Update that master copy 1701 * in lockstep. 1702 * 1703 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1704 * 1705 */ 1706 1707 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1708 { 1709 #ifdef CONFIG_X86_64 1710 struct kvm_arch *ka = &kvm->arch; 1711 int vclock_mode; 1712 bool host_tsc_clocksource, vcpus_matched; 1713 1714 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1715 atomic_read(&kvm->online_vcpus)); 1716 1717 /* 1718 * If the host uses TSC clock, then passthrough TSC as stable 1719 * to the guest. 1720 */ 1721 host_tsc_clocksource = kvm_get_time_and_clockread( 1722 &ka->master_kernel_ns, 1723 &ka->master_cycle_now); 1724 1725 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1726 && !ka->backwards_tsc_observed 1727 && !ka->boot_vcpu_runs_old_kvmclock; 1728 1729 if (ka->use_master_clock) 1730 atomic_set(&kvm_guest_has_master_clock, 1); 1731 1732 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1733 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1734 vcpus_matched); 1735 #endif 1736 } 1737 1738 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 1739 { 1740 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 1741 } 1742 1743 static void kvm_gen_update_masterclock(struct kvm *kvm) 1744 { 1745 #ifdef CONFIG_X86_64 1746 int i; 1747 struct kvm_vcpu *vcpu; 1748 struct kvm_arch *ka = &kvm->arch; 1749 1750 spin_lock(&ka->pvclock_gtod_sync_lock); 1751 kvm_make_mclock_inprogress_request(kvm); 1752 /* no guest entries from this point */ 1753 pvclock_update_vm_gtod_copy(kvm); 1754 1755 kvm_for_each_vcpu(i, vcpu, kvm) 1756 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1757 1758 /* guest entries allowed */ 1759 kvm_for_each_vcpu(i, vcpu, kvm) 1760 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 1761 1762 spin_unlock(&ka->pvclock_gtod_sync_lock); 1763 #endif 1764 } 1765 1766 u64 get_kvmclock_ns(struct kvm *kvm) 1767 { 1768 struct kvm_arch *ka = &kvm->arch; 1769 struct pvclock_vcpu_time_info hv_clock; 1770 u64 ret; 1771 1772 spin_lock(&ka->pvclock_gtod_sync_lock); 1773 if (!ka->use_master_clock) { 1774 spin_unlock(&ka->pvclock_gtod_sync_lock); 1775 return ktime_get_boot_ns() + ka->kvmclock_offset; 1776 } 1777 1778 hv_clock.tsc_timestamp = ka->master_cycle_now; 1779 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 1780 spin_unlock(&ka->pvclock_gtod_sync_lock); 1781 1782 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 1783 get_cpu(); 1784 1785 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 1786 &hv_clock.tsc_shift, 1787 &hv_clock.tsc_to_system_mul); 1788 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 1789 1790 put_cpu(); 1791 1792 return ret; 1793 } 1794 1795 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 1796 { 1797 struct kvm_vcpu_arch *vcpu = &v->arch; 1798 struct pvclock_vcpu_time_info guest_hv_clock; 1799 1800 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1801 &guest_hv_clock, sizeof(guest_hv_clock)))) 1802 return; 1803 1804 /* This VCPU is paused, but it's legal for a guest to read another 1805 * VCPU's kvmclock, so we really have to follow the specification where 1806 * it says that version is odd if data is being modified, and even after 1807 * it is consistent. 1808 * 1809 * Version field updates must be kept separate. This is because 1810 * kvm_write_guest_cached might use a "rep movs" instruction, and 1811 * writes within a string instruction are weakly ordered. So there 1812 * are three writes overall. 1813 * 1814 * As a small optimization, only write the version field in the first 1815 * and third write. The vcpu->pv_time cache is still valid, because the 1816 * version field is the first in the struct. 1817 */ 1818 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 1819 1820 vcpu->hv_clock.version = guest_hv_clock.version + 1; 1821 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1822 &vcpu->hv_clock, 1823 sizeof(vcpu->hv_clock.version)); 1824 1825 smp_wmb(); 1826 1827 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1828 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1829 1830 if (vcpu->pvclock_set_guest_stopped_request) { 1831 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 1832 vcpu->pvclock_set_guest_stopped_request = false; 1833 } 1834 1835 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 1836 1837 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1838 &vcpu->hv_clock, 1839 sizeof(vcpu->hv_clock)); 1840 1841 smp_wmb(); 1842 1843 vcpu->hv_clock.version++; 1844 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1845 &vcpu->hv_clock, 1846 sizeof(vcpu->hv_clock.version)); 1847 } 1848 1849 static int kvm_guest_time_update(struct kvm_vcpu *v) 1850 { 1851 unsigned long flags, tgt_tsc_khz; 1852 struct kvm_vcpu_arch *vcpu = &v->arch; 1853 struct kvm_arch *ka = &v->kvm->arch; 1854 s64 kernel_ns; 1855 u64 tsc_timestamp, host_tsc; 1856 u8 pvclock_flags; 1857 bool use_master_clock; 1858 1859 kernel_ns = 0; 1860 host_tsc = 0; 1861 1862 /* 1863 * If the host uses TSC clock, then passthrough TSC as stable 1864 * to the guest. 1865 */ 1866 spin_lock(&ka->pvclock_gtod_sync_lock); 1867 use_master_clock = ka->use_master_clock; 1868 if (use_master_clock) { 1869 host_tsc = ka->master_cycle_now; 1870 kernel_ns = ka->master_kernel_ns; 1871 } 1872 spin_unlock(&ka->pvclock_gtod_sync_lock); 1873 1874 /* Keep irq disabled to prevent changes to the clock */ 1875 local_irq_save(flags); 1876 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 1877 if (unlikely(tgt_tsc_khz == 0)) { 1878 local_irq_restore(flags); 1879 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1880 return 1; 1881 } 1882 if (!use_master_clock) { 1883 host_tsc = rdtsc(); 1884 kernel_ns = ktime_get_boot_ns(); 1885 } 1886 1887 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 1888 1889 /* 1890 * We may have to catch up the TSC to match elapsed wall clock 1891 * time for two reasons, even if kvmclock is used. 1892 * 1) CPU could have been running below the maximum TSC rate 1893 * 2) Broken TSC compensation resets the base at each VCPU 1894 * entry to avoid unknown leaps of TSC even when running 1895 * again on the same CPU. This may cause apparent elapsed 1896 * time to disappear, and the guest to stand still or run 1897 * very slowly. 1898 */ 1899 if (vcpu->tsc_catchup) { 1900 u64 tsc = compute_guest_tsc(v, kernel_ns); 1901 if (tsc > tsc_timestamp) { 1902 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1903 tsc_timestamp = tsc; 1904 } 1905 } 1906 1907 local_irq_restore(flags); 1908 1909 /* With all the info we got, fill in the values */ 1910 1911 if (kvm_has_tsc_control) 1912 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 1913 1914 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 1915 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 1916 &vcpu->hv_clock.tsc_shift, 1917 &vcpu->hv_clock.tsc_to_system_mul); 1918 vcpu->hw_tsc_khz = tgt_tsc_khz; 1919 } 1920 1921 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1922 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1923 vcpu->last_guest_tsc = tsc_timestamp; 1924 1925 /* If the host uses TSC clocksource, then it is stable */ 1926 pvclock_flags = 0; 1927 if (use_master_clock) 1928 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1929 1930 vcpu->hv_clock.flags = pvclock_flags; 1931 1932 if (vcpu->pv_time_enabled) 1933 kvm_setup_pvclock_page(v); 1934 if (v == kvm_get_vcpu(v->kvm, 0)) 1935 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 1936 return 0; 1937 } 1938 1939 /* 1940 * kvmclock updates which are isolated to a given vcpu, such as 1941 * vcpu->cpu migration, should not allow system_timestamp from 1942 * the rest of the vcpus to remain static. Otherwise ntp frequency 1943 * correction applies to one vcpu's system_timestamp but not 1944 * the others. 1945 * 1946 * So in those cases, request a kvmclock update for all vcpus. 1947 * We need to rate-limit these requests though, as they can 1948 * considerably slow guests that have a large number of vcpus. 1949 * The time for a remote vcpu to update its kvmclock is bound 1950 * by the delay we use to rate-limit the updates. 1951 */ 1952 1953 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1954 1955 static void kvmclock_update_fn(struct work_struct *work) 1956 { 1957 int i; 1958 struct delayed_work *dwork = to_delayed_work(work); 1959 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1960 kvmclock_update_work); 1961 struct kvm *kvm = container_of(ka, struct kvm, arch); 1962 struct kvm_vcpu *vcpu; 1963 1964 kvm_for_each_vcpu(i, vcpu, kvm) { 1965 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1966 kvm_vcpu_kick(vcpu); 1967 } 1968 } 1969 1970 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1971 { 1972 struct kvm *kvm = v->kvm; 1973 1974 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1975 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1976 KVMCLOCK_UPDATE_DELAY); 1977 } 1978 1979 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 1980 1981 static void kvmclock_sync_fn(struct work_struct *work) 1982 { 1983 struct delayed_work *dwork = to_delayed_work(work); 1984 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1985 kvmclock_sync_work); 1986 struct kvm *kvm = container_of(ka, struct kvm, arch); 1987 1988 if (!kvmclock_periodic_sync) 1989 return; 1990 1991 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 1992 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 1993 KVMCLOCK_SYNC_PERIOD); 1994 } 1995 1996 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1997 { 1998 u64 mcg_cap = vcpu->arch.mcg_cap; 1999 unsigned bank_num = mcg_cap & 0xff; 2000 2001 switch (msr) { 2002 case MSR_IA32_MCG_STATUS: 2003 vcpu->arch.mcg_status = data; 2004 break; 2005 case MSR_IA32_MCG_CTL: 2006 if (!(mcg_cap & MCG_CTL_P)) 2007 return 1; 2008 if (data != 0 && data != ~(u64)0) 2009 return -1; 2010 vcpu->arch.mcg_ctl = data; 2011 break; 2012 default: 2013 if (msr >= MSR_IA32_MC0_CTL && 2014 msr < MSR_IA32_MCx_CTL(bank_num)) { 2015 u32 offset = msr - MSR_IA32_MC0_CTL; 2016 /* only 0 or all 1s can be written to IA32_MCi_CTL 2017 * some Linux kernels though clear bit 10 in bank 4 to 2018 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2019 * this to avoid an uncatched #GP in the guest 2020 */ 2021 if ((offset & 0x3) == 0 && 2022 data != 0 && (data | (1 << 10)) != ~(u64)0) 2023 return -1; 2024 vcpu->arch.mce_banks[offset] = data; 2025 break; 2026 } 2027 return 1; 2028 } 2029 return 0; 2030 } 2031 2032 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2033 { 2034 struct kvm *kvm = vcpu->kvm; 2035 int lm = is_long_mode(vcpu); 2036 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2037 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2038 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2039 : kvm->arch.xen_hvm_config.blob_size_32; 2040 u32 page_num = data & ~PAGE_MASK; 2041 u64 page_addr = data & PAGE_MASK; 2042 u8 *page; 2043 int r; 2044 2045 r = -E2BIG; 2046 if (page_num >= blob_size) 2047 goto out; 2048 r = -ENOMEM; 2049 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2050 if (IS_ERR(page)) { 2051 r = PTR_ERR(page); 2052 goto out; 2053 } 2054 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2055 goto out_free; 2056 r = 0; 2057 out_free: 2058 kfree(page); 2059 out: 2060 return r; 2061 } 2062 2063 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2064 { 2065 gpa_t gpa = data & ~0x3f; 2066 2067 /* Bits 3:5 are reserved, Should be zero */ 2068 if (data & 0x38) 2069 return 1; 2070 2071 vcpu->arch.apf.msr_val = data; 2072 2073 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2074 kvm_clear_async_pf_completion_queue(vcpu); 2075 kvm_async_pf_hash_reset(vcpu); 2076 return 0; 2077 } 2078 2079 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2080 sizeof(u32))) 2081 return 1; 2082 2083 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2084 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2085 kvm_async_pf_wakeup_all(vcpu); 2086 return 0; 2087 } 2088 2089 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2090 { 2091 vcpu->arch.pv_time_enabled = false; 2092 } 2093 2094 static void record_steal_time(struct kvm_vcpu *vcpu) 2095 { 2096 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2097 return; 2098 2099 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2100 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2101 return; 2102 2103 vcpu->arch.st.steal.preempted = 0; 2104 2105 if (vcpu->arch.st.steal.version & 1) 2106 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2107 2108 vcpu->arch.st.steal.version += 1; 2109 2110 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2111 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2112 2113 smp_wmb(); 2114 2115 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2116 vcpu->arch.st.last_steal; 2117 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2118 2119 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2120 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2121 2122 smp_wmb(); 2123 2124 vcpu->arch.st.steal.version += 1; 2125 2126 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2127 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2128 } 2129 2130 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2131 { 2132 bool pr = false; 2133 u32 msr = msr_info->index; 2134 u64 data = msr_info->data; 2135 2136 switch (msr) { 2137 case MSR_AMD64_NB_CFG: 2138 case MSR_IA32_UCODE_REV: 2139 case MSR_IA32_UCODE_WRITE: 2140 case MSR_VM_HSAVE_PA: 2141 case MSR_AMD64_PATCH_LOADER: 2142 case MSR_AMD64_BU_CFG2: 2143 case MSR_AMD64_DC_CFG: 2144 break; 2145 2146 case MSR_EFER: 2147 return set_efer(vcpu, data); 2148 case MSR_K7_HWCR: 2149 data &= ~(u64)0x40; /* ignore flush filter disable */ 2150 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2151 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2152 data &= ~(u64)0x40000; /* ignore Mc status write enable */ 2153 if (data != 0) { 2154 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2155 data); 2156 return 1; 2157 } 2158 break; 2159 case MSR_FAM10H_MMIO_CONF_BASE: 2160 if (data != 0) { 2161 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2162 "0x%llx\n", data); 2163 return 1; 2164 } 2165 break; 2166 case MSR_IA32_DEBUGCTLMSR: 2167 if (!data) { 2168 /* We support the non-activated case already */ 2169 break; 2170 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2171 /* Values other than LBR and BTF are vendor-specific, 2172 thus reserved and should throw a #GP */ 2173 return 1; 2174 } 2175 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2176 __func__, data); 2177 break; 2178 case 0x200 ... 0x2ff: 2179 return kvm_mtrr_set_msr(vcpu, msr, data); 2180 case MSR_IA32_APICBASE: 2181 return kvm_set_apic_base(vcpu, msr_info); 2182 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2183 return kvm_x2apic_msr_write(vcpu, msr, data); 2184 case MSR_IA32_TSCDEADLINE: 2185 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2186 break; 2187 case MSR_IA32_TSC_ADJUST: 2188 if (guest_cpuid_has_tsc_adjust(vcpu)) { 2189 if (!msr_info->host_initiated) { 2190 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2191 adjust_tsc_offset_guest(vcpu, adj); 2192 } 2193 vcpu->arch.ia32_tsc_adjust_msr = data; 2194 } 2195 break; 2196 case MSR_IA32_MISC_ENABLE: 2197 vcpu->arch.ia32_misc_enable_msr = data; 2198 break; 2199 case MSR_IA32_SMBASE: 2200 if (!msr_info->host_initiated) 2201 return 1; 2202 vcpu->arch.smbase = data; 2203 break; 2204 case MSR_KVM_WALL_CLOCK_NEW: 2205 case MSR_KVM_WALL_CLOCK: 2206 vcpu->kvm->arch.wall_clock = data; 2207 kvm_write_wall_clock(vcpu->kvm, data); 2208 break; 2209 case MSR_KVM_SYSTEM_TIME_NEW: 2210 case MSR_KVM_SYSTEM_TIME: { 2211 struct kvm_arch *ka = &vcpu->kvm->arch; 2212 2213 kvmclock_reset(vcpu); 2214 2215 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2216 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2217 2218 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2219 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2220 2221 ka->boot_vcpu_runs_old_kvmclock = tmp; 2222 } 2223 2224 vcpu->arch.time = data; 2225 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2226 2227 /* we verify if the enable bit is set... */ 2228 if (!(data & 1)) 2229 break; 2230 2231 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2232 &vcpu->arch.pv_time, data & ~1ULL, 2233 sizeof(struct pvclock_vcpu_time_info))) 2234 vcpu->arch.pv_time_enabled = false; 2235 else 2236 vcpu->arch.pv_time_enabled = true; 2237 2238 break; 2239 } 2240 case MSR_KVM_ASYNC_PF_EN: 2241 if (kvm_pv_enable_async_pf(vcpu, data)) 2242 return 1; 2243 break; 2244 case MSR_KVM_STEAL_TIME: 2245 2246 if (unlikely(!sched_info_on())) 2247 return 1; 2248 2249 if (data & KVM_STEAL_RESERVED_MASK) 2250 return 1; 2251 2252 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2253 data & KVM_STEAL_VALID_BITS, 2254 sizeof(struct kvm_steal_time))) 2255 return 1; 2256 2257 vcpu->arch.st.msr_val = data; 2258 2259 if (!(data & KVM_MSR_ENABLED)) 2260 break; 2261 2262 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2263 2264 break; 2265 case MSR_KVM_PV_EOI_EN: 2266 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2267 return 1; 2268 break; 2269 2270 case MSR_IA32_MCG_CTL: 2271 case MSR_IA32_MCG_STATUS: 2272 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2273 return set_msr_mce(vcpu, msr, data); 2274 2275 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2276 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2277 pr = true; /* fall through */ 2278 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2279 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2280 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2281 return kvm_pmu_set_msr(vcpu, msr_info); 2282 2283 if (pr || data != 0) 2284 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2285 "0x%x data 0x%llx\n", msr, data); 2286 break; 2287 case MSR_K7_CLK_CTL: 2288 /* 2289 * Ignore all writes to this no longer documented MSR. 2290 * Writes are only relevant for old K7 processors, 2291 * all pre-dating SVM, but a recommended workaround from 2292 * AMD for these chips. It is possible to specify the 2293 * affected processor models on the command line, hence 2294 * the need to ignore the workaround. 2295 */ 2296 break; 2297 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2298 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2299 case HV_X64_MSR_CRASH_CTL: 2300 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2301 return kvm_hv_set_msr_common(vcpu, msr, data, 2302 msr_info->host_initiated); 2303 case MSR_IA32_BBL_CR_CTL3: 2304 /* Drop writes to this legacy MSR -- see rdmsr 2305 * counterpart for further detail. 2306 */ 2307 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data); 2308 break; 2309 case MSR_AMD64_OSVW_ID_LENGTH: 2310 if (!guest_cpuid_has_osvw(vcpu)) 2311 return 1; 2312 vcpu->arch.osvw.length = data; 2313 break; 2314 case MSR_AMD64_OSVW_STATUS: 2315 if (!guest_cpuid_has_osvw(vcpu)) 2316 return 1; 2317 vcpu->arch.osvw.status = data; 2318 break; 2319 case MSR_PLATFORM_INFO: 2320 if (!msr_info->host_initiated || 2321 data & ~MSR_PLATFORM_INFO_CPUID_FAULT || 2322 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2323 cpuid_fault_enabled(vcpu))) 2324 return 1; 2325 vcpu->arch.msr_platform_info = data; 2326 break; 2327 case MSR_MISC_FEATURES_ENABLES: 2328 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2329 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2330 !supports_cpuid_fault(vcpu))) 2331 return 1; 2332 vcpu->arch.msr_misc_features_enables = data; 2333 break; 2334 default: 2335 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2336 return xen_hvm_config(vcpu, data); 2337 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2338 return kvm_pmu_set_msr(vcpu, msr_info); 2339 if (!ignore_msrs) { 2340 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2341 msr, data); 2342 return 1; 2343 } else { 2344 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2345 msr, data); 2346 break; 2347 } 2348 } 2349 return 0; 2350 } 2351 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2352 2353 2354 /* 2355 * Reads an msr value (of 'msr_index') into 'pdata'. 2356 * Returns 0 on success, non-0 otherwise. 2357 * Assumes vcpu_load() was already called. 2358 */ 2359 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2360 { 2361 return kvm_x86_ops->get_msr(vcpu, msr); 2362 } 2363 EXPORT_SYMBOL_GPL(kvm_get_msr); 2364 2365 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2366 { 2367 u64 data; 2368 u64 mcg_cap = vcpu->arch.mcg_cap; 2369 unsigned bank_num = mcg_cap & 0xff; 2370 2371 switch (msr) { 2372 case MSR_IA32_P5_MC_ADDR: 2373 case MSR_IA32_P5_MC_TYPE: 2374 data = 0; 2375 break; 2376 case MSR_IA32_MCG_CAP: 2377 data = vcpu->arch.mcg_cap; 2378 break; 2379 case MSR_IA32_MCG_CTL: 2380 if (!(mcg_cap & MCG_CTL_P)) 2381 return 1; 2382 data = vcpu->arch.mcg_ctl; 2383 break; 2384 case MSR_IA32_MCG_STATUS: 2385 data = vcpu->arch.mcg_status; 2386 break; 2387 default: 2388 if (msr >= MSR_IA32_MC0_CTL && 2389 msr < MSR_IA32_MCx_CTL(bank_num)) { 2390 u32 offset = msr - MSR_IA32_MC0_CTL; 2391 data = vcpu->arch.mce_banks[offset]; 2392 break; 2393 } 2394 return 1; 2395 } 2396 *pdata = data; 2397 return 0; 2398 } 2399 2400 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2401 { 2402 switch (msr_info->index) { 2403 case MSR_IA32_PLATFORM_ID: 2404 case MSR_IA32_EBL_CR_POWERON: 2405 case MSR_IA32_DEBUGCTLMSR: 2406 case MSR_IA32_LASTBRANCHFROMIP: 2407 case MSR_IA32_LASTBRANCHTOIP: 2408 case MSR_IA32_LASTINTFROMIP: 2409 case MSR_IA32_LASTINTTOIP: 2410 case MSR_K8_SYSCFG: 2411 case MSR_K8_TSEG_ADDR: 2412 case MSR_K8_TSEG_MASK: 2413 case MSR_K7_HWCR: 2414 case MSR_VM_HSAVE_PA: 2415 case MSR_K8_INT_PENDING_MSG: 2416 case MSR_AMD64_NB_CFG: 2417 case MSR_FAM10H_MMIO_CONF_BASE: 2418 case MSR_AMD64_BU_CFG2: 2419 case MSR_IA32_PERF_CTL: 2420 case MSR_AMD64_DC_CFG: 2421 msr_info->data = 0; 2422 break; 2423 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2424 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2425 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2426 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2427 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2428 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2429 msr_info->data = 0; 2430 break; 2431 case MSR_IA32_UCODE_REV: 2432 msr_info->data = 0x100000000ULL; 2433 break; 2434 case MSR_MTRRcap: 2435 case 0x200 ... 0x2ff: 2436 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2437 case 0xcd: /* fsb frequency */ 2438 msr_info->data = 3; 2439 break; 2440 /* 2441 * MSR_EBC_FREQUENCY_ID 2442 * Conservative value valid for even the basic CPU models. 2443 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2444 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2445 * and 266MHz for model 3, or 4. Set Core Clock 2446 * Frequency to System Bus Frequency Ratio to 1 (bits 2447 * 31:24) even though these are only valid for CPU 2448 * models > 2, however guests may end up dividing or 2449 * multiplying by zero otherwise. 2450 */ 2451 case MSR_EBC_FREQUENCY_ID: 2452 msr_info->data = 1 << 24; 2453 break; 2454 case MSR_IA32_APICBASE: 2455 msr_info->data = kvm_get_apic_base(vcpu); 2456 break; 2457 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2458 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2459 break; 2460 case MSR_IA32_TSCDEADLINE: 2461 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2462 break; 2463 case MSR_IA32_TSC_ADJUST: 2464 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2465 break; 2466 case MSR_IA32_MISC_ENABLE: 2467 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2468 break; 2469 case MSR_IA32_SMBASE: 2470 if (!msr_info->host_initiated) 2471 return 1; 2472 msr_info->data = vcpu->arch.smbase; 2473 break; 2474 case MSR_IA32_PERF_STATUS: 2475 /* TSC increment by tick */ 2476 msr_info->data = 1000ULL; 2477 /* CPU multiplier */ 2478 msr_info->data |= (((uint64_t)4ULL) << 40); 2479 break; 2480 case MSR_EFER: 2481 msr_info->data = vcpu->arch.efer; 2482 break; 2483 case MSR_KVM_WALL_CLOCK: 2484 case MSR_KVM_WALL_CLOCK_NEW: 2485 msr_info->data = vcpu->kvm->arch.wall_clock; 2486 break; 2487 case MSR_KVM_SYSTEM_TIME: 2488 case MSR_KVM_SYSTEM_TIME_NEW: 2489 msr_info->data = vcpu->arch.time; 2490 break; 2491 case MSR_KVM_ASYNC_PF_EN: 2492 msr_info->data = vcpu->arch.apf.msr_val; 2493 break; 2494 case MSR_KVM_STEAL_TIME: 2495 msr_info->data = vcpu->arch.st.msr_val; 2496 break; 2497 case MSR_KVM_PV_EOI_EN: 2498 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2499 break; 2500 case MSR_IA32_P5_MC_ADDR: 2501 case MSR_IA32_P5_MC_TYPE: 2502 case MSR_IA32_MCG_CAP: 2503 case MSR_IA32_MCG_CTL: 2504 case MSR_IA32_MCG_STATUS: 2505 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2506 return get_msr_mce(vcpu, msr_info->index, &msr_info->data); 2507 case MSR_K7_CLK_CTL: 2508 /* 2509 * Provide expected ramp-up count for K7. All other 2510 * are set to zero, indicating minimum divisors for 2511 * every field. 2512 * 2513 * This prevents guest kernels on AMD host with CPU 2514 * type 6, model 8 and higher from exploding due to 2515 * the rdmsr failing. 