xref: /linux/arch/x86/kvm/x86.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64 
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68 
69 #define emul_to_vcpu(ctxt) \
70 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71 
72 /* EFER defaults:
73  * - enable syscall per default because its emulated by KVM
74  * - enable LME and LMA per default on 64 bit KVM
75  */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82 
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85 
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88 
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91 
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94 
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32  kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99 
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103 
104 #define KVM_NR_SHARED_MSRS 16
105 
106 struct kvm_shared_msrs_global {
107 	int nr;
108 	u32 msrs[KVM_NR_SHARED_MSRS];
109 };
110 
111 struct kvm_shared_msrs {
112 	struct user_return_notifier urn;
113 	bool registered;
114 	struct kvm_shared_msr_values {
115 		u64 host;
116 		u64 curr;
117 	} values[KVM_NR_SHARED_MSRS];
118 };
119 
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122 
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
125 	{ "pf_guest", VCPU_STAT(pf_guest) },
126 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
127 	{ "invlpg", VCPU_STAT(invlpg) },
128 	{ "exits", VCPU_STAT(exits) },
129 	{ "io_exits", VCPU_STAT(io_exits) },
130 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
131 	{ "signal_exits", VCPU_STAT(signal_exits) },
132 	{ "irq_window", VCPU_STAT(irq_window_exits) },
133 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
134 	{ "halt_exits", VCPU_STAT(halt_exits) },
135 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
136 	{ "hypercalls", VCPU_STAT(hypercalls) },
137 	{ "request_irq", VCPU_STAT(request_irq_exits) },
138 	{ "irq_exits", VCPU_STAT(irq_exits) },
139 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
140 	{ "efer_reload", VCPU_STAT(efer_reload) },
141 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
142 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
143 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144 	{ "irq_injections", VCPU_STAT(irq_injections) },
145 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
146 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
148 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
151 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
152 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
154 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155 	{ "largepages", VM_STAT(lpages) },
156 	{ NULL }
157 };
158 
159 u64 __read_mostly host_xcr0;
160 
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162 
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
164 {
165 	int i;
166 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167 		vcpu->arch.apf.gfns[i] = ~0;
168 }
169 
170 static void kvm_on_user_return(struct user_return_notifier *urn)
171 {
172 	unsigned slot;
173 	struct kvm_shared_msrs *locals
174 		= container_of(urn, struct kvm_shared_msrs, urn);
175 	struct kvm_shared_msr_values *values;
176 
177 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178 		values = &locals->values[slot];
179 		if (values->host != values->curr) {
180 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
181 			values->curr = values->host;
182 		}
183 	}
184 	locals->registered = false;
185 	user_return_notifier_unregister(urn);
186 }
187 
188 static void shared_msr_update(unsigned slot, u32 msr)
189 {
190 	struct kvm_shared_msrs *smsr;
191 	u64 value;
192 
193 	smsr = &__get_cpu_var(shared_msrs);
194 	/* only read, and nobody should modify it at this time,
195 	 * so don't need lock */
196 	if (slot >= shared_msrs_global.nr) {
197 		printk(KERN_ERR "kvm: invalid MSR slot!");
198 		return;
199 	}
200 	rdmsrl_safe(msr, &value);
201 	smsr->values[slot].host = value;
202 	smsr->values[slot].curr = value;
203 }
204 
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
206 {
207 	if (slot >= shared_msrs_global.nr)
208 		shared_msrs_global.nr = slot + 1;
209 	shared_msrs_global.msrs[slot] = msr;
210 	/* we need ensured the shared_msr_global have been updated */
211 	smp_wmb();
212 }
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
214 
215 static void kvm_shared_msr_cpu_online(void)
216 {
217 	unsigned i;
218 
219 	for (i = 0; i < shared_msrs_global.nr; ++i)
220 		shared_msr_update(i, shared_msrs_global.msrs[i]);
221 }
222 
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
224 {
225 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
226 
227 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
228 		return;
229 	smsr->values[slot].curr = value;
230 	wrmsrl(shared_msrs_global.msrs[slot], value);
231 	if (!smsr->registered) {
232 		smsr->urn.on_user_return = kvm_on_user_return;
233 		user_return_notifier_register(&smsr->urn);
234 		smsr->registered = true;
235 	}
236 }
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
238 
239 static void drop_user_return_notifiers(void *ignore)
240 {
241 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
242 
243 	if (smsr->registered)
244 		kvm_on_user_return(&smsr->urn);
245 }
246 
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
248 {
249 	if (irqchip_in_kernel(vcpu->kvm))
250 		return vcpu->arch.apic_base;
251 	else
252 		return vcpu->arch.apic_base;
253 }
254 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
255 
256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
257 {
258 	/* TODO: reserve bits check */
259 	if (irqchip_in_kernel(vcpu->kvm))
260 		kvm_lapic_set_base(vcpu, data);
261 	else
262 		vcpu->arch.apic_base = data;
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265 
266 #define EXCPT_BENIGN		0
267 #define EXCPT_CONTRIBUTORY	1
268 #define EXCPT_PF		2
269 
270 static int exception_class(int vector)
271 {
272 	switch (vector) {
273 	case PF_VECTOR:
274 		return EXCPT_PF;
275 	case DE_VECTOR:
276 	case TS_VECTOR:
277 	case NP_VECTOR:
278 	case SS_VECTOR:
279 	case GP_VECTOR:
280 		return EXCPT_CONTRIBUTORY;
281 	default:
282 		break;
283 	}
284 	return EXCPT_BENIGN;
285 }
286 
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288 		unsigned nr, bool has_error, u32 error_code,
289 		bool reinject)
290 {
291 	u32 prev_nr;
292 	int class1, class2;
293 
294 	kvm_make_request(KVM_REQ_EVENT, vcpu);
295 
296 	if (!vcpu->arch.exception.pending) {
297 	queue:
298 		vcpu->arch.exception.pending = true;
299 		vcpu->arch.exception.has_error_code = has_error;
300 		vcpu->arch.exception.nr = nr;
301 		vcpu->arch.exception.error_code = error_code;
302 		vcpu->arch.exception.reinject = reinject;
303 		return;
304 	}
305 
306 	/* to check exception */
307 	prev_nr = vcpu->arch.exception.nr;
308 	if (prev_nr == DF_VECTOR) {
309 		/* triple fault -> shutdown */
310 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311 		return;
312 	}
313 	class1 = exception_class(prev_nr);
314 	class2 = exception_class(nr);
315 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317 		/* generate double fault per SDM Table 5-5 */
318 		vcpu->arch.exception.pending = true;
319 		vcpu->arch.exception.has_error_code = true;
320 		vcpu->arch.exception.nr = DF_VECTOR;
321 		vcpu->arch.exception.error_code = 0;
322 	} else
323 		/* replace previous exception with a new one in a hope
324 		   that instruction re-execution will regenerate lost
325 		   exception */
326 		goto queue;
327 }
328 
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331 	kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334 
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337 	kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340 
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343 	if (err)
344 		kvm_inject_gp(vcpu, 0);
345 	else
346 		kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349 
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352 	++vcpu->stat.pf_guest;
353 	vcpu->arch.cr2 = fault->address;
354 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357 
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362 	else
363 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365 
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368 	atomic_inc(&vcpu->arch.nmi_queued);
369 	kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372 
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378 
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384 
385 /*
386  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
387  * a #GP and return false.
388  */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392 		return true;
393 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394 	return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397 
398 /*
399  * This function will be used to read from the physical memory of the currently
400  * running guest. The difference to kvm_read_guest_page is that this function
401  * can read from guest physical or from the guest's guest physical memory.
402  */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404 			    gfn_t ngfn, void *data, int offset, int len,
405 			    u32 access)
406 {
407 	gfn_t real_gfn;
408 	gpa_t ngpa;
409 
410 	ngpa     = gfn_to_gpa(ngfn);
411 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412 	if (real_gfn == UNMAPPED_GVA)
413 		return -EFAULT;
414 
415 	real_gfn = gpa_to_gfn(real_gfn);
416 
417 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420 
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422 			       void *data, int offset, int len, u32 access)
423 {
424 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425 				       data, offset, len, access);
426 }
427 
428 /*
429  * Load the pae pdptrs.  Return true is they are all valid.
430  */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435 	int i;
436 	int ret;
437 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438 
439 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440 				      offset * sizeof(u64), sizeof(pdpte),
441 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
442 	if (ret < 0) {
443 		ret = 0;
444 		goto out;
445 	}
446 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447 		if (is_present_gpte(pdpte[i]) &&
448 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449 			ret = 0;
450 			goto out;
451 		}
452 	}
453 	ret = 1;
454 
455 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456 	__set_bit(VCPU_EXREG_PDPTR,
457 		  (unsigned long *)&vcpu->arch.regs_avail);
458 	__set_bit(VCPU_EXREG_PDPTR,
459 		  (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461 
462 	return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465 
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469 	bool changed = true;
470 	int offset;
471 	gfn_t gfn;
472 	int r;
473 
474 	if (is_long_mode(vcpu) || !is_pae(vcpu))
475 		return false;
476 
477 	if (!test_bit(VCPU_EXREG_PDPTR,
478 		      (unsigned long *)&vcpu->arch.regs_avail))
479 		return true;
480 
481 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
485 	if (r < 0)
486 		goto out;
487 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489 
490 	return changed;
491 }
492 
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
496 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497 				    X86_CR0_CD | X86_CR0_NW;
498 
499 	cr0 |= X86_CR0_ET;
500 
501 #ifdef CONFIG_X86_64
502 	if (cr0 & 0xffffffff00000000UL)
503 		return 1;
504 #endif
505 
506 	cr0 &= ~CR0_RESERVED_BITS;
507 
508 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509 		return 1;
510 
511 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512 		return 1;
513 
514 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516 		if ((vcpu->arch.efer & EFER_LME)) {
517 			int cs_db, cs_l;
518 
519 			if (!is_pae(vcpu))
520 				return 1;
521 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522 			if (cs_l)
523 				return 1;
524 		} else
525 #endif
526 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527 						 kvm_read_cr3(vcpu)))
528 			return 1;
529 	}
530 
531 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532 		return 1;
533 
534 	kvm_x86_ops->set_cr0(vcpu, cr0);
535 
536 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537 		kvm_clear_async_pf_completion_queue(vcpu);
538 		kvm_async_pf_hash_reset(vcpu);
539 	}
540 
541 	if ((cr0 ^ old_cr0) & update_bits)
542 		kvm_mmu_reset_context(vcpu);
543 	return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546 
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552 
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555 	u64 xcr0;
556 
557 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
558 	if (index != XCR_XFEATURE_ENABLED_MASK)
559 		return 1;
560 	xcr0 = xcr;
561 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
562 		return 1;
563 	if (!(xcr0 & XSTATE_FP))
564 		return 1;
565 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566 		return 1;
567 	if (xcr0 & ~host_xcr0)
568 		return 1;
569 	vcpu->arch.xcr0 = xcr0;
570 	vcpu->guest_xcr0_loaded = 0;
571 	return 0;
572 }
573 
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576 	if (__kvm_set_xcr(vcpu, index, xcr)) {
577 		kvm_inject_gp(vcpu, 0);
578 		return 1;
579 	}
580 	return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583 
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
587 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588 				   X86_CR4_PAE | X86_CR4_SMEP;
589 	if (cr4 & CR4_RESERVED_BITS)
590 		return 1;
591 
592 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593 		return 1;
594 
595 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596 		return 1;
597 
598 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599 		return 1;
600 
601 	if (is_long_mode(vcpu)) {
602 		if (!(cr4 & X86_CR4_PAE))
603 			return 1;
604 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605 		   && ((cr4 ^ old_cr4) & pdptr_bits)
606 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607 				   kvm_read_cr3(vcpu)))
608 		return 1;
609 
610 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611 		if (!guest_cpuid_has_pcid(vcpu))
612 			return 1;
613 
614 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616 			return 1;
617 	}
618 
619 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
620 		return 1;
621 
622 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
623 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624 		kvm_mmu_reset_context(vcpu);
625 
626 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627 		kvm_update_cpuid(vcpu);
628 
629 	return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632 
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636 		kvm_mmu_sync_roots(vcpu);
637 		kvm_mmu_flush_tlb(vcpu);
638 		return 0;
639 	}
640 
641 	if (is_long_mode(vcpu)) {
642 		if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
643 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644 				return 1;
645 		} else
646 			if (cr3 & CR3_L_MODE_RESERVED_BITS)
647 				return 1;
648 	} else {
649 		if (is_pae(vcpu)) {
650 			if (cr3 & CR3_PAE_RESERVED_BITS)
651 				return 1;
652 			if (is_paging(vcpu) &&
653 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654 				return 1;
655 		}
656 		/*
657 		 * We don't check reserved bits in nonpae mode, because
658 		 * this isn't enforced, and VMware depends on this.
659 		 */
660 	}
661 
662 	/*
663 	 * Does the new cr3 value map to physical memory? (Note, we
664 	 * catch an invalid cr3 even in real-mode, because it would
665 	 * cause trouble later on when we turn on paging anyway.)
666 	 *
667 	 * A real CPU would silently accept an invalid cr3 and would
668 	 * attempt to use it - with largely undefined (and often hard
669 	 * to debug) behavior on the guest side.
670 	 */
671 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672 		return 1;
673 	vcpu->arch.cr3 = cr3;
674 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675 	vcpu->arch.mmu.new_cr3(vcpu);
676 	return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679 
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682 	if (cr8 & CR8_RESERVED_BITS)
683 		return 1;
684 	if (irqchip_in_kernel(vcpu->kvm))
685 		kvm_lapic_set_tpr(vcpu, cr8);
686 	else
687 		vcpu->arch.cr8 = cr8;
688 	return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691 
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694 	if (irqchip_in_kernel(vcpu->kvm))
695 		return kvm_lapic_get_cr8(vcpu);
696 	else
697 		return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700 
701 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
702 {
703 	switch (dr) {
704 	case 0 ... 3:
705 		vcpu->arch.db[dr] = val;
706 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
707 			vcpu->arch.eff_db[dr] = val;
708 		break;
709 	case 4:
710 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
711 			return 1; /* #UD */
712 		/* fall through */
713 	case 6:
714 		if (val & 0xffffffff00000000ULL)
715 			return -1; /* #GP */
716 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
717 		break;
718 	case 5:
719 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
720 			return 1; /* #UD */
721 		/* fall through */
722 	default: /* 7 */
723 		if (val & 0xffffffff00000000ULL)
724 			return -1; /* #GP */
725 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
726 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
727 			kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
728 			vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
729 		}
730 		break;
731 	}
732 
733 	return 0;
734 }
735 
736 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738 	int res;
739 
740 	res = __kvm_set_dr(vcpu, dr, val);
741 	if (res > 0)
742 		kvm_queue_exception(vcpu, UD_VECTOR);
743 	else if (res < 0)
744 		kvm_inject_gp(vcpu, 0);
745 
746 	return res;
747 }
748 EXPORT_SYMBOL_GPL(kvm_set_dr);
749 
750 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
751 {
752 	switch (dr) {
753 	case 0 ... 3:
754 		*val = vcpu->arch.db[dr];
755 		break;
756 	case 4:
757 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
758 			return 1;
759 		/* fall through */
760 	case 6:
761 		*val = vcpu->arch.dr6;
762 		break;
763 	case 5:
764 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
765 			return 1;
766 		/* fall through */
767 	default: /* 7 */
768 		*val = vcpu->arch.dr7;
769 		break;
770 	}
771 
772 	return 0;
773 }
774 
775 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
776 {
777 	if (_kvm_get_dr(vcpu, dr, val)) {
778 		kvm_queue_exception(vcpu, UD_VECTOR);
779 		return 1;
780 	}
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_get_dr);
784 
785 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
786 {
787 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
788 	u64 data;
789 	int err;
790 
791 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
792 	if (err)
793 		return err;
794 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
795 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
796 	return err;
797 }
798 EXPORT_SYMBOL_GPL(kvm_rdpmc);
799 
800 /*
801  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
802  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
803  *
804  * This list is modified at module load time to reflect the
805  * capabilities of the host cpu. This capabilities test skips MSRs that are
806  * kvm-specific. Those are put in the beginning of the list.
807  */
808 
809 #define KVM_SAVE_MSRS_BEGIN	9
810 static u32 msrs_to_save[] = {
811 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
812 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
813 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
814 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
815 	MSR_KVM_PV_EOI_EN,
816 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
817 	MSR_STAR,
818 #ifdef CONFIG_X86_64
819 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
820 #endif
821 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
822 };
823 
824 static unsigned num_msrs_to_save;
825 
826 static u32 emulated_msrs[] = {
827 	MSR_IA32_TSCDEADLINE,
828 	MSR_IA32_MISC_ENABLE,
829 	MSR_IA32_MCG_STATUS,
830 	MSR_IA32_MCG_CTL,
831 };
832 
833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
834 {
835 	u64 old_efer = vcpu->arch.efer;
836 
837 	if (efer & efer_reserved_bits)
838 		return 1;
839 
840 	if (is_paging(vcpu)
841 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
842 		return 1;
843 
844 	if (efer & EFER_FFXSR) {
845 		struct kvm_cpuid_entry2 *feat;
846 
847 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
848 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
849 			return 1;
850 	}
851 
852 	if (efer & EFER_SVME) {
853 		struct kvm_cpuid_entry2 *feat;
854 
855 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
857 			return 1;
858 	}
859 
860 	efer &= ~EFER_LMA;
861 	efer |= vcpu->arch.efer & EFER_LMA;
862 
863 	kvm_x86_ops->set_efer(vcpu, efer);
864 
865 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
866 
867 	/* Update reserved bits */
868 	if ((efer ^ old_efer) & EFER_NX)
869 		kvm_mmu_reset_context(vcpu);
870 
871 	return 0;
872 }
873 
874 void kvm_enable_efer_bits(u64 mask)
875 {
876        efer_reserved_bits &= ~mask;
877 }
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
879 
880 
881 /*
882  * Writes msr value into into the appropriate "register".
883  * Returns 0 on success, non-0 otherwise.
884  * Assumes vcpu_load() was already called.
885  */
886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
887 {
888 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
889 }
890 
891 /*
892  * Adapt set_msr() to msr_io()'s calling convention
893  */
894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
895 {
896 	return kvm_set_msr(vcpu, index, *data);
897 }
898 
899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
900 {
901 	int version;
902 	int r;
903 	struct pvclock_wall_clock wc;
904 	struct timespec boot;
905 
906 	if (!wall_clock)
907 		return;
908 
909 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
910 	if (r)
911 		return;
912 
913 	if (version & 1)
914 		++version;  /* first time write, random junk */
915 
916 	++version;
917 
918 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
919 
920 	/*
921 	 * The guest calculates current wall clock time by adding
922 	 * system time (updated by kvm_guest_time_update below) to the
923 	 * wall clock specified here.  guest system time equals host
924 	 * system time for us, thus we must fill in host boot time here.
925 	 */
926 	getboottime(&boot);
927 
928 	wc.sec = boot.tv_sec;
929 	wc.nsec = boot.tv_nsec;
930 	wc.version = version;
931 
932 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
933 
934 	version++;
935 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
936 }
937 
938 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
939 {
940 	uint32_t quotient, remainder;
941 
942 	/* Don't try to replace with do_div(), this one calculates
943 	 * "(dividend << 32) / divisor" */
944 	__asm__ ( "divl %4"
945 		  : "=a" (quotient), "=d" (remainder)
946 		  : "0" (0), "1" (dividend), "r" (divisor) );
947 	return quotient;
948 }
949 
950 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
951 			       s8 *pshift, u32 *pmultiplier)
952 {
953 	uint64_t scaled64;
954 	int32_t  shift = 0;
955 	uint64_t tps64;
956 	uint32_t tps32;
957 
958 	tps64 = base_khz * 1000LL;
959 	scaled64 = scaled_khz * 1000LL;
960 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
961 		tps64 >>= 1;
962 		shift--;
963 	}
964 
965 	tps32 = (uint32_t)tps64;
966 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
967 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
968 			scaled64 >>= 1;
969 		else
970 			tps32 <<= 1;
971 		shift++;
972 	}
973 
974 	*pshift = shift;
975 	*pmultiplier = div_frac(scaled64, tps32);
976 
977 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
978 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
979 }
980 
981 static inline u64 get_kernel_ns(void)
982 {
983 	struct timespec ts;
984 
985 	WARN_ON(preemptible());
986 	ktime_get_ts(&ts);
987 	monotonic_to_bootbased(&ts);
988 	return timespec_to_ns(&ts);
989 }
990 
991 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
992 unsigned long max_tsc_khz;
993 
994 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
995 {
996 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
997 				   vcpu->arch.virtual_tsc_shift);
998 }
999 
1000 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1001 {
1002 	u64 v = (u64)khz * (1000000 + ppm);
1003 	do_div(v, 1000000);
1004 	return v;
1005 }
1006 
1007 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1008 {
1009 	u32 thresh_lo, thresh_hi;
1010 	int use_scaling = 0;
1011 
1012 	/* Compute a scale to convert nanoseconds in TSC cycles */
1013 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1014 			   &vcpu->arch.virtual_tsc_shift,
1015 			   &vcpu->arch.virtual_tsc_mult);
1016 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1017 
1018 	/*
1019 	 * Compute the variation in TSC rate which is acceptable
1020 	 * within the range of tolerance and decide if the
1021 	 * rate being applied is within that bounds of the hardware
1022 	 * rate.  If so, no scaling or compensation need be done.
1023 	 */
1024 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1025 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1026 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1027 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1028 		use_scaling = 1;
1029 	}
1030 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1031 }
1032 
1033 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1034 {
1035 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1036 				      vcpu->arch.virtual_tsc_mult,
1037 				      vcpu->arch.virtual_tsc_shift);
1038 	tsc += vcpu->arch.this_tsc_write;
1039 	return tsc;
1040 }
1041 
1042 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1043 {
1044 	struct kvm *kvm = vcpu->kvm;
1045 	u64 offset, ns, elapsed;
1046 	unsigned long flags;
1047 	s64 usdiff;
1048 
1049 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1050 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1051 	ns = get_kernel_ns();
1052 	elapsed = ns - kvm->arch.last_tsc_nsec;
1053 
1054 	/* n.b - signed multiplication and division required */
1055 	usdiff = data - kvm->arch.last_tsc_write;
1056 #ifdef CONFIG_X86_64
1057 	usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1058 #else
1059 	/* do_div() only does unsigned */
1060 	asm("idivl %2; xor %%edx, %%edx"
1061 	    : "=A"(usdiff)
1062 	    : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1063 #endif
1064 	do_div(elapsed, 1000);
1065 	usdiff -= elapsed;
1066 	if (usdiff < 0)
1067 		usdiff = -usdiff;
1068 
1069 	/*
1070 	 * Special case: TSC write with a small delta (1 second) of virtual
1071 	 * cycle time against real time is interpreted as an attempt to
1072 	 * synchronize the CPU.
1073          *
1074 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1075 	 * TSC, we add elapsed time in this computation.  We could let the
1076 	 * compensation code attempt to catch up if we fall behind, but
1077 	 * it's better to try to match offsets from the beginning.
