xref: /linux/arch/x86/kvm/x86.c (revision 2384d1d832efc59447b27a283080551caf922086)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58 
59 #define CREATE_TRACE_POINTS
60 #include "trace.h"
61 
62 #include <asm/debugreg.h>
63 #include <asm/msr.h>
64 #include <asm/desc.h>
65 #include <asm/mce.h>
66 #include <linux/kernel_stat.h>
67 #include <asm/fpu/internal.h> /* Ugh! */
68 #include <asm/pvclock.h>
69 #include <asm/div64.h>
70 #include <asm/irq_remapping.h>
71 
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
75 
76 #define emul_to_vcpu(ctxt) \
77 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
78 
79 /* EFER defaults:
80  * - enable syscall per default because its emulated by KVM
81  * - enable LME and LMA per default on 64 bit KVM
82  */
83 #ifdef CONFIG_X86_64
84 static
85 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
86 #else
87 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
88 #endif
89 
90 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
91 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92 
93 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
94 static void process_nmi(struct kvm_vcpu *vcpu);
95 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
96 
97 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
98 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99 
100 static bool __read_mostly ignore_msrs = 0;
101 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
102 
103 unsigned int min_timer_period_us = 500;
104 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
105 
106 static bool __read_mostly kvmclock_periodic_sync = true;
107 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
108 
109 bool __read_mostly kvm_has_tsc_control;
110 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
111 u32  __read_mostly kvm_max_guest_tsc_khz;
112 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
113 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
114 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
115 u64  __read_mostly kvm_max_tsc_scaling_ratio;
116 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
117 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
118 
119 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
120 static u32 __read_mostly tsc_tolerance_ppm = 250;
121 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
122 
123 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
124 unsigned int __read_mostly lapic_timer_advance_ns = 0;
125 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
126 
127 static bool __read_mostly vector_hashing = true;
128 module_param(vector_hashing, bool, S_IRUGO);
129 
130 static bool __read_mostly backwards_tsc_observed = false;
131 
132 #define KVM_NR_SHARED_MSRS 16
133 
134 struct kvm_shared_msrs_global {
135 	int nr;
136 	u32 msrs[KVM_NR_SHARED_MSRS];
137 };
138 
139 struct kvm_shared_msrs {
140 	struct user_return_notifier urn;
141 	bool registered;
142 	struct kvm_shared_msr_values {
143 		u64 host;
144 		u64 curr;
145 	} values[KVM_NR_SHARED_MSRS];
146 };
147 
148 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
149 static struct kvm_shared_msrs __percpu *shared_msrs;
150 
151 struct kvm_stats_debugfs_item debugfs_entries[] = {
152 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
153 	{ "pf_guest", VCPU_STAT(pf_guest) },
154 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
155 	{ "invlpg", VCPU_STAT(invlpg) },
156 	{ "exits", VCPU_STAT(exits) },
157 	{ "io_exits", VCPU_STAT(io_exits) },
158 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
159 	{ "signal_exits", VCPU_STAT(signal_exits) },
160 	{ "irq_window", VCPU_STAT(irq_window_exits) },
161 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
162 	{ "halt_exits", VCPU_STAT(halt_exits) },
163 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
164 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
165 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
166 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
167 	{ "hypercalls", VCPU_STAT(hypercalls) },
168 	{ "request_irq", VCPU_STAT(request_irq_exits) },
169 	{ "irq_exits", VCPU_STAT(irq_exits) },
170 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
171 	{ "efer_reload", VCPU_STAT(efer_reload) },
172 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
173 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
174 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
175 	{ "irq_injections", VCPU_STAT(irq_injections) },
176 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
177 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
178 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
179 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
180 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
181 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
182 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
183 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
184 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
185 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
186 	{ "largepages", VM_STAT(lpages) },
187 	{ NULL }
188 };
189 
190 u64 __read_mostly host_xcr0;
191 
192 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
193 
194 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
195 {
196 	int i;
197 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
198 		vcpu->arch.apf.gfns[i] = ~0;
199 }
200 
201 static void kvm_on_user_return(struct user_return_notifier *urn)
202 {
203 	unsigned slot;
204 	struct kvm_shared_msrs *locals
205 		= container_of(urn, struct kvm_shared_msrs, urn);
206 	struct kvm_shared_msr_values *values;
207 
208 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
209 		values = &locals->values[slot];
210 		if (values->host != values->curr) {
211 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
212 			values->curr = values->host;
213 		}
214 	}
215 	locals->registered = false;
216 	user_return_notifier_unregister(urn);
217 }
218 
219 static void shared_msr_update(unsigned slot, u32 msr)
220 {
221 	u64 value;
222 	unsigned int cpu = smp_processor_id();
223 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
224 
225 	/* only read, and nobody should modify it at this time,
226 	 * so don't need lock */
227 	if (slot >= shared_msrs_global.nr) {
228 		printk(KERN_ERR "kvm: invalid MSR slot!");
229 		return;
230 	}
231 	rdmsrl_safe(msr, &value);
232 	smsr->values[slot].host = value;
233 	smsr->values[slot].curr = value;
234 }
235 
236 void kvm_define_shared_msr(unsigned slot, u32 msr)
237 {
238 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
239 	shared_msrs_global.msrs[slot] = msr;
240 	if (slot >= shared_msrs_global.nr)
241 		shared_msrs_global.nr = slot + 1;
242 }
243 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
244 
245 static void kvm_shared_msr_cpu_online(void)
246 {
247 	unsigned i;
248 
249 	for (i = 0; i < shared_msrs_global.nr; ++i)
250 		shared_msr_update(i, shared_msrs_global.msrs[i]);
251 }
252 
253 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
254 {
255 	unsigned int cpu = smp_processor_id();
256 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257 	int err;
258 
259 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
260 		return 0;
261 	smsr->values[slot].curr = value;
262 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
263 	if (err)
264 		return 1;
265 
266 	if (!smsr->registered) {
267 		smsr->urn.on_user_return = kvm_on_user_return;
268 		user_return_notifier_register(&smsr->urn);
269 		smsr->registered = true;
270 	}
271 	return 0;
272 }
273 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
274 
275 static void drop_user_return_notifiers(void)
276 {
277 	unsigned int cpu = smp_processor_id();
278 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279 
280 	if (smsr->registered)
281 		kvm_on_user_return(&smsr->urn);
282 }
283 
284 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
285 {
286 	return vcpu->arch.apic_base;
287 }
288 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
289 
290 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
291 {
292 	u64 old_state = vcpu->arch.apic_base &
293 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294 	u64 new_state = msr_info->data &
295 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
296 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
297 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
298 
299 	if (!msr_info->host_initiated &&
300 	    ((msr_info->data & reserved_bits) != 0 ||
301 	     new_state == X2APIC_ENABLE ||
302 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
303 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
304 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
305 	      old_state == 0)))
306 		return 1;
307 
308 	kvm_lapic_set_base(vcpu, msr_info->data);
309 	return 0;
310 }
311 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
312 
313 asmlinkage __visible void kvm_spurious_fault(void)
314 {
315 	/* Fault while not rebooting.  We want the trace. */
316 	BUG();
317 }
318 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
319 
320 #define EXCPT_BENIGN		0
321 #define EXCPT_CONTRIBUTORY	1
322 #define EXCPT_PF		2
323 
324 static int exception_class(int vector)
325 {
326 	switch (vector) {
327 	case PF_VECTOR:
328 		return EXCPT_PF;
329 	case DE_VECTOR:
330 	case TS_VECTOR:
331 	case NP_VECTOR:
332 	case SS_VECTOR:
333 	case GP_VECTOR:
334 		return EXCPT_CONTRIBUTORY;
335 	default:
336 		break;
337 	}
338 	return EXCPT_BENIGN;
339 }
340 
341 #define EXCPT_FAULT		0
342 #define EXCPT_TRAP		1
343 #define EXCPT_ABORT		2
344 #define EXCPT_INTERRUPT		3
345 
346 static int exception_type(int vector)
347 {
348 	unsigned int mask;
349 
350 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
351 		return EXCPT_INTERRUPT;
352 
353 	mask = 1 << vector;
354 
355 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
356 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
357 		return EXCPT_TRAP;
358 
359 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
360 		return EXCPT_ABORT;
361 
362 	/* Reserved exceptions will result in fault */
363 	return EXCPT_FAULT;
364 }
365 
366 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
367 		unsigned nr, bool has_error, u32 error_code,
368 		bool reinject)
369 {
370 	u32 prev_nr;
371 	int class1, class2;
372 
373 	kvm_make_request(KVM_REQ_EVENT, vcpu);
374 
375 	if (!vcpu->arch.exception.pending) {
376 	queue:
377 		if (has_error && !is_protmode(vcpu))
378 			has_error = false;
379 		vcpu->arch.exception.pending = true;
380 		vcpu->arch.exception.has_error_code = has_error;
381 		vcpu->arch.exception.nr = nr;
382 		vcpu->arch.exception.error_code = error_code;
383 		vcpu->arch.exception.reinject = reinject;
384 		return;
385 	}
386 
387 	/* to check exception */
388 	prev_nr = vcpu->arch.exception.nr;
389 	if (prev_nr == DF_VECTOR) {
390 		/* triple fault -> shutdown */
391 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
392 		return;
393 	}
394 	class1 = exception_class(prev_nr);
395 	class2 = exception_class(nr);
396 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
397 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
398 		/* generate double fault per SDM Table 5-5 */
399 		vcpu->arch.exception.pending = true;
400 		vcpu->arch.exception.has_error_code = true;
401 		vcpu->arch.exception.nr = DF_VECTOR;
402 		vcpu->arch.exception.error_code = 0;
403 	} else
404 		/* replace previous exception with a new one in a hope
405 		   that instruction re-execution will regenerate lost
406 		   exception */
407 		goto queue;
408 }
409 
410 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
411 {
412 	kvm_multiple_exception(vcpu, nr, false, 0, false);
413 }
414 EXPORT_SYMBOL_GPL(kvm_queue_exception);
415 
416 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
417 {
418 	kvm_multiple_exception(vcpu, nr, false, 0, true);
419 }
420 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
421 
422 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
423 {
424 	if (err)
425 		kvm_inject_gp(vcpu, 0);
426 	else
427 		kvm_x86_ops->skip_emulated_instruction(vcpu);
428 }
429 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
430 
431 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
432 {
433 	++vcpu->stat.pf_guest;
434 	vcpu->arch.cr2 = fault->address;
435 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
436 }
437 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
438 
439 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
440 {
441 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
442 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
443 	else
444 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
445 
446 	return fault->nested_page_fault;
447 }
448 
449 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
450 {
451 	atomic_inc(&vcpu->arch.nmi_queued);
452 	kvm_make_request(KVM_REQ_NMI, vcpu);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
455 
456 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
457 {
458 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
459 }
460 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
461 
462 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
463 {
464 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
465 }
466 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
467 
468 /*
469  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
470  * a #GP and return false.
471  */
472 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
473 {
474 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
475 		return true;
476 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
477 	return false;
478 }
479 EXPORT_SYMBOL_GPL(kvm_require_cpl);
480 
481 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
482 {
483 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
484 		return true;
485 
486 	kvm_queue_exception(vcpu, UD_VECTOR);
487 	return false;
488 }
489 EXPORT_SYMBOL_GPL(kvm_require_dr);
490 
491 /*
492  * This function will be used to read from the physical memory of the currently
493  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
494  * can read from guest physical or from the guest's guest physical memory.
495  */
496 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
497 			    gfn_t ngfn, void *data, int offset, int len,
498 			    u32 access)
499 {
500 	struct x86_exception exception;
501 	gfn_t real_gfn;
502 	gpa_t ngpa;
503 
504 	ngpa     = gfn_to_gpa(ngfn);
505 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
506 	if (real_gfn == UNMAPPED_GVA)
507 		return -EFAULT;
508 
509 	real_gfn = gpa_to_gfn(real_gfn);
510 
511 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
512 }
513 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
514 
515 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
516 			       void *data, int offset, int len, u32 access)
517 {
518 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
519 				       data, offset, len, access);
520 }
521 
522 /*
523  * Load the pae pdptrs.  Return true is they are all valid.
524  */
525 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
526 {
527 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
528 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
529 	int i;
530 	int ret;
531 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
532 
533 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
534 				      offset * sizeof(u64), sizeof(pdpte),
535 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
536 	if (ret < 0) {
537 		ret = 0;
538 		goto out;
539 	}
540 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
541 		if (is_present_gpte(pdpte[i]) &&
542 		    (pdpte[i] &
543 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
544 			ret = 0;
545 			goto out;
546 		}
547 	}
548 	ret = 1;
549 
550 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
551 	__set_bit(VCPU_EXREG_PDPTR,
552 		  (unsigned long *)&vcpu->arch.regs_avail);
553 	__set_bit(VCPU_EXREG_PDPTR,
554 		  (unsigned long *)&vcpu->arch.regs_dirty);
555 out:
556 
557 	return ret;
558 }
559 EXPORT_SYMBOL_GPL(load_pdptrs);
560 
561 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
562 {
563 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
564 	bool changed = true;
565 	int offset;
566 	gfn_t gfn;
567 	int r;
568 
569 	if (is_long_mode(vcpu) || !is_pae(vcpu))
570 		return false;
571 
572 	if (!test_bit(VCPU_EXREG_PDPTR,
573 		      (unsigned long *)&vcpu->arch.regs_avail))
574 		return true;
575 
576 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
577 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
578 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
579 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
580 	if (r < 0)
581 		goto out;
582 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
583 out:
584 
585 	return changed;
586 }
587 
588 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
589 {
590 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
591 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
592 
593 	cr0 |= X86_CR0_ET;
594 
595 #ifdef CONFIG_X86_64
596 	if (cr0 & 0xffffffff00000000UL)
597 		return 1;
598 #endif
599 
600 	cr0 &= ~CR0_RESERVED_BITS;
601 
602 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
603 		return 1;
604 
605 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
606 		return 1;
607 
608 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
609 #ifdef CONFIG_X86_64
610 		if ((vcpu->arch.efer & EFER_LME)) {
611 			int cs_db, cs_l;
612 
613 			if (!is_pae(vcpu))
614 				return 1;
615 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
616 			if (cs_l)
617 				return 1;
618 		} else
619 #endif
620 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
621 						 kvm_read_cr3(vcpu)))
622 			return 1;
623 	}
624 
625 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
626 		return 1;
627 
628 	kvm_x86_ops->set_cr0(vcpu, cr0);
629 
630 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
631 		kvm_clear_async_pf_completion_queue(vcpu);
632 		kvm_async_pf_hash_reset(vcpu);
633 	}
634 
635 	if ((cr0 ^ old_cr0) & update_bits)
636 		kvm_mmu_reset_context(vcpu);
637 
638 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
639 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
640 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
641 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
642 
643 	return 0;
644 }
645 EXPORT_SYMBOL_GPL(kvm_set_cr0);
646 
647 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
648 {
649 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
650 }
651 EXPORT_SYMBOL_GPL(kvm_lmsw);
652 
653 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
654 {
655 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
656 			!vcpu->guest_xcr0_loaded) {
657 		/* kvm_set_xcr() also depends on this */
658 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
659 		vcpu->guest_xcr0_loaded = 1;
660 	}
661 }
662 
663 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
664 {
665 	if (vcpu->guest_xcr0_loaded) {
666 		if (vcpu->arch.xcr0 != host_xcr0)
667 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
668 		vcpu->guest_xcr0_loaded = 0;
669 	}
670 }
671 
672 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
673 {
674 	u64 xcr0 = xcr;
675 	u64 old_xcr0 = vcpu->arch.xcr0;
676 	u64 valid_bits;
677 
678 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
679 	if (index != XCR_XFEATURE_ENABLED_MASK)
680 		return 1;
681 	if (!(xcr0 & XFEATURE_MASK_FP))
682 		return 1;
683 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
684 		return 1;
685 
686 	/*
687 	 * Do not allow the guest to set bits that we do not support
688 	 * saving.  However, xcr0 bit 0 is always set, even if the
689 	 * emulated CPU does not support XSAVE (see fx_init).
690 	 */
691 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
692 	if (xcr0 & ~valid_bits)
693 		return 1;
694 
695 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
696 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
697 		return 1;
698 
699 	if (xcr0 & XFEATURE_MASK_AVX512) {
700 		if (!(xcr0 & XFEATURE_MASK_YMM))
701 			return 1;
702 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
703 			return 1;
704 	}
705 	vcpu->arch.xcr0 = xcr0;
706 
707 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
708 		kvm_update_cpuid(vcpu);
709 	return 0;
710 }
711 
712 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
713 {
714 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
715 	    __kvm_set_xcr(vcpu, index, xcr)) {
716 		kvm_inject_gp(vcpu, 0);
717 		return 1;
718 	}
719 	return 0;
720 }
721 EXPORT_SYMBOL_GPL(kvm_set_xcr);
722 
723 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
724 {
725 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
726 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
727 				   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
728 
729 	if (cr4 & CR4_RESERVED_BITS)
730 		return 1;
731 
732 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
733 		return 1;
734 
735 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
736 		return 1;
737 
738 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
739 		return 1;
740 
741 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
742 		return 1;
743 
744 	if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
745 		return 1;
746 
747 	if (is_long_mode(vcpu)) {
748 		if (!(cr4 & X86_CR4_PAE))
749 			return 1;
750 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
751 		   && ((cr4 ^ old_cr4) & pdptr_bits)
752 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
753 				   kvm_read_cr3(vcpu)))
754 		return 1;
755 
756 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
757 		if (!guest_cpuid_has_pcid(vcpu))
758 			return 1;
759 
760 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
761 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
762 			return 1;
763 	}
764 
765 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
766 		return 1;
767 
768 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
769 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
770 		kvm_mmu_reset_context(vcpu);
771 
772 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
773 		kvm_update_cpuid(vcpu);
774 
775 	return 0;
776 }
777 EXPORT_SYMBOL_GPL(kvm_set_cr4);
778 
779 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
780 {
781 #ifdef CONFIG_X86_64
782 	cr3 &= ~CR3_PCID_INVD;
783 #endif
784 
785 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
786 		kvm_mmu_sync_roots(vcpu);
787 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
788 		return 0;
789 	}
790 
791 	if (is_long_mode(vcpu)) {
792 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
793 			return 1;
794 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
795 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
796 		return 1;
797 
798 	vcpu->arch.cr3 = cr3;
799 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
800 	kvm_mmu_new_cr3(vcpu);
801 	return 0;
802 }
803 EXPORT_SYMBOL_GPL(kvm_set_cr3);
804 
805 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
806 {
807 	if (cr8 & CR8_RESERVED_BITS)
808 		return 1;
809 	if (lapic_in_kernel(vcpu))
810 		kvm_lapic_set_tpr(vcpu, cr8);
811 	else
812 		vcpu->arch.cr8 = cr8;
813 	return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_set_cr8);
816 
817 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
818 {
819 	if (lapic_in_kernel(vcpu))
820 		return kvm_lapic_get_cr8(vcpu);
821 	else
822 		return vcpu->arch.cr8;
823 }
824 EXPORT_SYMBOL_GPL(kvm_get_cr8);
825 
826 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
827 {
828 	int i;
829 
830 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
831 		for (i = 0; i < KVM_NR_DB_REGS; i++)
832 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
833 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
834 	}
835 }
836 
837 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
838 {
839 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
840 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
841 }
842 
843 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
844 {
845 	unsigned long dr7;
846 
847 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
848 		dr7 = vcpu->arch.guest_debug_dr7;
849 	else
850 		dr7 = vcpu->arch.dr7;
851 	kvm_x86_ops->set_dr7(vcpu, dr7);
852 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
853 	if (dr7 & DR7_BP_EN_MASK)
854 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
855 }
856 
857 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
858 {
859 	u64 fixed = DR6_FIXED_1;
860 
861 	if (!guest_cpuid_has_rtm(vcpu))
862 		fixed |= DR6_RTM;
863 	return fixed;
864 }
865 
866 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
867 {
868 	switch (dr) {
869 	case 0 ... 3:
870 		vcpu->arch.db[dr] = val;
871 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
872 			vcpu->arch.eff_db[dr] = val;
873 		break;
874 	case 4:
875 		/* fall through */
876 	case 6:
877 		if (val & 0xffffffff00000000ULL)
878 			return -1; /* #GP */
879 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
880 		kvm_update_dr6(vcpu);
881 		break;
882 	case 5:
883 		/* fall through */
884 	default: /* 7 */
885 		if (val & 0xffffffff00000000ULL)
886 			return -1; /* #GP */
887 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
888 		kvm_update_dr7(vcpu);
889 		break;
890 	}
891 
892 	return 0;
893 }
894 
895 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
896 {
897 	if (__kvm_set_dr(vcpu, dr, val)) {
898 		kvm_inject_gp(vcpu, 0);
899 		return 1;
900 	}
901 	return 0;
902 }
903 EXPORT_SYMBOL_GPL(kvm_set_dr);
904 
905 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
906 {
907 	switch (dr) {
908 	case 0 ... 3:
909 		*val = vcpu->arch.db[dr];
910 		break;
911 	case 4:
912 		/* fall through */
913 	case 6:
914 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
915 			*val = vcpu->arch.dr6;
916 		else
917 			*val = kvm_x86_ops->get_dr6(vcpu);
918 		break;
919 	case 5:
920 		/* fall through */
921 	default: /* 7 */
922 		*val = vcpu->arch.dr7;
923 		break;
924 	}
925 	return 0;
926 }
927 EXPORT_SYMBOL_GPL(kvm_get_dr);
928 
929 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
930 {
931 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
932 	u64 data;
933 	int err;
934 
935 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
936 	if (err)
937 		return err;
938 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
939 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
940 	return err;
941 }
942 EXPORT_SYMBOL_GPL(kvm_rdpmc);
943 
944 /*
945  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
946  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
947  *
948  * This list is modified at module load time to reflect the
949  * capabilities of the host cpu. This capabilities test skips MSRs that are
950  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
951  * may depend on host virtualization features rather than host cpu features.
952  */
953 
954 static u32 msrs_to_save[] = {
955 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
956 	MSR_STAR,
957 #ifdef CONFIG_X86_64
958 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
959 #endif
960 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
961 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
962 };
963 
964 static unsigned num_msrs_to_save;
965 
966 static u32 emulated_msrs[] = {
967 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
968 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
969 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
970 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
971 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
972 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
973 	HV_X64_MSR_RESET,
974 	HV_X64_MSR_VP_INDEX,
975 	HV_X64_MSR_VP_RUNTIME,
976 	HV_X64_MSR_SCONTROL,
977 	HV_X64_MSR_STIMER0_CONFIG,
978 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
979 	MSR_KVM_PV_EOI_EN,
980 
981 	MSR_IA32_TSC_ADJUST,
982 	MSR_IA32_TSCDEADLINE,
983 	MSR_IA32_MISC_ENABLE,
984 	MSR_IA32_MCG_STATUS,
985 	MSR_IA32_MCG_CTL,
986 	MSR_IA32_SMBASE,
987 };
988 
989 static unsigned num_emulated_msrs;
990 
991 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
992 {
993 	if (efer & efer_reserved_bits)
994 		return false;
995 
996 	if (efer & EFER_FFXSR) {
997 		struct kvm_cpuid_entry2 *feat;
998 
999 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1000 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1001 			return false;
1002 	}
1003 
1004 	if (efer & EFER_SVME) {
1005 		struct kvm_cpuid_entry2 *feat;
1006 
1007 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1008 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1009 			return false;
1010 	}
1011 
1012 	return true;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1015 
1016 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1017 {
1018 	u64 old_efer = vcpu->arch.efer;
1019 
1020 	if (!kvm_valid_efer(vcpu, efer))
1021 		return 1;
1022 
1023 	if (is_paging(vcpu)
1024 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1025 		return 1;
1026 
1027 	efer &= ~EFER_LMA;
1028 	efer |= vcpu->arch.efer & EFER_LMA;
1029 
1030 	kvm_x86_ops->set_efer(vcpu, efer);
1031 
1032 	/* Update reserved bits */
1033 	if ((efer ^ old_efer) & EFER_NX)
1034 		kvm_mmu_reset_context(vcpu);
1035 
1036 	return 0;
1037 }
1038 
1039 void kvm_enable_efer_bits(u64 mask)
1040 {
1041        efer_reserved_bits &= ~mask;
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1044 
1045 /*
1046  * Writes msr value into into the appropriate "register".
1047  * Returns 0 on success, non-0 otherwise.
1048  * Assumes vcpu_load() was already called.
1049  */
1050 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1051 {
1052 	switch (msr->index) {
1053 	case MSR_FS_BASE:
1054 	case MSR_GS_BASE:
1055 	case MSR_KERNEL_GS_BASE:
1056 	case MSR_CSTAR:
1057 	case MSR_LSTAR:
1058 		if (is_noncanonical_address(msr->data))
1059 			return 1;
1060 		break;
1061 	case MSR_IA32_SYSENTER_EIP:
1062 	case MSR_IA32_SYSENTER_ESP:
1063 		/*
1064 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1065 		 * non-canonical address is written on Intel but not on
1066 		 * AMD (which ignores the top 32-bits, because it does
1067 		 * not implement 64-bit SYSENTER).
1068 		 *
1069 		 * 64-bit code should hence be able to write a non-canonical
1070 		 * value on AMD.  Making the address canonical ensures that
1071 		 * vmentry does not fail on Intel after writing a non-canonical
1072 		 * value, and that something deterministic happens if the guest
1073 		 * invokes 64-bit SYSENTER.
1074 		 */
1075 		msr->data = get_canonical(msr->data);
1076 	}
1077 	return kvm_x86_ops->set_msr(vcpu, msr);
1078 }
1079 EXPORT_SYMBOL_GPL(kvm_set_msr);
1080 
1081 /*
1082  * Adapt set_msr() to msr_io()'s calling convention
1083  */
1084 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1085 {
1086 	struct msr_data msr;
1087 	int r;
1088 
1089 	msr.index = index;
1090 	msr.host_initiated = true;
1091 	r = kvm_get_msr(vcpu, &msr);
1092 	if (r)
1093 		return r;
1094 
1095 	*data = msr.data;
1096 	return 0;
1097 }
1098 
1099 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1100 {
1101 	struct msr_data msr;
1102 
1103 	msr.data = *data;
1104 	msr.index = index;
1105 	msr.host_initiated = true;
1106 	return kvm_set_msr(vcpu, &msr);
1107 }
1108 
1109 #ifdef CONFIG_X86_64
1110 struct pvclock_gtod_data {
1111 	seqcount_t	seq;
1112 
1113 	struct { /* extract of a clocksource struct */
1114 		int vclock_mode;
1115 		cycle_t	cycle_last;
1116 		cycle_t	mask;
1117 		u32	mult;
1118 		u32	shift;
1119 	} clock;
1120 
1121 	u64		boot_ns;
1122 	u64		nsec_base;
1123 };
1124 
1125 static struct pvclock_gtod_data pvclock_gtod_data;
1126 
1127 static void update_pvclock_gtod(struct timekeeper *tk)
1128 {
1129 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1130 	u64 boot_ns;
1131 
1132 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1133 
1134 	write_seqcount_begin(&vdata->seq);
1135 
1136 	/* copy pvclock gtod data */
1137 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1138 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1139 	vdata->clock.mask		= tk->tkr_mono.mask;
1140 	vdata->clock.mult		= tk->tkr_mono.mult;
1141 	vdata->clock.shift		= tk->tkr_mono.shift;
1142 
1143 	vdata->boot_ns			= boot_ns;
1144 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1145 
1146 	write_seqcount_end(&vdata->seq);
1147 }
1148 #endif
1149 
1150 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1151 {
1152 	/*
1153 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1154 	 * vcpu_enter_guest.  This function is only called from
1155 	 * the physical CPU that is running vcpu.
1156 	 */
1157 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1158 }
1159 
1160 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1161 {
1162 	int version;
1163 	int r;
1164 	struct pvclock_wall_clock wc;
1165 	struct timespec boot;
1166 
1167 	if (!wall_clock)
1168 		return;
1169 
1170 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1171 	if (r)
1172 		return;
1173 
1174 	if (version & 1)
1175 		++version;  /* first time write, random junk */
1176 
1177 	++version;
1178 
1179 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1180 		return;
1181 
1182 	/*
1183 	 * The guest calculates current wall clock time by adding
1184 	 * system time (updated by kvm_guest_time_update below) to the
1185 	 * wall clock specified here.  guest system time equals host
1186 	 * system time for us, thus we must fill in host boot time here.
