1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 31 #include <linux/clocksource.h> 32 #include <linux/interrupt.h> 33 #include <linux/kvm.h> 34 #include <linux/fs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/module.h> 37 #include <linux/mman.h> 38 #include <linux/highmem.h> 39 #include <linux/iommu.h> 40 #include <linux/intel-iommu.h> 41 #include <linux/cpufreq.h> 42 #include <linux/user-return-notifier.h> 43 #include <linux/srcu.h> 44 #include <linux/slab.h> 45 #include <linux/perf_event.h> 46 #include <linux/uaccess.h> 47 #include <linux/hash.h> 48 #include <linux/pci.h> 49 #include <trace/events/kvm.h> 50 51 #define CREATE_TRACE_POINTS 52 #include "trace.h" 53 54 #include <asm/debugreg.h> 55 #include <asm/msr.h> 56 #include <asm/desc.h> 57 #include <asm/mtrr.h> 58 #include <asm/mce.h> 59 #include <asm/i387.h> 60 #include <asm/fpu-internal.h> /* Ugh! */ 61 #include <asm/xcr.h> 62 #include <asm/pvclock.h> 63 #include <asm/div64.h> 64 65 #define MAX_IO_MSRS 256 66 #define KVM_MAX_MCE_BANKS 32 67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) 68 69 #define emul_to_vcpu(ctxt) \ 70 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 71 72 /* EFER defaults: 73 * - enable syscall per default because its emulated by KVM 74 * - enable LME and LMA per default on 64 bit KVM 75 */ 76 #ifdef CONFIG_X86_64 77 static 78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 79 #else 80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 81 #endif 82 83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 85 86 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 87 static void process_nmi(struct kvm_vcpu *vcpu); 88 89 struct kvm_x86_ops *kvm_x86_ops; 90 EXPORT_SYMBOL_GPL(kvm_x86_ops); 91 92 static bool ignore_msrs = 0; 93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 94 95 bool kvm_has_tsc_control; 96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 97 u32 kvm_max_guest_tsc_khz; 98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 99 100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 101 static u32 tsc_tolerance_ppm = 250; 102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 103 104 #define KVM_NR_SHARED_MSRS 16 105 106 struct kvm_shared_msrs_global { 107 int nr; 108 u32 msrs[KVM_NR_SHARED_MSRS]; 109 }; 110 111 struct kvm_shared_msrs { 112 struct user_return_notifier urn; 113 bool registered; 114 struct kvm_shared_msr_values { 115 u64 host; 116 u64 curr; 117 } values[KVM_NR_SHARED_MSRS]; 118 }; 119 120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); 122 123 struct kvm_stats_debugfs_item debugfs_entries[] = { 124 { "pf_fixed", VCPU_STAT(pf_fixed) }, 125 { "pf_guest", VCPU_STAT(pf_guest) }, 126 { "tlb_flush", VCPU_STAT(tlb_flush) }, 127 { "invlpg", VCPU_STAT(invlpg) }, 128 { "exits", VCPU_STAT(exits) }, 129 { "io_exits", VCPU_STAT(io_exits) }, 130 { "mmio_exits", VCPU_STAT(mmio_exits) }, 131 { "signal_exits", VCPU_STAT(signal_exits) }, 132 { "irq_window", VCPU_STAT(irq_window_exits) }, 133 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 134 { "halt_exits", VCPU_STAT(halt_exits) }, 135 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 136 { "hypercalls", VCPU_STAT(hypercalls) }, 137 { "request_irq", VCPU_STAT(request_irq_exits) }, 138 { "irq_exits", VCPU_STAT(irq_exits) }, 139 { "host_state_reload", VCPU_STAT(host_state_reload) }, 140 { "efer_reload", VCPU_STAT(efer_reload) }, 141 { "fpu_reload", VCPU_STAT(fpu_reload) }, 142 { "insn_emulation", VCPU_STAT(insn_emulation) }, 143 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 144 { "irq_injections", VCPU_STAT(irq_injections) }, 145 { "nmi_injections", VCPU_STAT(nmi_injections) }, 146 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 147 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 148 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 149 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 150 { "mmu_flooded", VM_STAT(mmu_flooded) }, 151 { "mmu_recycled", VM_STAT(mmu_recycled) }, 152 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 153 { "mmu_unsync", VM_STAT(mmu_unsync) }, 154 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 155 { "largepages", VM_STAT(lpages) }, 156 { NULL } 157 }; 158 159 u64 __read_mostly host_xcr0; 160 161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 162 163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 164 { 165 int i; 166 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 167 vcpu->arch.apf.gfns[i] = ~0; 168 } 169 170 static void kvm_on_user_return(struct user_return_notifier *urn) 171 { 172 unsigned slot; 173 struct kvm_shared_msrs *locals 174 = container_of(urn, struct kvm_shared_msrs, urn); 175 struct kvm_shared_msr_values *values; 176 177 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 178 values = &locals->values[slot]; 179 if (values->host != values->curr) { 180 wrmsrl(shared_msrs_global.msrs[slot], values->host); 181 values->curr = values->host; 182 } 183 } 184 locals->registered = false; 185 user_return_notifier_unregister(urn); 186 } 187 188 static void shared_msr_update(unsigned slot, u32 msr) 189 { 190 struct kvm_shared_msrs *smsr; 191 u64 value; 192 193 smsr = &__get_cpu_var(shared_msrs); 194 /* only read, and nobody should modify it at this time, 195 * so don't need lock */ 196 if (slot >= shared_msrs_global.nr) { 197 printk(KERN_ERR "kvm: invalid MSR slot!"); 198 return; 199 } 200 rdmsrl_safe(msr, &value); 201 smsr->values[slot].host = value; 202 smsr->values[slot].curr = value; 203 } 204 205 void kvm_define_shared_msr(unsigned slot, u32 msr) 206 { 207 if (slot >= shared_msrs_global.nr) 208 shared_msrs_global.nr = slot + 1; 209 shared_msrs_global.msrs[slot] = msr; 210 /* we need ensured the shared_msr_global have been updated */ 211 smp_wmb(); 212 } 213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 214 215 static void kvm_shared_msr_cpu_online(void) 216 { 217 unsigned i; 218 219 for (i = 0; i < shared_msrs_global.nr; ++i) 220 shared_msr_update(i, shared_msrs_global.msrs[i]); 221 } 222 223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 224 { 225 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 226 227 if (((value ^ smsr->values[slot].curr) & mask) == 0) 228 return; 229 smsr->values[slot].curr = value; 230 wrmsrl(shared_msrs_global.msrs[slot], value); 231 if (!smsr->registered) { 232 smsr->urn.on_user_return = kvm_on_user_return; 233 user_return_notifier_register(&smsr->urn); 234 smsr->registered = true; 235 } 236 } 237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 238 239 static void drop_user_return_notifiers(void *ignore) 240 { 241 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); 242 243 if (smsr->registered) 244 kvm_on_user_return(&smsr->urn); 245 } 246 247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 248 { 249 if (irqchip_in_kernel(vcpu->kvm)) 250 return vcpu->arch.apic_base; 251 else 252 return vcpu->arch.apic_base; 253 } 254 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 255 256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) 257 { 258 /* TODO: reserve bits check */ 259 if (irqchip_in_kernel(vcpu->kvm)) 260 kvm_lapic_set_base(vcpu, data); 261 else 262 vcpu->arch.apic_base = data; 263 } 264 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 265 266 #define EXCPT_BENIGN 0 267 #define EXCPT_CONTRIBUTORY 1 268 #define EXCPT_PF 2 269 270 static int exception_class(int vector) 271 { 272 switch (vector) { 273 case PF_VECTOR: 274 return EXCPT_PF; 275 case DE_VECTOR: 276 case TS_VECTOR: 277 case NP_VECTOR: 278 case SS_VECTOR: 279 case GP_VECTOR: 280 return EXCPT_CONTRIBUTORY; 281 default: 282 break; 283 } 284 return EXCPT_BENIGN; 285 } 286 287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 288 unsigned nr, bool has_error, u32 error_code, 289 bool reinject) 290 { 291 u32 prev_nr; 292 int class1, class2; 293 294 kvm_make_request(KVM_REQ_EVENT, vcpu); 295 296 if (!vcpu->arch.exception.pending) { 297 queue: 298 vcpu->arch.exception.pending = true; 299 vcpu->arch.exception.has_error_code = has_error; 300 vcpu->arch.exception.nr = nr; 301 vcpu->arch.exception.error_code = error_code; 302 vcpu->arch.exception.reinject = reinject; 303 return; 304 } 305 306 /* to check exception */ 307 prev_nr = vcpu->arch.exception.nr; 308 if (prev_nr == DF_VECTOR) { 309 /* triple fault -> shutdown */ 310 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 311 return; 312 } 313 class1 = exception_class(prev_nr); 314 class2 = exception_class(nr); 315 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 316 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 317 /* generate double fault per SDM Table 5-5 */ 318 vcpu->arch.exception.pending = true; 319 vcpu->arch.exception.has_error_code = true; 320 vcpu->arch.exception.nr = DF_VECTOR; 321 vcpu->arch.exception.error_code = 0; 322 } else 323 /* replace previous exception with a new one in a hope 324 that instruction re-execution will regenerate lost 325 exception */ 326 goto queue; 327 } 328 329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 330 { 331 kvm_multiple_exception(vcpu, nr, false, 0, false); 332 } 333 EXPORT_SYMBOL_GPL(kvm_queue_exception); 334 335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 336 { 337 kvm_multiple_exception(vcpu, nr, false, 0, true); 338 } 339 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 340 341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 342 { 343 if (err) 344 kvm_inject_gp(vcpu, 0); 345 else 346 kvm_x86_ops->skip_emulated_instruction(vcpu); 347 } 348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 349 350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 351 { 352 ++vcpu->stat.pf_guest; 353 vcpu->arch.cr2 = fault->address; 354 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 355 } 356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 357 358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 359 { 360 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 361 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 362 else 363 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 364 } 365 366 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 367 { 368 atomic_inc(&vcpu->arch.nmi_queued); 369 kvm_make_request(KVM_REQ_NMI, vcpu); 370 } 371 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 372 373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 374 { 375 kvm_multiple_exception(vcpu, nr, true, error_code, false); 376 } 377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 378 379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 380 { 381 kvm_multiple_exception(vcpu, nr, true, error_code, true); 382 } 383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 384 385 /* 386 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 387 * a #GP and return false. 388 */ 389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 390 { 391 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 392 return true; 393 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 394 return false; 395 } 396 EXPORT_SYMBOL_GPL(kvm_require_cpl); 397 398 /* 399 * This function will be used to read from the physical memory of the currently 400 * running guest. The difference to kvm_read_guest_page is that this function 401 * can read from guest physical or from the guest's guest physical memory. 402 */ 403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 404 gfn_t ngfn, void *data, int offset, int len, 405 u32 access) 406 { 407 gfn_t real_gfn; 408 gpa_t ngpa; 409 410 ngpa = gfn_to_gpa(ngfn); 411 real_gfn = mmu->translate_gpa(vcpu, ngpa, access); 412 if (real_gfn == UNMAPPED_GVA) 413 return -EFAULT; 414 415 real_gfn = gpa_to_gfn(real_gfn); 416 417 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); 418 } 419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 420 421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 422 void *data, int offset, int len, u32 access) 423 { 424 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 425 data, offset, len, access); 426 } 427 428 /* 429 * Load the pae pdptrs. Return true is they are all valid. 430 */ 431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 432 { 433 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 434 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 435 int i; 436 int ret; 437 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 438 439 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 440 offset * sizeof(u64), sizeof(pdpte), 441 PFERR_USER_MASK|PFERR_WRITE_MASK); 442 if (ret < 0) { 443 ret = 0; 444 goto out; 445 } 446 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 447 if (is_present_gpte(pdpte[i]) && 448 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { 449 ret = 0; 450 goto out; 451 } 452 } 453 ret = 1; 454 455 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 456 __set_bit(VCPU_EXREG_PDPTR, 457 (unsigned long *)&vcpu->arch.regs_avail); 458 __set_bit(VCPU_EXREG_PDPTR, 459 (unsigned long *)&vcpu->arch.regs_dirty); 460 out: 461 462 return ret; 463 } 464 EXPORT_SYMBOL_GPL(load_pdptrs); 465 466 static bool pdptrs_changed(struct kvm_vcpu *vcpu) 467 { 468 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 469 bool changed = true; 470 int offset; 471 gfn_t gfn; 472 int r; 473 474 if (is_long_mode(vcpu) || !is_pae(vcpu)) 475 return false; 476 477 if (!test_bit(VCPU_EXREG_PDPTR, 478 (unsigned long *)&vcpu->arch.regs_avail)) 479 return true; 480 481 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; 482 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); 483 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 484 PFERR_USER_MASK | PFERR_WRITE_MASK); 485 if (r < 0) 486 goto out; 487 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 488 out: 489 490 return changed; 491 } 492 493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 494 { 495 unsigned long old_cr0 = kvm_read_cr0(vcpu); 496 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | 497 X86_CR0_CD | X86_CR0_NW; 498 499 cr0 |= X86_CR0_ET; 500 501 #ifdef CONFIG_X86_64 502 if (cr0 & 0xffffffff00000000UL) 503 return 1; 504 #endif 505 506 cr0 &= ~CR0_RESERVED_BITS; 507 508 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 509 return 1; 510 511 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 512 return 1; 513 514 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 515 #ifdef CONFIG_X86_64 516 if ((vcpu->arch.efer & EFER_LME)) { 517 int cs_db, cs_l; 518 519 if (!is_pae(vcpu)) 520 return 1; 521 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 522 if (cs_l) 523 return 1; 524 } else 525 #endif 526 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 527 kvm_read_cr3(vcpu))) 528 return 1; 529 } 530 531 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 532 return 1; 533 534 kvm_x86_ops->set_cr0(vcpu, cr0); 535 536 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 537 kvm_clear_async_pf_completion_queue(vcpu); 538 kvm_async_pf_hash_reset(vcpu); 539 } 540 541 if ((cr0 ^ old_cr0) & update_bits) 542 kvm_mmu_reset_context(vcpu); 543 return 0; 544 } 545 EXPORT_SYMBOL_GPL(kvm_set_cr0); 546 547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 548 { 549 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 550 } 551 EXPORT_SYMBOL_GPL(kvm_lmsw); 552 553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 554 { 555 u64 xcr0; 556 557 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 558 if (index != XCR_XFEATURE_ENABLED_MASK) 559 return 1; 560 xcr0 = xcr; 561 if (kvm_x86_ops->get_cpl(vcpu) != 0) 562 return 1; 563 if (!(xcr0 & XSTATE_FP)) 564 return 1; 565 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) 566 return 1; 567 if (xcr0 & ~host_xcr0) 568 return 1; 569 vcpu->arch.xcr0 = xcr0; 570 vcpu->guest_xcr0_loaded = 0; 571 return 0; 572 } 573 574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 575 { 576 if (__kvm_set_xcr(vcpu, index, xcr)) { 577 kvm_inject_gp(vcpu, 0); 578 return 1; 579 } 580 return 0; 581 } 582 EXPORT_SYMBOL_GPL(kvm_set_xcr); 583 584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 585 { 586 unsigned long old_cr4 = kvm_read_cr4(vcpu); 587 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | 588 X86_CR4_PAE | X86_CR4_SMEP; 589 if (cr4 & CR4_RESERVED_BITS) 590 return 1; 591 592 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) 593 return 1; 594 595 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) 596 return 1; 597 598 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) 599 return 1; 600 601 if (is_long_mode(vcpu)) { 602 if (!(cr4 & X86_CR4_PAE)) 603 return 1; 604 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 605 && ((cr4 ^ old_cr4) & pdptr_bits) 606 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 607 kvm_read_cr3(vcpu))) 608 return 1; 609 610 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 611 if (!guest_cpuid_has_pcid(vcpu)) 612 return 1; 613 614 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 615 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 616 return 1; 617 } 618 619 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 620 return 1; 621 622 if (((cr4 ^ old_cr4) & pdptr_bits) || 623 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 624 kvm_mmu_reset_context(vcpu); 625 626 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) 627 kvm_update_cpuid(vcpu); 628 629 return 0; 630 } 631 EXPORT_SYMBOL_GPL(kvm_set_cr4); 632 633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 634 { 635 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 636 kvm_mmu_sync_roots(vcpu); 637 kvm_mmu_flush_tlb(vcpu); 638 return 0; 639 } 640 641 if (is_long_mode(vcpu)) { 642 if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) { 643 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) 644 return 1; 645 } else 646 if (cr3 & CR3_L_MODE_RESERVED_BITS) 647 return 1; 648 } else { 649 if (is_pae(vcpu)) { 650 if (cr3 & CR3_PAE_RESERVED_BITS) 651 return 1; 652 if (is_paging(vcpu) && 653 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 654 return 1; 655 } 656 /* 657 * We don't check reserved bits in nonpae mode, because 658 * this isn't enforced, and VMware depends on this. 659 */ 660 } 661 662 /* 663 * Does the new cr3 value map to physical memory? (Note, we 664 * catch an invalid cr3 even in real-mode, because it would 665 * cause trouble later on when we turn on paging anyway.) 666 * 667 * A real CPU would silently accept an invalid cr3 and would 668 * attempt to use it - with largely undefined (and often hard 669 * to debug) behavior on the guest side. 670 */ 671 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) 672 return 1; 673 vcpu->arch.cr3 = cr3; 674 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 675 vcpu->arch.mmu.new_cr3(vcpu); 676 return 0; 677 } 678 EXPORT_SYMBOL_GPL(kvm_set_cr3); 679 680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 681 { 682 if (cr8 & CR8_RESERVED_BITS) 683 return 1; 684 if (irqchip_in_kernel(vcpu->kvm)) 685 kvm_lapic_set_tpr(vcpu, cr8); 686 else 687 vcpu->arch.cr8 = cr8; 688 return 0; 689 } 690 EXPORT_SYMBOL_GPL(kvm_set_cr8); 691 692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 693 { 694 if (irqchip_in_kernel(vcpu->kvm)) 695 return kvm_lapic_get_cr8(vcpu); 696 else 697 return vcpu->arch.cr8; 698 } 699 EXPORT_SYMBOL_GPL(kvm_get_cr8); 700 701 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 702 { 703 switch (dr) { 704 case 0 ... 3: 705 vcpu->arch.db[dr] = val; 706 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 707 vcpu->arch.eff_db[dr] = val; 708 break; 709 case 4: 710 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 711 return 1; /* #UD */ 712 /* fall through */ 713 case 6: 714 if (val & 0xffffffff00000000ULL) 715 return -1; /* #GP */ 716 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; 717 break; 718 case 5: 719 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 720 return 1; /* #UD */ 721 /* fall through */ 722 default: /* 7 */ 723 if (val & 0xffffffff00000000ULL) 724 return -1; /* #GP */ 725 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 726 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 727 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7); 728 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK); 729 } 730 break; 731 } 732 733 return 0; 734 } 735 736 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 737 { 738 int res; 739 740 res = __kvm_set_dr(vcpu, dr, val); 741 if (res > 0) 742 kvm_queue_exception(vcpu, UD_VECTOR); 743 else if (res < 0) 744 kvm_inject_gp(vcpu, 0); 745 746 return res; 747 } 748 EXPORT_SYMBOL_GPL(kvm_set_dr); 749 750 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 751 { 752 switch (dr) { 753 case 0 ... 3: 754 *val = vcpu->arch.db[dr]; 755 break; 756 case 4: 757 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 758 return 1; 759 /* fall through */ 760 case 6: 761 *val = vcpu->arch.dr6; 762 break; 763 case 5: 764 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 765 return 1; 766 /* fall through */ 767 default: /* 7 */ 768 *val = vcpu->arch.dr7; 769 break; 770 } 771 772 return 0; 773 } 774 775 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 776 { 777 if (_kvm_get_dr(vcpu, dr, val)) { 778 kvm_queue_exception(vcpu, UD_VECTOR); 779 return 1; 780 } 781 return 0; 782 } 783 EXPORT_SYMBOL_GPL(kvm_get_dr); 784 785 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 786 { 787 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 788 u64 data; 789 int err; 790 791 err = kvm_pmu_read_pmc(vcpu, ecx, &data); 792 if (err) 793 return err; 794 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 795 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 796 return err; 797 } 798 EXPORT_SYMBOL_GPL(kvm_rdpmc); 799 800 /* 801 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 802 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 803 * 804 * This list is modified at module load time to reflect the 805 * capabilities of the host cpu. This capabilities test skips MSRs that are 806 * kvm-specific. Those are put in the beginning of the list. 807 */ 808 809 #define KVM_SAVE_MSRS_BEGIN 9 810 static u32 msrs_to_save[] = { 811 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 812 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 813 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 814 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 815 MSR_KVM_PV_EOI_EN, 816 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 817 MSR_STAR, 818 #ifdef CONFIG_X86_64 819 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 820 #endif 821 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA 822 }; 823 824 static unsigned num_msrs_to_save; 825 826 static u32 emulated_msrs[] = { 827 MSR_IA32_TSCDEADLINE, 828 MSR_IA32_MISC_ENABLE, 829 MSR_IA32_MCG_STATUS, 830 MSR_IA32_MCG_CTL, 831 }; 832 833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 834 { 835 u64 old_efer = vcpu->arch.efer; 836 837 if (efer & efer_reserved_bits) 838 return 1; 839 840 if (is_paging(vcpu) 841 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 842 return 1; 843 844 if (efer & EFER_FFXSR) { 845 struct kvm_cpuid_entry2 *feat; 846 847 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 848 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) 849 return 1; 850 } 851 852 if (efer & EFER_SVME) { 853 struct kvm_cpuid_entry2 *feat; 854 855 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); 856 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) 857 return 1; 858 } 859 860 efer &= ~EFER_LMA; 861 efer |= vcpu->arch.efer & EFER_LMA; 862 863 kvm_x86_ops->set_efer(vcpu, efer); 864 865 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; 866 867 /* Update reserved bits */ 868 if ((efer ^ old_efer) & EFER_NX) 869 kvm_mmu_reset_context(vcpu); 870 871 return 0; 872 } 873 874 void kvm_enable_efer_bits(u64 mask) 875 { 876 efer_reserved_bits &= ~mask; 877 } 878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 879 880 881 /* 882 * Writes msr value into into the appropriate "register". 