1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <trace/events/kvm.h> 50 51 #define CREATE_TRACE_POINTS 52 #include "trace.h" 53 54 #include <asm/debugreg.h> 55 #include <asm/msr.h> 56 #include <asm/desc.h> 57 #include <asm/mtrr.h> 58 #include <asm/mce.h> 59 #include <asm/i387.h> 60 #include <asm/fpu-internal.h> /* Ugh! */ 61 #include <asm/xcr.h> 62 #include <asm/pvclock.h> 63 #include <asm/div64.h> 64 65 #define MAX_IO_MSRS 256 66 #define KVM_MAX_MCE_BANKS 32 67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 68 69 #define emul_to_vcpu(ctxt) \ 70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 71 72 /* EFER defaults: 73 * - enable syscall per default because its emulated by KVM 74 * - enable LME and LMA per default on 64 bit KVM 75 */ 76 #ifdef CONFIG_X86_64 77 static 78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 79 #else 80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 81 #endif 82 83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 85 86 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 87 static void process_nmi(struct kvm_vcpu *vcpu); 88 89 struct kvm_x86_ops *kvm_x86_ops; 90 EXPORT_SYMBOL_GPL(kvm_x86_ops); 91 92 static bool ignore_msrs = 0; 93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 94 95 bool kvm_has_tsc_control; 96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 97 u32 kvm_max_guest_tsc_khz; 98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 99 100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 101 static u32 tsc_tolerance_ppm = 250; 102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 103 104 #define KVM_NR_SHARED_MSRS 16 105 106 struct kvm_shared_msrs_global { 107 int nr; 108 u32 msrs[KVM_NR_SHARED_MSRS]; 109 }; 110 111 struct kvm_shared_msrs { 112 struct user_return_notifier urn; 113 bool registered; 114 struct kvm_shared_msr_values { 115 u64 host; 116 u64 curr; 117 } values[KVM_NR_SHARED_MSRS]; 118 }; 119 120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); 122 123 struct kvm_stats_debugfs_item debugfs_entries[] = { 124 { "pf_fixed", VCPU_STAT(pf_fixed) }, 125 { "pf_guest", VCPU_STAT(pf_guest) }, 126 { "tlb_flush", VCPU_STAT(tlb_flush) }, 127 { "invlpg", VCPU_STAT(invlpg) }, 128 { "exits", VCPU_STAT(exits) }, 129 { "io_exits", VCPU_STAT(io_exits) }, 130 { "mmio_exits", VCPU_STAT(mmio_exits) }, 131 { "signal_exits", VCPU_STAT(signal_exits) }, 132 { "irq_window", VCPU_STAT(irq_window_exits) }, 133 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 134 { "halt_exits", VCPU_STAT(halt_exits) }, 135 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 136 { "hypercalls", VCPU_STAT(hypercalls) }, 137 { "request_irq", VCPU_STAT(request_irq_exits) }, 138 { "irq_exits", VCPU_STAT(irq_exits) }, 139 { "host_state_reload", VCPU_STAT(host_state_reload) }, 140 { "efer_reload", VCPU_STAT(efer_reload) }, 141 { "fpu_reload", VCPU_STAT(fpu_reload) }, 142 { "insn_emulation", VCPU_STAT(insn_emulation) }, 143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 144 { "irq_injections", VCPU_STAT(irq_injections) }, 145 { "nmi_injections", VCPU_STAT(nmi_injections) }, 146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 147 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 150 { "mmu_flooded", VM_STAT(mmu_flooded) }, 151 { "mmu_recycled", VM_STAT(mmu_recycled) }, 152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 153 { "mmu_unsync", VM_STAT(mmu_unsync) }, 154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 155 { "largepages", VM_STAT(lpages) }, 156 { NULL } 157 }; 158 159 u64 __read_mostly host_xcr0; 160 161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 162 163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 164 { 165 int i; 166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 167 vcpu->arch.apf.gfns[i] = ~0; 168 } 169 170 static void kvm_on_user_return(struct user_return_notifier *urn) 171 { 172 unsigned slot; 173 struct kvm_shared_msrs *locals 174 = container_of(urn, struct kvm_shared_msrs, urn); 175 struct kvm_shared_msr_values *values; 176 177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 178 values = &locals->values[slot]; 179 if (values->host != values->curr) { 180 wrmsrl(shared_msrs_global.msrs[slot], values->host); 181 values->curr = values->host; 182 } 183 } 184 locals->registered = false; 185 user_return_notifier_unregister(urn); 186 } 187 188 static void shared_msr_update(unsigned slot, u32 msr) 189 { 190 struct kvm_shared_msrs *smsr; 191 u64 value; 192 193 smsr = &__get_cpu_var(shared_msrs); 194 /* only read, and nobody should modify it at this time, 195 * so don't need lock */ 196 if (slot >= shared_msrs_global.nr) { 197 printk(KERN_ERR "kvm: invalid MSR slot!"); 198 return; 199 } 200 rdmsrl_safe(msr, &value); 201 smsr->values[slot].host = value; 202 smsr->values[slot].curr = value; 203 } 204 205 void kvm_define_shared_msr(unsigned slot, u32 msr) 206 { 207 if (slot >= shared_msrs_global.nr) 208 shared_msrs_global.nr = slot + 1; 209 shared_msrs_global.msrs[slot] = msr; 210 /* we need ensured the shared_msr_global have been updated */ 211 smp_wmb(); 212 } 213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 214 215 static void kvm_shared_msr_cpu_online(void) 216 { 217 unsigned i; 218 219 for (i = 0; i < shared_msrs_global.nr; ++i) 220 shared_msr_update(i, shared_msrs_global.msrs[i]); 221 } 222 223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 224 { 225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 226 227 if (((value ^ smsr->values[slot].curr) & mask) == 0) 228 return; 229 smsr->values[slot].curr = value; 230 wrmsrl(shared_msrs_global.msrs[slot], value); 231 if (!smsr->registered) { 232 smsr->urn.on_user_return = kvm_on_user_return; 233 user_return_notifier_register(&smsr->urn); 234 smsr->registered = true; 235 } 236 } 237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 238 239 static void drop_user_return_notifiers(void *ignore) 240 { 241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 242 243 if (smsr->registered) 244 kvm_on_user_return(&smsr->urn); 245 } 246 247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 248 { 249 if (irqchip_in_kernel(vcpu->kvm)) 250 return vcpu->arch.apic_base; 251 else 252 return vcpu->arch.apic_base; 253 } 254 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 255 256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 257 { 258 /* TODO: reserve bits check */ 259 if (irqchip_in_kernel(vcpu->kvm)) 260 kvm_lapic_set_base(vcpu, data); 261 else 262 vcpu->arch.apic_base = data; 263 } 264 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 265 266 #define EXCPT_BENIGN 0 267 #define EXCPT_CONTRIBUTORY 1 268 #define EXCPT_PF 2 269 270 static int exception_class(int vector) 271 { 272 switch (vector) { 273 case PF_VECTOR: 274 return EXCPT_PF; 275 case DE_VECTOR: 276 case TS_VECTOR: 277 case NP_VECTOR: 278 case SS_VECTOR: 279 case GP_VECTOR: 280 return EXCPT_CONTRIBUTORY; 281 default: 282 break; 283 } 284 return EXCPT_BENIGN; 285 } 286 287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 288 unsigned nr, bool has_error, u32 error_code, 289 bool reinject) 290 { 291 u32 prev_nr; 292 int class1, class2; 293 294 kvm_make_request(KVM_REQ_EVENT, vcpu); 295 296 if (!vcpu->arch.exception.pending) { 297 queue: 298 vcpu->arch.exception.pending = true; 299 vcpu->arch.exception.has_error_code = has_error; 300 vcpu->arch.exception.nr = nr; 301 vcpu->arch.exception.error_code = error_code; 302 vcpu->arch.exception.reinject = reinject; 303 return; 304 } 305 306 /* to check exception */ 307 prev_nr = vcpu->arch.exception.nr; 308 if (prev_nr == DF_VECTOR) { 309 /* triple fault -> shutdown */ 310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 311 return; 312 } 313 class1 = exception_class(prev_nr); 314 class2 = exception_class(nr); 315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 317 /* generate double fault per SDM Table 5-5 */ 318 vcpu->arch.exception.pending = true; 319 vcpu->arch.exception.has_error_code = true; 320 vcpu->arch.exception.nr = DF_VECTOR; 321 vcpu->arch.exception.error_code = 0; 322 } else 323 /* replace previous exception with a new one in a hope 324 that instruction re-execution will regenerate lost 325 exception */ 326 goto queue; 327 } 328 329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 330 { 331 kvm_multiple_exception(vcpu, nr, false, 0, false); 332 } 333 EXPORT_SYMBOL_GPL(kvm_queue_exception); 334 335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 336 { 337 kvm_multiple_exception(vcpu, nr, false, 0, true); 338 } 339 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 340 341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 342 { 343 if (err) 344 kvm_inject_gp(vcpu, 0); 345 else 346 kvm_x86_ops->skip_emulated_instruction(vcpu); 347 } 348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 349 350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 351 { 352 ++vcpu->stat.pf_guest; 353 vcpu->arch.cr2 = fault->address; 354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 355 } 356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 357 358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 359 { 360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 362 else 363 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 364 } 365 366 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 367 { 368 atomic_inc(&vcpu->arch.nmi_queued); 369 kvm_make_request(KVM_REQ_NMI, vcpu); 370 } 371 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 372 373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 374 { 375 kvm_multiple_exception(vcpu, nr, true, error_code, false); 376 } 377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 378 379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 380 { 381 kvm_multiple_exception(vcpu, nr, true, error_code, true); 382 } 383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 384 385 /* 386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 387 * a #GP and return false. 388 */ 389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 390 { 391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 392 return true; 393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 394 return false; 395 } 396 EXPORT_SYMBOL_GPL(kvm_require_cpl); 397 398 /* 399 * This function will be used to read from the physical memory of the currently 400 * running guest. The difference to kvm_read_guest_page is that this function 401 * can read from guest physical or from the guest's guest physical memory. 402 */ 403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 404 gfn_t ngfn, void *data, int offset, int len, 405 u32 access) 406 { 407 gfn_t real_gfn; 408 gpa_t ngpa; 409 410 ngpa = gfn_to_gpa(ngfn); 411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 412 if (real_gfn == UNMAPPED_GVA) 413 return -EFAULT; 414 415 real_gfn = gpa_to_gfn(real_gfn); 416 417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 418 } 419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 420 421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 422 void *data, int offset, int len, u32 access) 423 { 424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 425 data, offset, len, access); 426 } 427 428 /* 429 * Load the pae pdptrs. Return true is they are all valid. 430 */ 431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 432 { 433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 435 int i; 436 int ret; 437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 438 439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 440 offset * sizeof(u64), sizeof(pdpte), 441 PFERR_USER_MASK|PFERR_WRITE_MASK); 442 if (ret < 0) { 443 ret = 0; 444 goto out; 445 } 446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 447 if (is_present_gpte(pdpte[i]) && 448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 449 ret = 0; 450 goto out; 451 } 452 } 453 ret = 1; 454 455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 456 __set_bit(VCPU_EXREG_PDPTR, 457 (unsigned long *)&vcpu->arch.regs_avail); 458 __set_bit(VCPU_EXREG_PDPTR, 459 (unsigned long *)&vcpu->arch.regs_dirty); 460 out: 461 462 return ret; 463 } 464 EXPORT_SYMBOL_GPL(load_pdptrs); 465 466 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 467 { 468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 469 bool changed = true; 470 int offset; 471 gfn_t gfn; 472 int r; 473 474 if (is_long_mode(vcpu) || !is_pae(vcpu)) 475 return false; 476 477 if (!test_bit(VCPU_EXREG_PDPTR, 478 (unsigned long *)&vcpu->arch.regs_avail)) 479 return true; 480 481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 484 PFERR_USER_MASK | PFERR_WRITE_MASK); 485 if (r < 0) 486 goto out; 487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 488 out: 489 490 return changed; 491 } 492 493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 494 { 495 unsigned long old_cr0 = kvm_read_cr0(vcpu); 496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 497 X86_CR0_CD | X86_CR0_NW; 498 499 cr0 |= X86_CR0_ET; 500 501 #ifdef CONFIG_X86_64 502 if (cr0 & 0xffffffff00000000UL) 503 return 1; 504 #endif 505 506 cr0 &= ~CR0_RESERVED_BITS; 507 508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 509 return 1; 510 511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 512 return 1; 513 514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 515 #ifdef CONFIG_X86_64 516 if ((vcpu->arch.efer & EFER_LME)) { 517 int cs_db, cs_l; 518 519 if (!is_pae(vcpu)) 520 return 1; 521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 522 if (cs_l) 523 return 1; 524 } else 525 #endif 526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 527 kvm_read_cr3(vcpu))) 528 return 1; 529 } 530 531 kvm_x86_ops->set_cr0(vcpu, cr0); 532 533 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 534 kvm_clear_async_pf_completion_queue(vcpu); 535 kvm_async_pf_hash_reset(vcpu); 536 } 537 538 if ((cr0 ^ old_cr0) & update_bits) 539 kvm_mmu_reset_context(vcpu); 540 return 0; 541 } 542 EXPORT_SYMBOL_GPL(kvm_set_cr0); 543 544 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 545 { 546 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 547 } 548 EXPORT_SYMBOL_GPL(kvm_lmsw); 549 550 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 551 { 552 u64 xcr0; 553 554 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 555 if (index != XCR_XFEATURE_ENABLED_MASK) 556 return 1; 557 xcr0 = xcr; 558 if (kvm_x86_ops->get_cpl(vcpu) != 0) 559 return 1; 560 if (!(xcr0 & XSTATE_FP)) 561 return 1; 562 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 563 return 1; 564 if (xcr0 & ~host_xcr0) 565 return 1; 566 vcpu->arch.xcr0 = xcr0; 567 vcpu->guest_xcr0_loaded = 0; 568 return 0; 569 } 570 571 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 572 { 573 if (__kvm_set_xcr(vcpu, index, xcr)) { 574 kvm_inject_gp(vcpu, 0); 575 return 1; 576 } 577 return 0; 578 } 579 EXPORT_SYMBOL_GPL(kvm_set_xcr); 580 581 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 582 { 583 unsigned long old_cr4 = kvm_read_cr4(vcpu); 584 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 585 X86_CR4_PAE | X86_CR4_SMEP; 586 if (cr4 & CR4_RESERVED_BITS) 587 return 1; 588 589 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 590 return 1; 591 592 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 593 return 1; 594 595 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) 596 return 1; 597 598 if (is_long_mode(vcpu)) { 599 if (!(cr4 & X86_CR4_PAE)) 600 return 1; 601 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 602 && ((cr4 ^ old_cr4) & pdptr_bits) 603 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 604 kvm_read_cr3(vcpu))) 605 return 1; 606 607 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 608 return 1; 609 610 if ((cr4 ^ old_cr4) & pdptr_bits) 611 kvm_mmu_reset_context(vcpu); 612 613 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 614 kvm_update_cpuid(vcpu); 615 616 return 0; 617 } 618 EXPORT_SYMBOL_GPL(kvm_set_cr4); 619 620 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 621 { 622 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 623 kvm_mmu_sync_roots(vcpu); 624 kvm_mmu_flush_tlb(vcpu); 625 return 0; 626 } 627 628 if (is_long_mode(vcpu)) { 629 if (cr3 & CR3_L_MODE_RESERVED_BITS) 630 return 1; 631 } else { 632 if (is_pae(vcpu)) { 633 if (cr3 & CR3_PAE_RESERVED_BITS) 634 return 1; 635 if (is_paging(vcpu) && 636 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 637 return 1; 638 } 639 /* 640 * We don't check reserved bits in nonpae mode, because 641 * this isn't enforced, and VMware depends on this. 642 */ 643 } 644 645 /* 646 * Does the new cr3 value map to physical memory? (Note, we 647 * catch an invalid cr3 even in real-mode, because it would 648 * cause trouble later on when we turn on paging anyway.) 649 * 650 * A real CPU would silently accept an invalid cr3 and would 651 * attempt to use it - with largely undefined (and often hard 652 * to debug) behavior on the guest side. 653 */ 654 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) 655 return 1; 656 vcpu->arch.cr3 = cr3; 657 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 658 vcpu->arch.mmu.new_cr3(vcpu); 659 return 0; 660 } 661 EXPORT_SYMBOL_GPL(kvm_set_cr3); 662 663 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 664 { 665 if (cr8 & CR8_RESERVED_BITS) 666 return 1; 667 if (irqchip_in_kernel(vcpu->kvm)) 668 kvm_lapic_set_tpr(vcpu, cr8); 669 else 670 vcpu->arch.cr8 = cr8; 671 return 0; 672 } 673 EXPORT_SYMBOL_GPL(kvm_set_cr8); 674 675 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 676 { 677 if (irqchip_in_kernel(vcpu->kvm)) 678 return kvm_lapic_get_cr8(vcpu); 679 else 680 return vcpu->arch.cr8; 681 } 682 EXPORT_SYMBOL_GPL(kvm_get_cr8); 683 684 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 685 { 686 switch (dr) { 687 case 0 ... 3: 688 vcpu->arch.db[dr] = val; 689 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 690 vcpu->arch.eff_db[dr] = val; 691 break; 692 case 4: 693 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 694 return 1; /* #UD */ 695 /* fall through */ 696 case 6: 697 if (val & 0xffffffff00000000ULL) 698 return -1; /* #GP */ 699 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 700 break; 701 case 5: 702 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 703 return 1; /* #UD */ 704 /* fall through */ 705 default: /* 7 */ 706 if (val & 0xffffffff00000000ULL) 707 return -1; /* #GP */ 708 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 709 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 710 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7); 711 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK); 712 } 713 break; 714 } 715 716 return 0; 717 } 718 719 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 720 { 721 int res; 722 723 res = __kvm_set_dr(vcpu, dr, val); 724 if (res > 0) 725 kvm_queue_exception(vcpu, UD_VECTOR); 726 else if (res < 0) 727 kvm_inject_gp(vcpu, 0); 728 729 return res; 730 } 731 EXPORT_SYMBOL_GPL(kvm_set_dr); 732 733 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 734 { 735 switch (dr) { 736 case 0 ... 3: 737 *val = vcpu->arch.db[dr]; 738 break; 739 case 4: 740 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 741 return 1; 742 /* fall through */ 743 case 6: 744 *val = vcpu->arch.dr6; 745 break; 746 case 5: 747 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 748 return 1; 749 /* fall through */ 750 default: /* 7 */ 751 *val = vcpu->arch.dr7; 752 break; 753 } 754 755 return 0; 756 } 757 758 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 759 { 760 if (_kvm_get_dr(vcpu, dr, val)) { 761 kvm_queue_exception(vcpu, UD_VECTOR); 762 return 1; 763 } 764 return 0; 765 } 766 EXPORT_SYMBOL_GPL(kvm_get_dr); 767 768 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 769 { 770 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 771 u64 data; 772 int err; 773 774 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 775 if (err) 776 return err; 777 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 778 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 779 return err; 780 } 781 EXPORT_SYMBOL_GPL(kvm_rdpmc); 782 783 /* 784 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 785 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 786 * 787 * This list is modified at module load time to reflect the 788 * capabilities of the host cpu. This capabilities test skips MSRs that are 789 * kvm-specific. Those are put in the beginning of the list. 790 */ 791 792 #define KVM_SAVE_MSRS_BEGIN 9 793 static u32 msrs_to_save[] = { 794 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 795 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 796 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 797 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 798 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 799 MSR_STAR, 800 #ifdef CONFIG_X86_64 801 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 802 #endif 803 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA 804 }; 805 806 static unsigned num_msrs_to_save; 807 808 static u32 emulated_msrs[] = { 809 MSR_IA32_TSCDEADLINE, 810 MSR_IA32_MISC_ENABLE, 811 MSR_IA32_MCG_STATUS, 812 MSR_IA32_MCG_CTL, 813 }; 814 815 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 816 { 817 u64 old_efer = vcpu->arch.efer; 818 819 if (efer & efer_reserved_bits) 820 return 1; 821 822 if (is_paging(vcpu) 823 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 824 return 1; 825 826 if (efer & EFER_FFXSR) { 827 struct kvm_cpuid_entry2 *feat; 828 829 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 830 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 831 return 1; 832 } 833 834 if (efer & EFER_SVME) { 835 struct kvm_cpuid_entry2 *feat; 836 837 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 838 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 839 return 1; 840 } 841 842 efer &= ~EFER_LMA; 843 efer |= vcpu->arch.efer & EFER_LMA; 844 845 kvm_x86_ops->set_efer(vcpu, efer); 846 847 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; 848 849 /* Update reserved bits */ 850 if ((efer ^ old_efer) & EFER_NX) 851 kvm_mmu_reset_context(vcpu); 852 853 return 0; 854 } 855 856 void kvm_enable_efer_bits(u64 mask) 857 { 858 efer_reserved_bits &= ~mask; 859 } 860 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 861 862 863 /* 864 * Writes msr value into into the appropriate "register". 865 * Returns 0 on success, non-0 otherwise. 866 * Assumes vcpu_load() was already called. 