1078          */
1079 	if (usdiff < USEC_PER_SEC &&
1080 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1081 		if (!check_tsc_unstable()) {
1082 			offset = kvm->arch.cur_tsc_offset;
1083 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1084 		} else {
1085 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1086 			data += delta;
1087 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1088 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1089 		}
1090 	} else {
1091 		/*
1092 		 * We split periods of matched TSC writes into generations.
1093 		 * For each generation, we track the original measured
1094 		 * nanosecond time, offset, and write, so if TSCs are in
1095 		 * sync, we can match exact offset, and if not, we can match
1096 		 * exact software computaion in compute_guest_tsc()
1097 		 *
1098 		 * These values are tracked in kvm->arch.cur_xxx variables.
1099 		 */
1100 		kvm->arch.cur_tsc_generation++;
1101 		kvm->arch.cur_tsc_nsec = ns;
1102 		kvm->arch.cur_tsc_write = data;
1103 		kvm->arch.cur_tsc_offset = offset;
1104 		pr_debug("kvm: new tsc generation %u, clock %llu\n",
1105 			 kvm->arch.cur_tsc_generation, data);
1106 	}
1107 
1108 	/*
1109 	 * We also track th most recent recorded KHZ, write and time to
1110 	 * allow the matching interval to be extended at each write.
1111 	 */
1112 	kvm->arch.last_tsc_nsec = ns;
1113 	kvm->arch.last_tsc_write = data;
1114 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1115 
1116 	/* Reset of TSC must disable overshoot protection below */
1117 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1118 	vcpu->arch.last_guest_tsc = data;
1119 
1120 	/* Keep track of which generation this VCPU has synchronized to */
1121 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1122 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1123 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1124 
1125 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1126 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1127 }
1128 
1129 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1130 
1131 static int kvm_guest_time_update(struct kvm_vcpu *v)
1132 {
1133 	unsigned long flags;
1134 	struct kvm_vcpu_arch *vcpu = &v->arch;
1135 	void *shared_kaddr;
1136 	unsigned long this_tsc_khz;
1137 	s64 kernel_ns, max_kernel_ns;
1138 	u64 tsc_timestamp;
1139 
1140 	/* Keep irq disabled to prevent changes to the clock */
1141 	local_irq_save(flags);
1142 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1143 	kernel_ns = get_kernel_ns();
1144 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1145 	if (unlikely(this_tsc_khz == 0)) {
1146 		local_irq_restore(flags);
1147 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1148 		return 1;
1149 	}
1150 
1151 	/*
1152 	 * We may have to catch up the TSC to match elapsed wall clock
1153 	 * time for two reasons, even if kvmclock is used.
1154 	 *   1) CPU could have been running below the maximum TSC rate
1155 	 *   2) Broken TSC compensation resets the base at each VCPU
1156 	 *      entry to avoid unknown leaps of TSC even when running
1157 	 *      again on the same CPU.  This may cause apparent elapsed
1158 	 *      time to disappear, and the guest to stand still or run
1159 	 *	very slowly.
1160 	 */
1161 	if (vcpu->tsc_catchup) {
1162 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1163 		if (tsc > tsc_timestamp) {
1164 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1165 			tsc_timestamp = tsc;
1166 		}
1167 	}
1168 
1169 	local_irq_restore(flags);
1170 
1171 	if (!vcpu->time_page)
1172 		return 0;
1173 
1174 	/*
1175 	 * Time as measured by the TSC may go backwards when resetting the base
1176 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1177 	 * higher than the resolution of the other clock scales.  Thus, many
1178 	 * possible measurments of the TSC correspond to one measurement of any
1179 	 * other clock, and so a spread of values is possible.  This is not a
1180 	 * problem for the computation of the nanosecond clock; with TSC rates
1181 	 * around 1GHZ, there can only be a few cycles which correspond to one
1182 	 * nanosecond value, and any path through this code will inevitably
1183 	 * take longer than that.  However, with the kernel_ns value itself,
1184 	 * the precision may be much lower, down to HZ granularity.  If the
1185 	 * first sampling of TSC against kernel_ns ends in the low part of the
1186 	 * range, and the second in the high end of the range, we can get:
1187 	 *
1188 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1189 	 *
1190 	 * As the sampling errors potentially range in the thousands of cycles,
1191 	 * it is possible such a time value has already been observed by the
1192 	 * guest.  To protect against this, we must compute the system time as
1193 	 * observed by the guest and ensure the new system time is greater.
1194 	 */
1195 	max_kernel_ns = 0;
1196 	if (vcpu->hv_clock.tsc_timestamp) {
1197 		max_kernel_ns = vcpu->last_guest_tsc -
1198 				vcpu->hv_clock.tsc_timestamp;
1199 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1200 				    vcpu->hv_clock.tsc_to_system_mul,
1201 				    vcpu->hv_clock.tsc_shift);
1202 		max_kernel_ns += vcpu->last_kernel_ns;
1203 	}
1204 
1205 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1206 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1207 				   &vcpu->hv_clock.tsc_shift,
1208 				   &vcpu->hv_clock.tsc_to_system_mul);
1209 		vcpu->hw_tsc_khz = this_tsc_khz;
1210 	}
1211 
1212 	if (max_kernel_ns > kernel_ns)
1213 		kernel_ns = max_kernel_ns;
1214 
1215 	/* With all the info we got, fill in the values */
1216 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1217 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1218 	vcpu->last_kernel_ns = kernel_ns;
1219 	vcpu->last_guest_tsc = tsc_timestamp;
1220 	vcpu->hv_clock.flags = 0;
1221 
1222 	/*
1223 	 * The interface expects us to write an even number signaling that the
1224 	 * update is finished. Since the guest won't see the intermediate
1225 	 * state, we just increase by 2 at the end.
1226 	 */
1227 	vcpu->hv_clock.version += 2;
1228 
1229 	shared_kaddr = kmap_atomic(vcpu->time_page);
1230 
1231 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1232 	       sizeof(vcpu->hv_clock));
1233 
1234 	kunmap_atomic(shared_kaddr);
1235 
1236 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1237 	return 0;
1238 }
1239 
1240 static bool msr_mtrr_valid(unsigned msr)
1241 {
1242 	switch (msr) {
1243 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1244 	case MSR_MTRRfix64K_00000:
1245 	case MSR_MTRRfix16K_80000:
1246 	case MSR_MTRRfix16K_A0000:
1247 	case MSR_MTRRfix4K_C0000:
1248 	case MSR_MTRRfix4K_C8000:
1249 	case MSR_MTRRfix4K_D0000:
1250 	case MSR_MTRRfix4K_D8000:
1251 	case MSR_MTRRfix4K_E0000:
1252 	case MSR_MTRRfix4K_E8000:
1253 	case MSR_MTRRfix4K_F0000:
1254 	case MSR_MTRRfix4K_F8000:
1255 	case MSR_MTRRdefType:
1256 	case MSR_IA32_CR_PAT:
1257 		return true;
1258 	case 0x2f8:
1259 		return true;
1260 	}
1261 	return false;
1262 }
1263 
1264 static bool valid_pat_type(unsigned t)
1265 {
1266 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1267 }
1268 
1269 static bool valid_mtrr_type(unsigned t)
1270 {
1271 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1272 }
1273 
1274 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1275 {
1276 	int i;
1277 
1278 	if (!msr_mtrr_valid(msr))
1279 		return false;
1280 
1281 	if (msr == MSR_IA32_CR_PAT) {
1282 		for (i = 0; i < 8; i++)
1283 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1284 				return false;
1285 		return true;
1286 	} else if (msr == MSR_MTRRdefType) {
1287 		if (data & ~0xcff)
1288 			return false;
1289 		return valid_mtrr_type(data & 0xff);
1290 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1291 		for (i = 0; i < 8 ; i++)
1292 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1293 				return false;
1294 		return true;
1295 	}
1296 
1297 	/* variable MTRRs */
1298 	return valid_mtrr_type(data & 0xff);
1299 }
1300 
1301 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1302 {
1303 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1304 
1305 	if (!mtrr_valid(vcpu, msr, data))
1306 		return 1;
1307 
1308 	if (msr == MSR_MTRRdefType) {
1309 		vcpu->arch.mtrr_state.def_type = data;
1310 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1311 	} else if (msr == MSR_MTRRfix64K_00000)
1312 		p[0] = data;
1313 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1314 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1315 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1316 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1317 	else if (msr == MSR_IA32_CR_PAT)
1318 		vcpu->arch.pat = data;
1319 	else {	/* Variable MTRRs */
1320 		int idx, is_mtrr_mask;
1321 		u64 *pt;
1322 
1323 		idx = (msr - 0x200) / 2;
1324 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1325 		if (!is_mtrr_mask)
1326 			pt =
1327 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1328 		else
1329 			pt =
1330 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1331 		*pt = data;
1332 	}
1333 
1334 	kvm_mmu_reset_context(vcpu);
1335 	return 0;
1336 }
1337 
1338 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1339 {
1340 	u64 mcg_cap = vcpu->arch.mcg_cap;
1341 	unsigned bank_num = mcg_cap & 0xff;
1342 
1343 	switch (msr) {
1344 	case MSR_IA32_MCG_STATUS:
1345 		vcpu->arch.mcg_status = data;
1346 		break;
1347 	case MSR_IA32_MCG_CTL:
1348 		if (!(mcg_cap & MCG_CTL_P))
1349 			return 1;
1350 		if (data != 0 && data != ~(u64)0)
1351 			return -1;
1352 		vcpu->arch.mcg_ctl = data;
1353 		break;
1354 	default:
1355 		if (msr >= MSR_IA32_MC0_CTL &&
1356 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1357 			u32 offset = msr - MSR_IA32_MC0_CTL;
1358 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1359 			 * some Linux kernels though clear bit 10 in bank 4 to
1360 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1361 			 * this to avoid an uncatched #GP in the guest
1362 			 */
1363 			if ((offset & 0x3) == 0 &&
1364 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1365 				return -1;
1366 			vcpu->arch.mce_banks[offset] = data;
1367 			break;
1368 		}
1369 		return 1;
1370 	}
1371 	return 0;
1372 }
1373 
1374 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1375 {
1376 	struct kvm *kvm = vcpu->kvm;
1377 	int lm = is_long_mode(vcpu);
1378 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1379 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1380 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1381 		: kvm->arch.xen_hvm_config.blob_size_32;
1382 	u32 page_num = data & ~PAGE_MASK;
1383 	u64 page_addr = data & PAGE_MASK;
1384 	u8 *page;
1385 	int r;
1386 
1387 	r = -E2BIG;
1388 	if (page_num >= blob_size)
1389 		goto out;
1390 	r = -ENOMEM;
1391 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1392 	if (IS_ERR(page)) {
1393 		r = PTR_ERR(page);
1394 		goto out;
1395 	}
1396 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1397 		goto out_free;
1398 	r = 0;
1399 out_free:
1400 	kfree(page);
1401 out:
1402 	return r;
1403 }
1404 
1405 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1406 {
1407 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1408 }
1409 
1410 static bool kvm_hv_msr_partition_wide(u32 msr)
1411 {
1412 	bool r = false;
1413 	switch (msr) {
1414 	case HV_X64_MSR_GUEST_OS_ID:
1415 	case HV_X64_MSR_HYPERCALL:
1416 		r = true;
1417 		break;
1418 	}
1419 
1420 	return r;
1421 }
1422 
1423 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1424 {
1425 	struct kvm *kvm = vcpu->kvm;
1426 
1427 	switch (msr) {
1428 	case HV_X64_MSR_GUEST_OS_ID:
1429 		kvm->arch.hv_guest_os_id = data;
1430 		/* setting guest os id to zero disables hypercall page */
1431 		if (!kvm->arch.hv_guest_os_id)
1432 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1433 		break;
1434 	case HV_X64_MSR_HYPERCALL: {
1435 		u64 gfn;
1436 		unsigned long addr;
1437 		u8 instructions[4];
1438 
1439 		/* if guest os id is not set hypercall should remain disabled */
1440 		if (!kvm->arch.hv_guest_os_id)
1441 			break;
1442 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1443 			kvm->arch.hv_hypercall = data;
1444 			break;
1445 		}
1446 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1447 		addr = gfn_to_hva(kvm, gfn);
1448 		if (kvm_is_error_hva(addr))
1449 			return 1;
1450 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1451 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1452 		if (__copy_to_user((void __user *)addr, instructions, 4))
1453 			return 1;
1454 		kvm->arch.hv_hypercall = data;
1455 		break;
1456 	}
1457 	default:
1458 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1459 			    "data 0x%llx\n", msr, data);
1460 		return 1;
1461 	}
1462 	return 0;
1463 }
1464 
1465 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1466 {
1467 	switch (msr) {
1468 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1469 		unsigned long addr;
1470 
1471 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1472 			vcpu->arch.hv_vapic = data;
1473 			break;
1474 		}
1475 		addr = gfn_to_hva(vcpu->kvm, data >>
1476 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1477 		if (kvm_is_error_hva(addr))
1478 			return 1;
1479 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1480 			return 1;
1481 		vcpu->arch.hv_vapic = data;
1482 		break;
1483 	}
1484 	case HV_X64_MSR_EOI:
1485 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1486 	case HV_X64_MSR_ICR:
1487 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1488 	case HV_X64_MSR_TPR:
1489 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1490 	default:
1491 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1492 			    "data 0x%llx\n", msr, data);
1493 		return 1;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1500 {
1501 	gpa_t gpa = data & ~0x3f;
1502 
1503 	/* Bits 2:5 are resrved, Should be zero */
1504 	if (data & 0x3c)
1505 		return 1;
1506 
1507 	vcpu->arch.apf.msr_val = data;
1508 
1509 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1510 		kvm_clear_async_pf_completion_queue(vcpu);
1511 		kvm_async_pf_hash_reset(vcpu);
1512 		return 0;
1513 	}
1514 
1515 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1516 		return 1;
1517 
1518 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1519 	kvm_async_pf_wakeup_all(vcpu);
1520 	return 0;
1521 }
1522 
1523 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1524 {
1525 	if (vcpu->arch.time_page) {
1526 		kvm_release_page_dirty(vcpu->arch.time_page);
1527 		vcpu->arch.time_page = NULL;
1528 	}
1529 }
1530 
1531 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1532 {
1533 	u64 delta;
1534 
1535 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1536 		return;
1537 
1538 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1539 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1540 	vcpu->arch.st.accum_steal = delta;
1541 }
1542 
1543 static void record_steal_time(struct kvm_vcpu *vcpu)
1544 {
1545 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1546 		return;
1547 
1548 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1549 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1550 		return;
1551 
1552 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1553 	vcpu->arch.st.steal.version += 2;
1554 	vcpu->arch.st.accum_steal = 0;
1555 
1556 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1557 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1558 }
1559 
1560 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1561 {
1562 	bool pr = false;
1563 
1564 	switch (msr) {
1565 	case MSR_EFER:
1566 		return set_efer(vcpu, data);
1567 	case MSR_K7_HWCR:
1568 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1569 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1570 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
1571 		if (data != 0) {
1572 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1573 				    data);
1574 			return 1;
1575 		}
1576 		break;
1577 	case MSR_FAM10H_MMIO_CONF_BASE:
1578 		if (data != 0) {
1579 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1580 				    "0x%llx\n", data);
1581 			return 1;
1582 		}
1583 		break;
1584 	case MSR_AMD64_NB_CFG:
1585 		break;
1586 	case MSR_IA32_DEBUGCTLMSR:
1587 		if (!data) {
1588 			/* We support the non-activated case already */
1589 			break;
1590 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1591 			/* Values other than LBR and BTF are vendor-specific,
1592 			   thus reserved and should throw a #GP */
1593 			return 1;
1594 		}
1595 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1596 			    __func__, data);
1597 		break;
1598 	case MSR_IA32_UCODE_REV:
1599 	case MSR_IA32_UCODE_WRITE:
1600 	case MSR_VM_HSAVE_PA:
1601 	case MSR_AMD64_PATCH_LOADER:
1602 		break;
1603 	case 0x200 ... 0x2ff:
1604 		return set_msr_mtrr(vcpu, msr, data);
1605 	case MSR_IA32_APICBASE:
1606 		kvm_set_apic_base(vcpu, data);
1607 		break;
1608 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1609 		return kvm_x2apic_msr_write(vcpu, msr, data);
1610 	case MSR_IA32_TSCDEADLINE:
1611 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1612 		break;
1613 	case MSR_IA32_MISC_ENABLE:
1614 		vcpu->arch.ia32_misc_enable_msr = data;
1615 		break;
1616 	case MSR_KVM_WALL_CLOCK_NEW:
1617 	case MSR_KVM_WALL_CLOCK:
1618 		vcpu->kvm->arch.wall_clock = data;
1619 		kvm_write_wall_clock(vcpu->kvm, data);
1620 		break;
1621 	case MSR_KVM_SYSTEM_TIME_NEW:
1622 	case MSR_KVM_SYSTEM_TIME: {
1623 		kvmclock_reset(vcpu);
1624 
1625 		vcpu->arch.time = data;
1626 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1627 
1628 		/* we verify if the enable bit is set... */
1629 		if (!(data & 1))
1630 			break;
1631 
1632 		/* ...but clean it before doing the actual write */
1633 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1634 
1635 		vcpu->arch.time_page =
1636 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1637 
1638 		if (is_error_page(vcpu->arch.time_page)) {
1639 			kvm_release_page_clean(vcpu->arch.time_page);
1640 			vcpu->arch.time_page = NULL;
1641 		}
1642 		break;
1643 	}
1644 	case MSR_KVM_ASYNC_PF_EN:
1645 		if (kvm_pv_enable_async_pf(vcpu, data))
1646 			return 1;
1647 		break;
1648 	case MSR_KVM_STEAL_TIME:
1649 
1650 		if (unlikely(!sched_info_on()))
1651 			return 1;
1652 
1653 		if (data & KVM_STEAL_RESERVED_MASK)
1654 			return 1;
1655 
1656 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1657 							data & KVM_STEAL_VALID_BITS))
1658 			return 1;
1659 
1660 		vcpu->arch.st.msr_val = data;
1661 
1662 		if (!(data & KVM_MSR_ENABLED))
1663 			break;
1664 
1665 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
1666 
1667 		preempt_disable();
1668 		accumulate_steal_time(vcpu);
1669 		preempt_enable();
1670 
1671 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1672 
1673 		break;
1674 	case MSR_KVM_PV_EOI_EN:
1675 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
1676 			return 1;
1677 		break;
1678 
1679 	case MSR_IA32_MCG_CTL:
1680 	case MSR_IA32_MCG_STATUS:
1681 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1682 		return set_msr_mce(vcpu, msr, data);
1683 
1684 	/* Performance counters are not protected by a CPUID bit,
1685 	 * so we should check all of them in the generic path for the sake of
1686 	 * cross vendor migration.
1687 	 * Writing a zero into the event select MSRs disables them,
1688 	 * which we perfectly emulate ;-). Any other value should be at least
1689 	 * reported, some guests depend on them.
1690 	 */
1691 	case MSR_K7_EVNTSEL0:
1692 	case MSR_K7_EVNTSEL1:
1693 	case MSR_K7_EVNTSEL2:
1694 	case MSR_K7_EVNTSEL3:
1695 		if (data != 0)
1696 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1697 				    "0x%x data 0x%llx\n", msr, data);
1698 		break;
1699 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
1700 	 * so we ignore writes to make it happy.
1701 	 */
1702 	case MSR_K7_PERFCTR0:
1703 	case MSR_K7_PERFCTR1:
1704 	case MSR_K7_PERFCTR2:
1705 	case MSR_K7_PERFCTR3:
1706 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1707 			    "0x%x data 0x%llx\n", msr, data);
1708 		break;
1709 	case MSR_P6_PERFCTR0:
1710 	case MSR_P6_PERFCTR1:
1711 		pr = true;
1712 	case MSR_P6_EVNTSEL0:
1713 	case MSR_P6_EVNTSEL1:
1714 		if (kvm_pmu_msr(vcpu, msr))
1715 			return kvm_pmu_set_msr(vcpu, msr, data);
1716 
1717 		if (pr || data != 0)
1718 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1719 				    "0x%x data 0x%llx\n", msr, data);
1720 		break;
1721 	case MSR_K7_CLK_CTL:
1722 		/*
1723 		 * Ignore all writes to this no longer documented MSR.
1724 		 * Writes are only relevant for old K7 processors,
1725 		 * all pre-dating SVM, but a recommended workaround from
1726 		 * AMD for these chips. It is possible to speicify the
1727 		 * affected processor models on the command line, hence
1728 		 * the need to ignore the workaround.
1729 		 */
1730 		break;
1731 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1732 		if (kvm_hv_msr_partition_wide(msr)) {
1733 			int r;
1734 			mutex_lock(&vcpu->kvm->lock);
1735 			r = set_msr_hyperv_pw(vcpu, msr, data);
1736 			mutex_unlock(&vcpu->kvm->lock);
1737 			return r;
1738 		} else
1739 			return set_msr_hyperv(vcpu, msr, data);
1740 		break;
1741 	case MSR_IA32_BBL_CR_CTL3:
1742 		/* Drop writes to this legacy MSR -- see rdmsr
1743 		 * counterpart for further detail.
1744 		 */
1745 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1746 		break;
1747 	case MSR_AMD64_OSVW_ID_LENGTH:
1748 		if (!guest_cpuid_has_osvw(vcpu))
1749 			return 1;
1750 		vcpu->arch.osvw.length = data;
1751 		break;
1752 	case MSR_AMD64_OSVW_STATUS:
1753 		if (!guest_cpuid_has_osvw(vcpu))
1754 			return 1;
1755 		vcpu->arch.osvw.status = data;
1756 		break;
1757 	default:
1758 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1759 			return xen_hvm_config(vcpu, data);
1760 		if (kvm_pmu_msr(vcpu, msr))
1761 			return kvm_pmu_set_msr(vcpu, msr, data);
1762 		if (!ignore_msrs) {
1763 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1764 				    msr, data);
1765 			return 1;
1766 		} else {
1767 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1768 				    msr, data);
1769 			break;
1770 		}
1771 	}
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1775 
1776 
1777 /*
1778  * Reads an msr value (of 'msr_index') into 'pdata'.
1779  * Returns 0 on success, non-0 otherwise.
1780  * Assumes vcpu_load() was already called.