883 * Returns 0 on success, non-0 otherwise. 884 * Assumes vcpu_load() was already called. 885 */ 886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) 887 { 888 return kvm_x86_ops->set_msr(vcpu, msr_index, data); 889 } 890 891 /* 892 * Adapt set_msr() to msr_io()'s calling convention 893 */ 894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 895 { 896 return kvm_set_msr(vcpu, index, *data); 897 } 898 899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 900 { 901 int version; 902 int r; 903 struct pvclock_wall_clock wc; 904 struct timespec boot; 905 906 if (!wall_clock) 907 return; 908 909 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 910 if (r) 911 return; 912 913 if (version & 1) 914 ++version; /* first time write, random junk */ 915 916 ++version; 917 918 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 919 920 /* 921 * The guest calculates current wall clock time by adding 922 * system time (updated by kvm_guest_time_update below) to the 923 * wall clock specified here. guest system time equals host 924 * system time for us, thus we must fill in host boot time here. 925 */ 926 getboottime(&boot); 927 928 wc.sec = boot.tv_sec; 929 wc.nsec = boot.tv_nsec; 930 wc.version = version; 931 932 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 933 934 version++; 935 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 936 } 937 938 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 939 { 940 uint32_t quotient, remainder; 941 942 /* Don't try to replace with do_div(), this one calculates 943 * "(dividend << 32) / divisor" */ 944 __asm__ ( "divl %4" 945 : "=a" (quotient), "=d" (remainder) 946 : "0" (0), "1" (dividend), "r" (divisor) ); 947 return quotient; 948 } 949 950 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, 951 s8 *pshift, u32 *pmultiplier) 952 { 953 uint64_t scaled64; 954 int32_t shift = 0; 955 uint64_t tps64; 956 uint32_t tps32; 957 958 tps64 = base_khz * 1000LL; 959 scaled64 = scaled_khz * 1000LL; 960 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 961 tps64 >>= 1; 962 shift--; 963 } 964 965 tps32 = (uint32_t)tps64; 966 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 967 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 968 scaled64 >>= 1; 969 else 970 tps32 <<= 1; 971 shift++; 972 } 973 974 *pshift = shift; 975 *pmultiplier = div_frac(scaled64, tps32); 976 977 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", 978 __func__, base_khz, scaled_khz, shift, *pmultiplier); 979 } 980 981 static inline u64 get_kernel_ns(void) 982 { 983 struct timespec ts; 984 985 WARN_ON(preemptible()); 986 ktime_get_ts(&ts); 987 monotonic_to_bootbased(&ts); 988 return timespec_to_ns(&ts); 989 } 990 991 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 992 unsigned long max_tsc_khz; 993 994 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) 995 { 996 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, 997 vcpu->arch.virtual_tsc_shift); 998 } 999 1000 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1001 { 1002 u64 v = (u64)khz * (1000000 + ppm); 1003 do_div(v, 1000000); 1004 return v; 1005 } 1006 1007 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) 1008 { 1009 u32 thresh_lo, thresh_hi; 1010 int use_scaling = 0; 1011 1012 /* Compute a scale to convert nanoseconds in TSC cycles */ 1013 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, 1014 &vcpu->arch.virtual_tsc_shift, 1015 &vcpu->arch.virtual_tsc_mult); 1016 vcpu->arch.virtual_tsc_khz = this_tsc_khz; 1017 1018 /* 1019 * Compute the variation in TSC rate which is acceptable 1020 * within the range of tolerance and decide if the 1021 * rate being applied is within that bounds of the hardware 1022 * rate. If so, no scaling or compensation need be done. 1023 */ 1024 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1025 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1026 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { 1027 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); 1028 use_scaling = 1; 1029 } 1030 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); 1031 } 1032 1033 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1034 { 1035 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1036 vcpu->arch.virtual_tsc_mult, 1037 vcpu->arch.virtual_tsc_shift); 1038 tsc += vcpu->arch.this_tsc_write; 1039 return tsc; 1040 } 1041 1042 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) 1043 { 1044 struct kvm *kvm = vcpu->kvm; 1045 u64 offset, ns, elapsed; 1046 unsigned long flags; 1047 s64 usdiff; 1048 1049 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1050 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1051 ns = get_kernel_ns(); 1052 elapsed = ns - kvm->arch.last_tsc_nsec; 1053 1054 /* n.b - signed multiplication and division required */ 1055 usdiff = data - kvm->arch.last_tsc_write; 1056 #ifdef CONFIG_X86_64 1057 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; 1058 #else 1059 /* do_div() only does unsigned */ 1060 asm("idivl %2; xor %%edx, %%edx" 1061 : "=A"(usdiff) 1062 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); 1063 #endif 1064 do_div(elapsed, 1000); 1065 usdiff -= elapsed; 1066 if (usdiff < 0) 1067 usdiff = -usdiff; 1068 1069 /* 1070 * Special case: TSC write with a small delta (1 second) of virtual 1071 * cycle time against real time is interpreted as an attempt to 1072 * synchronize the CPU. 1073 * 1074 * For a reliable TSC, we can match TSC offsets, and for an unstable 1075 * TSC, we add elapsed time in this computation. We could let the 1076 * compensation code attempt to catch up if we fall behind, but 1077 * it's better to try to match offsets from the beginning. 1078 */ 1079 if (usdiff < USEC_PER_SEC && 1080 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1081 if (!check_tsc_unstable()) { 1082 offset = kvm->arch.cur_tsc_offset; 1083 pr_debug("kvm: matched tsc offset for %llu\n", data); 1084 } else { 1085 u64 delta = nsec_to_cycles(vcpu, elapsed); 1086 data += delta; 1087 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); 1088 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1089 } 1090 } else { 1091 /* 1092 * We split periods of matched TSC writes into generations. 1093 * For each generation, we track the original measured 1094 * nanosecond time, offset, and write, so if TSCs are in 1095 * sync, we can match exact offset, and if not, we can match 1096 * exact software computaion in compute_guest_tsc() 1097 * 1098 * These values are tracked in kvm->arch.cur_xxx variables. 1099 */ 1100 kvm->arch.cur_tsc_generation++; 1101 kvm->arch.cur_tsc_nsec = ns; 1102 kvm->arch.cur_tsc_write = data; 1103 kvm->arch.cur_tsc_offset = offset; 1104 pr_debug("kvm: new tsc generation %u, clock %llu\n", 1105 kvm->arch.cur_tsc_generation, data); 1106 } 1107 1108 /* 1109 * We also track th most recent recorded KHZ, write and time to 1110 * allow the matching interval to be extended at each write. 1111 */ 1112 kvm->arch.last_tsc_nsec = ns; 1113 kvm->arch.last_tsc_write = data; 1114 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1115 1116 /* Reset of TSC must disable overshoot protection below */ 1117 vcpu->arch.hv_clock.tsc_timestamp = 0; 1118 vcpu->arch.last_guest_tsc = data; 1119 1120 /* Keep track of which generation this VCPU has synchronized to */ 1121 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1122 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1123 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1124 1125 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1126 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1127 } 1128 1129 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1130 1131 static int kvm_guest_time_update(struct kvm_vcpu *v) 1132 { 1133 unsigned long flags; 1134 struct kvm_vcpu_arch *vcpu = &v->arch; 1135 void *shared_kaddr; 1136 unsigned long this_tsc_khz; 1137 s64 kernel_ns, max_kernel_ns; 1138 u64 tsc_timestamp; 1139 1140 /* Keep irq disabled to prevent changes to the clock */ 1141 local_irq_save(flags); 1142 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v); 1143 kernel_ns = get_kernel_ns(); 1144 this_tsc_khz = __get_cpu_var(cpu_tsc_khz); 1145 if (unlikely(this_tsc_khz == 0)) { 1146 local_irq_restore(flags); 1147 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1148 return 1; 1149 } 1150 1151 /* 1152 * We may have to catch up the TSC to match elapsed wall clock 1153 * time for two reasons, even if kvmclock is used. 1154 * 1) CPU could have been running below the maximum TSC rate 1155 * 2) Broken TSC compensation resets the base at each VCPU 1156 * entry to avoid unknown leaps of TSC even when running 1157 * again on the same CPU. This may cause apparent elapsed 1158 * time to disappear, and the guest to stand still or run 1159 * very slowly. 1160 */ 1161 if (vcpu->tsc_catchup) { 1162 u64 tsc = compute_guest_tsc(v, kernel_ns); 1163 if (tsc > tsc_timestamp) { 1164 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1165 tsc_timestamp = tsc; 1166 } 1167 } 1168 1169 local_irq_restore(flags); 1170 1171 if (!vcpu->time_page) 1172 return 0; 1173 1174 /* 1175 * Time as measured by the TSC may go backwards when resetting the base 1176 * tsc_timestamp. The reason for this is that the TSC resolution is 1177 * higher than the resolution of the other clock scales. Thus, many 1178 * possible measurments of the TSC correspond to one measurement of any 1179 * other clock, and so a spread of values is possible. This is not a 1180 * problem for the computation of the nanosecond clock; with TSC rates 1181 * around 1GHZ, there can only be a few cycles which correspond to one 1182 * nanosecond value, and any path through this code will inevitably 1183 * take longer than that. However, with the kernel_ns value itself, 1184 * the precision may be much lower, down to HZ granularity. If the 1185 * first sampling of TSC against kernel_ns ends in the low part of the 1186 * range, and the second in the high end of the range, we can get: 1187 * 1188 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new 1189 * 1190 * As the sampling errors potentially range in the thousands of cycles, 1191 * it is possible such a time value has already been observed by the 1192 * guest. To protect against this, we must compute the system time as 1193 * observed by the guest and ensure the new system time is greater. 1194 */ 1195 max_kernel_ns = 0; 1196 if (vcpu->hv_clock.tsc_timestamp) { 1197 max_kernel_ns = vcpu->last_guest_tsc - 1198 vcpu->hv_clock.tsc_timestamp; 1199 max_kernel_ns = pvclock_scale_delta(max_kernel_ns, 1200 vcpu->hv_clock.tsc_to_system_mul, 1201 vcpu->hv_clock.tsc_shift); 1202 max_kernel_ns += vcpu->last_kernel_ns; 1203 } 1204 1205 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { 1206 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, 1207 &vcpu->hv_clock.tsc_shift, 1208 &vcpu->hv_clock.tsc_to_system_mul); 1209 vcpu->hw_tsc_khz = this_tsc_khz; 1210 } 1211 1212 if (max_kernel_ns > kernel_ns) 1213 kernel_ns = max_kernel_ns; 1214 1215 /* With all the info we got, fill in the values */ 1216 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1217 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1218 vcpu->last_kernel_ns = kernel_ns; 1219 vcpu->last_guest_tsc = tsc_timestamp; 1220 vcpu->hv_clock.flags = 0; 1221 1222 /* 1223 * The interface expects us to write an even number signaling that the 1224 * update is finished. Since the guest won't see the intermediate 1225 * state, we just increase by 2 at the end. 1226 */ 1227 vcpu->hv_clock.version += 2; 1228 1229 shared_kaddr = kmap_atomic(vcpu->time_page); 1230 1231 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, 1232 sizeof(vcpu->hv_clock)); 1233 1234 kunmap_atomic(shared_kaddr); 1235 1236 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); 1237 return 0; 1238 } 1239 1240 static bool msr_mtrr_valid(unsigned msr) 1241 { 1242 switch (msr) { 1243 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: 1244 case MSR_MTRRfix64K_00000: 1245 case MSR_MTRRfix16K_80000: 1246 case MSR_MTRRfix16K_A0000: 1247 case MSR_MTRRfix4K_C0000: 1248 case MSR_MTRRfix4K_C8000: 1249 case MSR_MTRRfix4K_D0000: 1250 case MSR_MTRRfix4K_D8000: 1251 case MSR_MTRRfix4K_E0000: 1252 case MSR_MTRRfix4K_E8000: 1253 case MSR_MTRRfix4K_F0000: 1254 case MSR_MTRRfix4K_F8000: 1255 case MSR_MTRRdefType: 1256 case MSR_IA32_CR_PAT: 1257 return true; 1258 case 0x2f8: 1259 return true; 1260 } 1261 return false; 1262 } 1263 1264 static bool valid_pat_type(unsigned t) 1265 { 1266 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ 1267 } 1268 1269 static bool valid_mtrr_type(unsigned t) 1270 { 1271 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ 1272 } 1273 1274 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1275 { 1276 int i; 1277 1278 if (!msr_mtrr_valid(msr)) 1279 return false; 1280 1281 if (msr == MSR_IA32_CR_PAT) { 1282 for (i = 0; i < 8; i++) 1283 if (!valid_pat_type((data >> (i * 8)) & 0xff)) 1284 return false; 1285 return true; 1286 } else if (msr == MSR_MTRRdefType) { 1287 if (data & ~0xcff) 1288 return false; 1289 return valid_mtrr_type(data & 0xff); 1290 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { 1291 for (i = 0; i < 8 ; i++) 1292 if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) 1293 return false; 1294 return true; 1295 } 1296 1297 /* variable MTRRs */ 1298 return valid_mtrr_type(data & 0xff); 1299 } 1300 1301 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1302 { 1303 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1304 1305 if (!mtrr_valid(vcpu, msr, data)) 1306 return 1; 1307 1308 if (msr == MSR_MTRRdefType) { 1309 vcpu->arch.mtrr_state.def_type = data; 1310 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; 1311 } else if (msr == MSR_MTRRfix64K_00000) 1312 p[0] = data; 1313 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1314 p[1 + msr - MSR_MTRRfix16K_80000] = data; 1315 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1316 p[3 + msr - MSR_MTRRfix4K_C0000] = data; 1317 else if (msr == MSR_IA32_CR_PAT) 1318 vcpu->arch.pat = data; 1319 else { /* Variable MTRRs */ 1320 int idx, is_mtrr_mask; 1321 u64 *pt; 1322 1323 idx = (msr - 0x200) / 2; 1324 is_mtrr_mask = msr - 0x200 - 2 * idx; 1325 if (!is_mtrr_mask) 1326 pt = 1327 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1328 else 1329 pt = 1330 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1331 *pt = data; 1332 } 1333 1334 kvm_mmu_reset_context(vcpu); 1335 return 0; 1336 } 1337 1338 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1339 { 1340 u64 mcg_cap = vcpu->arch.mcg_cap; 1341 unsigned bank_num = mcg_cap & 0xff; 1342 1343 switch (msr) { 1344 case MSR_IA32_MCG_STATUS: 1345 vcpu->arch.mcg_status = data; 1346 break; 1347 case MSR_IA32_MCG_CTL: 1348 if (!(mcg_cap & MCG_CTL_P)) 1349 return 1; 1350 if (data != 0 && data != ~(u64)0) 1351 return -1; 1352 vcpu->arch.mcg_ctl = data; 1353 break; 1354 default: 1355 if (msr >= MSR_IA32_MC0_CTL && 1356 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1357 u32 offset = msr - MSR_IA32_MC0_CTL; 1358 /* only 0 or all 1s can be written to IA32_MCi_CTL 1359 * some Linux kernels though clear bit 10 in bank 4 to 1360 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 1361 * this to avoid an uncatched #GP in the guest 1362 */ 1363 if ((offset & 0x3) == 0 && 1364 data != 0 && (data | (1 << 10)) != ~(u64)0) 1365 return -1; 1366 vcpu->arch.mce_banks[offset] = data; 1367 break; 1368 } 1369 return 1; 1370 } 1371 return 0; 1372 } 1373 1374 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 1375 { 1376 struct kvm *kvm = vcpu->kvm; 1377 int lm = is_long_mode(vcpu); 1378 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 1379 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 1380 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 1381 : kvm->arch.xen_hvm_config.blob_size_32; 1382 u32 page_num = data & ~PAGE_MASK; 1383 u64 page_addr = data & PAGE_MASK; 1384 u8 *page; 1385 int r; 1386 1387 r = -E2BIG; 1388 if (page_num >= blob_size) 1389 goto out; 1390 r = -ENOMEM; 1391 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 1392 if (IS_ERR(page)) { 1393 r = PTR_ERR(page); 1394 goto out; 1395 } 1396 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) 1397 goto out_free; 1398 r = 0; 1399 out_free: 1400 kfree(page); 1401 out: 1402 return r; 1403 } 1404 1405 static bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1406 { 1407 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; 1408 } 1409 1410 static bool kvm_hv_msr_partition_wide(u32 msr) 1411 { 1412 bool r = false; 1413 switch (msr) { 1414 case HV_X64_MSR_GUEST_OS_ID: 1415 case HV_X64_MSR_HYPERCALL: 1416 r = true; 1417 break; 1418 } 1419 1420 return r; 1421 } 1422 1423 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1424 { 1425 struct kvm *kvm = vcpu->kvm; 1426 1427 switch (msr) { 1428 case HV_X64_MSR_GUEST_OS_ID: 1429 kvm->arch.hv_guest_os_id = data; 1430 /* setting guest os id to zero disables hypercall page */ 1431 if (!kvm->arch.hv_guest_os_id) 1432 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1433 break; 1434 case HV_X64_MSR_HYPERCALL: { 1435 u64 gfn; 1436 unsigned long addr; 1437 u8 instructions[4]; 1438 1439 /* if guest os id is not set hypercall should remain disabled */ 1440 if (!kvm->arch.hv_guest_os_id) 1441 break; 1442 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1443 kvm->arch.hv_hypercall = data; 1444 break; 1445 } 1446 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1447 addr = gfn_to_hva(kvm, gfn); 1448 if (kvm_is_error_hva(addr)) 1449 return 1; 1450 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1451 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1452 if (__copy_to_user((void __user *)addr, instructions, 4)) 1453 return 1; 1454 kvm->arch.hv_hypercall = data; 1455 break; 1456 } 1457 default: 1458 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1459 "data 0x%llx\n", msr, data); 1460 return 1; 1461 } 1462 return 0; 1463 } 1464 1465 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1466 { 1467 switch (msr) { 1468 case HV_X64_MSR_APIC_ASSIST_PAGE: { 1469 unsigned long addr; 1470 1471 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { 1472 vcpu->arch.hv_vapic = data; 1473 break; 1474 } 1475 addr = gfn_to_hva(vcpu->kvm, data >> 1476 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); 1477 if (kvm_is_error_hva(addr)) 1478 return 1; 1479 if (__clear_user((void __user *)addr, PAGE_SIZE)) 1480 return 1; 1481 vcpu->arch.hv_vapic = data; 1482 break; 1483 } 1484 case HV_X64_MSR_EOI: 1485 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1486 case HV_X64_MSR_ICR: 1487 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1488 case HV_X64_MSR_TPR: 1489 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1490 default: 1491 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " 1492 "data 0x%llx\n", msr, data); 1493 return 1; 1494 } 1495 1496 return 0; 1497 } 1498 1499 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 1500 { 1501 gpa_t gpa = data & ~0x3f; 1502 1503 /* Bits 2:5 are resrved, Should be zero */ 1504 if (data & 0x3c) 1505 return 1; 1506 1507 vcpu->arch.apf.msr_val = data; 1508 1509 if (!(data & KVM_ASYNC_PF_ENABLED)) { 1510 kvm_clear_async_pf_completion_queue(vcpu); 1511 kvm_async_pf_hash_reset(vcpu); 1512 return 0; 1513 } 1514 1515 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) 1516 return 1; 1517 1518 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 1519 kvm_async_pf_wakeup_all(vcpu); 1520 return 0; 1521 } 1522 1523 static void kvmclock_reset(struct kvm_vcpu *vcpu) 1524 { 1525 if (vcpu->arch.time_page) { 1526 kvm_release_page_dirty(vcpu->arch.time_page); 1527 vcpu->arch.time_page = NULL; 1528 } 1529 } 1530 1531 static void accumulate_steal_time(struct kvm_vcpu *vcpu) 1532 { 1533 u64 delta; 1534 1535 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1536 return; 1537 1538 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; 1539 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1540 vcpu->arch.st.accum_steal = delta; 1541 } 1542 1543 static void record_steal_time(struct kvm_vcpu *vcpu) 1544 { 1545 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 1546 return; 1547 1548 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1549 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 1550 return; 1551 1552 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; 1553 vcpu->arch.st.steal.version += 2; 1554 vcpu->arch.st.accum_steal = 0; 1555 1556 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 1557 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 1558 } 1559 1560 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) 1561 { 1562 bool pr = false; 1563 1564 switch (msr) { 1565 case MSR_EFER: 1566 return set_efer(vcpu, data); 1567 case MSR_K7_HWCR: 1568 data &= ~(u64)0x40; /* ignore flush filter disable */ 1569 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 1570 data &= ~(u64)0x8; /* ignore TLB cache disable */ 1571 if (data != 0) { 1572 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 1573 data); 1574 return 1; 1575 } 1576 break; 1577 case MSR_FAM10H_MMIO_CONF_BASE: 1578 if (data != 0) { 1579 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 1580 "0x%llx\n", data); 1581 return 1; 1582 } 1583 break; 1584 case MSR_AMD64_NB_CFG: 1585 break; 1586 case MSR_IA32_DEBUGCTLMSR: 1587 if (!data) { 1588 /* We support the non-activated case already */ 1589 break; 1590 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 1591 /* Values other than LBR and BTF are vendor-specific, 1592 thus reserved and should throw a #GP */ 1593 return 1; 1594 } 1595 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 1596 __func__, data); 1597 break; 1598 case MSR_IA32_UCODE_REV: 1599 case MSR_IA32_UCODE_WRITE: 1600 case MSR_VM_HSAVE_PA: 1601 case MSR_AMD64_PATCH_LOADER: 1602 break; 1603 case 0x200 ... 0x2ff: 1604 return set_msr_mtrr(vcpu, msr, data); 1605 case MSR_IA32_APICBASE: 1606 kvm_set_apic_base(vcpu, data); 1607 break; 1608 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1609 return kvm_x2apic_msr_write(vcpu, msr, data); 1610 case MSR_IA32_TSCDEADLINE: 1611 kvm_set_lapic_tscdeadline_msr(vcpu, data); 1612 break; 1613 case MSR_IA32_MISC_ENABLE: 1614 vcpu->arch.ia32_misc_enable_msr = data; 1615 break; 1616 case MSR_KVM_WALL_CLOCK_NEW: 1617 case MSR_KVM_WALL_CLOCK: 1618 vcpu->kvm->arch.wall_clock = data; 1619 kvm_write_wall_clock(vcpu->kvm, data); 1620 break; 1621 case MSR_KVM_SYSTEM_TIME_NEW: 1622 case MSR_KVM_SYSTEM_TIME: { 1623 kvmclock_reset(vcpu); 1624 1625 vcpu->arch.time = data; 1626 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1627 1628 /* we verify if the enable bit is set... */ 1629 if (!(data & 1)) 1630 break; 1631 1632 /* ...but clean it before doing the actual write */ 1633 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); 1634 1635 vcpu->arch.time_page = 1636 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); 1637 1638 if (is_error_page(vcpu->arch.time_page)) { 1639 kvm_release_page_clean(vcpu->arch.time_page); 1640 vcpu->arch.time_page = NULL; 1641 } 1642 break; 1643 } 1644 case MSR_KVM_ASYNC_PF_EN: 1645 if (kvm_pv_enable_async_pf(vcpu, data)) 1646 return 1; 1647 break; 1648 case MSR_KVM_STEAL_TIME: 1649 1650 if (unlikely(!sched_info_on())) 1651 return 1; 1652 1653 if (data & KVM_STEAL_RESERVED_MASK) 1654 return 1; 1655 1656 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 1657 data & KVM_STEAL_VALID_BITS)) 1658 return 1; 1659 1660 vcpu->arch.st.msr_val = data; 1661 1662 if (!