867 */ 868 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) 869 { 870 return kvm_x86_ops->set_msr(vcpu, msr_index, data); 871 } 872 873 /* 874 * Adapt set_msr() to msr_io()'s calling convention 875 */ 876 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 877 { 878 return kvm_set_msr(vcpu, index, *data); 879 } 880 881 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 882 { 883 int version; 884 int r; 885 struct pvclock_wall_clock wc; 886 struct timespec boot; 887 888 if (!wall_clock) 889 return; 890 891 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 892 if (r) 893 return; 894 895 if (version & 1) 896 ++version; /* first time write, random junk */ 897 898 ++version; 899 900 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 901 902 /* 903 * The guest calculates current wall clock time by adding 904 * system time (updated by kvm_guest_time_update below) to the 905 * wall clock specified here. guest system time equals host 906 * system time for us, thus we must fill in host boot time here. 907 */ 908 getboottime(&boot); 909 910 wc.sec = boot.tv_sec; 911 wc.nsec = boot.tv_nsec; 912 wc.version = version; 913 914 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 915 916 version++; 917 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 918 } 919 920 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 921 { 922 uint32_t quotient, remainder; 923 924 /* Don't try to replace with do_div(), this one calculates 925 * "(dividend << 32) / divisor" */ 926 __asm__ ( "divl %4" 927 : "=a" (quotient), "=d" (remainder) 928 : "0" (0), "1" (dividend), "r" (divisor) ); 929 return quotient; 930 } 931 932 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 933 s8 *pshift, u32 *pmultiplier) 934 { 935 uint64_t scaled64; 936 int32_t shift = 0; 937 uint64_t tps64; 938 uint32_t tps32; 939 940 tps64 = base_khz * 1000LL; 941 scaled64 = scaled_khz * 1000LL; 942 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 943 tps64 >>= 1; 944 shift--; 945 } 946 947 tps32 = (uint32_t)tps64; 948 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 949 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 950 scaled64 >>= 1; 951 else 952 tps32 <<= 1; 953 shift++; 954 } 955 956 *pshift = shift; 957 *pmultiplier = div_frac(scaled64, tps32); 958 959 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 960 __func__, base_khz, scaled_khz, shift, *pmultiplier); 961 } 962 963 static inline u64 get_kernel_ns(void) 964 { 965 struct timespec ts; 966 967 WARN_ON(preemptible()); 968 ktime_get_ts(&ts); 969 monotonic_to_bootbased(&ts); 970 return timespec_to_ns(&ts); 971 } 972 973 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 974 unsigned long max_tsc_khz; 975 976 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 977 { 978 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 979 vcpu->arch.virtual_tsc_shift); 980 } 981 982 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 983 { 984 u64 v = (u64)khz * (1000000 + ppm); 985 do_div(v, 1000000); 986 return v; 987 } 988 989 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 990 { 991 u32 thresh_lo, thresh_hi; 992 int use_scaling = 0; 993 994 /* Compute a scale to convert nanoseconds in TSC cycles */ 995 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 996 &vcpu->arch.virtual_tsc_shift, 997 &vcpu->arch.virtual_tsc_mult); 998 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 999 1000 /* 1001 * Compute the variation in TSC rate which is acceptable 1002 * within the range of tolerance and decide if the 1003 * rate being applied is within that bounds of the hardware 1004 * rate. If so, no scaling or compensation need be done. 1005 */ 1006 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1007 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1008 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1009 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1010 use_scaling = 1; 1011 } 1012 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1013 } 1014 1015 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1016 { 1017 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1018 vcpu->arch.virtual_tsc_mult, 1019 vcpu->arch.virtual_tsc_shift); 1020 tsc += vcpu->arch.this_tsc_write; 1021 return tsc; 1022 } 1023 1024 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) 1025 { 1026 struct kvm *kvm = vcpu->kvm; 1027 u64 offset, ns, elapsed; 1028 unsigned long flags; 1029 s64 usdiff; 1030 1031 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1032 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1033 ns = get_kernel_ns(); 1034 elapsed = ns - kvm->arch.last_tsc_nsec; 1035 1036 /* n.b - signed multiplication and division required */ 1037 usdiff = data - kvm->arch.last_tsc_write; 1038 #ifdef CONFIG_X86_64 1039 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1040 #else 1041 /* do_div() only does unsigned */ 1042 asm("idivl %2; xor %%edx, %%edx" 1043 : "=A"(usdiff) 1044 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); 1045 #endif 1046 do_div(elapsed, 1000); 1047 usdiff -= elapsed; 1048 if (usdiff < 0) 1049 usdiff = -usdiff; 1050 1051 /* 1052 * Special case: TSC write with a small delta (1 second) of virtual 1053 * cycle time against real time is interpreted as an attempt to 1054 * synchronize the CPU. 1055 * 1056 * For a reliable TSC, we can match TSC offsets, and for an unstable 1057 * TSC, we add elapsed time in this computation. We could let the 1058 * compensation code attempt to catch up if we fall behind, but 1059 * it's better to try to match offsets from the beginning. 1060 */ 1061 if (usdiff < USEC_PER_SEC && 1062 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1063 if (!check_tsc_unstable()) { 1064 offset = kvm->arch.cur_tsc_offset; 1065 pr_debug("kvm: matched tsc offset for %llu\n", data); 1066 } else { 1067 u64 delta = nsec_to_cycles(vcpu, elapsed); 1068 data += delta; 1069 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1070 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1071 } 1072 } else { 1073 /* 1074 * We split periods of matched TSC writes into generations. 1075 * For each generation, we track the original measured 1076 * nanosecond time, offset, and write, so if TSCs are in 1077 * sync, we can match exact offset, and if not, we can match 1078 * exact software computaion in compute_guest_tsc() 1079 * 1080 * These values are tracked in kvm->arch.cur_xxx variables. 1081 */ 1082 kvm->arch.cur_tsc_generation++; 1083 kvm->arch.cur_tsc_nsec = ns; 1084 kvm->arch.cur_tsc_write = data; 1085 kvm->arch.cur_tsc_offset = offset; 1086 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1087 kvm->arch.cur_tsc_generation, data); 1088 } 1089 1090 /* 1091 * We also track th most recent recorded KHZ, write and time to 1092 * allow the matching interval to be extended at each write. 1093 */ 1094 kvm->arch.last_tsc_nsec = ns; 1095 kvm->arch.last_tsc_write = data; 1096 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1097 1098 /* Reset of TSC must disable overshoot protection below */ 1099 vcpu->arch.hv_clock.tsc_timestamp = 0; 1100 vcpu->arch.last_guest_tsc = data; 1101 1102 /* Keep track of which generation this VCPU has synchronized to */ 1103 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1104 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1105 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1106 1107 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1108 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1109 } 1110 1111 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1112 1113 static int kvm_guest_time_update(struct kvm_vcpu *v) 1114 { 1115 unsigned long flags; 1116 struct kvm_vcpu_arch *vcpu = &v->arch; 1117 void *shared_kaddr; 1118 unsigned long this_tsc_khz; 1119 s64 kernel_ns, max_kernel_ns; 1120 u64 tsc_timestamp; 1121 1122 /* Keep irq disabled to prevent changes to the clock */ 1123 local_irq_save(flags); 1124 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v); 1125 kernel_ns = get_kernel_ns(); 1126 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1127 if (unlikely(this_tsc_khz == 0)) { 1128 local_irq_restore(flags); 1129 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1130 return 1; 1131 } 1132 1133 /* 1134 * We may have to catch up the TSC to match elapsed wall clock 1135 * time for two reasons, even if kvmclock is used. 1136 * 1) CPU could have been running below the maximum TSC rate 1137 * 2) Broken TSC compensation resets the base at each VCPU 1138 * entry to avoid unknown leaps of TSC even when running 1139 * again on the same CPU. This may cause apparent elapsed 1140 * time to disappear, and the guest to stand still or run 1141 * very slowly. 1142 */ 1143 if (vcpu->tsc_catchup) { 1144 u64 tsc = compute_guest_tsc(v, kernel_ns); 1145 if (tsc > tsc_timestamp) { 1146 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1147 tsc_timestamp = tsc; 1148 } 1149 } 1150 1151 local_irq_restore(flags); 1152 1153 if (!vcpu->time_page) 1154 return 0; 1155 1156 /* 1157 * Time as measured by the TSC may go backwards when resetting the base 1158 * tsc_timestamp. The reason for this is that the TSC resolution is 1159 * higher than the resolution of the other clock scales. Thus, many 1160 * possible measurments of the TSC correspond to one measurement of any 1161 * other clock, and so a spread of values is possible. This is not a 1162 * problem for the computation of the nanosecond clock; with TSC rates 1163 * around 1GHZ, there can only be a few cycles which correspond to one 1164 * nanosecond value, and any path through this code will inevitably 1165 * take longer than that. However, with the kernel_ns value itself, 1166 * the precision may be much lower, down to HZ granularity. If the 1167 * first sampling of TSC against kernel_ns ends in the low part of the 1168 * range, and the second in the high end of the range, we can get: 1169 * 1170 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1171 * 1172 * As the sampling errors potentially range in the thousands of cycles, 1173 * it is possible such a time value has already been observed by the 1174 * guest. To protect against this, we must compute the system time as 1175 * observed by the guest and ensure the new system time is greater. 1176 */ 1177 max_kernel_ns = 0; 1178 if (vcpu->hv_clock.tsc_timestamp) { 1179 max_kernel_ns = vcpu->last_guest_tsc - 1180 vcpu->hv_clock.tsc_timestamp; 1181 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1182 vcpu->hv_clock.tsc_to_system_mul, 1183 vcpu->hv_clock.tsc_shift); 1184 max_kernel_ns += vcpu->last_kernel_ns; 1185 } 1186 1187 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1188 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1189 &vcpu->hv_clock.tsc_shift, 1190 &vcpu->hv_clock.tsc_to_system_mul); 1191 vcpu->hw_tsc_khz = this_tsc_khz; 1192 } 1193 1194 if (max_kernel_ns > kernel_ns) 1195 kernel_ns = max_kernel_ns; 1196 1197 /* With all the info we got, fill in the values */ 1198 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1199 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1200 vcpu->last_kernel_ns = kernel_ns; 1201 vcpu->last_guest_tsc = tsc_timestamp; 1202 vcpu->hv_clock.flags = 0; 1203 1204 /* 1205 * The interface expects us to write an even number signaling that the 1206 * update is finished. Since the guest won't see the intermediate 1207 * state, we just increase by 2 at the end. 1208 */ 1209 vcpu->hv_clock.version += 2; 1210 1211 shared_kaddr = kmap_atomic(vcpu->time_page); 1212 1213 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, 1214 sizeof(vcpu->hv_clock)); 1215 1216 kunmap_atomic(shared_kaddr); 1217 1218 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); 1219 return 0; 1220 } 1221 1222 static bool msr_mtrr_valid(unsigned msr) 1223 { 1224 switch (msr) { 1225 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1226 case MSR_MTRRfix64K_00000: 1227 case MSR_MTRRfix16K_80000: 1228 case MSR_MTRRfix16K_A0000: 1229 case MSR_MTRRfix4K_C0000: 1230 case MSR_MTRRfix4K_C8000: 1231 case MSR_MTRRfix4K_D0000: 1232 case MSR_MTRRfix4K_D8000: 1233 case MSR_MTRRfix4K_E0000: 1234 case MSR_MTRRfix4K_E8000: 1235 case MSR_MTRRfix4K_F0000: 1236 case MSR_MTRRfix4K_F8000: 1237 case MSR_MTRRdefType: 1238 case MSR_IA32_CR_PAT: 1239 return true; 1240 case 0x2f8: 1241 return true; 1242 } 1243 return false; 1244 } 1245 1246 static bool valid_pat_type(unsigned t) 1247 { 1248 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1249 } 1250 1251 static bool valid_mtrr_type(unsigned t) 1252 { 1253 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1254 } 1255 1256 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1257 { 1258 int i; 1259 1260 if (!msr_mtrr_valid(msr)) 1261 return false; 1262 1263 if (msr == MSR_IA32_CR_PAT) { 1264 for (i = 0; i < 8; i++) 1265 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1266 return false; 1267 return true; 1268 } else if (msr == MSR_MTRRdefType) { 1269 if (data & ~0xcff) 1270 return false; 1271 return valid_mtrr_type(data & 0xff); 1272 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1273 for (i = 0; i < 8 ; i++) 1274 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1275 return false; 1276 return true; 1277 } 1278 1279 /* variable MTRRs */ 1280 return valid_mtrr_type(data & 0xff); 1281 } 1282 1283 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1284 { 1285 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1286 1287 if (!mtrr_valid(vcpu, msr, data)) 1288 return 1; 1289 1290 if (msr == MSR_MTRRdefType) { 1291 vcpu->arch.mtrr_state.def_type = data; 1292 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1293 } else if (msr == MSR_MTRRfix64K_00000) 1294 p[0] = data; 1295 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1296 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1297 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1298 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1299 else if (msr == MSR_IA32_CR_PAT) 1300 vcpu->arch.pat = data; 1301 else { /* Variable MTRRs */ 1302 int idx, is_mtrr_mask; 1303 u64 *pt; 1304 1305 idx = (msr - 0x200) / 2; 1306 is_mtrr_mask = msr - 0x200 - 2 * idx; 1307 if (!is_mtrr_mask) 1308 pt = 1309 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1310 else 1311 pt = 1312 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1313 *pt = data; 1314 } 1315 1316 kvm_mmu_reset_context(vcpu); 1317 return 0; 1318 } 1319 1320 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1321 { 1322 u64 mcg_cap = vcpu->arch.mcg_cap; 1323 unsigned bank_num = mcg_cap & 0xff; 1324 1325 switch (msr) { 1326 case MSR_IA32_MCG_STATUS: 1327 vcpu->arch.mcg_status = data; 1328 break; 1329 case MSR_IA32_MCG_CTL: 1330 if (!(mcg_cap & MCG_CTL_P)) 1331 return 1; 1332 if (data != 0 && data != ~(u64)0) 1333 return -1; 1334 vcpu->arch.mcg_ctl = data; 1335 break; 1336 default: 1337 if (msr >= MSR_IA32_MC0_CTL && 1338 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1339 u32 offset = msr - MSR_IA32_MC0_CTL; 1340 /* only 0 or all 1s can be written to IA32_MCi_CTL 1341 * some Linux kernels though clear bit 10 in bank 4 to 1342 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1343 * this to avoid an uncatched #GP in the guest 1344 */ 1345 if ((offset & 0x3) == 0 && 1346 data != 0 && (data | (1 << 10)) != ~(u64)0) 1347 return -1; 1348 vcpu->arch.mce_banks[offset] = data; 1349 break; 1350 } 1351 return 1; 1352 } 1353 return 0; 1354 } 1355 1356 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1357 { 1358 struct kvm *kvm = vcpu->kvm; 1359 int lm = is_long_mode(vcpu); 1360 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1361 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1362 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1363 : kvm->arch.xen_hvm_config.blob_size_32; 1364 u32 page_num = data & ~PAGE_MASK; 1365 u64 page_addr = data & PAGE_MASK; 1366 u8 *page; 1367 int r; 1368 1369 r = -E2BIG; 1370 if (page_num >= blob_size) 1371 goto out; 1372 r = -ENOMEM; 1373 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1374 if (IS_ERR(page)) { 1375 r = PTR_ERR(page); 1376 goto out; 1377 } 1378 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1379 goto out_free; 1380 r = 0; 1381 out_free: 1382 kfree(page); 1383 out: 1384 return r; 1385 } 1386 1387 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1388 { 1389 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1390 } 1391 1392 static bool kvm_hv_msr_partition_wide(u32 msr) 1393 { 1394 bool r = false; 1395 switch (msr) { 1396 case HV_X64_MSR_GUEST_OS_ID: 1397 case HV_X64_MSR_HYPERCALL: 1398 r = true; 1399 break; 1400 } 1401 1402 return r; 1403 } 1404 1405 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1406 { 1407 struct kvm *kvm = vcpu->kvm; 1408 1409 switch (msr) { 1410 case HV_X64_MSR_GUEST_OS_ID: 1411 kvm->arch.hv_guest_os_id = data; 1412 /* setting guest os id to zero disables hypercall page */ 1413 if (!kvm->arch.hv_guest_os_id) 1414 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1415 break; 1416 case HV_X64_MSR_HYPERCALL: { 1417 u64 gfn; 1418 unsigned long addr; 1419 u8 instructions[4]; 1420 1421 /* if guest os id is not set hypercall should remain disabled */ 1422 if (!kvm->arch.hv_guest_os_id) 1423 break; 1424 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1425 kvm->arch.hv_hypercall = data; 1426 break; 1427 } 1428 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1429 addr = gfn_to_hva(kvm, gfn); 1430 if (kvm_is_error_hva(addr)) 1431 return 1; 1432 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1433 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1434 if (__copy_to_user((void __user *)addr, instructions, 4)) 1435 return 1; 1436 kvm->arch.hv_hypercall = data; 1437 break; 1438 } 1439 default: 1440 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1441 "data 0x%llx\n", msr, data); 1442 return 1; 1443 } 1444 return 0; 1445 } 1446 1447 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1448 { 1449 switch (msr) { 1450 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1451 unsigned long addr; 1452 1453 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1454 vcpu->arch.hv_vapic = data; 1455 break; 1456 } 1457 addr = gfn_to_hva(vcpu->kvm, data >> 1458 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1459 if (kvm_is_error_hva(addr)) 1460 return 1; 1461 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1462 return 1; 1463 vcpu->arch.hv_vapic = data; 1464 break; 1465 } 1466 case HV_X64_MSR_EOI: 1467 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1468 case HV_X64_MSR_ICR: 1469 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1470 case HV_X64_MSR_TPR: 1471 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1472 default: 1473 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1474 "data 0x%llx\n", msr, data); 1475 return 1; 1476 } 1477 1478 return 0; 1479 } 1480 1481 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1482 { 1483 gpa_t gpa = data & ~0x3f; 1484 1485 /* Bits 2:5 are resrved, Should be zero */ 1486 if (data & 0x3c) 1487 return 1; 1488 1489 vcpu->arch.apf.msr_val = data; 1490 1491 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1492 kvm_clear_async_pf_completion_queue(vcpu); 1493 kvm_async_pf_hash_reset(vcpu); 1494 return 0; 1495 } 1496 1497 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) 1498 return 1; 1499 1500 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1501 kvm_async_pf_wakeup_all(vcpu); 1502 return 0; 1503 } 1504 1505 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1506 { 1507 if (vcpu->arch.time_page) { 1508 kvm_release_page_dirty(vcpu->arch.time_page); 1509 vcpu->arch.time_page = NULL; 1510 } 1511 } 1512 1513 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1514 { 1515 u64 delta; 1516 1517 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1518 return; 1519 1520 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1521 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1522 vcpu->arch.st.accum_steal = delta; 1523 } 1524 1525 static void record_steal_time(struct kvm_vcpu *vcpu) 1526 { 1527 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1528 return; 1529 1530 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1531 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1532 return; 1533 1534 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1535 vcpu->arch.st.steal.version += 2; 1536 vcpu->arch.st.accum_steal = 0; 1537 1538 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1539 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1540 } 1541 1542 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1543 { 1544 bool pr = false; 1545 1546 switch (msr) { 1547 case MSR_EFER: 1548 return set_efer(vcpu, data); 1549 case MSR_K7_HWCR: 1550 data &= ~(u64)0x40; /* ignore flush filter disable */ 1551 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1552 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1553 if (data != 0) { 1554 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1555 data); 1556 return 1; 1557 } 1558 break; 1559 case MSR_FAM10H_MMIO_CONF_BASE: 1560 if (data != 0) { 1561 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1562 "0x%llx\n", data); 1563 return 1; 1564 } 1565 break; 1566 case MSR_AMD64_NB_CFG: 1567 break; 1568 case MSR_IA32_DEBUGCTLMSR: 1569 if (!data) { 1570 /* We support the non-activated case already */ 1571 break; 1572 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 1573 /* Values other than LBR and BTF are vendor-specific, 1574 thus reserved and should throw a #GP */ 1575 return 1; 1576 } 1577 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 1578 __func__, data); 1579 break; 1580 case MSR_IA32_UCODE_REV: 1581 case MSR_IA32_UCODE_WRITE: 1582 case MSR_VM_HSAVE_PA: 1583 case MSR_AMD64_PATCH_LOADER: 1584 break; 1585 case 0x200 ... 0x2ff: 1586 return set_msr_mtrr(vcpu, msr, data); 1587 case MSR_IA32_APICBASE: 1588 kvm_set_apic_base(vcpu, data); 1589 break; 1590 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1591 return kvm_x2apic_msr_write(vcpu, msr, data); 1592 case MSR_IA32_TSCDEADLINE: 1593 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1594 break; 1595 case MSR_IA32_MISC_ENABLE: 1596 vcpu->arch.ia32_misc_enable_msr = data; 1597 break; 1598 case MSR_KVM_WALL_CLOCK_NEW: 1599 case MSR_KVM_WALL_CLOCK: 1600 vcpu->kvm->arch.wall_clock = data; 1601 kvm_write_wall_clock(vcpu->kvm, data); 1602 break; 1603 case MSR_KVM_SYSTEM_TIME_NEW: 1604 case MSR_KVM_SYSTEM_TIME: { 1605 kvmclock_reset(vcpu); 1606 1607 vcpu->arch.time = data; 1608 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1609 1610 /* we verify if the enable bit is set... */ 1611 if (!(data & 1)) 1612 break; 1613 1614 /* ...but clean it before doing the actual write */ 1615 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); 1616 1617 vcpu->arch.time_page = 1618 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); 1619 1620 if (is_error_page(vcpu->arch.time_page)) { 1621 kvm_release_page_clean(vcpu->arch.time_page); 1622 vcpu->arch.time_page = NULL; 1623 } 1624 break; 1625 } 1626 case MSR_KVM_ASYNC_PF_EN: 1627 if (kvm_pv_enable_async_pf(vcpu, data)) 1628 return 1; 1629 break; 1630 case MSR_KVM_STEAL_TIME: 1631 1632 if (unlikely(!sched_info_on())) 1633 return 1; 1634 1635 if (data & KVM_STEAL_RESERVED_MASK) 1636 return 1; 1637 1638 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 1639 data & KVM_STEAL_VALID_BITS)) 1640 return 1; 1641 1642 vcpu->arch.st.msr_val = data; 1643 1644 if (!(data & KVM_MSR_ENABLED)) 1645 break; 1646 1647 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1648 1649 preempt_disable(); 1650 accumulate_steal_time(vcpu); 1651 preempt_enable(); 1652 1653 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 1654 1655 break; 1656 1657 case MSR_IA32_MCG_CTL: 1658 case MSR_IA32_MCG_STATUS: 1659 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 1660 return set_msr_mce(vcpu, msr, data); 1661 1662 /* Performance counters are not protected by a CPUID bit, 1663 * so we should check all of them in the generic path for the sake of 1664 * cross vendor migration. 1665 * Writing a zero into the event select MSRs disables them, 1666 * which we perfectly emulate ;-). Any other value should be at least 1667 * reported, some guests depend on them. 1668 */ 1669 case MSR_K7_EVNTSEL0: 1670 case MSR_K7_EVNTSEL1: 1671 case MSR_K7_EVNTSEL2: 1672 case MSR_K7_EVNTSEL3: 1673 if (data != 0) 1674 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1675 "0x%x data 0x%llx\n", msr, data); 1676 break; 1677 /* at least RHEL 4 unconditionally writes to the perfctr registers, 1678 * so we ignore writes to make it happy. 