2516 */ 2517 msr_info->data = 0x20000000; 2518 break; 2519 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2520 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2521 case HV_X64_MSR_CRASH_CTL: 2522 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2523 return kvm_hv_get_msr_common(vcpu, 2524 msr_info->index, &msr_info->data); 2525 break; 2526 case MSR_IA32_BBL_CR_CTL3: 2527 /* This legacy MSR exists but isn't fully documented in current 2528 * silicon. It is however accessed by winxp in very narrow 2529 * scenarios where it sets bit #19, itself documented as 2530 * a "reserved" bit. Best effort attempt to source coherent 2531 * read data here should the balance of the register be 2532 * interpreted by the guest: 2533 * 2534 * L2 cache control register 3: 64GB range, 256KB size, 2535 * enabled, latency 0x1, configured 2536 */ 2537 msr_info->data = 0xbe702111; 2538 break; 2539 case MSR_AMD64_OSVW_ID_LENGTH: 2540 if (!guest_cpuid_has_osvw(vcpu)) 2541 return 1; 2542 msr_info->data = vcpu->arch.osvw.length; 2543 break; 2544 case MSR_AMD64_OSVW_STATUS: 2545 if (!guest_cpuid_has_osvw(vcpu)) 2546 return 1; 2547 msr_info->data = vcpu->arch.osvw.status; 2548 break; 2549 case MSR_PLATFORM_INFO: 2550 msr_info->data = vcpu->arch.msr_platform_info; 2551 break; 2552 case MSR_MISC_FEATURES_ENABLES: 2553 msr_info->data = vcpu->arch.msr_misc_features_enables; 2554 break; 2555 default: 2556 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2557 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2558 if (!ignore_msrs) { 2559 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 2560 msr_info->index); 2561 return 1; 2562 } else { 2563 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index); 2564 msr_info->data = 0; 2565 } 2566 break; 2567 } 2568 return 0; 2569 } 2570 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2571 2572 /* 2573 * Read or write a bunch of msrs. All parameters are kernel addresses. 2574 * 2575 * @return number of msrs set successfully. 2576 */ 2577 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2578 struct kvm_msr_entry *entries, 2579 int (*do_msr)(struct kvm_vcpu *vcpu, 2580 unsigned index, u64 *data)) 2581 { 2582 int i, idx; 2583 2584 idx = srcu_read_lock(&vcpu->kvm->srcu); 2585 for (i = 0; i < msrs->nmsrs; ++i) 2586 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2587 break; 2588 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2589 2590 return i; 2591 } 2592 2593 /* 2594 * Read or write a bunch of msrs. Parameters are user addresses. 2595 * 2596 * @return number of msrs set successfully. 2597 */ 2598 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2599 int (*do_msr)(struct kvm_vcpu *vcpu, 2600 unsigned index, u64 *data), 2601 int writeback) 2602 { 2603 struct kvm_msrs msrs; 2604 struct kvm_msr_entry *entries; 2605 int r, n; 2606 unsigned size; 2607 2608 r = -EFAULT; 2609 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2610 goto out; 2611 2612 r = -E2BIG; 2613 if (msrs.nmsrs >= MAX_IO_MSRS) 2614 goto out; 2615 2616 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2617 entries = memdup_user(user_msrs->entries, size); 2618 if (IS_ERR(entries)) { 2619 r = PTR_ERR(entries); 2620 goto out; 2621 } 2622 2623 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2624 if (r < 0) 2625 goto out_free; 2626 2627 r = -EFAULT; 2628 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2629 goto out_free; 2630 2631 r = n; 2632 2633 out_free: 2634 kfree(entries); 2635 out: 2636 return r; 2637 } 2638 2639 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 2640 { 2641 int r; 2642 2643 switch (ext) { 2644 case KVM_CAP_IRQCHIP: 2645 case KVM_CAP_HLT: 2646 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2647 case KVM_CAP_SET_TSS_ADDR: 2648 case KVM_CAP_EXT_CPUID: 2649 case KVM_CAP_EXT_EMUL_CPUID: 2650 case KVM_CAP_CLOCKSOURCE: 2651 case KVM_CAP_PIT: 2652 case KVM_CAP_NOP_IO_DELAY: 2653 case KVM_CAP_MP_STATE: 2654 case KVM_CAP_SYNC_MMU: 2655 case KVM_CAP_USER_NMI: 2656 case KVM_CAP_REINJECT_CONTROL: 2657 case KVM_CAP_IRQ_INJECT_STATUS: 2658 case KVM_CAP_IOEVENTFD: 2659 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2660 case KVM_CAP_PIT2: 2661 case KVM_CAP_PIT_STATE2: 2662 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2663 case KVM_CAP_XEN_HVM: 2664 case KVM_CAP_VCPU_EVENTS: 2665 case KVM_CAP_HYPERV: 2666 case KVM_CAP_HYPERV_VAPIC: 2667 case KVM_CAP_HYPERV_SPIN: 2668 case KVM_CAP_HYPERV_SYNIC: 2669 case KVM_CAP_HYPERV_SYNIC2: 2670 case KVM_CAP_HYPERV_VP_INDEX: 2671 case KVM_CAP_PCI_SEGMENT: 2672 case KVM_CAP_DEBUGREGS: 2673 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2674 case KVM_CAP_XSAVE: 2675 case KVM_CAP_ASYNC_PF: 2676 case KVM_CAP_GET_TSC_KHZ: 2677 case KVM_CAP_KVMCLOCK_CTRL: 2678 case KVM_CAP_READONLY_MEM: 2679 case KVM_CAP_HYPERV_TIME: 2680 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2681 case KVM_CAP_TSC_DEADLINE_TIMER: 2682 case KVM_CAP_ENABLE_CAP_VM: 2683 case KVM_CAP_DISABLE_QUIRKS: 2684 case KVM_CAP_SET_BOOT_CPU_ID: 2685 case KVM_CAP_SPLIT_IRQCHIP: 2686 case KVM_CAP_IMMEDIATE_EXIT: 2687 r = 1; 2688 break; 2689 case KVM_CAP_ADJUST_CLOCK: 2690 r = KVM_CLOCK_TSC_STABLE; 2691 break; 2692 case KVM_CAP_X86_GUEST_MWAIT: 2693 r = kvm_mwait_in_guest(); 2694 break; 2695 case KVM_CAP_X86_SMM: 2696 /* SMBASE is usually relocated above 1M on modern chipsets, 2697 * and SMM handlers might indeed rely on 4G segment limits, 2698 * so do not report SMM to be available if real mode is 2699 * emulated via vm86 mode. Still, do not go to great lengths 2700 * to avoid userspace's usage of the feature, because it is a 2701 * fringe case that is not enabled except via specific settings 2702 * of the module parameters. 2703 */ 2704 r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); 2705 break; 2706 case KVM_CAP_VAPIC: 2707 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2708 break; 2709 case KVM_CAP_NR_VCPUS: 2710 r = KVM_SOFT_MAX_VCPUS; 2711 break; 2712 case KVM_CAP_MAX_VCPUS: 2713 r = KVM_MAX_VCPUS; 2714 break; 2715 case KVM_CAP_NR_MEMSLOTS: 2716 r = KVM_USER_MEM_SLOTS; 2717 break; 2718 case KVM_CAP_PV_MMU: /* obsolete */ 2719 r = 0; 2720 break; 2721 case KVM_CAP_MCE: 2722 r = KVM_MAX_MCE_BANKS; 2723 break; 2724 case KVM_CAP_XCRS: 2725 r = boot_cpu_has(X86_FEATURE_XSAVE); 2726 break; 2727 case KVM_CAP_TSC_CONTROL: 2728 r = kvm_has_tsc_control; 2729 break; 2730 case KVM_CAP_X2APIC_API: 2731 r = KVM_X2APIC_API_VALID_FLAGS; 2732 break; 2733 default: 2734 r = 0; 2735 break; 2736 } 2737 return r; 2738 2739 } 2740 2741 long kvm_arch_dev_ioctl(struct file *filp, 2742 unsigned int ioctl, unsigned long arg) 2743 { 2744 void __user *argp = (void __user *)arg; 2745 long r; 2746 2747 switch (ioctl) { 2748 case KVM_GET_MSR_INDEX_LIST: { 2749 struct kvm_msr_list __user *user_msr_list = argp; 2750 struct kvm_msr_list msr_list; 2751 unsigned n; 2752 2753 r = -EFAULT; 2754 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2755 goto out; 2756 n = msr_list.nmsrs; 2757 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 2758 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2759 goto out; 2760 r = -E2BIG; 2761 if (n < msr_list.nmsrs) 2762 goto out; 2763 r = -EFAULT; 2764 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2765 num_msrs_to_save * sizeof(u32))) 2766 goto out; 2767 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2768 &emulated_msrs, 2769 num_emulated_msrs * sizeof(u32))) 2770 goto out; 2771 r = 0; 2772 break; 2773 } 2774 case KVM_GET_SUPPORTED_CPUID: 2775 case KVM_GET_EMULATED_CPUID: { 2776 struct kvm_cpuid2 __user *cpuid_arg = argp; 2777 struct kvm_cpuid2 cpuid; 2778 2779 r = -EFAULT; 2780 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2781 goto out; 2782 2783 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2784 ioctl); 2785 if (r) 2786 goto out; 2787 2788 r = -EFAULT; 2789 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2790 goto out; 2791 r = 0; 2792 break; 2793 } 2794 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2795 r = -EFAULT; 2796 if (copy_to_user(argp, &kvm_mce_cap_supported, 2797 sizeof(kvm_mce_cap_supported))) 2798 goto out; 2799 r = 0; 2800 break; 2801 } 2802 default: 2803 r = -EINVAL; 2804 } 2805 out: 2806 return r; 2807 } 2808 2809 static void wbinvd_ipi(void *garbage) 2810 { 2811 wbinvd(); 2812 } 2813 2814 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2815 { 2816 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2817 } 2818 2819 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2820 { 2821 /* Address WBINVD may be executed by guest */ 2822 if (need_emulate_wbinvd(vcpu)) { 2823 if (kvm_x86_ops->has_wbinvd_exit()) 2824 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2825 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2826 smp_call_function_single(vcpu->cpu, 2827 wbinvd_ipi, NULL, 1); 2828 } 2829 2830 kvm_x86_ops->vcpu_load(vcpu, cpu); 2831 2832 /* Apply any externally detected TSC adjustments (due to suspend) */ 2833 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2834 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2835 vcpu->arch.tsc_offset_adjustment = 0; 2836 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2837 } 2838 2839 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2840 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2841 rdtsc() - vcpu->arch.last_host_tsc; 2842 if (tsc_delta < 0) 2843 mark_tsc_unstable("KVM discovered backwards TSC"); 2844 2845 if (check_tsc_unstable()) { 2846 u64 offset = kvm_compute_tsc_offset(vcpu, 2847 vcpu->arch.last_guest_tsc); 2848 kvm_vcpu_write_tsc_offset(vcpu, offset); 2849 vcpu->arch.tsc_catchup = 1; 2850 } 2851 2852 if (kvm_lapic_hv_timer_in_use(vcpu)) 2853 kvm_lapic_restart_hv_timer(vcpu); 2854 2855 /* 2856 * On a host with synchronized TSC, there is no need to update 2857 * kvmclock on vcpu->cpu migration 2858 */ 2859 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2860 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2861 if (vcpu->cpu != cpu) 2862 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 2863 vcpu->cpu = cpu; 2864 } 2865 2866 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2867 } 2868 2869 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 2870 { 2871 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2872 return; 2873 2874 vcpu->arch.st.steal.preempted = 1; 2875 2876 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, 2877 &vcpu->arch.st.steal.preempted, 2878 offsetof(struct kvm_steal_time, preempted), 2879 sizeof(vcpu->arch.st.steal.preempted)); 2880 } 2881 2882 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2883 { 2884 int idx; 2885 /* 2886 * Disable page faults because we're in atomic context here. 2887 * kvm_write_guest_offset_cached() would call might_fault() 2888 * that relies on pagefault_disable() to tell if there's a 2889 * bug. NOTE: the write to guest memory may not go through if 2890 * during postcopy live migration or if there's heavy guest 2891 * paging. 2892 */ 2893 pagefault_disable(); 2894 /* 2895 * kvm_memslots() will be called by 2896 * kvm_write_guest_offset_cached() so take the srcu lock. 2897 */ 2898 idx = srcu_read_lock(&vcpu->kvm->srcu); 2899 kvm_steal_time_set_preempted(vcpu); 2900 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2901 pagefault_enable(); 2902 kvm_x86_ops->vcpu_put(vcpu); 2903 kvm_put_guest_fpu(vcpu); 2904 vcpu->arch.last_host_tsc = rdtsc(); 2905 } 2906 2907 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2908 struct kvm_lapic_state *s) 2909 { 2910 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 2911 kvm_x86_ops->sync_pir_to_irr(vcpu); 2912 2913 return kvm_apic_get_state(vcpu, s); 2914 } 2915 2916 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2917 struct kvm_lapic_state *s) 2918 { 2919 int r; 2920 2921 r = kvm_apic_set_state(vcpu, s); 2922 if (r) 2923 return r; 2924 update_cr8_intercept(vcpu); 2925 2926 return 0; 2927 } 2928 2929 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 2930 { 2931 return (!lapic_in_kernel(vcpu) || 2932 kvm_apic_accept_pic_intr(vcpu)); 2933 } 2934 2935 /* 2936 * if userspace requested an interrupt window, check that the 2937 * interrupt window is open. 2938 * 2939 * No need to exit to userspace if we already have an interrupt queued. 2940 */ 2941 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 2942 { 2943 return kvm_arch_interrupt_allowed(vcpu) && 2944 !kvm_cpu_has_interrupt(vcpu) && 2945 !kvm_event_needs_reinjection(vcpu) && 2946 kvm_cpu_accept_dm_intr(vcpu); 2947 } 2948 2949 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2950 struct kvm_interrupt *irq) 2951 { 2952 if (irq->irq >= KVM_NR_INTERRUPTS) 2953 return -EINVAL; 2954 2955 if (!irqchip_in_kernel(vcpu->kvm)) { 2956 kvm_queue_interrupt(vcpu, irq->irq, false); 2957 kvm_make_request(KVM_REQ_EVENT, vcpu); 2958 return 0; 2959 } 2960 2961 /* 2962 * With in-kernel LAPIC, we only use this to inject EXTINT, so 2963 * fail for in-kernel 8259. 2964 */ 2965 if (pic_in_kernel(vcpu->kvm)) 2966 return -ENXIO; 2967 2968 if (vcpu->arch.pending_external_vector != -1) 2969 return -EEXIST; 2970 2971 vcpu->arch.pending_external_vector = irq->irq; 2972 kvm_make_request(KVM_REQ_EVENT, vcpu); 2973 return 0; 2974 } 2975 2976 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2977 { 2978 kvm_inject_nmi(vcpu); 2979 2980 return 0; 2981 } 2982 2983 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 2984 { 2985 kvm_make_request(KVM_REQ_SMI, vcpu); 2986 2987 return 0; 2988 } 2989 2990 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2991 struct kvm_tpr_access_ctl *tac) 2992 { 2993 if (tac->flags) 2994 return -EINVAL; 2995 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2996 return 0; 2997 } 2998 2999 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3000 u64 mcg_cap) 3001 { 3002 int r; 3003 unsigned bank_num = mcg_cap & 0xff, bank; 3004 3005 r = -EINVAL; 3006 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3007 goto out; 3008 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3009 goto out; 3010 r = 0; 3011 vcpu->arch.mcg_cap = mcg_cap; 3012 /* Init IA32_MCG_CTL to all 1s */ 3013 if (mcg_cap & MCG_CTL_P) 3014 vcpu->arch.mcg_ctl = ~(u64)0; 3015 /* Init IA32_MCi_CTL to all 1s */ 3016 for (bank = 0; bank < bank_num; bank++) 3017 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3018 3019 if (kvm_x86_ops->setup_mce) 3020 kvm_x86_ops->setup_mce(vcpu); 3021 out: 3022 return r; 3023 } 3024 3025 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3026 struct kvm_x86_mce *mce) 3027 { 3028 u64 mcg_cap = vcpu->arch.mcg_cap; 3029 unsigned bank_num = mcg_cap & 0xff; 3030 u64 *banks = vcpu->arch.mce_banks; 3031 3032 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3033 return -EINVAL; 3034 /* 3035 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3036 * reporting is disabled 3037 */ 3038 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3039 vcpu->arch.mcg_ctl != ~(u64)0) 3040 return 0; 3041 banks += 4 * mce->bank; 3042 /* 3043 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3044 * reporting is disabled for the bank 3045 */ 3046 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3047 return 0; 3048 if (mce->status & MCI_STATUS_UC) { 3049 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3050 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3051 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3052 return 0; 3053 } 3054 if (banks[1] & MCI_STATUS_VAL) 3055 mce->status |= MCI_STATUS_OVER; 3056 banks[2] = mce->addr; 3057 banks[3] = mce->misc; 3058 vcpu->arch.mcg_status = mce->mcg_status; 3059 banks[1] = mce->status; 3060 kvm_queue_exception(vcpu, MC_VECTOR); 3061 } else if (!(banks[1] & MCI_STATUS_VAL) 3062 || !(banks[1] & MCI_STATUS_UC)) { 3063 if (banks[1] & MCI_STATUS_VAL) 3064 mce->status |= MCI_STATUS_OVER; 3065 banks[2] = mce->addr; 3066 banks[3] = mce->misc; 3067 banks[1] = mce->status; 3068 } else 3069 banks[1] |= MCI_STATUS_OVER; 3070 return 0; 3071 } 3072 3073 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3074 struct kvm_vcpu_events *events) 3075 { 3076 process_nmi(vcpu); 3077 events->exception.injected = 3078 vcpu->arch.exception.pending && 3079 !kvm_exception_is_soft(vcpu->arch.exception.nr); 3080 events->exception.nr = vcpu->arch.exception.nr; 3081 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3082 events->exception.pad = 0; 3083 events->exception.error_code = vcpu->arch.exception.error_code; 3084 3085 events->interrupt.injected = 3086 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 3087 events->interrupt.nr = vcpu->arch.interrupt.nr; 3088 events->interrupt.soft = 0; 3089 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3090 3091 events->nmi.injected = vcpu->arch.nmi_injected; 3092 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3093 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3094 events->nmi.pad = 0; 3095 3096 events->sipi_vector = 0; /* never valid when reporting to user space */ 3097 3098 events->smi.smm = is_smm(vcpu); 3099 events->smi.pending = vcpu->arch.smi_pending; 3100 events->smi.smm_inside_nmi = 3101 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3102 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3103 3104 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3105 | KVM_VCPUEVENT_VALID_SHADOW 3106 | KVM_VCPUEVENT_VALID_SMM); 3107 memset(&events->reserved, 0, sizeof(events->reserved)); 3108 } 3109 3110 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); 3111 3112 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3113 struct kvm_vcpu_events *events) 3114 { 3115 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3116 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3117 | KVM_VCPUEVENT_VALID_SHADOW 3118 | KVM_VCPUEVENT_VALID_SMM)) 3119 return -EINVAL; 3120 3121 if (events->exception.injected && 3122 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR || 3123 is_guest_mode(vcpu))) 3124 return -EINVAL; 3125 3126 /* INITs are latched while in SMM */ 3127 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3128 (events->smi.smm || events->smi.pending) && 3129 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3130 return -EINVAL; 3131 3132 process_nmi(vcpu); 3133 vcpu->arch.exception.pending = events->exception.injected; 3134 vcpu->arch.exception.nr = events->exception.nr; 3135 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3136 vcpu->arch.exception.error_code = events->exception.error_code; 3137 3138 vcpu->arch.interrupt.pending = events->interrupt.injected; 3139 vcpu->arch.interrupt.nr = events->interrupt.nr; 3140 vcpu->arch.interrupt.soft = events->interrupt.soft; 3141 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3142 kvm_x86_ops->set_interrupt_shadow(vcpu, 3143 events->interrupt.shadow); 3144 3145 vcpu->arch.nmi_injected = events->nmi.injected; 3146 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3147 vcpu->arch.nmi_pending = events->nmi.pending; 3148 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3149 3150 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3151 lapic_in_kernel(vcpu)) 3152 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3153 3154 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3155 u32 hflags = vcpu->arch.hflags; 3156 if (events->smi.smm) 3157 hflags |= HF_SMM_MASK; 3158 else 3159 hflags &= ~HF_SMM_MASK; 3160 kvm_set_hflags(vcpu, hflags); 3161 3162 vcpu->arch.smi_pending = events->smi.pending; 3163 3164 if (events->smi.smm) { 3165 if (events->smi.smm_inside_nmi) 3166 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3167 else 3168 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3169 if (lapic_in_kernel(vcpu)) { 3170 if (events->smi.latched_init) 3171 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3172 else 3173 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3174 } 3175 } 3176 } 3177 3178 kvm_make_request(KVM_REQ_EVENT, vcpu); 3179 3180 return 0; 3181 } 3182 3183 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3184 struct kvm_debugregs *dbgregs) 3185 { 3186 unsigned long val; 3187 3188 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3189 kvm_get_dr(vcpu, 6, &val); 3190 dbgregs->dr6 = val; 3191 dbgregs->dr7 = vcpu->arch.dr7; 3192 dbgregs->flags = 0; 3193 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3194 } 3195 3196 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3197 struct kvm_debugregs *dbgregs) 3198 { 3199 if (dbgregs->flags) 3200 return -EINVAL; 3201 3202 if (dbgregs->dr6 & ~0xffffffffull) 3203 return -EINVAL; 3204 if (dbgregs->dr7 & ~0xffffffffull) 3205 return -EINVAL; 3206 3207 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3208 kvm_update_dr0123(vcpu); 3209 vcpu->arch.dr6 = dbgregs->dr6; 3210 kvm_update_dr6(vcpu); 3211 vcpu->arch.dr7 = dbgregs->dr7; 3212 kvm_update_dr7(vcpu); 3213 3214 return 0; 3215 } 3216 3217 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3218 3219 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3220 { 3221 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3222 u64 xstate_bv = xsave->header.xfeatures; 3223 u64 valid; 3224 3225 /* 3226 * Copy legacy XSAVE area, to avoid complications with CPUID 3227 * leaves 0 and 1 in the loop below. 3228 */ 3229 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3230 3231 /* Set XSTATE_BV */ 3232 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 3233 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3234 3235 /* 3236 * Copy each region from the possibly compacted offset to the 3237 * non-compacted offset. 3238 */ 3239 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3240 while (valid) { 3241 u64 feature = valid & -valid; 3242 int index = fls64(feature) - 1; 3243 void *src = get_xsave_addr(xsave, feature); 3244 3245 if (src) { 3246 u32 size, offset, ecx, edx; 3247 cpuid_count(XSTATE_CPUID, index, 3248 &size, &offset, &ecx, &edx); 3249 if (feature == XFEATURE_MASK_PKRU) 3250 memcpy(dest + offset, &vcpu->arch.pkru, 3251 sizeof(vcpu->arch.pkru)); 3252 else 3253 memcpy(dest + offset, src, size); 3254 3255 } 3256 3257 valid -= feature; 3258 } 3259 } 3260 3261 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3262 { 3263 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3264 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3265 u64 valid; 3266 3267 /* 3268 * Copy legacy XSAVE area, to avoid complications with CPUID 3269 * leaves 0 and 1 in the loop below. 3270 */ 3271 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3272 3273 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3274 xsave->header.xfeatures = xstate_bv; 3275 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3276 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3277 3278 /* 3279 * Copy each region from the non-compacted offset to the 3280 * possibly compacted offset. 3281 */ 3282 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3283 while (valid) { 3284 u64 feature = valid & -valid; 3285 int index = fls64(feature) - 1; 3286 void *dest = get_xsave_addr(xsave, feature); 3287 3288 if (dest) { 3289 u32 size, offset, ecx, edx; 3290 cpuid_count(XSTATE_CPUID, index, 3291 &size, &offset, &ecx, &edx); 3292 if (feature == XFEATURE_MASK_PKRU) 3293 memcpy(&vcpu->arch.pkru, src + offset, 3294 sizeof(vcpu->arch.pkru)); 3295 else 3296 memcpy(dest, src + offset, size); 3297 } 3298 3299 valid -= feature; 3300 } 3301 } 3302 3303 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3304 struct kvm_xsave *guest_xsave) 3305 { 3306 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3307 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3308 fill_xsave((u8 *) guest_xsave->region, vcpu); 3309 } else { 3310 memcpy(guest_xsave->region, 3311 &vcpu->arch.guest_fpu.state.fxsave, 3312 sizeof(struct fxregs_state)); 3313 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3314 XFEATURE_MASK_FPSSE; 3315 } 3316 } 3317 3318 #define XSAVE_MXCSR_OFFSET 24 3319 3320 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3321 struct kvm_xsave *guest_xsave) 3322 { 3323 u64 xstate_bv = 3324 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3325 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 3326 3327 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3328 /* 3329 * Here we allow setting states that are not present in 3330 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3331 * with old userspace. 3332 */ 3333 if (xstate_bv & ~kvm_supported_xcr0() || 3334 mxcsr & ~mxcsr_feature_mask) 3335 return -EINVAL; 3336 load_xsave(vcpu, (u8 *)guest_xsave->region); 3337 } else { 3338 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 3339 mxcsr & ~mxcsr_feature_mask) 3340 return -EINVAL; 3341 memcpy(&vcpu->arch.guest_fpu.state.fxsave, 3342 guest_xsave->region, sizeof(struct fxregs_state)); 3343 } 3344 return 0; 3345 } 3346 3347 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3348 struct kvm_xcrs *guest_xcrs) 3349 { 3350 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3351 guest_xcrs->nr_xcrs = 0; 3352 return; 3353 } 3354 3355 guest_xcrs->nr_xcrs = 1; 3356 guest_xcrs->flags = 0; 3357 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3358 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3359 } 3360 3361 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3362 struct kvm_xcrs *guest_xcrs) 3363 { 3364 int i, r = 0; 3365 3366 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 3367 return -EINVAL; 3368 3369 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3370 return -EINVAL; 3371 3372 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3373 /* Only support XCR0 currently */ 3374 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3375 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3376 guest_xcrs->xcrs[i].value); 3377 break; 3378 } 3379 if (r) 3380 r = -EINVAL; 3381 return r; 3382 } 3383 3384 /* 3385 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3386 * stopped by the hypervisor. This function will be called from the host only. 3387 * EINVAL is returned when the host attempts to set the flag for a guest that 3388 * does not support pv clocks. 