(data & KVM_MSR_ENABLED)) 1663 break; 1664 1665 vcpu->arch.st.last_steal = current->sched_info.run_delay; 1666 1667 preempt_disable(); 1668 accumulate_steal_time(vcpu); 1669 preempt_enable(); 1670 1671 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 1672 1673 break; 1674 case MSR_KVM_PV_EOI_EN: 1675 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 1676 return 1; 1677 break; 1678 1679 case MSR_IA32_MCG_CTL: 1680 case MSR_IA32_MCG_STATUS: 1681 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 1682 return set_msr_mce(vcpu, msr, data); 1683 1684 /* Performance counters are not protected by a CPUID bit, 1685 * so we should check all of them in the generic path for the sake of 1686 * cross vendor migration. 1687 * Writing a zero into the event select MSRs disables them, 1688 * which we perfectly emulate ;-). Any other value should be at least 1689 * reported, some guests depend on them. 1690 */ 1691 case MSR_K7_EVNTSEL0: 1692 case MSR_K7_EVNTSEL1: 1693 case MSR_K7_EVNTSEL2: 1694 case MSR_K7_EVNTSEL3: 1695 if (data != 0) 1696 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1697 "0x%x data 0x%llx\n", msr, data); 1698 break; 1699 /* at least RHEL 4 unconditionally writes to the perfctr registers, 1700 * so we ignore writes to make it happy. 1701 */ 1702 case MSR_K7_PERFCTR0: 1703 case MSR_K7_PERFCTR1: 1704 case MSR_K7_PERFCTR2: 1705 case MSR_K7_PERFCTR3: 1706 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " 1707 "0x%x data 0x%llx\n", msr, data); 1708 break; 1709 case MSR_P6_PERFCTR0: 1710 case MSR_P6_PERFCTR1: 1711 pr = true; 1712 case MSR_P6_EVNTSEL0: 1713 case MSR_P6_EVNTSEL1: 1714 if (kvm_pmu_msr(vcpu, msr)) 1715 return kvm_pmu_set_msr(vcpu, msr, data); 1716 1717 if (pr || data != 0) 1718 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 1719 "0x%x data 0x%llx\n", msr, data); 1720 break; 1721 case MSR_K7_CLK_CTL: 1722 /* 1723 * Ignore all writes to this no longer documented MSR. 1724 * Writes are only relevant for old K7 processors, 1725 * all pre-dating SVM, but a recommended workaround from 1726 * AMD for these chips. It is possible to speicify the 1727 * affected processor models on the command line, hence 1728 * the need to ignore the workaround. 1729 */ 1730 break; 1731 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 1732 if (kvm_hv_msr_partition_wide(msr)) { 1733 int r; 1734 mutex_lock(&vcpu->kvm->lock); 1735 r = set_msr_hyperv_pw(vcpu, msr, data); 1736 mutex_unlock(&vcpu->kvm->lock); 1737 return r; 1738 } else 1739 return set_msr_hyperv(vcpu, msr, data); 1740 break; 1741 case MSR_IA32_BBL_CR_CTL3: 1742 /* Drop writes to this legacy MSR -- see rdmsr 1743 * counterpart for further detail. 1744 */ 1745 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); 1746 break; 1747 case MSR_AMD64_OSVW_ID_LENGTH: 1748 if (!guest_cpuid_has_osvw(vcpu)) 1749 return 1; 1750 vcpu->arch.osvw.length = data; 1751 break; 1752 case MSR_AMD64_OSVW_STATUS: 1753 if (!guest_cpuid_has_osvw(vcpu)) 1754 return 1; 1755 vcpu->arch.osvw.status = data; 1756 break; 1757 default: 1758 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 1759 return xen_hvm_config(vcpu, data); 1760 if (kvm_pmu_msr(vcpu, msr)) 1761 return kvm_pmu_set_msr(vcpu, msr, data); 1762 if (!ignore_msrs) { 1763 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", 1764 msr, data); 1765 return 1; 1766 } else { 1767 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", 1768 msr, data); 1769 break; 1770 } 1771 } 1772 return 0; 1773 } 1774 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 1775 1776 1777 /* 1778 * Reads an msr value (of 'msr_index') into 'pdata'. 1779 * Returns 0 on success, non-0 otherwise. 1780 * Assumes vcpu_load() was already called. 1781 */ 1782 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) 1783 { 1784 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); 1785 } 1786 1787 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1788 { 1789 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; 1790 1791 if (!msr_mtrr_valid(msr)) 1792 return 1; 1793 1794 if (msr == MSR_MTRRdefType) 1795 *pdata = vcpu->arch.mtrr_state.def_type + 1796 (vcpu->arch.mtrr_state.enabled << 10); 1797 else if (msr == MSR_MTRRfix64K_00000) 1798 *pdata = p[0]; 1799 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) 1800 *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; 1801 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) 1802 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; 1803 else if (msr == MSR_IA32_CR_PAT) 1804 *pdata = vcpu->arch.pat; 1805 else { /* Variable MTRRs */ 1806 int idx, is_mtrr_mask; 1807 u64 *pt; 1808 1809 idx = (msr - 0x200) / 2; 1810 is_mtrr_mask = msr - 0x200 - 2 * idx; 1811 if (!is_mtrr_mask) 1812 pt = 1813 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; 1814 else 1815 pt = 1816 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; 1817 *pdata = *pt; 1818 } 1819 1820 return 0; 1821 } 1822 1823 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1824 { 1825 u64 data; 1826 u64 mcg_cap = vcpu->arch.mcg_cap; 1827 unsigned bank_num = mcg_cap & 0xff; 1828 1829 switch (msr) { 1830 case MSR_IA32_P5_MC_ADDR: 1831 case MSR_IA32_P5_MC_TYPE: 1832 data = 0; 1833 break; 1834 case MSR_IA32_MCG_CAP: 1835 data = vcpu->arch.mcg_cap; 1836 break; 1837 case MSR_IA32_MCG_CTL: 1838 if (!(mcg_cap & MCG_CTL_P)) 1839 return 1; 1840 data = vcpu->arch.mcg_ctl; 1841 break; 1842 case MSR_IA32_MCG_STATUS: 1843 data = vcpu->arch.mcg_status; 1844 break; 1845 default: 1846 if (msr >= MSR_IA32_MC0_CTL && 1847 msr < MSR_IA32_MC0_CTL + 4 * bank_num) { 1848 u32 offset = msr - MSR_IA32_MC0_CTL; 1849 data = vcpu->arch.mce_banks[offset]; 1850 break; 1851 } 1852 return 1; 1853 } 1854 *pdata = data; 1855 return 0; 1856 } 1857 1858 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1859 { 1860 u64 data = 0; 1861 struct kvm *kvm = vcpu->kvm; 1862 1863 switch (msr) { 1864 case HV_X64_MSR_GUEST_OS_ID: 1865 data = kvm->arch.hv_guest_os_id; 1866 break; 1867 case HV_X64_MSR_HYPERCALL: 1868 data = kvm->arch.hv_hypercall; 1869 break; 1870 default: 1871 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1872 return 1; 1873 } 1874 1875 *pdata = data; 1876 return 0; 1877 } 1878 1879 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1880 { 1881 u64 data = 0; 1882 1883 switch (msr) { 1884 case HV_X64_MSR_VP_INDEX: { 1885 int r; 1886 struct kvm_vcpu *v; 1887 kvm_for_each_vcpu(r, v, vcpu->kvm) 1888 if (v == vcpu) 1889 data = r; 1890 break; 1891 } 1892 case HV_X64_MSR_EOI: 1893 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1894 case HV_X64_MSR_ICR: 1895 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1896 case HV_X64_MSR_TPR: 1897 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1898 case HV_X64_MSR_APIC_ASSIST_PAGE: 1899 data = vcpu->arch.hv_vapic; 1900 break; 1901 default: 1902 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1903 return 1; 1904 } 1905 *pdata = data; 1906 return 0; 1907 } 1908 1909 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1910 { 1911 u64 data; 1912 1913 switch (msr) { 1914 case MSR_IA32_PLATFORM_ID: 1915 case MSR_IA32_EBL_CR_POWERON: 1916 case MSR_IA32_DEBUGCTLMSR: 1917 case MSR_IA32_LASTBRANCHFROMIP: 1918 case MSR_IA32_LASTBRANCHTOIP: 1919 case MSR_IA32_LASTINTFROMIP: 1920 case MSR_IA32_LASTINTTOIP: 1921 case MSR_K8_SYSCFG: 1922 case MSR_K7_HWCR: 1923 case MSR_VM_HSAVE_PA: 1924 case MSR_K7_EVNTSEL0: 1925 case MSR_K7_PERFCTR0: 1926 case MSR_K8_INT_PENDING_MSG: 1927 case MSR_AMD64_NB_CFG: 1928 case MSR_FAM10H_MMIO_CONF_BASE: 1929 data = 0; 1930 break; 1931 case MSR_P6_PERFCTR0: 1932 case MSR_P6_PERFCTR1: 1933 case MSR_P6_EVNTSEL0: 1934 case MSR_P6_EVNTSEL1: 1935 if (kvm_pmu_msr(vcpu, msr)) 1936 return kvm_pmu_get_msr(vcpu, msr, pdata); 1937 data = 0; 1938 break; 1939 case MSR_IA32_UCODE_REV: 1940 data = 0x100000000ULL; 1941 break; 1942 case MSR_MTRRcap: 1943 data = 0x500 | KVM_NR_VAR_MTRR; 1944 break; 1945 case 0x200 ... 0x2ff: 1946 return get_msr_mtrr(vcpu, msr, pdata); 1947 case 0xcd: /* fsb frequency */ 1948 data = 3; 1949 break; 1950 /* 1951 * MSR_EBC_FREQUENCY_ID 1952 * Conservative value valid for even the basic CPU models. 1953 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 1954 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 1955 * and 266MHz for model 3, or 4. Set Core Clock 1956 * Frequency to System Bus Frequency Ratio to 1 (bits 1957 * 31:24) even though these are only valid for CPU 1958 * models > 2, however guests may end up dividing or 1959 * multiplying by zero otherwise. 1960 */ 1961 case MSR_EBC_FREQUENCY_ID: 1962 data = 1 << 24; 1963 break; 1964 case MSR_IA32_APICBASE: 1965 data = kvm_get_apic_base(vcpu); 1966 break; 1967 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 1968 return kvm_x2apic_msr_read(vcpu, msr, pdata); 1969 break; 1970 case MSR_IA32_TSCDEADLINE: 1971 data = kvm_get_lapic_tscdeadline_msr(vcpu); 1972 break; 1973 case MSR_IA32_MISC_ENABLE: 1974 data = vcpu->arch.ia32_misc_enable_msr; 1975 break; 1976 case MSR_IA32_PERF_STATUS: 1977 /* TSC increment by tick */ 1978 data = 1000ULL; 1979 /* CPU multiplier */ 1980 data |= (((uint64_t)4ULL) << 40); 1981 break; 1982 case MSR_EFER: 1983 data = vcpu->arch.efer; 1984 break; 1985 case MSR_KVM_WALL_CLOCK: 1986 case MSR_KVM_WALL_CLOCK_NEW: 1987 data = vcpu->kvm->arch.wall_clock; 1988 break; 1989 case MSR_KVM_SYSTEM_TIME: 1990 case MSR_KVM_SYSTEM_TIME_NEW: 1991 data = vcpu->arch.time; 1992 break; 1993 case MSR_KVM_ASYNC_PF_EN: 1994 data = vcpu->arch.apf.msr_val; 1995 break; 1996 case MSR_KVM_STEAL_TIME: 1997 data = vcpu->arch.st.msr_val; 1998 break; 1999 case MSR_IA32_P5_MC_ADDR: 2000 case MSR_IA32_P5_MC_TYPE: 2001 case MSR_IA32_MCG_CAP: 2002 case MSR_IA32_MCG_CTL: 2003 case MSR_IA32_MCG_STATUS: 2004 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: 2005 return get_msr_mce(vcpu, msr, pdata); 2006 case MSR_K7_CLK_CTL: 2007 /* 2008 * Provide expected ramp-up count for K7. All other 2009 * are set to zero, indicating minimum divisors for 2010 * every field. 2011 * 2012 * This prevents guest kernels on AMD host with CPU 2013 * type 6, model 8 and higher from exploding due to 2014 * the rdmsr failing. 2015 */ 2016 data = 0x20000000; 2017 break; 2018 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2019 if (kvm_hv_msr_partition_wide(msr)) { 2020 int r; 2021 mutex_lock(&vcpu->kvm->lock); 2022 r = get_msr_hyperv_pw(vcpu, msr, pdata); 2023 mutex_unlock(&vcpu->kvm->lock); 2024 return r; 2025 } else 2026 return get_msr_hyperv(vcpu, msr, pdata); 2027 break; 2028 case MSR_IA32_BBL_CR_CTL3: 2029 /* This legacy MSR exists but isn't fully documented in current 2030 * silicon. It is however accessed by winxp in very narrow 2031 * scenarios where it sets bit #19, itself documented as 2032 * a "reserved" bit. Best effort attempt to source coherent 2033 * read data here should the balance of the register be 2034 * interpreted by the guest: 2035 * 2036 * L2 cache control register 3: 64GB range, 256KB size, 2037 * enabled, latency 0x1, configured 2038 */ 2039 data = 0xbe702111; 2040 break; 2041 case MSR_AMD64_OSVW_ID_LENGTH: 2042 if (!guest_cpuid_has_osvw(vcpu)) 2043 return 1; 2044 data = vcpu->arch.osvw.length; 2045 break; 2046 case MSR_AMD64_OSVW_STATUS: 2047 if (!guest_cpuid_has_osvw(vcpu)) 2048 return 1; 2049 data = vcpu->arch.osvw.status; 2050 break; 2051 default: 2052 if (kvm_pmu_msr(vcpu, msr)) 2053 return kvm_pmu_get_msr(vcpu, msr, pdata); 2054 if (!ignore_msrs) { 2055 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); 2056 return 1; 2057 } else { 2058 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); 2059 data = 0; 2060 } 2061 break; 2062 } 2063 *pdata = data; 2064 return 0; 2065 } 2066 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2067 2068 /* 2069 * Read or write a bunch of msrs. All parameters are kernel addresses. 2070 * 2071 * @return number of msrs set successfully. 2072 */ 2073 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2074 struct kvm_msr_entry *entries, 2075 int (*do_msr)(struct kvm_vcpu *vcpu, 2076 unsigned index, u64 *data)) 2077 { 2078 int i, idx; 2079 2080 idx = srcu_read_lock(&vcpu->kvm->srcu); 2081 for (i = 0; i < msrs->nmsrs; ++i) 2082 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2083 break; 2084 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2085 2086 return i; 2087 } 2088 2089 /* 2090 * Read or write a bunch of msrs. Parameters are user addresses. 2091 * 2092 * @return number of msrs set successfully. 2093 */ 2094 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2095 int (*do_msr)(struct kvm_vcpu *vcpu, 2096 unsigned index, u64 *data), 2097 int writeback) 2098 { 2099 struct kvm_msrs msrs; 2100 struct kvm_msr_entry *entries; 2101 int r, n; 2102 unsigned size; 2103 2104 r = -EFAULT; 2105 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2106 goto out; 2107 2108 r = -E2BIG; 2109 if (msrs.nmsrs >= MAX_IO_MSRS) 2110 goto out; 2111 2112 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2113 entries = memdup_user(user_msrs->entries, size); 2114 if (IS_ERR(entries)) { 2115 r = PTR_ERR(entries); 2116 goto out; 2117 } 2118 2119 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2120 if (r < 0) 2121 goto out_free; 2122 2123 r = -EFAULT; 2124 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2125 goto out_free; 2126 2127 r = n; 2128 2129 out_free: 2130 kfree(entries); 2131 out: 2132 return r; 2133 } 2134 2135 int kvm_dev_ioctl_check_extension(long ext) 2136 { 2137 int r; 2138 2139 switch (ext) { 2140 case KVM_CAP_IRQCHIP: 2141 case KVM_CAP_HLT: 2142 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2143 case KVM_CAP_SET_TSS_ADDR: 2144 case KVM_CAP_EXT_CPUID: 2145 case KVM_CAP_CLOCKSOURCE: 2146 case KVM_CAP_PIT: 2147 case KVM_CAP_NOP_IO_DELAY: 2148 case KVM_CAP_MP_STATE: 2149 case KVM_CAP_SYNC_MMU: 2150 case KVM_CAP_USER_NMI: 2151 case KVM_CAP_REINJECT_CONTROL: 2152 case KVM_CAP_IRQ_INJECT_STATUS: 2153 case KVM_CAP_ASSIGN_DEV_IRQ: 2154 case KVM_CAP_IRQFD: 2155 case KVM_CAP_IOEVENTFD: 2156 case KVM_CAP_PIT2: 2157 case KVM_CAP_PIT_STATE2: 2158 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2159 case KVM_CAP_XEN_HVM: 2160 case KVM_CAP_ADJUST_CLOCK: 2161 case KVM_CAP_VCPU_EVENTS: 2162 case KVM_CAP_HYPERV: 2163 case KVM_CAP_HYPERV_VAPIC: 2164 case KVM_CAP_HYPERV_SPIN: 2165 case KVM_CAP_PCI_SEGMENT: 2166 case KVM_CAP_DEBUGREGS: 2167 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2168 case KVM_CAP_XSAVE: 2169 case KVM_CAP_ASYNC_PF: 2170 case KVM_CAP_GET_TSC_KHZ: 2171 case KVM_CAP_PCI_2_3: 2172 case KVM_CAP_KVMCLOCK_CTRL: 2173 r = 1; 2174 break; 2175 case KVM_CAP_COALESCED_MMIO: 2176 r = KVM_COALESCED_MMIO_PAGE_OFFSET; 2177 break; 2178 case KVM_CAP_VAPIC: 2179 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2180 break; 2181 case KVM_CAP_NR_VCPUS: 2182 r = KVM_SOFT_MAX_VCPUS; 2183 break; 2184 case KVM_CAP_MAX_VCPUS: 2185 r = KVM_MAX_VCPUS; 2186 break; 2187 case KVM_CAP_NR_MEMSLOTS: 2188 r = KVM_MEMORY_SLOTS; 2189 break; 2190 case KVM_CAP_PV_MMU: /* obsolete */ 2191 r = 0; 2192 break; 2193 case KVM_CAP_IOMMU: 2194 r = iommu_present(&pci_bus_type); 2195 break; 2196 case KVM_CAP_MCE: 2197 r = KVM_MAX_MCE_BANKS; 2198 break; 2199 case KVM_CAP_XCRS: 2200 r = cpu_has_xsave; 2201 break; 2202 case KVM_CAP_TSC_CONTROL: 2203 r = kvm_has_tsc_control; 2204 break; 2205 case KVM_CAP_TSC_DEADLINE_TIMER: 2206 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); 2207 break; 2208 default: 2209 r = 0; 2210 break; 2211 } 2212 return r; 2213 2214 } 2215 2216 long kvm_arch_dev_ioctl(struct file *filp, 2217 unsigned int ioctl, unsigned long arg) 2218 { 2219 void __user *argp = (void __user *)arg; 2220 long r; 2221 2222 switch (ioctl) { 2223 case KVM_GET_MSR_INDEX_LIST: { 2224 struct kvm_msr_list __user *user_msr_list = argp; 2225 struct kvm_msr_list msr_list; 2226 unsigned n; 2227 2228 r = -EFAULT; 2229 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2230 goto out; 2231 n = msr_list.nmsrs; 2232 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); 2233 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2234 goto out; 2235 r = -E2BIG; 2236 if (n < msr_list.nmsrs) 2237 goto out; 2238 r = -EFAULT; 2239 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2240 num_msrs_to_save * sizeof(u32))) 2241 goto out; 2242 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2243 &emulated_msrs, 2244 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) 2245 goto out; 2246 r = 0; 2247 break; 2248 } 2249 case KVM_GET_SUPPORTED_CPUID: { 2250 struct kvm_cpuid2 __user *cpuid_arg = argp; 2251 struct kvm_cpuid2 cpuid; 2252 2253 r = -EFAULT; 2254 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2255 goto out; 2256 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, 2257 cpuid_arg->entries); 2258 if (r) 2259 goto out; 2260 2261 r = -EFAULT; 2262 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2263 goto out; 2264 r = 0; 2265 break; 2266 } 2267 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2268 u64 mce_cap; 2269 2270 mce_cap = KVM_MCE_CAP_SUPPORTED; 2271 r = -EFAULT; 2272 if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) 2273 goto out; 2274 r = 0; 2275 break; 2276 } 2277 default: 2278 r = -EINVAL; 2279 } 2280 out: 2281 return r; 2282 } 2283 2284 static void wbinvd_ipi(void *garbage) 2285 { 2286 wbinvd(); 2287 } 2288 2289 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2290 { 2291 return vcpu->kvm->arch.iommu_domain && 2292 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); 2293 } 2294 2295 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2296 { 2297 /* Address WBINVD may be executed by guest */ 2298 if (need_emulate_wbinvd(vcpu)) { 2299 if (kvm_x86_ops->has_wbinvd_exit()) 2300 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2301 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2302 smp_call_function_single(vcpu->cpu, 2303 wbinvd_ipi, NULL, 1); 2304 } 2305 2306 kvm_x86_ops->vcpu_load(vcpu, cpu); 2307 2308 /* Apply any externally detected TSC adjustments (due to suspend) */ 2309 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2310 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2311 vcpu->arch.tsc_offset_adjustment = 0; 2312 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 2313 } 2314 2315 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2316 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2317 native_read_tsc() - vcpu->arch.last_host_tsc; 2318 if (tsc_delta < 0) 2319 mark_tsc_unstable("KVM discovered backwards TSC"); 2320 if (check_tsc_unstable()) { 2321 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, 2322 vcpu->arch.last_guest_tsc); 2323 kvm_x86_ops->write_tsc_offset(vcpu, offset); 2324 vcpu->arch.tsc_catchup = 1; 2325 } 2326 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2327 if (vcpu->cpu != cpu) 2328 kvm_migrate_timers(vcpu); 2329 vcpu->cpu = cpu; 2330 } 2331 2332 accumulate_steal_time(vcpu); 2333 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2334 } 2335 2336 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2337 { 2338 kvm_x86_ops->vcpu_put(vcpu); 2339 kvm_put_guest_fpu(vcpu); 2340 vcpu->arch.last_host_tsc = native_read_tsc(); 2341 } 2342 2343 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2344 struct kvm_lapic_state *s) 2345 { 2346 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); 2347 2348 return 0; 2349 } 2350 2351 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2352 struct kvm_lapic_state *s) 2353 { 2354 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); 2355 kvm_apic_post_state_restore(vcpu); 2356 update_cr8_intercept(vcpu); 2357 2358 return 0; 2359 } 2360 2361 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2362 struct kvm_interrupt *irq) 2363 { 2364 if (irq->irq < 0 || irq->irq >= 256) 2365 return -EINVAL; 2366 if (irqchip_in_kernel(vcpu->kvm)) 2367 return -ENXIO; 2368 2369 kvm_queue_interrupt(vcpu, irq->irq, false); 2370 kvm_make_request(KVM_REQ_EVENT, vcpu); 2371 2372 return 0; 2373 } 2374 2375 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 2376 { 2377 kvm_inject_nmi(vcpu); 2378 2379 return 0; 2380 } 2381 2382 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 2383 struct kvm_tpr_access_ctl *tac) 2384 { 2385 if (tac->flags) 2386 return -EINVAL; 2387 vcpu->arch.tpr_access_reporting = !!tac->enabled; 2388 return 0; 2389 } 2390 2391 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 2392 u64 mcg_cap) 2393 { 2394 int r; 2395 unsigned bank_num = mcg_cap & 0xff, bank; 2396 2397 r = -EINVAL; 2398 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 2399 goto out; 2400 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) 2401 goto out; 2402 r = 0; 2403 vcpu->arch.mcg_cap = mcg_cap; 2404 /* Init IA32_MCG_CTL to all 1s */ 2405 if (mcg_cap & MCG_CTL_P) 2406 vcpu->arch.mcg_ctl = ~(u64)0; 2407 /* Init IA32_MCi_CTL to all 1s */ 2408 for (bank = 0; bank < bank_num; bank++) 2409 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 2410 out: 2411 return r; 2412 } 2413 2414 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 2415 struct kvm_x86_mce *mce) 2416 { 2417 u64 mcg_cap = vcpu->arch.mcg_cap; 2418 unsigned bank_num = mcg_cap & 0xff; 2419 u64 *banks = vcpu->arch.mce_banks; 2420 2421 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 2422 return -EINVAL; 2423 /* 2424 * if IA32_MCG_CTL is not all 1s, the uncorrected error 2425 * reporting is disabled 2426 */ 2427 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 2428 vcpu->arch.mcg_ctl != ~(u64)0) 2429 return 0; 2430 banks += 4 * mce->bank; 2431 /* 2432 * if IA32_MCi_CTL is not all 1s, the uncorrected error 2433 * reporting is disabled for the bank 2434 */ 2435 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 2436 return 0; 2437 if (mce->status & MCI_STATUS_UC) { 2438 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 2439 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 2440 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2441 return 0; 2442 } 2443 if (banks[1] & MCI_STATUS_VAL) 2444 mce->status |= MCI_STATUS_OVER; 2445 banks[2] = mce->addr; 2446 banks[3] = mce->misc; 2447 vcpu->arch.mcg_status = mce->mcg_status; 2448 banks[1] = mce->status; 2449 kvm_queue_exception(vcpu, MC_VECTOR); 2450 } else if (!(banks[1] & MCI_STATUS_VAL) 2451 || !