1679 */ 1680 case MSR_K7_PERFCTR0: 1681 case MSR_K7_PERFCTR1: 1682 case MSR_K7_PERFCTR2: 1683 case MSR_K7_PERFCTR3: 1684 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1685 "0x%x data 0x%llx\n", msr, data); 1686 break; 1687 case MSR_P6_PERFCTR0: 1688 case MSR_P6_PERFCTR1: 1689 pr = true; 1690 case MSR_P6_EVNTSEL0: 1691 case MSR_P6_EVNTSEL1: 1692 if (kvm_pmu_msr(vcpu, msr)) 1693 return kvm_pmu_set_msr(vcpu, msr, data); 1694 1695 if (pr || data != 0) 1696 pr_unimpl(vcpu, "disabled perfctr wrmsr: " 1697 "0x%x data 0x%llx\n", msr, data); 1698 break; 1699 case MSR_K7_CLK_CTL: 1700 /* 1701 * Ignore all writes to this no longer documented MSR. 1702 * Writes are only relevant for old K7 processors, 1703 * all pre-dating SVM, but a recommended workaround from 1704 * AMD for these chips. It is possible to speicify the 1705 * affected processor models on the command line, hence 1706 * the need to ignore the workaround. 1707 */ 1708 break; 1709 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 1710 if (kvm_hv_msr_partition_wide(msr)) { 1711 int r; 1712 mutex_lock(&vcpu->kvm->lock); 1713 r = set_msr_hyperv_pw(vcpu, msr, data); 1714 mutex_unlock(&vcpu->kvm->lock); 1715 return r; 1716 } else 1717 return set_msr_hyperv(vcpu, msr, data); 1718 break; 1719 case MSR_IA32_BBL_CR_CTL3: 1720 /* Drop writes to this legacy MSR -- see rdmsr 1721 * counterpart for further detail. 1722 */ 1723 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 1724 break; 1725 case MSR_AMD64_OSVW_ID_LENGTH: 1726 if (!guest_cpuid_has_osvw(vcpu)) 1727 return 1; 1728 vcpu->arch.osvw.length = data; 1729 break; 1730 case MSR_AMD64_OSVW_STATUS: 1731 if (!guest_cpuid_has_osvw(vcpu)) 1732 return 1; 1733 vcpu->arch.osvw.status = data; 1734 break; 1735 default: 1736 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 1737 return xen_hvm_config(vcpu, data); 1738 if (kvm_pmu_msr(vcpu, msr)) 1739 return kvm_pmu_set_msr(vcpu, msr, data); 1740 if (!ignore_msrs) { 1741 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 1742 msr, data); 1743 return 1; 1744 } else { 1745 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 1746 msr, data); 1747 break; 1748 } 1749 } 1750 return 0; 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 1753 1754 1755 /* 1756 * Reads an msr value (of 'msr_index') into 'pdata'. 1757 * Returns 0 on success, non-0 otherwise. 1758 * Assumes vcpu_load() was already called. 1759 */ 1760 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 1761 { 1762 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 1763 } 1764 1765 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1766 { 1767 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1768 1769 if (!msr_mtrr_valid(msr)) 1770 return 1; 1771 1772 if (msr == MSR_MTRRdefType) 1773 *pdata = vcpu->arch.mtrr_state.def_type + 1774 (vcpu->arch.mtrr_state.enabled << 10); 1775 else if (msr == MSR_MTRRfix64K_00000) 1776 *pdata = p[0]; 1777 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1778 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 1779 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1780 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 1781 else if (msr == MSR_IA32_CR_PAT) 1782 *pdata = vcpu->arch.pat; 1783 else { /* Variable MTRRs */ 1784 int idx, is_mtrr_mask; 1785 u64 *pt; 1786 1787 idx = (msr - 0x200) / 2; 1788 is_mtrr_mask = msr - 0x200 - 2 * idx; 1789 if (!is_mtrr_mask) 1790 pt = 1791 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1792 else 1793 pt = 1794 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1795 *pdata = *pt; 1796 } 1797 1798 return 0; 1799 } 1800 1801 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1802 { 1803 u64 data; 1804 u64 mcg_cap = vcpu->arch.mcg_cap; 1805 unsigned bank_num = mcg_cap & 0xff; 1806 1807 switch (msr) { 1808 case MSR_IA32_P5_MC_ADDR: 1809 case MSR_IA32_P5_MC_TYPE: 1810 data = 0; 1811 break; 1812 case MSR_IA32_MCG_CAP: 1813 data = vcpu->arch.mcg_cap; 1814 break; 1815 case MSR_IA32_MCG_CTL: 1816 if (!(mcg_cap & MCG_CTL_P)) 1817 return 1; 1818 data = vcpu->arch.mcg_ctl; 1819 break; 1820 case MSR_IA32_MCG_STATUS: 1821 data = vcpu->arch.mcg_status; 1822 break; 1823 default: 1824 if (msr >= MSR_IA32_MC0_CTL && 1825 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1826 u32 offset = msr - MSR_IA32_MC0_CTL; 1827 data = vcpu->arch.mce_banks[offset]; 1828 break; 1829 } 1830 return 1; 1831 } 1832 *pdata = data; 1833 return 0; 1834 } 1835 1836 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1837 { 1838 u64 data = 0; 1839 struct kvm *kvm = vcpu->kvm; 1840 1841 switch (msr) { 1842 case HV_X64_MSR_GUEST_OS_ID: 1843 data = kvm->arch.hv_guest_os_id; 1844 break; 1845 case HV_X64_MSR_HYPERCALL: 1846 data = kvm->arch.hv_hypercall; 1847 break; 1848 default: 1849 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1850 return 1; 1851 } 1852 1853 *pdata = data; 1854 return 0; 1855 } 1856 1857 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1858 { 1859 u64 data = 0; 1860 1861 switch (msr) { 1862 case HV_X64_MSR_VP_INDEX: { 1863 int r; 1864 struct kvm_vcpu *v; 1865 kvm_for_each_vcpu(r, v, vcpu->kvm) 1866 if (v == vcpu) 1867 data = r; 1868 break; 1869 } 1870 case HV_X64_MSR_EOI: 1871 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1872 case HV_X64_MSR_ICR: 1873 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1874 case HV_X64_MSR_TPR: 1875 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1876 case HV_X64_MSR_APIC_ASSIST_PAGE: 1877 data = vcpu->arch.hv_vapic; 1878 break; 1879 default: 1880 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1881 return 1; 1882 } 1883 *pdata = data; 1884 return 0; 1885 } 1886 1887 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1888 { 1889 u64 data; 1890 1891 switch (msr) { 1892 case MSR_IA32_PLATFORM_ID: 1893 case MSR_IA32_EBL_CR_POWERON: 1894 case MSR_IA32_DEBUGCTLMSR: 1895 case MSR_IA32_LASTBRANCHFROMIP: 1896 case MSR_IA32_LASTBRANCHTOIP: 1897 case MSR_IA32_LASTINTFROMIP: 1898 case MSR_IA32_LASTINTTOIP: 1899 case MSR_K8_SYSCFG: 1900 case MSR_K7_HWCR: 1901 case MSR_VM_HSAVE_PA: 1902 case MSR_K7_EVNTSEL0: 1903 case MSR_K7_PERFCTR0: 1904 case MSR_K8_INT_PENDING_MSG: 1905 case MSR_AMD64_NB_CFG: 1906 case MSR_FAM10H_MMIO_CONF_BASE: 1907 data = 0; 1908 break; 1909 case MSR_P6_PERFCTR0: 1910 case MSR_P6_PERFCTR1: 1911 case MSR_P6_EVNTSEL0: 1912 case MSR_P6_EVNTSEL1: 1913 if (kvm_pmu_msr(vcpu, msr)) 1914 return kvm_pmu_get_msr(vcpu, msr, pdata); 1915 data = 0; 1916 break; 1917 case MSR_IA32_UCODE_REV: 1918 data = 0x100000000ULL; 1919 break; 1920 case MSR_MTRRcap: 1921 data = 0x500 | KVM_NR_VAR_MTRR; 1922 break; 1923 case 0x200 ... 0x2ff: 1924 return get_msr_mtrr(vcpu, msr, pdata); 1925 case 0xcd: /* fsb frequency */ 1926 data = 3; 1927 break; 1928 /* 1929 * MSR_EBC_FREQUENCY_ID 1930 * Conservative value valid for even the basic CPU models. 1931 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 1932 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 1933 * and 266MHz for model 3, or 4. Set Core Clock 1934 * Frequency to System Bus Frequency Ratio to 1 (bits 1935 * 31:24) even though these are only valid for CPU 1936 * models > 2, however guests may end up dividing or 1937 * multiplying by zero otherwise. 1938 */ 1939 case MSR_EBC_FREQUENCY_ID: 1940 data = 1 << 24; 1941 break; 1942 case MSR_IA32_APICBASE: 1943 data = kvm_get_apic_base(vcpu); 1944 break; 1945 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1946 return kvm_x2apic_msr_read(vcpu, msr, pdata); 1947 break; 1948 case MSR_IA32_TSCDEADLINE: 1949 data = kvm_get_lapic_tscdeadline_msr(vcpu); 1950 break; 1951 case MSR_IA32_MISC_ENABLE: 1952 data = vcpu->arch.ia32_misc_enable_msr; 1953 break; 1954 case MSR_IA32_PERF_STATUS: 1955 /* TSC increment by tick */ 1956 data = 1000ULL; 1957 /* CPU multiplier */ 1958 data |= (((uint64_t)4ULL) << 40); 1959 break; 1960 case MSR_EFER: 1961 data = vcpu->arch.efer; 1962 break; 1963 case MSR_KVM_WALL_CLOCK: 1964 case MSR_KVM_WALL_CLOCK_NEW: 1965 data = vcpu->kvm->arch.wall_clock; 1966 break; 1967 case MSR_KVM_SYSTEM_TIME: 1968 case MSR_KVM_SYSTEM_TIME_NEW: 1969 data = vcpu->arch.time; 1970 break; 1971 case MSR_KVM_ASYNC_PF_EN: 1972 data = vcpu->arch.apf.msr_val; 1973 break; 1974 case MSR_KVM_STEAL_TIME: 1975 data = vcpu->arch.st.msr_val; 1976 break; 1977 case MSR_IA32_P5_MC_ADDR: 1978 case MSR_IA32_P5_MC_TYPE: 1979 case MSR_IA32_MCG_CAP: 1980 case MSR_IA32_MCG_CTL: 1981 case MSR_IA32_MCG_STATUS: 1982 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 1983 return get_msr_mce(vcpu, msr, pdata); 1984 case MSR_K7_CLK_CTL: 1985 /* 1986 * Provide expected ramp-up count for K7. All other 1987 * are set to zero, indicating minimum divisors for 1988 * every field. 1989 * 1990 * This prevents guest kernels on AMD host with CPU 1991 * type 6, model 8 and higher from exploding due to 1992 * the rdmsr failing. 1993 */ 1994 data = 0x20000000; 1995 break; 1996 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 1997 if (kvm_hv_msr_partition_wide(msr)) { 1998 int r; 1999 mutex_lock(&vcpu->kvm->lock); 2000 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2001 mutex_unlock(&vcpu->kvm->lock); 2002 return r; 2003 } else 2004 return get_msr_hyperv(vcpu, msr, pdata); 2005 break; 2006 case MSR_IA32_BBL_CR_CTL3: 2007 /* This legacy MSR exists but isn't fully documented in current 2008 * silicon. It is however accessed by winxp in very narrow 2009 * scenarios where it sets bit #19, itself documented as 2010 * a "reserved" bit. Best effort attempt to source coherent 2011 * read data here should the balance of the register be 2012 * interpreted by the guest: 2013 * 2014 * L2 cache control register 3: 64GB range, 256KB size, 2015 * enabled, latency 0x1, configured 2016 */ 2017 data = 0xbe702111; 2018 break; 2019 case MSR_AMD64_OSVW_ID_LENGTH: 2020 if (!guest_cpuid_has_osvw(vcpu)) 2021 return 1; 2022 data = vcpu->arch.osvw.length; 2023 break; 2024 case MSR_AMD64_OSVW_STATUS: 2025 if (!guest_cpuid_has_osvw(vcpu)) 2026 return 1; 2027 data = vcpu->arch.osvw.status; 2028 break; 2029 default: 2030 if (kvm_pmu_msr(vcpu, msr)) 2031 return kvm_pmu_get_msr(vcpu, msr, pdata); 2032 if (!ignore_msrs) { 2033 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2034 return 1; 2035 } else { 2036 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2037 data = 0; 2038 } 2039 break; 2040 } 2041 *pdata = data; 2042 return 0; 2043 } 2044 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2045 2046 /* 2047 * Read or write a bunch of msrs. All parameters are kernel addresses. 2048 * 2049 * @return number of msrs set successfully. 2050 */ 2051 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2052 struct kvm_msr_entry *entries, 2053 int (*do_msr)(struct kvm_vcpu *vcpu, 2054 unsigned index, u64 *data)) 2055 { 2056 int i, idx; 2057 2058 idx = srcu_read_lock(&vcpu->kvm->srcu); 2059 for (i = 0; i < msrs->nmsrs; ++i) 2060 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2061 break; 2062 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2063 2064 return i; 2065 } 2066 2067 /* 2068 * Read or write a bunch of msrs. Parameters are user addresses. 2069 * 2070 * @return number of msrs set successfully. 2071 */ 2072 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2073 int (*do_msr)(struct kvm_vcpu *vcpu, 2074 unsigned index, u64 *data), 2075 int writeback) 2076 { 2077 struct kvm_msrs msrs; 2078 struct kvm_msr_entry *entries; 2079 int r, n; 2080 unsigned size; 2081 2082 r = -EFAULT; 2083 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2084 goto out; 2085 2086 r = -E2BIG; 2087 if (msrs.nmsrs >= MAX_IO_MSRS) 2088 goto out; 2089 2090 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2091 entries = memdup_user(user_msrs->entries, size); 2092 if (IS_ERR(entries)) { 2093 r = PTR_ERR(entries); 2094 goto out; 2095 } 2096 2097 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2098 if (r < 0) 2099 goto out_free; 2100 2101 r = -EFAULT; 2102 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2103 goto out_free; 2104 2105 r = n; 2106 2107 out_free: 2108 kfree(entries); 2109 out: 2110 return r; 2111 } 2112 2113 int kvm_dev_ioctl_check_extension(long ext) 2114 { 2115 int r; 2116 2117 switch (ext) { 2118 case KVM_CAP_IRQCHIP: 2119 case KVM_CAP_HLT: 2120 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2121 case KVM_CAP_SET_TSS_ADDR: 2122 case KVM_CAP_EXT_CPUID: 2123 case KVM_CAP_CLOCKSOURCE: 2124 case KVM_CAP_PIT: 2125 case KVM_CAP_NOP_IO_DELAY: 2126 case KVM_CAP_MP_STATE: 2127 case KVM_CAP_SYNC_MMU: 2128 case KVM_CAP_USER_NMI: 2129 case KVM_CAP_REINJECT_CONTROL: 2130 case KVM_CAP_IRQ_INJECT_STATUS: 2131 case KVM_CAP_ASSIGN_DEV_IRQ: 2132 case KVM_CAP_IRQFD: 2133 case KVM_CAP_IOEVENTFD: 2134 case KVM_CAP_PIT2: 2135 case KVM_CAP_PIT_STATE2: 2136 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2137 case KVM_CAP_XEN_HVM: 2138 case KVM_CAP_ADJUST_CLOCK: 2139 case KVM_CAP_VCPU_EVENTS: 2140 case KVM_CAP_HYPERV: 2141 case KVM_CAP_HYPERV_VAPIC: 2142 case KVM_CAP_HYPERV_SPIN: 2143 case KVM_CAP_PCI_SEGMENT: 2144 case KVM_CAP_DEBUGREGS: 2145 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2146 case KVM_CAP_XSAVE: 2147 case KVM_CAP_ASYNC_PF: 2148 case KVM_CAP_GET_TSC_KHZ: 2149 case KVM_CAP_PCI_2_3: 2150 case KVM_CAP_KVMCLOCK_CTRL: 2151 r = 1; 2152 break; 2153 case KVM_CAP_COALESCED_MMIO: 2154 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2155 break; 2156 case KVM_CAP_VAPIC: 2157 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2158 break; 2159 case KVM_CAP_NR_VCPUS: 2160 r = KVM_SOFT_MAX_VCPUS; 2161 break; 2162 case KVM_CAP_MAX_VCPUS: 2163 r = KVM_MAX_VCPUS; 2164 break; 2165 case KVM_CAP_NR_MEMSLOTS: 2166 r = KVM_MEMORY_SLOTS; 2167 break; 2168 case KVM_CAP_PV_MMU: /* obsolete */ 2169 r = 0; 2170 break; 2171 case KVM_CAP_IOMMU: 2172 r = iommu_present(&pci_bus_type); 2173 break; 2174 case KVM_CAP_MCE: 2175 r = KVM_MAX_MCE_BANKS; 2176 break; 2177 case KVM_CAP_XCRS: 2178 r = cpu_has_xsave; 2179 break; 2180 case KVM_CAP_TSC_CONTROL: 2181 r = kvm_has_tsc_control; 2182 break; 2183 case KVM_CAP_TSC_DEADLINE_TIMER: 2184 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2185 break; 2186 default: 2187 r = 0; 2188 break; 2189 } 2190 return r; 2191 2192 } 2193 2194 long kvm_arch_dev_ioctl(struct file *filp, 2195 unsigned int ioctl, unsigned long arg) 2196 { 2197 void __user *argp = (void __user *)arg; 2198 long r; 2199 2200 switch (ioctl) { 2201 case KVM_GET_MSR_INDEX_LIST: { 2202 struct kvm_msr_list __user *user_msr_list = argp; 2203 struct kvm_msr_list msr_list; 2204 unsigned n; 2205 2206 r = -EFAULT; 2207 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2208 goto out; 2209 n = msr_list.nmsrs; 2210 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2211 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2212 goto out; 2213 r = -E2BIG; 2214 if (n < msr_list.nmsrs) 2215 goto out; 2216 r = -EFAULT; 2217 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2218 num_msrs_to_save * sizeof(u32))) 2219 goto out; 2220 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2221 &emulated_msrs, 2222 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2223 goto out; 2224 r = 0; 2225 break; 2226 } 2227 case KVM_GET_SUPPORTED_CPUID: { 2228 struct kvm_cpuid2 __user *cpuid_arg = argp; 2229 struct kvm_cpuid2 cpuid; 2230 2231 r = -EFAULT; 2232 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2233 goto out; 2234 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2235 cpuid_arg->entries); 2236 if (r) 2237 goto out; 2238 2239 r = -EFAULT; 2240 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2241 goto out; 2242 r = 0; 2243 break; 2244 } 2245 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2246 u64 mce_cap; 2247 2248 mce_cap = KVM_MCE_CAP_SUPPORTED; 2249 r = -EFAULT; 2250 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2251 goto out; 2252 r = 0; 2253 break; 2254 } 2255 default: 2256 r = -EINVAL; 2257 } 2258 out: 2259 return r; 2260 } 2261 2262 static void wbinvd_ipi(void *garbage) 2263 { 2264 wbinvd(); 2265 } 2266 2267 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2268 { 2269 return vcpu->kvm->arch.iommu_domain && 2270 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2271 } 2272 2273 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2274 { 2275 /* Address WBINVD may be executed by guest */ 2276 if (need_emulate_wbinvd(vcpu)) { 2277 if (kvm_x86_ops->has_wbinvd_exit()) 2278 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2279 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2280 smp_call_function_single(vcpu->cpu, 2281 wbinvd_ipi, NULL, 1); 2282 } 2283 2284 kvm_x86_ops->vcpu_load(vcpu, cpu); 2285 2286 /* Apply any externally detected TSC adjustments (due to suspend) */ 2287 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2288 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2289 vcpu->arch.tsc_offset_adjustment = 0; 2290 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2291 } 2292 2293 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2294 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2295 native_read_tsc() - vcpu->arch.last_host_tsc; 2296 if (tsc_delta < 0) 2297 mark_tsc_unstable("KVM discovered backwards TSC"); 2298 if (check_tsc_unstable()) { 2299 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2300 vcpu->arch.last_guest_tsc); 2301 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2302 vcpu->arch.tsc_catchup = 1; 2303 } 2304 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2305 if (vcpu->cpu != cpu) 2306 kvm_migrate_timers(vcpu); 2307 vcpu->cpu = cpu; 2308 } 2309 2310 accumulate_steal_time(vcpu); 2311 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2312 } 2313 2314 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2315 { 2316 kvm_x86_ops->vcpu_put(vcpu); 2317 kvm_put_guest_fpu(vcpu); 2318 vcpu->arch.last_host_tsc = native_read_tsc(); 2319 } 2320 2321 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2322 struct kvm_lapic_state *s) 2323 { 2324 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2325 2326 return 0; 2327 } 2328 2329 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2330 struct kvm_lapic_state *s) 2331 { 2332 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); 2333 kvm_apic_post_state_restore(vcpu); 2334 update_cr8_intercept(vcpu); 2335 2336 return 0; 2337 } 2338 2339 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2340 struct kvm_interrupt *irq) 2341 { 2342 if (irq->irq < 0 || irq->irq >= 256) 2343 return -EINVAL; 2344 if (irqchip_in_kernel(vcpu->kvm)) 2345 return -ENXIO; 2346 2347 kvm_queue_interrupt(vcpu, irq->irq, false); 2348 kvm_make_request(KVM_REQ_EVENT, vcpu); 2349 2350 return 0; 2351 } 2352 2353 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2354 { 2355 kvm_inject_nmi(vcpu); 2356 2357 return 0; 2358 } 2359 2360 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2361 struct kvm_tpr_access_ctl *tac) 2362 { 2363 if (tac->flags) 2364 return -EINVAL; 2365 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2366 return 0; 2367 } 2368 2369 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2370 u64 mcg_cap) 2371 { 2372 int r; 2373 unsigned bank_num = mcg_cap & 0xff, bank; 2374 2375 r = -EINVAL; 2376 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2377 goto out; 2378 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2379 goto out; 2380 r = 0; 2381 vcpu->arch.mcg_cap = mcg_cap; 2382 /* Init IA32_MCG_CTL to all 1s */ 2383 if (mcg_cap & MCG_CTL_P) 2384 vcpu->arch.mcg_ctl = ~(u64)0; 2385 /* Init IA32_MCi_CTL to all 1s */ 2386 for (bank = 0; bank < bank_num; bank++) 2387 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2388 out: 2389 return r; 2390 } 2391 2392 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2393 struct kvm_x86_mce *mce) 2394 { 2395 u64 mcg_cap = vcpu->arch.mcg_cap; 2396 unsigned bank_num = mcg_cap & 0xff; 2397 u64 *banks = vcpu->arch.mce_banks; 2398 2399 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2400 return -EINVAL; 2401 /* 2402 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2403 * reporting is disabled 2404 */ 2405 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2406 vcpu->arch.mcg_ctl != ~(u64)0) 2407 return 0; 2408 banks += 4 * mce->bank; 2409 /* 2410 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2411 * reporting is disabled for the bank 2412 */ 2413 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2414 return 0; 2415 if (mce->status & MCI_STATUS_UC) { 2416 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2417 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2418 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2419 return 0; 2420 } 2421 if (banks[1] & MCI_STATUS_VAL) 2422 mce->status |= MCI_STATUS_OVER; 2423 banks[2] = mce->addr; 2424 banks[3] = mce->misc; 2425 vcpu->arch.mcg_status = mce->mcg_status; 2426 banks[1] = mce->status; 2427 kvm_queue_exception(vcpu, MC_VECTOR); 2428 } else if (!(banks[1] & MCI_STATUS_VAL) 2429 || !