1781  */
1782 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1783 {
1784 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1785 }
1786 
1787 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1788 {
1789 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1790 
1791 	if (!msr_mtrr_valid(msr))
1792 		return 1;
1793 
1794 	if (msr == MSR_MTRRdefType)
1795 		*pdata = vcpu->arch.mtrr_state.def_type +
1796 			 (vcpu->arch.mtrr_state.enabled << 10);
1797 	else if (msr == MSR_MTRRfix64K_00000)
1798 		*pdata = p[0];
1799 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1800 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1801 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1802 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1803 	else if (msr == MSR_IA32_CR_PAT)
1804 		*pdata = vcpu->arch.pat;
1805 	else {	/* Variable MTRRs */
1806 		int idx, is_mtrr_mask;
1807 		u64 *pt;
1808 
1809 		idx = (msr - 0x200) / 2;
1810 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1811 		if (!is_mtrr_mask)
1812 			pt =
1813 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1814 		else
1815 			pt =
1816 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1817 		*pdata = *pt;
1818 	}
1819 
1820 	return 0;
1821 }
1822 
1823 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1824 {
1825 	u64 data;
1826 	u64 mcg_cap = vcpu->arch.mcg_cap;
1827 	unsigned bank_num = mcg_cap & 0xff;
1828 
1829 	switch (msr) {
1830 	case MSR_IA32_P5_MC_ADDR:
1831 	case MSR_IA32_P5_MC_TYPE:
1832 		data = 0;
1833 		break;
1834 	case MSR_IA32_MCG_CAP:
1835 		data = vcpu->arch.mcg_cap;
1836 		break;
1837 	case MSR_IA32_MCG_CTL:
1838 		if (!(mcg_cap & MCG_CTL_P))
1839 			return 1;
1840 		data = vcpu->arch.mcg_ctl;
1841 		break;
1842 	case MSR_IA32_MCG_STATUS:
1843 		data = vcpu->arch.mcg_status;
1844 		break;
1845 	default:
1846 		if (msr >= MSR_IA32_MC0_CTL &&
1847 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1848 			u32 offset = msr - MSR_IA32_MC0_CTL;
1849 			data = vcpu->arch.mce_banks[offset];
1850 			break;
1851 		}
1852 		return 1;
1853 	}
1854 	*pdata = data;
1855 	return 0;
1856 }
1857 
1858 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1859 {
1860 	u64 data = 0;
1861 	struct kvm *kvm = vcpu->kvm;
1862 
1863 	switch (msr) {
1864 	case HV_X64_MSR_GUEST_OS_ID:
1865 		data = kvm->arch.hv_guest_os_id;
1866 		break;
1867 	case HV_X64_MSR_HYPERCALL:
1868 		data = kvm->arch.hv_hypercall;
1869 		break;
1870 	default:
1871 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1872 		return 1;
1873 	}
1874 
1875 	*pdata = data;
1876 	return 0;
1877 }
1878 
1879 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1880 {
1881 	u64 data = 0;
1882 
1883 	switch (msr) {
1884 	case HV_X64_MSR_VP_INDEX: {
1885 		int r;
1886 		struct kvm_vcpu *v;
1887 		kvm_for_each_vcpu(r, v, vcpu->kvm)
1888 			if (v == vcpu)
1889 				data = r;
1890 		break;
1891 	}
1892 	case HV_X64_MSR_EOI:
1893 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1894 	case HV_X64_MSR_ICR:
1895 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1896 	case HV_X64_MSR_TPR:
1897 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1898 	case HV_X64_MSR_APIC_ASSIST_PAGE:
1899 		data = vcpu->arch.hv_vapic;
1900 		break;
1901 	default:
1902 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1903 		return 1;
1904 	}
1905 	*pdata = data;
1906 	return 0;
1907 }
1908 
1909 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1910 {
1911 	u64 data;
1912 
1913 	switch (msr) {
1914 	case MSR_IA32_PLATFORM_ID:
1915 	case MSR_IA32_EBL_CR_POWERON:
1916 	case MSR_IA32_DEBUGCTLMSR:
1917 	case MSR_IA32_LASTBRANCHFROMIP:
1918 	case MSR_IA32_LASTBRANCHTOIP:
1919 	case MSR_IA32_LASTINTFROMIP:
1920 	case MSR_IA32_LASTINTTOIP:
1921 	case MSR_K8_SYSCFG:
1922 	case MSR_K7_HWCR:
1923 	case MSR_VM_HSAVE_PA:
1924 	case MSR_K7_EVNTSEL0:
1925 	case MSR_K7_PERFCTR0:
1926 	case MSR_K8_INT_PENDING_MSG:
1927 	case MSR_AMD64_NB_CFG:
1928 	case MSR_FAM10H_MMIO_CONF_BASE:
1929 		data = 0;
1930 		break;
1931 	case MSR_P6_PERFCTR0:
1932 	case MSR_P6_PERFCTR1:
1933 	case MSR_P6_EVNTSEL0:
1934 	case MSR_P6_EVNTSEL1:
1935 		if (kvm_pmu_msr(vcpu, msr))
1936 			return kvm_pmu_get_msr(vcpu, msr, pdata);
1937 		data = 0;
1938 		break;
1939 	case MSR_IA32_UCODE_REV:
1940 		data = 0x100000000ULL;
1941 		break;
1942 	case MSR_MTRRcap:
1943 		data = 0x500 | KVM_NR_VAR_MTRR;
1944 		break;
1945 	case 0x200 ... 0x2ff:
1946 		return get_msr_mtrr(vcpu, msr, pdata);
1947 	case 0xcd: /* fsb frequency */
1948 		data = 3;
1949 		break;
1950 		/*
1951 		 * MSR_EBC_FREQUENCY_ID
1952 		 * Conservative value valid for even the basic CPU models.
1953 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1954 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1955 		 * and 266MHz for model 3, or 4. Set Core Clock
1956 		 * Frequency to System Bus Frequency Ratio to 1 (bits
1957 		 * 31:24) even though these are only valid for CPU
1958 		 * models > 2, however guests may end up dividing or
1959 		 * multiplying by zero otherwise.
1960 		 */
1961 	case MSR_EBC_FREQUENCY_ID:
1962 		data = 1 << 24;
1963 		break;
1964 	case MSR_IA32_APICBASE:
1965 		data = kvm_get_apic_base(vcpu);
1966 		break;
1967 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1968 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
1969 		break;
1970 	case MSR_IA32_TSCDEADLINE:
1971 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
1972 		break;
1973 	case MSR_IA32_MISC_ENABLE:
1974 		data = vcpu->arch.ia32_misc_enable_msr;
1975 		break;
1976 	case MSR_IA32_PERF_STATUS:
1977 		/* TSC increment by tick */
1978 		data = 1000ULL;
1979 		/* CPU multiplier */
1980 		data |= (((uint64_t)4ULL) << 40);
1981 		break;
1982 	case MSR_EFER:
1983 		data = vcpu->arch.efer;
1984 		break;
1985 	case MSR_KVM_WALL_CLOCK:
1986 	case MSR_KVM_WALL_CLOCK_NEW:
1987 		data = vcpu->kvm->arch.wall_clock;
1988 		break;
1989 	case MSR_KVM_SYSTEM_TIME:
1990 	case MSR_KVM_SYSTEM_TIME_NEW:
1991 		data = vcpu->arch.time;
1992 		break;
1993 	case MSR_KVM_ASYNC_PF_EN:
1994 		data = vcpu->arch.apf.msr_val;
1995 		break;
1996 	case MSR_KVM_STEAL_TIME:
1997 		data = vcpu->arch.st.msr_val;
1998 		break;
1999 	case MSR_IA32_P5_MC_ADDR:
2000 	case MSR_IA32_P5_MC_TYPE:
2001 	case MSR_IA32_MCG_CAP:
2002 	case MSR_IA32_MCG_CTL:
2003 	case MSR_IA32_MCG_STATUS:
2004 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2005 		return get_msr_mce(vcpu, msr, pdata);
2006 	case MSR_K7_CLK_CTL:
2007 		/*
2008 		 * Provide expected ramp-up count for K7. All other
2009 		 * are set to zero, indicating minimum divisors for
2010 		 * every field.
2011 		 *
2012 		 * This prevents guest kernels on AMD host with CPU
2013 		 * type 6, model 8 and higher from exploding due to
2014 		 * the rdmsr failing.
2015 		 */
2016 		data = 0x20000000;
2017 		break;
2018 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2019 		if (kvm_hv_msr_partition_wide(msr)) {
2020 			int r;
2021 			mutex_lock(&vcpu->kvm->lock);
2022 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2023 			mutex_unlock(&vcpu->kvm->lock);
2024 			return r;
2025 		} else
2026 			return get_msr_hyperv(vcpu, msr, pdata);
2027 		break;
2028 	case MSR_IA32_BBL_CR_CTL3:
2029 		/* This legacy MSR exists but isn't fully documented in current
2030 		 * silicon.  It is however accessed by winxp in very narrow
2031 		 * scenarios where it sets bit #19, itself documented as
2032 		 * a "reserved" bit.  Best effort attempt to source coherent
2033 		 * read data here should the balance of the register be
2034 		 * interpreted by the guest:
2035 		 *
2036 		 * L2 cache control register 3: 64GB range, 256KB size,
2037 		 * enabled, latency 0x1, configured
2038 		 */
2039 		data = 0xbe702111;
2040 		break;
2041 	case MSR_AMD64_OSVW_ID_LENGTH:
2042 		if (!guest_cpuid_has_osvw(vcpu))
2043 			return 1;
2044 		data = vcpu->arch.osvw.length;
2045 		break;
2046 	case MSR_AMD64_OSVW_STATUS:
2047 		if (!guest_cpuid_has_osvw(vcpu))
2048 			return 1;
2049 		data = vcpu->arch.osvw.status;
2050 		break;
2051 	default:
2052 		if (kvm_pmu_msr(vcpu, msr))
2053 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2054 		if (!ignore_msrs) {
2055 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2056 			return 1;
2057 		} else {
2058 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2059 			data = 0;
2060 		}
2061 		break;
2062 	}
2063 	*pdata = data;
2064 	return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2067 
2068 /*
2069  * Read or write a bunch of msrs. All parameters are kernel addresses.
2070  *
2071  * @return number of msrs set successfully.
2072  */
2073 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2074 		    struct kvm_msr_entry *entries,
2075 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2076 				  unsigned index, u64 *data))
2077 {
2078 	int i, idx;
2079 
2080 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2081 	for (i = 0; i < msrs->nmsrs; ++i)
2082 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2083 			break;
2084 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2085 
2086 	return i;
2087 }
2088 
2089 /*
2090  * Read or write a bunch of msrs. Parameters are user addresses.
2091  *
2092  * @return number of msrs set successfully.
2093  */
2094 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2095 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2096 				unsigned index, u64 *data),
2097 		  int writeback)
2098 {
2099 	struct kvm_msrs msrs;
2100 	struct kvm_msr_entry *entries;
2101 	int r, n;
2102 	unsigned size;
2103 
2104 	r = -EFAULT;
2105 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2106 		goto out;
2107 
2108 	r = -E2BIG;
2109 	if (msrs.nmsrs >= MAX_IO_MSRS)
2110 		goto out;
2111 
2112 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2113 	entries = memdup_user(user_msrs->entries, size);
2114 	if (IS_ERR(entries)) {
2115 		r = PTR_ERR(entries);
2116 		goto out;
2117 	}
2118 
2119 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2120 	if (r < 0)
2121 		goto out_free;
2122 
2123 	r = -EFAULT;
2124 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2125 		goto out_free;
2126 
2127 	r = n;
2128 
2129 out_free:
2130 	kfree(entries);
2131 out:
2132 	return r;
2133 }
2134 
2135 int kvm_dev_ioctl_check_extension(long ext)
2136 {
2137 	int r;
2138 
2139 	switch (ext) {
2140 	case KVM_CAP_IRQCHIP:
2141 	case KVM_CAP_HLT:
2142 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2143 	case KVM_CAP_SET_TSS_ADDR:
2144 	case KVM_CAP_EXT_CPUID:
2145 	case KVM_CAP_CLOCKSOURCE:
2146 	case KVM_CAP_PIT:
2147 	case KVM_CAP_NOP_IO_DELAY:
2148 	case KVM_CAP_MP_STATE:
2149 	case KVM_CAP_SYNC_MMU:
2150 	case KVM_CAP_USER_NMI:
2151 	case KVM_CAP_REINJECT_CONTROL:
2152 	case KVM_CAP_IRQ_INJECT_STATUS:
2153 	case KVM_CAP_ASSIGN_DEV_IRQ:
2154 	case KVM_CAP_IRQFD:
2155 	case KVM_CAP_IOEVENTFD:
2156 	case KVM_CAP_PIT2:
2157 	case KVM_CAP_PIT_STATE2:
2158 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2159 	case KVM_CAP_XEN_HVM:
2160 	case KVM_CAP_ADJUST_CLOCK:
2161 	case KVM_CAP_VCPU_EVENTS:
2162 	case KVM_CAP_HYPERV:
2163 	case KVM_CAP_HYPERV_VAPIC:
2164 	case KVM_CAP_HYPERV_SPIN:
2165 	case KVM_CAP_PCI_SEGMENT:
2166 	case KVM_CAP_DEBUGREGS:
2167 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2168 	case KVM_CAP_XSAVE:
2169 	case KVM_CAP_ASYNC_PF:
2170 	case KVM_CAP_GET_TSC_KHZ:
2171 	case KVM_CAP_PCI_2_3:
2172 	case KVM_CAP_KVMCLOCK_CTRL:
2173 		r = 1;
2174 		break;
2175 	case KVM_CAP_COALESCED_MMIO:
2176 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2177 		break;
2178 	case KVM_CAP_VAPIC:
2179 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2180 		break;
2181 	case KVM_CAP_NR_VCPUS:
2182 		r = KVM_SOFT_MAX_VCPUS;
2183 		break;
2184 	case KVM_CAP_MAX_VCPUS:
2185 		r = KVM_MAX_VCPUS;
2186 		break;
2187 	case KVM_CAP_NR_MEMSLOTS:
2188 		r = KVM_MEMORY_SLOTS;
2189 		break;
2190 	case KVM_CAP_PV_MMU:	/* obsolete */
2191 		r = 0;
2192 		break;
2193 	case KVM_CAP_IOMMU:
2194 		r = iommu_present(&pci_bus_type);
2195 		break;
2196 	case KVM_CAP_MCE:
2197 		r = KVM_MAX_MCE_BANKS;
2198 		break;
2199 	case KVM_CAP_XCRS:
2200 		r = cpu_has_xsave;
2201 		break;
2202 	case KVM_CAP_TSC_CONTROL:
2203 		r = kvm_has_tsc_control;
2204 		break;
2205 	case KVM_CAP_TSC_DEADLINE_TIMER:
2206 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2207 		break;
2208 	default:
2209 		r = 0;
2210 		break;
2211 	}
2212 	return r;
2213 
2214 }
2215 
2216 long kvm_arch_dev_ioctl(struct file *filp,
2217 			unsigned int ioctl, unsigned long arg)
2218 {
2219 	void __user *argp = (void __user *)arg;
2220 	long r;
2221 
2222 	switch (ioctl) {
2223 	case KVM_GET_MSR_INDEX_LIST: {
2224 		struct kvm_msr_list __user *user_msr_list = argp;
2225 		struct kvm_msr_list msr_list;
2226 		unsigned n;
2227 
2228 		r = -EFAULT;
2229 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2230 			goto out;
2231 		n = msr_list.nmsrs;
2232 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2233 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2234 			goto out;
2235 		r = -E2BIG;
2236 		if (n < msr_list.nmsrs)
2237 			goto out;
2238 		r = -EFAULT;
2239 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2240 				 num_msrs_to_save * sizeof(u32)))
2241 			goto out;
2242 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2243 				 &emulated_msrs,
2244 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2245 			goto out;
2246 		r = 0;
2247 		break;
2248 	}
2249 	case KVM_GET_SUPPORTED_CPUID: {
2250 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2251 		struct kvm_cpuid2 cpuid;
2252 
2253 		r = -EFAULT;
2254 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2255 			goto out;
2256 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2257 						      cpuid_arg->entries);
2258 		if (r)
2259 			goto out;
2260 
2261 		r = -EFAULT;
2262 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2263 			goto out;
2264 		r = 0;
2265 		break;
2266 	}
2267 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2268 		u64 mce_cap;
2269 
2270 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2271 		r = -EFAULT;
2272 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2273 			goto out;
2274 		r = 0;
2275 		break;
2276 	}
2277 	default:
2278 		r = -EINVAL;
2279 	}
2280 out:
2281 	return r;
2282 }
2283 
2284 static void wbinvd_ipi(void *garbage)
2285 {
2286 	wbinvd();
2287 }
2288 
2289 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2290 {
2291 	return vcpu->kvm->arch.iommu_domain &&
2292 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2293 }
2294 
2295 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2296 {
2297 	/* Address WBINVD may be executed by guest */
2298 	if (need_emulate_wbinvd(vcpu)) {
2299 		if (kvm_x86_ops->has_wbinvd_exit())
2300 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2301 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2302 			smp_call_function_single(vcpu->cpu,
2303 					wbinvd_ipi, NULL, 1);
2304 	}
2305 
2306 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2307 
2308 	/* Apply any externally detected TSC adjustments (due to suspend) */
2309 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2310 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2311 		vcpu->arch.tsc_offset_adjustment = 0;
2312 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2313 	}
2314 
2315 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2316 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2317 				native_read_tsc() - vcpu->arch.last_host_tsc;
2318 		if (tsc_delta < 0)
2319 			mark_tsc_unstable("KVM discovered backwards TSC");
2320 		if (check_tsc_unstable()) {
2321 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2322 						vcpu->arch.last_guest_tsc);
2323 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2324 			vcpu->arch.tsc_catchup = 1;
2325 		}
2326 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2327 		if (vcpu->cpu != cpu)
2328 			kvm_migrate_timers(vcpu);
2329 		vcpu->cpu = cpu;
2330 	}
2331 
2332 	accumulate_steal_time(vcpu);
2333 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2334 }
2335 
2336 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2337 {
2338 	kvm_x86_ops->vcpu_put(vcpu);
2339 	kvm_put_guest_fpu(vcpu);
2340 	vcpu->arch.last_host_tsc = native_read_tsc();
2341 }
2342 
2343 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2344 				    struct kvm_lapic_state *s)
2345 {
2346 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2347 
2348 	return 0;
2349 }
2350 
2351 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2352 				    struct kvm_lapic_state *s)
2353 {
2354 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2355 	kvm_apic_post_state_restore(vcpu);
2356 	update_cr8_intercept(vcpu);
2357 
2358 	return 0;
2359 }
2360 
2361 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2362 				    struct kvm_interrupt *irq)
2363 {
2364 	if (irq->irq < 0 || irq->irq >= 256)
2365 		return -EINVAL;
2366 	if (irqchip_in_kernel(vcpu->kvm))
2367 		return -ENXIO;
2368 
2369 	kvm_queue_interrupt(vcpu, irq->irq, false);
2370 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2371 
2372 	return 0;
2373 }
2374 
2375 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2376 {
2377 	kvm_inject_nmi(vcpu);
2378 
2379 	return 0;
2380 }
2381 
2382 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2383 					   struct kvm_tpr_access_ctl *tac)
2384 {
2385 	if (tac->flags)
2386 		return -EINVAL;
2387 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2388 	return 0;
2389 }
2390 
2391 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2392 					u64 mcg_cap)
2393 {
2394 	int r;
2395 	unsigned bank_num = mcg_cap & 0xff, bank;
2396 
2397 	r = -EINVAL;
2398 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2399 		goto out;
2400 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2401 		goto out;
2402 	r = 0;
2403 	vcpu->arch.mcg_cap = mcg_cap;
2404 	/* Init IA32_MCG_CTL to all 1s */
2405 	if (mcg_cap & MCG_CTL_P)
2406 		vcpu->arch.mcg_ctl = ~(u64)0;
2407 	/* Init IA32_MCi_CTL to all 1s */
2408 	for (bank = 0; bank < bank_num; bank++)
2409 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2410 out:
2411 	return r;
2412 }
2413 
2414 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2415 				      struct kvm_x86_mce *mce)
2416 {
2417 	u64 mcg_cap = vcpu->arch.mcg_cap;
2418 	unsigned bank_num = mcg_cap & 0xff;
2419 	u64 *banks = vcpu->arch.mce_banks;
2420 
2421 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2422 		return -EINVAL;
2423 	/*
2424 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2425 	 * reporting is disabled
2426 	 */
2427 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2428 	    vcpu->arch.mcg_ctl != ~(u64)0)
2429 		return 0;
2430 	banks += 4 * mce->bank;
2431 	/*
2432 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2433 	 * reporting is disabled for the bank
2434 	 */
2435 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2436 		return 0;
2437 	if (mce->status & MCI_STATUS_UC) {
2438 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2439 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2440 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2441 			return 0;
2442 		}
2443 		if (banks[1] & MCI_STATUS_VAL)
2444 			mce->status |= MCI_STATUS_OVER;
2445 		banks[2] = mce->addr;
2446 		banks[3] = mce->misc;
2447 		vcpu->arch.mcg_status = mce->mcg_status;
2448 		banks[1] = mce->status;
2449 		kvm_queue_exception(vcpu, MC_VECTOR);
2450 	} else if (!(banks[1] & MCI_STATUS_VAL)
2451 		   || !(banks[1] & MCI_STATUS_UC)) {
2452 		if (banks[1] & MCI_STATUS_VAL)
2453 			mce->status |= MCI_STATUS_OVER;
2454 		banks[2] = mce->addr;
2455 		banks[3] = mce->misc;
2456 		banks[1] = mce->status;
2457 	} else
2458 		banks[1] |= MCI_STATUS_OVER;
2459 	return 0;
2460 }
2461 
2462 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2463 					       struct kvm_vcpu_events *events)
2464 {
2465 	process_nmi(vcpu);
2466 	events->exception.injected =
2467 		vcpu->arch.exception.pending &&
2468 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2469 	events->exception.nr = vcpu->arch.exception.nr;
2470 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2471 	events->exception.pad = 0;
2472 	events->exception.error_code = vcpu->arch.exception.error_code;
2473 
2474 	events->interrupt.injected =
2475 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2476 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2477 	events->interrupt.soft = 0;
2478 	events->interrupt.shadow =
2479 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2480 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2481 
2482 	events->nmi.injected = vcpu->arch.nmi_injected;
2483 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2484 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2485 	events->nmi.pad = 0;
2486 
2487 	events->sipi_vector = vcpu->arch.sipi_vector;
2488 
2489 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2490 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2491 			 | KVM_VCPUEVENT_VALID_SHADOW);
2492 	memset(&events->reserved, 0, sizeof(events->reserved));
2493 }
2494 
2495 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2496 					      struct kvm_vcpu_events *events)
2497 {
2498 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2499 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2500 			      | KVM_VCPUEVENT_VALID_SHADOW))
2501 		return -EINVAL;
2502 
2503 	process_nmi(vcpu);
2504 	vcpu->arch.exception.pending = events->exception.injected;
2505 	vcpu->arch.exception.nr = events->exception.nr;
2506 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2507 	vcpu->arch.exception.error_code = events->exception.error_code;
2508 
2509 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2510 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2511 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2512 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2513 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2514 						  events->interrupt.shadow);
2515 
2516 	vcpu->arch.nmi_injected = events->nmi.injected;
2517 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2518 		vcpu->arch.nmi_pending = events->nmi.pending;
2519 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2520 
2521 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2522 		vcpu->arch.sipi_vector = events->sipi_vector;
2523 
2524 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2525 
2526 	return 0;
2527 }
2528 
2529 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2530 					     struct kvm_debugregs *dbgregs)
2531 {
2532 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2533 	dbgregs->dr6 = vcpu->arch.dr6;
2534 	dbgregs->dr7 = vcpu->arch.dr7;
2535 	dbgregs->flags = 0;
2536 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2537 }
2538 
2539 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2540 					    struct kvm_debugregs *dbgregs)
2541 {
2542 	if (dbgregs->flags)
2543 		return -EINVAL;
2544 
2545 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2546 	vcpu->arch.dr6 = dbgregs->dr6;
2547 	vcpu->arch.dr7 = dbgregs->dr7;
2548 
2549 	return 0;
2550 }
2551 
2552 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2553 					 struct kvm_xsave *guest_xsave)
2554 {
2555 	if (cpu_has_xsave)
2556 		memcpy(guest_xsave->region,
2557 			&vcpu->arch.guest_fpu.state->xsave,
2558 			xstate_size);
2559 	else {
2560 		memcpy(guest_xsave->region,
2561 			&vcpu->arch.guest_fpu.state->fxsave,
2562 			sizeof(struct i387_fxsave_struct));
2563 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2564 			XSTATE_FPSSE;
2565 	}
2566 }
2567 
2568 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2569 					struct kvm_xsave *guest_xsave)
2570 {
2571 	u64 xstate_bv =
2572 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2573 
2574 	if (cpu_has_xsave)
2575 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2576 			guest_xsave->region, xstate_size);
2577 	else {
2578 		if (xstate_bv & ~XSTATE_FPSSE)
2579 			return -EINVAL;
2580 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2581 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2582 	}
2583 	return 0;
2584 }
2585 
2586 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2587 					struct kvm_xcrs *guest_xcrs)
2588 {
2589 	if (!cpu_has_xsave) {
2590 		guest_xcrs->nr_xcrs = 0;
2591 		return;
2592 	}
2593 
2594 	guest_xcrs->nr_xcrs = 1;
2595 	guest_xcrs->flags = 0;
2596 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2597 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2598 }
2599 
2600 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2601 				       struct kvm_xcrs *guest_xcrs)
2602 {
2603 	int i, r = 0;
2604 
2605 	if (!cpu_has_xsave)
2606 		return -EINVAL;
2607 
2608 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2609 		return -EINVAL;
2610 
2611 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2612 		/* Only support XCR0 currently */
2613 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2614 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2615 				guest_xcrs->xcrs[0].value);
2616 			break;
2617 		}
2618 	if (r)
2619 		r = -EINVAL;
2620 	return r;
2621 }
2622 
2623 /*
2624  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2625  * stopped by the hypervisor.  This function will be called from the host only.