(banks[1] & MCI_STATUS_UC)) { 2452 if (banks[1] & MCI_STATUS_VAL) 2453 mce->status |= MCI_STATUS_OVER; 2454 banks[2] = mce->addr; 2455 banks[3] = mce->misc; 2456 banks[1] = mce->status; 2457 } else 2458 banks[1] |= MCI_STATUS_OVER; 2459 return 0; 2460 } 2461 2462 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 2463 struct kvm_vcpu_events *events) 2464 { 2465 process_nmi(vcpu); 2466 events->exception.injected = 2467 vcpu->arch.exception.pending && 2468 !kvm_exception_is_soft(vcpu->arch.exception.nr); 2469 events->exception.nr = vcpu->arch.exception.nr; 2470 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 2471 events->exception.pad = 0; 2472 events->exception.error_code = vcpu->arch.exception.error_code; 2473 2474 events->interrupt.injected = 2475 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 2476 events->interrupt.nr = vcpu->arch.interrupt.nr; 2477 events->interrupt.soft = 0; 2478 events->interrupt.shadow = 2479 kvm_x86_ops->get_interrupt_shadow(vcpu, 2480 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); 2481 2482 events->nmi.injected = vcpu->arch.nmi_injected; 2483 events->nmi.pending = vcpu->arch.nmi_pending != 0; 2484 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 2485 events->nmi.pad = 0; 2486 2487 events->sipi_vector = vcpu->arch.sipi_vector; 2488 2489 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 2490 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2491 | KVM_VCPUEVENT_VALID_SHADOW); 2492 memset(&events->reserved, 0, sizeof(events->reserved)); 2493 } 2494 2495 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 2496 struct kvm_vcpu_events *events) 2497 { 2498 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 2499 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 2500 | KVM_VCPUEVENT_VALID_SHADOW)) 2501 return -EINVAL; 2502 2503 process_nmi(vcpu); 2504 vcpu->arch.exception.pending = events->exception.injected; 2505 vcpu->arch.exception.nr = events->exception.nr; 2506 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 2507 vcpu->arch.exception.error_code = events->exception.error_code; 2508 2509 vcpu->arch.interrupt.pending = events->interrupt.injected; 2510 vcpu->arch.interrupt.nr = events->interrupt.nr; 2511 vcpu->arch.interrupt.soft = events->interrupt.soft; 2512 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 2513 kvm_x86_ops->set_interrupt_shadow(vcpu, 2514 events->interrupt.shadow); 2515 2516 vcpu->arch.nmi_injected = events->nmi.injected; 2517 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 2518 vcpu->arch.nmi_pending = events->nmi.pending; 2519 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 2520 2521 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) 2522 vcpu->arch.sipi_vector = events->sipi_vector; 2523 2524 kvm_make_request(KVM_REQ_EVENT, vcpu); 2525 2526 return 0; 2527 } 2528 2529 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 2530 struct kvm_debugregs *dbgregs) 2531 { 2532 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 2533 dbgregs->dr6 = vcpu->arch.dr6; 2534 dbgregs->dr7 = vcpu->arch.dr7; 2535 dbgregs->flags = 0; 2536 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 2537 } 2538 2539 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 2540 struct kvm_debugregs *dbgregs) 2541 { 2542 if (dbgregs->flags) 2543 return -EINVAL; 2544 2545 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 2546 vcpu->arch.dr6 = dbgregs->dr6; 2547 vcpu->arch.dr7 = dbgregs->dr7; 2548 2549 return 0; 2550 } 2551 2552 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 2553 struct kvm_xsave *guest_xsave) 2554 { 2555 if (cpu_has_xsave) 2556 memcpy(guest_xsave->region, 2557 &vcpu->arch.guest_fpu.state->xsave, 2558 xstate_size); 2559 else { 2560 memcpy(guest_xsave->region, 2561 &vcpu->arch.guest_fpu.state->fxsave, 2562 sizeof(struct i387_fxsave_struct)); 2563 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 2564 XSTATE_FPSSE; 2565 } 2566 } 2567 2568 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 2569 struct kvm_xsave *guest_xsave) 2570 { 2571 u64 xstate_bv = 2572 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 2573 2574 if (cpu_has_xsave) 2575 memcpy(&vcpu->arch.guest_fpu.state->xsave, 2576 guest_xsave->region, xstate_size); 2577 else { 2578 if (xstate_bv & ~XSTATE_FPSSE) 2579 return -EINVAL; 2580 memcpy(&vcpu->arch.guest_fpu.state->fxsave, 2581 guest_xsave->region, sizeof(struct i387_fxsave_struct)); 2582 } 2583 return 0; 2584 } 2585 2586 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 2587 struct kvm_xcrs *guest_xcrs) 2588 { 2589 if (!cpu_has_xsave) { 2590 guest_xcrs->nr_xcrs = 0; 2591 return; 2592 } 2593 2594 guest_xcrs->nr_xcrs = 1; 2595 guest_xcrs->flags = 0; 2596 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 2597 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 2598 } 2599 2600 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 2601 struct kvm_xcrs *guest_xcrs) 2602 { 2603 int i, r = 0; 2604 2605 if (!cpu_has_xsave) 2606 return -EINVAL; 2607 2608 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 2609 return -EINVAL; 2610 2611 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 2612 /* Only support XCR0 currently */ 2613 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { 2614 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 2615 guest_xcrs->xcrs[0].value); 2616 break; 2617 } 2618 if (r) 2619 r = -EINVAL; 2620 return r; 2621 } 2622 2623 /* 2624 * kvm_set_guest_paused() indicates to the guest kernel that it has been 2625 * stopped by the hypervisor. This function will be called from the host only. 2626 * EINVAL is returned when the host attempts to set the flag for a guest that 2627 * does not support pv clocks. 2628 */ 2629 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 2630 { 2631 struct pvclock_vcpu_time_info *src = &vcpu->arch.hv_clock; 2632 if (!vcpu->arch.time_page) 2633 return -EINVAL; 2634 src->flags |= PVCLOCK_GUEST_STOPPED; 2635 mark_page_dirty(vcpu->kvm, vcpu->arch.time >> PAGE_SHIFT); 2636 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2637 return 0; 2638 } 2639 2640 long kvm_arch_vcpu_ioctl(struct file *filp, 2641 unsigned int ioctl, unsigned long arg) 2642 { 2643 struct kvm_vcpu *vcpu = filp->private_data; 2644 void __user *argp = (void __user *)arg; 2645 int r; 2646 union { 2647 struct kvm_lapic_state *lapic; 2648 struct kvm_xsave *xsave; 2649 struct kvm_xcrs *xcrs; 2650 void *buffer; 2651 } u; 2652 2653 u.buffer = NULL; 2654 switch (ioctl) { 2655 case KVM_GET_LAPIC: { 2656 r = -EINVAL; 2657 if (!vcpu->arch.apic) 2658 goto out; 2659 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 2660 2661 r = -ENOMEM; 2662 if (!u.lapic) 2663 goto out; 2664 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 2665 if (r) 2666 goto out; 2667 r = -EFAULT; 2668 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 2669 goto out; 2670 r = 0; 2671 break; 2672 } 2673 case KVM_SET_LAPIC: { 2674 r = -EINVAL; 2675 if (!vcpu->arch.apic) 2676 goto out; 2677 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 2678 if (IS_ERR(u.lapic)) { 2679 r = PTR_ERR(u.lapic); 2680 goto out; 2681 } 2682 2683 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 2684 if (r) 2685 goto out; 2686 r = 0; 2687 break; 2688 } 2689 case KVM_INTERRUPT: { 2690 struct kvm_interrupt irq; 2691 2692 r = -EFAULT; 2693 if (copy_from_user(&irq, argp, sizeof irq)) 2694 goto out; 2695 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2696 if (r) 2697 goto out; 2698 r = 0; 2699 break; 2700 } 2701 case KVM_NMI: { 2702 r = kvm_vcpu_ioctl_nmi(vcpu); 2703 if (r) 2704 goto out; 2705 r = 0; 2706 break; 2707 } 2708 case KVM_SET_CPUID: { 2709 struct kvm_cpuid __user *cpuid_arg = argp; 2710 struct kvm_cpuid cpuid; 2711 2712 r = -EFAULT; 2713 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2714 goto out; 2715 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 2716 if (r) 2717 goto out; 2718 break; 2719 } 2720 case KVM_SET_CPUID2: { 2721 struct kvm_cpuid2 __user *cpuid_arg = argp; 2722 struct kvm_cpuid2 cpuid; 2723 2724 r = -EFAULT; 2725 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2726 goto out; 2727 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 2728 cpuid_arg->entries); 2729 if (r) 2730 goto out; 2731 break; 2732 } 2733 case KVM_GET_CPUID2: { 2734 struct kvm_cpuid2 __user *cpuid_arg = argp; 2735 struct kvm_cpuid2 cpuid; 2736 2737 r = -EFAULT; 2738 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2739 goto out; 2740 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 2741 cpuid_arg->entries); 2742 if (r) 2743 goto out; 2744 r = -EFAULT; 2745 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2746 goto out; 2747 r = 0; 2748 break; 2749 } 2750 case KVM_GET_MSRS: 2751 r = msr_io(vcpu, argp, kvm_get_msr, 1); 2752 break; 2753 case KVM_SET_MSRS: 2754 r = msr_io(vcpu, argp, do_set_msr, 0); 2755 break; 2756 case KVM_TPR_ACCESS_REPORTING: { 2757 struct kvm_tpr_access_ctl tac; 2758 2759 r = -EFAULT; 2760 if (copy_from_user(&tac, argp, sizeof tac)) 2761 goto out; 2762 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 2763 if (r) 2764 goto out; 2765 r = -EFAULT; 2766 if (copy_to_user(argp, &tac, sizeof tac)) 2767 goto out; 2768 r = 0; 2769 break; 2770 }; 2771 case KVM_SET_VAPIC_ADDR: { 2772 struct kvm_vapic_addr va; 2773 2774 r = -EINVAL; 2775 if (!irqchip_in_kernel(vcpu->kvm)) 2776 goto out; 2777 r = -EFAULT; 2778 if (copy_from_user(&va, argp, sizeof va)) 2779 goto out; 2780 r = 0; 2781 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 2782 break; 2783 } 2784 case KVM_X86_SETUP_MCE: { 2785 u64 mcg_cap; 2786 2787 r = -EFAULT; 2788 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 2789 goto out; 2790 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 2791 break; 2792 } 2793 case KVM_X86_SET_MCE: { 2794 struct kvm_x86_mce mce; 2795 2796 r = -EFAULT; 2797 if (copy_from_user(&mce, argp, sizeof mce)) 2798 goto out; 2799 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 2800 break; 2801 } 2802 case KVM_GET_VCPU_EVENTS: { 2803 struct kvm_vcpu_events events; 2804 2805 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 2806 2807 r = -EFAULT; 2808 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 2809 break; 2810 r = 0; 2811 break; 2812 } 2813 case KVM_SET_VCPU_EVENTS: { 2814 struct kvm_vcpu_events events; 2815 2816 r = -EFAULT; 2817 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 2818 break; 2819 2820 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 2821 break; 2822 } 2823 case KVM_GET_DEBUGREGS: { 2824 struct kvm_debugregs dbgregs; 2825 2826 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 2827 2828 r = -EFAULT; 2829 if (copy_to_user(argp, &dbgregs, 2830 sizeof(struct kvm_debugregs))) 2831 break; 2832 r = 0; 2833 break; 2834 } 2835 case KVM_SET_DEBUGREGS: { 2836 struct kvm_debugregs dbgregs; 2837 2838 r = -EFAULT; 2839 if (copy_from_user(&dbgregs, argp, 2840 sizeof(struct kvm_debugregs))) 2841 break; 2842 2843 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 2844 break; 2845 } 2846 case KVM_GET_XSAVE: { 2847 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 2848 r = -ENOMEM; 2849 if (!u.xsave) 2850 break; 2851 2852 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 2853 2854 r = -EFAULT; 2855 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 2856 break; 2857 r = 0; 2858 break; 2859 } 2860 case KVM_SET_XSAVE: { 2861 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 2862 if (IS_ERR(u.xsave)) { 2863 r = PTR_ERR(u.xsave); 2864 goto out; 2865 } 2866 2867 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 2868 break; 2869 } 2870 case KVM_GET_XCRS: { 2871 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 2872 r = -ENOMEM; 2873 if (!u.xcrs) 2874 break; 2875 2876 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 2877 2878 r = -EFAULT; 2879 if (copy_to_user(argp, u.xcrs, 2880 sizeof(struct kvm_xcrs))) 2881 break; 2882 r = 0; 2883 break; 2884 } 2885 case KVM_SET_XCRS: { 2886 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 2887 if (IS_ERR(u.xcrs)) { 2888 r = PTR_ERR(u.xcrs); 2889 goto out; 2890 } 2891 2892 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 2893 break; 2894 } 2895 case KVM_SET_TSC_KHZ: { 2896 u32 user_tsc_khz; 2897 2898 r = -EINVAL; 2899 user_tsc_khz = (u32)arg; 2900 2901 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 2902 goto out; 2903 2904 if (user_tsc_khz == 0) 2905 user_tsc_khz = tsc_khz; 2906 2907 kvm_set_tsc_khz(vcpu, user_tsc_khz); 2908 2909 r = 0; 2910 goto out; 2911 } 2912 case KVM_GET_TSC_KHZ: { 2913 r = vcpu->arch.virtual_tsc_khz; 2914 goto out; 2915 } 2916 case KVM_KVMCLOCK_CTRL: { 2917 r = kvm_set_guest_paused(vcpu); 2918 goto out; 2919 } 2920 default: 2921 r = -EINVAL; 2922 } 2923 out: 2924 kfree(u.buffer); 2925 return r; 2926 } 2927 2928 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2929 { 2930 return VM_FAULT_SIGBUS; 2931 } 2932 2933 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 2934 { 2935 int ret; 2936 2937 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 2938 return -1; 2939 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 2940 return ret; 2941 } 2942 2943 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 2944 u64 ident_addr) 2945 { 2946 kvm->arch.ept_identity_map_addr = ident_addr; 2947 return 0; 2948 } 2949 2950 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 2951 u32 kvm_nr_mmu_pages) 2952 { 2953 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 2954 return -EINVAL; 2955 2956 mutex_lock(&kvm->slots_lock); 2957 spin_lock(&kvm->mmu_lock); 2958 2959 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 2960 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 2961 2962 spin_unlock(&kvm->mmu_lock); 2963 mutex_unlock(&kvm->slots_lock); 2964 return 0; 2965 } 2966 2967 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 2968 { 2969 return kvm->arch.n_max_mmu_pages; 2970 } 2971 2972 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2973 { 2974 int r; 2975 2976 r = 0; 2977 switch (chip->chip_id) { 2978 case KVM_IRQCHIP_PIC_MASTER: 2979 memcpy(&chip->chip.pic, 2980 &pic_irqchip(kvm)->pics[0], 2981 sizeof(struct kvm_pic_state)); 2982 break; 2983 case KVM_IRQCHIP_PIC_SLAVE: 2984 memcpy(&chip->chip.pic, 2985 &pic_irqchip(kvm)->pics[1], 2986 sizeof(struct kvm_pic_state)); 2987 break; 2988 case KVM_IRQCHIP_IOAPIC: 2989 r = kvm_get_ioapic(kvm, &chip->chip.ioapic); 2990 break; 2991 default: 2992 r = -EINVAL; 2993 break; 2994 } 2995 return r; 2996 } 2997 2998 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 2999 { 3000 int r; 3001 3002 r = 0; 3003 switch (chip->chip_id) { 3004 case KVM_IRQCHIP_PIC_MASTER: 3005 spin_lock(&pic_irqchip(kvm)->lock); 3006 memcpy(&pic_irqchip(kvm)->pics[0], 3007 &chip->chip.pic, 3008 sizeof(struct kvm_pic_state)); 3009 spin_unlock(&pic_irqchip(kvm)->lock); 3010 break; 3011 case KVM_IRQCHIP_PIC_SLAVE: 3012 spin_lock(&pic_irqchip(kvm)->lock); 3013 memcpy(&pic_irqchip(kvm)->pics[1], 3014 &chip->chip.pic, 3015 sizeof(struct kvm_pic_state)); 3016 spin_unlock(&pic_irqchip(kvm)->lock); 3017 break; 3018 case KVM_IRQCHIP_IOAPIC: 3019 r = kvm_set_ioapic(kvm, &chip->chip.ioapic); 3020 break; 3021 default: 3022 r = -EINVAL; 3023 break; 3024 } 3025 kvm_pic_update_irq(pic_irqchip(kvm)); 3026 return r; 3027 } 3028 3029 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3030 { 3031 int r = 0; 3032 3033 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3034 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); 3035 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3036 return r; 3037 } 3038 3039 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3040 { 3041 int r = 0; 3042 3043 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3044 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); 3045 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); 3046 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3047 return r; 3048 } 3049 3050 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3051 { 3052 int r = 0; 3053 3054 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3055 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3056 sizeof(ps->channels)); 3057 ps->flags = kvm->arch.vpit->pit_state.flags; 3058 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3059 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3060 return r; 3061 } 3062 3063 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3064 { 3065 int r = 0, start = 0; 3066 u32 prev_legacy, cur_legacy; 3067 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3068 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3069 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3070 if (!prev_legacy && cur_legacy) 3071 start = 1; 3072 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, 3073 sizeof(kvm->arch.vpit->pit_state.channels)); 3074 kvm->arch.vpit->pit_state.flags = ps->flags; 3075 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); 3076 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3077 return r; 3078 } 3079 3080 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3081 struct kvm_reinject_control *control) 3082 { 3083 if (!kvm->arch.vpit) 3084 return -ENXIO; 3085 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3086 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; 3087 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3088 return 0; 3089 } 3090 3091 /** 3092 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3093 * @kvm: kvm instance 3094 * @log: slot id and address to which we copy the log 3095 * 3096 * We need to keep it in mind that VCPU threads can write to the bitmap 3097 * concurrently. So, to avoid losing data, we keep the following order for 3098 * each bit: 3099 * 3100 * 1. Take a snapshot of the bit and clear it if needed. 3101 * 2. Write protect the corresponding page. 3102 * 3. Flush TLB's if needed. 3103 * 4. Copy the snapshot to the userspace. 3104 * 3105 * Between 2 and 3, the guest may write to the page using the remaining TLB 3106 * entry. This is not a problem because the page will be reported dirty at 3107 * step 4 using the snapshot taken before and step 3 ensures that successive 3108 * writes will be logged for the next call. 3109 */ 3110 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3111 { 3112 int r; 3113 struct kvm_memory_slot *memslot; 3114 unsigned long n, i; 3115 unsigned long *dirty_bitmap; 3116 unsigned long *dirty_bitmap_buffer; 3117 bool is_dirty = false; 3118 3119 mutex_lock(&kvm->slots_lock); 3120 3121 r = -EINVAL; 3122 if (log->slot >= KVM_MEMORY_SLOTS) 3123 goto out; 3124 3125 memslot = id_to_memslot(kvm->memslots, log->slot); 3126 3127 dirty_bitmap = memslot->dirty_bitmap; 3128 r = -ENOENT; 3129 if (!dirty_bitmap) 3130 goto out; 3131 3132 n = kvm_dirty_bitmap_bytes(memslot); 3133 3134 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); 3135 memset(dirty_bitmap_buffer, 0, n); 3136 3137 spin_lock(&kvm->mmu_lock); 3138 3139 for (i = 0; i < n / sizeof(long); i++) { 3140 unsigned long mask; 3141 gfn_t offset; 3142 3143 if (!dirty_bitmap[i]) 3144 continue; 3145 3146 is_dirty = true; 3147 3148 mask = xchg(&dirty_bitmap[i], 0); 3149 dirty_bitmap_buffer[i] = mask; 3150 3151 offset = i * BITS_PER_LONG; 3152 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); 3153 } 3154 if (is_dirty) 3155 kvm_flush_remote_tlbs(kvm); 3156 3157 spin_unlock(&kvm->mmu_lock); 3158 3159 r = -EFAULT; 3160 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 3161 goto out; 3162 3163 r = 0; 3164 out: 3165 mutex_unlock(&kvm->slots_lock); 3166 return r; 3167 } 3168 3169 long kvm_arch_vm_ioctl(struct file *filp, 3170 unsigned int ioctl, unsigned long arg) 3171 { 3172 struct kvm *kvm = filp->private_data; 3173 void __user *argp = (void __user *)arg; 3174 int r = -ENOTTY; 3175 /* 3176 * This union makes it completely explicit to gcc-3.x 3177 * that these two variables' stack usage should be 3178 * combined, not added together. 3179 */ 3180 union { 3181 struct kvm_pit_state ps; 3182 struct kvm_pit_state2 ps2; 3183 struct kvm_pit_config pit_config; 3184 } u; 3185 3186 switch (ioctl) { 3187 case KVM_SET_TSS_ADDR: 3188 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 3189 if (r < 0) 3190 goto out; 3191 break; 3192 case KVM_SET_IDENTITY_MAP_ADDR: { 3193 u64 ident_addr; 3194 3195 r = -EFAULT; 3196 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 3197 goto out; 3198 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 3199 if (r < 0) 3200 goto out; 3201 break; 3202 } 3203 case KVM_SET_NR_MMU_PAGES: 3204 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 3205 if (r) 3206 goto out; 3207 break; 3208 case KVM_GET_NR_MMU_PAGES: 3209 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 3210 break; 3211 case KVM_CREATE_IRQCHIP: { 3212 struct kvm_pic *vpic; 3213 3214 mutex_lock(&kvm->lock); 3215 r = -EEXIST; 3216 if (kvm->arch.vpic) 3217 goto create_irqchip_unlock; 3218 r = -EINVAL; 3219 if (atomic_read(&kvm->online_vcpus)) 3220 goto create_irqchip_unlock; 3221 r = -ENOMEM; 3222 vpic = kvm_create_pic(kvm); 3223 if (vpic) { 3224 r = kvm_ioapic_init(kvm); 3225 if (r) { 3226 mutex_lock(&kvm->slots_lock); 3227 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3228 &vpic->dev_master); 3229 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3230 &vpic->dev_slave); 3231 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 3232 &vpic->dev_eclr); 3233 mutex_unlock(&kvm->slots_lock); 3234 kfree(vpic); 3235 goto create_irqchip_unlock; 3236 } 3237 } else 3238 goto create_irqchip_unlock; 3239 smp_wmb(); 3240 kvm->arch.vpic = vpic; 3241 smp_wmb(); 3242 r = kvm_setup_default_irq_routing(kvm); 3243 if (r) { 3244 mutex_lock(&kvm->slots_lock); 3245 mutex_lock(&kvm->irq_lock); 3246 kvm_ioapic_destroy(kvm); 3247 kvm_destroy_pic(kvm); 3248 mutex_unlock(&kvm->irq_lock); 3249 mutex_unlock(&kvm->slots_lock); 3250 } 3251 create_irqchip_unlock: 3252 mutex_unlock(&kvm->lock); 3253 break; 3254 } 3255 case KVM_CREATE_PIT: 3256 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 3257 goto create_pit; 3258 case KVM_CREATE_PIT2: 3259 r = -EFAULT; 3260 if (copy_from_user(&u.pit_config, argp, 3261 sizeof(struct kvm_pit_config))) 3262 goto out; 3263 create_pit: 3264 mutex_lock(&kvm->slots_lock); 3265 r = -EEXIST; 3266 if (kvm->arch.vpit) 3267 goto create_pit_unlock; 3268 r = -ENOMEM; 3269 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 3270 if (kvm->arch.vpit) 3271 r = 0; 3272 create_pit_unlock: 3273 mutex_unlock(&kvm->slots_lock); 3274 break; 3275 case KVM_IRQ_LINE_STATUS: 3276 case KVM_IRQ_LINE: { 3277 struct kvm_irq_level irq_event; 3278 3279 r = -EFAULT; 3280 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 3281 goto out; 3282 r = -ENXIO; 3283 if (irqchip_in_kernel(kvm)) { 3284 __s32 status; 3285 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3286 irq_event.irq, irq_event.level); 3287 if (ioctl == KVM_IRQ_LINE_STATUS) { 3288 r = -EFAULT; 3289 irq_event.status = status; 3290 if (copy_to_user(argp, &irq_event, 3291 sizeof irq_event)) 3292 goto out; 3293 } 3294 r = 0; 3295 } 3296 break; 3297 } 3298 case KVM_GET_IRQCHIP: { 3299 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3300 struct kvm_irqchip *chip; 3301 3302 chip = memdup_user(argp, sizeof(*chip)); 3303 if (IS_ERR(chip)) { 3304 r = PTR_ERR(chip); 3305 goto out; 3306 } 3307 3308 r = -ENXIO; 3309 if (!irqchip_in_kernel(kvm)) 3310 goto get_irqchip_out; 3311 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 3312 if (r) 3313 goto get_irqchip_out; 3314 r = -EFAULT; 3315 if (copy_to_user(argp, chip, sizeof *chip)) 3316 goto get_irqchip_out; 3317 r = 0; 3318 get_irqchip_out: 3319 kfree(chip); 3320 if (r) 3321 goto out; 3322 break; 3323 } 3324 case KVM_SET_IRQCHIP: { 3325 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 3326 struct kvm_irqchip *chip; 3327 3328 chip = memdup_user(argp, sizeof(*chip)); 3329 if (IS_ERR(chip)) { 3330 r = PTR_ERR(chip); 3331 goto out; 3332 } 3333 3334 r = -ENXIO; 3335 if (!irqchip_in_kernel(kvm)) 3336 goto set_irqchip_out; 3337 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 3338 if (r) 3339 goto set_irqchip_out; 3340 r = 0; 3341 set_irqchip_out: 3342 kfree(chip); 3343 if (r) 3344 goto out; 3345 break; 3346 } 3347 case KVM_GET_PIT: { 3348 r = -EFAULT; 3349 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 3350 goto out; 3351 r = -ENXIO; 3352 if (!kvm->arch.vpit) 3353 goto out; 3354 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 3355 if (r) 3356 goto out; 3357 r = -EFAULT; 3358 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 3359 goto out; 3360 r = 0; 3361 break; 3362 } 3363 case KVM_SET_PIT: { 3364 r = -EFAULT; 3365 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 3366 goto out; 3367 r = -ENXIO; 3368 if (!kvm->arch.vpit) 3369 goto out; 3370 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 3371 if (r) 3372 goto out; 3373 r = 0; 3374 break; 3375 } 3376 case KVM_GET_PIT2: { 3377 r = -ENXIO; 3378 if (!kvm->arch.vpit) 3379 goto out; 3380 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 3381 if (r) 3382 goto out; 3383 r = -EFAULT; 3384 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 3385 goto out; 3386 r = 0; 3387 break; 3388 } 3389 case KVM_SET_PIT2: { 3390 r = -EFAULT; 3391 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 3392 goto out; 3393 r = -ENXIO; 3394 if (!kvm->arch.vpit) 3395 goto out; 3396 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 3397 if (r) 3398 goto out; 3399 r = 0; 3400 break; 3401 } 3402 case KVM_REINJECT_CONTROL: { 3403 struct kvm_reinject_control control; 3404 r = -EFAULT; 3405 if (copy_from_user(&control, argp, sizeof(control))) 3406 goto out; 3407 r = kvm_vm_ioctl_reinject(kvm, &control); 3408 if (r) 3409 goto out; 3410 r = 0; 3411 break; 3412 } 3413 case KVM_XEN_HVM_CONFIG: { 3414 r = -EFAULT; 3415 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 3416 sizeof(struct kvm_xen_hvm_config))) 3417 goto out; 3418 r = -EINVAL; 3419 if (kvm->arch.xen_hvm_config.flags) 3420 goto out; 3421 r = 0; 3422 break; 3423 } 3424 case KVM_SET_CLOCK: { 3425 struct kvm_clock_data user_ns; 3426 u64 now_ns; 3427 s64 delta; 3428 3429 r = -EFAULT; 3430 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 3431 goto out; 3432 3433 r = -EINVAL; 3434 if (user_ns.flags) 3435 goto out; 3436 3437 r = 0; 3438 local_irq_disable(); 3439 now_ns = get_kernel_ns(); 3440 delta = user_ns.clock - now_ns; 3441 local_irq_enable(); 3442 kvm->arch.kvmclock_offset = delta; 3443 break; 3444 } 3445 case KVM_GET_CLOCK: { 3446 struct kvm_clock_data user_ns; 3447 u64 now_ns; 3448 3449 local_irq_disable(); 3450 now_ns = get_kernel_ns(); 3451 user_ns.clock = kvm->arch.kvmclock_offset + now_ns; 3452 local_irq_enable(); 3453 user_ns.flags = 0; 3454 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 3455 3456 r = -EFAULT; 3457 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 3458 goto out; 3459 r = 0; 3460 break; 3461 } 3462 3463 default: 3464 ; 3465 } 3466 out: 3467 return r; 3468 } 3469 3470 static void kvm_init_msr_list(void) 3471 { 3472 u32 dummy[2]; 3473 unsigned i, j; 3474 3475 /* skip the first msrs in the list. KVM-specific */ 3476 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { 3477 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 3478 continue; 3479 if (j < i) 3480 msrs_to_save[j] = msrs_to_save[i]; 3481 j++; 3482 } 3483 num_msrs_to_save = j; 3484 } 3485 3486 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 3487 const void *v) 3488 { 3489 int handled = 0; 3490 int n; 3491 3492 do { 3493 n = min(len, 8); 3494 if (!