(banks[1] & MCI_STATUS_UC)) { 2430 if (banks[1] & MCI_STATUS_VAL) 2431 mce->status |= MCI_STATUS_OVER; 2432 banks[2] = mce->addr; 2433 banks[3] = mce->misc; 2434 banks[1] = mce->status; 2435 } else 2436 banks[1] |= MCI_STATUS_OVER; 2437 return 0; 2438 } 2439 2440 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2441 struct kvm_vcpu_events *events) 2442 { 2443 process_nmi(vcpu); 2444 events->exception.injected = 2445 vcpu->arch.exception.pending && 2446 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2447 events->exception.nr = vcpu->arch.exception.nr; 2448 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2449 events->exception.pad = 0; 2450 events->exception.error_code = vcpu->arch.exception.error_code; 2451 2452 events->interrupt.injected = 2453 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2454 events->interrupt.nr = vcpu->arch.interrupt.nr; 2455 events->interrupt.soft = 0; 2456 events->interrupt.shadow = 2457 kvm_x86_ops->get_interrupt_shadow(vcpu, 2458 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2459 2460 events->nmi.injected = vcpu->arch.nmi_injected; 2461 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2462 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2463 events->nmi.pad = 0; 2464 2465 events->sipi_vector = vcpu->arch.sipi_vector; 2466 2467 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2468 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2469 | KVM_VCPUEVENT_VALID_SHADOW); 2470 memset(&events->reserved, 0, sizeof(events->reserved)); 2471 } 2472 2473 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2474 struct kvm_vcpu_events *events) 2475 { 2476 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2477 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2478 | KVM_VCPUEVENT_VALID_SHADOW)) 2479 return -EINVAL; 2480 2481 process_nmi(vcpu); 2482 vcpu->arch.exception.pending = events->exception.injected; 2483 vcpu->arch.exception.nr = events->exception.nr; 2484 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2485 vcpu->arch.exception.error_code = events->exception.error_code; 2486 2487 vcpu->arch.interrupt.pending = events->interrupt.injected; 2488 vcpu->arch.interrupt.nr = events->interrupt.nr; 2489 vcpu->arch.interrupt.soft = events->interrupt.soft; 2490 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2491 kvm_x86_ops->set_interrupt_shadow(vcpu, 2492 events->interrupt.shadow); 2493 2494 vcpu->arch.nmi_injected = events->nmi.injected; 2495 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2496 vcpu->arch.nmi_pending = events->nmi.pending; 2497 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2498 2499 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) 2500 vcpu->arch.sipi_vector = events->sipi_vector; 2501 2502 kvm_make_request(KVM_REQ_EVENT, vcpu); 2503 2504 return 0; 2505 } 2506 2507 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2508 struct kvm_debugregs *dbgregs) 2509 { 2510 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2511 dbgregs->dr6 = vcpu->arch.dr6; 2512 dbgregs->dr7 = vcpu->arch.dr7; 2513 dbgregs->flags = 0; 2514 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2515 } 2516 2517 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2518 struct kvm_debugregs *dbgregs) 2519 { 2520 if (dbgregs->flags) 2521 return -EINVAL; 2522 2523 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2524 vcpu->arch.dr6 = dbgregs->dr6; 2525 vcpu->arch.dr7 = dbgregs->dr7; 2526 2527 return 0; 2528 } 2529 2530 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2531 struct kvm_xsave *guest_xsave) 2532 { 2533 if (cpu_has_xsave) 2534 memcpy(guest_xsave->region, 2535 &vcpu->arch.guest_fpu.state->xsave, 2536 xstate_size); 2537 else { 2538 memcpy(guest_xsave->region, 2539 &vcpu->arch.guest_fpu.state->fxsave, 2540 sizeof(struct i387_fxsave_struct)); 2541 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2542 XSTATE_FPSSE; 2543 } 2544 } 2545 2546 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 2547 struct kvm_xsave *guest_xsave) 2548 { 2549 u64 xstate_bv = 2550 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 2551 2552 if (cpu_has_xsave) 2553 memcpy(&vcpu->arch.guest_fpu.state->xsave, 2554 guest_xsave->region, xstate_size); 2555 else { 2556 if (xstate_bv & ~XSTATE_FPSSE) 2557 return -EINVAL; 2558 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 2559 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 2560 } 2561 return 0; 2562 } 2563 2564 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 2565 struct kvm_xcrs *guest_xcrs) 2566 { 2567 if (!cpu_has_xsave) { 2568 guest_xcrs->nr_xcrs = 0; 2569 return; 2570 } 2571 2572 guest_xcrs->nr_xcrs = 1; 2573 guest_xcrs->flags = 0; 2574 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 2575 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 2576 } 2577 2578 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 2579 struct kvm_xcrs *guest_xcrs) 2580 { 2581 int i, r = 0; 2582 2583 if (!cpu_has_xsave) 2584 return -EINVAL; 2585 2586 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 2587 return -EINVAL; 2588 2589 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 2590 /* Only support XCR0 currently */ 2591 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 2592 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 2593 guest_xcrs->xcrs[0].value); 2594 break; 2595 } 2596 if (r) 2597 r = -EINVAL; 2598 return r; 2599 } 2600 2601 /* 2602 * kvm_set_guest_paused() indicates to the guest kernel that it has been 2603 * stopped by the hypervisor. This function will be called from the host only. 2604 * EINVAL is returned when the host attempts to set the flag for a guest that 2605 * does not support pv clocks. 2606 */ 2607 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 2608 { 2609 struct pvclock_vcpu_time_info *src = &vcpu->arch.hv_clock; 2610 if (!vcpu->arch.time_page) 2611 return -EINVAL; 2612 src->flags |= PVCLOCK_GUEST_STOPPED; 2613 mark_page_dirty(vcpu->kvm, vcpu->arch.time >> PAGE_SHIFT); 2614 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2615 return 0; 2616 } 2617 2618 long kvm_arch_vcpu_ioctl(struct file *filp, 2619 unsigned int ioctl, unsigned long arg) 2620 { 2621 struct kvm_vcpu *vcpu = filp->private_data; 2622 void __user *argp = (void __user *)arg; 2623 int r; 2624 union { 2625 struct kvm_lapic_state *lapic; 2626 struct kvm_xsave *xsave; 2627 struct kvm_xcrs *xcrs; 2628 void *buffer; 2629 } u; 2630 2631 u.buffer = NULL; 2632 switch (ioctl) { 2633 case KVM_GET_LAPIC: { 2634 r = -EINVAL; 2635 if (!vcpu->arch.apic) 2636 goto out; 2637 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 2638 2639 r = -ENOMEM; 2640 if (!u.lapic) 2641 goto out; 2642 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 2643 if (r) 2644 goto out; 2645 r = -EFAULT; 2646 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 2647 goto out; 2648 r = 0; 2649 break; 2650 } 2651 case KVM_SET_LAPIC: { 2652 r = -EINVAL; 2653 if (!vcpu->arch.apic) 2654 goto out; 2655 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 2656 if (IS_ERR(u.lapic)) { 2657 r = PTR_ERR(u.lapic); 2658 goto out; 2659 } 2660 2661 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 2662 if (r) 2663 goto out; 2664 r = 0; 2665 break; 2666 } 2667 case KVM_INTERRUPT: { 2668 struct kvm_interrupt irq; 2669 2670 r = -EFAULT; 2671 if (copy_from_user(&irq, argp, sizeof irq)) 2672 goto out; 2673 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2674 if (r) 2675 goto out; 2676 r = 0; 2677 break; 2678 } 2679 case KVM_NMI: { 2680 r = kvm_vcpu_ioctl_nmi(vcpu); 2681 if (r) 2682 goto out; 2683 r = 0; 2684 break; 2685 } 2686 case KVM_SET_CPUID: { 2687 struct kvm_cpuid __user *cpuid_arg = argp; 2688 struct kvm_cpuid cpuid; 2689 2690 r = -EFAULT; 2691 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2692 goto out; 2693 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 2694 if (r) 2695 goto out; 2696 break; 2697 } 2698 case KVM_SET_CPUID2: { 2699 struct kvm_cpuid2 __user *cpuid_arg = argp; 2700 struct kvm_cpuid2 cpuid; 2701 2702 r = -EFAULT; 2703 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2704 goto out; 2705 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 2706 cpuid_arg->entries); 2707 if (r) 2708 goto out; 2709 break; 2710 } 2711 case KVM_GET_CPUID2: { 2712 struct kvm_cpuid2 __user *cpuid_arg = argp; 2713 struct kvm_cpuid2 cpuid; 2714 2715 r = -EFAULT; 2716 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2717 goto out; 2718 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 2719 cpuid_arg->entries); 2720 if (r) 2721 goto out; 2722 r = -EFAULT; 2723 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2724 goto out; 2725 r = 0; 2726 break; 2727 } 2728 case KVM_GET_MSRS: 2729 r = msr_io(vcpu, argp, kvm_get_msr, 1); 2730 break; 2731 case KVM_SET_MSRS: 2732 r = msr_io(vcpu, argp, do_set_msr, 0); 2733 break; 2734 case KVM_TPR_ACCESS_REPORTING: { 2735 struct kvm_tpr_access_ctl tac; 2736 2737 r = -EFAULT; 2738 if (copy_from_user(&tac, argp, sizeof tac)) 2739 goto out; 2740 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 2741 if (r) 2742 goto out; 2743 r = -EFAULT; 2744 if (copy_to_user(argp, &tac, sizeof tac)) 2745 goto out; 2746 r = 0; 2747 break; 2748 }; 2749 case KVM_SET_VAPIC_ADDR: { 2750 struct kvm_vapic_addr va; 2751 2752 r = -EINVAL; 2753 if (!irqchip_in_kernel(vcpu->kvm)) 2754 goto out; 2755 r = -EFAULT; 2756 if (copy_from_user(&va, argp, sizeof va)) 2757 goto out; 2758 r = 0; 2759 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 2760 break; 2761 } 2762 case KVM_X86_SETUP_MCE: { 2763 u64 mcg_cap; 2764 2765 r = -EFAULT; 2766 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 2767 goto out; 2768 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 2769 break; 2770 } 2771 case KVM_X86_SET_MCE: { 2772 struct kvm_x86_mce mce; 2773 2774 r = -EFAULT; 2775 if (copy_from_user(&mce, argp, sizeof mce)) 2776 goto out; 2777 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 2778 break; 2779 } 2780 case KVM_GET_VCPU_EVENTS: { 2781 struct kvm_vcpu_events events; 2782 2783 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 2784 2785 r = -EFAULT; 2786 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 2787 break; 2788 r = 0; 2789 break; 2790 } 2791 case KVM_SET_VCPU_EVENTS: { 2792 struct kvm_vcpu_events events; 2793 2794 r = -EFAULT; 2795 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 2796 break; 2797 2798 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 2799 break; 2800 } 2801 case KVM_GET_DEBUGREGS: { 2802 struct kvm_debugregs dbgregs; 2803 2804 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 2805 2806 r = -EFAULT; 2807 if (copy_to_user(argp, &dbgregs, 2808 sizeof(struct kvm_debugregs))) 2809 break; 2810 r = 0; 2811 break; 2812 } 2813 case KVM_SET_DEBUGREGS: { 2814 struct kvm_debugregs dbgregs; 2815 2816 r = -EFAULT; 2817 if (copy_from_user(&dbgregs, argp, 2818 sizeof(struct kvm_debugregs))) 2819 break; 2820 2821 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 2822 break; 2823 } 2824 case KVM_GET_XSAVE: { 2825 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 2826 r = -ENOMEM; 2827 if (!u.xsave) 2828 break; 2829 2830 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 2831 2832 r = -EFAULT; 2833 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 2834 break; 2835 r = 0; 2836 break; 2837 } 2838 case KVM_SET_XSAVE: { 2839 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 2840 if (IS_ERR(u.xsave)) { 2841 r = PTR_ERR(u.xsave); 2842 goto out; 2843 } 2844 2845 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 2846 break; 2847 } 2848 case KVM_GET_XCRS: { 2849 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 2850 r = -ENOMEM; 2851 if (!u.xcrs) 2852 break; 2853 2854 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 2855 2856 r = -EFAULT; 2857 if (copy_to_user(argp, u.xcrs, 2858 sizeof(struct kvm_xcrs))) 2859 break; 2860 r = 0; 2861 break; 2862 } 2863 case KVM_SET_XCRS: { 2864 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 2865 if (IS_ERR(u.xcrs)) { 2866 r = PTR_ERR(u.xcrs); 2867 goto out; 2868 } 2869 2870 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 2871 break; 2872 } 2873 case KVM_SET_TSC_KHZ: { 2874 u32 user_tsc_khz; 2875 2876 r = -EINVAL; 2877 user_tsc_khz = (u32)arg; 2878 2879 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 2880 goto out; 2881 2882 if (user_tsc_khz == 0) 2883 user_tsc_khz = tsc_khz; 2884 2885 kvm_set_tsc_khz(vcpu, user_tsc_khz); 2886 2887 r = 0; 2888 goto out; 2889 } 2890 case KVM_GET_TSC_KHZ: { 2891 r = vcpu->arch.virtual_tsc_khz; 2892 goto out; 2893 } 2894 case KVM_KVMCLOCK_CTRL: { 2895 r = kvm_set_guest_paused(vcpu); 2896 goto out; 2897 } 2898 default: 2899 r = -EINVAL; 2900 } 2901 out: 2902 kfree(u.buffer); 2903 return r; 2904 } 2905 2906 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2907 { 2908 return VM_FAULT_SIGBUS; 2909 } 2910 2911 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 2912 { 2913 int ret; 2914 2915 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 2916 return -1; 2917 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 2918 return ret; 2919 } 2920 2921 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 2922 u64 ident_addr) 2923 { 2924 kvm->arch.ept_identity_map_addr = ident_addr; 2925 return 0; 2926 } 2927 2928 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 2929 u32 kvm_nr_mmu_pages) 2930 { 2931 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 2932 return -EINVAL; 2933 2934 mutex_lock(&kvm->slots_lock); 2935 spin_lock(&kvm->mmu_lock); 2936 2937 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 2938 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 2939 2940 spin_unlock(&kvm->mmu_lock); 2941 mutex_unlock(&kvm->slots_lock); 2942 return 0; 2943 } 2944 2945 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 2946 { 2947 return kvm->arch.n_max_mmu_pages; 2948 } 2949 2950 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2951 { 2952 int r; 2953 2954 r = 0; 2955 switch (chip->chip_id) { 2956 case KVM_IRQCHIP_PIC_MASTER: 2957 memcpy(&chip->chip.pic, 2958 &pic_irqchip(kvm)->pics[0], 2959 sizeof(struct kvm_pic_state)); 2960 break; 2961 case KVM_IRQCHIP_PIC_SLAVE: 2962 memcpy(&chip->chip.pic, 2963 &pic_irqchip(kvm)->pics[1], 2964 sizeof(struct kvm_pic_state)); 2965 break; 2966 case KVM_IRQCHIP_IOAPIC: 2967 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 2968 break; 2969 default: 2970 r = -EINVAL; 2971 break; 2972 } 2973 return r; 2974 } 2975 2976 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2977 { 2978 int r; 2979 2980 r = 0; 2981 switch (chip->chip_id) { 2982 case KVM_IRQCHIP_PIC_MASTER: 2983 spin_lock(&pic_irqchip(kvm)->lock); 2984 memcpy(&pic_irqchip(kvm)->pics[0], 2985 &chip->chip.pic, 2986 sizeof(struct kvm_pic_state)); 2987 spin_unlock(&pic_irqchip(kvm)->lock); 2988 break; 2989 case KVM_IRQCHIP_PIC_SLAVE: 2990 spin_lock(&pic_irqchip(kvm)->lock); 2991 memcpy(&pic_irqchip(kvm)->pics[1], 2992 &chip->chip.pic, 2993 sizeof(struct kvm_pic_state)); 2994 spin_unlock(&pic_irqchip(kvm)->lock); 2995 break; 2996 case KVM_IRQCHIP_IOAPIC: 2997 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 2998 break; 2999 default: 3000 r = -EINVAL; 3001 break; 3002 } 3003 kvm_pic_update_irq(pic_irqchip(kvm)); 3004 return r; 3005 } 3006 3007 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3008 { 3009 int r = 0; 3010 3011 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3012 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3013 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3014 return r; 3015 } 3016 3017 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3018 { 3019 int r = 0; 3020 3021 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3022 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3023 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3024 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3025 return r; 3026 } 3027 3028 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3029 { 3030 int r = 0; 3031 3032 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3033 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3034 sizeof(ps->channels)); 3035 ps->flags = kvm->arch.vpit->pit_state.flags; 3036 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3037 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3038 return r; 3039 } 3040 3041 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3042 { 3043 int r = 0, start = 0; 3044 u32 prev_legacy, cur_legacy; 3045 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3046 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3047 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3048 if (!prev_legacy && cur_legacy) 3049 start = 1; 3050 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3051 sizeof(kvm->arch.vpit->pit_state.channels)); 3052 kvm->arch.vpit->pit_state.flags = ps->flags; 3053 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3054 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3055 return r; 3056 } 3057 3058 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3059 struct kvm_reinject_control *control) 3060 { 3061 if (!kvm->arch.vpit) 3062 return -ENXIO; 3063 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3064 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; 3065 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3066 return 0; 3067 } 3068 3069 /** 3070 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3071 * @kvm: kvm instance 3072 * @log: slot id and address to which we copy the log 3073 * 3074 * We need to keep it in mind that VCPU threads can write to the bitmap 3075 * concurrently. So, to avoid losing data, we keep the following order for 3076 * each bit: 3077 * 3078 * 1. Take a snapshot of the bit and clear it if needed. 3079 * 2. Write protect the corresponding page. 3080 * 3. Flush TLB's if needed. 3081 * 4. Copy the snapshot to the userspace. 3082 * 3083 * Between 2 and 3, the guest may write to the page using the remaining TLB 3084 * entry. This is not a problem because the page will be reported dirty at 3085 * step 4 using the snapshot taken before and step 3 ensures that successive 3086 * writes will be logged for the next call. 3087 */ 3088 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3089 { 3090 int r; 3091 struct kvm_memory_slot *memslot; 3092 unsigned long n, i; 3093 unsigned long *dirty_bitmap; 3094 unsigned long *dirty_bitmap_buffer; 3095 bool is_dirty = false; 3096 3097 mutex_lock(&kvm->slots_lock); 3098 3099 r = -EINVAL; 3100 if (log->slot >= KVM_MEMORY_SLOTS) 3101 goto out; 3102 3103 memslot = id_to_memslot(kvm->memslots, log->slot); 3104 3105 dirty_bitmap = memslot->dirty_bitmap; 3106 r = -ENOENT; 3107 if (!dirty_bitmap) 3108 goto out; 3109 3110 n = kvm_dirty_bitmap_bytes(memslot); 3111 3112 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3113 memset(dirty_bitmap_buffer, 0, n); 3114 3115 spin_lock(&kvm->mmu_lock); 3116 3117 for (i = 0; i < n / sizeof(long); i++) { 3118 unsigned long mask; 3119 gfn_t offset; 3120 3121 if (!dirty_bitmap[i]) 3122 continue; 3123 3124 is_dirty = true; 3125 3126 mask = xchg(&dirty_bitmap[i], 0); 3127 dirty_bitmap_buffer[i] = mask; 3128 3129 offset = i * BITS_PER_LONG; 3130 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3131 } 3132 if (is_dirty) 3133 kvm_flush_remote_tlbs(kvm); 3134 3135 spin_unlock(&kvm->mmu_lock); 3136 3137 r = -EFAULT; 3138 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3139 goto out; 3140 3141 r = 0; 3142 out: 3143 mutex_unlock(&kvm->slots_lock); 3144 return r; 3145 } 3146 3147 long kvm_arch_vm_ioctl(struct file *filp, 3148 unsigned int ioctl, unsigned long arg) 3149 { 3150 struct kvm *kvm = filp->private_data; 3151 void __user *argp = (void __user *)arg; 3152 int r = -ENOTTY; 3153 /* 3154 * This union makes it completely explicit to gcc-3.x 3155 * that these two variables' stack usage should be 3156 * combined, not added together. 3157 */ 3158 union { 3159 struct kvm_pit_state ps; 3160 struct kvm_pit_state2 ps2; 3161 struct kvm_pit_config pit_config; 3162 } u; 3163 3164 switch (ioctl) { 3165 case KVM_SET_TSS_ADDR: 3166 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3167 if (r < 0) 3168 goto out; 3169 break; 3170 case KVM_SET_IDENTITY_MAP_ADDR: { 3171 u64 ident_addr; 3172 3173 r = -EFAULT; 3174 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3175 goto out; 3176 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3177 if (r < 0) 3178 goto out; 3179 break; 3180 } 3181 case KVM_SET_NR_MMU_PAGES: 3182 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3183 if (r) 3184 goto out; 3185 break; 3186 case KVM_GET_NR_MMU_PAGES: 3187 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3188 break; 3189 case KVM_CREATE_IRQCHIP: { 3190 struct kvm_pic *vpic; 3191 3192 mutex_lock(&kvm->lock); 3193 r = -EEXIST; 3194 if (kvm->arch.vpic) 3195 goto create_irqchip_unlock; 3196 r = -EINVAL; 3197 if (atomic_read(&kvm->online_vcpus)) 3198 goto create_irqchip_unlock; 3199 r = -ENOMEM; 3200 vpic = kvm_create_pic(kvm); 3201 if (vpic) { 3202 r = kvm_ioapic_init(kvm); 3203 if (r) { 3204 mutex_lock(&kvm->slots_lock); 3205 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3206 &vpic->dev_master); 3207 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3208 &vpic->dev_slave); 3209 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3210 &vpic->dev_eclr); 3211 mutex_unlock(&kvm->slots_lock); 3212 kfree(vpic); 3213 goto create_irqchip_unlock; 3214 } 3215 } else 3216 goto create_irqchip_unlock; 3217 smp_wmb(); 3218 kvm->arch.vpic = vpic; 3219 smp_wmb(); 3220 r = kvm_setup_default_irq_routing(kvm); 3221 if (r) { 3222 mutex_lock(&kvm->slots_lock); 3223 mutex_lock(&kvm->irq_lock); 3224 kvm_ioapic_destroy(kvm); 3225 kvm_destroy_pic(kvm); 3226 mutex_unlock(&kvm->irq_lock); 3227 mutex_unlock(&kvm->slots_lock); 3228 } 3229 create_irqchip_unlock: 3230 mutex_unlock(&kvm->lock); 3231 break; 3232 } 3233 case KVM_CREATE_PIT: 3234 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3235 goto create_pit; 3236 case KVM_CREATE_PIT2: 3237 r = -EFAULT; 3238 if (copy_from_user(&u.pit_config, argp, 3239 sizeof(struct kvm_pit_config))) 3240 goto out; 3241 create_pit: 3242 mutex_lock(&kvm->slots_lock); 3243 r = -EEXIST; 3244 if (kvm->arch.vpit) 3245 goto create_pit_unlock; 3246 r = -ENOMEM; 3247 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3248 if (kvm->arch.vpit) 3249 r = 0; 3250 create_pit_unlock: 3251 mutex_unlock(&kvm->slots_lock); 3252 break; 3253 case KVM_IRQ_LINE_STATUS: 3254 case KVM_IRQ_LINE: { 3255 struct kvm_irq_level irq_event; 3256 3257 r = -EFAULT; 3258 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 3259 goto out; 3260 r = -ENXIO; 3261 if (irqchip_in_kernel(kvm)) { 3262 __s32 status; 3263 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3264 irq_event.irq, irq_event.level); 3265 if (ioctl == KVM_IRQ_LINE_STATUS) { 3266 r = -EFAULT; 3267 irq_event.status = status; 3268 if (copy_to_user(argp, &irq_event, 3269 sizeof irq_event)) 3270 goto out; 3271 } 3272 r = 0; 3273 } 3274 break; 3275 } 3276 case KVM_GET_IRQCHIP: { 3277 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3278 struct kvm_irqchip *chip; 3279 3280 chip = memdup_user(argp, sizeof(*chip)); 3281 if (IS_ERR(chip)) { 3282 r = PTR_ERR(chip); 3283 goto out; 3284 } 3285 3286 r = -ENXIO; 3287 if (!irqchip_in_kernel(kvm)) 3288 goto get_irqchip_out; 3289 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3290 if (r) 3291 goto get_irqchip_out; 3292 r = -EFAULT; 3293 if (copy_to_user(argp, chip, sizeof *chip)) 3294 goto get_irqchip_out; 3295 r = 0; 3296 get_irqchip_out: 3297 kfree(chip); 3298 if (r) 3299 goto out; 3300 break; 3301 } 3302 case KVM_SET_IRQCHIP: { 3303 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3304 struct kvm_irqchip *chip; 3305 3306 chip = memdup_user(argp, sizeof(*chip)); 3307 if (IS_ERR(chip)) { 3308 r = PTR_ERR(chip); 3309 goto out; 3310 } 3311 3312 r = -ENXIO; 3313 if (!irqchip_in_kernel(kvm)) 3314 goto set_irqchip_out; 3315 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3316 if (r) 3317 goto set_irqchip_out; 3318 r = 0; 3319 set_irqchip_out: 3320 kfree(chip); 3321 if (r) 3322 goto out; 3323 break; 3324 } 3325 case KVM_GET_PIT: { 3326 r = -EFAULT; 3327 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3328 goto out; 3329 r = -ENXIO; 3330 if (!kvm->arch.vpit) 3331 goto out; 3332 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3333 if (r) 3334 goto out; 3335 r = -EFAULT; 3336 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3337 goto out; 3338 r = 0; 3339 break; 3340 } 3341 case KVM_SET_PIT: { 3342 r = -EFAULT; 3343 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3344 goto out; 3345 r = -ENXIO; 3346 if (!kvm->arch.vpit) 3347 goto out; 3348 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3349 if (r) 3350 goto out; 3351 r = 0; 3352 break; 3353 } 3354 case KVM_GET_PIT2: { 3355 r = -ENXIO; 3356 if (!kvm->arch.vpit) 3357 goto out; 3358 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3359 if (r) 3360 goto out; 3361 r = -EFAULT; 3362 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3363 goto out; 3364 r = 0; 3365 break; 3366 } 3367 case KVM_SET_PIT2: { 3368 r = -EFAULT; 3369 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3370 goto out; 3371 r = -ENXIO; 3372 if (!kvm->arch.vpit) 3373 goto out; 3374 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3375 if (r) 3376 goto out; 3377 r = 0; 3378 break; 3379 } 3380 case KVM_REINJECT_CONTROL: { 3381 struct kvm_reinject_control control; 3382 r = -EFAULT; 3383 if (copy_from_user(&control, argp, sizeof(control))) 3384 goto out; 3385 r = kvm_vm_ioctl_reinject(kvm, &control); 3386 if (r) 3387 goto out; 3388 r = 0; 3389 break; 3390 } 3391 case KVM_XEN_HVM_CONFIG: { 3392 r = -EFAULT; 3393 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3394 sizeof(struct kvm_xen_hvm_config))) 3395 goto out; 3396 r = -EINVAL; 3397 if (kvm->arch.xen_hvm_config.flags) 3398 goto out; 3399 r = 0; 3400 break; 3401 } 3402 case KVM_SET_CLOCK: { 3403 struct kvm_clock_data user_ns; 3404 u64 now_ns; 3405 s64 delta; 3406 3407 r = -EFAULT; 3408 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3409 goto out; 3410 3411 r = -EINVAL; 3412 if (user_ns.flags) 3413 goto out; 3414 3415 r = 0; 3416 local_irq_disable(); 3417 now_ns = get_kernel_ns(); 3418 delta = user_ns.clock - now_ns; 3419 local_irq_enable(); 3420 kvm->arch.kvmclock_offset = delta; 3421 break; 3422 } 3423 case KVM_GET_CLOCK: { 3424 struct kvm_clock_data user_ns; 3425 u64 now_ns; 3426 3427 local_irq_disable(); 3428 now_ns = get_kernel_ns(); 3429 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3430 local_irq_enable(); 3431 user_ns.flags = 0; 3432 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3433 3434 r = -EFAULT; 3435 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3436 goto out; 3437 r = 0; 3438 break; 3439 } 3440 3441 default: 3442 ; 3443 } 3444 out: 3445 return r; 3446 } 3447 3448 static void kvm_init_msr_list(void) 3449 { 3450 u32 dummy[2]; 3451 unsigned i, j; 3452 3453 /* skip the first msrs in the list. KVM-specific */ 3454 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3455 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3456 continue; 3457 if (j < i) 3458 msrs_to_save[j] = msrs_to_save[i]; 3459 j++; 3460 } 3461 num_msrs_to_save = j; 3462 } 3463 3464 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3465 const void *v) 3466 { 3467 int handled = 0; 3468 int n; 3469 3470 do { 3471 n = min(len, 8); 3472 if (!