2626  * EINVAL is returned when the host attempts to set the flag for a guest that
2627  * does not support pv clocks.
2628  */
2629 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2630 {
2631 	struct pvclock_vcpu_time_info *src = &vcpu->arch.hv_clock;
2632 	if (!vcpu->arch.time_page)
2633 		return -EINVAL;
2634 	src->flags |= PVCLOCK_GUEST_STOPPED;
2635 	mark_page_dirty(vcpu->kvm, vcpu->arch.time >> PAGE_SHIFT);
2636 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2637 	return 0;
2638 }
2639 
2640 long kvm_arch_vcpu_ioctl(struct file *filp,
2641 			 unsigned int ioctl, unsigned long arg)
2642 {
2643 	struct kvm_vcpu *vcpu = filp->private_data;
2644 	void __user *argp = (void __user *)arg;
2645 	int r;
2646 	union {
2647 		struct kvm_lapic_state *lapic;
2648 		struct kvm_xsave *xsave;
2649 		struct kvm_xcrs *xcrs;
2650 		void *buffer;
2651 	} u;
2652 
2653 	u.buffer = NULL;
2654 	switch (ioctl) {
2655 	case KVM_GET_LAPIC: {
2656 		r = -EINVAL;
2657 		if (!vcpu->arch.apic)
2658 			goto out;
2659 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2660 
2661 		r = -ENOMEM;
2662 		if (!u.lapic)
2663 			goto out;
2664 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2665 		if (r)
2666 			goto out;
2667 		r = -EFAULT;
2668 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2669 			goto out;
2670 		r = 0;
2671 		break;
2672 	}
2673 	case KVM_SET_LAPIC: {
2674 		r = -EINVAL;
2675 		if (!vcpu->arch.apic)
2676 			goto out;
2677 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
2678 		if (IS_ERR(u.lapic)) {
2679 			r = PTR_ERR(u.lapic);
2680 			goto out;
2681 		}
2682 
2683 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2684 		if (r)
2685 			goto out;
2686 		r = 0;
2687 		break;
2688 	}
2689 	case KVM_INTERRUPT: {
2690 		struct kvm_interrupt irq;
2691 
2692 		r = -EFAULT;
2693 		if (copy_from_user(&irq, argp, sizeof irq))
2694 			goto out;
2695 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2696 		if (r)
2697 			goto out;
2698 		r = 0;
2699 		break;
2700 	}
2701 	case KVM_NMI: {
2702 		r = kvm_vcpu_ioctl_nmi(vcpu);
2703 		if (r)
2704 			goto out;
2705 		r = 0;
2706 		break;
2707 	}
2708 	case KVM_SET_CPUID: {
2709 		struct kvm_cpuid __user *cpuid_arg = argp;
2710 		struct kvm_cpuid cpuid;
2711 
2712 		r = -EFAULT;
2713 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2714 			goto out;
2715 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2716 		if (r)
2717 			goto out;
2718 		break;
2719 	}
2720 	case KVM_SET_CPUID2: {
2721 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2722 		struct kvm_cpuid2 cpuid;
2723 
2724 		r = -EFAULT;
2725 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2726 			goto out;
2727 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2728 					      cpuid_arg->entries);
2729 		if (r)
2730 			goto out;
2731 		break;
2732 	}
2733 	case KVM_GET_CPUID2: {
2734 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2735 		struct kvm_cpuid2 cpuid;
2736 
2737 		r = -EFAULT;
2738 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2739 			goto out;
2740 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2741 					      cpuid_arg->entries);
2742 		if (r)
2743 			goto out;
2744 		r = -EFAULT;
2745 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2746 			goto out;
2747 		r = 0;
2748 		break;
2749 	}
2750 	case KVM_GET_MSRS:
2751 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
2752 		break;
2753 	case KVM_SET_MSRS:
2754 		r = msr_io(vcpu, argp, do_set_msr, 0);
2755 		break;
2756 	case KVM_TPR_ACCESS_REPORTING: {
2757 		struct kvm_tpr_access_ctl tac;
2758 
2759 		r = -EFAULT;
2760 		if (copy_from_user(&tac, argp, sizeof tac))
2761 			goto out;
2762 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2763 		if (r)
2764 			goto out;
2765 		r = -EFAULT;
2766 		if (copy_to_user(argp, &tac, sizeof tac))
2767 			goto out;
2768 		r = 0;
2769 		break;
2770 	};
2771 	case KVM_SET_VAPIC_ADDR: {
2772 		struct kvm_vapic_addr va;
2773 
2774 		r = -EINVAL;
2775 		if (!irqchip_in_kernel(vcpu->kvm))
2776 			goto out;
2777 		r = -EFAULT;
2778 		if (copy_from_user(&va, argp, sizeof va))
2779 			goto out;
2780 		r = 0;
2781 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2782 		break;
2783 	}
2784 	case KVM_X86_SETUP_MCE: {
2785 		u64 mcg_cap;
2786 
2787 		r = -EFAULT;
2788 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2789 			goto out;
2790 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2791 		break;
2792 	}
2793 	case KVM_X86_SET_MCE: {
2794 		struct kvm_x86_mce mce;
2795 
2796 		r = -EFAULT;
2797 		if (copy_from_user(&mce, argp, sizeof mce))
2798 			goto out;
2799 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2800 		break;
2801 	}
2802 	case KVM_GET_VCPU_EVENTS: {
2803 		struct kvm_vcpu_events events;
2804 
2805 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2806 
2807 		r = -EFAULT;
2808 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2809 			break;
2810 		r = 0;
2811 		break;
2812 	}
2813 	case KVM_SET_VCPU_EVENTS: {
2814 		struct kvm_vcpu_events events;
2815 
2816 		r = -EFAULT;
2817 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2818 			break;
2819 
2820 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2821 		break;
2822 	}
2823 	case KVM_GET_DEBUGREGS: {
2824 		struct kvm_debugregs dbgregs;
2825 
2826 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2827 
2828 		r = -EFAULT;
2829 		if (copy_to_user(argp, &dbgregs,
2830 				 sizeof(struct kvm_debugregs)))
2831 			break;
2832 		r = 0;
2833 		break;
2834 	}
2835 	case KVM_SET_DEBUGREGS: {
2836 		struct kvm_debugregs dbgregs;
2837 
2838 		r = -EFAULT;
2839 		if (copy_from_user(&dbgregs, argp,
2840 				   sizeof(struct kvm_debugregs)))
2841 			break;
2842 
2843 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2844 		break;
2845 	}
2846 	case KVM_GET_XSAVE: {
2847 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2848 		r = -ENOMEM;
2849 		if (!u.xsave)
2850 			break;
2851 
2852 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2853 
2854 		r = -EFAULT;
2855 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2856 			break;
2857 		r = 0;
2858 		break;
2859 	}
2860 	case KVM_SET_XSAVE: {
2861 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
2862 		if (IS_ERR(u.xsave)) {
2863 			r = PTR_ERR(u.xsave);
2864 			goto out;
2865 		}
2866 
2867 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2868 		break;
2869 	}
2870 	case KVM_GET_XCRS: {
2871 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2872 		r = -ENOMEM;
2873 		if (!u.xcrs)
2874 			break;
2875 
2876 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2877 
2878 		r = -EFAULT;
2879 		if (copy_to_user(argp, u.xcrs,
2880 				 sizeof(struct kvm_xcrs)))
2881 			break;
2882 		r = 0;
2883 		break;
2884 	}
2885 	case KVM_SET_XCRS: {
2886 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2887 		if (IS_ERR(u.xcrs)) {
2888 			r = PTR_ERR(u.xcrs);
2889 			goto out;
2890 		}
2891 
2892 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2893 		break;
2894 	}
2895 	case KVM_SET_TSC_KHZ: {
2896 		u32 user_tsc_khz;
2897 
2898 		r = -EINVAL;
2899 		user_tsc_khz = (u32)arg;
2900 
2901 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2902 			goto out;
2903 
2904 		if (user_tsc_khz == 0)
2905 			user_tsc_khz = tsc_khz;
2906 
2907 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
2908 
2909 		r = 0;
2910 		goto out;
2911 	}
2912 	case KVM_GET_TSC_KHZ: {
2913 		r = vcpu->arch.virtual_tsc_khz;
2914 		goto out;
2915 	}
2916 	case KVM_KVMCLOCK_CTRL: {
2917 		r = kvm_set_guest_paused(vcpu);
2918 		goto out;
2919 	}
2920 	default:
2921 		r = -EINVAL;
2922 	}
2923 out:
2924 	kfree(u.buffer);
2925 	return r;
2926 }
2927 
2928 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2929 {
2930 	return VM_FAULT_SIGBUS;
2931 }
2932 
2933 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2934 {
2935 	int ret;
2936 
2937 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
2938 		return -1;
2939 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2940 	return ret;
2941 }
2942 
2943 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2944 					      u64 ident_addr)
2945 {
2946 	kvm->arch.ept_identity_map_addr = ident_addr;
2947 	return 0;
2948 }
2949 
2950 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2951 					  u32 kvm_nr_mmu_pages)
2952 {
2953 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2954 		return -EINVAL;
2955 
2956 	mutex_lock(&kvm->slots_lock);
2957 	spin_lock(&kvm->mmu_lock);
2958 
2959 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2960 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2961 
2962 	spin_unlock(&kvm->mmu_lock);
2963 	mutex_unlock(&kvm->slots_lock);
2964 	return 0;
2965 }
2966 
2967 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2968 {
2969 	return kvm->arch.n_max_mmu_pages;
2970 }
2971 
2972 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2973 {
2974 	int r;
2975 
2976 	r = 0;
2977 	switch (chip->chip_id) {
2978 	case KVM_IRQCHIP_PIC_MASTER:
2979 		memcpy(&chip->chip.pic,
2980 			&pic_irqchip(kvm)->pics[0],
2981 			sizeof(struct kvm_pic_state));
2982 		break;
2983 	case KVM_IRQCHIP_PIC_SLAVE:
2984 		memcpy(&chip->chip.pic,
2985 			&pic_irqchip(kvm)->pics[1],
2986 			sizeof(struct kvm_pic_state));
2987 		break;
2988 	case KVM_IRQCHIP_IOAPIC:
2989 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2990 		break;
2991 	default:
2992 		r = -EINVAL;
2993 		break;
2994 	}
2995 	return r;
2996 }
2997 
2998 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2999 {
3000 	int r;
3001 
3002 	r = 0;
3003 	switch (chip->chip_id) {
3004 	case KVM_IRQCHIP_PIC_MASTER:
3005 		spin_lock(&pic_irqchip(kvm)->lock);
3006 		memcpy(&pic_irqchip(kvm)->pics[0],
3007 			&chip->chip.pic,
3008 			sizeof(struct kvm_pic_state));
3009 		spin_unlock(&pic_irqchip(kvm)->lock);
3010 		break;
3011 	case KVM_IRQCHIP_PIC_SLAVE:
3012 		spin_lock(&pic_irqchip(kvm)->lock);
3013 		memcpy(&pic_irqchip(kvm)->pics[1],
3014 			&chip->chip.pic,
3015 			sizeof(struct kvm_pic_state));
3016 		spin_unlock(&pic_irqchip(kvm)->lock);
3017 		break;
3018 	case KVM_IRQCHIP_IOAPIC:
3019 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3020 		break;
3021 	default:
3022 		r = -EINVAL;
3023 		break;
3024 	}
3025 	kvm_pic_update_irq(pic_irqchip(kvm));
3026 	return r;
3027 }
3028 
3029 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3030 {
3031 	int r = 0;
3032 
3033 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3034 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3035 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3036 	return r;
3037 }
3038 
3039 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3040 {
3041 	int r = 0;
3042 
3043 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3044 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3045 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3046 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3047 	return r;
3048 }
3049 
3050 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3051 {
3052 	int r = 0;
3053 
3054 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3055 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3056 		sizeof(ps->channels));
3057 	ps->flags = kvm->arch.vpit->pit_state.flags;
3058 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3059 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3060 	return r;
3061 }
3062 
3063 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3064 {
3065 	int r = 0, start = 0;
3066 	u32 prev_legacy, cur_legacy;
3067 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3068 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3069 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3070 	if (!prev_legacy && cur_legacy)
3071 		start = 1;
3072 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3073 	       sizeof(kvm->arch.vpit->pit_state.channels));
3074 	kvm->arch.vpit->pit_state.flags = ps->flags;
3075 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3076 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3077 	return r;
3078 }
3079 
3080 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3081 				 struct kvm_reinject_control *control)
3082 {
3083 	if (!kvm->arch.vpit)
3084 		return -ENXIO;
3085 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3086 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3087 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3088 	return 0;
3089 }
3090 
3091 /**
3092  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3093  * @kvm: kvm instance
3094  * @log: slot id and address to which we copy the log
3095  *
3096  * We need to keep it in mind that VCPU threads can write to the bitmap
3097  * concurrently.  So, to avoid losing data, we keep the following order for
3098  * each bit:
3099  *
3100  *   1. Take a snapshot of the bit and clear it if needed.
3101  *   2. Write protect the corresponding page.
3102  *   3. Flush TLB's if needed.
3103  *   4. Copy the snapshot to the userspace.
3104  *
3105  * Between 2 and 3, the guest may write to the page using the remaining TLB
3106  * entry.  This is not a problem because the page will be reported dirty at
3107  * step 4 using the snapshot taken before and step 3 ensures that successive
3108  * writes will be logged for the next call.
3109  */
3110 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3111 {
3112 	int r;
3113 	struct kvm_memory_slot *memslot;
3114 	unsigned long n, i;
3115 	unsigned long *dirty_bitmap;
3116 	unsigned long *dirty_bitmap_buffer;
3117 	bool is_dirty = false;
3118 
3119 	mutex_lock(&kvm->slots_lock);
3120 
3121 	r = -EINVAL;
3122 	if (log->slot >= KVM_MEMORY_SLOTS)
3123 		goto out;
3124 
3125 	memslot = id_to_memslot(kvm->memslots, log->slot);
3126 
3127 	dirty_bitmap = memslot->dirty_bitmap;
3128 	r = -ENOENT;
3129 	if (!dirty_bitmap)
3130 		goto out;
3131 
3132 	n = kvm_dirty_bitmap_bytes(memslot);
3133 
3134 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3135 	memset(dirty_bitmap_buffer, 0, n);
3136 
3137 	spin_lock(&kvm->mmu_lock);
3138 
3139 	for (i = 0; i < n / sizeof(long); i++) {
3140 		unsigned long mask;
3141 		gfn_t offset;
3142 
3143 		if (!dirty_bitmap[i])
3144 			continue;
3145 
3146 		is_dirty = true;
3147 
3148 		mask = xchg(&dirty_bitmap[i], 0);
3149 		dirty_bitmap_buffer[i] = mask;
3150 
3151 		offset = i * BITS_PER_LONG;
3152 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3153 	}
3154 	if (is_dirty)
3155 		kvm_flush_remote_tlbs(kvm);
3156 
3157 	spin_unlock(&kvm->mmu_lock);
3158 
3159 	r = -EFAULT;
3160 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3161 		goto out;
3162 
3163 	r = 0;
3164 out:
3165 	mutex_unlock(&kvm->slots_lock);
3166 	return r;
3167 }
3168 
3169 long kvm_arch_vm_ioctl(struct file *filp,
3170 		       unsigned int ioctl, unsigned long arg)
3171 {
3172 	struct kvm *kvm = filp->private_data;
3173 	void __user *argp = (void __user *)arg;
3174 	int r = -ENOTTY;
3175 	/*
3176 	 * This union makes it completely explicit to gcc-3.x
3177 	 * that these two variables' stack usage should be
3178 	 * combined, not added together.