(vcpu->arch.apic && 3495 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) 3496 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3497 break; 3498 handled += n; 3499 addr += n; 3500 len -= n; 3501 v += n; 3502 } while (len); 3503 3504 return handled; 3505 } 3506 3507 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 3508 { 3509 int handled = 0; 3510 int n; 3511 3512 do { 3513 n = min(len, 8); 3514 if (!(vcpu->arch.apic && 3515 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) 3516 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) 3517 break; 3518 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); 3519 handled += n; 3520 addr += n; 3521 len -= n; 3522 v += n; 3523 } while (len); 3524 3525 return handled; 3526 } 3527 3528 static void kvm_set_segment(struct kvm_vcpu *vcpu, 3529 struct kvm_segment *var, int seg) 3530 { 3531 kvm_x86_ops->set_segment(vcpu, var, seg); 3532 } 3533 3534 void kvm_get_segment(struct kvm_vcpu *vcpu, 3535 struct kvm_segment *var, int seg) 3536 { 3537 kvm_x86_ops->get_segment(vcpu, var, seg); 3538 } 3539 3540 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) 3541 { 3542 gpa_t t_gpa; 3543 struct x86_exception exception; 3544 3545 BUG_ON(!mmu_is_nested(vcpu)); 3546 3547 /* NPT walks are always user-walks */ 3548 access |= PFERR_USER_MASK; 3549 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); 3550 3551 return t_gpa; 3552 } 3553 3554 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 3555 struct x86_exception *exception) 3556 { 3557 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3558 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3559 } 3560 3561 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 3562 struct x86_exception *exception) 3563 { 3564 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3565 access |= PFERR_FETCH_MASK; 3566 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3567 } 3568 3569 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 3570 struct x86_exception *exception) 3571 { 3572 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3573 access |= PFERR_WRITE_MASK; 3574 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3575 } 3576 3577 /* uses this to access any guest's mapped memory without checking CPL */ 3578 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 3579 struct x86_exception *exception) 3580 { 3581 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 3582 } 3583 3584 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 3585 struct kvm_vcpu *vcpu, u32 access, 3586 struct x86_exception *exception) 3587 { 3588 void *data = val; 3589 int r = X86EMUL_CONTINUE; 3590 3591 while (bytes) { 3592 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 3593 exception); 3594 unsigned offset = addr & (PAGE_SIZE-1); 3595 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 3596 int ret; 3597 3598 if (gpa == UNMAPPED_GVA) 3599 return X86EMUL_PROPAGATE_FAULT; 3600 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); 3601 if (ret < 0) { 3602 r = X86EMUL_IO_NEEDED; 3603 goto out; 3604 } 3605 3606 bytes -= toread; 3607 data += toread; 3608 addr += toread; 3609 } 3610 out: 3611 return r; 3612 } 3613 3614 /* used for instruction fetching */ 3615 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 3616 gva_t addr, void *val, unsigned int bytes, 3617 struct x86_exception *exception) 3618 { 3619 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3620 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3621 3622 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 3623 access | PFERR_FETCH_MASK, 3624 exception); 3625 } 3626 3627 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 3628 gva_t addr, void *val, unsigned int bytes, 3629 struct x86_exception *exception) 3630 { 3631 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3632 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3633 3634 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 3635 exception); 3636 } 3637 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 3638 3639 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3640 gva_t addr, void *val, unsigned int bytes, 3641 struct x86_exception *exception) 3642 { 3643 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3644 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 3645 } 3646 3647 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 3648 gva_t addr, void *val, 3649 unsigned int bytes, 3650 struct x86_exception *exception) 3651 { 3652 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3653 void *data = val; 3654 int r = X86EMUL_CONTINUE; 3655 3656 while (bytes) { 3657 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 3658 PFERR_WRITE_MASK, 3659 exception); 3660 unsigned offset = addr & (PAGE_SIZE-1); 3661 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 3662 int ret; 3663 3664 if (gpa == UNMAPPED_GVA) 3665 return X86EMUL_PROPAGATE_FAULT; 3666 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); 3667 if (ret < 0) { 3668 r = X86EMUL_IO_NEEDED; 3669 goto out; 3670 } 3671 3672 bytes -= towrite; 3673 data += towrite; 3674 addr += towrite; 3675 } 3676 out: 3677 return r; 3678 } 3679 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 3680 3681 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 3682 gpa_t *gpa, struct x86_exception *exception, 3683 bool write) 3684 { 3685 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 3686 3687 if (vcpu_match_mmio_gva(vcpu, gva) && 3688 check_write_user_access(vcpu, write, access, 3689 vcpu->arch.access)) { 3690 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 3691 (gva & (PAGE_SIZE - 1)); 3692 trace_vcpu_match_mmio(gva, *gpa, write, false); 3693 return 1; 3694 } 3695 3696 if (write) 3697 access |= PFERR_WRITE_MASK; 3698 3699 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 3700 3701 if (*gpa == UNMAPPED_GVA) 3702 return -1; 3703 3704 /* For APIC access vmexit */ 3705 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3706 return 1; 3707 3708 if (vcpu_match_mmio_gpa(vcpu, *gpa)) { 3709 trace_vcpu_match_mmio(gva, *gpa, write, true); 3710 return 1; 3711 } 3712 3713 return 0; 3714 } 3715 3716 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 3717 const void *val, int bytes) 3718 { 3719 int ret; 3720 3721 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); 3722 if (ret < 0) 3723 return 0; 3724 kvm_mmu_pte_write(vcpu, gpa, val, bytes); 3725 return 1; 3726 } 3727 3728 struct read_write_emulator_ops { 3729 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 3730 int bytes); 3731 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 3732 void *val, int bytes); 3733 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3734 int bytes, void *val); 3735 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 3736 void *val, int bytes); 3737 bool write; 3738 }; 3739 3740 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 3741 { 3742 if (vcpu->mmio_read_completed) { 3743 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 3744 vcpu->mmio_fragments[0].gpa, *(u64 *)val); 3745 vcpu->mmio_read_completed = 0; 3746 return 1; 3747 } 3748 3749 return 0; 3750 } 3751 3752 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3753 void *val, int bytes) 3754 { 3755 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); 3756 } 3757 3758 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 3759 void *val, int bytes) 3760 { 3761 return emulator_write_phys(vcpu, gpa, val, bytes); 3762 } 3763 3764 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 3765 { 3766 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); 3767 return vcpu_mmio_write(vcpu, gpa, bytes, val); 3768 } 3769 3770 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3771 void *val, int bytes) 3772 { 3773 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); 3774 return X86EMUL_IO_NEEDED; 3775 } 3776 3777 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 3778 void *val, int bytes) 3779 { 3780 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 3781 3782 memcpy(vcpu->run->mmio.data, frag->data, frag->len); 3783 return X86EMUL_CONTINUE; 3784 } 3785 3786 static struct read_write_emulator_ops read_emultor = { 3787 .read_write_prepare = read_prepare, 3788 .read_write_emulate = read_emulate, 3789 .read_write_mmio = vcpu_mmio_read, 3790 .read_write_exit_mmio = read_exit_mmio, 3791 }; 3792 3793 static struct read_write_emulator_ops write_emultor = { 3794 .read_write_emulate = write_emulate, 3795 .read_write_mmio = write_mmio, 3796 .read_write_exit_mmio = write_exit_mmio, 3797 .write = true, 3798 }; 3799 3800 static int emulator_read_write_onepage(unsigned long addr, void *val, 3801 unsigned int bytes, 3802 struct x86_exception *exception, 3803 struct kvm_vcpu *vcpu, 3804 struct read_write_emulator_ops *ops) 3805 { 3806 gpa_t gpa; 3807 int handled, ret; 3808 bool write = ops->write; 3809 struct kvm_mmio_fragment *frag; 3810 3811 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 3812 3813 if (ret < 0) 3814 return X86EMUL_PROPAGATE_FAULT; 3815 3816 /* For APIC access vmexit */ 3817 if (ret) 3818 goto mmio; 3819 3820 if (ops->read_write_emulate(vcpu, gpa, val, bytes)) 3821 return X86EMUL_CONTINUE; 3822 3823 mmio: 3824 /* 3825 * Is this MMIO handled locally? 3826 */ 3827 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 3828 if (handled == bytes) 3829 return X86EMUL_CONTINUE; 3830 3831 gpa += handled; 3832 bytes -= handled; 3833 val += handled; 3834 3835 while (bytes) { 3836 unsigned now = min(bytes, 8U); 3837 3838 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 3839 frag->gpa = gpa; 3840 frag->data = val; 3841 frag->len = now; 3842 3843 gpa += now; 3844 val += now; 3845 bytes -= now; 3846 } 3847 return X86EMUL_CONTINUE; 3848 } 3849 3850 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, 3851 void *val, unsigned int bytes, 3852 struct x86_exception *exception, 3853 struct read_write_emulator_ops *ops) 3854 { 3855 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3856 gpa_t gpa; 3857 int rc; 3858 3859 if (ops->read_write_prepare && 3860 ops->read_write_prepare(vcpu, val, bytes)) 3861 return X86EMUL_CONTINUE; 3862 3863 vcpu->mmio_nr_fragments = 0; 3864 3865 /* Crossing a page boundary? */ 3866 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 3867 int now; 3868 3869 now = -addr & ~PAGE_MASK; 3870 rc = emulator_read_write_onepage(addr, val, now, exception, 3871 vcpu, ops); 3872 3873 if (rc != X86EMUL_CONTINUE) 3874 return rc; 3875 addr += now; 3876 val += now; 3877 bytes -= now; 3878 } 3879 3880 rc = emulator_read_write_onepage(addr, val, bytes, exception, 3881 vcpu, ops); 3882 if (rc != X86EMUL_CONTINUE) 3883 return rc; 3884 3885 if (!vcpu->mmio_nr_fragments) 3886 return rc; 3887 3888 gpa = vcpu->mmio_fragments[0].gpa; 3889 3890 vcpu->mmio_needed = 1; 3891 vcpu->mmio_cur_fragment = 0; 3892 3893 vcpu->run->mmio.len = vcpu->mmio_fragments[0].len; 3894 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 3895 vcpu->run->exit_reason = KVM_EXIT_MMIO; 3896 vcpu->run->mmio.phys_addr = gpa; 3897 3898 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 3899 } 3900 3901 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 3902 unsigned long addr, 3903 void *val, 3904 unsigned int bytes, 3905 struct x86_exception *exception) 3906 { 3907 return emulator_read_write(ctxt, addr, val, bytes, 3908 exception, &read_emultor); 3909 } 3910 3911 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 3912 unsigned long addr, 3913 const void *val, 3914 unsigned int bytes, 3915 struct x86_exception *exception) 3916 { 3917 return emulator_read_write(ctxt, addr, (void *)val, bytes, 3918 exception, &write_emultor); 3919 } 3920 3921 #define CMPXCHG_TYPE(t, ptr, old, new) \ 3922 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 3923 3924 #ifdef CONFIG_X86_64 3925 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 3926 #else 3927 # define CMPXCHG64(ptr, old, new) \ 3928 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 3929 #endif 3930 3931 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 3932 unsigned long addr, 3933 const void *old, 3934 const void *new, 3935 unsigned int bytes, 3936 struct x86_exception *exception) 3937 { 3938 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 3939 gpa_t gpa; 3940 struct page *page; 3941 char *kaddr; 3942 bool exchanged; 3943 3944 /* guests cmpxchg8b have to be emulated atomically */ 3945 if (bytes > 8 || (bytes & (bytes - 1))) 3946 goto emul_write; 3947 3948 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 3949 3950 if (gpa == UNMAPPED_GVA || 3951 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 3952 goto emul_write; 3953 3954 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 3955 goto emul_write; 3956 3957 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); 3958 if (is_error_page(page)) { 3959 kvm_release_page_clean(page); 3960 goto emul_write; 3961 } 3962 3963 kaddr = kmap_atomic(page); 3964 kaddr += offset_in_page(gpa); 3965 switch (bytes) { 3966 case 1: 3967 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 3968 break; 3969 case 2: 3970 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 3971 break; 3972 case 4: 3973 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 3974 break; 3975 case 8: 3976 exchanged = CMPXCHG64(kaddr, old, new); 3977 break; 3978 default: 3979 BUG(); 3980 } 3981 kunmap_atomic(kaddr); 3982 kvm_release_page_dirty(page); 3983 3984 if (!exchanged) 3985 return X86EMUL_CMPXCHG_FAILED; 3986 3987 kvm_mmu_pte_write(vcpu, gpa, new, bytes); 3988 3989 return X86EMUL_CONTINUE; 3990 3991 emul_write: 3992 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 3993 3994 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 3995 } 3996 3997 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 3998 { 3999 /* TODO: String I/O for in kernel device */ 4000 int r; 4001 4002 if (vcpu->arch.pio.in) 4003 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, 4004 vcpu->arch.pio.size, pd); 4005 else 4006 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, 4007 vcpu->arch.pio.port, vcpu->arch.pio.size, 4008 pd); 4009 return r; 4010 } 4011 4012 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4013 unsigned short port, void *val, 4014 unsigned int count, bool in) 4015 { 4016 trace_kvm_pio(!in, port, size, count); 4017 4018 vcpu->arch.pio.port = port; 4019 vcpu->arch.pio.in = in; 4020 vcpu->arch.pio.count = count; 4021 vcpu->arch.pio.size = size; 4022 4023 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4024 vcpu->arch.pio.count = 0; 4025 return 1; 4026 } 4027 4028 vcpu->run->exit_reason = KVM_EXIT_IO; 4029 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4030 vcpu->run->io.size = size; 4031 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4032 vcpu->run->io.count = count; 4033 vcpu->run->io.port = port; 4034 4035 return 0; 4036 } 4037 4038 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4039 int size, unsigned short port, void *val, 4040 unsigned int count) 4041 { 4042 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4043 int ret; 4044 4045 if (vcpu->arch.pio.count) 4046 goto data_avail; 4047 4048 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4049 if (ret) { 4050 data_avail: 4051 memcpy(val, vcpu->arch.pio_data, size * count); 4052 vcpu->arch.pio.count = 0; 4053 return 1; 4054 } 4055 4056 return 0; 4057 } 4058 4059 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4060 int size, unsigned short port, 4061 const void *val, unsigned int count) 4062 { 4063 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4064 4065 memcpy(vcpu->arch.pio_data, val, size * count); 4066 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4067 } 4068 4069 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4070 { 4071 return kvm_x86_ops->get_segment_base(vcpu, seg); 4072 } 4073 4074 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4075 { 4076 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4077 } 4078 4079 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 4080 { 4081 if (!need_emulate_wbinvd(vcpu)) 4082 return X86EMUL_CONTINUE; 4083 4084 if (kvm_x86_ops->has_wbinvd_exit()) { 4085 int cpu = get_cpu(); 4086 4087 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4088 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 4089 wbinvd_ipi, NULL, 1); 4090 put_cpu(); 4091 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 4092 } else 4093 wbinvd(); 4094 return X86EMUL_CONTINUE; 4095 } 4096 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 4097 4098 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 4099 { 4100 kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); 4101 } 4102 4103 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) 4104 { 4105 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 4106 } 4107 4108 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) 4109 { 4110 4111 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 4112 } 4113 4114 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 4115 { 4116 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 4117 } 4118 4119 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 4120 { 4121 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4122 unsigned long value; 4123 4124 switch (cr) { 4125 case 0: 4126 value = kvm_read_cr0(vcpu); 4127 break; 4128 case 2: 4129 value = vcpu->arch.cr2; 4130 break; 4131 case 3: 4132 value = kvm_read_cr3(vcpu); 4133 break; 4134 case 4: 4135 value = kvm_read_cr4(vcpu); 4136 break; 4137 case 8: 4138 value = kvm_get_cr8(vcpu); 4139 break; 4140 default: 4141 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4142 return 0; 4143 } 4144 4145 return value; 4146 } 4147 4148 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 4149 { 4150 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4151 int res = 0; 4152 4153 switch (cr) { 4154 case 0: 4155 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 4156 break; 4157 case 2: 4158 vcpu->arch.cr2 = val; 4159 break; 4160 case 3: 4161 res = kvm_set_cr3(vcpu, val); 4162 break; 4163 case 4: 4164 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 4165 break; 4166 case 8: 4167 res = kvm_set_cr8(vcpu, val); 4168 break; 4169 default: 4170 kvm_err("%s: unexpected cr %u\n", __func__, cr); 4171 res = -1; 4172 } 4173 4174 return res; 4175 } 4176 4177 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) 4178 { 4179 kvm_set_rflags(emul_to_vcpu(ctxt), val); 4180 } 4181 4182 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 4183 { 4184 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 4185 } 4186 4187 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4188 { 4189 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 4190 } 4191 4192 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4193 { 4194 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 4195 } 4196 4197 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4198 { 4199 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 4200 } 4201 4202 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 4203 { 4204 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 4205 } 4206 4207 static unsigned long emulator_get_cached_segment_base( 4208 struct x86_emulate_ctxt *ctxt, int seg) 4209 { 4210 return get_segment_base(emul_to_vcpu(ctxt), seg); 4211 } 4212 4213 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 4214 struct desc_struct *desc, u32 *base3, 4215 int seg) 4216 { 4217 struct kvm_segment var; 4218 4219 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 4220 *selector = var.selector; 4221 4222 if (var.unusable) 4223 return false; 4224 4225 if (var.g) 4226 var.limit >>= 12; 4227 set_desc_limit(desc, var.limit); 4228 set_desc_base(desc, (unsigned long)var.base); 4229 #ifdef CONFIG_X86_64 4230 if (base3) 4231 *base3 = var.base >> 32; 4232 #endif 4233 desc->type = var.type; 4234 desc->s = var.s; 4235 desc->dpl = var.dpl; 4236 desc->p = var.present; 4237 desc->avl = var.avl; 4238 desc->l = var.l; 4239 desc->d = var.db; 4240 desc->g = var.g; 4241 4242 return true; 4243 } 4244 4245 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 4246 struct desc_struct *desc, u32 base3, 4247 int seg) 4248 { 4249 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4250 struct kvm_segment var; 4251 4252 var.selector = selector; 4253 var.base = get_desc_base(desc); 4254 #ifdef CONFIG_X86_64 4255 var.base |= ((u64)base3) << 32; 4256 #endif 4257 var.limit = get_desc_limit(desc); 4258 if (desc->g) 4259 var.limit = (var.limit << 12) | 0xfff; 4260 var.type = desc->type; 4261 var.present = desc->p; 4262 var.dpl = desc->dpl; 4263 var.db = desc->d; 4264 var.s = desc->s; 4265 var.l = desc->l; 4266 var.g = desc->g; 4267 var.avl = desc->avl; 4268 var.present = desc->p; 4269 var.unusable = !var.present; 4270 var.padding = 0; 4271 4272 kvm_set_segment(vcpu, &var, seg); 4273 return; 4274 } 4275 4276 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 4277 u32 msr_index, u64 *pdata) 4278 { 4279 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 4280 } 4281 4282 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 4283 u32 msr_index, u64 data) 4284 { 4285 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 4286 } 4287 4288 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 4289 u32 pmc, u64 *pdata) 4290 { 4291 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); 4292 } 4293 4294 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 4295 { 4296 emul_to_vcpu(ctxt)->arch.halt_request = 1; 4297 } 4298 4299 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) 4300 { 4301 preempt_disable(); 4302 kvm_load_guest_fpu(emul_to_vcpu(ctxt)); 4303 /* 4304 * CR0.TS may reference the host fpu state, not the guest fpu state, 4305 * so it may be clear at this point. 