1187 	 */
1188 	getboottime(&boot);
1189 
1190 	if (kvm->arch.kvmclock_offset) {
1191 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1192 		boot = timespec_sub(boot, ts);
1193 	}
1194 	wc.sec = boot.tv_sec;
1195 	wc.nsec = boot.tv_nsec;
1196 	wc.version = version;
1197 
1198 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1199 
1200 	version++;
1201 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1202 }
1203 
1204 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1205 {
1206 	do_shl32_div32(dividend, divisor);
1207 	return dividend;
1208 }
1209 
1210 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1211 			       s8 *pshift, u32 *pmultiplier)
1212 {
1213 	uint64_t scaled64;
1214 	int32_t  shift = 0;
1215 	uint64_t tps64;
1216 	uint32_t tps32;
1217 
1218 	tps64 = base_hz;
1219 	scaled64 = scaled_hz;
1220 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1221 		tps64 >>= 1;
1222 		shift--;
1223 	}
1224 
1225 	tps32 = (uint32_t)tps64;
1226 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1227 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1228 			scaled64 >>= 1;
1229 		else
1230 			tps32 <<= 1;
1231 		shift++;
1232 	}
1233 
1234 	*pshift = shift;
1235 	*pmultiplier = div_frac(scaled64, tps32);
1236 
1237 	pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1238 		 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1239 }
1240 
1241 #ifdef CONFIG_X86_64
1242 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1243 #endif
1244 
1245 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1246 static unsigned long max_tsc_khz;
1247 
1248 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1249 {
1250 	u64 v = (u64)khz * (1000000 + ppm);
1251 	do_div(v, 1000000);
1252 	return v;
1253 }
1254 
1255 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1256 {
1257 	u64 ratio;
1258 
1259 	/* Guest TSC same frequency as host TSC? */
1260 	if (!scale) {
1261 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1262 		return 0;
1263 	}
1264 
1265 	/* TSC scaling supported? */
1266 	if (!kvm_has_tsc_control) {
1267 		if (user_tsc_khz > tsc_khz) {
1268 			vcpu->arch.tsc_catchup = 1;
1269 			vcpu->arch.tsc_always_catchup = 1;
1270 			return 0;
1271 		} else {
1272 			WARN(1, "user requested TSC rate below hardware speed\n");
1273 			return -1;
1274 		}
1275 	}
1276 
1277 	/* TSC scaling required  - calculate ratio */
1278 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1279 				user_tsc_khz, tsc_khz);
1280 
1281 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1282 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1283 			  user_tsc_khz);
1284 		return -1;
1285 	}
1286 
1287 	vcpu->arch.tsc_scaling_ratio = ratio;
1288 	return 0;
1289 }
1290 
1291 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1292 {
1293 	u32 thresh_lo, thresh_hi;
1294 	int use_scaling = 0;
1295 
1296 	/* tsc_khz can be zero if TSC calibration fails */
1297 	if (user_tsc_khz == 0) {
1298 		/* set tsc_scaling_ratio to a safe value */
1299 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1300 		return -1;
1301 	}
1302 
1303 	/* Compute a scale to convert nanoseconds in TSC cycles */
1304 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1305 			   &vcpu->arch.virtual_tsc_shift,
1306 			   &vcpu->arch.virtual_tsc_mult);
1307 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1308 
1309 	/*
1310 	 * Compute the variation in TSC rate which is acceptable
1311 	 * within the range of tolerance and decide if the
1312 	 * rate being applied is within that bounds of the hardware
1313 	 * rate.  If so, no scaling or compensation need be done.
1314 	 */
1315 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1316 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1317 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1318 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1319 		use_scaling = 1;
1320 	}
1321 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1322 }
1323 
1324 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1325 {
1326 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1327 				      vcpu->arch.virtual_tsc_mult,
1328 				      vcpu->arch.virtual_tsc_shift);
1329 	tsc += vcpu->arch.this_tsc_write;
1330 	return tsc;
1331 }
1332 
1333 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1334 {
1335 #ifdef CONFIG_X86_64
1336 	bool vcpus_matched;
1337 	struct kvm_arch *ka = &vcpu->kvm->arch;
1338 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1339 
1340 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1341 			 atomic_read(&vcpu->kvm->online_vcpus));
1342 
1343 	/*
1344 	 * Once the masterclock is enabled, always perform request in
1345 	 * order to update it.
1346 	 *
1347 	 * In order to enable masterclock, the host clocksource must be TSC
1348 	 * and the vcpus need to have matched TSCs.  When that happens,
1349 	 * perform request to enable masterclock.
1350 	 */
1351 	if (ka->use_master_clock ||
1352 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1353 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1354 
1355 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1356 			    atomic_read(&vcpu->kvm->online_vcpus),
1357 		            ka->use_master_clock, gtod->clock.vclock_mode);
1358 #endif
1359 }
1360 
1361 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1362 {
1363 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1364 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1365 }
1366 
1367 /*
1368  * Multiply tsc by a fixed point number represented by ratio.
1369  *
1370  * The most significant 64-N bits (mult) of ratio represent the
1371  * integral part of the fixed point number; the remaining N bits
1372  * (frac) represent the fractional part, ie. ratio represents a fixed
1373  * point number (mult + frac * 2^(-N)).
1374  *
1375  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1376  */
1377 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1378 {
1379 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1380 }
1381 
1382 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1383 {
1384 	u64 _tsc = tsc;
1385 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1386 
1387 	if (ratio != kvm_default_tsc_scaling_ratio)
1388 		_tsc = __scale_tsc(ratio, tsc);
1389 
1390 	return _tsc;
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1393 
1394 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1395 {
1396 	u64 tsc;
1397 
1398 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1399 
1400 	return target_tsc - tsc;
1401 }
1402 
1403 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1404 {
1405 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1408 
1409 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1410 {
1411 	struct kvm *kvm = vcpu->kvm;
1412 	u64 offset, ns, elapsed;
1413 	unsigned long flags;
1414 	s64 usdiff;
1415 	bool matched;
1416 	bool already_matched;
1417 	u64 data = msr->data;
1418 
1419 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1420 	offset = kvm_compute_tsc_offset(vcpu, data);
1421 	ns = get_kernel_ns();
1422 	elapsed = ns - kvm->arch.last_tsc_nsec;
1423 
1424 	if (vcpu->arch.virtual_tsc_khz) {
1425 		int faulted = 0;
1426 
1427 		/* n.b - signed multiplication and division required */
1428 		usdiff = data - kvm->arch.last_tsc_write;
1429 #ifdef CONFIG_X86_64
1430 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1431 #else
1432 		/* do_div() only does unsigned */
1433 		asm("1: idivl %[divisor]\n"
1434 		    "2: xor %%edx, %%edx\n"
1435 		    "   movl $0, %[faulted]\n"
1436 		    "3:\n"
1437 		    ".section .fixup,\"ax\"\n"
1438 		    "4: movl $1, %[faulted]\n"
1439 		    "   jmp  3b\n"
1440 		    ".previous\n"
1441 
1442 		_ASM_EXTABLE(1b, 4b)
1443 
1444 		: "=A"(usdiff), [faulted] "=r" (faulted)
1445 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1446 
1447 #endif
1448 		do_div(elapsed, 1000);
1449 		usdiff -= elapsed;
1450 		if (usdiff < 0)
1451 			usdiff = -usdiff;
1452 
1453 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1454 		if (faulted)
1455 			usdiff = USEC_PER_SEC;
1456 	} else
1457 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1458 
1459 	/*
1460 	 * Special case: TSC write with a small delta (1 second) of virtual
1461 	 * cycle time against real time is interpreted as an attempt to
1462 	 * synchronize the CPU.
1463          *
1464 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1465 	 * TSC, we add elapsed time in this computation.  We could let the
1466 	 * compensation code attempt to catch up if we fall behind, but
1467 	 * it's better to try to match offsets from the beginning.
1468          */
1469 	if (usdiff < USEC_PER_SEC &&
1470 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1471 		if (!check_tsc_unstable()) {
1472 			offset = kvm->arch.cur_tsc_offset;
1473 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1474 		} else {
1475 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1476 			data += delta;
1477 			offset = kvm_compute_tsc_offset(vcpu, data);
1478 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1479 		}
1480 		matched = true;
1481 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1482 	} else {
1483 		/*
1484 		 * We split periods of matched TSC writes into generations.
1485 		 * For each generation, we track the original measured
1486 		 * nanosecond time, offset, and write, so if TSCs are in
1487 		 * sync, we can match exact offset, and if not, we can match
1488 		 * exact software computation in compute_guest_tsc()
1489 		 *
1490 		 * These values are tracked in kvm->arch.cur_xxx variables.
1491 		 */
1492 		kvm->arch.cur_tsc_generation++;
1493 		kvm->arch.cur_tsc_nsec = ns;
1494 		kvm->arch.cur_tsc_write = data;
1495 		kvm->arch.cur_tsc_offset = offset;
1496 		matched = false;
1497 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1498 			 kvm->arch.cur_tsc_generation, data);
1499 	}
1500 
1501 	/*
1502 	 * We also track th most recent recorded KHZ, write and time to
1503 	 * allow the matching interval to be extended at each write.
1504 	 */
1505 	kvm->arch.last_tsc_nsec = ns;
1506 	kvm->arch.last_tsc_write = data;
1507 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1508 
1509 	vcpu->arch.last_guest_tsc = data;
1510 
1511 	/* Keep track of which generation this VCPU has synchronized to */
1512 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1513 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1514 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1515 
1516 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1517 		update_ia32_tsc_adjust_msr(vcpu, offset);
1518 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1519 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1520 
1521 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1522 	if (!matched) {
1523 		kvm->arch.nr_vcpus_matched_tsc = 0;
1524 	} else if (!already_matched) {
1525 		kvm->arch.nr_vcpus_matched_tsc++;
1526 	}
1527 
1528 	kvm_track_tsc_matching(vcpu);
1529 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1530 }
1531 
1532 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1533 
1534 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1535 					   s64 adjustment)
1536 {
1537 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1538 }
1539 
1540 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1541 {
1542 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1543 		WARN_ON(adjustment < 0);
1544 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1545 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1546 }
1547 
1548 #ifdef CONFIG_X86_64
1549 
1550 static cycle_t read_tsc(void)
1551 {
1552 	cycle_t ret = (cycle_t)rdtsc_ordered();
1553 	u64 last = pvclock_gtod_data.clock.cycle_last;
1554 
1555 	if (likely(ret >= last))
1556 		return ret;
1557 
1558 	/*
1559 	 * GCC likes to generate cmov here, but this branch is extremely
1560 	 * predictable (it's just a function of time and the likely is
1561 	 * very likely) and there's a data dependence, so force GCC
1562 	 * to generate a branch instead.  I don't barrier() because
1563 	 * we don't actually need a barrier, and if this function
1564 	 * ever gets inlined it will generate worse code.
1565 	 */
1566 	asm volatile ("");
1567 	return last;
1568 }
1569 
1570 static inline u64 vgettsc(cycle_t *cycle_now)
1571 {
1572 	long v;
1573 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1574 
1575 	*cycle_now = read_tsc();
1576 
1577 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1578 	return v * gtod->clock.mult;
1579 }
1580 
1581 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1582 {
1583 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1584 	unsigned long seq;
1585 	int mode;
1586 	u64 ns;
1587 
1588 	do {
1589 		seq = read_seqcount_begin(&gtod->seq);
1590 		mode = gtod->clock.vclock_mode;
1591 		ns = gtod->nsec_base;
1592 		ns += vgettsc(cycle_now);
1593 		ns >>= gtod->clock.shift;
1594 		ns += gtod->boot_ns;
1595 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1596 	*t = ns;
1597 
1598 	return mode;
1599 }
1600 
1601 /* returns true if host is using tsc clocksource */
1602 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1603 {
1604 	/* checked again under seqlock below */
1605 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1606 		return false;
1607 
1608 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1609 }
1610 #endif
1611 
1612 /*
1613  *
1614  * Assuming a stable TSC across physical CPUS, and a stable TSC
1615  * across virtual CPUs, the following condition is possible.
1616  * Each numbered line represents an event visible to both
1617  * CPUs at the next numbered event.
1618  *
1619  * "timespecX" represents host monotonic time. "tscX" represents
1620  * RDTSC value.
1621  *
1622  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1623  *
1624  * 1.  read timespec0,tsc0
1625  * 2.					| timespec1 = timespec0 + N
1626  * 					| tsc1 = tsc0 + M
1627  * 3. transition to guest		| transition to guest
1628  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1629  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1630  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1631  *
1632  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1633  *
1634  * 	- ret0 < ret1
1635  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1636  *		...
1637  *	- 0 < N - M => M < N
1638  *
1639  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1640  * always the case (the difference between two distinct xtime instances
1641  * might be smaller then the difference between corresponding TSC reads,
1642  * when updating guest vcpus pvclock areas).
1643  *
1644  * To avoid that problem, do not allow visibility of distinct
1645  * system_timestamp/tsc_timestamp values simultaneously: use a master
1646  * copy of host monotonic time values. Update that master copy
1647  * in lockstep.
1648  *
1649  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1650  *
1651  */
1652 
1653 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1654 {
1655 #ifdef CONFIG_X86_64
1656 	struct kvm_arch *ka = &kvm->arch;
1657 	int vclock_mode;
1658 	bool host_tsc_clocksource, vcpus_matched;
1659 
1660 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1661 			atomic_read(&kvm->online_vcpus));
1662 
1663 	/*
1664 	 * If the host uses TSC clock, then passthrough TSC as stable
1665 	 * to the guest.
1666 	 */
1667 	host_tsc_clocksource = kvm_get_time_and_clockread(
1668 					&ka->master_kernel_ns,
1669 					&ka->master_cycle_now);
1670 
1671 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1672 				&& !backwards_tsc_observed
1673 				&& !ka->boot_vcpu_runs_old_kvmclock;
1674 
1675 	if (ka->use_master_clock)
1676 		atomic_set(&kvm_guest_has_master_clock, 1);
1677 
1678 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1679 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1680 					vcpus_matched);
1681 #endif
1682 }
1683 
1684 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1685 {
1686 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1687 }
1688 
1689 static void kvm_gen_update_masterclock(struct kvm *kvm)
1690 {
1691 #ifdef CONFIG_X86_64
1692 	int i;
1693 	struct kvm_vcpu *vcpu;
1694 	struct kvm_arch *ka = &kvm->arch;
1695 
1696 	spin_lock(&ka->pvclock_gtod_sync_lock);
1697 	kvm_make_mclock_inprogress_request(kvm);
1698 	/* no guest entries from this point */
1699 	pvclock_update_vm_gtod_copy(kvm);
1700 
1701 	kvm_for_each_vcpu(i, vcpu, kvm)
1702 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1703 
1704 	/* guest entries allowed */
1705 	kvm_for_each_vcpu(i, vcpu, kvm)
1706 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1707 
1708 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1709 #endif
1710 }
1711 
1712 static int kvm_guest_time_update(struct kvm_vcpu *v)
1713 {
1714 	unsigned long flags, tgt_tsc_khz;
1715 	struct kvm_vcpu_arch *vcpu = &v->arch;
1716 	struct kvm_arch *ka = &v->kvm->arch;
1717 	s64 kernel_ns;
1718 	u64 tsc_timestamp, host_tsc;
1719 	struct pvclock_vcpu_time_info guest_hv_clock;
1720 	u8 pvclock_flags;
1721 	bool use_master_clock;
1722 
1723 	kernel_ns = 0;
1724 	host_tsc = 0;
1725 
1726 	/*
1727 	 * If the host uses TSC clock, then passthrough TSC as stable
1728 	 * to the guest.
1729 	 */
1730 	spin_lock(&ka->pvclock_gtod_sync_lock);
1731 	use_master_clock = ka->use_master_clock;
1732 	if (use_master_clock) {
1733 		host_tsc = ka->master_cycle_now;
1734 		kernel_ns = ka->master_kernel_ns;
1735 	}
1736 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1737 
1738 	/* Keep irq disabled to prevent changes to the clock */
1739 	local_irq_save(flags);
1740 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1741 	if (unlikely(tgt_tsc_khz == 0)) {
1742 		local_irq_restore(flags);
1743 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1744 		return 1;
1745 	}
1746 	if (!use_master_clock) {
1747 		host_tsc = rdtsc();
1748 		kernel_ns = get_kernel_ns();
1749 	}
1750 
1751 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1752 
1753 	/*
1754 	 * We may have to catch up the TSC to match elapsed wall clock
1755 	 * time for two reasons, even if kvmclock is used.
1756 	 *   1) CPU could have been running below the maximum TSC rate
1757 	 *   2) Broken TSC compensation resets the base at each VCPU
1758 	 *      entry to avoid unknown leaps of TSC even when running
1759 	 *      again on the same CPU.  This may cause apparent elapsed
1760 	 *      time to disappear, and the guest to stand still or run
1761 	 *	very slowly.
1762 	 */
1763 	if (vcpu->tsc_catchup) {
1764 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1765 		if (tsc > tsc_timestamp) {
1766 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1767 			tsc_timestamp = tsc;
1768 		}
1769 	}
1770 
1771 	local_irq_restore(flags);
1772 
1773 	if (!vcpu->pv_time_enabled)
1774 		return 0;
1775 
1776 	if (kvm_has_tsc_control)
1777 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1778 
1779 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1780 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1781 				   &vcpu->hv_clock.tsc_shift,
1782 				   &vcpu->hv_clock.tsc_to_system_mul);
1783 		vcpu->hw_tsc_khz = tgt_tsc_khz;
1784 	}
1785 
1786 	/* With all the info we got, fill in the values */
1787 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1788 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1789 	vcpu->last_guest_tsc = tsc_timestamp;
1790 
1791 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1792 		&guest_hv_clock, sizeof(guest_hv_clock))))
1793 		return 0;
1794 
1795 	/* This VCPU is paused, but it's legal for a guest to read another
1796 	 * VCPU's kvmclock, so we really have to follow the specification where
1797 	 * it says that version is odd if data is being modified, and even after
1798 	 * it is consistent.
1799 	 *
1800 	 * Version field updates must be kept separate.  This is because
1801 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1802 	 * writes within a string instruction are weakly ordered.  So there
1803 	 * are three writes overall.
1804 	 *
1805 	 * As a small optimization, only write the version field in the first
1806 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1807 	 * version field is the first in the struct.
1808 	 */
1809 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1810 
1811 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1812 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813 				&vcpu->hv_clock,
1814 				sizeof(vcpu->hv_clock.version));
1815 
1816 	smp_wmb();
1817 
1818 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1819 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1820 
1821 	if (vcpu->pvclock_set_guest_stopped_request) {
1822 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1823 		vcpu->pvclock_set_guest_stopped_request = false;
1824 	}
1825 
1826 	/* If the host uses TSC clocksource, then it is stable */
1827 	if (use_master_clock)
1828 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1829 
1830 	vcpu->hv_clock.flags = pvclock_flags;
1831 
1832 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1833 
1834 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1835 				&vcpu->hv_clock,
1836 				sizeof(vcpu->hv_clock));
1837 
1838 	smp_wmb();
1839 
1840 	vcpu->hv_clock.version++;
1841 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1842 				&vcpu->hv_clock,
1843 				sizeof(vcpu->hv_clock.version));
1844 	return 0;
1845 }
1846 
1847 /*
1848  * kvmclock updates which are isolated to a given vcpu, such as
1849  * vcpu->cpu migration, should not allow system_timestamp from
1850  * the rest of the vcpus to remain static. Otherwise ntp frequency
1851  * correction applies to one vcpu's system_timestamp but not
1852  * the others.
1853  *
1854  * So in those cases, request a kvmclock update for all vcpus.
1855  * We need to rate-limit these requests though, as they can
1856  * considerably slow guests that have a large number of vcpus.
1857  * The time for a remote vcpu to update its kvmclock is bound
1858  * by the delay we use to rate-limit the updates.
1859  */
1860 
1861 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1862 
1863 static void kvmclock_update_fn(struct work_struct *work)
1864 {
1865 	int i;
1866 	struct delayed_work *dwork = to_delayed_work(work);
1867 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1868 					   kvmclock_update_work);
1869 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1870 	struct kvm_vcpu *vcpu;
1871 
1872 	kvm_for_each_vcpu(i, vcpu, kvm) {
1873 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1874 		kvm_vcpu_kick(vcpu);
1875 	}
1876 }
1877 
1878 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1879 {
1880 	struct kvm *kvm = v->kvm;
1881 
1882 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1883 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1884 					KVMCLOCK_UPDATE_DELAY);
1885 }
1886 
1887 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1888 
1889 static void kvmclock_sync_fn(struct work_struct *work)
1890 {
1891 	struct delayed_work *dwork = to_delayed_work(work);
1892 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1893 					   kvmclock_sync_work);
1894 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1895 
1896 	if (!kvmclock_periodic_sync)
1897 		return;
1898 
1899 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1900 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1901 					KVMCLOCK_SYNC_PERIOD);
1902 }
1903 
1904 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1905 {
1906 	u64 mcg_cap = vcpu->arch.mcg_cap;
1907 	unsigned bank_num = mcg_cap & 0xff;
1908 
1909 	switch (msr) {
1910 	case MSR_IA32_MCG_STATUS:
1911 		vcpu->arch.mcg_status = data;
1912 		break;
1913 	case MSR_IA32_MCG_CTL:
1914 		if (!(mcg_cap & MCG_CTL_P))
1915 			return 1;
1916 		if (data != 0 && data != ~(u64)0)
1917 			return -1;
1918 		vcpu->arch.mcg_ctl = data;
1919 		break;
1920 	default:
1921 		if (msr >= MSR_IA32_MC0_CTL &&
1922 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1923 			u32 offset = msr - MSR_IA32_MC0_CTL;
1924 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1925 			 * some Linux kernels though clear bit 10 in bank 4 to
1926 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1927 			 * this to avoid an uncatched #GP in the guest
1928 			 */
1929 			if ((offset & 0x3) == 0 &&
1930 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1931 				return -1;
1932 			vcpu->arch.mce_banks[offset] = data;
1933 			break;
1934 		}
1935 		return 1;
1936 	}
1937 	return 0;
1938 }
1939 
1940 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1941 {
1942 	struct kvm *kvm = vcpu->kvm;
1943 	int lm = is_long_mode(vcpu);
1944 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1945 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1946 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1947 		: kvm->arch.xen_hvm_config.blob_size_32;
1948 	u32 page_num = data & ~PAGE_MASK;
1949 	u64 page_addr = data & PAGE_MASK;
1950 	u8 *page;
1951 	int r;
1952 
1953 	r = -E2BIG;
1954 	if (page_num >= blob_size)
1955 		goto out;
1956 	r = -ENOMEM;
1957 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1958 	if (IS_ERR(page)) {
1959 		r = PTR_ERR(page);
1960 		goto out;
1961 	}
1962 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1963 		goto out_free;
1964 	r = 0;
1965 out_free:
1966 	kfree(page);
1967 out:
1968 	return r;
1969 }
1970 
1971 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1972 {
1973 	gpa_t gpa = data & ~0x3f;
1974 
1975 	/* Bits 2:5 are reserved, Should be zero */
1976 	if (data & 0x3c)
1977 		return 1;
1978 
1979 	vcpu->arch.apf.msr_val = data;
1980 
1981 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1982 		kvm_clear_async_pf_completion_queue(vcpu);
1983 		kvm_async_pf_hash_reset(vcpu);
1984 		return 0;
1985 	}
1986 
1987 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1988 					sizeof(u32)))
1989 		return 1;
1990 
1991 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1992 	kvm_async_pf_wakeup_all(vcpu);
1993 	return 0;
1994 }
1995 
1996 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1997 {
1998 	vcpu->arch.pv_time_enabled = false;
1999 }
2000 
2001 static void record_steal_time(struct kvm_vcpu *vcpu)
2002 {
2003 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2004 		return;
2005 
2006 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2007 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2008 		return;
2009 
2010 	if (vcpu->arch.st.steal.version & 1)
2011 		vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2012 
2013 	vcpu->arch.st.steal.version += 1;
2014 
2015 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2016 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2017 
2018 	smp_wmb();
2019 
2020 	vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2021 		vcpu->arch.st.last_steal;
2022 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2023 
2024 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2025 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2026 
2027 	smp_wmb();
2028 
2029 	vcpu->arch.st.steal.version += 1;
2030 
2031 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2032 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2033 }
2034 
2035 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2036 {
2037 	bool pr = false;
2038 	u32 msr = msr_info->index;
2039 	u64 data = msr_info->data;
2040 
2041 	switch (msr) {
2042 	case MSR_AMD64_NB_CFG:
2043 	case MSR_IA32_UCODE_REV:
2044 	case MSR_IA32_UCODE_WRITE:
2045 	case MSR_VM_HSAVE_PA:
2046 	case MSR_AMD64_PATCH_LOADER:
2047 	case MSR_AMD64_BU_CFG2:
2048 		break;
2049 
2050 	case MSR_EFER:
2051 		return set_efer(vcpu, data);
2052 	case MSR_K7_HWCR:
2053 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2054 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2055 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2056 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2057 		if (data != 0) {
2058 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2059 				    data);
2060 			return 1;
2061 		}
2062 		break;
2063 	case MSR_FAM10H_MMIO_CONF_BASE:
2064 		if (data != 0) {
2065 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2066 				    "0x%llx\n", data);
2067 			return 1;
2068 		}
2069 		break;
2070 	case MSR_IA32_DEBUGCTLMSR:
2071 		if (!data) {
2072 			/* We support the non-activated case already */
2073 			break;
2074 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2075 			/* Values other than LBR and BTF are vendor-specific,
2076 			   thus reserved and should throw a #GP */
2077 			return 1;
2078 		}
2079 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2080 			    __func__, data);
2081 		break;
2082 	case 0x200 ... 0x2ff:
2083 		return kvm_mtrr_set_msr(vcpu, msr, data);
2084 	case MSR_IA32_APICBASE:
2085 		return kvm_set_apic_base(vcpu, msr_info);
2086 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2087 		return kvm_x2apic_msr_write(vcpu, msr, data);
2088 	case MSR_IA32_TSCDEADLINE:
2089 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2090 		break;
2091 	case MSR_IA32_TSC_ADJUST:
2092 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2093 			if (!msr_info->host_initiated) {
2094 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2095 				adjust_tsc_offset_guest(vcpu, adj);
2096 			}
2097 			vcpu->arch.ia32_tsc_adjust_msr = data;
2098 		}
2099 		break;
2100 	case MSR_IA32_MISC_ENABLE:
2101 		vcpu->arch.ia32_misc_enable_msr = data;
2102 		break;
2103 	case MSR_IA32_SMBASE:
2104 		if (!msr_info->host_initiated)
2105 			return 1;
2106 		vcpu->arch.smbase = data;
2107 		break;
2108 	case MSR_KVM_WALL_CLOCK_NEW:
2109 	case MSR_KVM_WALL_CLOCK:
2110 		vcpu->kvm->arch.wall_clock = data;
2111 		kvm_write_wall_clock(vcpu->kvm, data);
2112 		break;
2113 	case MSR_KVM_SYSTEM_TIME_NEW:
2114 	case MSR_KVM_SYSTEM_TIME: {
2115 		u64 gpa_offset;
2116 		struct kvm_arch *ka = &vcpu->kvm->arch;
2117 
2118 		kvmclock_reset(vcpu);
2119 
2120 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2121 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2122 
2123 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2124 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2125 					&vcpu->requests);
2126 
2127 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2128 		}
2129 
2130 		vcpu->arch.time = data;
2131 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2132 
2133 		/* we verify if the enable bit is set... */
2134 		if (!(data & 1))
2135 			break;
2136 
2137 		gpa_offset = data & ~(PAGE_MASK | 1);
2138 
2139 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2140 		     &vcpu->arch.pv_time, data & ~1ULL,
2141 		     sizeof(struct pvclock_vcpu_time_info)))
2142 			vcpu->arch.pv_time_enabled = false;
2143 		else
2144 			vcpu->arch.pv_time_enabled = true;
2145 
2146 		break;
2147 	}
2148 	case MSR_KVM_ASYNC_PF_EN:
2149 		if (kvm_pv_enable_async_pf(vcpu, data))
2150 			return 1;
2151 		break;
2152 	case MSR_KVM_STEAL_TIME:
2153 
2154 		if (unlikely(!sched_info_on()))
2155 			return 1;
2156 
2157 		if (data & KVM_STEAL_RESERVED_MASK)
2158 			return 1;
2159 
2160 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2161 						data & KVM_STEAL_VALID_BITS,
2162 						sizeof(struct kvm_steal_time)))
2163 			return 1;
2164 
2165 		vcpu->arch.st.msr_val = data;
2166 
2167 		if (!(data & KVM_MSR_ENABLED))
2168 			break;
2169 
2170 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2171 
2172 		break;
2173 	case MSR_KVM_PV_EOI_EN:
2174 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2175 			return 1;
2176 		break;
2177 
2178 	case MSR_IA32_MCG_CTL:
2179 	case MSR_IA32_MCG_STATUS:
2180 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2181 		return set_msr_mce(vcpu, msr, data);
2182 
2183 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2184 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2185 		pr = true; /* fall through */
2186 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2187 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2188 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2189 			return kvm_pmu_set_msr(vcpu, msr_info);
2190 
2191 		if (pr || data != 0)
2192 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2193 				    "0x%x data 0x%llx\n", msr, data);
2194 		break;
2195 	case MSR_K7_CLK_CTL:
2196 		/*
2197 		 * Ignore all writes to this no longer documented MSR.
2198 		 * Writes are only relevant for old K7 processors,
2199 		 * all pre-dating SVM, but a recommended workaround from
2200 		 * AMD for these chips. It is possible to specify the
2201 		 * affected processor models on the command line, hence
2202 		 * the need to ignore the workaround.
2203 		 */
2204 		break;
2205 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2206 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2207 	case HV_X64_MSR_CRASH_CTL:
2208 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2209 		return kvm_hv_set_msr_common(vcpu, msr, data,
2210 					     msr_info->host_initiated);
2211 	case MSR_IA32_BBL_CR_CTL3:
2212 		/* Drop writes to this legacy MSR -- see rdmsr
2213 		 * counterpart for further detail.