3179 	 */
3180 	union {
3181 		struct kvm_pit_state ps;
3182 		struct kvm_pit_state2 ps2;
3183 		struct kvm_pit_config pit_config;
3184 	} u;
3185 
3186 	switch (ioctl) {
3187 	case KVM_SET_TSS_ADDR:
3188 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3189 		if (r < 0)
3190 			goto out;
3191 		break;
3192 	case KVM_SET_IDENTITY_MAP_ADDR: {
3193 		u64 ident_addr;
3194 
3195 		r = -EFAULT;
3196 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3197 			goto out;
3198 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3199 		if (r < 0)
3200 			goto out;
3201 		break;
3202 	}
3203 	case KVM_SET_NR_MMU_PAGES:
3204 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3205 		if (r)
3206 			goto out;
3207 		break;
3208 	case KVM_GET_NR_MMU_PAGES:
3209 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3210 		break;
3211 	case KVM_CREATE_IRQCHIP: {
3212 		struct kvm_pic *vpic;
3213 
3214 		mutex_lock(&kvm->lock);
3215 		r = -EEXIST;
3216 		if (kvm->arch.vpic)
3217 			goto create_irqchip_unlock;
3218 		r = -EINVAL;
3219 		if (atomic_read(&kvm->online_vcpus))
3220 			goto create_irqchip_unlock;
3221 		r = -ENOMEM;
3222 		vpic = kvm_create_pic(kvm);
3223 		if (vpic) {
3224 			r = kvm_ioapic_init(kvm);
3225 			if (r) {
3226 				mutex_lock(&kvm->slots_lock);
3227 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3228 							  &vpic->dev_master);
3229 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3230 							  &vpic->dev_slave);
3231 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3232 							  &vpic->dev_eclr);
3233 				mutex_unlock(&kvm->slots_lock);
3234 				kfree(vpic);
3235 				goto create_irqchip_unlock;
3236 			}
3237 		} else
3238 			goto create_irqchip_unlock;
3239 		smp_wmb();
3240 		kvm->arch.vpic = vpic;
3241 		smp_wmb();
3242 		r = kvm_setup_default_irq_routing(kvm);
3243 		if (r) {
3244 			mutex_lock(&kvm->slots_lock);
3245 			mutex_lock(&kvm->irq_lock);
3246 			kvm_ioapic_destroy(kvm);
3247 			kvm_destroy_pic(kvm);
3248 			mutex_unlock(&kvm->irq_lock);
3249 			mutex_unlock(&kvm->slots_lock);
3250 		}
3251 	create_irqchip_unlock:
3252 		mutex_unlock(&kvm->lock);
3253 		break;
3254 	}
3255 	case KVM_CREATE_PIT:
3256 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3257 		goto create_pit;
3258 	case KVM_CREATE_PIT2:
3259 		r = -EFAULT;
3260 		if (copy_from_user(&u.pit_config, argp,
3261 				   sizeof(struct kvm_pit_config)))
3262 			goto out;
3263 	create_pit:
3264 		mutex_lock(&kvm->slots_lock);
3265 		r = -EEXIST;
3266 		if (kvm->arch.vpit)
3267 			goto create_pit_unlock;
3268 		r = -ENOMEM;
3269 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3270 		if (kvm->arch.vpit)
3271 			r = 0;
3272 	create_pit_unlock:
3273 		mutex_unlock(&kvm->slots_lock);
3274 		break;
3275 	case KVM_IRQ_LINE_STATUS:
3276 	case KVM_IRQ_LINE: {
3277 		struct kvm_irq_level irq_event;
3278 
3279 		r = -EFAULT;
3280 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
3281 			goto out;
3282 		r = -ENXIO;
3283 		if (irqchip_in_kernel(kvm)) {
3284 			__s32 status;
3285 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3286 					irq_event.irq, irq_event.level);
3287 			if (ioctl == KVM_IRQ_LINE_STATUS) {
3288 				r = -EFAULT;
3289 				irq_event.status = status;
3290 				if (copy_to_user(argp, &irq_event,
3291 							sizeof irq_event))
3292 					goto out;
3293 			}
3294 			r = 0;
3295 		}
3296 		break;
3297 	}
3298 	case KVM_GET_IRQCHIP: {
3299 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3300 		struct kvm_irqchip *chip;
3301 
3302 		chip = memdup_user(argp, sizeof(*chip));
3303 		if (IS_ERR(chip)) {
3304 			r = PTR_ERR(chip);
3305 			goto out;
3306 		}
3307 
3308 		r = -ENXIO;
3309 		if (!irqchip_in_kernel(kvm))
3310 			goto get_irqchip_out;
3311 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3312 		if (r)
3313 			goto get_irqchip_out;
3314 		r = -EFAULT;
3315 		if (copy_to_user(argp, chip, sizeof *chip))
3316 			goto get_irqchip_out;
3317 		r = 0;
3318 	get_irqchip_out:
3319 		kfree(chip);
3320 		if (r)
3321 			goto out;
3322 		break;
3323 	}
3324 	case KVM_SET_IRQCHIP: {
3325 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3326 		struct kvm_irqchip *chip;
3327 
3328 		chip = memdup_user(argp, sizeof(*chip));
3329 		if (IS_ERR(chip)) {
3330 			r = PTR_ERR(chip);
3331 			goto out;
3332 		}
3333 
3334 		r = -ENXIO;
3335 		if (!irqchip_in_kernel(kvm))
3336 			goto set_irqchip_out;
3337 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3338 		if (r)
3339 			goto set_irqchip_out;
3340 		r = 0;
3341 	set_irqchip_out:
3342 		kfree(chip);
3343 		if (r)
3344 			goto out;
3345 		break;
3346 	}
3347 	case KVM_GET_PIT: {
3348 		r = -EFAULT;
3349 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3350 			goto out;
3351 		r = -ENXIO;
3352 		if (!kvm->arch.vpit)
3353 			goto out;
3354 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3355 		if (r)
3356 			goto out;
3357 		r = -EFAULT;
3358 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3359 			goto out;
3360 		r = 0;
3361 		break;
3362 	}
3363 	case KVM_SET_PIT: {
3364 		r = -EFAULT;
3365 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3366 			goto out;
3367 		r = -ENXIO;
3368 		if (!kvm->arch.vpit)
3369 			goto out;
3370 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3371 		if (r)
3372 			goto out;
3373 		r = 0;
3374 		break;
3375 	}
3376 	case KVM_GET_PIT2: {
3377 		r = -ENXIO;
3378 		if (!kvm->arch.vpit)
3379 			goto out;
3380 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3381 		if (r)
3382 			goto out;
3383 		r = -EFAULT;
3384 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3385 			goto out;
3386 		r = 0;
3387 		break;
3388 	}
3389 	case KVM_SET_PIT2: {
3390 		r = -EFAULT;
3391 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3392 			goto out;
3393 		r = -ENXIO;
3394 		if (!kvm->arch.vpit)
3395 			goto out;
3396 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3397 		if (r)
3398 			goto out;
3399 		r = 0;
3400 		break;
3401 	}
3402 	case KVM_REINJECT_CONTROL: {
3403 		struct kvm_reinject_control control;
3404 		r =  -EFAULT;
3405 		if (copy_from_user(&control, argp, sizeof(control)))
3406 			goto out;
3407 		r = kvm_vm_ioctl_reinject(kvm, &control);
3408 		if (r)
3409 			goto out;
3410 		r = 0;
3411 		break;
3412 	}
3413 	case KVM_XEN_HVM_CONFIG: {
3414 		r = -EFAULT;
3415 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3416 				   sizeof(struct kvm_xen_hvm_config)))
3417 			goto out;
3418 		r = -EINVAL;
3419 		if (kvm->arch.xen_hvm_config.flags)
3420 			goto out;
3421 		r = 0;
3422 		break;
3423 	}
3424 	case KVM_SET_CLOCK: {
3425 		struct kvm_clock_data user_ns;
3426 		u64 now_ns;
3427 		s64 delta;
3428 
3429 		r = -EFAULT;
3430 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3431 			goto out;
3432 
3433 		r = -EINVAL;
3434 		if (user_ns.flags)
3435 			goto out;
3436 
3437 		r = 0;
3438 		local_irq_disable();
3439 		now_ns = get_kernel_ns();
3440 		delta = user_ns.clock - now_ns;
3441 		local_irq_enable();
3442 		kvm->arch.kvmclock_offset = delta;
3443 		break;
3444 	}
3445 	case KVM_GET_CLOCK: {
3446 		struct kvm_clock_data user_ns;
3447 		u64 now_ns;
3448 
3449 		local_irq_disable();
3450 		now_ns = get_kernel_ns();
3451 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3452 		local_irq_enable();
3453 		user_ns.flags = 0;
3454 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3455 
3456 		r = -EFAULT;
3457 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3458 			goto out;
3459 		r = 0;
3460 		break;
3461 	}
3462 
3463 	default:
3464 		;
3465 	}
3466 out:
3467 	return r;
3468 }
3469 
3470 static void kvm_init_msr_list(void)
3471 {
3472 	u32 dummy[2];
3473 	unsigned i, j;
3474 
3475 	/* skip the first msrs in the list. KVM-specific */
3476 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3477 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3478 			continue;
3479 		if (j < i)
3480 			msrs_to_save[j] = msrs_to_save[i];
3481 		j++;
3482 	}
3483 	num_msrs_to_save = j;
3484 }
3485 
3486 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3487 			   const void *v)
3488 {
3489 	int handled = 0;
3490 	int n;
3491 
3492 	do {
3493 		n = min(len, 8);
3494 		if (!(vcpu->arch.apic &&
3495 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3496 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3497 			break;
3498 		handled += n;
3499 		addr += n;
3500 		len -= n;
3501 		v += n;
3502 	} while (len);
3503 
3504 	return handled;
3505 }
3506 
3507 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3508 {
3509 	int handled = 0;
3510 	int n;
3511 
3512 	do {
3513 		n = min(len, 8);
3514 		if (!(vcpu->arch.apic &&
3515 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3516 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3517 			break;
3518 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3519 		handled += n;
3520 		addr += n;
3521 		len -= n;
3522 		v += n;
3523 	} while (len);
3524 
3525 	return handled;
3526 }
3527 
3528 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3529 			struct kvm_segment *var, int seg)
3530 {
3531 	kvm_x86_ops->set_segment(vcpu, var, seg);
3532 }
3533 
3534 void kvm_get_segment(struct kvm_vcpu *vcpu,
3535 		     struct kvm_segment *var, int seg)
3536 {
3537 	kvm_x86_ops->get_segment(vcpu, var, seg);
3538 }
3539 
3540 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3541 {
3542 	gpa_t t_gpa;
3543 	struct x86_exception exception;
3544 
3545 	BUG_ON(!mmu_is_nested(vcpu));
3546 
3547 	/* NPT walks are always user-walks */
3548 	access |= PFERR_USER_MASK;
3549 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3550 
3551 	return t_gpa;
3552 }
3553 
3554 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3555 			      struct x86_exception *exception)
3556 {
3557 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3558 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3559 }
3560 
3561  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3562 				struct x86_exception *exception)
3563 {
3564 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3565 	access |= PFERR_FETCH_MASK;
3566 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3567 }
3568 
3569 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3570 			       struct x86_exception *exception)
3571 {
3572 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3573 	access |= PFERR_WRITE_MASK;
3574 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3575 }
3576 
3577 /* uses this to access any guest's mapped memory without checking CPL */
3578 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3579 				struct x86_exception *exception)
3580 {
3581 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3582 }
3583 
3584 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3585 				      struct kvm_vcpu *vcpu, u32 access,
3586 				      struct x86_exception *exception)
3587 {
3588 	void *data = val;
3589 	int r = X86EMUL_CONTINUE;
3590 
3591 	while (bytes) {
3592 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3593 							    exception);
3594 		unsigned offset = addr & (PAGE_SIZE-1);
3595 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3596 		int ret;
3597 
3598 		if (gpa == UNMAPPED_GVA)
3599 			return X86EMUL_PROPAGATE_FAULT;
3600 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3601 		if (ret < 0) {
3602 			r = X86EMUL_IO_NEEDED;
3603 			goto out;
3604 		}
3605 
3606 		bytes -= toread;
3607 		data += toread;
3608 		addr += toread;
3609 	}
3610 out:
3611 	return r;
3612 }
3613 
3614 /* used for instruction fetching */
3615 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3616 				gva_t addr, void *val, unsigned int bytes,
3617 				struct x86_exception *exception)
3618 {
3619 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3620 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3621 
3622 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3623 					  access | PFERR_FETCH_MASK,
3624 					  exception);
3625 }
3626 
3627 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3628 			       gva_t addr, void *val, unsigned int bytes,
3629 			       struct x86_exception *exception)
3630 {
3631 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3632 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3633 
3634 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3635 					  exception);
3636 }
3637 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3638 
3639 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3640 				      gva_t addr, void *val, unsigned int bytes,
3641 				      struct x86_exception *exception)
3642 {
3643 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3644 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3645 }
3646 
3647 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3648 				       gva_t addr, void *val,
3649 				       unsigned int bytes,
3650 				       struct x86_exception *exception)
3651 {
3652 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3653 	void *data = val;
3654 	int r = X86EMUL_CONTINUE;
3655 
3656 	while (bytes) {
3657 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3658 							     PFERR_WRITE_MASK,
3659 							     exception);
3660 		unsigned offset = addr & (PAGE_SIZE-1);
3661 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3662 		int ret;
3663 
3664 		if (gpa == UNMAPPED_GVA)
3665 			return X86EMUL_PROPAGATE_FAULT;
3666 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3667 		if (ret < 0) {
3668 			r = X86EMUL_IO_NEEDED;
3669 			goto out;
3670 		}
3671 
3672 		bytes -= towrite;
3673 		data += towrite;
3674 		addr += towrite;
3675 	}
3676 out:
3677 	return r;
3678 }
3679 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3680 
3681 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3682 				gpa_t *gpa, struct x86_exception *exception,
3683 				bool write)
3684 {
3685 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3686 
3687 	if (vcpu_match_mmio_gva(vcpu, gva) &&
3688 		  check_write_user_access(vcpu, write, access,
3689 		  vcpu->arch.access)) {
3690 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3691 					(gva & (PAGE_SIZE - 1));
3692 		trace_vcpu_match_mmio(gva, *gpa, write, false);
3693 		return 1;
3694 	}
3695 
3696 	if (write)
3697 		access |= PFERR_WRITE_MASK;
3698 
3699 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3700 
3701 	if (*gpa == UNMAPPED_GVA)
3702 		return -1;
3703 
3704 	/* For APIC access vmexit */
3705 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3706 		return 1;
3707 
3708 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3709 		trace_vcpu_match_mmio(gva, *gpa, write, true);
3710 		return 1;
3711 	}
3712 
3713 	return 0;
3714 }
3715 
3716 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3717 			const void *val, int bytes)
3718 {
3719 	int ret;
3720 
3721 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3722 	if (ret < 0)
3723 		return 0;
3724 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3725 	return 1;
3726 }
3727 
3728 struct read_write_emulator_ops {
3729 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3730 				  int bytes);
3731 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3732 				  void *val, int bytes);
3733 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3734 			       int bytes, void *val);
3735 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3736 				    void *val, int bytes);
3737 	bool write;
3738 };
3739 
3740 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3741 {
3742 	if (vcpu->mmio_read_completed) {
3743 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3744 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3745 		vcpu->mmio_read_completed = 0;
3746 		return 1;
3747 	}
3748 
3749 	return 0;
3750 }
3751 
3752 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3753 			void *val, int bytes)
3754 {
3755 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3756 }
3757 
3758 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3759 			 void *val, int bytes)
3760 {
3761 	return emulator_write_phys(vcpu, gpa, val, bytes);
3762 }
3763 
3764 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3765 {
3766 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3767 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
3768 }
3769 
3770 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3771 			  void *val, int bytes)
3772 {
3773 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3774 	return X86EMUL_IO_NEEDED;
3775 }
3776 
3777 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3778 			   void *val, int bytes)
3779 {
3780 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3781 
3782 	memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3783 	return X86EMUL_CONTINUE;
3784 }
3785 
3786 static struct read_write_emulator_ops read_emultor = {
3787 	.read_write_prepare = read_prepare,
3788 	.read_write_emulate = read_emulate,
3789 	.read_write_mmio = vcpu_mmio_read,
3790 	.read_write_exit_mmio = read_exit_mmio,
3791 };
3792 
3793 static struct read_write_emulator_ops write_emultor = {
3794 	.read_write_emulate = write_emulate,
3795 	.read_write_mmio = write_mmio,
3796 	.read_write_exit_mmio = write_exit_mmio,
3797 	.write = true,
3798 };
3799 
3800 static int emulator_read_write_onepage(unsigned long addr, void *val,
3801 				       unsigned int bytes,
3802 				       struct x86_exception *exception,
3803 				       struct kvm_vcpu *vcpu,
3804 				       struct read_write_emulator_ops *ops)
3805 {
3806 	gpa_t gpa;
3807 	int handled, ret;
3808 	bool write = ops->write;
3809 	struct kvm_mmio_fragment *frag;
3810 
3811 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3812 
3813 	if (ret < 0)
3814 		return X86EMUL_PROPAGATE_FAULT;
3815 
3816 	/* For APIC access vmexit */
3817 	if (ret)
3818 		goto mmio;
3819 
3820 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3821 		return X86EMUL_CONTINUE;
3822 
3823 mmio:
3824 	/*
3825 	 * Is this MMIO handled locally?
3826 	 */
3827 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3828 	if (handled == bytes)
3829 		return X86EMUL_CONTINUE;
3830 
3831 	gpa += handled;
3832 	bytes -= handled;
3833 	val += handled;
3834 
3835 	while (bytes) {
3836 		unsigned now = min(bytes, 8U);
3837 
3838 		frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3839 		frag->gpa = gpa;
3840 		frag->data = val;
3841 		frag->len = now;
3842 
3843 		gpa += now;
3844 		val += now;
3845 		bytes -= now;
3846 	}
3847 	return X86EMUL_CONTINUE;
3848 }
3849 
3850 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3851 			void *val, unsigned int bytes,
3852 			struct x86_exception *exception,
3853 			struct read_write_emulator_ops *ops)
3854 {
3855 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3856 	gpa_t gpa;
3857 	int rc;
3858 
3859 	if (ops->read_write_prepare &&
3860 		  ops->read_write_prepare(vcpu, val, bytes))
3861 		return X86EMUL_CONTINUE;
3862 
3863 	vcpu->mmio_nr_fragments = 0;
3864 
3865 	/* Crossing a page boundary? */
3866 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3867 		int now;
3868 
3869 		now = -addr & ~PAGE_MASK;
3870 		rc = emulator_read_write_onepage(addr, val, now, exception,
3871 						 vcpu, ops);
3872 
3873 		if (rc != X86EMUL_CONTINUE)
3874 			return rc;
3875 		addr += now;
3876 		val += now;
3877 		bytes -= now;
3878 	}
3879 
3880 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
3881 					 vcpu, ops);
3882 	if (rc != X86EMUL_CONTINUE)
3883 		return rc;
3884 
3885 	if (!vcpu->mmio_nr_fragments)
3886 		return rc;
3887 
3888 	gpa = vcpu->mmio_fragments[0].gpa;
3889 
3890 	vcpu->mmio_needed = 1;
3891 	vcpu->mmio_cur_fragment = 0;
3892 
3893 	vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3894 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3895 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
3896 	vcpu->run->mmio.phys_addr = gpa;
3897 
3898 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3899 }
3900 
3901 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3902 				  unsigned long addr,
3903 				  void *val,
3904 				  unsigned int bytes,
3905 				  struct x86_exception *exception)
3906 {
3907 	return emulator_read_write(ctxt, addr, val, bytes,
3908 				   exception, &read_emultor);
3909 }
3910 
3911 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3912 			    unsigned long addr,
3913 			    const void *val,
3914 			    unsigned int bytes,
3915 			    struct x86_exception *exception)
3916 {
3917 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
3918 				   exception, &write_emultor);
3919 }
3920 
3921 #define CMPXCHG_TYPE(t, ptr, old, new) \
3922 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3923 
3924 #ifdef CONFIG_X86_64
3925 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3926 #else
3927 #  define CMPXCHG64(ptr, old, new) \
3928 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3929 #endif
3930 
3931 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3932 				     unsigned long addr,
3933 				     const void *old,
3934 				     const void *new,
3935 				     unsigned int bytes,
3936 				     struct x86_exception *exception)
3937 {
3938 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3939 	gpa_t gpa;
3940 	struct page *page;
3941 	char *kaddr;
3942 	bool exchanged;
3943 
3944 	/* guests cmpxchg8b have to be emulated atomically */
3945 	if (bytes > 8 || (bytes & (bytes - 1)))
3946 		goto emul_write;
3947 
3948 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3949 
3950 	if (gpa == UNMAPPED_GVA ||
3951 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3952 		goto emul_write;
3953 
3954 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3955 		goto emul_write;
3956 
3957 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3958 	if (is_error_page(page)) {
3959 		kvm_release_page_clean(page);
3960 		goto emul_write;
3961 	}
3962 
3963 	kaddr = kmap_atomic(page);
3964 	kaddr += offset_in_page(gpa);
3965 	switch (bytes) {
3966 	case 1:
3967 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3968 		break;
3969 	case 2:
3970 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3971 		break;
3972 	case 4:
3973 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3974 		break;
3975 	case 8:
3976 		exchanged = CMPXCHG64(kaddr, old, new);
3977 		break;
3978 	default:
3979 		BUG();
3980 	}
3981 	kunmap_atomic(kaddr);
3982 	kvm_release_page_dirty(page);
3983 
3984 	if (!exchanged)
3985 		return X86EMUL_CMPXCHG_FAILED;
3986 
3987 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3988 
3989 	return X86EMUL_CONTINUE;
3990 
3991 emul_write:
3992 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3993 
3994 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3995 }
3996 
3997 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3998 {
3999 	/* TODO: String I/O for in kernel device */
4000 	int r;
4001 
4002 	if (vcpu->arch.pio.in)
4003 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4004 				    vcpu->arch.pio.size, pd);
4005 	else
4006 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4007 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4008 				     pd);
4009 	return r;
4010 }
4011 
4012 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4013 			       unsigned short port, void *val,
4014 			       unsigned int count, bool in)
4015 {
4016 	trace_kvm_pio(!in, port, size, count);
4017 
4018 	vcpu->arch.pio.port = port;
4019 	vcpu->arch.pio.in = in;
4020 	vcpu->arch.pio.count  = count;
4021 	vcpu->arch.pio.size = size;
4022 
4023 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4024 		vcpu->arch.pio.count = 0;
4025 		return 1;
4026 	}
4027 
4028 	vcpu->run->exit_reason = KVM_EXIT_IO;
4029 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4030 	vcpu->run->io.size = size;
4031 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4032 	vcpu->run->io.count = count;
4033 	vcpu->run->io.port = port;
4034 
4035 	return 0;
4036 }
4037 
4038 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4039 				    int size, unsigned short port, void *val,
4040 				    unsigned int count)
4041 {
4042 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4043 	int ret;
4044 
4045 	if (vcpu->arch.pio.count)
4046 		goto data_avail;
4047 
4048 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4049 	if (ret) {
4050 data_avail:
4051 		memcpy(val, vcpu->arch.pio_data, size * count);
4052 		vcpu->arch.pio.count = 0;
4053 		return 1;
4054 	}
4055 
4056 	return 0;
4057 }
4058 
4059 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4060 				     int size, unsigned short port,
4061 				     const void *val, unsigned int count)
4062 {
4063 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4064 
4065 	memcpy(vcpu->arch.pio_data, val, size * count);
4066 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4067 }
4068 
4069 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4070 {
4071 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4072 }
4073 
4074 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4075 {
4076 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4077 }
4078 
4079 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4080 {
4081 	if (!need_emulate_wbinvd(vcpu))
4082 		return X86EMUL_CONTINUE;
4083 
4084 	if (kvm_x86_ops->has_wbinvd_exit()) {
4085 		int cpu = get_cpu();
4086 
4087 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4088 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4089 				wbinvd_ipi, NULL, 1);
4090 		put_cpu();
4091 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4092 	} else
4093 		wbinvd();
4094 	return X86EMUL_CONTINUE;
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4097 
4098 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4099 {
4100 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4101 }
4102 
4103 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4104 {
4105 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4106 }
4107 
4108 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4109 {
4110 
4111 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4112 }
4113 
4114 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4115 {
4116 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4117 }
4118 
4119 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4120 {
4121 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4122 	unsigned long value;
4123 
4124 	switch (cr) {
4125 	case 0:
4126 		value = kvm_read_cr0(vcpu);
4127 		break;
4128 	case 2:
4129 		value = vcpu->arch.cr2;
4130 		break;
4131 	case 3:
4132 		value = kvm_read_cr3(vcpu);
4133 		break;
4134 	case 4:
4135 		value = kvm_read_cr4(vcpu);
4136 		break;
4137 	case 8:
4138 		value = kvm_get_cr8(vcpu);
4139 		break;
4140 	default:
4141 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4142 		return 0;
4143 	}
4144 
4145 	return value;
4146 }
4147 
4148 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4149 {
4150 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4151 	int res = 0;
4152 
4153 	switch (cr) {
4154 	case 0:
4155 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4156 		break;
4157 	case 2:
4158 		vcpu->arch.cr2 = val;
4159 		break;
4160 	case 3:
4161 		res = kvm_set_cr3(vcpu, val);
4162 		break;
4163 	case 4:
4164 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4165 		break;
4166 	case 8:
4167 		res = kvm_set_cr8(vcpu, val);
4168 		break;
4169 	default:
4170 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4171 		res = -1;
4172 	}
4173 
4174 	return res;
4175 }
4176 
4177 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4178 {
4179 	kvm_set_rflags(emul_to_vcpu(ctxt), val);
4180 }
4181 
4182 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4183 {
4184 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4185 }
4186 
4187 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4188 {
4189 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4190 }
4191 
4192 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4193 {
4194 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4195 }
4196 
4197 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4198 {
4199 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4200 }
4201 
4202 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4203 {
4204 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4205 }
4206 
4207 static unsigned long emulator_get_cached_segment_base(
4208 	struct x86_emulate_ctxt *ctxt, int seg)
4209 {
4210 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4211 }
4212 
4213 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4214 				 struct desc_struct *desc, u32 *base3,
4215 				 int seg)
4216 {
4217 	struct kvm_segment var;
4218 
4219 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4220 	*selector = var.selector;
4221 
4222 	if (var.unusable)
4223 		return false;
4224 
4225 	if (var.g)
4226 		var.limit >>= 12;
4227 	set_desc_limit(desc, var.limit);
4228 	set_desc_base(desc, (unsigned long)var.base);
4229 #ifdef CONFIG_X86_64
4230 	if (base3)
4231 		*base3 = var.base >> 32;
4232 #endif
4233 	desc->type = var.type;
4234 	desc->s = var.s;
4235 	desc->dpl = var.dpl;
4236 	desc->p = var.present;
4237 	desc->avl = var.avl;
4238 	desc->l = var.l;
4239 	desc->d = var.db;
4240 	desc->g = var.g;
4241 
4242 	return true;
4243 }
4244 
4245 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4246 				 struct desc_struct *desc, u32 base3,
4247 				 int seg)
4248 {
4249 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4250 	struct kvm_segment var;
4251 
4252 	var.selector = selector;
4253 	var.base = get_desc_base(desc);
4254 #ifdef CONFIG_X86_64
4255 	var.base |= ((u64)base3) << 32;
4256 #endif
4257 	var.limit = get_desc_limit(desc);
4258 	if (desc->g)
4259 		var.limit = (var.limit << 12) | 0xfff;
4260 	var.type = desc->type;
4261 	var.present = desc->p;
4262 	var.dpl = desc->dpl;
4263 	var.db = desc->d;
4264 	var.s = desc->s;
4265 	var.l = desc->l;
4266 	var.g = desc->g;
4267 	var.avl = desc->avl;
4268 	var.present = desc->p;
4269 	var.unusable = !var.present;
4270 	var.padding = 0;
4271 
4272 	kvm_set_segment(vcpu, &var, seg);
4273 	return;
4274 }
4275 
4276 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4277 			    u32 msr_index, u64 *pdata)
4278 {
4279 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4280 }
4281 
4282 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4283 			    u32 msr_index, u64 data)
4284 {
4285 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4286 }
4287 
4288 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4289 			     u32 pmc, u64 *pdata)
4290 {
4291 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4292 }
4293 
4294 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4295 {
4296 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4297 }
4298 
4299 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4300 {
4301 	preempt_disable();
4302 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4303 	/*
4304 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4305 	 * so it may be clear at this point.