3389 */ 3390 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3391 { 3392 if (!vcpu->arch.pv_time_enabled) 3393 return -EINVAL; 3394 vcpu->arch.pvclock_set_guest_stopped_request = true; 3395 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3396 return 0; 3397 } 3398 3399 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3400 struct kvm_enable_cap *cap) 3401 { 3402 if (cap->flags) 3403 return -EINVAL; 3404 3405 switch (cap->cap) { 3406 case KVM_CAP_HYPERV_SYNIC2: 3407 if (cap->args[0]) 3408 return -EINVAL; 3409 case KVM_CAP_HYPERV_SYNIC: 3410 if (!irqchip_in_kernel(vcpu->kvm)) 3411 return -EINVAL; 3412 return kvm_hv_activate_synic(vcpu, cap->cap == 3413 KVM_CAP_HYPERV_SYNIC2); 3414 default: 3415 return -EINVAL; 3416 } 3417 } 3418 3419 long kvm_arch_vcpu_ioctl(struct file *filp, 3420 unsigned int ioctl, unsigned long arg) 3421 { 3422 struct kvm_vcpu *vcpu = filp->private_data; 3423 void __user *argp = (void __user *)arg; 3424 int r; 3425 union { 3426 struct kvm_lapic_state *lapic; 3427 struct kvm_xsave *xsave; 3428 struct kvm_xcrs *xcrs; 3429 void *buffer; 3430 } u; 3431 3432 u.buffer = NULL; 3433 switch (ioctl) { 3434 case KVM_GET_LAPIC: { 3435 r = -EINVAL; 3436 if (!lapic_in_kernel(vcpu)) 3437 goto out; 3438 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3439 3440 r = -ENOMEM; 3441 if (!u.lapic) 3442 goto out; 3443 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3444 if (r) 3445 goto out; 3446 r = -EFAULT; 3447 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3448 goto out; 3449 r = 0; 3450 break; 3451 } 3452 case KVM_SET_LAPIC: { 3453 r = -EINVAL; 3454 if (!lapic_in_kernel(vcpu)) 3455 goto out; 3456 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3457 if (IS_ERR(u.lapic)) 3458 return PTR_ERR(u.lapic); 3459 3460 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3461 break; 3462 } 3463 case KVM_INTERRUPT: { 3464 struct kvm_interrupt irq; 3465 3466 r = -EFAULT; 3467 if (copy_from_user(&irq, argp, sizeof irq)) 3468 goto out; 3469 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3470 break; 3471 } 3472 case KVM_NMI: { 3473 r = kvm_vcpu_ioctl_nmi(vcpu); 3474 break; 3475 } 3476 case KVM_SMI: { 3477 r = kvm_vcpu_ioctl_smi(vcpu); 3478 break; 3479 } 3480 case KVM_SET_CPUID: { 3481 struct kvm_cpuid __user *cpuid_arg = argp; 3482 struct kvm_cpuid cpuid; 3483 3484 r = -EFAULT; 3485 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3486 goto out; 3487 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3488 break; 3489 } 3490 case KVM_SET_CPUID2: { 3491 struct kvm_cpuid2 __user *cpuid_arg = argp; 3492 struct kvm_cpuid2 cpuid; 3493 3494 r = -EFAULT; 3495 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3496 goto out; 3497 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3498 cpuid_arg->entries); 3499 break; 3500 } 3501 case KVM_GET_CPUID2: { 3502 struct kvm_cpuid2 __user *cpuid_arg = argp; 3503 struct kvm_cpuid2 cpuid; 3504 3505 r = -EFAULT; 3506 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3507 goto out; 3508 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3509 cpuid_arg->entries); 3510 if (r) 3511 goto out; 3512 r = -EFAULT; 3513 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3514 goto out; 3515 r = 0; 3516 break; 3517 } 3518 case KVM_GET_MSRS: 3519 r = msr_io(vcpu, argp, do_get_msr, 1); 3520 break; 3521 case KVM_SET_MSRS: 3522 r = msr_io(vcpu, argp, do_set_msr, 0); 3523 break; 3524 case KVM_TPR_ACCESS_REPORTING: { 3525 struct kvm_tpr_access_ctl tac; 3526 3527 r = -EFAULT; 3528 if (copy_from_user(&tac, argp, sizeof tac)) 3529 goto out; 3530 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3531 if (r) 3532 goto out; 3533 r = -EFAULT; 3534 if (copy_to_user(argp, &tac, sizeof tac)) 3535 goto out; 3536 r = 0; 3537 break; 3538 }; 3539 case KVM_SET_VAPIC_ADDR: { 3540 struct kvm_vapic_addr va; 3541 int idx; 3542 3543 r = -EINVAL; 3544 if (!lapic_in_kernel(vcpu)) 3545 goto out; 3546 r = -EFAULT; 3547 if (copy_from_user(&va, argp, sizeof va)) 3548 goto out; 3549 idx = srcu_read_lock(&vcpu->kvm->srcu); 3550 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3551 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3552 break; 3553 } 3554 case KVM_X86_SETUP_MCE: { 3555 u64 mcg_cap; 3556 3557 r = -EFAULT; 3558 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3559 goto out; 3560 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3561 break; 3562 } 3563 case KVM_X86_SET_MCE: { 3564 struct kvm_x86_mce mce; 3565 3566 r = -EFAULT; 3567 if (copy_from_user(&mce, argp, sizeof mce)) 3568 goto out; 3569 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3570 break; 3571 } 3572 case KVM_GET_VCPU_EVENTS: { 3573 struct kvm_vcpu_events events; 3574 3575 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3576 3577 r = -EFAULT; 3578 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3579 break; 3580 r = 0; 3581 break; 3582 } 3583 case KVM_SET_VCPU_EVENTS: { 3584 struct kvm_vcpu_events events; 3585 3586 r = -EFAULT; 3587 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3588 break; 3589 3590 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3591 break; 3592 } 3593 case KVM_GET_DEBUGREGS: { 3594 struct kvm_debugregs dbgregs; 3595 3596 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3597 3598 r = -EFAULT; 3599 if (copy_to_user(argp, &dbgregs, 3600 sizeof(struct kvm_debugregs))) 3601 break; 3602 r = 0; 3603 break; 3604 } 3605 case KVM_SET_DEBUGREGS: { 3606 struct kvm_debugregs dbgregs; 3607 3608 r = -EFAULT; 3609 if (copy_from_user(&dbgregs, argp, 3610 sizeof(struct kvm_debugregs))) 3611 break; 3612 3613 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3614 break; 3615 } 3616 case KVM_GET_XSAVE: { 3617 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3618 r = -ENOMEM; 3619 if (!u.xsave) 3620 break; 3621 3622 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3623 3624 r = -EFAULT; 3625 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3626 break; 3627 r = 0; 3628 break; 3629 } 3630 case KVM_SET_XSAVE: { 3631 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3632 if (IS_ERR(u.xsave)) 3633 return PTR_ERR(u.xsave); 3634 3635 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3636 break; 3637 } 3638 case KVM_GET_XCRS: { 3639 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3640 r = -ENOMEM; 3641 if (!u.xcrs) 3642 break; 3643 3644 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3645 3646 r = -EFAULT; 3647 if (copy_to_user(argp, u.xcrs, 3648 sizeof(struct kvm_xcrs))) 3649 break; 3650 r = 0; 3651 break; 3652 } 3653 case KVM_SET_XCRS: { 3654 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3655 if (IS_ERR(u.xcrs)) 3656 return PTR_ERR(u.xcrs); 3657 3658 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3659 break; 3660 } 3661 case KVM_SET_TSC_KHZ: { 3662 u32 user_tsc_khz; 3663 3664 r = -EINVAL; 3665 user_tsc_khz = (u32)arg; 3666 3667 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3668 goto out; 3669 3670 if (user_tsc_khz == 0) 3671 user_tsc_khz = tsc_khz; 3672 3673 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 3674 r = 0; 3675 3676 goto out; 3677 } 3678 case KVM_GET_TSC_KHZ: { 3679 r = vcpu->arch.virtual_tsc_khz; 3680 goto out; 3681 } 3682 case KVM_KVMCLOCK_CTRL: { 3683 r = kvm_set_guest_paused(vcpu); 3684 goto out; 3685 } 3686 case KVM_ENABLE_CAP: { 3687 struct kvm_enable_cap cap; 3688 3689 r = -EFAULT; 3690 if (copy_from_user(&cap, argp, sizeof(cap))) 3691 goto out; 3692 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3693 break; 3694 } 3695 default: 3696 r = -EINVAL; 3697 } 3698 out: 3699 kfree(u.buffer); 3700 return r; 3701 } 3702 3703 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3704 { 3705 return VM_FAULT_SIGBUS; 3706 } 3707 3708 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3709 { 3710 int ret; 3711 3712 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3713 return -EINVAL; 3714 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3715 return ret; 3716 } 3717 3718 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3719 u64 ident_addr) 3720 { 3721 kvm->arch.ept_identity_map_addr = ident_addr; 3722 return 0; 3723 } 3724 3725 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3726 u32 kvm_nr_mmu_pages) 3727 { 3728 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3729 return -EINVAL; 3730 3731 mutex_lock(&kvm->slots_lock); 3732 3733 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3734 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3735 3736 mutex_unlock(&kvm->slots_lock); 3737 return 0; 3738 } 3739 3740 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3741 { 3742 return kvm->arch.n_max_mmu_pages; 3743 } 3744 3745 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3746 { 3747 struct kvm_pic *pic = kvm->arch.vpic; 3748 int r; 3749 3750 r = 0; 3751 switch (chip->chip_id) { 3752 case KVM_IRQCHIP_PIC_MASTER: 3753 memcpy(&chip->chip.pic, &pic->pics[0], 3754 sizeof(struct kvm_pic_state)); 3755 break; 3756 case KVM_IRQCHIP_PIC_SLAVE: 3757 memcpy(&chip->chip.pic, &pic->pics[1], 3758 sizeof(struct kvm_pic_state)); 3759 break; 3760 case KVM_IRQCHIP_IOAPIC: 3761 kvm_get_ioapic(kvm, &chip->chip.ioapic); 3762 break; 3763 default: 3764 r = -EINVAL; 3765 break; 3766 } 3767 return r; 3768 } 3769 3770 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3771 { 3772 struct kvm_pic *pic = kvm->arch.vpic; 3773 int r; 3774 3775 r = 0; 3776 switch (chip->chip_id) { 3777 case KVM_IRQCHIP_PIC_MASTER: 3778 spin_lock(&pic->lock); 3779 memcpy(&pic->pics[0], &chip->chip.pic, 3780 sizeof(struct kvm_pic_state)); 3781 spin_unlock(&pic->lock); 3782 break; 3783 case KVM_IRQCHIP_PIC_SLAVE: 3784 spin_lock(&pic->lock); 3785 memcpy(&pic->pics[1], &chip->chip.pic, 3786 sizeof(struct kvm_pic_state)); 3787 spin_unlock(&pic->lock); 3788 break; 3789 case KVM_IRQCHIP_IOAPIC: 3790 kvm_set_ioapic(kvm, &chip->chip.ioapic); 3791 break; 3792 default: 3793 r = -EINVAL; 3794 break; 3795 } 3796 kvm_pic_update_irq(pic); 3797 return r; 3798 } 3799 3800 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3801 { 3802 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 3803 3804 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 3805 3806 mutex_lock(&kps->lock); 3807 memcpy(ps, &kps->channels, sizeof(*ps)); 3808 mutex_unlock(&kps->lock); 3809 return 0; 3810 } 3811 3812 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3813 { 3814 int i; 3815 struct kvm_pit *pit = kvm->arch.vpit; 3816 3817 mutex_lock(&pit->pit_state.lock); 3818 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 3819 for (i = 0; i < 3; i++) 3820 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 3821 mutex_unlock(&pit->pit_state.lock); 3822 return 0; 3823 } 3824 3825 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3826 { 3827 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3828 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3829 sizeof(ps->channels)); 3830 ps->flags = kvm->arch.vpit->pit_state.flags; 3831 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3832 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3833 return 0; 3834 } 3835 3836 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3837 { 3838 int start = 0; 3839 int i; 3840 u32 prev_legacy, cur_legacy; 3841 struct kvm_pit *pit = kvm->arch.vpit; 3842 3843 mutex_lock(&pit->pit_state.lock); 3844 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3845 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3846 if (!prev_legacy && cur_legacy) 3847 start = 1; 3848 memcpy(&pit->pit_state.channels, &ps->channels, 3849 sizeof(pit->pit_state.channels)); 3850 pit->pit_state.flags = ps->flags; 3851 for (i = 0; i < 3; i++) 3852 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 3853 start && i == 0); 3854 mutex_unlock(&pit->pit_state.lock); 3855 return 0; 3856 } 3857 3858 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3859 struct kvm_reinject_control *control) 3860 { 3861 struct kvm_pit *pit = kvm->arch.vpit; 3862 3863 if (!pit) 3864 return -ENXIO; 3865 3866 /* pit->pit_state.lock was overloaded to prevent userspace from getting 3867 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 3868 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 3869 */ 3870 mutex_lock(&pit->pit_state.lock); 3871 kvm_pit_set_reinject(pit, control->pit_reinject); 3872 mutex_unlock(&pit->pit_state.lock); 3873 3874 return 0; 3875 } 3876 3877 /** 3878 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3879 * @kvm: kvm instance 3880 * @log: slot id and address to which we copy the log 3881 * 3882 * Steps 1-4 below provide general overview of dirty page logging. See 3883 * kvm_get_dirty_log_protect() function description for additional details. 3884 * 3885 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 3886 * always flush the TLB (step 4) even if previous step failed and the dirty 3887 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 3888 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 3889 * writes will be marked dirty for next log read. 3890 * 3891 * 1. Take a snapshot of the bit and clear it if needed. 3892 * 2. Write protect the corresponding page. 3893 * 3. Copy the snapshot to the userspace. 3894 * 4. Flush TLB's if needed. 3895 */ 3896 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3897 { 3898 bool is_dirty = false; 3899 int r; 3900 3901 mutex_lock(&kvm->slots_lock); 3902 3903 /* 3904 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 3905 */ 3906 if (kvm_x86_ops->flush_log_dirty) 3907 kvm_x86_ops->flush_log_dirty(kvm); 3908 3909 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 3910 3911 /* 3912 * All the TLBs can be flushed out of mmu lock, see the comments in 3913 * kvm_mmu_slot_remove_write_access(). 3914 */ 3915 lockdep_assert_held(&kvm->slots_lock); 3916 if (is_dirty) 3917 kvm_flush_remote_tlbs(kvm); 3918 3919 mutex_unlock(&kvm->slots_lock); 3920 return r; 3921 } 3922 3923 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3924 bool line_status) 3925 { 3926 if (!irqchip_in_kernel(kvm)) 3927 return -ENXIO; 3928 3929 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3930 irq_event->irq, irq_event->level, 3931 line_status); 3932 return 0; 3933 } 3934 3935 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3936 struct kvm_enable_cap *cap) 3937 { 3938 int r; 3939 3940 if (cap->flags) 3941 return -EINVAL; 3942 3943 switch (cap->cap) { 3944 case KVM_CAP_DISABLE_QUIRKS: 3945 kvm->arch.disabled_quirks = cap->args[0]; 3946 r = 0; 3947 break; 3948 case KVM_CAP_SPLIT_IRQCHIP: { 3949 mutex_lock(&kvm->lock); 3950 r = -EINVAL; 3951 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 3952 goto split_irqchip_unlock; 3953 r = -EEXIST; 3954 if (irqchip_in_kernel(kvm)) 3955 goto split_irqchip_unlock; 3956 if (kvm->created_vcpus) 3957 goto split_irqchip_unlock; 3958 r = kvm_setup_empty_irq_routing(kvm); 3959 if (r) 3960 goto split_irqchip_unlock; 3961 /* Pairs with irqchip_in_kernel. */ 3962 smp_wmb(); 3963 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 3964 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 3965 r = 0; 3966 split_irqchip_unlock: 3967 mutex_unlock(&kvm->lock); 3968 break; 3969 } 3970 case KVM_CAP_X2APIC_API: 3971 r = -EINVAL; 3972 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 3973 break; 3974 3975 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 3976 kvm->arch.x2apic_format = true; 3977 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 3978 kvm->arch.x2apic_broadcast_quirk_disabled = true; 3979 3980 r = 0; 3981 break; 3982 default: 3983 r = -EINVAL; 3984 break; 3985 } 3986 return r; 3987 } 3988 3989 long kvm_arch_vm_ioctl(struct file *filp, 3990 unsigned int ioctl, unsigned long arg) 3991 { 3992 struct kvm *kvm = filp->private_data; 3993 void __user *argp = (void __user *)arg; 3994 int r = -ENOTTY; 3995 /* 3996 * This union makes it completely explicit to gcc-3.x 3997 * that these two variables' stack usage should be 3998 * combined, not added together. 3999 */ 4000 union { 4001 struct kvm_pit_state ps; 4002 struct kvm_pit_state2 ps2; 4003 struct kvm_pit_config pit_config; 4004 } u; 4005 4006 switch (ioctl) { 4007 case KVM_SET_TSS_ADDR: 4008 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 4009 break; 4010 case KVM_SET_IDENTITY_MAP_ADDR: { 4011 u64 ident_addr; 4012 4013 r = -EFAULT; 4014 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 4015 goto out; 4016 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 4017 break; 4018 } 4019 case KVM_SET_NR_MMU_PAGES: 4020 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4021 break; 4022 case KVM_GET_NR_MMU_PAGES: 4023 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4024 break; 4025 case KVM_CREATE_IRQCHIP: { 4026 mutex_lock(&kvm->lock); 4027 4028 r = -EEXIST; 4029 if (irqchip_in_kernel(kvm)) 4030 goto create_irqchip_unlock; 4031 4032 r = -EINVAL; 4033 if (kvm->created_vcpus) 4034 goto create_irqchip_unlock; 4035 4036 r = kvm_pic_init(kvm); 4037 if (r) 4038 goto create_irqchip_unlock; 4039 4040 r = kvm_ioapic_init(kvm); 4041 if (r) { 4042 kvm_pic_destroy(kvm); 4043 goto create_irqchip_unlock; 4044 } 4045 4046 r = kvm_setup_default_irq_routing(kvm); 4047 if (r) { 4048 kvm_ioapic_destroy(kvm); 4049 kvm_pic_destroy(kvm); 4050 goto create_irqchip_unlock; 4051 } 4052 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4053 smp_wmb(); 4054 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4055 create_irqchip_unlock: 4056 mutex_unlock(&kvm->lock); 4057 break; 4058 } 4059 case KVM_CREATE_PIT: 4060 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4061 goto create_pit; 4062 case KVM_CREATE_PIT2: 4063 r = -EFAULT; 4064 if (copy_from_user(&u.pit_config, argp, 4065 sizeof(struct kvm_pit_config))) 4066 goto out; 4067 create_pit: 4068 mutex_lock(&kvm->lock); 4069 r = -EEXIST; 4070 if (kvm->arch.vpit) 4071 goto create_pit_unlock; 4072 r = -ENOMEM; 4073 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4074 if (kvm->arch.vpit) 4075 r = 0; 4076 create_pit_unlock: 4077 mutex_unlock(&kvm->lock); 4078 break; 4079 case KVM_GET_IRQCHIP: { 4080 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4081 struct kvm_irqchip *chip; 4082 4083 chip = memdup_user(argp, sizeof(*chip)); 4084 if (IS_ERR(chip)) { 4085 r = PTR_ERR(chip); 4086 goto out; 4087 } 4088 4089 r = -ENXIO; 4090 if (!irqchip_kernel(kvm)) 4091 goto get_irqchip_out; 4092 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 4093 if (r) 4094 goto get_irqchip_out; 4095 r = -EFAULT; 4096 if (copy_to_user(argp, chip, sizeof *chip)) 4097 goto get_irqchip_out; 4098 r = 0; 4099 get_irqchip_out: 4100 kfree(chip); 4101 break; 4102 } 4103 case KVM_SET_IRQCHIP: { 4104 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4105 struct kvm_irqchip *chip; 4106 4107 chip = memdup_user(argp, sizeof(*chip)); 4108 if (IS_ERR(chip)) { 4109 r = PTR_ERR(chip); 4110 goto out; 4111 } 4112 4113 r = -ENXIO; 4114 if (!irqchip_kernel(kvm)) 4115 goto set_irqchip_out; 4116 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 4117 if (r) 4118 goto set_irqchip_out; 4119 r = 0; 4120 set_irqchip_out: 4121 kfree(chip); 4122 break; 4123 } 4124 case KVM_GET_PIT: { 4125 r = -EFAULT; 4126 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4127 goto out; 4128 r = -ENXIO; 4129 if (!kvm->arch.vpit) 4130 goto out; 4131 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4132 if (r) 4133 goto out; 4134 r = -EFAULT; 4135 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4136 goto out; 4137 r = 0; 4138 break; 4139 } 4140 case KVM_SET_PIT: { 4141 r = -EFAULT; 4142 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 4143 goto out; 4144 r = -ENXIO; 4145 if (!kvm->arch.vpit) 4146 goto out; 4147 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4148 break; 4149 } 4150 case KVM_GET_PIT2: { 4151 r = -ENXIO; 4152 if (!kvm->arch.vpit) 4153 goto out; 4154 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4155 if (r) 4156 goto out; 4157 r = -EFAULT; 4158 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4159 goto out; 4160 r = 0; 4161 break; 4162 } 4163 case KVM_SET_PIT2: { 4164 r = -EFAULT; 4165 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4166 goto out; 4167 r = -ENXIO; 4168 if (!kvm->arch.vpit) 4169 goto out; 4170 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4171 break; 4172 } 4173 case KVM_REINJECT_CONTROL: { 4174 struct kvm_reinject_control control; 4175 r = -EFAULT; 4176 if (copy_from_user(&control, argp, sizeof(control))) 4177 goto out; 4178 r = kvm_vm_ioctl_reinject(kvm, &control); 4179 break; 4180 } 4181 case KVM_SET_BOOT_CPU_ID: 4182 r = 0; 4183 mutex_lock(&kvm->lock); 4184 if (kvm->created_vcpus) 4185 r = -EBUSY; 4186 else 4187 kvm->arch.bsp_vcpu_id = arg; 4188 mutex_unlock(&kvm->lock); 4189 break; 4190 case KVM_XEN_HVM_CONFIG: { 4191 r = -EFAULT; 4192 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 4193 sizeof(struct kvm_xen_hvm_config))) 4194 goto out; 4195 r = -EINVAL; 4196 if (kvm->arch.xen_hvm_config.flags) 4197 goto out; 4198 r = 0; 4199 break; 4200 } 4201 case KVM_SET_CLOCK: { 4202 struct kvm_clock_data user_ns; 4203 u64 now_ns; 4204 4205 r = -EFAULT; 4206 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4207 goto out; 4208 4209 r = -EINVAL; 4210 if (user_ns.flags) 4211 goto out; 4212 4213 r = 0; 4214 /* 4215 * TODO: userspace has to take care of races with VCPU_RUN, so 4216 * kvm_gen_update_masterclock() can be cut down to locked 4217 * pvclock_update_vm_gtod_copy(). 4218 */ 4219 kvm_gen_update_masterclock(kvm); 4220 now_ns = get_kvmclock_ns(kvm); 4221 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 4222 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 4223 break; 4224 } 4225 case KVM_GET_CLOCK: { 4226 struct kvm_clock_data user_ns; 4227 u64 now_ns; 4228 4229 now_ns = get_kvmclock_ns(kvm); 4230 user_ns.clock = now_ns; 4231 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 4232 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4233 4234 r = -EFAULT; 4235 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4236 goto out; 4237 r = 0; 4238 break; 4239 } 4240 case KVM_ENABLE_CAP: { 4241 struct kvm_enable_cap cap; 4242 4243 r = -EFAULT; 4244 if (copy_from_user(&cap, argp, sizeof(cap))) 4245 goto out; 4246 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 4247 break; 4248 } 4249 default: 4250 r = -ENOTTY; 4251 } 4252 out: 4253 return r; 4254 } 4255 4256 static void kvm_init_msr_list(void) 4257 { 4258 u32 dummy[2]; 4259 unsigned i, j; 4260 4261 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4262 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4263 continue; 4264 4265 /* 4266 * Even MSRs that are valid in the host may not be exposed 4267 * to the guests in some cases. 4268 */ 4269 switch (msrs_to_save[i]) { 4270 case MSR_IA32_BNDCFGS: 4271 if (!kvm_x86_ops->mpx_supported()) 4272 continue; 4273 break; 4274 case MSR_TSC_AUX: 4275 if (!kvm_x86_ops->rdtscp_supported()) 4276 continue; 4277 break; 4278 default: 4279 break; 4280 } 4281 4282 if (j < i) 4283 msrs_to_save[j] = msrs_to_save[i]; 4284 j++; 4285 } 4286 num_msrs_to_save = j; 4287 4288 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 4289 switch (emulated_msrs[i]) { 4290 case MSR_IA32_SMBASE: 4291 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) 4292 continue; 4293 break; 4294 default: 4295 break; 4296 } 4297 4298 if (j < i) 4299 emulated_msrs[j] = emulated_msrs[i]; 4300 j++; 4301 } 4302 num_emulated_msrs = j; 4303 } 4304 4305 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 4306 const void *v) 4307 { 4308 int handled = 0; 4309 int n; 4310 4311 do { 4312 n = min(len, 8); 4313 if (!(lapic_in_kernel(vcpu) && 4314 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 4315 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 4316 break; 4317 handled += n; 4318 addr += n; 4319 len -= n; 4320 v += n; 4321 } while (len); 4322 4323 return handled; 4324 } 4325 4326 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 4327 { 4328 int handled = 0; 4329 int n; 4330 4331 do { 4332 n = min(len, 8); 4333 if (!