2214 		 */
2215 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2216 		break;
2217 	case MSR_AMD64_OSVW_ID_LENGTH:
2218 		if (!guest_cpuid_has_osvw(vcpu))
2219 			return 1;
2220 		vcpu->arch.osvw.length = data;
2221 		break;
2222 	case MSR_AMD64_OSVW_STATUS:
2223 		if (!guest_cpuid_has_osvw(vcpu))
2224 			return 1;
2225 		vcpu->arch.osvw.status = data;
2226 		break;
2227 	default:
2228 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2229 			return xen_hvm_config(vcpu, data);
2230 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2231 			return kvm_pmu_set_msr(vcpu, msr_info);
2232 		if (!ignore_msrs) {
2233 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2234 				    msr, data);
2235 			return 1;
2236 		} else {
2237 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2238 				    msr, data);
2239 			break;
2240 		}
2241 	}
2242 	return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2245 
2246 
2247 /*
2248  * Reads an msr value (of 'msr_index') into 'pdata'.
2249  * Returns 0 on success, non-0 otherwise.
2250  * Assumes vcpu_load() was already called.
2251  */
2252 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2253 {
2254 	return kvm_x86_ops->get_msr(vcpu, msr);
2255 }
2256 EXPORT_SYMBOL_GPL(kvm_get_msr);
2257 
2258 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2259 {
2260 	u64 data;
2261 	u64 mcg_cap = vcpu->arch.mcg_cap;
2262 	unsigned bank_num = mcg_cap & 0xff;
2263 
2264 	switch (msr) {
2265 	case MSR_IA32_P5_MC_ADDR:
2266 	case MSR_IA32_P5_MC_TYPE:
2267 		data = 0;
2268 		break;
2269 	case MSR_IA32_MCG_CAP:
2270 		data = vcpu->arch.mcg_cap;
2271 		break;
2272 	case MSR_IA32_MCG_CTL:
2273 		if (!(mcg_cap & MCG_CTL_P))
2274 			return 1;
2275 		data = vcpu->arch.mcg_ctl;
2276 		break;
2277 	case MSR_IA32_MCG_STATUS:
2278 		data = vcpu->arch.mcg_status;
2279 		break;
2280 	default:
2281 		if (msr >= MSR_IA32_MC0_CTL &&
2282 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2283 			u32 offset = msr - MSR_IA32_MC0_CTL;
2284 			data = vcpu->arch.mce_banks[offset];
2285 			break;
2286 		}
2287 		return 1;
2288 	}
2289 	*pdata = data;
2290 	return 0;
2291 }
2292 
2293 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2294 {
2295 	switch (msr_info->index) {
2296 	case MSR_IA32_PLATFORM_ID:
2297 	case MSR_IA32_EBL_CR_POWERON:
2298 	case MSR_IA32_DEBUGCTLMSR:
2299 	case MSR_IA32_LASTBRANCHFROMIP:
2300 	case MSR_IA32_LASTBRANCHTOIP:
2301 	case MSR_IA32_LASTINTFROMIP:
2302 	case MSR_IA32_LASTINTTOIP:
2303 	case MSR_K8_SYSCFG:
2304 	case MSR_K8_TSEG_ADDR:
2305 	case MSR_K8_TSEG_MASK:
2306 	case MSR_K7_HWCR:
2307 	case MSR_VM_HSAVE_PA:
2308 	case MSR_K8_INT_PENDING_MSG:
2309 	case MSR_AMD64_NB_CFG:
2310 	case MSR_FAM10H_MMIO_CONF_BASE:
2311 	case MSR_AMD64_BU_CFG2:
2312 	case MSR_IA32_PERF_CTL:
2313 		msr_info->data = 0;
2314 		break;
2315 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2316 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2317 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2318 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2319 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2320 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2321 		msr_info->data = 0;
2322 		break;
2323 	case MSR_IA32_UCODE_REV:
2324 		msr_info->data = 0x100000000ULL;
2325 		break;
2326 	case MSR_MTRRcap:
2327 	case 0x200 ... 0x2ff:
2328 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2329 	case 0xcd: /* fsb frequency */
2330 		msr_info->data = 3;
2331 		break;
2332 		/*
2333 		 * MSR_EBC_FREQUENCY_ID
2334 		 * Conservative value valid for even the basic CPU models.
2335 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2336 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2337 		 * and 266MHz for model 3, or 4. Set Core Clock
2338 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2339 		 * 31:24) even though these are only valid for CPU
2340 		 * models > 2, however guests may end up dividing or
2341 		 * multiplying by zero otherwise.
2342 		 */
2343 	case MSR_EBC_FREQUENCY_ID:
2344 		msr_info->data = 1 << 24;
2345 		break;
2346 	case MSR_IA32_APICBASE:
2347 		msr_info->data = kvm_get_apic_base(vcpu);
2348 		break;
2349 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2350 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2351 		break;
2352 	case MSR_IA32_TSCDEADLINE:
2353 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2354 		break;
2355 	case MSR_IA32_TSC_ADJUST:
2356 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2357 		break;
2358 	case MSR_IA32_MISC_ENABLE:
2359 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2360 		break;
2361 	case MSR_IA32_SMBASE:
2362 		if (!msr_info->host_initiated)
2363 			return 1;
2364 		msr_info->data = vcpu->arch.smbase;
2365 		break;
2366 	case MSR_IA32_PERF_STATUS:
2367 		/* TSC increment by tick */
2368 		msr_info->data = 1000ULL;
2369 		/* CPU multiplier */
2370 		msr_info->data |= (((uint64_t)4ULL) << 40);
2371 		break;
2372 	case MSR_EFER:
2373 		msr_info->data = vcpu->arch.efer;
2374 		break;
2375 	case MSR_KVM_WALL_CLOCK:
2376 	case MSR_KVM_WALL_CLOCK_NEW:
2377 		msr_info->data = vcpu->kvm->arch.wall_clock;
2378 		break;
2379 	case MSR_KVM_SYSTEM_TIME:
2380 	case MSR_KVM_SYSTEM_TIME_NEW:
2381 		msr_info->data = vcpu->arch.time;
2382 		break;
2383 	case MSR_KVM_ASYNC_PF_EN:
2384 		msr_info->data = vcpu->arch.apf.msr_val;
2385 		break;
2386 	case MSR_KVM_STEAL_TIME:
2387 		msr_info->data = vcpu->arch.st.msr_val;
2388 		break;
2389 	case MSR_KVM_PV_EOI_EN:
2390 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2391 		break;
2392 	case MSR_IA32_P5_MC_ADDR:
2393 	case MSR_IA32_P5_MC_TYPE:
2394 	case MSR_IA32_MCG_CAP:
2395 	case MSR_IA32_MCG_CTL:
2396 	case MSR_IA32_MCG_STATUS:
2397 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2398 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2399 	case MSR_K7_CLK_CTL:
2400 		/*
2401 		 * Provide expected ramp-up count for K7. All other
2402 		 * are set to zero, indicating minimum divisors for
2403 		 * every field.
2404 		 *
2405 		 * This prevents guest kernels on AMD host with CPU
2406 		 * type 6, model 8 and higher from exploding due to
2407 		 * the rdmsr failing.
2408 		 */
2409 		msr_info->data = 0x20000000;
2410 		break;
2411 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2412 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2413 	case HV_X64_MSR_CRASH_CTL:
2414 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2415 		return kvm_hv_get_msr_common(vcpu,
2416 					     msr_info->index, &msr_info->data);
2417 		break;
2418 	case MSR_IA32_BBL_CR_CTL3:
2419 		/* This legacy MSR exists but isn't fully documented in current
2420 		 * silicon.  It is however accessed by winxp in very narrow
2421 		 * scenarios where it sets bit #19, itself documented as
2422 		 * a "reserved" bit.  Best effort attempt to source coherent
2423 		 * read data here should the balance of the register be
2424 		 * interpreted by the guest:
2425 		 *
2426 		 * L2 cache control register 3: 64GB range, 256KB size,
2427 		 * enabled, latency 0x1, configured
2428 		 */
2429 		msr_info->data = 0xbe702111;
2430 		break;
2431 	case MSR_AMD64_OSVW_ID_LENGTH:
2432 		if (!guest_cpuid_has_osvw(vcpu))
2433 			return 1;
2434 		msr_info->data = vcpu->arch.osvw.length;
2435 		break;
2436 	case MSR_AMD64_OSVW_STATUS:
2437 		if (!guest_cpuid_has_osvw(vcpu))
2438 			return 1;
2439 		msr_info->data = vcpu->arch.osvw.status;
2440 		break;
2441 	default:
2442 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2443 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2444 		if (!ignore_msrs) {
2445 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2446 			return 1;
2447 		} else {
2448 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2449 			msr_info->data = 0;
2450 		}
2451 		break;
2452 	}
2453 	return 0;
2454 }
2455 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2456 
2457 /*
2458  * Read or write a bunch of msrs. All parameters are kernel addresses.
2459  *
2460  * @return number of msrs set successfully.
2461  */
2462 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2463 		    struct kvm_msr_entry *entries,
2464 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2465 				  unsigned index, u64 *data))
2466 {
2467 	int i, idx;
2468 
2469 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2470 	for (i = 0; i < msrs->nmsrs; ++i)
2471 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2472 			break;
2473 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2474 
2475 	return i;
2476 }
2477 
2478 /*
2479  * Read or write a bunch of msrs. Parameters are user addresses.
2480  *
2481  * @return number of msrs set successfully.
2482  */
2483 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2484 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2485 				unsigned index, u64 *data),
2486 		  int writeback)
2487 {
2488 	struct kvm_msrs msrs;
2489 	struct kvm_msr_entry *entries;
2490 	int r, n;
2491 	unsigned size;
2492 
2493 	r = -EFAULT;
2494 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2495 		goto out;
2496 
2497 	r = -E2BIG;
2498 	if (msrs.nmsrs >= MAX_IO_MSRS)
2499 		goto out;
2500 
2501 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2502 	entries = memdup_user(user_msrs->entries, size);
2503 	if (IS_ERR(entries)) {
2504 		r = PTR_ERR(entries);
2505 		goto out;
2506 	}
2507 
2508 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2509 	if (r < 0)
2510 		goto out_free;
2511 
2512 	r = -EFAULT;
2513 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2514 		goto out_free;
2515 
2516 	r = n;
2517 
2518 out_free:
2519 	kfree(entries);
2520 out:
2521 	return r;
2522 }
2523 
2524 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2525 {
2526 	int r;
2527 
2528 	switch (ext) {
2529 	case KVM_CAP_IRQCHIP:
2530 	case KVM_CAP_HLT:
2531 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2532 	case KVM_CAP_SET_TSS_ADDR:
2533 	case KVM_CAP_EXT_CPUID:
2534 	case KVM_CAP_EXT_EMUL_CPUID:
2535 	case KVM_CAP_CLOCKSOURCE:
2536 	case KVM_CAP_PIT:
2537 	case KVM_CAP_NOP_IO_DELAY:
2538 	case KVM_CAP_MP_STATE:
2539 	case KVM_CAP_SYNC_MMU:
2540 	case KVM_CAP_USER_NMI:
2541 	case KVM_CAP_REINJECT_CONTROL:
2542 	case KVM_CAP_IRQ_INJECT_STATUS:
2543 	case KVM_CAP_IOEVENTFD:
2544 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2545 	case KVM_CAP_PIT2:
2546 	case KVM_CAP_PIT_STATE2:
2547 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2548 	case KVM_CAP_XEN_HVM:
2549 	case KVM_CAP_ADJUST_CLOCK:
2550 	case KVM_CAP_VCPU_EVENTS:
2551 	case KVM_CAP_HYPERV:
2552 	case KVM_CAP_HYPERV_VAPIC:
2553 	case KVM_CAP_HYPERV_SPIN:
2554 	case KVM_CAP_HYPERV_SYNIC:
2555 	case KVM_CAP_PCI_SEGMENT:
2556 	case KVM_CAP_DEBUGREGS:
2557 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2558 	case KVM_CAP_XSAVE:
2559 	case KVM_CAP_ASYNC_PF:
2560 	case KVM_CAP_GET_TSC_KHZ:
2561 	case KVM_CAP_KVMCLOCK_CTRL:
2562 	case KVM_CAP_READONLY_MEM:
2563 	case KVM_CAP_HYPERV_TIME:
2564 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2565 	case KVM_CAP_TSC_DEADLINE_TIMER:
2566 	case KVM_CAP_ENABLE_CAP_VM:
2567 	case KVM_CAP_DISABLE_QUIRKS:
2568 	case KVM_CAP_SET_BOOT_CPU_ID:
2569  	case KVM_CAP_SPLIT_IRQCHIP:
2570 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2571 	case KVM_CAP_ASSIGN_DEV_IRQ:
2572 	case KVM_CAP_PCI_2_3:
2573 #endif
2574 		r = 1;
2575 		break;
2576 	case KVM_CAP_X86_SMM:
2577 		/* SMBASE is usually relocated above 1M on modern chipsets,
2578 		 * and SMM handlers might indeed rely on 4G segment limits,
2579 		 * so do not report SMM to be available if real mode is
2580 		 * emulated via vm86 mode.  Still, do not go to great lengths
2581 		 * to avoid userspace's usage of the feature, because it is a
2582 		 * fringe case that is not enabled except via specific settings
2583 		 * of the module parameters.
2584 		 */
2585 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2586 		break;
2587 	case KVM_CAP_COALESCED_MMIO:
2588 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2589 		break;
2590 	case KVM_CAP_VAPIC:
2591 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2592 		break;
2593 	case KVM_CAP_NR_VCPUS:
2594 		r = KVM_SOFT_MAX_VCPUS;
2595 		break;
2596 	case KVM_CAP_MAX_VCPUS:
2597 		r = KVM_MAX_VCPUS;
2598 		break;
2599 	case KVM_CAP_NR_MEMSLOTS:
2600 		r = KVM_USER_MEM_SLOTS;
2601 		break;
2602 	case KVM_CAP_PV_MMU:	/* obsolete */
2603 		r = 0;
2604 		break;
2605 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2606 	case KVM_CAP_IOMMU:
2607 		r = iommu_present(&pci_bus_type);
2608 		break;
2609 #endif
2610 	case KVM_CAP_MCE:
2611 		r = KVM_MAX_MCE_BANKS;
2612 		break;
2613 	case KVM_CAP_XCRS:
2614 		r = boot_cpu_has(X86_FEATURE_XSAVE);
2615 		break;
2616 	case KVM_CAP_TSC_CONTROL:
2617 		r = kvm_has_tsc_control;
2618 		break;
2619 	default:
2620 		r = 0;
2621 		break;
2622 	}
2623 	return r;
2624 
2625 }
2626 
2627 long kvm_arch_dev_ioctl(struct file *filp,
2628 			unsigned int ioctl, unsigned long arg)
2629 {
2630 	void __user *argp = (void __user *)arg;
2631 	long r;
2632 
2633 	switch (ioctl) {
2634 	case KVM_GET_MSR_INDEX_LIST: {
2635 		struct kvm_msr_list __user *user_msr_list = argp;
2636 		struct kvm_msr_list msr_list;
2637 		unsigned n;
2638 
2639 		r = -EFAULT;
2640 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2641 			goto out;
2642 		n = msr_list.nmsrs;
2643 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2644 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2645 			goto out;
2646 		r = -E2BIG;
2647 		if (n < msr_list.nmsrs)
2648 			goto out;
2649 		r = -EFAULT;
2650 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2651 				 num_msrs_to_save * sizeof(u32)))
2652 			goto out;
2653 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2654 				 &emulated_msrs,
2655 				 num_emulated_msrs * sizeof(u32)))
2656 			goto out;
2657 		r = 0;
2658 		break;
2659 	}
2660 	case KVM_GET_SUPPORTED_CPUID:
2661 	case KVM_GET_EMULATED_CPUID: {
2662 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2663 		struct kvm_cpuid2 cpuid;
2664 
2665 		r = -EFAULT;
2666 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2667 			goto out;
2668 
2669 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2670 					    ioctl);
2671 		if (r)
2672 			goto out;
2673 
2674 		r = -EFAULT;
2675 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2676 			goto out;
2677 		r = 0;
2678 		break;
2679 	}
2680 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2681 		u64 mce_cap;
2682 
2683 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2684 		r = -EFAULT;
2685 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2686 			goto out;
2687 		r = 0;
2688 		break;
2689 	}
2690 	default:
2691 		r = -EINVAL;
2692 	}
2693 out:
2694 	return r;
2695 }
2696 
2697 static void wbinvd_ipi(void *garbage)
2698 {
2699 	wbinvd();
2700 }
2701 
2702 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2703 {
2704 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2705 }
2706 
2707 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2708 {
2709 	set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2710 }
2711 
2712 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2713 {
2714 	/* Address WBINVD may be executed by guest */
2715 	if (need_emulate_wbinvd(vcpu)) {
2716 		if (kvm_x86_ops->has_wbinvd_exit())
2717 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2718 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2719 			smp_call_function_single(vcpu->cpu,
2720 					wbinvd_ipi, NULL, 1);
2721 	}
2722 
2723 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2724 
2725 	/* Apply any externally detected TSC adjustments (due to suspend) */
2726 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2727 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2728 		vcpu->arch.tsc_offset_adjustment = 0;
2729 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2730 	}
2731 
2732 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2733 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2734 				rdtsc() - vcpu->arch.last_host_tsc;
2735 		if (tsc_delta < 0)
2736 			mark_tsc_unstable("KVM discovered backwards TSC");
2737 		if (check_tsc_unstable()) {
2738 			u64 offset = kvm_compute_tsc_offset(vcpu,
2739 						vcpu->arch.last_guest_tsc);
2740 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2741 			vcpu->arch.tsc_catchup = 1;
2742 		}
2743 		/*
2744 		 * On a host with synchronized TSC, there is no need to update
2745 		 * kvmclock on vcpu->cpu migration
2746 		 */
2747 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2748 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2749 		if (vcpu->cpu != cpu)
2750 			kvm_migrate_timers(vcpu);
2751 		vcpu->cpu = cpu;
2752 	}
2753 
2754 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2755 }
2756 
2757 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2758 {
2759 	kvm_x86_ops->vcpu_put(vcpu);
2760 	kvm_put_guest_fpu(vcpu);
2761 	vcpu->arch.last_host_tsc = rdtsc();
2762 }
2763 
2764 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2765 				    struct kvm_lapic_state *s)
2766 {
2767 	if (vcpu->arch.apicv_active)
2768 		kvm_x86_ops->sync_pir_to_irr(vcpu);
2769 
2770 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2771 
2772 	return 0;
2773 }
2774 
2775 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2776 				    struct kvm_lapic_state *s)
2777 {
2778 	kvm_apic_post_state_restore(vcpu, s);
2779 	update_cr8_intercept(vcpu);
2780 
2781 	return 0;
2782 }
2783 
2784 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2785 {
2786 	return (!lapic_in_kernel(vcpu) ||
2787 		kvm_apic_accept_pic_intr(vcpu));
2788 }
2789 
2790 /*
2791  * if userspace requested an interrupt window, check that the
2792  * interrupt window is open.
2793  *
2794  * No need to exit to userspace if we already have an interrupt queued.
2795  */
2796 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2797 {
2798 	return kvm_arch_interrupt_allowed(vcpu) &&
2799 		!kvm_cpu_has_interrupt(vcpu) &&
2800 		!kvm_event_needs_reinjection(vcpu) &&
2801 		kvm_cpu_accept_dm_intr(vcpu);
2802 }
2803 
2804 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2805 				    struct kvm_interrupt *irq)
2806 {
2807 	if (irq->irq >= KVM_NR_INTERRUPTS)
2808 		return -EINVAL;
2809 
2810 	if (!irqchip_in_kernel(vcpu->kvm)) {
2811 		kvm_queue_interrupt(vcpu, irq->irq, false);
2812 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2813 		return 0;
2814 	}
2815 
2816 	/*
2817 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2818 	 * fail for in-kernel 8259.
2819 	 */
2820 	if (pic_in_kernel(vcpu->kvm))
2821 		return -ENXIO;
2822 
2823 	if (vcpu->arch.pending_external_vector != -1)
2824 		return -EEXIST;
2825 
2826 	vcpu->arch.pending_external_vector = irq->irq;
2827 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2828 	return 0;
2829 }
2830 
2831 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2832 {
2833 	kvm_inject_nmi(vcpu);
2834 
2835 	return 0;
2836 }
2837 
2838 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2839 {
2840 	kvm_make_request(KVM_REQ_SMI, vcpu);
2841 
2842 	return 0;
2843 }
2844 
2845 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2846 					   struct kvm_tpr_access_ctl *tac)
2847 {
2848 	if (tac->flags)
2849 		return -EINVAL;
2850 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2851 	return 0;
2852 }
2853 
2854 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2855 					u64 mcg_cap)
2856 {
2857 	int r;
2858 	unsigned bank_num = mcg_cap & 0xff, bank;
2859 
2860 	r = -EINVAL;
2861 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2862 		goto out;
2863 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2864 		goto out;
2865 	r = 0;
2866 	vcpu->arch.mcg_cap = mcg_cap;
2867 	/* Init IA32_MCG_CTL to all 1s */
2868 	if (mcg_cap & MCG_CTL_P)
2869 		vcpu->arch.mcg_ctl = ~(u64)0;
2870 	/* Init IA32_MCi_CTL to all 1s */
2871 	for (bank = 0; bank < bank_num; bank++)
2872 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2873 out:
2874 	return r;
2875 }
2876 
2877 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2878 				      struct kvm_x86_mce *mce)
2879 {
2880 	u64 mcg_cap = vcpu->arch.mcg_cap;
2881 	unsigned bank_num = mcg_cap & 0xff;
2882 	u64 *banks = vcpu->arch.mce_banks;
2883 
2884 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2885 		return -EINVAL;
2886 	/*
2887 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2888 	 * reporting is disabled
2889 	 */
2890 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2891 	    vcpu->arch.mcg_ctl != ~(u64)0)
2892 		return 0;
2893 	banks += 4 * mce->bank;
2894 	/*
2895 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2896 	 * reporting is disabled for the bank
2897 	 */
2898 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2899 		return 0;
2900 	if (mce->status & MCI_STATUS_UC) {
2901 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2902 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2903 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2904 			return 0;
2905 		}
2906 		if (banks[1] & MCI_STATUS_VAL)
2907 			mce->status |= MCI_STATUS_OVER;
2908 		banks[2] = mce->addr;
2909 		banks[3] = mce->misc;
2910 		vcpu->arch.mcg_status = mce->mcg_status;
2911 		banks[1] = mce->status;
2912 		kvm_queue_exception(vcpu, MC_VECTOR);
2913 	} else if (!(banks[1] & MCI_STATUS_VAL)
2914 		   || !(banks[1] & MCI_STATUS_UC)) {
2915 		if (banks[1] & MCI_STATUS_VAL)
2916 			mce->status |= MCI_STATUS_OVER;
2917 		banks[2] = mce->addr;
2918 		banks[3] = mce->misc;
2919 		banks[1] = mce->status;
2920 	} else
2921 		banks[1] |= MCI_STATUS_OVER;
2922 	return 0;
2923 }
2924 
2925 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2926 					       struct kvm_vcpu_events *events)
2927 {
2928 	process_nmi(vcpu);
2929 	events->exception.injected =
2930 		vcpu->arch.exception.pending &&
2931 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2932 	events->exception.nr = vcpu->arch.exception.nr;
2933 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2934 	events->exception.pad = 0;
2935 	events->exception.error_code = vcpu->arch.exception.error_code;
2936 
2937 	events->interrupt.injected =
2938 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2939 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2940 	events->interrupt.soft = 0;
2941 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2942 
2943 	events->nmi.injected = vcpu->arch.nmi_injected;
2944 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2945 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2946 	events->nmi.pad = 0;
2947 
2948 	events->sipi_vector = 0; /* never valid when reporting to user space */
2949 
2950 	events->smi.smm = is_smm(vcpu);
2951 	events->smi.pending = vcpu->arch.smi_pending;
2952 	events->smi.smm_inside_nmi =
2953 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2954 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2955 
2956 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2957 			 | KVM_VCPUEVENT_VALID_SHADOW
2958 			 | KVM_VCPUEVENT_VALID_SMM);
2959 	memset(&events->reserved, 0, sizeof(events->reserved));
2960 }
2961 
2962 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2963 					      struct kvm_vcpu_events *events)
2964 {
2965 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2966 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2967 			      | KVM_VCPUEVENT_VALID_SHADOW
2968 			      | KVM_VCPUEVENT_VALID_SMM))
2969 		return -EINVAL;
2970 
2971 	if (events->exception.injected &&
2972 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
2973 		return -EINVAL;
2974 
2975 	process_nmi(vcpu);
2976 	vcpu->arch.exception.pending = events->exception.injected;
2977 	vcpu->arch.exception.nr = events->exception.nr;
2978 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2979 	vcpu->arch.exception.error_code = events->exception.error_code;
2980 
2981 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2982 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2983 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2984 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2985 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2986 						  events->interrupt.shadow);
2987 
2988 	vcpu->arch.nmi_injected = events->nmi.injected;
2989 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2990 		vcpu->arch.nmi_pending = events->nmi.pending;
2991 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2992 
2993 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2994 	    lapic_in_kernel(vcpu))
2995 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2996 
2997 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2998 		if (events->smi.smm)
2999 			vcpu->arch.hflags |= HF_SMM_MASK;
3000 		else
3001 			vcpu->arch.hflags &= ~HF_SMM_MASK;
3002 		vcpu->arch.smi_pending = events->smi.pending;
3003 		if (events->smi.smm_inside_nmi)
3004 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3005 		else
3006 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3007 		if (lapic_in_kernel(vcpu)) {
3008 			if (events->smi.latched_init)
3009 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3010 			else
3011 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3012 		}
3013 	}
3014 
3015 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3016 
3017 	return 0;
3018 }
3019 
3020 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3021 					     struct kvm_debugregs *dbgregs)
3022 {
3023 	unsigned long val;
3024 
3025 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3026 	kvm_get_dr(vcpu, 6, &val);
3027 	dbgregs->dr6 = val;
3028 	dbgregs->dr7 = vcpu->arch.dr7;
3029 	dbgregs->flags = 0;
3030 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3031 }
3032 
3033 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3034 					    struct kvm_debugregs *dbgregs)
3035 {
3036 	if (dbgregs->flags)
3037 		return -EINVAL;
3038 
3039 	if (dbgregs->dr6 & ~0xffffffffull)
3040 		return -EINVAL;
3041 	if (dbgregs->dr7 & ~0xffffffffull)
3042 		return -EINVAL;
3043 
3044 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3045 	kvm_update_dr0123(vcpu);
3046 	vcpu->arch.dr6 = dbgregs->dr6;
3047 	kvm_update_dr6(vcpu);
3048 	vcpu->arch.dr7 = dbgregs->dr7;
3049 	kvm_update_dr7(vcpu);
3050 
3051 	return 0;
3052 }
3053 
3054 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3055 
3056 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3057 {
3058 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3059 	u64 xstate_bv = xsave->header.xfeatures;
3060 	u64 valid;
3061 
3062 	/*
3063 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3064 	 * leaves 0 and 1 in the loop below.
3065 	 */
3066 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3067 
3068 	/* Set XSTATE_BV */
3069 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3070 
3071 	/*
3072 	 * Copy each region from the possibly compacted offset to the
3073 	 * non-compacted offset.
3074 	 */
3075 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3076 	while (valid) {
3077 		u64 feature = valid & -valid;
3078 		int index = fls64(feature) - 1;
3079 		void *src = get_xsave_addr(xsave, feature);
3080 
3081 		if (src) {
3082 			u32 size, offset, ecx, edx;
3083 			cpuid_count(XSTATE_CPUID, index,
3084 				    &size, &offset, &ecx, &edx);
3085 			memcpy(dest + offset, src, size);
3086 		}
3087 
3088 		valid -= feature;
3089 	}
3090 }
3091 
3092 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3093 {
3094 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3095 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3096 	u64 valid;
3097 
3098 	/*
3099 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3100 	 * leaves 0 and 1 in the loop below.
3101 	 */
3102 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3103 
3104 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3105 	xsave->header.xfeatures = xstate_bv;
3106 	if (boot_cpu_has(X86_FEATURE_XSAVES))
3107 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3108 
3109 	/*
3110 	 * Copy each region from the non-compacted offset to the
3111 	 * possibly compacted offset.
3112 	 */
3113 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3114 	while (valid) {
3115 		u64 feature = valid & -valid;
3116 		int index = fls64(feature) - 1;
3117 		void *dest = get_xsave_addr(xsave, feature);
3118 
3119 		if (dest) {
3120 			u32 size, offset, ecx, edx;
3121 			cpuid_count(XSTATE_CPUID, index,
3122 				    &size, &offset, &ecx, &edx);
3123 			memcpy(dest, src + offset, size);
3124 		}
3125 
3126 		valid -= feature;
3127 	}
3128 }
3129 
3130 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3131 					 struct kvm_xsave *guest_xsave)
3132 {
3133 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3134 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3135 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3136 	} else {
3137 		memcpy(guest_xsave->region,
3138 			&vcpu->arch.guest_fpu.state.fxsave,
3139 			sizeof(struct fxregs_state));
3140 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3141 			XFEATURE_MASK_FPSSE;
3142 	}
3143 }
3144 
3145 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3146 					struct kvm_xsave *guest_xsave)
3147 {
3148 	u64 xstate_bv =
3149 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3150 
3151 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3152 		/*
3153 		 * Here we allow setting states that are not present in
3154 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3155 		 * with old userspace.