4306 	 */
4307 	clts();
4308 }
4309 
4310 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4311 {
4312 	preempt_enable();
4313 }
4314 
4315 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4316 			      struct x86_instruction_info *info,
4317 			      enum x86_intercept_stage stage)
4318 {
4319 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4320 }
4321 
4322 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4323 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4324 {
4325 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4326 }
4327 
4328 static struct x86_emulate_ops emulate_ops = {
4329 	.read_std            = kvm_read_guest_virt_system,
4330 	.write_std           = kvm_write_guest_virt_system,
4331 	.fetch               = kvm_fetch_guest_virt,
4332 	.read_emulated       = emulator_read_emulated,
4333 	.write_emulated      = emulator_write_emulated,
4334 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4335 	.invlpg              = emulator_invlpg,
4336 	.pio_in_emulated     = emulator_pio_in_emulated,
4337 	.pio_out_emulated    = emulator_pio_out_emulated,
4338 	.get_segment         = emulator_get_segment,
4339 	.set_segment         = emulator_set_segment,
4340 	.get_cached_segment_base = emulator_get_cached_segment_base,
4341 	.get_gdt             = emulator_get_gdt,
4342 	.get_idt	     = emulator_get_idt,
4343 	.set_gdt             = emulator_set_gdt,
4344 	.set_idt	     = emulator_set_idt,
4345 	.get_cr              = emulator_get_cr,
4346 	.set_cr              = emulator_set_cr,
4347 	.set_rflags          = emulator_set_rflags,
4348 	.cpl                 = emulator_get_cpl,
4349 	.get_dr              = emulator_get_dr,
4350 	.set_dr              = emulator_set_dr,
4351 	.set_msr             = emulator_set_msr,
4352 	.get_msr             = emulator_get_msr,
4353 	.read_pmc            = emulator_read_pmc,
4354 	.halt                = emulator_halt,
4355 	.wbinvd              = emulator_wbinvd,
4356 	.fix_hypercall       = emulator_fix_hypercall,
4357 	.get_fpu             = emulator_get_fpu,
4358 	.put_fpu             = emulator_put_fpu,
4359 	.intercept           = emulator_intercept,
4360 	.get_cpuid           = emulator_get_cpuid,
4361 };
4362 
4363 static void cache_all_regs(struct kvm_vcpu *vcpu)
4364 {
4365 	kvm_register_read(vcpu, VCPU_REGS_RAX);
4366 	kvm_register_read(vcpu, VCPU_REGS_RSP);
4367 	kvm_register_read(vcpu, VCPU_REGS_RIP);
4368 	vcpu->arch.regs_dirty = ~0;
4369 }
4370 
4371 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4372 {
4373 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4374 	/*
4375 	 * an sti; sti; sequence only disable interrupts for the first
4376 	 * instruction. So, if the last instruction, be it emulated or
4377 	 * not, left the system with the INT_STI flag enabled, it
4378 	 * means that the last instruction is an sti. We should not
4379 	 * leave the flag on in this case. The same goes for mov ss
4380 	 */
4381 	if (!(int_shadow & mask))
4382 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4383 }
4384 
4385 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4386 {
4387 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4388 	if (ctxt->exception.vector == PF_VECTOR)
4389 		kvm_propagate_fault(vcpu, &ctxt->exception);
4390 	else if (ctxt->exception.error_code_valid)
4391 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4392 				      ctxt->exception.error_code);
4393 	else
4394 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4395 }
4396 
4397 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4398 			      const unsigned long *regs)
4399 {
4400 	memset(&ctxt->twobyte, 0,
4401 	       (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4402 	memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4403 
4404 	ctxt->fetch.start = 0;
4405 	ctxt->fetch.end = 0;
4406 	ctxt->io_read.pos = 0;
4407 	ctxt->io_read.end = 0;
4408 	ctxt->mem_read.pos = 0;
4409 	ctxt->mem_read.end = 0;
4410 }
4411 
4412 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4413 {
4414 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4415 	int cs_db, cs_l;
4416 
4417 	/*
4418 	 * TODO: fix emulate.c to use guest_read/write_register
4419 	 * instead of direct ->regs accesses, can save hundred cycles
4420 	 * on Intel for instructions that don't read/change RSP, for
4421 	 * for example.
4422 	 */
4423 	cache_all_regs(vcpu);
4424 
4425 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4426 
4427 	ctxt->eflags = kvm_get_rflags(vcpu);
4428 	ctxt->eip = kvm_rip_read(vcpu);
4429 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4430 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4431 		     cs_l				? X86EMUL_MODE_PROT64 :
4432 		     cs_db				? X86EMUL_MODE_PROT32 :
4433 							  X86EMUL_MODE_PROT16;
4434 	ctxt->guest_mode = is_guest_mode(vcpu);
4435 
4436 	init_decode_cache(ctxt, vcpu->arch.regs);
4437 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4438 }
4439 
4440 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4441 {
4442 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4443 	int ret;
4444 
4445 	init_emulate_ctxt(vcpu);
4446 
4447 	ctxt->op_bytes = 2;
4448 	ctxt->ad_bytes = 2;
4449 	ctxt->_eip = ctxt->eip + inc_eip;
4450 	ret = emulate_int_real(ctxt, irq);
4451 
4452 	if (ret != X86EMUL_CONTINUE)
4453 		return EMULATE_FAIL;
4454 
4455 	ctxt->eip = ctxt->_eip;
4456 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4457 	kvm_rip_write(vcpu, ctxt->eip);
4458 	kvm_set_rflags(vcpu, ctxt->eflags);
4459 
4460 	if (irq == NMI_VECTOR)
4461 		vcpu->arch.nmi_pending = 0;
4462 	else
4463 		vcpu->arch.interrupt.pending = false;
4464 
4465 	return EMULATE_DONE;
4466 }
4467 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4468 
4469 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4470 {
4471 	int r = EMULATE_DONE;
4472 
4473 	++vcpu->stat.insn_emulation_fail;
4474 	trace_kvm_emulate_insn_failed(vcpu);
4475 	if (!is_guest_mode(vcpu)) {
4476 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4477 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4478 		vcpu->run->internal.ndata = 0;
4479 		r = EMULATE_FAIL;
4480 	}
4481 	kvm_queue_exception(vcpu, UD_VECTOR);
4482 
4483 	return r;
4484 }
4485 
4486 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4487 {
4488 	gpa_t gpa;
4489 
4490 	if (tdp_enabled)
4491 		return false;
4492 
4493 	/*
4494 	 * if emulation was due to access to shadowed page table
4495 	 * and it failed try to unshadow page and re-entetr the
4496 	 * guest to let CPU execute the instruction.
4497 	 */
4498 	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4499 		return true;
4500 
4501 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4502 
4503 	if (gpa == UNMAPPED_GVA)
4504 		return true; /* let cpu generate fault */
4505 
4506 	if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4507 		return true;
4508 
4509 	return false;
4510 }
4511 
4512 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4513 			      unsigned long cr2,  int emulation_type)
4514 {
4515 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4516 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4517 
4518 	last_retry_eip = vcpu->arch.last_retry_eip;
4519 	last_retry_addr = vcpu->arch.last_retry_addr;
4520 
4521 	/*
4522 	 * If the emulation is caused by #PF and it is non-page_table
4523 	 * writing instruction, it means the VM-EXIT is caused by shadow
4524 	 * page protected, we can zap the shadow page and retry this
4525 	 * instruction directly.
4526 	 *
4527 	 * Note: if the guest uses a non-page-table modifying instruction
4528 	 * on the PDE that points to the instruction, then we will unmap
4529 	 * the instruction and go to an infinite loop. So, we cache the
4530 	 * last retried eip and the last fault address, if we meet the eip
4531 	 * and the address again, we can break out of the potential infinite
4532 	 * loop.
4533 	 */
4534 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4535 
4536 	if (!(emulation_type & EMULTYPE_RETRY))
4537 		return false;
4538 
4539 	if (x86_page_table_writing_insn(ctxt))
4540 		return false;
4541 
4542 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4543 		return false;
4544 
4545 	vcpu->arch.last_retry_eip = ctxt->eip;
4546 	vcpu->arch.last_retry_addr = cr2;
4547 
4548 	if (!vcpu->arch.mmu.direct_map)
4549 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4550 
4551 	kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4552 
4553 	return true;
4554 }
4555 
4556 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4557 			    unsigned long cr2,
4558 			    int emulation_type,
4559 			    void *insn,
4560 			    int insn_len)
4561 {
4562 	int r;
4563 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4564 	bool writeback = true;
4565 
4566 	kvm_clear_exception_queue(vcpu);
4567 
4568 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4569 		init_emulate_ctxt(vcpu);
4570 		ctxt->interruptibility = 0;
4571 		ctxt->have_exception = false;
4572 		ctxt->perm_ok = false;
4573 
4574 		ctxt->only_vendor_specific_insn
4575 			= emulation_type & EMULTYPE_TRAP_UD;
4576 
4577 		r = x86_decode_insn(ctxt, insn, insn_len);
4578 
4579 		trace_kvm_emulate_insn_start(vcpu);
4580 		++vcpu->stat.insn_emulation;
4581 		if (r != EMULATION_OK)  {
4582 			if (emulation_type & EMULTYPE_TRAP_UD)
4583 				return EMULATE_FAIL;
4584 			if (reexecute_instruction(vcpu, cr2))
4585 				return EMULATE_DONE;
4586 			if (emulation_type & EMULTYPE_SKIP)
4587 				return EMULATE_FAIL;
4588 			return handle_emulation_failure(vcpu);
4589 		}
4590 	}
4591 
4592 	if (emulation_type & EMULTYPE_SKIP) {
4593 		kvm_rip_write(vcpu, ctxt->_eip);
4594 		return EMULATE_DONE;
4595 	}
4596 
4597 	if (retry_instruction(ctxt, cr2, emulation_type))
4598 		return EMULATE_DONE;
4599 
4600 	/* this is needed for vmware backdoor interface to work since it
4601 	   changes registers values  during IO operation */
4602 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4603 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4604 		memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4605 	}
4606 
4607 restart:
4608 	r = x86_emulate_insn(ctxt);
4609 
4610 	if (r == EMULATION_INTERCEPTED)
4611 		return EMULATE_DONE;
4612 
4613 	if (r == EMULATION_FAILED) {
4614 		if (reexecute_instruction(vcpu, cr2))
4615 			return EMULATE_DONE;
4616 
4617 		return handle_emulation_failure(vcpu);
4618 	}
4619 
4620 	if (ctxt->have_exception) {
4621 		inject_emulated_exception(vcpu);
4622 		r = EMULATE_DONE;
4623 	} else if (vcpu->arch.pio.count) {
4624 		if (!vcpu->arch.pio.in)
4625 			vcpu->arch.pio.count = 0;
4626 		else
4627 			writeback = false;
4628 		r = EMULATE_DO_MMIO;
4629 	} else if (vcpu->mmio_needed) {
4630 		if (!vcpu->mmio_is_write)
4631 			writeback = false;
4632 		r = EMULATE_DO_MMIO;
4633 	} else if (r == EMULATION_RESTART)
4634 		goto restart;
4635 	else
4636 		r = EMULATE_DONE;
4637 
4638 	if (writeback) {
4639 		toggle_interruptibility(vcpu, ctxt->interruptibility);
4640 		kvm_set_rflags(vcpu, ctxt->eflags);
4641 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4642 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4643 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4644 		kvm_rip_write(vcpu, ctxt->eip);
4645 	} else
4646 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4647 
4648 	return r;
4649 }
4650 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4651 
4652 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4653 {
4654 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4655 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4656 					    size, port, &val, 1);
4657 	/* do not return to emulator after return from userspace */
4658 	vcpu->arch.pio.count = 0;
4659 	return ret;
4660 }
4661 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4662 
4663 static void tsc_bad(void *info)
4664 {
4665 	__this_cpu_write(cpu_tsc_khz, 0);
4666 }
4667 
4668 static void tsc_khz_changed(void *data)
4669 {
4670 	struct cpufreq_freqs *freq = data;
4671 	unsigned long khz = 0;
4672 
4673 	if (data)
4674 		khz = freq->new;
4675 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4676 		khz = cpufreq_quick_get(raw_smp_processor_id());
4677 	if (!khz)
4678 		khz = tsc_khz;
4679 	__this_cpu_write(cpu_tsc_khz, khz);
4680 }
4681 
4682 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4683 				     void *data)
4684 {
4685 	struct cpufreq_freqs *freq = data;
4686 	struct kvm *kvm;
4687 	struct kvm_vcpu *vcpu;
4688 	int i, send_ipi = 0;
4689 
4690 	/*
4691 	 * We allow guests to temporarily run on slowing clocks,
4692 	 * provided we notify them after, or to run on accelerating
4693 	 * clocks, provided we notify them before.  Thus time never
4694 	 * goes backwards.
4695 	 *
4696 	 * However, we have a problem.  We can't atomically update
4697 	 * the frequency of a given CPU from this function; it is
4698 	 * merely a notifier, which can be called from any CPU.
4699 	 * Changing the TSC frequency at arbitrary points in time
4700 	 * requires a recomputation of local variables related to
4701 	 * the TSC for each VCPU.  We must flag these local variables
4702 	 * to be updated and be sure the update takes place with the
4703 	 * new frequency before any guests proceed.
4704 	 *
4705 	 * Unfortunately, the combination of hotplug CPU and frequency
4706 	 * change creates an intractable locking scenario; the order
4707 	 * of when these callouts happen is undefined with respect to
4708 	 * CPU hotplug, and they can race with each other.  As such,
4709 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4710 	 * undefined; you can actually have a CPU frequency change take
4711 	 * place in between the computation of X and the setting of the
4712 	 * variable.  To protect against this problem, all updates of
4713 	 * the per_cpu tsc_khz variable are done in an interrupt
4714 	 * protected IPI, and all callers wishing to update the value
4715 	 * must wait for a synchronous IPI to complete (which is trivial
4716 	 * if the caller is on the CPU already).  This establishes the
4717 	 * necessary total order on variable updates.
4718 	 *
4719 	 * Note that because a guest time update may take place
4720 	 * anytime after the setting of the VCPU's request bit, the
4721 	 * correct TSC value must be set before the request.  However,
4722 	 * to ensure the update actually makes it to any guest which
4723 	 * starts running in hardware virtualization between the set
4724 	 * and the acquisition of the spinlock, we must also ping the
4725 	 * CPU after setting the request bit.
4726 	 *
4727 	 */
4728 
4729 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4730 		return 0;
4731 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4732 		return 0;
4733 
4734 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4735 
4736 	raw_spin_lock(&kvm_lock);
4737 	list_for_each_entry(kvm, &vm_list, vm_list) {
4738 		kvm_for_each_vcpu(i, vcpu, kvm) {
4739 			if (vcpu->cpu != freq->cpu)
4740 				continue;
4741 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4742 			if (vcpu->cpu != smp_processor_id())
4743 				send_ipi = 1;
4744 		}
4745 	}
4746 	raw_spin_unlock(&kvm_lock);
4747 
4748 	if (freq->old < freq->new && send_ipi) {
4749 		/*
4750 		 * We upscale the frequency.  Must make the guest
4751 		 * doesn't see old kvmclock values while running with
4752 		 * the new frequency, otherwise we risk the guest sees
4753 		 * time go backwards.
4754 		 *
4755 		 * In case we update the frequency for another cpu
4756 		 * (which might be in guest context) send an interrupt
4757 		 * to kick the cpu out of guest context.  Next time
4758 		 * guest context is entered kvmclock will be updated,
4759 		 * so the guest will not see stale values.
4760 		 */
4761 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4762 	}
4763 	return 0;
4764 }
4765 
4766 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4767 	.notifier_call  = kvmclock_cpufreq_notifier
4768 };
4769 
4770 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4771 					unsigned long action, void *hcpu)
4772 {
4773 	unsigned int cpu = (unsigned long)hcpu;
4774 
4775 	switch (action) {
4776 		case CPU_ONLINE:
4777 		case CPU_DOWN_FAILED:
4778 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4779 			break;
4780 		case CPU_DOWN_PREPARE:
4781 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
4782 			break;
4783 	}
4784 	return NOTIFY_OK;
4785 }
4786 
4787 static struct notifier_block kvmclock_cpu_notifier_block = {
4788 	.notifier_call  = kvmclock_cpu_notifier,
4789 	.priority = -INT_MAX
4790 };
4791 
4792 static void kvm_timer_init(void)
4793 {
4794 	int cpu;
4795 
4796 	max_tsc_khz = tsc_khz;
4797 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4798 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4799 #ifdef CONFIG_CPU_FREQ
4800 		struct cpufreq_policy policy;
4801 		memset(&policy, 0, sizeof(policy));
4802 		cpu = get_cpu();
4803 		cpufreq_get_policy(&policy, cpu);
4804 		if (policy.cpuinfo.max_freq)
4805 			max_tsc_khz = policy.cpuinfo.max_freq;
4806 		put_cpu();
4807 #endif
4808 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4809 					  CPUFREQ_TRANSITION_NOTIFIER);
4810 	}
4811 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4812 	for_each_online_cpu(cpu)
4813 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4814 }
4815 
4816 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4817 
4818 int kvm_is_in_guest(void)
4819 {
4820 	return __this_cpu_read(current_vcpu) != NULL;
4821 }
4822 
4823 static int kvm_is_user_mode(void)
4824 {
4825 	int user_mode = 3;
4826 
4827 	if (__this_cpu_read(current_vcpu))
4828 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4829 
4830 	return user_mode != 0;
4831 }
4832 
4833 static unsigned long kvm_get_guest_ip(void)
4834 {
4835 	unsigned long ip = 0;
4836 
4837 	if (__this_cpu_read(current_vcpu))
4838 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4839 
4840 	return ip;
4841 }
4842 
4843 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4844 	.is_in_guest		= kvm_is_in_guest,
4845 	.is_user_mode		= kvm_is_user_mode,
4846 	.get_guest_ip		= kvm_get_guest_ip,
4847 };
4848 
4849 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4850 {
4851 	__this_cpu_write(current_vcpu, vcpu);
4852 }
4853 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4854 
4855 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4856 {
4857 	__this_cpu_write(current_vcpu, NULL);
4858 }
4859 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4860 
4861 static void kvm_set_mmio_spte_mask(void)
4862 {
4863 	u64 mask;
4864 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
4865 
4866 	/*
4867 	 * Set the reserved bits and the present bit of an paging-structure
4868 	 * entry to generate page fault with PFER.RSV = 1.
4869 	 */
4870 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4871 	mask |= 1ull;
4872 
4873 #ifdef CONFIG_X86_64
4874 	/*
4875 	 * If reserved bit is not supported, clear the present bit to disable
4876 	 * mmio page fault.
4877 	 */
4878 	if (maxphyaddr == 52)
4879 		mask &= ~1ull;
4880 #endif
4881 
4882 	kvm_mmu_set_mmio_spte_mask(mask);
4883 }
4884 
4885 int kvm_arch_init(void *opaque)
4886 {
4887 	int r;
4888 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4889 
4890 	if (kvm_x86_ops) {
4891 		printk(KERN_ERR "kvm: already loaded the other module\n");
4892 		r = -EEXIST;
4893 		goto out;
4894 	}
4895 
4896 	if (!ops->cpu_has_kvm_support()) {
4897 		printk(KERN_ERR "kvm: no hardware support\n");
4898 		r = -EOPNOTSUPP;
4899 		goto out;
4900 	}
4901 	if (ops->disabled_by_bios()) {
4902 		printk(KERN_ERR "kvm: disabled by bios\n");
4903 		r = -EOPNOTSUPP;
4904 		goto out;
4905 	}
4906 
4907 	r = kvm_mmu_module_init();
4908 	if (r)
4909 		goto out;
4910 
4911 	kvm_set_mmio_spte_mask();
4912 	kvm_init_msr_list();
4913 
4914 	kvm_x86_ops = ops;
4915 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4916 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
4917 
4918 	kvm_timer_init();
4919 
4920 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
4921 
4922 	if (cpu_has_xsave)
4923 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4924 
4925 	return 0;
4926 
4927 out:
4928 	return r;
4929 }
4930 
4931 void kvm_arch_exit(void)
4932 {
4933 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4934 
4935 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4936 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4937 					    CPUFREQ_TRANSITION_NOTIFIER);
4938 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4939 	kvm_x86_ops = NULL;
4940 	kvm_mmu_module_exit();
4941 }
4942 
4943 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4944 {
4945 	++vcpu->stat.halt_exits;
4946 	if (irqchip_in_kernel(vcpu->kvm)) {
4947 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4948 		return 1;
4949 	} else {
4950 		vcpu->run->exit_reason = KVM_EXIT_HLT;
4951 		return 0;
4952 	}
4953 }
4954 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4955 
4956 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4957 {
4958 	u64 param, ingpa, outgpa, ret;
4959 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4960 	bool fast, longmode;
4961 	int cs_db, cs_l;
4962 
4963 	/*
4964 	 * hypercall generates UD from non zero cpl and real mode
4965 	 * per HYPER-V spec
4966 	 */
4967 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4968 		kvm_queue_exception(vcpu, UD_VECTOR);
4969 		return 0;
4970 	}
4971 
4972 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4973 	longmode = is_long_mode(vcpu) && cs_l == 1;
4974 
4975 	if (!longmode) {
4976 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4977 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4978 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4979 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4980 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4981 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4982 	}
4983 #ifdef CONFIG_X86_64
4984 	else {
4985 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4986 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4987 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4988 	}
4989 #endif
4990 
4991 	code = param & 0xffff;
4992 	fast = (param >> 16) & 0x1;
4993 	rep_cnt = (param >> 32) & 0xfff;
4994 	rep_idx = (param >> 48) & 0xfff;
4995 
4996 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4997 
4998 	switch (code) {
4999 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5000 		kvm_vcpu_on_spin(vcpu);
5001 		break;
5002 	default:
5003 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5004 		break;
5005 	}
5006 
5007 	ret = res | (((u64)rep_done & 0xfff) << 32);
5008 	if (longmode) {
5009 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5010 	} else {
5011 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5012 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5013 	}
5014 
5015 	return 1;
5016 }
5017 
5018 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5019 {
5020 	unsigned long nr, a0, a1, a2, a3, ret;
5021 	int r = 1;
5022 
5023 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5024 		return kvm_hv_hypercall(vcpu);
5025 
5026 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5027 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5028 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5029 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5030 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5031 
5032 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5033 
5034 	if (!is_long_mode(vcpu)) {
5035 		nr &= 0xFFFFFFFF;
5036 		a0 &= 0xFFFFFFFF;
5037 		a1 &= 0xFFFFFFFF;
5038 		a2 &= 0xFFFFFFFF;
5039 		a3 &= 0xFFFFFFFF;
5040 	}
5041 
5042 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5043 		ret = -KVM_EPERM;
5044 		goto out;
5045 	}
5046 
5047 	switch (nr) {
5048 	case KVM_HC_VAPIC_POLL_IRQ:
5049 		ret = 0;
5050 		break;
5051 	default:
5052 		ret = -KVM_ENOSYS;
5053 		break;
5054 	}
5055 out:
5056 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5057 	++vcpu->stat.hypercalls;
5058 	return r;
5059 }
5060 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5061 
5062 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5063 {
5064 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5065 	char instruction[3];
5066 	unsigned long rip = kvm_rip_read(vcpu);
5067 
5068 	/*
5069 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
5070 	 * to ensure that the updated hypercall appears atomically across all
5071 	 * VCPUs.