(vcpu->arch.apic && 3473 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3474 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3475 break; 3476 handled += n; 3477 addr += n; 3478 len -= n; 3479 v += n; 3480 } while (len); 3481 3482 return handled; 3483 } 3484 3485 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3486 { 3487 int handled = 0; 3488 int n; 3489 3490 do { 3491 n = min(len, 8); 3492 if (!(vcpu->arch.apic && 3493 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3494 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3495 break; 3496 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3497 handled += n; 3498 addr += n; 3499 len -= n; 3500 v += n; 3501 } while (len); 3502 3503 return handled; 3504 } 3505 3506 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3507 struct kvm_segment *var, int seg) 3508 { 3509 kvm_x86_ops->set_segment(vcpu, var, seg); 3510 } 3511 3512 void kvm_get_segment(struct kvm_vcpu *vcpu, 3513 struct kvm_segment *var, int seg) 3514 { 3515 kvm_x86_ops->get_segment(vcpu, var, seg); 3516 } 3517 3518 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3519 { 3520 gpa_t t_gpa; 3521 struct x86_exception exception; 3522 3523 BUG_ON(!mmu_is_nested(vcpu)); 3524 3525 /* NPT walks are always user-walks */ 3526 access |= PFERR_USER_MASK; 3527 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3528 3529 return t_gpa; 3530 } 3531 3532 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3533 struct x86_exception *exception) 3534 { 3535 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3536 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3537 } 3538 3539 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3540 struct x86_exception *exception) 3541 { 3542 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3543 access |= PFERR_FETCH_MASK; 3544 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3545 } 3546 3547 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3548 struct x86_exception *exception) 3549 { 3550 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3551 access |= PFERR_WRITE_MASK; 3552 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3553 } 3554 3555 /* uses this to access any guest's mapped memory without checking CPL */ 3556 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3557 struct x86_exception *exception) 3558 { 3559 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3560 } 3561 3562 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3563 struct kvm_vcpu *vcpu, u32 access, 3564 struct x86_exception *exception) 3565 { 3566 void *data = val; 3567 int r = X86EMUL_CONTINUE; 3568 3569 while (bytes) { 3570 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3571 exception); 3572 unsigned offset = addr & (PAGE_SIZE-1); 3573 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3574 int ret; 3575 3576 if (gpa == UNMAPPED_GVA) 3577 return X86EMUL_PROPAGATE_FAULT; 3578 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3579 if (ret < 0) { 3580 r = X86EMUL_IO_NEEDED; 3581 goto out; 3582 } 3583 3584 bytes -= toread; 3585 data += toread; 3586 addr += toread; 3587 } 3588 out: 3589 return r; 3590 } 3591 3592 /* used for instruction fetching */ 3593 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3594 gva_t addr, void *val, unsigned int bytes, 3595 struct x86_exception *exception) 3596 { 3597 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3598 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3599 3600 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 3601 access | PFERR_FETCH_MASK, 3602 exception); 3603 } 3604 3605 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 3606 gva_t addr, void *val, unsigned int bytes, 3607 struct x86_exception *exception) 3608 { 3609 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3610 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3611 3612 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 3613 exception); 3614 } 3615 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 3616 3617 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3618 gva_t addr, void *val, unsigned int bytes, 3619 struct x86_exception *exception) 3620 { 3621 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3622 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 3623 } 3624 3625 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3626 gva_t addr, void *val, 3627 unsigned int bytes, 3628 struct x86_exception *exception) 3629 { 3630 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3631 void *data = val; 3632 int r = X86EMUL_CONTINUE; 3633 3634 while (bytes) { 3635 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 3636 PFERR_WRITE_MASK, 3637 exception); 3638 unsigned offset = addr & (PAGE_SIZE-1); 3639 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 3640 int ret; 3641 3642 if (gpa == UNMAPPED_GVA) 3643 return X86EMUL_PROPAGATE_FAULT; 3644 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 3645 if (ret < 0) { 3646 r = X86EMUL_IO_NEEDED; 3647 goto out; 3648 } 3649 3650 bytes -= towrite; 3651 data += towrite; 3652 addr += towrite; 3653 } 3654 out: 3655 return r; 3656 } 3657 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 3658 3659 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 3660 gpa_t *gpa, struct x86_exception *exception, 3661 bool write) 3662 { 3663 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3664 3665 if (vcpu_match_mmio_gva(vcpu, gva) && 3666 check_write_user_access(vcpu, write, access, 3667 vcpu->arch.access)) { 3668 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 3669 (gva & (PAGE_SIZE - 1)); 3670 trace_vcpu_match_mmio(gva, *gpa, write, false); 3671 return 1; 3672 } 3673 3674 if (write) 3675 access |= PFERR_WRITE_MASK; 3676 3677 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3678 3679 if (*gpa == UNMAPPED_GVA) 3680 return -1; 3681 3682 /* For APIC access vmexit */ 3683 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3684 return 1; 3685 3686 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 3687 trace_vcpu_match_mmio(gva, *gpa, write, true); 3688 return 1; 3689 } 3690 3691 return 0; 3692 } 3693 3694 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 3695 const void *val, int bytes) 3696 { 3697 int ret; 3698 3699 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 3700 if (ret < 0) 3701 return 0; 3702 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 3703 return 1; 3704 } 3705 3706 struct read_write_emulator_ops { 3707 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 3708 int bytes); 3709 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 3710 void *val, int bytes); 3711 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3712 int bytes, void *val); 3713 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3714 void *val, int bytes); 3715 bool write; 3716 }; 3717 3718 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 3719 { 3720 if (vcpu->mmio_read_completed) { 3721 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 3722 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 3723 vcpu->mmio_read_completed = 0; 3724 return 1; 3725 } 3726 3727 return 0; 3728 } 3729 3730 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3731 void *val, int bytes) 3732 { 3733 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 3734 } 3735 3736 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3737 void *val, int bytes) 3738 { 3739 return emulator_write_phys(vcpu, gpa, val, bytes); 3740 } 3741 3742 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 3743 { 3744 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 3745 return vcpu_mmio_write(vcpu, gpa, bytes, val); 3746 } 3747 3748 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3749 void *val, int bytes) 3750 { 3751 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 3752 return X86EMUL_IO_NEEDED; 3753 } 3754 3755 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3756 void *val, int bytes) 3757 { 3758 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 3759 3760 memcpy(vcpu->run->mmio.data, frag->data, frag->len); 3761 return X86EMUL_CONTINUE; 3762 } 3763 3764 static struct read_write_emulator_ops read_emultor = { 3765 .read_write_prepare = read_prepare, 3766 .read_write_emulate = read_emulate, 3767 .read_write_mmio = vcpu_mmio_read, 3768 .read_write_exit_mmio = read_exit_mmio, 3769 }; 3770 3771 static struct read_write_emulator_ops write_emultor = { 3772 .read_write_emulate = write_emulate, 3773 .read_write_mmio = write_mmio, 3774 .read_write_exit_mmio = write_exit_mmio, 3775 .write = true, 3776 }; 3777 3778 static int emulator_read_write_onepage(unsigned long addr, void *val, 3779 unsigned int bytes, 3780 struct x86_exception *exception, 3781 struct kvm_vcpu *vcpu, 3782 struct read_write_emulator_ops *ops) 3783 { 3784 gpa_t gpa; 3785 int handled, ret; 3786 bool write = ops->write; 3787 struct kvm_mmio_fragment *frag; 3788 3789 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 3790 3791 if (ret < 0) 3792 return X86EMUL_PROPAGATE_FAULT; 3793 3794 /* For APIC access vmexit */ 3795 if (ret) 3796 goto mmio; 3797 3798 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 3799 return X86EMUL_CONTINUE; 3800 3801 mmio: 3802 /* 3803 * Is this MMIO handled locally? 3804 */ 3805 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 3806 if (handled == bytes) 3807 return X86EMUL_CONTINUE; 3808 3809 gpa += handled; 3810 bytes -= handled; 3811 val += handled; 3812 3813 while (bytes) { 3814 unsigned now = min(bytes, 8U); 3815 3816 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 3817 frag->gpa = gpa; 3818 frag->data = val; 3819 frag->len = now; 3820 3821 gpa += now; 3822 val += now; 3823 bytes -= now; 3824 } 3825 return X86EMUL_CONTINUE; 3826 } 3827 3828 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 3829 void *val, unsigned int bytes, 3830 struct x86_exception *exception, 3831 struct read_write_emulator_ops *ops) 3832 { 3833 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3834 gpa_t gpa; 3835 int rc; 3836 3837 if (ops->read_write_prepare && 3838 ops->read_write_prepare(vcpu, val, bytes)) 3839 return X86EMUL_CONTINUE; 3840 3841 vcpu->mmio_nr_fragments = 0; 3842 3843 /* Crossing a page boundary? */ 3844 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 3845 int now; 3846 3847 now = -addr & ~PAGE_MASK; 3848 rc = emulator_read_write_onepage(addr, val, now, exception, 3849 vcpu, ops); 3850 3851 if (rc != X86EMUL_CONTINUE) 3852 return rc; 3853 addr += now; 3854 val += now; 3855 bytes -= now; 3856 } 3857 3858 rc = emulator_read_write_onepage(addr, val, bytes, exception, 3859 vcpu, ops); 3860 if (rc != X86EMUL_CONTINUE) 3861 return rc; 3862 3863 if (!vcpu->mmio_nr_fragments) 3864 return rc; 3865 3866 gpa = vcpu->mmio_fragments[0].gpa; 3867 3868 vcpu->mmio_needed = 1; 3869 vcpu->mmio_cur_fragment = 0; 3870 3871 vcpu->run->mmio.len = vcpu->mmio_fragments[0].len; 3872 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 3873 vcpu->run->exit_reason = KVM_EXIT_MMIO; 3874 vcpu->run->mmio.phys_addr = gpa; 3875 3876 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 3877 } 3878 3879 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 3880 unsigned long addr, 3881 void *val, 3882 unsigned int bytes, 3883 struct x86_exception *exception) 3884 { 3885 return emulator_read_write(ctxt, addr, val, bytes, 3886 exception, &read_emultor); 3887 } 3888 3889 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 3890 unsigned long addr, 3891 const void *val, 3892 unsigned int bytes, 3893 struct x86_exception *exception) 3894 { 3895 return emulator_read_write(ctxt, addr, (void *)val, bytes, 3896 exception, &write_emultor); 3897 } 3898 3899 #define CMPXCHG_TYPE(t, ptr, old, new) \ 3900 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 3901 3902 #ifdef CONFIG_X86_64 3903 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 3904 #else 3905 # define CMPXCHG64(ptr, old, new) \ 3906 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 3907 #endif 3908 3909 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 3910 unsigned long addr, 3911 const void *old, 3912 const void *new, 3913 unsigned int bytes, 3914 struct x86_exception *exception) 3915 { 3916 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3917 gpa_t gpa; 3918 struct page *page; 3919 char *kaddr; 3920 bool exchanged; 3921 3922 /* guests cmpxchg8b have to be emulated atomically */ 3923 if (bytes > 8 || (bytes & (bytes - 1))) 3924 goto emul_write; 3925 3926 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 3927 3928 if (gpa == UNMAPPED_GVA || 3929 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3930 goto emul_write; 3931 3932 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 3933 goto emul_write; 3934 3935 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 3936 if (is_error_page(page)) { 3937 kvm_release_page_clean(page); 3938 goto emul_write; 3939 } 3940 3941 kaddr = kmap_atomic(page); 3942 kaddr += offset_in_page(gpa); 3943 switch (bytes) { 3944 case 1: 3945 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 3946 break; 3947 case 2: 3948 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 3949 break; 3950 case 4: 3951 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 3952 break; 3953 case 8: 3954 exchanged = CMPXCHG64(kaddr, old, new); 3955 break; 3956 default: 3957 BUG(); 3958 } 3959 kunmap_atomic(kaddr); 3960 kvm_release_page_dirty(page); 3961 3962 if (!exchanged) 3963 return X86EMUL_CMPXCHG_FAILED; 3964 3965 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 3966 3967 return X86EMUL_CONTINUE; 3968 3969 emul_write: 3970 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 3971 3972 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 3973 } 3974 3975 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 3976 { 3977 /* TODO: String I/O for in kernel device */ 3978 int r; 3979 3980 if (vcpu->arch.pio.in) 3981 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 3982 vcpu->arch.pio.size, pd); 3983 else 3984 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 3985 vcpu->arch.pio.port, vcpu->arch.pio.size, 3986 pd); 3987 return r; 3988 } 3989 3990 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 3991 unsigned short port, void *val, 3992 unsigned int count, bool in) 3993 { 3994 trace_kvm_pio(!in, port, size, count); 3995 3996 vcpu->arch.pio.port = port; 3997 vcpu->arch.pio.in = in; 3998 vcpu->arch.pio.count = count; 3999 vcpu->arch.pio.size = size; 4000 4001 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4002 vcpu->arch.pio.count = 0; 4003 return 1; 4004 } 4005 4006 vcpu->run->exit_reason = KVM_EXIT_IO; 4007 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4008 vcpu->run->io.size = size; 4009 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4010 vcpu->run->io.count = count; 4011 vcpu->run->io.port = port; 4012 4013 return 0; 4014 } 4015 4016 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4017 int size, unsigned short port, void *val, 4018 unsigned int count) 4019 { 4020 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4021 int ret; 4022 4023 if (vcpu->arch.pio.count) 4024 goto data_avail; 4025 4026 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4027 if (ret) { 4028 data_avail: 4029 memcpy(val, vcpu->arch.pio_data, size * count); 4030 vcpu->arch.pio.count = 0; 4031 return 1; 4032 } 4033 4034 return 0; 4035 } 4036 4037 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4038 int size, unsigned short port, 4039 const void *val, unsigned int count) 4040 { 4041 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4042 4043 memcpy(vcpu->arch.pio_data, val, size * count); 4044 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4045 } 4046 4047 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4048 { 4049 return kvm_x86_ops->get_segment_base(vcpu, seg); 4050 } 4051 4052 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4053 { 4054 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4055 } 4056 4057 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4058 { 4059 if (!need_emulate_wbinvd(vcpu)) 4060 return X86EMUL_CONTINUE; 4061 4062 if (kvm_x86_ops->has_wbinvd_exit()) { 4063 int cpu = get_cpu(); 4064 4065 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4066 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4067 wbinvd_ipi, NULL, 1); 4068 put_cpu(); 4069 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4070 } else 4071 wbinvd(); 4072 return X86EMUL_CONTINUE; 4073 } 4074 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4075 4076 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4077 { 4078 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4079 } 4080 4081 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4082 { 4083 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4084 } 4085 4086 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4087 { 4088 4089 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4090 } 4091 4092 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4093 { 4094 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4095 } 4096 4097 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4098 { 4099 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4100 unsigned long value; 4101 4102 switch (cr) { 4103 case 0: 4104 value = kvm_read_cr0(vcpu); 4105 break; 4106 case 2: 4107 value = vcpu->arch.cr2; 4108 break; 4109 case 3: 4110 value = kvm_read_cr3(vcpu); 4111 break; 4112 case 4: 4113 value = kvm_read_cr4(vcpu); 4114 break; 4115 case 8: 4116 value = kvm_get_cr8(vcpu); 4117 break; 4118 default: 4119 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); 4120 return 0; 4121 } 4122 4123 return value; 4124 } 4125 4126 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4127 { 4128 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4129 int res = 0; 4130 4131 switch (cr) { 4132 case 0: 4133 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4134 break; 4135 case 2: 4136 vcpu->arch.cr2 = val; 4137 break; 4138 case 3: 4139 res = kvm_set_cr3(vcpu, val); 4140 break; 4141 case 4: 4142 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4143 break; 4144 case 8: 4145 res = kvm_set_cr8(vcpu, val); 4146 break; 4147 default: 4148 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); 4149 res = -1; 4150 } 4151 4152 return res; 4153 } 4154 4155 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4156 { 4157 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4158 } 4159 4160 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4161 { 4162 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4163 } 4164 4165 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4166 { 4167 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4168 } 4169 4170 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4171 { 4172 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4173 } 4174 4175 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4176 { 4177 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4178 } 4179 4180 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4181 { 4182 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4183 } 4184 4185 static unsigned long emulator_get_cached_segment_base( 4186 struct x86_emulate_ctxt *ctxt, int seg) 4187 { 4188 return get_segment_base(emul_to_vcpu(ctxt), seg); 4189 } 4190 4191 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4192 struct desc_struct *desc, u32 *base3, 4193 int seg) 4194 { 4195 struct kvm_segment var; 4196 4197 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4198 *selector = var.selector; 4199 4200 if (var.unusable) 4201 return false; 4202 4203 if (var.g) 4204 var.limit >>= 12; 4205 set_desc_limit(desc, var.limit); 4206 set_desc_base(desc, (unsigned long)var.base); 4207 #ifdef CONFIG_X86_64 4208 if (base3) 4209 *base3 = var.base >> 32; 4210 #endif 4211 desc->type = var.type; 4212 desc->s = var.s; 4213 desc->dpl = var.dpl; 4214 desc->p = var.present; 4215 desc->avl = var.avl; 4216 desc->l = var.l; 4217 desc->d = var.db; 4218 desc->g = var.g; 4219 4220 return true; 4221 } 4222 4223 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4224 struct desc_struct *desc, u32 base3, 4225 int seg) 4226 { 4227 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4228 struct kvm_segment var; 4229 4230 var.selector = selector; 4231 var.base = get_desc_base(desc); 4232 #ifdef CONFIG_X86_64 4233 var.base |= ((u64)base3) << 32; 4234 #endif 4235 var.limit = get_desc_limit(desc); 4236 if (desc->g) 4237 var.limit = (var.limit << 12) | 0xfff; 4238 var.type = desc->type; 4239 var.present = desc->p; 4240 var.dpl = desc->dpl; 4241 var.db = desc->d; 4242 var.s = desc->s; 4243 var.l = desc->l; 4244 var.g = desc->g; 4245 var.avl = desc->avl; 4246 var.present = desc->p; 4247 var.unusable = !var.present; 4248 var.padding = 0; 4249 4250 kvm_set_segment(vcpu, &var, seg); 4251 return; 4252 } 4253 4254 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4255 u32 msr_index, u64 *pdata) 4256 { 4257 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4258 } 4259 4260 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4261 u32 msr_index, u64 data) 4262 { 4263 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 4264 } 4265 4266 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4267 u32 pmc, u64 *pdata) 4268 { 4269 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4270 } 4271 4272 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4273 { 4274 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4275 } 4276 4277 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4278 { 4279 preempt_disable(); 4280 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4281 /* 4282 * CR0.TS may reference the host fpu state, not the guest fpu state, 4283 * so it may be clear at this point. 