3156 		 */
3157 		if (xstate_bv & ~kvm_supported_xcr0())
3158 			return -EINVAL;
3159 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3160 	} else {
3161 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3162 			return -EINVAL;
3163 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3164 			guest_xsave->region, sizeof(struct fxregs_state));
3165 	}
3166 	return 0;
3167 }
3168 
3169 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3170 					struct kvm_xcrs *guest_xcrs)
3171 {
3172 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3173 		guest_xcrs->nr_xcrs = 0;
3174 		return;
3175 	}
3176 
3177 	guest_xcrs->nr_xcrs = 1;
3178 	guest_xcrs->flags = 0;
3179 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3180 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3181 }
3182 
3183 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3184 				       struct kvm_xcrs *guest_xcrs)
3185 {
3186 	int i, r = 0;
3187 
3188 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
3189 		return -EINVAL;
3190 
3191 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3192 		return -EINVAL;
3193 
3194 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3195 		/* Only support XCR0 currently */
3196 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3197 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3198 				guest_xcrs->xcrs[i].value);
3199 			break;
3200 		}
3201 	if (r)
3202 		r = -EINVAL;
3203 	return r;
3204 }
3205 
3206 /*
3207  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3208  * stopped by the hypervisor.  This function will be called from the host only.
3209  * EINVAL is returned when the host attempts to set the flag for a guest that
3210  * does not support pv clocks.
3211  */
3212 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3213 {
3214 	if (!vcpu->arch.pv_time_enabled)
3215 		return -EINVAL;
3216 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3217 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3218 	return 0;
3219 }
3220 
3221 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3222 				     struct kvm_enable_cap *cap)
3223 {
3224 	if (cap->flags)
3225 		return -EINVAL;
3226 
3227 	switch (cap->cap) {
3228 	case KVM_CAP_HYPERV_SYNIC:
3229 		return kvm_hv_activate_synic(vcpu);
3230 	default:
3231 		return -EINVAL;
3232 	}
3233 }
3234 
3235 long kvm_arch_vcpu_ioctl(struct file *filp,
3236 			 unsigned int ioctl, unsigned long arg)
3237 {
3238 	struct kvm_vcpu *vcpu = filp->private_data;
3239 	void __user *argp = (void __user *)arg;
3240 	int r;
3241 	union {
3242 		struct kvm_lapic_state *lapic;
3243 		struct kvm_xsave *xsave;
3244 		struct kvm_xcrs *xcrs;
3245 		void *buffer;
3246 	} u;
3247 
3248 	u.buffer = NULL;
3249 	switch (ioctl) {
3250 	case KVM_GET_LAPIC: {
3251 		r = -EINVAL;
3252 		if (!lapic_in_kernel(vcpu))
3253 			goto out;
3254 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3255 
3256 		r = -ENOMEM;
3257 		if (!u.lapic)
3258 			goto out;
3259 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3260 		if (r)
3261 			goto out;
3262 		r = -EFAULT;
3263 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3264 			goto out;
3265 		r = 0;
3266 		break;
3267 	}
3268 	case KVM_SET_LAPIC: {
3269 		r = -EINVAL;
3270 		if (!lapic_in_kernel(vcpu))
3271 			goto out;
3272 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3273 		if (IS_ERR(u.lapic))
3274 			return PTR_ERR(u.lapic);
3275 
3276 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3277 		break;
3278 	}
3279 	case KVM_INTERRUPT: {
3280 		struct kvm_interrupt irq;
3281 
3282 		r = -EFAULT;
3283 		if (copy_from_user(&irq, argp, sizeof irq))
3284 			goto out;
3285 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3286 		break;
3287 	}
3288 	case KVM_NMI: {
3289 		r = kvm_vcpu_ioctl_nmi(vcpu);
3290 		break;
3291 	}
3292 	case KVM_SMI: {
3293 		r = kvm_vcpu_ioctl_smi(vcpu);
3294 		break;
3295 	}
3296 	case KVM_SET_CPUID: {
3297 		struct kvm_cpuid __user *cpuid_arg = argp;
3298 		struct kvm_cpuid cpuid;
3299 
3300 		r = -EFAULT;
3301 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3302 			goto out;
3303 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3304 		break;
3305 	}
3306 	case KVM_SET_CPUID2: {
3307 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3308 		struct kvm_cpuid2 cpuid;
3309 
3310 		r = -EFAULT;
3311 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3312 			goto out;
3313 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3314 					      cpuid_arg->entries);
3315 		break;
3316 	}
3317 	case KVM_GET_CPUID2: {
3318 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3319 		struct kvm_cpuid2 cpuid;
3320 
3321 		r = -EFAULT;
3322 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3323 			goto out;
3324 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3325 					      cpuid_arg->entries);
3326 		if (r)
3327 			goto out;
3328 		r = -EFAULT;
3329 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3330 			goto out;
3331 		r = 0;
3332 		break;
3333 	}
3334 	case KVM_GET_MSRS:
3335 		r = msr_io(vcpu, argp, do_get_msr, 1);
3336 		break;
3337 	case KVM_SET_MSRS:
3338 		r = msr_io(vcpu, argp, do_set_msr, 0);
3339 		break;
3340 	case KVM_TPR_ACCESS_REPORTING: {
3341 		struct kvm_tpr_access_ctl tac;
3342 
3343 		r = -EFAULT;
3344 		if (copy_from_user(&tac, argp, sizeof tac))
3345 			goto out;
3346 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3347 		if (r)
3348 			goto out;
3349 		r = -EFAULT;
3350 		if (copy_to_user(argp, &tac, sizeof tac))
3351 			goto out;
3352 		r = 0;
3353 		break;
3354 	};
3355 	case KVM_SET_VAPIC_ADDR: {
3356 		struct kvm_vapic_addr va;
3357 
3358 		r = -EINVAL;
3359 		if (!lapic_in_kernel(vcpu))
3360 			goto out;
3361 		r = -EFAULT;
3362 		if (copy_from_user(&va, argp, sizeof va))
3363 			goto out;
3364 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3365 		break;
3366 	}
3367 	case KVM_X86_SETUP_MCE: {
3368 		u64 mcg_cap;
3369 
3370 		r = -EFAULT;
3371 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3372 			goto out;
3373 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3374 		break;
3375 	}
3376 	case KVM_X86_SET_MCE: {
3377 		struct kvm_x86_mce mce;
3378 
3379 		r = -EFAULT;
3380 		if (copy_from_user(&mce, argp, sizeof mce))
3381 			goto out;
3382 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3383 		break;
3384 	}
3385 	case KVM_GET_VCPU_EVENTS: {
3386 		struct kvm_vcpu_events events;
3387 
3388 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3389 
3390 		r = -EFAULT;
3391 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3392 			break;
3393 		r = 0;
3394 		break;
3395 	}
3396 	case KVM_SET_VCPU_EVENTS: {
3397 		struct kvm_vcpu_events events;
3398 
3399 		r = -EFAULT;
3400 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3401 			break;
3402 
3403 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3404 		break;
3405 	}
3406 	case KVM_GET_DEBUGREGS: {
3407 		struct kvm_debugregs dbgregs;
3408 
3409 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3410 
3411 		r = -EFAULT;
3412 		if (copy_to_user(argp, &dbgregs,
3413 				 sizeof(struct kvm_debugregs)))
3414 			break;
3415 		r = 0;
3416 		break;
3417 	}
3418 	case KVM_SET_DEBUGREGS: {
3419 		struct kvm_debugregs dbgregs;
3420 
3421 		r = -EFAULT;
3422 		if (copy_from_user(&dbgregs, argp,
3423 				   sizeof(struct kvm_debugregs)))
3424 			break;
3425 
3426 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3427 		break;
3428 	}
3429 	case KVM_GET_XSAVE: {
3430 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3431 		r = -ENOMEM;
3432 		if (!u.xsave)
3433 			break;
3434 
3435 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3436 
3437 		r = -EFAULT;
3438 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3439 			break;
3440 		r = 0;
3441 		break;
3442 	}
3443 	case KVM_SET_XSAVE: {
3444 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3445 		if (IS_ERR(u.xsave))
3446 			return PTR_ERR(u.xsave);
3447 
3448 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3449 		break;
3450 	}
3451 	case KVM_GET_XCRS: {
3452 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3453 		r = -ENOMEM;
3454 		if (!u.xcrs)
3455 			break;
3456 
3457 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3458 
3459 		r = -EFAULT;
3460 		if (copy_to_user(argp, u.xcrs,
3461 				 sizeof(struct kvm_xcrs)))
3462 			break;
3463 		r = 0;
3464 		break;
3465 	}
3466 	case KVM_SET_XCRS: {
3467 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3468 		if (IS_ERR(u.xcrs))
3469 			return PTR_ERR(u.xcrs);
3470 
3471 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3472 		break;
3473 	}
3474 	case KVM_SET_TSC_KHZ: {
3475 		u32 user_tsc_khz;
3476 
3477 		r = -EINVAL;
3478 		user_tsc_khz = (u32)arg;
3479 
3480 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3481 			goto out;
3482 
3483 		if (user_tsc_khz == 0)
3484 			user_tsc_khz = tsc_khz;
3485 
3486 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3487 			r = 0;
3488 
3489 		goto out;
3490 	}
3491 	case KVM_GET_TSC_KHZ: {
3492 		r = vcpu->arch.virtual_tsc_khz;
3493 		goto out;
3494 	}
3495 	case KVM_KVMCLOCK_CTRL: {
3496 		r = kvm_set_guest_paused(vcpu);
3497 		goto out;
3498 	}
3499 	case KVM_ENABLE_CAP: {
3500 		struct kvm_enable_cap cap;
3501 
3502 		r = -EFAULT;
3503 		if (copy_from_user(&cap, argp, sizeof(cap)))
3504 			goto out;
3505 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3506 		break;
3507 	}
3508 	default:
3509 		r = -EINVAL;
3510 	}
3511 out:
3512 	kfree(u.buffer);
3513 	return r;
3514 }
3515 
3516 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3517 {
3518 	return VM_FAULT_SIGBUS;
3519 }
3520 
3521 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3522 {
3523 	int ret;
3524 
3525 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3526 		return -EINVAL;
3527 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3528 	return ret;
3529 }
3530 
3531 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3532 					      u64 ident_addr)
3533 {
3534 	kvm->arch.ept_identity_map_addr = ident_addr;
3535 	return 0;
3536 }
3537 
3538 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3539 					  u32 kvm_nr_mmu_pages)
3540 {
3541 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3542 		return -EINVAL;
3543 
3544 	mutex_lock(&kvm->slots_lock);
3545 
3546 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3547 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3548 
3549 	mutex_unlock(&kvm->slots_lock);
3550 	return 0;
3551 }
3552 
3553 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3554 {
3555 	return kvm->arch.n_max_mmu_pages;
3556 }
3557 
3558 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3559 {
3560 	int r;
3561 
3562 	r = 0;
3563 	switch (chip->chip_id) {
3564 	case KVM_IRQCHIP_PIC_MASTER:
3565 		memcpy(&chip->chip.pic,
3566 			&pic_irqchip(kvm)->pics[0],
3567 			sizeof(struct kvm_pic_state));
3568 		break;
3569 	case KVM_IRQCHIP_PIC_SLAVE:
3570 		memcpy(&chip->chip.pic,
3571 			&pic_irqchip(kvm)->pics[1],
3572 			sizeof(struct kvm_pic_state));
3573 		break;
3574 	case KVM_IRQCHIP_IOAPIC:
3575 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3576 		break;
3577 	default:
3578 		r = -EINVAL;
3579 		break;
3580 	}
3581 	return r;
3582 }
3583 
3584 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3585 {
3586 	int r;
3587 
3588 	r = 0;
3589 	switch (chip->chip_id) {
3590 	case KVM_IRQCHIP_PIC_MASTER:
3591 		spin_lock(&pic_irqchip(kvm)->lock);
3592 		memcpy(&pic_irqchip(kvm)->pics[0],
3593 			&chip->chip.pic,
3594 			sizeof(struct kvm_pic_state));
3595 		spin_unlock(&pic_irqchip(kvm)->lock);
3596 		break;
3597 	case KVM_IRQCHIP_PIC_SLAVE:
3598 		spin_lock(&pic_irqchip(kvm)->lock);
3599 		memcpy(&pic_irqchip(kvm)->pics[1],
3600 			&chip->chip.pic,
3601 			sizeof(struct kvm_pic_state));
3602 		spin_unlock(&pic_irqchip(kvm)->lock);
3603 		break;
3604 	case KVM_IRQCHIP_IOAPIC:
3605 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3606 		break;
3607 	default:
3608 		r = -EINVAL;
3609 		break;
3610 	}
3611 	kvm_pic_update_irq(pic_irqchip(kvm));
3612 	return r;
3613 }
3614 
3615 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3616 {
3617 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3618 
3619 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3620 
3621 	mutex_lock(&kps->lock);
3622 	memcpy(ps, &kps->channels, sizeof(*ps));
3623 	mutex_unlock(&kps->lock);
3624 	return 0;
3625 }
3626 
3627 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3628 {
3629 	int i;
3630 	struct kvm_pit *pit = kvm->arch.vpit;
3631 
3632 	mutex_lock(&pit->pit_state.lock);
3633 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3634 	for (i = 0; i < 3; i++)
3635 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3636 	mutex_unlock(&pit->pit_state.lock);
3637 	return 0;
3638 }
3639 
3640 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3641 {
3642 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3643 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3644 		sizeof(ps->channels));
3645 	ps->flags = kvm->arch.vpit->pit_state.flags;
3646 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3647 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3648 	return 0;
3649 }
3650 
3651 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3652 {
3653 	int start = 0;
3654 	int i;
3655 	u32 prev_legacy, cur_legacy;
3656 	struct kvm_pit *pit = kvm->arch.vpit;
3657 
3658 	mutex_lock(&pit->pit_state.lock);
3659 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3660 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3661 	if (!prev_legacy && cur_legacy)
3662 		start = 1;
3663 	memcpy(&pit->pit_state.channels, &ps->channels,
3664 	       sizeof(pit->pit_state.channels));
3665 	pit->pit_state.flags = ps->flags;
3666 	for (i = 0; i < 3; i++)
3667 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3668 				   start && i == 0);
3669 	mutex_unlock(&pit->pit_state.lock);
3670 	return 0;
3671 }
3672 
3673 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3674 				 struct kvm_reinject_control *control)
3675 {
3676 	struct kvm_pit *pit = kvm->arch.vpit;
3677 
3678 	if (!pit)
3679 		return -ENXIO;
3680 
3681 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
3682 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3683 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3684 	 */
3685 	mutex_lock(&pit->pit_state.lock);
3686 	kvm_pit_set_reinject(pit, control->pit_reinject);
3687 	mutex_unlock(&pit->pit_state.lock);
3688 
3689 	return 0;
3690 }
3691 
3692 /**
3693  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3694  * @kvm: kvm instance
3695  * @log: slot id and address to which we copy the log
3696  *
3697  * Steps 1-4 below provide general overview of dirty page logging. See
3698  * kvm_get_dirty_log_protect() function description for additional details.
3699  *
3700  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3701  * always flush the TLB (step 4) even if previous step failed  and the dirty
3702  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3703  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3704  * writes will be marked dirty for next log read.
3705  *
3706  *   1. Take a snapshot of the bit and clear it if needed.
3707  *   2. Write protect the corresponding page.
3708  *   3. Copy the snapshot to the userspace.
3709  *   4. Flush TLB's if needed.
3710  */
3711 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3712 {
3713 	bool is_dirty = false;
3714 	int r;
3715 
3716 	mutex_lock(&kvm->slots_lock);
3717 
3718 	/*
3719 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3720 	 */
3721 	if (kvm_x86_ops->flush_log_dirty)
3722 		kvm_x86_ops->flush_log_dirty(kvm);
3723 
3724 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3725 
3726 	/*
3727 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3728 	 * kvm_mmu_slot_remove_write_access().
3729 	 */
3730 	lockdep_assert_held(&kvm->slots_lock);
3731 	if (is_dirty)
3732 		kvm_flush_remote_tlbs(kvm);
3733 
3734 	mutex_unlock(&kvm->slots_lock);
3735 	return r;
3736 }
3737 
3738 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3739 			bool line_status)
3740 {
3741 	if (!irqchip_in_kernel(kvm))
3742 		return -ENXIO;
3743 
3744 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3745 					irq_event->irq, irq_event->level,
3746 					line_status);
3747 	return 0;
3748 }
3749 
3750 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3751 				   struct kvm_enable_cap *cap)
3752 {
3753 	int r;
3754 
3755 	if (cap->flags)
3756 		return -EINVAL;
3757 
3758 	switch (cap->cap) {
3759 	case KVM_CAP_DISABLE_QUIRKS:
3760 		kvm->arch.disabled_quirks = cap->args[0];
3761 		r = 0;
3762 		break;
3763 	case KVM_CAP_SPLIT_IRQCHIP: {
3764 		mutex_lock(&kvm->lock);
3765 		r = -EINVAL;
3766 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3767 			goto split_irqchip_unlock;
3768 		r = -EEXIST;
3769 		if (irqchip_in_kernel(kvm))
3770 			goto split_irqchip_unlock;
3771 		if (atomic_read(&kvm->online_vcpus))
3772 			goto split_irqchip_unlock;
3773 		r = kvm_setup_empty_irq_routing(kvm);
3774 		if (r)
3775 			goto split_irqchip_unlock;
3776 		/* Pairs with irqchip_in_kernel. */
3777 		smp_wmb();
3778 		kvm->arch.irqchip_split = true;
3779 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3780 		r = 0;
3781 split_irqchip_unlock:
3782 		mutex_unlock(&kvm->lock);
3783 		break;
3784 	}
3785 	default:
3786 		r = -EINVAL;
3787 		break;
3788 	}
3789 	return r;
3790 }
3791 
3792 long kvm_arch_vm_ioctl(struct file *filp,
3793 		       unsigned int ioctl, unsigned long arg)
3794 {
3795 	struct kvm *kvm = filp->private_data;
3796 	void __user *argp = (void __user *)arg;
3797 	int r = -ENOTTY;
3798 	/*
3799 	 * This union makes it completely explicit to gcc-3.x
3800 	 * that these two variables' stack usage should be
3801 	 * combined, not added together.
3802 	 */
3803 	union {
3804 		struct kvm_pit_state ps;
3805 		struct kvm_pit_state2 ps2;
3806 		struct kvm_pit_config pit_config;
3807 	} u;
3808 
3809 	switch (ioctl) {
3810 	case KVM_SET_TSS_ADDR:
3811 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3812 		break;
3813 	case KVM_SET_IDENTITY_MAP_ADDR: {
3814 		u64 ident_addr;
3815 
3816 		r = -EFAULT;
3817 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3818 			goto out;
3819 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3820 		break;
3821 	}
3822 	case KVM_SET_NR_MMU_PAGES:
3823 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3824 		break;
3825 	case KVM_GET_NR_MMU_PAGES:
3826 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3827 		break;
3828 	case KVM_CREATE_IRQCHIP: {
3829 		struct kvm_pic *vpic;
3830 
3831 		mutex_lock(&kvm->lock);
3832 		r = -EEXIST;
3833 		if (kvm->arch.vpic)
3834 			goto create_irqchip_unlock;
3835 		r = -EINVAL;
3836 		if (atomic_read(&kvm->online_vcpus))
3837 			goto create_irqchip_unlock;
3838 		r = -ENOMEM;
3839 		vpic = kvm_create_pic(kvm);
3840 		if (vpic) {
3841 			r = kvm_ioapic_init(kvm);
3842 			if (r) {
3843 				mutex_lock(&kvm->slots_lock);
3844 				kvm_destroy_pic(vpic);
3845 				mutex_unlock(&kvm->slots_lock);
3846 				goto create_irqchip_unlock;
3847 			}
3848 		} else
3849 			goto create_irqchip_unlock;
3850 		r = kvm_setup_default_irq_routing(kvm);
3851 		if (r) {
3852 			mutex_lock(&kvm->slots_lock);
3853 			mutex_lock(&kvm->irq_lock);
3854 			kvm_ioapic_destroy(kvm);
3855 			kvm_destroy_pic(vpic);
3856 			mutex_unlock(&kvm->irq_lock);
3857 			mutex_unlock(&kvm->slots_lock);
3858 			goto create_irqchip_unlock;
3859 		}
3860 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3861 		smp_wmb();
3862 		kvm->arch.vpic = vpic;
3863 	create_irqchip_unlock:
3864 		mutex_unlock(&kvm->lock);
3865 		break;
3866 	}
3867 	case KVM_CREATE_PIT:
3868 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3869 		goto create_pit;
3870 	case KVM_CREATE_PIT2:
3871 		r = -EFAULT;
3872 		if (copy_from_user(&u.pit_config, argp,
3873 				   sizeof(struct kvm_pit_config)))
3874 			goto out;
3875 	create_pit:
3876 		mutex_lock(&kvm->slots_lock);
3877 		r = -EEXIST;
3878 		if (kvm->arch.vpit)
3879 			goto create_pit_unlock;
3880 		r = -ENOMEM;
3881 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3882 		if (kvm->arch.vpit)
3883 			r = 0;
3884 	create_pit_unlock:
3885 		mutex_unlock(&kvm->slots_lock);
3886 		break;
3887 	case KVM_GET_IRQCHIP: {
3888 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3889 		struct kvm_irqchip *chip;
3890 
3891 		chip = memdup_user(argp, sizeof(*chip));
3892 		if (IS_ERR(chip)) {
3893 			r = PTR_ERR(chip);
3894 			goto out;
3895 		}
3896 
3897 		r = -ENXIO;
3898 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3899 			goto get_irqchip_out;
3900 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3901 		if (r)
3902 			goto get_irqchip_out;
3903 		r = -EFAULT;
3904 		if (copy_to_user(argp, chip, sizeof *chip))
3905 			goto get_irqchip_out;
3906 		r = 0;
3907 	get_irqchip_out:
3908 		kfree(chip);
3909 		break;
3910 	}
3911 	case KVM_SET_IRQCHIP: {
3912 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3913 		struct kvm_irqchip *chip;
3914 
3915 		chip = memdup_user(argp, sizeof(*chip));
3916 		if (IS_ERR(chip)) {
3917 			r = PTR_ERR(chip);
3918 			goto out;
3919 		}
3920 
3921 		r = -ENXIO;
3922 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3923 			goto set_irqchip_out;
3924 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3925 		if (r)
3926 			goto set_irqchip_out;
3927 		r = 0;
3928 	set_irqchip_out:
3929 		kfree(chip);
3930 		break;
3931 	}
3932 	case KVM_GET_PIT: {
3933 		r = -EFAULT;
3934 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3935 			goto out;
3936 		r = -ENXIO;
3937 		if (!kvm->arch.vpit)
3938 			goto out;
3939 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3940 		if (r)
3941 			goto out;
3942 		r = -EFAULT;
3943 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3944 			goto out;
3945 		r = 0;
3946 		break;
3947 	}
3948 	case KVM_SET_PIT: {
3949 		r = -EFAULT;
3950 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3951 			goto out;
3952 		r = -ENXIO;
3953 		if (!kvm->arch.vpit)
3954 			goto out;
3955 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3956 		break;
3957 	}
3958 	case KVM_GET_PIT2: {
3959 		r = -ENXIO;
3960 		if (!kvm->arch.vpit)
3961 			goto out;
3962 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3963 		if (r)
3964 			goto out;
3965 		r = -EFAULT;
3966 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3967 			goto out;
3968 		r = 0;
3969 		break;
3970 	}
3971 	case KVM_SET_PIT2: {
3972 		r = -EFAULT;
3973 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3974 			goto out;
3975 		r = -ENXIO;
3976 		if (!kvm->arch.vpit)
3977 			goto out;
3978 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3979 		break;
3980 	}
3981 	case KVM_REINJECT_CONTROL: {
3982 		struct kvm_reinject_control control;
3983 		r =  -EFAULT;
3984 		if (copy_from_user(&control, argp, sizeof(control)))
3985 			goto out;
3986 		r = kvm_vm_ioctl_reinject(kvm, &control);
3987 		break;
3988 	}
3989 	case KVM_SET_BOOT_CPU_ID:
3990 		r = 0;
3991 		mutex_lock(&kvm->lock);
3992 		if (atomic_read(&kvm->online_vcpus) != 0)
3993 			r = -EBUSY;
3994 		else
3995 			kvm->arch.bsp_vcpu_id = arg;
3996 		mutex_unlock(&kvm->lock);
3997 		break;
3998 	case KVM_XEN_HVM_CONFIG: {
3999 		r = -EFAULT;
4000 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4001 				   sizeof(struct kvm_xen_hvm_config)))
4002 			goto out;
4003 		r = -EINVAL;
4004 		if (kvm->arch.xen_hvm_config.flags)
4005 			goto out;
4006 		r = 0;
4007 		break;
4008 	}
4009 	case KVM_SET_CLOCK: {
4010 		struct kvm_clock_data user_ns;
4011 		u64 now_ns;
4012 		s64 delta;
4013 
4014 		r = -EFAULT;
4015 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4016 			goto out;
4017 
4018 		r = -EINVAL;
4019 		if (user_ns.flags)
4020 			goto out;
4021 
4022 		r = 0;
4023 		local_irq_disable();
4024 		now_ns = get_kernel_ns();
4025 		delta = user_ns.clock - now_ns;
4026 		local_irq_enable();
4027 		kvm->arch.kvmclock_offset = delta;
4028 		kvm_gen_update_masterclock(kvm);
4029 		break;
4030 	}
4031 	case KVM_GET_CLOCK: {
4032 		struct kvm_clock_data user_ns;
4033 		u64 now_ns;
4034 
4035 		local_irq_disable();
4036 		now_ns = get_kernel_ns();
4037 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4038 		local_irq_enable();
4039 		user_ns.flags = 0;
4040 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4041 
4042 		r = -EFAULT;
4043 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4044 			goto out;
4045 		r = 0;
4046 		break;
4047 	}
4048 	case KVM_ENABLE_CAP: {
4049 		struct kvm_enable_cap cap;
4050 
4051 		r = -EFAULT;
4052 		if (copy_from_user(&cap, argp, sizeof(cap)))
4053 			goto out;
4054 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4055 		break;
4056 	}
4057 	default:
4058 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4059 	}
4060 out:
4061 	return r;
4062 }
4063 
4064 static void kvm_init_msr_list(void)
4065 {
4066 	u32 dummy[2];
4067 	unsigned i, j;
4068 
4069 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4070 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4071 			continue;
4072 
4073 		/*
4074 		 * Even MSRs that are valid in the host may not be exposed
4075 		 * to the guests in some cases.