(lapic_in_kernel(vcpu) && 4334 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 4335 addr, n, v)) 4336 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 4337 break; 4338 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 4339 handled += n; 4340 addr += n; 4341 len -= n; 4342 v += n; 4343 } while (len); 4344 4345 return handled; 4346 } 4347 4348 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4349 struct kvm_segment *var, int seg) 4350 { 4351 kvm_x86_ops->set_segment(vcpu, var, seg); 4352 } 4353 4354 void kvm_get_segment(struct kvm_vcpu *vcpu, 4355 struct kvm_segment *var, int seg) 4356 { 4357 kvm_x86_ops->get_segment(vcpu, var, seg); 4358 } 4359 4360 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 4361 struct x86_exception *exception) 4362 { 4363 gpa_t t_gpa; 4364 4365 BUG_ON(!mmu_is_nested(vcpu)); 4366 4367 /* NPT walks are always user-walks */ 4368 access |= PFERR_USER_MASK; 4369 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); 4370 4371 return t_gpa; 4372 } 4373 4374 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4375 struct x86_exception *exception) 4376 { 4377 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4378 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4379 } 4380 4381 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4382 struct x86_exception *exception) 4383 { 4384 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4385 access |= PFERR_FETCH_MASK; 4386 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4387 } 4388 4389 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4390 struct x86_exception *exception) 4391 { 4392 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4393 access |= PFERR_WRITE_MASK; 4394 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4395 } 4396 4397 /* uses this to access any guest's mapped memory without checking CPL */ 4398 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4399 struct x86_exception *exception) 4400 { 4401 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4402 } 4403 4404 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4405 struct kvm_vcpu *vcpu, u32 access, 4406 struct x86_exception *exception) 4407 { 4408 void *data = val; 4409 int r = X86EMUL_CONTINUE; 4410 4411 while (bytes) { 4412 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4413 exception); 4414 unsigned offset = addr & (PAGE_SIZE-1); 4415 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4416 int ret; 4417 4418 if (gpa == UNMAPPED_GVA) 4419 return X86EMUL_PROPAGATE_FAULT; 4420 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 4421 offset, toread); 4422 if (ret < 0) { 4423 r = X86EMUL_IO_NEEDED; 4424 goto out; 4425 } 4426 4427 bytes -= toread; 4428 data += toread; 4429 addr += toread; 4430 } 4431 out: 4432 return r; 4433 } 4434 4435 /* used for instruction fetching */ 4436 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4437 gva_t addr, void *val, unsigned int bytes, 4438 struct x86_exception *exception) 4439 { 4440 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4441 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4442 unsigned offset; 4443 int ret; 4444 4445 /* Inline kvm_read_guest_virt_helper for speed. */ 4446 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 4447 exception); 4448 if (unlikely(gpa == UNMAPPED_GVA)) 4449 return X86EMUL_PROPAGATE_FAULT; 4450 4451 offset = addr & (PAGE_SIZE-1); 4452 if (WARN_ON(offset + bytes > PAGE_SIZE)) 4453 bytes = (unsigned)PAGE_SIZE - offset; 4454 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 4455 offset, bytes); 4456 if (unlikely(ret < 0)) 4457 return X86EMUL_IO_NEEDED; 4458 4459 return X86EMUL_CONTINUE; 4460 } 4461 4462 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4463 gva_t addr, void *val, unsigned int bytes, 4464 struct x86_exception *exception) 4465 { 4466 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4467 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4468 4469 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4470 exception); 4471 } 4472 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4473 4474 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4475 gva_t addr, void *val, unsigned int bytes, 4476 struct x86_exception *exception) 4477 { 4478 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4479 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4480 } 4481 4482 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 4483 unsigned long addr, void *val, unsigned int bytes) 4484 { 4485 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4486 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 4487 4488 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 4489 } 4490 4491 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4492 gva_t addr, void *val, 4493 unsigned int bytes, 4494 struct x86_exception *exception) 4495 { 4496 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4497 void *data = val; 4498 int r = X86EMUL_CONTINUE; 4499 4500 while (bytes) { 4501 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4502 PFERR_WRITE_MASK, 4503 exception); 4504 unsigned offset = addr & (PAGE_SIZE-1); 4505 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4506 int ret; 4507 4508 if (gpa == UNMAPPED_GVA) 4509 return X86EMUL_PROPAGATE_FAULT; 4510 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 4511 if (ret < 0) { 4512 r = X86EMUL_IO_NEEDED; 4513 goto out; 4514 } 4515 4516 bytes -= towrite; 4517 data += towrite; 4518 addr += towrite; 4519 } 4520 out: 4521 return r; 4522 } 4523 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4524 4525 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4526 gpa_t gpa, bool write) 4527 { 4528 /* For APIC access vmexit */ 4529 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4530 return 1; 4531 4532 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 4533 trace_vcpu_match_mmio(gva, gpa, write, true); 4534 return 1; 4535 } 4536 4537 return 0; 4538 } 4539 4540 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4541 gpa_t *gpa, struct x86_exception *exception, 4542 bool write) 4543 { 4544 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4545 | (write ? PFERR_WRITE_MASK : 0); 4546 4547 /* 4548 * currently PKRU is only applied to ept enabled guest so 4549 * there is no pkey in EPT page table for L1 guest or EPT 4550 * shadow page table for L2 guest. 4551 */ 4552 if (vcpu_match_mmio_gva(vcpu, gva) 4553 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4554 vcpu->arch.access, 0, access)) { 4555 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4556 (gva & (PAGE_SIZE - 1)); 4557 trace_vcpu_match_mmio(gva, *gpa, write, false); 4558 return 1; 4559 } 4560 4561 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4562 4563 if (*gpa == UNMAPPED_GVA) 4564 return -1; 4565 4566 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 4567 } 4568 4569 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4570 const void *val, int bytes) 4571 { 4572 int ret; 4573 4574 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 4575 if (ret < 0) 4576 return 0; 4577 kvm_page_track_write(vcpu, gpa, val, bytes); 4578 return 1; 4579 } 4580 4581 struct read_write_emulator_ops { 4582 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4583 int bytes); 4584 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4585 void *val, int bytes); 4586 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4587 int bytes, void *val); 4588 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4589 void *val, int bytes); 4590 bool write; 4591 }; 4592 4593 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4594 { 4595 if (vcpu->mmio_read_completed) { 4596 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4597 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 4598 vcpu->mmio_read_completed = 0; 4599 return 1; 4600 } 4601 4602 return 0; 4603 } 4604 4605 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4606 void *val, int bytes) 4607 { 4608 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 4609 } 4610 4611 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4612 void *val, int bytes) 4613 { 4614 return emulator_write_phys(vcpu, gpa, val, bytes); 4615 } 4616 4617 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4618 { 4619 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 4620 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4621 } 4622 4623 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4624 void *val, int bytes) 4625 { 4626 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 4627 return X86EMUL_IO_NEEDED; 4628 } 4629 4630 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4631 void *val, int bytes) 4632 { 4633 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4634 4635 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4636 return X86EMUL_CONTINUE; 4637 } 4638 4639 static const struct read_write_emulator_ops read_emultor = { 4640 .read_write_prepare = read_prepare, 4641 .read_write_emulate = read_emulate, 4642 .read_write_mmio = vcpu_mmio_read, 4643 .read_write_exit_mmio = read_exit_mmio, 4644 }; 4645 4646 static const struct read_write_emulator_ops write_emultor = { 4647 .read_write_emulate = write_emulate, 4648 .read_write_mmio = write_mmio, 4649 .read_write_exit_mmio = write_exit_mmio, 4650 .write = true, 4651 }; 4652 4653 static int emulator_read_write_onepage(unsigned long addr, void *val, 4654 unsigned int bytes, 4655 struct x86_exception *exception, 4656 struct kvm_vcpu *vcpu, 4657 const struct read_write_emulator_ops *ops) 4658 { 4659 gpa_t gpa; 4660 int handled, ret; 4661 bool write = ops->write; 4662 struct kvm_mmio_fragment *frag; 4663 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4664 4665 /* 4666 * If the exit was due to a NPF we may already have a GPA. 4667 * If the GPA is present, use it to avoid the GVA to GPA table walk. 4668 * Note, this cannot be used on string operations since string 4669 * operation using rep will only have the initial GPA from the NPF 4670 * occurred. 4671 */ 4672 if (vcpu->arch.gpa_available && 4673 emulator_can_use_gpa(ctxt) && 4674 vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) && 4675 (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) { 4676 gpa = exception->address; 4677 goto mmio; 4678 } 4679 4680 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4681 4682 if (ret < 0) 4683 return X86EMUL_PROPAGATE_FAULT; 4684 4685 /* For APIC access vmexit */ 4686 if (ret) 4687 goto mmio; 4688 4689 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 4690 return X86EMUL_CONTINUE; 4691 4692 mmio: 4693 /* 4694 * Is this MMIO handled locally? 4695 */ 4696 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4697 if (handled == bytes) 4698 return X86EMUL_CONTINUE; 4699 4700 gpa += handled; 4701 bytes -= handled; 4702 val += handled; 4703 4704 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4705 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4706 frag->gpa = gpa; 4707 frag->data = val; 4708 frag->len = bytes; 4709 return X86EMUL_CONTINUE; 4710 } 4711 4712 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 4713 unsigned long addr, 4714 void *val, unsigned int bytes, 4715 struct x86_exception *exception, 4716 const struct read_write_emulator_ops *ops) 4717 { 4718 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4719 gpa_t gpa; 4720 int rc; 4721 4722 if (ops->read_write_prepare && 4723 ops->read_write_prepare(vcpu, val, bytes)) 4724 return X86EMUL_CONTINUE; 4725 4726 vcpu->mmio_nr_fragments = 0; 4727 4728 /* Crossing a page boundary? */ 4729 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4730 int now; 4731 4732 now = -addr & ~PAGE_MASK; 4733 rc = emulator_read_write_onepage(addr, val, now, exception, 4734 vcpu, ops); 4735 4736 if (rc != X86EMUL_CONTINUE) 4737 return rc; 4738 addr += now; 4739 if (ctxt->mode != X86EMUL_MODE_PROT64) 4740 addr = (u32)addr; 4741 val += now; 4742 bytes -= now; 4743 } 4744 4745 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4746 vcpu, ops); 4747 if (rc != X86EMUL_CONTINUE) 4748 return rc; 4749 4750 if (!vcpu->mmio_nr_fragments) 4751 return rc; 4752 4753 gpa = vcpu->mmio_fragments[0].gpa; 4754 4755 vcpu->mmio_needed = 1; 4756 vcpu->mmio_cur_fragment = 0; 4757 4758 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4759 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4760 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4761 vcpu->run->mmio.phys_addr = gpa; 4762 4763 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4764 } 4765 4766 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4767 unsigned long addr, 4768 void *val, 4769 unsigned int bytes, 4770 struct x86_exception *exception) 4771 { 4772 return emulator_read_write(ctxt, addr, val, bytes, 4773 exception, &read_emultor); 4774 } 4775 4776 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4777 unsigned long addr, 4778 const void *val, 4779 unsigned int bytes, 4780 struct x86_exception *exception) 4781 { 4782 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4783 exception, &write_emultor); 4784 } 4785 4786 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4787 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4788 4789 #ifdef CONFIG_X86_64 4790 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4791 #else 4792 # define CMPXCHG64(ptr, old, new) \ 4793 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4794 #endif 4795 4796 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4797 unsigned long addr, 4798 const void *old, 4799 const void *new, 4800 unsigned int bytes, 4801 struct x86_exception *exception) 4802 { 4803 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4804 gpa_t gpa; 4805 struct page *page; 4806 char *kaddr; 4807 bool exchanged; 4808 4809 /* guests cmpxchg8b have to be emulated atomically */ 4810 if (bytes > 8 || (bytes & (bytes - 1))) 4811 goto emul_write; 4812 4813 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4814 4815 if (gpa == UNMAPPED_GVA || 4816 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4817 goto emul_write; 4818 4819 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4820 goto emul_write; 4821 4822 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); 4823 if (is_error_page(page)) 4824 goto emul_write; 4825 4826 kaddr = kmap_atomic(page); 4827 kaddr += offset_in_page(gpa); 4828 switch (bytes) { 4829 case 1: 4830 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4831 break; 4832 case 2: 4833 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4834 break; 4835 case 4: 4836 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4837 break; 4838 case 8: 4839 exchanged = CMPXCHG64(kaddr, old, new); 4840 break; 4841 default: 4842 BUG(); 4843 } 4844 kunmap_atomic(kaddr); 4845 kvm_release_page_dirty(page); 4846 4847 if (!exchanged) 4848 return X86EMUL_CMPXCHG_FAILED; 4849 4850 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 4851 kvm_page_track_write(vcpu, gpa, new, bytes); 4852 4853 return X86EMUL_CONTINUE; 4854 4855 emul_write: 4856 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4857 4858 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4859 } 4860 4861 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4862 { 4863 int r = 0, i; 4864 4865 for (i = 0; i < vcpu->arch.pio.count; i++) { 4866 if (vcpu->arch.pio.in) 4867 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 4868 vcpu->arch.pio.size, pd); 4869 else 4870 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 4871 vcpu->arch.pio.port, vcpu->arch.pio.size, 4872 pd); 4873 if (r) 4874 break; 4875 pd += vcpu->arch.pio.size; 4876 } 4877 return r; 4878 } 4879 4880 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4881 unsigned short port, void *val, 4882 unsigned int count, bool in) 4883 { 4884 vcpu->arch.pio.port = port; 4885 vcpu->arch.pio.in = in; 4886 vcpu->arch.pio.count = count; 4887 vcpu->arch.pio.size = size; 4888 4889 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4890 vcpu->arch.pio.count = 0; 4891 return 1; 4892 } 4893 4894 vcpu->run->exit_reason = KVM_EXIT_IO; 4895 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4896 vcpu->run->io.size = size; 4897 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4898 vcpu->run->io.count = count; 4899 vcpu->run->io.port = port; 4900 4901 return 0; 4902 } 4903 4904 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4905 int size, unsigned short port, void *val, 4906 unsigned int count) 4907 { 4908 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4909 int ret; 4910 4911 if (vcpu->arch.pio.count) 4912 goto data_avail; 4913 4914 memset(vcpu->arch.pio_data, 0, size * count); 4915 4916 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4917 if (ret) { 4918 data_avail: 4919 memcpy(val, vcpu->arch.pio_data, size * count); 4920 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 4921 vcpu->arch.pio.count = 0; 4922 return 1; 4923 } 4924 4925 return 0; 4926 } 4927 4928 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4929 int size, unsigned short port, 4930 const void *val, unsigned int count) 4931 { 4932 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4933 4934 memcpy(vcpu->arch.pio_data, val, size * count); 4935 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 4936 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4937 } 4938 4939 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4940 { 4941 return kvm_x86_ops->get_segment_base(vcpu, seg); 4942 } 4943 4944 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4945 { 4946 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4947 } 4948 4949 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 4950 { 4951 if (!need_emulate_wbinvd(vcpu)) 4952 return X86EMUL_CONTINUE; 4953 4954 if (kvm_x86_ops->has_wbinvd_exit()) { 4955 int cpu = get_cpu(); 4956 4957 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4958 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4959 wbinvd_ipi, NULL, 1); 4960 put_cpu(); 4961 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4962 } else 4963 wbinvd(); 4964 return X86EMUL_CONTINUE; 4965 } 4966 4967 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4968 { 4969 kvm_emulate_wbinvd_noskip(vcpu); 4970 return kvm_skip_emulated_instruction(vcpu); 4971 } 4972 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4973 4974 4975 4976 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4977 { 4978 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 4979 } 4980 4981 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 4982 unsigned long *dest) 4983 { 4984 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4985 } 4986 4987 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 4988 unsigned long value) 4989 { 4990 4991 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4992 } 4993 4994 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4995 { 4996 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4997 } 4998 4999 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 5000 { 5001 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5002 unsigned long value; 5003 5004 switch (cr) { 5005 case 0: 5006 value = kvm_read_cr0(vcpu); 5007 break; 5008 case 2: 5009 value = vcpu->arch.cr2; 5010 break; 5011 case 3: 5012 value = kvm_read_cr3(vcpu); 5013 break; 5014 case 4: 5015 value = kvm_read_cr4(vcpu); 5016 break; 5017 case 8: 5018 value = kvm_get_cr8(vcpu); 5019 break; 5020 default: 5021 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5022 return 0; 5023 } 5024 5025 return value; 5026 } 5027 5028 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 5029 { 5030 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5031 int res = 0; 5032 5033 switch (cr) { 5034 case 0: 5035 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 5036 break; 5037 case 2: 5038 vcpu->arch.cr2 = val; 5039 break; 5040 case 3: 5041 res = kvm_set_cr3(vcpu, val); 5042 break; 5043 case 4: 5044 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 5045 break; 5046 case 8: 5047 res = kvm_set_cr8(vcpu, val); 5048 break; 5049 default: 5050 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5051 res = -1; 5052 } 5053 5054 return res; 5055 } 5056 5057 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 5058 { 5059 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 5060 } 5061 5062 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5063 { 5064 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 5065 } 5066 5067 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5068 { 5069 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 5070 } 5071 5072 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5073 { 5074 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 5075 } 5076 5077 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5078 { 5079 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 5080 } 5081 5082 static unsigned long emulator_get_cached_segment_base( 5083 struct x86_emulate_ctxt *ctxt, int seg) 5084 { 5085 return get_segment_base(emul_to_vcpu(ctxt), seg); 5086 } 5087 5088 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 5089 struct desc_struct *desc, u32 *base3, 5090 int seg) 5091 { 5092 struct kvm_segment var; 5093 5094 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 5095 *selector = var.selector; 5096 5097 if (var.unusable) { 5098 memset(desc, 0, sizeof(*desc)); 5099 if (base3) 5100 *base3 = 0; 5101 return false; 5102 } 5103 5104 if (var.g) 5105 var.limit >>= 12; 5106 set_desc_limit(desc, var.limit); 5107 set_desc_base(desc, (unsigned long)var.base); 5108 #ifdef CONFIG_X86_64 5109 if (base3) 5110 *base3 = var.base >> 32; 5111 #endif 5112 desc->type = var.type; 5113 desc->s = var.s; 5114 desc->dpl = var.dpl; 5115 desc->p = var.present; 5116 desc->avl = var.avl; 5117 desc->l = var.l; 5118 desc->d = var.db; 5119 desc->g = var.g; 5120 5121 return true; 5122 } 5123 5124 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 5125 struct desc_struct *desc, u32 base3, 5126 int seg) 5127 { 5128 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5129 struct kvm_segment var; 5130 5131 var.selector = selector; 5132 var.base = get_desc_base(desc); 5133 #ifdef CONFIG_X86_64 5134 var.base |= ((u64)base3) << 32; 5135 #endif 5136 var.limit = get_desc_limit(desc); 5137 if (desc->g) 5138 var.limit = (var.limit << 12) | 0xfff; 5139 var.type = desc->type; 5140 var.dpl = desc->dpl; 5141 var.db = desc->d; 5142 var.s = desc->s; 5143 var.l = desc->l; 5144 var.g = desc->g; 5145 var.avl = desc->avl; 5146 var.present = desc->p; 5147 var.unusable = !var.present; 5148 var.padding = 0; 5149 5150 kvm_set_segment(vcpu, &var, seg); 5151 return; 5152 } 5153 5154 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 5155 u32 msr_index, u64 *pdata) 5156 { 5157 struct msr_data msr; 5158 int r; 5159 5160 msr.index = msr_index; 5161 msr.host_initiated = false; 5162 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 5163 if (r) 5164 return r; 5165 5166 *pdata = msr.data; 5167 return 0; 5168 } 5169 5170 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 5171 u32 msr_index, u64 data) 5172 { 5173 struct msr_data msr; 5174 5175 msr.data = data; 5176 msr.index = msr_index; 5177 msr.host_initiated = false; 5178 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 5179 } 5180 5181 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 5182 { 5183 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5184 5185 return vcpu->arch.smbase; 5186 } 5187 5188 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 5189 { 5190 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5191 5192 vcpu->arch.smbase = smbase; 5193 } 5194 5195 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 5196 u32 pmc) 5197 { 5198 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 5199 } 5200 5201 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 5202 u32 pmc, u64 *pdata) 5203 { 5204 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 5205 } 5206 5207 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 5208 { 5209 emul_to_vcpu(ctxt)->arch.halt_request = 1; 5210 } 5211 5212 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 5213 { 5214 preempt_disable(); 5215 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 5216 } 5217 5218 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 5219 { 5220 preempt_enable(); 5221 } 5222 5223 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 5224 struct x86_instruction_info *info, 5225 enum x86_intercept_stage stage) 5226 { 5227 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 5228 } 5229 5230 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 5231 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 5232 { 5233 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 5234 } 5235 5236 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 5237 { 5238 return kvm_register_read(emul_to_vcpu(ctxt), reg); 5239 } 5240 5241 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 5242 { 5243 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 5244 } 5245 5246 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 5247 { 5248 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 5249 } 5250 5251 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 5252 { 5253 return emul_to_vcpu(ctxt)->arch.hflags; 5254 } 5255 5256 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 5257 { 5258 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags); 5259 } 5260 5261 static const struct x86_emulate_ops emulate_ops = { 5262 .read_gpr = emulator_read_gpr, 5263 .write_gpr = emulator_write_gpr, 5264 .read_std = kvm_read_guest_virt_system, 5265 .write_std = kvm_write_guest_virt_system, 5266 .read_phys = kvm_read_guest_phys_system, 5267 .fetch = kvm_fetch_guest_virt, 5268 .read_emulated = emulator_read_emulated, 5269 .write_emulated = emulator_write_emulated, 5270 .cmpxchg_emulated = emulator_cmpxchg_emulated, 5271 .invlpg = emulator_invlpg, 5272 .pio_in_emulated = emulator_pio_in_emulated, 5273 .pio_out_emulated = emulator_pio_out_emulated, 5274 .get_segment = emulator_get_segment, 5275 .set_segment = emulator_set_segment, 5276 .get_cached_segment_base = emulator_get_cached_segment_base, 5277 .get_gdt = emulator_get_gdt, 5278 .get_idt = emulator_get_idt, 5279 .set_gdt = emulator_set_gdt, 5280 .set_idt = emulator_set_idt, 5281 .get_cr = emulator_get_cr, 5282 .set_cr = emulator_set_cr, 5283 .cpl = emulator_get_cpl, 5284 .get_dr = emulator_get_dr, 5285 .set_dr = emulator_set_dr, 5286 .get_smbase = emulator_get_smbase, 5287 .set_smbase = emulator_set_smbase, 5288 .set_msr = emulator_set_msr, 5289 .get_msr = emulator_get_msr, 5290 .check_pmc = emulator_check_pmc, 5291 .read_pmc = emulator_read_pmc, 5292 .halt = emulator_halt, 5293 .wbinvd = emulator_wbinvd, 5294 .fix_hypercall = emulator_fix_hypercall, 5295 .get_fpu = emulator_get_fpu, 5296 .put_fpu = emulator_put_fpu, 5297 .intercept = emulator_intercept, 5298 .get_cpuid = emulator_get_cpuid, 5299 .set_nmi_mask = emulator_set_nmi_mask, 5300 .get_hflags = emulator_get_hflags, 5301 .set_hflags = emulator_set_hflags, 5302 }; 5303 5304 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 5305 { 5306 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 5307 /* 5308 * an sti; sti; sequence only disable interrupts for the first 5309 * instruction. So, if the last instruction, be it emulated or 5310 * not, left the system with the INT_STI flag enabled, it 5311 * means that the last instruction is an sti. We should not 5312 * leave the flag on in this case. The same goes for mov ss 5313 */ 5314 if (int_shadow & mask) 5315 mask = 0; 5316 if (unlikely(int_shadow || mask)) { 5317 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 5318 if (!mask) 5319 kvm_make_request(KVM_REQ_EVENT, vcpu); 5320 } 5321 } 5322 5323 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 5324 { 5325 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5326 if (ctxt->exception.vector == PF_VECTOR) 5327 return kvm_propagate_fault(vcpu, &ctxt->exception); 5328 5329 if (ctxt->exception.error_code_valid) 5330 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 5331 ctxt->exception.error_code); 5332 else 5333 kvm_queue_exception(vcpu, ctxt->exception.vector); 5334 return false; 5335 } 5336 5337 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 5338 { 5339 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5340 int cs_db, cs_l; 5341 5342 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5343 5344 ctxt->eflags = kvm_get_rflags(vcpu); 5345 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 5346 5347 ctxt->eip = kvm_rip_read(vcpu); 5348 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 5349 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 5350 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 5351 cs_db ? X86EMUL_MODE_PROT32 : 5352 X86EMUL_MODE_PROT16; 5353 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 5354 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 5355 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 5356 5357 init_decode_cache(ctxt); 5358 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5359 } 5360 5361 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 5362 { 5363 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5364 int ret; 5365 5366 init_emulate_ctxt(vcpu); 5367 5368 ctxt->op_bytes = 2; 5369 ctxt->ad_bytes = 2; 5370 ctxt->_eip = ctxt->eip + inc_eip; 5371 ret = emulate_int_real(ctxt, irq); 5372 5373 if (ret != X86EMUL_CONTINUE) 5374 return EMULATE_FAIL; 5375 5376 ctxt->eip = ctxt->_eip; 5377 kvm_rip_write(vcpu, ctxt->eip); 5378 kvm_set_rflags(vcpu, ctxt->eflags); 5379 5380 if (irq == NMI_VECTOR) 5381 vcpu->arch.nmi_pending = 0; 5382 else 5383 vcpu->arch.interrupt.pending = false; 5384 5385 return EMULATE_DONE; 5386 } 5387 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 5388 5389 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 5390 { 5391 int r = EMULATE_DONE; 5392 5393 ++vcpu->stat.insn_emulation_fail; 5394 trace_kvm_emulate_insn_failed(vcpu); 5395 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 5396 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5397 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5398 vcpu->run->internal.ndata = 0; 5399 r = EMULATE_FAIL; 5400 } 5401 kvm_queue_exception(vcpu, UD_VECTOR); 5402 5403 return r; 5404 } 5405 5406 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 5407 bool write_fault_to_shadow_pgtable, 5408 int emulation_type) 5409 { 5410 gpa_t gpa = cr2; 5411 kvm_pfn_t pfn; 5412 5413 if (emulation_type & EMULTYPE_NO_REEXECUTE) 5414 return false; 5415 5416 if (!vcpu->arch.mmu.direct_map) { 5417 /* 5418 * Write permission should be allowed since only 5419 * write access need to be emulated. 