5072 	 */
5073 	kvm_mmu_zap_all(vcpu->kvm);
5074 
5075 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5076 
5077 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5078 }
5079 
5080 /*
5081  * Check if userspace requested an interrupt window, and that the
5082  * interrupt window is open.
5083  *
5084  * No need to exit to userspace if we already have an interrupt queued.
5085  */
5086 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5087 {
5088 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5089 		vcpu->run->request_interrupt_window &&
5090 		kvm_arch_interrupt_allowed(vcpu));
5091 }
5092 
5093 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5094 {
5095 	struct kvm_run *kvm_run = vcpu->run;
5096 
5097 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5098 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5099 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5100 	if (irqchip_in_kernel(vcpu->kvm))
5101 		kvm_run->ready_for_interrupt_injection = 1;
5102 	else
5103 		kvm_run->ready_for_interrupt_injection =
5104 			kvm_arch_interrupt_allowed(vcpu) &&
5105 			!kvm_cpu_has_interrupt(vcpu) &&
5106 			!kvm_event_needs_reinjection(vcpu);
5107 }
5108 
5109 static void vapic_enter(struct kvm_vcpu *vcpu)
5110 {
5111 	struct kvm_lapic *apic = vcpu->arch.apic;
5112 	struct page *page;
5113 
5114 	if (!apic || !apic->vapic_addr)
5115 		return;
5116 
5117 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5118 
5119 	vcpu->arch.apic->vapic_page = page;
5120 }
5121 
5122 static void vapic_exit(struct kvm_vcpu *vcpu)
5123 {
5124 	struct kvm_lapic *apic = vcpu->arch.apic;
5125 	int idx;
5126 
5127 	if (!apic || !apic->vapic_addr)
5128 		return;
5129 
5130 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5131 	kvm_release_page_dirty(apic->vapic_page);
5132 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5133 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5134 }
5135 
5136 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5137 {
5138 	int max_irr, tpr;
5139 
5140 	if (!kvm_x86_ops->update_cr8_intercept)
5141 		return;
5142 
5143 	if (!vcpu->arch.apic)
5144 		return;
5145 
5146 	if (!vcpu->arch.apic->vapic_addr)
5147 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5148 	else
5149 		max_irr = -1;
5150 
5151 	if (max_irr != -1)
5152 		max_irr >>= 4;
5153 
5154 	tpr = kvm_lapic_get_cr8(vcpu);
5155 
5156 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5157 }
5158 
5159 static void inject_pending_event(struct kvm_vcpu *vcpu)
5160 {
5161 	/* try to reinject previous events if any */
5162 	if (vcpu->arch.exception.pending) {
5163 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5164 					vcpu->arch.exception.has_error_code,
5165 					vcpu->arch.exception.error_code);
5166 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5167 					  vcpu->arch.exception.has_error_code,
5168 					  vcpu->arch.exception.error_code,
5169 					  vcpu->arch.exception.reinject);
5170 		return;
5171 	}
5172 
5173 	if (vcpu->arch.nmi_injected) {
5174 		kvm_x86_ops->set_nmi(vcpu);
5175 		return;
5176 	}
5177 
5178 	if (vcpu->arch.interrupt.pending) {
5179 		kvm_x86_ops->set_irq(vcpu);
5180 		return;
5181 	}
5182 
5183 	/* try to inject new event if pending */
5184 	if (vcpu->arch.nmi_pending) {
5185 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5186 			--vcpu->arch.nmi_pending;
5187 			vcpu->arch.nmi_injected = true;
5188 			kvm_x86_ops->set_nmi(vcpu);
5189 		}
5190 	} else if (kvm_cpu_has_interrupt(vcpu)) {
5191 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5192 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5193 					    false);
5194 			kvm_x86_ops->set_irq(vcpu);
5195 		}
5196 	}
5197 }
5198 
5199 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5200 {
5201 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5202 			!vcpu->guest_xcr0_loaded) {
5203 		/* kvm_set_xcr() also depends on this */
5204 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5205 		vcpu->guest_xcr0_loaded = 1;
5206 	}
5207 }
5208 
5209 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5210 {
5211 	if (vcpu->guest_xcr0_loaded) {
5212 		if (vcpu->arch.xcr0 != host_xcr0)
5213 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5214 		vcpu->guest_xcr0_loaded = 0;
5215 	}
5216 }
5217 
5218 static void process_nmi(struct kvm_vcpu *vcpu)
5219 {
5220 	unsigned limit = 2;
5221 
5222 	/*
5223 	 * x86 is limited to one NMI running, and one NMI pending after it.
5224 	 * If an NMI is already in progress, limit further NMIs to just one.
5225 	 * Otherwise, allow two (and we'll inject the first one immediately).
5226 	 */
5227 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5228 		limit = 1;
5229 
5230 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5231 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5232 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5233 }
5234 
5235 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5236 {
5237 	int r;
5238 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5239 		vcpu->run->request_interrupt_window;
5240 	bool req_immediate_exit = 0;
5241 
5242 	if (vcpu->requests) {
5243 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5244 			kvm_mmu_unload(vcpu);
5245 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5246 			__kvm_migrate_timers(vcpu);
5247 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5248 			r = kvm_guest_time_update(vcpu);
5249 			if (unlikely(r))
5250 				goto out;
5251 		}
5252 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5253 			kvm_mmu_sync_roots(vcpu);
5254 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5255 			kvm_x86_ops->tlb_flush(vcpu);
5256 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5257 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5258 			r = 0;
5259 			goto out;
5260 		}
5261 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5262 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5263 			r = 0;
5264 			goto out;
5265 		}
5266 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5267 			vcpu->fpu_active = 0;
5268 			kvm_x86_ops->fpu_deactivate(vcpu);
5269 		}
5270 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5271 			/* Page is swapped out. Do synthetic halt */
5272 			vcpu->arch.apf.halted = true;
5273 			r = 1;
5274 			goto out;
5275 		}
5276 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5277 			record_steal_time(vcpu);
5278 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5279 			process_nmi(vcpu);
5280 		req_immediate_exit =
5281 			kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5282 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5283 			kvm_handle_pmu_event(vcpu);
5284 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5285 			kvm_deliver_pmi(vcpu);
5286 	}
5287 
5288 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5289 		inject_pending_event(vcpu);
5290 
5291 		/* enable NMI/IRQ window open exits if needed */
5292 		if (vcpu->arch.nmi_pending)
5293 			kvm_x86_ops->enable_nmi_window(vcpu);
5294 		else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5295 			kvm_x86_ops->enable_irq_window(vcpu);
5296 
5297 		if (kvm_lapic_enabled(vcpu)) {
5298 			update_cr8_intercept(vcpu);
5299 			kvm_lapic_sync_to_vapic(vcpu);
5300 		}
5301 	}
5302 
5303 	r = kvm_mmu_reload(vcpu);
5304 	if (unlikely(r)) {
5305 		goto cancel_injection;
5306 	}
5307 
5308 	preempt_disable();
5309 
5310 	kvm_x86_ops->prepare_guest_switch(vcpu);
5311 	if (vcpu->fpu_active)
5312 		kvm_load_guest_fpu(vcpu);
5313 	kvm_load_guest_xcr0(vcpu);
5314 
5315 	vcpu->mode = IN_GUEST_MODE;
5316 
5317 	/* We should set ->mode before check ->requests,
5318 	 * see the comment in make_all_cpus_request.
5319 	 */
5320 	smp_mb();
5321 
5322 	local_irq_disable();
5323 
5324 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5325 	    || need_resched() || signal_pending(current)) {
5326 		vcpu->mode = OUTSIDE_GUEST_MODE;
5327 		smp_wmb();
5328 		local_irq_enable();
5329 		preempt_enable();
5330 		r = 1;
5331 		goto cancel_injection;
5332 	}
5333 
5334 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5335 
5336 	if (req_immediate_exit)
5337 		smp_send_reschedule(vcpu->cpu);
5338 
5339 	kvm_guest_enter();
5340 
5341 	if (unlikely(vcpu->arch.switch_db_regs)) {
5342 		set_debugreg(0, 7);
5343 		set_debugreg(vcpu->arch.eff_db[0], 0);
5344 		set_debugreg(vcpu->arch.eff_db[1], 1);
5345 		set_debugreg(vcpu->arch.eff_db[2], 2);
5346 		set_debugreg(vcpu->arch.eff_db[3], 3);
5347 	}
5348 
5349 	trace_kvm_entry(vcpu->vcpu_id);
5350 	kvm_x86_ops->run(vcpu);
5351 
5352 	/*
5353 	 * If the guest has used debug registers, at least dr7
5354 	 * will be disabled while returning to the host.
5355 	 * If we don't have active breakpoints in the host, we don't
5356 	 * care about the messed up debug address registers. But if
5357 	 * we have some of them active, restore the old state.
5358 	 */
5359 	if (hw_breakpoint_active())
5360 		hw_breakpoint_restore();
5361 
5362 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5363 
5364 	vcpu->mode = OUTSIDE_GUEST_MODE;
5365 	smp_wmb();
5366 	local_irq_enable();
5367 
5368 	++vcpu->stat.exits;
5369 
5370 	/*
5371 	 * We must have an instruction between local_irq_enable() and
5372 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5373 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5374 	 * But we need to prevent reordering, hence this barrier():
5375 	 */
5376 	barrier();
5377 
5378 	kvm_guest_exit();
5379 
5380 	preempt_enable();
5381 
5382 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5383 
5384 	/*
5385 	 * Profile KVM exit RIPs:
5386 	 */
5387 	if (unlikely(prof_on == KVM_PROFILING)) {
5388 		unsigned long rip = kvm_rip_read(vcpu);
5389 		profile_hit(KVM_PROFILING, (void *)rip);
5390 	}
5391 
5392 	if (unlikely(vcpu->arch.tsc_always_catchup))
5393 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5394 
5395 	if (vcpu->arch.apic_attention)
5396 		kvm_lapic_sync_from_vapic(vcpu);
5397 
5398 	r = kvm_x86_ops->handle_exit(vcpu);
5399 	return r;
5400 
5401 cancel_injection:
5402 	kvm_x86_ops->cancel_injection(vcpu);
5403 	if (unlikely(vcpu->arch.apic_attention))
5404 		kvm_lapic_sync_from_vapic(vcpu);
5405 out:
5406 	return r;
5407 }
5408 
5409 
5410 static int __vcpu_run(struct kvm_vcpu *vcpu)
5411 {
5412 	int r;
5413 	struct kvm *kvm = vcpu->kvm;
5414 
5415 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5416 		pr_debug("vcpu %d received sipi with vector # %x\n",
5417 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5418 		kvm_lapic_reset(vcpu);
5419 		r = kvm_arch_vcpu_reset(vcpu);
5420 		if (r)
5421 			return r;
5422 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5423 	}
5424 
5425 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5426 	vapic_enter(vcpu);
5427 
5428 	r = 1;
5429 	while (r > 0) {
5430 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5431 		    !vcpu->arch.apf.halted)
5432 			r = vcpu_enter_guest(vcpu);
5433 		else {
5434 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5435 			kvm_vcpu_block(vcpu);
5436 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5437 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5438 			{
5439 				switch(vcpu->arch.mp_state) {
5440 				case KVM_MP_STATE_HALTED:
5441 					vcpu->arch.mp_state =
5442 						KVM_MP_STATE_RUNNABLE;
5443 				case KVM_MP_STATE_RUNNABLE:
5444 					vcpu->arch.apf.halted = false;
5445 					break;
5446 				case KVM_MP_STATE_SIPI_RECEIVED:
5447 				default:
5448 					r = -EINTR;
5449 					break;
5450 				}
5451 			}
5452 		}
5453 
5454 		if (r <= 0)
5455 			break;
5456 
5457 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5458 		if (kvm_cpu_has_pending_timer(vcpu))
5459 			kvm_inject_pending_timer_irqs(vcpu);
5460 
5461 		if (dm_request_for_irq_injection(vcpu)) {
5462 			r = -EINTR;
5463 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5464 			++vcpu->stat.request_irq_exits;
5465 		}
5466 
5467 		kvm_check_async_pf_completion(vcpu);
5468 
5469 		if (signal_pending(current)) {
5470 			r = -EINTR;
5471 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5472 			++vcpu->stat.signal_exits;
5473 		}
5474 		if (need_resched()) {
5475 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5476 			kvm_resched(vcpu);
5477 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5478 		}
5479 	}
5480 
5481 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5482 
5483 	vapic_exit(vcpu);
5484 
5485 	return r;
5486 }
5487 
5488 /*
5489  * Implements the following, as a state machine:
5490  *
5491  * read:
5492  *   for each fragment
5493  *     write gpa, len
5494  *     exit
5495  *     copy data
5496  *   execute insn
5497  *
5498  * write:
5499  *   for each fragment
5500  *      write gpa, len
5501  *      copy data
5502  *      exit
5503  */
5504 static int complete_mmio(struct kvm_vcpu *vcpu)
5505 {
5506 	struct kvm_run *run = vcpu->run;
5507 	struct kvm_mmio_fragment *frag;
5508 	int r;
5509 
5510 	if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5511 		return 1;
5512 
5513 	if (vcpu->mmio_needed) {
5514 		/* Complete previous fragment */
5515 		frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5516 		if (!vcpu->mmio_is_write)
5517 			memcpy(frag->data, run->mmio.data, frag->len);
5518 		if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5519 			vcpu->mmio_needed = 0;
5520 			if (vcpu->mmio_is_write)
5521 				return 1;
5522 			vcpu->mmio_read_completed = 1;
5523 			goto done;
5524 		}
5525 		/* Initiate next fragment */
5526 		++frag;
5527 		run->exit_reason = KVM_EXIT_MMIO;
5528 		run->mmio.phys_addr = frag->gpa;
5529 		if (vcpu->mmio_is_write)
5530 			memcpy(run->mmio.data, frag->data, frag->len);
5531 		run->mmio.len = frag->len;
5532 		run->mmio.is_write = vcpu->mmio_is_write;
5533 		return 0;
5534 
5535 	}
5536 done:
5537 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5538 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5539 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5540 	if (r != EMULATE_DONE)
5541 		return 0;
5542 	return 1;
5543 }
5544 
5545 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5546 {
5547 	int r;
5548 	sigset_t sigsaved;
5549 
5550 	if (!tsk_used_math(current) && init_fpu(current))
5551 		return -ENOMEM;
5552 
5553 	if (vcpu->sigset_active)
5554 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5555 
5556 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5557 		kvm_vcpu_block(vcpu);
5558 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5559 		r = -EAGAIN;
5560 		goto out;
5561 	}
5562 
5563 	/* re-sync apic's tpr */
5564 	if (!irqchip_in_kernel(vcpu->kvm)) {
5565 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5566 			r = -EINVAL;
5567 			goto out;
5568 		}
5569 	}
5570 
5571 	r = complete_mmio(vcpu);
5572 	if (r <= 0)
5573 		goto out;
5574 
5575 	r = __vcpu_run(vcpu);
5576 
5577 out:
5578 	post_kvm_run_save(vcpu);
5579 	if (vcpu->sigset_active)
5580 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5581 
5582 	return r;
5583 }
5584 
5585 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5586 {
5587 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5588 		/*
5589 		 * We are here if userspace calls get_regs() in the middle of
5590 		 * instruction emulation. Registers state needs to be copied
5591 		 * back from emulation context to vcpu. Usrapace shouldn't do
5592 		 * that usually, but some bad designed PV devices (vmware
5593 		 * backdoor interface) need this to work
5594 		 */
5595 		struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5596 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5597 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5598 	}
5599 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5600 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5601 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5602 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5603 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5604 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5605 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5606 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5607 #ifdef CONFIG_X86_64
5608 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5609 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5610 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5611 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5612 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5613 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5614 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5615 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5616 #endif
5617 
5618 	regs->rip = kvm_rip_read(vcpu);
5619 	regs->rflags = kvm_get_rflags(vcpu);
5620 
5621 	return 0;
5622 }
5623 
5624 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5625 {
5626 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5627 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5628 
5629 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5630 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5631 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5632 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5633 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5634 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5635 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5636 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5637 #ifdef CONFIG_X86_64
5638 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5639 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5640 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5641 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5642 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5643 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5644 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5645 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5646 #endif
5647 
5648 	kvm_rip_write(vcpu, regs->rip);
5649 	kvm_set_rflags(vcpu, regs->rflags);
5650 
5651 	vcpu->arch.exception.pending = false;
5652 
5653 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5654 
5655 	return 0;
5656 }
5657 
5658 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5659 {
5660 	struct kvm_segment cs;
5661 
5662 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5663 	*db = cs.db;
5664 	*l = cs.l;
5665 }
5666 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5667 
5668 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5669 				  struct kvm_sregs *sregs)
5670 {
5671 	struct desc_ptr dt;
5672 
5673 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5674 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5675 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5676 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5677 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5678 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5679 
5680 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5681 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5682 
5683 	kvm_x86_ops->get_idt(vcpu, &dt);
5684 	sregs->idt.limit = dt.size;
5685 	sregs->idt.base = dt.address;
5686 	kvm_x86_ops->get_gdt(vcpu, &dt);
5687 	sregs->gdt.limit = dt.size;
5688 	sregs->gdt.base = dt.address;
5689 
5690 	sregs->cr0 = kvm_read_cr0(vcpu);
5691 	sregs->cr2 = vcpu->arch.cr2;
5692 	sregs->cr3 = kvm_read_cr3(vcpu);
5693 	sregs->cr4 = kvm_read_cr4(vcpu);
5694 	sregs->cr8 = kvm_get_cr8(vcpu);
5695 	sregs->efer = vcpu->arch.efer;
5696 	sregs->apic_base = kvm_get_apic_base(vcpu);
5697 
5698 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5699 
5700 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5701 		set_bit(vcpu->arch.interrupt.nr,
5702 			(unsigned long *)sregs->interrupt_bitmap);
5703 
5704 	return 0;
5705 }
5706 
5707 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5708 				    struct kvm_mp_state *mp_state)
5709 {
5710 	mp_state->mp_state = vcpu->arch.mp_state;
5711 	return 0;
5712 }
5713 
5714 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5715 				    struct kvm_mp_state *mp_state)
5716 {
5717 	vcpu->arch.mp_state = mp_state->mp_state;
5718 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5719 	return 0;
5720 }
5721 
5722 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5723 		    int reason, bool has_error_code, u32 error_code)
5724 {
5725 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5726 	int ret;
5727 
5728 	init_emulate_ctxt(vcpu);
5729 
5730 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5731 				   has_error_code, error_code);
5732 
5733 	if (ret)
5734 		return EMULATE_FAIL;
5735 
5736 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5737 	kvm_rip_write(vcpu, ctxt->eip);
5738 	kvm_set_rflags(vcpu, ctxt->eflags);
5739 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5740 	return EMULATE_DONE;
5741 }
5742 EXPORT_SYMBOL_GPL(kvm_task_switch);
5743 
5744 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5745 				  struct kvm_sregs *sregs)
5746 {
5747 	int mmu_reset_needed = 0;
5748 	int pending_vec, max_bits, idx;
5749 	struct desc_ptr dt;
5750 
5751 	dt.size = sregs->idt.limit;
5752 	dt.address = sregs->idt.base;
5753 	kvm_x86_ops->set_idt(vcpu, &dt);
5754 	dt.size = sregs->gdt.limit;
5755 	dt.address = sregs->gdt.base;
5756 	kvm_x86_ops->set_gdt(vcpu, &dt);
5757 
5758 	vcpu->arch.cr2 = sregs->cr2;
5759 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5760 	vcpu->arch.cr3 = sregs->cr3;
5761 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5762 
5763 	kvm_set_cr8(vcpu, sregs->cr8);
5764 
5765 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5766 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
5767 	kvm_set_apic_base(vcpu, sregs->apic_base);
5768 
5769 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5770 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5771 	vcpu->arch.cr0 = sregs->cr0;
5772 
5773 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5774 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5775 	if (sregs->cr4 & X86_CR4_OSXSAVE)
5776 		kvm_update_cpuid(vcpu);
5777 
5778 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5779 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5780 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5781 		mmu_reset_needed = 1;
5782 	}
5783 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5784 
5785 	if (mmu_reset_needed)
5786 		kvm_mmu_reset_context(vcpu);
5787 
5788 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5789 	pending_vec = find_first_bit(
5790 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
5791 	if (pending_vec < max_bits) {
5792 		kvm_queue_interrupt(vcpu, pending_vec, false);
5793 		pr_debug("Set back pending irq %d\n", pending_vec);
5794 	}
5795 
5796 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5797 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5798 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5799 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5800 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5801 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5802 
5803 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5804 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5805 
5806 	update_cr8_intercept(vcpu);
5807 
5808 	/* Older userspace won't unhalt the vcpu on reset. */
5809 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5810 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5811 	    !is_protmode(vcpu))
5812 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5813 
5814 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5815 
5816 	return 0;
5817 }
5818 
5819 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5820 					struct kvm_guest_debug *dbg)
5821 {
5822 	unsigned long rflags;
5823 	int i, r;
5824 
5825 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5826 		r = -EBUSY;
5827 		if (vcpu->arch.exception.pending)
5828 			goto out;
5829 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5830 			kvm_queue_exception(vcpu, DB_VECTOR);
5831 		else
5832 			kvm_queue_exception(vcpu, BP_VECTOR);
5833 	}
5834 
5835 	/*
5836 	 * Read rflags as long as potentially injected trace flags are still
5837 	 * filtered out.
5838 	 */
5839 	rflags = kvm_get_rflags(vcpu);
5840 
5841 	vcpu->guest_debug = dbg->control;
5842 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5843 		vcpu->guest_debug = 0;
5844 
5845 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5846 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
5847 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5848 		vcpu->arch.switch_db_regs =
5849 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5850 	} else {
5851 		for (i = 0; i < KVM_NR_DB_REGS; i++)
5852 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5853 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5854 	}
5855 
5856 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5857 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5858 			get_segment_base(vcpu, VCPU_SREG_CS);
5859 
5860 	/*
5861 	 * Trigger an rflags update that will inject or remove the trace
5862 	 * flags.
5863 	 */
5864 	kvm_set_rflags(vcpu, rflags);
5865 
5866 	kvm_x86_ops->set_guest_debug(vcpu, dbg);
5867 
5868 	r = 0;
5869 
5870 out:
5871 
5872 	return r;
5873 }
5874 
5875 /*
5876  * Translate a guest virtual address to a guest physical address.