4076 		 */
4077 		switch (msrs_to_save[i]) {
4078 		case MSR_IA32_BNDCFGS:
4079 			if (!kvm_x86_ops->mpx_supported())
4080 				continue;
4081 			break;
4082 		case MSR_TSC_AUX:
4083 			if (!kvm_x86_ops->rdtscp_supported())
4084 				continue;
4085 			break;
4086 		default:
4087 			break;
4088 		}
4089 
4090 		if (j < i)
4091 			msrs_to_save[j] = msrs_to_save[i];
4092 		j++;
4093 	}
4094 	num_msrs_to_save = j;
4095 
4096 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4097 		switch (emulated_msrs[i]) {
4098 		case MSR_IA32_SMBASE:
4099 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4100 				continue;
4101 			break;
4102 		default:
4103 			break;
4104 		}
4105 
4106 		if (j < i)
4107 			emulated_msrs[j] = emulated_msrs[i];
4108 		j++;
4109 	}
4110 	num_emulated_msrs = j;
4111 }
4112 
4113 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4114 			   const void *v)
4115 {
4116 	int handled = 0;
4117 	int n;
4118 
4119 	do {
4120 		n = min(len, 8);
4121 		if (!(lapic_in_kernel(vcpu) &&
4122 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4123 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4124 			break;
4125 		handled += n;
4126 		addr += n;
4127 		len -= n;
4128 		v += n;
4129 	} while (len);
4130 
4131 	return handled;
4132 }
4133 
4134 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4135 {
4136 	int handled = 0;
4137 	int n;
4138 
4139 	do {
4140 		n = min(len, 8);
4141 		if (!(lapic_in_kernel(vcpu) &&
4142 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4143 					 addr, n, v))
4144 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4145 			break;
4146 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4147 		handled += n;
4148 		addr += n;
4149 		len -= n;
4150 		v += n;
4151 	} while (len);
4152 
4153 	return handled;
4154 }
4155 
4156 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4157 			struct kvm_segment *var, int seg)
4158 {
4159 	kvm_x86_ops->set_segment(vcpu, var, seg);
4160 }
4161 
4162 void kvm_get_segment(struct kvm_vcpu *vcpu,
4163 		     struct kvm_segment *var, int seg)
4164 {
4165 	kvm_x86_ops->get_segment(vcpu, var, seg);
4166 }
4167 
4168 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4169 			   struct x86_exception *exception)
4170 {
4171 	gpa_t t_gpa;
4172 
4173 	BUG_ON(!mmu_is_nested(vcpu));
4174 
4175 	/* NPT walks are always user-walks */
4176 	access |= PFERR_USER_MASK;
4177 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4178 
4179 	return t_gpa;
4180 }
4181 
4182 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4183 			      struct x86_exception *exception)
4184 {
4185 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4186 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4187 }
4188 
4189  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4190 				struct x86_exception *exception)
4191 {
4192 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4193 	access |= PFERR_FETCH_MASK;
4194 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4195 }
4196 
4197 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4198 			       struct x86_exception *exception)
4199 {
4200 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4201 	access |= PFERR_WRITE_MASK;
4202 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4203 }
4204 
4205 /* uses this to access any guest's mapped memory without checking CPL */
4206 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4207 				struct x86_exception *exception)
4208 {
4209 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4210 }
4211 
4212 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4213 				      struct kvm_vcpu *vcpu, u32 access,
4214 				      struct x86_exception *exception)
4215 {
4216 	void *data = val;
4217 	int r = X86EMUL_CONTINUE;
4218 
4219 	while (bytes) {
4220 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4221 							    exception);
4222 		unsigned offset = addr & (PAGE_SIZE-1);
4223 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4224 		int ret;
4225 
4226 		if (gpa == UNMAPPED_GVA)
4227 			return X86EMUL_PROPAGATE_FAULT;
4228 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4229 					       offset, toread);
4230 		if (ret < 0) {
4231 			r = X86EMUL_IO_NEEDED;
4232 			goto out;
4233 		}
4234 
4235 		bytes -= toread;
4236 		data += toread;
4237 		addr += toread;
4238 	}
4239 out:
4240 	return r;
4241 }
4242 
4243 /* used for instruction fetching */
4244 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4245 				gva_t addr, void *val, unsigned int bytes,
4246 				struct x86_exception *exception)
4247 {
4248 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4249 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4250 	unsigned offset;
4251 	int ret;
4252 
4253 	/* Inline kvm_read_guest_virt_helper for speed.  */
4254 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4255 						    exception);
4256 	if (unlikely(gpa == UNMAPPED_GVA))
4257 		return X86EMUL_PROPAGATE_FAULT;
4258 
4259 	offset = addr & (PAGE_SIZE-1);
4260 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4261 		bytes = (unsigned)PAGE_SIZE - offset;
4262 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4263 				       offset, bytes);
4264 	if (unlikely(ret < 0))
4265 		return X86EMUL_IO_NEEDED;
4266 
4267 	return X86EMUL_CONTINUE;
4268 }
4269 
4270 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4271 			       gva_t addr, void *val, unsigned int bytes,
4272 			       struct x86_exception *exception)
4273 {
4274 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4275 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4276 
4277 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4278 					  exception);
4279 }
4280 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4281 
4282 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4283 				      gva_t addr, void *val, unsigned int bytes,
4284 				      struct x86_exception *exception)
4285 {
4286 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4287 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4288 }
4289 
4290 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4291 		unsigned long addr, void *val, unsigned int bytes)
4292 {
4293 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4294 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4295 
4296 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4297 }
4298 
4299 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4300 				       gva_t addr, void *val,
4301 				       unsigned int bytes,
4302 				       struct x86_exception *exception)
4303 {
4304 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305 	void *data = val;
4306 	int r = X86EMUL_CONTINUE;
4307 
4308 	while (bytes) {
4309 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4310 							     PFERR_WRITE_MASK,
4311 							     exception);
4312 		unsigned offset = addr & (PAGE_SIZE-1);
4313 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4314 		int ret;
4315 
4316 		if (gpa == UNMAPPED_GVA)
4317 			return X86EMUL_PROPAGATE_FAULT;
4318 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4319 		if (ret < 0) {
4320 			r = X86EMUL_IO_NEEDED;
4321 			goto out;
4322 		}
4323 
4324 		bytes -= towrite;
4325 		data += towrite;
4326 		addr += towrite;
4327 	}
4328 out:
4329 	return r;
4330 }
4331 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4332 
4333 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4334 				gpa_t *gpa, struct x86_exception *exception,
4335 				bool write)
4336 {
4337 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4338 		| (write ? PFERR_WRITE_MASK : 0);
4339 
4340 	/*
4341 	 * currently PKRU is only applied to ept enabled guest so
4342 	 * there is no pkey in EPT page table for L1 guest or EPT
4343 	 * shadow page table for L2 guest.
4344 	 */
4345 	if (vcpu_match_mmio_gva(vcpu, gva)
4346 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4347 				 vcpu->arch.access, 0, access)) {
4348 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4349 					(gva & (PAGE_SIZE - 1));
4350 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4351 		return 1;
4352 	}
4353 
4354 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4355 
4356 	if (*gpa == UNMAPPED_GVA)
4357 		return -1;
4358 
4359 	/* For APIC access vmexit */
4360 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4361 		return 1;
4362 
4363 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4364 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4365 		return 1;
4366 	}
4367 
4368 	return 0;
4369 }
4370 
4371 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4372 			const void *val, int bytes)
4373 {
4374 	int ret;
4375 
4376 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4377 	if (ret < 0)
4378 		return 0;
4379 	kvm_page_track_write(vcpu, gpa, val, bytes);
4380 	return 1;
4381 }
4382 
4383 struct read_write_emulator_ops {
4384 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4385 				  int bytes);
4386 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4387 				  void *val, int bytes);
4388 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4389 			       int bytes, void *val);
4390 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4391 				    void *val, int bytes);
4392 	bool write;
4393 };
4394 
4395 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4396 {
4397 	if (vcpu->mmio_read_completed) {
4398 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4399 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4400 		vcpu->mmio_read_completed = 0;
4401 		return 1;
4402 	}
4403 
4404 	return 0;
4405 }
4406 
4407 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4408 			void *val, int bytes)
4409 {
4410 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4411 }
4412 
4413 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4414 			 void *val, int bytes)
4415 {
4416 	return emulator_write_phys(vcpu, gpa, val, bytes);
4417 }
4418 
4419 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4420 {
4421 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4422 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4423 }
4424 
4425 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4426 			  void *val, int bytes)
4427 {
4428 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4429 	return X86EMUL_IO_NEEDED;
4430 }
4431 
4432 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4433 			   void *val, int bytes)
4434 {
4435 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4436 
4437 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4438 	return X86EMUL_CONTINUE;
4439 }
4440 
4441 static const struct read_write_emulator_ops read_emultor = {
4442 	.read_write_prepare = read_prepare,
4443 	.read_write_emulate = read_emulate,
4444 	.read_write_mmio = vcpu_mmio_read,
4445 	.read_write_exit_mmio = read_exit_mmio,
4446 };
4447 
4448 static const struct read_write_emulator_ops write_emultor = {
4449 	.read_write_emulate = write_emulate,
4450 	.read_write_mmio = write_mmio,
4451 	.read_write_exit_mmio = write_exit_mmio,
4452 	.write = true,
4453 };
4454 
4455 static int emulator_read_write_onepage(unsigned long addr, void *val,
4456 				       unsigned int bytes,
4457 				       struct x86_exception *exception,
4458 				       struct kvm_vcpu *vcpu,
4459 				       const struct read_write_emulator_ops *ops)
4460 {
4461 	gpa_t gpa;
4462 	int handled, ret;
4463 	bool write = ops->write;
4464 	struct kvm_mmio_fragment *frag;
4465 
4466 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4467 
4468 	if (ret < 0)
4469 		return X86EMUL_PROPAGATE_FAULT;
4470 
4471 	/* For APIC access vmexit */
4472 	if (ret)
4473 		goto mmio;
4474 
4475 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4476 		return X86EMUL_CONTINUE;
4477 
4478 mmio:
4479 	/*
4480 	 * Is this MMIO handled locally?
4481 	 */
4482 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4483 	if (handled == bytes)
4484 		return X86EMUL_CONTINUE;
4485 
4486 	gpa += handled;
4487 	bytes -= handled;
4488 	val += handled;
4489 
4490 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4491 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4492 	frag->gpa = gpa;
4493 	frag->data = val;
4494 	frag->len = bytes;
4495 	return X86EMUL_CONTINUE;
4496 }
4497 
4498 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4499 			unsigned long addr,
4500 			void *val, unsigned int bytes,
4501 			struct x86_exception *exception,
4502 			const struct read_write_emulator_ops *ops)
4503 {
4504 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505 	gpa_t gpa;
4506 	int rc;
4507 
4508 	if (ops->read_write_prepare &&
4509 		  ops->read_write_prepare(vcpu, val, bytes))
4510 		return X86EMUL_CONTINUE;
4511 
4512 	vcpu->mmio_nr_fragments = 0;
4513 
4514 	/* Crossing a page boundary? */
4515 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4516 		int now;
4517 
4518 		now = -addr & ~PAGE_MASK;
4519 		rc = emulator_read_write_onepage(addr, val, now, exception,
4520 						 vcpu, ops);
4521 
4522 		if (rc != X86EMUL_CONTINUE)
4523 			return rc;
4524 		addr += now;
4525 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4526 			addr = (u32)addr;
4527 		val += now;
4528 		bytes -= now;
4529 	}
4530 
4531 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4532 					 vcpu, ops);
4533 	if (rc != X86EMUL_CONTINUE)
4534 		return rc;
4535 
4536 	if (!vcpu->mmio_nr_fragments)
4537 		return rc;
4538 
4539 	gpa = vcpu->mmio_fragments[0].gpa;
4540 
4541 	vcpu->mmio_needed = 1;
4542 	vcpu->mmio_cur_fragment = 0;
4543 
4544 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4545 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4546 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4547 	vcpu->run->mmio.phys_addr = gpa;
4548 
4549 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4550 }
4551 
4552 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4553 				  unsigned long addr,
4554 				  void *val,
4555 				  unsigned int bytes,
4556 				  struct x86_exception *exception)
4557 {
4558 	return emulator_read_write(ctxt, addr, val, bytes,
4559 				   exception, &read_emultor);
4560 }
4561 
4562 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4563 			    unsigned long addr,
4564 			    const void *val,
4565 			    unsigned int bytes,
4566 			    struct x86_exception *exception)
4567 {
4568 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4569 				   exception, &write_emultor);
4570 }
4571 
4572 #define CMPXCHG_TYPE(t, ptr, old, new) \
4573 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4574 
4575 #ifdef CONFIG_X86_64
4576 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4577 #else
4578 #  define CMPXCHG64(ptr, old, new) \
4579 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4580 #endif
4581 
4582 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4583 				     unsigned long addr,
4584 				     const void *old,
4585 				     const void *new,
4586 				     unsigned int bytes,
4587 				     struct x86_exception *exception)
4588 {
4589 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4590 	gpa_t gpa;
4591 	struct page *page;
4592 	char *kaddr;
4593 	bool exchanged;
4594 
4595 	/* guests cmpxchg8b have to be emulated atomically */
4596 	if (bytes > 8 || (bytes & (bytes - 1)))
4597 		goto emul_write;
4598 
4599 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4600 
4601 	if (gpa == UNMAPPED_GVA ||
4602 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4603 		goto emul_write;
4604 
4605 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4606 		goto emul_write;
4607 
4608 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4609 	if (is_error_page(page))
4610 		goto emul_write;
4611 
4612 	kaddr = kmap_atomic(page);
4613 	kaddr += offset_in_page(gpa);
4614 	switch (bytes) {
4615 	case 1:
4616 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4617 		break;
4618 	case 2:
4619 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4620 		break;
4621 	case 4:
4622 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4623 		break;
4624 	case 8:
4625 		exchanged = CMPXCHG64(kaddr, old, new);
4626 		break;
4627 	default:
4628 		BUG();
4629 	}
4630 	kunmap_atomic(kaddr);
4631 	kvm_release_page_dirty(page);
4632 
4633 	if (!exchanged)
4634 		return X86EMUL_CMPXCHG_FAILED;
4635 
4636 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4637 	kvm_page_track_write(vcpu, gpa, new, bytes);
4638 
4639 	return X86EMUL_CONTINUE;
4640 
4641 emul_write:
4642 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4643 
4644 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4645 }
4646 
4647 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4648 {
4649 	/* TODO: String I/O for in kernel device */
4650 	int r;
4651 
4652 	if (vcpu->arch.pio.in)
4653 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4654 				    vcpu->arch.pio.size, pd);
4655 	else
4656 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4657 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4658 				     pd);
4659 	return r;
4660 }
4661 
4662 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4663 			       unsigned short port, void *val,
4664 			       unsigned int count, bool in)
4665 {
4666 	vcpu->arch.pio.port = port;
4667 	vcpu->arch.pio.in = in;
4668 	vcpu->arch.pio.count  = count;
4669 	vcpu->arch.pio.size = size;
4670 
4671 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4672 		vcpu->arch.pio.count = 0;
4673 		return 1;
4674 	}
4675 
4676 	vcpu->run->exit_reason = KVM_EXIT_IO;
4677 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4678 	vcpu->run->io.size = size;
4679 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4680 	vcpu->run->io.count = count;
4681 	vcpu->run->io.port = port;
4682 
4683 	return 0;
4684 }
4685 
4686 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4687 				    int size, unsigned short port, void *val,
4688 				    unsigned int count)
4689 {
4690 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4691 	int ret;
4692 
4693 	if (vcpu->arch.pio.count)
4694 		goto data_avail;
4695 
4696 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4697 	if (ret) {
4698 data_avail:
4699 		memcpy(val, vcpu->arch.pio_data, size * count);
4700 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4701 		vcpu->arch.pio.count = 0;
4702 		return 1;
4703 	}
4704 
4705 	return 0;
4706 }
4707 
4708 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4709 				     int size, unsigned short port,
4710 				     const void *val, unsigned int count)
4711 {
4712 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4713 
4714 	memcpy(vcpu->arch.pio_data, val, size * count);
4715 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4716 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4717 }
4718 
4719 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4720 {
4721 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4722 }
4723 
4724 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4725 {
4726 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4727 }
4728 
4729 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4730 {
4731 	if (!need_emulate_wbinvd(vcpu))
4732 		return X86EMUL_CONTINUE;
4733 
4734 	if (kvm_x86_ops->has_wbinvd_exit()) {
4735 		int cpu = get_cpu();
4736 
4737 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4738 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4739 				wbinvd_ipi, NULL, 1);
4740 		put_cpu();
4741 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4742 	} else
4743 		wbinvd();
4744 	return X86EMUL_CONTINUE;
4745 }
4746 
4747 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4748 {
4749 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4750 	return kvm_emulate_wbinvd_noskip(vcpu);
4751 }
4752 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4753 
4754 
4755 
4756 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4757 {
4758 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4759 }
4760 
4761 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4762 			   unsigned long *dest)
4763 {
4764 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4765 }
4766 
4767 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4768 			   unsigned long value)
4769 {
4770 
4771 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4772 }
4773 
4774 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4775 {
4776 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4777 }
4778 
4779 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4780 {
4781 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4782 	unsigned long value;
4783 
4784 	switch (cr) {
4785 	case 0:
4786 		value = kvm_read_cr0(vcpu);
4787 		break;
4788 	case 2:
4789 		value = vcpu->arch.cr2;
4790 		break;
4791 	case 3:
4792 		value = kvm_read_cr3(vcpu);
4793 		break;
4794 	case 4:
4795 		value = kvm_read_cr4(vcpu);
4796 		break;
4797 	case 8:
4798 		value = kvm_get_cr8(vcpu);
4799 		break;
4800 	default:
4801 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4802 		return 0;
4803 	}
4804 
4805 	return value;
4806 }
4807 
4808 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4809 {
4810 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4811 	int res = 0;
4812 
4813 	switch (cr) {
4814 	case 0:
4815 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4816 		break;
4817 	case 2:
4818 		vcpu->arch.cr2 = val;
4819 		break;
4820 	case 3:
4821 		res = kvm_set_cr3(vcpu, val);
4822 		break;
4823 	case 4:
4824 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4825 		break;
4826 	case 8:
4827 		res = kvm_set_cr8(vcpu, val);
4828 		break;
4829 	default:
4830 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4831 		res = -1;
4832 	}
4833 
4834 	return res;
4835 }
4836 
4837 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4838 {
4839 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4840 }
4841 
4842 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4843 {
4844 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4845 }
4846 
4847 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4848 {
4849 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4850 }
4851 
4852 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4853 {
4854 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4855 }
4856 
4857 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4858 {
4859 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4860 }
4861 
4862 static unsigned long emulator_get_cached_segment_base(
4863 	struct x86_emulate_ctxt *ctxt, int seg)
4864 {
4865 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4866 }
4867 
4868 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4869 				 struct desc_struct *desc, u32 *base3,
4870 				 int seg)
4871 {
4872 	struct kvm_segment var;
4873 
4874 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4875 	*selector = var.selector;
4876 
4877 	if (var.unusable) {
4878 		memset(desc, 0, sizeof(*desc));
4879 		return false;
4880 	}
4881 
4882 	if (var.g)
4883 		var.limit >>= 12;
4884 	set_desc_limit(desc, var.limit);
4885 	set_desc_base(desc, (unsigned long)var.base);
4886 #ifdef CONFIG_X86_64
4887 	if (base3)
4888 		*base3 = var.base >> 32;
4889 #endif
4890 	desc->type = var.type;
4891 	desc->s = var.s;
4892 	desc->dpl = var.dpl;
4893 	desc->p = var.present;
4894 	desc->avl = var.avl;
4895 	desc->l = var.l;
4896 	desc->d = var.db;
4897 	desc->g = var.g;
4898 
4899 	return true;
4900 }
4901 
4902 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4903 				 struct desc_struct *desc, u32 base3,
4904 				 int seg)
4905 {
4906 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4907 	struct kvm_segment var;
4908 
4909 	var.selector = selector;
4910 	var.base = get_desc_base(desc);
4911 #ifdef CONFIG_X86_64
4912 	var.base |= ((u64)base3) << 32;
4913 #endif
4914 	var.limit = get_desc_limit(desc);
4915 	if (desc->g)
4916 		var.limit = (var.limit << 12) | 0xfff;
4917 	var.type = desc->type;
4918 	var.dpl = desc->dpl;
4919 	var.db = desc->d;
4920 	var.s = desc->s;
4921 	var.l = desc->l;
4922 	var.g = desc->g;
4923 	var.avl = desc->avl;
4924 	var.present = desc->p;
4925 	var.unusable = !var.present;
4926 	var.padding = 0;
4927 
4928 	kvm_set_segment(vcpu, &var, seg);
4929 	return;
4930 }
4931 
4932 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4933 			    u32 msr_index, u64 *pdata)
4934 {
4935 	struct msr_data msr;
4936 	int r;
4937 
4938 	msr.index = msr_index;
4939 	msr.host_initiated = false;
4940 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4941 	if (r)
4942 		return r;
4943 
4944 	*pdata = msr.data;
4945 	return 0;
4946 }
4947 
4948 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4949 			    u32 msr_index, u64 data)
4950 {
4951 	struct msr_data msr;
4952 
4953 	msr.data = data;
4954 	msr.index = msr_index;
4955 	msr.host_initiated = false;
4956 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4957 }
4958 
4959 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4960 {
4961 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4962 
4963 	return vcpu->arch.smbase;
4964 }
4965 
4966 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4967 {
4968 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4969 
4970 	vcpu->arch.smbase = smbase;
4971 }
4972 
4973 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4974 			      u32 pmc)
4975 {
4976 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4977 }
4978 
4979 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4980 			     u32 pmc, u64 *pdata)
4981 {
4982 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4983 }
4984 
4985 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4986 {
4987 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4988 }
4989 
4990 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4991 {
4992 	preempt_disable();
4993 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4994 	/*
4995 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4996 	 * so it may be clear at this point.
4997 	 */
4998 	clts();
4999 }
5000 
5001 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5002 {
5003 	preempt_enable();
5004 }
5005 
5006 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5007 			      struct x86_instruction_info *info,
5008 			      enum x86_intercept_stage stage)
5009 {
5010 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5011 }
5012 
5013 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5014 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5015 {
5016 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5017 }
5018 
5019 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5020 {
5021 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5022 }
5023 
5024 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5025 {
5026 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5027 }
5028 
5029 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5030 {
5031 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5032 }
5033 
5034 static const struct x86_emulate_ops emulate_ops = {
5035 	.read_gpr            = emulator_read_gpr,
5036 	.write_gpr           = emulator_write_gpr,
5037 	.read_std            = kvm_read_guest_virt_system,
5038 	.write_std           = kvm_write_guest_virt_system,
5039 	.read_phys           = kvm_read_guest_phys_system,
5040 	.fetch               = kvm_fetch_guest_virt,
5041 	.read_emulated       = emulator_read_emulated,
5042 	.write_emulated      = emulator_write_emulated,
5043 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5044 	.invlpg              = emulator_invlpg,
5045 	.pio_in_emulated     = emulator_pio_in_emulated,
5046 	.pio_out_emulated    = emulator_pio_out_emulated,
5047 	.get_segment         = emulator_get_segment,
5048 	.set_segment         = emulator_set_segment,
5049 	.get_cached_segment_base = emulator_get_cached_segment_base,
5050 	.get_gdt             = emulator_get_gdt,
5051 	.get_idt	     = emulator_get_idt,
5052 	.set_gdt             = emulator_set_gdt,
5053 	.set_idt	     = emulator_set_idt,
5054 	.get_cr              = emulator_get_cr,
5055 	.set_cr              = emulator_set_cr,
5056 	.cpl                 = emulator_get_cpl,
5057 	.get_dr              = emulator_get_dr,
5058 	.set_dr              = emulator_set_dr,
5059 	.get_smbase          = emulator_get_smbase,
5060 	.set_smbase          = emulator_set_smbase,
5061 	.set_msr             = emulator_set_msr,
5062 	.get_msr             = emulator_get_msr,
5063 	.check_pmc	     = emulator_check_pmc,
5064 	.read_pmc            = emulator_read_pmc,
5065 	.halt                = emulator_halt,
5066 	.wbinvd              = emulator_wbinvd,
5067 	.fix_hypercall       = emulator_fix_hypercall,
5068 	.get_fpu             = emulator_get_fpu,
5069 	.put_fpu             = emulator_put_fpu,
5070 	.intercept           = emulator_intercept,
5071 	.get_cpuid           = emulator_get_cpuid,
5072 	.set_nmi_mask        = emulator_set_nmi_mask,
5073 };
5074 
5075 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5076 {
5077 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5078 	/*
5079 	 * an sti; sti; sequence only disable interrupts for the first
5080 	 * instruction. So, if the last instruction, be it emulated or
5081 	 * not, left the system with the INT_STI flag enabled, it
5082 	 * means that the last instruction is an sti. We should not
5083 	 * leave the flag on in this case. The same goes for mov ss
5084 	 */
5085 	if (int_shadow & mask)
5086 		mask = 0;
5087 	if (unlikely(int_shadow || mask)) {
5088 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5089 		if (!mask)
5090 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5091 	}
5092 }
5093 
5094 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5095 {
5096 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5097 	if (ctxt->exception.vector == PF_VECTOR)
5098 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5099 
5100 	if (ctxt->exception.error_code_valid)
5101 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5102 				      ctxt->exception.error_code);
5103 	else
5104 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5105 	return false;
5106 }
5107 
5108 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5109 {
5110 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5111 	int cs_db, cs_l;
5112 
5113 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5114 
5115 	ctxt->eflags = kvm_get_rflags(vcpu);
5116 	ctxt->eip = kvm_rip_read(vcpu);
5117 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5118 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5119 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5120 		     cs_db				? X86EMUL_MODE_PROT32 :
5121 							  X86EMUL_MODE_PROT16;
5122 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5123 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5124 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5125 	ctxt->emul_flags = vcpu->arch.hflags;
5126 
5127 	init_decode_cache(ctxt);
5128 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5129 }
5130 
5131 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5132 {
5133 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5134 	int ret;
5135 
5136 	init_emulate_ctxt(vcpu);
5137 
5138 	ctxt->op_bytes = 2;
5139 	ctxt->ad_bytes = 2;
5140 	ctxt->_eip = ctxt->eip + inc_eip;
5141 	ret = emulate_int_real(ctxt, irq);
5142 
5143 	if (ret != X86EMUL_CONTINUE)
5144 		return EMULATE_FAIL;
5145 
5146 	ctxt->eip = ctxt->_eip;
5147 	kvm_rip_write(vcpu, ctxt->eip);
5148 	kvm_set_rflags(vcpu, ctxt->eflags);
5149 
5150 	if (irq == NMI_VECTOR)
5151 		vcpu->arch.nmi_pending = 0;
5152 	else
5153 		vcpu->arch.interrupt.pending = false;
5154 
5155 	return EMULATE_DONE;
5156 }
5157 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5158 
5159 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5160 {
5161 	int r = EMULATE_DONE;
5162 
5163 	++vcpu->stat.insn_emulation_fail;
5164 	trace_kvm_emulate_insn_failed(vcpu);
5165 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5166 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5167 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5168 		vcpu->run->internal.ndata = 0;
5169 		r = EMULATE_FAIL;
5170 	}
5171 	kvm_queue_exception(vcpu, UD_VECTOR);
5172 
5173 	return r;
5174 }
5175 
5176 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5177 				  bool write_fault_to_shadow_pgtable,
5178 				  int emulation_type)
5179 {
5180 	gpa_t gpa = cr2;
5181 	kvm_pfn_t pfn;
5182 
5183 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5184 		return false;
5185 
5186 	if (!vcpu->arch.mmu.direct_map) {
5187 		/*
5188 		 * Write permission should be allowed since only
5189 		 * write access need to be emulated.
5190 		 */
5191 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5192 
5193 		/*
5194 		 * If the mapping is invalid in guest, let cpu retry
5195 		 * it to generate fault.
5196 		 */
5197 		if (gpa == UNMAPPED_GVA)
5198 			return true;
5199 	}
5200 
5201 	/*
5202 	 * Do not retry the unhandleable instruction if it faults on the
5203 	 * readonly host memory, otherwise it will goto a infinite loop:
5204 	 * retry instruction -> write #PF -> emulation fail -> retry
5205 	 * instruction -> ...
5206 	 */
5207 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5208 
5209 	/*
5210 	 * If the instruction failed on the error pfn, it can not be fixed,
5211 	 * report the error to userspace.
5212 	 */
5213 	if (is_error_noslot_pfn(pfn))
5214 		return false;
5215 
5216 	kvm_release_pfn_clean(pfn);
5217 
5218 	/* The instructions are well-emulated on direct mmu. */
5219 	if (vcpu->arch.mmu.direct_map) {
5220 		unsigned int indirect_shadow_pages;
5221 
5222 		spin_lock(&vcpu->kvm->mmu_lock);
5223 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5224 		spin_unlock(&vcpu->kvm->mmu_lock);
5225 
5226 		if (indirect_shadow_pages)
5227 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5228 
5229 		return true;
5230 	}
5231 
5232 	/*
5233 	 * if emulation was due to access to shadowed page table
5234 	 * and it failed try to unshadow page and re-enter the
5235 	 * guest to let CPU execute the instruction.
5236 	 */
5237 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5238 
5239 	/*
5240 	 * If the access faults on its page table, it can not
5241 	 * be fixed by unprotecting shadow page and it should
5242 	 * be reported to userspace.
5243 	 */
5244 	return !write_fault_to_shadow_pgtable;
5245 }
5246 
5247 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5248 			      unsigned long cr2,  int emulation_type)
5249 {
5250 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5251 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5252 
5253 	last_retry_eip = vcpu->arch.last_retry_eip;
5254 	last_retry_addr = vcpu->arch.last_retry_addr;
5255 
5256 	/*
5257 	 * If the emulation is caused by #PF and it is non-page_table
5258 	 * writing instruction, it means the VM-EXIT is caused by shadow
5259 	 * page protected, we can zap the shadow page and retry this
5260 	 * instruction directly.
5261 	 *
5262 	 * Note: if the guest uses a non-page-table modifying instruction
5263 	 * on the PDE that points to the instruction, then we will unmap
5264 	 * the instruction and go to an infinite loop. So, we cache the
5265 	 * last retried eip and the last fault address, if we meet the eip
5266 	 * and the address again, we can break out of the potential infinite
5267 	 * loop.
5268 	 */
5269 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5270 
5271 	if (!(emulation_type & EMULTYPE_RETRY))
5272 		return false;
5273 
5274 	if (x86_page_table_writing_insn(ctxt))
5275 		return false;
5276 
5277 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5278 		return false;
5279 
5280 	vcpu->arch.last_retry_eip = ctxt->eip;
5281 	vcpu->arch.last_retry_addr = cr2;
5282 
5283 	if (!vcpu->arch.mmu.direct_map)
5284 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5285 
5286 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5287 
5288 	return true;
5289 }
5290 
5291 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5292 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5293 
5294 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5295 {
5296 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5297 		/* This is a good place to trace that we are exiting SMM.  */
5298 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5299 
5300 		if (unlikely(vcpu->arch.smi_pending)) {
5301 			kvm_make_request(KVM_REQ_SMI, vcpu);
5302 			vcpu->arch.smi_pending = 0;
5303 		} else {
5304 			/* Process a latched INIT, if any.  */
5305 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5306 		}
5307 	}
5308 
5309 	kvm_mmu_reset_context(vcpu);
5310 }
5311 
5312 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5313 {
5314 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5315 
5316 	vcpu->arch.hflags = emul_flags;
5317 
5318 	if (changed & HF_SMM_MASK)
5319 		kvm_smm_changed(vcpu);
5320 }
5321 
5322 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5323 				unsigned long *db)
5324 {
5325 	u32 dr6 = 0;
5326 	int i;
5327 	u32 enable, rwlen;
5328 
5329 	enable = dr7;
5330 	rwlen = dr7 >> 16;
5331 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5332 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5333 			dr6 |= (1 << i);
5334 	return dr6;
5335 }
5336 
5337 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5338 {
5339 	struct kvm_run *kvm_run = vcpu->run;
5340 
5341 	/*
5342 	 * rflags is the old, "raw" value of the flags.  The new value has
5343 	 * not been saved yet.