4284 */ 4285 clts(); 4286 } 4287 4288 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4289 { 4290 preempt_enable(); 4291 } 4292 4293 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4294 struct x86_instruction_info *info, 4295 enum x86_intercept_stage stage) 4296 { 4297 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4298 } 4299 4300 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4301 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4302 { 4303 struct kvm_cpuid_entry2 *cpuid = NULL; 4304 4305 if (eax && ecx) 4306 cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt), 4307 *eax, *ecx); 4308 4309 if (cpuid) { 4310 *eax = cpuid->eax; 4311 *ecx = cpuid->ecx; 4312 if (ebx) 4313 *ebx = cpuid->ebx; 4314 if (edx) 4315 *edx = cpuid->edx; 4316 return true; 4317 } 4318 4319 return false; 4320 } 4321 4322 static struct x86_emulate_ops emulate_ops = { 4323 .read_std = kvm_read_guest_virt_system, 4324 .write_std = kvm_write_guest_virt_system, 4325 .fetch = kvm_fetch_guest_virt, 4326 .read_emulated = emulator_read_emulated, 4327 .write_emulated = emulator_write_emulated, 4328 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4329 .invlpg = emulator_invlpg, 4330 .pio_in_emulated = emulator_pio_in_emulated, 4331 .pio_out_emulated = emulator_pio_out_emulated, 4332 .get_segment = emulator_get_segment, 4333 .set_segment = emulator_set_segment, 4334 .get_cached_segment_base = emulator_get_cached_segment_base, 4335 .get_gdt = emulator_get_gdt, 4336 .get_idt = emulator_get_idt, 4337 .set_gdt = emulator_set_gdt, 4338 .set_idt = emulator_set_idt, 4339 .get_cr = emulator_get_cr, 4340 .set_cr = emulator_set_cr, 4341 .set_rflags = emulator_set_rflags, 4342 .cpl = emulator_get_cpl, 4343 .get_dr = emulator_get_dr, 4344 .set_dr = emulator_set_dr, 4345 .set_msr = emulator_set_msr, 4346 .get_msr = emulator_get_msr, 4347 .read_pmc = emulator_read_pmc, 4348 .halt = emulator_halt, 4349 .wbinvd = emulator_wbinvd, 4350 .fix_hypercall = emulator_fix_hypercall, 4351 .get_fpu = emulator_get_fpu, 4352 .put_fpu = emulator_put_fpu, 4353 .intercept = emulator_intercept, 4354 .get_cpuid = emulator_get_cpuid, 4355 }; 4356 4357 static void cache_all_regs(struct kvm_vcpu *vcpu) 4358 { 4359 kvm_register_read(vcpu, VCPU_REGS_RAX); 4360 kvm_register_read(vcpu, VCPU_REGS_RSP); 4361 kvm_register_read(vcpu, VCPU_REGS_RIP); 4362 vcpu->arch.regs_dirty = ~0; 4363 } 4364 4365 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4366 { 4367 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4368 /* 4369 * an sti; sti; sequence only disable interrupts for the first 4370 * instruction. So, if the last instruction, be it emulated or 4371 * not, left the system with the INT_STI flag enabled, it 4372 * means that the last instruction is an sti. We should not 4373 * leave the flag on in this case. The same goes for mov ss 4374 */ 4375 if (!(int_shadow & mask)) 4376 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4377 } 4378 4379 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4380 { 4381 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4382 if (ctxt->exception.vector == PF_VECTOR) 4383 kvm_propagate_fault(vcpu, &ctxt->exception); 4384 else if (ctxt->exception.error_code_valid) 4385 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4386 ctxt->exception.error_code); 4387 else 4388 kvm_queue_exception(vcpu, ctxt->exception.vector); 4389 } 4390 4391 static void init_decode_cache(struct x86_emulate_ctxt *ctxt, 4392 const unsigned long *regs) 4393 { 4394 memset(&ctxt->twobyte, 0, 4395 (void *)&ctxt->regs - (void *)&ctxt->twobyte); 4396 memcpy(ctxt->regs, regs, sizeof(ctxt->regs)); 4397 4398 ctxt->fetch.start = 0; 4399 ctxt->fetch.end = 0; 4400 ctxt->io_read.pos = 0; 4401 ctxt->io_read.end = 0; 4402 ctxt->mem_read.pos = 0; 4403 ctxt->mem_read.end = 0; 4404 } 4405 4406 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4407 { 4408 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4409 int cs_db, cs_l; 4410 4411 /* 4412 * TODO: fix emulate.c to use guest_read/write_register 4413 * instead of direct ->regs accesses, can save hundred cycles 4414 * on Intel for instructions that don't read/change RSP, for 4415 * for example. 4416 */ 4417 cache_all_regs(vcpu); 4418 4419 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4420 4421 ctxt->eflags = kvm_get_rflags(vcpu); 4422 ctxt->eip = kvm_rip_read(vcpu); 4423 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4424 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4425 cs_l ? X86EMUL_MODE_PROT64 : 4426 cs_db ? X86EMUL_MODE_PROT32 : 4427 X86EMUL_MODE_PROT16; 4428 ctxt->guest_mode = is_guest_mode(vcpu); 4429 4430 init_decode_cache(ctxt, vcpu->arch.regs); 4431 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4432 } 4433 4434 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4435 { 4436 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4437 int ret; 4438 4439 init_emulate_ctxt(vcpu); 4440 4441 ctxt->op_bytes = 2; 4442 ctxt->ad_bytes = 2; 4443 ctxt->_eip = ctxt->eip + inc_eip; 4444 ret = emulate_int_real(ctxt, irq); 4445 4446 if (ret != X86EMUL_CONTINUE) 4447 return EMULATE_FAIL; 4448 4449 ctxt->eip = ctxt->_eip; 4450 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 4451 kvm_rip_write(vcpu, ctxt->eip); 4452 kvm_set_rflags(vcpu, ctxt->eflags); 4453 4454 if (irq == NMI_VECTOR) 4455 vcpu->arch.nmi_pending = 0; 4456 else 4457 vcpu->arch.interrupt.pending = false; 4458 4459 return EMULATE_DONE; 4460 } 4461 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4462 4463 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4464 { 4465 int r = EMULATE_DONE; 4466 4467 ++vcpu->stat.insn_emulation_fail; 4468 trace_kvm_emulate_insn_failed(vcpu); 4469 if (!is_guest_mode(vcpu)) { 4470 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4471 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4472 vcpu->run->internal.ndata = 0; 4473 r = EMULATE_FAIL; 4474 } 4475 kvm_queue_exception(vcpu, UD_VECTOR); 4476 4477 return r; 4478 } 4479 4480 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) 4481 { 4482 gpa_t gpa; 4483 4484 if (tdp_enabled) 4485 return false; 4486 4487 /* 4488 * if emulation was due to access to shadowed page table 4489 * and it failed try to unshadow page and re-entetr the 4490 * guest to let CPU execute the instruction. 4491 */ 4492 if (kvm_mmu_unprotect_page_virt(vcpu, gva)) 4493 return true; 4494 4495 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); 4496 4497 if (gpa == UNMAPPED_GVA) 4498 return true; /* let cpu generate fault */ 4499 4500 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT))) 4501 return true; 4502 4503 return false; 4504 } 4505 4506 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4507 unsigned long cr2, int emulation_type) 4508 { 4509 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4510 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4511 4512 last_retry_eip = vcpu->arch.last_retry_eip; 4513 last_retry_addr = vcpu->arch.last_retry_addr; 4514 4515 /* 4516 * If the emulation is caused by #PF and it is non-page_table 4517 * writing instruction, it means the VM-EXIT is caused by shadow 4518 * page protected, we can zap the shadow page and retry this 4519 * instruction directly. 4520 * 4521 * Note: if the guest uses a non-page-table modifying instruction 4522 * on the PDE that points to the instruction, then we will unmap 4523 * the instruction and go to an infinite loop. So, we cache the 4524 * last retried eip and the last fault address, if we meet the eip 4525 * and the address again, we can break out of the potential infinite 4526 * loop. 4527 */ 4528 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4529 4530 if (!(emulation_type & EMULTYPE_RETRY)) 4531 return false; 4532 4533 if (x86_page_table_writing_insn(ctxt)) 4534 return false; 4535 4536 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4537 return false; 4538 4539 vcpu->arch.last_retry_eip = ctxt->eip; 4540 vcpu->arch.last_retry_addr = cr2; 4541 4542 if (!vcpu->arch.mmu.direct_map) 4543 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4544 4545 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4546 4547 return true; 4548 } 4549 4550 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 4551 unsigned long cr2, 4552 int emulation_type, 4553 void *insn, 4554 int insn_len) 4555 { 4556 int r; 4557 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4558 bool writeback = true; 4559 4560 kvm_clear_exception_queue(vcpu); 4561 4562 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 4563 init_emulate_ctxt(vcpu); 4564 ctxt->interruptibility = 0; 4565 ctxt->have_exception = false; 4566 ctxt->perm_ok = false; 4567 4568 ctxt->only_vendor_specific_insn 4569 = emulation_type & EMULTYPE_TRAP_UD; 4570 4571 r = x86_decode_insn(ctxt, insn, insn_len); 4572 4573 trace_kvm_emulate_insn_start(vcpu); 4574 ++vcpu->stat.insn_emulation; 4575 if (r != EMULATION_OK) { 4576 if (emulation_type & EMULTYPE_TRAP_UD) 4577 return EMULATE_FAIL; 4578 if (reexecute_instruction(vcpu, cr2)) 4579 return EMULATE_DONE; 4580 if (emulation_type & EMULTYPE_SKIP) 4581 return EMULATE_FAIL; 4582 return handle_emulation_failure(vcpu); 4583 } 4584 } 4585 4586 if (emulation_type & EMULTYPE_SKIP) { 4587 kvm_rip_write(vcpu, ctxt->_eip); 4588 return EMULATE_DONE; 4589 } 4590 4591 if (retry_instruction(ctxt, cr2, emulation_type)) 4592 return EMULATE_DONE; 4593 4594 /* this is needed for vmware backdoor interface to work since it 4595 changes registers values during IO operation */ 4596 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 4597 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4598 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs); 4599 } 4600 4601 restart: 4602 r = x86_emulate_insn(ctxt); 4603 4604 if (r == EMULATION_INTERCEPTED) 4605 return EMULATE_DONE; 4606 4607 if (r == EMULATION_FAILED) { 4608 if (reexecute_instruction(vcpu, cr2)) 4609 return EMULATE_DONE; 4610 4611 return handle_emulation_failure(vcpu); 4612 } 4613 4614 if (ctxt->have_exception) { 4615 inject_emulated_exception(vcpu); 4616 r = EMULATE_DONE; 4617 } else if (vcpu->arch.pio.count) { 4618 if (!vcpu->arch.pio.in) 4619 vcpu->arch.pio.count = 0; 4620 else 4621 writeback = false; 4622 r = EMULATE_DO_MMIO; 4623 } else if (vcpu->mmio_needed) { 4624 if (!vcpu->mmio_is_write) 4625 writeback = false; 4626 r = EMULATE_DO_MMIO; 4627 } else if (r == EMULATION_RESTART) 4628 goto restart; 4629 else 4630 r = EMULATE_DONE; 4631 4632 if (writeback) { 4633 toggle_interruptibility(vcpu, ctxt->interruptibility); 4634 kvm_set_rflags(vcpu, ctxt->eflags); 4635 kvm_make_request(KVM_REQ_EVENT, vcpu); 4636 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 4637 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 4638 kvm_rip_write(vcpu, ctxt->eip); 4639 } else 4640 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 4641 4642 return r; 4643 } 4644 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 4645 4646 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 4647 { 4648 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 4649 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 4650 size, port, &val, 1); 4651 /* do not return to emulator after return from userspace */ 4652 vcpu->arch.pio.count = 0; 4653 return ret; 4654 } 4655 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 4656 4657 static void tsc_bad(void *info) 4658 { 4659 __this_cpu_write(cpu_tsc_khz, 0); 4660 } 4661 4662 static void tsc_khz_changed(void *data) 4663 { 4664 struct cpufreq_freqs *freq = data; 4665 unsigned long khz = 0; 4666 4667 if (data) 4668 khz = freq->new; 4669 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4670 khz = cpufreq_quick_get(raw_smp_processor_id()); 4671 if (!khz) 4672 khz = tsc_khz; 4673 __this_cpu_write(cpu_tsc_khz, khz); 4674 } 4675 4676 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 4677 void *data) 4678 { 4679 struct cpufreq_freqs *freq = data; 4680 struct kvm *kvm; 4681 struct kvm_vcpu *vcpu; 4682 int i, send_ipi = 0; 4683 4684 /* 4685 * We allow guests to temporarily run on slowing clocks, 4686 * provided we notify them after, or to run on accelerating 4687 * clocks, provided we notify them before. Thus time never 4688 * goes backwards. 4689 * 4690 * However, we have a problem. We can't atomically update 4691 * the frequency of a given CPU from this function; it is 4692 * merely a notifier, which can be called from any CPU. 4693 * Changing the TSC frequency at arbitrary points in time 4694 * requires a recomputation of local variables related to 4695 * the TSC for each VCPU. We must flag these local variables 4696 * to be updated and be sure the update takes place with the 4697 * new frequency before any guests proceed. 4698 * 4699 * Unfortunately, the combination of hotplug CPU and frequency 4700 * change creates an intractable locking scenario; the order 4701 * of when these callouts happen is undefined with respect to 4702 * CPU hotplug, and they can race with each other. As such, 4703 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 4704 * undefined; you can actually have a CPU frequency change take 4705 * place in between the computation of X and the setting of the 4706 * variable. To protect against this problem, all updates of 4707 * the per_cpu tsc_khz variable are done in an interrupt 4708 * protected IPI, and all callers wishing to update the value 4709 * must wait for a synchronous IPI to complete (which is trivial 4710 * if the caller is on the CPU already). This establishes the 4711 * necessary total order on variable updates. 4712 * 4713 * Note that because a guest time update may take place 4714 * anytime after the setting of the VCPU's request bit, the 4715 * correct TSC value must be set before the request. However, 4716 * to ensure the update actually makes it to any guest which 4717 * starts running in hardware virtualization between the set 4718 * and the acquisition of the spinlock, we must also ping the 4719 * CPU after setting the request bit. 4720 * 4721 */ 4722 4723 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 4724 return 0; 4725 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 4726 return 0; 4727 4728 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4729 4730 raw_spin_lock(&kvm_lock); 4731 list_for_each_entry(kvm, &vm_list, vm_list) { 4732 kvm_for_each_vcpu(i, vcpu, kvm) { 4733 if (vcpu->cpu != freq->cpu) 4734 continue; 4735 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4736 if (vcpu->cpu != smp_processor_id()) 4737 send_ipi = 1; 4738 } 4739 } 4740 raw_spin_unlock(&kvm_lock); 4741 4742 if (freq->old < freq->new && send_ipi) { 4743 /* 4744 * We upscale the frequency. Must make the guest 4745 * doesn't see old kvmclock values while running with 4746 * the new frequency, otherwise we risk the guest sees 4747 * time go backwards. 4748 * 4749 * In case we update the frequency for another cpu 4750 * (which might be in guest context) send an interrupt 4751 * to kick the cpu out of guest context. Next time 4752 * guest context is entered kvmclock will be updated, 4753 * so the guest will not see stale values. 4754 */ 4755 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4756 } 4757 return 0; 4758 } 4759 4760 static struct notifier_block kvmclock_cpufreq_notifier_block = { 4761 .notifier_call = kvmclock_cpufreq_notifier 4762 }; 4763 4764 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 4765 unsigned long action, void *hcpu) 4766 { 4767 unsigned int cpu = (unsigned long)hcpu; 4768 4769 switch (action) { 4770 case CPU_ONLINE: 4771 case CPU_DOWN_FAILED: 4772 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4773 break; 4774 case CPU_DOWN_PREPARE: 4775 smp_call_function_single(cpu, tsc_bad, NULL, 1); 4776 break; 4777 } 4778 return NOTIFY_OK; 4779 } 4780 4781 static struct notifier_block kvmclock_cpu_notifier_block = { 4782 .notifier_call = kvmclock_cpu_notifier, 4783 .priority = -INT_MAX 4784 }; 4785 4786 static void kvm_timer_init(void) 4787 { 4788 int cpu; 4789 4790 max_tsc_khz = tsc_khz; 4791 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4792 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 4793 #ifdef CONFIG_CPU_FREQ 4794 struct cpufreq_policy policy; 4795 memset(&policy, 0, sizeof(policy)); 4796 cpu = get_cpu(); 4797 cpufreq_get_policy(&policy, cpu); 4798 if (policy.cpuinfo.max_freq) 4799 max_tsc_khz = policy.cpuinfo.max_freq; 4800 put_cpu(); 4801 #endif 4802 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 4803 CPUFREQ_TRANSITION_NOTIFIER); 4804 } 4805 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 4806 for_each_online_cpu(cpu) 4807 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4808 } 4809 4810 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 4811 4812 int kvm_is_in_guest(void) 4813 { 4814 return __this_cpu_read(current_vcpu) != NULL; 4815 } 4816 4817 static int kvm_is_user_mode(void) 4818 { 4819 int user_mode = 3; 4820 4821 if (__this_cpu_read(current_vcpu)) 4822 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 4823 4824 return user_mode != 0; 4825 } 4826 4827 static unsigned long kvm_get_guest_ip(void) 4828 { 4829 unsigned long ip = 0; 4830 4831 if (__this_cpu_read(current_vcpu)) 4832 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 4833 4834 return ip; 4835 } 4836 4837 static struct perf_guest_info_callbacks kvm_guest_cbs = { 4838 .is_in_guest = kvm_is_in_guest, 4839 .is_user_mode = kvm_is_user_mode, 4840 .get_guest_ip = kvm_get_guest_ip, 4841 }; 4842 4843 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 4844 { 4845 __this_cpu_write(current_vcpu, vcpu); 4846 } 4847 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 4848 4849 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 4850 { 4851 __this_cpu_write(current_vcpu, NULL); 4852 } 4853 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 4854 4855 static void kvm_set_mmio_spte_mask(void) 4856 { 4857 u64 mask; 4858 int maxphyaddr = boot_cpu_data.x86_phys_bits; 4859 4860 /* 4861 * Set the reserved bits and the present bit of an paging-structure 4862 * entry to generate page fault with PFER.RSV = 1. 4863 */ 4864 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; 4865 mask |= 1ull; 4866 4867 #ifdef CONFIG_X86_64 4868 /* 4869 * If reserved bit is not supported, clear the present bit to disable 4870 * mmio page fault. 4871 */ 4872 if (maxphyaddr == 52) 4873 mask &= ~1ull; 4874 #endif 4875 4876 kvm_mmu_set_mmio_spte_mask(mask); 4877 } 4878 4879 int kvm_arch_init(void *opaque) 4880 { 4881 int r; 4882 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; 4883 4884 if (kvm_x86_ops) { 4885 printk(KERN_ERR "kvm: already loaded the other module\n"); 4886 r = -EEXIST; 4887 goto out; 4888 } 4889 4890 if (!ops->cpu_has_kvm_support()) { 4891 printk(KERN_ERR "kvm: no hardware support\n"); 4892 r = -EOPNOTSUPP; 4893 goto out; 4894 } 4895 if (ops->disabled_by_bios()) { 4896 printk(KERN_ERR "kvm: disabled by bios\n"); 4897 r = -EOPNOTSUPP; 4898 goto out; 4899 } 4900 4901 r = kvm_mmu_module_init(); 4902 if (r) 4903 goto out; 4904 4905 kvm_set_mmio_spte_mask(); 4906 kvm_init_msr_list(); 4907 4908 kvm_x86_ops = ops; 4909 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 4910 PT_DIRTY_MASK, PT64_NX_MASK, 0); 4911 4912 kvm_timer_init(); 4913 4914 perf_register_guest_info_callbacks(&kvm_guest_cbs); 4915 4916 if (cpu_has_xsave) 4917 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 4918 4919 return 0; 4920 4921 out: 4922 return r; 4923 } 4924 4925 void kvm_arch_exit(void) 4926 { 4927 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 4928 4929 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4930 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 4931 CPUFREQ_TRANSITION_NOTIFIER); 4932 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4933 kvm_x86_ops = NULL; 4934 kvm_mmu_module_exit(); 4935 } 4936 4937 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 4938 { 4939 ++vcpu->stat.halt_exits; 4940 if (irqchip_in_kernel(vcpu->kvm)) { 4941 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 4942 return 1; 4943 } else { 4944 vcpu->run->exit_reason = KVM_EXIT_HLT; 4945 return 0; 4946 } 4947 } 4948 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 4949 4950 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 4951 { 4952 u64 param, ingpa, outgpa, ret; 4953 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 4954 bool fast, longmode; 4955 int cs_db, cs_l; 4956 4957 /* 4958 * hypercall generates UD from non zero cpl and real mode 4959 * per HYPER-V spec 4960 */ 4961 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 4962 kvm_queue_exception(vcpu, UD_VECTOR); 4963 return 0; 4964 } 4965 4966 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4967 longmode = is_long_mode(vcpu) && cs_l == 1; 4968 4969 if (!longmode) { 4970 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 4971 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 4972 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 4973 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 4974 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 4975 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 4976 } 4977 #ifdef CONFIG_X86_64 4978 else { 4979 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 4980 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 4981 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 4982 } 4983 #endif 4984 4985 code = param & 0xffff; 4986 fast = (param >> 16) & 0x1; 4987 rep_cnt = (param >> 32) & 0xfff; 4988 rep_idx = (param >> 48) & 0xfff; 4989 4990 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 4991 4992 switch (code) { 4993 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 4994 kvm_vcpu_on_spin(vcpu); 4995 break; 4996 default: 4997 res = HV_STATUS_INVALID_HYPERCALL_CODE; 4998 break; 4999 } 5000 5001 ret = res | (((u64)rep_done & 0xfff) << 32); 5002 if (longmode) { 5003 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5004 } else { 5005 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5006 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5007 } 5008 5009 return 1; 5010 } 5011 5012 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5013 { 5014 unsigned long nr, a0, a1, a2, a3, ret; 5015 int r = 1; 5016 5017 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5018 return kvm_hv_hypercall(vcpu); 5019 5020 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5021 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5022 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5023 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5024 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5025 5026 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5027 5028 if (!is_long_mode(vcpu)) { 5029 nr &= 0xFFFFFFFF; 5030 a0 &= 0xFFFFFFFF; 5031 a1 &= 0xFFFFFFFF; 5032 a2 &= 0xFFFFFFFF; 5033 a3 &= 0xFFFFFFFF; 5034 } 5035 5036 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5037 ret = -KVM_EPERM; 5038 goto out; 5039 } 5040 5041 switch (nr) { 5042 case KVM_HC_VAPIC_POLL_IRQ: 5043 ret = 0; 5044 break; 5045 default: 5046 ret = -KVM_ENOSYS; 5047 break; 5048 } 5049 out: 5050 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5051 ++vcpu->stat.hypercalls; 5052 return r; 5053 } 5054 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5055 5056 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5057 { 5058 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5059 char instruction[3]; 5060 unsigned long rip = kvm_rip_read(vcpu); 5061 5062 /* 5063 * Blow out the MMU to ensure that no other VCPU has an active mapping 5064 * to ensure that the updated hypercall appears atomically across all 5065 * VCPUs. 