5420 */ 5421 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5422 5423 /* 5424 * If the mapping is invalid in guest, let cpu retry 5425 * it to generate fault. 5426 */ 5427 if (gpa == UNMAPPED_GVA) 5428 return true; 5429 } 5430 5431 /* 5432 * Do not retry the unhandleable instruction if it faults on the 5433 * readonly host memory, otherwise it will goto a infinite loop: 5434 * retry instruction -> write #PF -> emulation fail -> retry 5435 * instruction -> ... 5436 */ 5437 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 5438 5439 /* 5440 * If the instruction failed on the error pfn, it can not be fixed, 5441 * report the error to userspace. 5442 */ 5443 if (is_error_noslot_pfn(pfn)) 5444 return false; 5445 5446 kvm_release_pfn_clean(pfn); 5447 5448 /* The instructions are well-emulated on direct mmu. */ 5449 if (vcpu->arch.mmu.direct_map) { 5450 unsigned int indirect_shadow_pages; 5451 5452 spin_lock(&vcpu->kvm->mmu_lock); 5453 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5454 spin_unlock(&vcpu->kvm->mmu_lock); 5455 5456 if (indirect_shadow_pages) 5457 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5458 5459 return true; 5460 } 5461 5462 /* 5463 * if emulation was due to access to shadowed page table 5464 * and it failed try to unshadow page and re-enter the 5465 * guest to let CPU execute the instruction. 5466 */ 5467 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5468 5469 /* 5470 * If the access faults on its page table, it can not 5471 * be fixed by unprotecting shadow page and it should 5472 * be reported to userspace. 5473 */ 5474 return !write_fault_to_shadow_pgtable; 5475 } 5476 5477 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5478 unsigned long cr2, int emulation_type) 5479 { 5480 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5481 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5482 5483 last_retry_eip = vcpu->arch.last_retry_eip; 5484 last_retry_addr = vcpu->arch.last_retry_addr; 5485 5486 /* 5487 * If the emulation is caused by #PF and it is non-page_table 5488 * writing instruction, it means the VM-EXIT is caused by shadow 5489 * page protected, we can zap the shadow page and retry this 5490 * instruction directly. 5491 * 5492 * Note: if the guest uses a non-page-table modifying instruction 5493 * on the PDE that points to the instruction, then we will unmap 5494 * the instruction and go to an infinite loop. So, we cache the 5495 * last retried eip and the last fault address, if we meet the eip 5496 * and the address again, we can break out of the potential infinite 5497 * loop. 5498 */ 5499 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5500 5501 if (!(emulation_type & EMULTYPE_RETRY)) 5502 return false; 5503 5504 if (x86_page_table_writing_insn(ctxt)) 5505 return false; 5506 5507 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5508 return false; 5509 5510 vcpu->arch.last_retry_eip = ctxt->eip; 5511 vcpu->arch.last_retry_addr = cr2; 5512 5513 if (!vcpu->arch.mmu.direct_map) 5514 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5515 5516 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5517 5518 return true; 5519 } 5520 5521 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5522 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5523 5524 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 5525 { 5526 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 5527 /* This is a good place to trace that we are exiting SMM. */ 5528 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 5529 5530 /* Process a latched INIT or SMI, if any. */ 5531 kvm_make_request(KVM_REQ_EVENT, vcpu); 5532 } 5533 5534 kvm_mmu_reset_context(vcpu); 5535 } 5536 5537 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) 5538 { 5539 unsigned changed = vcpu->arch.hflags ^ emul_flags; 5540 5541 vcpu->arch.hflags = emul_flags; 5542 5543 if (changed & HF_SMM_MASK) 5544 kvm_smm_changed(vcpu); 5545 } 5546 5547 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5548 unsigned long *db) 5549 { 5550 u32 dr6 = 0; 5551 int i; 5552 u32 enable, rwlen; 5553 5554 enable = dr7; 5555 rwlen = dr7 >> 16; 5556 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5557 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5558 dr6 |= (1 << i); 5559 return dr6; 5560 } 5561 5562 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) 5563 { 5564 struct kvm_run *kvm_run = vcpu->run; 5565 5566 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5567 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 5568 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5569 kvm_run->debug.arch.exception = DB_VECTOR; 5570 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5571 *r = EMULATE_USER_EXIT; 5572 } else { 5573 /* 5574 * "Certain debug exceptions may clear bit 0-3. The 5575 * remaining contents of the DR6 register are never 5576 * cleared by the processor". 5577 */ 5578 vcpu->arch.dr6 &= ~15; 5579 vcpu->arch.dr6 |= DR6_BS | DR6_RTM; 5580 kvm_queue_exception(vcpu, DB_VECTOR); 5581 } 5582 } 5583 5584 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 5585 { 5586 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5587 int r = EMULATE_DONE; 5588 5589 kvm_x86_ops->skip_emulated_instruction(vcpu); 5590 5591 /* 5592 * rflags is the old, "raw" value of the flags. The new value has 5593 * not been saved yet. 5594 * 5595 * This is correct even for TF set by the guest, because "the 5596 * processor will not generate this exception after the instruction 5597 * that sets the TF flag". 5598 */ 5599 if (unlikely(rflags & X86_EFLAGS_TF)) 5600 kvm_vcpu_do_singlestep(vcpu, &r); 5601 return r == EMULATE_DONE; 5602 } 5603 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 5604 5605 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5606 { 5607 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5608 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5609 struct kvm_run *kvm_run = vcpu->run; 5610 unsigned long eip = kvm_get_linear_rip(vcpu); 5611 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5612 vcpu->arch.guest_debug_dr7, 5613 vcpu->arch.eff_db); 5614 5615 if (dr6 != 0) { 5616 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 5617 kvm_run->debug.arch.pc = eip; 5618 kvm_run->debug.arch.exception = DB_VECTOR; 5619 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5620 *r = EMULATE_USER_EXIT; 5621 return true; 5622 } 5623 } 5624 5625 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 5626 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 5627 unsigned long eip = kvm_get_linear_rip(vcpu); 5628 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5629 vcpu->arch.dr7, 5630 vcpu->arch.db); 5631 5632 if (dr6 != 0) { 5633 vcpu->arch.dr6 &= ~15; 5634 vcpu->arch.dr6 |= dr6 | DR6_RTM; 5635 kvm_queue_exception(vcpu, DB_VECTOR); 5636 *r = EMULATE_DONE; 5637 return true; 5638 } 5639 } 5640 5641 return false; 5642 } 5643 5644 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5645 unsigned long cr2, 5646 int emulation_type, 5647 void *insn, 5648 int insn_len) 5649 { 5650 int r; 5651 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5652 bool writeback = true; 5653 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5654 5655 /* 5656 * Clear write_fault_to_shadow_pgtable here to ensure it is 5657 * never reused. 5658 */ 5659 vcpu->arch.write_fault_to_shadow_pgtable = false; 5660 kvm_clear_exception_queue(vcpu); 5661 5662 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5663 init_emulate_ctxt(vcpu); 5664 5665 /* 5666 * We will reenter on the same instruction since 5667 * we do not set complete_userspace_io. This does not 5668 * handle watchpoints yet, those would be handled in 5669 * the emulate_ops. 5670 */ 5671 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5672 return r; 5673 5674 ctxt->interruptibility = 0; 5675 ctxt->have_exception = false; 5676 ctxt->exception.vector = -1; 5677 ctxt->perm_ok = false; 5678 5679 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5680 5681 r = x86_decode_insn(ctxt, insn, insn_len); 5682 5683 trace_kvm_emulate_insn_start(vcpu); 5684 ++vcpu->stat.insn_emulation; 5685 if (r != EMULATION_OK) { 5686 if (emulation_type & EMULTYPE_TRAP_UD) 5687 return EMULATE_FAIL; 5688 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5689 emulation_type)) 5690 return EMULATE_DONE; 5691 if (emulation_type & EMULTYPE_SKIP) 5692 return EMULATE_FAIL; 5693 return handle_emulation_failure(vcpu); 5694 } 5695 } 5696 5697 if (emulation_type & EMULTYPE_SKIP) { 5698 kvm_rip_write(vcpu, ctxt->_eip); 5699 if (ctxt->eflags & X86_EFLAGS_RF) 5700 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 5701 return EMULATE_DONE; 5702 } 5703 5704 if (retry_instruction(ctxt, cr2, emulation_type)) 5705 return EMULATE_DONE; 5706 5707 /* this is needed for vmware backdoor interface to work since it 5708 changes registers values during IO operation */ 5709 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5710 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5711 emulator_invalidate_register_cache(ctxt); 5712 } 5713 5714 restart: 5715 /* Save the faulting GPA (cr2) in the address field */ 5716 ctxt->exception.address = cr2; 5717 5718 r = x86_emulate_insn(ctxt); 5719 5720 if (r == EMULATION_INTERCEPTED) 5721 return EMULATE_DONE; 5722 5723 if (r == EMULATION_FAILED) { 5724 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5725 emulation_type)) 5726 return EMULATE_DONE; 5727 5728 return handle_emulation_failure(vcpu); 5729 } 5730 5731 if (ctxt->have_exception) { 5732 r = EMULATE_DONE; 5733 if (inject_emulated_exception(vcpu)) 5734 return r; 5735 } else if (vcpu->arch.pio.count) { 5736 if (!vcpu->arch.pio.in) { 5737 /* FIXME: return into emulator if single-stepping. */ 5738 vcpu->arch.pio.count = 0; 5739 } else { 5740 writeback = false; 5741 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5742 } 5743 r = EMULATE_USER_EXIT; 5744 } else if (vcpu->mmio_needed) { 5745 if (!vcpu->mmio_is_write) 5746 writeback = false; 5747 r = EMULATE_USER_EXIT; 5748 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5749 } else if (r == EMULATION_RESTART) 5750 goto restart; 5751 else 5752 r = EMULATE_DONE; 5753 5754 if (writeback) { 5755 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5756 toggle_interruptibility(vcpu, ctxt->interruptibility); 5757 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5758 kvm_rip_write(vcpu, ctxt->eip); 5759 if (r == EMULATE_DONE && 5760 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 5761 kvm_vcpu_do_singlestep(vcpu, &r); 5762 if (!ctxt->have_exception || 5763 exception_type(ctxt->exception.vector) == EXCPT_TRAP) 5764 __kvm_set_rflags(vcpu, ctxt->eflags); 5765 5766 /* 5767 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 5768 * do nothing, and it will be requested again as soon as 5769 * the shadow expires. But we still need to check here, 5770 * because POPF has no interrupt shadow. 5771 */ 5772 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 5773 kvm_make_request(KVM_REQ_EVENT, vcpu); 5774 } else 5775 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5776 5777 return r; 5778 } 5779 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5780 5781 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5782 { 5783 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5784 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5785 size, port, &val, 1); 5786 /* do not return to emulator after return from userspace */ 5787 vcpu->arch.pio.count = 0; 5788 return ret; 5789 } 5790 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5791 5792 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 5793 { 5794 unsigned long val; 5795 5796 /* We should only ever be called with arch.pio.count equal to 1 */ 5797 BUG_ON(vcpu->arch.pio.count != 1); 5798 5799 /* For size less than 4 we merge, else we zero extend */ 5800 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) 5801 : 0; 5802 5803 /* 5804 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 5805 * the copy and tracing 5806 */ 5807 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 5808 vcpu->arch.pio.port, &val, 1); 5809 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 5810 5811 return 1; 5812 } 5813 5814 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port) 5815 { 5816 unsigned long val; 5817 int ret; 5818 5819 /* For size less than 4 we merge, else we zero extend */ 5820 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; 5821 5822 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 5823 &val, 1); 5824 if (ret) { 5825 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 5826 return ret; 5827 } 5828 5829 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 5830 5831 return 0; 5832 } 5833 EXPORT_SYMBOL_GPL(kvm_fast_pio_in); 5834 5835 static int kvmclock_cpu_down_prep(unsigned int cpu) 5836 { 5837 __this_cpu_write(cpu_tsc_khz, 0); 5838 return 0; 5839 } 5840 5841 static void tsc_khz_changed(void *data) 5842 { 5843 struct cpufreq_freqs *freq = data; 5844 unsigned long khz = 0; 5845 5846 if (data) 5847 khz = freq->new; 5848 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5849 khz = cpufreq_quick_get(raw_smp_processor_id()); 5850 if (!khz) 5851 khz = tsc_khz; 5852 __this_cpu_write(cpu_tsc_khz, khz); 5853 } 5854 5855 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5856 void *data) 5857 { 5858 struct cpufreq_freqs *freq = data; 5859 struct kvm *kvm; 5860 struct kvm_vcpu *vcpu; 5861 int i, send_ipi = 0; 5862 5863 /* 5864 * We allow guests to temporarily run on slowing clocks, 5865 * provided we notify them after, or to run on accelerating 5866 * clocks, provided we notify them before. Thus time never 5867 * goes backwards. 5868 * 5869 * However, we have a problem. We can't atomically update 5870 * the frequency of a given CPU from this function; it is 5871 * merely a notifier, which can be called from any CPU. 5872 * Changing the TSC frequency at arbitrary points in time 5873 * requires a recomputation of local variables related to 5874 * the TSC for each VCPU. We must flag these local variables 5875 * to be updated and be sure the update takes place with the 5876 * new frequency before any guests proceed. 5877 * 5878 * Unfortunately, the combination of hotplug CPU and frequency 5879 * change creates an intractable locking scenario; the order 5880 * of when these callouts happen is undefined with respect to 5881 * CPU hotplug, and they can race with each other. As such, 5882 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5883 * undefined; you can actually have a CPU frequency change take 5884 * place in between the computation of X and the setting of the 5885 * variable. To protect against this problem, all updates of 5886 * the per_cpu tsc_khz variable are done in an interrupt 5887 * protected IPI, and all callers wishing to update the value 5888 * must wait for a synchronous IPI to complete (which is trivial 5889 * if the caller is on the CPU already). This establishes the 5890 * necessary total order on variable updates. 5891 * 5892 * Note that because a guest time update may take place 5893 * anytime after the setting of the VCPU's request bit, the 5894 * correct TSC value must be set before the request. However, 5895 * to ensure the update actually makes it to any guest which 5896 * starts running in hardware virtualization between the set 5897 * and the acquisition of the spinlock, we must also ping the 5898 * CPU after setting the request bit. 5899 * 5900 */ 5901 5902 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5903 return 0; 5904 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5905 return 0; 5906 5907 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5908 5909 spin_lock(&kvm_lock); 5910 list_for_each_entry(kvm, &vm_list, vm_list) { 5911 kvm_for_each_vcpu(i, vcpu, kvm) { 5912 if (vcpu->cpu != freq->cpu) 5913 continue; 5914 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5915 if (vcpu->cpu != smp_processor_id()) 5916 send_ipi = 1; 5917 } 5918 } 5919 spin_unlock(&kvm_lock); 5920 5921 if (freq->old < freq->new && send_ipi) { 5922 /* 5923 * We upscale the frequency. Must make the guest 5924 * doesn't see old kvmclock values while running with 5925 * the new frequency, otherwise we risk the guest sees 5926 * time go backwards. 5927 * 5928 * In case we update the frequency for another cpu 5929 * (which might be in guest context) send an interrupt 5930 * to kick the cpu out of guest context. Next time 5931 * guest context is entered kvmclock will be updated, 5932 * so the guest will not see stale values. 5933 */ 5934 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5935 } 5936 return 0; 5937 } 5938 5939 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5940 .notifier_call = kvmclock_cpufreq_notifier 5941 }; 5942 5943 static int kvmclock_cpu_online(unsigned int cpu) 5944 { 5945 tsc_khz_changed(NULL); 5946 return 0; 5947 } 5948 5949 static void kvm_timer_init(void) 5950 { 5951 max_tsc_khz = tsc_khz; 5952 5953 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5954 #ifdef CONFIG_CPU_FREQ 5955 struct cpufreq_policy policy; 5956 int cpu; 5957 5958 memset(&policy, 0, sizeof(policy)); 5959 cpu = get_cpu(); 5960 cpufreq_get_policy(&policy, cpu); 5961 if (policy.cpuinfo.max_freq) 5962 max_tsc_khz = policy.cpuinfo.max_freq; 5963 put_cpu(); 5964 #endif 5965 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 5966 CPUFREQ_TRANSITION_NOTIFIER); 5967 } 5968 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 5969 5970 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 5971 kvmclock_cpu_online, kvmclock_cpu_down_prep); 5972 } 5973 5974 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 5975 5976 int kvm_is_in_guest(void) 5977 { 5978 return __this_cpu_read(current_vcpu) != NULL; 5979 } 5980 5981 static int kvm_is_user_mode(void) 5982 { 5983 int user_mode = 3; 5984 5985 if (__this_cpu_read(current_vcpu)) 5986 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 5987 5988 return user_mode != 0; 5989 } 5990 5991 static unsigned long kvm_get_guest_ip(void) 5992 { 5993 unsigned long ip = 0; 5994 5995 if (__this_cpu_read(current_vcpu)) 5996 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 5997 5998 return ip; 5999 } 6000 6001 static struct perf_guest_info_callbacks kvm_guest_cbs = { 6002 .is_in_guest = kvm_is_in_guest, 6003 .is_user_mode = kvm_is_user_mode, 6004 .get_guest_ip = kvm_get_guest_ip, 6005 }; 6006 6007 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 6008 { 6009 __this_cpu_write(current_vcpu, vcpu); 6010 } 6011 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 6012 6013 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 6014 { 6015 __this_cpu_write(current_vcpu, NULL); 6016 } 6017 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 6018 6019 static void kvm_set_mmio_spte_mask(void) 6020 { 6021 u64 mask; 6022 int maxphyaddr = boot_cpu_data.x86_phys_bits; 6023 6024 /* 6025 * Set the reserved bits and the present bit of an paging-structure 6026 * entry to generate page fault with PFER.RSV = 1. 6027 */ 6028 /* Mask the reserved physical address bits. */ 6029 mask = rsvd_bits(maxphyaddr, 51); 6030 6031 /* Set the present bit. */ 6032 mask |= 1ull; 6033 6034 #ifdef CONFIG_X86_64 6035 /* 6036 * If reserved bit is not supported, clear the present bit to disable 6037 * mmio page fault. 6038 */ 6039 if (maxphyaddr == 52) 6040 mask &= ~1ull; 6041 #endif 6042 6043 kvm_mmu_set_mmio_spte_mask(mask, mask); 6044 } 6045 6046 #ifdef CONFIG_X86_64 6047 static void pvclock_gtod_update_fn(struct work_struct *work) 6048 { 6049 struct kvm *kvm; 6050 6051 struct kvm_vcpu *vcpu; 6052 int i; 6053 6054 spin_lock(&kvm_lock); 6055 list_for_each_entry(kvm, &vm_list, vm_list) 6056 kvm_for_each_vcpu(i, vcpu, kvm) 6057 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 6058 atomic_set(&kvm_guest_has_master_clock, 0); 6059 spin_unlock(&kvm_lock); 6060 } 6061 6062 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 6063 6064 /* 6065 * Notification about pvclock gtod data update. 6066 */ 6067 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 6068 void *priv) 6069 { 6070 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 6071 struct timekeeper *tk = priv; 6072 6073 update_pvclock_gtod(tk); 6074 6075 /* disable master clock if host does not trust, or does not 6076 * use, TSC clocksource 6077 */ 6078 if (gtod->clock.vclock_mode != VCLOCK_TSC && 6079 atomic_read(&kvm_guest_has_master_clock) != 0) 6080 queue_work(system_long_wq, &pvclock_gtod_work); 6081 6082 return 0; 6083 } 6084 6085 static struct notifier_block pvclock_gtod_notifier = { 6086 .notifier_call = pvclock_gtod_notify, 6087 }; 6088 #endif 6089 6090 int kvm_arch_init(void *opaque) 6091 { 6092 int r; 6093 struct kvm_x86_ops *ops = opaque; 6094 6095 if (kvm_x86_ops) { 6096 printk(KERN_ERR "kvm: already loaded the other module\n"); 6097 r = -EEXIST; 6098 goto out; 6099 } 6100 6101 if (!ops->cpu_has_kvm_support()) { 6102 printk(KERN_ERR "kvm: no hardware support\n"); 6103 r = -EOPNOTSUPP; 6104 goto out; 6105 } 6106 if (ops->disabled_by_bios()) { 6107 printk(KERN_ERR "kvm: disabled by bios\n"); 6108 r = -EOPNOTSUPP; 6109 goto out; 6110 } 6111 6112 r = -ENOMEM; 6113 shared_msrs = alloc_percpu(struct kvm_shared_msrs); 6114 if (!shared_msrs) { 6115 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); 6116 goto out; 6117 } 6118 6119 r = kvm_mmu_module_init(); 6120 if (r) 6121 goto out_free_percpu; 6122 6123 kvm_set_mmio_spte_mask(); 6124 6125 kvm_x86_ops = ops; 6126 6127 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 6128 PT_DIRTY_MASK, PT64_NX_MASK, 0, 6129 PT_PRESENT_MASK, 0, sme_me_mask); 6130 kvm_timer_init(); 6131 6132 perf_register_guest_info_callbacks(&kvm_guest_cbs); 6133 6134 if (boot_cpu_has(X86_FEATURE_XSAVE)) 6135 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 6136 6137 kvm_lapic_init(); 6138 #ifdef CONFIG_X86_64 6139 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 6140 #endif 6141 6142 return 0; 6143 6144 out_free_percpu: 6145 free_percpu(shared_msrs); 6146 out: 6147 return r; 6148 } 6149 6150 void kvm_arch_exit(void) 6151 { 6152 kvm_lapic_exit(); 6153 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 6154 6155 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 6156 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 6157 CPUFREQ_TRANSITION_NOTIFIER); 6158 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 6159 #ifdef CONFIG_X86_64 6160 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 6161 #endif 6162 kvm_x86_ops = NULL; 6163 kvm_mmu_module_exit(); 6164 free_percpu(shared_msrs); 6165 } 6166 6167 int kvm_vcpu_halt(struct kvm_vcpu *vcpu) 6168 { 6169 ++vcpu->stat.halt_exits; 6170 if (lapic_in_kernel(vcpu)) { 6171 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 6172 return 1; 6173 } else { 6174 vcpu->run->exit_reason = KVM_EXIT_HLT; 6175 return 0; 6176 } 6177 } 6178 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 6179 6180 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 6181 { 6182 int ret = kvm_skip_emulated_instruction(vcpu); 6183 /* 6184 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 6185 * KVM_EXIT_DEBUG here. 6186 */ 6187 return kvm_vcpu_halt(vcpu) && ret; 6188 } 6189 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 6190 6191 #ifdef CONFIG_X86_64 6192 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 6193 unsigned long clock_type) 6194 { 6195 struct kvm_clock_pairing clock_pairing; 6196 struct timespec ts; 6197 u64 cycle; 6198 int ret; 6199 6200 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 6201 return -KVM_EOPNOTSUPP; 6202 6203 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) 6204 return -KVM_EOPNOTSUPP; 6205 6206 clock_pairing.sec = ts.tv_sec; 6207 clock_pairing.nsec = ts.tv_nsec; 6208 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 6209 clock_pairing.flags = 0; 6210 6211 ret = 0; 6212 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 6213 sizeof(struct kvm_clock_pairing))) 6214 ret = -KVM_EFAULT; 6215 6216 return ret; 6217 } 6218 #endif 6219 6220 /* 6221 * kvm_pv_kick_cpu_op: Kick a vcpu. 6222 * 6223 * @apicid - apicid of vcpu to be kicked. 