5344 	 *
5345 	 * This is correct even for TF set by the guest, because "the
5346 	 * processor will not generate this exception after the instruction
5347 	 * that sets the TF flag".
5348 	 */
5349 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5350 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5351 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5352 						  DR6_RTM;
5353 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5354 			kvm_run->debug.arch.exception = DB_VECTOR;
5355 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5356 			*r = EMULATE_USER_EXIT;
5357 		} else {
5358 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5359 			/*
5360 			 * "Certain debug exceptions may clear bit 0-3.  The
5361 			 * remaining contents of the DR6 register are never
5362 			 * cleared by the processor".
5363 			 */
5364 			vcpu->arch.dr6 &= ~15;
5365 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5366 			kvm_queue_exception(vcpu, DB_VECTOR);
5367 		}
5368 	}
5369 }
5370 
5371 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5372 {
5373 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5374 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5375 		struct kvm_run *kvm_run = vcpu->run;
5376 		unsigned long eip = kvm_get_linear_rip(vcpu);
5377 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5378 					   vcpu->arch.guest_debug_dr7,
5379 					   vcpu->arch.eff_db);
5380 
5381 		if (dr6 != 0) {
5382 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5383 			kvm_run->debug.arch.pc = eip;
5384 			kvm_run->debug.arch.exception = DB_VECTOR;
5385 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5386 			*r = EMULATE_USER_EXIT;
5387 			return true;
5388 		}
5389 	}
5390 
5391 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5392 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5393 		unsigned long eip = kvm_get_linear_rip(vcpu);
5394 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5395 					   vcpu->arch.dr7,
5396 					   vcpu->arch.db);
5397 
5398 		if (dr6 != 0) {
5399 			vcpu->arch.dr6 &= ~15;
5400 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5401 			kvm_queue_exception(vcpu, DB_VECTOR);
5402 			*r = EMULATE_DONE;
5403 			return true;
5404 		}
5405 	}
5406 
5407 	return false;
5408 }
5409 
5410 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5411 			    unsigned long cr2,
5412 			    int emulation_type,
5413 			    void *insn,
5414 			    int insn_len)
5415 {
5416 	int r;
5417 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5418 	bool writeback = true;
5419 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5420 
5421 	/*
5422 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5423 	 * never reused.
5424 	 */
5425 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5426 	kvm_clear_exception_queue(vcpu);
5427 
5428 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5429 		init_emulate_ctxt(vcpu);
5430 
5431 		/*
5432 		 * We will reenter on the same instruction since
5433 		 * we do not set complete_userspace_io.  This does not
5434 		 * handle watchpoints yet, those would be handled in
5435 		 * the emulate_ops.
5436 		 */
5437 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5438 			return r;
5439 
5440 		ctxt->interruptibility = 0;
5441 		ctxt->have_exception = false;
5442 		ctxt->exception.vector = -1;
5443 		ctxt->perm_ok = false;
5444 
5445 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5446 
5447 		r = x86_decode_insn(ctxt, insn, insn_len);
5448 
5449 		trace_kvm_emulate_insn_start(vcpu);
5450 		++vcpu->stat.insn_emulation;
5451 		if (r != EMULATION_OK)  {
5452 			if (emulation_type & EMULTYPE_TRAP_UD)
5453 				return EMULATE_FAIL;
5454 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5455 						emulation_type))
5456 				return EMULATE_DONE;
5457 			if (emulation_type & EMULTYPE_SKIP)
5458 				return EMULATE_FAIL;
5459 			return handle_emulation_failure(vcpu);
5460 		}
5461 	}
5462 
5463 	if (emulation_type & EMULTYPE_SKIP) {
5464 		kvm_rip_write(vcpu, ctxt->_eip);
5465 		if (ctxt->eflags & X86_EFLAGS_RF)
5466 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5467 		return EMULATE_DONE;
5468 	}
5469 
5470 	if (retry_instruction(ctxt, cr2, emulation_type))
5471 		return EMULATE_DONE;
5472 
5473 	/* this is needed for vmware backdoor interface to work since it
5474 	   changes registers values  during IO operation */
5475 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5476 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5477 		emulator_invalidate_register_cache(ctxt);
5478 	}
5479 
5480 restart:
5481 	r = x86_emulate_insn(ctxt);
5482 
5483 	if (r == EMULATION_INTERCEPTED)
5484 		return EMULATE_DONE;
5485 
5486 	if (r == EMULATION_FAILED) {
5487 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5488 					emulation_type))
5489 			return EMULATE_DONE;
5490 
5491 		return handle_emulation_failure(vcpu);
5492 	}
5493 
5494 	if (ctxt->have_exception) {
5495 		r = EMULATE_DONE;
5496 		if (inject_emulated_exception(vcpu))
5497 			return r;
5498 	} else if (vcpu->arch.pio.count) {
5499 		if (!vcpu->arch.pio.in) {
5500 			/* FIXME: return into emulator if single-stepping.  */
5501 			vcpu->arch.pio.count = 0;
5502 		} else {
5503 			writeback = false;
5504 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5505 		}
5506 		r = EMULATE_USER_EXIT;
5507 	} else if (vcpu->mmio_needed) {
5508 		if (!vcpu->mmio_is_write)
5509 			writeback = false;
5510 		r = EMULATE_USER_EXIT;
5511 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5512 	} else if (r == EMULATION_RESTART)
5513 		goto restart;
5514 	else
5515 		r = EMULATE_DONE;
5516 
5517 	if (writeback) {
5518 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5519 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5520 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5521 		if (vcpu->arch.hflags != ctxt->emul_flags)
5522 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5523 		kvm_rip_write(vcpu, ctxt->eip);
5524 		if (r == EMULATE_DONE)
5525 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5526 		if (!ctxt->have_exception ||
5527 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5528 			__kvm_set_rflags(vcpu, ctxt->eflags);
5529 
5530 		/*
5531 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5532 		 * do nothing, and it will be requested again as soon as
5533 		 * the shadow expires.  But we still need to check here,
5534 		 * because POPF has no interrupt shadow.
5535 		 */
5536 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5537 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5538 	} else
5539 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5540 
5541 	return r;
5542 }
5543 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5544 
5545 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5546 {
5547 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5548 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5549 					    size, port, &val, 1);
5550 	/* do not return to emulator after return from userspace */
5551 	vcpu->arch.pio.count = 0;
5552 	return ret;
5553 }
5554 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5555 
5556 static void tsc_bad(void *info)
5557 {
5558 	__this_cpu_write(cpu_tsc_khz, 0);
5559 }
5560 
5561 static void tsc_khz_changed(void *data)
5562 {
5563 	struct cpufreq_freqs *freq = data;
5564 	unsigned long khz = 0;
5565 
5566 	if (data)
5567 		khz = freq->new;
5568 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5569 		khz = cpufreq_quick_get(raw_smp_processor_id());
5570 	if (!khz)
5571 		khz = tsc_khz;
5572 	__this_cpu_write(cpu_tsc_khz, khz);
5573 }
5574 
5575 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5576 				     void *data)
5577 {
5578 	struct cpufreq_freqs *freq = data;
5579 	struct kvm *kvm;
5580 	struct kvm_vcpu *vcpu;
5581 	int i, send_ipi = 0;
5582 
5583 	/*
5584 	 * We allow guests to temporarily run on slowing clocks,
5585 	 * provided we notify them after, or to run on accelerating
5586 	 * clocks, provided we notify them before.  Thus time never
5587 	 * goes backwards.
5588 	 *
5589 	 * However, we have a problem.  We can't atomically update
5590 	 * the frequency of a given CPU from this function; it is
5591 	 * merely a notifier, which can be called from any CPU.
5592 	 * Changing the TSC frequency at arbitrary points in time
5593 	 * requires a recomputation of local variables related to
5594 	 * the TSC for each VCPU.  We must flag these local variables
5595 	 * to be updated and be sure the update takes place with the
5596 	 * new frequency before any guests proceed.
5597 	 *
5598 	 * Unfortunately, the combination of hotplug CPU and frequency
5599 	 * change creates an intractable locking scenario; the order
5600 	 * of when these callouts happen is undefined with respect to
5601 	 * CPU hotplug, and they can race with each other.  As such,
5602 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5603 	 * undefined; you can actually have a CPU frequency change take
5604 	 * place in between the computation of X and the setting of the
5605 	 * variable.  To protect against this problem, all updates of
5606 	 * the per_cpu tsc_khz variable are done in an interrupt
5607 	 * protected IPI, and all callers wishing to update the value
5608 	 * must wait for a synchronous IPI to complete (which is trivial
5609 	 * if the caller is on the CPU already).  This establishes the
5610 	 * necessary total order on variable updates.
5611 	 *
5612 	 * Note that because a guest time update may take place
5613 	 * anytime after the setting of the VCPU's request bit, the
5614 	 * correct TSC value must be set before the request.  However,
5615 	 * to ensure the update actually makes it to any guest which
5616 	 * starts running in hardware virtualization between the set
5617 	 * and the acquisition of the spinlock, we must also ping the
5618 	 * CPU after setting the request bit.
5619 	 *
5620 	 */
5621 
5622 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5623 		return 0;
5624 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5625 		return 0;
5626 
5627 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5628 
5629 	spin_lock(&kvm_lock);
5630 	list_for_each_entry(kvm, &vm_list, vm_list) {
5631 		kvm_for_each_vcpu(i, vcpu, kvm) {
5632 			if (vcpu->cpu != freq->cpu)
5633 				continue;
5634 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5635 			if (vcpu->cpu != smp_processor_id())
5636 				send_ipi = 1;
5637 		}
5638 	}
5639 	spin_unlock(&kvm_lock);
5640 
5641 	if (freq->old < freq->new && send_ipi) {
5642 		/*
5643 		 * We upscale the frequency.  Must make the guest
5644 		 * doesn't see old kvmclock values while running with
5645 		 * the new frequency, otherwise we risk the guest sees
5646 		 * time go backwards.
5647 		 *
5648 		 * In case we update the frequency for another cpu
5649 		 * (which might be in guest context) send an interrupt
5650 		 * to kick the cpu out of guest context.  Next time
5651 		 * guest context is entered kvmclock will be updated,
5652 		 * so the guest will not see stale values.
5653 		 */
5654 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5655 	}
5656 	return 0;
5657 }
5658 
5659 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5660 	.notifier_call  = kvmclock_cpufreq_notifier
5661 };
5662 
5663 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5664 					unsigned long action, void *hcpu)
5665 {
5666 	unsigned int cpu = (unsigned long)hcpu;
5667 
5668 	switch (action) {
5669 		case CPU_ONLINE:
5670 		case CPU_DOWN_FAILED:
5671 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5672 			break;
5673 		case CPU_DOWN_PREPARE:
5674 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5675 			break;
5676 	}
5677 	return NOTIFY_OK;
5678 }
5679 
5680 static struct notifier_block kvmclock_cpu_notifier_block = {
5681 	.notifier_call  = kvmclock_cpu_notifier,
5682 	.priority = -INT_MAX
5683 };
5684 
5685 static void kvm_timer_init(void)
5686 {
5687 	int cpu;
5688 
5689 	max_tsc_khz = tsc_khz;
5690 
5691 	cpu_notifier_register_begin();
5692 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5693 #ifdef CONFIG_CPU_FREQ
5694 		struct cpufreq_policy policy;
5695 		memset(&policy, 0, sizeof(policy));
5696 		cpu = get_cpu();
5697 		cpufreq_get_policy(&policy, cpu);
5698 		if (policy.cpuinfo.max_freq)
5699 			max_tsc_khz = policy.cpuinfo.max_freq;
5700 		put_cpu();
5701 #endif
5702 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5703 					  CPUFREQ_TRANSITION_NOTIFIER);
5704 	}
5705 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5706 	for_each_online_cpu(cpu)
5707 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5708 
5709 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5710 	cpu_notifier_register_done();
5711 
5712 }
5713 
5714 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5715 
5716 int kvm_is_in_guest(void)
5717 {
5718 	return __this_cpu_read(current_vcpu) != NULL;
5719 }
5720 
5721 static int kvm_is_user_mode(void)
5722 {
5723 	int user_mode = 3;
5724 
5725 	if (__this_cpu_read(current_vcpu))
5726 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5727 
5728 	return user_mode != 0;
5729 }
5730 
5731 static unsigned long kvm_get_guest_ip(void)
5732 {
5733 	unsigned long ip = 0;
5734 
5735 	if (__this_cpu_read(current_vcpu))
5736 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5737 
5738 	return ip;
5739 }
5740 
5741 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5742 	.is_in_guest		= kvm_is_in_guest,
5743 	.is_user_mode		= kvm_is_user_mode,
5744 	.get_guest_ip		= kvm_get_guest_ip,
5745 };
5746 
5747 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5748 {
5749 	__this_cpu_write(current_vcpu, vcpu);
5750 }
5751 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5752 
5753 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5754 {
5755 	__this_cpu_write(current_vcpu, NULL);
5756 }
5757 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5758 
5759 static void kvm_set_mmio_spte_mask(void)
5760 {
5761 	u64 mask;
5762 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5763 
5764 	/*
5765 	 * Set the reserved bits and the present bit of an paging-structure
5766 	 * entry to generate page fault with PFER.RSV = 1.
5767 	 */
5768 	 /* Mask the reserved physical address bits. */
5769 	mask = rsvd_bits(maxphyaddr, 51);
5770 
5771 	/* Bit 62 is always reserved for 32bit host. */
5772 	mask |= 0x3ull << 62;
5773 
5774 	/* Set the present bit. */
5775 	mask |= 1ull;
5776 
5777 #ifdef CONFIG_X86_64
5778 	/*
5779 	 * If reserved bit is not supported, clear the present bit to disable
5780 	 * mmio page fault.
5781 	 */
5782 	if (maxphyaddr == 52)
5783 		mask &= ~1ull;
5784 #endif
5785 
5786 	kvm_mmu_set_mmio_spte_mask(mask);
5787 }
5788 
5789 #ifdef CONFIG_X86_64
5790 static void pvclock_gtod_update_fn(struct work_struct *work)
5791 {
5792 	struct kvm *kvm;
5793 
5794 	struct kvm_vcpu *vcpu;
5795 	int i;
5796 
5797 	spin_lock(&kvm_lock);
5798 	list_for_each_entry(kvm, &vm_list, vm_list)
5799 		kvm_for_each_vcpu(i, vcpu, kvm)
5800 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5801 	atomic_set(&kvm_guest_has_master_clock, 0);
5802 	spin_unlock(&kvm_lock);
5803 }
5804 
5805 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5806 
5807 /*
5808  * Notification about pvclock gtod data update.
5809  */
5810 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5811 			       void *priv)
5812 {
5813 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5814 	struct timekeeper *tk = priv;
5815 
5816 	update_pvclock_gtod(tk);
5817 
5818 	/* disable master clock if host does not trust, or does not
5819 	 * use, TSC clocksource
5820 	 */
5821 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5822 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5823 		queue_work(system_long_wq, &pvclock_gtod_work);
5824 
5825 	return 0;
5826 }
5827 
5828 static struct notifier_block pvclock_gtod_notifier = {
5829 	.notifier_call = pvclock_gtod_notify,
5830 };
5831 #endif
5832 
5833 int kvm_arch_init(void *opaque)
5834 {
5835 	int r;
5836 	struct kvm_x86_ops *ops = opaque;
5837 
5838 	if (kvm_x86_ops) {
5839 		printk(KERN_ERR "kvm: already loaded the other module\n");
5840 		r = -EEXIST;
5841 		goto out;
5842 	}
5843 
5844 	if (!ops->cpu_has_kvm_support()) {
5845 		printk(KERN_ERR "kvm: no hardware support\n");
5846 		r = -EOPNOTSUPP;
5847 		goto out;
5848 	}
5849 	if (ops->disabled_by_bios()) {
5850 		printk(KERN_ERR "kvm: disabled by bios\n");
5851 		r = -EOPNOTSUPP;
5852 		goto out;
5853 	}
5854 
5855 	r = -ENOMEM;
5856 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5857 	if (!shared_msrs) {
5858 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5859 		goto out;
5860 	}
5861 
5862 	r = kvm_mmu_module_init();
5863 	if (r)
5864 		goto out_free_percpu;
5865 
5866 	kvm_set_mmio_spte_mask();
5867 
5868 	kvm_x86_ops = ops;
5869 
5870 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5871 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5872 
5873 	kvm_timer_init();
5874 
5875 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5876 
5877 	if (boot_cpu_has(X86_FEATURE_XSAVE))
5878 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5879 
5880 	kvm_lapic_init();
5881 #ifdef CONFIG_X86_64
5882 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5883 #endif
5884 
5885 	return 0;
5886 
5887 out_free_percpu:
5888 	free_percpu(shared_msrs);
5889 out:
5890 	return r;
5891 }
5892 
5893 void kvm_arch_exit(void)
5894 {
5895 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5896 
5897 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5898 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5899 					    CPUFREQ_TRANSITION_NOTIFIER);
5900 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5901 #ifdef CONFIG_X86_64
5902 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5903 #endif
5904 	kvm_x86_ops = NULL;
5905 	kvm_mmu_module_exit();
5906 	free_percpu(shared_msrs);
5907 }
5908 
5909 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5910 {
5911 	++vcpu->stat.halt_exits;
5912 	if (lapic_in_kernel(vcpu)) {
5913 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5914 		return 1;
5915 	} else {
5916 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5917 		return 0;
5918 	}
5919 }
5920 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5921 
5922 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5923 {
5924 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5925 	return kvm_vcpu_halt(vcpu);
5926 }
5927 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5928 
5929 /*
5930  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5931  *
5932  * @apicid - apicid of vcpu to be kicked.
5933  */
5934 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5935 {
5936 	struct kvm_lapic_irq lapic_irq;
5937 
5938 	lapic_irq.shorthand = 0;
5939 	lapic_irq.dest_mode = 0;
5940 	lapic_irq.dest_id = apicid;
5941 	lapic_irq.msi_redir_hint = false;
5942 
5943 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5944 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5945 }
5946 
5947 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5948 {
5949 	vcpu->arch.apicv_active = false;
5950 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5951 }
5952 
5953 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5954 {
5955 	unsigned long nr, a0, a1, a2, a3, ret;
5956 	int op_64_bit, r = 1;
5957 
5958 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5959 
5960 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5961 		return kvm_hv_hypercall(vcpu);
5962 
5963 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5964 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5965 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5966 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5967 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5968 
5969 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5970 
5971 	op_64_bit = is_64_bit_mode(vcpu);
5972 	if (!op_64_bit) {
5973 		nr &= 0xFFFFFFFF;
5974 		a0 &= 0xFFFFFFFF;
5975 		a1 &= 0xFFFFFFFF;
5976 		a2 &= 0xFFFFFFFF;
5977 		a3 &= 0xFFFFFFFF;
5978 	}
5979 
5980 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5981 		ret = -KVM_EPERM;
5982 		goto out;
5983 	}
5984 
5985 	switch (nr) {
5986 	case KVM_HC_VAPIC_POLL_IRQ:
5987 		ret = 0;
5988 		break;
5989 	case KVM_HC_KICK_CPU:
5990 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5991 		ret = 0;
5992 		break;
5993 	default:
5994 		ret = -KVM_ENOSYS;
5995 		break;
5996 	}
5997 out:
5998 	if (!op_64_bit)
5999 		ret = (u32)ret;
6000 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6001 	++vcpu->stat.hypercalls;
6002 	return r;
6003 }
6004 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6005 
6006 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6007 {
6008 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6009 	char instruction[3];
6010 	unsigned long rip = kvm_rip_read(vcpu);
6011 
6012 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6013 
6014 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6015 }
6016 
6017 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6018 {
6019 	return vcpu->run->request_interrupt_window &&
6020 		likely(!pic_in_kernel(vcpu->kvm));
6021 }
6022 
6023 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6024 {
6025 	struct kvm_run *kvm_run = vcpu->run;
6026 
6027 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6028 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6029 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6030 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6031 	kvm_run->ready_for_interrupt_injection =
6032 		pic_in_kernel(vcpu->kvm) ||
6033 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
6034 }
6035 
6036 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6037 {
6038 	int max_irr, tpr;
6039 
6040 	if (!kvm_x86_ops->update_cr8_intercept)
6041 		return;
6042 
6043 	if (!lapic_in_kernel(vcpu))
6044 		return;
6045 
6046 	if (vcpu->arch.apicv_active)
6047 		return;
6048 
6049 	if (!vcpu->arch.apic->vapic_addr)
6050 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6051 	else
6052 		max_irr = -1;
6053 
6054 	if (max_irr != -1)
6055 		max_irr >>= 4;
6056 
6057 	tpr = kvm_lapic_get_cr8(vcpu);
6058 
6059 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6060 }
6061 
6062 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6063 {
6064 	int r;
6065 
6066 	/* try to reinject previous events if any */
6067 	if (vcpu->arch.exception.pending) {
6068 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6069 					vcpu->arch.exception.has_error_code,
6070 					vcpu->arch.exception.error_code);
6071 
6072 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6073 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6074 					     X86_EFLAGS_RF);
6075 
6076 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6077 		    (vcpu->arch.dr7 & DR7_GD)) {
6078 			vcpu->arch.dr7 &= ~DR7_GD;
6079 			kvm_update_dr7(vcpu);
6080 		}
6081 
6082 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6083 					  vcpu->arch.exception.has_error_code,
6084 					  vcpu->arch.exception.error_code,
6085 					  vcpu->arch.exception.reinject);
6086 		return 0;
6087 	}
6088 
6089 	if (vcpu->arch.nmi_injected) {
6090 		kvm_x86_ops->set_nmi(vcpu);
6091 		return 0;
6092 	}
6093 
6094 	if (vcpu->arch.interrupt.pending) {
6095 		kvm_x86_ops->set_irq(vcpu);
6096 		return 0;
6097 	}
6098 
6099 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6100 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6101 		if (r != 0)
6102 			return r;
6103 	}
6104 
6105 	/* try to inject new event if pending */
6106 	if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6107 		--vcpu->arch.nmi_pending;
6108 		vcpu->arch.nmi_injected = true;
6109 		kvm_x86_ops->set_nmi(vcpu);
6110 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6111 		/*
6112 		 * Because interrupts can be injected asynchronously, we are
6113 		 * calling check_nested_events again here to avoid a race condition.
6114 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6115 		 * proposal and current concerns.  Perhaps we should be setting
6116 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6117 		 */
6118 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6119 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6120 			if (r != 0)
6121 				return r;
6122 		}
6123 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6124 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6125 					    false);
6126 			kvm_x86_ops->set_irq(vcpu);
6127 		}
6128 	}
6129 	return 0;
6130 }
6131 
6132 static void process_nmi(struct kvm_vcpu *vcpu)
6133 {
6134 	unsigned limit = 2;
6135 
6136 	/*
6137 	 * x86 is limited to one NMI running, and one NMI pending after it.
6138 	 * If an NMI is already in progress, limit further NMIs to just one.
6139 	 * Otherwise, allow two (and we'll inject the first one immediately).
6140 	 */
6141 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6142 		limit = 1;
6143 
6144 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6145 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6146 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6147 }
6148 
6149 #define put_smstate(type, buf, offset, val)			  \
6150 	*(type *)((buf) + (offset) - 0x7e00) = val
6151 
6152 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6153 {
6154 	u32 flags = 0;
6155 	flags |= seg->g       << 23;
6156 	flags |= seg->db      << 22;
6157 	flags |= seg->l       << 21;
6158 	flags |= seg->avl     << 20;
6159 	flags |= seg->present << 15;
6160 	flags |= seg->dpl     << 13;
6161 	flags |= seg->s       << 12;
6162 	flags |= seg->type    << 8;
6163 	return flags;
6164 }
6165 
6166 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6167 {
6168 	struct kvm_segment seg;
6169 	int offset;
6170 
6171 	kvm_get_segment(vcpu, &seg, n);
6172 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6173 
6174 	if (n < 3)
6175 		offset = 0x7f84 + n * 12;
6176 	else
6177 		offset = 0x7f2c + (n - 3) * 12;
6178 
6179 	put_smstate(u32, buf, offset + 8, seg.base);
6180 	put_smstate(u32, buf, offset + 4, seg.limit);
6181 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6182 }
6183 
6184 #ifdef CONFIG_X86_64
6185 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6186 {
6187 	struct kvm_segment seg;
6188 	int offset;
6189 	u16 flags;
6190 
6191 	kvm_get_segment(vcpu, &seg, n);
6192 	offset = 0x7e00 + n * 16;
6193 
6194 	flags = process_smi_get_segment_flags(&seg) >> 8;
6195 	put_smstate(u16, buf, offset, seg.selector);
6196 	put_smstate(u16, buf, offset + 2, flags);
6197 	put_smstate(u32, buf, offset + 4, seg.limit);
6198 	put_smstate(u64, buf, offset + 8, seg.base);
6199 }
6200 #endif
6201 
6202 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6203 {
6204 	struct desc_ptr dt;
6205 	struct kvm_segment seg;
6206 	unsigned long val;
6207 	int i;
6208 
6209 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6210 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6211 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6212 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6213 
6214 	for (i = 0; i < 8; i++)
6215 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6216 
6217 	kvm_get_dr(vcpu, 6, &val);
6218 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6219 	kvm_get_dr(vcpu, 7, &val);
6220 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6221 
6222 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6223 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6224 	put_smstate(u32, buf, 0x7f64, seg.base);
6225 	put_smstate(u32, buf, 0x7f60, seg.limit);
6226 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6227 
6228 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6229 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6230 	put_smstate(u32, buf, 0x7f80, seg.base);
6231 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6232 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6233 
6234 	kvm_x86_ops->get_gdt(vcpu, &dt);
6235 	put_smstate(u32, buf, 0x7f74, dt.address);
6236 	put_smstate(u32, buf, 0x7f70, dt.size);
6237 
6238 	kvm_x86_ops->get_idt(vcpu, &dt);
6239 	put_smstate(u32, buf, 0x7f58, dt.address);
6240 	put_smstate(u32, buf, 0x7f54, dt.size);
6241 
6242 	for (i = 0; i < 6; i++)
6243 		process_smi_save_seg_32(vcpu, buf, i);
6244 
6245 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6246 
6247 	/* revision id */
6248 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6249 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6250 }
6251 
6252 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6253 {
6254 #ifdef CONFIG_X86_64
6255 	struct desc_ptr dt;
6256 	struct kvm_segment seg;
6257 	unsigned long val;
6258 	int i;
6259 
6260 	for (i = 0; i < 16; i++)
6261 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6262 
6263 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6264 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6265 
6266 	kvm_get_dr(vcpu, 6, &val);
6267 	put_smstate(u64, buf, 0x7f68, val);
6268 	kvm_get_dr(vcpu, 7, &val);
6269 	put_smstate(u64, buf, 0x7f60, val);
6270 
6271 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6272 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6273 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6274 
6275 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6276 
6277 	/* revision id */
6278 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6279 
6280 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6281 
6282 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6283 	put_smstate(u16, buf, 0x7e90, seg.selector);
6284 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6285 	put_smstate(u32, buf, 0x7e94, seg.limit);
6286 	put_smstate(u64, buf, 0x7e98, seg.base);
6287 
6288 	kvm_x86_ops->get_idt(vcpu, &dt);
6289 	put_smstate(u32, buf, 0x7e84, dt.size);
6290 	put_smstate(u64, buf, 0x7e88, dt.address);
6291 
6292 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6293 	put_smstate(u16, buf, 0x7e70, seg.selector);
6294 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6295 	put_smstate(u32, buf, 0x7e74, seg.limit);
6296 	put_smstate(u64, buf, 0x7e78, seg.base);
6297 
6298 	kvm_x86_ops->get_gdt(vcpu, &dt);
6299 	put_smstate(u32, buf, 0x7e64, dt.size);
6300 	put_smstate(u64, buf, 0x7e68, dt.address);
6301 
6302 	for (i = 0; i < 6; i++)
6303 		process_smi_save_seg_64(vcpu, buf, i);
6304 #else
6305 	WARN_ON_ONCE(1);
6306 #endif
6307 }
6308 
6309 static void process_smi(struct kvm_vcpu *vcpu)
6310 {
6311 	struct kvm_segment cs, ds;
6312 	struct desc_ptr dt;
6313 	char buf[512];
6314 	u32 cr0;
6315 
6316 	if (is_smm(vcpu)) {
6317 		vcpu->arch.smi_pending = true;
6318 		return;
6319 	}
6320 
6321 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6322 	vcpu->arch.hflags |= HF_SMM_MASK;
6323 	memset(buf, 0, 512);
6324 	if (guest_cpuid_has_longmode(vcpu))
6325 		process_smi_save_state_64(vcpu, buf);
6326 	else
6327 		process_smi_save_state_32(vcpu, buf);
6328 
6329 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6330 
6331 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6332 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6333 	else
6334 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6335 
6336 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6337 	kvm_rip_write(vcpu, 0x8000);
6338 
6339 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6340 	kvm_x86_ops->set_cr0(vcpu, cr0);
6341 	vcpu->arch.cr0 = cr0;
6342 
6343 	kvm_x86_ops->set_cr4(vcpu, 0);
6344 
6345 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6346 	dt.address = dt.size = 0;
6347 	kvm_x86_ops->set_idt(vcpu, &dt);
6348 
6349 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6350 
6351 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6352 	cs.base = vcpu->arch.smbase;
6353 
6354 	ds.selector = 0;
6355 	ds.base = 0;
6356 
6357 	cs.limit    = ds.limit = 0xffffffff;
6358 	cs.type     = ds.type = 0x3;
6359 	cs.dpl      = ds.dpl = 0;
6360 	cs.db       = ds.db = 0;
6361 	cs.s        = ds.s = 1;
6362 	cs.l        = ds.l = 0;
6363 	cs.g        = ds.g = 1;
6364 	cs.avl      = ds.avl = 0;
6365 	cs.present  = ds.present = 1;
6366 	cs.unusable = ds.unusable = 0;
6367 	cs.padding  = ds.padding = 0;
6368 
6369 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6370 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6371 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6372 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6373 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6374 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6375 
6376 	if (guest_cpuid_has_longmode(vcpu))
6377 		kvm_x86_ops->set_efer(vcpu, 0);
6378 
6379 	kvm_update_cpuid(vcpu);
6380 	kvm_mmu_reset_context(vcpu);
6381 }
6382 
6383 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6384 {
6385 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6386 }
6387 
6388 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6389 {
6390 	u64 eoi_exit_bitmap[4];
6391 
6392 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6393 		return;
6394 
6395 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6396 
6397 	if (irqchip_split(vcpu->kvm))
6398 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6399 	else {
6400 		if (vcpu->arch.apicv_active)
6401 			kvm_x86_ops->sync_pir_to_irr(vcpu);
6402 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6403 	}
6404 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6405 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6406 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6407 }
6408 
6409 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6410 {
6411 	++vcpu->stat.tlb_flush;
6412 	kvm_x86_ops->tlb_flush(vcpu);
6413 }
6414 
6415 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6416 {
6417 	struct page *page = NULL;
6418 
6419 	if (!lapic_in_kernel(vcpu))
6420 		return;
6421 
6422 	if (!kvm_x86_ops->set_apic_access_page_addr)
6423 		return;
6424 
6425 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6426 	if (is_error_page(page))
6427 		return;
6428 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6429 
6430 	/*
6431 	 * Do not pin apic access page in memory, the MMU notifier
6432 	 * will call us again if it is migrated or swapped out.