5066 */ 5067 kvm_mmu_zap_all(vcpu->kvm); 5068 5069 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5070 5071 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5072 } 5073 5074 /* 5075 * Check if userspace requested an interrupt window, and that the 5076 * interrupt window is open. 5077 * 5078 * No need to exit to userspace if we already have an interrupt queued. 5079 */ 5080 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5081 { 5082 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5083 vcpu->run->request_interrupt_window && 5084 kvm_arch_interrupt_allowed(vcpu)); 5085 } 5086 5087 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5088 { 5089 struct kvm_run *kvm_run = vcpu->run; 5090 5091 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5092 kvm_run->cr8 = kvm_get_cr8(vcpu); 5093 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5094 if (irqchip_in_kernel(vcpu->kvm)) 5095 kvm_run->ready_for_interrupt_injection = 1; 5096 else 5097 kvm_run->ready_for_interrupt_injection = 5098 kvm_arch_interrupt_allowed(vcpu) && 5099 !kvm_cpu_has_interrupt(vcpu) && 5100 !kvm_event_needs_reinjection(vcpu); 5101 } 5102 5103 static void vapic_enter(struct kvm_vcpu *vcpu) 5104 { 5105 struct kvm_lapic *apic = vcpu->arch.apic; 5106 struct page *page; 5107 5108 if (!apic || !apic->vapic_addr) 5109 return; 5110 5111 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5112 5113 vcpu->arch.apic->vapic_page = page; 5114 } 5115 5116 static void vapic_exit(struct kvm_vcpu *vcpu) 5117 { 5118 struct kvm_lapic *apic = vcpu->arch.apic; 5119 int idx; 5120 5121 if (!apic || !apic->vapic_addr) 5122 return; 5123 5124 idx = srcu_read_lock(&vcpu->kvm->srcu); 5125 kvm_release_page_dirty(apic->vapic_page); 5126 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5127 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5128 } 5129 5130 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5131 { 5132 int max_irr, tpr; 5133 5134 if (!kvm_x86_ops->update_cr8_intercept) 5135 return; 5136 5137 if (!vcpu->arch.apic) 5138 return; 5139 5140 if (!vcpu->arch.apic->vapic_addr) 5141 max_irr = kvm_lapic_find_highest_irr(vcpu); 5142 else 5143 max_irr = -1; 5144 5145 if (max_irr != -1) 5146 max_irr >>= 4; 5147 5148 tpr = kvm_lapic_get_cr8(vcpu); 5149 5150 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5151 } 5152 5153 static void inject_pending_event(struct kvm_vcpu *vcpu) 5154 { 5155 /* try to reinject previous events if any */ 5156 if (vcpu->arch.exception.pending) { 5157 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5158 vcpu->arch.exception.has_error_code, 5159 vcpu->arch.exception.error_code); 5160 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5161 vcpu->arch.exception.has_error_code, 5162 vcpu->arch.exception.error_code, 5163 vcpu->arch.exception.reinject); 5164 return; 5165 } 5166 5167 if (vcpu->arch.nmi_injected) { 5168 kvm_x86_ops->set_nmi(vcpu); 5169 return; 5170 } 5171 5172 if (vcpu->arch.interrupt.pending) { 5173 kvm_x86_ops->set_irq(vcpu); 5174 return; 5175 } 5176 5177 /* try to inject new event if pending */ 5178 if (vcpu->arch.nmi_pending) { 5179 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5180 --vcpu->arch.nmi_pending; 5181 vcpu->arch.nmi_injected = true; 5182 kvm_x86_ops->set_nmi(vcpu); 5183 } 5184 } else if (kvm_cpu_has_interrupt(vcpu)) { 5185 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5186 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5187 false); 5188 kvm_x86_ops->set_irq(vcpu); 5189 } 5190 } 5191 } 5192 5193 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 5194 { 5195 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 5196 !vcpu->guest_xcr0_loaded) { 5197 /* kvm_set_xcr() also depends on this */ 5198 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 5199 vcpu->guest_xcr0_loaded = 1; 5200 } 5201 } 5202 5203 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 5204 { 5205 if (vcpu->guest_xcr0_loaded) { 5206 if (vcpu->arch.xcr0 != host_xcr0) 5207 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 5208 vcpu->guest_xcr0_loaded = 0; 5209 } 5210 } 5211 5212 static void process_nmi(struct kvm_vcpu *vcpu) 5213 { 5214 unsigned limit = 2; 5215 5216 /* 5217 * x86 is limited to one NMI running, and one NMI pending after it. 5218 * If an NMI is already in progress, limit further NMIs to just one. 5219 * Otherwise, allow two (and we'll inject the first one immediately). 5220 */ 5221 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5222 limit = 1; 5223 5224 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5225 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5226 kvm_make_request(KVM_REQ_EVENT, vcpu); 5227 } 5228 5229 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5230 { 5231 int r; 5232 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5233 vcpu->run->request_interrupt_window; 5234 bool req_immediate_exit = 0; 5235 5236 if (vcpu->requests) { 5237 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5238 kvm_mmu_unload(vcpu); 5239 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5240 __kvm_migrate_timers(vcpu); 5241 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5242 r = kvm_guest_time_update(vcpu); 5243 if (unlikely(r)) 5244 goto out; 5245 } 5246 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5247 kvm_mmu_sync_roots(vcpu); 5248 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5249 kvm_x86_ops->tlb_flush(vcpu); 5250 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5251 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5252 r = 0; 5253 goto out; 5254 } 5255 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5256 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5257 r = 0; 5258 goto out; 5259 } 5260 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5261 vcpu->fpu_active = 0; 5262 kvm_x86_ops->fpu_deactivate(vcpu); 5263 } 5264 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5265 /* Page is swapped out. Do synthetic halt */ 5266 vcpu->arch.apf.halted = true; 5267 r = 1; 5268 goto out; 5269 } 5270 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5271 record_steal_time(vcpu); 5272 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5273 process_nmi(vcpu); 5274 req_immediate_exit = 5275 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); 5276 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5277 kvm_handle_pmu_event(vcpu); 5278 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5279 kvm_deliver_pmi(vcpu); 5280 } 5281 5282 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5283 inject_pending_event(vcpu); 5284 5285 /* enable NMI/IRQ window open exits if needed */ 5286 if (vcpu->arch.nmi_pending) 5287 kvm_x86_ops->enable_nmi_window(vcpu); 5288 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) 5289 kvm_x86_ops->enable_irq_window(vcpu); 5290 5291 if (kvm_lapic_enabled(vcpu)) { 5292 update_cr8_intercept(vcpu); 5293 kvm_lapic_sync_to_vapic(vcpu); 5294 } 5295 } 5296 5297 r = kvm_mmu_reload(vcpu); 5298 if (unlikely(r)) { 5299 kvm_x86_ops->cancel_injection(vcpu); 5300 goto out; 5301 } 5302 5303 preempt_disable(); 5304 5305 kvm_x86_ops->prepare_guest_switch(vcpu); 5306 if (vcpu->fpu_active) 5307 kvm_load_guest_fpu(vcpu); 5308 kvm_load_guest_xcr0(vcpu); 5309 5310 vcpu->mode = IN_GUEST_MODE; 5311 5312 /* We should set ->mode before check ->requests, 5313 * see the comment in make_all_cpus_request. 5314 */ 5315 smp_mb(); 5316 5317 local_irq_disable(); 5318 5319 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5320 || need_resched() || signal_pending(current)) { 5321 vcpu->mode = OUTSIDE_GUEST_MODE; 5322 smp_wmb(); 5323 local_irq_enable(); 5324 preempt_enable(); 5325 kvm_x86_ops->cancel_injection(vcpu); 5326 r = 1; 5327 goto out; 5328 } 5329 5330 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5331 5332 if (req_immediate_exit) 5333 smp_send_reschedule(vcpu->cpu); 5334 5335 kvm_guest_enter(); 5336 5337 if (unlikely(vcpu->arch.switch_db_regs)) { 5338 set_debugreg(0, 7); 5339 set_debugreg(vcpu->arch.eff_db[0], 0); 5340 set_debugreg(vcpu->arch.eff_db[1], 1); 5341 set_debugreg(vcpu->arch.eff_db[2], 2); 5342 set_debugreg(vcpu->arch.eff_db[3], 3); 5343 } 5344 5345 trace_kvm_entry(vcpu->vcpu_id); 5346 kvm_x86_ops->run(vcpu); 5347 5348 /* 5349 * If the guest has used debug registers, at least dr7 5350 * will be disabled while returning to the host. 5351 * If we don't have active breakpoints in the host, we don't 5352 * care about the messed up debug address registers. But if 5353 * we have some of them active, restore the old state. 5354 */ 5355 if (hw_breakpoint_active()) 5356 hw_breakpoint_restore(); 5357 5358 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu); 5359 5360 vcpu->mode = OUTSIDE_GUEST_MODE; 5361 smp_wmb(); 5362 local_irq_enable(); 5363 5364 ++vcpu->stat.exits; 5365 5366 /* 5367 * We must have an instruction between local_irq_enable() and 5368 * kvm_guest_exit(), so the timer interrupt isn't delayed by 5369 * the interrupt shadow. The stat.exits increment will do nicely. 5370 * But we need to prevent reordering, hence this barrier(): 5371 */ 5372 barrier(); 5373 5374 kvm_guest_exit(); 5375 5376 preempt_enable(); 5377 5378 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5379 5380 /* 5381 * Profile KVM exit RIPs: 5382 */ 5383 if (unlikely(prof_on == KVM_PROFILING)) { 5384 unsigned long rip = kvm_rip_read(vcpu); 5385 profile_hit(KVM_PROFILING, (void *)rip); 5386 } 5387 5388 if (unlikely(vcpu->arch.tsc_always_catchup)) 5389 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5390 5391 kvm_lapic_sync_from_vapic(vcpu); 5392 5393 r = kvm_x86_ops->handle_exit(vcpu); 5394 out: 5395 return r; 5396 } 5397 5398 5399 static int __vcpu_run(struct kvm_vcpu *vcpu) 5400 { 5401 int r; 5402 struct kvm *kvm = vcpu->kvm; 5403 5404 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { 5405 pr_debug("vcpu %d received sipi with vector # %x\n", 5406 vcpu->vcpu_id, vcpu->arch.sipi_vector); 5407 kvm_lapic_reset(vcpu); 5408 r = kvm_arch_vcpu_reset(vcpu); 5409 if (r) 5410 return r; 5411 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5412 } 5413 5414 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5415 vapic_enter(vcpu); 5416 5417 r = 1; 5418 while (r > 0) { 5419 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 5420 !vcpu->arch.apf.halted) 5421 r = vcpu_enter_guest(vcpu); 5422 else { 5423 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5424 kvm_vcpu_block(vcpu); 5425 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5426 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) 5427 { 5428 switch(vcpu->arch.mp_state) { 5429 case KVM_MP_STATE_HALTED: 5430 vcpu->arch.mp_state = 5431 KVM_MP_STATE_RUNNABLE; 5432 case KVM_MP_STATE_RUNNABLE: 5433 vcpu->arch.apf.halted = false; 5434 break; 5435 case KVM_MP_STATE_SIPI_RECEIVED: 5436 default: 5437 r = -EINTR; 5438 break; 5439 } 5440 } 5441 } 5442 5443 if (r <= 0) 5444 break; 5445 5446 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 5447 if (kvm_cpu_has_pending_timer(vcpu)) 5448 kvm_inject_pending_timer_irqs(vcpu); 5449 5450 if (dm_request_for_irq_injection(vcpu)) { 5451 r = -EINTR; 5452 vcpu->run->exit_reason = KVM_EXIT_INTR; 5453 ++vcpu->stat.request_irq_exits; 5454 } 5455 5456 kvm_check_async_pf_completion(vcpu); 5457 5458 if (signal_pending(current)) { 5459 r = -EINTR; 5460 vcpu->run->exit_reason = KVM_EXIT_INTR; 5461 ++vcpu->stat.signal_exits; 5462 } 5463 if (need_resched()) { 5464 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5465 kvm_resched(vcpu); 5466 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5467 } 5468 } 5469 5470 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5471 5472 vapic_exit(vcpu); 5473 5474 return r; 5475 } 5476 5477 /* 5478 * Implements the following, as a state machine: 5479 * 5480 * read: 5481 * for each fragment 5482 * write gpa, len 5483 * exit 5484 * copy data 5485 * execute insn 5486 * 5487 * write: 5488 * for each fragment 5489 * write gpa, len 5490 * copy data 5491 * exit 5492 */ 5493 static int complete_mmio(struct kvm_vcpu *vcpu) 5494 { 5495 struct kvm_run *run = vcpu->run; 5496 struct kvm_mmio_fragment *frag; 5497 int r; 5498 5499 if (!(vcpu->arch.pio.count || vcpu->mmio_needed)) 5500 return 1; 5501 5502 if (vcpu->mmio_needed) { 5503 /* Complete previous fragment */ 5504 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++]; 5505 if (!vcpu->mmio_is_write) 5506 memcpy(frag->data, run->mmio.data, frag->len); 5507 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 5508 vcpu->mmio_needed = 0; 5509 if (vcpu->mmio_is_write) 5510 return 1; 5511 vcpu->mmio_read_completed = 1; 5512 goto done; 5513 } 5514 /* Initiate next fragment */ 5515 ++frag; 5516 run->exit_reason = KVM_EXIT_MMIO; 5517 run->mmio.phys_addr = frag->gpa; 5518 if (vcpu->mmio_is_write) 5519 memcpy(run->mmio.data, frag->data, frag->len); 5520 run->mmio.len = frag->len; 5521 run->mmio.is_write = vcpu->mmio_is_write; 5522 return 0; 5523 5524 } 5525 done: 5526 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5527 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 5528 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5529 if (r != EMULATE_DONE) 5530 return 0; 5531 return 1; 5532 } 5533 5534 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 5535 { 5536 int r; 5537 sigset_t sigsaved; 5538 5539 if (!tsk_used_math(current) && init_fpu(current)) 5540 return -ENOMEM; 5541 5542 if (vcpu->sigset_active) 5543 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 5544 5545 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 5546 kvm_vcpu_block(vcpu); 5547 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 5548 r = -EAGAIN; 5549 goto out; 5550 } 5551 5552 /* re-sync apic's tpr */ 5553 if (!irqchip_in_kernel(vcpu->kvm)) { 5554 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 5555 r = -EINVAL; 5556 goto out; 5557 } 5558 } 5559 5560 r = complete_mmio(vcpu); 5561 if (r <= 0) 5562 goto out; 5563 5564 r = __vcpu_run(vcpu); 5565 5566 out: 5567 post_kvm_run_save(vcpu); 5568 if (vcpu->sigset_active) 5569 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 5570 5571 return r; 5572 } 5573 5574 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5575 { 5576 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 5577 /* 5578 * We are here if userspace calls get_regs() in the middle of 5579 * instruction emulation. Registers state needs to be copied 5580 * back from emulation context to vcpu. Usrapace shouldn't do 5581 * that usually, but some bad designed PV devices (vmware 5582 * backdoor interface) need this to work 5583 */ 5584 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5585 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 5586 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5587 } 5588 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 5589 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 5590 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 5591 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 5592 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 5593 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 5594 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 5595 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 5596 #ifdef CONFIG_X86_64 5597 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 5598 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 5599 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 5600 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 5601 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 5602 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 5603 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 5604 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 5605 #endif 5606 5607 regs->rip = kvm_rip_read(vcpu); 5608 regs->rflags = kvm_get_rflags(vcpu); 5609 5610 return 0; 5611 } 5612 5613 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5614 { 5615 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 5616 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5617 5618 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 5619 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 5620 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 5621 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 5622 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 5623 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 5624 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 5625 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 5626 #ifdef CONFIG_X86_64 5627 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 5628 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 5629 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 5630 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 5631 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 5632 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 5633 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 5634 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 5635 #endif 5636 5637 kvm_rip_write(vcpu, regs->rip); 5638 kvm_set_rflags(vcpu, regs->rflags); 5639 5640 vcpu->arch.exception.pending = false; 5641 5642 kvm_make_request(KVM_REQ_EVENT, vcpu); 5643 5644 return 0; 5645 } 5646 5647 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 5648 { 5649 struct kvm_segment cs; 5650 5651 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 5652 *db = cs.db; 5653 *l = cs.l; 5654 } 5655 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 5656 5657 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 5658 struct kvm_sregs *sregs) 5659 { 5660 struct desc_ptr dt; 5661 5662 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5663 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5664 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5665 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5666 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5667 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5668 5669 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5670 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5671 5672 kvm_x86_ops->get_idt(vcpu, &dt); 5673 sregs->idt.limit = dt.size; 5674 sregs->idt.base = dt.address; 5675 kvm_x86_ops->get_gdt(vcpu, &dt); 5676 sregs->gdt.limit = dt.size; 5677 sregs->gdt.base = dt.address; 5678 5679 sregs->cr0 = kvm_read_cr0(vcpu); 5680 sregs->cr2 = vcpu->arch.cr2; 5681 sregs->cr3 = kvm_read_cr3(vcpu); 5682 sregs->cr4 = kvm_read_cr4(vcpu); 5683 sregs->cr8 = kvm_get_cr8(vcpu); 5684 sregs->efer = vcpu->arch.efer; 5685 sregs->apic_base = kvm_get_apic_base(vcpu); 5686 5687 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 5688 5689 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 5690 set_bit(vcpu->arch.interrupt.nr, 5691 (unsigned long *)sregs->interrupt_bitmap); 5692 5693 return 0; 5694 } 5695 5696 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 5697 struct kvm_mp_state *mp_state) 5698 { 5699 mp_state->mp_state = vcpu->arch.mp_state; 5700 return 0; 5701 } 5702 5703 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 5704 struct kvm_mp_state *mp_state) 5705 { 5706 vcpu->arch.mp_state = mp_state->mp_state; 5707 kvm_make_request(KVM_REQ_EVENT, vcpu); 5708 return 0; 5709 } 5710 5711 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 5712 int reason, bool has_error_code, u32 error_code) 5713 { 5714 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5715 int ret; 5716 5717 init_emulate_ctxt(vcpu); 5718 5719 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 5720 has_error_code, error_code); 5721 5722 if (ret) 5723 return EMULATE_FAIL; 5724 5725 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 5726 kvm_rip_write(vcpu, ctxt->eip); 5727 kvm_set_rflags(vcpu, ctxt->eflags); 5728 kvm_make_request(KVM_REQ_EVENT, vcpu); 5729 return EMULATE_DONE; 5730 } 5731 EXPORT_SYMBOL_GPL(kvm_task_switch); 5732 5733 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 5734 struct kvm_sregs *sregs) 5735 { 5736 int mmu_reset_needed = 0; 5737 int pending_vec, max_bits, idx; 5738 struct desc_ptr dt; 5739 5740 dt.size = sregs->idt.limit; 5741 dt.address = sregs->idt.base; 5742 kvm_x86_ops->set_idt(vcpu, &dt); 5743 dt.size = sregs->gdt.limit; 5744 dt.address = sregs->gdt.base; 5745 kvm_x86_ops->set_gdt(vcpu, &dt); 5746 5747 vcpu->arch.cr2 = sregs->cr2; 5748 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 5749 vcpu->arch.cr3 = sregs->cr3; 5750 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 5751 5752 kvm_set_cr8(vcpu, sregs->cr8); 5753 5754 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 5755 kvm_x86_ops->set_efer(vcpu, sregs->efer); 5756 kvm_set_apic_base(vcpu, sregs->apic_base); 5757 5758 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 5759 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 5760 vcpu->arch.cr0 = sregs->cr0; 5761 5762 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 5763 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 5764 if (sregs->cr4 & X86_CR4_OSXSAVE) 5765 kvm_update_cpuid(vcpu); 5766 5767 idx = srcu_read_lock(&vcpu->kvm->srcu); 5768 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 5769 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 5770 mmu_reset_needed = 1; 5771 } 5772 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5773 5774 if (mmu_reset_needed) 5775 kvm_mmu_reset_context(vcpu); 5776 5777 max_bits = (sizeof sregs->interrupt_bitmap) << 3; 5778 pending_vec = find_first_bit( 5779 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 5780 if (pending_vec < max_bits) { 5781 kvm_queue_interrupt(vcpu, pending_vec, false); 5782 pr_debug("Set back pending irq %d\n", pending_vec); 5783 } 5784 5785 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5786 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5787 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5788 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5789 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5790 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5791 5792 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5793 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5794 5795 update_cr8_intercept(vcpu); 5796 5797 /* Older userspace won't unhalt the vcpu on reset. */ 5798 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 5799 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 5800 !is_protmode(vcpu)) 5801 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5802 5803 kvm_make_request(KVM_REQ_EVENT, vcpu); 5804 5805 return 0; 5806 } 5807 5808 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 5809 struct kvm_guest_debug *dbg) 5810 { 5811 unsigned long rflags; 5812 int i, r; 5813 5814 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 5815 r = -EBUSY; 5816 if (vcpu->arch.exception.pending) 5817 goto out; 5818 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 5819 kvm_queue_exception(vcpu, DB_VECTOR); 5820 else 5821 kvm_queue_exception(vcpu, BP_VECTOR); 5822 } 5823 5824 /* 5825 * Read rflags as long as potentially injected trace flags are still 5826 * filtered out. 5827 */ 5828 rflags = kvm_get_rflags(vcpu); 5829 5830 vcpu->guest_debug = dbg->control; 5831 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 5832 vcpu->guest_debug = 0; 5833 5834 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5835 for (i = 0; i < KVM_NR_DB_REGS; ++i) 5836 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 5837 vcpu->arch.switch_db_regs = 5838 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); 5839 } else { 5840 for (i = 0; i < KVM_NR_DB_REGS; i++) 5841 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 5842 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); 5843 } 5844 5845 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 5846 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 5847 get_segment_base(vcpu, VCPU_SREG_CS); 5848 5849 /* 5850 * Trigger an rflags update that will inject or remove the trace 5851 * flags. 