5877  */
5878 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5879 				    struct kvm_translation *tr)
5880 {
5881 	unsigned long vaddr = tr->linear_address;
5882 	gpa_t gpa;
5883 	int idx;
5884 
5885 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5886 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5887 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5888 	tr->physical_address = gpa;
5889 	tr->valid = gpa != UNMAPPED_GVA;
5890 	tr->writeable = 1;
5891 	tr->usermode = 0;
5892 
5893 	return 0;
5894 }
5895 
5896 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5897 {
5898 	struct i387_fxsave_struct *fxsave =
5899 			&vcpu->arch.guest_fpu.state->fxsave;
5900 
5901 	memcpy(fpu->fpr, fxsave->st_space, 128);
5902 	fpu->fcw = fxsave->cwd;
5903 	fpu->fsw = fxsave->swd;
5904 	fpu->ftwx = fxsave->twd;
5905 	fpu->last_opcode = fxsave->fop;
5906 	fpu->last_ip = fxsave->rip;
5907 	fpu->last_dp = fxsave->rdp;
5908 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5909 
5910 	return 0;
5911 }
5912 
5913 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5914 {
5915 	struct i387_fxsave_struct *fxsave =
5916 			&vcpu->arch.guest_fpu.state->fxsave;
5917 
5918 	memcpy(fxsave->st_space, fpu->fpr, 128);
5919 	fxsave->cwd = fpu->fcw;
5920 	fxsave->swd = fpu->fsw;
5921 	fxsave->twd = fpu->ftwx;
5922 	fxsave->fop = fpu->last_opcode;
5923 	fxsave->rip = fpu->last_ip;
5924 	fxsave->rdp = fpu->last_dp;
5925 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5926 
5927 	return 0;
5928 }
5929 
5930 int fx_init(struct kvm_vcpu *vcpu)
5931 {
5932 	int err;
5933 
5934 	err = fpu_alloc(&vcpu->arch.guest_fpu);
5935 	if (err)
5936 		return err;
5937 
5938 	fpu_finit(&vcpu->arch.guest_fpu);
5939 
5940 	/*
5941 	 * Ensure guest xcr0 is valid for loading
5942 	 */
5943 	vcpu->arch.xcr0 = XSTATE_FP;
5944 
5945 	vcpu->arch.cr0 |= X86_CR0_ET;
5946 
5947 	return 0;
5948 }
5949 EXPORT_SYMBOL_GPL(fx_init);
5950 
5951 static void fx_free(struct kvm_vcpu *vcpu)
5952 {
5953 	fpu_free(&vcpu->arch.guest_fpu);
5954 }
5955 
5956 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5957 {
5958 	if (vcpu->guest_fpu_loaded)
5959 		return;
5960 
5961 	/*
5962 	 * Restore all possible states in the guest,
5963 	 * and assume host would use all available bits.
5964 	 * Guest xcr0 would be loaded later.
5965 	 */
5966 	kvm_put_guest_xcr0(vcpu);
5967 	vcpu->guest_fpu_loaded = 1;
5968 	unlazy_fpu(current);
5969 	fpu_restore_checking(&vcpu->arch.guest_fpu);
5970 	trace_kvm_fpu(1);
5971 }
5972 
5973 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5974 {
5975 	kvm_put_guest_xcr0(vcpu);
5976 
5977 	if (!vcpu->guest_fpu_loaded)
5978 		return;
5979 
5980 	vcpu->guest_fpu_loaded = 0;
5981 	fpu_save_init(&vcpu->arch.guest_fpu);
5982 	++vcpu->stat.fpu_reload;
5983 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5984 	trace_kvm_fpu(0);
5985 }
5986 
5987 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5988 {
5989 	kvmclock_reset(vcpu);
5990 
5991 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5992 	fx_free(vcpu);
5993 	kvm_x86_ops->vcpu_free(vcpu);
5994 }
5995 
5996 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5997 						unsigned int id)
5998 {
5999 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6000 		printk_once(KERN_WARNING
6001 		"kvm: SMP vm created on host with unstable TSC; "
6002 		"guest TSC will not be reliable\n");
6003 	return kvm_x86_ops->vcpu_create(kvm, id);
6004 }
6005 
6006 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6007 {
6008 	int r;
6009 
6010 	vcpu->arch.mtrr_state.have_fixed = 1;
6011 	vcpu_load(vcpu);
6012 	r = kvm_arch_vcpu_reset(vcpu);
6013 	if (r == 0)
6014 		r = kvm_mmu_setup(vcpu);
6015 	vcpu_put(vcpu);
6016 
6017 	return r;
6018 }
6019 
6020 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6021 {
6022 	vcpu->arch.apf.msr_val = 0;
6023 
6024 	vcpu_load(vcpu);
6025 	kvm_mmu_unload(vcpu);
6026 	vcpu_put(vcpu);
6027 
6028 	fx_free(vcpu);
6029 	kvm_x86_ops->vcpu_free(vcpu);
6030 }
6031 
6032 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6033 {
6034 	atomic_set(&vcpu->arch.nmi_queued, 0);
6035 	vcpu->arch.nmi_pending = 0;
6036 	vcpu->arch.nmi_injected = false;
6037 
6038 	vcpu->arch.switch_db_regs = 0;
6039 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6040 	vcpu->arch.dr6 = DR6_FIXED_1;
6041 	vcpu->arch.dr7 = DR7_FIXED_1;
6042 
6043 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6044 	vcpu->arch.apf.msr_val = 0;
6045 	vcpu->arch.st.msr_val = 0;
6046 
6047 	kvmclock_reset(vcpu);
6048 
6049 	kvm_clear_async_pf_completion_queue(vcpu);
6050 	kvm_async_pf_hash_reset(vcpu);
6051 	vcpu->arch.apf.halted = false;
6052 
6053 	kvm_pmu_reset(vcpu);
6054 
6055 	return kvm_x86_ops->vcpu_reset(vcpu);
6056 }
6057 
6058 int kvm_arch_hardware_enable(void *garbage)
6059 {
6060 	struct kvm *kvm;
6061 	struct kvm_vcpu *vcpu;
6062 	int i;
6063 	int ret;
6064 	u64 local_tsc;
6065 	u64 max_tsc = 0;
6066 	bool stable, backwards_tsc = false;
6067 
6068 	kvm_shared_msr_cpu_online();
6069 	ret = kvm_x86_ops->hardware_enable(garbage);
6070 	if (ret != 0)
6071 		return ret;
6072 
6073 	local_tsc = native_read_tsc();
6074 	stable = !check_tsc_unstable();
6075 	list_for_each_entry(kvm, &vm_list, vm_list) {
6076 		kvm_for_each_vcpu(i, vcpu, kvm) {
6077 			if (!stable && vcpu->cpu == smp_processor_id())
6078 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6079 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6080 				backwards_tsc = true;
6081 				if (vcpu->arch.last_host_tsc > max_tsc)
6082 					max_tsc = vcpu->arch.last_host_tsc;
6083 			}
6084 		}
6085 	}
6086 
6087 	/*
6088 	 * Sometimes, even reliable TSCs go backwards.  This happens on
6089 	 * platforms that reset TSC during suspend or hibernate actions, but
6090 	 * maintain synchronization.  We must compensate.  Fortunately, we can
6091 	 * detect that condition here, which happens early in CPU bringup,
6092 	 * before any KVM threads can be running.  Unfortunately, we can't
6093 	 * bring the TSCs fully up to date with real time, as we aren't yet far
6094 	 * enough into CPU bringup that we know how much real time has actually
6095 	 * elapsed; our helper function, get_kernel_ns() will be using boot
6096 	 * variables that haven't been updated yet.
6097 	 *
6098 	 * So we simply find the maximum observed TSC above, then record the
6099 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6100 	 * the adjustment will be applied.  Note that we accumulate
6101 	 * adjustments, in case multiple suspend cycles happen before some VCPU
6102 	 * gets a chance to run again.  In the event that no KVM threads get a
6103 	 * chance to run, we will miss the entire elapsed period, as we'll have
6104 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6105 	 * loose cycle time.  This isn't too big a deal, since the loss will be
6106 	 * uniform across all VCPUs (not to mention the scenario is extremely
6107 	 * unlikely). It is possible that a second hibernate recovery happens
6108 	 * much faster than a first, causing the observed TSC here to be
6109 	 * smaller; this would require additional padding adjustment, which is
6110 	 * why we set last_host_tsc to the local tsc observed here.
6111 	 *
6112 	 * N.B. - this code below runs only on platforms with reliable TSC,
6113 	 * as that is the only way backwards_tsc is set above.  Also note
6114 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6115 	 * have the same delta_cyc adjustment applied if backwards_tsc
6116 	 * is detected.  Note further, this adjustment is only done once,
6117 	 * as we reset last_host_tsc on all VCPUs to stop this from being
6118 	 * called multiple times (one for each physical CPU bringup).
6119 	 *
6120 	 * Platforms with unnreliable TSCs don't have to deal with this, they
6121 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
6122 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
6123 	 * guarantee that they stay in perfect synchronization.
6124 	 */
6125 	if (backwards_tsc) {
6126 		u64 delta_cyc = max_tsc - local_tsc;
6127 		list_for_each_entry(kvm, &vm_list, vm_list) {
6128 			kvm_for_each_vcpu(i, vcpu, kvm) {
6129 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
6130 				vcpu->arch.last_host_tsc = local_tsc;
6131 			}
6132 
6133 			/*
6134 			 * We have to disable TSC offset matching.. if you were
6135 			 * booting a VM while issuing an S4 host suspend....
6136 			 * you may have some problem.  Solving this issue is
6137 			 * left as an exercise to the reader.
6138 			 */
6139 			kvm->arch.last_tsc_nsec = 0;
6140 			kvm->arch.last_tsc_write = 0;
6141 		}
6142 
6143 	}
6144 	return 0;
6145 }
6146 
6147 void kvm_arch_hardware_disable(void *garbage)
6148 {
6149 	kvm_x86_ops->hardware_disable(garbage);
6150 	drop_user_return_notifiers(garbage);
6151 }
6152 
6153 int kvm_arch_hardware_setup(void)
6154 {
6155 	return kvm_x86_ops->hardware_setup();
6156 }
6157 
6158 void kvm_arch_hardware_unsetup(void)
6159 {
6160 	kvm_x86_ops->hardware_unsetup();
6161 }
6162 
6163 void kvm_arch_check_processor_compat(void *rtn)
6164 {
6165 	kvm_x86_ops->check_processor_compatibility(rtn);
6166 }
6167 
6168 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6169 {
6170 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6171 }
6172 
6173 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6174 {
6175 	struct page *page;
6176 	struct kvm *kvm;
6177 	int r;
6178 
6179 	BUG_ON(vcpu->kvm == NULL);
6180 	kvm = vcpu->kvm;
6181 
6182 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6183 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6184 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6185 	else
6186 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6187 
6188 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6189 	if (!page) {
6190 		r = -ENOMEM;
6191 		goto fail;
6192 	}
6193 	vcpu->arch.pio_data = page_address(page);
6194 
6195 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
6196 
6197 	r = kvm_mmu_create(vcpu);
6198 	if (r < 0)
6199 		goto fail_free_pio_data;
6200 
6201 	if (irqchip_in_kernel(kvm)) {
6202 		r = kvm_create_lapic(vcpu);
6203 		if (r < 0)
6204 			goto fail_mmu_destroy;
6205 	}
6206 
6207 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6208 				       GFP_KERNEL);
6209 	if (!vcpu->arch.mce_banks) {
6210 		r = -ENOMEM;
6211 		goto fail_free_lapic;
6212 	}
6213 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6214 
6215 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6216 		goto fail_free_mce_banks;
6217 
6218 	kvm_async_pf_hash_reset(vcpu);
6219 	kvm_pmu_init(vcpu);
6220 
6221 	return 0;
6222 fail_free_mce_banks:
6223 	kfree(vcpu->arch.mce_banks);
6224 fail_free_lapic:
6225 	kvm_free_lapic(vcpu);
6226 fail_mmu_destroy:
6227 	kvm_mmu_destroy(vcpu);
6228 fail_free_pio_data:
6229 	free_page((unsigned long)vcpu->arch.pio_data);
6230 fail:
6231 	return r;
6232 }
6233 
6234 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6235 {
6236 	int idx;
6237 
6238 	kvm_pmu_destroy(vcpu);
6239 	kfree(vcpu->arch.mce_banks);
6240 	kvm_free_lapic(vcpu);
6241 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6242 	kvm_mmu_destroy(vcpu);
6243 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6244 	free_page((unsigned long)vcpu->arch.pio_data);
6245 }
6246 
6247 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6248 {
6249 	if (type)
6250 		return -EINVAL;
6251 
6252 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6253 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6254 
6255 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6256 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6257 
6258 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6259 
6260 	return 0;
6261 }
6262 
6263 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6264 {
6265 	vcpu_load(vcpu);
6266 	kvm_mmu_unload(vcpu);
6267 	vcpu_put(vcpu);
6268 }
6269 
6270 static void kvm_free_vcpus(struct kvm *kvm)
6271 {
6272 	unsigned int i;
6273 	struct kvm_vcpu *vcpu;
6274 
6275 	/*
6276 	 * Unpin any mmu pages first.
6277 	 */
6278 	kvm_for_each_vcpu(i, vcpu, kvm) {
6279 		kvm_clear_async_pf_completion_queue(vcpu);
6280 		kvm_unload_vcpu_mmu(vcpu);
6281 	}
6282 	kvm_for_each_vcpu(i, vcpu, kvm)
6283 		kvm_arch_vcpu_free(vcpu);
6284 
6285 	mutex_lock(&kvm->lock);
6286 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6287 		kvm->vcpus[i] = NULL;
6288 
6289 	atomic_set(&kvm->online_vcpus, 0);
6290 	mutex_unlock(&kvm->lock);
6291 }
6292 
6293 void kvm_arch_sync_events(struct kvm *kvm)
6294 {
6295 	kvm_free_all_assigned_devices(kvm);
6296 	kvm_free_pit(kvm);
6297 }
6298 
6299 void kvm_arch_destroy_vm(struct kvm *kvm)
6300 {
6301 	kvm_iommu_unmap_guest(kvm);
6302 	kfree(kvm->arch.vpic);
6303 	kfree(kvm->arch.vioapic);
6304 	kvm_free_vcpus(kvm);
6305 	if (kvm->arch.apic_access_page)
6306 		put_page(kvm->arch.apic_access_page);
6307 	if (kvm->arch.ept_identity_pagetable)
6308 		put_page(kvm->arch.ept_identity_pagetable);
6309 }
6310 
6311 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6312 			   struct kvm_memory_slot *dont)
6313 {
6314 	int i;
6315 
6316 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6317 		if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) {
6318 			kvm_kvfree(free->arch.lpage_info[i]);
6319 			free->arch.lpage_info[i] = NULL;
6320 		}
6321 	}
6322 }
6323 
6324 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6325 {
6326 	int i;
6327 
6328 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6329 		unsigned long ugfn;
6330 		int lpages;
6331 		int level = i + 2;
6332 
6333 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
6334 				      slot->base_gfn, level) + 1;
6335 
6336 		slot->arch.lpage_info[i] =
6337 			kvm_kvzalloc(lpages * sizeof(*slot->arch.lpage_info[i]));
6338 		if (!slot->arch.lpage_info[i])
6339 			goto out_free;
6340 
6341 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6342 			slot->arch.lpage_info[i][0].write_count = 1;
6343 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6344 			slot->arch.lpage_info[i][lpages - 1].write_count = 1;
6345 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
6346 		/*
6347 		 * If the gfn and userspace address are not aligned wrt each
6348 		 * other, or if explicitly asked to, disable large page
6349 		 * support for this slot
6350 		 */
6351 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6352 		    !kvm_largepages_enabled()) {
6353 			unsigned long j;
6354 
6355 			for (j = 0; j < lpages; ++j)
6356 				slot->arch.lpage_info[i][j].write_count = 1;
6357 		}
6358 	}
6359 
6360 	return 0;
6361 
6362 out_free:
6363 	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6364 		kvm_kvfree(slot->arch.lpage_info[i]);
6365 		slot->arch.lpage_info[i] = NULL;
6366 	}
6367 	return -ENOMEM;
6368 }
6369 
6370 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6371 				struct kvm_memory_slot *memslot,
6372 				struct kvm_memory_slot old,
6373 				struct kvm_userspace_memory_region *mem,
6374 				int user_alloc)
6375 {
6376 	int npages = memslot->npages;
6377 	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6378 
6379 	/* Prevent internal slot pages from being moved by fork()/COW. */
6380 	if (memslot->id >= KVM_MEMORY_SLOTS)
6381 		map_flags = MAP_SHARED | MAP_ANONYMOUS;
6382 
6383 	/*To keep backward compatibility with older userspace,
6384 	 *x86 needs to hanlde !user_alloc case.
6385 	 */
6386 	if (!user_alloc) {
6387 		if (npages && !old.rmap) {
6388 			unsigned long userspace_addr;
6389 
6390 			userspace_addr = vm_mmap(NULL, 0,
6391 						 npages * PAGE_SIZE,
6392 						 PROT_READ | PROT_WRITE,
6393 						 map_flags,
6394 						 0);
6395 
6396 			if (IS_ERR((void *)userspace_addr))
6397 				return PTR_ERR((void *)userspace_addr);
6398 
6399 			memslot->userspace_addr = userspace_addr;
6400 		}
6401 	}
6402 
6403 
6404 	return 0;
6405 }
6406 
6407 void kvm_arch_commit_memory_region(struct kvm *kvm,
6408 				struct kvm_userspace_memory_region *mem,
6409 				struct kvm_memory_slot old,
6410 				int user_alloc)
6411 {
6412 
6413 	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6414 
6415 	if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6416 		int ret;
6417 
6418 		ret = vm_munmap(old.userspace_addr,
6419 				old.npages * PAGE_SIZE);
6420 		if (ret < 0)
6421 			printk(KERN_WARNING
6422 			       "kvm_vm_ioctl_set_memory_region: "
6423 			       "failed to munmap memory\n");
6424 	}
6425 
6426 	if (!kvm->arch.n_requested_mmu_pages)
6427 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6428 
6429 	spin_lock(&kvm->mmu_lock);
6430 	if (nr_mmu_pages)
6431 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6432 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6433 	spin_unlock(&kvm->mmu_lock);
6434 }
6435 
6436 void kvm_arch_flush_shadow(struct kvm *kvm)
6437 {
6438 	kvm_mmu_zap_all(kvm);
6439 	kvm_reload_remote_mmus(kvm);
6440 }
6441 
6442 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6443 {
6444 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6445 		!vcpu->arch.apf.halted)
6446 		|| !list_empty_careful(&vcpu->async_pf.done)
6447 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6448 		|| atomic_read(&vcpu->arch.nmi_queued) ||
6449 		(kvm_arch_interrupt_allowed(vcpu) &&
6450 		 kvm_cpu_has_interrupt(vcpu));
6451 }
6452 
6453 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6454 {
6455 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6456 }
6457 
6458 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6459 {
6460 	return kvm_x86_ops->interrupt_allowed(vcpu);
6461 }
6462 
6463 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6464 {
6465 	unsigned long current_rip = kvm_rip_read(vcpu) +
6466 		get_segment_base(vcpu, VCPU_SREG_CS);
6467 
6468 	return current_rip == linear_rip;
6469 }
6470 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6471 
6472 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6473 {
6474 	unsigned long rflags;
6475 
6476 	rflags = kvm_x86_ops->get_rflags(vcpu);
6477 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6478 		rflags &= ~X86_EFLAGS_TF;
6479 	return rflags;
6480 }
6481 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6482 
6483 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6484 {
6485 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6486 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6487 		rflags |= X86_EFLAGS_TF;
6488 	kvm_x86_ops->set_rflags(vcpu, rflags);
6489 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6490 }
6491 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6492 
6493 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6494 {
6495 	int r;
6496 
6497 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6498 	      is_error_page(work->page))
6499 		return;
6500 
6501 	r = kvm_mmu_reload(vcpu);
6502 	if (unlikely(r))
6503 		return;
6504 
6505 	if (!vcpu->arch.mmu.direct_map &&
6506 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6507 		return;
6508 
6509 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6510 }
6511 
6512 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6513 {
6514 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6515 }
6516 
6517 static inline u32 kvm_async_pf_next_probe(u32 key)
6518 {
6519 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6520 }
6521 
6522 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6523 {
6524 	u32 key = kvm_async_pf_hash_fn(gfn);
6525 
6526 	while (vcpu->arch.apf.gfns[key] != ~0)
6527 		key = kvm_async_pf_next_probe(key);
6528 
6529 	vcpu->arch.apf.gfns[key] = gfn;
6530 }
6531 
6532 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6533 {
6534 	int i;
6535 	u32 key = kvm_async_pf_hash_fn(gfn);
6536 
6537 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6538 		     (vcpu->arch.apf.gfns[key] != gfn &&
6539 		      vcpu->arch.apf.gfns[key] != ~0); i++)
6540 		key = kvm_async_pf_next_probe(key);
6541 
6542 	return key;
6543 }
6544 
6545 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6546 {
6547 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6548 }
6549 
6550 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6551 {
6552 	u32 i, j, k;
6553 
6554 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6555 	while (true) {
6556 		vcpu->arch.apf.gfns[i] = ~0;
6557 		do {
6558 			j = kvm_async_pf_next_probe(j);
6559 			if (vcpu->arch.apf.gfns[j] == ~0)
6560 				return;
6561 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6562 			/*
6563 			 * k lies cyclically in ]i,j]
6564 			 * |    i.k.j |
6565 			 * |....j i.k.| or  |.k..j i...|
6566 			 */
6567 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6568 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6569 		i = j;
6570 	}
6571 }
6572 
6573 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6574 {
6575 
6576 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6577 				      sizeof(val));
6578 }
6579 
6580 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6581 				     struct kvm_async_pf *work)
6582 {
6583 	struct x86_exception fault;
6584 
6585 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6586 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6587 
6588 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6589 	    (vcpu->arch.apf.send_user_only &&
6590 	     kvm_x86_ops->get_cpl(vcpu) == 0))
6591 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6592 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6593 		fault.vector = PF_VECTOR;
6594 		fault.error_code_valid = true;
6595 		fault.error_code = 0;
6596 		fault.nested_page_fault = false;
6597 		fault.address = work->arch.token;
6598 		kvm_inject_page_fault(vcpu, &fault);
6599 	}
6600 }
6601 
6602 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6603 				 struct kvm_async_pf *work)
6604 {
6605 	struct x86_exception fault;
6606 
6607 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
6608 	if (is_error_page(work->page))
6609 		work->arch.token = ~0; /* broadcast wakeup */
6610 	else
6611 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6612 
6613 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6614 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6615 		fault.vector = PF_VECTOR;
6616 		fault.error_code_valid = true;
6617 		fault.error_code = 0;
6618 		fault.nested_page_fault = false;
6619 		fault.address = work->arch.token;
6620 		kvm_inject_page_fault(vcpu, &fault);
6621 	}
6622 	vcpu->arch.apf.halted = false;
6623 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6624 }
6625 
6626 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6627 {
6628 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6629 		return true;
6630 	else
6631 		return !kvm_event_needs_reinjection(vcpu) &&
6632 			kvm_x86_ops->interrupt_allowed(vcpu);
6633 }
6634 
6635 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6636 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6637 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6638 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6647