4306 */ 4307 clts(); 4308 } 4309 4310 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) 4311 { 4312 preempt_enable(); 4313 } 4314 4315 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 4316 struct x86_instruction_info *info, 4317 enum x86_intercept_stage stage) 4318 { 4319 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 4320 } 4321 4322 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 4323 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) 4324 { 4325 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); 4326 } 4327 4328 static struct x86_emulate_ops emulate_ops = { 4329 .read_std = kvm_read_guest_virt_system, 4330 .write_std = kvm_write_guest_virt_system, 4331 .fetch = kvm_fetch_guest_virt, 4332 .read_emulated = emulator_read_emulated, 4333 .write_emulated = emulator_write_emulated, 4334 .cmpxchg_emulated = emulator_cmpxchg_emulated, 4335 .invlpg = emulator_invlpg, 4336 .pio_in_emulated = emulator_pio_in_emulated, 4337 .pio_out_emulated = emulator_pio_out_emulated, 4338 .get_segment = emulator_get_segment, 4339 .set_segment = emulator_set_segment, 4340 .get_cached_segment_base = emulator_get_cached_segment_base, 4341 .get_gdt = emulator_get_gdt, 4342 .get_idt = emulator_get_idt, 4343 .set_gdt = emulator_set_gdt, 4344 .set_idt = emulator_set_idt, 4345 .get_cr = emulator_get_cr, 4346 .set_cr = emulator_set_cr, 4347 .set_rflags = emulator_set_rflags, 4348 .cpl = emulator_get_cpl, 4349 .get_dr = emulator_get_dr, 4350 .set_dr = emulator_set_dr, 4351 .set_msr = emulator_set_msr, 4352 .get_msr = emulator_get_msr, 4353 .read_pmc = emulator_read_pmc, 4354 .halt = emulator_halt, 4355 .wbinvd = emulator_wbinvd, 4356 .fix_hypercall = emulator_fix_hypercall, 4357 .get_fpu = emulator_get_fpu, 4358 .put_fpu = emulator_put_fpu, 4359 .intercept = emulator_intercept, 4360 .get_cpuid = emulator_get_cpuid, 4361 }; 4362 4363 static void cache_all_regs(struct kvm_vcpu *vcpu) 4364 { 4365 kvm_register_read(vcpu, VCPU_REGS_RAX); 4366 kvm_register_read(vcpu, VCPU_REGS_RSP); 4367 kvm_register_read(vcpu, VCPU_REGS_RIP); 4368 vcpu->arch.regs_dirty = ~0; 4369 } 4370 4371 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 4372 { 4373 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); 4374 /* 4375 * an sti; sti; sequence only disable interrupts for the first 4376 * instruction. So, if the last instruction, be it emulated or 4377 * not, left the system with the INT_STI flag enabled, it 4378 * means that the last instruction is an sti. We should not 4379 * leave the flag on in this case. The same goes for mov ss 4380 */ 4381 if (!(int_shadow & mask)) 4382 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 4383 } 4384 4385 static void inject_emulated_exception(struct kvm_vcpu *vcpu) 4386 { 4387 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4388 if (ctxt->exception.vector == PF_VECTOR) 4389 kvm_propagate_fault(vcpu, &ctxt->exception); 4390 else if (ctxt->exception.error_code_valid) 4391 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 4392 ctxt->exception.error_code); 4393 else 4394 kvm_queue_exception(vcpu, ctxt->exception.vector); 4395 } 4396 4397 static void init_decode_cache(struct x86_emulate_ctxt *ctxt, 4398 const unsigned long *regs) 4399 { 4400 memset(&ctxt->twobyte, 0, 4401 (void *)&ctxt->regs - (void *)&ctxt->twobyte); 4402 memcpy(ctxt->regs, regs, sizeof(ctxt->regs)); 4403 4404 ctxt->fetch.start = 0; 4405 ctxt->fetch.end = 0; 4406 ctxt->io_read.pos = 0; 4407 ctxt->io_read.end = 0; 4408 ctxt->mem_read.pos = 0; 4409 ctxt->mem_read.end = 0; 4410 } 4411 4412 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 4413 { 4414 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4415 int cs_db, cs_l; 4416 4417 /* 4418 * TODO: fix emulate.c to use guest_read/write_register 4419 * instead of direct ->regs accesses, can save hundred cycles 4420 * on Intel for instructions that don't read/change RSP, for 4421 * for example. 4422 */ 4423 cache_all_regs(vcpu); 4424 4425 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4426 4427 ctxt->eflags = kvm_get_rflags(vcpu); 4428 ctxt->eip = kvm_rip_read(vcpu); 4429 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 4430 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 4431 cs_l ? X86EMUL_MODE_PROT64 : 4432 cs_db ? X86EMUL_MODE_PROT32 : 4433 X86EMUL_MODE_PROT16; 4434 ctxt->guest_mode = is_guest_mode(vcpu); 4435 4436 init_decode_cache(ctxt, vcpu->arch.regs); 4437 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4438 } 4439 4440 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 4441 { 4442 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4443 int ret; 4444 4445 init_emulate_ctxt(vcpu); 4446 4447 ctxt->op_bytes = 2; 4448 ctxt->ad_bytes = 2; 4449 ctxt->_eip = ctxt->eip + inc_eip; 4450 ret = emulate_int_real(ctxt, irq); 4451 4452 if (ret != X86EMUL_CONTINUE) 4453 return EMULATE_FAIL; 4454 4455 ctxt->eip = ctxt->_eip; 4456 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 4457 kvm_rip_write(vcpu, ctxt->eip); 4458 kvm_set_rflags(vcpu, ctxt->eflags); 4459 4460 if (irq == NMI_VECTOR) 4461 vcpu->arch.nmi_pending = 0; 4462 else 4463 vcpu->arch.interrupt.pending = false; 4464 4465 return EMULATE_DONE; 4466 } 4467 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 4468 4469 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 4470 { 4471 int r = EMULATE_DONE; 4472 4473 ++vcpu->stat.insn_emulation_fail; 4474 trace_kvm_emulate_insn_failed(vcpu); 4475 if (!is_guest_mode(vcpu)) { 4476 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4477 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 4478 vcpu->run->internal.ndata = 0; 4479 r = EMULATE_FAIL; 4480 } 4481 kvm_queue_exception(vcpu, UD_VECTOR); 4482 4483 return r; 4484 } 4485 4486 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) 4487 { 4488 gpa_t gpa; 4489 4490 if (tdp_enabled) 4491 return false; 4492 4493 /* 4494 * if emulation was due to access to shadowed page table 4495 * and it failed try to unshadow page and re-entetr the 4496 * guest to let CPU execute the instruction. 4497 */ 4498 if (kvm_mmu_unprotect_page_virt(vcpu, gva)) 4499 return true; 4500 4501 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); 4502 4503 if (gpa == UNMAPPED_GVA) 4504 return true; /* let cpu generate fault */ 4505 4506 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT))) 4507 return true; 4508 4509 return false; 4510 } 4511 4512 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 4513 unsigned long cr2, int emulation_type) 4514 { 4515 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4516 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 4517 4518 last_retry_eip = vcpu->arch.last_retry_eip; 4519 last_retry_addr = vcpu->arch.last_retry_addr; 4520 4521 /* 4522 * If the emulation is caused by #PF and it is non-page_table 4523 * writing instruction, it means the VM-EXIT is caused by shadow 4524 * page protected, we can zap the shadow page and retry this 4525 * instruction directly. 4526 * 4527 * Note: if the guest uses a non-page-table modifying instruction 4528 * on the PDE that points to the instruction, then we will unmap 4529 * the instruction and go to an infinite loop. So, we cache the 4530 * last retried eip and the last fault address, if we meet the eip 4531 * and the address again, we can break out of the potential infinite 4532 * loop. 4533 */ 4534 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 4535 4536 if (!(emulation_type & EMULTYPE_RETRY)) 4537 return false; 4538 4539 if (x86_page_table_writing_insn(ctxt)) 4540 return false; 4541 4542 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 4543 return false; 4544 4545 vcpu->arch.last_retry_eip = ctxt->eip; 4546 vcpu->arch.last_retry_addr = cr2; 4547 4548 if (!vcpu->arch.mmu.direct_map) 4549 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 4550 4551 kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 4552 4553 return true; 4554 } 4555 4556 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 4557 unsigned long cr2, 4558 int emulation_type, 4559 void *insn, 4560 int insn_len) 4561 { 4562 int r; 4563 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4564 bool writeback = true; 4565 4566 kvm_clear_exception_queue(vcpu); 4567 4568 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 4569 init_emulate_ctxt(vcpu); 4570 ctxt->interruptibility = 0; 4571 ctxt->have_exception = false; 4572 ctxt->perm_ok = false; 4573 4574 ctxt->only_vendor_specific_insn 4575 = emulation_type & EMULTYPE_TRAP_UD; 4576 4577 r = x86_decode_insn(ctxt, insn, insn_len); 4578 4579 trace_kvm_emulate_insn_start(vcpu); 4580 ++vcpu->stat.insn_emulation; 4581 if (r != EMULATION_OK) { 4582 if (emulation_type & EMULTYPE_TRAP_UD) 4583 return EMULATE_FAIL; 4584 if (reexecute_instruction(vcpu, cr2)) 4585 return EMULATE_DONE; 4586 if (emulation_type & EMULTYPE_SKIP) 4587 return EMULATE_FAIL; 4588 return handle_emulation_failure(vcpu); 4589 } 4590 } 4591 4592 if (emulation_type & EMULTYPE_SKIP) { 4593 kvm_rip_write(vcpu, ctxt->_eip); 4594 return EMULATE_DONE; 4595 } 4596 4597 if (retry_instruction(ctxt, cr2, emulation_type)) 4598 return EMULATE_DONE; 4599 4600 /* this is needed for vmware backdoor interface to work since it 4601 changes registers values during IO operation */ 4602 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 4603 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 4604 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs); 4605 } 4606 4607 restart: 4608 r = x86_emulate_insn(ctxt); 4609 4610 if (r == EMULATION_INTERCEPTED) 4611 return EMULATE_DONE; 4612 4613 if (r == EMULATION_FAILED) { 4614 if (reexecute_instruction(vcpu, cr2)) 4615 return EMULATE_DONE; 4616 4617 return handle_emulation_failure(vcpu); 4618 } 4619 4620 if (ctxt->have_exception) { 4621 inject_emulated_exception(vcpu); 4622 r = EMULATE_DONE; 4623 } else if (vcpu->arch.pio.count) { 4624 if (!vcpu->arch.pio.in) 4625 vcpu->arch.pio.count = 0; 4626 else 4627 writeback = false; 4628 r = EMULATE_DO_MMIO; 4629 } else if (vcpu->mmio_needed) { 4630 if (!vcpu->mmio_is_write) 4631 writeback = false; 4632 r = EMULATE_DO_MMIO; 4633 } else if (r == EMULATION_RESTART) 4634 goto restart; 4635 else 4636 r = EMULATE_DONE; 4637 4638 if (writeback) { 4639 toggle_interruptibility(vcpu, ctxt->interruptibility); 4640 kvm_set_rflags(vcpu, ctxt->eflags); 4641 kvm_make_request(KVM_REQ_EVENT, vcpu); 4642 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 4643 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 4644 kvm_rip_write(vcpu, ctxt->eip); 4645 } else 4646 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 4647 4648 return r; 4649 } 4650 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 4651 4652 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 4653 { 4654 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 4655 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 4656 size, port, &val, 1); 4657 /* do not return to emulator after return from userspace */ 4658 vcpu->arch.pio.count = 0; 4659 return ret; 4660 } 4661 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 4662 4663 static void tsc_bad(void *info) 4664 { 4665 __this_cpu_write(cpu_tsc_khz, 0); 4666 } 4667 4668 static void tsc_khz_changed(void *data) 4669 { 4670 struct cpufreq_freqs *freq = data; 4671 unsigned long khz = 0; 4672 4673 if (data) 4674 khz = freq->new; 4675 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4676 khz = cpufreq_quick_get(raw_smp_processor_id()); 4677 if (!khz) 4678 khz = tsc_khz; 4679 __this_cpu_write(cpu_tsc_khz, khz); 4680 } 4681 4682 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 4683 void *data) 4684 { 4685 struct cpufreq_freqs *freq = data; 4686 struct kvm *kvm; 4687 struct kvm_vcpu *vcpu; 4688 int i, send_ipi = 0; 4689 4690 /* 4691 * We allow guests to temporarily run on slowing clocks, 4692 * provided we notify them after, or to run on accelerating 4693 * clocks, provided we notify them before. Thus time never 4694 * goes backwards. 4695 * 4696 * However, we have a problem. We can't atomically update 4697 * the frequency of a given CPU from this function; it is 4698 * merely a notifier, which can be called from any CPU. 4699 * Changing the TSC frequency at arbitrary points in time 4700 * requires a recomputation of local variables related to 4701 * the TSC for each VCPU. We must flag these local variables 4702 * to be updated and be sure the update takes place with the 4703 * new frequency before any guests proceed. 4704 * 4705 * Unfortunately, the combination of hotplug CPU and frequency 4706 * change creates an intractable locking scenario; the order 4707 * of when these callouts happen is undefined with respect to 4708 * CPU hotplug, and they can race with each other. As such, 4709 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 4710 * undefined; you can actually have a CPU frequency change take 4711 * place in between the computation of X and the setting of the 4712 * variable. To protect against this problem, all updates of 4713 * the per_cpu tsc_khz variable are done in an interrupt 4714 * protected IPI, and all callers wishing to update the value 4715 * must wait for a synchronous IPI to complete (which is trivial 4716 * if the caller is on the CPU already). This establishes the 4717 * necessary total order on variable updates. 4718 * 4719 * Note that because a guest time update may take place 4720 * anytime after the setting of the VCPU's request bit, the 4721 * correct TSC value must be set before the request. However, 4722 * to ensure the update actually makes it to any guest which 4723 * starts running in hardware virtualization between the set 4724 * and the acquisition of the spinlock, we must also ping the 4725 * CPU after setting the request bit. 4726 * 4727 */ 4728 4729 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 4730 return 0; 4731 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 4732 return 0; 4733 4734 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4735 4736 raw_spin_lock(&kvm_lock); 4737 list_for_each_entry(kvm, &vm_list, vm_list) { 4738 kvm_for_each_vcpu(i, vcpu, kvm) { 4739 if (vcpu->cpu != freq->cpu) 4740 continue; 4741 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4742 if (vcpu->cpu != smp_processor_id()) 4743 send_ipi = 1; 4744 } 4745 } 4746 raw_spin_unlock(&kvm_lock); 4747 4748 if (freq->old < freq->new && send_ipi) { 4749 /* 4750 * We upscale the frequency. Must make the guest 4751 * doesn't see old kvmclock values while running with 4752 * the new frequency, otherwise we risk the guest sees 4753 * time go backwards. 4754 * 4755 * In case we update the frequency for another cpu 4756 * (which might be in guest context) send an interrupt 4757 * to kick the cpu out of guest context. Next time 4758 * guest context is entered kvmclock will be updated, 4759 * so the guest will not see stale values. 4760 */ 4761 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 4762 } 4763 return 0; 4764 } 4765 4766 static struct notifier_block kvmclock_cpufreq_notifier_block = { 4767 .notifier_call = kvmclock_cpufreq_notifier 4768 }; 4769 4770 static int kvmclock_cpu_notifier(struct notifier_block *nfb, 4771 unsigned long action, void *hcpu) 4772 { 4773 unsigned int cpu = (unsigned long)hcpu; 4774 4775 switch (action) { 4776 case CPU_ONLINE: 4777 case CPU_DOWN_FAILED: 4778 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4779 break; 4780 case CPU_DOWN_PREPARE: 4781 smp_call_function_single(cpu, tsc_bad, NULL, 1); 4782 break; 4783 } 4784 return NOTIFY_OK; 4785 } 4786 4787 static struct notifier_block kvmclock_cpu_notifier_block = { 4788 .notifier_call = kvmclock_cpu_notifier, 4789 .priority = -INT_MAX 4790 }; 4791 4792 static void kvm_timer_init(void) 4793 { 4794 int cpu; 4795 4796 max_tsc_khz = tsc_khz; 4797 register_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4798 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 4799 #ifdef CONFIG_CPU_FREQ 4800 struct cpufreq_policy policy; 4801 memset(&policy, 0, sizeof(policy)); 4802 cpu = get_cpu(); 4803 cpufreq_get_policy(&policy, cpu); 4804 if (policy.cpuinfo.max_freq) 4805 max_tsc_khz = policy.cpuinfo.max_freq; 4806 put_cpu(); 4807 #endif 4808 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 4809 CPUFREQ_TRANSITION_NOTIFIER); 4810 } 4811 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 4812 for_each_online_cpu(cpu) 4813 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); 4814 } 4815 4816 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 4817 4818 int kvm_is_in_guest(void) 4819 { 4820 return __this_cpu_read(current_vcpu) != NULL; 4821 } 4822 4823 static int kvm_is_user_mode(void) 4824 { 4825 int user_mode = 3; 4826 4827 if (__this_cpu_read(current_vcpu)) 4828 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); 4829 4830 return user_mode != 0; 4831 } 4832 4833 static unsigned long kvm_get_guest_ip(void) 4834 { 4835 unsigned long ip = 0; 4836 4837 if (__this_cpu_read(current_vcpu)) 4838 ip = kvm_rip_read(__this_cpu_read(current_vcpu)); 4839 4840 return ip; 4841 } 4842 4843 static struct perf_guest_info_callbacks kvm_guest_cbs = { 4844 .is_in_guest = kvm_is_in_guest, 4845 .is_user_mode = kvm_is_user_mode, 4846 .get_guest_ip = kvm_get_guest_ip, 4847 }; 4848 4849 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) 4850 { 4851 __this_cpu_write(current_vcpu, vcpu); 4852 } 4853 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); 4854 4855 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) 4856 { 4857 __this_cpu_write(current_vcpu, NULL); 4858 } 4859 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); 4860 4861 static void kvm_set_mmio_spte_mask(void) 4862 { 4863 u64 mask; 4864 int maxphyaddr = boot_cpu_data.x86_phys_bits; 4865 4866 /* 4867 * Set the reserved bits and the present bit of an paging-structure 4868 * entry to generate page fault with PFER.RSV = 1. 4869 */ 4870 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; 4871 mask |= 1ull; 4872 4873 #ifdef CONFIG_X86_64 4874 /* 4875 * If reserved bit is not supported, clear the present bit to disable 4876 * mmio page fault. 4877 */ 4878 if (maxphyaddr == 52) 4879 mask &= ~1ull; 4880 #endif 4881 4882 kvm_mmu_set_mmio_spte_mask(mask); 4883 } 4884 4885 int kvm_arch_init(void *opaque) 4886 { 4887 int r; 4888 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; 4889 4890 if (kvm_x86_ops) { 4891 printk(KERN_ERR "kvm: already loaded the other module\n"); 4892 r = -EEXIST; 4893 goto out; 4894 } 4895 4896 if (!ops->cpu_has_kvm_support()) { 4897 printk(KERN_ERR "kvm: no hardware support\n"); 4898 r = -EOPNOTSUPP; 4899 goto out; 4900 } 4901 if (ops->disabled_by_bios()) { 4902 printk(KERN_ERR "kvm: disabled by bios\n"); 4903 r = -EOPNOTSUPP; 4904 goto out; 4905 } 4906 4907 r = kvm_mmu_module_init(); 4908 if (r) 4909 goto out; 4910 4911 kvm_set_mmio_spte_mask(); 4912 kvm_init_msr_list(); 4913 4914 kvm_x86_ops = ops; 4915 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, 4916 PT_DIRTY_MASK, PT64_NX_MASK, 0); 4917 4918 kvm_timer_init(); 4919 4920 perf_register_guest_info_callbacks(&kvm_guest_cbs); 4921 4922 if (cpu_has_xsave) 4923 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 4924 4925 return 0; 4926 4927 out: 4928 return r; 4929 } 4930 4931 void kvm_arch_exit(void) 4932 { 4933 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 4934 4935 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 4936 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 4937 CPUFREQ_TRANSITION_NOTIFIER); 4938 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); 4939 kvm_x86_ops = NULL; 4940 kvm_mmu_module_exit(); 4941 } 4942 4943 int kvm_emulate_halt(struct kvm_vcpu *vcpu) 4944 { 4945 ++vcpu->stat.halt_exits; 4946 if (irqchip_in_kernel(vcpu->kvm)) { 4947 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 4948 return 1; 4949 } else { 4950 vcpu->run->exit_reason = KVM_EXIT_HLT; 4951 return 0; 4952 } 4953 } 4954 EXPORT_SYMBOL_GPL(kvm_emulate_halt); 4955 4956 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 4957 { 4958 u64 param, ingpa, outgpa, ret; 4959 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; 4960 bool fast, longmode; 4961 int cs_db, cs_l; 4962 4963 /* 4964 * hypercall generates UD from non zero cpl and real mode 4965 * per HYPER-V spec 4966 */ 4967 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 4968 kvm_queue_exception(vcpu, UD_VECTOR); 4969 return 0; 4970 } 4971 4972 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 4973 longmode = is_long_mode(vcpu) && cs_l == 1; 4974 4975 if (!longmode) { 4976 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 4977 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 4978 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 4979 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 4980 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 4981 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 4982 } 4983 #ifdef CONFIG_X86_64 4984 else { 4985 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 4986 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 4987 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 4988 } 4989 #endif 4990 4991 code = param & 0xffff; 4992 fast = (param >> 16) & 0x1; 4993 rep_cnt = (param >> 32) & 0xfff; 4994 rep_idx = (param >> 48) & 0xfff; 4995 4996 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 4997 4998 switch (code) { 4999 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: 5000 kvm_vcpu_on_spin(vcpu); 5001 break; 5002 default: 5003 res = HV_STATUS_INVALID_HYPERCALL_CODE; 5004 break; 5005 } 5006 5007 ret = res | (((u64)rep_done & 0xfff) << 32); 5008 if (longmode) { 5009 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5010 } else { 5011 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); 5012 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); 5013 } 5014 5015 return 1; 5016 } 5017 5018 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 5019 { 5020 unsigned long nr, a0, a1, a2, a3, ret; 5021 int r = 1; 5022 5023 if (kvm_hv_hypercall_enabled(vcpu->kvm)) 5024 return kvm_hv_hypercall(vcpu); 5025 5026 nr = kvm_register_read(vcpu, VCPU_REGS_RAX); 5027 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); 5028 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); 5029 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); 5030 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); 5031 5032 trace_kvm_hypercall(nr, a0, a1, a2, a3); 5033 5034 if (!is_long_mode(vcpu)) { 5035 nr &= 0xFFFFFFFF; 5036 a0 &= 0xFFFFFFFF; 5037 a1 &= 0xFFFFFFFF; 5038 a2 &= 0xFFFFFFFF; 5039 a3 &= 0xFFFFFFFF; 5040 } 5041 5042 if (kvm_x86_ops->get_cpl(vcpu) != 0) { 5043 ret = -KVM_EPERM; 5044 goto out; 5045 } 5046 5047 switch (nr) { 5048 case KVM_HC_VAPIC_POLL_IRQ: 5049 ret = 0; 5050 break; 5051 default: 5052 ret = -KVM_ENOSYS; 5053 break; 5054 } 5055 out: 5056 kvm_register_write(vcpu, VCPU_REGS_RAX, ret); 5057 ++vcpu->stat.hypercalls; 5058 return r; 5059 } 5060 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 5061 5062 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 5063 { 5064 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5065 char instruction[3]; 5066 unsigned long rip = kvm_rip_read(vcpu); 5067 5068 /* 5069 * Blow out the MMU to ensure that no other VCPU has an active mapping 5070 * to ensure that the updated hypercall appears atomically across all 5071 * VCPUs. 