5852 */ 5853 kvm_set_rflags(vcpu, rflags); 5854 5855 kvm_x86_ops->set_guest_debug(vcpu, dbg); 5856 5857 r = 0; 5858 5859 out: 5860 5861 return r; 5862 } 5863 5864 /* 5865 * Translate a guest virtual address to a guest physical address. 5866 */ 5867 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 5868 struct kvm_translation *tr) 5869 { 5870 unsigned long vaddr = tr->linear_address; 5871 gpa_t gpa; 5872 int idx; 5873 5874 idx = srcu_read_lock(&vcpu->kvm->srcu); 5875 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 5876 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5877 tr->physical_address = gpa; 5878 tr->valid = gpa != UNMAPPED_GVA; 5879 tr->writeable = 1; 5880 tr->usermode = 0; 5881 5882 return 0; 5883 } 5884 5885 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5886 { 5887 struct i387_fxsave_struct *fxsave = 5888 &vcpu->arch.guest_fpu.state->fxsave; 5889 5890 memcpy(fpu->fpr, fxsave->st_space, 128); 5891 fpu->fcw = fxsave->cwd; 5892 fpu->fsw = fxsave->swd; 5893 fpu->ftwx = fxsave->twd; 5894 fpu->last_opcode = fxsave->fop; 5895 fpu->last_ip = fxsave->rip; 5896 fpu->last_dp = fxsave->rdp; 5897 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 5898 5899 return 0; 5900 } 5901 5902 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5903 { 5904 struct i387_fxsave_struct *fxsave = 5905 &vcpu->arch.guest_fpu.state->fxsave; 5906 5907 memcpy(fxsave->st_space, fpu->fpr, 128); 5908 fxsave->cwd = fpu->fcw; 5909 fxsave->swd = fpu->fsw; 5910 fxsave->twd = fpu->ftwx; 5911 fxsave->fop = fpu->last_opcode; 5912 fxsave->rip = fpu->last_ip; 5913 fxsave->rdp = fpu->last_dp; 5914 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 5915 5916 return 0; 5917 } 5918 5919 int fx_init(struct kvm_vcpu *vcpu) 5920 { 5921 int err; 5922 5923 err = fpu_alloc(&vcpu->arch.guest_fpu); 5924 if (err) 5925 return err; 5926 5927 fpu_finit(&vcpu->arch.guest_fpu); 5928 5929 /* 5930 * Ensure guest xcr0 is valid for loading 5931 */ 5932 vcpu->arch.xcr0 = XSTATE_FP; 5933 5934 vcpu->arch.cr0 |= X86_CR0_ET; 5935 5936 return 0; 5937 } 5938 EXPORT_SYMBOL_GPL(fx_init); 5939 5940 static void fx_free(struct kvm_vcpu *vcpu) 5941 { 5942 fpu_free(&vcpu->arch.guest_fpu); 5943 } 5944 5945 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 5946 { 5947 if (vcpu->guest_fpu_loaded) 5948 return; 5949 5950 /* 5951 * Restore all possible states in the guest, 5952 * and assume host would use all available bits. 5953 * Guest xcr0 would be loaded later. 5954 */ 5955 kvm_put_guest_xcr0(vcpu); 5956 vcpu->guest_fpu_loaded = 1; 5957 unlazy_fpu(current); 5958 fpu_restore_checking(&vcpu->arch.guest_fpu); 5959 trace_kvm_fpu(1); 5960 } 5961 5962 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 5963 { 5964 kvm_put_guest_xcr0(vcpu); 5965 5966 if (!vcpu->guest_fpu_loaded) 5967 return; 5968 5969 vcpu->guest_fpu_loaded = 0; 5970 fpu_save_init(&vcpu->arch.guest_fpu); 5971 ++vcpu->stat.fpu_reload; 5972 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 5973 trace_kvm_fpu(0); 5974 } 5975 5976 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 5977 { 5978 kvmclock_reset(vcpu); 5979 5980 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 5981 fx_free(vcpu); 5982 kvm_x86_ops->vcpu_free(vcpu); 5983 } 5984 5985 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 5986 unsigned int id) 5987 { 5988 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 5989 printk_once(KERN_WARNING 5990 "kvm: SMP vm created on host with unstable TSC; " 5991 "guest TSC will not be reliable\n"); 5992 return kvm_x86_ops->vcpu_create(kvm, id); 5993 } 5994 5995 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 5996 { 5997 int r; 5998 5999 vcpu->arch.mtrr_state.have_fixed = 1; 6000 vcpu_load(vcpu); 6001 r = kvm_arch_vcpu_reset(vcpu); 6002 if (r == 0) 6003 r = kvm_mmu_setup(vcpu); 6004 vcpu_put(vcpu); 6005 6006 return r; 6007 } 6008 6009 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6010 { 6011 vcpu->arch.apf.msr_val = 0; 6012 6013 vcpu_load(vcpu); 6014 kvm_mmu_unload(vcpu); 6015 vcpu_put(vcpu); 6016 6017 fx_free(vcpu); 6018 kvm_x86_ops->vcpu_free(vcpu); 6019 } 6020 6021 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) 6022 { 6023 atomic_set(&vcpu->arch.nmi_queued, 0); 6024 vcpu->arch.nmi_pending = 0; 6025 vcpu->arch.nmi_injected = false; 6026 6027 vcpu->arch.switch_db_regs = 0; 6028 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6029 vcpu->arch.dr6 = DR6_FIXED_1; 6030 vcpu->arch.dr7 = DR7_FIXED_1; 6031 6032 kvm_make_request(KVM_REQ_EVENT, vcpu); 6033 vcpu->arch.apf.msr_val = 0; 6034 vcpu->arch.st.msr_val = 0; 6035 6036 kvmclock_reset(vcpu); 6037 6038 kvm_clear_async_pf_completion_queue(vcpu); 6039 kvm_async_pf_hash_reset(vcpu); 6040 vcpu->arch.apf.halted = false; 6041 6042 kvm_pmu_reset(vcpu); 6043 6044 return kvm_x86_ops->vcpu_reset(vcpu); 6045 } 6046 6047 int kvm_arch_hardware_enable(void *garbage) 6048 { 6049 struct kvm *kvm; 6050 struct kvm_vcpu *vcpu; 6051 int i; 6052 int ret; 6053 u64 local_tsc; 6054 u64 max_tsc = 0; 6055 bool stable, backwards_tsc = false; 6056 6057 kvm_shared_msr_cpu_online(); 6058 ret = kvm_x86_ops->hardware_enable(garbage); 6059 if (ret != 0) 6060 return ret; 6061 6062 local_tsc = native_read_tsc(); 6063 stable = !check_tsc_unstable(); 6064 list_for_each_entry(kvm, &vm_list, vm_list) { 6065 kvm_for_each_vcpu(i, vcpu, kvm) { 6066 if (!stable && vcpu->cpu == smp_processor_id()) 6067 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6068 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6069 backwards_tsc = true; 6070 if (vcpu->arch.last_host_tsc > max_tsc) 6071 max_tsc = vcpu->arch.last_host_tsc; 6072 } 6073 } 6074 } 6075 6076 /* 6077 * Sometimes, even reliable TSCs go backwards. This happens on 6078 * platforms that reset TSC during suspend or hibernate actions, but 6079 * maintain synchronization. We must compensate. Fortunately, we can 6080 * detect that condition here, which happens early in CPU bringup, 6081 * before any KVM threads can be running. Unfortunately, we can't 6082 * bring the TSCs fully up to date with real time, as we aren't yet far 6083 * enough into CPU bringup that we know how much real time has actually 6084 * elapsed; our helper function, get_kernel_ns() will be using boot 6085 * variables that haven't been updated yet. 6086 * 6087 * So we simply find the maximum observed TSC above, then record the 6088 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6089 * the adjustment will be applied. Note that we accumulate 6090 * adjustments, in case multiple suspend cycles happen before some VCPU 6091 * gets a chance to run again. In the event that no KVM threads get a 6092 * chance to run, we will miss the entire elapsed period, as we'll have 6093 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6094 * loose cycle time. This isn't too big a deal, since the loss will be 6095 * uniform across all VCPUs (not to mention the scenario is extremely 6096 * unlikely). It is possible that a second hibernate recovery happens 6097 * much faster than a first, causing the observed TSC here to be 6098 * smaller; this would require additional padding adjustment, which is 6099 * why we set last_host_tsc to the local tsc observed here. 6100 * 6101 * N.B. - this code below runs only on platforms with reliable TSC, 6102 * as that is the only way backwards_tsc is set above. Also note 6103 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6104 * have the same delta_cyc adjustment applied if backwards_tsc 6105 * is detected. Note further, this adjustment is only done once, 6106 * as we reset last_host_tsc on all VCPUs to stop this from being 6107 * called multiple times (one for each physical CPU bringup). 6108 * 6109 * Platforms with unnreliable TSCs don't have to deal with this, they 6110 * will be compensated by the logic in vcpu_load, which sets the TSC to 6111 * catchup mode. This will catchup all VCPUs to real time, but cannot 6112 * guarantee that they stay in perfect synchronization. 6113 */ 6114 if (backwards_tsc) { 6115 u64 delta_cyc = max_tsc - local_tsc; 6116 list_for_each_entry(kvm, &vm_list, vm_list) { 6117 kvm_for_each_vcpu(i, vcpu, kvm) { 6118 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6119 vcpu->arch.last_host_tsc = local_tsc; 6120 } 6121 6122 /* 6123 * We have to disable TSC offset matching.. if you were 6124 * booting a VM while issuing an S4 host suspend.... 6125 * you may have some problem. Solving this issue is 6126 * left as an exercise to the reader. 6127 */ 6128 kvm->arch.last_tsc_nsec = 0; 6129 kvm->arch.last_tsc_write = 0; 6130 } 6131 6132 } 6133 return 0; 6134 } 6135 6136 void kvm_arch_hardware_disable(void *garbage) 6137 { 6138 kvm_x86_ops->hardware_disable(garbage); 6139 drop_user_return_notifiers(garbage); 6140 } 6141 6142 int kvm_arch_hardware_setup(void) 6143 { 6144 return kvm_x86_ops->hardware_setup(); 6145 } 6146 6147 void kvm_arch_hardware_unsetup(void) 6148 { 6149 kvm_x86_ops->hardware_unsetup(); 6150 } 6151 6152 void kvm_arch_check_processor_compat(void *rtn) 6153 { 6154 kvm_x86_ops->check_processor_compatibility(rtn); 6155 } 6156 6157 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6158 { 6159 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6160 } 6161 6162 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6163 { 6164 struct page *page; 6165 struct kvm *kvm; 6166 int r; 6167 6168 BUG_ON(vcpu->kvm == NULL); 6169 kvm = vcpu->kvm; 6170 6171 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6172 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6173 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6174 else 6175 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6176 6177 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6178 if (!page) { 6179 r = -ENOMEM; 6180 goto fail; 6181 } 6182 vcpu->arch.pio_data = page_address(page); 6183 6184 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6185 6186 r = kvm_mmu_create(vcpu); 6187 if (r < 0) 6188 goto fail_free_pio_data; 6189 6190 if (irqchip_in_kernel(kvm)) { 6191 r = kvm_create_lapic(vcpu); 6192 if (r < 0) 6193 goto fail_mmu_destroy; 6194 } 6195 6196 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6197 GFP_KERNEL); 6198 if (!vcpu->arch.mce_banks) { 6199 r = -ENOMEM; 6200 goto fail_free_lapic; 6201 } 6202 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6203 6204 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) 6205 goto fail_free_mce_banks; 6206 6207 kvm_async_pf_hash_reset(vcpu); 6208 kvm_pmu_init(vcpu); 6209 6210 return 0; 6211 fail_free_mce_banks: 6212 kfree(vcpu->arch.mce_banks); 6213 fail_free_lapic: 6214 kvm_free_lapic(vcpu); 6215 fail_mmu_destroy: 6216 kvm_mmu_destroy(vcpu); 6217 fail_free_pio_data: 6218 free_page((unsigned long)vcpu->arch.pio_data); 6219 fail: 6220 return r; 6221 } 6222 6223 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6224 { 6225 int idx; 6226 6227 kvm_pmu_destroy(vcpu); 6228 kfree(vcpu->arch.mce_banks); 6229 kvm_free_lapic(vcpu); 6230 idx = srcu_read_lock(&vcpu->kvm->srcu); 6231 kvm_mmu_destroy(vcpu); 6232 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6233 free_page((unsigned long)vcpu->arch.pio_data); 6234 } 6235 6236 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6237 { 6238 if (type) 6239 return -EINVAL; 6240 6241 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6242 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6243 6244 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6245 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6246 6247 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6248 6249 return 0; 6250 } 6251 6252 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 6253 { 6254 vcpu_load(vcpu); 6255 kvm_mmu_unload(vcpu); 6256 vcpu_put(vcpu); 6257 } 6258 6259 static void kvm_free_vcpus(struct kvm *kvm) 6260 { 6261 unsigned int i; 6262 struct kvm_vcpu *vcpu; 6263 6264 /* 6265 * Unpin any mmu pages first. 6266 */ 6267 kvm_for_each_vcpu(i, vcpu, kvm) { 6268 kvm_clear_async_pf_completion_queue(vcpu); 6269 kvm_unload_vcpu_mmu(vcpu); 6270 } 6271 kvm_for_each_vcpu(i, vcpu, kvm) 6272 kvm_arch_vcpu_free(vcpu); 6273 6274 mutex_lock(&kvm->lock); 6275 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 6276 kvm->vcpus[i] = NULL; 6277 6278 atomic_set(&kvm->online_vcpus, 0); 6279 mutex_unlock(&kvm->lock); 6280 } 6281 6282 void kvm_arch_sync_events(struct kvm *kvm) 6283 { 6284 kvm_free_all_assigned_devices(kvm); 6285 kvm_free_pit(kvm); 6286 } 6287 6288 void kvm_arch_destroy_vm(struct kvm *kvm) 6289 { 6290 kvm_iommu_unmap_guest(kvm); 6291 kfree(kvm->arch.vpic); 6292 kfree(kvm->arch.vioapic); 6293 kvm_free_vcpus(kvm); 6294 if (kvm->arch.apic_access_page) 6295 put_page(kvm->arch.apic_access_page); 6296 if (kvm->arch.ept_identity_pagetable) 6297 put_page(kvm->arch.ept_identity_pagetable); 6298 } 6299 6300 void kvm_arch_free_memslot(struct kvm_memory_slot *free, 6301 struct kvm_memory_slot *dont) 6302 { 6303 int i; 6304 6305 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6306 if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) { 6307 vfree(free->arch.lpage_info[i]); 6308 free->arch.lpage_info[i] = NULL; 6309 } 6310 } 6311 } 6312 6313 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) 6314 { 6315 int i; 6316 6317 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6318 unsigned long ugfn; 6319 int lpages; 6320 int level = i + 2; 6321 6322 lpages = gfn_to_index(slot->base_gfn + npages - 1, 6323 slot->base_gfn, level) + 1; 6324 6325 slot->arch.lpage_info[i] = 6326 vzalloc(lpages * sizeof(*slot->arch.lpage_info[i])); 6327 if (!slot->arch.lpage_info[i]) 6328 goto out_free; 6329 6330 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 6331 slot->arch.lpage_info[i][0].write_count = 1; 6332 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 6333 slot->arch.lpage_info[i][lpages - 1].write_count = 1; 6334 ugfn = slot->userspace_addr >> PAGE_SHIFT; 6335 /* 6336 * If the gfn and userspace address are not aligned wrt each 6337 * other, or if explicitly asked to, disable large page 6338 * support for this slot 6339 */ 6340 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 6341 !kvm_largepages_enabled()) { 6342 unsigned long j; 6343 6344 for (j = 0; j < lpages; ++j) 6345 slot->arch.lpage_info[i][j].write_count = 1; 6346 } 6347 } 6348 6349 return 0; 6350 6351 out_free: 6352 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6353 vfree(slot->arch.lpage_info[i]); 6354 slot->arch.lpage_info[i] = NULL; 6355 } 6356 return -ENOMEM; 6357 } 6358 6359 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6360 struct kvm_memory_slot *memslot, 6361 struct kvm_memory_slot old, 6362 struct kvm_userspace_memory_region *mem, 6363 int user_alloc) 6364 { 6365 int npages = memslot->npages; 6366 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; 6367 6368 /* Prevent internal slot pages from being moved by fork()/COW. */ 6369 if (memslot->id >= KVM_MEMORY_SLOTS) 6370 map_flags = MAP_SHARED | MAP_ANONYMOUS; 6371 6372 /*To keep backward compatibility with older userspace, 6373 *x86 needs to hanlde !user_alloc case. 6374 */ 6375 if (!user_alloc) { 6376 if (npages && !old.rmap) { 6377 unsigned long userspace_addr; 6378 6379 userspace_addr = vm_mmap(NULL, 0, 6380 npages * PAGE_SIZE, 6381 PROT_READ | PROT_WRITE, 6382 map_flags, 6383 0); 6384 6385 if (IS_ERR((void *)userspace_addr)) 6386 return PTR_ERR((void *)userspace_addr); 6387 6388 memslot->userspace_addr = userspace_addr; 6389 } 6390 } 6391 6392 6393 return 0; 6394 } 6395 6396 void kvm_arch_commit_memory_region(struct kvm *kvm, 6397 struct kvm_userspace_memory_region *mem, 6398 struct kvm_memory_slot old, 6399 int user_alloc) 6400 { 6401 6402 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; 6403 6404 if (!user_alloc && !old.user_alloc && old.rmap && !npages) { 6405 int ret; 6406 6407 ret = vm_munmap(old.userspace_addr, 6408 old.npages * PAGE_SIZE); 6409 if (ret < 0) 6410 printk(KERN_WARNING 6411 "kvm_vm_ioctl_set_memory_region: " 6412 "failed to munmap memory\n"); 6413 } 6414 6415 if (!kvm->arch.n_requested_mmu_pages) 6416 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 6417 6418 spin_lock(&kvm->mmu_lock); 6419 if (nr_mmu_pages) 6420 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 6421 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 6422 spin_unlock(&kvm->mmu_lock); 6423 } 6424 6425 void kvm_arch_flush_shadow(struct kvm *kvm) 6426 { 6427 kvm_mmu_zap_all(kvm); 6428 kvm_reload_remote_mmus(kvm); 6429 } 6430 6431 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 6432 { 6433 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6434 !vcpu->arch.apf.halted) 6435 || !list_empty_careful(&vcpu->async_pf.done) 6436 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED 6437 || atomic_read(&vcpu->arch.nmi_queued) || 6438 (kvm_arch_interrupt_allowed(vcpu) && 6439 kvm_cpu_has_interrupt(vcpu)); 6440 } 6441 6442 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 6443 { 6444 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 6445 } 6446 6447 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 6448 { 6449 return kvm_x86_ops->interrupt_allowed(vcpu); 6450 } 6451 6452 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 6453 { 6454 unsigned long current_rip = kvm_rip_read(vcpu) + 6455 get_segment_base(vcpu, VCPU_SREG_CS); 6456 6457 return current_rip == linear_rip; 6458 } 6459 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 6460 6461 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 6462 { 6463 unsigned long rflags; 6464 6465 rflags = kvm_x86_ops->get_rflags(vcpu); 6466 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6467 rflags &= ~X86_EFLAGS_TF; 6468 return rflags; 6469 } 6470 EXPORT_SYMBOL_GPL(kvm_get_rflags); 6471 6472 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 6473 { 6474 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 6475 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 6476 rflags |= X86_EFLAGS_TF; 6477 kvm_x86_ops->set_rflags(vcpu, rflags); 6478 kvm_make_request(KVM_REQ_EVENT, vcpu); 6479 } 6480 EXPORT_SYMBOL_GPL(kvm_set_rflags); 6481 6482 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 6483 { 6484 int r; 6485 6486 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 6487 is_error_page(work->page)) 6488 return; 6489 6490 r = kvm_mmu_reload(vcpu); 6491 if (unlikely(r)) 6492 return; 6493 6494 if (!vcpu->arch.mmu.direct_map && 6495 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 6496 return; 6497 6498 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 6499 } 6500 6501 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 6502 { 6503 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 6504 } 6505 6506 static inline u32 kvm_async_pf_next_probe(u32 key) 6507 { 6508 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 6509 } 6510 6511 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6512 { 6513 u32 key = kvm_async_pf_hash_fn(gfn); 6514 6515 while (vcpu->arch.apf.gfns[key] != ~0) 6516 key = kvm_async_pf_next_probe(key); 6517 6518 vcpu->arch.apf.gfns[key] = gfn; 6519 } 6520 6521 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 6522 { 6523 int i; 6524 u32 key = kvm_async_pf_hash_fn(gfn); 6525 6526 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 6527 (vcpu->arch.apf.gfns[key] != gfn && 6528 vcpu->arch.apf.gfns[key] != ~0); i++) 6529 key = kvm_async_pf_next_probe(key); 6530 6531 return key; 6532 } 6533 6534 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6535 { 6536 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 6537 } 6538 6539 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6540 { 6541 u32 i, j, k; 6542 6543 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 6544 while (true) { 6545 vcpu->arch.apf.gfns[i] = ~0; 6546 do { 6547 j = kvm_async_pf_next_probe(j); 6548 if (vcpu->arch.apf.gfns[j] == ~0) 6549 return; 6550 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 6551 /* 6552 * k lies cyclically in ]i,j] 6553 * | i.k.j | 6554 * |....j i.k.| or |.k..j i...| 6555 */ 6556 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 6557 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 6558 i = j; 6559 } 6560 } 6561 6562 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 6563 { 6564 6565 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 6566 sizeof(val)); 6567 } 6568 6569 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 6570 struct kvm_async_pf *work) 6571 { 6572 struct x86_exception fault; 6573 6574 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 6575 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 6576 6577 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 6578 (vcpu->arch.apf.send_user_only && 6579 kvm_x86_ops->get_cpl(vcpu) == 0)) 6580 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 6581 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 6582 fault.vector = PF_VECTOR; 6583 fault.error_code_valid = true; 6584 fault.error_code = 0; 6585 fault.nested_page_fault = false; 6586 fault.address = work->arch.token; 6587 kvm_inject_page_fault(vcpu, &fault); 6588 } 6589 } 6590 6591 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 6592 struct kvm_async_pf *work) 6593 { 6594 struct x86_exception fault; 6595 6596 trace_kvm_async_pf_ready(work->arch.token, work->gva); 6597 if (is_error_page(work->page)) 6598 work->arch.token = ~0; /* broadcast wakeup */ 6599 else 6600 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 6601 6602 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 6603 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 6604 fault.vector = PF_VECTOR; 6605 fault.error_code_valid = true; 6606 fault.error_code = 0; 6607 fault.nested_page_fault = false; 6608 fault.address = work->arch.token; 6609 kvm_inject_page_fault(vcpu, &fault); 6610 } 6611 vcpu->arch.apf.halted = false; 6612 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6613 } 6614 6615 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 6616 { 6617 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 6618 return true; 6619 else 6620 return !kvm_event_needs_reinjection(vcpu) && 6621 kvm_x86_ops->interrupt_allowed(vcpu); 6622 } 6623 6624 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 6625 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 6626 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 6627 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 6628 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 6629 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 6630 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 6631 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 6632 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 6633 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 6634 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 6635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 6636