6224 */ 6225 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid) 6226 { 6227 struct kvm_lapic_irq lapic_irq; 6228 6229 lapic_irq.shorthand = 0; 6230 lapic_irq.dest_mode = 0; 6231 lapic_irq.level = 0; 6232 lapic_irq.dest_id = apicid; 6233 lapic_irq.msi_redir_hint = false; 6234 6235 lapic_irq.delivery_mode = APIC_DM_REMRD; 6236 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 6237 } 6238 6239 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu) 6240 { 6241 vcpu->arch.apicv_active = false; 6242 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu); 6243 } 6244 6245 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 6246 { 6247 unsigned long nr, a0, a1, a2, a3, ret; 6248 int op_64_bit, r; 6249 6250 r = kvm_skip_emulated_instruction(vcpu); 6251 6252 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 6253 return kvm_hv_hypercall(vcpu); 6254 6255 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 6256 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 6257 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 6258 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 6259 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 6260 6261 trace_kvm_hypercall(nr, a0, a1, a2, a3); 6262 6263 op_64_bit = is_64_bit_mode(vcpu); 6264 if (!op_64_bit) { 6265 nr &= 0xFFFFFFFF; 6266 a0 &= 0xFFFFFFFF; 6267 a1 &= 0xFFFFFFFF; 6268 a2 &= 0xFFFFFFFF; 6269 a3 &= 0xFFFFFFFF; 6270 } 6271 6272 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 6273 ret = -KVM_EPERM; 6274 goto out; 6275 } 6276 6277 switch (nr) { 6278 case KVM_HC_VAPIC_POLL_IRQ: 6279 ret = 0; 6280 break; 6281 case KVM_HC_KICK_CPU: 6282 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); 6283 ret = 0; 6284 break; 6285 #ifdef CONFIG_X86_64 6286 case KVM_HC_CLOCK_PAIRING: 6287 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 6288 break; 6289 #endif 6290 default: 6291 ret = -KVM_ENOSYS; 6292 break; 6293 } 6294 out: 6295 if (!op_64_bit) 6296 ret = (u32)ret; 6297 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 6298 ++vcpu->stat.hypercalls; 6299 return r; 6300 } 6301 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 6302 6303 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 6304 { 6305 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6306 char instruction[3]; 6307 unsigned long rip = kvm_rip_read(vcpu); 6308 6309 kvm_x86_ops->patch_hypercall(vcpu, instruction); 6310 6311 return emulator_write_emulated(ctxt, rip, instruction, 3, 6312 &ctxt->exception); 6313 } 6314 6315 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 6316 { 6317 return vcpu->run->request_interrupt_window && 6318 likely(!pic_in_kernel(vcpu->kvm)); 6319 } 6320 6321 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 6322 { 6323 struct kvm_run *kvm_run = vcpu->run; 6324 6325 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 6326 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0; 6327 kvm_run->cr8 = kvm_get_cr8(vcpu); 6328 kvm_run->apic_base = kvm_get_apic_base(vcpu); 6329 kvm_run->ready_for_interrupt_injection = 6330 pic_in_kernel(vcpu->kvm) || 6331 kvm_vcpu_ready_for_interrupt_injection(vcpu); 6332 } 6333 6334 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 6335 { 6336 int max_irr, tpr; 6337 6338 if (!kvm_x86_ops->update_cr8_intercept) 6339 return; 6340 6341 if (!lapic_in_kernel(vcpu)) 6342 return; 6343 6344 if (vcpu->arch.apicv_active) 6345 return; 6346 6347 if (!vcpu->arch.apic->vapic_addr) 6348 max_irr = kvm_lapic_find_highest_irr(vcpu); 6349 else 6350 max_irr = -1; 6351 6352 if (max_irr != -1) 6353 max_irr >>= 4; 6354 6355 tpr = kvm_lapic_get_cr8(vcpu); 6356 6357 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 6358 } 6359 6360 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win) 6361 { 6362 int r; 6363 6364 /* try to reinject previous events if any */ 6365 if (vcpu->arch.exception.pending) { 6366 trace_kvm_inj_exception(vcpu->arch.exception.nr, 6367 vcpu->arch.exception.has_error_code, 6368 vcpu->arch.exception.error_code); 6369 6370 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 6371 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 6372 X86_EFLAGS_RF); 6373 6374 if (vcpu->arch.exception.nr == DB_VECTOR && 6375 (vcpu->arch.dr7 & DR7_GD)) { 6376 vcpu->arch.dr7 &= ~DR7_GD; 6377 kvm_update_dr7(vcpu); 6378 } 6379 6380 kvm_x86_ops->queue_exception(vcpu); 6381 return 0; 6382 } 6383 6384 if (vcpu->arch.nmi_injected) { 6385 kvm_x86_ops->set_nmi(vcpu); 6386 return 0; 6387 } 6388 6389 if (vcpu->arch.interrupt.pending) { 6390 kvm_x86_ops->set_irq(vcpu); 6391 return 0; 6392 } 6393 6394 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6395 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6396 if (r != 0) 6397 return r; 6398 } 6399 6400 /* try to inject new event if pending */ 6401 if (vcpu->arch.smi_pending && !is_smm(vcpu)) { 6402 vcpu->arch.smi_pending = false; 6403 enter_smm(vcpu); 6404 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) { 6405 --vcpu->arch.nmi_pending; 6406 vcpu->arch.nmi_injected = true; 6407 kvm_x86_ops->set_nmi(vcpu); 6408 } else if (kvm_cpu_has_injectable_intr(vcpu)) { 6409 /* 6410 * Because interrupts can be injected asynchronously, we are 6411 * calling check_nested_events again here to avoid a race condition. 6412 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this 6413 * proposal and current concerns. Perhaps we should be setting 6414 * KVM_REQ_EVENT only on certain events and not unconditionally? 6415 */ 6416 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) { 6417 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win); 6418 if (r != 0) 6419 return r; 6420 } 6421 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 6422 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 6423 false); 6424 kvm_x86_ops->set_irq(vcpu); 6425 } 6426 } 6427 6428 return 0; 6429 } 6430 6431 static void process_nmi(struct kvm_vcpu *vcpu) 6432 { 6433 unsigned limit = 2; 6434 6435 /* 6436 * x86 is limited to one NMI running, and one NMI pending after it. 6437 * If an NMI is already in progress, limit further NMIs to just one. 6438 * Otherwise, allow two (and we'll inject the first one immediately). 6439 */ 6440 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 6441 limit = 1; 6442 6443 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 6444 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 6445 kvm_make_request(KVM_REQ_EVENT, vcpu); 6446 } 6447 6448 #define put_smstate(type, buf, offset, val) \ 6449 *(type *)((buf) + (offset) - 0x7e00) = val 6450 6451 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 6452 { 6453 u32 flags = 0; 6454 flags |= seg->g << 23; 6455 flags |= seg->db << 22; 6456 flags |= seg->l << 21; 6457 flags |= seg->avl << 20; 6458 flags |= seg->present << 15; 6459 flags |= seg->dpl << 13; 6460 flags |= seg->s << 12; 6461 flags |= seg->type << 8; 6462 return flags; 6463 } 6464 6465 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 6466 { 6467 struct kvm_segment seg; 6468 int offset; 6469 6470 kvm_get_segment(vcpu, &seg, n); 6471 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 6472 6473 if (n < 3) 6474 offset = 0x7f84 + n * 12; 6475 else 6476 offset = 0x7f2c + (n - 3) * 12; 6477 6478 put_smstate(u32, buf, offset + 8, seg.base); 6479 put_smstate(u32, buf, offset + 4, seg.limit); 6480 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 6481 } 6482 6483 #ifdef CONFIG_X86_64 6484 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 6485 { 6486 struct kvm_segment seg; 6487 int offset; 6488 u16 flags; 6489 6490 kvm_get_segment(vcpu, &seg, n); 6491 offset = 0x7e00 + n * 16; 6492 6493 flags = enter_smm_get_segment_flags(&seg) >> 8; 6494 put_smstate(u16, buf, offset, seg.selector); 6495 put_smstate(u16, buf, offset + 2, flags); 6496 put_smstate(u32, buf, offset + 4, seg.limit); 6497 put_smstate(u64, buf, offset + 8, seg.base); 6498 } 6499 #endif 6500 6501 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 6502 { 6503 struct desc_ptr dt; 6504 struct kvm_segment seg; 6505 unsigned long val; 6506 int i; 6507 6508 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 6509 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 6510 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 6511 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 6512 6513 for (i = 0; i < 8; i++) 6514 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i)); 6515 6516 kvm_get_dr(vcpu, 6, &val); 6517 put_smstate(u32, buf, 0x7fcc, (u32)val); 6518 kvm_get_dr(vcpu, 7, &val); 6519 put_smstate(u32, buf, 0x7fc8, (u32)val); 6520 6521 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6522 put_smstate(u32, buf, 0x7fc4, seg.selector); 6523 put_smstate(u32, buf, 0x7f64, seg.base); 6524 put_smstate(u32, buf, 0x7f60, seg.limit); 6525 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 6526 6527 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6528 put_smstate(u32, buf, 0x7fc0, seg.selector); 6529 put_smstate(u32, buf, 0x7f80, seg.base); 6530 put_smstate(u32, buf, 0x7f7c, seg.limit); 6531 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 6532 6533 kvm_x86_ops->get_gdt(vcpu, &dt); 6534 put_smstate(u32, buf, 0x7f74, dt.address); 6535 put_smstate(u32, buf, 0x7f70, dt.size); 6536 6537 kvm_x86_ops->get_idt(vcpu, &dt); 6538 put_smstate(u32, buf, 0x7f58, dt.address); 6539 put_smstate(u32, buf, 0x7f54, dt.size); 6540 6541 for (i = 0; i < 6; i++) 6542 enter_smm_save_seg_32(vcpu, buf, i); 6543 6544 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 6545 6546 /* revision id */ 6547 put_smstate(u32, buf, 0x7efc, 0x00020000); 6548 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 6549 } 6550 6551 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 6552 { 6553 #ifdef CONFIG_X86_64 6554 struct desc_ptr dt; 6555 struct kvm_segment seg; 6556 unsigned long val; 6557 int i; 6558 6559 for (i = 0; i < 16; i++) 6560 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i)); 6561 6562 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 6563 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 6564 6565 kvm_get_dr(vcpu, 6, &val); 6566 put_smstate(u64, buf, 0x7f68, val); 6567 kvm_get_dr(vcpu, 7, &val); 6568 put_smstate(u64, buf, 0x7f60, val); 6569 6570 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 6571 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 6572 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 6573 6574 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 6575 6576 /* revision id */ 6577 put_smstate(u32, buf, 0x7efc, 0x00020064); 6578 6579 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 6580 6581 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 6582 put_smstate(u16, buf, 0x7e90, seg.selector); 6583 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 6584 put_smstate(u32, buf, 0x7e94, seg.limit); 6585 put_smstate(u64, buf, 0x7e98, seg.base); 6586 6587 kvm_x86_ops->get_idt(vcpu, &dt); 6588 put_smstate(u32, buf, 0x7e84, dt.size); 6589 put_smstate(u64, buf, 0x7e88, dt.address); 6590 6591 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 6592 put_smstate(u16, buf, 0x7e70, seg.selector); 6593 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 6594 put_smstate(u32, buf, 0x7e74, seg.limit); 6595 put_smstate(u64, buf, 0x7e78, seg.base); 6596 6597 kvm_x86_ops->get_gdt(vcpu, &dt); 6598 put_smstate(u32, buf, 0x7e64, dt.size); 6599 put_smstate(u64, buf, 0x7e68, dt.address); 6600 6601 for (i = 0; i < 6; i++) 6602 enter_smm_save_seg_64(vcpu, buf, i); 6603 #else 6604 WARN_ON_ONCE(1); 6605 #endif 6606 } 6607 6608 static void enter_smm(struct kvm_vcpu *vcpu) 6609 { 6610 struct kvm_segment cs, ds; 6611 struct desc_ptr dt; 6612 char buf[512]; 6613 u32 cr0; 6614 6615 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true); 6616 vcpu->arch.hflags |= HF_SMM_MASK; 6617 memset(buf, 0, 512); 6618 if (guest_cpuid_has_longmode(vcpu)) 6619 enter_smm_save_state_64(vcpu, buf); 6620 else 6621 enter_smm_save_state_32(vcpu, buf); 6622 6623 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 6624 6625 if (kvm_x86_ops->get_nmi_mask(vcpu)) 6626 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 6627 else 6628 kvm_x86_ops->set_nmi_mask(vcpu, true); 6629 6630 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 6631 kvm_rip_write(vcpu, 0x8000); 6632 6633 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 6634 kvm_x86_ops->set_cr0(vcpu, cr0); 6635 vcpu->arch.cr0 = cr0; 6636 6637 kvm_x86_ops->set_cr4(vcpu, 0); 6638 6639 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 6640 dt.address = dt.size = 0; 6641 kvm_x86_ops->set_idt(vcpu, &dt); 6642 6643 __kvm_set_dr(vcpu, 7, DR7_FIXED_1); 6644 6645 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 6646 cs.base = vcpu->arch.smbase; 6647 6648 ds.selector = 0; 6649 ds.base = 0; 6650 6651 cs.limit = ds.limit = 0xffffffff; 6652 cs.type = ds.type = 0x3; 6653 cs.dpl = ds.dpl = 0; 6654 cs.db = ds.db = 0; 6655 cs.s = ds.s = 1; 6656 cs.l = ds.l = 0; 6657 cs.g = ds.g = 1; 6658 cs.avl = ds.avl = 0; 6659 cs.present = ds.present = 1; 6660 cs.unusable = ds.unusable = 0; 6661 cs.padding = ds.padding = 0; 6662 6663 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 6664 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 6665 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 6666 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 6667 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 6668 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 6669 6670 if (guest_cpuid_has_longmode(vcpu)) 6671 kvm_x86_ops->set_efer(vcpu, 0); 6672 6673 kvm_update_cpuid(vcpu); 6674 kvm_mmu_reset_context(vcpu); 6675 } 6676 6677 static void process_smi(struct kvm_vcpu *vcpu) 6678 { 6679 vcpu->arch.smi_pending = true; 6680 kvm_make_request(KVM_REQ_EVENT, vcpu); 6681 } 6682 6683 void kvm_make_scan_ioapic_request(struct kvm *kvm) 6684 { 6685 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 6686 } 6687 6688 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 6689 { 6690 u64 eoi_exit_bitmap[4]; 6691 6692 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 6693 return; 6694 6695 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 6696 6697 if (irqchip_split(vcpu->kvm)) 6698 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 6699 else { 6700 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 6701 kvm_x86_ops->sync_pir_to_irr(vcpu); 6702 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 6703 } 6704 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors, 6705 vcpu_to_synic(vcpu)->vec_bitmap, 256); 6706 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); 6707 } 6708 6709 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu) 6710 { 6711 ++vcpu->stat.tlb_flush; 6712 kvm_x86_ops->tlb_flush(vcpu); 6713 } 6714 6715 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 6716 { 6717 struct page *page = NULL; 6718 6719 if (!lapic_in_kernel(vcpu)) 6720 return; 6721 6722 if (!kvm_x86_ops->set_apic_access_page_addr) 6723 return; 6724 6725 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6726 if (is_error_page(page)) 6727 return; 6728 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page)); 6729 6730 /* 6731 * Do not pin apic access page in memory, the MMU notifier 6732 * will call us again if it is migrated or swapped out. 6733 */ 6734 put_page(page); 6735 } 6736 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page); 6737 6738 /* 6739 * Returns 1 to let vcpu_run() continue the guest execution loop without 6740 * exiting to the userspace. Otherwise, the value will be returned to the 6741 * userspace. 6742 */ 6743 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 6744 { 6745 int r; 6746 bool req_int_win = 6747 dm_request_for_irq_injection(vcpu) && 6748 kvm_cpu_accept_dm_intr(vcpu); 6749 6750 bool req_immediate_exit = false; 6751 6752 if (kvm_request_pending(vcpu)) { 6753 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 6754 kvm_mmu_unload(vcpu); 6755 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 6756 __kvm_migrate_timers(vcpu); 6757 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 6758 kvm_gen_update_masterclock(vcpu->kvm); 6759 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 6760 kvm_gen_kvmclock_update(vcpu); 6761 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 6762 r = kvm_guest_time_update(vcpu); 6763 if (unlikely(r)) 6764 goto out; 6765 } 6766 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 6767 kvm_mmu_sync_roots(vcpu); 6768 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 6769 kvm_vcpu_flush_tlb(vcpu); 6770 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 6771 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 6772 r = 0; 6773 goto out; 6774 } 6775 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 6776 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 6777 r = 0; 6778 goto out; 6779 } 6780 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 6781 /* Page is swapped out. Do synthetic halt */ 6782 vcpu->arch.apf.halted = true; 6783 r = 1; 6784 goto out; 6785 } 6786 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 6787 record_steal_time(vcpu); 6788 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 6789 process_smi(vcpu); 6790 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 6791 process_nmi(vcpu); 6792 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 6793 kvm_pmu_handle_event(vcpu); 6794 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 6795 kvm_pmu_deliver_pmi(vcpu); 6796 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 6797 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 6798 if (test_bit(vcpu->arch.pending_ioapic_eoi, 6799 vcpu->arch.ioapic_handled_vectors)) { 6800 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 6801 vcpu->run->eoi.vector = 6802 vcpu->arch.pending_ioapic_eoi; 6803 r = 0; 6804 goto out; 6805 } 6806 } 6807 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 6808 vcpu_scan_ioapic(vcpu); 6809 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 6810 kvm_vcpu_reload_apic_access_page(vcpu); 6811 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 6812 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6813 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 6814 r = 0; 6815 goto out; 6816 } 6817 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 6818 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 6819 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 6820 r = 0; 6821 goto out; 6822 } 6823 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 6824 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 6825 vcpu->run->hyperv = vcpu->arch.hyperv.exit; 6826 r = 0; 6827 goto out; 6828 } 6829 6830 /* 6831 * KVM_REQ_HV_STIMER has to be processed after 6832 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 6833 * depend on the guest clock being up-to-date 6834 */ 6835 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 6836 kvm_hv_process_stimers(vcpu); 6837 } 6838 6839 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 6840 ++vcpu->stat.req_event; 6841 kvm_apic_accept_events(vcpu); 6842 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 6843 r = 1; 6844 goto out; 6845 } 6846 6847 if (inject_pending_event(vcpu, req_int_win) != 0) 6848 req_immediate_exit = true; 6849 else { 6850 /* Enable NMI/IRQ window open exits if needed. 6851 * 6852 * SMIs have two cases: 1) they can be nested, and 6853 * then there is nothing to do here because RSM will 6854 * cause a vmexit anyway; 2) or the SMI can be pending 6855 * because inject_pending_event has completed the 6856 * injection of an IRQ or NMI from the previous vmexit, 6857 * and then we request an immediate exit to inject the SMI. 6858 */ 6859 if (vcpu->arch.smi_pending && !is_smm(vcpu)) 6860 req_immediate_exit = true; 6861 if (vcpu->arch.nmi_pending) 6862 kvm_x86_ops->enable_nmi_window(vcpu); 6863 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) 6864 kvm_x86_ops->enable_irq_window(vcpu); 6865 } 6866 6867 if (kvm_lapic_enabled(vcpu)) { 6868 update_cr8_intercept(vcpu); 6869 kvm_lapic_sync_to_vapic(vcpu); 6870 } 6871 } 6872 6873 r = kvm_mmu_reload(vcpu); 6874 if (unlikely(r)) { 6875 goto cancel_injection; 6876 } 6877 6878 preempt_disable(); 6879 6880 kvm_x86_ops->prepare_guest_switch(vcpu); 6881 kvm_load_guest_fpu(vcpu); 6882 6883 /* 6884 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 6885 * IPI are then delayed after guest entry, which ensures that they 6886 * result in virtual interrupt delivery. 6887 */ 6888 local_irq_disable(); 6889 vcpu->mode = IN_GUEST_MODE; 6890 6891 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 6892 6893 /* 6894 * 1) We should set ->mode before checking ->requests. Please see 6895 * the comment in kvm_vcpu_exiting_guest_mode(). 6896 * 6897 * 2) For APICv, we should set ->mode before checking PIR.ON. This 6898 * pairs with the memory barrier implicit in pi_test_and_set_on 6899 * (see vmx_deliver_posted_interrupt). 6900 * 6901 * 3) This also orders the write to mode from any reads to the page 6902 * tables done while the VCPU is running. Please see the comment 6903 * in kvm_flush_remote_tlbs. 6904 */ 6905 smp_mb__after_srcu_read_unlock(); 6906 6907 /* 6908 * This handles the case where a posted interrupt was 6909 * notified with kvm_vcpu_kick. 6910 */ 6911 if (kvm_lapic_enabled(vcpu)) { 6912 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 6913 kvm_x86_ops->sync_pir_to_irr(vcpu); 6914 } 6915 6916 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) 6917 || need_resched() || signal_pending(current)) { 6918 vcpu->mode = OUTSIDE_GUEST_MODE; 6919 smp_wmb(); 6920 local_irq_enable(); 6921 preempt_enable(); 6922 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6923 r = 1; 6924 goto cancel_injection; 6925 } 6926 6927 kvm_load_guest_xcr0(vcpu); 6928 6929 if (req_immediate_exit) { 6930 kvm_make_request(KVM_REQ_EVENT, vcpu); 6931 smp_send_reschedule(vcpu->cpu); 6932 } 6933 6934 trace_kvm_entry(vcpu->vcpu_id); 6935 wait_lapic_expire(vcpu); 6936 guest_enter_irqoff(); 6937 6938 if (unlikely(vcpu->arch.switch_db_regs)) { 6939 set_debugreg(0, 7); 6940 set_debugreg(vcpu->arch.eff_db[0], 0); 6941 set_debugreg(vcpu->arch.eff_db[1], 1); 6942 set_debugreg(vcpu->arch.eff_db[2], 2); 6943 set_debugreg(vcpu->arch.eff_db[3], 3); 6944 set_debugreg(vcpu->arch.dr6, 6); 6945 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6946 } 6947 6948 kvm_x86_ops->run(vcpu); 6949 6950 /* 6951 * Do this here before restoring debug registers on the host. And 6952 * since we do this before handling the vmexit, a DR access vmexit 6953 * can (a) read the correct value of the debug registers, (b) set 6954 * KVM_DEBUGREG_WONT_EXIT again. 6955 */ 6956 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 6957 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 6958 kvm_x86_ops->sync_dirty_debug_regs(vcpu); 6959 kvm_update_dr0123(vcpu); 6960 kvm_update_dr6(vcpu); 6961 kvm_update_dr7(vcpu); 6962 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD; 6963 } 6964 6965 /* 6966 * If the guest has used debug registers, at least dr7 6967 * will be disabled while returning to the host. 6968 * If we don't have active breakpoints in the host, we don't 6969 * care about the messed up debug address registers. But if 6970 * we have some of them active, restore the old state. 