5072 */ 5073 kvm_mmu_zap_all(vcpu->kvm); 5074 5075 kvm_x86_ops->patch_hypercall(vcpu, instruction); 5076 5077 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); 5078 } 5079 5080 /* 5081 * Check if userspace requested an interrupt window, and that the 5082 * interrupt window is open. 5083 * 5084 * No need to exit to userspace if we already have an interrupt queued. 5085 */ 5086 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 5087 { 5088 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && 5089 vcpu->run->request_interrupt_window && 5090 kvm_arch_interrupt_allowed(vcpu)); 5091 } 5092 5093 static void post_kvm_run_save(struct kvm_vcpu *vcpu) 5094 { 5095 struct kvm_run *kvm_run = vcpu->run; 5096 5097 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; 5098 kvm_run->cr8 = kvm_get_cr8(vcpu); 5099 kvm_run->apic_base = kvm_get_apic_base(vcpu); 5100 if (irqchip_in_kernel(vcpu->kvm)) 5101 kvm_run->ready_for_interrupt_injection = 1; 5102 else 5103 kvm_run->ready_for_interrupt_injection = 5104 kvm_arch_interrupt_allowed(vcpu) && 5105 !kvm_cpu_has_interrupt(vcpu) && 5106 !kvm_event_needs_reinjection(vcpu); 5107 } 5108 5109 static void vapic_enter(struct kvm_vcpu *vcpu) 5110 { 5111 struct kvm_lapic *apic = vcpu->arch.apic; 5112 struct page *page; 5113 5114 if (!apic || !apic->vapic_addr) 5115 return; 5116 5117 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5118 5119 vcpu->arch.apic->vapic_page = page; 5120 } 5121 5122 static void vapic_exit(struct kvm_vcpu *vcpu) 5123 { 5124 struct kvm_lapic *apic = vcpu->arch.apic; 5125 int idx; 5126 5127 if (!apic || !apic->vapic_addr) 5128 return; 5129 5130 idx = srcu_read_lock(&vcpu->kvm->srcu); 5131 kvm_release_page_dirty(apic->vapic_page); 5132 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); 5133 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5134 } 5135 5136 static void update_cr8_intercept(struct kvm_vcpu *vcpu) 5137 { 5138 int max_irr, tpr; 5139 5140 if (!kvm_x86_ops->update_cr8_intercept) 5141 return; 5142 5143 if (!vcpu->arch.apic) 5144 return; 5145 5146 if (!vcpu->arch.apic->vapic_addr) 5147 max_irr = kvm_lapic_find_highest_irr(vcpu); 5148 else 5149 max_irr = -1; 5150 5151 if (max_irr != -1) 5152 max_irr >>= 4; 5153 5154 tpr = kvm_lapic_get_cr8(vcpu); 5155 5156 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); 5157 } 5158 5159 static void inject_pending_event(struct kvm_vcpu *vcpu) 5160 { 5161 /* try to reinject previous events if any */ 5162 if (vcpu->arch.exception.pending) { 5163 trace_kvm_inj_exception(vcpu->arch.exception.nr, 5164 vcpu->arch.exception.has_error_code, 5165 vcpu->arch.exception.error_code); 5166 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, 5167 vcpu->arch.exception.has_error_code, 5168 vcpu->arch.exception.error_code, 5169 vcpu->arch.exception.reinject); 5170 return; 5171 } 5172 5173 if (vcpu->arch.nmi_injected) { 5174 kvm_x86_ops->set_nmi(vcpu); 5175 return; 5176 } 5177 5178 if (vcpu->arch.interrupt.pending) { 5179 kvm_x86_ops->set_irq(vcpu); 5180 return; 5181 } 5182 5183 /* try to inject new event if pending */ 5184 if (vcpu->arch.nmi_pending) { 5185 if (kvm_x86_ops->nmi_allowed(vcpu)) { 5186 --vcpu->arch.nmi_pending; 5187 vcpu->arch.nmi_injected = true; 5188 kvm_x86_ops->set_nmi(vcpu); 5189 } 5190 } else if (kvm_cpu_has_interrupt(vcpu)) { 5191 if (kvm_x86_ops->interrupt_allowed(vcpu)) { 5192 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), 5193 false); 5194 kvm_x86_ops->set_irq(vcpu); 5195 } 5196 } 5197 } 5198 5199 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 5200 { 5201 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 5202 !vcpu->guest_xcr0_loaded) { 5203 /* kvm_set_xcr() also depends on this */ 5204 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 5205 vcpu->guest_xcr0_loaded = 1; 5206 } 5207 } 5208 5209 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 5210 { 5211 if (vcpu->guest_xcr0_loaded) { 5212 if (vcpu->arch.xcr0 != host_xcr0) 5213 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 5214 vcpu->guest_xcr0_loaded = 0; 5215 } 5216 } 5217 5218 static void process_nmi(struct kvm_vcpu *vcpu) 5219 { 5220 unsigned limit = 2; 5221 5222 /* 5223 * x86 is limited to one NMI running, and one NMI pending after it. 5224 * If an NMI is already in progress, limit further NMIs to just one. 5225 * Otherwise, allow two (and we'll inject the first one immediately). 5226 */ 5227 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) 5228 limit = 1; 5229 5230 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 5231 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 5232 kvm_make_request(KVM_REQ_EVENT, vcpu); 5233 } 5234 5235 static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 5236 { 5237 int r; 5238 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && 5239 vcpu->run->request_interrupt_window; 5240 bool req_immediate_exit = 0; 5241 5242 if (vcpu->requests) { 5243 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) 5244 kvm_mmu_unload(vcpu); 5245 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 5246 __kvm_migrate_timers(vcpu); 5247 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 5248 r = kvm_guest_time_update(vcpu); 5249 if (unlikely(r)) 5250 goto out; 5251 } 5252 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 5253 kvm_mmu_sync_roots(vcpu); 5254 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) 5255 kvm_x86_ops->tlb_flush(vcpu); 5256 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 5257 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 5258 r = 0; 5259 goto out; 5260 } 5261 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 5262 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5263 r = 0; 5264 goto out; 5265 } 5266 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { 5267 vcpu->fpu_active = 0; 5268 kvm_x86_ops->fpu_deactivate(vcpu); 5269 } 5270 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 5271 /* Page is swapped out. Do synthetic halt */ 5272 vcpu->arch.apf.halted = true; 5273 r = 1; 5274 goto out; 5275 } 5276 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 5277 record_steal_time(vcpu); 5278 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 5279 process_nmi(vcpu); 5280 req_immediate_exit = 5281 kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu); 5282 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 5283 kvm_handle_pmu_event(vcpu); 5284 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 5285 kvm_deliver_pmi(vcpu); 5286 } 5287 5288 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { 5289 inject_pending_event(vcpu); 5290 5291 /* enable NMI/IRQ window open exits if needed */ 5292 if (vcpu->arch.nmi_pending) 5293 kvm_x86_ops->enable_nmi_window(vcpu); 5294 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) 5295 kvm_x86_ops->enable_irq_window(vcpu); 5296 5297 if (kvm_lapic_enabled(vcpu)) { 5298 update_cr8_intercept(vcpu); 5299 kvm_lapic_sync_to_vapic(vcpu); 5300 } 5301 } 5302 5303 r = kvm_mmu_reload(vcpu); 5304 if (unlikely(r)) { 5305 goto cancel_injection; 5306 } 5307 5308 preempt_disable(); 5309 5310 kvm_x86_ops->prepare_guest_switch(vcpu); 5311 if (vcpu->fpu_active) 5312 kvm_load_guest_fpu(vcpu); 5313 kvm_load_guest_xcr0(vcpu); 5314 5315 vcpu->mode = IN_GUEST_MODE; 5316 5317 /* We should set ->mode before check ->requests, 5318 * see the comment in make_all_cpus_request. 5319 */ 5320 smp_mb(); 5321 5322 local_irq_disable(); 5323 5324 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests 5325 || need_resched() || signal_pending(current)) { 5326 vcpu->mode = OUTSIDE_GUEST_MODE; 5327 smp_wmb(); 5328 local_irq_enable(); 5329 preempt_enable(); 5330 r = 1; 5331 goto cancel_injection; 5332 } 5333 5334 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5335 5336 if (req_immediate_exit) 5337 smp_send_reschedule(vcpu->cpu); 5338 5339 kvm_guest_enter(); 5340 5341 if (unlikely(vcpu->arch.switch_db_regs)) { 5342 set_debugreg(0, 7); 5343 set_debugreg(vcpu->arch.eff_db[0], 0); 5344 set_debugreg(vcpu->arch.eff_db[1], 1); 5345 set_debugreg(vcpu->arch.eff_db[2], 2); 5346 set_debugreg(vcpu->arch.eff_db[3], 3); 5347 } 5348 5349 trace_kvm_entry(vcpu->vcpu_id); 5350 kvm_x86_ops->run(vcpu); 5351 5352 /* 5353 * If the guest has used debug registers, at least dr7 5354 * will be disabled while returning to the host. 5355 * If we don't have active breakpoints in the host, we don't 5356 * care about the messed up debug address registers. But if 5357 * we have some of them active, restore the old state. 5358 */ 5359 if (hw_breakpoint_active()) 5360 hw_breakpoint_restore(); 5361 5362 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu); 5363 5364 vcpu->mode = OUTSIDE_GUEST_MODE; 5365 smp_wmb(); 5366 local_irq_enable(); 5367 5368 ++vcpu->stat.exits; 5369 5370 /* 5371 * We must have an instruction between local_irq_enable() and 5372 * kvm_guest_exit(), so the timer interrupt isn't delayed by 5373 * the interrupt shadow. The stat.exits increment will do nicely. 5374 * But we need to prevent reordering, hence this barrier(): 5375 */ 5376 barrier(); 5377 5378 kvm_guest_exit(); 5379 5380 preempt_enable(); 5381 5382 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5383 5384 /* 5385 * Profile KVM exit RIPs: 5386 */ 5387 if (unlikely(prof_on == KVM_PROFILING)) { 5388 unsigned long rip = kvm_rip_read(vcpu); 5389 profile_hit(KVM_PROFILING, (void *)rip); 5390 } 5391 5392 if (unlikely(vcpu->arch.tsc_always_catchup)) 5393 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5394 5395 if (vcpu->arch.apic_attention) 5396 kvm_lapic_sync_from_vapic(vcpu); 5397 5398 r = kvm_x86_ops->handle_exit(vcpu); 5399 return r; 5400 5401 cancel_injection: 5402 kvm_x86_ops->cancel_injection(vcpu); 5403 if (unlikely(vcpu->arch.apic_attention)) 5404 kvm_lapic_sync_from_vapic(vcpu); 5405 out: 5406 return r; 5407 } 5408 5409 5410 static int __vcpu_run(struct kvm_vcpu *vcpu) 5411 { 5412 int r; 5413 struct kvm *kvm = vcpu->kvm; 5414 5415 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { 5416 pr_debug("vcpu %d received sipi with vector # %x\n", 5417 vcpu->vcpu_id, vcpu->arch.sipi_vector); 5418 kvm_lapic_reset(vcpu); 5419 r = kvm_arch_vcpu_reset(vcpu); 5420 if (r) 5421 return r; 5422 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5423 } 5424 5425 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5426 vapic_enter(vcpu); 5427 5428 r = 1; 5429 while (r > 0) { 5430 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 5431 !vcpu->arch.apf.halted) 5432 r = vcpu_enter_guest(vcpu); 5433 else { 5434 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5435 kvm_vcpu_block(vcpu); 5436 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5437 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) 5438 { 5439 switch(vcpu->arch.mp_state) { 5440 case KVM_MP_STATE_HALTED: 5441 vcpu->arch.mp_state = 5442 KVM_MP_STATE_RUNNABLE; 5443 case KVM_MP_STATE_RUNNABLE: 5444 vcpu->arch.apf.halted = false; 5445 break; 5446 case KVM_MP_STATE_SIPI_RECEIVED: 5447 default: 5448 r = -EINTR; 5449 break; 5450 } 5451 } 5452 } 5453 5454 if (r <= 0) 5455 break; 5456 5457 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); 5458 if (kvm_cpu_has_pending_timer(vcpu)) 5459 kvm_inject_pending_timer_irqs(vcpu); 5460 5461 if (dm_request_for_irq_injection(vcpu)) { 5462 r = -EINTR; 5463 vcpu->run->exit_reason = KVM_EXIT_INTR; 5464 ++vcpu->stat.request_irq_exits; 5465 } 5466 5467 kvm_check_async_pf_completion(vcpu); 5468 5469 if (signal_pending(current)) { 5470 r = -EINTR; 5471 vcpu->run->exit_reason = KVM_EXIT_INTR; 5472 ++vcpu->stat.signal_exits; 5473 } 5474 if (need_resched()) { 5475 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5476 kvm_resched(vcpu); 5477 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 5478 } 5479 } 5480 5481 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 5482 5483 vapic_exit(vcpu); 5484 5485 return r; 5486 } 5487 5488 /* 5489 * Implements the following, as a state machine: 5490 * 5491 * read: 5492 * for each fragment 5493 * write gpa, len 5494 * exit 5495 * copy data 5496 * execute insn 5497 * 5498 * write: 5499 * for each fragment 5500 * write gpa, len 5501 * copy data 5502 * exit 5503 */ 5504 static int complete_mmio(struct kvm_vcpu *vcpu) 5505 { 5506 struct kvm_run *run = vcpu->run; 5507 struct kvm_mmio_fragment *frag; 5508 int r; 5509 5510 if (!(vcpu->arch.pio.count || vcpu->mmio_needed)) 5511 return 1; 5512 5513 if (vcpu->mmio_needed) { 5514 /* Complete previous fragment */ 5515 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++]; 5516 if (!vcpu->mmio_is_write) 5517 memcpy(frag->data, run->mmio.data, frag->len); 5518 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { 5519 vcpu->mmio_needed = 0; 5520 if (vcpu->mmio_is_write) 5521 return 1; 5522 vcpu->mmio_read_completed = 1; 5523 goto done; 5524 } 5525 /* Initiate next fragment */ 5526 ++frag; 5527 run->exit_reason = KVM_EXIT_MMIO; 5528 run->mmio.phys_addr = frag->gpa; 5529 if (vcpu->mmio_is_write) 5530 memcpy(run->mmio.data, frag->data, frag->len); 5531 run->mmio.len = frag->len; 5532 run->mmio.is_write = vcpu->mmio_is_write; 5533 return 0; 5534 5535 } 5536 done: 5537 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5538 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 5539 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 5540 if (r != EMULATE_DONE) 5541 return 0; 5542 return 1; 5543 } 5544 5545 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 5546 { 5547 int r; 5548 sigset_t sigsaved; 5549 5550 if (!tsk_used_math(current) && init_fpu(current)) 5551 return -ENOMEM; 5552 5553 if (vcpu->sigset_active) 5554 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 5555 5556 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 5557 kvm_vcpu_block(vcpu); 5558 clear_bit(KVM_REQ_UNHALT, &vcpu->requests); 5559 r = -EAGAIN; 5560 goto out; 5561 } 5562 5563 /* re-sync apic's tpr */ 5564 if (!irqchip_in_kernel(vcpu->kvm)) { 5565 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 5566 r = -EINVAL; 5567 goto out; 5568 } 5569 } 5570 5571 r = complete_mmio(vcpu); 5572 if (r <= 0) 5573 goto out; 5574 5575 r = __vcpu_run(vcpu); 5576 5577 out: 5578 post_kvm_run_save(vcpu); 5579 if (vcpu->sigset_active) 5580 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 5581 5582 return r; 5583 } 5584 5585 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5586 { 5587 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 5588 /* 5589 * We are here if userspace calls get_regs() in the middle of 5590 * instruction emulation. Registers state needs to be copied 5591 * back from emulation context to vcpu. Usrapace shouldn't do 5592 * that usually, but some bad designed PV devices (vmware 5593 * backdoor interface) need this to work 5594 */ 5595 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5596 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 5597 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5598 } 5599 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); 5600 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); 5601 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); 5602 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); 5603 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); 5604 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); 5605 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); 5606 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); 5607 #ifdef CONFIG_X86_64 5608 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); 5609 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); 5610 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); 5611 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); 5612 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); 5613 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); 5614 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); 5615 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); 5616 #endif 5617 5618 regs->rip = kvm_rip_read(vcpu); 5619 regs->rflags = kvm_get_rflags(vcpu); 5620 5621 return 0; 5622 } 5623 5624 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 5625 { 5626 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 5627 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5628 5629 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); 5630 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); 5631 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); 5632 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); 5633 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); 5634 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); 5635 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); 5636 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); 5637 #ifdef CONFIG_X86_64 5638 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); 5639 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); 5640 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); 5641 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); 5642 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); 5643 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); 5644 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); 5645 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); 5646 #endif 5647 5648 kvm_rip_write(vcpu, regs->rip); 5649 kvm_set_rflags(vcpu, regs->rflags); 5650 5651 vcpu->arch.exception.pending = false; 5652 5653 kvm_make_request(KVM_REQ_EVENT, vcpu); 5654 5655 return 0; 5656 } 5657 5658 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 5659 { 5660 struct kvm_segment cs; 5661 5662 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 5663 *db = cs.db; 5664 *l = cs.l; 5665 } 5666 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); 5667 5668 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 5669 struct kvm_sregs *sregs) 5670 { 5671 struct desc_ptr dt; 5672 5673 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5674 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5675 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5676 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5677 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5678 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5679 5680 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5681 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5682 5683 kvm_x86_ops->get_idt(vcpu, &dt); 5684 sregs->idt.limit = dt.size; 5685 sregs->idt.base = dt.address; 5686 kvm_x86_ops->get_gdt(vcpu, &dt); 5687 sregs->gdt.limit = dt.size; 5688 sregs->gdt.base = dt.address; 5689 5690 sregs->cr0 = kvm_read_cr0(vcpu); 5691 sregs->cr2 = vcpu->arch.cr2; 5692 sregs->cr3 = kvm_read_cr3(vcpu); 5693 sregs->cr4 = kvm_read_cr4(vcpu); 5694 sregs->cr8 = kvm_get_cr8(vcpu); 5695 sregs->efer = vcpu->arch.efer; 5696 sregs->apic_base = kvm_get_apic_base(vcpu); 5697 5698 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); 5699 5700 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) 5701 set_bit(vcpu->arch.interrupt.nr, 5702 (unsigned long *)sregs->interrupt_bitmap); 5703 5704 return 0; 5705 } 5706 5707 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 5708 struct kvm_mp_state *mp_state) 5709 { 5710 mp_state->mp_state = vcpu->arch.mp_state; 5711 return 0; 5712 } 5713 5714 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 5715 struct kvm_mp_state *mp_state) 5716 { 5717 vcpu->arch.mp_state = mp_state->mp_state; 5718 kvm_make_request(KVM_REQ_EVENT, vcpu); 5719 return 0; 5720 } 5721 5722 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 5723 int reason, bool has_error_code, u32 error_code) 5724 { 5725 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5726 int ret; 5727 5728 init_emulate_ctxt(vcpu); 5729 5730 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 5731 has_error_code, error_code); 5732 5733 if (ret) 5734 return EMULATE_FAIL; 5735 5736 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs); 5737 kvm_rip_write(vcpu, ctxt->eip); 5738 kvm_set_rflags(vcpu, ctxt->eflags); 5739 kvm_make_request(KVM_REQ_EVENT, vcpu); 5740 return EMULATE_DONE; 5741 } 5742 EXPORT_SYMBOL_GPL(kvm_task_switch); 5743 5744 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 5745 struct kvm_sregs *sregs) 5746 { 5747 int mmu_reset_needed = 0; 5748 int pending_vec, max_bits, idx; 5749 struct desc_ptr dt; 5750 5751 dt.size = sregs->idt.limit; 5752 dt.address = sregs->idt.base; 5753 kvm_x86_ops->set_idt(vcpu, &dt); 5754 dt.size = sregs->gdt.limit; 5755 dt.address = sregs->gdt.base; 5756 kvm_x86_ops->set_gdt(vcpu, &dt); 5757 5758 vcpu->arch.cr2 = sregs->cr2; 5759 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 5760 vcpu->arch.cr3 = sregs->cr3; 5761 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 5762 5763 kvm_set_cr8(vcpu, sregs->cr8); 5764 5765 mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 5766 kvm_x86_ops->set_efer(vcpu, sregs->efer); 5767 kvm_set_apic_base(vcpu, sregs->apic_base); 5768 5769 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 5770 kvm_x86_ops->set_cr0(vcpu, sregs->cr0); 5771 vcpu->arch.cr0 = sregs->cr0; 5772 5773 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 5774 kvm_x86_ops->set_cr4(vcpu, sregs->cr4); 5775 if (sregs->cr4 & X86_CR4_OSXSAVE) 5776 kvm_update_cpuid(vcpu); 5777 5778 idx = srcu_read_lock(&vcpu->kvm->srcu); 5779 if (!is_long_mode(vcpu) && is_pae(vcpu)) { 5780 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 5781 mmu_reset_needed = 1; 5782 } 5783 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5784 5785 if (mmu_reset_needed) 5786 kvm_mmu_reset_context(vcpu); 5787 5788 max_bits = (sizeof sregs->interrupt_bitmap) << 3; 5789 pending_vec = find_first_bit( 5790 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 5791 if (pending_vec < max_bits) { 5792 kvm_queue_interrupt(vcpu, pending_vec, false); 5793 pr_debug("Set back pending irq %d\n", pending_vec); 5794 } 5795 5796 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 5797 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 5798 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 5799 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 5800 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 5801 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 5802 5803 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 5804 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 5805 5806 update_cr8_intercept(vcpu); 5807 5808 /* Older userspace won't unhalt the vcpu on reset. */ 5809 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 5810 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 5811 !is_protmode(vcpu)) 5812 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5813 5814 kvm_make_request(KVM_REQ_EVENT, vcpu); 5815 5816 return 0; 5817 } 5818 5819 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 5820 struct kvm_guest_debug *dbg) 5821 { 5822 unsigned long rflags; 5823 int i, r; 5824 5825 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 5826 r = -EBUSY; 5827 if (vcpu->arch.exception.pending) 5828 goto out; 5829 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 5830 kvm_queue_exception(vcpu, DB_VECTOR); 5831 else 5832 kvm_queue_exception(vcpu, BP_VECTOR); 5833 } 5834 5835 /* 5836 * Read rflags as long as potentially injected trace flags are still 5837 * filtered out. 5838 */ 5839 rflags = kvm_get_rflags(vcpu); 5840 5841 vcpu->guest_debug = dbg->control; 5842 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 5843 vcpu->guest_debug = 0; 5844 5845 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5846 for (i = 0; i < KVM_NR_DB_REGS; ++i) 5847 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 5848 vcpu->arch.switch_db_regs = 5849 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); 5850 } else { 5851 for (i = 0; i < KVM_NR_DB_REGS; i++) 5852 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 5853 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); 5854 } 5855 5856 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 5857 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + 5858 get_segment_base(vcpu, VCPU_SREG_CS); 5859 5860 /* 5861 * Trigger an rflags update that will inject or remove the trace 5862 * flags. 