6433 	 */
6434 	put_page(page);
6435 }
6436 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6437 
6438 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6439 					   unsigned long address)
6440 {
6441 	/*
6442 	 * The physical address of apic access page is stored in the VMCS.
6443 	 * Update it when it becomes invalid.
6444 	 */
6445 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6446 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6447 }
6448 
6449 /*
6450  * Returns 1 to let vcpu_run() continue the guest execution loop without
6451  * exiting to the userspace.  Otherwise, the value will be returned to the
6452  * userspace.
6453  */
6454 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6455 {
6456 	int r;
6457 	bool req_int_win =
6458 		dm_request_for_irq_injection(vcpu) &&
6459 		kvm_cpu_accept_dm_intr(vcpu);
6460 
6461 	bool req_immediate_exit = false;
6462 
6463 	if (vcpu->requests) {
6464 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6465 			kvm_mmu_unload(vcpu);
6466 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6467 			__kvm_migrate_timers(vcpu);
6468 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6469 			kvm_gen_update_masterclock(vcpu->kvm);
6470 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6471 			kvm_gen_kvmclock_update(vcpu);
6472 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6473 			r = kvm_guest_time_update(vcpu);
6474 			if (unlikely(r))
6475 				goto out;
6476 		}
6477 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6478 			kvm_mmu_sync_roots(vcpu);
6479 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6480 			kvm_vcpu_flush_tlb(vcpu);
6481 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6482 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6483 			r = 0;
6484 			goto out;
6485 		}
6486 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6487 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6488 			r = 0;
6489 			goto out;
6490 		}
6491 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6492 			vcpu->fpu_active = 0;
6493 			kvm_x86_ops->fpu_deactivate(vcpu);
6494 		}
6495 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6496 			/* Page is swapped out. Do synthetic halt */
6497 			vcpu->arch.apf.halted = true;
6498 			r = 1;
6499 			goto out;
6500 		}
6501 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6502 			record_steal_time(vcpu);
6503 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6504 			process_smi(vcpu);
6505 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6506 			process_nmi(vcpu);
6507 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6508 			kvm_pmu_handle_event(vcpu);
6509 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6510 			kvm_pmu_deliver_pmi(vcpu);
6511 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6512 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6513 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6514 				     vcpu->arch.ioapic_handled_vectors)) {
6515 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6516 				vcpu->run->eoi.vector =
6517 						vcpu->arch.pending_ioapic_eoi;
6518 				r = 0;
6519 				goto out;
6520 			}
6521 		}
6522 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6523 			vcpu_scan_ioapic(vcpu);
6524 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6525 			kvm_vcpu_reload_apic_access_page(vcpu);
6526 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6527 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6528 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6529 			r = 0;
6530 			goto out;
6531 		}
6532 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6533 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6534 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6535 			r = 0;
6536 			goto out;
6537 		}
6538 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6539 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6540 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6541 			r = 0;
6542 			goto out;
6543 		}
6544 
6545 		/*
6546 		 * KVM_REQ_HV_STIMER has to be processed after
6547 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6548 		 * depend on the guest clock being up-to-date
6549 		 */
6550 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6551 			kvm_hv_process_stimers(vcpu);
6552 	}
6553 
6554 	/*
6555 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6556 	 * VT-d hardware, so we have to update RVI unconditionally.
6557 	 */
6558 	if (kvm_lapic_enabled(vcpu)) {
6559 		/*
6560 		 * Update architecture specific hints for APIC
6561 		 * virtual interrupt delivery.
6562 		 */
6563 		if (vcpu->arch.apicv_active)
6564 			kvm_x86_ops->hwapic_irr_update(vcpu,
6565 				kvm_lapic_find_highest_irr(vcpu));
6566 	}
6567 
6568 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6569 		kvm_apic_accept_events(vcpu);
6570 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6571 			r = 1;
6572 			goto out;
6573 		}
6574 
6575 		if (inject_pending_event(vcpu, req_int_win) != 0)
6576 			req_immediate_exit = true;
6577 		/* enable NMI/IRQ window open exits if needed */
6578 		else {
6579 			if (vcpu->arch.nmi_pending)
6580 				kvm_x86_ops->enable_nmi_window(vcpu);
6581 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6582 				kvm_x86_ops->enable_irq_window(vcpu);
6583 		}
6584 
6585 		if (kvm_lapic_enabled(vcpu)) {
6586 			update_cr8_intercept(vcpu);
6587 			kvm_lapic_sync_to_vapic(vcpu);
6588 		}
6589 	}
6590 
6591 	r = kvm_mmu_reload(vcpu);
6592 	if (unlikely(r)) {
6593 		goto cancel_injection;
6594 	}
6595 
6596 	preempt_disable();
6597 
6598 	kvm_x86_ops->prepare_guest_switch(vcpu);
6599 	if (vcpu->fpu_active)
6600 		kvm_load_guest_fpu(vcpu);
6601 	vcpu->mode = IN_GUEST_MODE;
6602 
6603 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6604 
6605 	/*
6606 	 * We should set ->mode before check ->requests,
6607 	 * Please see the comment in kvm_make_all_cpus_request.
6608 	 * This also orders the write to mode from any reads
6609 	 * to the page tables done while the VCPU is running.
6610 	 * Please see the comment in kvm_flush_remote_tlbs.
6611 	 */
6612 	smp_mb__after_srcu_read_unlock();
6613 
6614 	local_irq_disable();
6615 
6616 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6617 	    || need_resched() || signal_pending(current)) {
6618 		vcpu->mode = OUTSIDE_GUEST_MODE;
6619 		smp_wmb();
6620 		local_irq_enable();
6621 		preempt_enable();
6622 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6623 		r = 1;
6624 		goto cancel_injection;
6625 	}
6626 
6627 	kvm_load_guest_xcr0(vcpu);
6628 
6629 	if (req_immediate_exit)
6630 		smp_send_reschedule(vcpu->cpu);
6631 
6632 	trace_kvm_entry(vcpu->vcpu_id);
6633 	wait_lapic_expire(vcpu);
6634 	__kvm_guest_enter();
6635 
6636 	if (unlikely(vcpu->arch.switch_db_regs)) {
6637 		set_debugreg(0, 7);
6638 		set_debugreg(vcpu->arch.eff_db[0], 0);
6639 		set_debugreg(vcpu->arch.eff_db[1], 1);
6640 		set_debugreg(vcpu->arch.eff_db[2], 2);
6641 		set_debugreg(vcpu->arch.eff_db[3], 3);
6642 		set_debugreg(vcpu->arch.dr6, 6);
6643 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6644 	}
6645 
6646 	kvm_x86_ops->run(vcpu);
6647 
6648 	/*
6649 	 * Do this here before restoring debug registers on the host.  And
6650 	 * since we do this before handling the vmexit, a DR access vmexit
6651 	 * can (a) read the correct value of the debug registers, (b) set
6652 	 * KVM_DEBUGREG_WONT_EXIT again.
6653 	 */
6654 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6655 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6656 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6657 		kvm_update_dr0123(vcpu);
6658 		kvm_update_dr6(vcpu);
6659 		kvm_update_dr7(vcpu);
6660 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6661 	}
6662 
6663 	/*
6664 	 * If the guest has used debug registers, at least dr7
6665 	 * will be disabled while returning to the host.
6666 	 * If we don't have active breakpoints in the host, we don't
6667 	 * care about the messed up debug address registers. But if
6668 	 * we have some of them active, restore the old state.
6669 	 */
6670 	if (hw_breakpoint_active())
6671 		hw_breakpoint_restore();
6672 
6673 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6674 
6675 	vcpu->mode = OUTSIDE_GUEST_MODE;
6676 	smp_wmb();
6677 
6678 	kvm_put_guest_xcr0(vcpu);
6679 
6680 	/* Interrupt is enabled by handle_external_intr() */
6681 	kvm_x86_ops->handle_external_intr(vcpu);
6682 
6683 	++vcpu->stat.exits;
6684 
6685 	/*
6686 	 * We must have an instruction between local_irq_enable() and
6687 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6688 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6689 	 * But we need to prevent reordering, hence this barrier():
6690 	 */
6691 	barrier();
6692 
6693 	kvm_guest_exit();
6694 
6695 	preempt_enable();
6696 
6697 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6698 
6699 	/*
6700 	 * Profile KVM exit RIPs:
6701 	 */
6702 	if (unlikely(prof_on == KVM_PROFILING)) {
6703 		unsigned long rip = kvm_rip_read(vcpu);
6704 		profile_hit(KVM_PROFILING, (void *)rip);
6705 	}
6706 
6707 	if (unlikely(vcpu->arch.tsc_always_catchup))
6708 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6709 
6710 	if (vcpu->arch.apic_attention)
6711 		kvm_lapic_sync_from_vapic(vcpu);
6712 
6713 	r = kvm_x86_ops->handle_exit(vcpu);
6714 	return r;
6715 
6716 cancel_injection:
6717 	kvm_x86_ops->cancel_injection(vcpu);
6718 	if (unlikely(vcpu->arch.apic_attention))
6719 		kvm_lapic_sync_from_vapic(vcpu);
6720 out:
6721 	return r;
6722 }
6723 
6724 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6725 {
6726 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6727 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6728 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6729 		kvm_vcpu_block(vcpu);
6730 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6731 
6732 		if (kvm_x86_ops->post_block)
6733 			kvm_x86_ops->post_block(vcpu);
6734 
6735 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6736 			return 1;
6737 	}
6738 
6739 	kvm_apic_accept_events(vcpu);
6740 	switch(vcpu->arch.mp_state) {
6741 	case KVM_MP_STATE_HALTED:
6742 		vcpu->arch.pv.pv_unhalted = false;
6743 		vcpu->arch.mp_state =
6744 			KVM_MP_STATE_RUNNABLE;
6745 	case KVM_MP_STATE_RUNNABLE:
6746 		vcpu->arch.apf.halted = false;
6747 		break;
6748 	case KVM_MP_STATE_INIT_RECEIVED:
6749 		break;
6750 	default:
6751 		return -EINTR;
6752 		break;
6753 	}
6754 	return 1;
6755 }
6756 
6757 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6758 {
6759 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6760 		!vcpu->arch.apf.halted);
6761 }
6762 
6763 static int vcpu_run(struct kvm_vcpu *vcpu)
6764 {
6765 	int r;
6766 	struct kvm *kvm = vcpu->kvm;
6767 
6768 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6769 
6770 	for (;;) {
6771 		if (kvm_vcpu_running(vcpu)) {
6772 			r = vcpu_enter_guest(vcpu);
6773 		} else {
6774 			r = vcpu_block(kvm, vcpu);
6775 		}
6776 
6777 		if (r <= 0)
6778 			break;
6779 
6780 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6781 		if (kvm_cpu_has_pending_timer(vcpu))
6782 			kvm_inject_pending_timer_irqs(vcpu);
6783 
6784 		if (dm_request_for_irq_injection(vcpu) &&
6785 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6786 			r = 0;
6787 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6788 			++vcpu->stat.request_irq_exits;
6789 			break;
6790 		}
6791 
6792 		kvm_check_async_pf_completion(vcpu);
6793 
6794 		if (signal_pending(current)) {
6795 			r = -EINTR;
6796 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6797 			++vcpu->stat.signal_exits;
6798 			break;
6799 		}
6800 		if (need_resched()) {
6801 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6802 			cond_resched();
6803 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6804 		}
6805 	}
6806 
6807 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6808 
6809 	return r;
6810 }
6811 
6812 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6813 {
6814 	int r;
6815 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6816 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6817 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6818 	if (r != EMULATE_DONE)
6819 		return 0;
6820 	return 1;
6821 }
6822 
6823 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6824 {
6825 	BUG_ON(!vcpu->arch.pio.count);
6826 
6827 	return complete_emulated_io(vcpu);
6828 }
6829 
6830 /*
6831  * Implements the following, as a state machine:
6832  *
6833  * read:
6834  *   for each fragment
6835  *     for each mmio piece in the fragment
6836  *       write gpa, len
6837  *       exit
6838  *       copy data
6839  *   execute insn
6840  *
6841  * write:
6842  *   for each fragment
6843  *     for each mmio piece in the fragment
6844  *       write gpa, len
6845  *       copy data
6846  *       exit
6847  */
6848 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6849 {
6850 	struct kvm_run *run = vcpu->run;
6851 	struct kvm_mmio_fragment *frag;
6852 	unsigned len;
6853 
6854 	BUG_ON(!vcpu->mmio_needed);
6855 
6856 	/* Complete previous fragment */
6857 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6858 	len = min(8u, frag->len);
6859 	if (!vcpu->mmio_is_write)
6860 		memcpy(frag->data, run->mmio.data, len);
6861 
6862 	if (frag->len <= 8) {
6863 		/* Switch to the next fragment. */
6864 		frag++;
6865 		vcpu->mmio_cur_fragment++;
6866 	} else {
6867 		/* Go forward to the next mmio piece. */
6868 		frag->data += len;
6869 		frag->gpa += len;
6870 		frag->len -= len;
6871 	}
6872 
6873 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6874 		vcpu->mmio_needed = 0;
6875 
6876 		/* FIXME: return into emulator if single-stepping.  */
6877 		if (vcpu->mmio_is_write)
6878 			return 1;
6879 		vcpu->mmio_read_completed = 1;
6880 		return complete_emulated_io(vcpu);
6881 	}
6882 
6883 	run->exit_reason = KVM_EXIT_MMIO;
6884 	run->mmio.phys_addr = frag->gpa;
6885 	if (vcpu->mmio_is_write)
6886 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6887 	run->mmio.len = min(8u, frag->len);
6888 	run->mmio.is_write = vcpu->mmio_is_write;
6889 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6890 	return 0;
6891 }
6892 
6893 
6894 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6895 {
6896 	struct fpu *fpu = &current->thread.fpu;
6897 	int r;
6898 	sigset_t sigsaved;
6899 
6900 	fpu__activate_curr(fpu);
6901 
6902 	if (vcpu->sigset_active)
6903 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6904 
6905 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6906 		kvm_vcpu_block(vcpu);
6907 		kvm_apic_accept_events(vcpu);
6908 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6909 		r = -EAGAIN;
6910 		goto out;
6911 	}
6912 
6913 	/* re-sync apic's tpr */
6914 	if (!lapic_in_kernel(vcpu)) {
6915 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6916 			r = -EINVAL;
6917 			goto out;
6918 		}
6919 	}
6920 
6921 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6922 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6923 		vcpu->arch.complete_userspace_io = NULL;
6924 		r = cui(vcpu);
6925 		if (r <= 0)
6926 			goto out;
6927 	} else
6928 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6929 
6930 	r = vcpu_run(vcpu);
6931 
6932 out:
6933 	post_kvm_run_save(vcpu);
6934 	if (vcpu->sigset_active)
6935 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6936 
6937 	return r;
6938 }
6939 
6940 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6941 {
6942 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6943 		/*
6944 		 * We are here if userspace calls get_regs() in the middle of
6945 		 * instruction emulation. Registers state needs to be copied
6946 		 * back from emulation context to vcpu. Userspace shouldn't do
6947 		 * that usually, but some bad designed PV devices (vmware
6948 		 * backdoor interface) need this to work
6949 		 */
6950 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6951 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6952 	}
6953 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6954 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6955 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6956 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6957 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6958 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6959 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6960 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6961 #ifdef CONFIG_X86_64
6962 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6963 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6964 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6965 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6966 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6967 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6968 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6969 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6970 #endif
6971 
6972 	regs->rip = kvm_rip_read(vcpu);
6973 	regs->rflags = kvm_get_rflags(vcpu);
6974 
6975 	return 0;
6976 }
6977 
6978 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6979 {
6980 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6981 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6982 
6983 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6984 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6985 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6986 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6987 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6988 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6989 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6990 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6991 #ifdef CONFIG_X86_64
6992 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6993 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6994 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6995 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6996 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6997 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6998 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6999 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7000 #endif
7001 
7002 	kvm_rip_write(vcpu, regs->rip);
7003 	kvm_set_rflags(vcpu, regs->rflags);
7004 
7005 	vcpu->arch.exception.pending = false;
7006 
7007 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7008 
7009 	return 0;
7010 }
7011 
7012 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7013 {
7014 	struct kvm_segment cs;
7015 
7016 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7017 	*db = cs.db;
7018 	*l = cs.l;
7019 }
7020 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7021 
7022 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7023 				  struct kvm_sregs *sregs)
7024 {
7025 	struct desc_ptr dt;
7026 
7027 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7028 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7029 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7030 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7031 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7032 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7033 
7034 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7035 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7036 
7037 	kvm_x86_ops->get_idt(vcpu, &dt);
7038 	sregs->idt.limit = dt.size;
7039 	sregs->idt.base = dt.address;
7040 	kvm_x86_ops->get_gdt(vcpu, &dt);
7041 	sregs->gdt.limit = dt.size;
7042 	sregs->gdt.base = dt.address;
7043 
7044 	sregs->cr0 = kvm_read_cr0(vcpu);
7045 	sregs->cr2 = vcpu->arch.cr2;
7046 	sregs->cr3 = kvm_read_cr3(vcpu);
7047 	sregs->cr4 = kvm_read_cr4(vcpu);
7048 	sregs->cr8 = kvm_get_cr8(vcpu);
7049 	sregs->efer = vcpu->arch.efer;
7050 	sregs->apic_base = kvm_get_apic_base(vcpu);
7051 
7052 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7053 
7054 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7055 		set_bit(vcpu->arch.interrupt.nr,
7056 			(unsigned long *)sregs->interrupt_bitmap);
7057 
7058 	return 0;
7059 }
7060 
7061 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7062 				    struct kvm_mp_state *mp_state)
7063 {
7064 	kvm_apic_accept_events(vcpu);
7065 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7066 					vcpu->arch.pv.pv_unhalted)
7067 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7068 	else
7069 		mp_state->mp_state = vcpu->arch.mp_state;
7070 
7071 	return 0;
7072 }
7073 
7074 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7075 				    struct kvm_mp_state *mp_state)
7076 {
7077 	if (!lapic_in_kernel(vcpu) &&
7078 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7079 		return -EINVAL;
7080 
7081 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7082 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7083 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7084 	} else
7085 		vcpu->arch.mp_state = mp_state->mp_state;
7086 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7087 	return 0;
7088 }
7089 
7090 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7091 		    int reason, bool has_error_code, u32 error_code)
7092 {
7093 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7094 	int ret;
7095 
7096 	init_emulate_ctxt(vcpu);
7097 
7098 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7099 				   has_error_code, error_code);
7100 
7101 	if (ret)
7102 		return EMULATE_FAIL;
7103 
7104 	kvm_rip_write(vcpu, ctxt->eip);
7105 	kvm_set_rflags(vcpu, ctxt->eflags);
7106 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7107 	return EMULATE_DONE;
7108 }
7109 EXPORT_SYMBOL_GPL(kvm_task_switch);
7110 
7111 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7112 				  struct kvm_sregs *sregs)
7113 {
7114 	struct msr_data apic_base_msr;
7115 	int mmu_reset_needed = 0;
7116 	int pending_vec, max_bits, idx;
7117 	struct desc_ptr dt;
7118 
7119 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7120 		return -EINVAL;
7121 
7122 	dt.size = sregs->idt.limit;
7123 	dt.address = sregs->idt.base;
7124 	kvm_x86_ops->set_idt(vcpu, &dt);
7125 	dt.size = sregs->gdt.limit;
7126 	dt.address = sregs->gdt.base;
7127 	kvm_x86_ops->set_gdt(vcpu, &dt);
7128 
7129 	vcpu->arch.cr2 = sregs->cr2;
7130 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7131 	vcpu->arch.cr3 = sregs->cr3;
7132 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7133 
7134 	kvm_set_cr8(vcpu, sregs->cr8);
7135 
7136 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7137 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7138 	apic_base_msr.data = sregs->apic_base;
7139 	apic_base_msr.host_initiated = true;
7140 	kvm_set_apic_base(vcpu, &apic_base_msr);
7141 
7142 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7143 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7144 	vcpu->arch.cr0 = sregs->cr0;
7145 
7146 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7147 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7148 	if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7149 		kvm_update_cpuid(vcpu);
7150 
7151 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7152 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7153 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7154 		mmu_reset_needed = 1;
7155 	}
7156 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7157 
7158 	if (mmu_reset_needed)
7159 		kvm_mmu_reset_context(vcpu);
7160 
7161 	max_bits = KVM_NR_INTERRUPTS;
7162 	pending_vec = find_first_bit(
7163 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7164 	if (pending_vec < max_bits) {
7165 		kvm_queue_interrupt(vcpu, pending_vec, false);
7166 		pr_debug("Set back pending irq %d\n", pending_vec);
7167 	}
7168 
7169 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7170 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7171 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7172 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7173 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7174 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7175 
7176 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7177 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7178 
7179 	update_cr8_intercept(vcpu);
7180 
7181 	/* Older userspace won't unhalt the vcpu on reset. */
7182 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7183 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7184 	    !is_protmode(vcpu))
7185 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7186 
7187 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7188 
7189 	return 0;
7190 }
7191 
7192 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7193 					struct kvm_guest_debug *dbg)
7194 {
7195 	unsigned long rflags;
7196 	int i, r;
7197 
7198 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7199 		r = -EBUSY;
7200 		if (vcpu->arch.exception.pending)
7201 			goto out;
7202 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7203 			kvm_queue_exception(vcpu, DB_VECTOR);
7204 		else
7205 			kvm_queue_exception(vcpu, BP_VECTOR);
7206 	}
7207 
7208 	/*
7209 	 * Read rflags as long as potentially injected trace flags are still
7210 	 * filtered out.
7211 	 */
7212 	rflags = kvm_get_rflags(vcpu);
7213 
7214 	vcpu->guest_debug = dbg->control;
7215 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7216 		vcpu->guest_debug = 0;
7217 
7218 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7219 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7220 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7221 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7222 	} else {
7223 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7224 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7225 	}
7226 	kvm_update_dr7(vcpu);
7227 
7228 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7229 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7230 			get_segment_base(vcpu, VCPU_SREG_CS);
7231 
7232 	/*
7233 	 * Trigger an rflags update that will inject or remove the trace
7234 	 * flags.
7235 	 */
7236 	kvm_set_rflags(vcpu, rflags);
7237 
7238 	kvm_x86_ops->update_bp_intercept(vcpu);
7239 
7240 	r = 0;
7241 
7242 out:
7243 
7244 	return r;
7245 }
7246 
7247 /*
7248  * Translate a guest virtual address to a guest physical address.
7249  */
7250 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7251 				    struct kvm_translation *tr)
7252 {
7253 	unsigned long vaddr = tr->linear_address;
7254 	gpa_t gpa;
7255 	int idx;
7256 
7257 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7258 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7259 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7260 	tr->physical_address = gpa;
7261 	tr->valid = gpa != UNMAPPED_GVA;
7262 	tr->writeable = 1;
7263 	tr->usermode = 0;
7264 
7265 	return 0;
7266 }
7267 
7268 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7269 {
7270 	struct fxregs_state *fxsave =
7271 			&vcpu->arch.guest_fpu.state.fxsave;
7272 
7273 	memcpy(fpu->fpr, fxsave->st_space, 128);
7274 	fpu->fcw = fxsave->cwd;
7275 	fpu->fsw = fxsave->swd;
7276 	fpu->ftwx = fxsave->twd;
7277 	fpu->last_opcode = fxsave->fop;
7278 	fpu->last_ip = fxsave->rip;
7279 	fpu->last_dp = fxsave->rdp;
7280 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7281 
7282 	return 0;
7283 }
7284 
7285 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7286 {
7287 	struct fxregs_state *fxsave =
7288 			&vcpu->arch.guest_fpu.state.fxsave;
7289 
7290 	memcpy(fxsave->st_space, fpu->fpr, 128);
7291 	fxsave->cwd = fpu->fcw;
7292 	fxsave->swd = fpu->fsw;
7293 	fxsave->twd = fpu->ftwx;
7294 	fxsave->fop = fpu->last_opcode;
7295 	fxsave->rip = fpu->last_ip;
7296 	fxsave->rdp = fpu->last_dp;
7297 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7298 
7299 	return 0;
7300 }
7301 
7302 static void fx_init(struct kvm_vcpu *vcpu)
7303 {
7304 	fpstate_init(&vcpu->arch.guest_fpu.state);
7305 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7306 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7307 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7308 
7309 	/*
7310 	 * Ensure guest xcr0 is valid for loading
7311 	 */
7312 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7313 
7314 	vcpu->arch.cr0 |= X86_CR0_ET;
7315 }
7316 
7317 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7318 {
7319 	if (vcpu->guest_fpu_loaded)
7320 		return;
7321 
7322 	/*
7323 	 * Restore all possible states in the guest,
7324 	 * and assume host would use all available bits.
7325 	 * Guest xcr0 would be loaded later.
7326 	 */
7327 	vcpu->guest_fpu_loaded = 1;
7328 	__kernel_fpu_begin();
7329 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7330 	trace_kvm_fpu(1);
7331 }
7332 
7333 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7334 {
7335 	if (!vcpu->guest_fpu_loaded) {
7336 		vcpu->fpu_counter = 0;
7337 		return;
7338 	}
7339 
7340 	vcpu->guest_fpu_loaded = 0;
7341 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7342 	__kernel_fpu_end();
7343 	++vcpu->stat.fpu_reload;
7344 	/*
7345 	 * If using eager FPU mode, or if the guest is a frequent user
7346 	 * of the FPU, just leave the FPU active for next time.
7347 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7348 	 * the FPU in bursts will revert to loading it on demand.