6971 */ 6972 if (hw_breakpoint_active()) 6973 hw_breakpoint_restore(); 6974 6975 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 6976 6977 vcpu->mode = OUTSIDE_GUEST_MODE; 6978 smp_wmb(); 6979 6980 kvm_put_guest_xcr0(vcpu); 6981 6982 kvm_x86_ops->handle_external_intr(vcpu); 6983 6984 ++vcpu->stat.exits; 6985 6986 guest_exit_irqoff(); 6987 6988 local_irq_enable(); 6989 preempt_enable(); 6990 6991 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 6992 6993 /* 6994 * Profile KVM exit RIPs: 6995 */ 6996 if (unlikely(prof_on == KVM_PROFILING)) { 6997 unsigned long rip = kvm_rip_read(vcpu); 6998 profile_hit(KVM_PROFILING, (void *)rip); 6999 } 7000 7001 if (unlikely(vcpu->arch.tsc_always_catchup)) 7002 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7003 7004 if (vcpu->arch.apic_attention) 7005 kvm_lapic_sync_from_vapic(vcpu); 7006 7007 r = kvm_x86_ops->handle_exit(vcpu); 7008 return r; 7009 7010 cancel_injection: 7011 kvm_x86_ops->cancel_injection(vcpu); 7012 if (unlikely(vcpu->arch.apic_attention)) 7013 kvm_lapic_sync_from_vapic(vcpu); 7014 out: 7015 return r; 7016 } 7017 7018 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) 7019 { 7020 if (!kvm_arch_vcpu_runnable(vcpu) && 7021 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) { 7022 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7023 kvm_vcpu_block(vcpu); 7024 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7025 7026 if (kvm_x86_ops->post_block) 7027 kvm_x86_ops->post_block(vcpu); 7028 7029 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 7030 return 1; 7031 } 7032 7033 kvm_apic_accept_events(vcpu); 7034 switch(vcpu->arch.mp_state) { 7035 case KVM_MP_STATE_HALTED: 7036 vcpu->arch.pv.pv_unhalted = false; 7037 vcpu->arch.mp_state = 7038 KVM_MP_STATE_RUNNABLE; 7039 case KVM_MP_STATE_RUNNABLE: 7040 vcpu->arch.apf.halted = false; 7041 break; 7042 case KVM_MP_STATE_INIT_RECEIVED: 7043 break; 7044 default: 7045 return -EINTR; 7046 break; 7047 } 7048 return 1; 7049 } 7050 7051 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 7052 { 7053 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) 7054 kvm_x86_ops->check_nested_events(vcpu, false); 7055 7056 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 7057 !vcpu->arch.apf.halted); 7058 } 7059 7060 static int vcpu_run(struct kvm_vcpu *vcpu) 7061 { 7062 int r; 7063 struct kvm *kvm = vcpu->kvm; 7064 7065 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7066 7067 for (;;) { 7068 if (kvm_vcpu_running(vcpu)) { 7069 r = vcpu_enter_guest(vcpu); 7070 } else { 7071 r = vcpu_block(kvm, vcpu); 7072 } 7073 7074 if (r <= 0) 7075 break; 7076 7077 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu); 7078 if (kvm_cpu_has_pending_timer(vcpu)) 7079 kvm_inject_pending_timer_irqs(vcpu); 7080 7081 if (dm_request_for_irq_injection(vcpu) && 7082 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 7083 r = 0; 7084 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 7085 ++vcpu->stat.request_irq_exits; 7086 break; 7087 } 7088 7089 kvm_check_async_pf_completion(vcpu); 7090 7091 if (signal_pending(current)) { 7092 r = -EINTR; 7093 vcpu->run->exit_reason = KVM_EXIT_INTR; 7094 ++vcpu->stat.signal_exits; 7095 break; 7096 } 7097 if (need_resched()) { 7098 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7099 cond_resched(); 7100 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 7101 } 7102 } 7103 7104 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 7105 7106 return r; 7107 } 7108 7109 static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 7110 { 7111 int r; 7112 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 7113 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 7114 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 7115 if (r != EMULATE_DONE) 7116 return 0; 7117 return 1; 7118 } 7119 7120 static int complete_emulated_pio(struct kvm_vcpu *vcpu) 7121 { 7122 BUG_ON(!vcpu->arch.pio.count); 7123 7124 return complete_emulated_io(vcpu); 7125 } 7126 7127 /* 7128 * Implements the following, as a state machine: 7129 * 7130 * read: 7131 * for each fragment 7132 * for each mmio piece in the fragment 7133 * write gpa, len 7134 * exit 7135 * copy data 7136 * execute insn 7137 * 7138 * write: 7139 * for each fragment 7140 * for each mmio piece in the fragment 7141 * write gpa, len 7142 * copy data 7143 * exit 7144 */ 7145 static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 7146 { 7147 struct kvm_run *run = vcpu->run; 7148 struct kvm_mmio_fragment *frag; 7149 unsigned len; 7150 7151 BUG_ON(!vcpu->mmio_needed); 7152 7153 /* Complete previous fragment */ 7154 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 7155 len = min(8u, frag->len); 7156 if (!vcpu->mmio_is_write) 7157 memcpy(frag->data, run->mmio.data, len); 7158 7159 if (frag->len <= 8) { 7160 /* Switch to the next fragment. */ 7161 frag++; 7162 vcpu->mmio_cur_fragment++; 7163 } else { 7164 /* Go forward to the next mmio piece. */ 7165 frag->data += len; 7166 frag->gpa += len; 7167 frag->len -= len; 7168 } 7169 7170 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 7171 vcpu->mmio_needed = 0; 7172 7173 /* FIXME: return into emulator if single-stepping. */ 7174 if (vcpu->mmio_is_write) 7175 return 1; 7176 vcpu->mmio_read_completed = 1; 7177 return complete_emulated_io(vcpu); 7178 } 7179 7180 run->exit_reason = KVM_EXIT_MMIO; 7181 run->mmio.phys_addr = frag->gpa; 7182 if (vcpu->mmio_is_write) 7183 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 7184 run->mmio.len = min(8u, frag->len); 7185 run->mmio.is_write = vcpu->mmio_is_write; 7186 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 7187 return 0; 7188 } 7189 7190 7191 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 7192 { 7193 struct fpu *fpu = ¤t->thread.fpu; 7194 int r; 7195 sigset_t sigsaved; 7196 7197 fpu__activate_curr(fpu); 7198 7199 if (vcpu->sigset_active) 7200 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 7201 7202 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 7203 kvm_vcpu_block(vcpu); 7204 kvm_apic_accept_events(vcpu); 7205 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 7206 r = -EAGAIN; 7207 goto out; 7208 } 7209 7210 /* re-sync apic's tpr */ 7211 if (!lapic_in_kernel(vcpu)) { 7212 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 7213 r = -EINVAL; 7214 goto out; 7215 } 7216 } 7217 7218 if (unlikely(vcpu->arch.complete_userspace_io)) { 7219 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 7220 vcpu->arch.complete_userspace_io = NULL; 7221 r = cui(vcpu); 7222 if (r <= 0) 7223 goto out; 7224 } else 7225 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 7226 7227 if (kvm_run->immediate_exit) 7228 r = -EINTR; 7229 else 7230 r = vcpu_run(vcpu); 7231 7232 out: 7233 post_kvm_run_save(vcpu); 7234 if (vcpu->sigset_active) 7235 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 7236 7237 return r; 7238 } 7239 7240 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7241 { 7242 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 7243 /* 7244 * We are here if userspace calls get_regs() in the middle of 7245 * instruction emulation. Registers state needs to be copied 7246 * back from emulation context to vcpu. Userspace shouldn't do 7247 * that usually, but some bad designed PV devices (vmware 7248 * backdoor interface) need this to work 7249 */ 7250 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); 7251 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7252 } 7253 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 7254 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 7255 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 7256 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 7257 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 7258 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 7259 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 7260 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 7261 #ifdef CONFIG_X86_64 7262 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 7263 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 7264 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 7265 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 7266 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 7267 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 7268 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 7269 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 7270 #endif 7271 7272 regs->rip = kvm_rip_read(vcpu); 7273 regs->rflags = kvm_get_rflags(vcpu); 7274 7275 return 0; 7276 } 7277 7278 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 7279 { 7280 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 7281 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 7282 7283 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 7284 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 7285 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 7286 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 7287 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 7288 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 7289 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 7290 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 7291 #ifdef CONFIG_X86_64 7292 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 7293 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 7294 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 7295 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 7296 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 7297 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 7298 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 7299 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 7300 #endif 7301 7302 kvm_rip_write(vcpu, regs->rip); 7303 kvm_set_rflags(vcpu, regs->rflags); 7304 7305 vcpu->arch.exception.pending = false; 7306 7307 kvm_make_request(KVM_REQ_EVENT, vcpu); 7308 7309 return 0; 7310 } 7311 7312 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 7313 { 7314 struct kvm_segment cs; 7315 7316 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7317 *db = cs.db; 7318 *l = cs.l; 7319 } 7320 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 7321 7322 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 7323 struct kvm_sregs *sregs) 7324 { 7325 struct desc_ptr dt; 7326 7327 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7328 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7329 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7330 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7331 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7332 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7333 7334 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7335 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7336 7337 kvm_x86_ops->get_idt(vcpu, &dt); 7338 sregs->idt.limit = dt.size; 7339 sregs->idt.base = dt.address; 7340 kvm_x86_ops->get_gdt(vcpu, &dt); 7341 sregs->gdt.limit = dt.size; 7342 sregs->gdt.base = dt.address; 7343 7344 sregs->cr0 = kvm_read_cr0(vcpu); 7345 sregs->cr2 = vcpu->arch.cr2; 7346 sregs->cr3 = kvm_read_cr3(vcpu); 7347 sregs->cr4 = kvm_read_cr4(vcpu); 7348 sregs->cr8 = kvm_get_cr8(vcpu); 7349 sregs->efer = vcpu->arch.efer; 7350 sregs->apic_base = kvm_get_apic_base(vcpu); 7351 7352 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 7353 7354 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 7355 set_bit(vcpu->arch.interrupt.nr, 7356 (unsigned long *)sregs->interrupt_bitmap); 7357 7358 return 0; 7359 } 7360 7361 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 7362 struct kvm_mp_state *mp_state) 7363 { 7364 kvm_apic_accept_events(vcpu); 7365 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED && 7366 vcpu->arch.pv.pv_unhalted) 7367 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 7368 else 7369 mp_state->mp_state = vcpu->arch.mp_state; 7370 7371 return 0; 7372 } 7373 7374 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 7375 struct kvm_mp_state *mp_state) 7376 { 7377 if (!lapic_in_kernel(vcpu) && 7378 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 7379 return -EINVAL; 7380 7381 /* INITs are latched while in SMM */ 7382 if ((is_smm(vcpu) || vcpu->arch.smi_pending) && 7383 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 7384 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 7385 return -EINVAL; 7386 7387 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 7388 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 7389 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 7390 } else 7391 vcpu->arch.mp_state = mp_state->mp_state; 7392 kvm_make_request(KVM_REQ_EVENT, vcpu); 7393 return 0; 7394 } 7395 7396 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 7397 int reason, bool has_error_code, u32 error_code) 7398 { 7399 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 7400 int ret; 7401 7402 init_emulate_ctxt(vcpu); 7403 7404 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 7405 has_error_code, error_code); 7406 7407 if (ret) 7408 return EMULATE_FAIL; 7409 7410 kvm_rip_write(vcpu, ctxt->eip); 7411 kvm_set_rflags(vcpu, ctxt->eflags); 7412 kvm_make_request(KVM_REQ_EVENT, vcpu); 7413 return EMULATE_DONE; 7414 } 7415 EXPORT_SYMBOL_GPL(kvm_task_switch); 7416 7417 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 7418 struct kvm_sregs *sregs) 7419 { 7420 struct msr_data apic_base_msr; 7421 int mmu_reset_needed = 0; 7422 int pending_vec, max_bits, idx; 7423 struct desc_ptr dt; 7424 7425 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) 7426 return -EINVAL; 7427 7428 dt.size = sregs->idt.limit; 7429 dt.address = sregs->idt.base; 7430 kvm_x86_ops->set_idt(vcpu, &dt); 7431 dt.size = sregs->gdt.limit; 7432 dt.address = sregs->gdt.base; 7433 kvm_x86_ops->set_gdt(vcpu, &dt); 7434 7435 vcpu->arch.cr2 = sregs->cr2; 7436 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 7437 vcpu->arch.cr3 = sregs->cr3; 7438 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 7439 7440 kvm_set_cr8(vcpu, sregs->cr8); 7441 7442 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 7443 kvm_x86_ops->set_efer(vcpu, sregs->efer); 7444 apic_base_msr.data = sregs->apic_base; 7445 apic_base_msr.host_initiated = true; 7446 kvm_set_apic_base(vcpu, &apic_base_msr); 7447 7448 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 7449 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 7450 vcpu->arch.cr0 = sregs->cr0; 7451 7452 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 7453 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 7454 if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 7455 kvm_update_cpuid(vcpu); 7456 7457 idx = srcu_read_lock(&vcpu->kvm->srcu); 7458 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 7459 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 7460 mmu_reset_needed = 1; 7461 } 7462 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7463 7464 if (mmu_reset_needed) 7465 kvm_mmu_reset_context(vcpu); 7466 7467 max_bits = KVM_NR_INTERRUPTS; 7468 pending_vec = find_first_bit( 7469 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 7470 if (pending_vec < max_bits) { 7471 kvm_queue_interrupt(vcpu, pending_vec, false); 7472 pr_debug("Set back pending irq %d\n", pending_vec); 7473 } 7474 7475 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 7476 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 7477 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 7478 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 7479 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 7480 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 7481 7482 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 7483 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 7484 7485 update_cr8_intercept(vcpu); 7486 7487 /* Older userspace won't unhalt the vcpu on reset. */ 7488 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 7489 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 7490 !is_protmode(vcpu)) 7491 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7492 7493 kvm_make_request(KVM_REQ_EVENT, vcpu); 7494 7495 return 0; 7496 } 7497 7498 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 7499 struct kvm_guest_debug *dbg) 7500 { 7501 unsigned long rflags; 7502 int i, r; 7503 7504 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 7505 r = -EBUSY; 7506 if (vcpu->arch.exception.pending) 7507 goto out; 7508 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 7509 kvm_queue_exception(vcpu, DB_VECTOR); 7510 else 7511 kvm_queue_exception(vcpu, BP_VECTOR); 7512 } 7513 7514 /* 7515 * Read rflags as long as potentially injected trace flags are still 7516 * filtered out. 7517 */ 7518 rflags = kvm_get_rflags(vcpu); 7519 7520 vcpu->guest_debug = dbg->control; 7521 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 7522 vcpu->guest_debug = 0; 7523 7524 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 7525 for (i = 0; i < KVM_NR_DB_REGS; ++i) 7526 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 7527 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 7528 } else { 7529 for (i = 0; i < KVM_NR_DB_REGS; i++) 7530 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 7531 } 7532 kvm_update_dr7(vcpu); 7533 7534 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7535 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 7536 get_segment_base(vcpu, VCPU_SREG_CS); 7537 7538 /* 7539 * Trigger an rflags update that will inject or remove the trace 7540 * flags. 7541 */ 7542 kvm_set_rflags(vcpu, rflags); 7543 7544 kvm_x86_ops->update_bp_intercept(vcpu); 7545 7546 r = 0; 7547 7548 out: 7549 7550 return r; 7551 } 7552 7553 /* 7554 * Translate a guest virtual address to a guest physical address. 7555 */ 7556 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 7557 struct kvm_translation *tr) 7558 { 7559 unsigned long vaddr = tr->linear_address; 7560 gpa_t gpa; 7561 int idx; 7562 7563 idx = srcu_read_lock(&vcpu->kvm->srcu); 7564 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 7565 srcu_read_unlock(&vcpu->kvm->srcu, idx); 7566 tr->physical_address = gpa; 7567 tr->valid = gpa != UNMAPPED_GVA; 7568 tr->writeable = 1; 7569 tr->usermode = 0; 7570 7571 return 0; 7572 } 7573 7574 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7575 { 7576 struct fxregs_state *fxsave = 7577 &vcpu->arch.guest_fpu.state.fxsave; 7578 7579 memcpy(fpu->fpr, fxsave->st_space, 128); 7580 fpu->fcw = fxsave->cwd; 7581 fpu->fsw = fxsave->swd; 7582 fpu->ftwx = fxsave->twd; 7583 fpu->last_opcode = fxsave->fop; 7584 fpu->last_ip = fxsave->rip; 7585 fpu->last_dp = fxsave->rdp; 7586 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 7587 7588 return 0; 7589 } 7590 7591 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 7592 { 7593 struct fxregs_state *fxsave = 7594 &vcpu->arch.guest_fpu.state.fxsave; 7595 7596 memcpy(fxsave->st_space, fpu->fpr, 128); 7597 fxsave->cwd = fpu->fcw; 7598 fxsave->swd = fpu->fsw; 7599 fxsave->twd = fpu->ftwx; 7600 fxsave->fop = fpu->last_opcode; 7601 fxsave->rip = fpu->last_ip; 7602 fxsave->rdp = fpu->last_dp; 7603 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 7604 7605 return 0; 7606 } 7607 7608 static void fx_init(struct kvm_vcpu *vcpu) 7609 { 7610 fpstate_init(&vcpu->arch.guest_fpu.state); 7611 if (boot_cpu_has(X86_FEATURE_XSAVES)) 7612 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = 7613 host_xcr0 | XSTATE_COMPACTION_ENABLED; 7614 7615 /* 7616 * Ensure guest xcr0 is valid for loading 7617 */ 7618 vcpu->arch.xcr0 = XFEATURE_MASK_FP; 7619 7620 vcpu->arch.cr0 |= X86_CR0_ET; 7621 } 7622 7623 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 7624 { 7625 if (vcpu->guest_fpu_loaded) 7626 return; 7627 7628 /* 7629 * Restore all possible states in the guest, 7630 * and assume host would use all available bits. 7631 * Guest xcr0 would be loaded later. 7632 */ 7633 vcpu->guest_fpu_loaded = 1; 7634 __kernel_fpu_begin(); 7635 /* PKRU is separately restored in kvm_x86_ops->run. */ 7636 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state, 7637 ~XFEATURE_MASK_PKRU); 7638 trace_kvm_fpu(1); 7639 } 7640 7641 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 7642 { 7643 if (!vcpu->guest_fpu_loaded) 7644 return; 7645 7646 vcpu->guest_fpu_loaded = 0; 7647 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); 7648 __kernel_fpu_end(); 7649 ++vcpu->stat.fpu_reload; 7650 trace_kvm_fpu(0); 7651 } 7652 7653 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 7654 { 7655 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask; 7656 7657 kvmclock_reset(vcpu); 7658 7659 kvm_x86_ops->vcpu_free(vcpu); 7660 free_cpumask_var(wbinvd_dirty_mask); 7661 } 7662 7663 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 7664 unsigned int id) 7665 { 7666 struct kvm_vcpu *vcpu; 7667 7668 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 7669 printk_once(KERN_WARNING 7670 "kvm: SMP vm created on host with unstable TSC; " 7671 "guest TSC will not be reliable\n"); 7672 7673 vcpu = kvm_x86_ops->vcpu_create(kvm, id); 7674 7675 return vcpu; 7676 } 7677 7678 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 7679 { 7680 int r; 7681 7682 kvm_vcpu_mtrr_init(vcpu); 7683 r = vcpu_load(vcpu); 7684 if (r) 7685 return r; 7686 kvm_vcpu_reset(vcpu, false); 7687 kvm_mmu_setup(vcpu); 7688 vcpu_put(vcpu); 7689 return r; 7690 } 7691 7692 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 7693 { 7694 struct msr_data msr; 7695 struct kvm *kvm = vcpu->kvm; 7696 7697 kvm_hv_vcpu_postcreate(vcpu); 7698 7699 if (vcpu_load(vcpu)) 7700 return; 7701 msr.data = 0x0; 7702 msr.index = MSR_IA32_TSC; 7703 msr.host_initiated = true; 7704 kvm_write_tsc(vcpu, &msr); 7705 vcpu_put(vcpu); 7706 7707 if (!kvmclock_periodic_sync) 7708 return; 7709 7710 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 7711 KVMCLOCK_SYNC_PERIOD); 7712 } 7713 7714 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 7715 { 7716 int r; 7717 vcpu->arch.apf.msr_val = 0; 7718 7719 r = vcpu_load(vcpu); 7720 BUG_ON(r); 7721 kvm_mmu_unload(vcpu); 7722 vcpu_put(vcpu); 7723 7724 kvm_x86_ops->vcpu_free(vcpu); 7725 } 7726 7727 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 7728 { 7729 vcpu->arch.hflags = 0; 7730 7731 vcpu->arch.smi_pending = 0; 7732 atomic_set(&vcpu->arch.nmi_queued, 0); 7733 vcpu->arch.nmi_pending = 0; 7734 vcpu->arch.nmi_injected = false; 7735 kvm_clear_interrupt_queue(vcpu); 7736 kvm_clear_exception_queue(vcpu); 7737 7738 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 7739 kvm_update_dr0123(vcpu); 7740 vcpu->arch.dr6 = DR6_INIT; 7741 kvm_update_dr6(vcpu); 7742 vcpu->arch.dr7 = DR7_FIXED_1; 7743 kvm_update_dr7(vcpu); 7744 7745 vcpu->arch.cr2 = 0; 7746 7747 kvm_make_request(KVM_REQ_EVENT, vcpu); 7748 vcpu->arch.apf.msr_val = 0; 7749 vcpu->arch.st.msr_val = 0; 7750 7751 kvmclock_reset(vcpu); 7752 7753 kvm_clear_async_pf_completion_queue(vcpu); 7754 kvm_async_pf_hash_reset(vcpu); 7755 vcpu->arch.apf.halted = false; 7756 7757 if (!init_event) { 7758 kvm_pmu_reset(vcpu); 7759 vcpu->arch.smbase = 0x30000; 7760 7761 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 7762 vcpu->arch.msr_misc_features_enables = 0; 7763 } 7764 7765 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 7766 vcpu->arch.regs_avail = ~0; 7767 vcpu->arch.regs_dirty = ~0; 7768 7769 kvm_x86_ops->vcpu_reset(vcpu, init_event); 7770 } 7771 7772 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 7773 { 7774 struct kvm_segment cs; 7775 7776 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 7777 cs.selector = vector << 8; 7778 cs.base = vector << 12; 7779 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 7780 kvm_rip_write(vcpu, 0); 7781 } 7782 7783 int kvm_arch_hardware_enable(void) 7784 { 7785 struct kvm *kvm; 7786 struct kvm_vcpu *vcpu; 7787 int i; 7788 int ret; 7789 u64 local_tsc; 7790 u64 max_tsc = 0; 7791 bool stable, backwards_tsc = false; 7792 7793 kvm_shared_msr_cpu_online(); 7794 ret = kvm_x86_ops->hardware_enable(); 7795 if (ret != 0) 7796 return ret; 7797 7798 local_tsc = rdtsc(); 7799 stable = !check_tsc_unstable(); 7800 list_for_each_entry(kvm, &vm_list, vm_list) { 7801 kvm_for_each_vcpu(i, vcpu, kvm) { 7802 if (!stable && vcpu->cpu == smp_processor_id()) 7803 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 7804 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 7805 backwards_tsc = true; 7806 if (vcpu->arch.last_host_tsc > max_tsc) 7807 max_tsc = vcpu->arch.last_host_tsc; 7808 } 7809 } 7810 } 7811 7812 /* 7813 * Sometimes, even reliable TSCs go backwards. This happens on 7814 * platforms that reset TSC during suspend or hibernate actions, but 7815 * maintain synchronization. We must compensate. Fortunately, we can 7816 * detect that condition here, which happens early in CPU bringup, 7817 * before any KVM threads can be running. Unfortunately, we can't 7818 * bring the TSCs fully up to date with real time, as we aren't yet far 7819 * enough into CPU bringup that we know how much real time has actually 7820 * elapsed; our helper function, ktime_get_boot_ns() will be using boot 7821 * variables that haven't been updated yet. 7822 * 7823 * So we simply find the maximum observed TSC above, then record the 7824 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 7825 * the adjustment will be applied. Note that we accumulate 7826 * adjustments, in case multiple suspend cycles happen before some VCPU 7827 * gets a chance to run again. In the event that no KVM threads get a 7828 * chance to run, we will miss the entire elapsed period, as we'll have 7829 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 7830 * loose cycle time. This isn't too big a deal, since the loss will be 7831 * uniform across all VCPUs (not to mention the scenario is extremely 7832 * unlikely). It is possible that a second hibernate recovery happens 7833 * much faster than a first, causing the observed TSC here to be 7834 * smaller; this would require additional padding adjustment, which is 7835 * why we set last_host_tsc to the local tsc observed here. 7836 * 7837 * N.B. - this code below runs only on platforms with reliable TSC, 7838 * as that is the only way backwards_tsc is set above. Also note 7839 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 7840 * have the same delta_cyc adjustment applied if backwards_tsc 7841 * is detected. Note further, this adjustment is only done once, 7842 * as we reset last_host_tsc on all VCPUs to stop this from being 7843 * called multiple times (one for each physical CPU bringup). 7844 * 7845 * Platforms with unreliable TSCs don't have to deal with this, they 7846 * will be compensated by the logic in vcpu_load, which sets the TSC to 7847 * catchup mode. This will catchup all VCPUs to real time, but cannot 7848 * guarantee that they stay in perfect synchronization. 7849 */ 7850 if (backwards_tsc) { 7851 u64 delta_cyc = max_tsc - local_tsc; 7852 list_for_each_entry(kvm, &vm_list, vm_list) { 7853 kvm->arch.backwards_tsc_observed = true; 7854 kvm_for_each_vcpu(i, vcpu, kvm) { 7855 vcpu->arch.tsc_offset_adjustment += delta_cyc; 7856 vcpu->arch.last_host_tsc = local_tsc; 7857 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 7858 } 7859 7860 /* 7861 * We have to disable TSC offset matching.. if you were 7862 * booting a VM while issuing an S4 host suspend.... 7863 * you may have some problem. Solving this issue is 7864 * left as an exercise to the reader. 