5863 */ 5864 kvm_set_rflags(vcpu, rflags); 5865 5866 kvm_x86_ops->set_guest_debug(vcpu, dbg); 5867 5868 r = 0; 5869 5870 out: 5871 5872 return r; 5873 } 5874 5875 /* 5876 * Translate a guest virtual address to a guest physical address. 5877 */ 5878 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 5879 struct kvm_translation *tr) 5880 { 5881 unsigned long vaddr = tr->linear_address; 5882 gpa_t gpa; 5883 int idx; 5884 5885 idx = srcu_read_lock(&vcpu->kvm->srcu); 5886 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 5887 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5888 tr->physical_address = gpa; 5889 tr->valid = gpa != UNMAPPED_GVA; 5890 tr->writeable = 1; 5891 tr->usermode = 0; 5892 5893 return 0; 5894 } 5895 5896 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5897 { 5898 struct i387_fxsave_struct *fxsave = 5899 &vcpu->arch.guest_fpu.state->fxsave; 5900 5901 memcpy(fpu->fpr, fxsave->st_space, 128); 5902 fpu->fcw = fxsave->cwd; 5903 fpu->fsw = fxsave->swd; 5904 fpu->ftwx = fxsave->twd; 5905 fpu->last_opcode = fxsave->fop; 5906 fpu->last_ip = fxsave->rip; 5907 fpu->last_dp = fxsave->rdp; 5908 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); 5909 5910 return 0; 5911 } 5912 5913 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 5914 { 5915 struct i387_fxsave_struct *fxsave = 5916 &vcpu->arch.guest_fpu.state->fxsave; 5917 5918 memcpy(fxsave->st_space, fpu->fpr, 128); 5919 fxsave->cwd = fpu->fcw; 5920 fxsave->swd = fpu->fsw; 5921 fxsave->twd = fpu->ftwx; 5922 fxsave->fop = fpu->last_opcode; 5923 fxsave->rip = fpu->last_ip; 5924 fxsave->rdp = fpu->last_dp; 5925 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); 5926 5927 return 0; 5928 } 5929 5930 int fx_init(struct kvm_vcpu *vcpu) 5931 { 5932 int err; 5933 5934 err = fpu_alloc(&vcpu->arch.guest_fpu); 5935 if (err) 5936 return err; 5937 5938 fpu_finit(&vcpu->arch.guest_fpu); 5939 5940 /* 5941 * Ensure guest xcr0 is valid for loading 5942 */ 5943 vcpu->arch.xcr0 = XSTATE_FP; 5944 5945 vcpu->arch.cr0 |= X86_CR0_ET; 5946 5947 return 0; 5948 } 5949 EXPORT_SYMBOL_GPL(fx_init); 5950 5951 static void fx_free(struct kvm_vcpu *vcpu) 5952 { 5953 fpu_free(&vcpu->arch.guest_fpu); 5954 } 5955 5956 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 5957 { 5958 if (vcpu->guest_fpu_loaded) 5959 return; 5960 5961 /* 5962 * Restore all possible states in the guest, 5963 * and assume host would use all available bits. 5964 * Guest xcr0 would be loaded later. 5965 */ 5966 kvm_put_guest_xcr0(vcpu); 5967 vcpu->guest_fpu_loaded = 1; 5968 unlazy_fpu(current); 5969 fpu_restore_checking(&vcpu->arch.guest_fpu); 5970 trace_kvm_fpu(1); 5971 } 5972 5973 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 5974 { 5975 kvm_put_guest_xcr0(vcpu); 5976 5977 if (!vcpu->guest_fpu_loaded) 5978 return; 5979 5980 vcpu->guest_fpu_loaded = 0; 5981 fpu_save_init(&vcpu->arch.guest_fpu); 5982 ++vcpu->stat.fpu_reload; 5983 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); 5984 trace_kvm_fpu(0); 5985 } 5986 5987 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 5988 { 5989 kvmclock_reset(vcpu); 5990 5991 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 5992 fx_free(vcpu); 5993 kvm_x86_ops->vcpu_free(vcpu); 5994 } 5995 5996 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 5997 unsigned int id) 5998 { 5999 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 6000 printk_once(KERN_WARNING 6001 "kvm: SMP vm created on host with unstable TSC; " 6002 "guest TSC will not be reliable\n"); 6003 return kvm_x86_ops->vcpu_create(kvm, id); 6004 } 6005 6006 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 6007 { 6008 int r; 6009 6010 vcpu->arch.mtrr_state.have_fixed = 1; 6011 vcpu_load(vcpu); 6012 r = kvm_arch_vcpu_reset(vcpu); 6013 if (r == 0) 6014 r = kvm_mmu_setup(vcpu); 6015 vcpu_put(vcpu); 6016 6017 return r; 6018 } 6019 6020 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 6021 { 6022 vcpu->arch.apf.msr_val = 0; 6023 6024 vcpu_load(vcpu); 6025 kvm_mmu_unload(vcpu); 6026 vcpu_put(vcpu); 6027 6028 fx_free(vcpu); 6029 kvm_x86_ops->vcpu_free(vcpu); 6030 } 6031 6032 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) 6033 { 6034 atomic_set(&vcpu->arch.nmi_queued, 0); 6035 vcpu->arch.nmi_pending = 0; 6036 vcpu->arch.nmi_injected = false; 6037 6038 vcpu->arch.switch_db_regs = 0; 6039 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 6040 vcpu->arch.dr6 = DR6_FIXED_1; 6041 vcpu->arch.dr7 = DR7_FIXED_1; 6042 6043 kvm_make_request(KVM_REQ_EVENT, vcpu); 6044 vcpu->arch.apf.msr_val = 0; 6045 vcpu->arch.st.msr_val = 0; 6046 6047 kvmclock_reset(vcpu); 6048 6049 kvm_clear_async_pf_completion_queue(vcpu); 6050 kvm_async_pf_hash_reset(vcpu); 6051 vcpu->arch.apf.halted = false; 6052 6053 kvm_pmu_reset(vcpu); 6054 6055 return kvm_x86_ops->vcpu_reset(vcpu); 6056 } 6057 6058 int kvm_arch_hardware_enable(void *garbage) 6059 { 6060 struct kvm *kvm; 6061 struct kvm_vcpu *vcpu; 6062 int i; 6063 int ret; 6064 u64 local_tsc; 6065 u64 max_tsc = 0; 6066 bool stable, backwards_tsc = false; 6067 6068 kvm_shared_msr_cpu_online(); 6069 ret = kvm_x86_ops->hardware_enable(garbage); 6070 if (ret != 0) 6071 return ret; 6072 6073 local_tsc = native_read_tsc(); 6074 stable = !check_tsc_unstable(); 6075 list_for_each_entry(kvm, &vm_list, vm_list) { 6076 kvm_for_each_vcpu(i, vcpu, kvm) { 6077 if (!stable && vcpu->cpu == smp_processor_id()) 6078 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); 6079 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 6080 backwards_tsc = true; 6081 if (vcpu->arch.last_host_tsc > max_tsc) 6082 max_tsc = vcpu->arch.last_host_tsc; 6083 } 6084 } 6085 } 6086 6087 /* 6088 * Sometimes, even reliable TSCs go backwards. This happens on 6089 * platforms that reset TSC during suspend or hibernate actions, but 6090 * maintain synchronization. We must compensate. Fortunately, we can 6091 * detect that condition here, which happens early in CPU bringup, 6092 * before any KVM threads can be running. Unfortunately, we can't 6093 * bring the TSCs fully up to date with real time, as we aren't yet far 6094 * enough into CPU bringup that we know how much real time has actually 6095 * elapsed; our helper function, get_kernel_ns() will be using boot 6096 * variables that haven't been updated yet. 6097 * 6098 * So we simply find the maximum observed TSC above, then record the 6099 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 6100 * the adjustment will be applied. Note that we accumulate 6101 * adjustments, in case multiple suspend cycles happen before some VCPU 6102 * gets a chance to run again. In the event that no KVM threads get a 6103 * chance to run, we will miss the entire elapsed period, as we'll have 6104 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 6105 * loose cycle time. This isn't too big a deal, since the loss will be 6106 * uniform across all VCPUs (not to mention the scenario is extremely 6107 * unlikely). It is possible that a second hibernate recovery happens 6108 * much faster than a first, causing the observed TSC here to be 6109 * smaller; this would require additional padding adjustment, which is 6110 * why we set last_host_tsc to the local tsc observed here. 6111 * 6112 * N.B. - this code below runs only on platforms with reliable TSC, 6113 * as that is the only way backwards_tsc is set above. Also note 6114 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 6115 * have the same delta_cyc adjustment applied if backwards_tsc 6116 * is detected. Note further, this adjustment is only done once, 6117 * as we reset last_host_tsc on all VCPUs to stop this from being 6118 * called multiple times (one for each physical CPU bringup). 6119 * 6120 * Platforms with unnreliable TSCs don't have to deal with this, they 6121 * will be compensated by the logic in vcpu_load, which sets the TSC to 6122 * catchup mode. This will catchup all VCPUs to real time, but cannot 6123 * guarantee that they stay in perfect synchronization. 6124 */ 6125 if (backwards_tsc) { 6126 u64 delta_cyc = max_tsc - local_tsc; 6127 list_for_each_entry(kvm, &vm_list, vm_list) { 6128 kvm_for_each_vcpu(i, vcpu, kvm) { 6129 vcpu->arch.tsc_offset_adjustment += delta_cyc; 6130 vcpu->arch.last_host_tsc = local_tsc; 6131 } 6132 6133 /* 6134 * We have to disable TSC offset matching.. if you were 6135 * booting a VM while issuing an S4 host suspend.... 6136 * you may have some problem. Solving this issue is 6137 * left as an exercise to the reader. 6138 */ 6139 kvm->arch.last_tsc_nsec = 0; 6140 kvm->arch.last_tsc_write = 0; 6141 } 6142 6143 } 6144 return 0; 6145 } 6146 6147 void kvm_arch_hardware_disable(void *garbage) 6148 { 6149 kvm_x86_ops->hardware_disable(garbage); 6150 drop_user_return_notifiers(garbage); 6151 } 6152 6153 int kvm_arch_hardware_setup(void) 6154 { 6155 return kvm_x86_ops->hardware_setup(); 6156 } 6157 6158 void kvm_arch_hardware_unsetup(void) 6159 { 6160 kvm_x86_ops->hardware_unsetup(); 6161 } 6162 6163 void kvm_arch_check_processor_compat(void *rtn) 6164 { 6165 kvm_x86_ops->check_processor_compatibility(rtn); 6166 } 6167 6168 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) 6169 { 6170 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); 6171 } 6172 6173 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 6174 { 6175 struct page *page; 6176 struct kvm *kvm; 6177 int r; 6178 6179 BUG_ON(vcpu->kvm == NULL); 6180 kvm = vcpu->kvm; 6181 6182 vcpu->arch.emulate_ctxt.ops = &emulate_ops; 6183 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) 6184 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6185 else 6186 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 6187 6188 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 6189 if (!page) { 6190 r = -ENOMEM; 6191 goto fail; 6192 } 6193 vcpu->arch.pio_data = page_address(page); 6194 6195 kvm_set_tsc_khz(vcpu, max_tsc_khz); 6196 6197 r = kvm_mmu_create(vcpu); 6198 if (r < 0) 6199 goto fail_free_pio_data; 6200 6201 if (irqchip_in_kernel(kvm)) { 6202 r = kvm_create_lapic(vcpu); 6203 if (r < 0) 6204 goto fail_mmu_destroy; 6205 } 6206 6207 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 6208 GFP_KERNEL); 6209 if (!vcpu->arch.mce_banks) { 6210 r = -ENOMEM; 6211 goto fail_free_lapic; 6212 } 6213 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 6214 6215 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) 6216 goto fail_free_mce_banks; 6217 6218 kvm_async_pf_hash_reset(vcpu); 6219 kvm_pmu_init(vcpu); 6220 6221 return 0; 6222 fail_free_mce_banks: 6223 kfree(vcpu->arch.mce_banks); 6224 fail_free_lapic: 6225 kvm_free_lapic(vcpu); 6226 fail_mmu_destroy: 6227 kvm_mmu_destroy(vcpu); 6228 fail_free_pio_data: 6229 free_page((unsigned long)vcpu->arch.pio_data); 6230 fail: 6231 return r; 6232 } 6233 6234 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 6235 { 6236 int idx; 6237 6238 kvm_pmu_destroy(vcpu); 6239 kfree(vcpu->arch.mce_banks); 6240 kvm_free_lapic(vcpu); 6241 idx = srcu_read_lock(&vcpu->kvm->srcu); 6242 kvm_mmu_destroy(vcpu); 6243 srcu_read_unlock(&vcpu->kvm->srcu, idx); 6244 free_page((unsigned long)vcpu->arch.pio_data); 6245 } 6246 6247 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 6248 { 6249 if (type) 6250 return -EINVAL; 6251 6252 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); 6253 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 6254 6255 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 6256 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 6257 6258 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 6259 6260 return 0; 6261 } 6262 6263 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 6264 { 6265 vcpu_load(vcpu); 6266 kvm_mmu_unload(vcpu); 6267 vcpu_put(vcpu); 6268 } 6269 6270 static void kvm_free_vcpus(struct kvm *kvm) 6271 { 6272 unsigned int i; 6273 struct kvm_vcpu *vcpu; 6274 6275 /* 6276 * Unpin any mmu pages first. 6277 */ 6278 kvm_for_each_vcpu(i, vcpu, kvm) { 6279 kvm_clear_async_pf_completion_queue(vcpu); 6280 kvm_unload_vcpu_mmu(vcpu); 6281 } 6282 kvm_for_each_vcpu(i, vcpu, kvm) 6283 kvm_arch_vcpu_free(vcpu); 6284 6285 mutex_lock(&kvm->lock); 6286 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 6287 kvm->vcpus[i] = NULL; 6288 6289 atomic_set(&kvm->online_vcpus, 0); 6290 mutex_unlock(&kvm->lock); 6291 } 6292 6293 void kvm_arch_sync_events(struct kvm *kvm) 6294 { 6295 kvm_free_all_assigned_devices(kvm); 6296 kvm_free_pit(kvm); 6297 } 6298 6299 void kvm_arch_destroy_vm(struct kvm *kvm) 6300 { 6301 kvm_iommu_unmap_guest(kvm); 6302 kfree(kvm->arch.vpic); 6303 kfree(kvm->arch.vioapic); 6304 kvm_free_vcpus(kvm); 6305 if (kvm->arch.apic_access_page) 6306 put_page(kvm->arch.apic_access_page); 6307 if (kvm->arch.ept_identity_pagetable) 6308 put_page(kvm->arch.ept_identity_pagetable); 6309 } 6310 6311 void kvm_arch_free_memslot(struct kvm_memory_slot *free, 6312 struct kvm_memory_slot *dont) 6313 { 6314 int i; 6315 6316 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6317 if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) { 6318 kvm_kvfree(free->arch.lpage_info[i]); 6319 free->arch.lpage_info[i] = NULL; 6320 } 6321 } 6322 } 6323 6324 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) 6325 { 6326 int i; 6327 6328 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6329 unsigned long ugfn; 6330 int lpages; 6331 int level = i + 2; 6332 6333 lpages = gfn_to_index(slot->base_gfn + npages - 1, 6334 slot->base_gfn, level) + 1; 6335 6336 slot->arch.lpage_info[i] = 6337 kvm_kvzalloc(lpages * sizeof(*slot->arch.lpage_info[i])); 6338 if (!slot->arch.lpage_info[i]) 6339 goto out_free; 6340 6341 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 6342 slot->arch.lpage_info[i][0].write_count = 1; 6343 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 6344 slot->arch.lpage_info[i][lpages - 1].write_count = 1; 6345 ugfn = slot->userspace_addr >> PAGE_SHIFT; 6346 /* 6347 * If the gfn and userspace address are not aligned wrt each 6348 * other, or if explicitly asked to, disable large page 6349 * support for this slot 6350 */ 6351 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || 6352 !kvm_largepages_enabled()) { 6353 unsigned long j; 6354 6355 for (j = 0; j < lpages; ++j) 6356 slot->arch.lpage_info[i][j].write_count = 1; 6357 } 6358 } 6359 6360 return 0; 6361 6362 out_free: 6363 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) { 6364 kvm_kvfree(slot->arch.lpage_info[i]); 6365 slot->arch.lpage_info[i] = NULL; 6366 } 6367 return -ENOMEM; 6368 } 6369 6370 int kvm_arch_prepare_memory_region(struct kvm *kvm, 6371 struct kvm_memory_slot *memslot, 6372 struct kvm_memory_slot old, 6373 struct kvm_userspace_memory_region *mem, 6374 int user_alloc) 6375 { 6376 int npages = memslot->npages; 6377 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; 6378 6379 /* Prevent internal slot pages from being moved by fork()/COW. */ 6380 if (memslot->id >= KVM_MEMORY_SLOTS) 6381 map_flags = MAP_SHARED | MAP_ANONYMOUS; 6382 6383 /*To keep backward compatibility with older userspace, 6384 *x86 needs to hanlde !user_alloc case. 6385 */ 6386 if (!user_alloc) { 6387 if (npages && !old.rmap) { 6388 unsigned long userspace_addr; 6389 6390 userspace_addr = vm_mmap(NULL, 0, 6391 npages * PAGE_SIZE, 6392 PROT_READ | PROT_WRITE, 6393 map_flags, 6394 0); 6395 6396 if (IS_ERR((void *)userspace_addr)) 6397 return PTR_ERR((void *)userspace_addr); 6398 6399 memslot->userspace_addr = userspace_addr; 6400 } 6401 } 6402 6403 6404 return 0; 6405 } 6406 6407 void kvm_arch_commit_memory_region(struct kvm *kvm, 6408 struct kvm_userspace_memory_region *mem, 6409 struct kvm_memory_slot old, 6410 int user_alloc) 6411 { 6412 6413 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT; 6414 6415 if (!user_alloc && !old.user_alloc && old.rmap && !npages) { 6416 int ret; 6417 6418 ret = vm_munmap(old.userspace_addr, 6419 old.npages * PAGE_SIZE); 6420 if (ret < 0) 6421 printk(KERN_WARNING 6422 "kvm_vm_ioctl_set_memory_region: " 6423 "failed to munmap memory\n"); 6424 } 6425 6426 if (!kvm->arch.n_requested_mmu_pages) 6427 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); 6428 6429 spin_lock(&kvm->mmu_lock); 6430 if (nr_mmu_pages) 6431 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 6432 kvm_mmu_slot_remove_write_access(kvm, mem->slot); 6433 spin_unlock(&kvm->mmu_lock); 6434 } 6435 6436 void kvm_arch_flush_shadow(struct kvm *kvm) 6437 { 6438 kvm_mmu_zap_all(kvm); 6439 kvm_reload_remote_mmus(kvm); 6440 } 6441 6442 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 6443 { 6444 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 6445 !vcpu->arch.apf.halted) 6446 || !list_empty_careful(&vcpu->async_pf.done) 6447 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED 6448 || atomic_read(&vcpu->arch.nmi_queued) || 6449 (kvm_arch_interrupt_allowed(vcpu) && 6450 kvm_cpu_has_interrupt(vcpu)); 6451 } 6452 6453 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 6454 { 6455 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 6456 } 6457 6458 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 6459 { 6460 return kvm_x86_ops->interrupt_allowed(vcpu); 6461 } 6462 6463 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 6464 { 6465 unsigned long current_rip = kvm_rip_read(vcpu) + 6466 get_segment_base(vcpu, VCPU_SREG_CS); 6467 6468 return current_rip == linear_rip; 6469 } 6470 EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 6471 6472 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 6473 { 6474 unsigned long rflags; 6475 6476 rflags = kvm_x86_ops->get_rflags(vcpu); 6477 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6478 rflags &= ~X86_EFLAGS_TF; 6479 return rflags; 6480 } 6481 EXPORT_SYMBOL_GPL(kvm_get_rflags); 6482 6483 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 6484 { 6485 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 6486 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 6487 rflags |= X86_EFLAGS_TF; 6488 kvm_x86_ops->set_rflags(vcpu, rflags); 6489 kvm_make_request(KVM_REQ_EVENT, vcpu); 6490 } 6491 EXPORT_SYMBOL_GPL(kvm_set_rflags); 6492 6493 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) 6494 { 6495 int r; 6496 6497 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || 6498 is_error_page(work->page)) 6499 return; 6500 6501 r = kvm_mmu_reload(vcpu); 6502 if (unlikely(r)) 6503 return; 6504 6505 if (!vcpu->arch.mmu.direct_map && 6506 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) 6507 return; 6508 6509 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); 6510 } 6511 6512 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 6513 { 6514 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 6515 } 6516 6517 static inline u32 kvm_async_pf_next_probe(u32 key) 6518 { 6519 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); 6520 } 6521 6522 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6523 { 6524 u32 key = kvm_async_pf_hash_fn(gfn); 6525 6526 while (vcpu->arch.apf.gfns[key] != ~0) 6527 key = kvm_async_pf_next_probe(key); 6528 6529 vcpu->arch.apf.gfns[key] = gfn; 6530 } 6531 6532 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 6533 { 6534 int i; 6535 u32 key = kvm_async_pf_hash_fn(gfn); 6536 6537 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && 6538 (vcpu->arch.apf.gfns[key] != gfn && 6539 vcpu->arch.apf.gfns[key] != ~0); i++) 6540 key = kvm_async_pf_next_probe(key); 6541 6542 return key; 6543 } 6544 6545 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6546 { 6547 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 6548 } 6549 6550 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 6551 { 6552 u32 i, j, k; 6553 6554 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 6555 while (true) { 6556 vcpu->arch.apf.gfns[i] = ~0; 6557 do { 6558 j = kvm_async_pf_next_probe(j); 6559 if (vcpu->arch.apf.gfns[j] == ~0) 6560 return; 6561 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 6562 /* 6563 * k lies cyclically in ]i,j] 6564 * | i.k.j | 6565 * |....j i.k.| or |.k..j i...| 6566 */ 6567 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 6568 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 6569 i = j; 6570 } 6571 } 6572 6573 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) 6574 { 6575 6576 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, 6577 sizeof(val)); 6578 } 6579 6580 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 6581 struct kvm_async_pf *work) 6582 { 6583 struct x86_exception fault; 6584 6585 trace_kvm_async_pf_not_present(work->arch.token, work->gva); 6586 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 6587 6588 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || 6589 (vcpu->arch.apf.send_user_only && 6590 kvm_x86_ops->get_cpl(vcpu) == 0)) 6591 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 6592 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { 6593 fault.vector = PF_VECTOR; 6594 fault.error_code_valid = true; 6595 fault.error_code = 0; 6596 fault.nested_page_fault = false; 6597 fault.address = work->arch.token; 6598 kvm_inject_page_fault(vcpu, &fault); 6599 } 6600 } 6601 6602 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 6603 struct kvm_async_pf *work) 6604 { 6605 struct x86_exception fault; 6606 6607 trace_kvm_async_pf_ready(work->arch.token, work->gva); 6608 if (is_error_page(work->page)) 6609 work->arch.token = ~0; /* broadcast wakeup */ 6610 else 6611 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 6612 6613 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && 6614 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { 6615 fault.vector = PF_VECTOR; 6616 fault.error_code_valid = true; 6617 fault.error_code = 0; 6618 fault.nested_page_fault = false; 6619 fault.address = work->arch.token; 6620 kvm_inject_page_fault(vcpu, &fault); 6621 } 6622 vcpu->arch.apf.halted = false; 6623 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 6624 } 6625 6626 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 6627 { 6628 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) 6629 return true; 6630 else 6631 return !kvm_event_needs_reinjection(vcpu) && 6632 kvm_x86_ops->interrupt_allowed(vcpu); 6633 } 6634 6635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 6636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 6637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 6638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 6639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 6640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 6641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 6642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 6643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 6644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 6645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 6646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 6647