7349 	 */
7350 	if (!use_eager_fpu()) {
7351 		if (++vcpu->fpu_counter < 5)
7352 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7353 	}
7354 	trace_kvm_fpu(0);
7355 }
7356 
7357 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7358 {
7359 	kvmclock_reset(vcpu);
7360 
7361 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7362 	kvm_x86_ops->vcpu_free(vcpu);
7363 }
7364 
7365 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7366 						unsigned int id)
7367 {
7368 	struct kvm_vcpu *vcpu;
7369 
7370 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7371 		printk_once(KERN_WARNING
7372 		"kvm: SMP vm created on host with unstable TSC; "
7373 		"guest TSC will not be reliable\n");
7374 
7375 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7376 
7377 	return vcpu;
7378 }
7379 
7380 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7381 {
7382 	int r;
7383 
7384 	kvm_vcpu_mtrr_init(vcpu);
7385 	r = vcpu_load(vcpu);
7386 	if (r)
7387 		return r;
7388 	kvm_vcpu_reset(vcpu, false);
7389 	kvm_mmu_setup(vcpu);
7390 	vcpu_put(vcpu);
7391 	return r;
7392 }
7393 
7394 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7395 {
7396 	struct msr_data msr;
7397 	struct kvm *kvm = vcpu->kvm;
7398 
7399 	if (vcpu_load(vcpu))
7400 		return;
7401 	msr.data = 0x0;
7402 	msr.index = MSR_IA32_TSC;
7403 	msr.host_initiated = true;
7404 	kvm_write_tsc(vcpu, &msr);
7405 	vcpu_put(vcpu);
7406 
7407 	if (!kvmclock_periodic_sync)
7408 		return;
7409 
7410 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7411 					KVMCLOCK_SYNC_PERIOD);
7412 }
7413 
7414 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7415 {
7416 	int r;
7417 	vcpu->arch.apf.msr_val = 0;
7418 
7419 	r = vcpu_load(vcpu);
7420 	BUG_ON(r);
7421 	kvm_mmu_unload(vcpu);
7422 	vcpu_put(vcpu);
7423 
7424 	kvm_x86_ops->vcpu_free(vcpu);
7425 }
7426 
7427 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7428 {
7429 	vcpu->arch.hflags = 0;
7430 
7431 	atomic_set(&vcpu->arch.nmi_queued, 0);
7432 	vcpu->arch.nmi_pending = 0;
7433 	vcpu->arch.nmi_injected = false;
7434 	kvm_clear_interrupt_queue(vcpu);
7435 	kvm_clear_exception_queue(vcpu);
7436 
7437 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7438 	kvm_update_dr0123(vcpu);
7439 	vcpu->arch.dr6 = DR6_INIT;
7440 	kvm_update_dr6(vcpu);
7441 	vcpu->arch.dr7 = DR7_FIXED_1;
7442 	kvm_update_dr7(vcpu);
7443 
7444 	vcpu->arch.cr2 = 0;
7445 
7446 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7447 	vcpu->arch.apf.msr_val = 0;
7448 	vcpu->arch.st.msr_val = 0;
7449 
7450 	kvmclock_reset(vcpu);
7451 
7452 	kvm_clear_async_pf_completion_queue(vcpu);
7453 	kvm_async_pf_hash_reset(vcpu);
7454 	vcpu->arch.apf.halted = false;
7455 
7456 	if (!init_event) {
7457 		kvm_pmu_reset(vcpu);
7458 		vcpu->arch.smbase = 0x30000;
7459 	}
7460 
7461 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7462 	vcpu->arch.regs_avail = ~0;
7463 	vcpu->arch.regs_dirty = ~0;
7464 
7465 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7466 }
7467 
7468 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7469 {
7470 	struct kvm_segment cs;
7471 
7472 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7473 	cs.selector = vector << 8;
7474 	cs.base = vector << 12;
7475 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7476 	kvm_rip_write(vcpu, 0);
7477 }
7478 
7479 int kvm_arch_hardware_enable(void)
7480 {
7481 	struct kvm *kvm;
7482 	struct kvm_vcpu *vcpu;
7483 	int i;
7484 	int ret;
7485 	u64 local_tsc;
7486 	u64 max_tsc = 0;
7487 	bool stable, backwards_tsc = false;
7488 
7489 	kvm_shared_msr_cpu_online();
7490 	ret = kvm_x86_ops->hardware_enable();
7491 	if (ret != 0)
7492 		return ret;
7493 
7494 	local_tsc = rdtsc();
7495 	stable = !check_tsc_unstable();
7496 	list_for_each_entry(kvm, &vm_list, vm_list) {
7497 		kvm_for_each_vcpu(i, vcpu, kvm) {
7498 			if (!stable && vcpu->cpu == smp_processor_id())
7499 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7500 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7501 				backwards_tsc = true;
7502 				if (vcpu->arch.last_host_tsc > max_tsc)
7503 					max_tsc = vcpu->arch.last_host_tsc;
7504 			}
7505 		}
7506 	}
7507 
7508 	/*
7509 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7510 	 * platforms that reset TSC during suspend or hibernate actions, but
7511 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7512 	 * detect that condition here, which happens early in CPU bringup,
7513 	 * before any KVM threads can be running.  Unfortunately, we can't
7514 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7515 	 * enough into CPU bringup that we know how much real time has actually
7516 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7517 	 * variables that haven't been updated yet.
7518 	 *
7519 	 * So we simply find the maximum observed TSC above, then record the
7520 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7521 	 * the adjustment will be applied.  Note that we accumulate
7522 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7523 	 * gets a chance to run again.  In the event that no KVM threads get a
7524 	 * chance to run, we will miss the entire elapsed period, as we'll have
7525 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7526 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7527 	 * uniform across all VCPUs (not to mention the scenario is extremely
7528 	 * unlikely). It is possible that a second hibernate recovery happens
7529 	 * much faster than a first, causing the observed TSC here to be
7530 	 * smaller; this would require additional padding adjustment, which is
7531 	 * why we set last_host_tsc to the local tsc observed here.
7532 	 *
7533 	 * N.B. - this code below runs only on platforms with reliable TSC,
7534 	 * as that is the only way backwards_tsc is set above.  Also note
7535 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7536 	 * have the same delta_cyc adjustment applied if backwards_tsc
7537 	 * is detected.  Note further, this adjustment is only done once,
7538 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7539 	 * called multiple times (one for each physical CPU bringup).
7540 	 *
7541 	 * Platforms with unreliable TSCs don't have to deal with this, they
7542 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7543 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7544 	 * guarantee that they stay in perfect synchronization.
7545 	 */
7546 	if (backwards_tsc) {
7547 		u64 delta_cyc = max_tsc - local_tsc;
7548 		backwards_tsc_observed = true;
7549 		list_for_each_entry(kvm, &vm_list, vm_list) {
7550 			kvm_for_each_vcpu(i, vcpu, kvm) {
7551 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7552 				vcpu->arch.last_host_tsc = local_tsc;
7553 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7554 			}
7555 
7556 			/*
7557 			 * We have to disable TSC offset matching.. if you were
7558 			 * booting a VM while issuing an S4 host suspend....
7559 			 * you may have some problem.  Solving this issue is
7560 			 * left as an exercise to the reader.
7561 			 */
7562 			kvm->arch.last_tsc_nsec = 0;
7563 			kvm->arch.last_tsc_write = 0;
7564 		}
7565 
7566 	}
7567 	return 0;
7568 }
7569 
7570 void kvm_arch_hardware_disable(void)
7571 {
7572 	kvm_x86_ops->hardware_disable();
7573 	drop_user_return_notifiers();
7574 }
7575 
7576 int kvm_arch_hardware_setup(void)
7577 {
7578 	int r;
7579 
7580 	r = kvm_x86_ops->hardware_setup();
7581 	if (r != 0)
7582 		return r;
7583 
7584 	if (kvm_has_tsc_control) {
7585 		/*
7586 		 * Make sure the user can only configure tsc_khz values that
7587 		 * fit into a signed integer.
7588 		 * A min value is not calculated needed because it will always
7589 		 * be 1 on all machines.
7590 		 */
7591 		u64 max = min(0x7fffffffULL,
7592 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7593 		kvm_max_guest_tsc_khz = max;
7594 
7595 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7596 	}
7597 
7598 	kvm_init_msr_list();
7599 	return 0;
7600 }
7601 
7602 void kvm_arch_hardware_unsetup(void)
7603 {
7604 	kvm_x86_ops->hardware_unsetup();
7605 }
7606 
7607 void kvm_arch_check_processor_compat(void *rtn)
7608 {
7609 	kvm_x86_ops->check_processor_compatibility(rtn);
7610 }
7611 
7612 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7613 {
7614 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7615 }
7616 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7617 
7618 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7619 {
7620 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7621 }
7622 
7623 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7624 {
7625 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7626 }
7627 
7628 struct static_key kvm_no_apic_vcpu __read_mostly;
7629 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7630 
7631 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7632 {
7633 	struct page *page;
7634 	struct kvm *kvm;
7635 	int r;
7636 
7637 	BUG_ON(vcpu->kvm == NULL);
7638 	kvm = vcpu->kvm;
7639 
7640 	vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7641 	vcpu->arch.pv.pv_unhalted = false;
7642 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7643 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7644 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7645 	else
7646 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7647 
7648 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7649 	if (!page) {
7650 		r = -ENOMEM;
7651 		goto fail;
7652 	}
7653 	vcpu->arch.pio_data = page_address(page);
7654 
7655 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7656 
7657 	r = kvm_mmu_create(vcpu);
7658 	if (r < 0)
7659 		goto fail_free_pio_data;
7660 
7661 	if (irqchip_in_kernel(kvm)) {
7662 		r = kvm_create_lapic(vcpu);
7663 		if (r < 0)
7664 			goto fail_mmu_destroy;
7665 	} else
7666 		static_key_slow_inc(&kvm_no_apic_vcpu);
7667 
7668 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7669 				       GFP_KERNEL);
7670 	if (!vcpu->arch.mce_banks) {
7671 		r = -ENOMEM;
7672 		goto fail_free_lapic;
7673 	}
7674 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7675 
7676 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7677 		r = -ENOMEM;
7678 		goto fail_free_mce_banks;
7679 	}
7680 
7681 	fx_init(vcpu);
7682 
7683 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7684 	vcpu->arch.pv_time_enabled = false;
7685 
7686 	vcpu->arch.guest_supported_xcr0 = 0;
7687 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7688 
7689 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7690 
7691 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7692 
7693 	kvm_async_pf_hash_reset(vcpu);
7694 	kvm_pmu_init(vcpu);
7695 
7696 	vcpu->arch.pending_external_vector = -1;
7697 
7698 	kvm_hv_vcpu_init(vcpu);
7699 
7700 	return 0;
7701 
7702 fail_free_mce_banks:
7703 	kfree(vcpu->arch.mce_banks);
7704 fail_free_lapic:
7705 	kvm_free_lapic(vcpu);
7706 fail_mmu_destroy:
7707 	kvm_mmu_destroy(vcpu);
7708 fail_free_pio_data:
7709 	free_page((unsigned long)vcpu->arch.pio_data);
7710 fail:
7711 	return r;
7712 }
7713 
7714 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7715 {
7716 	int idx;
7717 
7718 	kvm_hv_vcpu_uninit(vcpu);
7719 	kvm_pmu_destroy(vcpu);
7720 	kfree(vcpu->arch.mce_banks);
7721 	kvm_free_lapic(vcpu);
7722 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7723 	kvm_mmu_destroy(vcpu);
7724 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7725 	free_page((unsigned long)vcpu->arch.pio_data);
7726 	if (!lapic_in_kernel(vcpu))
7727 		static_key_slow_dec(&kvm_no_apic_vcpu);
7728 }
7729 
7730 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7731 {
7732 	kvm_x86_ops->sched_in(vcpu, cpu);
7733 }
7734 
7735 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7736 {
7737 	if (type)
7738 		return -EINVAL;
7739 
7740 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7741 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7742 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7743 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7744 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7745 
7746 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7747 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7748 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7749 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7750 		&kvm->arch.irq_sources_bitmap);
7751 
7752 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7753 	mutex_init(&kvm->arch.apic_map_lock);
7754 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7755 
7756 	pvclock_update_vm_gtod_copy(kvm);
7757 
7758 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7759 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7760 
7761 	kvm_page_track_init(kvm);
7762 	kvm_mmu_init_vm(kvm);
7763 
7764 	if (kvm_x86_ops->vm_init)
7765 		return kvm_x86_ops->vm_init(kvm);
7766 
7767 	return 0;
7768 }
7769 
7770 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7771 {
7772 	int r;
7773 	r = vcpu_load(vcpu);
7774 	BUG_ON(r);
7775 	kvm_mmu_unload(vcpu);
7776 	vcpu_put(vcpu);
7777 }
7778 
7779 static void kvm_free_vcpus(struct kvm *kvm)
7780 {
7781 	unsigned int i;
7782 	struct kvm_vcpu *vcpu;
7783 
7784 	/*
7785 	 * Unpin any mmu pages first.
7786 	 */
7787 	kvm_for_each_vcpu(i, vcpu, kvm) {
7788 		kvm_clear_async_pf_completion_queue(vcpu);
7789 		kvm_unload_vcpu_mmu(vcpu);
7790 	}
7791 	kvm_for_each_vcpu(i, vcpu, kvm)
7792 		kvm_arch_vcpu_free(vcpu);
7793 
7794 	mutex_lock(&kvm->lock);
7795 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7796 		kvm->vcpus[i] = NULL;
7797 
7798 	atomic_set(&kvm->online_vcpus, 0);
7799 	mutex_unlock(&kvm->lock);
7800 }
7801 
7802 void kvm_arch_sync_events(struct kvm *kvm)
7803 {
7804 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7805 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7806 	kvm_free_all_assigned_devices(kvm);
7807 	kvm_free_pit(kvm);
7808 }
7809 
7810 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7811 {
7812 	int i, r;
7813 	unsigned long hva;
7814 	struct kvm_memslots *slots = kvm_memslots(kvm);
7815 	struct kvm_memory_slot *slot, old;
7816 
7817 	/* Called with kvm->slots_lock held.  */
7818 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7819 		return -EINVAL;
7820 
7821 	slot = id_to_memslot(slots, id);
7822 	if (size) {
7823 		if (slot->npages)
7824 			return -EEXIST;
7825 
7826 		/*
7827 		 * MAP_SHARED to prevent internal slot pages from being moved
7828 		 * by fork()/COW.
7829 		 */
7830 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7831 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7832 		if (IS_ERR((void *)hva))
7833 			return PTR_ERR((void *)hva);
7834 	} else {
7835 		if (!slot->npages)
7836 			return 0;
7837 
7838 		hva = 0;
7839 	}
7840 
7841 	old = *slot;
7842 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7843 		struct kvm_userspace_memory_region m;
7844 
7845 		m.slot = id | (i << 16);
7846 		m.flags = 0;
7847 		m.guest_phys_addr = gpa;
7848 		m.userspace_addr = hva;
7849 		m.memory_size = size;
7850 		r = __kvm_set_memory_region(kvm, &m);
7851 		if (r < 0)
7852 			return r;
7853 	}
7854 
7855 	if (!size) {
7856 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7857 		WARN_ON(r < 0);
7858 	}
7859 
7860 	return 0;
7861 }
7862 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7863 
7864 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7865 {
7866 	int r;
7867 
7868 	mutex_lock(&kvm->slots_lock);
7869 	r = __x86_set_memory_region(kvm, id, gpa, size);
7870 	mutex_unlock(&kvm->slots_lock);
7871 
7872 	return r;
7873 }
7874 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7875 
7876 void kvm_arch_destroy_vm(struct kvm *kvm)
7877 {
7878 	if (current->mm == kvm->mm) {
7879 		/*
7880 		 * Free memory regions allocated on behalf of userspace,
7881 		 * unless the the memory map has changed due to process exit
7882 		 * or fd copying.
7883 		 */
7884 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7885 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7886 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7887 	}
7888 	if (kvm_x86_ops->vm_destroy)
7889 		kvm_x86_ops->vm_destroy(kvm);
7890 	kvm_iommu_unmap_guest(kvm);
7891 	kfree(kvm->arch.vpic);
7892 	kfree(kvm->arch.vioapic);
7893 	kvm_free_vcpus(kvm);
7894 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7895 	kvm_mmu_uninit_vm(kvm);
7896 }
7897 
7898 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7899 			   struct kvm_memory_slot *dont)
7900 {
7901 	int i;
7902 
7903 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7904 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7905 			kvfree(free->arch.rmap[i]);
7906 			free->arch.rmap[i] = NULL;
7907 		}
7908 		if (i == 0)
7909 			continue;
7910 
7911 		if (!dont || free->arch.lpage_info[i - 1] !=
7912 			     dont->arch.lpage_info[i - 1]) {
7913 			kvfree(free->arch.lpage_info[i - 1]);
7914 			free->arch.lpage_info[i - 1] = NULL;
7915 		}
7916 	}
7917 
7918 	kvm_page_track_free_memslot(free, dont);
7919 }
7920 
7921 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7922 			    unsigned long npages)
7923 {
7924 	int i;
7925 
7926 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7927 		struct kvm_lpage_info *linfo;
7928 		unsigned long ugfn;
7929 		int lpages;
7930 		int level = i + 1;
7931 
7932 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7933 				      slot->base_gfn, level) + 1;
7934 
7935 		slot->arch.rmap[i] =
7936 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7937 		if (!slot->arch.rmap[i])
7938 			goto out_free;
7939 		if (i == 0)
7940 			continue;
7941 
7942 		linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7943 		if (!linfo)
7944 			goto out_free;
7945 
7946 		slot->arch.lpage_info[i - 1] = linfo;
7947 
7948 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7949 			linfo[0].disallow_lpage = 1;
7950 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7951 			linfo[lpages - 1].disallow_lpage = 1;
7952 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7953 		/*
7954 		 * If the gfn and userspace address are not aligned wrt each
7955 		 * other, or if explicitly asked to, disable large page
7956 		 * support for this slot
7957 		 */
7958 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7959 		    !kvm_largepages_enabled()) {
7960 			unsigned long j;
7961 
7962 			for (j = 0; j < lpages; ++j)
7963 				linfo[j].disallow_lpage = 1;
7964 		}
7965 	}
7966 
7967 	if (kvm_page_track_create_memslot(slot, npages))
7968 		goto out_free;
7969 
7970 	return 0;
7971 
7972 out_free:
7973 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7974 		kvfree(slot->arch.rmap[i]);
7975 		slot->arch.rmap[i] = NULL;
7976 		if (i == 0)
7977 			continue;
7978 
7979 		kvfree(slot->arch.lpage_info[i - 1]);
7980 		slot->arch.lpage_info[i - 1] = NULL;
7981 	}
7982 	return -ENOMEM;
7983 }
7984 
7985 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7986 {
7987 	/*
7988 	 * memslots->generation has been incremented.
7989 	 * mmio generation may have reached its maximum value.
7990 	 */
7991 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7992 }
7993 
7994 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7995 				struct kvm_memory_slot *memslot,
7996 				const struct kvm_userspace_memory_region *mem,
7997 				enum kvm_mr_change change)
7998 {
7999 	return 0;
8000 }
8001 
8002 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8003 				     struct kvm_memory_slot *new)
8004 {
8005 	/* Still write protect RO slot */
8006 	if (new->flags & KVM_MEM_READONLY) {
8007 		kvm_mmu_slot_remove_write_access(kvm, new);
8008 		return;
8009 	}
8010 
8011 	/*
8012 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
8013 	 *
8014 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
8015 	 *
8016 	 *  - KVM_MR_CREATE with dirty logging is disabled
8017 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8018 	 *
8019 	 * The reason is, in case of PML, we need to set D-bit for any slots
8020 	 * with dirty logging disabled in order to eliminate unnecessary GPA
8021 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
8022 	 * guarantees leaving PML enabled during guest's lifetime won't have
8023 	 * any additonal overhead from PML when guest is running with dirty
8024 	 * logging disabled for memory slots.
8025 	 *
8026 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8027 	 * to dirty logging mode.
8028 	 *
8029 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8030 	 *
8031 	 * In case of write protect:
8032 	 *
8033 	 * Write protect all pages for dirty logging.
8034 	 *
8035 	 * All the sptes including the large sptes which point to this
8036 	 * slot are set to readonly. We can not create any new large
8037 	 * spte on this slot until the end of the logging.
8038 	 *
8039 	 * See the comments in fast_page_fault().
8040 	 */
8041 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8042 		if (kvm_x86_ops->slot_enable_log_dirty)
8043 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8044 		else
8045 			kvm_mmu_slot_remove_write_access(kvm, new);
8046 	} else {
8047 		if (kvm_x86_ops->slot_disable_log_dirty)
8048 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8049 	}
8050 }
8051 
8052 void kvm_arch_commit_memory_region(struct kvm *kvm,
8053 				const struct kvm_userspace_memory_region *mem,
8054 				const struct kvm_memory_slot *old,
8055 				const struct kvm_memory_slot *new,
8056 				enum kvm_mr_change change)
8057 {
8058 	int nr_mmu_pages = 0;
8059 
8060 	if (!kvm->arch.n_requested_mmu_pages)
8061 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8062 
8063 	if (nr_mmu_pages)
8064 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8065 
8066 	/*
8067 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
8068 	 * sptes have to be split.  If live migration is successful, the guest
8069 	 * in the source machine will be destroyed and large sptes will be
8070 	 * created in the destination. However, if the guest continues to run
8071 	 * in the source machine (for example if live migration fails), small
8072 	 * sptes will remain around and cause bad performance.
8073 	 *
8074 	 * Scan sptes if dirty logging has been stopped, dropping those
8075 	 * which can be collapsed into a single large-page spte.  Later
8076 	 * page faults will create the large-page sptes.
8077 	 */
8078 	if ((change != KVM_MR_DELETE) &&
8079 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8080 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8081 		kvm_mmu_zap_collapsible_sptes(kvm, new);
8082 
8083 	/*
8084 	 * Set up write protection and/or dirty logging for the new slot.
8085 	 *
8086 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8087 	 * been zapped so no dirty logging staff is needed for old slot. For
8088 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8089 	 * new and it's also covered when dealing with the new slot.
8090 	 *
8091 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
8092 	 */
8093 	if (change != KVM_MR_DELETE)
8094 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8095 }
8096 
8097 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8098 {
8099 	kvm_mmu_invalidate_zap_all_pages(kvm);
8100 }
8101 
8102 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8103 				   struct kvm_memory_slot *slot)
8104 {
8105 	kvm_mmu_invalidate_zap_all_pages(kvm);
8106 }
8107 
8108 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8109 {
8110 	if (!list_empty_careful(&vcpu->async_pf.done))
8111 		return true;
8112 
8113 	if (kvm_apic_has_events(vcpu))
8114 		return true;
8115 
8116 	if (vcpu->arch.pv.pv_unhalted)
8117 		return true;
8118 
8119 	if (atomic_read(&vcpu->arch.nmi_queued))
8120 		return true;
8121 
8122 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8123 		return true;
8124 
8125 	if (kvm_arch_interrupt_allowed(vcpu) &&
8126 	    kvm_cpu_has_interrupt(vcpu))
8127 		return true;
8128 
8129 	if (kvm_hv_has_stimer_pending(vcpu))
8130 		return true;
8131 
8132 	return false;
8133 }
8134 
8135 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8136 {
8137 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8138 		kvm_x86_ops->check_nested_events(vcpu, false);
8139 
8140 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8141 }
8142 
8143 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8144 {
8145 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8146 }
8147 
8148 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8149 {
8150 	return kvm_x86_ops->interrupt_allowed(vcpu);
8151 }
8152 
8153 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8154 {
8155 	if (is_64_bit_mode(vcpu))
8156 		return kvm_rip_read(vcpu);
8157 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8158 		     kvm_rip_read(vcpu));
8159 }
8160 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8161 
8162 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8163 {
8164 	return kvm_get_linear_rip(vcpu) == linear_rip;
8165 }
8166 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8167 
8168 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8169 {
8170 	unsigned long rflags;
8171 
8172 	rflags = kvm_x86_ops->get_rflags(vcpu);
8173 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8174 		rflags &= ~X86_EFLAGS_TF;
8175 	return rflags;
8176 }
8177 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8178 
8179 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8180 {
8181 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8182 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8183 		rflags |= X86_EFLAGS_TF;
8184 	kvm_x86_ops->set_rflags(vcpu, rflags);
8185 }
8186 
8187 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8188 {
8189 	__kvm_set_rflags(vcpu, rflags);
8190 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8191 }
8192 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8193 
8194 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8195 {
8196 	int r;
8197 
8198 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8199 	      work->wakeup_all)
8200 		return;
8201 
8202 	r = kvm_mmu_reload(vcpu);
8203 	if (unlikely(r))
8204 		return;
8205 
8206 	if (!vcpu->arch.mmu.direct_map &&
8207 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8208 		return;
8209 
8210 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8211 }
8212 
8213 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8214 {
8215 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8216 }
8217 
8218 static inline u32 kvm_async_pf_next_probe(u32 key)
8219 {
8220 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8221 }
8222 
8223 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8224 {
8225 	u32 key = kvm_async_pf_hash_fn(gfn);
8226 
8227 	while (vcpu->arch.apf.gfns[key] != ~0)
8228 		key = kvm_async_pf_next_probe(key);
8229 
8230 	vcpu->arch.apf.gfns[key] = gfn;
8231 }
8232 
8233 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8234 {
8235 	int i;
8236 	u32 key = kvm_async_pf_hash_fn(gfn);
8237 
8238 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8239 		     (vcpu->arch.apf.gfns[key] != gfn &&
8240 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8241 		key = kvm_async_pf_next_probe(key);
8242 
8243 	return key;
8244 }
8245 
8246 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8247 {
8248 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8249 }
8250 
8251 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8252 {
8253 	u32 i, j, k;
8254 
8255 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8256 	while (true) {
8257 		vcpu->arch.apf.gfns[i] = ~0;
8258 		do {
8259 			j = kvm_async_pf_next_probe(j);
8260 			if (vcpu->arch.apf.gfns[j] == ~0)
8261 				return;
8262 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8263 			/*
8264 			 * k lies cyclically in ]i,j]
8265 			 * |    i.k.j |
8266 			 * |....j i.k.| or  |.k..j i...|
8267 			 */
8268 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8269 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8270 		i = j;
8271 	}
8272 }
8273 
8274 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8275 {
8276 
8277 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8278 				      sizeof(val));
8279 }
8280 
8281 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8282 				     struct kvm_async_pf *work)
8283 {
8284 	struct x86_exception fault;
8285 
8286 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8287 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8288 
8289 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8290 	    (vcpu->arch.apf.send_user_only &&
8291 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8292 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8293 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8294 		fault.vector = PF_VECTOR;
8295 		fault.error_code_valid = true;
8296 		fault.error_code = 0;
8297 		fault.nested_page_fault = false;
8298 		fault.address = work->arch.token;
8299 		kvm_inject_page_fault(vcpu, &fault);
8300 	}
8301 }
8302 
8303 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8304 				 struct kvm_async_pf *work)
8305 {
8306 	struct x86_exception fault;
8307 
8308 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8309 	if (work->wakeup_all)
8310 		work->arch.token = ~0; /* broadcast wakeup */
8311 	else
8312 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8313 
8314 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8315 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8316 		fault.vector = PF_VECTOR;
8317 		fault.error_code_valid = true;
8318 		fault.error_code = 0;
8319 		fault.nested_page_fault = false;
8320 		fault.address = work->arch.token;
8321 		kvm_inject_page_fault(vcpu, &fault);
8322 	}
8323 	vcpu->arch.apf.halted = false;
8324 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8325 }
8326 
8327 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8328 {
8329 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8330 		return true;
8331 	else
8332 		return !kvm_event_needs_reinjection(vcpu) &&
8333 			kvm_x86_ops->interrupt_allowed(vcpu);
8334 }
8335 
8336 void kvm_arch_start_assignment(struct kvm *kvm)
8337 {
8338 	atomic_inc(&kvm->arch.assigned_device_count);
8339 }
8340 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8341 
8342 void kvm_arch_end_assignment(struct kvm *kvm)
8343 {
8344 	atomic_dec(&kvm->arch.assigned_device_count);
8345 }
8346 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8347 
8348 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8349 {
8350 	return atomic_read(&kvm->arch.assigned_device_count);
8351 }
8352 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8353 
8354 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8355 {
8356 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8357 }
8358 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8359 
8360 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8361 {
8362 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8363 }
8364 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8365 
8366 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8367 {
8368 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8369 }
8370 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8371 
8372 bool kvm_arch_has_irq_bypass(void)
8373 {
8374 	return kvm_x86_ops->update_pi_irte != NULL;
8375 }
8376 
8377 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8378 				      struct irq_bypass_producer *prod)
8379 {
8380 	struct kvm_kernel_irqfd *irqfd =
8381 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8382 
8383 	irqfd->producer = prod;
8384 
8385 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8386 					   prod->irq, irqfd->gsi, 1);
8387 }
8388 
8389 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8390 				      struct irq_bypass_producer *prod)
8391 {
8392 	int ret;
8393 	struct kvm_kernel_irqfd *irqfd =
8394 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8395 
8396 	WARN_ON(irqfd->producer != prod);
8397 	irqfd->producer = NULL;
8398 
8399 	/*
8400 	 * When producer of consumer is unregistered, we change back to
8401 	 * remapped mode, so we can re-use the current implementation
8402 	 * when the irq is masked/disabed or the consumer side (KVM
8403 	 * int this case doesn't want to receive the interrupts.
8404 	*/
8405 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8406 	if (ret)
8407 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8408 		       " fails: %d\n", irqfd->consumer.token, ret);
8409 }
8410 
8411 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8412 				   uint32_t guest_irq, bool set)
8413 {
8414 	if (!kvm_x86_ops->update_pi_irte)
8415 		return -EINVAL;
8416 
8417 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8418 }
8419 
8420 bool kvm_vector_hashing_enabled(void)
8421 {
8422 	return vector_hashing;
8423 }
8424 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8425 
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8444 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8445