7865 */ 7866 kvm->arch.last_tsc_nsec = 0; 7867 kvm->arch.last_tsc_write = 0; 7868 } 7869 7870 } 7871 return 0; 7872 } 7873 7874 void kvm_arch_hardware_disable(void) 7875 { 7876 kvm_x86_ops->hardware_disable(); 7877 drop_user_return_notifiers(); 7878 } 7879 7880 int kvm_arch_hardware_setup(void) 7881 { 7882 int r; 7883 7884 r = kvm_x86_ops->hardware_setup(); 7885 if (r != 0) 7886 return r; 7887 7888 if (kvm_has_tsc_control) { 7889 /* 7890 * Make sure the user can only configure tsc_khz values that 7891 * fit into a signed integer. 7892 * A min value is not calculated needed because it will always 7893 * be 1 on all machines. 7894 */ 7895 u64 max = min(0x7fffffffULL, 7896 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 7897 kvm_max_guest_tsc_khz = max; 7898 7899 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 7900 } 7901 7902 kvm_init_msr_list(); 7903 return 0; 7904 } 7905 7906 void kvm_arch_hardware_unsetup(void) 7907 { 7908 kvm_x86_ops->hardware_unsetup(); 7909 } 7910 7911 void kvm_arch_check_processor_compat(void *rtn) 7912 { 7913 kvm_x86_ops->check_processor_compatibility(rtn); 7914 } 7915 7916 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 7917 { 7918 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 7919 } 7920 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 7921 7922 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 7923 { 7924 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 7925 } 7926 7927 struct static_key kvm_no_apic_vcpu __read_mostly; 7928 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu); 7929 7930 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 7931 { 7932 struct page *page; 7933 struct kvm *kvm; 7934 int r; 7935 7936 BUG_ON(vcpu->kvm == NULL); 7937 kvm = vcpu->kvm; 7938 7939 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(); 7940 vcpu->arch.pv.pv_unhalted = false; 7941 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 7942 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 7943 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 7944 else 7945 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 7946 7947 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 7948 if (!page) { 7949 r = -ENOMEM; 7950 goto fail; 7951 } 7952 vcpu->arch.pio_data = page_address(page); 7953 7954 kvm_set_tsc_khz(vcpu, max_tsc_khz); 7955 7956 r = kvm_mmu_create(vcpu); 7957 if (r < 0) 7958 goto fail_free_pio_data; 7959 7960 if (irqchip_in_kernel(kvm)) { 7961 r = kvm_create_lapic(vcpu); 7962 if (r < 0) 7963 goto fail_mmu_destroy; 7964 } else 7965 static_key_slow_inc(&kvm_no_apic_vcpu); 7966 7967 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 7968 GFP_KERNEL); 7969 if (!vcpu->arch.mce_banks) { 7970 r = -ENOMEM; 7971 goto fail_free_lapic; 7972 } 7973 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 7974 7975 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { 7976 r = -ENOMEM; 7977 goto fail_free_mce_banks; 7978 } 7979 7980 fx_init(vcpu); 7981 7982 vcpu->arch.ia32_tsc_adjust_msr = 0x0; 7983 vcpu->arch.pv_time_enabled = false; 7984 7985 vcpu->arch.guest_supported_xcr0 = 0; 7986 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 7987 7988 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 7989 7990 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 7991 7992 kvm_async_pf_hash_reset(vcpu); 7993 kvm_pmu_init(vcpu); 7994 7995 vcpu->arch.pending_external_vector = -1; 7996 7997 kvm_hv_vcpu_init(vcpu); 7998 7999 return 0; 8000 8001 fail_free_mce_banks: 8002 kfree(vcpu->arch.mce_banks); 8003 fail_free_lapic: 8004 kvm_free_lapic(vcpu); 8005 fail_mmu_destroy: 8006 kvm_mmu_destroy(vcpu); 8007 fail_free_pio_data: 8008 free_page((unsigned long)vcpu->arch.pio_data); 8009 fail: 8010 return r; 8011 } 8012 8013 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 8014 { 8015 int idx; 8016 8017 kvm_hv_vcpu_uninit(vcpu); 8018 kvm_pmu_destroy(vcpu); 8019 kfree(vcpu->arch.mce_banks); 8020 kvm_free_lapic(vcpu); 8021 idx = srcu_read_lock(&vcpu->kvm->srcu); 8022 kvm_mmu_destroy(vcpu); 8023 srcu_read_unlock(&vcpu->kvm->srcu, idx); 8024 free_page((unsigned long)vcpu->arch.pio_data); 8025 if (!lapic_in_kernel(vcpu)) 8026 static_key_slow_dec(&kvm_no_apic_vcpu); 8027 } 8028 8029 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 8030 { 8031 kvm_x86_ops->sched_in(vcpu, cpu); 8032 } 8033 8034 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 8035 { 8036 if (type) 8037 return -EINVAL; 8038 8039 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 8040 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 8041 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages); 8042 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 8043 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 8044 8045 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 8046 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 8047 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 8048 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 8049 &kvm->arch.irq_sources_bitmap); 8050 8051 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 8052 mutex_init(&kvm->arch.apic_map_lock); 8053 mutex_init(&kvm->arch.hyperv.hv_lock); 8054 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); 8055 8056 kvm->arch.kvmclock_offset = -ktime_get_boot_ns(); 8057 pvclock_update_vm_gtod_copy(kvm); 8058 8059 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 8060 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 8061 8062 kvm_page_track_init(kvm); 8063 kvm_mmu_init_vm(kvm); 8064 8065 if (kvm_x86_ops->vm_init) 8066 return kvm_x86_ops->vm_init(kvm); 8067 8068 return 0; 8069 } 8070 8071 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 8072 { 8073 int r; 8074 r = vcpu_load(vcpu); 8075 BUG_ON(r); 8076 kvm_mmu_unload(vcpu); 8077 vcpu_put(vcpu); 8078 } 8079 8080 static void kvm_free_vcpus(struct kvm *kvm) 8081 { 8082 unsigned int i; 8083 struct kvm_vcpu *vcpu; 8084 8085 /* 8086 * Unpin any mmu pages first. 8087 */ 8088 kvm_for_each_vcpu(i, vcpu, kvm) { 8089 kvm_clear_async_pf_completion_queue(vcpu); 8090 kvm_unload_vcpu_mmu(vcpu); 8091 } 8092 kvm_for_each_vcpu(i, vcpu, kvm) 8093 kvm_arch_vcpu_free(vcpu); 8094 8095 mutex_lock(&kvm->lock); 8096 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 8097 kvm->vcpus[i] = NULL; 8098 8099 atomic_set(&kvm->online_vcpus, 0); 8100 mutex_unlock(&kvm->lock); 8101 } 8102 8103 void kvm_arch_sync_events(struct kvm *kvm) 8104 { 8105 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 8106 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 8107 kvm_free_pit(kvm); 8108 } 8109 8110 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8111 { 8112 int i, r; 8113 unsigned long hva; 8114 struct kvm_memslots *slots = kvm_memslots(kvm); 8115 struct kvm_memory_slot *slot, old; 8116 8117 /* Called with kvm->slots_lock held. */ 8118 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 8119 return -EINVAL; 8120 8121 slot = id_to_memslot(slots, id); 8122 if (size) { 8123 if (slot->npages) 8124 return -EEXIST; 8125 8126 /* 8127 * MAP_SHARED to prevent internal slot pages from being moved 8128 * by fork()/COW. 8129 */ 8130 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 8131 MAP_SHARED | MAP_ANONYMOUS, 0); 8132 if (IS_ERR((void *)hva)) 8133 return PTR_ERR((void *)hva); 8134 } else { 8135 if (!slot->npages) 8136 return 0; 8137 8138 hva = 0; 8139 } 8140 8141 old = *slot; 8142 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 8143 struct kvm_userspace_memory_region m; 8144 8145 m.slot = id | (i << 16); 8146 m.flags = 0; 8147 m.guest_phys_addr = gpa; 8148 m.userspace_addr = hva; 8149 m.memory_size = size; 8150 r = __kvm_set_memory_region(kvm, &m); 8151 if (r < 0) 8152 return r; 8153 } 8154 8155 if (!size) { 8156 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE); 8157 WARN_ON(r < 0); 8158 } 8159 8160 return 0; 8161 } 8162 EXPORT_SYMBOL_GPL(__x86_set_memory_region); 8163 8164 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size) 8165 { 8166 int r; 8167 8168 mutex_lock(&kvm->slots_lock); 8169 r = __x86_set_memory_region(kvm, id, gpa, size); 8170 mutex_unlock(&kvm->slots_lock); 8171 8172 return r; 8173 } 8174 EXPORT_SYMBOL_GPL(x86_set_memory_region); 8175 8176 void kvm_arch_destroy_vm(struct kvm *kvm) 8177 { 8178 if (current->mm == kvm->mm) { 8179 /* 8180 * Free memory regions allocated on behalf of userspace, 8181 * unless the the memory map has changed due to process exit 8182 * or fd copying. 8183 */ 8184 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0); 8185 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0); 8186 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 8187 } 8188 if (kvm_x86_ops->vm_destroy) 8189 kvm_x86_ops->vm_destroy(kvm); 8190 kvm_pic_destroy(kvm); 8191 kvm_ioapic_destroy(kvm); 8192 kvm_free_vcpus(kvm); 8193 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 8194 kvm_mmu_uninit_vm(kvm); 8195 kvm_page_track_cleanup(kvm); 8196 } 8197 8198 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 8199 struct kvm_memory_slot *dont) 8200 { 8201 int i; 8202 8203 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8204 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { 8205 kvfree(free->arch.rmap[i]); 8206 free->arch.rmap[i] = NULL; 8207 } 8208 if (i == 0) 8209 continue; 8210 8211 if (!dont || free->arch.lpage_info[i - 1] != 8212 dont->arch.lpage_info[i - 1]) { 8213 kvfree(free->arch.lpage_info[i - 1]); 8214 free->arch.lpage_info[i - 1] = NULL; 8215 } 8216 } 8217 8218 kvm_page_track_free_memslot(free, dont); 8219 } 8220 8221 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 8222 unsigned long npages) 8223 { 8224 int i; 8225 8226 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8227 struct kvm_lpage_info *linfo; 8228 unsigned long ugfn; 8229 int lpages; 8230 int level = i + 1; 8231 8232 lpages = gfn_to_index(slot->base_gfn + npages - 1, 8233 slot->base_gfn, level) + 1; 8234 8235 slot->arch.rmap[i] = 8236 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL); 8237 if (!slot->arch.rmap[i]) 8238 goto out_free; 8239 if (i == 0) 8240 continue; 8241 8242 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL); 8243 if (!linfo) 8244 goto out_free; 8245 8246 slot->arch.lpage_info[i - 1] = linfo; 8247 8248 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 8249 linfo[0].disallow_lpage = 1; 8250 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 8251 linfo[lpages - 1].disallow_lpage = 1; 8252 ugfn = slot->userspace_addr >> PAGE_SHIFT; 8253 /* 8254 * If the gfn and userspace address are not aligned wrt each 8255 * other, or if explicitly asked to, disable large page 8256 * support for this slot 8257 */ 8258 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 8259 !kvm_largepages_enabled()) { 8260 unsigned long j; 8261 8262 for (j = 0; j < lpages; ++j) 8263 linfo[j].disallow_lpage = 1; 8264 } 8265 } 8266 8267 if (kvm_page_track_create_memslot(slot, npages)) 8268 goto out_free; 8269 8270 return 0; 8271 8272 out_free: 8273 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 8274 kvfree(slot->arch.rmap[i]); 8275 slot->arch.rmap[i] = NULL; 8276 if (i == 0) 8277 continue; 8278 8279 kvfree(slot->arch.lpage_info[i - 1]); 8280 slot->arch.lpage_info[i - 1] = NULL; 8281 } 8282 return -ENOMEM; 8283 } 8284 8285 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) 8286 { 8287 /* 8288 * memslots->generation has been incremented. 8289 * mmio generation may have reached its maximum value. 8290 */ 8291 kvm_mmu_invalidate_mmio_sptes(kvm, slots); 8292 } 8293 8294 int kvm_arch_prepare_memory_region(struct kvm *kvm, 8295 struct kvm_memory_slot *memslot, 8296 const struct kvm_userspace_memory_region *mem, 8297 enum kvm_mr_change change) 8298 { 8299 return 0; 8300 } 8301 8302 static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 8303 struct kvm_memory_slot *new) 8304 { 8305 /* Still write protect RO slot */ 8306 if (new->flags & KVM_MEM_READONLY) { 8307 kvm_mmu_slot_remove_write_access(kvm, new); 8308 return; 8309 } 8310 8311 /* 8312 * Call kvm_x86_ops dirty logging hooks when they are valid. 8313 * 8314 * kvm_x86_ops->slot_disable_log_dirty is called when: 8315 * 8316 * - KVM_MR_CREATE with dirty logging is disabled 8317 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag 8318 * 8319 * The reason is, in case of PML, we need to set D-bit for any slots 8320 * with dirty logging disabled in order to eliminate unnecessary GPA 8321 * logging in PML buffer (and potential PML buffer full VMEXT). This 8322 * guarantees leaving PML enabled during guest's lifetime won't have 8323 * any additonal overhead from PML when guest is running with dirty 8324 * logging disabled for memory slots. 8325 * 8326 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot 8327 * to dirty logging mode. 8328 * 8329 * If kvm_x86_ops dirty logging hooks are invalid, use write protect. 8330 * 8331 * In case of write protect: 8332 * 8333 * Write protect all pages for dirty logging. 8334 * 8335 * All the sptes including the large sptes which point to this 8336 * slot are set to readonly. We can not create any new large 8337 * spte on this slot until the end of the logging. 8338 * 8339 * See the comments in fast_page_fault(). 8340 */ 8341 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { 8342 if (kvm_x86_ops->slot_enable_log_dirty) 8343 kvm_x86_ops->slot_enable_log_dirty(kvm, new); 8344 else 8345 kvm_mmu_slot_remove_write_access(kvm, new); 8346 } else { 8347 if (kvm_x86_ops->slot_disable_log_dirty) 8348 kvm_x86_ops->slot_disable_log_dirty(kvm, new); 8349 } 8350 } 8351 8352 void kvm_arch_commit_memory_region(struct kvm *kvm, 8353 const struct kvm_userspace_memory_region *mem, 8354 const struct kvm_memory_slot *old, 8355 const struct kvm_memory_slot *new, 8356 enum kvm_mr_change change) 8357 { 8358 int nr_mmu_pages = 0; 8359 8360 if (!kvm->arch.n_requested_mmu_pages) 8361 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 8362 8363 if (nr_mmu_pages) 8364 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 8365 8366 /* 8367 * Dirty logging tracks sptes in 4k granularity, meaning that large 8368 * sptes have to be split. If live migration is successful, the guest 8369 * in the source machine will be destroyed and large sptes will be 8370 * created in the destination. However, if the guest continues to run 8371 * in the source machine (for example if live migration fails), small 8372 * sptes will remain around and cause bad performance. 8373 * 8374 * Scan sptes if dirty logging has been stopped, dropping those 8375 * which can be collapsed into a single large-page spte. Later 8376 * page faults will create the large-page sptes. 8377 */ 8378 if ((change != KVM_MR_DELETE) && 8379 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && 8380 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 8381 kvm_mmu_zap_collapsible_sptes(kvm, new); 8382 8383 /* 8384 * Set up write protection and/or dirty logging for the new slot. 8385 * 8386 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have 8387 * been zapped so no dirty logging staff is needed for old slot. For 8388 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the 8389 * new and it's also covered when dealing with the new slot. 8390 * 8391 * FIXME: const-ify all uses of struct kvm_memory_slot. 8392 */ 8393 if (change != KVM_MR_DELETE) 8394 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new); 8395 } 8396 8397 void kvm_arch_flush_shadow_all(struct kvm *kvm) 8398 { 8399 kvm_mmu_invalidate_zap_all_pages(kvm); 8400 } 8401 8402 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 8403 struct kvm_memory_slot *slot) 8404 { 8405 kvm_page_track_flush_slot(kvm, slot); 8406 } 8407 8408 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 8409 { 8410 if (!list_empty_careful(&vcpu->async_pf.done)) 8411 return true; 8412 8413 if (kvm_apic_has_events(vcpu)) 8414 return true; 8415 8416 if (vcpu->arch.pv.pv_unhalted) 8417 return true; 8418 8419 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 8420 (vcpu->arch.nmi_pending && 8421 kvm_x86_ops->nmi_allowed(vcpu))) 8422 return true; 8423 8424 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 8425 (vcpu->arch.smi_pending && !is_smm(vcpu))) 8426 return true; 8427 8428 if (kvm_arch_interrupt_allowed(vcpu) && 8429 kvm_cpu_has_interrupt(vcpu)) 8430 return true; 8431 8432 if (kvm_hv_has_stimer_pending(vcpu)) 8433 return true; 8434 8435 return false; 8436 } 8437 8438 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 8439 { 8440 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 8441 } 8442 8443 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 8444 { 8445 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 8446 } 8447 8448 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 8449 { 8450 return kvm_x86_ops->interrupt_allowed(vcpu); 8451 } 8452 8453 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 8454 { 8455 if (is_64_bit_mode(vcpu)) 8456 return kvm_rip_read(vcpu); 8457 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 8458 kvm_rip_read(vcpu)); 8459 } 8460 EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 8461 8462 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 8463 { 8464 return kvm_get_linear_rip(vcpu) == linear_rip; 8465 } 8466 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 8467 8468 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 8469 { 8470 unsigned long rflags; 8471 8472 rflags = kvm_x86_ops->get_rflags(vcpu); 8473 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 8474 rflags &= ~X86_EFLAGS_TF; 8475 return rflags; 8476 } 8477 EXPORT_SYMBOL_GPL(kvm_get_rflags); 8478 8479 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8480 { 8481 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 8482 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 8483 rflags |= X86_EFLAGS_TF; 8484 kvm_x86_ops->set_rflags(vcpu, rflags); 8485 } 8486 8487 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 8488 { 8489 __kvm_set_rflags(vcpu, rflags); 8490 kvm_make_request(KVM_REQ_EVENT, vcpu); 8491 } 8492 EXPORT_SYMBOL_GPL(kvm_set_rflags); 8493 8494 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 8495 { 8496 int r; 8497 8498 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 8499 work->wakeup_all) 8500 return; 8501 8502 r = kvm_mmu_reload(vcpu); 8503 if (unlikely(r)) 8504 return; 8505 8506 if (!vcpu->arch.mmu.direct_map && 8507 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 8508 return; 8509 8510 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 8511 } 8512 8513 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 8514 { 8515 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 8516 } 8517 8518 static inline u32 kvm_async_pf_next_probe(u32 key) 8519 { 8520 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 8521 } 8522 8523 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8524 { 8525 u32 key = kvm_async_pf_hash_fn(gfn); 8526 8527 while (vcpu->arch.apf.gfns[key] != ~0) 8528 key = kvm_async_pf_next_probe(key); 8529 8530 vcpu->arch.apf.gfns[key] = gfn; 8531 } 8532 8533 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 8534 { 8535 int i; 8536 u32 key = kvm_async_pf_hash_fn(gfn); 8537 8538 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 8539 (vcpu->arch.apf.gfns[key] != gfn && 8540 vcpu->arch.apf.gfns[key] != ~0); i++) 8541 key = kvm_async_pf_next_probe(key); 8542 8543 return key; 8544 } 8545 8546 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8547 { 8548 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 8549 } 8550 8551 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 8552 { 8553 u32 i, j, k; 8554 8555 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 8556 while (true) { 8557 vcpu->arch.apf.gfns[i] = ~0; 8558 do { 8559 j = kvm_async_pf_next_probe(j); 8560 if (vcpu->arch.apf.gfns[j] == ~0) 8561 return; 8562 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 8563 /* 8564 * k lies cyclically in ]i,j] 8565 * | i.k.j | 8566 * |....j i.k.| or |.k..j i...| 8567 */ 8568 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 8569 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 8570 i = j; 8571 } 8572 } 8573 8574 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 8575 { 8576 8577 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 8578 sizeof(val)); 8579 } 8580 8581 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 8582 struct kvm_async_pf *work) 8583 { 8584 struct x86_exception fault; 8585 8586 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 8587 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 8588 8589 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 8590 (vcpu->arch.apf.send_user_only && 8591 kvm_x86_ops->get_cpl(vcpu) == 0)) 8592 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 8593 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 8594 fault.vector = PF_VECTOR; 8595 fault.error_code_valid = true; 8596 fault.error_code = 0; 8597 fault.nested_page_fault = false; 8598 fault.address = work->arch.token; 8599 fault.async_page_fault = true; 8600 kvm_inject_page_fault(vcpu, &fault); 8601 } 8602 } 8603 8604 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 8605 struct kvm_async_pf *work) 8606 { 8607 struct x86_exception fault; 8608 8609 if (work->wakeup_all) 8610 work->arch.token = ~0; /* broadcast wakeup */ 8611 else 8612 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 8613 trace_kvm_async_pf_ready(work->arch.token, work->gva); 8614 8615 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 8616 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 8617 fault.vector = PF_VECTOR; 8618 fault.error_code_valid = true; 8619 fault.error_code = 0; 8620 fault.nested_page_fault = false; 8621 fault.address = work->arch.token; 8622 fault.async_page_fault = true; 8623 kvm_inject_page_fault(vcpu, &fault); 8624 } 8625 vcpu->arch.apf.halted = false; 8626 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 8627 } 8628 8629 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 8630 { 8631 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 8632 return true; 8633 else 8634 return kvm_can_do_async_pf(vcpu); 8635 } 8636 8637 void kvm_arch_start_assignment(struct kvm *kvm) 8638 { 8639 atomic_inc(&kvm->arch.assigned_device_count); 8640 } 8641 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 8642 8643 void kvm_arch_end_assignment(struct kvm *kvm) 8644 { 8645 atomic_dec(&kvm->arch.assigned_device_count); 8646 } 8647 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 8648 8649 bool kvm_arch_has_assigned_device(struct kvm *kvm) 8650 { 8651 return atomic_read(&kvm->arch.assigned_device_count); 8652 } 8653 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 8654 8655 void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 8656 { 8657 atomic_inc(&kvm->arch.noncoherent_dma_count); 8658 } 8659 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 8660 8661 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 8662 { 8663 atomic_dec(&kvm->arch.noncoherent_dma_count); 8664 } 8665 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 8666 8667 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 8668 { 8669 return atomic_read(&kvm->arch.noncoherent_dma_count); 8670 } 8671 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 8672 8673 bool kvm_arch_has_irq_bypass(void) 8674 { 8675 return kvm_x86_ops->update_pi_irte != NULL; 8676 } 8677 8678 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 8679 struct irq_bypass_producer *prod) 8680 { 8681 struct kvm_kernel_irqfd *irqfd = 8682 container_of(cons, struct kvm_kernel_irqfd, consumer); 8683 8684 irqfd->producer = prod; 8685 8686 return kvm_x86_ops->update_pi_irte(irqfd->kvm, 8687 prod->irq, irqfd->gsi, 1); 8688 } 8689 8690 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 8691 struct irq_bypass_producer *prod) 8692 { 8693 int ret; 8694 struct kvm_kernel_irqfd *irqfd = 8695 container_of(cons, struct kvm_kernel_irqfd, consumer); 8696 8697 WARN_ON(irqfd->producer != prod); 8698 irqfd->producer = NULL; 8699 8700 /* 8701 * When producer of consumer is unregistered, we change back to 8702 * remapped mode, so we can re-use the current implementation 8703 * when the irq is masked/disabled or the consumer side (KVM 8704 * int this case doesn't want to receive the interrupts. 8705 */ 8706 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0); 8707 if (ret) 8708 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 8709 " fails: %d\n", irqfd->consumer.token, ret); 8710 } 8711 8712 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 8713 uint32_t guest_irq, bool set) 8714 { 8715 if (!kvm_x86_ops->update_pi_irte) 8716 return -EINVAL; 8717 8718 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set); 8719 } 8720 8721 bool kvm_vector_hashing_enabled(void) 8722 { 8723 return vector_hashing; 8724 } 8725 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled); 8726 8727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 8728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 8729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 8730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 8731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 8732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 8733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 8734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 8737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 8738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 8739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 8740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 8741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window); 8742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 8743 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 8744 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 8745 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 8746